
Ignite-UX Custom Configuration Files

Table of Contents
Abstract..5
Introduction...5
Typographic Conventions ..6
HP-UX 11i release names and release identifiers ..7
Configuration files and INDEX files...8

The INDEX file...8
The CINDEX file...9
The per-client configuration file...10
The global config.local file..10
The recovery config.local file ...10
Order of precedence of configuration files..11
Testing the order of precedence..11
What is in a configuration (cfg) clause? ...13
The make_net_recovery configuration files ..14
The make_tape_recovery configuration files ..15
Files created by make_config ..15

Using the manage_index command ..15
A variety of uses ...15
Adding a configuration file to a clause or "release"..16
Adding scripts to the INDEX file ...18
Removing cfg clauses from an INDEX file ...18
Setting the default cfg clause in an INDEX file...20
Listing the names of cfg clauses in an INDEX file ...21
Listing the name of the default cfg clause in an INDEX file ...22
Renaming a cfg clause in an INDEX file ..23
Creating a new cfg clause from an existing clause..24

Removing a configuration file from a cfg clause ..24
Removing a script from an INDEX file...26
List the names of all configuration files in a cfg clause...27
Display the description of a cfg clause..28

Using the make_bundles command ..28
Why do you need to use make_bundles? ..28
Choosing which form of make_bundles to use..28

The make_bundles first form...29
The make_bundles second form...39
The make_bundles third form...42

Changes that can impact make_bundles ...43
Using the instl_dbg command...45

Introduction...45
Requirements ..46
Using the itool command..46
Combining instl_dbg and itool...47
Running instl_dbg ...47
Other instl_dbg options...54
The hw.info and host.info files ..54
Creating both files..54

Miscellaneous configuration tips ...56
Analyzing the HP-UX default B.11.11 cfg clause ...56

The release-specific configuration file ...57
Special variables ..84
_hp_locale ..84
_hp_cfg_detail_level..84
_hp_pri_swap..86
_hp_min_swap..86
_hp_disk_layout ...86
_hp_default_cur_lan_dev ...89
_hp_default_final_lan_dev...90
_hp_keyboard..90
_hp_root_disk..91
_hp_boot_dev_path...92
_hp_primary_path...92
_hp_primary_partition_size ..92
_hp_efi_partition_size ...93
_hp_service_partition_size ..93
_hp_root_grp_disks ..93
_hp_root_grp_striped..94
_hp_addnl_fs_free_pct..94
_hp_ignore_sw_impact..95
_hp_custom_sys ...97
_hp_lanadmin_args...97
_hp_nfs_mount_opts ..98
_hp_nfs_mount_retries..99
_hp_tftp_cmds..99
_hp_hide_other_disks..100
_hp_saved_detail_level ...100
_hp_os_bitness ...100
_hp_force_autoboot ..101
_hp_ikernel_os_release ...101

2

_hp_current_client_release ..102
_HP_CLONING ..102
_hp_console_verbosity..103
_hp_patch_save_files..103
_hp_umask...104

Configuration for software to be installed...104
Application software depots ...105
Core operating system depot configuration..111
Impacts statements ...119
Categories and other Ignite-UX software attributes..121
Defining a custom software configuration..123

Looking at a network recovery sw_source and sw_sel ...123
Using a sw_sel to run commands instead of installing software..126
Using a sw_sel to apply kernel parameters...127
Forcing software (sw_sel) clauses to be installed ..132
Automating dependencies in software...133

Installing patches ...136
Configuration for volume and disk groups ..136

Overview..136
Configuration examples ...137

Example one (custom disk layout)..137
Example two (selection of disk layout based on hardware) ...145
Example three...147

Part A (custom configuration in installation file system) ...147
Part B (Installation file system custom network config) ...148

Configuration parameters in the installation file system ...148
Networking ..149
Problems that can be solved with _hp_lanadmin_args ...150
Control ...152
Environment variables ...152

Managing configurations with unifdef ..154
Coping with auto_adm and boot changes in HP-UX B.11.23 ...157

Looking at auto_adm...157
ISL and CONF format data...158

CONF data..158
ISL data ..160

Usage examples...160
Creating new files ..160
Adding new menu entries to a file ...161
Using an "append" file...162
Updating a menu entry in a file ..163
Deleting a menu entry from a file ...165
Changing the default menu choice..166
Changing the timeout ..166
Updating the prompt message...167
Into and out of an LIF file ..167

Installation configurations using Software Distributor depots...168
Getting started ...169
Creating the core operating system depot..169
Other methods for creating the Core OS depot..171

Using the Ignite-UX GUI ...171
The pitfalls of using CDs instead of DVDs...177

Creating the configuration file to describe the depot ...177
Creating a minimalist cfg clause for installation..179

3

Comments on the SD based cfg clause...180
Extending the generic SD cfg clause with applications...180

Creating the application depot ...180
Creating a configuration for the application depot ..181
An example problem..181

Resolving applications that are not in SD format...183
Package an application in SD format ...183
Define an application in a non-SD format ..183

Using noncore.cfg to define applications...187
SD and archive bitness comparison ...191

Adding the non-SD application configuration file to the INDEX file ..192
Installing patches from a depot ..192

Setting up the depot...192
Packaging the patches into a bundle ..193
Generating a configuration...194

Customizing configuration ...195
Installing with SD wrap-up...197

Installation configurations using golden images ..197
Golden image configuration file explanation..197
Instances that may require modifying os_arch_post_l ...204
Creating a golden image ..205
Final words about golden image installations ..205

Understanding what is_net_info_temporary does..206
How do I… ...208

How do I remove the warning message that occurs when compiling a kernel on PA-RISC
systems? ...208
How do I recognize if a disk exists or not from within a configuration file?209
How do I create the CD equivalent of a tape created by make_boot_tape?...............................210
How do I enable the X server and CDE during a golden image install? ...214

Summary ..215
For more information ...215

4

Abstract
Ignite-UX for HP-UX addresses the need for system administrators to perform operating
system installations, deployment, and recovery, often on a large scale. It provides the
means for creating and reusing standard operating system configurations. Additionally,
Ignite-UX delivers the ability to archive operating system configurations, and to use these
archives to replicate systems, with the added benefit of speeding up the process. Ignite-
UX also permits various customizations, and is capable of both interactive and
unattended operating modes.

Introduction
The Ignite-UX Administration Guide explains how to use the Ignite-UX product. However,
it does not cover in detail the configuration files used by Ignite-UX (and custom
configuration files that you can write).

This white paper supplements the Ignite-UX Administration Guide with information to help
you to understand what specific configuration files are attempting to accomplish, which
makes creating and writing custom configuration files easier. Readers are assumed to
understand how to install a system using Ignite-UX. The information in this white paper is
about managing, writing, and modifying configuration files.

In developing this white paper, Ignite-UX versions from B.5.1.x to C.6.0.x were used.

Note:
Care was taken to prevent unintended line wraps from
occurring in the examples in this document; however, due to
formatting limitations, some might exist. This may affect the
usefulness of examples if you use them without verifying the
syntax using instl_adm with the –T option.

5

Typographic Conventions
The following typographical conventions are used throughout this white paper.
audit(5)

An HP-UX manpage. "audit" is the name and "5" is the section in the HP-UX Reference.
On the Web and on the Instant Information media, it may be a hot link to the
manpage itself. From the HP-UX command line, enter "man audit" or "man 5 audit" to
view the manpage. For more information, refer to man(1).

Book Title

The title of a book. On the Web and on the Instant Information media, it may be a
hot link to the book itself.

Emphasis

Text that is emphasized.

Emphasis

Text that is strongly emphasized.
ComputerOut

Text displayed by the computer.
Command

A command name or qualified command phrase.
Computer

Computer font indicates literal items displayed by the computer. For example:
file not found

Filename

Text that shows a filename and/or filepath.
UserInput

Commands and other text that you type.

Variable

The name of a variable that you may replace in a command or function or
information in a display that represents several possible values.

[]

The contents are optional in formats and command descriptions.
{ }

The contents are required in formats and command descriptions. If the contents are
in a list separated by |, you must choose one of the items

. . .

The preceding element may be repeated an arbitrary number of times.

6

|

Separates items in a list of choices.

<MAC>

When used as part of a file name, this placeholder variable refers to the Media
Access Control (MAC) address of the Ignite-UX client system under
/var/opt/ignite/clients. This may also be referred to as Link-Level Address (LLA).

<DATE-TIME>

This indicates a directory created by Ignite-UX that has a fixed format containing the
date and time it was created, for example "2004-01-12,15:23".

HP-UX 11i release names and release identifiers
Each HP-UX 11i release has an associated release name and release identifier. Table 1
shows the releases available for HP-UX 11i.

Table 1

Release Name Release Identifier Supported Processor
Architecture

HP-UX 11i v1 B.11.11 PA-RISC

HP-UX 11i v1.5 B.11.20 Intel® Itanium

HP-UX 11i v1.6 B.11.22 Intel® Itanium

HP-UX 11i v2 B.11.23 Intel® Itanium

PA-RISC1

The uname(1) command with the -r option returns the release identifier.

You can also determine the update release date and the Operating Environment by
entering the following:
swlist | grep HPUX11i

The resulting output lists the current release identifier, update release date, and
Operating Environment. For example:
HPUX11i-TCOE B.11.23.0409 HP-UX Technical
 Computing Operating Environment Component

The preceding revision string represents the following:
B.11.23 = HP-UX 11i v2

0409 = September 2004 Update Release

1 PA-RISC is supported on HP-UX 11i v2 starting with the September 2004 release.

7

Configuration files and INDEX files
This section discusses the contents of configuration files and INDEX files to help you
understand the purpose of the files, not to document what is occurring in the files.

The INDEX file
The file /var/opt/ignite/INDEX is used during cold-installations. The following example
only has one cfg clause; usually there are more. Each cfg clause defines a series of
configuration files, along with a description, that together form a cohesive configuration
that is used to install a system.
$ pwd

/var/opt/ignite

$ cat INDEX

/var/opt/ignite/INDEX

This file is used to define the Ignite-UX configurations

and to define which config files are associated with each

configuration. See the ignite(5), instl_adm(4), and

manage_index(1M) man pages for details.

NOTE: The manage_index command is used to maintain this file.

Comments, logic expressions and formatting changes are not

preserved by manage_index.

WARNING: User comments (lines beginning with '#'), and any user

formatting in the body of this file are _not_ preserved

when the version of Ignite-UX is updated.

cfg "HP-UX B.11.11 Default" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

 "/var/opt/ignite/config.local"

}

If the cfg clause in the INDEX file were to be the default cfg clause, in a non-
interactive installation this would cause the cfg clause to be selected for installation by
default, it would look like the following:
cfg "HP-UX B.11.11 Default" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

8

 "/var/opt/ignite/config.local"

}=TRUE

Of course, the INDEX file is never to be edited manually; instead, the manage_index
command should be used to maintain this file. The actual command needed to set a
cfg clause to be the default clause is as follows:
manage_index -e -c "HP-UX B.11.11 Default"

The manage_index command operates on the /var/opt/ignite/INDEX file by default
so the INDEX file does not need to be specified on the command line.

The CINDEX file
The CINDEX file is very different from the INDEX file. The CINDEX file is created and
managed by the make_net_recovery command. The format of the CINDEX file is the
same as the INDEX file. For example:
cat /var/opt/ignite/clients/<MAC>/CINDEX

This file is used to define the Ignite-UX configurations

and to define which config files are associated with each

configuration. See the ignite(5), instl_adm(4), and

manage_index(1M) man pages for details.

NOTE: The manage_index command is used to maintain this file.

Comments, logic expressions and formatting changes are not

preserved by manage_index.

WARNING: User comments (lines beginning with '#'), and any user

formatting in the body of this file are _not_ preserved

when the version of Ignite-UX is updated.

cfg "2003-10-08,12:41 Recovery Archive" {

 description "Recovery Archive"

 "recovery/2003-10-08,12:41/system_cfg"

 "recovery/2003-10-08,12:41/control_cfg"

 "recovery/2003-10-08,12:41/archive_cfg"

}

cfg "2003-10-08,12:45 Recovery Archive" {

 description "Recovery Archive"

 "recovery/2003-10-08,12:45/system_cfg"

 "recovery/2003-10-08,12:45/control_cfg"

 "recovery/2003-10-08,12:45/archive_cfg"

}=TRUE

This file contains the cfg clauses needed to recover a system from a network recovery
archive. The make_net_recovery command automatically manages the CINDEX file so

9

older information is removed2 and the latest recovery archive is set as the default
archive that is recovered.

The per-client configuration file
The configuration file that can exist in a per-client directory
(var/opt/ignite/clients/<MAC>) overrides all other files that an Ignite-UX client may
use. That is, any configuration values set in this file override all other files with one
exception that is discussed elsewhere (see "Order of precedence of configuration files"
for more information). During the installation process, Ignite-UX saves to this file the
configuration information that was used, which facilitates repeated installations of the
same system. If this file exists, it typically selects a cfg clause from the CINDEX or INDEX
files. For example:
cat config

cfg "2003-10-08,12:45 Recovery Archive"=TRUE

_hp_cfg_detail_level="ipvs"

Variable assignments

init _hp_root_disk="8/16/5.6.0"

init _hp_root_grp_disks=1

init _hp_root_grp_striped="NO"

...

In this case, a recovery archive has been selected. (This also indicates that a recovery
archive may have been recovered onto this system at some time in the past.)

The global config.local file
The file /var/opt/ignite/config.local is included by default into all new cfg clauses
in the /var/opt/ignite/INDEX file. For this reason, configuration data stored in this file
is used on all new installations.

The recovery config.local file
For make_net_recovery, if the file
/var/opt/ignite/clients/<MAC>/recovery/config.local exists on the Ignite-UX
server, the contents are automatically included into the configuration used by the client
during a network recovery.

For make_tape_recovery, if the file /var/opt/ignite/recovery/config.local exists,
the contents are automatically included into the configuration used by the client even
though it is not explicitly referenced. The content of this file is placed into the LIF on the
tape.

2 For more information, refer to make_net_recovery(1M) and review the description of the –n option.

10

Note:
If you use the –s option with make_tape_recovery, the same
config.local file used by make_net_recovery is used instead
of /var/opt/ignite/recovery/config.local, as previously
described.

Order of precedence of configuration files
Configuration files have an order of precedence when a client is reading configurations
from an Ignite-UX server. The precedence is as follows:

1. The per-client configuration file (/var/opt/ignite/clients/<MAC>/config) —
Any variable set in the per-client config file takes precedence over any variable set
anywhere else. Using the per-client config file in the preceding example, the cfg
clause 2003-10-08,12:45 Recovery Archive in the CINDEX file is selected no
matter what the INDEX or CINDEX have set to TRUE. (This, of course, you can change
this using the Ignite-UX Graphical User Interface (GUI).)

2. The per-client CINDEX file (/var/opt/ignite/clients/<MAC>/CINDEX) —
This file contains recovery archive configurations. Any cfg clause set to TRUE in this file
automatically selects that cfg clause if there is no per-client config file.

3. The global INDEX file (/var/opt/ignite/INDEX)—
This is the last file to have precedence. The default clause from the INDEX file is the
one that is set to TRUE. (None of the cfg clauses in the INDEX file has been set to
TRUE.)

Configuration also has an order of precedence when you are booting a system. The
precedence is as follows:

1. The first 8 KB of the installation file system has the highest precedence since it is the first
configuration read by Ignite-UX.

2. During media installations, if there is a LIF file called CUSTOM on any device, this file is
loaded and parsed after the configuration from the installation file system has been
processed. Parsing the configuration after loading all other configurations means that it
has the highest order of precedence (when booting from a CD or tape)3.

Testing the order of precedence
It is possible to test the order of precedence using the instl_dbg command:
pwd

/var/opt/ignite/clients/<MAC>

cat CINDEX

...

cfg "2003-10-08,12:41 Recovery Archive" {

 description "Recovery Archive"

 "recovery/2003-10-08,12:41/system_cfg"

 "recovery/2003-10-08,12:41/control_cfg"

3 This feature is being considered for obsolescence. This part of the installation process is very time consuming
for systems with a very large number of disks.

11

 "recovery/2003-10-08,12:41/archive_cfg"

}

cfg "2003-10-08,12:45 Recovery Archive" {

 description "Recovery Archive"

 "recovery/2003-10-08,12:45/system_cfg"

 "recovery/2003-10-08,12:45/control_cfg"

 "recovery/2003-10-08,12:45/archive_cfg"

}=TRUE

manage_index -e -c "2003-10-08,12:41 Recovery Archive" \

> -i /var/opt/ignite/clients/box1/CINDEX

cat CINDEX

...

cfg "2003-10-08,12:41 Recovery Archive" {

 description "Recovery Archive"

 "recovery/2003-10-08,12:41/system_cfg"

 "recovery/2003-10-08,12:41/control_cfg"

 "recovery/2003-10-08,12:41/archive_cfg"

}=TRUE

cfg "2003-10-08,12:45 Recovery Archive" {

 description "Recovery Archive"

 "recovery/2003-10-08,12:45/system_cfg"

 "recovery/2003-10-08,12:45/control_cfg"

 "recovery/2003-10-08,12:45/archive_cfg"

}

So far, the CINDEX for this client has been changed so that the older recovery archive is
the default archive. This is needed in order to show how precedence works. In the
config file, the following cfg clause is selected:
cat config

cfg "2003-10-08,12:45 Recovery Archive"=TRUE

_hp_cfg_detail_level="ipvs"
...

You can now use the instl_dbg command to print out the fully parsed configuration
(The –D option points it to a per-client directory containing the files it needs. The –f
option designates where to write the parsed configuration). This will occur with and
without the config file being present in the per-client directory:
instl_dbg -D . -f /tmp/client.with.config

mv config config.save

instl_dbg -D . -f /tmp/client.with.no.config

12

With the per-client config file present, the cfg clause 2003-10-08,12:45 Recovery
Archive is selected:
head /tmp/client.with.config

cfg "2003-10-08,12:45 Recovery Archive"=TRUE

server="10.0.0.3"

is_net_info_temporary=FALSE

init _hp_keyboard="PS2_DIN_US_English"

system_name="host"

ip_addr[]="10.0.0.1"

netmask[]="0xffffff00"

route_gateway[0]="10.0.0.2"

route_destination[0]="default"

_hp_cfg_detail_level="ibnpvcdsrlLtfh"

...

