
AppleScript Language Guide
Scripting & Automation > AppleScript

2008-03-11

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple
Inc.

Apple, the Apple logo, AppleScript,
AppleScript Studio, AppleShare, AppleTalk,
Bonjour, eMac, iTunes, iWork, Leopard,
Logic, Mac, Mac OS, and Macintosh are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder, Numbers, and Spotlight are
trademarks of Apple Inc.

Intel and Intel Core are registered
trademarks of Intel Corportation or its
subsidiaries in the United States and other
countries.

Times is a registered trademark of
Heidelberger Druckmaschinen AG,
available from Linotype Library GmbH.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to AppleScript Language Guide 13

Who Should Read This Document? 14
Organization of This Document 14
Conventions Used in This Guide 15
See Also 16

Chapter 1 AppleScript Lexical Conventions 17

Character Set 17
Identifiers 18
Keywords 18
Comments 19
The Continuation Character 20
Literals and Constants 20

Boolean 21
Constant 21
List 21
Number 21
Record 21
Text 22

Operators 22
Variables 22
Expressions 22
Statements 23
Commands 23
Results 24
Raw Codes 24

Chapter 2 AppleScript Fundamentals 25

Script Editor Application 25
AppleScript and Objects 26

What Is in a Script Object 27
Properties 28
Elements 28

Object Specifiers 29
What Is in an Object Specifier 29

3
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Containers 30
Absolute and Relative Object Specifiers 30
Object Specifiers in Reference Objects 31

Coercion (Object Conversion) 32
Scripting Additions 34
Commands Overview 35

Types of Commands 35
Target 36
Direct Parameter 36
Parameters That Specify Locations 36

AppleScript Error Handling 37
Global Constants in AppleScript 37

AppleScript Constant 37
current application Constant 40
missing value Constant 40
true, false Constants 40

The it and me Keywords 40
Aliases and Files 42

Specifying Paths 42
Working With Aliases 43
Working With Files 43

Remote Applications 44
Enabling Remote Applications 44
eppc-Style Specifiers 44
Targeting Remote Applications 45

Debugging AppleScript Scripts 45
Feedback From Your Script 46
Logging 46
Third Party Debuggers 46

Chapter 3 Variables and Properties 47

Defining Properties 47
Declaring Variables 48

Local Variables 48
Global Variables 49
Using the copy and set Commands 49

Scope of Variables and Properties 51
Scope of Properties and Variables Declared in a Script Object 53
Scope of Variables Declared in a Handler 56

Chapter 4 Script Objects 59

Defining Script Objects 59
Initializing Script Objects 61
Sending Commands to Script Objects 61

4
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Inheritance in Script Objects 62
The AppleScript Inheritance Chain 63
Defining Inheritance Through the parent Property 63
Some Examples of Inheritance 63
Using the continue Statement in Script Objects 65

Chapter 5 About Handlers 69

Handler Basics 69
Defining a Simple Handler 70
Handlers with Labeled Parameters 70
Handlers with Positional Parameters 71
Handlers with Patterned Positional Parameters 72
Recursive Handlers 73
Errors in Handlers 73
Passing by Reference Versus Passing by Value 74
Calling Handlers in a tell Statement 74

Saving and Loading Libraries of Handlers 75
Handlers in Script Applications 76

run Handlers 76
open Handlers 77
idle and quit Handlers for Stay-Open Applications 78

Calling a Script Application From a Script 79

Chapter 6 Class Reference 81

alias 81
application 82
boolean 84
class 86
constant 86
date 87
file 91
integer 91
list 92
number 94
POSIX file 95
real 96
record 96
reference 98
RGB color 99
script 99
text 100
unit types 106

5
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Chapter 7 Commands Reference 109

activate 112
ASCII character 112
ASCII number 113
beep 114
choose application 114
choose color 115
choose file 116
choose file name 118
choose folder 119
choose from list 120
choose remote application 122
choose URL 123
clipboard info 124
close access 124
copy 125
count 126
current date 127
delay 127
display alert 128
display dialog 129
do shell script 132
get 133
get eof 135
get volume settings 135
info for 136
launch 138
list disks 139
list folder 139
load script 139
localized string 140
log 142
mount volume 142
offset 143
open for access 144
open location 145
path to (application) 146
path to (folder) 147
path to resource 149
random number 150
read 151
round 153
run 155
run script 156
say 157

6
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

scripting components 158
set 158
set eof 160
set the clipboard to 160
set volume 161
store script 162
summarize 163
system attribute 164
system info 165
the clipboard 167
time to GMT 167
write 168

Chapter 8 Reference Forms 171

Arbitrary 171
Every 172
Filter 173
ID 175
Index 176
Middle 177
Name 178
Property 178
Range 179
Relative 180

Chapter 9 Operators Reference 183

& (concatenation) 191
text 191
record 191
All Other Classes 191

a reference to 192
Examples 192

contains, is contained by 193
list 193
record 193
text 194

equal, is not equal to 194
list 194
record 194
text 194

greater than, less than 195
date 195
integer, real 195
text 195

7
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

starts with, ends with 196
list 196
text 196

Chapter 10 Control Statements Reference 197

considering and ignoring Statements 197
considering / ignoring (text comparison) 197
considering / ignoring (application responses) 199

error Statements 200
error 200

if Statements 201
if (simple) 202
if (compound) 202

repeat Statements 203
exit 203
repeat (forever) 203
repeat (number) times 204
repeat until 205
repeat while 206
repeat with loopVariable (from startValue to stopValue) 206
repeat with loopVariable (in list) 207

tell Statements 209
tell (simple) 209
tell (compound) 210

try Statements 211
try 211

using terms from Statements 213
using terms from 213

with timeout Statements 214
with timeout 214

with transaction Statements 215
with transaction 215

Chapter 11 Handler Reference 217

continue 217
return 218
Handler Syntax (Labeled Parameters) 219
Calling a Handler with Labeled Parameters 220
Handler Syntax (Positional Parameters) 222
Calling a Handler with Positional Parameters 222

Chapter 12 Folder Actions Reference 225

adding folder items to 226

8
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

closing folder window for 227
moving folder window for 227
opening folder 228
removing folder items from 229

Appendix A AppleScript Keywords 231

Appendix B Error Numbers and Error Messages 237

AppleScript Errors 237
Operating System Errors 238

Appendix C Working with Errors 241

Catching Errors in a Handler 241
Simplified Error Checking 242

Appendix D Double Angle Brackets 245

When a Dictionary Is Not Available 245
When AppleScript Displays Data in Raw Format 246
Entering Script Information in Raw Format 246
Sending Raw Apple Events From a Script 247

Appendix E Unsupported Terms 249

List of Unsupported Terms 249

Glossary 251

Document Revision History 257

Index 259

9
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

10
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures, Tables, and Listings

Chapter 1 AppleScript Lexical Conventions 17

Table 1-1 AppleScript reserved words, listed alphabetically 19

Chapter 2 AppleScript Fundamentals 25

Figure 2-1 The Finder dictionary in Script Editor (in Mac OS X v10.5) 26
Table 2-1 Default coercions supported by AppleScript 33

Chapter 3 Variables and Properties 47

Table 3-1 Scope of property and variable declarations at the top level in a script object
53

Table 3-2 Scope of variable declarations within a handler 56

Chapter 4 Script Objects 59

Listing 4-1 A pair of script objects with a simple parent-child relationship 64

Chapter 6 Class Reference 81

Table 6-1 Special characters in text 103
Table 6-2 White space constants 103

Chapter 7 Commands Reference 109

Figure 7-1 Bundle structure with localized string data 141
Figure 7-2 Key/value pair for localized string data 141
Table 7-1 AppleScript commands 109

Chapter 8 Reference Forms 171

Table 8-1 Boolean expressions and tests in filter references 175

Chapter 9 Operators Reference 183

Table 9-1 AppleScript operators 183
Table 9-2 Operator precedence 190

11
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Appendix A AppleScript Keywords 231

Table A-1 AppleScript reserved words, with descriptions 231

Appendix B Error Numbers and Error Messages 237

Table B-1 AppleScript errors 237
Table B-2 Mac OS errors 238

12
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

This document is a guide to the AppleScript language—its lexical conventions, syntax, keywords,
and other elements. It is intended primarily for use with AppleScript 2.0 or later and Mac OS X version
10.5 or later.

AppleScript 2.0 can use scripts developed for any version of AppleScript from 1.1 through 1.10.7, any
scripting addition created for AppleScript 1.5 or later for Mac OS X, and any scriptable application
for Mac OS v7.1 or later. A script created with AppleScript 2.0 can be used by any version of
AppleScript back to version 1.1, provided it does not use features of AppleScript, scripting additions,
or scriptable applications that are unavailable in that version.

Important: Descriptions and examples for the terms in this document have been tested with AppleScript
2.0 in Mac OS X v10.5 (Leopard). Except for terms that are noted as being new in Leopard, most
descriptions and examples work with previous system versions, but have not been tested against all
of them.

If you need detailed information about prior system and AppleScript versions, see AppleScript Release
Notes (Mac OS X 10.4 and earlier).

What Is AppleScript?

AppleScript is a scripting language created by Apple. It allows users to directly control scriptable
Macintosh applications, as well as parts of Mac OS X itself. You can create scripts—sets of written
instructions—to automate repetitive tasks, combine features from multiple scriptable applications,
and create complex workflows.

Note: Apple also provides the Automator application, which allows users to automate common tasks
by hooking together ready-made actions in a graphical environment. For more information, see
Automator Documentation.

A scriptable application is one that can be controlled by a script. For AppleScript, that means being
responsive to interapplication messages, called Apple events, sent when a script command targets
the application. (Apple events can also be sent directly from other applications and Mac OS X.)

AppleScript itself provides a very small number of commands, but it provides a framework into
which you can plug many task-specific commands—those provided by scriptable applications and
scriptable parts of Mac OS X.

What Is AppleScript? 13
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to AppleScript Language
Guide

Most script samples and script fragments in this guide use scriptable features of the Finder application,
scriptable parts of Mac OS X, or scriptable applications distributed with Mac OS X, such as TextEdit
(located in /Applications).

Who Should Read This Document?

You should use this document if you write or modify AppleScript scripts, or if you create scriptable
applications and need to know how scripts should work.

AppleScript Language Guide assumes you are familiar with the high-level information about AppleScript
found in AppleScript Overview.

Organization of This Document

This guide describes the AppleScript language in a series of chapters and appendixes.

The first five chapters introduce components of the language and basic concepts for using it, then
provide additional overview on working with script objects and handler routines:

 ■ “AppleScript Lexical Conventions” (page 17) describes the characters, symbols, keywords, and
other language elements that make up statements in an AppleScript script.

 ■ “AppleScript Fundamentals” (page 25) describes basic concepts that underly the terminology
and rules covered in the rest of this guide.

 ■ “Variables and Properties” (page 47) describes common issues in working with variables and
properties, including how to declare them and how AppleScript interprets their scope.

 ■ “Script Objects” (page 59) describes how to define, initialize, send commands to, and use
inheritance with script objects.

 ■ “About Handlers” (page 69) provides information on using handlers (a type of function available
in AppleScript) to factor and reuse code.

The following chapters provide reference for the AppleScript Language:

 ■ “Class Reference” (page 81) describes the classes AppleScript defines for common objects used
in scripts.

 ■ “Commands Reference” (page 109) describes the commands that are available to any script.

 ■ “Reference Forms” (page 171) describes the syntax for specifying an object or group of objects in
an application or other container.

 ■ “Operators Reference” (page 183) provides a list of the operators AppleScript supports and the
rules for using them, along with sections that provide additional detail for commonly used
operators.

 ■ “Control Statements Reference” (page 197) describes statements that control when and how other
statements are executed. It covers standard conditional statements, as well as statements used in
error handling and other operations.

14 Who Should Read This Document?
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to AppleScript Language Guide

 ■ “Handler Reference” (page 217) shows the syntax for defining and calling handlers and describes
other statements you use with handlers.

The following chapter describes an AppleScript-related feature of Mac OS X:

 ■ “Folder Actions Reference” (page 225) describes how you can write and attach script handlers to
specific folders, such that the handlers are invoked when the folders are modified.

The following appendixes provide additional information about the AppleScript language and how
to work with errors in scripts:

 ■ “AppleScript Keywords” (page 231) lists the keywords of the AppleScript language, provides a
brief description for each, and points to related information.

 ■ “Error Numbers and Error Messages” (page 237) describes error numbers and error messages you
may see in working with AppleScript scripts.

 ■ “Working with Errors” (page 241) provides detailed examples of handling errors with “try
Statements” (page 211) and “error Statements” (page 200).

 ■ “Double Angle Brackets” (page 245) describes when you are likely to see double angle brackets
(or chevrons—«») in scripts and how you can work with them.

 ■ “Unsupported Terms” (page 249) lists terms that are no longer supported in AppleScript.

Conventions Used in This Guide

Glossary terms are shown in boldface where they are defined.

Important: This document sometimes uses the continuation character (¬) for sample statements that
don’t fit on one line on a document page. It also uses the continuation character in some syntax
statements to identify an item that, if included, must appear on the same line as the previous item.
The continuation character itself is not a required part of the syntax—it is merely a mechanism for
including multiple lines in one statement.

The following conventions are used in syntax descriptions:

Plain computer font indicates an element that you type exactly as shown. If
there are special symbols (for example, + or &), you also type them exactly
as shown.

language element

Italic text indicates a placeholder that you replace with an appropriate value.placeholder

Brackets indicate that the enclosed language element or elements are optional.[optional]

Parentheses group elements together.

However, the parentheses shown in “Handler Syntax (Positional
Parameters)” (page 222) are part of the syntax.

(a group)

Conventions Used in This Guide 15
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to AppleScript Language Guide

Three ellipsis points (...) after a group defined by brackets indicate that you
can repeat the group of elements within brackets 0 or more times.

[optional]...

Vertical bars separate elements in a group from which you must choose a
single element. The elements are often grouped within parentheses or
brackets.

a | b | c

Most filenames shown in examples in this document include extensions, such
as rtf for a TextEdit document. Use of extensions in scripts is generally
dependent on the “Show all file extensions” setting in the Advanced pane of
Finder Preferences.

To work with the examples on your computer, you may need to modify either
that setting or the filenames.

Filenames shown in
scripts

See Also

These Apple documents provide additional information for working with AppleScript:

 ■ See Getting Started with AppleScript for a guided quick start, useful to both scripters and developers.

 ■ See AppleScript Overview, including the chapter Scripting With AppleScript, for a high-level
overview of AppleScript and its related technologies.

 ■ See Getting Started With Scripting & Automation for information on the universe of scripting
technologies available in Mac OS X.

 ■ See AppleScript Terminology and Apple Event Codes for a list of many of the scripting terms
defined by Apple.

For additional information on working with the AppleScript language and creating scripts, see one
of the comprehensive third-party documents available in bookstores and online.

16 See Also
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to AppleScript Language Guide

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

This chapter provides an overview of the vocabulary and conventions of the AppleScript Language.
It starts with the character set and introduces elements of increasing complexity.

After reading this chapter, you should have an understanding of the basic language components used
to construct AppleScript expressions and statements.

AppleScript Lexical Conventions contains the following sections:

 ■ “Character Set” (page 17)

 ■ “Identifiers” (page 18)

 ■ “Keywords” (page 18)

 ■ “Comments” (page 19)

 ■ “The Continuation Character” (page 20)

 ■ “Literals and Constants” (page 20)

 ■ “Operators” (page 22)

 ■ “Variables” (page 22)

 ■ “Expressions” (page 22)

 ■ “Statements” (page 23)

 ■ “Commands” (page 23)

 ■ “Results” (page 24)

 ■ “Raw Codes” (page 24)

Character Set

Starting in Mac OS X v10.5 (AppleScript 2.0), the character set for AppleScript is Unicode. AppleScript
preserves all characters correctly worldwide, and comments and text constants in scripts may contain
any Unicode characters.

Character Set 17
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

AppleScript syntax uses several non-ASCII characters, which can be typed using special key
combinations. For information on characters that AppleScript treats specially, see the sections
“Identifiers” (page 18), “Comments” (page 19), “Text” (page 22), “The Continuation Character” (page
20), and “Raw Codes” (page 24) in this chapter, as well as Table 9-1 (page 183) in “Operators
Reference” (page 183).

Identifiers

An AppleScript identifier is a series of characters that identifies a class name, variable, or other
language element, such as labels for properties and handlers.

An identifier must begin with a letter and can contain any of these characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_

Identifiers are not case sensitive. For example, the identifiers myvariable and MyVariable are
equivalent.

AppleScript remembers and enforces the first capitalization it comes across for an identifier. So if it
first encounters an identifier as myAccount, it will later, during compilation, change versions such as
MyAccount and myaccount to myAccount.

The following are examples of valid identifiers: areaOfCircle, Agent007, axis_of_rotation.

The following are not valid identifiers: C-, back&forth, 999, Why^Not.

AppleScript provides a loophole to the preceding rules: identifiers whose first and last characters are
vertical bars (|) can contain any characters. The leading and trailing vertical bars are not considered
part of the identifier.

Important: This use of vertical bars can make scripts difficult to read, and is not recommended.

The following are legal identifiers: |back&forth|, |Right*Now!|.

An identifier can contain additional vertical bars preceded by a backslash (\) character, as in the
identifier |This\|Or\|That|. Use of the backslash character is described further in the Special String
Characters section of the text (page 100) class.

Keywords

A keyword is a reserved word in the AppleScript language. Keywords consist of lower-case, alphabetic
characters: abcdefghijklmnopqrstuvwxyz. In a few cases, such as aside from, they come in pairs.

18 Identifiers
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

Important: You should not attempt to reuse keywords in your scripts for variable names or other
purposes. Developers should not re-define keywords in the terminology for their scriptable
applications.

Table 1-1 lists the keywords reserved in AppleScript 2.0 (which are the same as those used in
AppleScript 1.x). For additional information, see Table A-1 (page 231), which provides a brief description
for each keyword and points to related information, where available.

Table 1-1 AppleScript reserved words, listed alphabetically

apart fromandagainstafteraboveabout

beforebackataside fromasaround

betweenbesidebeneathbelowbehindbeginning

containscontainscontainconsideringbybut

elseeighthdoesdivcopycontinue

exiteveryerrorequalsequalend

fromfourthforfirstfifthfalse

ignoringifglobalgivengetfront

itsitisintoinstead ofin

mymodmiddlemelocallast

orontoonofnotninth

refputpropertypropoverout of

secondscriptreturningreturnrepeatreference

tellsomesixthsinceseventhset

throughthirdthenthethattenth

truetransactiontotimestimeoutthru

withwhosewhilewhereuntiltry

without

Comments

A comment is text that is ignored by AppleScript when a script is executed. You can use comments
to describe what is happening in the script or make other kinds of notes. There are three kinds of
comments:

Comments 19
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

 ■ A block comment begins with the characters (* and ends with the characters *). Block comments
must be placed between other statements. That means they can be placed on the same line at the
beginning or end of a statement, but cannot be embedded within a simple (one-line) statement.

 ■ An end-of-line comment begins with the characters -- (two hyphens) and ends with the end of
the line:

--end-of-line comments extend to the end of the line

 ■ Starting in version 2.0, AppleScript also supports use of the # symbol as an end-of-line comment.
This allows you to make a plain AppleScript script into a Unix executable by beginning it with
the following line and giving it execute permission:

#!/usr/bin/osascript

Compiled scripts that use # will run normally on pre-2.0 systems, and if edited will display using
--. Executable text scripts using #!/usr/bin/osascript will not run on pre-2.0 systems, since
the # will be considered a syntax error.

You can nest comments—that is, comments can contain other comments, as in this example:

(* Here are some
--nested comments
(* another comment within a comment *)

*)

The Continuation Character

A simple AppleScript statement must normally be entered on a single line. You can extend a statement
to the next line by ending it with the continuation character, ¬. With a U.S. keyboard, you can enter
this character by typing Option-l (lower-case L). In Script Editor, you can type Option-Return, which
inserts the continuation character and moves the insertion point to the next line.

Here is a single statement displayed on two lines:

display dialog "This is just a test." buttons {"Great", "OK"} ¬
default button "OK" giving up after 3

A continuation character within a quoted text string is treated like any other character.

Literals and Constants

A literal is a value that evaluates to itself—that is, it is interpreted just as it is written. In AppleScript,
for example, "Hello" is a text literal. A constant is a word with a predefined value. For example,
AppleScript defines a number of enumerated constants for use with the path to (folder) (page
147) command, each of which specifies a location for which to obtain the path.

20 The Continuation Character
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

Boolean

AppleScript defines the Boolean values true and false and supplies the boolean (page 84) class.

Constant

“Global Constants in AppleScript” (page 37) describes constants that can be used throughout your
scripts. For related information, see the constant (page 86) class.

List

A list defines an ordered collection of values, known as items, of any class. As depicted in a script, a
list consists of a series of expressions contained within braces and separated by commas, such as the
following:

{1, 7, "Beethoven", 4.5}

A list can contain other lists. An empty list (containing no items) is represented by a pair of empty
braces: {}.

AppleScript provides the list (page 92) class for working with lists.

Number

A numeric literal is a sequence of digits, possibly including other characters, such as a unary minus
sign, period (in reals), or "E+" (in exponential notation). The following are some numeric literals:

-94596
3.1415
9.9999999999E+10

AppleScript defines classes for working with real (page 96) and integer (page 91) values, as well
as the number class, which serves as a synonym for either real or integer.

Record

A record is an unordered collection of labeled properties. A record appears in a script as a series of
property definitions contained within braces and separated by commas. Each property definition
consists of a unique label, a colon, and a value for the property. For example, the following is a record
with two properties:

{product:"pen", price:2.34}

Literals and Constants 21
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

Text

A text literal consists of a series of Unicode characters enclosed in a pair of double quote marks, as
in the following example:

"A basic string."

AppleScript text objects are instances of the text (page 100) class, which provides mechanisms for
working with text. The Special String Characters section of that class describes how to use white
space, backslash characters, and double quotes in text.

Operators

An operator is a symbol, word, or phrase that derives a value from another value or pair of values.
For example, the multiplication operator (*) multiplies two numeric operands, while the concatenation
operator (&) joins two objects (such as text strings). The is equal operator performs a test on two
Boolean values.

For detailed information on AppleScript’s operators, see “Operators Reference” (page 183).

Variables

A variable is a named container in which to store a value. Its name, which you specify when you
create the variable, follows the rules described in “Identifiers” (page 18). You can declare and initialize
a variable at the same time with a copy (page 125) or set (page 158) command. For example:

set myName to "John"
copy 33 to myAge

Statements that assign values to variables are known as assignment statements.

When AppleScript encounters a variable, it evaluates the variable by getting its value. A variable is
contained in a script and its value is normally lost when you close the script that contains it.

AppleScript variables can hold values of any class. For example, you can assign the integer value 17
to a variable, then later assign the Boolean value true to the same variable.

For more information, see “Variables and Properties” (page 47).

Expressions

An expression is any series of lexical elements that has a value. Expressions are used in scripts to
represent or derive values. The simplest kinds of expressions, called literal expressions, are
representations of values in scripts. More complex expressions typically combine literals, variables,
operators, and object specifiers.

22 Operators
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

When you run a script, AppleScript converts its expressions into values. This process is known as
evaluation. For example, when the following simple expression is evaluated, the result is 21:

3 * 7 --result: 21

An object specifier specifies some or all of the information needed to find another object. For example,
the following object specifier specifies a named document:

document named "FavoritesList"

For more information, see “Object Specifiers” (page 29).

Statements

A statement is a series of lexical elements that follows a particular AppleScript syntax. Statements
can include keywords, variables, operators, constants, expressions, and so on.

Every script consists of statements. When AppleScript executes a script, it reads the statements in
order and carries out their instructions.

A control statement is a statement that determines when and how other statements are executed.
AppleScript defines standard control statements such as if, repeat, and while statements, which
are described in detail in “Control Statements Reference” (page 197).

A simple statement is one that can be written on a single line:

set averageTemp to 63 as degrees Fahrenheit

Note: You can use a continuation character (¬) to extend a simple statement onto a second line.

A compound statement is written on more than one line, can contain other statements, and has the
word end (followed, optionally, by the first word of the statement) in its last line. For example the
following is a compound tell statement:

tell application "Finder"
set savedName to name of front window
close window savedName

end tell

A compound statement can contain other compound statements.

Commands

A command is a word or series of words used in an AppleScript statement to request an action. Every
command is directed at a target, which is the object that responds to the command. The target is
usually an application object or an object in Mac OS X, but it can also be a script object or a value
in the current script.

Statements 23
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

The following statement uses AppleScript’s get (page 133) command to obtain the name of a window;
the target is the front window of the Finder application:

get name of front window of application "Finder"

For more information on command types, parameters, and targets, see “Commands Overview” (page
35).

Results

The result of a statement is the value generated, if any, when the statement is executed. For example,
executing the statement 3 + 4 results in the value 7. The result of the statement set myText to
"keyboard" is the text object "keyboard". A result can be of any class. AppleScript stores the result
in the globally available property result, described in “AppleScript Constant” (page 37).

Raw Codes

When you open, compile, edit, or run scripts with a script editor, you may occasionally see terms
enclosed in double angle brackets, or chevrons («»), in a script window or in another window. These
terms are called raw format or raw codes, because they represent the underlying Apple event codes
that AppleScript uses to represent scripting terms.

For compatibility with Asian national encodings, “《” and “》” are allowed as synonyms for “«” and
“»” ((Option- \ and Option-Shift- \, respectively, on a U.S. keyboard), since the latter do not exist in
some Asian encodings.

For more information on raw codes, see “Double Angle Brackets” (page 245).

24 Results
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1

AppleScript Lexical Conventions

This chapter describes basic concepts that underlie the terminology and rules covered in the rest of
this guide.

 ■ “Script Editor Application” (page 25)

 ■ “AppleScript and Objects” (page 26)

 ■ “Object Specifiers” (page 29)

 ■ “Coercion (Object Conversion)” (page 32)

 ■ “Scripting Additions” (page 34)

 ■ “Commands Overview” (page 35)

 ■ “AppleScript Error Handling” (page 37)

 ■ “Global Constants in AppleScript” (page 37)

 ■ “The it and me Keywords” (page 40)

 ■ “Aliases and Files” (page 42)

 ■ “Remote Applications” (page 44)

 ■ “Debugging AppleScript Scripts” (page 45)

Script Editor Application

The Script Editor application is located in /Applications/AppleScript. It provides the ability to
edit, compile, and execute scripts, display application scripting terminologies, and save scripts in a
variety of formats, such as compiled scripts, applications, and plain text.

Script Editor can display the result of executing an AppleScript script and can display a log of the
Apple events that are sent during execution of a script. In the Script Editor Preferences, you can also
choose to keep a history of recent results or event logs.

Script Editor has text formatting preferences for various types of script text, such as language keywords,
comments, and so on. You can also turn on or off the Script Assistant, a code completion tool that can
suggest and fill in scripting terms as you type. In addition, Script Editor provides a contextual menu
to insert many types of boilerplate script statements, such as conditionals, comments, and error
handlers.

Script Editor Application 25
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

A dictionary is the part of a scriptable application that specifies the scripting terms it understands.
You can choose File > Open Dictionary in Script Editor to display the dictionary of a scriptable
application or scripting addition on your computer. Or you can drag an application icon to the Script
Editor icon to display its dictionary (if it has one).

To display a list that includes just the scriptable applications and scripting additions provided by
Mac OS X, choose Window > Library. Double-click an item in the list to display its dictionary. Figure
2-1 shows the dictionary for the Finder application in Mac OS X v10.5. The dictionary is labeled as
“Finder.sdef”. The sdef format, along with other terminology formats, is described in “Specifying
Scripting Terminology” in AppleScript Overview.

Figure 2-1 The Finder dictionary in Script Editor (in Mac OS X v10.5)

There are also third-party editors for AppleScript.

AppleScript and Objects

AppleScript is an object-oriented language. When you write, compile, and execute scripts, everything
you work with is an object. An object is an instantiation of a class definition, which can include
properties and actions. AppleScript defines classes for the objects you most commonly work with,
starting with the top-level script (page 99) object, which is the overall script you are working in.

26 AppleScript and Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Within in a script object, you work with other objects, including:

 ■ AppleScript objects:

AppleScript defines classes for boolean values, scripts, text, numbers, and other kinds of objects
for working in scripts; for a complete list, see “Class Reference” (page 81).

 ■ Mac OS X objects:

Scriptable parts of Mac OS X and applications distributed with it, such as Finder, System Events,
and Database Events (located in /System/Library/CoreServices), define many useful classes.

 ■ Application objects:

Third-party scriptable applications define classes that support a wide variety of features.

The following sections provide more detail about objects:

 ■ “What Is in a Script Object” (page 27)

 ■ “Properties” (page 28)

 ■ “Elements” (page 28)

What Is in a Script Object

When you enter AppleScript statements in script window in Script Editor, you are working in a
top-level script object. All script object definitions follow the same syntax, except that a top-level
script object does not have statements marking its beginning and end.

A script object can contain the following:

 ■ Property definitions (optional):

A property is a labeled container in which to store a value.

 ■ An explicit run handler (optional):

A run handler contains statements AppleScript executes when the script is run. (For more
information, see “run Handlers” (page 76).)

 ■ An implicit run handler (optional):

An implicit run handler consists of any statements outside of any contained handlers or script
objects.

 ■ Additional handlers (optional):

A handler is the equivalent of a subroutine. (For details, see “About Handlers” (page 69).)

 ■ Additional script objects (optional):

A script object can contain nested script objects, each of which is defined just like a top-level
script object, except that a nested script object is bracketed with statements that mark its
beginning and end. (For details, see “Script Objects” (page 59).)

Here is an example of a simple script with one property, one handler, one nested script object, and
an implicit run handler with two statements:

AppleScript and Objects 27
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

property defaultClientName : "Mary Smith"

on greetClient(nameOfClient)
display dialog ("Hello " & nameOfClient & "!")

end greetClient

script testGreet
greetClient(defaultClientName)

end script

run testGreet --result: "Hello Mary Smith!"
greetClient("Joe Jones") --result: "Hello Joe Jones!"

The first statement in the run handler is run testGreet, which runs the nested script object
testGreet. That script object calls the handler greetClient(), passing the property
defaultClientName. The handler displays a dialog, greeting the default client, Mary Smith.

The second statement in the run handler calls greetClient() directly, passing the string "Joe
Jones".

Properties

A property of an object is a characteristic that has a single value and a label, such as the name property
of a window or the month property of a date. The definition for any AppleScript class includes the
name and class for each of its properties. Property names must be unique within a class. Property
values can be read/write or read only.

The AppleScript date (page 87) class, for example, defines both read/write and read only properties.
These include the weekday property, which is read only, and the month, day, and year properties,
which are read/write. That’s because the value of the weekday property depends on the other
properties—you can’t set an arbitrary weekday for an actual date.

The class of a property can be a simple class such as boolean (page 84) or integer (page 91), a
composite class such as a point class (made up of two integers), or a more complex class.

Most classes only support predefined properties. However, for the script (page 99) class, AppleScript
lets you to define additional properties. For information on how to do this, see “Defining
Properties” (page 47). You can also define properties for record (page 96) objects.

Elements

An element is an object contained within another object. The definition for any AppleScript class
includes the element types it can contain. An object can typically contain zero or more of each of its
elements.

For a given element type, an object can contain many elements or none, and the number of elements
that it contains may change over time. For example, it is possible for a list (page 92) object to contain
no items (it can be an empty list). At a later time, the same list might contain many items.

28 AppleScript and Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Whether you can add elements to or remove elements from an object depends on the class and the
element. For example, a text object is immutable—you cannot add or remove text once the object is
created. For a list object, you cannot remove items, but you can use the set command to add an
item to the beginning or end:

set myList to {1, "what", 3} --result: {1, "what", 3}
set beginning of myList to 0
set end of myList to "four"
myList --result: {0, 1, "what", 3, "four"}

Object Specifiers

An object specifier specifies the information needed to find another object in terms of the objects in
which it is contained. An object specifier can refer to an application object, such as a window or file,
or to an AppleScript object, such as an item in a list or a property in a record.

An object specifier is fully evaluated (or resolved) only when a script is run, not when it is compiled.
A script can contain a valid object specifier (such as third document of application "TextEdit"
that causes an error when the script is executed (because, for example, there may be less than three
documents open).

Applications typically return object specifiers in response to commands. For example, if you ask the
Finder for a window, it returns information that specifies the window object your script asked for (if
it exists). The top-level container in an object specifier is typically the application itself.

You create an object specifier every time your script uses a phrase that describes the path to an object
or property, such as name of window 1 of application "Finder". When you use the a reference
to (page 192) operator, it creates a reference (page 98) object that wraps an object specifier.

The difference between an object specifier and the object it refers to is like the difference between a
building address and the building itself. The address is a series of words and numbers, such as “2121
Oak Street, San Francisco, CA” that identifies a location (on a street, in a city, in a state). It is distinct
from the building itself. If the building at that location is torn down and replaced with a new building,
the address remains the same.

What Is in an Object Specifier

An object specifier describes an object type, a location, and how to distinguish the object from other
objects of the same type in that location. These three types of information—the type, or class; the
location, or container; and the distinguishing information, or reference form—allow you to specify
any object.

In the following example, the class of the object is paragraph. The container is the phrase of document
1. Because this phrase is inside a tell statement, the tell statement provides the top-level container,
of application "TextEdit". The distinguishing information (the reference form) is the combination
of the class, paragraph, and an index value, 1, which together indicate the first paragraph.

tell application "TextEdit"
paragraph 1 of document 1

end tell

Object Specifiers 29
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Note: If you examine the dictionary for the TextEdit application, you might think this script should
say paragraph 1 of text of document 1. However, where the meaning is unambiguous, some
applications make life easier for scripters by allowing them to omit a container from an object specifier.
TextEdit uses this feature in supplying an implicitly specified subcontainer for the text in a document.
That is, if an object specifier identifies an object, such as a word or paragraph, that is contained in a
document’s text, TextEdit automatically supplies the of text part of the object specifier.

In addition to the index reference form, you can specify objects in a container by name, by range, by
ID, and by the other forms described in “Reference Forms” (page 171).

Containers

A container is an object that contains one or more objects or properties. In an object specifier, a container
specifies where to find an object or a property. To specify a container, use the word of or in, as in
the following statement (from a Finder tell block):

folder "Applications" of startup disk

A container can be an object or a series of objects, listed from the innermost to the outermost containing
object, as in the following:

tell application "Finder"
first item of first folder of first disk

end tell

You can also use the possessive form ('s) to specify containers. In the following example, the innermost
container is first window and the object it contains is a name property:

tell application "TextEdit"
first window's name

end tell

In this example, the target of the tell statement ("TextEdit") is the outer container for the object
specifier.

Absolute and Relative Object Specifiers

An absolute object specifier has enough information to identify an object or objects uniquely. It can
be used unambiguously anywhere in a script. For a reference to an application object to be absolute,
its outermost container must be the application itself, as in:

version of application "Finder" --result: "10.5.1"

In contrast, a relative object specifier does not specify enough information to identify an object or
objects uniquely; for example:

name of item 1 of disk 2

30 Object Specifiers
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

When AppleScript encounters a relative object specifier in a tell statement, it attempts to use the
default target specified by the statement to complete the object specifier. Though it isn’t generally
needed, this implicit target can be specified explicitly using the keyword it, which is described in
“The it and me Keywords” (page 40).

The default target of a tell statement is the object that receives commands if no other object is
specified. For example, the following tell statement tells the Finder to get a name using the previous
relative object specifier.

tell application "Finder"
name of item 1 of disk 2

end tell

When AppleScript encounters a relative object specifier outside any tell statement, it tries to complete
the object specifier by looking up the inheritance chain described in “Inheritance in Script
Objects” (page 62).

Object Specifiers in Reference Objects

When you can create a reference (page 98) object with the a reference to (page 192) operator, it
contains an object specifier. For example:

tell application "TextEdit"
set docRef to a reference to the first document
--result: document 1 of application "TextEdit"

-- an object specifier
name of docRef --result: "New Report.rtf"

-- name of the specified object
end tell

In this script, the variable docRef is a reference whose object specifier refers to the first document of
the application TextEdit—which happens to be named “New Report.rtf” in this case. However, the
object that docRef refers to can change. If you open a second TextEdit document called “Second
Report.rtf” so that its window is in front of the previous document, then run this script again, it will
return the name of the now-frontmost document, “Second Report.rtf”.

You could instead create a reference with a more specific object specifier:

tell application "TextEdit"
set docRef to a reference to document "New Report.rtf"
--result: document "New Report.rtf" of application "TextEdit"
name of docRef --result: "New Report.rtf"

end tell

If you run this script after opening a second document, it will still return the name of the original
document, “New Report.rtf”, if the document exists.

After you create a reference object with the a reference to operator, you can use the contents
property to get the value of the object that it refers to. That is, using the contents property causes
the reference’s object specifier to be evaluated. In the following script, for example, the content of the
variable myWindow is the window reference itself.

set myWindow to a ref to window "Q1.rtf" of application "TextEdit"
myWindow

-- result: window "Q1.rtf" of application "TextEdit" (object specifier)

Object Specifiers 31
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

contents of myWindow
--result: window id 283 of application "TextEdit" (an evaluated window)

get myWindow
-- result: window "Q1.rtf" of application "TextEdit" (object specifier)

Note that the result of the get command is to return the reference’s object specifier, not to resolve the
specifier to the object it specifies.

When it can, AppleScript will implicitly dereference a reference object (without use of the contents
property), as in the following example:

set myWindow to a ref to window 1 of application "TextEdit"
name of myWindow --result: "Q1.rtf" (if that is the first window's name)

For related information, see the Discussion section for the reference (page 98) class.

Coercion (Object Conversion)

Coercion (also known as object conversion) is the process of converting objects from one class to
another. AppleScript converts an object to a different class in either of these circumstances:

 ■ in response to the as operator

 ■ automatically, when an object is of a different class than was expected for a particular command
or operation

Not all classes can be coerced to all other class types. Table 2-1 summarizes the coercions that
AppleScript supports for commonly used classes. For more information about each coercion, see the
corresponding class definition in “Class Reference” (page 81).

AppleScript provides many coercions, either as a built-in part of the language or through the Standard
Additions scripting addition. You can use these coercions outside of a tell block in your script.
However, coercion of application class types may be dependent on the application and require a tell
block that targets the application.

The as operator specifies a specific coercion. For example, the following statement coerces the integer
2 into the text "2" before storing it in the variable myText:

set myText to 2 as text

If you provide a command parameter or operand of the wrong class, AppleScript automatically
coerces the operand or parameter to the expected class, if possible. If the conversion can’t be performed,
AppleScript reports an error.

When coercing text strings to values of class integer, number, or real, or vice versa, AppleScript
uses the current Numbers settings in the Formats pane in International preferences to determine what
separators to use in the string. When coercing strings to values of class date or vice versa, AppleScript
uses the current Dates settings in the Formats pane.

32 Coercion (Object Conversion)
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Table 2-1 Default coercions supported by AppleScript

NotesTo classConvert from class

list (single-item)

text

alias (page 81)

This is both an AppleScript class and
an application class.

list (single-item)application (page 82)

integer

list (single-item)

text

boolean (page 84)

list (single-item)

text

class (page 86)

list (single-item)

text

constant (page 86)

list (single-item)

text

date (page 87)

list (single-item)

text

file (page 91)

Coercing an integer to a number
does not change its class.

list (single-item)

real

text

integer (page 91)

any class to which the item can
be coerced if it is not part of a list

list (page 92)
(single-item)

text, if each of the items in the
list can be coerced to a text
object

list (page 92)
(multiple-item)

Values identified as values of class
number are really values of either
class integer or class real.

integer

list (single-item)

real

text

number (page 94)

POSIX file is a pseudo-class
equivalent to the file class.

see filePOSIX file (page 95)

In coercing to integer, any fractional
part is rounded.

Coercing a real to a number does not
change its class.

integer

list (single-item)

real (page 96)

Coercion (Object Conversion) 33
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

NotesTo classConvert from class

All labels are lost in the coercion and
the resulting list cannot be coerced
back to a record.

listrecord (page 96)

any class to which the referenced
object can be coerced

reference (page 98)

list (single-item)script (page 99)

Can coerce to integer or real only
if the text object represents an
appropriate number.

integer

list (single-item)

real

text (page 100)

Can coerce between unit types in the
same category, such as inches to
kilometers (length) or gallons to
liters (liquid volume).

integer

list (single-item)

real

text

unit types (page 106)

Scripting Additions

A scripting addition is a file or bundle that provides handlers you can use in scripts to perform
commands and coercions.

Many of the commands described in this guide are defined in the Standard Additions scripting
addition in Mac OS X. These commands are stored in the file StandardAdditions.osax in
/System/Library/ScriptingAdditions, and are available to any script. You can examine the
terminology for the Standard Additions by opening this file in Script Editor.

Note: A script can obtain the location of the Standard Additions with this script statement, which
uses the path to (folder) (page 147) command:

path to scripting additions as text
--result: "Hard_Disk:System:Library:ScriptingAdditions:"

Scripting additions can be embedded within bundled script applets by placing them in a folder named
Scripting Additions (note the space between “Scripting” and “Additions”) inside the bundle’�s
Contents/Resources/ folder. Note that Script Editor does not look for embedded scripting additions
when editing bundled applets. During script development, any required scripting additions must be
properly installed in /System/ScriptingAdditions, /Library/ScriptingAdditions, or
~/Library/ScriptingAdditions so that Script Editor can find them.

Developers can create their own scripting additions, as described in Technical Note TN1164, Scripting
Additions for Mac OS X. For related conceptual information, see AppleScript Overview, particularly the
section “Extending AppleScript with Coercions, Scripting Additions, and Faceless Background
Applications” in the chapter Open Scripting Architecture.

34 Scripting Additions
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Commands Overview

A command is a word or a series of words used in AppleScript statements to request an action. Every
command is directed at a target, which is the object that responds to the command. The target is often
an application object (one that is stored in an application or its documents and managed by the
application, such as a window or document) or an object in Mac OS X. However, it can also be a
script object or a value in the current script.

Commands often return results. For example, the display dialog (page 129) command returns a
record that may contain text, a button name, and other information. Your script can examine this
record to determine what to do next. You can assign the result of a command to a variable you define,
or access it through the predefined AppleScript result variable.

Types of Commands

Scripts can make use of the following kinds of commands:

 ■ An AppleScript command is one that is built into the AppleScript language. There currently are
five such commands:get (page 133) ,set (page 158),count (page 126),copy (page 125), andrun (page
155). Except for copy , each of these commands can also be implemented by applications. That is,
there is an AppleScript version of the command that works on AppleScript objects, but an
application can define its own version that works on the object types it defines.

 ■ A scripting addition command is one that is implemented through the mechanism described in
“Scripting Additions” (page 34)). Although anyone can create a scripting addition (see Technical
Note TN1164, Scripting Additions for Mac OS X), this guide documents only the scripting addition
commands from the Standard Additions, supplied by Apple as part of Mac OS X. These commands
are available to all scripts.

 ■ A user-defined command is one that is implemented by a handler defined in a script object.
To invoke a user-defined command outside of a tell statement, simply use its name and supply
values for any parameters it requires. The command will use the current script as its target.

To invoke a user-defined command inside a tell statement, see “Calling Handlers in a tell
Statement” (page 74).

 ■ An application command is one that is defined by scriptable application to provide access to a
scriptable feature. They are typically enclosed in a tell statement that targets the application.
You can determine which commands an application supports by examining its dictionary in
Script Editor.

Scriptable applications that ship with Mac OS X, such as the Finder and System Events applications
(located in /System/Library/CoreServices), provide many useful scripting commands.

Third-party scriptable applications also provide commands you can use in scripts. Many support
all or a subset of the Standard commands, described in Technical Note TN2106, Scripting Interface
Guidelines. These include commands such as delete, duplicate, exists, and move, as well as
application implementations of AppleScript commands, such as get and set.

Commands Overview 35
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Target

There are two ways to specify an object as the target of a command: by supplying it as the direct
parameter of the command (described in the next section) or by specifying it as the target of a tell
statement that contains the command. If a script doesn’t explicitly specify the target with a tell
statement, and it isn’t handled by a handler in the script or by AppleScript itself, it is sent to the next
object in the inheritance chain (see “The AppleScript Inheritance Chain” (page 63)).

In the following script, the target of the get (page 133) command is the object specifier name of first
window. Because the enclosing tell statement specifies the Finder application, the full specifier is
name of first window of application "Finder", and it is the Finder application which obtains
and returns the requested information.

tell application "Finder"
get name of first window

end tell

When a command targets an application, the result may be an application object. If so, subsequent
statements that target the result object are sent to the application.

Direct Parameter

The direct parameter is a value, usually an object specifier, that appears immediately after a command
and specifies the target of the command. Not all commands have a direct parameter. If a command
can have a direct parameter, it is noted in the command’s definition.

In the following statement, the object specifier last file of window 1 of application "Finder"
is the direct parameter of the duplicate command:

duplicate last file of window 1 of application "Finder"

A tell statement specifies a default target for all commands contained within it, so the direct parameter
is optional. The following example has the same result as the previous example:

tell last file of window 1 of application "Finder"
duplicate

end tell

Parameters That Specify Locations

Many commands have parameters that specify locations. A location can be either an insertion point
or another object. An insertion point is a location where an object can be added.

In the following example, the toparameter specifies the location to which to move the first paragraph.
The value of the to parameter of the duplicate command is the relative object specifier before
paragraph 4, which is an insertion point. AppleScript completes the specifier with the target of the
tell statement, front document of application "TextEdit".

tell front document of application "TextEdit"
duplicate paragraph 1 to before paragraph 4

end tell

36 Commands Overview
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

The phrases paragraph 1 and before paragraph 4 are called index and relative references,
respectively. For more information, see “Reference Forms” (page 171).

