
 Configuring and Migrating Memory on vPars

A Technical White Paper

Introduction ... 2
Memory Categories .. 3

Interleaved and Cell Local Memory .. 3
ILM and CLM Guidelines... 5

Base and Floating Memory ... 6
Base and Floating Memory Guidelines.. 8

Memory Granules – Containers for Physical Memory .. 10
Memory Granules Guidelines.. 11

Memory Resource Assignment... 13
Memory Allocation – Non-live Database ... 13
Memory Allocation and Binding – Live Database.. 14

User Specified Ranges... 16
Memory Migration Management... 18

Tools to Determine Memory Usage... 18
Monitoring the Status of an Online Operation.. 19
Cancelling an Online Operation.. 19
Memory Migration Example.. 19

Experimental Setup .. 20
Memory Usage on vpar1.. 20
Memory Usage on vpar2.. 21
Deletion of Memory from vpar1 ... 21
Addition of the Freed Memory to vpar2... 23

Memory Accounting.. 25
References... 28

 2

Introduction
Virtual Partitions (vPars) is a feature on HP-UX 11i based systems that allows a system administrator to
divide the hardware resources on a single L-class, N-class, and cellular-based hard partition into one
or more logical partitions. This is accomplished through a software layer called the vPars monitor that
resides between the operating system kernel and the firmware. The vPars monitor controls the
ownership of the processors, memory, and I/O resources on the system. For each partition to be
minimally operational, it must contain at least one processor, enough memory to boot and run HP-UX,
and one or more I/O cards connected to storage and LAN. Each partition runs its own copy of the
operating system thereby providing namespace and software fault isolation.

The system administrator can specify the resources for each partition using a command-level interface.
This partitioning information is stored in a file and that file is commonly referred to as the vPars
database. During system boot, the vPars monitor takes inventory of the resources on the system, reads
the vPars database, and assigns the available resources to the defined partitions according to the
partition plan stored in the vPars database. When each partition is launched, the operating system
calls firmware to discover the subset of the system resources it owns. The vPars monitor, with help
from firmware, exposes to each partition’s kernel only those processors, memory, and I/O cards that
the partition owns. Hence, each partition only accesses the subset of resources on the system that it
owns.

The main objective of this document is to describe memory resource configuration in a vPars system
with particular emphasis on memory migration; that is, the ability to dynamically add and delete
memory from partitions. The document describes the various choices available to the user to control
memory assignment to each partition with generic guidelines to follow while using these choices, the
binding of physical memory done by the vPars monitor and the tools available to observe and
validate memory assignment.

The document is intended for system administrators and users of all vPars releases who configure and
manage memory. While perusing this document, users of vPars A.04.xx release can skip the
discussion related to memory migration and users of vPars A.01.xx, A.02.xx and A.03.xx releases
can skip locality and memory migration discussions.

The rest of this document is divided into six chapters:

• The “Memory Categories” chapter describes different memory types available for assignment.

• The “Memory Granules – Containers of Physical Memory” chapter describes the granules,
which are the unit of memory resources available for assignment.

• The “Memory Resource Assignment” chapter describes how monitor assigns memory to each
partition.

• The “User Specified Ranges” chapter describes how user can explicitly control the memory
binding.

• The “Memory Migration Management” chapter describes the tools available to manage
memory migration.

• The “Memory Accounting” chapter details the commands available to the user to check memory
assignment.

 3

Memory Categories
The vPars A.01.xx, A.02.xx and A.03.xx release streams support partitioning on HP-UX 11i v1
systems which only run on uniform memory systems (interleaved memory on cellular systems). The
vPars A.04.xx release steam supports partitioning on HP-UX 11i v2 systems which support memory
locality based optimizations on non-uniform memory access (NUMA) systems. The vPars A.05.xx
release supports partitioning on HP-UX 11i v3 systems which allow online addition and deletion of
memory. In these systems, the locality of the memory or the memory that can be online deleted later
has to be identified as such to the kernel when the partition is booted or when memory is added.
Hence, to allow users to control the type of memory that will be part of the partition, vPars supports
the following memory categories: interleaved memory (ILM), cell local memory (CLM), base memory,
and floating memory. The next section details ILM and CLM. The section after that explains base and
floating memory.

Interleaved and Cell Local Memory
HP-UX 11i v2 and later releases support memory locality based optimizations on NUMA systems. In
these systems the administrator can carve out portions of memory from one or more cells as cell local
memory. The remaining memory from all the cells that is not cell local memory is interleaved at cache
line granularity by firmware during system boot to create interleaved memory with average access
latency. The kernel creates one locality for each memory type with differing access latency,
transparently optimizes placement of data to minimize memory latency and provides APIs [1] to
applications to control the locality they want to use. The applications can take advantage of this by
using processors and memory from the same localities or localities that are close to each other to
achieve better performance.

In A.04.xx and A.05.xx vPars system, the system administrator has a choice of assigning ILM as well
as CLM between partitions. The vPars commands have separate options for ILM and CLM. The
legacy A.01.xx, A.02.xx and A.03.xx release vPars memory options would be considered as ILM. In
order for the user to specify the locality while performing memory operations with the vparcreate or
vparmodify commands, these commands have an additional option that takes the cell number as an
argument when specifying memory sizes. This option also provides the ability to tie processors from
the same locality to the partition. With a cell number, the memory and processors are considered as
cell local memory and cell local processors (CLP) to be allocated from the specified cell.

The system administrator has two choices: configure all the memory as ILM and manage it similar to
the way it was managed in A.01.xx, A.02.xx and A.03.xx release vPars systems or configure both
ILM and CLM and divide it among partitions. The following lists some of the steps that the system
administrator can use to create and use ILM and CLM in the vPars system:

1. Take inventory of the amount of ILM and CLM in each cell using the parstatus command.

 # parstatus –p <hard partition number> –V
and

 # parstatus –c <cell number> ... -V

2. Decide on the number of partitions, the amount of ILM for each partition, and the amount of
CLM for each partition and the cell or cells from which to allocate CLM.

3. Use parmodify to carve out CLM from cells. Cross-check through the parstatus command
that the required amount of CLM has been requested.

 # parmodify –p <nPar > -m <cell number>::::<percentage CLM>% ...

 4

4. Create each partition using vparcreate and assign the required amount of ILM and CLM to
the partition using the memory options of the vparcreate and vparmodify commands.

 # vparcreate –p <vPar> –a mem::<ilm> -a cell:<num>:mem::<clm> ...
 or
 # vparmodify –p <vPar> –a mem::<ilm> -a cell:<num>:mem::<clm> ...

5. If needed, assign CLP to have CPUs and memory from the same locality using the vparcreate
and vparmodify commands.

 # vparcreate –p <vPar> -a cell:<num>:cpu::<clp> ...
 or
 # vparmodify –p <vPar> -a cell:<num>:cpu::<clp> ...

6. Reboot the system and boot the monitor using the newly created database.

In order to illustrate how the memory would be divided up as ILM and CLM, we will consider setting
up a sample vPars system with two partitions: vpar1 and vpar2. The example system contains two
cells: cell 0 and cell 1. Each cell contains 4 GB of memory. The following steps illustrate how ILM and
CLM are created in the system and distributed among vpar1 and vpar2.

First, we need to get an idea of how much memory is available on the system. Invoking the
parstatus command with parstatus –p 0 –V and parstatus –c 0 –c 1 –V shows something
like the following for memory related output (the rest of the output is not included here):

...
Total Good Memory Size : 8.0 GB
Total Interleave Memory: 4.0 GB
...