Without the per-client config file present, the cfg clause is selected by the CINDEX file
(2003-10-08,12:41 Recovery Archive) instead:
head /tmp/client.with.no.config

cfg "2003-10-08,12:41 Recovery Archive"=TRUE

server="10.0.0.3"

is_net_info_temporary=FALSE

init _hp_keyboard="PS2_DIN_US_English"

system_name="host"

ip_addr[]="10.0.0.1"

netmask[]="0xffffff00"

route_gateway[0]="10.0.0.2"

route_destination[0]="default"

_hp_cfg_detail_level="ibnpvcdsrlLtfh"

...

The instl_dbg command is covered in more detail in a later section.

What is in a configuration (cfg) clause?
The question now is, what is in a cfg clause? The following example shows a cfg clause
taken from the /var/opt/ignite/INDEX file:
cfg "HP-UX B.11.11 Default" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

13

 "/var/opt/ignite/config.local"

}=TRUE

The cfg clause needs the following information:

1. A name (for example, HP-UX B.11.11 Default)
2. A description (see the description keyword)
3. A list of one or more configuration files referenced by this cfg clause
4. One or more configuration files that define software that may be installed4

When a cfg clause is selected (it has been set to TRUE and nothing of higher
precedence changes this), its configuration files are processed in order and evaluated.
This turns the set of configuration files into something that a client can use to install itself.

The make_net_recovery configuration files
A make_net_recovery session always creates the same configuration files, and you can
see what they are by looking at a cfg clause in a CINDEX file:
cfg "2003-10-08,12:45 Recovery Archive" {

 description "Recovery Archive"

 "recovery/2003-10-08,12:45/system_cfg"

 "recovery/2003-10-08,12:45/control_cfg"

 "recovery/2003-10-08,12:45/archive_cfg"

}

The three configuration files are as follows:

1. system_cfg –-
This file is produced by the save_config command. It contains the file system layout,
networking information, and hardware instance numbers for the system.

2. control_cfg –
This file contains definitions of Ignite-UX variables and the commands needed to import
volume groups back into the final system.

3. archive_cfg –
This file contains the software definition of the archive that is used for recovery
(including impacts keywords, etc.).

The CINDEX file provides a higher level of precedence than the INDEX file, so any cfg
clause selected in the CINDEX file is used in preference to anything in the INDEX file in a
non-interactive installation for a system. In an interactive installation, the recovery
archive is automatically selected for installation so you can manually select another
configuration for installation on the Basic tab in the Ignite-UX GUI.

4 This cfg clause is a default clause set up by Ignite-UX. This clause, as shown, does not have any configuration
files that define software to be installed. Therefore, it is incomplete and cannot be used to install a system.

14

The make_tape_recovery configuration files
The make_tape_recovery command still creates the same three configuration files that
make_net_recovery does. For example:
pwd

/var/opt/ignite/recovery/2004-01-12,15:23

ll *cfg

-rw-r--r-- 1 root sys 3032 Jan 12 15:24 archive_cfg

-rw-r--r-- 1 root sys 963 Jan 12 15:24 control_cfg

-rw-r--r-- 1 root sys 7223 Jan 12 15:24 system_cfg

The main difference is that the three configuration files end up in a single LIF file on the
tape when the recovery tape is created. The order of precedence here is unimportant
since the tape is the only device used and all of the configuration files are
concatenated together into one LIF file (CONFIG).

Files created by make_config
The make_config command is used to create configuration files that provide enough
information to allow the installation of software bundles from Software Distributor (SD)
depots. The make_config command is covered in a later section.

Using the manage_index command

A variety of uses
The manage_index command has many different options. This section describes every
form the command can take, as well as its uses.

You should never manually maintain INDEX files. Instead, you should always use
manage_index to maintain them. The manage_index command does not maintain any
formatting or comments that may have been added to index files by an Ignite-UX
administrator.

The following are all the forms defined in manage_index(1M):

 manage_index -a -f config_filename [-c cfg_clause_name| -r release]

 [-p] [-v] [-i index_filename]

 manage_index -a -s script_file_name [-p] [-v] [-i index_filename]

 manage_index -d -c cfg_clause_name | -r release [-p] [-v]

 [-i index_filename]

 manage_index -e -c cfg_clause_name [-p] [-v] [-i index_filename]

15

 manage_index -l -c cfg_clause_name | -r release] [-o] [-v]

 [-i index_filename]

 manage_index -l -o [-v] [-i index_filename]

 manage_index -m old_clause_name -c new_clause_name [-p] [-v]

 [-i index_filename]

 manage_index -n existing_clause_name -c new_clause_name [-p] [-v]

 [-i index_filename]

 manage_index -t -f config_file_name [-c cfg_clause_name| -r release]

 [-p] [-v] [-i index_filename]

 manage_index -t -s script_file_name [-p] [-v] [-i index_filename]

 manage_index -w -c cfg_clause_name [-v] [-i index_filename]

 manage_index -x -c cfg_clause_name [-v] [-i index_filename]

Note:
The examples presented are for illustration purposes only; they
show the intended purpose of the command and use fictional
configuration files, index files, and scripts.

Although the –p (preview, make no changes) and –v (verbose) options are available to
most or all forms of manage_index, they are not discussed with any of the examples.

Adding a configuration file to a clause or "release"
When you need to add a configuration file to a clause or release you need to use the –a
option. The –i option must be given a fully qualified path if it is used (it cannot be
relative).

manage_index -a -f config_filename [-c cfg_clause_name| -r release]

 [-p] [-v] [-i index_filename]

Neither the –c nor –r options are required. If you use the –c option, you can explicitly
name the configuration clause to which to add the configuration file. If you use the –r
option to give an
HP-UX release identifier (for example, B.11.23), the configuration file will be added to
each configuration clause that satisfies one of the following conditions:

16

• One of the configuration files in a cfg clause defines the release keyword with a value
that matches the release identifier given with the –r option.

• One of the configuration files in a cfg clause starts with the path
/var/opt/ignite/data/Rel_, and the value of the release identifier immediately
after it matches the release identifier given with the –r option.

• One of the configuration files in a cfg clause starts with the path
/opt/ignite/data/Rel_, and the value of the release identifier immediately after it
matches the release identifier given with the –r option.

Without the –c or –r option, the value of the release identifier is determined in the same
way that clauses are matched with the –r option. The following, in order, is performed to
try to determine the release identifier that will be used:

• The configuration file defines the release keyword, and the value of the release
keyword provides the value for the release identifier.

• The configuration file starts with the path /var/opt/ignite/data/Rel_, and the value
of the release identifier from this path provides the value for the release identifier.

• The configuration file starts with the path /opt/ignite/data/Rel_, and the value of
the release identifier from this path provides the value for the release identifier.

Once a release identifier has been determined for the configuration file, the
manage_index command behaves as though it was given that release identifier with the
–r option.5

In the following example, if you subsequently tried to add a configuration file based
upon a release, it would not work because none of the configuration files contains an
operating system release in their path names. However, you can add a file based upon
a release if you first add the expected information in the path.
$ cat INDEX

cfg "testing" {

 description "testing clause"

}

$ touch config_a config_b

$ print "release=B.11.11" > config_c

$ manage_index -a -f /var/tmp/config_c -c "testing" \

> -i /var/tmp/INDEX

$ cat INDEX

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

}

5 This information is applicable to all forms of the manage_index command that need to search for or match release identifiers.

17

The following example adds the configuration file
/opt/ignite/data/Rel_B.11.11/config to the cfg clause that then enables you to
add the configuration file /var/tmp/config_a.
manage_index -a -f /opt/ignite/data/Rel_B.11.11/config -c "testing" \

> -i /var/tmp/INDEX

$ manage_index -a -f /var/tmp/config_a -r B.11.11 \

> -i /var/tmp/INDEX

$ cat INDEX

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

Adding scripts to the INDEX file
As part of the syntax for configuration index files, there is a keyword called scripts,
which enables you to define user-selectable scripts that can be run during installation
and recovery:
manage_index -a -s script_file_name [-p] [-v] [-i index_filename]

The manage_index command with the –a and –s options allows you to add scripts into
an INDEX file. For example:
$ manage_index -a -s /var/tmp/script_a \

> -i /var/tmp/INDEX

$ cat INDEX

…

scripts {

 "/var/tmp/script_a"

}

On the Advanced tab in the Ignite-UX GUI, the sample script appears so it can be
selected and run by a user. The scripts clause in the INDEX file is global in scope; scripts
defined here are available for selection with any cfg clause in the INDEX file. You should
be careful not to define scripts that make assumptions about the release they will be run
on or are not portable across all HP-UX releases.

Removing cfg clauses from an INDEX file

The –d option is used to remove cfg clauses from an INDEX file using manage_index:

18

manage_index -d -c cfg_clause_name | -r release [-p] [-v]

 [-i index_filename]

The following example removes the cfg clause "testing two" from the INDEX file
completely:
$ cat INDEX

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

$ manage_index -d -c "testing two" -i /var/tmp/test/INDEX

You can see that the cfg clause "testing two" has been removed from the INDEX
file:
$ cat INDEX...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

The –r option operates on all cfg clauses applicable to a release identifier. If you
reference cfg clauses by release, you need to be careful. In the following example,
both cfg clauses have a release identifier that matches B.11.11, so both are removed
from the INDEX file.
$ cat INDEX.save

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

19

 "/var/tmp/config_a"

}

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

$ manage_index -d -r B.11.11 -i /var/tmp/test/INDEX

$ cat INDEX

...

Setting the default cfg clause in an INDEX file

Using the following command, you can easily set which of the cfg clauses in an INDEX
file is the default cfg clause:
manage_index -e -c cfg_clause_name [-p] [-v] [-i index_filename]

The following example changes the default cfg clause between two different cfg
clauses:
$ cat INDEX

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

$ manage_index -e -c "testing" -i /var/tmp/INDEX

$ cat INDEX

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

20

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}=TRUE

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

$ manage_index -e -c "testing two" -i /var/tmp/INDEX

$ cat INDEX

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}=TRUE

Listing the names of cfg clauses in an INDEX file

The following syntax for the manage_index command lists the names of all of the cfg
clauses in an INDEX file:

manage_index -l -c cfg_clause_name | -r release] [-o] [-v]

 [-i index_filename]

For example:
$ cat INDEX

...

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

21

 "/var/tmp/config_a"

}

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}=TRUE

$ manage_index -l -i /var/tmp/INDEX

testing

testing two

Being able to list the cfg clauses also makes it easier to script Ignite-UX tasks. An example
of this could be a sanity-checking script that ensures all of the configuration files
referenced from within cfg clauses exist and are readable.6 Such a script might look like:

#!/usr/bin/sh
/opt/ignite/bin/manage_index -l | while read CFG
do
{
eval /opt/ignite/bin/manage_index -w -c \"${CFG}\" | while read FILE
do
if [[! -f $FILE]]
then
print -u2 "Error: file $FILE does not exist"
fi
if [[! -r $FILE]]
then
print -u2 "Error: file $FILE is not readable"
fi
done
}
done"

Listing the name of the default cfg clause in an INDEX file

This form of the manage_index command enables you to see which cfg clause is the
current default cfg clause:
manage_index -l -o [-v] [-i index_filename]

For example:
$ cat INDEX

...

cfg "testing" {

6 Note that this script is a trivial example. The instl_adm command with the –T option would perform these tasks as well as
sanity-check the syntax within the configuration files.

22

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}=TRUE

$ manage_index -l -o -i /var/tmp/INDEX

Default config clause is "testing two"

 in index file: /var/tmp/INDEX

Renaming a cfg clause in an INDEX file

The following form of manage_index enables you to rename a cfg clause. (This may be
useful when you need to swap two clauses.)

manage_index -m old_clause_name -c new_clause_name [-p] [-v]

 [-i index_filename]

The following example swaps two cfg clauses:
$ manage_index -l -i /var/tmp/INDEX

testing

testing two

$ manage_index -m "testing two" -c "t two" -i /var/tmp/INDEX

$ manage_index -l -i /var/tmp/INDEX

testing

t two

$ manage_index -m "testing" -c "testing two" -i /var/tmp/INDEX

$ manage_index -l -i /var/tmp/INDEX

testing two

t two

$ manage_index -m "t two" -c "testing" -i /var/tmp/INDEX

$ manage_index -l -i /var/tmp/INDEX

testing two

testing

23

Creating a new cfg clause from an existing clause

Using the following form of manage_index, you can easily to create a new cfg clause
from an existing clause:
manage_index -n existing_clause_name -c new_clause_name [-p] [-v]

 [-i index_filename]

For example:
$ manage_index -n "testing" -c "old testing two" -i /var/tmp/INDEX

$ manage_index -l -i /var/tmp/INDEX

testing two

testing

old testing two

Removing a configuration file from a cfg clause
Earlier you learned how to add a configuration file to a clause. Now you can do the
opposite, which is to remove configuration files from cfg clauses:

manage_index -t -f config_file_name [-c cfg_clause_name| -r release]

 [-p] [-v] [-i index_filename]

In the following example, a configuration file is removed from a cfg clause and then, a
file is removed from all of the cfg clauses for one release:
$ cat INDEX

...

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}=TRUE

cfg "old testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

24

 "/var/tmp/config_a"

}

$ manage_index -t -f "/opt/ignite/data/Rel_B.11.11/config" -c "testing" \

> -i /var/tmp/INDEX

$ cat INDEX

...

cfg "testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/var/tmp/config_a"

}=TRUE

cfg "old testing two" {

 description "testing clause"

 "/var/tmp/config_c"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

In the previous example, you removed a specific configuration file from the cfg clause
“testing”. The following example removes config_c from all B.11.11 clauses:

$ manage_index -t -f /var/tmp/config_c -r B.11.11 \

> -i /var/tmp/INDEX

$ cat INDEX

...

cfg "testing two" {

 description "testing clause"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/var/tmp/config_a"

25

}=TRUE

cfg "old testing two" {

 description "testing clause"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

The cfg clause "testing" is not modified in this example. Earlier in the section Adding a
configuration file to a clause or "release" on page 5, we discussed how manage_index
associates a release identifier with a cfg clause. The configuration files associated with
the cfg clause “testing” no longer meets any of the conditions that allows
manage_index to determine a release identifier. Since no release identifier could be
determined, the configuration file /var/tmp/config_c was not removed from the cfg
clause.

Important:
A cfg clause must have a release keyword in one of the
configuration files associated with it.

Removing a script from an INDEX file
Earlier you learned how to add a script into the configuration so that it appears on the
Advanced tab in the Ignite-UX GUI. You use the following form of the command to
remove the script:
manage_index -t -s script_file_name [-p] [-v] [-i index_filename]

The following example adds a script and then removes it:

$ manage_index -a -s /var/tmp/script_a -i /var/tmp/INDEX

$ cat INDEX

...

cfg "testing two" {

 description "testing clause"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/var/tmp/config_a"

}=TRUE

cfg "old testing two" {

 description "testing clause"

26

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

scripts {

 "/var/tmp/script_a"

}

$ manage_index -t -s /var/tmp/script_a -c "testing" \

> -i /var/tmp/INDEX

$ cat INDEX

cfg "testing two" {

 description "testing clause"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

cfg "testing" {

 description "testing clause"

 "/var/tmp/config_c"

 "/var/tmp/config_a"

}=TRUE

cfg "old testing two" {

 description "testing clause"

 "/opt/ignite/data/Rel_B.11.11/config"

 "/var/tmp/config_a"

}

Files (or in this case a script) must exist before they can be removed (or added) with
manage_index. This applies to configuration files as well as scripts.

$ manage_index -a -s /var/tmp/script_a -i /var/tmp/INDEX

ERROR: Cannot read script file: /var/tmp/script_a

ERROR: No read access to file specified by -f.

List the names of all configuration files in a cfg clause
The following command enables you to list all the configuration files named in a cfg
clause:

 manage_index -w -c cfg_clause_name [-v] [-i index_filename]

27

For example:
$ manage_index -w -c "testing" -i /var/tmp/INDEX

/var/tmp/config_c

/var/tmp/config_a

In conjunction with the earlier form of manage_index used to list out the names of cfg
clauses in an INDEX file, the preceding command can be used to ensure that all of the
configuration files referenced in an INDEX file are present and, as far as can be
determined, correct.

Display the description of a cfg clause
This last form of manage_index is used to display the description of the cfg clause:
manage_index -x -c cfg_clause_name [-v] [-i index_filename]

For example:
$ manage_index -x -c "testing" -i /var/tmp/INDEX

testing clause

Using the make_bundles command

Why do you need to use make_bundles?
The make_bundles command is necessary when using Ignite-UX because commands like
make_config only work with software that is contained within a bundle. Therefore, if you
create a configuration file for a depot and it contains software that is packaged only as
an SD product, it is not listed in a configuration file created by make_config.

Choosing which form of make_bundles to use
The make_bundles command has the following three forms:

/opt/ignite/bin/make_bundles {-b|-B} [-i] [-n name] [-t title] [-c

 category] [-o psf] [-r revision] depot_path

/opt/ignite/bin/make_bundles [-b] [-p|-f] [-i] [-c category] [-o psf]

 depot_path

/opt/ignite/bin/make_bundles {-p|-f|-B} [-i] [-c category] [-o psf]

 [-l file| product/fileset...] depot_path

28

The make_bundles command is primarily controlled by the –B or –b options.7 The –b
option causes make_bundles to operate on all product filesets8 that are not contained
within a bundle.9 The –B option causes all product filesets in the depot (or those given
on the command line) to be operated on regardless of whether they are currently in a
bundle or not. The different forms of the make_bundles command, which are covered in
this section, create either one or many bundles. Each form has advantages over the
other forms depending on what you want to achieve.

You can use the –b option when you want to operate on all of the unbundled product
filesets in a depot and the –B if you want to operate on all product filesets within a
depot.

You can use the –p and –f options to modify what the –b option does (although you
cannot use them with the –B option). The –p option creates one bundle for every
product in the depot, making –B unnecessary. When used with the –b option, the
command only processes products that are not already contained within a bundle. The
–f option has a similar function to –p but it operates at the fileset level; that is, when you
use –f it causes a bundle to be created for all filesets in the depot (except when –b is
used as well; then only filesets in products not already contained with a bundle are
processed).

The form of make_bundles that you use depends upon what you want to do with it. The
following sections demonstrate what can be done with three forms of the command.

The make_bundles first form

The first form of make_bundles uses –b or –B and not –p or –f, so you can operate either
on all unbundled product filesets or on all product filesets. This form, however, can only
create one bundle wrapper.