AppleScript Error Handling

During script execution, errors may occur due to interaction with Mac OS X, problems encountered
in an application script command, or problems caused by statements in the script itself. When an
error occurs, AppleScript stops execution at the current location, signals an error, and looks up the
calling chain for script statements that can handle the error. That is, it looks for the nearest
error-handling code block that surrounds the location where the error occurred.

Scripts can handle errors by enclosing statements that may encounter an error within a try (page 211)
statement. The try statement includes an on error section that is invoked if an error occurs.
AppleScript passes information about the error, including an error number and an error message, to
the on error section. This allows scripts to examine the error number and to display information
about it.

If the error occurs within a handler that does not provide a try statement, AppleScript looks for an
enclosing try statement where the handler was invoked. If none of the calls in the call chain is
contained in a try statement, AppleScript stops execution of the script and displays an error message
(for any error number other than -128, described below).

A script can use an error (page 200) statement to signal an error directly. Doing so invokes the
AppleScript error handling mechanism, which looks for an enclosing try statement to handle the
error.

Some “errors” are the result of the normal operation of a command. For example, commands such
as display dialog (page 129) and choose file (page 116) signal error –128 (User canceled), if the
user clicks the Cancel button. Scripts routinely handle the user canceled error to ensure normal
operation. For an example of how to do this, see the Examples section for the display dialog
command. If no try statement in a script handles the -128 error, AppleScript halts execution of the
script without displaying any error message.

For related information, see “Results” (page 24), “error Statements” (page 200), “try Statements” (page
211), “Error Numbers and Error Messages” (page 237), and “Working with Errors” (page 241).

Global Constants in AppleScript

AppleScript defines a number of global constants that you can use anywhere in a script.

AppleScript Constant

The global constant AppleScript provides access to properties you can use throughout your scripts.

You can use the AppleScript identifier itself to distinguish an AppleScript property from a property
of the current target with the same name, as shown in the section “version” (page 39).

AppleScript Error Handling 37
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

The following sections describe additional properties of AppleScript.

pi

This mathematical value represents the ratio of a circle's circumference to its diameter. It is defined
as a real number with the value 3.14159265359.

For example, the following statement computes the area of a circle with radius 7:

set circleArea to pi * 7 * 7 --result: 153.9380400259

result

When a statement is executed, AppleScript stores the resulting value, if any, in the predefined property
result. The value remains there until another statement is executed that generates a value. Until a
statement that yields a result is executed, the value of result is undefined. You can examine the
result in Script Editor by looking in the Result pane of the script window.

Note: When an error occurs during script execution, AppleScript signals an error. It doesn’t return
error information in the result property. For more information, see “AppleScript Error
Handling” (page 37).

Text Constants

AppleScript defines the text properties space, tab, return, linefeed, and quote. You effectively
use these properties as text constants to represent white space or a double quote (") character. They
are described in the Special String Characters section of the text (page 100) class.

text item delimiters

AppleScript provides the text item delimiters property for use in processing text. This property
consists of a list of strings used as delimiters by AppleScript when it coerces a list to text or gets text
items from text strings. AppleScript currently uses only the first delimiter in the list.

Because text item delimiters respect considering and ignoring attributes in AppleScript 2.0,
delimiters are case-insensitive by default. Formerly, they were always case-sensitive. To enforce the
previous behavior, add an explicit considering case statement.

You can get and set the current value of the text item delimiters property. Normally, AppleScript
doesn’t use any delimiters. For example, if the text delimiters have not been explicitly changed, the
statement

{"bread", "milk", "butter", 10.45} as string

returns the following:

"breadmilkbutter10.45"

For printing or display purposes, it is usually preferable to set text item delimiters to something
that’s easier to read. For example, the script

38 Global Constants in AppleScript
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

set AppleScript's text item delimiters to {", "}
{"bread", "milk", "butter", 10.45} as string

returns this result:

"bread, milk, butter, 10.45"

The text item delimiters property can be used to extract individual names from a pathname. For
example, the script

set AppleScript's text item delimiters to {":"}
get last text item of "Hard Disk:CD Contents:Release Notes"

returns the result "Release Notes".

If you change the text item delimiters property in Script Editor, it remains changed until you
restore its previous value or until you quit Script Editor and launch it again. If you change text item
delimiters in a script application, it remains changed in that application until you restore its previous
value or until the script application quits; however, the delimiters are not changed in Script Editor
or in other script applications you run.

Scripts commonly use an error handler to reset the text item delimiters property to its former
value if an error occurs (for more on dealing with errors, see “AppleScript Error Handling” (page
37)):

set savedDelimiters to AppleScript's text item delimiters
try

set AppleScript's text item delimiters to {"**"}
--other script statements...
--now reset the text item delimiters:
set AppleScript's text item delimiters to savedDelimiters

on error m number n
--also reset text item delimiters in case of an error:
set AppleScript's text item delimiters to savedDelimiters
--and resignal the error:
error m number n

end try

version

This property provides the current version of AppleScript. The following script shows how to check
for a version greater than or equal to version 1.9. The if statement is wrapped in a considering
numeric strings statement so that an AppleScript version such as 1.10.6 compares as larger than,
say, version 1.9.

considering numeric strings
if version of AppleScript as string ≥ "1.9" then

-- Perform operations that depend on version 1.9 or greater
else

-- Handle case where version is not high enough
end if

end considering

Applications can have their own version property, so to access the AppleScript version explicitly,
you use the phrase version of AppleScript. This will work inside a tell block that targets another
application, such as the following:

Global Constants in AppleScript 39
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

tell application "Finder"
version --result: "10.5.1"
version of AppleScript --result: "2.0"

end tell

current application Constant

The current application constant refers to the application that is executing the current AppleScript
script (for example, Script Editor). Because the current application is the parent of AppleScript (see
“The AppleScript Inheritance Chain” (page 63)), it gets a chance to handle commands that aren’t
handled by the current script or by AppleScript.

The current application constant is an object specifier—if you ask AppleScript for its value, the
result is the object specifier:

get current application --result: current application

However, if you ask for name of current application, AppleScript resolves the object specifier
and returns the current application’s name:

name of current application --result: "Script Editor"

missing value Constant

The missing value constant is a placeholder for missing or uninitialized information.

For example, the following statements use the missing value constant to determine if a variable has
changed:

set myVariable to missing value
-- perform operations that might change the value of myVariable

if myVariable is equal to missing value then
-- the value of the variable never changed

else
-- the value of the variable did change

end if

true, false Constants

AppleScript defines the Boolean constants true and false. These constants are described with the
boolean (page 84) class.

The it and me Keywords

AppleScript defines the keyword me to refer to the current script and the keyword it to refer to the
current target. (The current script is the one that is currently being executed; the current target is the
object that is the current default target for commands.) It also defines my as a synonym for of me and
its as a synonym for of it.

40 The it and me Keywords
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

If a script hasn’t targeted anything, it and me refer to the same thing—the script—as shown in the
following example:

-- At the top-level of the script:
me --result: «script» (the top-level script object)
it --result: «script» (same as it, since no target set yet)

A tell statement specifies a default target. In the following example, the default target is the Finder
application:

-- Within a tell block:
tell application "Finder" -- sets target

me --result: «script» (still the top-level script object)
it --result: application "Finder" (target of the tell statement)

end tell

You can use the words of me or my to indicate that the target of a command is the current script and
not the target of the tell statement. In the following example, the word my indicates that
minimumValue() handler is defined by the script, not by Finder:

tell application "Finder"
set fileCount to count files in front window
set myCount to my minimumValue(fileCount, 100)
--do something with up to the first 100 files…

end tell

You can also use of me or my to distinguish script properties from object properties. Suppose there
is a TextEdit document open named “Simple.rtf”:

tell document 1 of application "TextEdit"
name --result: "Simple.rtf" (implicitly uses target of tell)
name of it --result: "Simple.rtf" (specifies target of tell)
me --result: «script» (top-level script object, not target of tell)

end tell

The following example shows how to specify different version properties in a Finder tell statement.
The Finder is the default target, but using version of me, my version, or version of AppleScript
allows you to specify the version of the top-level script object. (The top-level script object returns
the AppleScript version, because it inherits from AppleScript, as described in “The AppleScript
Inheritance Chain” (page 63).)

tell application "Finder"
version --result: "10.5.1" (Finder version is the default in tell block)
its version --result: "10.5.1" (specifically asks for Finder version)
version of me --result: "2.0" (AppleScript version)
my version --result: "2.0" (AppleScript version)
version of AppleScript --result: "2.0" (AppleScript version)

end tell

For information on using it in a filter reference, see the Discussion section for the “Filter” (page 173)
reference form.

The it and me Keywords 41
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Aliases and Files

To refer to items and locations in the Mac OS X file system, you use alias (page 81) objects and
file (page 91) objects.

An alias object is a dynamic reference to an existing file system object. Because it is dynamic, it can
maintain the link to its designated file system object even if that object is moved or renamed.

A file object represents a specific file at a specific location in the file system. It can refer to an item
that does not currently exist, such as the name and location for a file that is to be created. A file
object is not dynamic, and always refers to the same location, even if a different item is moved into
that place. The POSIX file (page 95) pseudo-class is roughly synonymous with file: POSIX file
specifiers evaluate to a file object, but they use different semantics for the name, as described in
“Specifying Paths” (page 42).

The following is the recommended usage for these types:

 ■ Use an alias object to refer to existing file system objects.

 ■ Use a file object to refer to a file that does not yet exist.

 ■ Use a POSIX file specifier if you want to specify the file using a POSIX path.

The following sections describe how to specify file system objects by path and how to work with them
in your scripts.

Specifying Paths

You can create alias objects and file objects by supplying a name specifier, where the name is the
path to an item in the file system.

For alias and file specifiers, the path is an HFS path, which takes the form
"disk:item:subitem:subsubitem:...:item". For example,"Hard_Disk:Applications:Mail.app"
is the HFS path to the Mail application, assuming your boot drive is named "Hard_Disk".

HFS paths with a leading colon, such as ":folder:file", are resolved relative to the HFS working
directory. However, their use is discouraged, because the location of the HFS working directory is
unspecified, and there is no way to control it from AppleScript.

For POSIX file specifiers, the path is a POSIX path, which takes the form
"/item/subitem/subsubitem/.../item". The disk name is not required for the boot disk. For
example, "/Applications/Mail.app" is the POSIX path to the Mail application. You can see the
POSIX path of an item in Finder in the "Where" field of its Get Info window. Despite the name, POSIX
file specifiers may refer to folders or disks. Use of "~" to specify a home directory is not supported.

POSIX paths without a leading slash, such as "folder/file", are resolved relative to the POSIX
working directory. This is supported, but only is useful for scripts run from the shell—the working
directory is the current directory in the shell. The location of the POSIX working directory for
applications is unspecified.

42 Aliases and Files
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Working With Aliases

AppleScript defines the alias (page 81) class to represent aliases. An alias can be stored in a variable
and used throughout a script.

The following script first creates an alias to an existing file in the variable notesAlias, then uses the
variable in a tell statement that opens the file. It uses a try (page 211) statement to check for existence
of the alias before creating it, so that the alias is only created once, even if the script is run repeatedly.

try
notesAlias -- see if we've created the alias yet

on error
-- if not, create it in the error branch
set notesAlias to alias "Hard_Disk:Users:myUser:Feb_Notes.rtf"

end try
-- now open the file from the alias:
tell application "TextEdit" to open notesAlias

Finding the object an alias refers to is called resolving an alias. AppleScript 2.0 attempts to resolve
aliases only when you run a script. However, in earlier versions, AppleScript attempts to resolve
aliases at compile time.

Once you run the previous example, creating the alias, the script will be able to find the original file
when you run it again, even if the file’s name or location changes. (However, if you run the script
again after recompiling it, it will create a new alias.)

You can get the HFS path from an alias by coercing it to text:

notesAlias as text --result: "Hard_Disk:Users:myUser:Feb_Notes.rtf"

You can use the POSIX path property to obtain a POSIX-style path to the item referred to by an alias:

POSIX path of notesAlias --result: "/Feb_Notes.rtf"

If an alias doesn’t refer to an existing file system object then it is broken. You can’t create an alias to
an object that doesn’t exist, such as a file you plan to create. For that you use a file object, described
in the next section.

For a sample script that shows how a script application can process a list of aliases it receives when
a user drops one or more file icons on it, see “open Handlers” (page 77).

Working With Files

AppleScript uses file objects to represent files in scripts. A file object can be stored in a variable
and used throughout a script. The following script first creates a file object for an existing file in the
variable notesFile, then uses the variable in a tell statement that opens the file:

set notesFile to POSIX file "/Users/myUser/Feb_Meeting_Notes.rtf"
tell application "TextEdit" to open notesFile

You can use a file object to specify a name and location for a file that may not exist:

set newFile to POSIX file "/Users/myUser/BrandNewFile.rtf"

Aliases and Files 43
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Similarly, you can let a user specify a new file with the choose file name (page 118) command, then
use the returned file object to create the file. In the following example, if the user cancels the choose
file name dialog, the rest of the script is not executed. If the user does supply a file name, the script
opens the file, creating it if necessary, then uses a try statement to make sure it closes the file when
it is finished writing to it.

set theFile to choose file name
set referenceNumber to open for access theFile with write permission
try

-- statements to write to the file
on error

close access referenceNumber
end try
close access referenceNumber

Typically, when you pass a file object to a command that uses it to operate on a new or existing item
in the file system, the components of the path must exist for the command to succeed.

Remote Applications

A script can target an application on a remote computer if remote applications are enabled on that
computer, and if the script specifies the computer with an eppc-style specifier.

Enabling Remote Applications

For a script to send commands to a remote application, the following conditions must be satisfied:

 ■ The computer that contains the application and the computer on which the script is run must be
connected to each other through a network.

 ■ Remote Apple Events (set in the Sharing preferences pane) must be enabled on the remote
computer and user access must be provided (you can allow access for all users or for specified
users only).

 ■ If the specified remote application is not running, you must run it.

 ■ You must authenticate as admin when you compile or run the script.

eppc-Style Specifiers

An eppc-style specifier takes the following format:

eppc://[user[:password]@]IP_address

ip_address
Either a numeric IP address in dotted decimal form (four numbers, from 0 to 255, separated
by periods; for example, 123.23.23.123) or a hostname. A hostname can be a Bonjour name.

The following are examples of valid eppc-style specifiers. If you supply the user name and password,
no authentication is required. If you do not supply it, authentication may be required.

44 Remote Applications
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

"eppc://myCoolMac.local" -- hostname, no user or pwd
"eppc://myUserName:pwd@myCoolMac.local" -- user, pwd, and hostname
"eppc://123.23.23.123" -- IP address, no user or pwd
"eppc://myUserName:pwd@123.23.23.123" -- user, pwd, and IP address
"eppc://myUserName@server.company.com" -- server address, user

Important: If a part of the eppc-style specifier contains non-UTF-8 characters or white space, it must
be URL-encoded: for example, here is a user name that contains a space:

John%20Smith.

Targeting Remote Applications

You can target an application that is running on a remote machine and you can launch applications
on remote machines that are not currently running.

The following example uses an eppc-style specifier to target the Finder on a remote computer. It
includes a user name and password, so no authentication is required.

set remoteMachine to "eppc://userName:pwd@MacName.local"
tell app "Finder" of machine remoteMachine to close front window

Important: If you compile an erroneous eppc-style address, you will have to quit and relaunch Script
Editor for changes to that address to take effect.

In some cases, you’ll need to use a using terms from (page 213) statement to tell AppleScript to
compile against the local version of an application. The following example uses that technique in
telling the remote Finder application to open the TextEdit application:

set remoteFinder to application "Finder" of machine ¬
"eppc://myUserName:pwd@123.23.23.123"

using terms from application "Finder"
tell remote_Finder

open application file id "com.apple.TextEdit"
end tell

end using terms from

If you omit the password (pwd) in the previous script, you will have to authenticate when you run
the script.

Debugging AppleScript Scripts

AppleScript does not include a built-in debugger, but it does provide several simple mechanisms to
help you debug your scripts or just observe how they are working.

Debugging AppleScript Scripts 45
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Feedback From Your Script

You can insert various statements into a script to indicate the current location and other information.
In the simplest case, you can insert a beep command in a location of interest:

beep 3 -- three beeps; a very important part of the script!

A display dialog (page 129) command can display information about what’s happening in a script
and, like a breakpoint, it halts execution until you dismiss it (or until it times out, depending on the
parameters you pass). The following example displays the current script location and the value of a
variable:

display dialog "In factorial routine; x = " & (x as string)

The say (page 157) command can get your attention by speaking the specified text. In the following
example, currentClient is a text object that stores a client name:

say "I'm in the clientName handler. The client is " & currentClient

Logging

Script Editor can display a log of the Apple events that are sent during execution of a script. In the
Script Editor Preferences, you can also choose to keep a history of recent results or event logs.

In addition, you can insert log (page 142) statements into a script. Log output is shown in the Event
Log pane of a script window, and also in the Event Log History window, if it is open.

The following simple example logs the current word in a repeat with loopVariable (in
list) (page 207) statement:

set wordList to words in "Where is the hammer?"
repeat with currentWord in wordList

log currentWord
if contents of currentWord is equal to "hammer" then

display dialog "I found the hammer!"
end if

end repeat

The following shows how the words appear in the log when the script is run:

(*Where*)
(*is*)
(*the*)
(*hammer*)

Third Party Debuggers

If you need full-featured debugging capabilities, there are powerful, third-party AppleScript debuggers
available.

46 Debugging AppleScript Scripts
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 2

AppleScript Fundamentals

Variables and properties are introduced in previous chapters in this document. You use them in
script objects to store and manipulate values.

Important: In reading this chapter, you should be familiar with the information on implicit and explicit
run handlers in “run Handlers” (page 76).

The following sections cover common issues in working with variables and properties, including
how to declare them and how AppleScript interprets their scope in a script:

 ■ “Defining Properties” (page 47)

 ■ “Declaring Variables” (page 48)

 ■ “Scope of Variables and Properties” (page 51)

Defining Properties

Property labels follow the rules described in “Identifiers” (page 18).

Property definitions use the following syntax:

property propertyLabel : expression

propertyLabel
An identifier.

expression
An AppleScript expression that sets the initial value for the property. Property definitions are
evaluated before variable assignments, so property definitions cannot contain variables.

The following are examples of valid property definitions:

property windowCount : 0
property defaultName : "Barry"
property strangeValue : (pi * 7)^2

After you define a property, you can change its value with the copy (page 125) or set (page 158)
command.

Defining Properties 47
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

The value set by a property definition is not reset each time the script is run; instead, it persists until
the script is recompiled.

You cannot declare a property in a handler but a handler can access a property defined in its containing
script object.

Declaring Variables

Variable names follow the rules described in “Identifiers” (page 18).

To create a variable in AppleScript, you assign it a value using the copy (page 125) or set (page 158)
command. For example, the following statements create and initialize two variables, one named
circumference and one named savedResult:

set circumference to pi * 3.5 --result: 10.995574287564
copy circumference to savedResult --result: 10.995574287564 (copy of 1st variable)

As shown in this example, a variable assignment can make use of a previously defined variable. It
can also make use of properties declared in the same script object.

There are some obvious, and some more subtle, differences in using copy and set to create a
variable—see “Using the copy and set Commands” (page 49) for more information.

If you assign a new value to a variable that is already in use, it replaces the old value. You can assign
a simple value, an expression, or an object specifier—expressions are evaluated and object specifiers
are resolved to obtain the value to assign. To create a variable whose value is an object specifier itself,
rather than the value of the object specified, use the a reference to (page 192) operator.

The next two sections describe how you can explicitly define a local or a global variable. These
variable types differ primarily in their scope. Scope, which refers to where a variable is accessible
within a script, is described in detail in “Scope of Variables and Properties” (page 51).

Local Variables

You can declare explicit local variables using the following syntax:

local variableName [, variableName]…

variableName
An identifier.

The following are examples of valid local variable declarations:

local windowCount -- defines one variable
local agentName, agentNumber, agentHireDate -- defines three variables

You cannot assign an initial value to a local variable in its declaration, nor can you declare a class
for the variable. Instead, you use the copy (page 125) or set (page 158) command to initialize a variable
and set its class. For example:

set windowCount to 0 -- initialize to zero; an integer
set agentName to "James Smith" -- assign agent name; a text string

48 Declaring Variables
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

set agentNumber to getAgentNumber(agentName) -- call handler; an integer
copy current date to agentHireDate -- call current date command; a date

Global Variables

The syntax for global variables is nearly identical to that for local variables:

global variableName [, variableName]…

variableName
An identifier.

The following are examples of valid global variable declarations:

global gAgentCount
global gStatementDate, gNextAgentNumber

As with local variables, you use the copy (page 125) or set (page 158) command to initialize global
variables and set their class types. For example:

set gAgentCount to getCurrentAgentCount() -- call handler to get count
set gStatementDate to current date -- get date from current date command
set gNextAgentNumber to getNextAvailNumber() -- call handler to get number

Using the copy and set Commands

As its name implies, when you use the copy (page 125) command to create a variable, it always creates
a separate copy (though note that a copy of an object specifier still specifies the same object). However,
when you use the set (page 158) command to create a variable, the new variable always refers to the
original object or value. You have essentially created another name for the same object.

When more than one variable refers to a changeable (or mutable) object, a change to the object is
observable through any of the variables. The types of AppleScript objects that are mutable are
date (page 87), list (page 92), record (page 96), and script (page 99) objects.

For objects that cannot be modified (immutable objects), variables created with the set command
may seem like copies—there’s no way to change the object the variables point to, so they seem
independent. This is demonstrated in the example in the next section that creates the variables myName
and yourName.

Declaring Variables with the set Command

You can use the set command to set a variable to any type of object. If the variable doesn’t exist, it
is created; if it does exist, its current value is replaced:

set numClowns to 5 --result: 5
set myList to { 1, 2, "four" } --result: {1, 2, "four"}
tell application "TextEdit"

set word1 to word 1 of front document --result: some word
end tell

Declaring Variables 49
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

The following example uses a mutable object. It creates two variables that refer to the same list, then
modifies the list through one of the variables:

set myList to { 1, 2, 3 }
set yourList to myList
set item 1 of myList to 4

After executing these statements, the statements item 1 of myList and item 1 of yourList both
yield 4, because both variables refer to the same list.

Now suppose you’re working with an immutable object, such as a text object:

set myName to "Sheila"
set yourName to myName

Both variables refer to the same text object, but text objects are not mutable, so there is no way to
change the the value myName such that it affects the value of yourName. (If you assign new text to one
of the variables, you are just creating a new, separate text object.)

The set command can assign several variables at once using a pattern, which may be a list or record:
a list or record of variables on one side, and a list or record of values on the other. Values are matched
to variables based on their position for a list, or based on their keys for a record. Not having enough
values is an error; if there are too many values, the extra ones are ignored. The order in which the
values are evaluated and the variables are assigned is unspecified, but all values are evaluated before
any assignments are made.

The Examples section of the set (page 158) command shows some simple pattern assignments. Here
is an example with more complex patterns:

set x to {8, 94133, {firstName:"John", lastName:"Chapman"}}
set {p, q, r} to x
(* now p, q, and r have these values:

p = 8
q = 94133
r = {firstName:"John", lastName:"Chapman"} *)

set {p, q, {lastName:r}} to x
(* now p, q, and r have these values: p = 8

q = 94133
r = "Chapman" *)

In the final assignment statement above, {lastName:r} is a record that hasn’t been used before in
the script, and contains an item with label lastName and value r (a previously defined variable). The
variable x has previously been set to have a record that has an item with label lastName and value
"Chapman". During the assignment, the value of the item labeled lastName in the new record is set
to the value of the item labeled lastName in x—hence it now has the value "Chapman".

As this example demonstrates, the properties of a record need not be given in the same order and
need not all be used when you set a pattern to a pattern, as long as the patterns match. For details,
see the set (page 158) command.

50 Declaring Variables
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

Note: Using patterns with the set command is similar to using patterned parameters with handlers,
which is described in “Handlers with Patterned Positional Parameters” (page 72).

Declaring Variables with the copy Command

You can use the copy command to set a variable to any type of object. If the variable doesn’t exist, it
is created; if it does exist, its current value is replaced. The copy command creates a new copy that is
independent of the original—a subsequent change does not change the original value (though note
that a copy of an object specifier still specifies the same object).

To copy within an application, you should use the application’s duplicate command, if it has one.
To copy between applications, you can use the get (page 133) command to obtain information from
one application and the set (page 158) command to set it in another.

The copy command creates a deep copy—that is, if you copy a nested data structure, such as a list
that contains another list, the entire structure is copied, as shown in the following example. This
example creates a record (alpha), then a list (beta), then a list that contains the first record and list
(gamma), then finally a copy of gamma (delta). It then changes a property in the original record, alpha.
The result shows that the property is changed wherever alpha appears, except in the copy, delta:

set alpha to {property1:10, property2:20}
set beta to {1, 2, "Hello"}
set gamma to {alpha, beta, "Goodbye"}
copy gamma to delta
set property1 of alpha to 42

{alpha, beta, gamma, delta} -- List variables to show contents
(*result: {{property1:42, property2:20}, {1, 2, "Hello"}, {{property1:42,
property2:20}, {1, 2, "Hello"}, "Goodbye"}, {{property1:10, property2:20}, {1,
2, "Hello"}, "Goodbye"}} *)

If you make a copy of a reference object, it refers to the same object as the original (because both
contain the same object specifier):

set windowRef to a reference to window 1 of application "Finder"
name of windowRef --result: "Script testing folder"
copy windowRef to currentWindowRef --result: a new object specifier
name of currentWindowRef --result: "Script testing folder"

Scope of Variables and Properties

The declaration of a variable or property identifier is the first valid occurrence of the identifier in a
script object. The form and location of the declaration determine how AppleScript treats the identifier
in that script object.

The scope is the range over which AppleScript recognizes a declared identifier within a script object.
The scope of a variable depends on where you declare it and whether you declare it as global or
local. The scope of a property extends to the entire script object in which it is declared. After
declaring a property, you can reuse the same identifier as a separate variable only if you first declare
it as a local variable.

Scope of Variables and Properties 51
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

Lifetime refers to the period of time over which a variable or property is in existence. Only the values
of properties and global variables can persist after a script is run.

In the discussions that follow, declarations and statements in a script object that occur outside of
any handlers or nested script objects are identified as outside.

The following examples show the four basic forms for declaring variables and properties in AppleScript:

 ■ property x: 3

The scope of a property definition is the script object in which it is declared, including any
handlers or nested script objects. A property definition specifies an initial value. You cannot
declare a property in a handler.

The value set by a property definition is not reset each time the script is run; instead, it persists
until the script is recompiled.

 ■ global x

The scope of a global variable can be limited to specific handlers or contained script objects or
it can extend throughout a top-level script object. A global declaration doesn’t set an initial
value—it must be initialized by a copy (page 125) or set (page 158) command before a script can
access its value.

The value of a global variable is not reset each time a script is run, unless its initialization
statement is executed.

 ■ local x

The scope of a local variable can be limited to specific handlers or contained script objects or
it can extend throughout a top-level script object. A local declaration doesn’t set an initial
value—it must be initialized by a copy or set command before a script can access its value.

The value of a local variable is reset each time the handler is run (either the run handler for the
script, or the specific handler in which the variable is declared).

 ■ set x to 3

In the absence of a global variable declaration, the scope of a variable declared with the copy or
set command is normally restricted to the run handler for the script, making it implicitly local
to that run handler. However, a handler or nested script object can declare the same variable with
a global declaration to gain access to it.

The value of a variable declared with the copy or set command is reset each time a script is run.

If you want to use the same identifier in several different places in a script, you should either declare
it as a property or as a global variable.

It is often convenient to limit the scope of a particular identifier to a single handler or nested script
object, which you can do by defining it as a local variable in the handler or script object. Outside,
the identifier has no value associated with it and can be reused elsewhere in the script. When used
this way, a local variable is said to shadow (or block access to) a global variable or property with
the same name, making the global version inaccessible in the scope of the handler or script object
where the local variable is declared.

52 Scope of Variables and Properties
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

Note: If you save a script as a script application, then run the application on read-only media, the
value of a modified property or global variable is not saved.

The following sections provide additional information about scope:

 ■ “Scope of Properties and Variables Declared in a Script Object” (page 53)

 ■ “Scope of Variables Declared in a Handler” (page 56)

Scope of Properties and Variables Declared in a Script Object

Table 3-1 shows the scope and lifetime for variables and properties that are declared at the top level
in a script object (outside any handlers or nested script objects).

Table 3-1 Scope of property and variable declarations at the top level in a script object

LifetimeScope (visibility)Declaration type

Reset when script is recompiledEverywhere in scriptproperty x: 3

Reset when reinitialized in script or when script is
recompiled

Everywhere in scriptglobal x

Reset when script is runWithin run handler onlylocal x

Reset when script is runWithin run handler onlyset x to 3

The scope of a property in a script object extends to any subsequent statements anywhere in the
script. Consider the following example:

property currentCount : 0
increment()

on increment()
set currentCount to currentCount + 1
display dialog "Count is now " & currentCount & "."

end increment

When it encounters the identifier currentCount anywhere in this script, AppleScript associates it
with the currentCount property.

The value of a property persists after the script in which the property is defined has been run. Thus,
the value of currentCount is 0 the first time this script is run, 1 the next time it is run, and so on. The
property’s current value is saved with the script object and is not reset to 0 until the script is
recompiled—that is, modified and then run again, saved, or checked for syntax.

The value of a global variable also persists after the script in which it is defined has been run.
However, depending on how it is initialized, a global variable may be reset each time the script is
run again. The next example shows how to initialize a global variable so that it is initialized only
the first time a script is run, and thus produces the same result as using a property in the previous
example:

Scope of Variables and Properties 53
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

global currentCount
increment()

on increment()
try

set currentCount to currentCount + 1
on error

set currentCount to 1
end try

display dialog "Count is now " & currentCount & "."
end increment

The first time the script is run, the statement set currentCount to currentCount + 1 generates
an error because the global variable currentCount has not been initialized. When the error occurs,
the on error block initializes currentCount. When the script is run again, the variable has already
been initialized, so the error branch is not executed, and the variable keeps its previous value.
Persistence is accomplished, but not as simply as in the previous example.

If you don’t want the value associated with an identifier to persist after a script is run but you want
to use the same identifier throughout a script, declare a global variable and use the set command
to set its value each time the script is run:

global currentCount
set currentCount to 0
on increment()

set currentCount to currentCount + 1
end increment

increment() --result: 1
increment() --result: 2

Each time the on increment handler is called within the script, the global variable currentCount
increases by 1. However, when you run the entire script again, currentCount is reset to 0.

In the absence of a global variable declaration, the scope of a variable declaration using the set
command is normally restricted to the run handler for the script. For example, this script declares
two separate currentCount variables:

set currentCount to 10
on increment()

set currentCount to 5
end increment

increment() --result: 5
currentCount --result: 10

The scope of the first currentCount variable’s declaration is limited to the run handler for the script.
Because this script has no explicit run handler, outside statements are part of its implicit run handler,
as described in “run Handlers” (page 76). The scope of the second currentCount declaration, within
the on increment handler, is limited to that handler. AppleScript keeps track of each variable
independently.

To associate a variable in a handler with the same variable declared with the set command outside
the handler, you can use a global declaration in the handler, as shown in the next example. (This
approach also works to associate a variable in a nested script object.)

set currentCount to 0

54 Scope of Variables and Properties
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

on increment()
global currentCount
set currentCount to currentCount + 1

end increment

increment() --result: 1
currentCount --result: 1

To restrict the context of a variable to a script’s run handler regardless of subsequent global
declarations, you must declare it explicitly as a local variable, as shown in this example:

local currentCount
set currentCount to 10
on increment()

global currentCount
set currentCount to currentCount + 2

end increment

increment() --error: "The variable currentCount is not defined"

Because the currentCount variable in this example is declared as local to the script, and hence to its
implicit run handler, any subsequent attempt to declare the same variable as global results in an
error.

If you declare an outside variable with the set command and then declare the same identifier as a
property, the declaration with the set command overrides the property definition. For example, the
following script returns 10, not 5. This occurs because AppleScript evaluates property definitions
before it evaluates set command declarations:

set numClowns to 10 -- evaluated after property definition
property numClowns: 5 -- evaluated first
numClowns --result: 10

The next example, shows how to use a global variable declaration in a script object to associate a
global variable with an outside property:

property currentCount : 0
script Paula

property currentCount : 20
script Joe

global currentCount
on increment()

set currentCount to currentCount + 1
return currentCount

end increment
end script
tell Joe to increment()

end script
run Paula --result: 1
run Paula --result: 2
currentCount --result: 2
currentCount of Paula --result: 20

Scope of Variables and Properties 55
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

This script declares two separate currentCount properties: one outside any handlers (and script
objects) in the main script and one in the script object Paula but outside of any handlers or script
objects within Paula. Because the script Joe declares the global variable currentCount, AppleScript
looks for currentCount at the top level of the script, thus treating Joe’s currentCount and
currentCount at the top level of the script as the same variable.

Scope of Variables Declared in a Handler

A handler can’t declare a property, although it can refer to a property that is declared outside any
handler in the script object. (A handler can contain script objects, but it can’t contain another handler,
except in a contained script object.)

Table 3-2 (page 56) summarizes the scope of variables declared in a handler. Examples of each form
of declaration follow.

Table 3-2 Scope of variable declarations within a handler

LifetimeScope (visibility)Declaration type

Reset when script is recompiled; if initialized in handler,
then reset when handler is run

Within handler onlyglobal x

Reset when handler is runWithin handler onlylocal x

Reset when handler is runWithin handler onlyset x to 3

The scope of a global variable declared in a handler is limited to that handler, although AppleScript
looks beyond the handler when it tries to locate an earlier occurrence of the same variable. Here’s an
example:

set currentCount to 10
on increment()

global currentCount
set currentCount to currentCount + 2

end increment

increment() --result: 12
currentCount --result: 12

When AppleScript encounters the currentCount variable within the on increment handler, it doesn’t
restrict its search for a previous occurrence to that handler but keeps looking until it finds the
declaration outside any handler. However, the use of currentCount in any subsequent handler in
the script is local to that handler unless the handler also explicitly declares currentCount as a global
variable.

The scope of a local variable declaration in a handler is limited to that handler, even if the same
identifier has been declared as a property outside the handler:

property currentCount : 10
on increment()

local currentCount
set currentCount to 5

end increment

56 Scope of Variables and Properties
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

increment() --result: 5
currentCount --result: 10

The scope of a variable declaration using the set command in a handler is limited to that handler:

script Henry
set currentCount to 10 -- implicit local variable in script object
on increment()

set currentCount to 5-- implicit local variable in handler
end increment
return currentCount

end script

tell Henry to increment() --result: 5
run Henry --result: 10

The scope of the first declaration of the first currentCount variable in the script object Henry is
limited to the run handler for the script object (in this case, an implicit run handler, consisting of
the last two statements in the script). The scope of the second currentCount declaration, within the
on increment handler, is limited to that handler. The two instances of currentCount are independent
variables.

Scope of Variables and Properties 57
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

58 Scope of Variables and Properties
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 3

Variables and Properties

This chapter describes the script object, which is used to implement all AppleScript scripts. Before
reading this chapter, you should be familiar with the information in “AppleScript and Objects” (page
26).

A script object is a user-defined object that can combine data (in the form of properties) and actions
(in the form of handlers and additional script objects). Script objects support inheritance, allowing
you to define a hierarchy of objects that share properties and handlers. You can also extend or modify
the behavior of a handler in one script object when calling it from another script object.

The top-level script (page 99) object is the one that implements the overall script you are working
on. Any script object can contain nested script objects, each of which is defined just like a top-level
script object, except that a nested script object is bracketed with statements that mark its beginning
and end.

This chapter describes script objects in the following sections:

 ■ “Defining Script Objects” (page 59) shows the syntax for defining script objects and includes
a simple example .

 ■ “Initializing Script Objects” (page 61) describes how AppleScript creates a script object with
the properties and handlers you have defined.

 ■ “Sending Commands to Script Objects” (page 61) describes how you use tell statements to send
commands to script objects.

 ■ “Inheritance in Script Objects” (page 62) describes inheritance works and how you can use it to
share functionality in the script objects you define.

Defining Script Objects

Each script object definition (except for the top-level script object) begins with the keyword script,
followed by a variable name, and ends with the keyword end (or end script). The statements in
between can be any combination of property definitions, handler definitions, nested script object
definitions, and other AppleScript statements.

The syntax of a script object definition is as follows:

script variableName

Defining Script Objects 59
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

[(property | prop) parent : parentSpecifier]

[(property | prop) propertyLabel : initialValue]...

[handlerDefinition]...

[statement]...

end [script]

variableName
A variable identifier for the script. You can refer to a script object by this name elsewhere in a
script.

parentSpecifier
Specifies the parent of the script object, typically another script object.

For more information, see “Inheritance in Script Objects” (page 62).

propertyLabel
An identifier, unique within the script object, that specifies a characteristic of the object;
equivalent to an instance variable.

initialValue
The value that is assigned to the property each time the script object is initialized. script
objects are initialized when compiled. initialValue is required in property definitions.

handlerDefinition
A handler for a command the script object can respond to; equivalent to a method. For more
information, see “About Handlers” (page 69) and “Handler Reference” (page 217).

statement
Any AppleScript statement. Statements other than handler and property definitions are treated
as if they were part of an implicit handler definition for the run command; they are executed
when a script object receives the run command.

Here is a simple script object definition:

script John
property HowManyTimes : 0

to sayHello to someone
set HowManyTimes to HowManyTimes + 1
return "Hello " & someone

end sayHello

end script

It defines a script object that can handle the sayHello command. It assigns the script object to the
variable John. The definition includes a handler for the sayHello command. It also includes a property,
called HowManyTimes, that indicates how many times the sayHello command has been called.

A handler within a script object definition follows the same syntax rules as any other handler.

You can use a tell statement to send commands to a script object. For example, the following
statement sends the sayHello command the script object defined above.

tell John to sayHello to "Herb" --result: "Hello Herb"

60 Defining Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

You can manipulate the properties of script objects by using the get command to get the value of
a property and the set or copy command to change the value. The value of a property is persistent—it
gets reset every time you compile the script, but not when you run it.

Initializing Script Objects

When you define a script object, it can contain properties, handlers, and nested script object
definitions. When you execute the script containing it, AppleScript creates a script object with the
defined properties, handlers, and nested script objects. The process of creating an instance of a
script object from its definition is called initialization. A script object must be initialized before it
can respond to commands.

A top-level script object is initialized each time the script’s run handler is executed. Similarly, if you
define a script within a handler, AppleScript initializes a script object each time the handler is called.
The parameter variables in the handler definition become local variables of the script object.

For example, the makePoint handler in the following script contains a script object definition for
the script object thePoint:

on makePoint(x, y)
script thePoint

property xCoordinate:x
property yCoordinate:y

end script
return thePoint

end makePoint

set myPoint to makePoint(10,20)
get xCoordinate of myPoint --result: 10
get yCoordinate of myPoint --result: 20

AppleScript initializes the script object thePoint when it executes the makePoint command. After
the call to makePoint, the variable myPoint refers to this script object. The parameter variables in
the makePoint handler, in this case, x and y, become local variables of the script object. The initial
value of x is 10, and the initial value of y is 20, because those are the parameters passed to the
makePoint handler that initialized the script object.

If you added the following line to the end of the previous script and ran it, the variable myOtherPoint
would refer to a second instance of the script object thePoint, with different property values:

set myOtherPoint to makePoint(30,50)

The makePoint script is a kind of constructor function that creates script objects representing points.

Sending Commands to Script Objects

You can use tell statements to send commands to script objects. For example, the following tell
statement sends two sayHello commands to the script object John (defined below):

tell John

Initializing Script Objects 61
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

sayHello to "Herb"
sayHello to "Grace"

end tell

For a script object to respond to a command within a tell statement, either the script object or
its parent object must have a handler for the command. For more information about parent objects,
see “Inheritance in Script Objects” (page 62).

A script object definition may include an implicit run handler, consisting of all executable statements
that are outside of any handler or nested script object, or it may include an explicit run handler that
begins with on run, but it may not contain both—such a script will not compile. If a script has no run
handler (for example, a script that serves as a library of handlers, as described in “Saving and Loading
Libraries of Handlers” (page 75)), executing the script does nothing. However, sending it an explicit
run command causes an error. For more information, see “run Handlers” (page 76).

The display dialog command in the following script object definition is the only executable
statement at the top level, so it constitutes the script object’s implicit run handler and is executed
when the script sends a run command to script object John, with the statement tell John to run.

script John
property HowManyTimes : 0
to sayHello to someone

set HowManyTimes to HowManyTimes + 1
return "Hello " & someone

end sayHello
display dialog "John received the run command"

end script

tell John to run

You can also use the possessive to send a command to a script object. For example, either of the
following two forms send the sayHello command to script John (the first version compiles into the
second):

John's sayHello to "Jake" --result: "Hello Jake"
sayHello of John to "Jake" --result: "Hello Jake"

Inheritance in Script Objects

You can use the AppleScript inheritance mechanism to define related script objects in terms of one
another. This allows you to share property and handler definitions among many script objects
without repeating the shared definitions. Inheritance is described in the following sections:

 ■ “The AppleScript Inheritance Chain” (page 63)

 ■ “Defining Inheritance Through the parent Property” (page 63)

 ■ “Some Examples of Inheritance” (page 63)

 ■ “Using the continue Statement in Script Objects” (page 65)

62 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

The AppleScript Inheritance Chain

The top-level script object is the parent of all other script objects, although any script object can
specify a different parent object. The top-level script object also has a parent—AppleScript itself
(the AppleScript component). And even AppleScript has a parent—the current application. The name
of that application (which is typically Script Editor) can be obtained through the global constant
current application. This hierarchy defines the inheritance chain that AppleScript searches to
find the target for a command or the definition of a term.

Every script object has access to the properties, handlers, and script objects it defines, as well as to
those defined by its parent, and those of any other object in the inheritance chain, including AppleScript.
That’s why the constants and properties described in “Global Constants in AppleScript” (page 37)
are available to any script.

Note: There is an exception to the previous claim. An explicit local variable can shadow (or block
access to) a global variable or property with the same name, making the global version inaccessible
in the scope of the handler or script object. For related information, see “Scope of Variables and
Properties” (page 51).

Defining Inheritance Through the parent Property

When working with script (page 99) objects, inheritance is the ability of a child script object to
take on the properties and handlers of a parent object. You specify inheritance with the parent
property.

The object listed in a parent property definition is called the parent object, or parent. A script
object that includes a parent property is referred to as a child script object , or child. The parent
property is not required, though if one is not specified, every script is a child of the top-level script,
as described in “The AppleScript Inheritance Chain” (page 63). A script object can have many
children, but a child script object can have only one parent. The parent object may be any object,
such as a list (page 92) or an application (page 82) object, but it is typically another script object.

The syntax for defining a parent object is

(property | prop) parent : variable

variable
An identifier for a variable that refers to the parent object.

A script object must be initialized before it can be assigned as a parent of another script object.
This means that the definition of a parent script object (or a command that calls a function that
creates a parent script object) must come before the definition of the child in the same script.

Some Examples of Inheritance

The inheritance relationship between script objects should be familiar to those who are acquainted
with C++ or other object-oriented programming languages. A child script object that inherits the
handlers and properties defined in its parent is like a C++ class that inherits methods and instance

Inheritance in Script Objects 63
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

variables from its parent class. If the child does not have its own definition of a property or handler,
it uses the inherited property or handler. If the child has its own definition of a particular property
or handler, then it ignores (or overrides) the inherited property or handler.

Listing 4-1 (page 64) shows the definitions of a parent script object called Alex and a child script
object called AlexJunior.

Listing 4-1 A pair of script objects with a simple parent-child relationship

script Alex
on sayHello()

return "Hello, " & getName()
end sayHello
on getName()

return "Alex"
end getName

end script

script AlexJunior
property parent : Alex
on getName()

return "Alex Jr"
end getName

end script

-- Sample calls to handlers in the script objects:
tell Alex to sayHello() --result: "Hello, Alex"
tell AlexJunior to sayHello() --result: "Hello, Alex Jr."

tell Alex to getName() --result: "Alex"
tell AlexJunior to getName() --result: "Alex Jr"

Each script object defines a getName() handler to return its name. The script object Alex also
defines the sayHello() handler. Because AlexJunior declares Alex to be its parent object, it inherits
the sayHello() handler.

Using a tell statement to invoke the sayHello() handler of script object Alex returns "Hello,
Alex". Invoking the same handler of script object AlexJunior returns "Hello, Alex Jr"—although
the same sayHello() handler in Alex is executed, when that handler calls getName(), it’s the
getName() in AlexJunior that is executed.

The relationship between a parent script object and its child script objects is dynamic. If the
properties of the parent change, so do the inherited properties of the children. For example, the script
object JohnSon in the following script inherits its vegetable property from script object John.

script John
property vegetable : "Spinach"

end script
script JohnSon

property parent : John
end script
set vegetable of John to "Swiss chard"
vegetable of JohnSon
--result: "Swiss chard"

64 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

When you change the vegetable property of script object John with the set command, you also
change the vegetable property of the child script object Simple. The result of the last line of the
script is "Swiss chard".

Similarly, if a child changes one of its inherited properties, the value in the parent object also changes.
For example, the script object JohnSon in the following script inherits the vegetable property from
script object John.

script John
property vegetable : "Spinach"

end script
script JohnSon

property parent : John
on changeVegetable()

set my vegetable to "Zucchini"
end changeVegetable

end script
tell JohnSon to changeVegetable()
vegetable of John
--result: "Zucchini"

When you change the vegetable property of script object JohnSon to "Zucchini" with the
changeVegetable command, the vegetable property of script object John also changes.