And

...
Global Cell Number : 0
...
Requested CLM value : 2.0 GB
Allocated CLM value : 2.0 GB
...
Memory OK : 4.00 GB
...
Global Cell Number : 1
...
Requested CLM value : 2.0 GB
Allocated CLM value : 2.0 GB
...
Memory OK : 4.00 GB

The system administrator has already set up 50% of the memory from each cell to be CLM. Hence, the
system contains 2 GB of CLM from cell 0 and 2 GB of CLM from cell 1, and 2 GB of memory from
cell 0 is interleaved with 2 GB memory from cell 1 to yield 4 GB of total ILM. Now, in order to create
the two partitions with 1 GB and 2 GB of ILM respectively, we would invoke the following
vparcreate commands:

vparcreate –p vpar1 –a mem::10241
vparcreate –p vpar2 –a mem::2048

1 The examples used in this document might assign 512 MB or 1024 MB of memory while creating partitions. The actual amount of memory that

a partition requires depends on the HP-UX release that partition will contain. Hence, system administrators should refer to the HP-UX release
documentation to determine the minimum amount of memory required while creating or configuring the partitions.

 5

Note that in the above examples, we have merely specified a memory size without any particular cell
information. Hence the memory is allocated from the ILM present on the system. Now, if we need to
add 2 GB of CLM from cell 0 to vpar1 and 1 GB of CLM from cell 1 to vpar2 and also add 2 CPUs
from cell 0 to vpar1 and 2 CPUs from cell 1 to vpar2, we would do the following:

vparmodify –p vpar1 –a cell:0:mem::2048 –a cell:0:cpu::2
vparmodify –p vpar2 –a cell:1:mem::1024 –a cell:1:cpu::2

Figure 1 below depicts this memory distribution for the above example on an HP Integrity server when
both vpar1 and vpar2 are live. The low end of the memory is at the left and the high end is at the
right in the figure. The system contains 4 GB of ILM starting from address 0, 2 GB of CLM from cell 0
starting from address 0x70000000000 and 2 GB of CLM from cell 1 starting from address
0x72000000000. Approximately 384 MB from address 0 is taken by the monitor and firmware on
this example system. Note: Memory consumed by the monitor and firmware can vary.

Figure 1 ILM and CLM Partitioning

ILM and CLM Guidelines
The following provides some guidelines on how to use ILM and CLM in a vPars system:

• If ease of management is the objective, configure all the memory as ILM unless one or more
partitions in the system are going to use applications that make use of locality APIs to optimize
performance. Having all memory as ILM makes it easier to assign and move memory and
processors between partitions.

• When configuring CLM on the system, make sure that there is enough ILM reserved for each
partition to load and run the kernel. The PA-RISC HP-UX kernel needs ILM to boot. Even though
on the HP Integrity server, HP-UX kernel might boot with just CLM, it is not a supported HP-UX
configuration.

• When configuring CLM and CLP for each partition, refer to the HP-UX NUMA documentation to
decide on how to optimize the performance [1,2].

• The vPars monitor does not do any distribution of processors and memory based on locality. It
requires the system administrator to use the CLM and CLP options to appropriately configure
partitions. Hence, when adding or removing CLM from a cell, take into consideration the CLP

 6

as well. Assigning processors from one cell and cell local memory from another cell might lead
to less optimal performance due to increased distance between processor and memory locality.
The HP-UX kernel optimizes and performs better when it has processors, memory, and if
possible I/O from the same locality. For more information on processor configuration in a vPars
environment refer to the CPU Configuration Guidelines for vPars white paper [3].

Base and Floating Memory
Starting with the A.05.xx release, online migration of memory is supported on vPars. This means
memory can be added to and deleted from a live vPars partition without requiring reboot. There are
two constraints. First, the HP-UX must be memory migration capable to make use of this feature.
Memory migration capability is present in releases starting with HP-UX 11i v3. Second, on HP
Integrity servers, firmware must also be memory migration capable. Please refer to the HP-UX Virtual
Partitions Ordering and Configuration Guide [4] for the firmware version required for memory
migration.

When memory is added, the HP-UX kernel discovers the new memory, updates its data structures to
include the new memory pages, and allows the applications to make use of the new memory that
became available. When memory is to be deleted, the HP-UX kernel selects the memory pages to
evacuate, moves the contents in that memory to some other free pages or to disk, and then removes
these memory pages from its data structures. After the kernel completes the memory delete operation,
the memory is marked as free and can be assigned to other partitions. Executing the vparstatus
command with the –A option after the completion of the delete operation displays the memory
available for assignment.

During deletion, there are certain memory contents that cannot be evacuated to another free page.
Examples of such contents include kernel code and certain kernel data structures. While allocating
memory during boot or during run-time, the HP-UX kernel needs to know in advance what memory to
use for such contents that cannot be evacuated. To aid the HP-UX kernel in this differentiation, the
vPars software subdivides ILM and CLM into two types: base memory and floating memory.

The system administrator while picking memory for the partition now has four choices: (i) the amount
of ILM that will be base memory, (ii) the amount of ILM that will be floating memory, (iii) the amount of
memory from each cell that will be base memory and (iv) the amount of memory from each cell that
will be floating memory. The ILM and CLM options in the vPars commands have a new attribute that
allows the system administrator to specify whether the memory being added or removed is base or
floating. The amount of memory that is specified as base and floating is stored in the vPars database.
Hence, the amount of memory the partition gets as base and floating persists across partition and
monitor reboots.

During boot or when the memory is added online, the monitor notifies the kernel which memory
pages are base and floating. The kernel uses base memory pages for contents that it cannot
evacuate. On the other hand, for contents that it can evacuate, the kernel will use either floating or
base memory. Hence, memory that is marked as base cannot be deleted when the partition is live. It
can only be deleted when the partition is down. Memory that is marked as floating can be deleted
when the partition is live or when the partition is down.

There is one key differentiation in management of ILM and CLM versus base and floating memory in
the system. If the system administrator has to change the amount of ILM and CLM in the system, it will
require a reboot of the system and the monitor2. For example, if the system contains 4 GB of ILM
which is divided among partitions and the system administrator wants to increase the ILM to 6 GB
and reduce the amount of CLM in the system by 2 GB, it will require a system and monitor reboot. On

2 Reboot is necessary because firmware must re-interleave the memory and can do so only with a hard partition reset.

 7

the other hand, changing the amount of memory that is base and floating does not require a system
or monitor reboot. Any available memory in the vPars monitor can be used as base or floating while
assigning it to a partition. When the partition boots or when the memory is added online, the kernel
gets the specified amount as base or floating. Once the memory is removed from the partition and
becomes available, it can be used either as base or floating while assigning to other partitions.

The following lists some of the base/floating memory rules:

1. When no attribute is specified the memory defaults to base. This provides backward
compatibility for earlier vPars releases where all memory was treated as base by the kernel and
the kernel did not allow removal of memory when live. Hence, base memory can be added or
deleted without specifying any attribute or by explicitly including the ‘:b[ase]’ attribute. The
following lists syntaxes to add base ILM and CLM.

 # vparcreate –p <vPar> –a mem::<ilm>:[b[ase]] ...
 # vparcreate –p <vPar> -a cell:<num>:mem::<clm>:[b[ase]] ...
 # vparmodify –p <vPar> –a mem::<ilm>:[b[ase]] ...
 # vparmodify –p <vPar> -a cell:<num>:mem::<clm>:[b[ase]] ...