/opt/ignite/bin/make_bundles {-b|-B} [-i] [-n name] [-t title] [-c

 category] [-o psf] [-r revision] depot_path

With the addition of the –i option, you can set the is_reference SD bundle attribute to
TRUE. When set to TRUE, the is_reference causes the bundle wrapper to be installed
whenever a product or fileset within a bundle is installed. When set to FALSE, the bundle
wrapper is installed only when selected. HP-UX patch bundles always have the
is_reference set to TRUE because they can then be installed with either
patch_match_target or autoselect_patches set to TRUE. In contrast, if is_reference
is set to FALSE, the bundle wrapper for the the HP-UX patch bundle would not be
installed with the patches since SD selects patches to be installed, not bundles (leaving
the patches unbundled after installation). This allows the bundle wrapper to be
automatically installed when patches have been automatically selected for installation
by SD. (This can happen if there are software bundles in the same depot as the patches
that are installed, and the patches are for filesets in the bundles.)

7 In some forms of make_bundles, the use of –b or –B is optional. However, in the most useful forms of the make_bundles
command, you will almost always use one or the other option.
8 You cannot have a standalone fileset because it must be contained within a product.
9 If you perform a swlist operation on a depot, the default output shows all bundles in the depot followed by
all products not contained within a bundle. The–b option operates only on products not contained within a
bundle.

29

Important:
You should always use the –i option when defining bundles that
contain patches so that the bundle definition is installed when
any patch from the bundle is installed.

With the –n option, you can give the bundle a name, which must be 16 characters or
fewer. With the –t option, you can give a longer descriptive title for the bundle, which
must be 256 characters or fewer and can only contain one line. With the –c option you
can assign a category to the bundle; the default, if not given, is to make the bundle
uncategorized. See the section "Categories and other Ignite-UX software attributes" on
page 121 for more information on software categories.

With the –o option, make_bundles writes out a Product Specification File (PSF) instead of
modifying the target depot. This option is useful if you need to make customizations to
the PSF before applying the changes to the depot. The PSF contains the swpackage
command required to package the bundle in the depot. The example swpackage
command contains the path given to PSF “as is”. You may need to change the path to
the PSF file in the example if you change your current working directory or move the PSF
file.

With the –r option, you can specify a revision for a bundle. This allows you to create
bundle wrappers with revision numbers, enabling you to better manage changes to
software.

The examples in this section operate on the following depot:
swlist -s /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

No Bundle(s) on test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Product(s):

 PHCO_21187 1.0 cumulative SAM/ObAM patch

 PHCO_23651 1.0 fsck_vxfs(1M) cumulative patch

 PHKL_18543 1.0 PM/VM/UFS/async/scsi/io/DMAPI/JFS/perf patch

 PHKL_20016 1.0 2nd CPU not recognized in G70/H70/I70

 PHKL_22589 1.0 LOFS, select(), IDS/9000 and umount race fix

 PHKL_27980 1.0 VxFS 3.1 cumulative patch: CR_EIEM

 PHKL_28766 1.0 Probe,IDDS,PM,VM,PA-8700,AIO,T600,FS,PDC,CLK

30

Because there are no existing bundles, using the –b option or the –B options achieves the
same result.

The following example bundles all the patches:
make_bundles -b -i -n "PB_July_2004" -t "Site patches for July 2004" \

> -r 1.0 /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Generating list of unbundled filesets...

======= 07/15/04 00:51:40 EST BEGIN swpackage SESSION

 * Session started for user "root@test.aus.hp.com".

 * Source: test:/var/tmp/psf.18564

 * Target:

 test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

 * Software selections:

 *

 * Beginning Selection Phase.

 * Reading the Product Specification File (PSF)

 "/var/tmp/psf.18564".

 * Reading the bundle "PB_July_2004" at line 11.

 * Selection Phase succeeded.

 * Beginning Analysis Phase.

 * Analysis Phase succeeded.

 * Beginning Package Phase.

 * Packaging the bundle

 "PB_July_2004,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Package Phase succeeded.

======= 07/15/04 00:51:41 EST END swpackage SESSION

31

With swlist, you can verify that all of the patches are now contained within the bundle:

swlist -s /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Bundle(s):

 PB_July_2004 1.0 Site patches for July 2004

To continue the example, assume you missed a patch from the bundle that you created
and you still need to add it in. In this case, you need to use the –B option in a similar
command to what was used to create the bundle initially. Therefore, after you copy in
the latest pax patch PHCO_30150, you have the following in the depot:

swlist -s /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Bundle(s):

 PB_July_2004 1.0 Site patches for July 2004

Product(s) not contained in a Bundle:

 PHCO_30150 1.0 pax(1) cumulative patch

32

You can then run make_bundles again.10

make_bundles -B -i -n "PB_July_2004" -t "Site patches for July 2004" \

> -r 1.1 /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

======= 07/15/04 00:57:24 EST BEGIN swpackage SESSION

 * Session started for user "root@test.aus.hp.com".

 * Source: test:/var/tmp/psf.18612

 * Target:

 test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

 * Software selections:

 *

 * Beginning Selection Phase.

 * Reading the Product Specification File (PSF)

 "/var/tmp/psf.18612".

 * Reading the bundle "PB_July_2004" at line 11.

 * Selection Phase succeeded.

 * Beginning Analysis Phase.

 * Analysis Phase succeeded.

 * Beginning Package Phase.

 * Packaging the bundle

 "PB_July_2004,r=1.1,a=HP-UX_B.11.00_32/64,v=HP".

 * Package Phase succeeded.

======= 07/15/04 00:57:25 EST END swpackage SESSION

10 The reason for specifying -r 1.1 is to identify a collection of patches by a unique bundle specification
composed of the bundle name and revision. Revision 1.0 of the bundle PB_July_2004 does not include
PHCO_30150; revision 1.1 does include PHCO_30150. If the option -r 1.0 were specified, the original bundle
would be replaced.

33

Now the depot lists two revisions of the bundle:

swlist -s /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Bundle(s):

 PB_July_2004 1.0 Site patches for July 2004

 PB_July_2004 1.1 Site patches for July 2004

By looking at the filesets for revision 1.1 or PB_July_2004,you can also verify that the
new bundle was created with the correct contents:

swlist -l fileset -s /var/opt/ignite/depots/Rel_B.11.00/patches_11.0 \

> PB_July_2004,r=1.1

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

PB_July_2004 1.1 Site patches for July 2004

PB_July_2004.PHCO_21187 1.0 cumulative SAM/ObAM patch

 PB_July_2004.PHCO_21187.INETSVCS-BOOT 1.0 InternetSrvcs.INETSVCS-BOOT

...

PB_July_2004.PHCO_30150 1.0 pax(1) cumulative patch

...

In the preceding example, note that most of the output is not shown; the excerpt simply
demonstrates that the pax patch PHCO_30150 has a member revision 1.1 of the bundle.

If you wanted the pax patch PHCO_30150 to have its own wrapper bundle, you could
have instead used –b and changed the bundle name, revision, and so forth and created
a new bundle to hold the patch.

34

The following example demonstrates what happens when you use the –o option to
create a PSF. It also shows how you can then use the PSF with swpackage to implement
the changes yourself.

make_bundles -b -i -n "PB_July_2004" -t "Site patches for July 2004" \

> -o ./PB-July_2004.psf -r 1.0 /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Generating list of unbundled filesets...

ll ./PB-July_2004.psf

-rw-r--r-- 1 root sys 1138 Jul 15 01:09 ./PB-July_2004.psf

The PSF contains all of the information needed to create the bundle and the swpackage
command needed to create the bundle.11

cat PB-July_2004.psf

swpackage product specification file generated by make_bundles

on Thu Jul 15 01:09:42 EST 2004. For depot:
/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

To run swpackage to apply the bundle definitions to the

depot, use the command:

swpackage -s ./PB-July_2004.psf -xlayout_version=1.0 -
xreinstall_files=true -d /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

bundle

tag PB_July_2004

title Site patches for July 2004

 os_name HP-UX

 is_reference true

 revision 1.0

 architecture HP-UX_B.11.00_32/64

 vendor_tag "HP"

 contents PHCO_21187,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHCO_23651,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_18543,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_20016,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

11 Getting the make_bundles command to produce a PSF also means that the file can be kept in a source
management system so changes can be tracked and monitored. Because the PSF can be checked out, the
same configuration can be validated and recreated at will.

35

 contents PHKL_22589,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_27980,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_28766,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

end

You can then package the bundle manually:

swpackage -s ./PB-July_2004.psf -xlayout_version=1.0 \

> -xreinstall_files=true \

> -d /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

======= 07/15/04 02:34:41 EST BEGIN swpackage SESSION

 * Session started for user "root@test.aus.hp.com".

 * Source: test:./PB-July_2004.psf

 * Target:

 test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

 * Software selections:

 *

 * Beginning Selection Phase.

 * Reading the Product Specification File (PSF)

 "./PB-July_2004.psf".

 * Reading the bundle "PB_July_2004" at line 11.

 * Selection Phase succeeded.

 * Beginning Analysis Phase.

 * Analysis Phase succeeded.

 * Beginning Package Phase.

 * Packaging the bundle

 "PB_July_2004,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Package Phase succeeded.

36

======= 07/15/04 02:34:42 EST END swpackage SESSION

You can now swcopy the patch PHCO_30150 into the depot (as performed earlier), make
changes to the PSF, run the swpackage command again, and repackage the bundle to
include the new patch, as follows:

cat PB-July_2004.psf

swpackage product specification file generated by make_bundles

on Thu Jul 15 01:09:42 EST 2004. For depot:
/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

To run swpackage to apply the bundle definitions to the

depot, use the command:

swpackage -s ./PB-July_2004.psf -xlayout_version=1.0 -
xreinstall_files=true -d /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

bundle

tag PB_July_2004

title Site patches for July 2004

 os_name HP-UX

 is_reference true

 revision 1.0

 architecture HP-UX_B.11.00_32/64

 vendor_tag "HP"

 contents PHCO_21187,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHCO_23651,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_18543,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_20016,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_22589,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_27980,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHKL_28766,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

 contents PHCO_30150,r=1.0,a=HP-UX_B.11.00_32/64,v=HP,fr=1.0

end

swpackage -s ./PB-July_2004.psf -xlayout_version=1.0 \

> -xreinstall_files=true \

> -d /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

37

======= 07/15/04 02:37:05 EST BEGIN swpackage SESSION

 * Session started for user "root@test.aus.hp.com".

 * Source: test:./PB-July_2004.psf

 * Target:

 test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

 * Software selections:

 *

 * Beginning Selection Phase.

 * Reading the Product Specification File (PSF)

 "./PB-July_2004.psf".

 * Reading the bundle "PB_July_2004" at line 11.

 * Selection Phase succeeded.

 * Beginning Analysis Phase.

NOTE: Repackaging the bundle "PB_July_2004". (The same bundle

 version already exists in the target depot.)

 * Analysis Phase succeeded.

 * Beginning Package Phase.

 * Packaging the bundle

 "PB_July_2004,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Package Phase succeeded.

======= 07/15/04 02:37:06 EST END swpackage SESSION

Running make_bundles with the –B option to repackage the bundle has the same
effect:
make_bundles -B -i -n "PB_July_2004" -t "Site patches for July 2004" \

> -r 1.0 /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

38

The make_bundles second form

The second form of make_bundles uses the –b option. The –b option causes
make_bundles to operate on all products and filesets that are not contained within a
bundle.

/opt/ignite/bin/make_bundles [-b] [-p|-f] [-i] [-c category] [-o psf]

 depot_path

The –p and –f options specify that multiple bundles are to be created.

• If –p is specified and –b is not, a bundle is created for each product in the depot.
• If both –p and –b are specified, a bundle is created for every product in the depot

which does not already belong to a bundle.
• If –f is specified and –b is not, a bundle is created for each fileset in the depot.
• If both –f and –b are specified, a bundle is created for each fileset in the depot which

does not already belong to a bundle.
The –i, -c, and –o options are discussed in the "The make_bundles first form" section.

The following examples show what happens when you use the –p and –f options with
the make_bundles command. These examples do not have a depot with any bundles,
so the–b option has no effect.

The first example uses the –p option to show bundles being produced at the product
level:
make_bundles -b -p -i /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Generating list of unbundled filesets...

Generating swpackage PSF...

======= 07/15/04 02:52:16 EST BEGIN swpackage SESSION

 * Session started for user "root@test.aus.hp.com".

 * Source: test:/var/tmp/psf.18882

 * Target:

 test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

 * Software selections:

 *

 * Beginning Selection Phase.

 * Reading the Product Specification File (PSF)

 "/var/tmp/psf.18882".

 * Reading the bundle "b_PHCO_21187" at line 11.

 * Reading the bundle "b_PHCO_23651" at line 20.

39

 * Reading the bundle "b_PHKL_18543" at line 29.

 * Reading the bundle "b_PHKL_20016" at line 38.

 * Reading the bundle "b_PHKL_22589" at line 47.

 * Reading the bundle "b_PHKL_27980" at line 56.

 * Reading the bundle "b_PHKL_28766" at line 65.

 * Selection Phase succeeded.

 * Beginning Analysis Phase.

 * Analysis Phase succeeded.

 * Beginning Package Phase.

 * Packaging the bundle

 "b_PHCO_21187,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Packaging the bundle

 "b_PHCO_23651,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Packaging the bundle

 "b_PHKL_18543,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Packaging the bundle

 "b_PHKL_20016,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Packaging the bundle

 "b_PHKL_22589,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Packaging the bundle

 "b_PHKL_27980,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Packaging the bundle

 "b_PHKL_28766,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Package Phase succeeded.

======= 07/15/04 02:52:18 EST END swpackage SESSION

The preceding example covers packaging of all the patches in the depot.

Next, the same command is used but with the –f option instead of –p. All of the bundle
names are produced at the fileset level:

make_bundles -b -f -i /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Generating list of unbundled filesets...

Generating swpackage PSF...

40

======= 07/15/04 02:56:18 EST BEGIN swpackage SESSION

 * Session started for user "root@test.aus.hp.com".

 * Source: test:/var/tmp/psf.18983

 * Target:

 test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

 * Software selections:

 *

 * Beginning Selection Phase.

 * Reading the Product Specification File (PSF)

 "/var/tmp/psf.18983".

 * Reading the bundle "b_PHCO_21187_INE" at line 11.

 * Reading the bundle "b_PHCO_21187_OBA" at line 20.

 * Reading the bundle "b_PHCO_21187_SAM" at line 29.

...

 * Reading the bundle "b_PHKL_28766_COR" at line 254.

 * Reading the bundle "b1_PHKL_28766_CO" at line 263.

 * Reading the bundle "b2_PHKL_28766_CO" at line 272.

 * Selection Phase succeeded.

 * Beginning Analysis Phase.

 * Analysis Phase succeeded.

 * Beginning Package Phase.

 * Packaging the bundle

 "b1_PHCO_21187_SA,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

...

 * Packaging the bundle

 "b_PHKL_28766_C_I,r=1.0,a=HP-UX_B.11.00_32/64,v=HP".

 * Package Phase succeeded.

======= 07/15/04 02:56:21 EST END swpackage SESSION

41

Note:
The preceding example merely demonstrates how the –f option
works; patches need to be installed fully at the product level not
at the fileset level.

The make_bundles third form

The third form of make_bundles uses –p, -f, or –B (all optional) with either a list of
products and filesets or a list contained in a file given with the –l option to process. This
form of make_bundles gives you improved control over exactly what is packaged into a
bundle regardless of what fileset in which it may already be bundled.

/opt/ignite/bin/make_bundles {-p|-f|-B } [-i] [-c category] [-o psf]

 [-l file| product/fileset...] depot_path

Note:
With this form of the command you cannot give the bundles you
are creating a name. The most useful form of this command
involves giving the –o option to create a PSF that can be used
for subsequent packaging.

In this example, you create some of the same bundles that were created in previous
examples. However, this time you use an explicit list of products to include (or patches in
this case):

make_bundles –B -i -o ./PB_July_2004_1.0.psf -r 1.0 PHCO_21187 PHCO_23651 \

> PHKL_18543 PHKL_20016 PHKL_22589 PHKL_27980 PHKL_28766 \

> /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Generating swpackage PSF...

Next, you create another PSF but this time with the extra pax patch PHCO_30150:

make_bundles –B -i -o ./PB_July_2004_1.1.psf -r 1.1 PHCO_21187 PHCO_23651 \

> PHKL_18543 PHKL_20016 PHKL_22589 PHKL_27980 PHKL_28766 PHCO_30150 \

> /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Generating swpackage PSF...

You can now apply the commands stored in these two PSF files against the depot. When
you do, you end up with the same results as with the make_bundles first form:
swlist -s /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

42

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.00/patches_11.0

Bundle(s):

 patches_110 1.1 /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

 patches_110 1.0 /var/opt/ignite/depots/Rel_B.11.00/patches_11.0

With the third form, you cannot specify an explicit name. You must edit the PSF to
change the name of the bundle.

Tip:
If you use change control it is better to generate a PSF and
place it under change control than to use make_bundles to
generate a temporary PSF and apply the changes to the depot.
By placing the PSF in your change process, you know exactly
how a bundle wrapper in a depot was created and what was in
it.

Changes that can impact make_bundles
In general, re-executing a make_bundles command exactly as it was issued before
(same options and arguments) will replace the bundle(s) created during the initial
execution.

There is one exception to this behavior: if the initial make_bundles command was issued
on Ignite-UX B.3.7.x or earlier, and the second make_bundles command was issued on
Ignite-UX B.3.8.x or later, the earlier bundles are not replaced. Instead, new bundles are
created with the same contents and the additional bundle attribute vendor_tag,
determined from the vendor_tag of the products and filesets that are being bundled.

The following example shows a depot containing two such bundles: one created with
Ignite-UX B.3.7.x or earlier; and one created with Ignite-UX B.3.8.x or later. Consider the
following depot:

swlist -d @/depot

Initializing...

Contacting target "akhnaten"...

Target: akhnaten:/depot

43

Bundle(s):

 Patches A.1.0 Extended Patch Bundle

 Patches A.1.0 Extended Patch Bundle

This appears to be incorrect because the same bundle appears twice, but it is not.
Consider the following:

• A bundle can be specified as follows:
bundle[,version]

• The version component of the bundles’ software specification can be comprised of the
following:

[,r <op> revision][,a <op> arch][,v <op> vendor]

[,c <op> category][,l=location]

• The <op> (relational operator) can be one of the following:
 =, ==, >=, <=, <, >, or !=

These perform individual comparisons on dot-separated fields. For example, r>=B.10.00
chooses all revisions greater than or equal to B.10.00. The system compares each dot-
separated field to find matches. Therefore, a software specification that matches both
bundles is Patches,r=A.1.0. Additionally, the specification could include the a
(architecture), v (vendor), c (category), l (installation location), fr (fileset revision
when referring to filesets only), or fa (fileset architecture when referring to filesets only).