The previous example demonstrates an important point about inherited properties: to refer to an
inherited property from within a child script object, you must use the reserved word my or of me
to indicate that the value to which you’re referring is a property of the current script object. (You
can also use the words of parent to indicate that the value is a property of the parent script object.)
If you don’t, AppleScript assumes the value is a local variable.

For example, if you refer to vegetable instead of my vegetable in the changeVegetable handler in
the previous example, the result is "Spinach". For related information, see “The it and me
Keywords” (page 40).

Using the continue Statement in Script Objects

In a child script object, you can define a handler with the same name as a handler defined in its
parent object. In implementing the child handler, you have several options:

 ■ The handler in the child script object can be independent of the one in its parent. This allows
you to call either handler, as you wish.

 ■ The handler in the child can simply invoke the handler in its parent. This allows the child object
to take advantage of the parent’s implementation (as shown in the script objects below that
contain a on identify handler).

 ■ The handler in the child can invoke the handler in its parent, changing the values passed to it or
executing additional statements before or after invoking the parent handler. This allows the child
object to modify or add to the behavior of its parent, but still take advantage of the parent’s
implementation.

Normally, if a child script object and its parent both have handlers for the same command, the child
uses its own handler. However, the handler in a child script object can handle a command first, and
then use a continue statement to call the handler for the same command in the parent.

Inheritance in Script Objects 65
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

This handing off of control to another object is called delegation. By delegating commands to a parent
script object, a child can extend the behavior of a handler contained in the parent without having
to repeat the entire handler definition. After the parent handles the command, AppleScript continues
at the place in the child where the continue statement was executed.

The syntax for a continue statement is shown in “continue” (page 217).

The following script includes two script object definitions, Elizabeth and ChildOfElizabeth.

script Elizabeth
property HowManyTimes : 0
to sayHello to someone

set HowManyTimes to HowManyTimes + 1
return "Hello " & someone

end sayHello
end script

script ChildOfElizabeth
property parent : Elizabeth
on sayHello to someone

if my HowManyTimes > 3 then
return "No, I'm tired of saying hello."

else
continue sayHello to someone

end if
end sayHello

end script
tell Elizabeth to sayHello to "Matt"
--result: "Hello Matt", no matter how often the tell is executed
tell ChildOfElizabeth to sayHello to "Bob"
--result: "Hello Bob", the first four times the tell is executed;
-- after the fourth time: "No, I’m tired of saying hello."

In this example, the handler defined by ChildOfElizabeth for the sayHello command checks the
value of the HowManyTimes property each time the handler is run. If the value is greater than 3,
ChildOfElizabeth returns a message refusing to say hello. Otherwise, ChildOfElizabeth calls the
sayHello handler in the parent script object (Elizabeth), which returns the standard hello message.
The word someone in the continue statement is a parameter variable. It indicates that the parameter
received with the original sayHello command will be passed to the handler in the parent script.

Note: The reserved word my in the statement if my HowManyTimes > 10 in this example is required
to indicate that HowManyTimes is a property of the script object. Without the word my, AppleScript
assumes that HowManyTimes is an undefined local variable.

A continue statement can change the parameters of a command before delegating it. For example,
suppose the following script object is defined in the same script as the preceding example. The first
continue statement changes the direct parameter of the sayHello command from "Bill" to
"William". It does this by specifying the value "William" instead of the parameter variable someone.

script AnotherChildOfElizabeth
property parent : Elizabeth
on sayHello to someone

if someone = "Bill" then
continue sayHello to "William"

else

66 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

continue sayHello to someone
end if

end sayHello
end script

tell AnotherChildOfElizabeth to sayHello to "Matt"
--result: "Hello Matt"

tell AnotherChildOfElizabeth to sayHello to "Bill"
--result: "Hello William"

If you override a parent’s handler in this manner, the reserved words me and my in the parent’s handler
no longer refer to the parent, as demonstrated in the example that follows.

script Hugh
on identify()

me
end identify

end script
script Andrea

property parent : Hugh
on identify()

continue identify()
end identify

end script

tell Hugh to identify()
--result: «script Hugh»

tell Andrea to identify()
--result: «script Andrea»

Inheritance in Script Objects 67
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

68 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 4

Script Objects

When script developers want to factor and re-use their code, they can turn to handlers. A handler is
a collection of statements that can be invoked by name. Handlers are also known as functions,
subroutines, or methods.

This chapter describes how to work with handlers, in the following sections:

 ■ “Handler Basics” (page 69)

 ■ “Saving and Loading Libraries of Handlers” (page 75)

 ■ “Handlers in Script Applications” (page 76)

For detailed reference information, see “Handler Reference” (page 217).

Handler Basics

A handler is a collection of statements that can be invoked by name. Handlers are useful in scripts
that perform the same action in more than one place. You can package statements that perform a
specific task as a handler, give it a descriptive name, and call it from anywhere in the script. This
makes the script shorter and easier to maintain.

A script can contain one or more handlers. However, you can not nest a handler definition within
another handler (although a script object defined in a handler can contain other handlers).

The definition for a handler specifies the parameters it uses, if any. It does not specify the class for its
parameters. However, most handlers expect each parameter to be of a specific class, so it is useful to
add a comment that lists the expected class types.

When you call a handler, you must list its parameters according to how they are specified in its
definition. Handlers may have labeled parameters or positional parameters, described in subsequent
sections.

A handler definition can contain variable declarations and statements. It may use a return statement
(described in detail in “return” (page 218)) to return a value and exit the handler.

A call to a handler must include all the parameters specified in the handler definition. There is no
way to specify optional parameters.

The sections that follow provide additional information on working with handlers:

Handler Basics 69
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

 ■ “Defining a Simple Handler” (page 70)

 ■ “Handlers with Labeled Parameters” (page 70)

 ■ “Handlers with Positional Parameters” (page 71)

 ■ “Handlers with Patterned Positional Parameters” (page 72)

 ■ “Recursive Handlers” (page 73)

 ■ “Errors in Handlers” (page 73)

 ■ “Passing by Reference Versus Passing by Value” (page 74)

 ■ “Calling Handlers in a tell Statement” (page 74)

Defining a Simple Handler

The following is a definition for a simple handler that takes any parameter value that can be displayed
as text (presumably one representing a date) and displays it in a dialog box. The handler name is
rock; its parameter is around the clock, where around is a parameter label and clock is the
parameter name (the is an AppleScript filler for readability):

on rock around the clock
display dialog (clock as text)

end rock

This handler allows an English-like calling statement:

rock around the current date -- call handler to display current date

A handler can have no parameters. To indicate that a handler has no parameters, you include a pair
of empty parentheses after the handler name in both the handler definition and the handler call. For
example, the following helloWorld script has no parameters.

on helloWorld()
display dialog "Hello World"

end

helloWorld() -- Call the handler

Handlers with Labeled Parameters

To define a handler with labeled parameters, you list the labels to use when calling the handler and
the statements to be executed when it is called. (The syntax is shown in “Handler Syntax (Labeled
Parameters)” (page 219).)

Handlers with labeled parameters can also have a direct parameter. With the exception of the direct
parameter, which must directly follow the handler name, labeled parameters can appear in any order,
with the labels from the handler definition identifying the parameter values. This includes parameters
listed in given, with, and without clauses (of which there can be any number).

The findNumbers handler in the following example uses the special label given to define a parameter
with the label given rounding.

70 Handler Basics
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

to findNumbers of numberList above minLimit given rounding:roundBoolean
set resultList to {}
repeat with i from 1 to (count items of numberList)

set x to item i of numberList
if roundBoolean then -- round the number

-- Use copy so original list isn’t modified.
copy (round x) to x

end if
if x > minLimit then

set end of resultList to x
end if

end repeat
return resultList

end findNumbers

The next statements show how to call findNumbers by passing a predefined list variable:

set myList to {2, 5, 19.75, 99, 1}
findNumbers of myList above 19 given rounding:true

--result: {20, 99}
findNumbers of myList above 19 given rounding:false

--result: {19.75, 99}

You can also specify the value of the rounding parameter by using a with or without clause to
indicate true or false. (In fact, when you compile the previous examples, AppleScript automatically
converts given rounding:true to with rounding and given rounding:false to without
rounding.) These examples pass a list object directly, rather than using a list variable as in the
previous case:

findNumbers of {5.1, 20.1, 20.5, 33} above 20 with rounding
--result: {33}

findNumbers of {5.1, 20.1, 20.5, 33.7} above 20 without rounding
--result: {20.1, 20.5, 33.7}

Here is another handler that uses parameter labels:

to check for yourNumber from startRange thru endRange
if startRange ≤ yourNumber and yourNumber ≤ endRange then

display dialog "Congratulations! Your number is included."
end if

end check

The following statement calls the handler, causing it to display the "Congratulations!" message

check for 8 from 7 thru 10 -- call the handler

Handlers with Positional Parameters

The definition for a handler with positional parameters shows the order in which to list parameters
when calling the handler and the statements to be executed when the handler is called. The definition
must include parentheses, even if it doesn’t include any parameters. The syntax is shown in “Handler
Syntax (Positional Parameters)” (page 222).

In the following example, the minimumValue routine returns the smaller of two values:

Handler Basics 71
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

on minimumValue(x, y)
if x < y then

return x
else

return y
end if

end minimumValue

-- To call minimumValue:
minimumValue(5, 105) --result: 5

The first line of the minimumValue handler specifies the parameters of the handler. To call a handler
with positional parameters you list the parameters in the same order as they are specified in the
handler definition.

If a handler call is part of an expression, AppleScript uses the value returned by the handler to evaluate
the expression. For example, to evaluate the following expression, AppleScript first calls minimumValue,
then evaluates the rest of the expression.

minimumValue(5, 105) + 50 --result: 55

Handlers with Patterned Positional Parameters

You can create a handler whose positional parameters define a pattern to match when calling the
handler. For example, the following handler takes a single parameter whose pattern consists of two
items in a list:

on displayPoint({x, y})
display dialog ("x = " & x & ", y = " & y)

end displayPoint

-- Calling the handler:
set testPoint to {3, 8}
displayPoint(testPoint)

A parameter pattern can be much more complex than a single list. The handler in the next example
takes two numbers and a record whose properties include a list of bounds. The handler displays a
dialog box summarizing some of the passed information.

on hello(a, b, {length:l, bounds:{x, y, w, h}, name:n})
set q to a + b

set response to "Hello " & n & ", you are " & l & ¬
" inches tall and occupy position (" & x & ", " & y & ")."

display dialog response

end hello

set thing to {bounds:{1, 2, 4, 5}, name:"George", length:72}
hello (2, 3, thing)
--result: A dialog displaying "Hello George, you are 72 inches tall
-- and occupy position (1,2)."

72 Handler Basics
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

The properties of a record passed to a handler with patterned parameters don’t have to be given in
the same order in which they are given in the handler’s definition, as long as all the properties required
to fit the pattern are present.

The following call to minimumValue uses the value from a handler call to maximumValue as its second
parameter. The maximumValue handler (not shown) returns the larger of two passed numeric values.

minimumValue(20, maximumValue(1, 313)) --result: 20

Recursive Handlers

A recursive handler is a handler that calls itself. For example, this recursive handler generates a
factorial. (The factorial of a number is the product of all the positive integers from 1 to that number.
For example, 4 factorial is equal to 1 * 2 * 3 * 4, or 24. The factorial of 0 is 1.)

on factorial(x)
if x > 0 then

return x * factorial(x - 1)
else

return 1
end if

end factorial

-- To call factorial:
factorial(10) --result: 3628800

In the example above, the handler factorial is called once, passing the value 10. The handler then
calls itself recursively with a value of x - 1, or 9. Each time the handler calls itself, it makes another
recursive call, until the value of x is 0. When x is equal to 0, AppleScript skips to the else clause and
finishes executing all the partially executed handlers, including the original factorial call.

When you call a recursive handler, AppleScript keeps track of the variables and pending statements
in the original (partially executed) handler until the recursive handler has completed. Because each
call uses some memory, the maximum number of pending handlers is limited by the available memory.
As a result, a recursive handler may generate an error before the recursive calls complete.

In addition, a recursive handler may not be the most efficient solution to a problem. For example, the
factorial handler shown above can be rewritten to use a repeat statement instead of a recursive call,
as shown in the example in repeat with loopVariable (from startValue to stopValue) (page
206).

Errors in Handlers

As with any AppleScript statements that may encounter an error, you can use a try statement to deal
with possible errors in a handler. A try (page 211) statement includes two collections of statements:
one to be executed in the general case, and a second to be executed only if an error occurs.

By using one or more try statements with a handler, you can combine the advantages of reuse and
error handling in one package. For a detailed example that demonstrates this approach, see “Working
with Errors” (page 241).

Handler Basics 73
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

Passing by Reference Versus Passing by Value

Within a handler, each parameter is like a variable, providing access to passed information. AppleScript
passes all parameters by reference, which means that a passed variable is shared between the handler
and the caller, as if the handler had created a variable using the set (page 158) command. However,
it is important to remember a point raised in “Using the copy and set Commands” (page 49): only
mutable objects can actually be changed.

As a result, a parameter’s class type determines whether information is effectively passed by value
or by reference:

 ■ For mutable objects (those whose class is date (page 87), list (page 92), record (page 96), or
script (page 99)), information is passed by reference:

If a handler changes the value of a parameter of this type, the original object is changed.

 ■ For all other class types, information is effectively passed by value:

Although AppleScript passes a reference to the original object, that object cannot be changed. If
the handler assigns a new value to a parameter of this type, the original object is unchanged.

If you want to pass by reference with a class type other than date, list, record, or script, you can
pass a reference object that refers to the object in question. Although the handler will have access
only to a copy of the reference object, the specified object will be the same. Changes to the specified
object in the handler will change the original object, although changes to the reference object itself
will not.

Calling Handlers in a tell Statement

To call a handler from within a tell statement, you must use the reserved words of me or my to
indicate that the handler is part of the script and not a command that should be sent to the target of
the tell statement.

For example, the following script calls the minimumValue handler defined in “Handlers with Positional
Parameters” (page 71) from within a tell statement. If this call did not include the words of me, it
would cause an error, because AppleScript would send the minimumValue command to TextEdit,
which does not understand that message.

tell front document of application "TextEdit"
minimumValue(12, 400) of me
set paragraph 1 to result as text

end tell
--result: The handler call is successful.

Instead of using the words of me, you could insert the word my before the handler call:

my minimumValue(12, 400)

74 Handler Basics
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

Saving and Loading Libraries of Handlers

In addition to defining and calling handlers within a script, you can access handlers from other scripts.
To make a handler available to another script, save it as a compiled script, then use the load
script (page 139) command to load it in any script that needs to call the handler. You can use this
technique to create libraries containing many handlers.

Note: The load script command loads the compiled script as a script object; for more information,
see “Script Objects” (page 59).

For example, the following script contains two handlers: areaOfCircle and factorial:

-- This handler computes the area of a circle from its radius.
-- (The area of a circle is equal to pi times its radius squared.)
on areaOfCircle from radius

-- Make sure the parameter is a real number or an integer.
if class of radius is contained by {integer, real}

return radius * radius * pi -- pi is predefined by AppleScript.
else

error "The parameter must be a real number or an integer"
end if

end areaOfCircle

-- This handler returns the factorial of a number.
on factorial(x)

set returnVal to 1
if x > 1 then

repeat with n from 2 to x
set returnVal to returnVal * n

end repeat
end if
return returnVal

end factorial

In Script Editor, save the script as a compiled Script (which has extension scpt) or Script Bundle
(extension scptd) and name it “NumberLib”.

After saving the script as a compiled script, other scripts can use the load script command to load
it. For example, the following script loads the compiled script NumberLib.scpt, storing the resulting
script object in the variable numberLib. It then makes handler calls within a tell statement that
targets the script object. The compiled script must exist in the specified location for this script to
work.

set numberLibrary to (load script file "NumberLib.scpt")

tell numberLibrary
factorial(10) --result: 3628800
areaOfCircle from 12 --result: 452.38934211693

end tell

Saving and Loading Libraries of Handlers 75
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

Handlers in Script Applications

A script application is an application whose only function is to run the script associated with it. Script
applications contain handlers that allow them to respond to commands. For example, many script
applications can respond to the run command and the open command. A script application receives
a run command whenever it is launched and an open command whenever another icon is dropped
on its icon in the Finder. It can also contain other handlers to respond to commands such as quit or
print.

When saving a script in Script Editor, you can create a script application by choosing either Application
or Application Bundle from the File Format options. Saving as Application results in a simple format
that is compatible with Mac OS 9. Saving as Application Bundle results in an application that uses
the modern bundle format, with its specified directory structure, which is supported back to Mac OS
X v10.3.

When creating a script application, you can also specify whether a startup screen should appear before
the application runs its script. Whatever you write in the Description pane of the script window in
Script Editor is displayed in the startup screen. You can also specify in Script Editor whether a script
application should stay open after running. The default is for the script to quit immediately after it
is run.

You can run a script application from the Finder much like any other application. If it has a startup
screen, the user must click the Run button or press the Return key before the script actually runs.

Consider the following simple script

tell application "Finder"
close front window

end tell

What this script does as a script application depends on what you specify when you save it. If you
don’t specify a startup screen or tell it to stay open, it will automatically execute once, closing the
front Finder window, and then quit.

If a script application modifies the value of a property, the changed value persists across launches of
the application. For related information, see “Scope of Variables and Properties” (page 51).

For information about some common script application handlers, see the following sections:

 ■ “run Handlers” (page 76)

 ■ “open Handlers” (page 77)

 ■ “idle and quit Handlers for Stay-Open Applications” (page 78)

See “Handler Reference” (page 217) for syntax information.

run Handlers

When you run a script or launch a script application, its run handler is invoked. A script’s run handler
is defined in one of two ways:

76 Handlers in Script Applications
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

 ■ As an implicit run handler, which consists of all statements declared outside any handler or
nested script object in a script.

Declarations for properties and global variables are not considered statements in this context—that
is, they are not considered to be part of an implicit run handler.

 ■ As an explicit run handler, which is enclosed within on run and end statements, similar to other
handlers.

Having both an implicit and an explicit run handler is not allowed, and causes a syntax error during
compilation. If a script has no run handler (for example, a script that serves as a library of handlers,
as described in “Saving and Loading Libraries of Handlers” (page 75)), executing the script does
nothing. However, sending it an explicit run command causes an error.

The following script demonstrates an implicit run handler. The script consists of a statement that
invokes the sayHello handler, and the definition for the handler itself:

sayHello()

on sayHello()
display dialog "Hello"

end sayHello

The implicit run handler for this script consists of the statement sayHello(), which is the only
statement outside the handler. If you save this script as a script application and then run the application,
the script receives a run command, which causes it to execute the one statement in the implicit run
handler.

You can rewrite the previous script to provide the exact same behavior with an explicit run handler:

on run
sayHello()

end run

on sayHello()
display dialog "Hello"

end sayHello

Whether a script is saved as a script application or as a compiled script, its run handler is invoked
when the script is run. You can also invoke a run handler in a script application from another script.
For information about how to do this, see “Calling a Script Application From a Script” (page 79).

open Handlers

Mac OS X applications, including script applications, receive an open command whenever the user
drops file, folder, or disk icons on the application’s Finder icon, even if the application is already
running.

If the script in a script application includes an open handler, the handler is executed when the
application receives the open command. The open handler takes a single parameter which provides
a list of all the items to be opened. Each item in the list is analias (page 81) object.

For example, the following open handler makes a list of the pathnames of all items dropped on the
script application’s icon and saves them in the frontmost TextEdit document:

Handlers in Script Applications 77
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

on open names
set pathNamesString to "" -- Start with empty text string.
repeat with i in names

-- In this loop, you can perform operations on each dropped item.
-- For now, just get the name and append a return character.
set iPath to (i as text)
set pathNamesString to pathNamesString & iPath & return

end repeat
-- Store list in open document, to verify what was dropped.
tell application "TextEdit"

set paragraph 1 of front document to pathNamesString
end tell
return

end open

Files, folders, or disks are not moved, copied, or affected in any way by merely dropping them on a
script application. However, the script application’s handler can tell Finder to move, copy, or otherwise
manipulate the items. For examples that work with Finder items, see “Folder Actions Reference” (page
225).

You can also run an open handler by sending a script application the open command. For details, see
“Calling a Script Application From a Script” (page 79).

idle and quit Handlers for Stay-Open Applications

By default, a script application that receives a run or open command handles that single command
and then quits. In contrast, a stay-open script application (one saved as Stay Open in Script Editor)
stays open after it is launched.

A stay-open script application can be useful for several reasons:

 ■ Stay-open script applications can receive and handle other commands in addition to run and
open. This allows you to use a script application as a script server that, when it is running, provides
a collection of handlers that can be invoked by any other script.

 ■ Stay-open script applications can perform periodic actions, even in the background, as long as
the script application is running.

Two particular handlers that stay-open script applications often provide are an idle handler and a
quit handler.

idle Handlers

If a stay-open script application includes an idle handler, AppleScript sends the script application
periodic idle commands—by default, every 30 seconds—allowing it to perform background tasks
when it is not performing other actions.

If an idle handler returns a positive number, that number becomes the rate (in seconds) at which the
handler is called. If the handler returns a non-numeric value, the rate is not changed. You can return
0 to maintain the default delay of 30 seconds.

For example, when saved as a stay-open application, the following script beeps every 5 seconds:

78 Handlers in Script Applications
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

on idle
beep
return 5

end idle

The result returned from a handler is just the result of the last statement, even if it doesn’t include
the word return explicitly. (See “return” (page 218) for more information.) For example, this handler
gets called once a minute, because the value of the last statement is 60:

on idle
set x to 10
beep
set x to x * 6 -- The handler returns the result (60).

end idle

quit Handlers

AppleScript sends a stay-open script application a quit command whenever the user chooses the
Quit menu command or presses Command-Q while the application is active. If the script includes a
quit handler, the statements in the handler are run before the application quits.

A quit handler can be used to set script properties, tell another application to do something, display
a dialog box, or perform almost any other task. If the handler includes a continue quit statement,
the script application’s default quit behavior is invoked and it quits. If the quit handler returns before
it encounters a continue quit statement, the application doesn’t quit.

Note: The continue statement passes control back to the application’s default quit handler. For more
information, see “continue” (page 217).

For example, this handler checks with the user before allowing the application to quit:

on quit
display dialog "Really quit?" ¬

buttons {"No", "Quit"} default button "Quit"
if the button returned of the result is "Quit" then

continue quit
end if
-- Without the continue statement, the application doesn't quit.

end quit

Warning: If AppleScript doesn’t encounter a continue quit statement while executing an on
quit handler, it may seem to be impossible to quit the application. For example, if the handler
shown above gets an error before the continue quit statement, the application won’t quit. If
necessary, you can use Force Quit (Command-Option-Esc) to halt the application.

Calling a Script Application From a Script

A script can send commands to a script application just as it can to other applications. To launch a
non-stay-open application and run its script, use a launch (page 138) command followed by a run
command, like this:

Calling a Script Application From a Script 79
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

launch application "NonStayOpen"
run application "NonStayOpen"

The launch command launches the script application without sending it an implicit run command.
When the run command is sent to the script application, it processes the command, sends back a reply
if necessary, and quits.

Similarly, to launch a non-stay-open application and run its stringTest handler (which takes a text
object as a parameter), use a launch command followed by a stringTest command, like this:

tell application "NonStayOpen"
launch
stringTest("Some example text.")

end tell

For information on how to create script applications, see “Handlers in Script Applications” (page 76).

80 Calling a Script Application From a Script
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 5

About Handlers

A class is a category for objects that share characteristics. AppleScript defines classes for common
objects used in AppleScript scripts, such as aliases, Boolean values, integers, text, and so on.

Each object in a script is an instance of a specific class and has the same properties (including the
class property), can contain the same kinds of elements, and supports the same kinds of operations
and coercions as other objects of that type. Objects that are instances of AppleScript types can be used
anywhere in a script—they don’t need to be within a tell block that specifies an application.

Scriptable applications also define their own classes, such as windows and documents, which
commonly contain properties and elements based on many of the basic AppleScript classes described
in this chapter. Scripts obtain these objects in the context of the applications that define them. For
more information on the class types applications typically support, see “Standard Classes” in Technical
Note TN2106, Scripting Interface Guidelines.

alias

A persistent reference to an existing file, folder, or volume in the file system.

For related information, see file (page 91), POSIX file (page 95), and “Aliases and Files” (page
42).

Properties of alias objects

class

Access: read only
Class: class (page 86)
The class identifier for the object. The value is always alias.

POSIX path

Access: read only
Class: text (page 100)
The POSIX-style path to the object.

Coercions Supported

AppleScript supports coercion of an alias object to a text (page 100) object or single-item list (page
92).

81
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

http://developer.apple.com/technotes/tn2002/tn2106.html

Examples
set zApp to choose application as alias -- (then choose Finder.app)
--result: alias "Leopard:System:Library:CoreServices:Finder.app:"
class of zApp --result: alias
zApp as text --result: "Leopard:System:Library:CoreServices:Finder.app:"
zApp as list --result: {alias "Leopard:System:Library:CoreServices:Finder.app:"}

You can use the POSIX path property to obtain a POSIX-style path to the item referred to by an alias:

POSIX path of zApp --result: "/System/Library/CoreServices/Finder.app/"

Discussion
You can only create an alias to a file or folder that already exists.

Special Considerations

AppleScript 2.0 attempts to resolve aliases only when you run a script. However, in earlier versions,
AppleScript attempts to resolve aliases at compile time.

application

An application on a local machine or an available server.

An application object in a script has all of the properties described here, which are handled by
AppleScript. It may have additional properties, depending on the specific application it refers to.

Properties of application objects

class

Access: read only
Class: class (page 86)
The class identifier for the object. The value is always application.

frontmost

Access: read only
Class: boolean (page 84)
Is the application frontmost?

Starting in AppleScript 2.0, accessing an application’s frontmost property returns a Boolean
value without launching the application or sending it an event.

The value of frontmost for background-only applications, UI element applications such as
System Events, and applications that are not running is always false.

id

Access: read only
Class: text (page 100)
The application’s bundle identifier (the default) or its four-character signature code. (New in
AppleScript 2.0.)

For example, the bundle identifier for the TextEdit application is "com.apple.TextEdit". Its
four-character signature code is 'ttxt'. If you ask for an application object’s id property, you
will get the bundle identifier version, unless the application does not have a bundle identifier
and does have a signature code.

82
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

name

Access: read only
Class: text (page 100)
The application’s name.

Starting in AppleScript 2.0, accessing an application’s name property returns the application name
as text without launching the application or sending it an event.

running

Access: read only
Class: boolean (page 84)
Is the application running? (New in AppleScript 2.0.)

Accessing an application’s running property returns a Boolean value without launching the
application or sending it an event.

You can also ask the System Events utility application whether an application is running. While
it requires more lines in your script to do so, that option is available in earlier versions of the Mac
OS.

version

Access: read only
Class: text (page 100)
The application’s version.

Starting in AppleScript 2.0, accessing this property returns the application version as text without
launching the application or sending it an event.

Coercions Supported

AppleScript supports coercion of an application object to a single-item list (page 92).

Examples

You can determine whether an application on the current computer is running without launching it
(this won’t work if your target is on a remote computer):

tell application "iTunes" -- doesn't automatically launch app
if it is running then

pause
end if

end tell

You can also use this format:

if application "iTunes" is running
tell application "iTunes" to pause

end if

The following statements specify the TextEdit application by, respectively, its signature, its bundle
id, and by a POSIX path to a specific version of TextEdit:

application id "ttxt"
application id "com.apple.TextEdit"
application "/Applications/TextEdit.app"

83
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

You can target a remote application with a tell statement. For details, see “Remote
Applications” (page 44).

Special Considerations

Starting in Mac OS X v10.5, there are several changes in application behavior:

 ■ Applications launch hidden.

AppleScript has always launched applications if it needed to in order to send them a command.
However, they would always launch visibly, which could be visually disruptive. AppleScript
now launches applications hidden by default. They will not be visible unless the script explicitly
says otherwise using activate.

 ■ Applications are located lazily.

When running a script, AppleScript will not attempt to locate an application until it needs to in
order to send it a command. This means that a compiled script or script application may contain
references to applications that do not exist on the user’s system, but AppleScript will not ask
where the missing applications are until it encounters a relevant tell block. Previous versions
of AppleScript would attempt to locate every referenced application before running the script.

When opening a script for editing, AppleScript will attempt to locate all the referenced applications
in the entire script, which may mean asking where one is. Pressing the Cancel button only cancels
the search for that application; the script will continue opening normally, though custom
terminology for that application will display as raw codes. In older versions, pressing Cancel
would cancel opening the script.

 ■ Applications are located and re-located dynamically.

Object specifiers that refer to applications, including those in tell blocks, are evaluated every
time a script runs. This alleviates problems with scripts getting “stuck” to a particular copy of an
application.

In prior versions of AppleScript, use of the new built-in application properties will fall back to sending
an event to the application, but the application may not handle these properties in the same way, or
handle them at all. (Most applications will handle name, version, and frontmost; id and running
are uncommon.) The other new features described above require AppleScript 2.0.

boolean

A logical truth value.

A boolean object evaluates to one of the AppleScript constants true or false. A Boolean expression
contains one or more boolean objects and evaluates to true or false.

Properties of boolean objects

class

Access: read only
Class: class (page 86)
The class identifier for the object. The value is always boolean.

84
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Operators

The operators that take boolean objects as operands are and, or, not, &, =, and ≠, as well as their text
equivalents: is equal to, is not equal to, equals, and so on.

The = operator returns true if both operands evaluate to the same value (either true or false); the
≠ operator returns true if the operands evaluate to different values.

The binary operators and and or take boolean objects as operands and return Boolean values. An
and operation, such as (2 > 1) and (4 > 3), has the value true if both its operands are true, and
false otherwise. An or operation, such as (theString = "Yes") or (today = "Tuesday"), has
the value true if either of its operands is true.

The unary not operator changes a true value to false or a false value to true.

The concatenation operator (&) creates a list containing the two boolean values on either side of it; for
example:

true & false --result: {true, false}

For additional information on these operators, see “Operators Reference” (page 183).

Coercions Supported

AppleScript supports coercion of a boolean object to a single-item list (page 92), a text (page 100)
object, or an integer (page 91).

Examples

The following are simple Boolean expressions:

true
false
paragraphCount > 2

AppleScript supplies the Boolean constants true and false to serve as the result of evaluating a
Boolean operation. But scripts rarely need to use these literals explicitly because a Boolean expression
itself evaluates to a Boolean value. For example, consider the following two script snippets:

if companyName is equal to "Acme Baking" then
return true

else
return false

end if

return companyName is equal to "Acme Baking"

The second, simpler version, just returns the value of the Boolean comparison companyName is
equal to "Acme Baking", so it doesn’t need to use a Boolean constant.

Discussion
When you pass a Boolean value as a parameter to a command, the form may change when you compile
the command. For example, the following line

choose folder showing package contents true

is converted to this when compiled by AppleScript:

85
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

choose folder with showing package contents

It is standard for AppleScript to compile parameter expressions from the Boolean form (such as
showing package contents true or invisibles false) into the with form (with showing
package contents or without invisibles, respectively).

class

Specifies the class of an object or value.

All classes have a class property that specifies the class type. The value of the class property is an
identifier.

Properties of class objects

class

Access: read only
Class: class (page 86)
The class identifier for the object. The value of this property is always class.

Operators

The operators that take class identifier values as operands are &, =, ≠, and as.

The coercion operator as takes an object of one class type and coerces it to an object of a type specified
by a class identifier. For example, the following statement coerces a text object into a corresponding
real:

"1.5" as real --result: 1.5

Coercions Supported

AppleScript supports coercion of a class identifier to a single-item list (page 92) or a text (page
100) object.

Examples

Asking for the class of a type such as integer results in a value of class:

class of text --result: class
class of integer --result: class

Here is the class of a boolean literal:

class of true --result: boolean

And here are some additional examples:

class of "Some text" --result: text
class of {1, 2, "hello"} --result: list

constant

A word with a predefined value.

86
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Constants are generally used for enumerated types. You cannot define constants in scripts; constants
can be defined only by applications and by AppleScript. See “Global Constants in AppleScript” (page
37) for more information.

Properties of constant objects

class

Access: read-only
Class: class (page 86)
The class identifier for the object. The value of this property is always constant.

Operators

The operators that take constant objects as operands are &, =, ≠, and as.

Coercions Supported

AppleScript supports coercion of a constant object to a single-item list (page 92) or a text (page
100) object.

Examples

One place you use constants defined by AppleScript is in text comparisons performed with
considering or ignoring statements (described in considering / ignoring (text
comparison) (page 197)). For example, in the following script statements, punctuation, hyphens,
and white space are constants:

considering punctuation but ignoring hyphens and white space
"bet-the farm," = "BetTheFarm," --result: true

end considering
class of hyphens --result: constant

The final statement shows that the class of hyphens is constant.

Discussion
Constants are not text strings, and they must not be surrounded by quotation marks.

Literal constants are defined in “Literals and Constants” (page 20).

In addition to the constants defined by AppleScript, applications often define enumerated types to
be used for command parameters or property values. For example, the iTunes search command
defines these constants for specifying the search area:

albums
all
artists
composers
displayed
songs

date

Specifies the day of the week, the date (month, day of the month, and year), and the time (hours,
minutes, and seconds).

87
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

To get the current date, use the command current date (page 127):

set theDate to current date
--result: "Friday, November 9, 2007 11:35:50 AM"

You can get and set the different parts of a date object through the date and time properties described
below.

When you compile a script, AppleScript displays date and time values according to the format specified
in System Preferences.

Properties of date objects

class

Access: read only
Class: class (page 86)
The class identifier for the object. The value of this property is always date.

day

Access: read/write
Class: integer (page 91)
Specifies the day of the month of a date object.

weekday

Access: read only
Class: constant (page 86)
Specifies the day of the week of a date object, with one of these constants: Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, or Sunday.

month

Access: read/write
Class: constant (page 86)
Specifies the month of the year of a date object, with one of the constants January, February,
March, April, May, June, July, August, September, October, November, or December.

year

Access: read/write
Class: integer (page 91)
Specifies the year of a date object; for example, 2004.

time

Access: read/write
Class: integer (page 91)
Specifies the number of seconds since midnight of a date object; for example, 2700 is equivalent
to 12:45 AM (2700 / 60 seconds = 45 minutes).

date string

Access: read only
Class: text (page 100)

88
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

A text object that specifies the date portion of a date object; for example, "Friday, November
9, 2007".

To obtain a compact version of the date, use short date string . For example, short date
string of (current date) --result: "1/27/08".

time string

Access: read only
Class: text (page 100)
A text object that specifies the time portion of a date object; for example, "3:20:24 PM".

Operators

The operators that take date object as operands are &, +, –, =, ≠, >, ≥, <, ≤, comes before, comes
after, and as. In expressions containing >, ≥, <, ≤, comes before, or comes after, a later time is
greater than an earlier time.

AppleScript supports the following operations on date objects with the + and – operators:

date + timeDifference
--result: date
date - date
--result: timeDifference
date - timeDifference
--result: date

where timeDifference is an integer (page 91) value specifying a time difference in seconds. To
simplify the notation of time differences, you can also use one or more of these of these constants:

minutes
60

hours
60 * minutes

days
24 * hours

weeks
7 * days

Here’s an example:

date "Friday, November 9, 2007" + 4 * days + 3 * hours + 2 * minutes
--result: date "Tuesday, November 13, 2007 3:02:00 AM"

To express a time difference in more convenient form, divide the number of seconds by the appropriate
constant:

31449600 / weeks --result: 52.0

To get an integral number of hours, days, and so on, use the div operator:

151200 div days --result: 1

To get the difference, in seconds, between the current time and Greenwich mean time, use the time
to GMT (page 167) command.

89
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Coercions Supported

AppleScript supports coercion of a date object to a single-item list (page 92) or a text (page 100)
object.

Examples

The following expressions show some options for specifying a date, along with the results of compiling
the statements. If you construct a date using only partial information, AppleScript fills in the missing
pieces with default values. The actual format is based on the settings in System Preferences.

date "8/9/2007, 17:06"
--result: date "Thursday, August 9, 2007 5:06:00 PM"

date "7/16/70"
--result: date "Wednesday, July 16, 2070 12:00:00 AM"

date "12:06" -- specifies a time on the current date
--result: date "Friday, November 9, 2007 12:06:00 PM"

date "Sunday, December 12, 1954 12:06 pm"
--result: date "Sunday, December 12, 1954 12:06:00 PM"

The following statements access various date properties (results depend on the date the statements
are executed):

set theDate to current date --using current date command
--result: date "Friday, November 9, 2007 11:58:38 AM"
weekday of theDate --result: Friday
day of theDate --result: 9
month of theDate --result: November
year of theDate --result: 2007
time of theDate --result: 43118 (seconds since 12:00:00 AM)
time string of theDate --result: "11:58:38 AM"
date string of theDate --result: "Friday, November 9, 2007"

If you want to specify a time relative to a date, you can do so by using of, relative to, or in, as
shown in the following examples.

date "2:30 am" of date "Jan 1, 2008"
--result: date "Tuesday, January 1, 2008 2:30:00 AM"

date "2:30 am" of date "Sun Jan 27, 2008"
--result: date "Sunday, January 27, 2008 2:30:00 AM"

date "Nov 19, 2007" relative to date "3PM"
--result: date "Monday, November 19, 2007 3:00:00 PM"

date "1:30 pm" in date "April 1, 2008"
--result: date "Tuesday, April 1, 2008 1:30:00 PM"

Special Considerations

You can create a date object using a string that follows the date format specified in the Formats pane
in International preferences. For example, in US English:

set myDate to date "3/4/2008"

When you compile this statement, it is converted to the following:

set myDate to date "Tuesday, March 4, 2008 12:00:00 AM"

90
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

file

A reference to a file, folder, or volume in the file system. A file object has exactly the same attributes
as an alias object, with the addition that it can refer to an item that does not exist.

For related information, see alias (page 81) and POSIX file (page 95). For a description of the
format for a file path, see “Aliases and Files” (page 42).

Coercions Supported

AppleScript supports coercion of a file object to a text (page 100) object or single-item list (page
92).

Examples
set fp to open for access file "Leopard:Users:myUser:NewFile"
close access fp

Discussion
You can create a file object that refers to a file or folder that does not exist. For example, you can
use the choose file name (page 118) command to obtain a file object for a file that need not currently
exist.

integer

A number without a fractional part.

Properties of integer objects

class

Access: read-only
Class: class (page 86)
The class identifier for the object. The value of this property is always integer.

Operators

The operators that can have integer values as operands are +, -, *, ÷ (or /), div, mod, ^, =, ≠, >, ≥, <,
and ≤.

The div operator always returns an integer value as its result. The +, –, *, mod, and ^ operators return
values of type integer or real.

Coercions Supported

AppleScript supports coercion of an integer value to a single-item list (page 92), a real (page 96)
number, or a text (page 100) object.

Coercion of an integer to a number does nothing:

set myCount to 7 as number
class of myCount --result: integer

Examples
1
set myResult to 3 - 2

91
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

-1
1000

Discussion
The biggest value (positive or negative) that can be expressed as an integer in AppleScript is
±536870911, which is equal to ±(2^29 – 1). Larger integers are converted to real numbers, expressed
in exponential notation, when scripts are compiled.

Note: The smallest possible integer value is actually -536870912 (-2^29), but it can only be generated
as a result of an expression. If you enter it directly into a script, it will be converted to a real when
you compile.

list

An ordered collection of values. The values contained in a list are known as items. Each item can
belong to any class.

A list appears in a script as a series of expressions contained within braces and separated by commas.
An empty list is a list containing no items. It is represented by a pair of empty braces: {}.

Properties of list objects

class

Access: read-only
Class: class (page 86)
The class identifier for the object. The value of this property is always list.

length

Access: read only
Class: integer (page 91)
Specifies he number of items in the list.

rest

Access: read only
Class: list (page 92)
A list containing all items in the list except the first item.

reverse

Access: read only
Class: list (page 92)
A list containing all items in the list, but in the opposite order.

Elements of list objects

92
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

item

A value contained in the list. Each value contained in a list is an item and an item may itself be
another list. You can refer to values by their item numbers. For example, item 2 of {"soup",
2, "nuts"} is the integer 2.

You can also refer to indexed list items by class. For example, integer 1 of {"oatmeal", 42,
"new"} returns 42.

Operators

The operators that can have list values as operands are &, =, ≠, starts with, ends with, contains,
and is contained by.

For detailed explanations and examples of how AppleScript operators treat lists, see “Operators
Reference” (page 183).

Commands Handled

You can count the items in a list or the elements of a specific class in a list with the count (page 126)
command. You can also use the length property of a list:

count {"a", "b", "c", 1, 2, 3} --result: 6
length of {"a", "b", "c", 1, 2, 3} --result: 6

Coercions Supported

AppleScript supports coercion of a single-item list to any class to which the item can be coerced if it
is not part of a list.

AppleScript also supports coercion of an entire list to a text (page 100) object if each of the items in
the list can be coerced to a text object, as in the following example:

{5, "George", 11.43, "Bill"} as text --result: "5George11.43Bill"

The resulting text object concatenates all the items, separated by the current value of the AppleScript
property text item delimiters. This property defaults to an empty string, so the items are simply
concatenated. For more information, see “text item delimiters” (page 38).

Individual items in a list can be of any class, and AppleScript supports coercion of any value to a list
that contains a single item.

Examples

The following statement defines a list that contains a text object, an integer, and a Boolean value:

{ "it's", 2, true }

Each list item can be any valid expression. The following list has the same value as the previous list:

{ "it" & "'s", 1 + 1, 4 > 3 }

The following statements work with lists; note that the concatenation operator (&) joins two lists into
a single list:

class of {"this", "is", "a", "list"} --result: list
item 3 of {"this", "is", "a", "list"} --result: "a"
items 2 thru 3 of {"soup", 2, "nuts"} --result: {2, "nuts"}
{"This"} & {"is", "a", "list"} --result: {"This", "is", "a", "list"}

93
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

For large lists, it is more efficient to use the a reference to operatorwhen inserting a large number
of items into a list, rather than to access the list directly. For example, using direct access, the following
script takes about 10 seconds to create a list of 10,000 integers (results will vary depending on the
computer and other factors):

set bigList to {}
set numItems to 10000
set t to (time of (current date)) --Start timing operations
repeat with n from 1 to numItems

copy n to the end of bigList
-- DON'T DO THE FOLLOWING--it's even slower!
-- set bigList to bigList & n

end
set total to (time of (current date)) - t --End timing

But the following script, which uses the a reference to operator, creates a list of 100,000 integers
(ten times the size) in just a couple of seconds (again, results may vary):

set bigList to {}
set bigListRef to a reference to bigList
set numItems to 100000
set t to (time of (current date)) --Start timing operations
repeat with n from 1 to numItems

copy n to the end of bigListRef
end
set total to (time of (current date)) - t --End timing

Similarly, accessing the items in the previously created list is much faster using a reference to—the
following takes just a few seconds:

set t to (time of (current date)) --Start timing
repeat with n from 1 to numItems -- where numItems = 100,000

item n of bigListRef
end repeat
set total to (time of (current date)) - t --End timing

However, accessing the list directly, even for only 4,000 items, can take over a minute:

set numItems to 4000
set t to (time of (current date)) --Start timing
repeat with n from 1 to numItems

item n of bigList
end repeat
set total to (time of (current date)) - t --End timing

number

An abstract class that can represent an integer or a real.

There is never an object whose class is number; the actual class of a "number" object is always one of
the more specific types, integer (page 91) or real (page 96).

Properties of number objects

class

Access: read-only

94
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Class: class (page 86)
The class identifier for the object. The value of this property is always either integer or real.

Operators

Because values identified as values of class number are really values of either class integer or class
real, the operators available are the operators described in the definitions of the integer (page 91)
or real (page 96) classes.

Coercions Supported

Coercing an object to number results in an integer object if the result of the coercion is an integer,
or a real object if the result is a non-integer number.

Examples

Any valid literal expression for an integer or a real value is also a valid literal expression for a
number value:

1
2
-1
1000
10.2579432
1.0
1.

POSIX file

A pseudo-class equivalent to the file class.

There is never an object whose class is POSIX file; the result of evaluating a POSIX file specifier is
a file object. The difference between file and POSIX file objects is in how they interpret name
specifiers: a POSIX file object interprets "name" as a POSIX path, while a file object interprets it
as an HFS path.

For related information, see alias (page 81) and file (page 91). For a description of the format for
a POSIX path, see “Aliases and Files” (page 42).

Properties of POSIX file objects

See file (page 91).

Coercions Supported

See file (page 91).

Examples

The following example asks the user to specify a file name, starting in the temporary directory /tmp,
which is difficult to specify using a file specifier:

set fileName to choose file name default location (POSIX file "/tmp")
-result: dialog starts in /tmp folder

95
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

real

Numbers that can include a fractional part, such as 3.14159 and 1.0.

Properties of real objects

class

Access: read-only
Class: class (page 86)
The class identifier for the object. The value of this property is always real.

Operators

The operators that can have real values as operands are +, -, *, ÷ (or /), div, mod, ^, =, ≠, >, ≥, <, and
≤.

The ÷ and / operators always return real values as their results. The +, -, *, mod, and ^ operators
return real values if either of their operands is a real value.

Coercions Supported

AppleScript supports coercion of a real value to an integer value, rounding any fractional part.

AppleScript also supports coercion of a real value to a single-item list (page 92) or a text (page
100) object. Coercion to text uses the decimal separator specified in Numbers in the Formats pane in
International preferences.

Examples
10.2579432
1.0
1.

As shown in the third example, a decimal point indicates a real number, even if there is no fractional
part.