2. Floating memory requires explicit specification of the attribute ‘:f[loat]’ during add/delete.

The following lists syntaxes to add floating ILM and CLM.

 # vparcreate –p <vPar> –a mem::<ilm>:f[loat] ...
 # vparcreate –p <vPar> -a cell:<num>:mem::<clm>:f[loat] ...
 # vparmodify –p <vPar> –a mem::<ilm>:f[loat] ...
 # vparmodify –p <vPar> -a cell:<num>:mem::<clm>:f[loat] ...

3. Base memory can be added when the partition is live or when it is down. To delete base

memory, the partition must be down.

4. Floating memory can be added or deleted when the partition is live or down.

5. Base and floating memory can be added or deleted in one command line.

 # vparmodify –p <vPar> –a mem::<ilm> –a cell:<num>:mem::<clm>:f ...

6. The HP-UX kernel accepts either an add or a delete operation but does not accept both
simultaneously. Hence, add and delete cannot be performed in the same command when the
partition is live. For example, if the partition is live, the add and delete operations must be
separated into two commands as given below.

 # vparmodify –p <vPar> –a mem::<ilm>
 # vparmodify –p <vPar> –d cell:<num>:mem::<clm>:f

 Combining the above operations into one single command as given below fails.

 # vparmodify –p <vPar> –a mem::<ilm> –d cell:<num>:mem::<clm>:f

In order to illustrate base and floating memory, let us revisit the configuration discussed in the
previous section and set up a sample vPars system with base and floating memory. To reiterate the
setup, the system contains 2 GB of CLM from cell 0, 2 GB of CLM from cell 1, and 4 GB of total ILM.
Now, in order to create the two partitions (vpar1 with 512 MB of base and 1 GB of floating ILM and
vpar2 with 1 GB of base and 512 MB of floating ILM) we would invoke the following vparcreate
commands:

vparcreate –p vpar1 –a mem::512 –a mem::1024:f
vparcreate –p vpar2 –a mem::1024 –a mem::512:f

 8

To add 1 GB as base and 512 MB as floating CLM from cell 0 to vpar1 and 512 MB as base and
512 MB as floating CLM from cell 1 to vpar2, we would do the following:

vparmodify –p vpar1 –a cell:0:mem::1024 –a cell:0:mem::512:f
vparmodify –p vpar2 –a cell:1:mem::512 –a cell:1:mem::512:f

Assuming both vpar1 and vpar2 are live, to remove 512 MB of floating ILM from vpar2 and add it to
vpar1 as base ILM, we would do the following:

vparmodify –p vpar2 –d mem::512:f
vparmodify –p vpar1 –a mem::512

To remove 512 MB of base ILM from vpar1 and add it to vpar2 as floating ILM, we would shut down
vpar1 and once it is down issue the following commands to transfer memory from vpar1 to vpar2 and
then boot vpar1 back up:

vparmodify –p vpar1 –d mem::512
vparmodify –p vpar2 –a mem::512:f

Figure 2 below is an extension of Figure 1 and shows the memory distribution for the above example
with base and floating ILM and CLM when both vpar1 and vpar2 are live. At the end of the last
operation, vpar1 contains 512 MB base ILM, 1024 MB floating ILM, 1024 MB base CLM from cell 0
and 512 MB floating CLM from cell 0. vpar2 contains 1024 MB base ILM, 512 MB floating ILM,
512 MB base CLM from cell 1 and 512 MB floating CLM from cell 1. As will be explained later, the
vPar monitor tries to allocate base memory below the floating memory within each locality when the
partition is booted.

Figure 2 Base and Floating Memory Partitioning

Base and Floating Memory Guidelines
The following provides some guidelines on how to use base and floating memory in a vPars system:

• The system administrator is encouraged to configure enough base memory during partition boot
to achieve the required baseline application performance taking into consideration the
following two constraints:

Ø The kernel has more flexibility in using base memory. The kernel restricts the use of
floating memory to contents that it can later relocate if it is selected for deletion. Hence,

 9

a system with all base memory might perform better compared with another system
with the same amount of memory but divided between base and floating memory.

Ø Some kernel sub-systems and applications do their allocations based on memory
discovered during boot time. These subsystems or applications might allocate their
cache based on the amount of base memory available to the kernel during boot time
and might not scale that cache when more base memory is later added online. Hence,
the performance of a system that is booted with less memory followed by online add of
memory might not be equal to a system with the same amount of memory but all
available during boot.

• For processor and I/O resources in a given locality, the kernel might optimize the memory
access latency by allocating data structures from base memory within that locality. Hence, it is
better to configure some amount of base memory from a cell if the partition is going to have
processors and I/O from the same cell.

• Initial measurement has shown that the HP-UX kernel takes about 1 second to add or delete 1
GB of memory on an idle or lightly loaded system. In addition to the time taken by the HP-UX
kernel, the vPars commands and monitor might take additional time of up to a second to
process addition or deletion. The times quoted here can increase in future releases. On the
other hand, on a system with heavy memory pressure, the HP-UX kernel might take minutes or
even hours to evacuate memory. Hence, it is advisable not to delete memory on a loaded
system. Such a constraint does not exist while adding more memory. The system administrator
can add memory anticipating memory load or during memory load.

Ø When system takes more time to delete or does not make forward progress on
deletion, it may be helpful to cancel the operation (cancel is discussed in the “Memory
Migration Management” chapter) and split the single large memory delete operation
into two or more small memory delete operations. For example, if the partition contains
a large amount of floating memory, instead of deleting all the floating memory in one
delete operation, it may help to split it into multiple small delete operations each
consisting of 10% to 25% of floating memory.

• The HP-UX kernel requires a certain percentage of total memory to be base memory to assure
expected system performance and ensure that there is adequate memory for critical system
needs. The following table shows the minimum amount of memory that must be configured as
base memory for a given total memory size. Some applications may need more base memory
than what is recommended below.

Physical Memory
(total)

Base Memory
(minimum)

1.5 GB to 3 GB 1.5 GB3
3 GB to 8 GB ½ of physical memory

8 GB to 16 GB 4 GB
>16 GB ¼ of physical memory

During boot, if enough memory is not configured as base, the kernel might convert some of the
floating memory into base. When that happens, the vPars monitor updates the vPars database
to reflect the increase in base memory and decrease in floating memory for that partition.

3 The HP-UX 11i v3 requires minimum of 1.5GB of base memory.

 10

Memory Granules – Containers for Physical Memory
The granule (aka segment) denotes the unit of memory by which the user can assign or remove
memory resources to a partition. In the A.01.xx, A.02.xx and A.03.xx vPars releases, the vPars
software fixes the granule size at 64 MB and does not provide any flexibility to the system
administrator to change it. The vPars A.04.xx and A.05.xx releases allow the system administrator to
specify the granule size as a power of two multiple of 64 MB: 64 MB, 128 MB, 256 MB, and so on.
Moreover, the system administrator can choose different granule sizes for ILM and CLM.

The vPars software logically partitions the physical memory address space in the system into equal
sized and aligned granules and uses these as containers for valid physical memory within that
address space. For example, if the granule size is 64 MB, the physical address space is divided into
0 to 64 MB for the first granule, 64 MB to 128 MB for the second granule and so on. If during boot,
the vPars monitor discovers valid physical memory from 32 MB to 128 MB, then the first granule will
contain 32MB of memory and second granule will contain 64MB of memory. When a granule is not
fully populated to its size with memory as demonstrated with the first granule in the above example,
the granule is said to contain a memory hole.