When make_bundles (as delivered in version B.3.7.x or earlier) was executed to create
the first bundle, the output looked like this:

make_bundles -B -r A.1.0 -n Patches -t "Extended Patch Bundle" /depot

...

 * Packaging the bundle "Patches,r=A.1.0,a=HP-UX_B.11.00_32/64".

...

However, when make_bundles (Ignite-UX version B.3.8.x or later) was executed to create
the second bundle, the output looked like this (note the addition of v=HP):

make_bundles -B -r A.1.0 -n Patches -t "Extended Patch Bundle" /depot

...

 * Packaging the bundle

 "Patches,r=A.1.0,a=HP-UX_B.11.00_32/64,v=HP".

...

44

Both bundles show the bundle name and the architecture of the bundle, but only the
newer make_bundles command shows the vendor as part of the bundle software
specification. You can verify this by looking at the depot again:

swlist -d -l bundle -a name -a revision -a vendor_tag @/depot

Initializing...

Contacting target "akhnaten"...

Target: akhnaten:/depot

 Patches A.1.0

 Patches A.1.0 HP

You can see that the depot definitely contains distinct bundles: one without the
vendor_tag attribute set and the second with it to HP as shown in the preceding example.

To remove both bundles would execute the following command twice, once for each
bundle:

swmodify -u Patches,r=A.1.0 @/depot

Other variations of the swmodify command do not operate as expected so HP
recommends that you use the command in this manner. Optionally, you could use
swlist to verify if the older bundle was removed.

You do have other choices in these circumstances, as previously discussed. If you have
kept the product specification file (PSF) file created by the older make_bundles
command, you could update it to add the new products and filesets you want to
include in the bundle.

Alternatively, you could create a PSF file with the new make_bundles command and
remove the vendor_tag information from the PSF before running swpackage. This
enables you to update the bundle information created by the older make_bundles
command.

Using the instl_dbg command

Introduction
The instl_dbg command is often overlooked but offers valuable functionality in testing
the effect of a change in a configuration file. This section introduces some of the useful
functionality of instl_dbg and how it can be combined with the itool command to
rapidly prototype and test configuration changes.

45

Requirements
The instl_dbg command requires some information that can only be created during an
installation session either by adding a new client to an Ignite-UX server, by running
make_net_recovery, or by running make_tape_recovery with the –s option. The files
that are most needed are hw.info, host.info, and config.sys.
/opt/ignite/bin/instl_dbg -D client_directory [-f file] [-v] [-a {l|r}]
[-cdls|-A] [-V var[=value]] [-S swsel[=TRUE|=FALSE]]
[-U use_model[=TRUE|=FALSE]] [-?]

The one command-line option required by instl_dbg is the –D option. This would usually
point to a per-client directory on an Ignite-UX server. It must contain all of the information
that instl_dbg needs to run. If you add a new client to an Ignite-UX server, the
information you need is created automatically. However, this does not help when you
have a new client that has never had an operating system installed.

Using the itool command
The itool command provides the Wizard and Advanced interfaces during recovery
and installation. It is not well known that the itool command can be run from the
command line on an Ignite-UX server to manipulate the configuration for a client. The
itool command accepts the following options12:
itool -?

itool: illegal option -- ?

usage itool [arguments]

 -d <directory path>

 -i <client name>

 -m 'demo', 'push', 'pull', 'quick', or 'wiz'

 -w show welcome screen in push mode

 (The default is -m pull)

The only method you really need to worry about when using itool is as follows:
itool –d <client dir> -m pull

This runs the itool user interface as though it were running on the client system.13 You
must run itool as root.

Important:
Do not change time-related information in the Ignite-UX GUI
unless the system you are on is considered non-production;
altering the time information changes the system clock.

12 HP does not recommend the use of itool outside of its normal use (running on a client system during
installation or recovery or via the Ignite user interface).ignite(1)). This information is presented here so itool
can be run in conjunction with instl_dbg for rapid prototyping of configurations.
13 When an installation is controlled from the server, itool is actually run on the server. However, it is run with
the –m push option since configuration changes are pushed to the client system.

46

Configuration changes are saved into the configuration file in the per-client directory.

When exiting itool, there no need for concern with respect to the list of options it
presents; no action should be taken for any of them. The different options set a different
return code from itool. The return code is how itool communicates the next action to
the program that calls it when it is running during a normal installation or recovery.

Combining instl_dbg and itool
If a configuration file (a file named config) exists in the client directory, its configuration
information is used (for example, which cfg clause) instead of the default. This is the
reason the itool program was discussed in the previous section.

When you use itool to change configurations and then run instl_dbg to see what is
happening in the configurations, it makes it possible to test configurations and changes
without having to boot a system and attempt to install the system.

Running instl_dbg in this way enables you to see the configuration the way Ignite-UX
parses it on that client.

Running instl_dbg
You can use instl_dbg to test some aspects of your configuration; for instance, with the
–c option you can perform system configuration sanity checks. In the following example,
it is assumed that you have changed working directories to a per-client directory on an
Ignite-UX server (/var/opt/ignite/clients/<MAC>).

instl_dbg -D . -c

======= System Configuration Checks ======

WARNING: The disk at: 0/8/0/0.2.0 (SEAGATE_ST39173WC) appears to contain a
file

 system and boot area. Continuing the installation will destroy any

 existing data on this disk.

The –c option allows you to see configuration check messages that would normally only
be seen during an installation or recovery session. This allows you to preview what you will
see during an installation or recovery session.

With the –d option, you can get instl_dbg to print out the expected size of the volumes
it creates and what the impacts are for each file system. The expected output of
percent (%) used is also shown with the file system type. If the disk does not contain
enough space, the amount shy (KB) column indicates the additional space needed.

instl_dbg -D . -d

======= Disk and Volume allocation ======

 Mount Size Usage Disk / impact amount

Directory (Mb) Group (MB / %) shy (KB)

47

--

/stand 300 HFS vg00 21 7% 0

(swap_dump) 1280 SWAP_DUMP vg00 0 0% 0

/ 200 VxFS vg00 92 46% 0

/tmp 200 VxFS vg00 0 0% 0

/home 20 VxFS vg00 0 0% 0

/opt 976 VxFS vg00 723 74% 0

/usr 1296 VxFS vg00 1035 79% 0

/var 1780 VxFS vg00 229 12% 0

--

Size unallocated from group: vg00: 2624Mb

 * Expected physical allocation of volumes on disks:

 * 0/8/0/0.2.0 (/dev/dsk/c0t2d0) (vg00)

 * 3997 - 311197 KB /stand

 * 311197 - 1621917 KB primary

 * 1621917 - 1826717 KB /

 * 1826717 - 2031517 KB /tmp

 * 2031517 - 2051997 KB /home

 * 2051997 - 3051421 KB /opt

 * 3051421 - 4378525 KB /usr

 * 4378525 - 6201245 KB /var

 * 2686976 KB unallocated

The –l option to instl_dbg performs some lint type checks on the configuration.
Variables that are not assigned with the init keyword appear as follows:

instl_dbg -D . -l

...

******* Variables assigned without init keyword *******

 * _my_variable

Note:
Every variable used in an Ignite-UX configuration file should be
initialized using the init keyword. If you do not want the
variable to be changed, use the visible_if keyword to
prevent it from being displayed by the Ignite-UX GUI. (See
instl_adm(1M) for more information about the init and
visible_if keywords.)

instl_dbg -D . -l

48

======= Lint-type Checks =======

******* Variables assigned without init keyword *******

All variables assigned with the init keyword.

With the –s option, the value of all variables, sw_sel objects, and usage models are
shown.

The information is quite detailed. From the information for sw_sel objects, you can tell if
sw_sel has been selected, if it has been selected because of a dependency, or if it has
been unselected because of an exrequisite.

The variable information provides the name of the variable, the value that it holds, the
type of variable, and whether the variable is visible (based on the setting of visible_if). If
the variable has an "effects" relationship, the name of the variable it has a relationship
with is shown, and if the variable has a list of potential values, the list of values is shown.

For use models, the name is shown, and whether it is selectable, selected, or visible.
instl_dbg -D . -s

======= Software Selection Attributes: ======

sw_sel name: "100BaseT-01"

 description: "HP-PB 100BaseT;Supptd HW=A3495A;SW=J2759BA"

 selected: 0

 dep_selected: 0

 ex_unselected: 0

 is_defined: 1

sw_sel name: "100BaseT-00"

 description: ""

 selected: 0

 dep_selected: 0

 ex_unselected: 0

 is_defined: 1

...

sw_sel name: "perl"

 description: "Perl Programming Language"

 selected: 0

 dep_selected: 1

 ex_unselected: 0

 is_defined: 1

======= Variable Attributes: ======

49

Variable name: "_hp_boot_dev_path"

 value: "0/8/0/0.2.0"

 type: string

 visible: 0

Variable name: "_hp_default_cur_lan_dev"

 value: "lan5"

 type: string

 visible: 0

...

Variable name: "_hp_disk_layout"

 value: "Logical Volume Manager (LVM) with VxFS"

 type: string

 visible: 0

 val_list[0]: "Whole disk (not LVM) with HFS"

 val_list[1]: "Logical Volume Manager (LVM) with HFS"

 val_list[2]: "Logical Volume Manager (LVM) with VxFS"

 val_list[3]: "VERITAS Volume Manager (VxVM) with VxFS"

 Effects var: _hp_pri_swap

 Effects var: _hp_group_name

Variable name: "_hp_root_disk"

 value: "0/8/0/0.2.0"

 type: string

 visible: 0

 Effects var: _hp_pri_swap

 Effects var: _hp_min_swap

 Effects var: _hp_disk_layout

 Effects var: _hp_root_grp_disks

...

======= Use-Model Attributes: ======

Use model name: "Create /export volume"

 selected: 0

 selectable: 1

 visible: 1

Use model name: "Create separate volumes (/usr, /var, ...)"

 selected: 1

 selectable: 1

 visible: 1

50

Using the –f option, the instl_dbg command also provides a completely parsed version
of the configuration. This output builds on top of the configuration files parsed on the
system. In this case, the configuration was modified using the Ignite-UX GUI before
running instl_dbg:

instl_dbg -D . -f ./parsed.output

cat parsed.output

cfg "HP-UX B.11.11 Default"=TRUE

server="10.0.0.60"

is_net_info_temporary=FALSE

init _hp_keyboard="Not_Applicable"

system_name="spectre"

netmask["lan0"]="255.255.255.0"

ip_addr[]="10.0.0.162"

netmask[]="255.255.255.0"

route_gateway[0]="10.0.0.1"

route_destination[0]="default"

_hp_cfg_detail_level="ibnpvcdsrlLtfh"

Variable assignments

init _hp_boot_dev_path="0/8/0/0.2.0"

init _hp_default_cur_lan_dev="lan5"

init _hp_primary_path="0/8/0/0.2.0"

init _hp_current_client_release="B.11.11"

init _hp_HFS_blksize=65536

init _hp_HFS_fragsize=8192

init _hp_VxFS_blksize=8192

init _hp_FS_stripe_size=64K

init _hp_disk_layout="Logical Volume Manager (LVM) with VxFS"

...

init _hp_os_bitness="64"

init _hp_patch_save_files="YES"

init _hp_custom_sys="Current System Parameters"

init _hp_locale="SET_NULL_LOCALE"

init "Create /export volume"=FALSE

init "Create separate volumes (/usr, /var, ...)"=TRUE

sd_command_line=" -x os_release=B.11.11 -x os_name=HP-UX:64 "

51

Software Selections

init sw_sel "100BaseT-01"=FALSE

init sw_sel "ATM-00"=FALSE

init sw_sel "ATM-01"=FALSE

init sw_sel "B5725AA"=TRUE

...

init sw_sel "b_PHSS_28764"=FALSE

init sw_sel "b_PartitionManag"=FALSE

sw_sel "perl" will be loaded due to other software.

(cfg "HP-UX B.11.11 Default") {

...

 sw_source "core" {

 description="HP-UX coreSoftware"

 source_type="NET"

 source_format=SD

 sd_server="10.0.0.60"

 sd_depot_dir="/var/opt/ignite/depots/Rel_B.11.11/core"

 sd_command_line=" -xpatch_filter=*.* -xpatch_save_files=true
"

 sd_use_ui=FALSE

 load_order=0

 }

 sw_source "Kernel Configuration" {

 source_format=CMD

 load_order=11

 }

 sw_source "site commands" {

 source_format=CMD

 load_order=10

 }

}

RUN_UI=TRUE

RUN_SD=TRUE

SD_USE_UI=FALSE

CONTROL_FROM_SERVER=FALSE

HALT_WHEN_DONE=FALSE

USE_EXPERT_UI=TRUE

CLEAN_ALL_DISKS=FALSE

HIDE_BOOT_DISK=FALSE

52

ERROR_IF_BAD_SW=FALSE

RECOVERY_MODE=FALSE

DISABLE_DHCP=TRUE

ALLOW_DISK_REMAP=FALSE

release="B.11.11"

System/Networking Parameters

_hp_custom_sys+={"Current System Parameters"}

init _hp_custom_sys="Current System Parameters"

_hp_custom_sys visible_if TRUE

_hp_custom_sys help_text "System/Networking Info"

(_hp_custom_sys=="Current System Parameters") {

 final system_name="testa"

 final ip_addr["lan5"]="10.0.0.162"

 final netmask["lan5"]="255.255.255.0"

 final ip_addr[]="10.0.0.47"

 final netmask[]="255.255.255.0"

 final route_gateway[0]="10.0.0.1"

 final route_destination[0]="default"

 TIMEZONE="EST-10EDT"

 ROOT_PASSWORD="/aIc61gXgbz2A"

 is_net_info_temporary=FALSE

 run_setparms=FALSE

} # end "Current System Parameters"

Disk and File systems

_hp_disk_layout+={"Modified LVM Layout"}

init _hp_disk_layout="Modified LVM Layout"

(_hp_disk_layout=="Modified LVM Layout") {

 # Disk/File system Layout:

 volume_group "vg00" {

 usage=LVM

 physical_volume disk[_hp_root_disk] {

 } # end pv_options

 max_physical_extents=2500

 logical_volume {

 mount_point="/stand"

53

 disk[_hp_root_disk]

 usage=HFS

 size=307200K

 FILE_LENGTH=LONG

 FRAGSIZE=8192

 BLKSIZE=65536

 bad_block_relocate=FALSE

 contiguous_allocation=TRUE

 } # end logical_volume

...

 logical_volume {

 mount_point="/var"

 usage=VxFS

 size=73728K | remaining | 1822720K

 BLKSIZE=8192

 largefiles=TRUE

 } # end logical_volume

 } # end volume_group "vg00"

} # end "Modified LVM Layout"

Other instl_dbg options
The –vvv option (very verbose) lists all the selections and values of all variables. You can
select use models (for example, "Logical Volume Manager (LVM) with VxFS") and set
values for variables to test the impact that a change has on the configuration.

Refer to instl_dbg(1M) for more information on other options available.

The hw.info and host.info files
Both the hw.info and host.info files can be created in either of two ways:

• When you add a new client to the Ignite-UX server for recovery, the add_new_client
script creates these two files (indirectly).

• When a new client boots from the Ignite-UX server and creates a directory for itself,
information about the client hardware is written to the hw.info file.

Creating both files
You can easily create both host.info and hw.info files on a system by using the same
method as the add_new_client script. The following example, run on the client system
as root, places the host.info and hw.info files in the current working directory:

export INST_CLIENT_DIR=./

export PATH=$PATH:/opt/ignite/lbin

54

rescan_hw_host

 * Scanning system for IO devices...

 * Querying disk device: 0/0/1/1.15.0 ...

 * Querying disk device: 0/0/2/1.15.0 ...

ll

total 4

-rw-r--r-- 1 root sys 214 Apr 27 15:31 host.info

-rw-r--r-- 1 root sys 688 Apr 27 15:31 hw.info

cat host.info

MEMORY=1310720K

HARDWARE_MODEL="9000/800"

MODEL="9000/800/A400-6X"

can_run_32bit=TRUE

can_run_64bit=TRUE

is_numa=FALSE

is_ia64=FALSE

is_hppa=TRUE

_hp_boot_dev_path="0/0/1/1.15.0"

_hp_boot_dev_path visible_if FALSE

cat hw.info

cdrom: 0/0/1/0.1.0 2 sdisk 188 31 1000 HP_DVD-ROM_304 0 /dev/rdsk/c0t1d0
/dev/dsk/c0t1d0 -1 -1 0 1 0

disk: 0/0/1/1.15.0 0 sdisk 188 31 1f000 SEAGATE_ST336704LC 35566480
/dev/rdsk/c1t15d0 /dev/dsk/c1t15d0 -1 -1 5 1 10

disk: 0/0/2/1.15.0 1 sdisk 188 31 3f000 SEAGATE_ST336704LC 35566480
/dev/rdsk/c3t15d0 /dev/dsk/c3t15d0 -1 -1 4 1 10

lan: 0/0/0/0 0 lan0 btlan 000F201D7D1F HP_PCI_10/100Base-TX_core0

ext_bus: 0/0/1/0 0 c720 n/a SCSI_C896_Ultra_Wide_Single-Ended

ext_bus: 0/0/1/1 1 c720 n/a SCSI_C896_Ultra_Wide_Single-Ended

ext_bus: 0/0/2/0 2 c720 n/a SCSI_C87x_Fast_Wide_Single-Ended

ext_bus: 0/0/2/1 3 c720 n/a SCSI_C87x_Ultra_Wide_Single-Ended

processor: 160 0 processor n/a Processor

Note:
The lines are not folded in the actual hw.info file as they
appear in the preceding example.

You can test configuration changes with instl_dbg by copying an existing per-client
directory to a new directory. However, it is not a good idea to copy the directory to
another directory under /var/opt/ignite/clients in case the <MAC> directory you
choose to copy it to conflicts with a potential future client; instead, copy it somewhere
else.

55

You can either copy the hw.info and host.info files from the client system or freely
change the existing hw.info and host.info files for testing. For example, the disk size is
the field after the description, but before the raw device file name (both disk devices are
set to 35566480 in the preceding example).

If you had to test a configuration with 72 GB disks, you could manually change those
sizes. While you might consider doing this for testing purposes, you should never change
the hw.info or host.info files in a per-client directory on the Ignite-UX server that is
used by a "real" client system, as doing so may cause many potentially fatal problems.

Miscellaneous configuration tips
• In Ignite-UX configuration files, TRUE and FALSE should be stated only in upper- or

lower-case and never in mixed case. Ignite-UX does not understand TRUE or FALSE
when they are in mixed case. This applies to other keywords as well.