Real numbers can also be written using exponential notation. A letter e is preceded by a real number
(without intervening spaces) and followed by an integer exponent (also without intervening spaces).
The exponent can be either positive or negative. To obtain the value, the real number is multiplied
by 10 to the power indicated by the exponent, as in these examples:

1.0e5 --equivalent to 1.0 * 10^5, or 100000
1.0e+5 --same as 1.0e5
1.0e-5 --equivalent to 1.0 * 10^-5, or .00001

Discussion
Real numbers that are greater than or equal to 10,000.0 or less than or equal to 0.0001 are converted
to exponential notation when scripts are compiled. The largest value that can be evaluated (positive
or negative) is 1.797693e+308.

record

An unordered collection of labeled properties. The only AppleScript classes that support user-defined
properties are record and script.

96
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

A record appears in a script as a series of property definitions contained within braces and separated
by commas. Each property definition consists of a label, a colon, and the value of the property. For
example, this is a record with two properties: {product:"pen", price:2.34}.

Each property in a record has a unique label which distinguishes it from other properties in the
collection. The values assigned to properties can belong to any class. You can change the class of a
property simply by assigning a value belonging to another class.

Properties of record objects

class

Access: read/write
Class: class (page 86)
The class identifier for the record. By default, the value is record.

If you define a class property explicitly in a record, the value you define replaces the implicit
class value. In the following example, the class is set to integer:

set myRecord to {class:integer, min:1, max:10}

class of myRecord --result: integer

length

Access: read only
Class: integer (page 91)
Specifies the number of properties in the record.

Operators

The operators that can have records as operands are &, =, ≠, contains, and is contained by.

For detailed explanations and examples of how AppleScript operators treat records, see “Operators
Reference” (page 183).

Commands Handled

You can count the properties in a record with the count command:

count {name:"Robin", mileage:400} --result: 2

Coercions Supported

AppleScript supports coercion of records to lists; however, all labels are lost in the coercion and the
resulting list cannot be coerced back to a record.

Examples

The following example shows how to change the value of a property in a record:

set myRecord to {product:"pen", price:2.34}
product of myRecord -- result: "pen"

set product of myRecord to "pencil"
product of myRecord -- result: "pencil"

AppleScript evaluates expressions in a record before using the record in other expressions. For
example, the following two records are equivalent:

97
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

{ name:"Steve", height:76 - 1.5, weight:150 + 20 }
{ name:"Steve", height:74.5, weight:170 }

You cannot refer to properties in records by numeric index. For example, the following object specifier,
which uses the index reference form on a record, is not valid.

item 2 of { name:"Rollie", IQ:186, city:"Unknown" } --result: error

You can access the length property of a record to count the properties it contains:

length of {name:"Chris", mileage:1957, city:"Kalamazoo"} --result: 3

You can get the same value with the count (page 126) command:

count {name:"Chris", mileage:1957, city:"Kalamazoo"} --result: 3

Discussion
After you define a record, you cannot add additional properties to it. You can, however, concatenate
records. For more information, see & (concatenation) (page 191).

reference

An object that encapsulates an object specifier.

The result of the a reference to (page 192) operator is a reference object, and object specifiers
returned from application commands are implicitly turned into reference objects.

A reference object “wraps” an object specifier. If you target a reference object with the get (page
133) command, the command returns the reference object itself. If you ask a reference object for
its contents property, it returns the enclosed object specifier. All other requests to a reference object
are forwarded to its enclosed object specifier. For example, if you ask for the class of a reference
object, you get the class of the object specified by its object specifier.

For related information, see “Object Specifiers” (page 29).

Properties of reference objects

Other than the contents property, all other property requests are forwarded to the enclosed object
specifier, so the reference object appears to have all the properties of the referenced object.

contents

Access: depends on the referenced object or objects
Class: depends on the referenced object or objects
The enclosed object specifier.

Operators

All operators are forwarded to the enclosed object specifier, so the reference object appears to support
all the operators of referenced object.

The a reference to operator returns a reference object as its result.

Coercions Supported

All coercions are forwarded to the enclosed object specifier, so the reference object appears to support
all the coercions of referenced object.

98
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Examples

Reference objects are most often used to specify application objects. The following example creates a
reference to a window within the TextEdit application:

set myWindow to a ref to window "top.rtf" of application "TextEdit"
--result: window "top.rtf" of application "TextEdit"

In subsequent script statements, you can use the variable myWindow in place of the longer term window
"top.rtf" of application "TextEdit".

Because all property requests other than contents of are forwarded to its enclosed specifier, the
reference object appears to have all the properties of the referenced object. For example, both class
of statements in the following example return window:

set myRef to a reference to window 1
class of contents of myRef -- explicit dereference using "contents of"
class of myRef -- implicit dereference

For additional examples, see the a reference to (page 192) operator.

RGB color

A type definition for a three-item list of integer values, from 0 to 65535, that specify the red, green,
and blue components of a color.

Otherwise, behaves exactly like a list (page 92) object.

Examples
set whiteColor to {65535, 65535, 65535} -- white
set yellowColor to {65535, 65535, 0} -- yellow
yellowColor as string --result: "65535655350"
set redColor to {65535, 0, 0} -- red
set userColor to choose color default color redColor

script

A collection of AppleScript declarations and statements that can be executed as a group.

The syntax for a script object is described in “Defining Script Objects” (page 59).

Properties of script objects

class

Access: read-only
Class: class (page 86)
The class identifier for the object. The value of this property is always script.

Commands Handled

You can copy a script object with the copy (page 125) command or create a reference to it with the
set (page 158) command.

99
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Coercions Supported

AppleScript supports coercion of a script object to a single-item list (page 92).

Examples

The following example shows a simple script object that displays a dialog. It is followed by a
statement that shows how to run the script:

script helloScript
display dialog "Hello."

end script

run helloScript -- invoke the script

Discussion
A script object can contain other script objects, called child scripts, and can have a parent object.
For additional information, including more detailed examples, see “Script Objects” (page 59).

text

An ordered series of Unicode characters.

Starting in AppleScript 2.0, AppleScript is entirely Unicode-based. There is no longer a distinction
between Unicode and non-Unicode text. Comments and text constants in scripts may contain any
Unicode characters, and all text processing is done in Unicode, so all characters are preserved correctly
regardless of the user’s language preferences.

For example, the following script works correctly in AppleScript 2.0, where it would not have in
previous versions:

set jp to "日本語"
set ru to "Русский"
jp & " and " & ru -- returns "日本語 and Русский"

For information on compatibility with previous AppleScript versions, including the use of string
and Unicode text as synonyms for text, see the Special Considerations section.

Properties of text objects

class

Access: read-only
Class: class (page 86)
The class identifier for the object. The value of this property is always text.

id

Access: read-only
Class: integer (page 91) or list (page 92) of integer
A value (or list of values) representing the Unicode code point (or code points) for the character
(or characters) in the text object. (A Unicode code point is a unique number that represents a
character and allows it to be represented in an abstract way, independent of how it is rendered.
A character in a text object may be composed of one or more code points.)

100
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

This property, added in AppleScript 2.0, can also be used as an address, which allows mapping
between Unicode code point values and the characters at those code points. For example, id of
"A" returns 65, and character id 65 returns "A".

The id of text longer than one code point is a list of integers, and vice versa: for example, id of
"hello" returns {104, 101, 108, 108, 111}, and string id {104, 101, 108, 108, 111}
returns "hello". (Because of a bug, text id ... does not work; you must use one of string,
Unicode text, or character.)

These uses of the id property obsolete the older ASCII character (page 112) and ASCII
number (page 113) commands, since, unlike those, they cover the full Unicode character range
and will return the same results regardless of the user's language preferences.

length

Access: read only
Class: integer (page 91)
The number of characters in the text.

quoted form

Access: read only
Class: text (page 100)
A representation of the text that is safe from further interpretation by the shell, no matter what
its contents are. Mainly useful for passing a text string to the do shell script (page 132)
command.

Elements of text objects

A text object can contain these elements (which may behave differently than similar elements used
in applications):

character
Specify by: “Arbitrary” (page 171), “Every” (page 172), “Index” (page 176), “Middle” (page 177),

“Range” (page 179)

One or more Unicode characters that make up the text.

Starting in AppleScript 2.0, elements of text object count a combining character cluster (also
known as a Unicode grapheme cluster) as a single character. (This relates to a feature of Unicode
that is unlikely to have an impact on most scripters: some “characters” may be represented as
either a single entity or as a base character plus a series of combining marks.

For example, “é” may be encoded as either U+00E9 (LATIN SMALL LETTER E WITH ACUTE)
or as U+0065 (LATIN SMALL LETTER E), U+0301 (COMBINING ACUTE ACCENT). Nonetheless,
AppleScript 2.0 will count both as one character, where older versions counted the base character
and combining mark separately.

101
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

paragraph
Specify by: “Arbitrary” (page 171), “Every” (page 172), “Index” (page 176), “Middle” (page 177),

“Range” (page 179)

A series of characters beginning immediately after either the first character after the end of the
preceding paragraph or the beginning of the text and ending with either a carriage return character
(\r), a linefeed character (\n), a return/linefeed pair (\r\n), or the end of the text. The Unicode
"paragraph separator" character (U+2029) is not supported.

Because paragraph elements are separated by a carriage return, linefeed, or carriage return/linefeed
pair, text ending with a paragraph break specifies a following (empty) paragraph. For example,
"this\nthat\n" has three paragraphs, not two: "this", "that", and "" (the empty paragraph after
the trailing linefeed).

Similarly, two paragraph breaks in a row specify an empty paragraph between them:

paragraphs of "this\n\nthat" --result: {"this", "", "that"}

text
Specify by: “Every” (page 172), “Name” (page 178)

All of the text contained in the text object, including spaces, tabs, and all other characters.

You can use text to access contiguous characters (but see also the Discussion section below):

text 1 thru 5 of "Bring me the mouse." --result: "Bring"

word
Specify by: “Arbitrary” (page 171), “Every” (page 172), “Index” (page 176), “Middle” (page 177),

“Range” (page 179)

A continuous series of characters, with word elements parsed according to the word-break rules
set in the International preference pane.

Because the rules for parsing words are thus under user control, your scripts should not count
on a deterministic text parsing of words.

Operators

The operators that can have text objects as operands are &, =, ≠, >, ≥, <, ≤, starts with, ends with,
contains, is contained by, and as.

In text comparisons, you can specify whether white space should be considered or ignored. For more
information, see “considering and ignoring Statements” (page 197).

For detailed explanations and examples of how AppleScript operators treat text objects, see “Operators
Reference” (page 183).

Special String Characters

The backslash (\) and double-quote (") characters have special meaning in text. AppleScript encloses
text in double-quote characters and uses the backslash character to represent return (\r), tab (\t),
and linefeed (\n) characters (described below). So if you want to include an actual backslash or
double-quote character in a text object, you must use the equivalent two-character sequence. As a
convenience, AppleScript also provides the text constant quote, which has the value \".

102
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Table 6-1 Special characters in text

To insert in textCharacter

\\Backslash character (\)

\"

quote (text constant)

Double quote (")

To declare a text object that looks like this when displayed:

He said "Use the '\' character."

you can use the following:

"He said \"Use the '\\' character.\""

White space refers to text characters that display as vertical or horizontal space. AppleScript defines
the white space constants return, linefeed, space, and tab to represent, respectively, a return
character, a linefeed character, a space character, and a tab character. (The linefeed constant became
available in AppleScript 2.0.)

Although you effectively use these values as text constants, they are actually defined as properties
of the global constant AppleScript.

Table 6-2 White space constants

ValueConstant

" "space

"\t"tab

"\r"return

"\n”linefeed

To enter white space in a string, you can just type the character—that is, you can press the Space bar
to insert a space, the Tab key to insert a tab character, or the Return key to insert a return. In the latter
case, the string will appear on two lines in the script, like the following:

display dialog "Hello" & "
" & "Goodbye"

When you run this script, "Hello" appears above “Goodbye” in the dialog.

You can also enter a tab, return, or linefeed with the equivalent two-character sequences. When a
text object containing any of the two-character sequences is displayed to the user, the sequences are
converted. For example, if you use the following text object in a display dialog (page 129) command:

display dialog "item 1\t1\ritem 2\t2"

it is displayed like this (unless you enable “Escape tabs and line breaks in strings” in the Editing tab
of the of Script Editor preferences):

103
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

item 1 1
item 2 2

To use the white space constants, you use the concatenation operator to join multiple text objects
together, as in the following example:

"Year" & tab & tab & "Units sold" & return & "2006" & tab ¬
& tab & "300" & return & "2007" & tab & tab & "453"

When passed to display dialog, this text is displayed as follows:

Year Units sold
2006 300
2007 453

Coercions Supported

AppleScript supports coercion of an text object to a single-item list (page 92). If a text object
represents an appropriate number, AppleScript supports coercion of the text object to an integer or
a real number.

Examples

You can define a text object in a script by surrounding text characters with quotation marks, as in
these examples:

set theObject to "some text"
set clientName to "Mr. Smith"
display dialog "This is a text object."

Suppose you use the following statement to obtain a text object named docText that contains all the
text extracted from a particular document:

set docText to text of document "MyFavoriteFish.rtf" of application "TextEdit"

The following statements show various ways to work with the text object docText:

class of docText --result: text
first character of docText --result: a character
every paragraph of docText --result: a list containing all paragraphs
paragraphs 2 thru 3 of docText --result: a list containing two paragraphs

The next example prepares a text object to use with the display dialog command. It uses the quote
constant to insert \" into the text. When this text is displayed in the dialog (above a text entry field),
it looks like this: Enter the text in quotes ("text in quotes"):

set promptString to "Enter the text in quotes (" & quote ¬
& "text in quotes" & quote & "): "

display dialog promptString default answer ""

The following example gets a POSIX path to a chosen folder and uses the quoted form property to
ensure correct quoting of the resulting string for use with shell commands:

set folderName to quoted form of POSIX path of (choose folder)

Suppose that you choose the folder named iWork '08 in your Applications folder. The previous
statement would return the following result, which properly handles the embedded single quote and
space characters in the folder name:

104
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

"'/Applications/iWork '\\''08/'"

Discussion
To get a contiguous range of characters within a text object, use the text element. For example, the
value of the following statement is the text object "y thi":

get text 3 thru 7 of "Try this at home"
--result: "y thi"

The result of a similar statement using the character element instead of the text element is a list:

get characters 3 thru 7 of "Try this at home"
--result: {"y", " ", "t", "h", "i"}

You cannot set the value of an element of a text object. For example, if you attempt to change the
value of the first character of the text object myName as shown next, you’ll get an error:

set myName to "Boris"
set character 1 of myName to "D"
--result: error: you cannot set the values of elements of text objects

However, you can achieve the same result by getting the last four characters and concatenating them
with "D":

set myName to "boris"
set myName to "D" & (get text 2 through 5 of myName)
--result: "Doris"

This example doesn’t actually modify the existing text object—it sets the variable myName to refer to
a new text object with a different value.

Special Considerations

For compatibility with versions prior to AppleScript 2.0, string and Unicode text are still defined,
but are considered synonyms for text. For example, all three of these statements have the same effect:

someObject as text
someObject as string
someObject as Unicode text

In addition, text, string, and Unicode text will all compare as equal. For example, class of
"foo" is string is true, even though class of "foo" returns text. However, it is still possible
for applications to distinguish between the three different types, even though AppleScript itself does
not.

Starting with AppleScript 2.0, there is no style information stored with text objects.

Because all text is Unicode text, scripts now always get the Unicode text behavior. This may be different
from the former string behavior for some locale-dependent operations, in particular word elements.
To get the same behavior with 2.0 and pre-2.0, add an explicit as Unicode text coercion, for example,
words of (someText as Unicode text).

Because text item delimiters (described in “text item delimiters” (page 38)) respect considering
and ignoring attributes in AppleScript 2.0, delimiters are case-insensitive by default. Formerly, they
were always case-sensitive. To enforce the previous behavior, add an explicit considering case
statement.

105
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

Because AppleScript 2.0 scripts store all text as Unicode, any text constants count as a use of the former
Unicode text class, which will work with any version of AppleScript back to version 1.3. A script
that contains Unicode-only characters such as Arabic or Thai will run, but will not be correctly editable
using versions prior to AppleScript 2.0: the Unicode-only characters will be lost.

unit types

Used for working with measurements of length, area, cubic and liquid volume, mass, and temperature.

The unit type classes support simple objects that do not contain other values and have only a single
property, the class property.

Properties of unit type objects

class

Access: read only
Class: (varies; listed below)
The class identifier for the object. These are the available classes:

Length: centimetres, centimeters, feet, inches, kilometres, kilometers, metres, meters,
miles, yards

Area: square feet, square kilometres, square kilometers, square metres, square meters,
square miles, square yards

Cubic volume: cubic centimetres, cubic centimeters, cubic feet, cubic inches, cubic
metres, cubic meters, cubic yards

Liquid volume: gallons, litres, liters, quarts

Weight: grams, kilograms, ounces, pounds

Temperature: degrees Celsius, degrees Fahrenheit, degrees Kelvin

Operators

None. You must explicitly coerce a unit type to a number type before you can perform operations
with it.

Coercions Supported

You can coerce a unit type object to integer (page 91), single-item list (page 92), real (page 96),
or text (page 100). You can also coerce between unit types in the same category, such as inches to
kilometers (length) or gallons to liters (liquid volume). As you would expect, there is no coercion
between categories, such as from gallons to degrees Centigrade.

Examples

The following statements calculate the area of a circle with a radius of 7 yards, then coerce the area
to square feet:

set circleArea to (pi * 7 * 7) as square yards --result: square yards
153.9380400259
circleArea as square feet --result: square feet 1385.4423602331

The following statements set a variable to a value of 5.0 square kilometers, then coerce it to various
other units of area:

106
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

set theArea to 5.0 as square kilometers --result: square kilometers 5.0
theArea as square miles --result: square miles 1.930510792712
theArea as square meters --result: square meters 5.0E+6

However, you cannot coerce an area measurement to a unit type in a different category:

set theArea to 5.0 as square meters --result: square meters 5.0
theArea as cubic meters --result: error
theArea as degrees Celsius --result: error

The following statements demonstrate coercion of a unit type to a text object:

set myPounds to 2.2 as pounds --result: pounds 2.2
set textValue to myPounds as text --result: "2.2"

107
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

108
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 6

Class Reference

This chapter describes the commands available to perform actions in AppleScript scripts. For
information on how commands work, see “Commands Overview” (page 35).

The commands described in this chapter are available to any script—they are either built into the
AppleScript language or added to it through the standard scripting additions (described in “Scripting
Additions” (page 34)).

Note: In the command descriptions below, if the first item in the Parameters list does not include a
parameter name, it is the direct parameter of the command (described in “Direct Parameter” (page
36)).

Table 7-1 lists each command according to the suite (or related group) of commands to which it
belongs and provides a brief description. Detailed command descriptions follow the table, in
alphabetical order.

Table 7-1 AppleScript commands

DescriptionCommand

AppleScript suite

Brings an application to the front, and opens it if it is on
the local computer and not already running.

activate (page 112)

In Script Editor, displays a value in the Event Log History
window or in the Event Log pane of a script window.

log (page 142)

Clipboard Commands suite

Returns information about the clipboard.clipboard info (page 124)

Places data on the clipboard.set the clipboard to (page 160)

Returns the contents of the clipboard.the clipboard (page 167)

File Commands suite

Returns information for a file or folder.info for (page 136)

109
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

DescriptionCommand

Returns a list of the currently mounted volumes.

Deprecated Use tell application "System Events"
to get the name of every disk.

list disks (page 139)

Returns the contents of a specified folder.

Deprecated Use tell application "System Events"
to get the name of every disk item of

list folder (page 139)

Mounts the specified AppleShare volume.mount volume (page 142)

Returns the full path to the specified application.path to (application) (page 146)

Returns the full path to the specified folder.path to (folder) (page 147)

Returns the full path to the specified resource.path to resource (page 149)

File Read/Write suite

Closes a file that was opened for access.close access (page 124)

Returns the length, in bytes, of a file.get eof (page 135)

Opens a disk file for the read (page 151) and write (page
168) commands.

open for access (page 144)

Reads data from a file that has been opened for access.read (page 151)

Sets the length, in bytes, of a file.set eof (page 160)

Writes data to a file that was opened for access with write
permission.

write (page 168)

Internet suite

Opens a URL with the appropriate program.open location (page 145)

Miscellaneous Commands suite

Returns the current date and time.current date (page 127)

Executes a shell script using the sh shell.do shell script (page 132)

Returns the sound output and input volume settings.get volume settings (page 135)

Generates a random number.random number (page 150)

Rounds a number to an integer.round (page 153)

Sets the sound output and/or input volume.set volume (page 161)

Gets environment variables or attributes of this computer.system attribute (page 164)

Returns information about the system.system info (page 165)

110
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

DescriptionCommand

Returns the difference between local time and GMT
(Universal Time).

time to GMT (page 167)

Scripting suite

Returns a script object loaded from a file.load script (page 139)

Runs a script or script filerun script (page 156)

Returns a list of all scripting components.scripting components (page 158)

Stores a script object into a file.store script (page 162)

Standard suite

Copies one or more values into variables.copy (page 125)

Counts the number of elements in an object.count (page 126)

Returns the value of a script expression or an application
object.

get (page 133)

Launches the specified application without sending it a
run command.

launch (page 138)

For an application, launches it. For a script application,
launches it and sends it the run command. For a script
script object, executes its run handler.

run (page 155)

Assigns one or more values to one or more script variables
or application objects.

set (page 158)

String Commands suite

Converts a number to a character.

Deprecated starting in AppleScript 2.0. Use the idproperty
of the text (page 100) class instead.

ASCII character (page 112)

Converts a character to its numeric value.

Deprecated starting in AppleScript 2.0. Use the idproperty
of the text (page 100) class instead.

ASCII number (page 113)

Returns the localized string for the specified key.localized string (page 140)

Finds one piece of text inside another.offset (page 143)

Summarizes the specified text or text file.summarize (page 163)

User Interaction suite

Beeps one or more times.beep (page 114)

Allows the user to choose an application.choose application (page 114)

111
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

DescriptionCommand

Allows the user to choose a color.choose color (page 115)

Allows the user to choose a file.choose file (page 116)

Allows the user to specify a new file reference.choose file name (page 118)

Allows the user to choose a folder.choose folder (page 119)

Allows the user to choose one or more items from a list.choose from list (page 120)

Allows the user to choose a running application on a
remote machine.

choose remote application (page
122)

Allows the user to specify a URL.choose URL (page 123)

Pauses for a fixed amount of time.delay (page 127)

Displays an alert.display alert (page 128)

Displays a dialog box, optionally requesting user input.display dialog (page 129)

Speaks the specified text.say (page 157)

activate

Brings an application to the front, launching it if necessary.

Syntax

requiredapplicationactivate

Parameters

application
The application to activate.

Result

None.

Examples
activate application "TextEdit"
tell application "TextEdit" to activate

Discussion
The activate command does not launch applications on remote machines. For examples of other
ways to specify an application, see the application (page 82) class and “Remote Applications” (page
44).

ASCII character

Returns the character for a specified number.

112
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Important: This command is deprecated starting in AppleScript 2.0—use the id property of the text
class instead.

Syntax

requiredintegerASCII character

Parameters

integer (page 91)
The character code, an integer between 0 and 255.

Result

A text (page 100) object containing the character that corresponds to the specified number.

Signals an error if integer is out of range.

Examples
set theChar to ASCII character 65 --result: "A"
set theChar to ASCII character 194 --result: "¬"
set theChar to ASCII character 2040 --result: invalid range error

Discussion
The name “ASCII” is something of a misnomer. ASCII character uses the primary text encoding,
as determined by the user’s language preferences, to map between integers and characters. If the
primary language is English, the encoding is Mac OS Roman, if it is Japanese, the encoding is
MacJapanese, and so on. For integers below 128, this is generally the same as ASCII, but for integers
from 128 to 255, the results vary considerably.

Because of this unpredictability, ASCII character and ASCII number are deprecated starting in
AppleScript 2.0. Use the id property of the text class instead, since it always uses the same encoding,
namely Unicode.

ASCII number

Returns the number associated with a specified character.

Important: This command is deprecated starting in AppleScript 2.0—use the id property of the text
class instead.

Syntax

requiredtextASCII number

Parameters

text (page 100)
A text object containing at least one character. If there is more than one character, only the
first one is used.

113
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Result

The character code of the specified character as an integer.

Examples
set codeValue to ASCII number "¬" --result: 194

Discussion
The result of ASCII number depends on the user’s language preferences; see the Discussion section
of ASCII character (page 112) for details.

beep

Plays the system alert sound one or more times.

Syntax

requiredbeep

optionalinteger

Parameters

integer (page 91)
Number of times to beep.

Default Value:
1

Result

None.

Examples

Audible alerts can be useful when no one is expected to be looking at the screen:

beep 3 --result: three beeps, to get attention
display dialog "Something is amiss here!" -- to show message

choose application

Allows the user to choose an application.

Syntax

requiredchoose application

optionaltextwith title

optionaltextwith prompt

optionalbooleanmultiple selections allowed

114
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

optionalclassas

Parameters

with title text (page 100)
Title text for the dialog.

Default Value:
"Choose Application"

with prompt text (page 100)
A prompt to be displayed in the dialog.

Default Value:
"Select an application:"

multiple selections allowed boolean (page 84)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there
is exactly one item.

Default Value:
false

as class (application (page 82) | alias (page 81))
Specifies the desired class of the result. If specified, the value must be one of application or
alias.

Default Value:
application

Result

The selected application, as either an application or alias object; for example, application
"TextEdit". If multiple selections are allowed, returns a list containing one item for each selected
application, if any.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such
errors, see “try Statements” (page 211).

Examples
choose application with prompt "Choose a web browser:"
choose application with multiple selections allowed
choose application as alias

Discussion
The choose application dialog initially presents a list of all applications registered with the system.
To choose an application not in that list, use the Browse button, which allows the user to choose an
application anywhere in the file system.

choose color

Allows the user to choose a color from a color picker dialog.

Syntax

requiredchoose color

115
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

optionalRGB colordefault color

Parameters

default color RGB color (page 99)
The color to show when the color picker dialog is first opened.

Default Value:
{0, 0, 0}: black.

Result

The selected color, represented as a list of three integers from 0 to 65535 corresponding to the red,
green, and blue components of a color; for example, {0, 65535, 0} represents green.

Signals a “user canceled” error if the user cancels the choose color dialog. For an example of how
to handle such errors, see “try Statements” (page 211).

Examples

This example lets the user choose a color, then uses that color to set the background color in their
home folder (when it is in icon view):

tell application "Finder"
tell icon view options of window of home

choose color default color (get background color)
set background color to the result

end tell
end tell

choose file

Allows the user to choose a file.

Syntax

requiredchoose file

optionaltextwith prompt

optionallist of textof type

optionalaliasdefault location

optionalbooleaninvisibles

optionalbooleanmultiple selections allowed

optionalbooleanshowing package contents

116
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

with prompt text (page 100)
The prompt to be displayed in the dialog.

Default Value:
None; no prompt is displayed.

of type list (page 92) of text (page 100)
A list of Uniform Type Identifiers (UTIs); for example, {"public.html", "public.rtf"}.
Only files of the specified types will be selectable. For a list of system-defined UTIs, see Uniform
Type Identifiers Overview. To get the UTI for a particular file, use info for (page 136).

Note: Four-character file type codes, such as "PICT" or "MooV", are also supported, but are deprecated.
To get the file type code for a particular file, use info for (page 136).

Default Value:
None; any file can be chosen.

default location alias (page 81)
The folder to begin browsing in.

Default Value:
Browsing begins in the last selected location, or, if this is the first invocation, in the
user’s Documents folder.

invisibles boolean (page 84)
Show invisible files and folders?

Default Value:
true: This is only for historical compatibility reasons. Unless you have a specific need
to choose invisible files, you should always use invisibles false.

multiple selections allowed boolean (page 84)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there
is exactly one item.

Default Value:
false

showing package contents boolean (page 84)
Show the contents of packages? If true, packages are treated as folders, so that the user can
choose a file inside a package (such as an application).

Default Value:
false. Manipulating the contents of packages is discouraged unless you control the
package format or the package itself.

Result

The selected file, as an alias. If multiple selections are allowed, returns a list containing one alias
for each selected file, if any.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such
errors, see “try Statements” (page 211).

Examples

set aFile to choose file with prompt "HTML or RTF:" ¬

117
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

of type {"public.html", "public.rtf"} invisibles false

A UTI can specify a general class of files, not just a specific format. The following script allows the
user to choose any image file, whether its format is JPEG, PNG, GIF, or whatever. It also uses the
default location parameter combined with path to (folder) (page 147) to begin browsing in
the user’s Pictures folder:

set picturesFolder to path to pictures folder
choose file of type "public.image" with prompt "Choose an image:" ¬

default location picturesFolder invisibles false

choose file name

Allows the user to specify a new filename and location. This does not create a file—rather, it returns
a file specifier that can be used to create a file.

Syntax

requiredchoose file name

optionaltextwith prompt

optionaltextdefault name

optionalaliasdefault location

Parameters

with prompt text (page 100)
The prompt to be displayed near the top of the dialog.

Default Value:
"Specify new file name and location"

default name text (page 100)
The default file name.

Default Value:
"untitled"

default location alias (page 81)
The default file location. See choose file (page 116) for examples.

Default Value:
Browsing starts in the last location in which a search was made or, if this is the first
invocation, in the user’s Documents folder.

Result

The selected location, as a file. For example:

file "HD:Users:currentUser:Documents:untitled"

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such
errors, see “try Statements” (page 211).

118
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Examples

The following example supplies a non-default prompt and search location:

set fileName to choose file name with prompt "Save report as:" ¬
default name "Quarterly Report" ¬
default location (path to desktop folder)

Discussion
If you choose the name of a file or folder that exists in the selected location, choose file name offers
the choice of replacing the chosen item. However, choosing to replace does not actually replace the
item.

choose folder

Allows the user to choose a directory, such as a folder or a disk.

Syntax

requiredchoose folder

optionaltextwith prompt

optionalaliasdefault location

optionalbooleaninvisibles

optionalbooleanmultiple selections allowed

optionalbooleanshowing package contents

Parameters

with prompt text (page 100)
The prompt to be displayed in the dialog.

Default Value:
None; no prompt is displayed.

default location alias (page 81)
The folder to begin browsing in.

Default Value:
Browsing begins in the last selected location, or, if this is the first invocation, in the
user’s Documents folder.

invisibles boolean (page 84)
Show invisible folders?

Default Value:
false

multiple selections allowed boolean (page 84)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there
is exactly one item.

Default Value:
false

119
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

showing package contentsboolean (page 84)
Show the contents of packages? If true, packages are treated as folders, so that the user can
choose a package folder, such as an application, or a folder inside a package.

Default Value:
false. Manipulating the contents of packages is discouraged unless you control the
package format or the package itself.

Result

The selected directory, as an alias. If multiple selections are allowed, returns a list containing one
alias for each selected directory, if any.

Signals a “user canceled” error if the user cancels the choose folder dialog. For an example of how
to handle such errors, see “try Statements” (page 211).

Examples

The following example specifies a prompt and allows multiple selections:

set foldersList to choose folder ¬
with prompt "Select as many folders as you like:" ¬
with multiple selections allowed

The following example gets a POSIX path to a chosen folder and uses the quoted form property (of
the text (page 100) class) to ensure correct quoting of the resulting string for use with shell commands:

set folderName to quoted form of POSIX path of (choose folder)

Suppose that you choose the folder named iWork '08 in your Applications folder. The previous
statement would return the following result, which properly handles the embedded single quote and
space characters in the folder name:

"'/Applications/iWork '\\''08/'"

choose from list

Allows the user to choose items from a list.

Syntax

requiredlistchoose from list

optionaltextwith title

optionaltextwith prompt

optionallistdefault items

optionaltextOK button name

optionaltextcancel button name

optionalbooleanmultiple selections allowed

optionalbooleanempty selection allowed

120
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

list (page 92) (of number (page 94) or text (page 100))
A list of numbers and/or text objects for the user to choose from.

with title text (page 100)
Title text for the dialog.

Default Value:
None; no title is displayed.

with prompt text (page 100)
The prompt to be displayed in the dialog.

Default Value:
"Please make your selection:"

default items list (page 92) (of number (page 94) or text (page 100))
A list of numbers and/or text objects to be initially selected. The list cannot include multiple
items unless you also specify multiple selections allowed true. If an item in the default
items list is not in the list to choose from, it is ignored.

Default Value:
None; no items are selected.

OK button name text (page 100)
The name of the OK button.

Default Value:
"OK"

cancel button name text (page 100)
The name of the Cancel button.

Default Value:
"Cancel"

multiple selections allowed boolean (page 84)
Allow multiple items to be selected?

Default Value:
false

empty selection allowed boolean (page 84)
Allow the user to choose OK with no items selected? If false, the OK button will not be enabled
unless at least one item is selected.

Default Value:
false

Result

If the user clicks the OK button, returns a list (page 92) of the chosen number (page 94) and/or
text (page 100) items; if empty selection is allowed and nothing is selected, returns an empty list ({}).
If the user clicks the Cancel button, returns false.

Examples

This script selects from a list of all the people in Address Book who have defined birthdays, and gets
the birthday of the selected one. Notice the if the result is not false test (choose from list
returns false if the user clicks Cancel) and the set aName to item 1 of the result (choose
from list returns a list, even if it contains only one item).

121
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

tell application "Address Book"
set bDayList to name of every person whose birth date is not missing value
choose from list bDayList with prompt "Whose birthday would you like?"
if the result is not false then

set aName to item 1 of the result
set theBirthday to birth date of person named aName
display dialog aName & "'s birthday is " & date string of theBirthday

end if
end tell

Discussion
For historical reasons, choose from list is the only dialog command that returns a result (false)
instead of signaling an error when the user presses the “Cancel” button.

choose remote application

Allows the user to choose a running application on a remote machine.

Syntax

requiredchoose remote application

optionaltextwith title

optionaltextwith prompt

Parameters

with title text (page 100)
Title text for the choose remote application dialog.

Default Value:
None; no title is displayed.

with prompt text (page 100)
The prompt to be displayed in the dialog.

Default Value:
"Select an application:"

Result

The selected application, as an application (page 82) object.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such
errors, see “try Statements” (page 211).

Examples
set myApp to choose remote application with prompt "Choose a remote web browser:"

Discussion
The user may choose a remote machine using Bonjour or by entering a specific IP address. There is
no way to limit the precise kind of application returned, so either limit your script to generic operations
or validate the user’s choice. If you want your script to send application-specific commands to the
resulting application, you will need a using terms from statement.

For information on targeting other machines, see “Remote Applications” (page 44).

122
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

choose URL

Allows the user to specify a URL.

Syntax

requiredchoose URL

optionallistOfServiceTypesOrTextStringsshowing

optionalbooleaneditable URL

Parameters

showing list (page 92) (of service types or text (page 100))
A list that specifies the types of services to show, if available. The list can contain one or more
of the following service types, or one or more text objects representing Bonjour service types
(described below), or both:

 ■ Web servers: shows http and https services

 ■ FTP Servers: shows ftp services

 ■ Telnet hosts: shows telnet services

 ■ File servers: shows afp, nfs, and smb services

 ■ News servers: shows nntp services

 ■ Directory services: shows ldap services

 ■ Media servers: shows rtsp services

 ■ Remote applications: shows eppc services

A text object is interpreted as a Bonjour service type—for example, "_ftp._tcp" represents
the file transfer protocol. These types are listed in Technical Q&A 1312: Bonjour service types
used in Mac OS X.

Default Value:
File servers

editable URL boolean (page 84)
Allow user to type in a URL? If you specify editable URL false, the text field in the dialog
is inactive.

choose URL does not attempt to verify that the user-entered text is a valid URL. Your script
should be prepared to verify the returned value.

Default Value:
true: the user can enter a text string. If false, the user is restricted to choosing an item
from the Bonjour-supplied list of services.

Result

The URL for the service, as a text object. This result may be passed to open location (page 145) or
to any application that can handle the URL, such as a browser for http URLs.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such
errors, see “try Statements” (page 211).

123
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

http://developer.apple.com/qa/qa2001/qa1312.html
http://developer.apple.com/qa/qa2001/qa1312.html

Examples

The following script asks the user to choose an URL, either by typing in the text input field or choosing
one of the Bonjour-located servers:

set myURL to choose URL
tell application Finder to open location myURL

clipboard info

Returns information about the current clipboard contents.

Syntax

requiredclipboard info

optionalclassfor

Parameters

for class (page 86)
Restricts returned information to only this data type.

Default Value:
None; returns information for all types of data as a list of lists, where each list represents
a scrap flavor.

Result

A list (page 92) containing one entry {class, size} for each type of data on the clipboard. To
retrieve the actual data, use the the clipboard (page 167) command.

Examples
clipboard info
clipboard info for Unicode text

close access

Closes a file opened with the open for access command.

Syntax

requiredfileSpecifierclose access

Parameters

(alias (page 81) | file (page 91) | file descriptor)
The alias or file specifier or integer file descriptor of the file to close. A file descriptor must be
obtained as the result of an earlier open for access (page 144) call.

Result

None.

Signals an error if the specified file is not open.

124
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Examples

You should always close files that you open, being sure to account for possible errors while using the
open file:

set aFile to choose file
set fp to open for access aFile
try

--file reading and writing here
on error e number n

--deal with errors here and don't resignal
end
close access fp

Discussion
Any files left open will be automatically closed when the application exits.

copy

Copies one or more values, storing the result in one or more variables. This command only copies
AppleScript values, not application-defined objects.

Syntax

requiredexpressioncopy

requiredvariablePatternto

Parameters

expression
The expression whose value is to be copied.

to variablePattern
The name of the variable or pattern of variables in which to store the value or pattern of values.
Patterns may be lists or records.

Result

The new copy of the value.

Examples

As mentioned in the Discussion, copy creates an independent copy of the original value, and it creates
a deep copy. For example:

set alpha to {1, 2, {"a", "b"}}
copy alpha to beta
set item 2 of item 3 of alpha to "change" --change the original list
set item 1 of beta to 42 --change a different item in the copy
{alpha, beta}
--result: {{1, 2, {"a", "change"}}, {42, 2, {"a", "b"}}}

Each variable reflects only the changes that were made directly to that variable. Compare this with
the similar example in set (page 158).

125
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

See the set (page 158) command for examples of using variable patterns. The behavior is the same
except that the values are copied.

Discussion
The copy command may be used to assign new values to existing variables, or to define new variables.
See “Declaring Variables with the copy Command” (page 51) for additional details.

Using the copy command creates a new value that is independent of the original—a subsequent
change to that value does not change the original value. The copy is a “deep” copy, so sub-objects,
such as lists within lists, are also copied. Contrast this with the behavior of the set (page 158) command.

When using copy with an object specifier, the specifier itself is the value copied, not the object in the
target application that it refers to. copy therefore copies the object specifier, but does not affect the
application data at all. To copy the object in the target application, use the application’s duplicate
command, if it has one.

Special Considerations

The syntax put expression into variablePattern is also supported, but is deprecated. It will be transformed
into the copy form when you compile the script.

count

Counts the number of elements in another object.

Syntax

requiredexpression(count | number of)

Parameters

expression
An expression that evaluates to an object with elements, such as a list (page 92), record (page
96), or application-defined container object. count will count the contained elements.

Result

The number of elements, as an integer (page 91).

Examples

In its simplest form, count, or the equivalent pseudo-property number, counts the item elements of
a value. This may be an AppleScript value, such as a list:

set aList to {"Yes", "No", 4, 5, 6}
count aList --result: 5
number of aList --result: 5

…or an application-defined object that has item elements:

tell application "Finder" to count disk 1 --result: 4

If the value is an object specifier that evaluates to a list, count counts the items of that list. This may
be an “Every” (page 172) specifier:

count every integer of aList --result: 3
count words of "hello world" --result: 2

126
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

tell application "Finder" to count folders of disk 1 --result: 4

…or a “Filter” (page 173) specifier:

tell application "Finder"
count folders of disk 1 whose name starts with "A" --result: 1

end tell

…or similar. For more on object specifiers, see “Object Specifiers” (page 29).

current date

Returns the current date and time.

Syntax

requiredcurrent date

Result

The current date and time, as a date (page 87) object.

Examples
current date --result: date "Tuesday, November 13, 2007 11:13:29 AM"

See the date (page 87) class for information on how to access the properties of a date, such as the
day of the week or month.

delay

Waits for a specified number of seconds.

Syntax

requireddelay

optionalnumber

Parameters

number (page 94)
The number of seconds to delay. The number may be fractional, such as 0.5 to delay half a
second.

Default Value:
0

Result

None.

Examples
set startTime to current date
delay 3 --delay for three seconds

127
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

set elapsedTime to ((current date) - startTime)
display dialog ("Elapsed time: " & elapsedTime & " seconds")

Discussion
delay does not make any guarantees about the actual length of the delay, and it cannot be more
precise than 1/60th of a second. delay is not suitable for real-time tasks such as audio-video
synchronization.

display alert

Displays a standardized alert containing a message, explanation, and from one to three buttons.

Syntax

requiredtextdisplay alert

optionaltextmessage

optionalalertTypeas

optionallistbuttons

optionalbuttonSpecifierdefault button

optionalbuttonSpecifiercancel button

optionalintegergiving up after

Parameters

text (page 100)
The alert text, which is displayed in emphasized system font.

message text (page 100)
An explanatory message, which is displayed in small system font, below the alert text.

as alertType
The type of alert to show. You can specify one of the following alert types:

informational: the standard alert dialog
warning: the alert dialog dialog is badged with a warning icon
critical: currently the same as the standard alert dialog

Default Value:
informational

buttons list (page 92) (of text (page 100))
A list of up to three button names.

If you supply one name, a button with that name serves as the default and is displayed on the
right side of the alert dialog. If you supply two names, two buttons are displayed on the right,
with the second serving as the default button. If you supply three names, the first is displayed
on the left, and the next two on the right, as in the case with two buttons.

Default Value:
{"OK"}: One button labeled “OK”, which is the default button.

128
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

default button (text (page 100) or integer (page 91))
The name or number of the default button. This may be the same as the cancel button.

Default Value:
The rightmost button.

cancel button (text (page 100) or integer (page 91))
The name or number of the cancel button. See “Result” below. This may be the same as the
default button.

Default Value:
None; there is no cancel button.

giving up after integer (page 91)
The number of seconds to wait before automatically dismissing the alert.

Default Value:
None; the dialog will wait until the user clicks a button.

Result

If the user clicks a button that was not specified as the cancel button, display alert returns a record
that identifies the button that was clicked—for example, {button returned: "OK"}. If the command
specifies a giving up after value, the record will also contain a gave up:false item.

If the display alert command specifies a giving up after value, and the dialog is dismissed due
to timing out before the user clicks a button, the command returns a record indicating that no button
was returned and the command gave up: {button returned:"", gave up:true}

If the user clicks the specified cancel button, the command signals a “user canceled” error. For an
example of how to handle such errors, see “try Statements” (page 211).

Examples
set alertResult to display alert "Insert generic warning here." ¬

buttons {"Cancel", "OK"} as warning ¬
default button "Cancel" cancel button "Cancel" giving up after 5

For an additional example, see the Examples section for the try (page 211) statement.

display dialog

Displays a dialog containing a message, one to three buttons, and optionally an icon and a field in
which the user can enter text.

Syntax

requiredtextdisplay dialog

optionaltextdefault answer

optionalbooleanhidden answer

optionallistbuttons

optionallabelSpecifierdefault button

129
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

optionallabelSpecifiercancel button

optionaltextwith title

optionalresourceSpecifierwith icon

optionaliconTypeSpecifierwith icon

optionalfileSpecifierwith icon

optionalintegergiving up after

Parameters

text
The dialog text, which is displayed in emphasized system font.

default answer text (page 100)
The initial contents of an editable text field. This edit field is not present unless this parameter
is present; to have the field present but blank, specify an empty string: default answer ""

Default Value:
None; there is no edit field.

hidden answer boolean (page 84)
If true, any text in the edit field is obscured as in a password dialog: each character is displayed
as a bullet.

Default Value:
false: text in the edit field is shown in cleartext.

buttons list (page 92) (of text (page 100))
A list of up to three button names.

Default Value:
If you don’t specify any buttons, by default, Cancel and OK buttons are shown, with
the OK button set as the default button.

If you specify any buttons, there is no default or cancel button unless you use the
following parameters to specify them.

default button (text (page 100) | integer (page 91))
The name or number of the default button. This button is highlighted, and will be pressed if
the user presses the Return or Enter key.

Default Value:
If there are no buttons specified using buttons, the OK button. Otherwise, there is no
default button.

cancel button (text (page 100) | integer (page 91))
The name or number of the cancel button. This button will be pressed if the user presses the
Escape key or Command-period.

Default Value:
If there are no buttons specified using buttons, the Cancel button. Otherwise, there is
no cancel button.

130
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

with title text (page 100)
The dialog window title.

Default Value:
None; no title is displayed.

with icon (text (page 100) | integer (page 91))
The resource name or ID of the icon to display.

with icon (stop | note | caution)
The type of icon to show. You may specify one of the following constants:

 ■ stop (or 0): Shows a stop icon

 ■ note (or 1): Shows the application icon

 ■ caution (or 2): Shows a warning icon, badged with the application icon

with icon (alias (page 81) | file (page 91))
An alias or file specifier that specifies a .icns file.

giving up after integer (page 91)
The number of seconds to wait before automatically dismissing the dialog.

Default Value:
None; the dialog will wait until the user presses a button.

Result

A record containing the button clicked and text entered, if any. For example:

{text returned:"Cupertino", button returned:"OK"}

If the dialog does not allow text input, there is no text returned item in the returned record.

If the user clicks the specified cancel button, the command signals a “user canceled” error. For an
example of how to handle such errors, see “try Statements” (page 211).