The ILM and CLM granule size information specified by the system administrator is stored in the vPars
database when it is created. For A.04.xx and A.05.xx vPars releases, the default size is 128 MB for
both ILM and CLM. On HP Integrity servers, the firmware also divides the memory into memory
objects based on the granule size. Hence, to inform firmware, in addition to the vPars database, the
granule size information is also stored in non-volatile RAM (NVRAM). The following provides details
on how to configure granule size in the A.04.xx and A.05.xx vPars releases. As mentioned earlier,
this configuration is not required in the A.01.xx, A.02.xx and A.03.xx vPars releases as the granule
size is fixed at 64 MB.

1. On HP Integrity servers, there is a limit in firmware on the number of memory objects that can
be created. Determine what the limit is as follows:

a. Find out the maximum CLM any cell has and the total ILM in the system using the
parstatus command.

 # parstatus –c <cell number>... –V
 # parstatus –p <hard partition number> -V

b. Change the mode to vPars and issue the vparenv command to find out the maximum
number of ILM and per cell CLM granules that can be created on the system.

 # vparenv –m vPars
 # vparenv

c. Divide the total ILM by the maximum number of ILM granules to determine the minimum
ILM granule size.

d. Divide the maximum CLM found in any cell by the maximum number of per cell CLM
granules to determine the minimum CLM granule size.

2. Determine the ILM and CLM granule size for the system making sure it is a power of two
multiple of 64 MB. For HP Integrity servers, it should be equal to or greater than the minimum
size evaluated in the previous step.

 11

3. Create the first partition and the vPars database and specify the ILM and CLM granule size
using the -g option. On HP Integrity servers, specify the y attribute to update the firmware
NVRAM with the granule size.

 # vparcreate –p <vPar> -D <database> -g ilm:<size>[:y] –g clm:<size>[:y] ..

4. When ready to move to a new granule size, shut down the system and boot the monitor with
the new database.

To illustrate further, let us consider the same setup discussed in previous chapters. Since the setup is
an HP Integrity server, we need to find the minimum granule size using the vparenv command. We
already know that the maximum CLM in any cell is 2 GB and total ILM is 4 GB on the example
system.

vparenv
vparenv: The next boot mode setting is "vPars".
...
vparenv: Note: The maximum possible CLM granules per cell is 256.
vparenv: Note: The maximum possible ILM granules for this system is 1024.

The example system is already set to vPars mode for next boot. The maximum number of CLM
granules per cell is 256 and maximum number of ILM granules is 1024. Hence, dividing the size by
maximum granules, we get 8 MB for CLM (2 GB divided by 256) and 4 MB (4 GB divided by 1024)
for ILM. This is well below the supported minimum of 64 MB. Assuming that we want to create a new
database called vpdb.512 with both ILM and CLM granule size of 512 MB and update the NVRAM
as well:

vparcreate –p vpar1 –D /stand/vpdb.512 –g ilm:512:y –g clm:512:y ...

Figure 3 below is an extension of Figure 2 and shows the memory distribution with 512 MB CLM and
ILM granules as logical containers of underlying physical memory. As can be seen, the monitor and
firmware occupies 384 MB in the first granule. Hence, the first granule is said to contain a memory
hole of 384 MB with 128 MB as assignable memory. That granule is not yet assigned to any
partition.

Figure 3. ILM and CLM Granule Containers

Memory Granules Guidelines
The following provides some guidelines on setting the granule size:

 12

• On HP Integrity servers, if the system contains a significant number of granules, it might
increase the boot time of partitions that are running the prior HP-UX 11i v2 release. Hence, if
the partition is running HP-UX 11i v2 and boot speed is a strong requirement, choose a large
granule size. The significant number of granules does not impact the boot time of partitions
running HP-UX 11i v3 and might not impact the boot time of partitions that run future HP-UX 11i
v2 releases.

• A very large granule size limits the number of partitions that can be created or might impact the
amount of memory a partition gets. For example, if the system contains 4 GB of ILM, choosing
1024 MB as the ILM granule size limits the number of partitions to 4 or less since the system
will contain four granules each with memory equal to or less than 1024 MB. Moreover,
memory contained in one or more granules can be less than 1024 MB because of memory
consumed by vPars monitor and firmware. Hence, do not set the granule size such that all
partitions are limited to a couple of granules at best. If not much memory movement will occur
between partitions once they are created, set the granule size such that each partition gets at
least a few granules.

• If periodic movements of memory between partitions (live or down) is a strong requirement, set
the granule size to the minimum amount of memory that will be moved between partitions. For
example, if your configuration is a small memory system and 128 MB is the minimum amount
of ILM that will be moved between partitions, then set the ILM granule size to 128 MB. On the
other hand, if it is a large memory system and 2 GB is the minimum amount of ILM that will be
moved between partitions, then set the ILM granule size to 2 GB.

• Changing granule size requires system and monitor reboot. If you plan to use different granule
sizes during different periods of time, create a vPars database for each granule size and boot
the vPars monitor with that database when the switch is required. On HP Integrity servers,
booting the monitor with a different granule size requires an update of granule size in NVRAM.
Unless that is done, the vPars monitor will reboot the system when it finds that the granule size
in NVRAM differs from the granule size in the vPars database. The vparenv command can be
used to change the granule size in the NVRAM, as shown below, before rebooting the system
to use the new database containing the new granule size:

 # vparenv -g ilm:<size> –g clm:<size>

• The HP-UX 11i v3 kernel limits the large page size to the size of granule. Hence, when the
granule size is small it can sometimes lead to loss in performance especially if the partition
contains applications that benefit from large page sizes.

• On PA-RISC platforms, each partition’s HP-UX kernel requires memory below 2 GB to boot and
run. Memory below 2 GB is ILM. A portion of the first memory granule will be taken by the
vPars monitor for its code and data and hence cannot be used for the partition’s HP-UX kernel.
Excluding the first ILM granule, there should be at least one ILM granule below 2 GB for each
partition’s kernel. For example, if the granule size is 256 MB, there are 8 granules below 2
GB. Excluding the first granule, there are seven granules. On such a system, the system
administrator can create a maximum of seven partitions assuming the size of each partition’s
kernel is less than 256 MB. Hence, while choosing ILM granule size on PA-RISC platforms, the
system administrator should also consider the maximum number of vPars partitions planned for
the system4.

4 The size of the granule does not impact boot time of HP-UX 11i v2 kernel on PA-RISC platforms.

 13

Memory Resource Assignment
In a vPars system, by default, a partition does not get any memory when it is created. Hence, the
memory required for a partition must be explicitly added. There are two parts to the memory
assignment: the amount and the actual address ranges that form this amount. This chapter describes
how to assign memory while creating the database, how the vPars monitor divides the memory that it
finds among partitions during monitor boot, how memory ranges get bound or unbound during
partition boot, shut down, online add and delete, and some of the side effects of the binding.

The first section describes the division of memory between partitions while creating and modifying a
non-live5 database. The second section describes the memory operations on a live database including
partition boot, online add, and online delete.

