Deploying the Sun Magnum System: The Beginning of NSF Petascale Computing

Jay Boisseau, Director
Texas Advanced Computing Center
The University of Texas at Austin
October 24, 2006

 There are <u>no ClearSpeed</u> (or any other) accelerators in this system!

- There are <u>no ClearSpeed</u> (or any other) accelerators in this system
- This is a <u>capability</u> system, not only a capacity system: balanced & tightly coupled

- There are <u>no ClearSpeed</u> (or any other) accelerators in this system
- This is a <u>capability</u> system, not only a capacity system: balanced & tightly coupled
- Jobs will run on the <u>entire system</u>; it will not be partitioned into smaller systems

- There are <u>no ClearSpeed</u> (or any other) accelerators in this system
- This is a <u>capability</u> system, not only a capacity system: balanced & tightly coupled
- Jobs will run on the <u>entire system</u>; it will not be partitioned into smaller systems
- There was <u>no unique deal</u> from AMD (but we'll take one if they offer!)

And Some Presentation Caveats

- The system does not exist yet
 - It is not yet doing science or even drawing power!
 - Key components are to be delivered in 2007
- Some system details are still non-disclosure
 - Ask Giri Chukkapalli
- Our experience with 50K general-purpose
 CPUs is zero; even with 5K, it's only 3 weeks
 - This is new territory—none of us are experts yet

NSF HPC Vision & Strategy

- Context: NSF Cyberinfrastructure Strategic Plan
- NSF now investing in world-class HPC systems
 - Annual track 2 solicitations (\$30M)
 - Single five-year Track1 solicitation (\$200M)
- Complementary solicitations forthcoming
 - petascale applications development solicitations
 - Software Development for CI has an HPC component
 - Etc.

- Compute power
 - 13152 Opteron "Deerhound" processors
 - Quad-core, four flops/cycle (dual pipelines)
 - Initial deployment with SantaRosa processors
 - 421 teraflops aggregate peak (at least)
- Memory
 - 2GB/core
 - 105 TB total

- Interconnect
 - Sun proprietary switch based on IB
 - Minimum cabling: robustness and simplicity!
 - PathScale adapters (PCI-Express)
 - MPI latency: 1.6-1.8 microsec
 - Peak bi-directional b/w: ~ 1 GB/sec
 - Total backplane b/w: 13.8 TB/sec

- File system
 - 72 Sun X4500s ("Thumper")
 - 48 500GB disks per 4U!
 - 1.7 PB total disk
 - 1 PB in largest /work file system
 - Lustre file system
 - Aggregate b/w: 40 GB/s

Thumper Photos

- System Management
 - ROCKS (customized) Cluster Kit
 - perfctr patch, etc.
 - Sun N1SM for lights-out management
 - Sun N1GE for job submission
 - Backfill, fairshare, reservations, etc.

Speeds & Feeds

	Initial Deployment	Post Processor Upgrade
Compute Node Metrics		
Total # of Compute Nodes	3288	3288
Total # of Processing Cores	26,304	52,608
Total Peak Flops	105 TFlops	421 TFlops
Parallel Filesystem Metrics		
Total Raw Disk Capacity	1.73 PB	1.73 PB
Disk I/O Bandwidth	40 GB/s	40 GB/s
Distributed Memory Metrics		
Total Memory	52.6 TB	105 TB
Total Memory Bandwidth	65.8 TB/s	110 TB/s
Performance Ratios		
Ratio of Total Memory / Peak Flops (B/flops)	0.50	0.25
Ratio of Total Memory Bandwidth / Peak Flops (B/flops)	0.63	0.26
Ratio of Raw Disk Capacity / Peak Flops (B/flops)	16.42	4.11
Ratio of Disk I/O Bandwidth / Peak Flops (GB/Tflops)	0.38	0.10

Space & Watts

- System power: 2.162 MW
- System space
 - ~80 racks
 - ~1500 sqft for system racks and in-row cooling equipment
 - ~3000 sqft total
- Cooling:
 - In-row units and chillers
 - ~0.6 MW
- Observations:
 - space less an issue than power
 - power distribution less an issue than generation!

Applications Performance Notes

- Obviously, no data for final system
 - Switch doesn't exist yet
 - Processors don't exist yet
- Performance predictions can be made from previous & pre-production versions
- Applications performance projections for NSF benchmarks look very promising (MPI only)

Applications Performance Notes

Hope to be able to reveal projections at SC06

Processors	G- HPL	G- PTRANS	G- FFTE	G- Random Access	G- STREAM Triad	EP- STREAM Triad	EP- DGEMM	Random Ring Bandwidth	Random Ring Latency	HPL percent of peak
Count	TFlop/s	GB/s	GFlop/s	Gup/s	GB/s	GB/s	GFlop/s	GB/s	usec	percent
128										
256										
512										
1024										
2048										

 Applications: WRF, OOCORE, MILC, GAMESS, HOMME...