If the display dialog command specifies a giving up after value, and the dialog is dismissed
due to timing out before the user clicks a button, it returns a record indicating that no button was
returned and the command gave up: {button returned:"", gave up:true}

Examples

The following example shows how to use many of the parameters to a display dialog command,
how to process possible returned values, and one way to handle a user cancelled error. The dialog
displays two buttons and prompts a user to enter a name, giving up if they do not make a response
within fifteen seconds. It shows one way to handle the case where the user cancels the dialog, which
results in AppleScript signaling an “error” with the error number -128. The script uses additional
display dialog commands to show the flow of logic and indicate where you could add statements
to handle particular outcomes.

set userCanceled to false
try

set dialogResult to display dialog ¬
"What is your name?" buttons {"Cancel", "OK"} ¬
default button "OK" cancel button "Cancel" ¬
giving up after 15 ¬
default answer (long user name of (system info))

on error number -128

131
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

set userCanceled to true
end try

if userCanceled then
-- statements to execute when user cancels
display dialog "User cancelled."

else if gave up of dialogResult then
-- statements to execute if dialog timed out without an answer
display dialog "User timed out."

else if button returned of dialogResult is "OK" then
set userName to text returned of dialogResult
-- statements to process user name
display dialog "User name: " & userName

end if
end

The following example displays a dialog that asks for a password. It supplies a default answer of
"wrong", and specifies that the default answer, as well as any text entered by the user, is hidden
(displayed as a series of bullets). It gives the user up to three chances to enter a correct password.

set prompt to "Please enter password:"
repeat 3 times

set dialogResult to display dialog prompt ¬
buttons {"Cancel", "OK"} default button 2 ¬
default answer "wrong" with icon 1 with hidden answer

set thePassword to text returned of dialogResult
if thePassword = "magic" then

exit repeat
end if

end repeat
if thePassword = "magic" or thePassword = "admin" then

display dialog "User entered valid password."
end if

The password text is copied from the return value dialogResult. The script doesn’t check for a user
cancelled error, so if the user cancels AppleScript stops execution of the script.

do shell script

Executes a shell script using the sh shell.

Syntax

requiredtextdo shell script

optionalclassas

optionalbooleanadministrator privileges

optionaltextuser name

optionaltextpassword

optionalbooleanaltering line endings

132
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

text (page 100)
The shell script to execute.

asclass (page 86)
Specifies the desired type of the result. The raw bytes returned by the command will be
interpreted as the specified class.

Default Value:
«class utf8»: UTF-8 text. If there is no as parameter and the output is not valid UTF-8,
the output will be interpreted as text in the primary encoding.

administrator privileges boolean (page 84)
Execute the command as the administrator? Once a script is correctly authenticated, it will not
ask for authentication again for five minutes. The elevated privileges and the grace period do
not extend to any other scripts or to the rest of the system. For security reasons, you may not
tell another application to do shell script with administrator privileges. Put the
command outside of any tell block, or put it inside a tell me block.

Default Value:
false

user name text (page 100)
The name of an administrator account. You can avoid a password dialog by specifying a name
in this parameter and a password in the password parameter. If you specify a user name, you
must also specify a password.

password text (page 100)
An administrator password, typically used in conjunction with the administrator specified by
the user name parameter. If user name is omitted, it is assumed to be the current user.

altering line endings boolean (page 84)
Should the do shell script command change all line endings in the command output to
Mac-style and trim a trailing one? For example, the result of do shell script "echo foo;
echo bar" is "foo\rbar", not the "foo\nbar\n" that the shell script actually returned.

Default Value:
true

Result

The output of the shell script.

Signals an error if the shell script exits with a non-zero status. The error number will be the status,
the error message will be the contents of stderr.

Examples
do shell script "uptime"

Discussion
For additional documentation and examples of the do shell script command, see Technical Note
TN2065, do shell script in AppleScript.

get

Evaluates an object specifier and returns the result.

133
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

http://developer.apple.com/technotes/tn2002/tn2065.html

The command name get is typically optional—expressions that appear as statements or operands
are automatically evaluated as if they were preceded by get. However, get can be used to force early
evaluation of part of an object specifier.

Syntax

requiredspecifierget

optionalclassas

Parameters

specifier
An object specifier to be evaluated. If the specifier refers to an application-defined object, the
get command is sent to that application. Technically, all values respond to get, but for all
values other than object specifiers, get is an identity operation: the result is the exact same
value.

as class (page 86)
The desired class for the returned data. If the data is not of the desired type, AppleScript
attempts to coerce it to that type.

Default Value:
None; no coercion is performed.

Result

The value of the evaluated expression. See “Reference Forms” (page 171) for details on what the results
of evaluating various object specifiers are.

Examples

get can get properties or elements of AppleScript-defined objects, such as lists:

get item 1 of {"How", "are", "you?"} --result: "How"

…or of application-defined objects:

tell application "Finder" to get name of home --result: "myname"

As noted above, the get is generally optional. For example, these statements are equivalent to the
above two:

item 1 of {"How", "are", "you?"} --result: "How"
tell application "Finder" to name of home --result: "myname"

However, an explicit get can be useful for forcing early evaluation of part of an object specifier.
Consider:

tell application "Finder" to get word 1 of name of home
--Finder got an error: Can’t get word 1 of name of folder "myname" of folder
"Users" of startup disk.

This fails because Finder does not know about elements of text, such as words. AppleScript does,
however, so the script has to make Finder get only the name of ... part:

tell application "Finder" to get word 1 of (get name of home)
--result: "myname"

134
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

The explicit get forces that part of the specifier to be evaluated; Finder returns a text result, from
which AppleScript can then get word 1.

For more information on specifiers, see “Object Specifiers” (page 29).

get eof

Returns the length of a file, in bytes.

Syntax

requiredfileSpecifierget eof

Parameters

(alias (page 81) | file (page 91) | file descriptor)
The file to obtain the length for, as an alias, a file specifier, or an integer (page 91) file
descriptor. A file descriptor must be obtained as the result of an earlier open for access (page
144) call.

Result

The logical size of the file, that is, the length of its contents in bytes.

Examples

This example obtains an alias to a desktop picture folder and uses get eof to obtain its length:

set desktopPicturesFolderPath to ¬
(path to desktop pictures folder as text) & "Flow 1.jpg" as alias

--result: alias "Leopard:Library:Desktop Pictures:Flow 1.jpg"
get eof desktopPicturesFolderPath --result: 531486

get volume settings

Returns the sound output and input volume settings.

Syntax

requiredget volume settings

Result

A record containing the sound output and input volume settings. All the integer settings are between
0 (silent) and 100 (full volume):

output volume (an integer (page 91))
The base output volume.

input volume (an integer)
The input volume.

alert volume (an integer)
The alert volume. 100 for this setting means “as loud as the output volume.”

135
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

output muted (a boolean (page 84))
Is the output muted? If true, this overrides the output and alert volumes.

Examples
set volSettings to get volume settings
--result: {output volume:43, input volume:35, alert volume:78, output muted:false}

info for

Return information for a file or folder.

Syntax

requiredfileSpecifierinfo for

optionalbooleansize

Parameters

(alias (page 81) | file (page 91))
An alias or file specifier for the file or folder.

size boolean (page 84)
Return the size of the file or folder? For a file, its “size” is its length in bytes; for a folder, it is
the sum of the sizes of all the files the folder contains.

Default Value:
true: Because getting the size of a folder requires getting the sizes of all the files inside
it, size true may take a long time for large folders such as /System. If you do not need
the size, ask to not get it using size false. Alternatively, target the Finder or System
Events applications to ask for the specific properties you want.

Result

A record containing information about the specified file or folder, with the following fields. Some
fields are only present for certain kinds of items:

name (a text (page 100) object)
The item’s full name, as it appears in the file system. This always includes the extension, if
any. For example, "OmniOutliner Professional.app".

displayed name (a text (page 100) object)
The item’s name as it appears in Finder. This may be different than the name if the extension
is hidden or if the item has a localized name. For example, "OmniOutliner Professional".

short name (a text (page 100) object, applications only)
The application’s CFBundleName, which is the name displayed in the menu bar when the
application is active. This is often, but not always, the same as the displayed name. For example,
"OmniOutliner Pro".

name extension (a text (page 100) object)
The extension part of the item name. For example, the name extension of the file “foo.txt”
is "txt".

bundle identifier (a text (page 100) object)
The package’s bundle identifier. If the package is an application, this is the application’s id.

136
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

type identifier (a text (page 100) object)
The item’s type, as a Uniform Type Identifier (UTI). This is the preferred form for identifying
item types, and may be used with choose file.

kind (a text (page 100) object)
The item’s type, as displayed in Finder. This may be localized, and should only be used for
display purposes.

default application (an alias (page 81) object)
The application that will open this item.

creation date (a date (page 87) object)
The date the item was created.

modification date (a date (page 87) object)
The date the item was last modified. Folder modification dates do not change when an item
inside them changes, though they do change when an item is added or removed.

file type (a text (page 100) object)
The item’s type, as a four-character code. This is the classic equivalent of the type identifier,
but less accurate and harder to interpret; use type identifier if possible.

file creator (a text (page 100) object)
The item’s four-character creator code. For applications, this is the classic equivalent of the
bundle identifier, and will work for referencing an application by id. For files, this can be used
to infer the default application, but not reliably; use default application if possible.

short version (a text (page 100) object)
The item’s short version string, as it appears in a Finder “Get Info” window. Any item may
have this attribute, but typically only applications do.

long version (a text (page 100) object)
The item’s long version string, as it appears in a Finder “Get Info” window. Any item may
have this attribute, but typically only applications do.

size (an integer (page 91))
The item’s size, in bytes. For more details, see the size parameter.

alias (a boolean (page 84))
Is the item an alias file?

folder (a boolean (page 84))
Is the item a folder? This is true for packages, such as application packages, as well as normal
folders.

package folder (a boolean (page 84))
Is the item a package folder, such as an application? A package folder appears in Finder as if
it is a file.

extension hidden (a boolean (page 84))
Is the item’s name extension hidden?

visible (a boolean (page 84))
Is the item visible? Typically, only special system files are invisible.

locked (a boolean (page 84))
Is the item locked?

busy status (a boolean (page 84))
Is the item currently in use?

If true, the item is reliably busy. If false, the item may still be busy, because this status may
not be supported by some applications or file systems.

137
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

folder window (rectangle, folders only)
The folder’s window’s bounding rectangle, as list of four integers: {top, left, bottom, right}.

Examples
set downloadsFolder to path to downloads folder

--result: alias "HD:Users:me:Downloads:"
info for downloadsFolder

--result: {name:"Downloads", folder:true, alias:false, ...}

Special Considerations

Because info for returns so much information, it can be slow, and because it only works on one file
at a time, it can be difficult to use. The recommended technique is to use System Events or Finder to
ask for the particular properties you want.

launch

Launches an application, if it is not already running, but does not send it a run command.

If an application is already running, sending it a launch command has no effect. That allows you to
open an application without performing its usual startup procedures, such as opening a new window
or, in the case of a script application, running its script. For example, you can use the launch command
when you don’t want an application to open and close visibly. This is less useful in AppleScript 2.0,
which launches applications as hidden by default (even with the run (page 155) command).

See the application (page 82) class reference for information on how to use an application object’s
is running property to determine if it is running without having to launch it.

Syntax

requiredapplicationlaunch

Parameters

application
The application to launch.

Result

None.

Examples
launch application "TextEdit"
tell application "TextEdit" to launch

Discussion
The launch command does not launch applications on remote machines. For examples of other ways
to specify an application, see the application (page 82) class.

Many applications also support the reopen command, which reactivates a running application or
launches it if it isn’t running. If the application is already running, this command has the same effect
as double-clicking the application icon in the Finder. Each application determines how it will implement
the reopen command—some may perform their usual startup procedures, such as opening a new
window, while others perform no additional operations.

138
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

list disks

Returns the names of the currently mounted volumes.

Important: This command is deprecated; use tell application "System Events" to get the
name of every disk.

Syntax

requiredlist disks

Result

A list (page 92) of text objects, one for each currently mounted volume.

list folder

Returns the names of the items in a specified folder.

Important: This command is deprecated; use tell application "System Events" to get the
name of every disk item of

Syntax

requiredfileSpecifierlist folder

optionalbooleaninvisibles

Parameters

(alias (page 81) | file (page 91))
Specifies the folder to list.

invisibles boolean (page 84)
Show invisible files and folders?

Default Value:
true

Result

A list (page 92) of text (page 100) objects, one for each item in the specified folder.

load script

Returns a script object loaded from a specified file.

Syntax

requiredfileSpecifierload script

139
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

(alias (page 81) | file (page 91))
An alias or file specifier that specifies a script object. The file must be a compiled script
(with extension scpt) or script bundle (with extension scptd).

Result

The script object. You can get this object’s properties or call its handlers as if it were a local script
object.

Examples

For examples, see “Saving and Loading Libraries of Handlers” (page 75) in “About Handlers” (page
69).

localized string

Returns the localized text for the specified key.

Syntax

requiredtextlocalized string

optionaltextfrom table

optionalfileSpecifierin bundle

Parameters

text (page 100)
The key for which to obtain the localized text.

from table text (page 100)
The name of the strings file excluding the .strings suffix.

Default Value:
"Localizable"

in bundle (alias (page 81) | file (page 91))
An alias or file specifier that specifies the strings file.

Default Value:
The current script bundle for a document-based script (a scptd bundle); otherwise, the
current application.

Result

A text (page 100) object containing the localized text, or the original key if there is no localized text
for that key.

Examples

In order for localized string to be useful, you must create localized string data for it to use:

1. Save your script as an application bundle or script bundle.

140
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

2. Create lproj folders in the Resources directory of the bundle for each localization: for example,
English.lproj, French.lproj. Create files named Localized.strings in each one. When you
are done, the folder structure should look like this:

Figure 7-1 Bundle structure with localized string data

3. Add key/value pairs to each Localized.strings file. Each pair is a line of text "key" = "value";,
for example:

Figure 7-2 Key/value pair for localized string data

Now localized string will return the appropriate values, as defined in your files. For example,
when running in French:

localized string "hello" --result: "bonjour"

141
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

log

In Script Editor, displays a value in the Event Log History window or in the Event Log pane of a
script window.

Syntax

requiredlog

optionalvalue

Parameters

value
The value to display. Expressions are evaluated but object specifiers are not resolved.

The displayed value is enclosed in block comment characters—for example, (*window 1*).

If you do not specify a value, log will display just the comment characters: (**).

Result

None.

Examples

The following shows a simple use of logging:

set area to 7 * 43 as square feet
log area -- result (in Event Log pane): (*square feet 301.0*)

Log statements can be useful for tracking a script’s progress. For an example that shows how to log
statements in a repeat loop, see “Logging” (page 46).

mount volume

Mounts the specified network volume.

Syntax

requiredtextmount volume

(see parameter description)texton server

(see parameter description)textin AppleTalk zone

optionaltextas user name

optionaltextwith password

Parameters

text (page 100)
The name or URL (for example, afp://server/volume/) of the volume to mount.

142
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

on server text (page 100)
The server on which the volume resides; omit if URL path provided in direct parameter.

in AppleTalk zone text (page 100)
The AppleTalk zone in which the server resides; omit if URL path provided.

as user name text (page 100)
The user name with which to log in to the server; omit for guest access.

with password text (page 100)
The password for the user name; omit for guest access.

Result

None.

Examples
mount volume "afp://myserver.com/" -- guest access
mount volume "http://idisk.mac.com/myname/Public"
mount volume "http://idisk.mac.com/somebody" ¬

as user name "myname" with password "mypassword"

Discussion
The mount volume command can connect to any file server that is supported by the Finder� �Connect
To...� command, including Windows (smb), Samba, and FTP servers. On some kinds of servers, the
as user name and with password parameters may not bypass the login dialog, but encoding the
name and password in the URL (for example,smb://myname:passwd@server.domain.com/sharename)
will mount it silently.

offset

Finds one piece of text inside another.

Syntax

requiredoffset

requiredtextof

requiredtextin

Parameters

of text (page 100)
The source text to find the position of.

in text (page 100)
The target text to search in.

Result

An integer (page 91) value indicating the position, in characters, of the source text in the target, or
0 if not found.

Examples
set myString to "Yours, mine, and ours"
offset of "yours" in myString --result: 1, because case is ignored by default

143
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

offset of "mine" in myString --result: 8
offset of "theirs" in myString --result: 0, because "theirs" doesn't appear
considering case

offset of "yours" in myString -- result: 0, because case is now considered
end considering

Discussion
offset compares text as the equals operator does, including considering and ignoring conditions.
The values returned are counted the same way character elements of text are counted—for example,
offset of "c" in "école" is always 2, regardless of whether "école" is in Normalization Form
C or D. The result of matching part of a character cluster is undefined.

open for access

Opens a file for reading and writing.

Syntax

requiredfileSpecifieropen for access

optionalbooleanwrite permission

Parameters

(alias (page 81) | file (page 91))
An alias or file specifier that specifies the file to open. You can only use an alias if the file
exists.

write permission boolean (page 84)
Should writing to the file be allowed?

Default Value:
false: write and set eof commands on this file will fail with an error.

Result

A file descriptor, as an integer (page 91). This file descriptor may be used with any of the other file
commands: read (page 151), write (page 168), get eof (page 135), set eof (page 160), and close
access (page 124).

Examples

The following example opens a file named "NewFile" in the specified location path to desktop, but
does not ask for write access:

set theFile to (path to desktop as text) & "NewFile"
set referenceNumber to open for access theFile

To open the file with write access, you would substitute the following line:

set referenceNumber to open for access theFile with write permission

Discussion
Opening a file using open for access is not the same as opening a file using Finder. It is “open”
only in the sense that AppleScript has access to read (and optionally write) its contents; it does not
appear in one of the target application’s windows, and it does not even have to be one of the target

144
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

application’s files. open for access and the associated file commands (read, write, get eof, set
eof) are typically used with text files. They can also read and write arbitrary binary data, but this is
not recommended unless you create the file yourself or have detailed knowledge of the file format.

Calling open for access on a file returns an integer, termed a file descriptor, which represents an
open communication channel to the file’s data. This file descriptor remains open until the script calls
close access on it (or on the same file). Each file descriptor maintains a file pointer, which marks the
current position within the file and is initially set to the beginning of the file. read and write commands
begin reading or writing at the file pointer, unless instructed otherwise using a from or starting
at parameter, and advance the file pointer by the number of bytes read or written, so the next operation
will begin where the previous one left off.

A single file may be opened more than once, and therefore have several different file descriptors.
Each file descriptor maintains its own file pointer, and each must be closed separately. If you open
more than one channel at once with write permission, behavior is unspecified.

It is not strictly necessary to use open for access—all the other file commands can accept an alias;
if the file is not open, they will open it, do the operation, and then close it. Explicitly opening and
closing the file does have two potential advantages, however.

One is performance: if you are performing a number of operations on the same file, opening and
closing it repeatedly could become expensive. It is cheaper to explicitly open the file, do the work,
and then explicitly close it.

Two is ease of sequential read and write operations: because the file pointer tracks the progress
through the file, reading or writing several pieces of data from the same file is a simple matter. Doing
the same thing without using the file pointer requires calculating the data size yourself, which is not
even possible in some cases.

open location

Opens a URL with the appropriate program.

Syntax

requiredtextopen location

optionalbooleanerror reporting

Parameters

text (page 100)
The URL to open.

error reporting boolean (page 84)
This parameter exists only for historical reasons; it is no longer supported.

Result

None.

Examples

This example opens an Apple web page:

145
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

open location "http://www.apple.com"

path to (application)

Returns the location of the specified application.

Syntax

requiredpath to

optionalapplication

optionalclassas

Parameters

application
The application to locate. See the application (page 82) class reference for possible ways to
specify an application. You may also use one of the following identifiers:

current application

The application executing the script, such as Script Editor.

frontmost application

The frontmost application.

me

The script itself. For script applications, this is the same as current application, but
for script documents, it is the location of the document.

Note: Some older applications may treat me identically to current application.

it

The application of the current target.

Default Value:
it

as class (page 86) (alias (page 81) | text (page 100))
The class of the returned location. If specified, must be one of alias or text.

Default Value:
alias (page 81)

Result

The location of the specified application, as either an alias or a text object containing the path.

Examples
path to application "TextEdit"

--result: alias "Leopard:Applications:TextEdit.app:"
path to --result: alias "Leopard:Applications:AppleScript:Script Editor.app:"
path to me --result: same as above
path to it --result: same as above

146
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

path to frontmost application --result: same as above
path to current application

--result: same, but could be different for a script application

path to (folder)

Returns the location of the specified special folder.

Syntax

requiredfolder constantpath to

optionaldomain constantfrom

optionalclassas

optionalbooleanfolder creation

147
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

folder constant
The special folder for which to return the path. You may specify one of the following folders:

application support
applications folder
desktop
desktop pictures folder
documents folder
downloads folder
favorites folder
Folder Action scripts
fonts
help
home folder
internet plugins
keychain folder
library folder
modem scripts
movies folder
music folder
pictures folder
preferences
printer descriptions
public folder
scripting additions
scripts folder
shared documents
shared libraries
sites folder
startup disk
startup items
system folder
system preferences
temporary items
trash
users folder
utilities folder
workflows folder

The following folders are also defined, but are only meaningful when used with from Classic
domain:

apple menu
control panels
control strip modules
extensions
launcher items folder
printer drivers
printmonitor
shutdown folder
speakable items
stationery
voices

148
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

from domain constant
The domain in which to look for the specified folder. You may specify one of the following
domains:

system domain

A folder in /System.

local domain

A folder in /Library.

network domain

A folder in /Network.

user domain

A folder in ~, the user’s home folder.

Classic domain

A folder in the Classic Mac OS system folder. Only meaningful on systems that support
Classic.

Default Value:
The default domain for the specified folder. This varies depending on the folder.

as class (page 86) (alias (page 81) | text (page 100))
The class of the returned location.

Default Value:
alias (page 81)

folder creation boolean
Create the folder if it doesn’t exist? Your script may not have permission to create the folder
(for example, asking to create something in the system domain), so your script should be
prepared for that error.

Default Value:
true

Result

The location of the specified folder, as either an alias or a text object containing the path.

Examples
path to desktop --result: alias "Leopard:Users:johndoe:Desktop:"
path to desktop as string --result: "Leopard:Users:johndoe:Desktop:"

path to resource

Returns the location of the specified resource.

Syntax

requiredtextpath to resource

optionalfileSpecifierin bundle

149
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

optionaltextin directory

Parameters

text
The name of the requested resource.

in bundle (alias (page 81) | file (page 91))
An alias or file specifier that specifies the bundle containing the resource.

Default Value:
The current script bundle for a document-based script (a scptd bundle); otherwise, the
current application.

in directory text (page 100)
The name of a subdirectory in the bundle’s Resources directory.

Result

The location of the specified resource, as an alias (page 81).

Examples

The following example shows how you can get the path to a .icns file—in this case, in the Finder
application.

tell application "Finder"
set gearIconPath to path to resource "Gear.icns"
end
--result: alias
"HD:System:Library:CoreServices:Finder.app:Contents:Resources:Gear.icns"

random number

Returns a random number.

Syntax

requiredrandom number

optionalnumberfrom

optionalnumberto

optionalnumberwith seed

Parameters

from number (page 94)
The lowest number to return. Can be negative.

Default Value:
0.0

150
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

to number (page 94)
The highest number to return. Can be negative.

Default Value:
1.0

with seed integer (page 91)
An initial seed for the random number generator. Once called with any particular seed value,
random number will always generate the same sequence of numbers. This can be useful when
testing randomized algorithms: you can force it to behave the same way every time.

Result

A number between the from and to limits, including the limit values. Depending on the limit values,
the result may be an integer or a real. If at least one limit is specified, and all specified limits are
integers, the result is an integer. Otherwise, the result is a real, and may have a fractional part.

Examples
random number --result: 0.639215561057
random number from 1 to 10 --result: 8

Discussion
Random numbers are, by definition, random, which means that you may get the same number twice
(or even more) in a row, especially if the range of possible numbers is small.

The numbers generated are only pseudo-random, and are not considered cryptographically secure.

If you need to select one of a set of objects in a relationship, use some object rather than object (random
number from 1 to count objects). See the “Arbitrary” (page 171) reference form for more details.

read

Reads data from a file.

Syntax

requiredfileSpecifierread

optionalintegerfrom

optionalintegerfor

optionalintegerto

optionaltextbefore

optionaltextuntil

optionaltextusing delimiters

optionalclassas

151
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

(alias (page 81) | file (page 91) | file descriptor)
The file to read from, as an alias, a file specifier, or an integer (page 91) file descriptor. A file
descriptor must be obtained as the result of an earlier open for access (page 144) call.

from integer (page 91)
The byte position in the file to start reading from. The position is 1-based, so 1 is the first byte
of the file, 2 the second, and so on. Negative integers count from the end of the file, so -1 is
the last byte, -2 the second-to-last, and so on.

Default Value:
The current file pointer (see open for access (page 144)) if the file is open, or the
beginning of the file if not.

for integer (page 91)
The number of bytes to read.

Default Value:
Read until the end of the file.

to (integer (page 91) | eof)
Stop reading at this byte position in the file; use eof to indicate the last byte. The position is
1-based, like the from parameter.

before text (page 100)
A single character; read up to the next occurrence of that character. The before character is also
read, but is not part of the result, so the next read will start just after it.

until text (page 100)
A single character; read up to and including the next occurrence of that character.

using delimiter text (page 100)
A delimiter, such as a tab or return character, used to separate the data read into a list of text
objects. The resulting items consist of the text between occurrences of the delimiter text. The
delimiter is considered a separator, so a leading or trailing delimiter will produce an empty
string on the other side. For example, the result of reading "axbxcx" using a delimiter of "x"
would be {"a", "b", "c", ""}.

Default Value:
None; read returns a single item.

using delimiters list (page 92) of text (page 100)
As using delimiter above, but all of the strings in the list count as delimiters.

152
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

as class (page 86)
Interpret the raw bytes read as this class. The most common ones control the use of three
different text encodings:

text or string

The primary text encoding, as determined by the user’s language preferences set in the
International preference panel. (For example, Mac OS Roman for English, MacJapanese
for Japanese, and so on.)

Unicode text

UTF-16.

«class utf8»

UTF-8. (See “Double Angle Brackets” (page 245) for information on chevron or “raw”
syntax.)

Any other class is possible, for example date or list, but is typically only useful if the data
was written using a write statement specifying the same value for the as parameter.

Default Value:
text

Result

The data read from the file. If the file is open, the file pointer is advanced by the number of bytes read,
so the next read command will start where the previous one left off.

Examples

The following example opens a file for read access, reads up to (and including) the first occurrence
of ".", closes the file, and displays the text it read. (See the Examples section for the write (page 168)
command for how to create a similar file for reading.)

set fp to open for access file "Leopard:Users:myUser:NewFile"
set myText to read fp until "."
close access fp
display dialog myText

To read all the text in the file, replace set myText to read fp until "." with set myText to
read fp.

Discussion
At most one of to, for, before, and until is allowed. Use of before, until, or using delimiter(s)
will interpret the file first as text and then coerce the text to whatever is specified in the as parameter.
Otherwise, it is treated as binary data (which may be interpreted as text if so specified.)

read cannot automatically detect the encoding used for a text file. If a file is not in the primary
encoding, you must supply an appropriate as parameter.

When reading binary data, read always uses big-endian byte order. This is only a concern if you are
reading binary files produced by other applications.

round

Rounds a number to an integer.

153
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Syntax

requiredrealround

optionalroundingDirectionrounding

Parameters

real (page 96)
The number to round.

roundingroundingDirection
The direction to round. You may specify one of the following rounding directions:

up

Rounds to the next largest integer. This is the same as the math “ceiling” function.

down

Rounds down to the next smallest integer. This is the same as the math “floor” function.

toward zero

Rounds toward zero, discarding any fractional part. Also known as truncation.

to nearest

Rounds to the nearest integer; .5 cases are rounded to the nearest even integer. For
example, 1.5 rounds to 2, 0.5 rounds to 0. Also known as “unbiased rounding” or
“bankers’ rounding.” See Discussion for details.

as taught in school

Rounds to the nearest integer; .5 cases are rounded away from zero. This matches the
rules commonly taught in elementary mathematics classes.

Default Value:
to nearest

Result

The rounded value, as an integer (page 91) if it is within the allowable range (±229), or as a real (page
96) if not.

Examples

Rounding up or down is not the same as rounding away from or toward zero, though it may appear
so for positive numbers. For example:

round 1.1 rounding down --result: 1
round -1.1 rounding down --result: -2

To round to the nearest multiple of something other than 1, divide by that number first, round, and
then multiply. For example, to round a number to the nearest 0.01:

set x to 5.1234
set quantum to 0.01
(round x/quantum) * quantum --result: 5.12

154
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Discussion
The definition of to nearest is more accurate than as taught in school, but may be surprising
if you have not seen it before. For example:

round 1.5 --result: 2
round 0.5 --result: 0

Rounding 1.5 to 2 should come as no surprise, but as taught in school would have rounded 0.5
up to 1. The problem is that when dealing with large data sets or with many subsequent rounding
operations, always rounding up introduces a slight upward skew in the results. The round-to-even
rule used by to nearest tends to reduce the total rounding error, because on average an equal portion
of numbers will round down as will round up.

run

Executes the run handler of the specified target.

To run an application, it must be on a local or mounted volume. If the application is already running,
the effect of the run command depends on the application. Some applications are not affected; others
repeat their startup procedures each time they receive a run command.

The run command launches an application as hidden; use activate (page 112) to bring the application
to the front.

For a script object, the run command causes either the explicit or the implicit run handler, if any,
to be executed. For related information, see “run Handlers” (page 76).

Syntax

optionalrunTargetrun

Parameters

runTargetscript
A script (page 99) or application (page 82) object.

Default Value:
it (the current target)

Result

The result, if any, returned by the specified object’s run handler.

Examples
run application "TextEdit"
tell application "TextEdit" to run
run myScript --where myScript is a script object

For information about using the run command with script objects, see “Sending Commands to
Script Objects” (page 61).

155
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Discussion
To specify an application to run, you can supply a string with only the application name, as shown
in the Examples section. Or you can specify a location more precisely, using one of the forms described
in “Aliases and Files” (page 42). For examples of other ways to specify an application, see the
application (page 82) class.

It is not necessary to explicitly tell an application to run before sending it other commands; AppleScript
will do that automatically. To launch an application without invoking its usual startup behavior, use
the launch (page 138) command. For further details, see “Calling a Script Application From a
Script” (page 79).

run script

Runs a specified script or script file.

See also store script (page 162).

Syntax

requiredscriptTextOrFileSpecifierrun script

optionallistOfParameterswith parameters

optionaltextin

Parameters

(text (page 100) | alias (page 81) | file (page 91))
The script text, or an alias or file specifier that specifies the script file to run.

with parameters list (page 92) of anything
A list of parameter values to be passed to the script.

in text (page 100)
The scripting component to use.

Default Value:
"AppleScript"

Result

The result of the script’s run handler.

Examples

The following script targets the application Finder, escaping the double quotes around the application
name with the backslash character (for more information on using the backslash, see the Special String
Characters section in the text (page 100) class description):

run script "get name of front window of app \"Finder\"" --result: a window name

This example executes a script stored on disk:

set scriptAlias to "Leopard:Users:myUser:Documents:savedScript.scptd:" as alias
run script scriptAlias --result: script is executed

156
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

say

Speaks the specified text.

Syntax

requiredtextsay

optionaltextdisplaying

optionaltextusing

optionalbooleanwaiting until completion

optionalfileSpecifiersaving to

Parameters

text (page 100)
The text to speak.

displaying text (page 100)
The text to display in the feedback window, if different from the spoken text. This parameter
is ignored unless Speech Recognition is turned on (in System Preferences).

using text (page 100)
The voice to speak with—for example: "Zarvox".

You can use any of the voices from the System Voice pop-up on the Text to Speech tab in the
Speech preferences pane.

Default Value:
The current System Voice (set in the Speech panel in System Preferences.

waiting until completion boolean (page 84)
Should the command wait for speech to complete before returning? This parameter is ignored
unless Speech Recognition is turned on (in System Preferences).

Default Value:
true

saving to (alias (page 81) | file (page 91))
An alias or file specifier to an AIFF file (existing or not) to contain the sound output. You
can only use an alias specifier if the file exists. If this parameter is specified, the sound is not
played audibly, only saved to the file.

Default Value:
None; the text is spoken out loud, and no file is saved.

Result

None.

Examples
say "You are not listening to me!" using "Bubbles" -- result: spoken in Bubbles

The following example saves the spoken text into a sound file:

set soundFile to choose file name -- specify name ending in ".aiff"

157
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

--result: a file URL
say "I love oatmeal." using "Victoria" saving to soundFile

--result: saved to specified sound file

scripting components

Returns a list of the names of all currently available scripting components, such as the AppleScript
component.

Syntax

requiredscripting components

Result

A list (page 92) of text (page 100) items, one for each installed scripting component.

Examples
scripting components --result: {"AppleScript"}

Discussion
A scripting component is a software component, such as AppleScript, that conforms to the Open
Scripting Architecture (OSA) interface. The OSA provides an abstract interface for applications to
compile, execute, and manipulate scripts without needing to know the details of the particular scripting
language. Each scripting language corresponds to a single scripting component.

set

Assigns one or more values to one or more variables.

Syntax

requiredvariablePatternset

optionalexpressionto

Parameters

variablePattern
The name of the variable or pattern of variables in which to store the value or pattern of values.
Patterns can be lists or records.

to expression
The expression whose value is to be set. It can evaluate to any type of object or value.

Result

The value assigned.

Examples

set may be used to create new variables:

set myWeight to 125

158
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

...assign new values to existing variables:

set myWeight to myWeight + 23

...change properties or elements of objects, such as lists:

set intList to {1, 2, 3}
set item 3 of intList to 42

...or application-defined objects:

tell application "Finder" to set name of startup disk to "Happy Fun Ball"

As mentioned in the Discussion, setting one variable to another makes both variables refer to the
exact same object. If the object is mutable, that is, it has writable properties or elements, changes to
the object will appear in both variables:

set alpha to {1, 2, {"a", "b"}}
set beta to alpha
set item 2 of item 3 of alpha to "change" --change the original variable
set item 1 of beta to 42 --change a different item in the new variable
{alpha, beta}
--result: {{42, 2, {"a", "change"}}, {42, 2, {"a", "change"}}}

Both variables show the same changes, because they both refer to the same object. Compare this with
the similar example in copy (page 125). Assigning a new object to a variable is not the same thing as
changing the object itself, and does not affect any other variables that refer to the same object. For
example:

set alpha to {1, 2, 3}
set beta to alpha --result: beta refers to the same object as alpha
set alpha to {4, 5, 6}

--result: assigns a new object to alpha; this does not affect beta.
{alpha, beta}
--result: {{4, 5, 6}, {1, 2, 3}}

set can assign several variables at once using a pattern, which may be a list or a record. For example:

tell application "Finder" to set {x, y} to position of front window

Since position of front window evaluates to a list of two integers, this sets x to the first item in
the list and y to the second item.

You can think of pattern assignment as shorthand for a series of simple assignments, but that is not
quite accurate, because the assignments are effectively simultaneous. That means that you can use
pattern assignment to exchange two variables:

set {x, y} to {1, 2} --now x is 1, and y is 2.
set {x, y} to {y, x} --now x is 2, and y is 1.

To accomplish the second statement using only simple assignments, you would need a temporary
third variable.

For more information on using the set command, including a more complex pattern example, see
“Declaring Variables with the set Command” (page 49).

159
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Discussion
Using the set command to assign a value to a variable causes the variable to refer to the original
value. In a sense, it creates a new name for the same object. If multiple variables refer to a mutable
object (that is, one with writable properties or elements, such as a list or script object), changes to
the object are observable through any of the variables. If you want a separate copy, use the copy (page
125) command. This sharing only applies to values in AppleScript itself; it does not apply to values
in other applications. Changing the object a variable refers to is not the same as altering the object
itself, and does not affect other variables that refer to the same object.

set eof

Sets the length of a file, in bytes.

Syntax

requiredfileSpecifierset eof

requiredintegerto

Parameters

(alias (page 81) | file (page 91) | file descriptor)
The file to set the length of, as an alias, a file specifier, or as an integer file descriptor, which
must be obtained as the result of an earlier open for access (page 144) call.

to integer (page 91)
The new length of the file, in bytes. If the new length is shorter than the existing length of the
file, any data beyond that position is lost. If the new length is longer, the contents of the new
bytes are unspecified.

Result

None.

Signals a “write permission” error if the file was opened using open for access without write
permission.

Examples

If you want to completely replace the contents of an existing file, the first step must be to change its
length to zero:

set theFile to choose file with prompt "Choose a file to clobber:"
set eof theFile to 0

set the clipboard to

Places data on the clipboard.

Syntax

requiredanythingset the clipboard to

160
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

anything
The data (of any type) to place on the clipboard.

Result

None.

Examples

The following script places text on the clipboard, then retrieves the text in TextEdit with a the
clipboard (page 167) command:

set the clipboard to "Important new text."
tell application "TextEdit"

activate --make sure TextEdit is running
set clipText to the clipboard --result: "Important new text."
--perform operations with retrieved text

end tell

Discussion
It is not necessary to use the clipboard to move data between scriptable applications. You can simply
get the data from the first application into a variable and set the appropriate data in the second
application.

set volume

Sets the sound output, input, and alert volumes.

Syntax

requiredset volume

optionalnumber

optionalintegeroutput volume

optionalintegerinput volume

optionalintegeralert volume

optionalbooleanoutput muted

Parameters

number (page 94)
The sound output volume, a real number from 0 to 7.

Important: This parameter is deprecated; if specified, all other parameters will be ignored.

output volume integer (page 91)
The sound output volume, an integer from 0 to 100.

Default Value:
None; the output volume is not changed.

161
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

input volume integer (page 91)
The sound input volume, an integer from 0 to 100.

Default Value:
None; the input volume is not changed.

alert volume integer (page 91)
The alert input volume, an integer from 0 to 100.

Default Value:
None; the alert volume is not changed.

output muted boolean (page 84)
Should the sound output be muted?

Default Value:
None; the output muting is not changed.

Result

None.

Examples

The following example saves the current volume settings, before increasing the output volume, saying
some text, and restoring the original value:

set savedSettings to get volume settings
-- {output volume:32, input volume:70, alert volume:78, output muted:false}
set volume output volume 90
say "This is pretty loud."
set volume output volume (output volume of savedSettings)
delay 1
say "That's better."

store script

Stores a script object into a file.

See also run script (page 156).

Syntax

requiredscriptstore script

optionalfileSpecifierin

optionalreplacingConstantreplacing

Parameters

script
The script object to store.

162
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

in (alias (page 81) | file (page 91))
An alias or file specifier that specifies the file to store the script object in.

Default Value:
None; a standard Save As dialog will be presented to allow the user to choose where
to save the script object.

replacing replacingConstant
Allow overwriting an existing file? You may specify one of the following constants:

yes

Overwrite without asking.

no

Never overwrite; signal an error if the file exists.

ask

Present a dialog asking the user what to do; the options are Replace (overwrite the file),
Cancel (signal a “user canceled” error), or Save As (save to a different location).

Default Value:
ask

Result

None.

Examples

This example stores a script on disk, using the Save As dialog to specify a location on the desktop
and the name storedScript. It then creates an alias to the stored script and runs it with run script:

script test
display dialog "Test"

end script

store script test --specify "Leopard:Users:myUser:Desktop:storedScript"

set localScript to alias "Leopard:Users:myUser:Desktop:storedScript" run script
localScript --result: displays dialog "Test"

The store script command stores only the contents of the script—in this case, the one statement,
display dialog "Test". It does not store the beginning and ending statements of the script definition.

summarize

Summarizes the specified text or text file.

Syntax

requiredtextSpecifiersummarize

optionalintegerin

163
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

textSpecifier
The text (page 100), or an alias (page 81) to a text file, to summarize.

in integer (page 91)
The number of sentences desired in the summary.

Default Value:
1

Result

A text (page 100) object containing a summarized version of the text or file.

Examples

This example summarizes Lincoln’s famous Gettysburg Address down to one sentence—a tough job
even for AppleScript:

set niceSpeech to "Four score and seven years ago our fathers brought forth on
this continent a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal.
Now we are engaged in a great civil war, testing whether that nation, or any
nation, so conceived and so dedicated, can long endure. We are met on a great
battle-field of that war. We have come to dedicate a portion of that field, as
a final resting place for those who here gave their lives that that nation
might live. It is altogether fitting and proper that we should do this.
But, in a larger sense, we can not dedicate—we can not consecrate—we can not
hallow—this ground. The brave men, living and dead, who struggled here, have
consecrated it, far above our poor power to add or detract. The world will little
note, nor long remember what we say here, but it can never forget what they
did here. It is for us the living, rather, to be dedicated here to the unfinished
work which they who fought here have thus far so nobly advanced. It is rather
for us to be here dedicated to the great task remaining before us—that from
these honored dead we take increased devotion to that cause for which they gave
the last full measure of devotion—that we here highly resolve that these dead
shall not have died in vain—that this nation, under God, shall have a new birth
of freedom—and that government of the people, by the people, for the people,
shall not perish from the earth."
set greatSummary to summarize niceSpeech in 1
display dialog greatSummary --result: displays one inspiring sentence

system attribute

Get environment variables or attributes of this computer.

Syntax

optionalattributesystem attribute

164
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

Parameters

attribute
The attribute to test: either a Gestalt value or a shell environment variable name. Gestalt values
are described in Gestalt Manager Reference.

Default Value:
If the attribute is omitted, system attribute will return a list of the names of all
currently defined environment variables.

has integer (page 91)
For Gestalt values, an integer mask that is bitwise-ANDed with the Gestalt response. If the
result is non-zero, system attribute returns true, otherwise false.

For environment variables, this parameter is ignored.

Default Value:
None; system attribute returns the original Gestalt response code.

Result

If the attribute specified is a Gestalt selector, either the Gestalt response code or true or false
depending on the has parameter.

If the attribute specified is an environment variable, the value of that variable, or an empty string ("")
if it is not defined.

If no attribute is supplied, a list of all defined environment variables.

Examples

To get the current shell:

system attribute "SHELL" --result: "/bin/bash" (for example)

To get a list of all defined environment variables:

system attribute
(* result: (for example)
{"PATH", "TMPDIR", "SHELL", "HOME", "USER", "LOGNAME", "DISPLAY", "SSH_AUTH_SOCK",
"Apple_PubSub_Socket_Render", "__CF_USER_TEXT_ENCODING", "SECURITYSESSIONID",
"COMMAND_MODE"}
*)

system info

Gets information about the system.

Syntax

requiredsystem info

Result

A record containing various information about the system and the current user. This record contains
the following fields:

165
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

AppleScript version (a text (page 100) object)
The version number of AppleScript, for example, "2.0". This can be useful for testing for the
existence of AppleScript features. When comparing version numbers, use considering
numeric strings to make them compare in numeric order, since standard lexicographic
ordering would consider "1.9" to come after "1.10".

AppleScript Studio version (a text (page 100) object)
The version number of AppleScript Studio, for example, "1.5".

system version (a text (page 100) object)
The version number of Mac OS X, for example, "10.5.1".

short user name (a text (page 100) object)
The current user’s short name, for example, "hoser". This is set in the Advanced Options panel
in the Accounts preference pane, or in the “Short Name” field when creating the account. This
is also available from System Events using name of current user.

long user name (a text (page 100) object)
The current user’s long name, for example, "Random J. Hoser". This is the “User Name” field
in the Accounts preference pane, or in the “Name” field when creating the account. This is
also available from System Events using full name of current user.

user ID (an integer (page 91))
The current user’s user ID. This is set in the Advanced Options panel in the Accounts preference
pane.

user locale (a text (page 100) object)
The current user’s locale code, for example "en_US".

home directory (an alias (page 81) object)
The location of the current user’s home folder. This is also available from Finder’s home property,
or System Events’ home folder property.

boot volume (a text (page 100) object)
The name of the boot volume, for example, "Macintosh HD". This is also available from Finder
or System Events using name of startup disk.

computer name (a text (page 100) object)
The computer’s name, for example "mymac". This is the “Computer Name” field in the Sharing
preference pane.

host name (a text (page 100) object)
The computer’s DNS name, for example "mymac.local".

IPv4 address (a text (page 100) object)
The computer’s IPv4 address, for example "192.201.168.13".

primary Ethernet address (a text (page 100) object)
The MAC address of the primary Ethernet interface, for example "00:1c:63:91:4e:db".

CPU type (a text (page 100) object)
The CPU type, for example "Intel 80486".

CPU speed (an integer (page 91))
The clock speed of the CPU in MHz, for example 2400.

physical memory (an integer (page 91))
The amount of physical RAM installed in the computer, in megabytes (MB), for example 2048.

Examples
system info --result: long record of information

166
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

the clipboard

Returns the contents of the clipboard.

Syntax

requiredthe clipboard

optionalclassas

Parameters

asclass (page 86)
The type of data desired. the clipboard will attempt to find that “flavor” of data on the
clipboard; if it is not found, it will attempt to coerce whatever flavor is there.

Result

The data from the clipboard, which can be of any type.

Examples

The following script places text on the clipboard, and then appends the clipboard contents to the
frontmost TextEdit document:

set the clipboard to "Add this sentence at the end."
tell application "TextEdit"

activate --make sure TextEdit is running
make new paragraph at end of document 1 with data (return & the clipboard)

end tell

Discussion
It is not necessary to use the clipboard to move data between scriptable applications. You can simply
get the data from the first application into a variable and set the appropriate data in the second
application.

time to GMT

Returns the difference between local time and GMT (Greenwich Mean Time) or Universal Time, in
seconds.

Syntax

requiredtime to GMT

Result

The integer (page 91) number of seconds difference between the current time zone and Universal
Time.