Memory Allocation – Non-live Database
The vPars software does not validate the resources that are assigned to each partition against the
resources that are present in the system where the non-live database is being modified. With respect
to memory, the system administrator must take inventory of the physical memory of each type (ILM
and CLM in each cell) on the target system and reduce from that the memory that will be taken by
firmware and vPars monitor prior to creating the database and assigning memory to the partition. The
memory assigned to each partition is known as requested memory and vPars software allows the
modification without checking whether it can allocate the requested memory when this database is
actually used later to partition the target system.

When the vPars monitor is booted, it takes inventory of the memory of each type available for use.
The monitor then allocates each partition’s request based on the order in which the partitions are
found in the database. The base memory request of each partition in the database is satisfied before
any floating memory request. If, during allocation, the amount of memory available is less than the
amount of memory requested whatever available is allocated to the partition. Hence, if total ILM or
CLM memory requested in the database is more than the available ILM or CLM in the system, one or
more partitions at the end gets less memory or zero memory.

In the example setup in previous chapter, the system contains: 4 GB ILM, 2 GB of CLM from cell 0
and 2 GB of CLM from cell 1. Assuming the system administrator creates vpar1 before vpar2 and
then assigns 1 GB of ILM as base and 1GB of ILM as floating to vpar1 and vpar2. After the monitor
boot, the available ILM is 3712 MB because 384 MB out of the 4 GB is used by the monitor and
firmware. The vPars monitor allocates base memory first. Hence, vpar1 and vpar2 each get 1 GB of
base memory. However, for floating memory, vpar1 will get 1 GB of floating memory whereas vpar2
will get 640 MB. Hence, vpar2 gets less floating memory than what it requested. To avoid such
oversubscription, the system administrator can do one of the following:

1. Do not assign all the memory in the system among partitions. Instead leave some amount of
memory free for use by vPars monitor and firmware (described in more detail later in Memory
Accounting Chapter) while assigning memory to partitions.

2. Create just one partition and assign the required memory to the partition. After that, boot the
monitor and the partition and take inventory of the actual available memory using vparstatus
–A and then create rest of the partitions assigning to them available memory.

5 A database is non-live or alternate database under following two conditions: (i) HP-UX is booted stand-alone (not under vPars monitor) and

vPars commands are used to create and modify the database. (ii) HP-UX is booted under vPars monitor, however, the database being created
or modified is the database that the vPars monitor is not currently using.

 14

Memory Allocation and Binding – Live Database
Once booted, the vPars monitor maintains a memory copy of the file database. Any resource
modification to the partition in this live database is validated against the available resources. Hence,
when ILM or CLM memory is added, the vPars monitor checks whether the requested amount is
available. If not, the system administrator knows when the vPars command returns if the memory
allocated is less than the requested amount.

When a partition is down, the allocated memory indicates the amount, type, and locality of memory
that has been reserved for it. It does not indicate the actual address ranges that will form this
allocated memory. The memory granules that make up the address ranges are bound to the partition
when the partition is booted. Hence, when the partition is down, the vparstatus –v output only
indicates the amount of memory reserved to the partition. When the partition is live, the output (only
in A.04.xx and A.05.xx vPars releases) contains the actual address ranges that form the amount of
memory. To bind granules, the vPars monitor starts from the low address end of each ILM and CLM
memory type and binds the available granules for base memory first and then binds the granules for
floating memory. The vPars monitor binds the base memory at the low end because during early boot
firmware and HP-UX kernel allocates memory at the low end for contents that they cannot evacuate.
When the partition shuts down, the binding between the granules and the partition is removed. The
next time the partition boots, it is not guaranteed that the partition will get same granules and hence
the address ranges.

For example, as shown in Figure 3 in Memory Granules Chapter, when vpar1 is booted first, the
monitor starts from low end of ILM and CLM on cell 0 and binds the first available granules to base
and then binds the floating granules. When partition vpar2 is booted next, monitor binds the ILM
granules above vpar1 ILM granules as base followed by floating. Figure 4 below shows what
happens when both vpar1 and vpar2 are shutdown and then vpar2 is booted first and then vpar1.
As can be seen the granules and hence the address ranges vpar1 and vpar2 get are different
because the binding is removed when partitions go down and a rebinding is done based on the
available granules at the time the partition is booted.

Figure 4. Change of Address Ranges after Reboot

When a partition is live, the allocation is immediately followed by binding during memory add.
Similarly when memory is deleted, the unbinding of the granules is followed by a reduction in amount
of memory that the partition owns. During add, the vPars monitor starts from the low address and
binds the available granules as each command option is processed. Then the HP-UX kernel in the
partition adds these memory ranges to its usable physical memory. During deletion, the vPars monitor
passes the amount of memory specified to the HP-UX kernel and the HP-UX kernel selects the granules

 15

to delete to optimize the deletion time. Hence, the granules selected for deletion need not be in any
specific order.

The following lists some of the side effects related to memory granule binding:

1. As evident from the example, due to the dynamism of memory binding, the ILM and CLM
address ranges associated with a partition change across reboots, deletes and adds. Hence,
the system administrator should not rely on a partition getting the same memory address
ranges.

2. If the system contains one or more memory granules with holes, the sum of the address ranges
during add, delete, or boot can vary slightly than the request. Suppose the granule size is 512
MB and the system contains four available granules: 512 MB, 480 MB, 400 MB and 420 MB.
The following details these variations:

a. If the partition that is being booted is allocated 1024 MB, it might get 512 MB and
480 MB granules, the sum of which is 992 MB instead of the1024 MB.

b. During the next boot, if the only available granules are 400 MB and 420 MB, then that
partition will get a total of 820 MB instead of the 992 MB it got during previous boot.

c. If the add request to a live partition is 512 MB and the available granules are 400 MB
and 420 MB, the partition might get the 420 MB granule.

d. If the delete request is 512 MB and the floating granule sizes in the live partition are
512 MB and 400 MB, the kernel might select 400 MB granule to delete if it can
evacuate it faster.

3. As explained in the previous chapter, on PA-RISC platforms, the memory granules below 2 GB
are used only for the partition’s kernel. Hence, during boot, the vPars monitor binds only the
required number of granules below 2 GB to load the partition’s kernel and the remaining are
picked from memory granules above 2 GB.

 16

User Specified Ranges
The previous chapter described how the system administrator can specify the amount of memory, the
type and the locality required for the partition and let the vPars monitor choose the ranges that will be
part of the partition. Instead of letting the vPars monitor pick the ranges, the system administrator can
explicitly specify one or more address ranges, known as user specified ranges, within which all or a
portion of the requested memory should reside. This chapter describes when to use them, how to use
them and the side effects of using them.

The preferred way to bind memory to the partition is to let the vPars monitor choose the memory
range during boot and online add instead of explicitly binding it using user specified ranges as
described in this chapter. Explicit binding should only be done if there is a specific circumstance that
necessitates it. Following is one such example:

On PA-RISC platforms, the vPars monitor assigns one or more granules below 2 GB based on the
current size of the kernel. If later the kernel size6 is increased significantly and rebooted, the vPars
monitor might not be able to find enough contiguous granules below 2 GB to fit the new kernel if all
the memory in the system is being used by active partitions. To avoid this problem, the user can
explicitly bind contiguous memory below 2 GB taking into account future kernel growth of the
partition. Note that each partition will require memory below 2 GB to boot. Hence, binding more
memory below 2 GB to one partition might make other partitions unable to boot.