• Be careful when deciding to use the = or += operators. The += operator enables you to
add to something, while the = operator removes any current value for a variable and
replaces it with the new value being assigned. See the "_hp_disk_layout" section on
page 86 for information about how = and += can be used to replace existing disk
layouts or add more layout choices. The error keyword is a good example of the
need to use += at times. If you use =, you remove any previous error messages that
may have been encountered. If you use +=, all of the error messages, both previous
and new, can be shown to the user.

• When you are using the Ignite-UX GUI to add new logical volumes, you might want to
consider choosing the logical volume that is most similar to what you want to create
and use that as a starting point. Change the attributes and instead of selecting Modify,
then select Add to create your new logical volume.

• When setting a network configuration, review instl_adm(4) to verify whether the
modifier final (placed before a keyword, such as dns_domain) is required to retain
the configuration when the system is installed. If it is required and you do not provide
this modifier, the configuration is only kept for the duration of the installation and is
discarded at the final system reboot.

• If you do not want to preserve instance numbers when cloning a system, you should
remove all of the hw_instance_num lines from the system_cfg file. Unlike network
recovery archives, you cannot remove hw_instance_num lines from a recovery tape
after creation. Instead, if you use a recovery tape for cloning and do not want to
preserve instance numbers, you must preview using make_tape_recovery with the -p
option, edit the associated configuration file
(/var/opt/ignite/recovery/latest/system_cfg), and then resume creation of the
recovery tape using make_tape_recovery with the -r option. For a network recovery
archive, you would find the system_cfg file in the following location:

/var/opt/ignite/clients/<MAC>/recovery/<DATE-TIME>/system_cfg

Analyzing the HP-UX default B.11.11 cfg clause
The following is from a default /var/opt/ignite/INDEX showing the configuration files
referenced by the HP-UX B.11.11 cfg clause:

56

cfg "HP-UX B.11.11 Default" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

 "/var/opt/ignite/config.local"

}

This section describes these configuration files and explains what is happening and why
certain things have been done in certain ways.

The release-specific configuration file
The config file defines all of the file system and volume management configurations for
the release (and a few other things).

config:

(c) Copyright Hewlett-Packard Company 1994

This file contains the default system definitions used during a

cold-install of HP-UX. This file should not be modified. If

modifications are needed, the file "config.local" should be modified

instead.

See the instl_adm(4) man page for details.

Changes to this file will not be preserved if the fileset is re-installed.

If you are editing this file via the advanced options during a

cold-install, then notice that the "config.local" contents are appended

to the end of this file.

@(#) config $Revision: 10.82 $

The release keyword is probably the single-most important keyword in an Ignite-UX
configuration file. This keyword must be set or else any installation of HP-UX is likely to fail
or not work properly. Ignite-UX has no idea what version of HP-UX it is installing unless it is
set.

As of Ignite-UX C.6.0.x, the release keyword is checked against the value of the
_hp_ikernel_os_release variable (the client creates the value of this variable in the

57

host.info file). If the HP-UX release in the release keyword is not supported by the
kernel version given in _hp_ikernel_os_release the installation is not allowed to
proceed and the following error appears:
ERROR: The version of HP-UX you have chosen to install on the system

 (B.11.23) is not supported by the version of the Ignite-UX install

 kernel that the system booted (B.11.11). You will need to reboot the

 target system from an install kernel matching the desired release
from

 the menu at the console. If using the bootsys command, use the '-R'

 option to specify the install kernel version.

Table 2 shows the different HP-UX releases, beginning with Ignite-UX C.6.0.x, which can
be installed with the different versions of an installation kernel14.

Table 2

HP-UX Release PA-RISC Itanium®-based

B.11.11 B.11.00 / B.11.11 N/A

B.11.23 B.11.23 B.11.22 / B.11.23

Therefore, if you boot the B.11.11 installation kernel you can install HP-UX B.11.00 and
B.11.11 but you cannot install B.11.23. The reverse applies if you boot the B.11.23 PA-RISC
installation kernel: you cannot install B.11.11 or B.11.00 with it.

When you create custom configuration files and do not plan to include the default
configuration files you must set this variable.

release="B.11.11"

Sometime ago, changes were made to Ignite-UX to increase the block and fragment
sizes for VxFS and HFS file systems. This can lead to differences between systems installed
in the last few years and much older systems that had smaller default block and
fragment sizes (for example, the file system attributes are different so the block and
fragment sizes from older systems are probably smaller).

The use of <variable> visible_if false ensures that the variables do not appear in
the Additional dialog box from the Basic tab.

init _hp_HFS_blksize = 65536 # HFS block size.

init _hp_HFS_fragsize = 8192 # HFS frag size.

init _hp_VxFS_blksize = 8192 # VxFS block size.

14 This assumes that you have installed the necessary filesets to support those HP-UX releases.

58

init _hp_FS_stripe_size = 64Kb # File system stripe size.

_hp_HFS_blksize visible_if false

_hp_HFS_fragsize visible_if false

_hp_VxFS_blksize visible_if false

_hp_FS_stripe_size visible_if false

The following example shows the start of a definition for the _hp_disk_layout variable,
which is set to one of four possible values.

Around the _hp_disk_layout is a test for is_hppa (is PA-RISC). This only exists in this file
since the file is generated from one common source file using unifdef (refer to
unifdef(1) for more information) for all HP-UX releases. Obviously, this test is not
actually needed for HP-UX B.11.11 since it is only supported on PA-RISC systems. The
entire release-specific configuration files are based on one original file and they are
processed with unifdef to produce the release-specific configuration file.

You actually get to see the value of the variable _hp_disk_layout when you use the
Ignite-UX GUI. The values currently assigned to _hp_disk_layout are shown on the File
System: list on the Basic tab. The form used in the next example to initialize a list of
possible values allows the Ignite-UX GUI to modify the list later.

Further in the configuration file, when giving _hp_disk_layout a final value you only
assign its value using init. When using the form "init _hp_disk_layout="…" the Ignite-
UX GUI is still allowed to modify the value. If you instead define
"_hp_disk_layout="…"" without the init, the Ignite-UX GUI cannot change this value.
If the Ignite-UX GUI were not able to change the value of _hp_disk_layout, no
changes made in the Ignite-UX GUI to file system attributes are applied to the system15.

This is because the Ignite-UX GUI must change the value of _hp_disk_layout to
"Modified LVM Layout", "Modified VxVM Layout", or "Modified Whole-Disk Layout" when
changes have been made. If the Ignite-UX GUI is not allowed to change the variable,
you cannot keep any file system customizations. This concept becomes very important
when creating custom configuration files.

Any _hp_disk_layout variable setting besides those below will disable

the default disk layout described in this file. This can be

done if a custom disk layout is defined elsewhere.

For PA architecture only

is_hppa {

15The itool command Ignite-UX GUI accepts changes to file system attributes and does not caution you, but no
file system attribute changes made in the Ignite-UX GUI are applied to the system.

59

 _hp_disk_layout = {

 "Whole disk (not LVM) with HFS",

 "Logical Volume Manager (LVM) with HFS",

 "Logical Volume Manager (LVM) with VxFS",

 "VERITAS Volume Manager (VxVM) with VxFS"

 }

}

You can now set the variable _hp_disk_root to the value of _hp_primary_path,
assuming that the device that _hp_primary_path points to exists and _hp_root_disk
does not already have a value. You can use an Extended Regular Expression (ERE)16 to
see if _hp_root_disk is set to any value17.

Set the default root disk to the current primary path. The

_hp_primary_path will be "" if it was set to a non-existent dev.

also don't reset the _hp_root_disk if it was initialized in

a different config file and non-null (see 15654FSDdt). Use

the ~ operator instead of == to detect if _hp_root_disk is not

yet set (See FSDdt22058).

(_hp_primary_path != "" & !(_hp_root_disk ~ ".*"))

{

 init _hp_root_disk=_hp_primary_path

}

The next section of the configuration file presents a critical concept that it is important to
understand – the idea of the effects relationship. An effects relationship creates a
relationship between two variables so that when one variable changes the other
variable is re-evaluated – even if its final value is not based upon that variable.

In the next example, you can see that the value of _hp_pri_swap has been set to the
size of the root disk and to the value of _hp_disk_layout (after that primary swap is
initialized to a value more useful for swap).

This forces Ignite-UX to reevaluate the value of _hp_pri_swap whenever the size of the
root disk changes (a smaller disk might force Ignite-UX to define a smaller swap space) or
when the disk layout changes.

16 For more information regarding ERE, refer to regexp(5).
17 The ERE ".*" means zero or more of any character so it matches a zero length string.

60

The next two statements are used only to establish an effects

relationship between the _hp_pri_swap variable and _hp_root_disk &

_hp_disk_layout variables. The value is overwritten below.

This makes the UI change the swap anytime either of these two

values change.

init _hp_pri_swap = disk[_hp_root_disk].size

init _hp_pri_swap = _hp_disk_layout

default (recommended) swap size is 2 X memory

Round up to the nearest 64MB so that we don't get a warning

about it being adjusted in the UI. Really this just needs

to be rounded to be a multiple of the physical-extent-size, but

that can vary depending on the size of disk (4,8,16,32,64...)

64MB should work on the majority of the disks available.

init _hp_pri_swap = (((MEMORY * 2) + 65535KB)/64MB)*64MB

Now you have other calculations for swap for different sized disks. The following example
limits the size of swap for small disks. If you use init when setting both _hp_pri_swap
and _hp_sec_swap, then the configuration only uses methods for setting the variables
that allows the Ignite-UX GUI to modify them.
Put an upper bounds of 1024Mb to the default swap size for disks

less than 5Gb. And 4Gb swap for other disks

_hp_pri_swap > 1024Mb {

 disk[_hp_root_disk].size < 5120Mb {

 init _hp_pri_swap = 1024Mb

 } else {

 _hp_pri_swap > 4096Mb { init _hp_pri_swap = 4096Mb }

 }

}

Use a 128Mb as the default minimum amount of swap configured on any

system. The real swap space will be reduced down to _hp_min_swap if

there is not enough file system space.

(_hp_pri_swap < 128Mb)

 { init _hp_pri_swap = 128Mb }

Initialize the swap range minimum to what the default is

_hp_min_swap = _hp_pri_swap

If the system is limited on resources, then reduce the minimum so

61

that the OS has a better chance of fitting. The swap size will

still be set to the recommended value if there is enough disk space.

(_hp_min_swap > 512Mb & disk[_hp_root_disk].size < 3000Mb)

 { _hp_min_swap = 512Mb }

(_hp_min_swap > 192Mb & disk[_hp_root_disk].size < 1800Mb)

 { _hp_min_swap = 192Mb }

(_hp_min_swap > 96Mb & disk[_hp_root_disk].size < 700Mb)

 { _hp_min_swap = 96Mb }

(_hp_min_swap > 68Mb & disk[_hp_root_disk].size < 600Mb)

 { _hp_min_swap = 68Mb }

Now _hp_sec_swap has been initialized with a set of values that can be chosen from;
however, they are not a fixed set of values. The variable _hp_sec_swap can be set using
the Additional button because of the way the variable was defined (<variable>={
value1, value2, … }). The variable _hp_sec_swap has its value set from a selection list
or by typing it into the corresponding field directly. This can happen because
_hp_sec_swap was not defined as an "enum"; if it had been defined as an enum only a
value from the list of values it contains could be used.

Although, in this configuration, hp_pri_swap cannot be modified using the Additional
button. This value appears directly in the Ignite-UX GUI on the Basic tab using the Root
Swap (MB) button and it allows you to select from a list of possible values. The list of
values shown in the selection list for _hp_pri_swap comes from the list defined in the
configuration. If you create a custom disk configuration file, you should supply a value or
a list of values for _hp_pri_swap (or somehow otherwise calculate a default value for it).

_hp_pri_swap = { 128Mb, 256Mb, 512Mb, 1024Mb,

 1536Mb, 2048Mb, 3072Mb, 4096Mb,

 8192Mb, 12288Mb, 16384Mb }

_hp_sec_swap ={ 0Mb, 128Mb, 256Mb, 512Mb, 1024Mb,

 1536Mb, 2048Mb, 3072Mb, 4096Mb,

 8192Mb, 12288Mb, 16384Mb }

init _hp_sec_swap = 0Mb

_hp_sec_swap help_text "Secondary Swap space (KB)"

The next example gives _hp_disk_layout a value of disk [_hp_root_disk].model. If
the value of that expression ever changes, it causes the value of _hp_disk_layout to
be re-evaluated.

Doing this makes good sense in the context of this configuration file because if you
change the root disk, you may need to re-evaluate what the disk configuration is. Tests
later on may override some defaults for _hp_disk_layout in the following example:

62

Note:
The models being tested on are not likely ever to run HP-UX
B.11.11. This is old data being carried along into later releases.

This next statement is used only to establish an effects relationship

between the _hp_disk_layout variable and _hp_root_disk. The value is

overwritten below.

init _hp_disk_layout = disk[_hp_root_disk].model

Define the defaults based on the system architecture 700 vs 800

is_hppa {

 HARDWARE_MODEL ~ "9000/7.*" {

 init _hp_disk_layout = "Logical Volume Manager (LVM) with VxFS"

 } else {

 # For a certain class of S800's, non-LVM takes >30 minutes to boot due

 # to sequential access firmware. So make the default LVM on them no

 # matter what size of disk it is.

 disk[_hp_root_disk].size >= 600Mb |

 HARDWARE_MODEL ~ "9000/825.*" |

 HARDWARE_MODEL ~ "9000/834.*" |

 HARDWARE_MODEL ~ "9000/835.*" |

 HARDWARE_MODEL ~ "9000/635.*" |

 HARDWARE_MODEL ~ "9000/845.*" |

 HARDWARE_MODEL ~ "9000/645.*" |

 HARDWARE_MODEL ~ "9000/822.*" |

 HARDWARE_MODEL ~ "9000/832.*" |

 HARDWARE_MODEL ~ "9000/842.*" |

 HARDWARE_MODEL ~ "9000/852.*"

 {

 init _hp_disk_layout = "Logical Volume Manager (LVM) with VxFS"

 } else {

 init _hp_disk_layout = "Whole disk (not LVM) with HFS"

 }

 }

 #

 # For disks over 2Gb+300k the default must be LVM.

 # Set the default here, and sanity_checks will ensure it.

63

 #

 disk[_hp_root_disk].size > 2097452K {

 init _hp_disk_layout = "Logical Volume Manager (LVM) with VxFS"

 }

} else {

 init _hp_disk_layout = "VERITAS Volume Manager (VxVM) with VxFS"

}

The enumeration _hp_root_grp_striped in the following example is a perfect example
of how to ask a yes/no or Boolean question using the Additional button on the Basic tab
in the Ignite-UX GUI. The first step is to define the variable as an enum, then give it two
values, an initial value (with the init keyword so the user is allowed to change it using
the Ignite-UX GUI), and some help text.

Without defining _hp_root_grp_striped as an enum, the user would be able to select
YES or NO on the Additional button or also enter any value. In this case, it does not
matter because the configuration only ever tests on the value YES (later) to decide on
an action, but if you could enter a lower-case "yes" the tests would fail; hence the
enumeration type is used.

Boolean describing whether or not the root disk group

will be striped

enum _hp_root_grp_striped

_hp_root_grp_striped = { "YES", "NO" }

init _hp_root_grp_striped = "NO"

_hp_root_grp_striped help_text "Stripe root VG disks?"

The expression in the next example is defining a use model. Use models are not variables;
they are true / false expressions that are used to control how things are done18. Like
variables, use models can be viewed using the Additional button of the Basic tab in the
Ignite-UX GUI. When you are in the Additional dialog box, use models look visibly
different from variables. Later in the configuration file, is the impact statement that this
use model would have when it is set to true.

INIT19 "Create /export volume" = false

Now you have another effects relationship, this time between a new variable
_hp_root_grp_disks and _hp_root_disk. The variable _hp_root_grp_disks is
meant to be an integer so when doing the effects relationship you add zero (0) to

18 Unfortunately, variables cannot have effects relationships with use models or software selections.
19 The "init" keyword is case insensitive, so it can appear is init or INIT. It cannot appear in mixed case such
as "Init". If you do this, Ignite-UX will not recognize it as a keyword.

64

disk[_hp_root_disk].size to ensure that the final value is an integer. Since variables
are not explicitly typed, you want to imply an integer type.

The variable _hp_root_grp_disks is also an enum; it can take one of the values from 1
up to the value of variable num_disks,20 and it has a default initial value of 1.

Number of disks in the root volume group

The fist line below is just to define an "effects" relationship

between the root disk and _hp_root_grp_disks which dependent

upon each other in the logic to follow.

init _hp_root_grp_disks = (disk[_hp_root_disk].size+0) # +0 convert to int

enum _hp_root_grp_disks

_hp_root_grp_disks = { 1..num_disks }

init _hp_root_grp_disks = 1

_hp_root_grp_disks help_text "# of disks in root VG"

In the next example, you test on the size of the root disk and the number of disks
attached to the system. If the size of the root disk is <600MB and there are only two disks,
the second disk is automatically included into the root volume group (by setting
_hp_root_grp_disks to be 2).

When the root disk is <600MB, the default value for _hp_disk_layout is "Whole disk (not
LVM) with HFS". If there are only two disks in the system, the second disk is included and
the default for _hp_disk_layout is changed to "Logical Volume Manager (LVM) with
VxFS".

If there are only two disks and the "_hp_root_disk" disk is small, default
to

LVM configuration with both disks in root volume group.

disk[_hp_root_disk].size < 600Mb & num_disks == 2

{

 init _hp_disk_layout = "Logical Volume Manager (LVM) with VxFS"

 init _hp_root_grp_disks = 2

}

Next is another use model defined called "Create separate volumes (/usr, /var, ...)". It
is used later for _hp_disk_layouts other than "Whole disk (not LVM) with HFS" only. By
default, this is TRUE (and the Ignite-UX GUI does show separate volumes for /usr, /var,
… by default).

20 A built-in variable that is a count of the number of disks discovered on the system. Refer, refer to
instl_adm(4).

65

INIT "Create separate volumes (/usr, /var, ...)" = TRUE

The first disk configuration "Whole disk (not LVM) with HFS" is protected by a test of the
variable _hp_disk_config to see if it is equal to "Whole disk (not LVM) with HFS".

After that, the partitioned_disk keyword starts the definition of a whole disk layout for
a system. The partitioned_disk disk definition must contain the following:

• A physical_volume definition
• An fs_partition definition
• A swap_partition definition

If you have no fs_partition definition that at least defines the root file system, the
following error appears after pressing Go! in the Ignite-UX GUI:

ERROR: There is no root volume (mount point = /) defined in the configuration.