Examples

The following example computes the time difference between the current location and Cupertino:

167
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

set localOffset to time to GMT --local difference, in seconds
set cupertinoOffset to -8.0 * hours

--doesn't account for Daylight Savings; may actually be -7.0.
set difference to (localOffset - cupertinoOffset) / hours
display dialog ("Hours to Cupertino: " & difference)

write

Writes data to a specified file.

Syntax

requiredanythingwrite

requiredfileSpecifierto

optionalintegerstarting at

optionalintegerfor

optionalclassas

Parameters

anything
The data to write to the file. This is typically text, but may be of any type. When reading the
data back, the read command must specify the same type, or the results are undefined.

to (alias (page 81) | file (page 91) | file descriptor)
The file to write to, as an alias, a file specifier, or an integer (page 91) file descriptor. A file
descriptor must be obtained as the result of an earlier open for access (page 144) call.

starting at (integer (page 91) | eof)
The byte position in the file to start reading from. The position is 1-based, so 1 is the first byte
of the file, 2 the second, and so on. Negative integers count from the end of the file, so -1 is
the last byte, -2 the second-to-last, and so on. The constant eof is the position just after the
last byte; use this to append data to the file.

Default Value:
The current file pointer (see open for access (page 144)) if the file is open, or the
beginning of the file if not.

for integer (page 91)
The number of bytes to write.

Default Value:
Write all the data provided.

168
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

asclass (page 86)
Write the data as this class. The most common ones control the use of three different text
encodings:

text or string

The primary text encoding, as determined by the user’s language preferences set in the
International preference panel. (For example, Mac OS Roman for English, MacJapanese
for Japanese, and so on.)

Unicode text

UTF-16.

«class utf8»

UTF-8.

Any other class is possible, for example date or list, but is typically only useful if the data
will be read using a read statement specifying the same value for the as parameter.

Default Value:
The class of the supplied data. See Special Considerations.

Result

None. If the file is open, write will advance the file pointer by the number of bytes written, so the
next write command will start writing where the last one ended.

Signals an error if the file is open without write permission, or if there is any other problem that
prevents writing to the file, such as a lack of disk space.

Examples

The following example opens a file with write permission, creating it if it doesn’t already exist, writes
text to it, and closes it.

set fp to open for access file "HD:Users:myUser:NewFile" with write permission
write "Some text. And some more text." to fp
close access fp

Special Considerations

As specified above, write with no as parameter writes as the class of the supplied data, which means
that in AppleScript 2.0 write always writes text data using the primary encoding. Prior to 2.0, string
and Unicode text were distinct types, which meant that it would use primary encoding for string
and UTF-16 for Unicode text. For reliable results when creating scripts that will run on both 2.0 and
pre-2.0, always specify the encoding explicitly using as text or as Unicode text, as appropriate.

169
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

170
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 7

Commands Reference

This chapter describes AppleScript reference forms. A reference form specifies the syntax for
identifying an object or group of objects in an application or other container—that is, the syntax for
constructing an object specifier (described in “Object Specifiers” (page 29)).

For example, the following object specifier (from a script targeting the Finder) uses several index
reference forms, which identify an object by its number within a container:

item 1 of second folder of disk 1

Important: When you use a reference form, you specify the container in which the referenced object
or objects reside. This takes the form referenceForm of containerObject. You can also enclose a reference
form in a tell statement, which then serves to specify the outer container. For more information, see
“Absolute and Relative Object Specifiers” (page 30).

Some of the examples of reference forms shown in this chapter will not compile as shown. To compile
them, you may need to add an enclosing tell statement, targeting the Finder or the word processing
application TextEdit.

Arbitrary
Specifies an arbitrary object in a container. This form is useful whenever randomness is desired.

Because an arbitrary item is, by its nature, random, this form is not useful for operations such as
processing each item in a group of files, words, or other objects.

Syntax

some class

Placeholders

class
The class for an arbitrary object.

Examples

The following creates a new Mail message with a random signature (and depends on the user having
at least one signature):

tell application "Mail"
activate

171
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

set randomSignature to some signature
set newMessage to make new outgoing message ¬

at end of outgoing messages with properties ¬
{subject:"Guess who?", content:"Welcome aboard.", visible:true}

set message signature of newMessage to randomSignature
end tell

The following simply gets a random word from a TextEdit document:

tell application "TextEdit"
some word of document 1 -- any word from the first document

end tell

Every
Specifies every object of a particular class in a container.

Syntax

every class

pluralClass

Placeholders

class
A singular class (such as word or paragraph).

pluralClass
The plural form for a class (such as words or paragraphs).

Value

The value of an every object specifier is a list of the objects from the container. If the container does
not contain any objects of the specified class, the list is an empty list: {}. For example, the value of the
expression every word of {1, 2, 3} is the empty list {}.

Examples

The following example uses an every object specifier to specify every word contained in a text string:

set myText to "That's all, folks"
every word of myText --result: {"That's", "all", "folks"} (a list of three words)

The following object specifier specifies the same list:

words of myText

The following example specifies a list of all the items in the Users folder of the startup disk (boot
partition):

tell application "Finder"
every item of folder "Users" of startup disk

end tell

The following specifies the same list as the previous example:

172
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

tell application "Finder"
items of folder "Users" of startup disk

end tell

Discussion
Use of the every reference form implies the existence of an index property for the specified objects.

If you specify an every object specifier as the container from which to obtain a property or object, the
result is a list containing the specified property or object for each object of the container. The number
of items in the list is the same as the number of objects in the container.

Filter
Specifies all objects in a container that match a condition, or test, specified by a Boolean expression.

The filter form specifies application objects only. It cannot be used to filter the AppleScript objects
list (page 92), record (page 96), or text (page 100). A term that uses the filter form is also known
as a whose clause.

Note: You can use the words where or that as synonyms for whose.

A filter reference form can often be replaced by a repeat statement, or vice versa. For example, the
following script closes every TextEdit window that isn’t named "Old Report.rtf":

tell application "TextEdit"
close every window whose name is not "Old Report.rtf"

end tell

You could instead obtain a list of open windows and set up a repeat statement that checks the name
of each window and closes the window if it isn’t named "Old Report.rtf". However, a whose clause
is often the fastest way to obtain the desired information.

The following is an abbreviated form of the previous script:

windows of application "TextEdit" whose name is not "Old Report.rtf"

For related information, see “repeat Statements” (page 203).

Syntax

objectSpecifier (whose | where) booleanTest

Placeholders

objectSpecifier
Specifies the container in which to look for objects that match the Boolean test.

whose | where
These words have the same meaning, and refer to all of the objects in the specified container
that match the conditions in the specified Boolean expression.

booleanTest
Any Boolean expression (see the boolean (page 84) class definition).

173
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

Value

The value of a filter reference form is a list of the objects that pass the test. If no objects pass the test,
the list is an empty list: {}.

Examples

The following example shows an object specifier for all open Finder windows that do not have the
name "AppleScript Language Guide".

tell application "Finder"
every window whose name is not "AppleScript Language Guide"

end tell

Discussion
In effect, a filter reduces the number of objects in a container. Instead of specifying every Finder
window, the following object specifier specifies just the windows that are currently zoomed:

every window whose zoomed is true

To specify a container after a filter, you must enclose the filter and the object specifier it applies to in
parentheses, as in this example:

tell application "Finder"
(files whose file type is not "APPL") in folder "HD:SomeFolder:"

end tell

Within a test in a filter reference, the direct object is the object being tested. Though it isn’t generally
needed, this implicit target can be specified explicitly using the keyword it, which is described in
“The it and me Keywords” (page 40).

The following example shows several equivalent ways of constructing a filter reference to find all the
files in a folder that whose name contains the word “AppleScript”. While the term it refers to the
Finder application outside of the filter statements, within them of it refers to the current file being
tested. The result of each filter test is the same and is not changed by including or omitting the term
of it:

tell application "Finder"
it --result: application "Finder" (target of tell statement)
set myFolder to path to home folder

--result: alias "Leopard:Users:myUser:"
files in myFolder --result: a list of Finder document files
files in myFolder where name of it contains "AppleScript"
(* result: document file "AppleScriptLG.pdf" of folder "myUser"

of folder "Users" of startup disk of application "Finder"}*)
files in myFolder where name contains "AppleScript" -- same result
every file in myFolder whose name contains "AppleScript" -- same result
every file in myFolder where name of it contains "AppleScript"

-- same result
end tell

A filter reference form includes one or more tests. Each test is a Boolean expression that compares a
property or element of each object being tested, or the objects themselves, with another object or
value. Table 8-1 (page 175) shows some filter references, the Boolean expressions they contain, and
what is being tested in each reference.

174
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

Table 8-1 Boolean expressions and tests in filter references

What is being testedBoolean expressionFilter reference form

The zoomed property of each
window

zoomed is truewindows whose zoomed is true

The nameproperty of each windowname isn’t "Hard Disk"windows whose name isn’t
"Hard Disk"

The creator type property of
each file

creator type is "OMGR"files whose creator type is
"OMGR"

A test can be any Boolean expression. You can link multiple tests, as in the following statement:

windows whose zoomed is true and floating is false

ID
Specifies an object by the value of its id property.

You can use the ID reference form only with application objects that have an ID property.

Syntax

class id expression

Placeholders

expression
The id value.

Examples

The following examples use the ID reference form to specify an application by ID and a disk object
by ID.

tell application id "com.apple.finder"
-- specifies an application (Finder) by its ID
disk id -100 -- specifies a Finder disk object by ID
name of disk id -100 --result: "Leopard_GM" (gets name from ID specifier)
end tell

Discussion
Use of the id reference form implies the existence of a id property for the specified objects.

Although id properties are most often integers, an id property can belong to any class. An application
that supports id properties for its scriptable objects must guarantee that the IDs are unique within a
container. Some applications may also provide additional guarantees, such as ensuring the uniqueness
of an ID among all objects.

175
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

The value of an id property is not typically modifiable. It does not change even if the object is moved
within the container. This allows you to save an object’s ID and use it to refer to the object for as long
as the object exists. In some scripts you may wish to refer to an object by its ID, rather than by a
property such as its name, which may change. Similarly, you could keep track of an item by its index,
but indexes can change when items in a container are added, deleted, or even renamed.

Note: A good way to keep track of files and folders is to use an alias (page 81).

Starting in AppleScript 2.0, objects of class application (page 82) have an id property, which
represents the application’s bundle identifier (the default) or its four-character signature code.

Also starting in AppleScript 2.0, objects of class text (page 100) have an id property, representing the
Unicode code point or points for the character or characters in the object. Because a text object’s ID
is based on the characters it contains, these IDs are not guaranteed to be unique, and in fact will be
identical for two text objects that store the same characters. And in fact, there is no way to tell two
such objects apart by inspection.

Index
Specifies an object by describing its position with respect to the beginning or end of a container.

For related information, see “Relative” (page 180).

Syntax

class [index] integer

integer (st | nd | rd | th) class

(first | second | third | fourth | fifth | sixth | seventh | eighth | ninth | tenth) class

(last | front | back) class

Placeholders

class
The class of the indexed object to obtain.

integer
An integer that describes the position of the object in relation to the beginning of the container
(if integer is a positive integer) or the end of the container (if integer is a negative integer).

st | nd | rd | th
Appended to the appropriate integer to form an index. For example, 1st, 2nd, 3rd.

first | second | third | fourth | fifth | sixth | seventh | eighth | ninth | tenth
Specify one of the ordinal indexes.

The forms first, second, and so on are equivalent to the corresponding integer forms (for
example, second word is equivalent to 2nd word). For objects whose index is greater than 10,
you can use the forms 12th, 23rd, 101st, and so on. (Note that any integer followed by any
of the suffixes listed is valid; for example, you can use 11rd to refer to the eleventh object.)

176
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

last | front | back
The front form (for example, front window) is equivalent to class 1 (window 1) or first class
(first window). The last and back forms (for example, last word and back window) refer
to the last object in a container. They are equivalent to class -1 (for example, window -1).

Examples

Each of the following object specifiers specifies the first item on the startup disk:

item 1 of the startup disk
item index 1 of the startup disk -- "index" is usually omitted
the first item of the startup disk

The following object specifiers specify the second word from the beginning of the third paragraph:

word 2 of paragraph 3
2nd word of paragraph 3
second word of paragraph 3

The following object specifiers specify the last word in the third paragraph:

word –1 of paragraph 3
last word of paragraph 3

The following object specifiers specify the next-to-last word in the third paragraph.

word –2 of paragraph 3
-2th word of paragraph 3

Discussion
Indexes are volatile. Changing some other property of the object may change its index, as well as the
index of other like objects. For example, after deleting word 4 from a paragraph, the word no longer
exists. But there may still be a word 4—the word that was formerly word 5. After word 4 is deleted,
any words with an index higher than 4 will also have a new index. So the object an index specifies
can change.

For a unique, persistent object specifier, you can use the id reference form (see “ID” (page 175)), if the
application supports it for the class of object you are working with. And for keeping track of a file,
you can use an alias (page 81) object.

Middle
Specifies the middle object of a particular class in a container. This form is rarely used.

Syntax

middle class

Placeholders

class
The class of the middle object to obtain.

Examples
tell application "TextEdit"

177
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

middle paragraph of front document
end tell
middle item of {1, "doughnut", 33} --result: "doughnut"
middle item of {1, "doughnut", 22, 33} --result: "doughnut"
middle item of {1, "doughnut", 11, 22, 33} --result: 11

Discussion
The middle reference form generally works only when the index form also works.

AppleScript calculates the middle object by taking half the count, then rounding up. For example,
the middle word of a paragraph containing ten words is the fifth word; the middle of eleven words
is the sixth.

Name
Specifies an object by name.

Syntax

class [named] nameText

Placeholders

class
The class for the specified object.

nameText
The value of the object’s name property.

Examples

The following statements identify objects by name:

document "Report.rtf"
window named "logs"

Discussion
Use of the name reference form implies the existence of a name property for the specified objects.

In some applications, it is possible to have multiple objects of the same class in the same container
with the same name. For example, if there are two drives named “Hard Disk”, the following statement
is ambiguous (at least to the reader):

tell application "Finder"
item 1 of disk "Hard Disk"

end tell

In such cases, it is up to the application to determine which object is specified by a name reference.

Property
Specifies a property of an object.

Syntax

178
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

propertyLabel

Placeholders

propertyLabel
The label for the property.

Examples

The following example is an object specifier to a property of a Finder window. It lists the label for the
window’s property (zoomed) and its container (front window). zoomed is a Boolean property.

zoomed of front window -- e.g., false, if the window isn't zoomed

For many objects, you can obtain a list of properties:

tell app "Finder"
properties of window 1 --result: a list of properties and their values

end tell

The following example is an object specifier to the UnitPrice property of a record (page 96) object.
The label of the property is UnitPrice and the container is the record object.

UnitPrice of {Product:"Super Snack", UnitPrice:0.85, Quantity:10} --result: 0.85

Discussion
Property labels are listed in class definitions in application dictionaries. Because a property’s label is
unique among the properties of an object, the label is all you need to specify the property—there is
no need to specify the class of the property.

Range
Specifies a series of objects of the same class in the same container. You can specify the objects with
a pair of indexes (such as words 12 thru 24) or with a pair of boundary objects (integers from
integer 1 to integer 3).

Syntax

every class from boundarySpecifier1 to boundarySpecifier2

pluralClass from boundarySpecifier1 to boundarySpecifier2

class startIndex (thru | through) stopIndex

pluralClass startIndex (thru | through) stopIndex

Placeholders

class
A singular class (such as window or word).

pluralClass
A plural class (such as windows or words).

179
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

boundarySpecifier1 and boundarySpecifier2
Specifiers to objects that bound the range. The range includes the boundary objects. You can
use the reserved word beginning in place of boundarySpecifier1 to indicate the position before
the first object of the container. Similarly, you can use the reserved word end in place of
boundarySpecifier2 to indicate the position after the last object in the container.

startIndex and stopIndex
The indexes of the first and last object of the range (such as 1 and 10 in words 1 thru 10).

Though integer indexes are the most common class, the start and stop indexes can be of any
class. An application determines which index classes are meaningful to it.

Value

The value of a range reference form is a list of the objects in the range. If the specified container does
not contain objects of the specified class, or if the range is out of bounds, an error is returned. For
example, the following range specifier results in an error because there are no words in the list:

words 1 thru 3 of {1, 2, 3} --result: an error

Examples

The following example shows the boundary object form of a range specifier. When you compile this
statement, Script Editor converts from integer 1 to integer 2 to the form integers 1 thru 2.

set intList to integers from integer 1 to integer 2 of {17, 33, 24}
--result: {17, 33}

In the next example, the phrase folders 3 thru 4 is a range specifier that specifies a list of two
folders in the container startup disk:

tell application "Finder"
folders 3 thru 4 of startup disk

end tell
--result: a list of folders (depends on contents of startup disk)

Discussion
If you specify a range specifier as the container for a property or object, as in

name of folders 2 thru 3 of startup disk

the result is a list containing the specified property or object for each object of the container. The
number of items in the list is the same as the number of objects in the container.

To obtain a contiguous series of characters—instead of a list—from a text object, use the text class:

text from word 1 to word 4 of "We're all in this together"
--result: "We're all in this"
words 1 thru 4 of "We're all in this together"
--result: {"We're", "all", "in", "this"}

Relative
Specifies an object or an insertion point in a container by describing a position in relation to another
object, known as the base, in the same container.

180
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

Syntax

[class] (before | [in] front of) baseSpecifier

[class] (after | [in] back of | behind) baseSpecifier

Placeholders

class
The class identifier of the specified object. If you omit this parameter, the specifier refers to an
insertion point.

baseSpecifier
A specifier for the object.

before | [in] front of
These forms are equivalent, and refer to the object immediately preceding the base object.

after | [in] back of | behind
These forms are equivalent, and refer to the object immediately after the base.

beginning | front
These forms are equivalent, and refer to the first insertion point of the container (insertion
point 1).

end | back
These forms are equivalent, and refer to the last insertion point of the container (insertion
point -1).

Although terms such as beginning and end sound like absolute positions, they are relative to
the existing contents of a container (that is, before or after the existing contents).

Examples

The two relative specifiers in the following tell block specify the same file by identifying its position
relative to another file on a disk:

tell application "Finder"
item before item 3 of startup disk --result: e.g., a specifier
item after item 1 of startup disk --result: e.g., a specifier

end tell

The following example shows how to use various relative specifiers in a word processing document:

tell first document of application "TextEdit"
copy word 1 to before paragraph 3
copy word 3 to in back of paragraph 4
copy word 1 of the last paragraph to behind the third paragraph

end tell

Discussion
The relative reference form generally works only when the index form also works.

You can specify only a single object with a relative specifier—an object that is either before or after
the base object.

181
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

182
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 8

Reference Forms

This chapter describes AppleScript operators. An operator is a symbol, word, or phrase that derives
a value from another value or pair of values. An operation is the evaluation of an expression that
contains an operator. An operand is an expression from which an operator derives a value.

AppleScript provides logical and mathematical operators, as well as operators for containment,
concatenation, and obtaining a reference to an object. Operators that operate on two values are called
binary operators, while operators that operate on a single value are known as unary operators.

The first part of this chapter contains two tables: Table 9-1 summarizes all of the operators that
AppleScript uses, and Table 9-2 (page 190) shows the order in which AppleScript evaluates operators
within expressions. The rest of the chapter shows how AppleScript evaluates representative operators
in script expressions.

Table 9-1 AppleScript operators

DescriptionAppleScript operator

Logical conjunction.

A binary logical operator that combines two Boolean values.
The result is true only if both operands evaluate to true.

AppleScript checks the left-hand operand first and, if its is
false, ignores the right-hand operand. (This behavior is
called short-circuiting.)

Class of operands: boolean (page 84)

Class of result: boolean

and

Logical disjunction.

A binary logical operator that combines two Boolean values.
The result is true if either operand evaluates to true.

AppleScript checks the left-hand operand first and, if its is
true, ignores the right-hand operand. (This behavior is called
short-circuiting.)

Class of operands: boolean (page 84)

Class of result: boolean

or

183
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

DescriptionAppleScript operator

Concatenation.

A binary operator that joins two values. If the left-hand
operand is a text object, the result is a text object (and only
in this case does AppleScript try to coerce the value of the
right-hand operand to match that of the left).

If the operand to the left is a record, the result is a record. If
the operand to the left belongs to any other class, the result
is a list.

For more information, see & (concatenation) (page 191).

Class of operands: any

Class of result: list (page 92), record (page 96), text (page
100)

&

Equality.

A binary comparison operator that results in true if both
operands have the same value. The operands can be of any
class.

For more information, see equal, is not equal to (page
194).

Class of operands: boolean (page 84)

Class of result: boolean

=

is equal

equals

[is] equal to

Inequality.

A binary comparison operator that results in true if its two
operands have different values. The operands can be of any
class.

For more information, see equal, is not equal to (page
194).

Class of operands: boolean (page 84)

Class of result: boolean

≠ (Option-equal sign on U.S.
keyboard)

is not

isn't

isn't equal [to]

is not equal [to]

doesn't equal

does not equal

Greater than.

A binary comparison operator that results in true if the value
of the left-hand operand is greater than the value of the
right-hand operand.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the left-hand operand.

For more information, see greater than, less than (page
195).

Class of operands: date (page 87), integer (page 91),
real (page 96), text (page 100)

Class of result: boolean (page 84)

>

[is] greater than

comes after

is not less than or equal [to]

isn't less than or equal [to]

184
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

DescriptionAppleScript operator

Less than.

A binary comparison operator that results in true if the value
of the left-hand operand is less than the value of the
right-hand operand.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see greater than, less than (page
195).

Class of operands: date (page 87), integer (page 91),
real (page 96), text (page 100)

Class of result: boolean (page 84)

<

[is] less than

comes before

is not greater than or equal
[to]

isn't greater than or equal
[to]

Greater than or equal to.

A binary comparison operator that results in true if the value
of the left-hand operand is greater than or equal to the value
of the right-hand operand.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

The method AppleScript uses to determine which value is
greater depends on the class of the operands.

Class of operands: date (page 87), integer (page 91),
real (page 96), text (page 100)

Class of result: boolean (page 84)

≥ (Option-period on U.S. keyboard)

>=

[is] greater than or equal [to]

is not less than

isn't less than

does not come before

doesn't come before

Less than or equal to.

A binary comparison operator that results in true if the value
of the left-hand operand is less than or equal to the value of
the right-hand operand.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

The method AppleScript uses to determine which value is
greater depends on the class of the operands.

Class of operands: date (page 87), integer (page 91),
real (page 96), text (page 100)

Class of result: boolean (page 84)

≤ (Option-comma on U.S. keyboard)

<=

[is] less than or equal [to]

is not greater than

isn't greater than

does not come after

doesn't come after

185
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

DescriptionAppleScript operator

Starts with.

A binary containment operator that results in true if the list
or text object to its right matches the beginning of the list
or text object to its left.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see starts with, ends with (page
196).

Class of operands: list (page 92), text (page 100)

Class of result: boolean (page 84)

start[s] with

begin[s] with

Ends with.

A binary containment operator that results in true if the list
or text object to its right matches the end of the list or text
object to its left.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see starts with, ends with (page
196).

Class of operands: list (page 92), text (page 100)

Class of result: boolean (page 84)

end[s] with

Containment.

A binary containment operator that results in true if the list,
record, or text object to its right matches any part of the list,
record, or text object to its left.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see contains, is contained
by (page 193).

Class of operands: list (page 92), record (page 96),
text (page 100)

Class of result: boolean (page 84)

contain[s]

186
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

DescriptionAppleScript operator

Non-containment.

A binary containment operator that results in true if the list,
record, or text object to its right does not match any part of
the list, record, or text object to its left.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the right-hand
operand to the class of the left-hand operand.

For more information, see contains, is contained
by (page 193).

Class of operands: list (page 92), record (page 96),
text (page 100)

Class of result: boolean (page 84)

does not contain

doesn't contain

Containment.

A binary containment operator that results in true if the list,
record, or text object to its left matches any part of the list,
record, or text object to its right.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the left-hand
operand to the class of the right-hand operand.

For more information, see contains, is contained
by (page 193).

Class of operands: list (page 92), record (page 96),
text (page 100)

Class of result: boolean (page 84)

is in

is contained by

Non-containment.

A binary containment operator that results in true if the list,
record, or text object to its left does not match any part of
the list, record, or text object to its right.

Both operands must evaluate to values of the same class. If
they don’t, AppleScript attempts to coerce the left-hand
operand to the class of the right-hand operand.

For more information, see contains, is contained
by (page 193).

Class of operands: list (page 92), record (page 96),
text (page 100)

Class of result: boolean (page 84)

is not in

is not contained by

isn't contained by

Multiplication.

A binary arithmetic operator that multiplies the number to
its left and the number to its right.

Class of operands: integer (page 91), real (page 96)

Class of result: integer, real

*

187
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

DescriptionAppleScript operator

Addition.

A binary arithmetic operator that adds the number or date
to its left and the number or date to its right. Only integers
can be added to dates. AppleScript interprets such an integer
as a number of seconds.

As a unary operator, + has no effect and is removed on
compile.

Class of operands: date (page 87), integer (page 91),
real (page 96)

Class of result: date, integer, real

+

Subtraction.

A binary or unary arithmetic operator.

The binary operator subtracts the number to its right from
the number or date to its left.

The unary operator makes the number to its right negative.

Only integers can be subtracted from dates. AppleScript
interprets such an integer as a number of seconds.

Class of operands: date (page 87), integer (page 91),
real (page 96)

Class of result: date, integer, real

–

Division.

A binary arithmetic operator that divides the number to its
left by the number to its right.

Class of operands: integer (page 91), real (page 96)

Class of result: real

/

÷ (Option-slash on U.S. keyboard)

Integral division.

A binary arithmetic operator that divides the number to its
left by the number to its right and returns the integral part
of the answer as its result.

Class of operands: integer (page 91), real (page 96)

Class of result: integer

div

Remainder.

A binary arithmetic operator that divides the number to its
left by the number to its right and returns the remainder as
its result.

Class of operands: integer (page 91), real (page 96)

Class of result: integer, real

mod

188
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

DescriptionAppleScript operator

Exponentiation.

A binary arithmetic operator that raises the number to its
left to the power of the number to its right.

Class of operands: integer (page 91), real (page 96)

Class of result: real

^

Coercion (or object conversion).

A binary operator that converts the left-hand operand to the
class listed to its right.

Not all values can be coerced to all classes. The coercions
that AppleScript can perform are listed in “Coercion (Object
Conversion)” (page 32). The additional coercions, if any,
that an application can perform is listed in its dictionary.

Class of operands: The right-hand operand must be a class
identifier; the left-hand operand must be a value that can be
converted to that class.

Class of result: The class specified by the class identifier to
the right of the operator

as

Negation.

A unary logical operator that results in true if the operand
to its right is false, and false if the operand is true.

Class of operand: boolean (page 84)

Class of result: boolean

not

A reference to.

A unary operator that causes AppleScript to return a
reference (page 98) object that specifies the location of the
operand to its right. A reference is evaluated at run time, not
at compile time.

See a reference to (page 192) for more information.

Class of operand: any class type

Class of result: reference

[a] (ref [to] | reference to)

When evaluating expressions, AppleScript uses operator precedence to determine which operations
are evaluated first. In the following expression, for example, AppleScript does not simply perform
operations from left to right—it performs the multiplication operation 2 * 5 first, because
multiplication has higher precedence than addition.

12 + 2 * 5 --result: 22

Table 9-2 (page 190) shows the order in which AppleScript performs operations. The column labeled
“Associativity” indicates the order in the case where there are two or more operands of the same
precedence in an expression. The word “None” in the Associativity column indicates that you cannot
have multiple consecutive occurrences of the operation in an expression. For example, the expression
3 = 3 = 3 is not legal because the associativity for the equal operator is “none.”

189
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

To evaluate expressions with multiple unary operators of the same order, AppleScript applies the
operator closest to the operand first, then applies the next closest operator, and so on. For example,
the expression not not not true is evaluated as not (not (not true)).

You can enforce the order in which AppleScript performs operations by grouping expressions in
parentheses, which are evaluated first, starting with the innermost pair of parentheses.

Table 9-2 Operator precedence

Type of operatorAssociativityOperatorsOrder

GroupingInnermost to outermost()1

Plus or minus sign for numbersUnary+

–

2

Exponentiation

(note that this is different from standard math, in
which exponentiation takes precedence over unary
plus or minus)

Right to left^3

Multiplication and divisionLeft to right*

/

div

mod

4

Addition and subtractionLeft to right+

–

5

ConcatenationLeft to right&6

CoercionLeft to rightas7

ComparisonNone<

≤

>

≥

8

Equality and inequalityNone=

≠

9

Logical negationUnarynot10

Logical andLeft to rightand11

Logical orLeft to rightor12

The following sections provide additional detail about how AppleScript evaluates operators in
expressions:

 ■ & (concatenation) (page 191)

190
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

 ■ a reference to (page 192)

 ■ contains, is contained by (page 193)

 ■ equal, is not equal to (page 194)

 ■ greater than, less than (page 195)

 ■ starts with, ends with (page 196)

& (concatenation)

The concatenation operator (&) concatenates text objects, joins record objects into a record, and joins
other objects into a list.

Table 9-1 (page 183) summarizes the use of use of this operator.

text

The concatenation of two text objects joins the characters from the left-hand text object to the
characters from the right-hand text object, without intervening spaces. For example, "dump" &
"truck" evaluates to the text object "dumptruck".

If the left-hand operand is a text object, but the right-hand operand is not, AppleScript attempts to
coerce the right-hand operand to a text object. For example, when AppleScript evaluates the expression
"Route " & 66 it coerces the integer 66 to the text object "66", and the result is the text object
"Route 66".

However, you get a different result if you reverse the order of the operands:

66 & "Route " --result: {66, "Route "} (a list)

In the following example, the left-hand operand is a text object and the right-hand operand is a list,
so concatenation results in a text object:

item 1 of {"This"} & {"and", "that"} -- "Thisandthat"

record

The concatenation of two records joins the properties of the left-hand record to the properties of the
right-hand record. If both records contain properties with the same name, the value of the property
from the left-hand record appears in the result. For example, the result of the expression

{ name:"Matt", mileage:"8000" } & { name:"Steve", framesize:58 }

is

{ name:"Matt", mileage:"8000", frameSize:58 }

All Other Classes

Except for the cases described above for text objects and record objects, the concatenation operator
(&) joins lists. A non-list operand is considered to be a list containing that operand. The following
example shows concatenation of two integers, a list and a text string, and a list and a record,
respectively:

191
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

1 & 2 --result: {1, 2}
{"this"} & "hello" --result: {"this", "hello"}
{"this"} & {a:1, b:2} --result: {"this", 1, 2}

If both the operands to be concatenated are lists, then the result is a list containing all the items in the
left-hand list, followed by all the items in the right-hand list. For example:

{"This"} & {"and", "that"} --result: {"This", "and", "that"}
{"This"} & item 1 of {"and", "that"} --result: {"This", "and"}

To join two lists and create a list of lists, rather than a single list, you can enclose each list in two sets
of brackets:

{{1, 2}} & {{3, 4}} --result: {{1, 2}, {3, 4}}

For information on working efficiently with large lists, see list (page 92).

a reference to

The a reference to operator is a unary operator that returns a reference object. You can abbreviate
this operator to a ref to, or ref to, or even just ref.

For related information, see the reference (page 98) class and “Object Specifiers” (page 29).

Examples

The following statement creates a reference object that contains an object specifier to the Finder
startup disk:

tell app "Finder" to set diskRef to a ref to startup disk
--result: startup disk of application "Finder"

The following shows how to obtain a reference object that refers to an item in a list:

set itemRef to a reference to item 3 of {1, "hello", 755, 99}
--result: item 3 of {1, "hello", 755, 99}

set newTotal to itemRef + 45 --result: 800

In the final line, AppleScript automatically resolves the object specifier contained in the reference
itemRef and obtains its value to use in the addition operation. To cause AppleScript to explicitly
resolve a reference object, you can use its contents property:

contents of itemRef --result: 755

The next examples demonstrate how using a reference object can result in a different outcome than
accessing an object directly. The first example obtains a current track object from iTunes, gets the
name, changes the track, then gets the name again:

tell application "iTunes"
set curTrack to current track
--result: file track id 2703 of user playlist id 2425
-- of source id 46 of application "iTunes"
display dialog (name of curTrack as string) -- "Shattered"
next track -- play next song
display dialog (name of curTrack as string) -- "Shattered"

end tell

192
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

Because curTrack is a specific track object, its name doesn’t change when the current track changes.
But observe the result when using a reference to the current track:

tell application "iTunes"
set trackRef to a reference to current track
--result: current track of application "iTunes"
display dialog (name of trackRef as string) -- "Shattered"
next track -- play next song
display dialog (name of trackRef as string) -- "Strange Days"

end tell

Because trackRef is a reference object containing an object specifier, the specifier identifies the new
track when the current track changes.

contains, is contained by

The contains and is contained by operators work with lists, records, and text objects.

Table 9-1 (page 183) summarizes the use of these operators and their synonyms.

list

A list contains another list if the right-hand list is a sublist of the left-hand list. A sublist is a list
whose items appear in the same order and have the same values as any series of items in the other
list. For example, the following statement is true because 1 + 1 evaluates to 2, so that all the items
in the right-hand list appear, in the same order, in the left-hand list:

{ "this", "is", 1 + 1, "cool" } contains { "is", 2 }

The following statement is false because the items in the right-hand list are not in the same order
as the matching items in the left-hand list:

{ "this", "is", 2, "cool" } contains { 2, "is" }

A list is contained by another list if the left-hand list is a sublist of the right-hand list. For example,
the following expression is true:

{ "is", 2} is contained by { "this", "is", 2, "cool" }

Both contains and is contained by work if the sublist is a single value—as with the concatenation
operator (&), single values are coerced to one-item lists. For example, both of the following expressions
evaluate to true:

{ "this", "is", 2, "cool" } contains 2
2 is contained by { "this", "is", 2, "cool" }

However, the following expressions, containing nested lists, both evaluate to false:

{"this", "is", {2}, "cool"} contains 2 -- false
{"this", "is", {2}, "cool"} contains {2} -- false

record

A record contains another record if all the properties in the right-hand record are included in the
left-hand record, and the values of properties in the right-hand record are equal to the values of the
corresponding properties in the left-hand record. A record is contained by another record if all the

193
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

properties in the left-hand record are included in the right-hand record, and the values of the properties
in the left-hand record are equal to the values of the corresponding properties in the right-hand record.
The order in which the properties appear does not matter. For example, the following is true:

{ name:"Matt", mileage:"8000", description:"fast"} ¬
contains { description:"fast", name:"Matt" }

text

A text object contains another text object if the characters in the right-hand text object are equal
to any contiguous series of characters in the left-hand text object. For example,

"operand" contains "era"

is true, but

"operand" contains "dna"

is false.

A text object is contained by another text object if the characters in the left-hand text object are
equal to any series of characters in the right-hand text object. For example, this statement is true:

"era" is contained by "operand"

Text comparisons can be affected by considering and ignoring statements, as described in the Text
section of equal, is not equal to (page 194).

equal, is not equal to

The equal and is not equal to operators can handle operands of any class. Two expressions of
different classes are generally not equal, although for scalar operands, such as booleans, integers, and
reals, two operands are the same if they have the same value.

Table 9-1 (page 183) summarizes the use of these operators and their synonyms.

list

Two lists are equal if they both contain the same number of items and if the value of an item in one
list is identical to the value of the item at the corresponding position in the other list:

{ 7, 23, "Hello" } = {7, 23, "Goodbye"} --result: false

record

Two records are equal if they both contain the same collection of properties and if the values of
properties with the same label are equal. They are not equal if the records contain different collections
of properties, or if the values of properties with the same label are not equal. The order in which
properties are listed does not affect equality. For example, the following expression is true:

{ name:"Matt", mileage:"8000" } = { mileage:"8000", name:"Matt"}

text

194
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

Two text objects are equal if they are both the same series of characters. They are not equal if they
are different series of characters. For related information, see the text (page 100) class.

Text comparisons can be affected by considering and ignoring statements, which instruct AppleScript
to selectively consider or ignore attributes of characters or types of characters. For example, unless
you use an ignoring statement, AppleScript compares text objects by considering all characters and
punctuation.

AppleScript does not distinguish uppercase from lowercase letters unless you use a considering
statement to consider the case attribute. For example:

"DUMPtruck" is equal to "dumptruck" --result: true
considering case

"DUMPtruck" is equal to "dumptruck" --result: false
end considering

When comparing two text objects, if the test is not enclosed in a considering or ignoring statement,
then the comparison uses default values for considering and ignoring attributes (described in
considering / ignoring (text comparison) (page 197)).

greater than, less than

The greater than and less than operators work with dates, integers, real numbers, and text
objects.

Table 9-1 (page 183) summarizes the use of these operators and their synonyms.

date

A date is greater than another date if it represents a later time. A date is less than another date if it
represents an earlier time.

integer, real

An integer or a real number is greater than another integer or real number if it represents a larger
number. It is less than another integer or real number if it represents a smaller number.

text

To determine the ordering of two text objects, AppleScript uses the collation order set in the Language
pane of International preferences. A text object is greater than (comes after) another text object
based on the lexicographic ordering of the user’s language preference. With the preference set to
English, the following two statements both evaluate to true:

"zebra" comes after "aardvark"
"zebra" > "aardvark"

The following two statements also evaluate to true:

"aardvark" comes before "zebra"
"aardvark" < "zebra"

Text comparisons can be affected by considering and ignoring statements, as described in the Text
section of equal, is not equal to (page 194).

195
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

starts with, ends with

The starts with and ends with operators work with lists and text objects.

Table 9-1 (page 183) summarizes the use of these operators and their synonyms.

list

A list starts with the items in a second list if all the items in the second list are found at the beginning
of the first list. A list ends with the items in a second list if all the items in the second list are found
at the end of the first list. For example, the following three expressions are all true:

{ "this", "is", 2, "cool" } ends with "cool"
{ "this", "is", 2, "cool" } starts with "this"
{ "this", "is", 2, "cool" } starts with { "this", "is" }

text

A text object starts with the text in a second text object if all the characters in the second object
are found at the beginning of the first object. A text object ends with the text in a second text object
if all the characters in the second object are found at the end of the first object. For example, the
following expression is true:

"operand" starts with "opera"

A text object ends with another text object if the characters in the right-hand text object are the
same as the characters at the end of the left-hand text object. For example, the following expression
is true:

"operand" ends with "and"

Text comparisons can be affected by considering and ignoring statements, as described in the Text
section of equal, is not equal to (page 194).

196
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 9

Operators Reference

This chapter describes AppleScript control statements. A control statement is a statement that
determines when and how other statements are executed or how expressions are evaluated. For
example, a control statement may cause AppleScript to skip or repeat certain statements.

Simple statements can be written on one line, while compound statements can contain other
statements, including multiple clauses with nested and multi-line statements. A compound statement
is known as a statement block.

Compound statements begin with one or more reserved words, such as tell, that identify the type
of control statement. The last line of a compound statement always starts with end, and can optionally
include the word that begins the control statement (such as end tell).

considering and ignoring Statements

The considering and ignoring statements cause AppleScript to consider or ignore specific
characteristics as it executes groups of statements. There are two kinds of considering and ignoring
statements:

 ■ Those that specify attributes to be considered or ignored in performing text comparisons.

 ■ Those that specify whether AppleScript should consider or ignore responses from an application.

considering / ignoring (text comparison)

Specify how AppleScript should treats attributes, such as case, in performing text comparisons.

Syntax

considering attribute [, attribute ... and attribute] ¬

[but ignoring attribute [, attribute ... and attribute]]

[statement]...

end considering

ignoring attribute [, attribute ... and attribute] ¬

197
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

[but considering attribute [, attribute ... and attribute]]

[statement]...

end ignoring

Placeholders

attribute
A characteristic of the text:

case

If this attribute is ignored, uppercase letters are not distinguished from lowercase letters.
See Special Considerations below for related information. See also greater than,
less than (page 195) for a description of how AppleScript sorts letters, punctuation,
and other symbols.

diacriticals

If this attribute is ignored, text objects are compared as if no diacritical marks (such as
´, `, ˆ, ¨, and ˜) are present; for example, "résumé" is equal to "resume".

hyphens

If this attribute is ignored, text objects are compared as if no hyphens are present; for
example "anti-war" is equal to "antiwar".

numeric strings

By default, this attribute is ignored, and text strings are compared according to their
character values. For example, if this attribute is considered, "1.10.1" > "1.9.4"
evaluates as true; otherwise it evaluates as false. This can be useful in comparing
version strings.

punctuation

If this attribute is ignored,text objects are compared as if no punctuation marks (such
as . , ? : ; ! ' " `) are present; for example "What? he inquired." is equal to
"what he inquired".

white space

If this attribute is ignored, the text objects are compared as if spaces, tab characters,
and return characters were not present; for example "Brick house"would be considered
equal to "Brickhouse".

Default Value:
Case and numeric strings are ignored; all others are considered.

statement
Any AppleScript statement.

Examples

The following examples show how considering and ignoring statements for various attributes can
change the value of text comparisons.

"Hello Bob" = "HelloBob" --result: false

198
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

ignoring white space
"Hello Bob" = "HelloBob" --result: true

end ignoring

"BOB" = "bob" --result: true
considering case

"BOB" = "bob" --result: false
end considering

"a" = "á" --result: false
ignoring diacriticals

"a" = "á" --result: true
end considering

"Babs" = "bábs" --result: false

ignoring case
"Babs" = "bábs" --result: false

end ignoring

ignoring case and diacriticals
"Babs" = "bábs" --result: true

end ignoring

Discussion
You can nest considering and ignoring statements. If the same attribute appears in both an outer
and inner statement, the attribute specified in the inner statement takes precedence. When attributes
in an inner considering or ignoring statement are different from those in outer statements, they
are added to the attributes to be considered and ignored.

Special Considerations

Because text item delimiters (described in “version” (page 39)) respect considering and ignoring
attributes in AppleScript 2.0, delimiters are case-insensitive by default. Formerly, they were always
case-sensitive. To enforce the previous behavior, add an explicit considering case statement.

considering / ignoring (application responses)

Permits a script to continue without waiting for an application to respond to commands that target
it.

Syntax

considering | ignoring application responses

[statement]...

end [considering | ignoring]

Placeholders

statement
Any AppleScript statement.

Examples

The following example shows how to use an ignoring statement so that a script needn’t wait while
Finder is performing a potentially lengthy task:

199
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

tell application "Finder"
ignoring application responses

empty the trash
end ignoring

end tell

Your script may want to ignore most responses from an application, but wait for a response to a
particular statement. You can do so by nesting considering and ignoring statements:

tell application "Finder"
ignoring application responses

empty the trash
-- other statements that ignore application responses
considering application responses

set itemName to name of first item of startup disk
end considering
-- other statements that ignore application responses

end ignoring
end tell

Discussion
A response to an application command indicates whether the command completed successfully, and
also returns results and error messages, if there are any. When you use an ignoring application
responses block, you forego this information.

Results and error messages from AppleScript commands, scripting additions, and expressions are
not affected by the application responses attribute.

error Statements

During script execution, errors can occur in the operating system (for example, when a specified file
isn’t found), in an application (for example, when the script specifies an object that doesn’t exist), and
in the script itself. An error message is a message that is supplied by an application, AppleScript, or
Mac OS X when an error occurs during the handling of a command. An error message can include
an error number, which is an integer that identifies the error; an error expression, which is an
expression, usually a text object, that describes the error; and other information.

A script can signal an error—which can then be handled by an error handler—with the error statement.
This allows scripts to supply their own messages for errors that occur within the script. For example,
a script can prepare to handle anticipated errors by using a try (page 211) statement. In the on error
branch of a try statement, a script may be able to recover gracefully from the error. If not, it can use
an error statement to resignal the error message it receives, modifying the message as needed to
supply information specific to the script.

error

Signals an error in a script.

Syntax

error [errorMessage] [number errorNumber] ¬

[partial resultresultList] ¬

[from offendingObject] [to expectedType]

200
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Placeholders

errorMessage
A text object describing the error. Although this parameter is optional, you should provide
descriptions for errors wherever possible. If you do not include an error description, an empty
text object ("") is passed to the error handler.

errorNumber
The error number for the error. This is an optional parameter. If you do not include a number
parameter, the value -2700 (unknown error) is passed to the error handler.

If the error you are signaling is a close match for one that already has an AppleScript error
constant, you can use that constant. If you need to create a new number for the error, avoid
using one that conflicts with error numbers defined by AppleScript, Mac OS X, and the Apple
Event Manager. In general, you should use positive numbers from 500 to 10,000. For more
information, see “Error Numbers and Error Messages” (page 237).

resultList
A list of objects. Applies only to commands that return results for multiple objects. If results
for some, but not all, of the objects specified in the command are available, you can include
them in the partial result parameter. This is rarely supported by applications.

offendingObject
A reference to the object, if any, that caused the error.

expectedType
A class. If a parameter specified in the command was not of the expected class, and AppleScript
was unable to coerce it to the expected class, then you can include the expected class in the to
parameter.

Examples

The following example uses a try (page 211) statement to handle a simple error, and demonstrates
how you can use an error statement to catch an error, then resignal the error exactly as it was received,
causing AppleScript to display an error dialog (and halt execution):

try
word 5 of "one two three"

on error eStr number eNum partial result rList from badObj to expectedType
-- statements that take action based on the error
display dialog "Doing some preliminary handling..."
-- then resignal the error
error eStr number eNum partial result rList from badObj to expectedType

end try

In the next example, an error statement resignals an error, but omits any original error information
and supplies its own message to appear in the error dialog:

try
word 5 of "one two three"

on error
-- statements to execute in case of error
error "There are not enough words."

end try

For more comprehensive examples, see “Working with Errors” (page 241).

if Statements

201
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

An if statement allows you to define statements or groups of statements that are executed only in
specific circumstances, based on the evaluation of one or more Boolean expressions.