The following provides the various syntaxes to add or delete memory ranges. Each range consists of
the starting address of the range and the size of the range and optional attribute to specify whether it
is base or floating. The default is base for add. For delete, the type is optional because the vPars
software can determine the type of the range based on the address range being deleted.

vparcreate –p <vPar> .. –a mem:::<address>:<size>[:b|base|f|float] ..
vparmodify –p <vPar> .. –a|-d mem:::<address>:<size>[:b|base|f|float] ..

For example, to create a partition with 1 GB of base ILM memory, 1 GB of floating ILM memory, and
then assign user specified base range of 512 MB at starting address 0x20000000 and user
specified floating range of 512 MB starting at starting address 0x100000000, the commands would
be:

vparcreate –p vpar1 .. –a mem::1024 –a mem::1024:f ..
vparmodify –p vpar1 .. –a mem:::0x20000000:512 –a mem:::0x100000000:512:f ..

The behavior of the user specified range depends on whether it is a non-live database or a down
partition or a live partition. The following lists some of the user specified range rules:

1. The size of the range must be a multiple of the granule size. Both end points of a range must be
aligned on a granule boundary.

2. When a partition is down or belongs to a non-live database, addition or deletion of a range
does not increase or decrease the amount of memory the partition owns. It only results in early
binding of the address range.

a. In the example above, if vpar1 is down, after the addition of a range, the total ILM
owned by the partition continues to be 1 GB base and 1 GB floating. When the
partition is booted, instead of binding granules for the whole 2 GB, the vPars monitor
will only bind granules for the remaining 512 MB base and 512 MB floating because

6 Refer to the HP-UX Virtual Partitions Administrator's Guide [4] Appendix C for details on how to determine kernel size.

 17

the user has already explicitly bound 512 MB of address range as base and 512 MB
of address range as floating.

3. When the partition is live, add or delete of a user specified range results in an increase or
decrease of memory that the partition owns. In the example above, if vpar1 is live, at the end
of the operation vpar1 will own 1.5 GB of base and 1.5 GB of floating ILM.

4. When a partition is down, the partition should contain enough unbound memory of that type
(base or floating ILM or CLM) before a range can be added. In the above example, assuming
vpar1 is in down state, the range add will fail, if the size of the base or floating range exceeds
1 GB as that is more than the 1 GB of base or floating allocated to the partition. If another
command is issued in the above example to add a range, the size of the base or floating range
cannot exceed 512 MB because that is the amount of base or floating ILM that is not yet
bound.

5. When a partition is down or belongs to a non-live database, the allocated memory of a given
type cannot go below the sum of the address ranges. In the above example, a command to
delete memory as given below fails because deleting 768 MB of floating ILM memory takes the
allocated floating ILM to 256 MB which is less than the 512 MB address range bound to the
partition.

 # vparmodify –p vpar1 –d mem::768:f

6. When a partition belongs to a live database, there should be valid memory within the specified
range. A range cannot overlap a memory hole.

7. User specified ranges should be deleted only by using the delete range option. There is an
exception to this rule:

During boot, the HP-UX kernel might convert any floating granule to base granule (as
described in Memory Granules chapter). Similarly during delete from a live partition, the
HP-UX kernel might select any floating granule to optimize the deletion time. If the floating
granule that was selected by the HP-UX kernel belongs to a user specified floating range,
the vPars monitor deletes the user specified floating range and the explicit binding between
the granules and the partition. The granules will still be part of the partition as monitor-
bound granules.

8. The vPars software does not validate the range for valid memory or type of memory while
adding to a non-live database. Hence, the system administrator should ensure that the target
system contains valid memory of that type within the specified end points. During monitor boot,
the requested range is deleted if there is no valid memory within the range or if the addition of
the range results in the amount of bound base or floating ILM or CLM to exceed the amount of
base or floating ILM or CLM that has been allocated. In the above example, if there is no valid
memory at address 0x20000000, the first range is deleted. If the memory at address
0x100000000 belongs to cell 0, the second range is deleted because no CLM from cell 0 is
allocated to the partition.

 18

Memory Migration Management
This chapter describes the tools available to the system administrator to manage and monitor memory
migration before, during, and after the operation. Following are some of the tools available to the
system administrator to manage and monitor memory migration:

• vparstatus command output (-v and -A options).

• GlancePlus performance monitor (gpm –rpt MemoryReport).

• EVM(5) event management progress logs.

• Cancel operation in the vparmodify command (-C option).

The following sections describe in detail when and how these tools can be used. The last section in
this chapter demonstrates the usage of these tools through an example memory migration operation.

Tools to Determine Memory Usage
Before adding or removing memory from the partition, it is critical for the system administrator to
determine the memory usage in the partition. The memory usage on a live partition can be
determined using GlancePlus reporting tool. The GlancePlus has two memory related reports –
MemoryReport and MemoryUsageGraph. The example detailed in the last section of this chapter uses
MemoryReport. The MemoryReport lists the amount of memory free (Free Mem), amount of memory
used by the kernel (Sys Mem) and user (User Mem) and amount of memory used by buffer and file
cache (Buf Cache and FileCache). The report also indicates whether pages are getting swapped to
disk (Paged Out) which is the case when system is low on free memory. MemoryUsageGraph depicts
similar information in graphical form.

Before issuing the command to delete memory from live partition:

1. Find the amount of floating memory the partition has in each locality using vparstatus (-v or
–M option). The amount selected from each locality to delete should be less than or equal to this
amount.

2. Find the amount of free memory (Free Mem) in the partition using GlancePlus (gpm –rpt
MemoryReport). If the amount being deleted is less than free memory, skip the rest of the steps
below.

3. Find the current file cache size (FileCache) using GlancePlus (gpm –rpt MemoryReport).

4. Find the minimum file cache size (kctune filecache_min filecache_max).

5. Add the free memory from step 2 to the current file cache size from step 3 and subtract the
minimum file cache size from step 4 to determine the amount of freeable memory.

6. If the memory being deleted is more than the amount calculated in step 5, reduce the amount to
delete to less than or equal to that amount.

Before issuing the command to add memory to live partition:

1. Find out the amount of free memory in the partition using GlancePlus (gpm –rpt
MemoryReport) and then decide on the amount to add.

 19

2. Find out the available amount of memory in each locality using the vparstatus (-A option)
output. The amount selected from each locality to add should be less than or equal to this
available amount.

Monitoring the Status of an Online Operation
The vparstatus command output (-v option) shows the status of the last initiated CPU or memory
migration operation. In the vparstatus output, this shows up under the section called ”OL* Details”.
A sample output is shown below:

[OL* Details]
Sequence ID: 123

Operation: Memory Addition

Status: PASS

In the above output, the sequence ID is a number used to uniquely identify the memory migration (or
CPU migration) operation that was last initiated on a given partition. The operation field indicates
what type of online migration event was initiated, and the status field indicates the current state of the
operation. The status field may contain PASS, PENDING, ABORT or FAIL. The pending status
indicates that the operation is in progress. If the status shows ABORT or FAIL, this means the online
memory (or CPU) migration has failed. When this happens, there are three main logs that the system
administrator may consult to determine what exactly prevented the operation from completing
successfully: the EVM event log (evmget | evmshow), the operating system log
(/var/adm/syslog/syslog.log) and the vPars monitor log (vparextract –l).