If you have no swap_partition defined, you see the following error after selecting Go!
in the Ignite-UX GUI:

ERROR: There is no swap volume defined in the root volume group (or on the
root disk).

For the physical volume statement, you need only supply the name of the disk that is
used as the root disk (the disk[] keyword takes a hardware path or index number and
returns the name of the disk). This discussion here assumes that you are defining the boot
disk as a whole disk21.

 However, if you were writing custom configurations you probably would not worry about
whole disk layouts on any system running B.11.11 (you need a 2GB or less disk drive to do
this on PA-RISC because of potential firmware limitations and HP-UX B.11.11 recommends
at least a 4GB root disk).

_hp_disk_layout == "Whole disk (not LVM) with HFS"

{

 partitioned_disk

 {

 physical_volume disk[_hp_root_disk]

21 You can have multiple whole disks defined in a configuration. Each whole disk is defined by different
partitioned_disk definitions and has a different mount_point.

66

The file system partition on a partitioned disk must be HFS. It follows from the fact that the
PA-RISC boot loader can only read from some types of HFS file system (large files-
enabled HFS file systems cannot be booted from on PA-RISC systems). Therefore, the
usage statement is set to be HFS. You set the block size and the fragment size22 to the HFS
defaults defined earlier.

Now size is set to the remaining, which takes whatever space is left over once "other"
things (in this case swap at the end of the disk) have been allocated., The mount point
naturally is "/" (since it is the root file system). Lastly, if this is a very small disk change
minfree to be 5% (you are installing B.11.11 and there is no way you can fit B.11.11 onto
a 300MB disk anyway).

 fs_partition {

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 size = remaining

 mount_point = "/"

 disk[_hp_root_disk].size < 300Mb {

 # For really small disks, tune down minfree

 # in order to gain some disk space.

 minfree = 5

 }

 }

Now you have our primary (and presumably only) swap partition definition, you can see
that it is swap from the usage. The interesting thing is the size specification. This sets the
size to be at least _hp_min_swap but also includes any remaining space up to
_hp_pri_swap in size. The swap space in this case attempts to get all of the space that it
can (up to _hp_pri_swap) but does not go lower than _hp_min_swap while ensuring
that the file system partition gets enough to meet its impacts23 statements requirements.

swap_partition {

 usage = SWAP

 mount_point = "primary"

 size = _hp_min_swap | remaining | _hp_pri_swap

 }

 }

22 These concepts are only meaningful in a HFS file system. The block size is the largest block of data a file can
have allocated to it (files that can occupy a full free block will do so and the smallest amount of space that
can be allocated by a file is the fragment size. In extent-based file systems these concepts are usually
meaningless. For example, the smallest allocation unit is 1KB no matter what the fragment size is set to for the
file system.
23 Impact statements and software are discussed later.

67

}

Now you have all of the volume manager layouts. You may have noticed at the
beginning of this section that LVM and VxVM both use the same ways of defining volume
definitions; only the usage statement at the volume group level distinguishes them.

_hp_disk_layout == "VERITAS Volume Manager (VxVM) with VxFS" |

_hp_disk_layout == "Logical Volume Manager (LVM) with HFS" |

_hp_disk_layout == "Logical Volume Manager (LVM) with VxFS"

{

Here you are defining the variable _hp_group_name. However, you must first make sure
that it is not visible on the Additional button (since you do not want anyone to be able to
change it). If the value of _hp_disk_layout is set to be VxVM ("VERITAS Volume
Manager (VxVM) with VxFS") you set _hp_group_name to be rootdg; otherwise it is LVM
you are using and vg00 is the name you are going to use24.

The _hp_group_name does not actually do anything except hold the initial name of the
volume group or disk group that this configuration is defining. If this variable could be
changed using the Additional button, it would not do anything since it is only a
temporary variable to hold the name25.
_hp_group_name visible_if FALSE

 (_hp_disk_layout == "VERITAS Volume Manager (VxVM) with VxFS") {

 _hp_group_name = "rootdg"

} else {

 _hp_group_name = "vg00"

 }

The temporary variable is necessary to give the volume group a name. You do this by
assigning the name to a temporary variable and then starting your volume group
definition with that name.

A volume group definition must have the following things in it:

• volume group attributes
• one or more physical_volume definitions (including "group"26 definitions that also

include more physical volume definitions)
• one or more (usually more) logical_volume definitions.

volume_group _hp_group_name

24 VxVM 3.5 and earlier requires the root volume group be named rootdg. This is enforced by Ignite-UX.
25 To change the name of a volume group you use the Ignite-UX GUI to select the File system tab then the
Additional Tasks button, and click Group Parameters. From the Group Parameters dialog box, select the
name of the group to change from the selection list, change the group name, press modify, and then click Ok.
26 Defining physical volume groups is discussed later when discussing custom configuration.

68

{

The physical_volume definition places the first disks (whose number is determined by
_hp_root_grp_disks) returned by the disk[] construct into the root volume group27.
When Ignite-UX encounters the first volume group that uses *=<index> it attempts to
return the preset root disk as the first disk. This causes things to look as though the disk in
_hp_root_disk (initialized from _hp_primary_path) was always placed into the list of
physical volumes put into the root volume group and disk group.
physical_volume disk[*=_hp_root_grp_disks]

Next is a test to choose the volume manager. Currently the only choice that enables
VxVM is "VERITAS Volume Manager (VxVM) with VxFS". All of the other choices use LVM.

(_hp_disk_layout == "VERITAS Volume Manager (VxVM) with VxFS") {

 usage = VxVM

} else {

 usage = LVM

}

All the volume group attributes such as max_physical_extents are optional and only
affect LVM volume groups. If you do not give them, they take on the defaults of the
vgcreate command.

In order to accommodate adding 9GB disks now or in the

future, set the default max_physical_extents large

enough to handle it (based on 4Mb extent size).

Note that this will be increased by IUX automatically

for disks larger than 9GB.

max_physical_extents = 2500

Very large disks are the most common disks on new systems with ≥140GB disks considered
large, 36/72GB disks average, and 18GB disks small. These tests adjust the physical extent
size for the LVM volume group being defined and ensures that the complete disk can be
used with the disks. It is only based upon the size of the root disk, not the size of every disk
that might be included. This might influence the amount of usable space in the volume
group. Additionally, Ignite-UX examines all the disks being used and selects the LVM
parameters that work for that entire disk group. The setting of physical extent size here is
just a first approximation; Ignite-UX can change these values at a later stage.

27 This is evaluated once. After that, changes made via the Ignite-UX GUI affect which physical volumes is used
in the root volume group.

69

In a custom configuration, it might be better to scale both max_physical_extents and
physical_extent_size based upon the disk size.

For very large disks, the root group VGRA meta-data area

will outgrow its bounds and trigger an IUX sanity check

error. So for root disks large enough, set the physical

extent size. Note that this only handles the root disk, but

any disk in the root VG could trigger the error...

 (disk[_hp_root_disk].size > 21504MB) # >21GB

{

 physical_extent_size=8

}

 (disk[_hp_root_disk].size > 44032MB) # >43GB

{

 physical_extent_size=16

}

(disk[_hp_root_disk].size > 84992MB) # >83GB

{

 physical_extent_size=32

}

(disk[_hp_root_disk].size > 179200MB) # >175GB

{

 physical_extent_size=64

}

Next are the definitions of the logical volumes in the configuration. The first one is, of
course, the root file system (note the mount_point definition). Depending on the value
of the disk layout, the file system type is either HFS or VxFS.

Further, you have a test for a use model "Create separate volumes (/usr, , ...)". If there
are separate file systems, then the default size for the root file system is 140MB if the root
disk is less than 8192MB, or 200MB if it is greater than or equal to 8192MB.

If you are not expected to create separate logical volumes for file systems like /usr and
/var then the sizes are the remaining space up to 1200MB if the size of the disk is less
than 8192MB or the remaining space up to 1200MB plus the size of _hp_pri_swap28.

28 HP-UX B.11.11 may not actually fit into the amount of space defined here; the impacts statements for
software defined may also force the sizes of file systems to be adjusted.

70

The root file system cannot have bad block relocation on and must be contiguous;
therefore contiguous_allocation is set to true, and bad_block_relocation is set to
false.
logical_volume {

 mount_point = "/"

 _hp_disk_layout == "Logical Volume Manager (LVM) with HFS" {

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 } else {

 usage = VxFS

 blksize = _hp_VxFS_blksize

 }

 "Create separate volumes (/usr, /var, ...)" {

 disk[_hp_root_disk].size < 8192Mb {

 size = 140Mb

 } else {

 size = 200Mb

 }

 } else {

 disk[_hp_root_disk].size < 8192Mb {

 size = remaining | 1200Mb

 } else {

 size = remaining | 1200Mb + _hp_pri_swap

 }

 }

 contiguous_allocation = true

 bad_block_relocate = false

}

Next, you define primary swap by setting the usage to be swap and dump. The
mount_point is set to "primary". The vgdisk[0] value enables you to specify that this
logical volume be placed onto the first disk in the root volume group. Refer to
instl_adm(4) for more information on the vgdisk keyword.

Next are the usual settings for primary swap of contiguous allocation and disabled bad
block relocation. The size must be at least _hp_min_swap and up to _hp_pri_swap
depending on the size of the disk.
logical_volume {

 usage = SWAP_DUMP

 mount_point = "primary"

 # Map it to the root disk to ensure it is considered primary

 # without this the secondary swap gets sorted first and considered

71

 # primary.

 vgdisk[0]

 contiguous_allocation = true

 bad_block_relocate = false

 size = _hp_min_swap | remaining | _hp_pri_swap

}

You looked at _hp_sec_swap earlier in the configuration file to see how it was defined.
The only place you can give it a value is by using the Additional button on the Basic tab
in the Ignite-UX GUI. You can manually define secondary swap using the File system
tab, but you must manually select the disk to avoid it being on the same disk as primary
swap. The configuration enables you to have secondary swap/dump. You only have to
care about its size, not placement.

So if the variable _hp_sec_swap is >0MB, swap/dump space is created. If there is more
than one disk in the root volume group, this swap/dump space is created on the second
disk. If you provide equal sized primary and secondary swap, it creates an interleaved
swap setup.

Also, you set the options required for this swap space to also be used as a dump space
(contiguous allocation and bad block relocation off), and lastly you set the size to be
_hp_sec_swap. Secondary swap, if not used for dump, does not require contiguous
allocation and bad_block relocation to be _relocate set to true.

_hp_sec_swap > 0Mb {

 logical_volume {

 usage = SWAP_DUMP

 mount_point = "secondary"

 (num_vgdisks > 1)

 {

 # This maps the secondary swap space to

 # the second disk when one is defined.

 vgdisk[1]

 }

 contiguous_allocation = true # allows use as dump

 bad_block_relocate = false # allows use as dump

 size = _hp_sec_swap

 }

}

Next /stand is defined. Of course, it must be HFS29. The block and fragment sizes are
initialized from constants defined earlier. If you have a disk less than 2050MB, /stand

29 The secondary loader in HP-UX B.11.11 cannot read VxFS file systems.

72

defaults to 84MB. A disk greater than or equal to 2050MB but less than 3075MB is 112MB
in size; otherwise you get a 300MB /stand file system by default.

logical_volume {

 mount_point = "/stand"

 # /stand must be HFS!

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 # The /stand volume needs to be able to hold at least 5 kernels,

 # for various debugging reasons. The typical 11i kernel is

 # about 18Mb. The debug IA kernel is 42Mb. The smallest /stand

 # area needs to be at least twice the largest possible kernel.

 # Unless a user tries to put on more than the "normal" amount of

 # software on a system with a large root disk, the default /stand

 # directory will be 300Mb. To see the use of the size option,

 # see the man page for "instl_adm".

 disk[_hp_root_disk].size < 3075Mb {

 disk[_hp_root_disk].size < 2050Mb {

 # Most 2G drives are actually bigger than exactly 2G

 size = 84Mb

 } else {

 size = 112Mb

 }

 } else {

 size = 300Mb

 }

 contiguous_allocation = true

 bad_block_relocate = false

}

300MB is the default for large disk configurations because additional DLKMs30 require
more space in /stand.

Now at this stage you may be wondering why you had to make sure that you set up
those logical volumes with certain values for contiguous allocation and bad block
relocation. Table 3 is a brief summary:

Table 3

Name Contiguous
Allocation

Bad Block
Relocation31

Reason

30 Dynamically loadable kernel modules

73

/ TRUE FALSE The root file system must be usable before the volume
manager is active to enable this. It cannot allow the
volume manager to relocate blocks and it must be
contiguous on a disk.

Primary
swap

TRUE FALSE Primary swap is activated before the volume manager is
active, so it requires the same options as the root file
system.

Dump
space

TRUE FALSE A dump is written when no volume manager is active;
because of this, it must be contiguous, and cannot have
bad blocks relocated by the volume manager.

Secondary
swap

N/A N/A Secondary swap has no requirements unless it is also a
dump space; in which case, it has the dump space
requirements.

/stand TRUE FALSE The /stand volume is read by the boot loader. The boot
loader knows nothing about volume managers and
currently only understands HFS32 file systems, so the file
system must be contiguous and cannot have bad block
relocation enabled.

Note:
On HP-UX B.11.11, it is assumed that all IODC (I/O Dependent
Code) in firmware can perform operations with up to 4GB
offsets33. For some I/O controllers this limits the maximum offset
for dump. Newer systems have block-based I/O implemented in
IODC. This allows the offset of an I/O operation to be given in
blocks not bytes. This change dramatically increases the
amount allowed for offset of dump spaces on most new I/O
interfaces. Itanium®-based systems do not have a 4GB offset
limit for dump since they all support block-based dump. In these
cases, the size is limited to the size of the disk itself.

If the option to create separate volumes is true (the default), then the following very
long block of definitions is examined:

"Create separate volumes (/usr, /var, ...)" {

Next is a definition for /usr. The file system has large files enabled, and if the disk layout
is "Logical Volume Manager (LVM) with HFS" then a HFS file system is created with the

31 This is bad block relocation performed by a volume manager not automatic relocation performed by the disk
drives.
32 Itanium®-based systems may have /stand as a VxFS filesystem. The HFS restriction is applicable only to PA-
RISC systems.
33 Various combinations of 2GB and 4GB offsets (depending on the I/O interface) were allowed in older
releases of Ignite-UX (before B.3.0 and in all of the A.x.x versions).

74

default block and fragment sizes set up earlier. Otherwise, it is a VxFS file system with the
default VxFS block size (note that the fragment size is irrelevant34 for VxFS).

logical_volume {

 mount_point = "/usr"

 largefiles = true

 _hp_disk_layout == "Logical Volume Manager (LVM) with HFS" {

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 } else {

 usage = VxFS

 blksize = _hp_VxFS_blksize

 }

Now if the size of the root disk is less than 1800MB, the size of the volume is at least 332MB,
after all other volumes have had their sizes allocated. The size of /usr can be increased
to have up to 20% free space35 (if available). The impact of disk space requirements for
software being installed that affects /usr may force the size to be higher.

disk[_hp_root_disk].size < 1800Mb {

 size = 332Mb | remaining | 20% free

} else {

If the root disk size is >3072 MB, the size of /usr is 500MB. Once all other volumes have had
their space allocated, the size can be increased to ensure that there is 20% free space
(noting the issues discussed previously can impact the size requirements). If the root disk
size is between 1800MB and 3072MB, then the minimum size is 400MB.

 disk[_hp_root_disk].size > 3072MB {

 size = 500Mb | remaining | 20% free

 } else {

 size = 400Mb | remaining | 20% free

 }

}

34 VxFS is an extent-based file system and allocates available space to a file. Fragments can be as low as 1KB
but are typically larger. There is no way to control fragment size in a VxFS file system.
35 This amount does not include the amount of space that can be added by the _hp_addnl_fs_free_pct
configuration item.

75

If the configuration item _hp_root_grp_striped is set to "YES" then you set up striping.
The "stripes = *" set the number of stripes equal to the number of disks in the volume
group. The stripe size _hp_FS_stripe_size was set up earlier as 64KB.

_hp_root_grp_striped == "YES" {

 stripes = *

 stripe_size = _hp_FS_stripe_size

 }

}

The definition of /opt is very similar to the definition of /usr. For this volume and the
others defined by setting "Create separate volumes (/usr, /var, ...)" to true, you only
look at the differences rather than the similarities.

The only difference between /usr and /opt is the size definition: rather than giving a
percentage free, there is a specific size requirement for free space. For example, in the
first size definition, when the size of the root disk is <1800MB, /opt is a minimum of 100MB.
After all space has been allocated, you take from the remaining up to an extra 100MB
and place it into /opt36.

logical_volume {

 mount_point = "/opt"

 largefiles = true

 _hp_disk_layout == "Logical Volume Manager (LVM) with HFS" {

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 } else {

 usage = VxFS

 blksize = _hp_VxFS_blksize

 }

 disk[_hp_root_disk].size < 1800Mb {

 size = 100Mb | remaining | 100Mb free

 } else {

 disk[_hp_root_disk].size > 3072MB {

 size = 100Mb | remaining | 252Mb free

 } else {

 size = 100Mb | remaining | 152Mb free

36 Again, the impact of software being installed can increase the size of this volume, and the
_hp_addnl_fs_free_pct configuration item can increase the final size of the volume (if free space is still left
unallocated).

76

 }

 }

 _hp_root_grp_striped == "YES" {

 stripes = *

 stripe_size = _hp_FS_stripe_size

 }

}

If the size of the root disk is greater than or equal to 8192MB, the final size can be 500MB
plus the size of _hp_pri_swap. The value is based on primary swap being dump and
some space is required in /var/adm/crash to save crash dumps. This assumption is
invalid if you define a separate volume for /var/adm/crash using the Ignite-UX GUI.37

logical_volume {

 mount_point = "/var"

 largefiles = true

 _hp_disk_layout == "Logical Volume Manager (LVM) with HFS" {

 # /var needs lots of inodes due to SD's IPD

 nbpi = 2048

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 } else {

 usage = VxFS

 blksize = _hp_VxFS_blksize

 }

 disk[_hp_root_disk].size < 8192Mb {

 size = 72Mb | remaining | 500Mb

 } else {

 size = 72Mb | remaining | 500Mb + _hp_pri_swap

 }

 _hp_root_grp_striped == "YES" {

 stripes = *

 stripe_size = _hp_FS_stripe_size

 }

}

37 The size requirement is up to 500MB + _hp_pri_swap. Depending on free disk space, there may not be
enough to increase the size of a file system this large. During an interactive installation, the size of /var can be
manually tuned down to a more appropriate value.