An if statement is also called a conditional statement. Boolean expressions in if statements are also
called tests.

if (simple)

Executes a statement if a Boolean expression evaluates to true.

Syntax

if boolean then statement

Placeholders

boolean
A Boolean expression.

statement
Any AppleScript statement.

Examples

This script displays a dialog if the value of the Boolean expression ageOfCat > 1 is true. (The variable
ageOfCat is set previously.)

if ageOfCat > 1 then display dialog "This is not a kitten."

if (compound)

Executes a group (or groups) of statements if a Boolean expression (or expressions) evaluates to true.

Syntax

if boolean [then]

[statement]...

[else if boolean [then]

[statement]...]...

[else

[statement]...]

end [if]

Placeholders

boolean
A Boolean expression.

statement
Any AppleScript statement.

202
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Examples

The following example uses a compound if statement, with a final else clause, to display a statement
based on the current temperature (obtained separately):

if currentTemp < 60 then
set response to "It's a little chilly today."

else if currentTemp > 80 then
set response to "It's getting hotter today."

else
set response to "It's a nice day today."

end if
display dialog response

Discussion
An if statement can contain any number of else if clauses; AppleScript looks for the first Boolean
expression contained in an if or else if clause that is true, executes the statements contained in
its block (the statements between one else if and the following else if or else clause), and then
exits the if statement.

An if statement can also include a final else clause. The statements in its block are executed if no
other test in the if statement passes.

repeat Statements

You use a repeat statement to create loops or execute groups of repeated statements in scripts.

There are a number of types of repeat statement, each differing in the way it terminates the loop.
Each of the options, from repeating a loop a specific number of times, to looping over the items in a
list, to looping until a condition is met, and so on, lends itself to particular kinds of tasks.

For information on testing and debugging repeat statements, see “Debugging AppleScript
Scripts” (page 45).

exit

Terminates a repeat loop and resumes execution with the statement that follows the repeat statement.

You can only use an exit statement inside a repeat statement. Though most commonly used with
the repeat (forever) form, you can also use an exit statement with other types of repeat statement.

Syntax

exit [repeat]

Examples

See the example in repeat (forever) (page 203).

repeat (forever)

Repeats a statement (or statements) until an exit statement is encountered.

203
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Important: A repeat (forever) statement will never complete unless you cause it to do so.

To terminate a repeat (forever) statement, you can:

 ■ Use an exit (page 203) statement and design the logic so that it eventually encounters the exit
statement.

 ■ Use a “return” (page 218) statement, which exits the handler or script that contains the loop, and
therefore the loop as well.

 ■ Use a try (page 211) statement and rely on an error condition to exit the loop.

Syntax

repeat

[statement]...

end [repeat]

Placeholders

statement
Any AppleScript statement.

Examples

This form of the repeat statement is similar to the repeat until (page 205) form, except that instead
of putting a test in the repeat statement itself, you determine within the loop when it is time to exit.
You might use this form, for example, to wait for a lengthy or indeterminate operation to complete:

repeat
-- perform operations
if someBooleanTest then

exit repeat
end if

end repeat

In a script application that stays open, you can use an idle handler to perform periodic tasks, such
as checking for an operation to complete. See “idle Handlers” (page 78) for more information.

repeat (number) times

Repeats a statement (or statements) a specified number of times.

Syntax

repeat integer [times]

[statement]...

end [repeat]

204
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Placeholders

integer
Specifies the number of times to repeat the statements in the body of the loop.

Instead of an integer, you can specify any value that can be coerced to an integer.

If the value is less than one, the body of the repeat statement is not executed.

statement
Any AppleScript statement.

Examples

The following handler uses the repeat (number) times form of the repeat statement to raise a
passed number to the passed power:

on raiseToTheNth(x, power)
set returnVal to x
repeat power - 1 times

set returnVal to returnVal * x
end repeat
return returnVal

end raiseToTheNth

repeat until

Repeats a statement (or statements) until a condition is met. Tests the condition before executing any
statements.

Syntax

repeat until boolean

[statement]...

end [repeat]

Placeholders

boolean
A Boolean expression. If it has the value true when entering the loop, the statements in the
loop are not executed.

statement
Any AppleScript statement.

Examples

The following example uses the repeat until form of the repeat statement to allow a user to enter
database records. The handler enterDataRecord(), which is not shown, returns true if the user is
done entering records:

set userDone to false
repeat until userDone

set userDone to enterDataRecord()
end repeat

205
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

repeat while

Repeats a statement (or statements) as long as a condition is met. Tests the condition before executing
any statements. Similar to the repeat until form, except that it continues while a condition is true,
instead of until it is true.

Syntax

repeat while boolean

[statement]...

end [repeat]

Placeholders

boolean
A Boolean expression. If it has the value false when entering the loop, the statements in the
loop are not executed.

statement
Any AppleScript statement.

Examples

The following example uses the repeat while form of the repeat statement to allow a user to enter
database records. In this case, we’ve just reversed the logic shown in the repeat until (page 205)
example. Here, the handler enterDataRecord(), which is not shown, returns true if the user is not
done entering records:

set userNotDone to true
repeat while userNotDone

set userNotDone to enterDataRecord()
end repeat

repeat with loopVariable (from startValue to stopValue)

Repeats a statement (or statements) until the value of the controlling loop variable exceeds the value
of the predefined stop value.

Syntax

repeat with loopVariable from startValue to stopValue [by stepValue]

[statement]...

end [repeat]

Placeholders

loopVariable
Controls the number of iterations. It can be a previously defined variable or a new variable
you define in the repeat statement.

206
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

startValue
Specifies a value that is assigned to loopVariable when the loop is entered.

You can specify an integer or any value that can be coerced to an integer.

stopValue
Specifies an value. When that value is exceeded by the value of loopVariable, iteration ends. If
stopValue is less than startValue, the body is not executed.

You can specify an integer or any value that can be coerced to an integer.

stepValue
Specifies a value that is added to loopVariable after each iteration of the loop. You can assign
an integer or a real value; a real value is rounded to an integer.

Default Value:
1

statement
Any AppleScript statement.

Examples

The following handler uses the repeat with loopVariable (from startValue to stopValue)
form of the repeat statement to compute a factorial value (the factorial of a number is the product
of all the positive integers from 1 to that number):

on factorial(x)
set returnVal to 1
repeat with n from 2 to x

set returnVal to returnVal * n
end repeat
return returnVal

end factorial

Discussion
You can use an existing variable as the loop variable in a repeat with loopVariable (from
startValue to stopValue) statement or define a new one in the statement. In either case, the loop
variable is defined outside the loop. You can change the value of the loop variable inside the loop
body but it will get reset to the next loop value the next time through the loop. After the loop completes,
the loop variable retains its last value.

AppleScript evaluates startValue, stopValue, and stepValue when it begins executing the loop and stores
the values internally. As a result, if you change the values in the body of the loop, it doesn’t change
the execution of the loop.

repeat with loopVariable (in list)

Loops through the items in a specified list.

The number of iterations is equal to the number of items in the list. In the first iteration, the value of
the variable is a reference to the first item in list, in the second iteration, it is a reference to the second
item in list, and so on.

Syntax

repeat with loopVariable in list

207
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

[statement]...

end [repeat]

Placeholders

loopVariable
Any previously defined variable or a new variable you define in the repeat statement (see
Discussion).

list
A list or a object specifier (such as words 1 thru 5) whose value is a list.

list can also be a record; AppleScript coerces the record to a list (see Discussion).

statement
Any AppleScript statement.

Examples

The following script examines a list of words with the repeat with loopVariable (in list) form
of the repeat statement, displaying a dialog if it finds the word “hammer” in the list. Note that within
the loop, the loop variable (currentWord) is a reference to an item in a list, so in the test statement
(if contents of currentWord is equal to "hammer" then) it must be cast to text (as text).

set wordList to words in "Where is the hammer?"
repeat with currentWord in wordList

log currentWord
if contents of currentWord is equal to "hammer" then

display dialog "I found the hammer!"
end if

end repeat

The statement log currentWord logs the current list item to Script Editor’s log window. For more
information, see “Debugging AppleScript Scripts” (page 45).

Discussion
You can use an existing variable as the loop variable in a repeat with loopVariable (in list)
statement or define a new one in the repeat with… statement. In either case, the loop variable is
defined outside the loop. You can change the value of the loop variable inside the loop body but it
will get reset to the next loop value the next time through the loop. After the loop completes, the loop
variable retains its last value.

AppleScript evaluates loopVariable in list as an object specifier that takes on the value of item 1 of
list, item 2 of list, item 3 of list, and so on until it reaches the last item in the list, as shown
in the following example:

repeat with i in {1, 2, 3, 4}
set listItem to i

end repeat
--result: item 4 of {1, 2, 3, 4} --result: an object specifier

To set a variable to the value of an item in the list, rather than a reference to the item, use the contents
of property:

repeat with i in {1, 2, 3, 4}
set listItem to contents of i

208
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

end repeat
--result: 4

You can also use the list items directly in expressions:

set total to 0
repeat with i in {1, 2, 3, 4}

set total to total + i
end repeat
--result: 10

If the value of list is a record, AppleScript coerces the record to a list by stripping the property labels.
For example, {a:1, b:2, c:3} becomes {1, 2, 3}.

tell Statements

A tell statement specifies the default target—that is, the object to which commands are sent if they
do not include a direct parameter. Statements within a tell statement that use terminology from the
targeted object are compiled against that object’s dictionary.

The object of a tell statement is typically a reference to an application object or a script object. For
example, the following tell statement targets the Finder application:

tell application "Finder"
set frontWindowName to name of front window
-- any number of additional statements can appear here

end tell

You can nest tell statements inside other tell statements, as long as you follow the syntax and rules
described in tell (compound) (page 210).

When you need to call a handler from within a tell statement, there are special terms you use to
indicate that the handler is part of the script and not a command that should be sent to the object of
the tell statement. These terms are described in “The it and me Keywords” (page 40) and in “Calling
Handlers in a tell Statement” (page 74).

A tell statement that targets a local application doesn’t cause it to launch, if it is not already running.
For example, a script can examine the is running property of the targeted application (page 82)
object to determine if the application is running before attempting to send it any commands. If it is
not running it won’t be launched.

If a tell statement targets a local application and executes any statements that require a response
from the application, then AppleScript will launch the application if it is not already running. The
application is launched as hidden, but the script can send it an activate (page 112) command to bring
it to the front, if needed.

A tell statement that targets a remote application will not cause it to launch—in fact, it will not
compile or run unless the application is already running. Nor is it possible to access the is running
property of an application on a remote computer.

tell (simple)

Specifies a target object and a command to send to it.

209
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Syntax

tell referenceToObject to statement

Placeholders

referenceToObject
Any object. Typically an object specifier or a reference object (which contains an object
specifier).

statement
Any AppleScript statement.

Examples

This simple tell statement closes the front Finder window:

tell front window of application "Finder" to close

For more information on how to specify an application object, see the application (page 82) class.

tell (compound)

Specifies a target object and one or more commands to send to it. A compound tell statement is
different from a simple tell statement in that it always includes an end statement.

Syntax

tell referenceToObject

[statement]...

end [tell]

Placeholders

referenceToObject
Any object. Typically an object specifier or a reference object (which contains an object
specifier).

statement
Any AppleScript statement, including another tell statement.

Examples

The following statements show how to close a window using first a compound tell statement, then
with two variations of a simple tell statement:

tell application "Finder"
close front window

end tell

tell front window of application "Finder" to close
tell application "Finder" to close front window

The following example shows a nested tell statement:

tell application "Finder"

210
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

tell document 1 of application "TextEdit"
set newName to word 1 -- handled by TextEdit

end tell
set len to count characters in newName -- handled by AppleScript
if (len > 2) and (len < 15) then -- comparisons handled by AppleScript

set name of first item of disk "HD" to newName -- handled by Finder
end if

end tell

This example works because in each case the terminology understood by a particular application is
used within a tell block targeting that application. However, it would not compile if you asked the
Finder for word 1 of a document, or told TextEdit to set name of the first item on a disk, because
those applications do not support those terms.

try Statements

A try statement provides the means for scripts to handle potential errors. It attempts to execute one
or more statements and, if an error occurs, executes a separate set of statements to deal with the error
condition. If an error occurs and there is no try statement in the calling chain to handle it, AppleScript
displays an error and script execution stops.

For related information, see “error Statements” (page 200) and “AppleScript Error Handling” (page
37).

try

Attempts to execute a list of AppleScript statements, calling an error handler if any of the statements
results in an error.

A try statement is a two-part compound statement that contains a series of AppleScript statements,
followed by an error handler to be invoked if any of those statements causes an error. If the statement
that caused the error is included in a try statement, then AppleScript passes control to the error
handler. After the error handler completes, control passes to the statement immediately following
the end of the try statement.

Syntax

try

[statement]...

[on error [errorMessage] [number errorNumber] [from offendingObject] ¬

[partial result resultList] [to expectedType]

[statement]...]

end [error | try]

211
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Placeholders

statement
Any AppleScript statement.

errorMessage
A text object, that describes the error.

errorNumber
The error number, an integer. For possible values, see “Error Numbers and Error
Messages” (page 237).

offendingObject
A reference to the object, if any, that caused the error.

resultList
A list that provides partial results for objects that were handled before the error occurred. The
list can contain values of any class. This parameter applies only to commands that return results
for multiple objects. This is rarely supported by applications.

expectedType
The expected class. If the error was caused by a coercion failure, the value of this variable is
the class of the coercion that failed. (The second example below shows how this works in a
case where AppleScript is unable to coerce a text object into an integer.)

variable
Either a global variable or a local variable that can be used in the handler. A variable can contain
any class of value. The scope of a local variable is the handler. The scope of a global variable
extends to any other part of the script, including other handlers and script objects. For related
information about local and global variables, see “version” (page 39).

Examples

The following example shows how you can use a try statement to handle the “Cancel” button for a
display alert (page 128) command. Canceling returns an error number of -128, but is not really an
error. This test handler just displays a dialog to indicate when the user cancels or when some other
error occurs.

try
display alert "Hello" buttons {"Cancel", "Yes", "No"} cancel button 1

on error errText number errNum
if (errNum is equal to -128) then

-- User cancelled.
display dialog "User cancelled."

else
display dialog "Some other error: " & errNum & return & errText

end if
end try

You can also use a simplified version of the try statement that checks for just a single error number.
In the following example, only error -128 is handled. Any other error number is ignored by this try
statement, but is automatically passed up the calling chain, where it may be handled by other try
statements.

try
display alert "Hello" buttons {"Cancel", "Yes", "No"} cancel button 1

on error number -128
-- Either do something special to handle Cancel, or just ignore it.

end try

212
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

The following example demonstrates the use of the to keyword to capture additional information
about an error that occurs during a coercion failure:

try
repeat with i from 1 to "Toronto"

-- do something that depends on variable "i"
end repeat

on error from obj to newClass
log {obj, newClass} -- Display from and to info in log window.

end try

This repeat statement fails because the text object "Toronto" cannot be coerced to an integer (page
91). The error handler simply writes the values of obj (the offending value, "Toronto") and newClass
(the class of the coercion that failed, integer) to Script Editor’s Event Log History window (and to
the script window’s Event Log pane). The result is “(*Toronto, integer*)”, indicating the error occurred
while trying to coerce “Toronto” to an integer.

For additional examples, see “Working with Errors” (page 241).

using terms from Statements

A using terms from statement lets you specify which terminology AppleScript should use in
compiling the statements in a script. Whereas a tell statement specifies the default target (often an
application) to which commands are sent and the terminology to use, a using terms from statement
specifies only the terminology.

A using terms from statement can be useful in writing application event handler scripts, such as
Mail rules.

Another use for this type of statement is with a script that targets an application on a remote computer
that may not be available when you compile the script (or the application may not be running). Or,
you might be developing locally and only want to test with the remote application at a later time. In
either case, you can use a using terms from statement to specify a local application (presumably
with a terminology that matches the one on the remote computer) to compile against.

Even if a statement contained within a using terms from statement compiles, the script may fail
when run because the target application’s terminology may differ from that used in compiling.

You can nest using terms from statements. When you do so, each script statement is compiled
against the terminology of the application named in the innermost enclosing using terms from
statement.

using terms from

Instructs AppleScript to use the terminology from the specified application in compiling the enclosed
statements.

Syntax

using terms from application

[statement]...

end [using terms from]

213
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Placeholders

application
A specifier for an application object.

statement
Any AppleScript statement.

Examples

The following example shows how to use a using terms from statement in writing a Mail rule action
script. These scripts take the following form:

using terms from application "Mail"
on perform mail action with messages theMessages for rule theRule
tell application "Mail"

-- statements to process each message in theMessages
end tell

end perform mail action with messages
end using terms from

To use the script, you open Preferences for the Mail application, create or edit a rule, and assign the
script as the action for the rule.

For an example that works with an application on a remote machine, see “Targeting Remote
Applications” (page 45).

with timeout Statements

You can use a with timeout statement to control how long AppleScript waits for a command to
execute before timing out. By default, when an application fails to respond to a command, AppleScript
waits for two minutes before reporting an error and halting execution.

with timeout

Specifies how long AppleScript waits for a response to a command that is sent to another application.

Syntax

with timeout [of] integerExpression second[s]

[statement]...

end [timeout]

Placeholders

integerExpression
The amount of time, in seconds, AppleScript should wait before timing out (and interrupting
the command).

statement
Any AppleScript statement.

214
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Examples

The following script tells TextEdit to close its first document; if the document has been modified, it
asks the user if the document should be saved. It includes the statement with timeout of 20
seconds, so that if the user doesn’t complete the close operation within 20 seconds, the operation
times out.

tell application "TextEdit"
with timeout of 20 seconds

close document 1 saving ask
end timeout

end tell

Discussion
When a command fails to complete in the allotted time (whether the default of two minutes, or a time
set by a with timeout statement), AppleScript stops running the script and returns the error "event
timed out". AppleScript does not cancel the operation—it merely stops execution of the script. If
you want the script to continue, you can wrap the statements in a try (page 211) statement. However,
whether your script can send a command to cancel an offending lengthy operation after a timeout is
dependent on the application that is performing the command.

A with timeout statement applies only to commands sent to application objects, not to commands
sent to the application that is running the script.

In some situations, you may want to use an ignoring application responses statement (instead
of a with timeout statement) so that your script needn’t wait for application commands to complete.
For more information, see “considering and ignoring Statements” (page 197).

with transaction Statements

When you execute a script, AppleScript may send one or more Apple events to targeted applications.
A transaction is a set of operations that are applied as a single unit—either all of the changes are
applied or none are. This mechanism works only with applications that support it.

with transaction

Associates a single transaction ID with any events sent to a target application as a result of executing
commands in the body of the statement.

Syntax

with transaction [session]

[statement]...

end [transaction]

Placeholders

session
An object that identifies a specific session.

statement
Any AppleScript statement.

215
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

Examples

This example uses a with transaction statement to ensure that a record can be modified by one
user without being modified by another user at the same time. (In the following examples, “Small
DB” and “Super DB” are representative database applications.)

tell application "Small DB"
with transaction

set oldName to Field "Name"
set oldAddress to Field "Address"
set newName to display dialog ¬

"Please type a new name" ¬
default answer oldName

set newAddress to display dialog ¬
"Please type the new address" ¬
default answer oldAddress

set Field "Name" to newName
set Field "Address" to newAddress

end transaction
end tell

The set statements obtain the current values of the Name and Address fields and invite the user to
change them. Enclosing these set statements in a single with transaction statement informs the
application that other users should not be allowed to access the same record at the same time.

A with transaction statement works only with applications that explicitly support it. Some
applications only support with transaction statements (like the one in the previous example) that
do not take a session object as a parameter. Other applications support both with transaction
statements that have no parameter and with transaction statements that take a session parameter.

The following example demonstrates how to specify a session for a with transaction statement:

tell application "Super DB"
set mySession to make session with data {user: "Bob", password: "Secret"}
with transaction mySession

...
end transaction

end tell

216
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

Control Statements Reference

This chapter provides reference for handlers, which are defined and introduced in “About
Handlers” (page 69). It describes the types of parameters you can use with handlers and how you
invoke them. It also describes the continue and return statements, which you use to control the
flow of execution in handlers.

continue

A continue statement causes AppleScript to invoke the handler with the same name in the parent
of the current handler. If there is no such handler in the parent, AppleScript looks up the parent chain,
ending with the current application.

A continue statement is like a handler call, in that after execution completes in the new location, it
resumes with the statement after the continue statement.

Syntax

continue handlerName [parameterList]

Placeholders

handlerName
A required identifier that specifies the name of the current handler (which is also the name of
the handler in which to continue execution).

parameterList
The list of parameters to be passed to handlerName.

The list must follow the same format as the parameter definitions in the handler definition for
the command. For handlers with labeled parameters, this means that the parameter labels must
match those in the handler definition. For handlers with positional parameters, the parameters
must appear in the correct order.

You can list the parameter variables that were specified in the original command (and thus
the original values) or you can list values that may differ from those of the original variables.

Examples

You can write a handler that overrides an AppleScript command but uses a continue statement to
pass control on to the AppleScript command if desired:

on beep numTimes
set x to display dialog "Start beeping?" buttons {"Yes", "No"}
if button returned of x is "Yes" then ¬

continue beep numTimes -- Let AppleScript handle the beep.

217
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

-- In this example, nothing to do after returning from the continue.
end beep

beep 3 --result: local beep handler invoked; shows dialog before beeping
tell my parent to beep 3 -- result: AppleScript beep command invoked

When AppleScript encounters the statement beep 3, it invokes the local beep handler, which displays
a dialog. If the user clicks Yes, the handler uses a continue statement to pass the beep command to
the script’s parent (AppleScript), which handles the command by beeping. If the user clicks No, it
does not continue the beep command, and no sound is heard.

The final statement, tell my parent to beep 3, shows how to directly invoke the AppleScript
beep command, rather than the local handler.

For an example that uses a continue statement to exit a script handler and return control to the
application’s default quit handler, see “quit Handlers” (page 79).

For additional examples, see “Using the continue Statement in Script Objects” (page 65).

return

A return statement exits a handler and optionally returns a specified value. Execution continues at
the place in the script where the handler was called.

Syntax

return [expression]

Placeholders

expression
Represents the value to return.

Examples

The following statement, inserted in the body of a handler, returns the integer 2:

return 2 -- returns integer value 2

If you include a return statement without an expression, AppleScript exits the handler immediately
and no value is returned:

return -- no value returned

See other sections throughout “Handler Reference” (page 217) for more examples of scripts that use
the return statement.

Discussion
If a handler does not include a return statement, AppleScript returns the value returned by the last
statement. If the last statement doesn’t return a value, AppleScript returns nothing.

When AppleScript has finished executing a handler (that is, when it executes a return statement or
the last statement in the handler), it passes control to the place in the script immediately after the
place where the handler was called. If a handler call is part of an expression, AppleScript uses the
value returned by the handler to evaluate the expression.

218
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

It is often considered good programming practice to have just one return statement and locate it at
the end of a handler. Doing so can provide the following benefits:

 ■ The script is easier to understand.

 ■ The script is easier to debug.

 ■ You can place cleanup code in one place and make sure it is executed.

In some cases, however, it may make more sense to use multiple return statements. For example,
the minimumValue handler in “Handler Syntax (Positional Parameters)” (page 222) is a simple script
that uses two return statements.

For related information, see “AppleScript Error Handling” (page 37).

Handler Syntax (Labeled Parameters)

A handler is a collection of statements that can be invoked by name. This section describes the syntax
for handlers that use labeled parameters.

Labeled parameters are identified by their labels and can be listed in any order.

Syntax

(on | to) handlerName ¬

[[of | in] directParamName] ¬

[ASLabel userParamName]... ¬

[given userLabel:userParamName [, userLabel:userParamName]...]

[statement]...

end [handlerName]

Placeholders

handlerName
An identifier that names the handler.

directParamName
An identifier for the direct parameter variable. If it is included, directParamName must be listed
immediately after the command name. The word of or in before directParamName is required
in user-defined handlers, but is optional in terminology-defined handlers (for example, those
defined by applications).

If a user-defined handler includes a direct parameter, the handler must also include at least
one variable parameter.

ASLabel
An AppleScript-defined label. The available labels are: about, above, against, apart from,
around, aside from, at, below, beneath, beside, between, by, for, from, instead of, into,
on, onto, out of, over, since, thru (or through), under. These are the only labels that can be
used without the special label given. Each label must be unique among the labels for the
handler (that is, you cannot use the same label for more than one parameter).

219
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

userLabel
An identifier for a user-defined label, associated with a user-defined parameter. Each label
must be unique.

The first userLabel-userParamName pair must follow the word given; any additional pairs are
separated by commas.

userParamName
An identifier for a parameter variable.

statement
Any AppleScript statement. These statements can include definitions of script objects, each
of which, like any script object, can contain handlers and other script objects. However,
you cannot declare another handler within a handler, except within a script object.

Handlers often contain a “return” (page 218) statement.

Examples

For examples and related conceptual information, see “Handlers with Labeled Parameters” (page
70).

Discussion
A handler written to respond to an application command (like those in “Handlers in Script
Applications” (page 76)) need not include all of the possible parameters defined for that command.
For example, an application might define a command with up to five possible parameters, but you
could define a handler for that command with only two of the parameters.

If a script calls a handler with more parameters than are specified in the handler definition, the extra
parameters are ignored.

Calling a Handler with Labeled Parameters

This section describes the syntax for calling a handler with labeled parameters.

Syntax

handlerName ¬

[[of | in] directParam] ¬

[[ASLabel paramValue ...] ¬

| [with labelForTrueParam [, labelForTrueParam]... ¬

[(and | ,) labelForTrueParam]] ¬

| [without labelForFalseParam [, labelForFalseParam]...] ¬

[(and | ,) labelForFalseParam]] ¬

| [given userLabel:paramValue [, userLabel:paramValue]...]...

220
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

Placeholders

handlerName
An identifier that names the handler.

directParam
Any valid expression. The expression for the direct parameter must be listed first if it is included
at all.

ASLabel
One of the following AppleScript-defined labels used in the definition of the handler: about,
above, against, apart from, around, aside from, at, below, beneath, beside, between,
by, for, from, instead of, into, on, onto, out of, over, since, thru (or through), under.

paramValue
The value of a parameter, which can be any valid expression.

labelForTrueParam
The label for a Boolean parameter whose value is true. You use this form in with clauses.
Because the value true is implied by the word with, you provide only the label, not the value.
For an example, see the findNumbers handler in “Handlers with Labeled Parameters” (page
70).

labelForFalseParam
The label for a Boolean parameter whose value is false. You use this form in without clauses.
Because the value false is implied by the word without, you provide only the label, not the
value.

paramLabel
Any parameter label used in the definition of the handler that is not among the labels for
ASLabel. You must use the special label given to specify these parameters. For an example, see
the findNumbers handler below.

Examples

For examples, see “Handlers with Labeled Parameters” (page 70).

Discussion
When you call a handler with labeled parameters, you supply the following:

1. The handler name.

2. A value for the direct parameter, if the handler has one. It must directly follow the handler name.

3. One label-value pair for each AppleScript-defined label and parameter defined for the handler.

4. One label-value pair for each user-defined label and parameter defined for the handler that is not
a boolean value.

The first pair is preceded by the word given; a comma precedes each additional pair. The order
of the pairs does not have to match the order in the handler definition.

5. For each user-defined label and parameter defined for the handler that is a boolean value, you
can either:

a. Supply the label, followed by a boolean expression (as with non-boolean parameters); for
example:

given rounding:true

221
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

b. Use a combination of with and without clauses, as shown in the following examples:

with rounding, smoothing and curling
with rounding without smoothing, curling

Note: AppleScript automatically converts between some forms when you compile. For
example, given rounding:true is converted to with rounding, and with rounding,
smoothing is converted to with rounding and smoothing.

Handler Syntax (Positional Parameters)

A handler is a collection of statements that can be invoked by name. This section describes the syntax
for handlers that use positional parameters.

Important: The parentheses that surround the parameter list in the following definition are part of
the syntax.

Syntax

on | to handlerName ([userParamName [, userParamName]...])

[statement]...

end [handlerName]

Placeholders

handlerName
An identifier that names the handler.

userParamName
An identifier for a user-defined parameter variable.

statement
Any AppleScript statement, including global or local variable declarations. For information
about the scope of local and global variables, see “Scope of Variables and Properties” (page
51).

Examples

For examples and related conceptual information, see “Handlers with Positional Parameters” (page
71).

Calling a Handler with Positional Parameters

A call for a handler with positional parameters must list the parameters in the same order as they are
specified in the handler definition.

Syntax

handlerName([paramValue [, paramValue]...])

222
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

Placeholders

handlerName
An identifier that names the handler.

paramValue
The value of a parameter, which can be any valid expression. If there are two or more
parameters, they must be listed in the same order in which they were specified in the handler
definition.

Examples

For examples, see “Handlers with Positional Parameters” (page 71)

Discussion
When you call a handler with positional parameters, you supply the following:

1. The handler name.

2. An opening and closing parenthesis.

3. If the handler has any parameters, then you also list, within the parentheses, the following:

One value for each parameter defined for the handler. The value can be any valid expression.

223
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

224
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 1

Handler Reference

Folder Actions is a feature of Mac OS X that lets you associate AppleScript scripts with folders. A
Folder Action script is executed when the folder to which it is attached is opened or closed, moved
or resized, or has items added or removed. The script provides a handler that matches the appropriate
format for the action, as described in this chapter.

Folder Actions make it easy to create hot folders that respond to external actions to trigger a workflow.
For example, you can use a Folder Action script to initiate automated processing of any photo dropped
in a targeted folder. A well written Folder Action script leaves the hot folder empty. This avoids
repeated application of the action to the same files, and allows Folder Actions to perform more
efficiently.

You can Control-click a folder to access some Folder Action features with the contextual menu in the
Finder. Or you can use the Folder Actions Setup application, located in /Applications/AppleScript.
This application lets you perform tasks such as the following:

 ■ Enable or disable Folder Actions.

 ■ View the folders that currently have associated scripts

 ■ View and edit the script associated with a folder.

 ■ Add folders to or remove folders from the list of folders.

 ■ Associate one or more scripts with a folder.

 ■ Enable or disable all scripts associated with a folder.

 ■ Enable or disable individual scripts associated with a folder.

 ■ Remove scripts associated with a folder.

Folder Actions Setup looks for scripts located in /Library/Scripts/Folder Action Scripts and
~/Library/Scripts/Folder Action Scripts. You can use the sample scripts located in
/Library/Scripts/Folder Action Scripts or any scripts you have added to these locations, or
you can navigate to other scripts.

A Folder Action script provides a handler (see “Handler Reference” (page 217)) that is invoked when
the specified action takes place. When working with Folder Action handlers, keep in mind that:

 ■ You do not invoke Folder Actions directly. Instead, when a triggering action takes place on a
folder, the associated handler is invoked automatically.

 ■ When a Folder Action handler is invoked, none of the parameters is optional.

225
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

Folder Actions Reference

 ■ A Folder Action handler does not return a value.

Here’s how you can use a Folder Action script to perform a specific action whenever an image file is
dropped on a specific image folder:

1. Create a script with Script Editor or another script application.

2. In that script, write a handler that conforms to the syntax documented here for the “adding
folder items to” (page 226) folder action. Your handler can use the aliases that are passed to
it to access the image files dropped on the folder.

3. Save the script as a compiled script or script bundle.

4. Put a copy of the script in /Library/Scripts/Folder Action Scripts or
~/Library/Scripts/Folder Action Scripts.

5. Use the Folder Actions Setup application, located in /Applications/AppleScript, to:

a. Enable folder actions for your image folder.

b. Add a script to that folder, choosing the script you created.

adding folder items to

A script handler that is invoked after items are added to its associated folder.

Syntax

on adding folder items to alias after receiving listOfAlias

[statement]...

end [adding folder items to]

Placeholders

alias
An alias (page 81) that identifies the folder that received the items.

listOfAlias
List of aliases that identify the items added to the folder.

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when items are added to the folder to which it is
attached. It makes an archived copy, in ZIP format, of the individual items added to the attached
folder. Archived files are placed in a folder named Done within the attached folder.

on adding folder items to this_folder after receiving these_items
tell application "Finder"

if not (exists folder "Done" of this_folder) then
make new folder at this_folder with properties {name:"Done"}

end if

226
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

Folder Actions Reference

set the destination_folder to folder "Done" of this_folder as alias
set the destination_directory to POSIX path of the destination_folder

end tell
repeat with i from 1 to number of items in these_items

set this_item to item i of these_items
set the item_info to info for this_item
if this_item is not the destination_folder and ¬

the name extension of the item_info is not in {"zip", "sit"} then
set the item_path to the quoted form of the POSIX path of this_item
set the destination_path to the quoted form of ¬

(destination_directory & (name of the item_info) & ".zip")
do shell script ("/usr/bin/ditto -c -k -rsrc --keepParent " ¬

& item_path & " " & destination_path)
end if

end repeat
end adding folder items to

closing folder window for

A script handler that is invoked after a folder’s associated window is closed.

Syntax

on closing folder window for alias

[statement]...

end [closing folder window for]

Placeholders

alias
An alias (page 81) that identifies the folder that was closed.

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when the folder to which it is attached is closed. It
closes any open windows of folders within the targeted folder.

-- This script is designed for use with Mac OS X v10.2 and later.
on closing folder window for this_folder

tell application "Finder"
repeat with EachFolder in (get every folder of folder this_folder)

try
close window of EachFolder

end try
end repeat

end tell
end closing folder window for

moving folder window for

A script handler that is invoked after a folder’s associated window is moved or resized. Not currently
available.

227
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

Folder Actions Reference

Syntax

on moving folder window for alias from bounding rectangle

[statement]...

end [moving folder window for]

Placeholders

alias
An alias (page 81) that identifies the folder that was moved or resized.

You can use this alias to obtain the folder window’s new coordinates from the Finder.

bounding rectangle
The previous coordinates of the window of the folder that was moved or resized. The
coordinates are provided as a list of four numbers, {left, top, right, bottom}; for example, {10,
50, 500, 300} for a window whose origin is near the top left of the screen (but below the menu
bar, if present).

statement
Any AppleScript statement.

Examples
on moving folder window for this_folder from original_coordinates

tell application "Finder"
set this_name to the name of this_folder
set the bounds of the container window of this_folder ¬

to the original_coordinates
end tell
display dialog "Window \"" & this_name & "\" has been returned to it's

original size and position." buttons {"OK"} default button 1
end moving folder window for

Special Considerations

Warning: In Mac OS X v10.5, and possibly in previous OS versions, Folder Actions does not
activate attached moving folder window for scripts when the folder is moved.

opening folder

A script handler that is invoked when its associated folder is opened in a window.

Syntax

on opening folderalias

[statement]...

end [opening folder]

Placeholders

alias
An alias (page 81) that identifies the folder that was opened.

statement
Any AppleScript statement.

228
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

Folder Actions Reference

Examples

The following Folder Action handler is triggered when the folder it is attached to is opened. It displays
any text from the Spotlight Comments field of the targeted folder. (Prior to Mac OS X v10.4, this script
displays text from the Comments field of the specified folder.)

-- This script is designed for use with Mac OS X v10.2 and later.
property dialog_timeout : 30 -- set the amount of time before dialogs auto-answer.

on opening folder this_folder
tell application "Finder"

activate
set the alert_message to the comment of this_folder
if the alert_message is not "" then

display dialog alert_message buttons {"Open Comments", "Clear
Comments", "OK"} default button 3 giving up after dialog_timeout

set the user_choice to the button returned of the result
if the user_choice is "Clear Comments" then

set comment of this_folder to ""
else if the user_choice is "Open Comments" then

open information window of this_folder
end if

end if
end tell

end opening folder

Special Considerations

Spotlight was introduced in Mac OS X v10.4. In prior versions of the Mac OS, the example script
shown above works with the Comments field of the specified folder, rather than the Spotlight
Comments field.

removing folder items from

A script handler that is invoked after items have been removed from its associated folder.

Syntax

on removing folder items from alias after losinglistOfAliasOrText

[statement]...

end [removing folder items from]

Placeholders

alias
An alias (page 81) that identifies the folder from which the items were removed.

listOfAliasOrText
List of aliases that identify the items lost (removed) from the folder. For permanently deleted
items, only the names are provided (as text strings).

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when items are removed from the folder to which
it is attached. It displays an alert containing the number of items removed.

229
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

Folder Actions Reference

on removing folder items from this_folder after losing these_items
tell application "Finder"

set this_name to the name of this_folder
end tell
set the item_count to the count of these_items
display dialog (item_count as text) & " items have been removed " & "from

folder \"" & this_name & "\"." buttons {"OK"} default button 1
end removing folder items from

230
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

C H A P T E R 1 2

Folder Actions Reference

This appendix lists AppleScript keywords (or reserved words), provides a brief description for each,
and points to related information, where available. (See also “Keywords” (page 18) in “AppleScript
Lexical Conventions” (page 17).)

The keywords in Table A-1 (page 231) are part of the AppleScript language. You should not attempt
to reuse them in your scripts for variable names or other purposes. Developers should not re-define
keywords in the terminology for their scriptable applications. You can view many additional scripting
terms defined by Apple, but not part of the AppleScript language, in AppleScript Terminology and
Apple Event Codes.

Table A-1 AppleScript reserved words, with descriptions

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

about

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

above

used to describe position in the “Relative” (page 180) reference form; used as
part of operator (comes after, does not come after) with classes such as
date (page 87), integer (page 91), and text (page 100)

after

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

against

logical and operator—see Table 9-1 (page 183)and

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

apart from

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

around

coercion operator—see Table 9-1 (page 183)as

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

aside from

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

at

231
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

AppleScript Keywords

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html
http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

used with “Index” (page 176) and “Relative” (page 180) reference forms; in
back of is synonymous with after and behind

back

used to describe position in the “Relative” (page 180) reference form; used as
an operator (comes before, does not come before) with classes such as
date (page 87), integer (page 91), and text (page 100); synonymous with in
front of

before

specifies an insertion location at the beginning of a container—see the boundary
specifier descriptions for the “Range” (page 179) reference form

beginning

synonymous with after and in back ofbehind

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

below

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

beneath

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

beside

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

between

used in “considering and ignoring Statements” (page 197)but

used with binary containment operator contains, is contained by (page
193); also used as handler parameter label—see “Handler Syntax (Labeled
Parameters)” (page 219)

by

a control statement—see “considering and ignoring Statements” (page 197)considering

binary containment operator—see contains, is contained by (page 193)contain,
contains

changes the flow of execution—see “continue” (page 217)continue

an AppleScript command—see copy (page 125)copy

division operator—see Table 9-1 (page 183)div

used with operators such as does not equal, does not come before, and
does not contain—see Table 9-1 (page 183)

does

specifies a position in a container—see “Index” (page 176) reference formeighth

used with if control statement—see “if Statements ” (page 201)else

marks the end of a script or handler definition, or of a compound statement,
such as a tell or repeat statement; also specifies an insertion location at the
end of a container—see the boundary specifier descriptions for the
“Range” (page 179) reference form

end

binary comparison operator—see equal, is not equal to (page 194)equal, equals

232
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

AppleScript Keywords

error (page 200) control statement; also used withtry (page 211) statementerror

specifies every object in a container—see “Every” (page 172) reference formevery

terminates a repeat loop—see exit (page 203)exit

a Boolean literal—see “Boolean” (page 21)false

specifies a position in a container—see “Index” (page 176) reference formfifth

specifies a position in a container—see “Index” (page 176) reference formfirst

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

for

specifies a position in a container—see “Index” (page 176) reference formfourth

used in specifying a range of objects in a container—see “Range” (page 179)
reference form; also used as handler parameter label—see “Handler Syntax
(Labeled Parameters)” (page 219)

from

in front of is used to describe position in the “Relative” (page 180) reference
form; synonymous with before

front

an AppleScript command—see get (page 133)get

a special handler parameter label—see “Handler Syntax (Labeled
Parameters)” (page 219)

given

specifies the scope for a variable (see also local)—see “Global Variables” (page
49)

global

a control statement—see “if Statements ” (page 201)if

a control statement—see “considering and ignoring Statements” (page 197)ignoring

used in construction object specifiers—see “Containers” (page 30); also used
with the “Relative” (page 180) reference form—for example in front of and
in back of

in

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

instead of

put into is a deprecated synonym for the copy (page 125) command; also used
as handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

into

used with various comparison operators—see Table 9-1 (page 183)is

refers to the current target (of it)—see “The it and me Keywords” (page 40)it

synonym for of it—see “The it and me Keywords” (page 40)its

specifies a position in a container—see “Index” (page 176) reference formlast

233
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

AppleScript Keywords

specifies the scope for a variable (see also global)—see “Local Variables” (page
48)

local

refers to the current script (of me)—see “The it and me Keywords” (page 40)me

specifies a position in a container—see “Index” (page 176) reference formmiddle

remainder operator—see Table 9-1 (page 183)mod

synonym for of me—see “The it and me Keywords” (page 40)my

specifies a position in a container—see “Middle” (page 177) reference formninth

logical negation operator—see Table 9-1 (page 183)not

used in construction object specifiers—see “Containers” (page 30); used with
or as part of many other terms, including of me , in front of , and so on

of

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

on

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

onto

logical or operator—see Table 9-1 (page 183)or

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

out of

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

over

prop is an abbreviation for property—see “The it and me Keywords” (page
40)

prop, property

put into is a deprecated synonym for the copy (page 125) commandput

ref is an abbreviation for reference—see reference (page 98)ref/reference

a control statement—see “repeat Statements” (page 203)repeat

exits from a handler—see “return” (page 218)return

deprecatedreturning

used to declare a script object; also the class of a script object—see the
script (page 99) class and “Script Objects” (page 59)

script

specifies a position in a container—see “Index” (page 176) reference formsecond

an AppleScript command—see set (page 158)set

specifies a position in a container—see “Index” (page 176) reference formseventh

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
219)

since

234
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

AppleScript Keywords

specifies an index position in a container—see “Index” (page 176) reference formsixth

specifies an object in a container—see “Arbitrary” (page 171) reference formsome

a control statement—see “tell Statements” (page 209)tell

specifies a position in a container—see “Index” (page 176) reference formtenth

synonym for whosethat

syntactic no-op, used to make script statements look more like natural languagethe

used with if control statement—see “if Statements ” (page 201)then

specifies a position in a container—see “Index” (page 176) reference formthird

used in specifying a range of objects in a container—see “Range” (page 179)
reference form

through, thru

used with with timeout control statement—see with timeout (page 214)timeout

used with repeat control statement—see repeat (number) times (page 204)times

used in many places, including copy (page 125) and set (page 158) commands;
in the “Range” (page 179) reference form; by operators such as is equal to
and a reference to; with the control statement repeat with loopVariable
(from startValue to stopValue) (page 206); with the partial result parameter
in “try Statements” (page 211)

to

used with with transaction control statement—see with transaction (page
215)

transaction

a Boolean literal—see “Boolean” (page 21)true

an error-handling statement—see “try Statements” (page 211)try

used with repeat control statement—see repeat until (page 205)until

used with the “Filter” (page 173) reference form to specify a Boolean test
expression (synonymous with whose)

where

used with repeat control statement—see repeat while (page 206)while

used with the “Filter” (page 173) reference form to specify a Boolean test
expression (synonymous with where)

whose

used in commands to specify various kinds of parameters, including true for
some Boolean for parameters—see, for example, the with prompt and multiple
selections allowed parameters to the choose from list (page 120)
command; also used with application make commands to specify properties
(with properties)

with

used in commands to specify false for a Boolean for a parameter—see, for
example, the multiple selections allowed parameter to the choose from
list (page 120) command

without

235
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

AppleScript Keywords

236
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X A

AppleScript Keywords

This appendix describes error numbers and error messages provided by AppleScript, as well as certain
Mac OS error numbers that may be of interest to scripters.

AppleScript Errors

An AppleScript error is an error that occurs when AppleScript processes script statements. Nearly
all of these are of interest to users. For errors returned by an application, see the documentation for
that application.

Table B-1 AppleScript errors

Error messageError number

Unknown error.-2700

Can’t divide <number> by zero.-2701

The result of a numeric operation was too large.-2702

<reference> can't be launched because it is not an application.-2703

<reference> isn't scriptable.-2704

The application has a corrupted dictionary.-2705

Stack overflow.-2706

Internal table overflow.-2707

Attempt to create a value larger than the allowable size.-2708

Can't get the event dictionary.-2709

Can't both consider and ignore <attribute>.-2720

Can't perform operation on text longer than 32K bytes.-2721

Message size too large for the 7.0 Finder.-2729

AppleScript Errors 237
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X B

Error Numbers and Error Messages

Error messageError number

A <language element> can't go after this <language element>.-2740

Expected <language element> but found <language element>.-2741

The <name> parameter is specified more than once.-2750

The <name> property is specified more than once.-2751

The <name> handler is specified more than once.-2752

The variable <name> is not defined.-2753

Can't declare <name> as both a local and global variable.-2754

Exit statement was not in a repeat loop.-2755

Tell statements are nested too deeply.-2760

<name> is illegal as a formal parameter.-2761

<name> is not a parameter name for the event <event>.-2762

No result was returned for some argument of this expression.-2763

Operating System Errors

An operating system error is an error that occurs when AppleScript or an application requests services
from the Mac OS. They are rare, and often there is nothing you can do about them in a script, other
than report them. A few, such as "User canceled", make sense for scripts to handle—as shown, for
an example, in the Examples section for the display dialog (page 129) command.