Cancelling an Online Operation
Memory migration, and in particular the memory delete operation, could sometimes take a long time
to complete. This is because for the memory delete operation, the kernel has to first evacuate the
contents of the memory pages that are in use by applications. Depending on the size of the memory
being deleted, its usage and the amount of memory that is free, this operation could end up taking
considerable time. The vparmodify command contains an option to allow the user to cancel an
ongoing CPU or memory migration. The option (-C sequenceid) will allow the user to cancel
individual pending CPU or memory OL* operations on a per partition basis using the sequence
identifier for the operation. The operation can be cancelled under two conditions: the operation is still
in the PENDING state and the operating system has not committed to the operation. The status of the
operation can be determined using output of the vparstatus –v command. The progress of the
operation can be determined using the output of the evmget | evmshow command or evmget –A
command from within the partition being modified.

Memory Migration Example
This section illustrates the usage of commands and tools through a memory migration example. The
memory migration operation is demonstrated as follows:

1. Describe the experimental setup.

2. Describe memory usage on vpar1 that has 1 GB of free memory.

3. Describe memory usage on vpar2 that uses all memory.

4. Describe memory usage on vpar1 after online deletion of 1 GB of memory.

5. Describe memory usage on vpar2 after online addition of 1 GB of memory.

 20

At each step, appropriate commands are executed to look at the memory usage and monitor the
progress of the operation. Only the relevant output from the command is shown.

Experimental Setup
The setup used for this experiment is a system with 12 GB ILM and three partitions: vpar1 with 2 GB
of base memory and 1 GB of floating memory, vpar2 with 2 GB of base memory and 1 GB of
floating memory, and vpar3 with 3 GB of base memory and remaining memory assigned as floating
memory. The following shows the output of the vparstatus command with the memory distribution.

vpar1# vparstatus
[Virtual Partition]
 Memory (MB)
 ILM CLM
 # User # User
Virtual Partition Name Ranges/MB Total MB Ranges/MB Total MB
============================== ====================== ======================
vpar1 0/ 0 3072 0/ 0 0
vpar2 0/ 0 3072 0/ 0 0
vpar3 0/ 0 5490 0/ 0 0

Memory Usage on vpar1
The vparstatus output below shows the portion of the total memory that is floating memory on
vpar1. The GlancePlus Memory Report Graph confirms that a little over 1.1 GB of memory is not used
by the partition and that the kernel is not paging the memory to disk (Paged Out is 0).

vpar1# vparstatus -v -p vpar1
[Memory Details]
.....
ILM Total (MB): 3072 (Floating 1024)
.....

vpar1# gpm -rpt MemoryReport &

 21

Memory Usage on vpar2
The vparstatus output below shows the portion of the total memory that is floating memory on
vpar2. The GlancePlus Memory Report confirms that partition has just 13 MB of free memory and that
the kernel is writing contents of the pages to disk (Paged Out is 12760 KB) to free up memory for
applications.

vpar2# vparstatus -v -p vpar2

[Memory Details]
......
ILM Total (MB): 3072 (Floating 1024)
......
vpar2# gpm -rpt MemoryReport &

Deletion of Memory from vpar1
1 GB of floating memory is deleted from vpar1 using vparmodify. The output of vparstatus shows
the PENDING state followed by the PASS state of the memory deletion operation with sequence
identifier 1. Once completed, the output of vparstatus shows that the partition has 2 GB of base
memory and no floating memory. The GlancePlus Memory Report below confirms the reduction in free
memory to 178 MB as a result of the memory online delete operation. The remaining memory is
enough to satisfy the current load and the system has not reached the stage requiring paging (Paged
Out is still zero). The EVM logs show the detailed progress of the memory online delete operation to
delete 1 GB of memory starting at the physical address 0x150000000. Finally, the vparstatus
output shows that the monitor now has 1 GB of memory available that can be added as base or
floating memory to other partitions.

vpar1# vparmodify -p vpar1 -d mem::1024:f

vpar1# vparstatus -v -p vpar1
[Memory Details]
......
ILM Total (MB): 3072 (Floating 1024) (migration pending)
......
[OL* Details]
Sequence ID: 1

 22

Operation: Memory Deletion

Status: PENDING

vpar1# vparstatus -v -p vpar1
[Memory Details]
......
ILM Total (MB): 2048 (Floating 0)
......
[OL* Details]
Sequence ID: 1

Operation: Memory Deletion

Status: PASS

vpar1# gpm -rpt MemoryReport &

vpar1# evmget | evmshow

OLAD: The olad infrastructure is locked and ready to accept parameters for the
operation. No other olad operations may be initiated on this nPartition until the
operation is complete. The sequence number for this operation is 1.
OLAD: The olad infrastructure has set the parameters for the operation. The
sequence number is 1 and the parameters are "vpar memory delete operation".
OLAD: The olad infrastructure has started the requested operation with sequence
number 1.
......
OLAD: The olad infrastructure is performing the execution phase in the vm
subsystem. Execution of 0 of 262144 Memory Pages to Delete are complete.
......
OLAD: The olad infrastructure is performing the execution phase in the vm
subsystem. Execution of 262144 of 262144 Memory Pages to Delete are complete.
OLAD: The olad infrastructure is performing the final actions to complete the
operation. It is no longer possible to cancel this operation.
OLAD: Memory 170000:10000 has gone offline
OLAD: Memory 160000:10000 has gone offline
OLAD: Memory 150000:10000 has gone offline
OLAD: Memory 180000:10000 has gone offline
......

 23

vpar1# vparstatus –A
......
[Available ILM (Base /Range)]: 0x150000000/1024
 (bytes) (MB)
[Available ILM (MB)]: 1024
......

Addition of the Freed Memory to vpar2
1 GB of available memory is added as floating memory to vpar2 using vparmodify. The output of
vparstatus shows the PASS state of the memory addition operation with sequence identifier 1. As
described earlier, the sequence id is unique within each partition and not across partitions. Hence,
both vpar1 and vpar2 in this example happen to have the same sequence id number. Once
completed, the output of vparstatus shows that the partition has 2 GB of base memory and 2 GB of
floating memory. The GlancePlus Memory Report below confirms that the free memory has increased
to 921 MB and the paging to swap space has stopped after the online addition of memory. The EVM
logs show the detailed progress of the memory online addition operation to add 1 GB of memory
starting at the physical address 0x150000000.

vpar2# vparmodify -p vpar2 -a mem::1024:f

vpar2# vparstatus –v –p vpar2
[Memory Details]
......
ILM Total (MB): 4096 (Floating 2048)
......
[OL* Details]
Sequence ID: 1

Operation: Memory Addition

Status: PASS

vpar2# gpm -rpt MemoryReport &

vpar2# evmget | evmshow

 24

OLAD: The olad infrastructure is locked and ready to accept parameters for the
operation. No other olad operations may be initiated on this nPartition until the
operation is complete. The sequence number for this operation is 1.
OLAD: The olad infrastructure has set the parameters for the operation. The
sequence number is 1 and the parameters are "vpar memory add operation".
OLAD: The olad infrastructure has started the requested operation with sequence
number 1.
......
OLAD: Memory 180000:10000 has come online
OLAD: Memory 170000:10000 has come online
OLAD: Memory 160000:10000 has come online
OLAD: Memory 150000:10000 has come online
......