77

The definition of /tmp is a simpler case than the other volumes. In this case, the size is a
fixed value. It is unlikely that any impacts caused by installing software would affect
/tmp.

logical_volume {

 mount_point = "/tmp"

 largefiles = true

 _hp_disk_layout == "Logical Volume Manager (LVM) with HFS" {

 nbpi = 2048

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 } else {

 usage = VxFS

 blksize = _hp_VxFS_blksize

 }

 disk[_hp_root_disk].size < 8192Mb {

 size = 64Mb

 } else {

 size = 200Mb

 }

 _hp_root_grp_striped == "YES" {

 stripes = *

 stripe_size = _hp_FS_stripe_size

 }

 }

} # "Create separate volumes (/usr, /var, ...)"

Although it is rare to see an /export volume created, you can enable it by using the
Additional button on the Basic tab in the Ignite-UX GUI.

 "Create /export volume" {

 logical_volume {

 mount_point = "/export"

 largefiles = true

 _hp_disk_layout == "Logical Volume Manager (LVM) with HFS" {

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 } else {

78

 usage = VxFS

 blksize = _hp_VxFS_blksize

 }

 size = remaining | 100Mb

 _hp_root_grp_striped == "YES" {

 stripes = *

 stripe_size = _hp_FS_stripe_size

 }

 }

 }

The /home volume always gets defined and has a rather small size with no minimum,
going up to 20MB.

logical_volume {

 mount_point = "/home"

 largefiles = true

 _hp_disk_layout == "Logical Volume Manager (LVM) with HFS" {

 usage = HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 } else {

 usage = VxFS

 blksize = _hp_VxFS_blksize

 }

 size = remaining | 20Mb

 _hp_root_grp_striped == "YES" {

 stripes = *

 stripe_size = _hp_FS_stripe_size

 }

 }

 } # root group

} # Volume Manager disk layout.

The following special variables are used by Ignite-UX to control aspects of the installation
or recovery. The "Special variables" section describes all of the special variables in detail.

Set the variables that are recognized by the UI as invisible

so that they don't show on the "Additional" screen:

_hp_locale visible_if false

_hp_cfg_detail_level visible_if false

79

_hp_pri_swap visible_if false

_hp_min_swap visible_if false

_hp_disk_layout visible_if false

_hp_default_cur_lan_dev visible_if false

_hp_default_final_lan_dev visible_if false

_hp_keyboard visible_if false

_hp_root_disk visible_if false

_hp_boot_dev_path visible_if false

If _hp_disk_layout is one of the volume manager values then you allow some things to
become visible in the Additional button from the Basic tab in the Ignite-UX GUI. Some of
these control some of the configuration that you have already looked at. They are only
applicable if you are using a volume manager, so the else construct makes sure that
none of them can be seen on the Additional button.

_hp_disk_layout == "VERITAS Volume Manager (VxVM) with VxFS" |

_hp_disk_layout == "Logical Volume Manager (LVM) with HFS" |

_hp_disk_layout == "Logical Volume Manager (LVM) with VxFS"

{

 "Create /export volume" visible_if true

 "Create separate volumes (/usr, /var, ...)" visible_if true

 _hp_sec_swap visible_if true

 _hp_root_grp_striped visible_if (_hp_root_grp_disks > 1)

 _hp_root_grp_disks visible_if true

}

else

{

 "Create /export volume" visible_if false

 "Create separate volumes (/usr, /var, ...)" visible_if false

 _hp_sec_swap visible_if false

 _hp_root_grp_striped visible_if false

 _hp_root_grp_disks visible_if false

}

The following sw_sel definition adds some impacts and enables the addition of the
impacts to the file systems to take into account file system usage caused by the
installation. When the visible_if variable is set to false the sw_sel definition does
not appear in the Ignite-UX GUI; this variable is preset to true so the impacts always
affect the installation.

In order to more accurately specify the software impact to

80

specific volumes that normally do not have files loaded

directly, but get created by scripts, we specify some

typical sizes here so the disk space is accounted for.

init sw_sel "impact by scripts" {

 sw_source = "core"

 visible_if = false

 impacts = "/var" 60Mb

 impacts = "/stand" 20Mb

} = TRUE

The following configuration statements add a selection to the Additional button that
enables the user to control the use of autoboot. Ignite-UX normally runs no matter what
the autoboot flag is set to (refer to setboot(1M)). It forces it on if it was off, then later
turns it back off for the final reboot when the system would normally come back. This
configuration enables the user to manually boot the system when autoboot is disabled.

Ignite-UX normally forces the system to perform the first reboot automatically when
rebooting from the installation kernel to the newly created or recovered kernel. This
reboot is forced no matter what the autoboot flag is set to (refer to setboot(1M)).
Ignite-UX forces it on if it was off; prior to the final reboot Ignite-UX returns the autoboot
flag to off. If _hp_force_autoboot is set to NO and the system’s autoboot flag is not set
to on, the system does not perform a reboot.

Important:
If you disable autoboot and then install a system, the system
never executes a final reboot without manual intervention. HP
does not support booting into any other mode than the default
multi-user run level at this point. The installation or recovery
session has not yet completed and some steps must still be
performed by Ignite-UX. Booting into anything other than the
default run level does not allow the installation or recovery to
complete. This is the intended behavior of Ignite-UX and not a
flaw. In general (except when investigating Ignite-UX issues on
advice from HP Support), you should never change the value of
the _hp_force_autoboot variable.

Variable to give user control over the use of setboot. When the variable

is YES, autoboot is set before the first reboot and restored after the

first reboot. When the variable is NO, autoboot is never changed.

enum _hp_force_autoboot

_hp_force_autoboot = { "YES", "NO" }

init _hp_force_autoboot = "YES"

81

_hp_force_autoboot help_text "Force Ignite-UX autoboot?"

The following example enables you to set, using the Additional button, whether the final
system uses DHCP to obtain an IP address and hostname once it is installed or recovered.
Ignite-UX uses DHCP to get initial networking information (you must disable DHCP
[disable_dhcp=true] in the installation file system to stop a system booting over the
network from using DHCP to obtain an IP address and hostname).

Variable to give user control over DHCP.

If YES, then DHCP is turned off on the system.

enum _disable_dhcp

_disable_dhcp = { "YES", "NO" }

init _disable_dhcp = "NO"

_disable_dhcp help_text "Disable DHCP?"

_disable_dhcp == "YES" {

 DISABLE_DHCP=TRUE

}

In the next example, you can configure the value of _hp_addnl_fs_free_pct. The
variable is defined as a list of values that can be selected from the Additional button. If
an enum had been placed before the _hp_addnl_fs_free_pct you would only be able
to select a value from 0 to 10. Instead, you can select a value from 0 to 10 or enter
another value when changing the variable using the Additional button.

JAGae82704 fix. Variable to give user control over the amount of

free space left over in a logical volume. It defaults to 10. The

range provided if you click on the button is from 0-10, but a larger

value can be entered directly in the field if desired.

_hp_addnl_fs_free_pct = { 0,1,2,3,4,5,6,7,8,9,10 }

init _hp_addnl_fs_free_pct = 10

_hp_addnl_fs_free_pct help_text "Additional free space %"

The last part of configuration accomplishes several things:

1. Sets the os_release attribute for the swinstall command line.
2. Makes sure that _hp_os_bitness is set and set correctly (it should be set by the

configuration file that defines the core operating system depot or archive sw_sel
clause).

3. Makes sure that the system can run the bitness of HP-UX.
4. Sets the operating system Name attribute for the swinstall command line.

82

Ensure that the swinstall command line used contains the correct pose_as

attributes for the type of system being installed.

sd_command_line += " -x os_release=" +38${release}

(_hp_os_bitness == "64")

{

 (!can_run_64bit)

 {

 ERROR += "This system model: \"" +${model}+ "\" is not supported for
running 64bit HP-UX, you must select the 32bit selection"

 }

 sd_command_line += " -x os_name=HP-UX:64 "

}

else

{

 (_hp_os_bitness == "32")

 {

 (!can_run_32bit)

 {

 ERROR += "This system model: \"" +${model}+ "\" is not supported for
running 32bit HP-UX, you must select the 64bit selection"

 }

 sd_command_line += " -x os_name=HP-UX:32 "

 }

 else

 {

 ERROR += "The _hp_os_bitness variable is not set to \"32\" or \"64\".
This variable must be set in the config file that supplies the core archive or
depot. If using an archive, make sure you start with the core11.cfg example
config file. When using a depot, make_config will set this automatically."

 }

}

_hp_os_bitness visible_if false

You should exercise care when setting the value of sd_command_line in any other
configuration file because the os_name and os_release variables are required to install

38 Concatenates two strings together using the + operator. For more information, refer to instl_adm(4).

83

software correctly during an initial installation. Using = rather than += to add an option to
sd_command_line removes any current settings from sd_command_line.

Special variables
Ignite-UX uses the following special variables to control aspects of installation or recovery,
or to modify the state of the final system. The descriptions of these variables come from
the instl_adm(4) manpage, with further explanation provided where possible. If the
variable appears directly in or impacts the Ignite-UX GUI, this information is also
explained.

_hp_locale

The geocustoms user interface (UI) sets this string variable to the language locale that
the user has chosen. If set to the string ASK_AT_FIRST_BOOT then the geocustoms(1M)
application is invoked when the installation is complete, allowing the user to pick the
desired language. (The geocustoms application is not available prior to HP-UX 10.30).
Setting the value to SET_NULL_LOCALE leaves the system at default with no LANG
variable set, which causes the commands to use the internal messages that provide
better performance.

If _hp_locale is not set, it is set internally to the first value of the locale keyword for a
selected sw_sel. If multiple selected sw_sels contain locale keywords, the _hp_locale
variable is set to the first value of the locale of the first selected sw_sel.

The geocustoms39 application is used to manage the default locale on a system. If a
locale is not important, do not set one. If you set _hp_locale, set it to a locale that
exists on the final installed system, it should be visible in the output of locale –a.

You can run the geocustoms command at any time to manage the languages installed
on your system (for example, you can remove some or change the default locale). You
cannot use the geocustoms command to install non-existent locales back again.

The geocustoms program modifies /etc/rc.config.d/LANG to set a locale. The value
of SET_NULL_LOCALE for _hp_locale leaves /etc/rc.config.d/LANG with no locale
set.

The geocustoms program is easy to use because it provides a full-screen menu-driven
interface for managing locale support. It does have command line options if you prefer
not to use the user interface.

The standard configuration files set the variable _hp_locale visible_if false to
prevent this variable from being visible or changeable when using the Additional button
in the Ignite-UX GUI. The locale is chosen using the Languages button on the Basic tab in
the Ignite-UX GUI.

_hp_cfg_detail_level

This internal string variable is fundamental to the configuration file management done by
Ignite-UX. It is used primarily in client-specific configuration files. It contains a list of option
characters that represent which aspects of the configuration file are modified by the

39 The geocustoms command is deprecated and is planned for obsolescence in a future release of HP-UX.

84

user interface. This represents the areas of information that the configuration file, written
by the UI, contains.

The Ignite-UX process uses this information in case it needs to rewrite the configuration
file. The configuration file is rewritten both by the user interface and by the client
installation process. In these cases, the process uses _hp_cfg_detail_level to
determine how much information is represented by the configuration file and so it can
write out just the minimal amount of information and let the rest be supplied by the other
configuration files in the INDEX file.

The option characters recognized in the _hp_cfg_detail_level string that is found in a
client-specific config file are as follows:

-i INDEX cfg clause selection (file contains the line telling which INDEX file entry
should be used).

-v Variable and use model settings.

-s Software selection settings.

-S Modified software selection definitions.

-r Modified software source definitions (depot information).

-f Modified file system information.

-p System identity information.

-T The post_config_script selections settings.

-h Hardware control information (hw_instance_num statements).

-l Other control information (global mod_kernel statements for example).

For example, the line _hp_cfg_detail_level="ivsp" in a client configuration file
would indicate that the file contains information about which cfg INDEX selection is to
be used, as well as the variable settings, software selection settings, and system
parameters.

The user interface rewrites the config and config.full files in the per-client directories
on the Ignite-UX server for network installation and recovery, or in the
/var/opt/ignite/local directory for local media installation and recovery.

For network recoveries and installations, if you manually modify a file that Ignite-UX can
modify, you must be careful that the _hp_cfg_detail_level contains the appropriate
level of detail since it tells Ignite-UX what information is represented in the file that is what
should be written back out into the file when it is rewritten by anything. If you add
information that is not listed in the variable _hp_cfg_detail_level, it can be read, but
then, the unlisted information is not written back out again even if other information in
the file is modified and the file needs to be rewritten.

The standard configuration files use _hp_cfg_detail_level visible_if false to
prevent this variable from being visible or changeable when using the Additional button
on the Basic tab in the Ignite-UX GUI.

85

_hp_pri_swap

The _hp_pri_swap is the integer variable that is set by the Ignite-UX GUI to indicate how
much swap the user desires to have allocated on the root disk/volume-group. The
default LVM primary swap volume is defined as a size range with _hp_pri_swap being
the desired size and _hp_min_swap being the minimum size.

On the Basic tab in the Ignite-UX GUI, if you change the value of the Root Swap (MB)...
field you have changed the value of _hp_pri_swap.

Important:
If you navigate to the File system tab and select the primary
swap volume to change its size, it does not reflect the change
into the value on the Basic tab. That value remains the size as
the primary swap. However, if you return to the Basic tab and
change the field labeled Root Swap (MB)... at all, it changes the
primary swap size on the File system tab, so exercise caution.

The standard configuration files use the variable _hp_pri_swap visible_if false to
prevent this variable from being visible or changeable from the Additional button in the
Ignite-UX GUI.

_hp_min_swap

The _hp_min_swap is the integer variable that is used as the minimum size the primary
swap volume can be reduced to if there is not enough disk space for all other volumes.
This value defaults to an amount that should allow the system to boot and run HP-UX.

On the File system tab in the Ignite-UX GUI, if you select primary swap in the list of file
systems you see an immediate change to the fields below the section list; the field
labeled Min: is the value of _hp_min_swap.

The standard configuration files use _hp_min_swap visible_if false to prevent this
variable from being visible or changeable when using the Additional button in the Ignite-
UX GUI.

_hp_disk_layout

The _hp_disk_layout string variable is set by the Ignite-UX GUI to indicate which disk
layout (LVM, whole-disk, etc) that you have selected. As configurations are saved, the
list of values that it can have is increased to contain any modified layouts.

There are ways that you should and should not define this variable. The following is the
correct way to define the _hp_disk_layout variable; this assumes that _hp_root_disk
has already been set.

_hp_disk_layout= { "N4000 with 9Gb disk", "N4000 with 18Gb disk",

"N4000 with 36Gb disk", "N4000 with 72Gb disk" }

(model ~ "9000/N4000")

{

 (disk[_hp_root_disk].size<10000Mb)

86

 {

 init _hp_disk_layout=" N4000 with 9Gb disk"

 }

 else

 {

 (disk[_hp_root_disk].size<20000Mb)

 {

 init _hp_disk_layout=" N4000 with 18Gb disk"

 }

 else

 {

 (disk[_hp_root_disk].size<400000Mb)

 {

 init _hp_disk_layout=" N4000 with 36Gb disk"

 }

 else

 {

 init _hp_disk_layout=" N4000 with 72Gb disk"

 }

 }

 }

}

The preceding configuration correctly defines the settings for _hp_disk_layout to
enable the Ignite-UX GUI to modify the disk configuration. If you want to set
_hp_disk_layout so that you cannot make any changes using the Ignite-UX GUI, follow
the next example. In this configuration, you cannot change the disk layout after it has
been selected by these tests:

_hp_disk_layout= { "N4000 with 9Gb disk", "N4000 with 18Gb disk",

"N4000 with 36Gb disk", "N4000 with 72Gb disk" }

(model ~ "9000/N4000")

{

 (disk[_hp_root_disk].size<10000Mb)

 {

 _hp_disk_layout="N4000 with 9Gb disk"

 }

 else

 {

 (disk[_hp_root_disk].size<20000Mb)

 {

87

 _hp_disk_layout="N4000 with 18Gb disk"

 }

 else

 {

 (disk[_hp_root_disk].size<400000Mb)

 {

 _hp_disk_layout="N4000 with 36Gb disk"

 }

 else

 {

 _hp_disk_layout="N4000 with 72Gb disk"

 }

 }

 }

}

The difference between the two sets of configuration is that the init keyword is missing
from the second set of configuration statements when _hp_disk_layout is set to be a
specific value. The instl_adm(4) manpage states:

init variable=value

 Preceding the assignment with the init keyword means that the

 variable is to be initialized to the given value, but the user

 interface is allowed to alter the value later.

variable=value

 When the init keyword is not used, then the variable cannot be

 changed by the user interface. This type of assignment is not

 recommended for "visible" variables.

Therefore, the init keyword must proceed the value that _hp_disk_layout is set to;
otherwise the Ignite-UX GUI cannot change it. When you modify anything using the
Ignite-UX GUI, it wants to add a new value to the list that _hp_disk_layout can have
and set it to the value of _hp_disk_layout. Unless init is used to give
_hp_disk_layout its initial value, the Ignite-UX GUI cannot change it and all
modifications to the disk layout are lost.

If you have an Ignite-UX server and a client that has been added or installed recently,
you can test this as follows:

1. Enter:
cd /var/opt/ignite/clients

itool –m pull –d <client>

2. Change the type of disk layout by selecting the File system tab and choosing the
correct layout from the list.

88

3. Quit the Ignite-UX GUI. You can choose any option on the exit screen; none of the

options reboots or halts the system.
4. Edit /var/opt/ignite/clients/<MAC>/config and remove init from the front of

the _hp_disk_layout variable.
5. Save the file.
6. Rerun the Ignite-UX GUI using the itool command in Step 1. If you change the file

system layout, it reverts to the original value.

Important:
Only perform this test with one of the standard unmodified
layouts. Do not perform this test with a modified disk layout.
Removing init prevents you from modifying anything to do with
the file system.

The values in _hp_disk_layout are only indirectly visible. The list of values in the
_hp_disk_layout variable is shown on the Basic tab in the Ignite-UX GUI in the File
System: list. The use of init indirectly affects how _hp_disk_layout works.

The standard configuration files use the variable _hp_disk_layout visible_if false
to prevent this variable from being visible or changeable using the Additional button in
the Ignite-UX GUI.