Table B-2 Mac OS errors

Error messageError number

No error.0

Disk <name> full.-34

Disk <name> wasn’t found.-35

Bad name for file-37

File <name> wasn’t open.-38

End of file error.-39

Too many files open.-42

File <name> wasn’t found.-43

238 Operating System Errors
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X B

Error Numbers and Error Messages

Error messageError number

Disk <name> is write protected.-44

File <name> is locked.-45

Disk <name> is locked.-46

File <name> is busy.-47

Duplicate file name.-48

File <name> is already open.-49

Parameter error.-50

File reference number error.-51

File not open with write permission.-61

Out of memory.-108

Folder <name> wasn’t found.-120

Disk <name> is disconnected.-124

User cancelled.-128

A resource wasn’t found.-192

Application isn’t running-600

Not enough room to launch application with special requirements.-601

Application is not 32-bit clean.-602

More memory needed than is specified in the size resource.-605

Application is background-only.-606

Buffer is too small.-607

No outstanding high-level event.-608

Connection is invalid.-609

Not enough system memory to connect to remote application.-904

Remote access is not allowed.-905

<name> isn’t running or program linking isn’t enabled.-906

Can’t find remote machine.-915

Invalid date and time <date string>.-30720

Operating System Errors 239
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X B

Error Numbers and Error Messages

240 Operating System Errors
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X B

Error Numbers and Error Messages

This appendix provides a detailed example of handling errors with “try Statements” (page 211) and
“error Statements” (page 200). It shows how to use a try statement to check for bad data and other
errors, and an error statement to pass on any error that can’t be handled. It also shows how to check
for just a particular error number that you are interested in.

Catching Errors in a Handler

The SumIntegerList handler expects a list of integers. If any item in the passed list is not an integer,
SumIntegerList signals error number 750 and returns 0. The handler includes an error handler
that displays a dialog if the error number is equal to 750; if the error number is not equal to 750, the
handler resignals the error with an error statement so that other statements in the call chain can
handle the unknown error. If no statement handles the error, AppleScript displays an error dialog
and execution stops.

on SumIntegerList from itemList
try

-- Initialize return value.
set integerSum to 0
-- Before doing sum, check that all items in list are integers.
if ((count items in itemList) is not equal to ¬

(count integers in itemList)) then
-- If all items aren’t integers, signal an error.
error number 750

end if
-- Use a repeat statement to sum the integers in the list.
repeat with currentItem in itemList

set integerSum to integerSum + currentItem
end repeat
return integerSum -- Successful completion of handler.

on error errStr number errorNumber
-- If our own error number, warn about bad data.
if the errorNumber is equal to 750 then

display dialog "All items in the list must be integers."
return integerSum -- Return the default value (0).

else
-- An unknown error occurred. Resignal, so the caller
-- can handle it, or AppleScript can display the number.
error errStr number errorNumber

end if

Catching Errors in a Handler 241
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X C

Working with Errors

end try
end SumIntegerList

The SumIntegerList handler handles various error conditions. For example, the following call
completes without error:

set sumList to {1, 3, 5}
set listTotal to SumIntegerList from sumList --result: 9

The following call passes bad data—the list contains an item that isn’t an integer:

set sumList to {1, 3, 5, "A"}
set listTotal to SumIntegerList from sumList
if listTotal is equal to 0 then

-- the handler didn’t total the list;
-- do something to handle the error (not shown)

end if

The SumIntegerList routine checks the list and signals an error 750 because the list contains at least
one non-integer item. The routine’s error handler recognizes error number 750 and puts up a dialog
to describe the problem. The SumIntegerList routine returns 0. The script checks the return value
and, if it is equal to 0, does something to handle the error (not shown).

Suppose some unknown error occurs while SumIntegerList is processing the integer list in the
previous call. When the unknown error occurs, the SumIntegerList error handler calls the error
command to resignal the error. Since the caller doesn’t handle it, AppleScript displays an error dialog
and execution halts. The SumIntegerList routine does not return a value.

Finally, suppose the caller has its own error handler, so that if the handler passes on an error, the
caller can handle it. Assume again that an unknown error occurs while SumIntegerList is processing
the integer list.

try
set sumList to {1, 3, 5}
set listTotal to SumIntegerList from sumList

on error errMsg number errorNumber
display dialog "An unknown error occurred: " & errorNumber as text

end try

In this case, when the unknown error occurs, the SumIntegerList error handler calls the error
command to resignal the error. Because the caller has an error handler, it is able to handle the error
by displaying a dialog that includes the error number. Execution can continue if it is meaningful to
do so.

Simplified Error Checking

AppleScript provides a mechanism to streamline the way you can catch and handle individual errors.
It is often necessary for a script to handle a particular error, but not others. It is possible to catch an
error, check for the error number you are interested in, and use an error statement to resignal for
other errors. For example:

try
open for access file "MyFolder:AddressData" with write permission

on error msg number n from f to t partial result p

242 Simplified Error Checking
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X C

Working with Errors

if n = -49 then -- File already open error
display dialog "I'm sorry but the file is already open."

else
error msg number n from f to t partial result p

end if
end try

This script tries to open a file with write permission, but if the file is already opened, it just displays
a dialog. However, you can instead implement this more concisely as:

try
open for access file "MyFolder:AddressData" with write permission

on error number -49
display dialog "I'm sorry but the file is already open."

end try

In this version, there is no need to list the message, from, to, or partial result parameters, in order
to pass them along. If the error is not -49 (file <name> is already open), this error handler will not
catch the error, and AppleScript will pass the error to the next handler in an outer scope.

One drawback to this approach is that you must use a literal constant for the error number in the on
error parameter list. You can't use global variable or property names because the number must be
known when the script is compiled.

Simplified Error Checking 243
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X C

Working with Errors

244 Simplified Error Checking
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X C

Working with Errors

When you type English language script statements in a Script Editor script window, AppleScript is
able to compile the script because the English terms are described either in the terminology built into
the AppleScript language or in the dictionary of an available scriptable application or scripting
addition. When AppleScript compiles your script, it converts it into an internal executable format,
then reformats the text to conform to settings in Script Editor’s Formatting preferences.

When you open, compile, edit, or run scripts with Script Editor, you may occasionally see terms
enclosed in double angle brackets, or chevrons («»). For example, you might see the term «event
sysodlog» as part of a script—this is the event code representation for a display dialog (page 129)
command. The event code representation is also known as raw format.

For compatibility with Asian national encodings, “《” and “》” are allowed as synonyms for “«” and
“»” ((Option- \ and Option-Shift- \, respectively, on a U.S. keyboard), since the latter do not exist in
some Asian encodings.

The following sections provide more information about when chevrons appear in scripts.

When a Dictionary Is Not Available

AppleScript uses double angle brackets in a Script Editor script window when it can’t identify a term.
That happens when it encounters a term that isn’t part of the AppleScript language and isn’t defined
in an application or scripting addition dictionary that is available when the script is opened or compiled.

For example, if a script is compiled on one machine and later opened on another, the dictionary may
not be available, or may be from an older version of the application or scripting addition that does
not support the term.

This can also happen if the file StandardAdditions.osax is not present in
/System/ScriptingAdditions. Then, scripting addition commands such as display dialog will
not be present and will be replaced with chevron notation («event sysodlog») when you compile
or run the script.

When a Dictionary Is Not Available 245
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X D

Double Angle Brackets

When AppleScript Displays Data in Raw Format

Double angle brackets can also occur in results. For example, if the value of a variable is a script
object named Joe, AppleScript represents the script object as shown in this script:

script Joe
property theCount : 0

end script

set scriptObjectJoe to Joe
scriptObjectJoe
--result: «script Joe»

Similarly, if Script Editor can’t display a variable’s data directly in its native format, it uses double
angle brackets to enclose both the word data and a sequence of numerical values that represent the
data. Although this may not visually resemble the original data, the data’s original format is preserved.

This may occur because an application command returns a value that does not belong to any of the
normal AppleScript classes. You can store such data in variables and send them as parameters to
other commands, but Script Editor cannot display the data in its native format.

Entering Script Information in Raw Format

You can enter double angle brackets, or chevrons («»), directly into a script by typing Option-Backslash
and Shift-Option-Backslash. You might want to do this if you’re working on a script that needs to
use terminology that isn’t available on your current machine—for example, if you’re working at home
and don’t have the latest dictionary for a scriptable application you are developing, but you know
the codes for a supported term.

You can also use AppleScript to display the underlying codes for a script, using the following steps:

1. Create a script using standard terms compiled against an available application or scripting
addition.

2. Save the script as text and quit Script Editor.

3. Remove the application or scripting addition from the computer.

4. Open the script again and compile it.

5. When AppleScript asks you to locate the application or scripting addition, cancel the dialog.

Script Editor can compile the script, but displays chevron format for any terms that rely on a missing
dictionary.

246 When AppleScript Displays Data in Raw Format
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X D

Double Angle Brackets

Sending Raw Apple Events From a Script

The term «event sysodlog» is actually the raw form for an Apple event with event class 'syso'
and event ID 'dlog' (the display dialog command). For a list of many of the four-character codes
and their related terminology used by Apple, see AppleScript Terminology and Apple Event Codes
Reference.

You can use raw syntax to enter and execute events (even complex events with numerous parameters)
when there is no dictionary to support them. However, providing detailed documentation for how
to do so is beyond the scope of this guide.

Sending Raw Apple Events From a Script 247
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X D

Double Angle Brackets

248 Sending Raw Apple Events From a Script
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X D

Double Angle Brackets

This appendix lists scripting terms that are not supported by AppleScript. Though you may see these
terms in a dictionary, script, or scripting addition, you should not count on their behavior.

List of Unsupported Terms

handle CGI request
This command is not supported.

internet address
An Internet or intranet address for the TCP/IP protocol. Only used for compatibility with
WebSTAR AppleScript CGI scripts, this term is not supported by AppleScript itself.

web page
An HTML page. This class is not supported.

List of Unsupported Terms 249
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X E

Unsupported Terms

250 List of Unsupported Terms
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

A P P E N D I X E

Unsupported Terms

absolute object specifier An object specifier that
has enough information to identify an object or
objects uniquely. For an object specifier to an
application object to be complete, its outermost
container must be the application itself. See
relative object specifier.

Apple event An interprocess message that
encapsulates a high-level task in a single package
that can be passed across process boundaries,
performed, and responded to with a reply
event.When an AppleScript script is executed, a
statement that targets a scriptable application may
result in an Apple event being sent to that
application.

AppleScript A scripting language that makes
possible direct control of scriptable applications
and scriptable parts of Mac OS X.

AppleScript command A script command
provided by AppleScript. AppleScript commands
do not have to be included in tell statements.

application command A command that is
defined by scriptable application to provide access
to a scriptable feature. An application command
must either be included in a tell statement or
include the name of the application in its direct
parameter.

application object An object stored in an
application or its documents and managed by the
application.

arbitrary reference form A reference form that
specifies an arbitrary object in a container.

assignment statement A statement that assigns
a value to a variable. Assignment statements use
the copy or set commands.

attribute A characteristic that can be considered
or ignored in a considering or ignoring
statement.

binary operator An operator that derives a new
value from a pair of values.

boolean A logical truth value; see the boolean
class.

Boolean expression An expression whose value
can be either true or false.

chevrons See double angle brackets.

child script object A script object that inherits
properties and handlers from another object,
called the parent.

class (1) A category for objects that share
characteristics such as properties and elements
and respond to the same commands. (2) The label
for the AppleScript class property—a reserved
word that specifies the class to which an object
belongs.

coercion The process of converting an object from
one class to another. For example, an integer value
can be coerced into a real value. Also, the software
that performs such a conversion. Also known as
object conversion.

command A word or series of words that
requests an action. See also handler.

comment Text that remains in a script after
compilation but is ignored by AppleScript when
the script is executed.

compile In AppleScript, to convert a script from
the form typed into a script editor to a form that
can be used by AppleScript. The process of

251
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Glossary

compiling a script includes syntax and vocabulary
checks. A script is compiled when you first run it
and again when you modify it and then run it
again, save it, or check its syntax.

compiled script The form to which a script is
converted when you compile it.

composite value A value that contains other
values. Lists, records, and strings are examples of
composite values.

compound statement A statement that occupies
more than one line and contains other statements.
A compound statement begins with a reserved
word indicating its function and ends with the
word end. See also simple statement.

conditional statement See if statement.

considering statement A control statement that
lists a specific set of attributes to be considered
when AppleScript performs operations on strings
or sends commands to applications.

constant A reserved word with a predefined
value; see the constant class.

container An object that contains one or more
other objects, known as elements. You specify
containers with the reserved words of or in.

continuation character A character used in Script
Editor to extend a statement to the next line. With
a U.S. keyboard, you can enter this character by
typing Option-l (lower-case L).

continue statement A statement that controls
when and how other statements are executed.
AppleScript defines standard control statements
such as if, repeat, and while.

control statement A statement that causes
AppleScript to exit the current handler and
transfer execution to the handler with the same
name in the parent. A continue statement can
also be used to invoke an inherited handler in the
local context.

current application The application that is using
the AppleScript component to compile and
execute scripts (typically, Script Editor).

current script The script currently being executed.

current target The object that is the current
default target for commands.

data A class used for data that do not belong to
any of the other AppleScript classes; see the data
class.

date A class that specifies a time, day of the
month, month, and year; see the date class.

declaration The first occurrence of a variable or
property identifier in a script. The form and
location of the declaration determine how
AppleScript treats the identifier in that script—for
example, as a property, global variable, or local
variable.

default target The object that receives a
command if no object is specified or if the object
is incompletely specified in the command. Default
(or implicit) targets are specified in tell
statements.

delegation The handing off of control to another
object. In AppleScript, the use of a continue
statement to call a handler in a parent object or
the current application.

dialect A version of the AppleScript language
that resembles a specific human language or
programming language. As of AppleScript 1.3,
English is the only dialect supported.

dictionary The set of commands, objects, and
other terminology that is understood by an
application or other scriptable entity. You can
display an application’s dictionary with Script
Editor.

direct parameter The parameter immediately
following a command, which typically specifies
the object to which the command is sent.

double angle brackets Characters («») typically
used by AppleScript to enclose raw data. With a
U.S. keyboard, you can enter double angle
brackets (also known as chevrons) by typing
Option-Backslash and Shift-Option-Backslash.

252
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

G L O S S A R Y

element An object contained within another
object. An object can typically contain zero or
more of each of its elements.

empty list A list containing no items. See the
list class.

error expression An expression, usually a text
object, that describes an error.

error handler A collection of statements that are
executed in response to an error message. See the
try statement.

error message A message that is supplied by an
application, by AppleScript, or by Mac OS X when
an error occurs during the handling of a
command.

error number An integer that identifies an error.

evaluation The conversion of an expression to a
value.

every reference form A reference form that
specifies every object of a particular type in a
container.

exit statement A statement used in the body of
a repeat statement to exit the Repeat statement.

explicit run handler A handler at the top level
of a script object that begins with on run and
ends with end. A single script object can include
an explicit run handler or an implicit run handler,
but not both.

expression In AppleScript, any series of words
that has a value.

filter A phrase, added to a reference to a system
or application object, that specifies elements in a
container that match one or more conditions.

filter reference form A reference form that
specifies all objects in a container that match a
condition specified by a Boolean expression.

formal parameter See parameter variable.

global variable A variable that is available
anywhere in the script in which it is defined.

handler A collection of statements that can be
invoked by name. See also command.

identifier A series of characters that identifies a
value or handler in AppleScript. Identifiers are
used to name variables, handlers, parameters,
properties, and commands.

ID reference form A reference form that specifies
an object by the value of its ID property.

if statement A control statement that contains
one or more Boolean expressions whose results
determine whether to execute other statements
within the if statement.

ignoring statement A control statement that lists
a specific set of attributes to be ignored when
AppleScript performs operations on text strings
or sends commands to applications.

implicit run handler All the statements at the
top level of a script except for property definitions,
script object definitions, and other handlers. A
single script object can include an explicit run
handler or an implicit run handler, but not both.

index reference form A reference form that
specifies an object by describing its position with
respect to the beginning or end of a container.

inheritance The ability of a child script object
to take on the properties and handlers of a parent
object.

inheritance chain The hierarchy of objects that
AppleScript searches to find the target for a
command or the definition of a term.

initializing a script object The process of creating
a script object from the properties and handlers
listed in a script object definition. AppleScript
creates a script object when it runs a script or
handler that contains a script object definition.

insertion point A location where another object
or objects can be added.

integer A positive or negative number without
a fractional part; see the integer class.

253
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

G L O S S A R Y

item A value in a list or record. An item can be
specified by its offset from the beginning or end
of the list or record.

keyword A word that is part of the AppleScript
language. Synonymous with reserved word.

labeled parameter A parameter that is identified
by a label. See also positional parameter.

lifetime The period of time over which a variable
or property is in existence.

list An ordered collection of values; see the list
class.

literal A value that evaluates to itself.

local variable A variable that is available only
in the handler in which it is defined. Variables
that are defined within handlers are local unless
they are explicitly declared as global variables.

log statement A script statement that reports the
value of one or more variables to the Event Log
pane of a script window, and to the Event Log
History window, if it is open.

loop A series of statements that is repeated.

loop variable A variable whose value controls
the number of times the statements in a repeat
statement are executed.

middle reference form A reference form that
specifies the middle object of a particular class in
a container. (This form is rarely used.)

name reference form A reference form that
specifies an object by name—that is, by the value
of its name property.

nested control statement A control statement
that is contained within another control statement.

number A synonym for the AppleScript classes
integer and real.

object An instantiation of a class definition,
which can include properties and actions.

object conversion See coercion.

object specifier A phrase specifies the
information needed to find another object in terms
of the objects in which it is contained. See also
absolute object specifier, relative object specifier,
and reference form.

operand An expression from which an operator
derives a value.

operation The evaluation of an expression that
contains an operator.

operator A symbol, word, or phrase that derives
a value from another value or pair of values.

optional parameter A parameter that need not
be included for a command to be successful.

outside property, variable, or statement A
property, variable, or statement in a script object
but occurs outside of any handlers or nested
script objects.

parameter variable An identifier in a handler
definition that represents the actual value of a
parameter when the handler is called. Also called
a formal parameter.

parent object An object from which another
script object, called the child, inherits properties
and handlers. A parent object may be any object,
such as a list or an application object, but it is
typically another script object.

positional parameter A handler parameter that
is identified by the order in which it is listed. In a
handler call, positional parameters are enclosed
in parentheses and separated by commas. They
must be listed in the order in which they appear
in the corresponding handler definition.

property A labeled container in which to store a
value. Properties can specify characteristics of
objects.

property reference form A reference form that
specifies a property of an application object,
record or script object.

range reference form A reference form that
specifies a series of objects of the same class in the
same container.

254
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

G L O S S A R Y

raw format AppleScript terms enclosed in double
angle brackets, or chevrons («»). AppleScript uses
raw format because it cannot find a script term in
any available dictionary, or cannot display data
in its native format.

real A number that can include a decimal
fraction; see the real class.

record An unordered collection of properties,
identified by unique labels; see the record class.

recordable application An application that uses
Apple events to report user actions for recording
purposes. When recording is turned on, Script
Editor creates statements corresponding to any
significant actions you perform in a recordable
application.

recursive handler A handler that calls itself.

reference An object that encapsulates an object
specifier.

reference form The syntax for identifying an
object or group of objects in an application or other
container—that is, the syntax for constructing an
object specifier.AppleScript defines reference
forms for arbitrary, every, filter, ID, index, middle,
name, property, range, and relative.

relative object specifier An object specifier that
does not include enough information to identify
an object or objects uniquely. When AppleScript
encounters a partial object specifier, it uses the
default object specified in the enclosing tell
statement to complete the reference. See absolute
object specifier.

relative reference form A reference form that
specifies an object or location by describing its
position in relation to another object, known as
the base, in the same container.

repeat statement A control statement that
contains a series of statements to be repeated and,
in most cases, instructions that specify when the
repetition stops.

required parameter A parameter that must be
included for a command to be successful.

reserved word A word that is part of the
AppleScript language. Synonymous with
keyword.

result A value generated when a command is
executed or an expression evaluated.

return statement A statement that exits a handler
and optionally returns a specified value.

scope The range over which AppleScript
recognizes a variable or property, which
determines where else in a script you may refer
to that variable or property.

script A series of written instructions that, when
executed, cause actions in applications or Mac OS
X.

scriptable application An application that can
be controlled by a script. For AppleScript, that
means being responsive to interapplication
messages, called Apple events, sent when a script
command targets the application.

script application An application whose only
function is to run the script associated with it.

script editor An application used to create and
modify scripts.

Script Editor The script-editing application
distributed with AppleScript.

scripting addition A file that provides additional
commands or coercions you can use in scripts. If
a scripting addition is located in the Scripting
Additions folder, its terminology is available for
use by any script.

scripting addition command A command that
is implemented as a scripting addition.

script object A user-defined object that can
combine data (in the form of properties) and
actions (in the form of handlers and additional
script objects).

script object definition A compound statement
that contains a collection of properties, handlers,
and other AppleScript statements.

255
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

G L O S S A R Y

simple statement One that can be written on a
single line. See also compound statement.

simple value A value, such as an integer or a
constant, that does not contain other values.

Standard suite A set of standard AppleScript
terminology that a scriptable application should
support if possible. The Standard suite contains
commands such as count, delete, duplicate,
and make, and classes such as application,
document, and window.

statement A series of lexical elements that follows
a particular AppleScript syntax. Statements can
include keywords, variables, operators, constants,
expressions, and so on. See also compound
statement, simple statement.

statement block One or more statements
enclosed in a compound statement and having an
end statement.

string A synonym for the text class.

styled text Text that may include style and font
information. Not supported in AppleScript 2.0.

suite Within an application's scriptability
information, a grouping of terms associated with
related operations.

synonym An AppleScript word, phrase, or
language element that has the same meaning as
another AppleScript word, phrase, or language
element. For example, the operator does not
equal is a synonym for ≠.

syntax The arrangement of words in an
AppleScript statement.

syntax description The rules for constructing a
valid AppleScript statement of a particular type.

system object An object that is part of a
scriptable element of Mac OS X.

target The recipient of a command. Potential
targets include application objects, script
objects (including the current script), and the
current application.

tell statement A control statement that specifies
the default target for the statements it contains.

test A Boolean expression that specifies the
conditions of a filter or an if statement.

text An ordered series of characters (a text string);
see the text class.

try statement A two-part compound statement
that contains a series of AppleScript statements,
followed by an error handler to be invoked if any
of those statements cause an error.

unary operator An operator that derives a new
value from a single value.

Unicode An international standard that uses a
16-bit encoding to uniquely specify the characters
and symbols for all commonly used languages.

Unicode code point A unique number that
represents a character and allows it to be
represented in an abstract way, independent of
how it is rendered.

Unicode text A class that represents an ordered
series of two-byte Unicode characters.

user-defined command A command that is
implemented by a handler defined in a script
object.

using terms from statement A control statement
that instructs AppleScript to use the terminology
from the specified application in compiling the
enclosed statements.

variable A named container in which to store a
value.

with timeout statement A control statement that
specifies the amount of time AppleScript waits
for application commands to complete before
stopping execution of the script.

with transaction statement A control statement
that allows you to take advantage of applications
that support the notion of a transaction—a
sequence of related events that should be
performed as if they were a single operation, such
that either all of the changes are applied or none
are.

256
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

G L O S S A R Y

This table describes the changes to AppleScript Language Guide.

NotesDate

Updated to describe AppleScript features through Mac OS X v10.5 and
AppleScript 2.0.

2008-03-11

The previous release of AppleScript Language Guide was on May 5, 1999.

257
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

258
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

Symbols

* operator 187
+ operator 188
/ operator 188
= operator 184
> operator 184
>= operator 185
\ character 102
^ operator 189
{} characters 92
| in identifiers 18
| in syntax definitions 16
«» characters 245–247
¬ character 20
÷ operator 188
– operator 188
≠ operator 184
≤ operator 185
≥ operator 185

A

a reference to operator 31, 98, 189, 192
about handler parameter label 219
above handler parameter label 219
absolute object specifiers 30
activate command 112
adding folder items to Folder Actions handler

226
addition operator 188
addition

of date values 89
administrator privileges parameter

of command do shell script 133
after reserved word 181
against handler parameter label 219
alert volume parameter

of command set volume 162
alias class 81

alias
specifying a file by 42

aliases and files 42–44
aliases

working with 43
altering line endings parameter

of command do shell script 133
& (concatenation) operator 191
& operator 184
& operator 191
and operator 183
angle brackets in scripts 245–247
apart from handler parameter label 219
Apple event code 24
Apple events 13
AppleScript character set (Unicode) 17
AppleScript constant 37
AppleScript 37
current application 40

AppleScript global constants 37
AppleScript property
missing value 40
pi constant 38
result 38
text constants 38
text item delimiters 38
version 39

AppleScript suite 109
AppleScript

commands 35
constants 37
defined 13
error numbers 237, 238
fundamentals 25–46
keywords 18, 231–235
lexical conventions 17–24
script objects 59–67
unsupported terms 249
variables and properties 47–57

application class 82
application commands 35
application object 35

259
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Index

applications
remote 44

arbitrary reference form 171
arithmetic, date-time 89
around handler parameter label 219
as operator 32, 189
as parameter

of command choose application 115
of command display alert 128
of command do shell script 133
of command get 134
of command path to (application) 146
of command path to (folder) 149
of command read 153
of command the clipboard 167
of command write 169

as user name parameter
of command mount volume 143

ASCII character command 112
ASCII number command 113
aside from handler parameter label 219
assignment statement 22
associativity, of operators 189
at handler parameter label 219

B

back of reserved words 181
back reserved word 176, 181
backslash character in text 102
beep command 114
before parameter

of command read 152
before reserved word 181
beginning reserved word 181
begins with operator 186
behind reserved word 181
below handler parameter label 219
beneath handler parameter label 219
beside handler parameter label 219
between handler parameter label 219
binary operator 183
Bonjour

and remote applications 44, 122
service types 123

boolean class 84
Boolean constants 21, 40, 85
boolean expressions 202
brackets 15
but keyword 197
buttons parameter

of command display alert 128

of command display dialog 130
by handler parameter label 219

C

cancel button name parameter
of command choose from list 121

cancel button parameter
of command display alert 129
of command display dialog 130

case attribute 198
character element 101
character

elements of a text object 101
chevrons 24, 245
child script objects 63
choose application command 114
choose color command 115
choose file command 116
choose file name command 118
choose folder command 119
choose from list command 120
choose remote application command 122
choose URL command 123
class class 86
class property 81, 82, 84, 86, 87, 88, 91, 92, 94, 96, 97,

99, 100, 106
class

defined 81
reference 81–107

classes
mutable 49

Clipboard Commands suite 109
clipboard info command 124
close access command 124
closing folder window for Folder Actions handler

227
coercion operator (as) 189
coercion

see object conversion 32
comes after operator 184
comes before operator 185
commands

AppleScript 35
application 35
defined 109
direct parameter of 36
reference 109–169
scripting addition 35
target of 36
user-defined 35
waiting for completion of 215

260
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

comments 19
block 20
end-of-line 20

completion
of commands 215

compound statements 23
concatenation operator (&) 184, 191
considering / ignoring (application

responses) control statement 199
considering / ignoring (text comparison)

control statement 197
considering and ignoring statements 197
considering statements (application responses) 199
considering statements (string comparison) 197
constant class 86
constant

defined 20
constants

AppleScript 37
Boolean 21, 40, 85
days of the week 88
months of the year 88
text 103
white space 103

constructor functions 61
containers 30
contains operator 186, 193
contains, is contained by operator 193
contents property 31, 98
continue statement

defined 217
in script objects 65

control statements reference 197–216
conventions in this book 15
copy command 125
count command 126
current application and parent property 40
current application constant 40
current date command 127
current script 40
current target 40

D

date class 87
date string property 88
date, relative 90
date-time arithmetic 89
day property 88
days of the week constants 88
debugging tips 45

flow of control 46

log statements 46
third party debuggers 46

default answer parameter
of command display dialog 130

default button parameter
of command display alert 129
of command display dialog 130

default color parameter
of command choose color 116

default items parameter
of command choose from list 121

default location parameter
of command choose file 117
of command choose file name 118
of command choose folder 119

default name parameter
of command choose file name 118

delay command 127
delegation 66
diacriticals attribute 198
dictionary

defined 26
displaying 26
when not available 245

direct parameter of commands 36
display alert command 128
display dialog command 129
displaying parameter

of command say 157
div operator 188
division operator (÷) 188
do shell script command 132
does not come after operator 185
does not come before operator 185
does not contain operator 187
does not equal operator 184
double angle brackets 245–247
double-quote character 102

E

editable URL parameter
of command choose URL 123

eighth reserved word 176
elements of objects 28
ellipsis in syntax definitions 16
else clause 203
else if clause 203
empty list 92
empty selection allowed parameter

of command choose from list 121
enabling remote applications 44

261
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

end reserved word 181
ends with operator 186, 196
eppc-style specifier 44
equal operator 194
equal, is not equal to operator 194
equals operator 184
error control statement 200
error numbers

AppleScript 237, 238
defined 200

error reporting parameter
of command open location 145

error
expression 200
handlers 211
handling 37
message 200
user cancelled 37

errors
resignaling in scripts 241
signaling in scripts 200
types of 37
working with 241–243

evaluation
defined 23
of expressions 23

Event Log History window 213
event timed out error message 215
every reference form 172
every reserved word 172
exit control statement 203
exit from repeat loop 203
explicit run handlers 77
exponent operator (^) 189
expressions 22
boolean 202
evaluation of 23

F

false constant 40, 85
fifth reserved word 176
file class 91
File Commands suite 109
File Read/Write suite 110
files and aliases 42–44
files, specifying

by alias 42
by name 43
by pathname 43

filter reference form 173
first reserved word 176

Folder Actions reference 225–229
folder creation parameter

of command path to (folder) 149
for handler parameter label 219
for parameter

of command clipboard info 124
of command read 152
of command write 168

fourth reserved word 176
from handler parameter label 219
from parameter

of command path to (folder) 149
of command random number 150
of command read 152

from reserved word 179
from table parameter

of command localized string 140
front of reserved words 181
front reserved word 176, 181
frontmost property 82

G

get command 133
get eof command 135
get volume settings command 135
given handler parameter label 219
giving up after parameter

of command display alert 129
of command display dialog 131

global constants
of AppleScript 37

global variables 49, 52
persistence of 54
scope of 51

greater than operator 184, 195
greater than or equal to operator 185
greater than, less than operator 195

H

handle CGI request (unsupported) 249
handlers

call syntax
labeled parameters 220
positional parameters 222

calling from a tell statement 74
defined 69
defining simple 70
defining syntax

262
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

labeled parameters 219
no parameters 70
positional parameters 222

errors in 73
for errors 211
for stay-open script applications 78–79
idle 78
in script applications 76
libraries of 75
open 77
overview 69–80
quit 79
recursive 73
reference 217–223
run 76
scope of identifiers declared within 56

has parameter
of command system attribute 165

hidden answer parameter
of command display dialog 130

hyphens attribute 198

I

id property 82, 100
ID reference form 175
id reserved word 175
identifiers 18
idle handlers 78
if (compound) control statement 202
if (simple) control statement 202
ignoring statements (application responses) 199
ignoring statements (string comparison) 197
implicit run handlers 77
implicitly specified subcontainers 30
in AppleTalk zone parameter

of command mount volume 143
in back of reserved words 181
in bundle parameter

of command localized string 140
of command path to resource 150

in directory parameter
of command path to resource 150

in front of reserved words 181
in parameter

of command offset 143
of command run script 156
of command store script 163
of command summarize 164

in
for specifying a container 30
with date objects 90

index reference form 176
index reserved word 176
info for command 136
inheritance 62–67

examples of 63
initializing script objects 61
input volume parameter

of command set volume 162
insertion point 36
insertion point object

and index reference form 181
and relative reference form 181

instead of handler parameter label 219
integer class 91
integral division operator 188
internet address (unsupported) 249
Internet suite 110
into handler parameter label 219
invisibles parameter

of command choose file 117
of command choose folder 119
of command list folder 139

is contained by operator 187, 193
is equal to operator 184
is not contained by operator 187
is not equal to operator 194
is not greater than operator 185
is not less than operator 185
is not operator 184
is operator 184
it keyword 40
item element 93
items 92, 99
its reserved word 40

K

keywords, AppleScript 18, 231

L

labeled parameters, of handlers 70
language elements in syntax definitions 15
large lists

inserting in 94
last reserved word 176
launch command 138
length property 92, 97, 101
less than operator 185, 195
less than or equal to operator 185

263
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

libraries of handlers 75
lifetime of variables and properties 52
linefeed constant 103
list class 92
list disks command 139
list folder command 139
lists

inserting in large 94
merging 93

literal expressions 20
load script command 75, 139
local variables 48, 52, 61

scope of 51
localized string command 140
location parameters 36
log command 142
log statements 46
loop variable 206, 207
lowercase letters 198
< operator 185
<= operator 185

M

me keyword 40
merging lists 93
message parameter

of command display alert 128
middle reference form 177
middle reserved word 177
minus symbol (–) 188
Miscellaneous Commands suite 110
missing value constant 40
mod operator 188
month property 88
months of the year constants 88
mount volume command 142
moving folder window for Folder Actions handler

227
multiple selections allowed parameter

of command choose application 115
of command choose file 117
of command choose folder 119
of command choose from list 121

multiplication operator (*) 187
mutable classes 49
my reserved word 66
my

in tell statements 74

N

name property 83
name reference form 178
name

specifying a file by 43
named reserved word 178
nested tell statements 209

examples 210
ninth reserved word 176
not operator 189
number class 94
numeric literal 21

O

object conversion (coercion) 32
object conversion

table of supported conversions 32
object specifiers 23, 29

absolute 30
contents of 29
evaluating with contents property 31
implicitly specified subcontainers 30
in reference objects 31
relative 30

objects
elements of 28
properties of 28
script

initializing 61
parent 63–67
sending commands to 61

using in AppleScript 26
of me

in tell statements 74
of my keyword 40
of parameter

of command offset 143
of type parameter

of command choose file 117
of

for specifying a container 30
with date objects 90

offset command 143
OK button name parameter

of command choose from list 121
on handler parameter label 219
on server parameter

of command mount volume 143
onto handler parameter label 219
open for access command 144

264
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

open handlers 77
open location command 145
opening folder Folder Actions handler 228
operators

binary 183
defined 183
listed, with descriptions 183–189
precedence 189
reference 183–196
unary 183

or operator 183
out of handler parameter label 219
output muted parameter

of command set volume 162
output volume parameter

of command set volume 161
over handler parameter label 219

P

paragraph element 102
parameter variables 61, 217
parameters

direct 36
in continue statements 217
labeled 70
location 36
passing by reference versus value 74
patterned 72
positional 71

parent property 63
parent script objects 63–67
password parameter

of command do shell script 133
path to (application) command 146
path to (folder) command 147
path to resource command 149
pathname

specifying a file by 43
paths, specifying a file with 42
patterned parameters 72
persistence

of global variables 54
of script properties 53

pi constant 38
placeholders in syntax definitions 15
plural object names 172
plus symbol (+) 188
positional parameters, of handlers 71
POSIX file class 95
POSIX files

using with files and aliases 36–44

POSIX path property 81
possessive notation ('s) 30
possessive object names 30
precedence

of attributes 199
of operations 189

properties
declaring 47
lifetime of 52
of objects 28
of script objects 60
scope of 51

property reference form 178
punctuation attribute 198
put, (Deprecated--use copy) 234

Q

quit handlers 79
" character 102
quoted form property 101

R

random number command 150
range reference form 179
raw apple events 247
raw data

displayed by AppleScript 246
entering in a script 246

raw format 245
read command 151
real class 96
record class 96
recursion 73
recursive handlers 73
reference class 98
reference forms 171–181

arbitrary 171
defined 171
every 172
filter 173
ID 175
index 176
middle 177
name 178
property 178
range 179
relative 180

relative object specifiers 30

265
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

relative reference form 180
relative to

with date objects 90
remainder operator 188
remote applications 44

choosing 122
enabling 44
targeting 45

removing folder items from Folder Actions
handler 229

reopen command 138
repeat (forever) control statement 203
repeat (number) times control statement 204
repeat control statements 203
repeat until control statement 205
repeat while control statement 206
repeat with loopVariable (from startValue to

stopValue) control statement 206
repeat with loopVariable (in list) control

statement 207
replacing parameter

of command store script 163
reserved words (see keywords) 231
rest of property 92
rest property 92
Result pane 24, 38
result property 38
result variable 24
result, of statement 24
return character

in text objects 103
return constant 103
return statement 218

in handler definition 69
returning, Deprecated reserved word 234
reverse property 92
RGB color class 99
round command 153
rounding parameter

of command round 154
run command 155
run handlers 76

explicit 77
implicit 77
in script objects 60, 62

run script command 156
running property 83
runTarget parameter

of command run 155

S

saving to parameter
of command say 157

say command 157
scope

of variables and properties 51
shadowing 52, 63

script applications 76
calling 79
handlers for 76
Mac OS 9 compatible 76
modern bundle format 76
startup screen in 76
stay-open 76

script class 99
Script Editor

Event Log History window 46, 213
location in system 25
overview 25

script objects 59–67
child 63
contents of 27
defined 59
initializing 61
parent 63–67
scope of identifiers declared at top level of 53
sending commands to 61
syntax of 59

script properties
persistence of 53
scope of 51

script, current 40
scripting addition

command 35
overview 34

scripting components command 158
Scripting suite 111
second reserved word 176
set command 158
set eof command 160
set the clipboard to command 160
set volume command 161
seventh reserved word 176
short-circuiting, during evaluation 183
showing package contents parameter

of command choose file 117
of command choose folder 120

showing parameter
of command choose URL 123

simple statements 23
since handler parameter label 219
sixth reserved word 176

266
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

size parameter
of command info for 136

slash symbol (/) 188
some reserved word 171
space constant 103
special characters

in identifiers 18
in text 102

Standard suite 111
starting at parameter

of command write 168
starts with operator 186, 196
starts with, ends with operator 196
startup screen in script applications 76
statements 23

compound 23
simple 23

stay-open script applications 76
store script command 162
storing values in variables 22
string class 105
String Commands suite 111
subtraction of date values 89
subtraction operator (–) 188
suites

AppleScript 109
Clipboard Commands 109
File Commands 109
File Read/Write 110
Internet 110
Miscellaneous Commands 110
Scripting 111
Standard 111
String Commands 111
User Interaction 111

summarize command 163
synonyms for whose 173
system attribute command 164
system info command 165

T

tab character
in text objects 103

tab constant 103
target, current 40
target

of commands 36
targeting remote applications 45
tell (compound) control statement 210
tell (simple) control statement 209
tell statements 36, 209

nested 209
nested, examples of 210

tenth reserved word 176
terminating

handler execution 218
repeat statement execution 203

test
Boolean 202
in filter reference form 173

text class 100
text element 102
text item delimiters

AppleScript property 38
text literal 22
text

as replacement for string 100
constants 38, 103
special characters in 102

that reserved word 173
the clipboard command 167
the reserved word (syntactic no-op) 235
then reserved word 203
third reserved word 176
through handler parameter label 219
through reserved word 179
thru handler parameter label 219
thru reserved word 179
time property 88
time string property 89
time to GMT command 167
timeout, default value 214
times reserved word 205
to parameter

of command copy 125
of command random number 151
of command read 152
of command set 158
of command set eof 160
of command write 168

transaction reserved word 216
true constant 40, 85
try control statement 211
try statements 211

U

unary operators 183
under handler parameter label 219
Unicode text class 105
unit types class 106
Unix executable

making script into 20

267
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

unsupported terms 249
until parameter

of command read 152
uppercase letters 198
user cancelled error 37
User Interaction suite 111
user name parameter

of command do shell script 133
user-defined commands 35
using delimiter parameter

of command read 152
using delimiters parameter

of command read 152
using parameter

of command say 157
using terms from control statement 213

V

variables 22
declaring 48
declaring with copy command 51
declaring with set command 49
defined 22
global 49, 51, 52
lifetime of 52
local 48, 51, 52, 61
scope of 51

version property 39, 83
vertical bar character (|) in identifiers 18
vertical bars (|)

in syntax definitions 16

W

waiting until completion parameter
of command say 157

web page (unsupported) 249
weekday property 88
where reserved word 173
while reserved word 206
white space attribute 198
white space constants 103
whose reserved word 173
whose

synonyms for 173
with clause 221
with icon parameter

of command display dialog 131
with parameters parameter

of command run script 156
with password parameter

of command mount volume 143
with prompt parameter

of command choose application 115
of command choose file 117
of command choose file name 118
of command choose folder 119
of command choose from list 121
of command choose remote application 122

with seed parameter
of command random number 151

with timeout control statement 214
with timeout statements 214, 215
with title parameter

of command choose application 115
of command choose from list 121
of command choose remote application 122
of command display dialog 131

with transaction control statement 215
without clause 221
word element 102
working with errors 241
write command 168
write permission parameter

of command open for access 144

Y

year property 88

268
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

I N D E X

	AppleScript Language Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	AppleScript Lexical Conventions
	Character Set
	Identifiers
	Keywords
	Comments
	The Continuation Character
	Literals and Constants
	Boolean
	Constant
	List
	Number
	Record
	Text

	Operators
	Variables
	Expressions
	Statements
	Commands
	Results
	Raw Codes

	AppleScript Fundamentals
	Script Editor Application
	AppleScript and Objects
	What Is in a Script Object
	Properties
	Elements

	Object Specifiers
	What Is in an Object Specifier
	Containers
	Absolute and Relative Object Specifiers
	Object Specifiers in Reference Objects

	Coercion (Object Conversion)
	Scripting Additions
	Commands Overview
	Types of Commands
	Target
	Direct Parameter
	Parameters That Specify Locations

	AppleScript Error Handling
	Global Constants in AppleScript
	AppleScript Constant
	pi
	result
	Text Constants
	text item delimiters
	version

	current application Constant
	missing value Constant
	true, false Constants

	The it and me Keywords
	Aliases and Files
	Specifying Paths
	Working With Aliases
	Working With Files

	Remote Applications
	Enabling Remote Applications
	eppc-Style Specifiers
	Targeting Remote Applications

	Debugging AppleScript Scripts
	Feedback From Your Script
	Logging
	Third Party Debuggers

	Variables and Properties
	Defining Properties
	Declaring Variables
	Local Variables
	Global Variables
	Using the copy and set Commands
	Declaring Variables with the set Command
	Declaring Variables with the copy Command

	Scope of Variables and Properties
	Scope of Properties and Variables Declared in a Script Object
	Scope of Variables Declared in a Handler

	Script Objects
	Defining Script Objects
	Initializing Script Objects
	Sending Commands to Script Objects
	Inheritance in Script Objects
	The AppleScript Inheritance Chain
	Defining Inheritance Through the parent Property
	Some Examples of Inheritance
	Using the continue Statement in Script Objects

	About Handlers
	Handler Basics
	Defining a Simple Handler
	Handlers with Labeled Parameters
	Handlers with Positional Parameters
	Handlers with Patterned Positional Parameters
	Recursive Handlers
	Errors in Handlers
	Passing by Reference Versus Passing by Value
	Calling Handlers in a tell Statement

	Saving and Loading Libraries of Handlers
	Handlers in Script Applications
	run Handlers
	open Handlers
	idle and quit Handlers for Stay-Open Applications
	idle Handlers
	quit Handlers

	Calling a Script Application From a Script

	Class Reference
	alias
	application
	boolean
	class
	constant
	date
	file
	integer
	list
	number
	POSIX file
	real
	record
	reference
	RGB color
	script
	text
	unit types

	Commands Reference
	activate
	ASCII character
	ASCII number
	beep
	choose application
	choose color
	choose file
	choose file name
	choose folder
	choose from list
	choose remote application
	choose URL
	clipboard info
	close access
	copy
	count
	current date
	delay
	display alert
	display dialog
	do shell script
	get
	get eof
	get volume settings
	info for
	launch
	list disks
	list folder
	load script
	localized string
	log
	mount volume
	offset
	open for access
	open location
	path to (application)
	path to (folder)
	path to resource
	random number
	read
	round
	run
	run script
	say
	scripting components
	set
	set eof
	set the clipboard to
	set volume
	store script
	summarize
	system attribute
	system info
	the clipboard
	time to GMT
	write

	Reference Forms
	Arbitrary
	Every
	Filter
	ID
	Index
	Middle
	Name
	Property
	Range
	Relative

	Operators Reference
	& (concatenation)
	text
	record
	All Other Classes

	a reference to
	Examples

	contains, is contained by
	list
	record
	text

	equal, is not equal to
	list
	record
	text

	greater than, less than
	date
	integer, real
	text

	starts with, ends with
	list
	text

	Control Statements Reference
	considering and ignoring Statements
	considering / ignoring (text comparison)
	considering / ignoring (application responses)

	error Statements
	error

	if Statements
	if (simple)
	if (compound)

	repeat Statements
	exit
	repeat (forever)
	repeat (number) times
	repeat until
	repeat while
	repeat with loopVariable (from startValue to stopValue)
	repeat with loopVariable (in list)

	tell Statements
	tell (simple)
	tell (compound)

	try Statements
	try

	using terms from Statements
	using terms from

	with timeout Statements
	with timeout

	with transaction Statements
	with transaction

	Handler Reference
	continue
	return
	Handler Syntax (Labeled Parameters)
	Calling a Handler with Labeled Parameters
	Handler Syntax (Positional Parameters)
	Calling a Handler with Positional Parameters

	Folder Actions Reference
	adding folder items to
	closing folder window for
	moving folder window for
	opening folder
	removing folder items from

	Appendix A: AppleScript Keywords
	Appendix B: Error Numbers and Error Messages
	AppleScript Errors
	Operating System Errors

	Appendix C: Working with Errors
	Catching Errors in a Handler
	Simplified Error Checking

	Appendix D: Double Angle Brackets
	When a Dictionary Is Not Available
	When AppleScript Displays Data in Raw Format
	Entering Script Information in Raw Format
	Sending Raw Apple Events From a Script

	Appendix E: Unsupported Terms
	List of Unsupported Terms

	Glossary
	Revision History
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