 25

Memory Accounting
On any given system not all physical memory is available for application use. In a non-vPars system,
firmware takes some memory for its code and data structures before it hands over remaining memory
to the OS kernel and the OS kernel uses some memory for its code and data structures. The memory
taken by the kernel depends on the amount of memory and other resources (processors and memory)
in the system. In a vPars system, the vPars monitor that resides between operating system and
firmware consumes some amount of memory. The memory consumed by the vPars monitor can vary
from one vPars release to another. Currently, this ranges from 18MB to 40MB on a PA-RISC platform
and from 384MB to 512MB on an HP Integrity server. Each partition in a vPars system has its own
instance of OS kernel (that is, kernel code and data is not shared among partitions). Hence, the
kernel consumes each partition’s memory for its code and data. In addition, on an HP Integrity server,
each partition has its own instance of firmware which consumes around 32 to 64 MB. Again, this can
vary among firmware releases and platforms.

This chapter describes the tools available in A.04.xx and A.05.xx vPars releases to find the actual
memory assigned to each partition and the amount of memory consumed by the vPars monitor and by
the firmware. The tools described here do not account for the memory taken by each HP-UX OS
instance during boot or the memory consumed by the firmware instance of each partition. The
following lists the steps to account memory in a vPars system:

1. Find the total amount of ILM in the system using parstatus –p <partition number> -V.

2. Find the CLM from each cell in the system using parstatus –c <cell number> -V. Add the
CLM of each cell to get the total CLM.

3. Add the ILM and the total CLM to get the total memory in the system.

4. Find the memory bound to all the partitions using vparstatus –v command. Add the size of
user specified as well as monitor assigned memory ranges of all partitions to get the total
memory that has already been bound to the partitions.

5. Find the memory not bound to any partition using vparstatus –A command. Add the size of
each range to get the total memory not bound to any partition.

6. Find the memory consumed by monitor and firmware using vparstatus –m command. Add the
size of each range which is in bytes and then convert to megabytes (MB).

7. Add the amount of memory bound to each partition (step 4), the amount of memory not yet
bound to any partition (step 5), and the amount of memory consumed by firmware and vPars
monitor (Step 6) to get the total memory seen by vPars monitor during boot.

8. The memory computed in step 7 should be equal to or very close to total memory in the system
computed in step 3.

To illustrate further, let us consider the similar setup discussed in the previous sections that has 4 GB of
ILM and 2 GB of CLM from cell 0 and 2 GB CLM from cell 2. The granule size is 512MB. The total
memory in the system is 8 GB (8192 MB). The partition vpar1 contains 1 GB of ILM and 1 GB of
CLM from cell 0 and partition vpar2 contains 1GB of ILM and 1 GB of CLM from cell 2. Running the
command vparstatus–v to find out the memory ranges bound to the partition results in the following
output (only memory related information is shown here).

Name: vpar1
State: Up

 26

[Memory Details]
ILM, user-assigned [Base /Range]: 0x40000000/512
 (bytes) (MB)
ILM, monitor-assigned [Base /Range]: 0x20000000/512
 (bytes) (MB)
ILM Total (MB): 1024 (Floating 0)
CLM, monitor-assigned [CellID Base /Range]: 0 0x70080000000/1024
 (bytes) (MB)
CLM (CellID MB): 0 1024 (Floating 0)

Name: vpar2
State: Down
[Memory Details]
ILM, user-assigned [Base /Range]: 0x4080000000/512
 (bytes) (MB)
ILM, monitor-assigned [Base /Range]:
 (bytes) (MB)
ILM Total (MB): 1024 (Floating 0)

CLM, user-assigned [CellID Base /Range]: 2 0x74080000000/512 (Floating)
 (bytes) (MB)
CLM, monitor-assigned [CellID Base /Range]:
 (bytes) (MB)
CLM (CellID MB): 2 1024 (Floating 1024)

For vpar1, which is live (UP state), the memory range 0x40000000/512 has been explicitly bound
by the user and the memory ranges 0x20000000/512 and 0x70080000000/1024 have been
bound by the monitor. For vpar2, which is down, memory ranges 0x4080000000/512 and
0x74080000000/512 have been explicitly bound by the user. Hence, adding up the size of all
bound memory ranges, the total memory bound to partition is 3072 MB. Running the command
vparstatus –A to find the memory ranges not yet bound results in the following output.

[Available ILM (Base /Range)]: 0x60000000/511
 (bytes) (MB) 0x40a0000000/1536
[Available ILM (MB)]: 1535

[Available CLM (CellID Base /Range)]: 0 0x700c0000000/512
 (bytes) (MB) 0 0x700e0000000/440
 2 0x740a0000000/1024
 2 0x740e0000000/448
[Available CLM (CellID MB)]: 0 952
 2 960
Adding up the size of all the ILM and CLM memory ranges, the total memory not yet bound to any
partition is 4471 MB. Running the command vparstatus -m to find the memory ranges taken by
vPar monitor and firmware results in the following output.

Memory ranges used: 0x0/349519872 monitor
 0x14d54000/434176 firmware
 0x14dbe000/532480 monitor
 0x14e40000/253952 firmware
 0x14e7e000/1425408 monitor
 0x14fda000/50487296 firmware
 0x18000000/134213632 monitor
 0x7fffe000/8192 firmware
 0x700fc000000/67108864 firmware
 0x740fc000000/67108864 firmware

Adding up the size in bytes of all the memory ranges and converting it into megabytes results in 640
MB. Adding up the memory bound to partition, memory not yet bound to any partition, and memory
used by monitor and firmware yields 8183 MB, which is close to the 8192 MB physical memory in
the system. Hence, not all memory installed in the system can be accounted using vPars command
output as some memory used by hardware or firmware is not reported in the output. For this setup the

 27

difference is 9 MB. This difference can be more on some systems or platforms. The following lists
some of the reasons why the difference can be more:

• When the amount of memory each cell contributes to interleaving is not uniform, some
amount of memory is lost during interleaving. For example, on a 3 cell system where one cell
contributes 0.5 GB, a second cell contributes 1 GB, and the third cell contributes 2 GB, some
amount of memory will not be available after interleaving. The exact amount that will not be
available depends on how non-uniform the contribution from each cell is.

• The memory reported by vparstatus –v and vparstatus –A is aligned on the megabyte
boundary. Hence, if there are memory holes of few kilobytes, they are reported as a
megabyte hole in the output. This might exacerbate the difference during memory accounting
if there are a significant number of double bit error memory pages on HP Integrity servers, as
such pages are shown as memory holes. However, the actual usable memory, except for the
memory holes of a few kilobytes, is still available and used by each OS instance in the
partition.

 28

References
1. See Chapter 12 in HP-UX 11i Version 2 September 2004 Release Notes: HP 9000 Servers, HP

Integrity Servers, and HP Workstations located at http://docs.hp.com/en/5990-8153/index.html.

2. See http://docs.hp.com/en/4913/ccNUMA_White_Paper.pdf for the white paper titled “ccNUMA
Overview”.

3. See http://docs.hp.com/en/8767/cpu_config.pdf for the white paper titled “CPU Configuration
Guidelines for vPars”.

4. See http://docs.hp.com/en/hpux11iv3.html#Virtual%20Partitions for vPars administration
documents and white papers specific to the HP-UX 11i v3 release stream.

© 2007 Hewlett-Packard Development Company, L.P. The information contained
herein is subject to change without notice. The only warranties for HP products and
services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Linux is a U.S. registered trademark of Linus Torvalds. Microsoft and Windows are
U.S. registered trademarks of Microsoft Corporation. UNIX is a registered
trademark of The Open Group.

xx9832-xx003, March 2007