User Support Challenges

- NO systems like this exist yet!
 - Will be the first general-purpose system at ½ Pflop
 - Quad-core, massive memory/disk, etc.
- New opportunities, new apps challenges
 - Multi-core optimization
 - Extreme scalability
 - Fault tolerance in apps
 - Petascale data analysis
- Initially, the only such NSF system: demand?

User Support Plans

- User support: the "usual" +
 - User Committee dedicated to this system
 - Applications Engineering
 - algorithmic consulting
 - technology selection
 - performance/scalability optimization
 - data analysis
 - Applications Collaborations
 - Partnership with petascale apps developers and software developers

User Support Plans

- Also
 - Strong support of 'professionally optimized' software
 - Community apps
 - Frameworks
 - Libraries
 - Extensive Training
 - On-site at TACC, partners, and major user sites, and at workshops/conferences
 - Advanced topics in multi-core, scalability, etc
 - Virtual workshops
 - Increased contact with users in TACC User Group

Technology Insertion

- Again, NO systems like this exist yet!
 - Workshops like this are excellent to start thinking, planning
- System will stimulate new R&D
- System will operate for four years
- Technology identification, tracking, evaluation and insertion will be important!
- Chief Technologist will work with team to:
 - identify new apps, libs, tools, etc.
 - improve perf, ease-of-use, reliability, security

Access & Allocations

- System is primarily NSF funded
 - 90% allocable via the TeraGrid
- System hosted by UT, supported by TX \$:
 - 5% for Texas institutions, from R1s to JuCos
 - Excellent EOT opportunities
- System will foster academic/industry collaborations and tech transfer
 - 5% for industrial partners
 - Work with Council on Competitiveness
 - Learn from INCITE

Impact in TeraGrid

- 400M CPU hours to TeraGrid: more than double current total of all TG HPC systems
- 421 Tflops peak
 - 3x total perf of all TG HPC systems
 - 10x top TG HPC system in perf, memory, disk
- Reestablish NSF as a leader in HPC
- Jumpstarts progress to petascale for entire US academic research community

Practice Makes Perfect

Lonestar is the fastest US academic supercomputer in operation

- 1300 Dell PowerEdge 1955 blade servers
- 2600 Intel Xeon dual-core processors
 5200 cores at 2.66 GHz each
- Cisco InfiniBand interconnect10 gigabit/sec bandwidth, < 5 microsec latency

Project Timeline

Sep06 award, press, relief, beers

Jan07 equipment begins arriving

Mar07 facilities upgrades complete

May07 allocations requests due (TeraGrid)

May07 very friendly users on <100 Tflops system

(dual-core, 2 flop/cycle Santa Rosa procs)

Jun07 friendly users on 100 Tflops system

Jul07 full operations, relief, beers

3Q07 processor upgrade to Deerhound

(quad-core, 4 flops/cycle)

Team Partners & Roles

- TACC / UT Austin: project leadership, system hosting & ops, user support, apps collaborations, tech evaluation & dev
- ICES / UT Austin: apps collaborations, algorithm/technique dev & transfer
- Cornell Theory Center: large-scale data management & analysis, user support
- Arizona State HPCI: tech evaluation & dev, user support

Team Partners & Roles

- Project Director: Jay Boisseau (TACC)
- Project Manager: Tommy Minyard (TACC)
- Chief Applications Scientists: Omar Ghattas (ICES / UT Austin), Giri Chukkapalli (Sun)
- Chief Technologists: Jim Browne (ICES / UT Austin)
- Many other TACC, ICES, CTC, ASU staff playing important roles (~25 FTEs)
- Strengthening relationships with other petascale centers

Summary

- Track2 Sun system will be one of most powerful general-purpose open computing system in the world in Oct07
- System will be balanced, capability system for scalable numerically- and data-intensive apps
- System will present tremendous opps for applications developers, and s/w developers
- Allocations 1 July 2007, apply by 1 May 2007

Ideas, Suggestions, and Users Welcome!

Jay Boisseau: boisseau@tacc.utexas.edu

Tommy Minyard: minyard@tacc.utexas.edu

Giri Chukkappalli: giridhar.chukkapalli@sun.com