As defined, the preceding configuration replaces any other values assigned to
_hp_disk_layout. If you want to retain any currently defined disk layouts, you need to
start the preceding examples with the following:

_hp_disk_layout+= { "N4000 with 9Gb disk", "N4000 with 18Gb disk",

"N4000 with 36Gb disk", "N4000 with 72Gb disk" }

The += operator adds to current values rather than replacing any existing values.

_hp_default_cur_lan_dev

The _hp_default_cur_lan_dev string variable is set to the LAN device that is enabled
during the Ignite-UX process. It is used when a LAN device is omitted from keywords that
can accept a LAN interface specifier. This defaults to the interface that you picked
during the install; in the non-interactive case, it defaults to the LAN device the system
booted from or to lan0 if not a network boot.

Therefore, a configuration that looks like this:

(lan[].driver ~ "btlan") {

…

}

With this variable, the preceding configuration is really evaluated as:

89

(lan[_hp_default_cur_lan_dev].driver ~ "btlan") {

…

}

The standard configuration files use _hp_default_cur_lan_dev visible_if false to
prevent this variable from being visible or changeable using the Additional button in the
Ignite-UX GUI.

_hp_default_final_lan_dev

The _hp_default_final_lan_dev string variable is similar to
_hp_default_cur_lan_dev, but is used when network information is specified by using
the final keyword. It defaults to _hp_default_cur_lan_dev if not set. The IP address
associated with the LAN device specified by this variable is used for the entry in the
/etc/hosts file for the system's hostname.

That means that if you have the following partial configuration:

final ip_addr[]="15.30.129.47"

final netmask[]="255.255.255.0"

The IP address information is applied to the LAN interface defined by the variable
_hp_default_final_lan_dev, and this IP address is the one associated with the name
of the host in the /etc/hosts file. If the value of the variable
_hp_default_final_lan_dev is not set explicitly, it defaults to the value of the variable
_hp_default_cur_lan_dev.

The standard configuration files use _hp_default_final_lan_dev visible_if false
to prevent this variable from being visible or changeable using the Additional button in
the Ignite-UX GUI.

_hp_keyboard

The _hp_keyword string variable is set by the Ignite-UX GUI to the keyboard language
and mapping desired. The kbdlang keyword that was used for this in past releases is
equivalent to this variable. Setting this variable in the INSTALLFS file (using instl_adm)
prevents the system from prompting for a keyboard type during the install. This
information is stored in /etc/kbdlang on the final system.

If kbdlang is not set, it causes Ignite-UX to run the following command on workstations
and servers that have graphics consoles:

/sbin/itemap -i -L -w /etc/kbdlang

Not all servers support graphics consoles. If you run the itemap command on a system
that does not have the required hardware installed, the following message appears
when run with the –v option:

itemap -i -L -v -w /etc/kbdlang

90

No framebuffer device.

The –L option causes itemap to load the appropriate keymap for non-PS2 keyboards
into the Internal Terminal Emulator (ITE)40 and if a PS2 keyboard is found, the command
will interactively prompt for the type of keyboard. The list is created by showing all of the
keyboards found in the file /etc/X11/XHPKeymaps that start with PS2_DIN. A list of
possible values that this variable can take is generated with the following command:
keymap_ed -l | awk ' $5 ~ "^PS2_DIN" { print $5 } '

The X11 patches that modify /etc/X11/XHPKeymaps may add or remove keyboards
from this list (although not very often) so the list is dependent on X graphics patch
revisions. If you need to inspect the XHPkeymaps files from archives or other sources, the
keymap_ed command, with the –k option, enables you to specify an alternate file to
read. Refer to keymap_ed(1) for more information.

The standard configuration files use _hp_keyboard visible_if false to prevent this
variable from being visible or changeable using the Additional button in the Ignite-UX
GUI. It can be set for clients with required hardware from the Keyboard button on the
Basic tab. If the hardware is not present, the only choice presented is "Not Applicable".
If "Not Applicable" is chosen or left as a default, then the keyboard language/mapping is
prompted for when the system boots the first time if the system has a graphics console
and keyboard attached.

_hp_root_disk

The _hp_root_disk string variable is set by the Ignite-UX GUI to contain the hardware
path of the disk that the user has chosen to be the root disk. The value is initialized to the
value of _hp_primary_path in /opt/ignite/data/Rel_*/config, and can be
overridden in other config files. If no config file were to set the initial value, then it
would default to the disk with the hardware path with the highest SCSI priority.

The standard installation configuration attempts to set the variable _hp_root_disk to
the value of _hp_primary_path if _hp_primary_path is set. The variable
_hp_primary_path holds the hardware path to the disk that the system is set up to boot
from by default (set by setboot or selected at the BCH41 prompt). If the primary path
setup for the system points to a nonexistent device, _hp_root_disk is not be set by this
configuration. Instead, Ignite-UX chooses what it determines to be the "best" device for
the variable instead.

(_hp_primary_path != "" & !(_hp_root_disk ~ ".*"))

{

 init _hp_root_disk=_hp_primary_path

}

40 Internal Terminal Emulator is an emulation of an HP style terminal in the kernel when a graphics display is the
console device.
41 Boot Console Handler: the firmware boot prompt on PA-RISC systems.

91

During an interactive installation or recovery, you can modify this value using the Ignite-
UX GUI using the Root Disk… button on the Basic tab to get a selection of choices. It
can also be changed using the File system tab in Add/Remove Disks… dialog box by
changing the disks that are assigned to root volume or disk group. However, in the
Add/Remove Disks… dialog box Ignite-UX chooses which of the disks (if more than one)
is assigned to _hp_root_disk (initially anyway, after that they can be modified).

The standard configuration files use _hp_root_disk visible_if false to prevent this
variable from being from visible or changeable using the Additional button in the Ignite-
UX GUI.

_hp_boot_dev_path

The variable _hp_boot_dev_path is not defined by instl_adm(4). Do not rely on this
description and the behavior defined here because they may change without notice.

If bootsys was used on a disk that was not destroyed during the installation, then the disk
has an AUTO file left over from bootsys. Typically, you want to be able to boot from that
disk after the installation is done. The disk that you booted from originally is pointed to by
_hp_boot_dev_path.

The bootsys command stores the original AUTO file line as a commented-out string in the
AUTO file itself (using '#' as the comment char). Ignite-UX uses the value in
_hp_boot_dev_path to reset the AUTO file in the LIF of that device if that disk is not used
in the install.

On Itanium®-based systems the AUTO file is stored in the Extensible Firmware Interface
(EFI) partition. Ignite-UX treats that AUTO file exactly the same way as the PA-RISC AUTO
file stored in a boot LIF.

Do not have this variable set by any custom configuration file; its use is intended only for
internal use within Ignite-UX.

The standard configuration files use _hp_boot_dev_path visible_if false to prevent this
variable being visible or changeable using the Additional button in the Ignite-UX GUI.

_hp_primary_path

The _hp_primary_path string variable is set during the initial startup of Ignite-UX on the
client. The variable is set to the system's primary boot path (as set in stable storage and
read with setboot). If the system's primary boot path is incorrectly set to a non-existent
device, then _hp_primary_path is set to the empty string ("").

Use this variable for reference only, or to set other variables. Do not have a configuration
file assign it a value. Ignite-UX sets the value.

_hp_primary_partition_size

The _hp_primary_partition_size variable controls the size of the HPUX partition on an
EFI boot disk on HP Itanium®-based systems. Normally, the value of this variable is
calculated as the remainder of the disk being installed to after the other partition sizes
have been subtracted. For more information regarding the EFI and HPSP partitions, see
"_hp_efi_partition_size" and "_hp_service_partition_size".

Typically, there is no reason to set the _hp_primary_partition_size variable in a
custom configuration. If you do set this variable and the size is too large, it is
automatically reduced; if set too low, part of the boot disk remains unused.

92

_hp_efi_partition_size

The _hp_efi_partition_size integer variable is set by the Ignite-UX GUI to indicate the
size of the HP-UX Extensible Firmware Interface (EFI) boot partition on Itanium®-based
systems. This disk partition holds loader software and other utilities used to boot the HP-UX
operating system. This value defaults to a size that allows some space for additional boot
partition content in future HP-UX releases. This variable is adjusted to the minimum EFI
boot partition size if set to zero or a value less than the minimum. This variable is
supported starting with HP-UX 11.23 and is only supported on Itanium®-based systems.

This variable sets the size of the EFI partition located on bootable disks on Itanium®-based
systems. The minimum size is 150MB (default size 500MB) currently.

This variable can affect recoveries. For example, if there is no free space left on the boot
disk and an Ignite-UX version is released that increases the size of the EFI partition, the
recovery or installation requires manual intervention if the EFI partition size minimum is
increased because of lack of disk space.

This variable can affect new installations or reinstallations. If you have sized the boot disk
of a system to a certain size and have not included the size of the EFI Partition (and
Service Partition, see "_hp_service_partition_size") you may not have enough disk
space to install the system in the way that you want.

_hp_service_partition_size

The _hp_service_parition_size integer variable is set by the Ignite-UX GUI and
indicates the size of the HP Service Partition on Itanium®-based systems. This disk partition
holds diagnostics software, saved system and hardware state data, and other utilities
used to verify and update hardware functionality. This value defaults to a size expected
by the diagnostics software. A zero value indicates that no HP Service Partition is to be
created. This variable is adjusted to the minimum HP Service Partition size if set to a non-
zero value less than the minimum. This variable is supported starting with HP-UX 11.23 and
only supported on Itanium®-based systems.

This variable defines the size of the HP Service Partition located on bootable disks on
Itanium®-based systems. The minimum size is 400MB (default size 400MB) at this writing. If
the size of the HP Service Partition is set to zero, the partition is not created.

This variable can affect recoveries. For example, if there is no free space left on the boot
disk and an Ignite-UX version is released that increases the size of the HP Service Partition,
the recovery or installation requires manual intervention if the HP Service Partition size
minimum is increased because of lack of disk space

This variable can have an impact on new installations or reinstallations. If you have sized
the boot disk of a system to a certain size and have not included the size of the HP
Service Partition (and EFI Partition, see "_hp_efi_partition_size"), you may not have
enough disk space to install the system in the way that you want.

_hp_root_grp_disks

The _hp_root_grp_disks integer variable indicates how many disks to put into the root
volume group.

The itool wizard prompts you for the number of disks in the root volume/disk group and
whether they should be striped. However, in the Ignite-UX GUI you must use the
Additional button on the Basic tab to display the # of disks in root VG.

93

The default configuration described earlier (for B.11.11) sets _hp_root_grp_disks to an
enum from one to the value of the internal variable num_disks. During an installation,
Ignite-UX adds disks automatically to the root volume/disk group to make up this number.
Because the disks are assigned automatically, you must ensure that the disks do not
contain data that you do not want to lose. For example, in a SAN environment those
disks may belong to another system.

_hp_root_grp_striped

The _hp_root_grp_striped string variable uses the possible values YES and NO to
indicate if LVM data striping should be used on all disks in the root volume group if
multiple disks are in the root group.

This variable is defined within the default installation configuration so you can easily
specify whether the volumes within the root volume/disk group should be striped across
all disks in the root volume/disk group.

The itool wizard prompts you to specify whether the disks in the root volume/disk groups
should be striped (as well as to specify the number of disks in the root volume/disk group
on the same screen). However, in the Ignite-UX GUI you must use the Additional button
on the Basic tab to display the item Stripe root VG disks?.

Even though instl_adm(4) discusses LVM, striping also applies to VxVM (VxVM licensing
may restrict its use). Remember that the root, boot, and primary swap+dump cannot be
striped, so this only applies to other volumes in the root volume/disk group.

_hp_addnl_fs_free_pct

The _hp_addnl_fs_free_pct integer variable is used to control the amount of
additional free space allocated to volumes beyond the space required to load the
software. If this variable is not set, it defaults to 10 (10%).

The _hp_addnl_fs_free_pct variable can be changed using Additional free
space % during an installation because of the following configuration.

_hp_addnl_fs_free_pct = { 0,1,2,3,4,5,6,7,8,9,10 }

init _hp_addnl_fs_free_pct = 10

_hp_addnl_fs_free_pct help_text "Additional free space %"

This variable is not created for recoveries.

The instl_adm(4) manpage states the following about how _hp_addnl_fs_free_pct
affects the size calculations for volumes:

In addition to this minimum size, an additional percentage is added to the volumes to
ensure sufficient room after the system is installed. This percentage is by default 10%, but
can be controlled by the configuration file variable _hp_addnl_fs_free_pct. If the disk
capacity is insufficient to accommodate this additional free space, this additional
percentage value is continually reduced by 1/2 until a value is found that allows all the
volumes to fit. If the volumes still do not fit with 0% additional space, then the installation
is not allowed to proceed.

Therefore, the variable does nothing when there is no free disk space; however, if there is
free disk space, volumes on the system may be expanded in an unexpected manner.

94

_hp_ignore_sw_impact

The _hp_ignore_sw_impact integer variable can be set to one if you want to disable all
effects that the impacts statements declared in the software selections have on the
volume size calculations. This may be helpful if you want to ensure that Ignite-UX does
not automatically modify the file-system volume sizes.

Be careful when setting this variable to 1. Ignite-UX does not change the file system sizes
based upon the impacts statements associated with software products that are being
installed. The installer must correctly set file system sizes so the system does not fill file
systems during installation.

So, when do you use this variable? To answer that you need to look at how impacts are
created. Consider the following commands42:

$ print "f tmp/a 1024" | /opt/ignite/lbin/gen_impacts

 impacts = "tmp" 8Kb

$ print "f tmp/a 10240" | /opt/ignite/lbin/gen_impacts

 impacts = "tmp" 16Kb

The first command specifies a file size tmp/a of 1KB, but the impact is 8KB. The second
command specifies a file size of tmp/a as 10KB, and the impact is 16KB.

Most systems these days use VxFS instead of HFS for file systems. VxFS file systems are
extent-based file systems and can usually allocate (space allowing) blocks as small as
1KB to a file. When you have the impacts for a HFS file system applied to a VxFS file
system, the size requirements can be significantly overstated because of the assumptions
that gen_impacts43 makes.

The gen_impacts command assumes that all files are located on HFS file systems and
have an 8KB fragment size and a 64KB block size. The gen_impacts command gets the
approximate size correct when the file is large enough to use indirect block to track the
space used by the file.

These overstated impacts are not considered wrong, just conservative. Ignite-UX cannot
predict when impacts are being generated or what kind of file system on which the
software is installed. The correct approach is to take the conservative approach.

Lastly, consider the following example of what effect different fragment sizes have on the
impacts generated for a depot containing a copy of the B.11.11 Version Mission Critical
(MC) Operating Environment (OE) with the default fragment size (8KB), a 2KB fragment
size, and a 1KB fragment size:

/usr/sbin/swlist -l file -d -a type -a name -a size @/depot/11iv1_mc/core |
awk ' $3 == "f" || $3 == "d" { printf("%s %s %s\n", $3, $2, $4) } ' |
/opt/ignite/lbin/gen_impacts -l 2 -f 1024

 impacts = "/" 1138Kb

 impacts = "/usr/lib" 599090Kb

42 You do not call gen_impacts in this way, because the format that it accepts is not documented. This
example is only to illustrate how impacts are generated.
43 The archive_impact and make_arch_config commands both call gen_impacts to generate impacts
statements.

95

 impacts = "/sbin/lib" 561Kb

 impacts = "/usr/conf" 107843Kb

 impacts = "/sbin/init.d" 664Kb

…

/usr/sbin/swlist -l file -d -a type -a name -a size @/ depot/11iv1_mc/core|

awk ' $3 == "f" || $3 == "d" { printf("%s %s %s\n", $3, $2, $4) } ' |

/opt/ignite/lbin/gen_impacts -l 2 -f 2048

 impacts = "/" 1138Kb

 impacts = "/usr/lib" 603124Kb

 impacts = "/sbin/lib" 578Kb

 impacts = "/usr/conf" 108359Kb

 impacts = "/sbin/init.d" 734Kb

…

/usr/sbin/swlist -l file -d -a type -a name -a size @/depot/11iv1_mc/core |
awk ' $3 == "f" || $3 == "d" { printf("%s %s %s\n", $3, $2, $4) } ' |
/opt/ignite/lbin/gen_impacts -l 2 –f 8192

 impacts = "/" 1138Kb

 impacts = "/usr/lib" 632140Kb

 impacts = "/sbin/lib" 684Kb

 impacts = "/usr/conf" 111703Kb

 impacts = "/sbin/init.d" 1256Kb

…

The size differences in the first four impacts are summarized in Table 4 (the percentage
difference is between the 2KB and 8KB fragments compared to the 1KB fragment
impacts):

Table 4

Impacts Size (1KB) Size(2KB) % difference Size (8KB) %difference

/ 1138 1138 0.0% 1138 0.0%

/usr/lib 599090 603124 0.7% 632140 5.5%

/sbin/lib 561 578 3.0% 684 21.9%

/usr/conf 107843 108359 0.5% 111703 3.6%

/sbin/init.d 664 743 11.9% 1256 89.2%

The percentage increases are somewhat variable but when more space is used for the
larger impacts, the larger the fragment size. The impacts are made much larger when a
directory structure contains many very small files.

The reason why "/" is the same size is that gen_impacts allocates 1KB to an impact level
whenever it sees a directory mentioned. The "/" directory in this case appears 1138 times
in the swlist output (so multiple mentions of a directory in the output from swlist can
also bloat impacts).

96

Caution:
If you change or somehow recalculate impacts in any way, you
must be very careful. Impacts that do not fully take into account
the software impacts to a system may lead to configurations
that cannot install a system (because of file system full
problems).

_hp_custom_sys

The _hp_custom_sys string variable is used in conditional statements surrounding
network and system identity information when the Ignite-UX GUI writes out a
configuration file. This variable can be used in conditionals in configuration files to define
multiple sets of network parameters that can be selected from the Additional screen.
You can see how this variable is used by clicking the Save As button during an
installation after modifying the parameters under the System tab and looking at the
resulting file in the /var/opt/ignite/saved_cfgs directory.

Never use the _hp_custom_sys variable in custom configurations. Ignite-UX uses this
variable in the configuration files it can produce so setting it's value outside of those files
may interfere with it's use by Ignite-UX.

_hp_lanadmin_args

If your network requires that the default MTU or speed be set using the lanadmin
command to operate correctly, you can specify the arguments to the lanadmin
command using the _hp_lanadmin_args variable. This variable setting must be set in
the INSTALLFS file using the instl_adm command. Any change made with this variable
only affects the installation and is not permanently applied to the system. For example,
to set the MTU size to 1500, the line would be:

init _hp_lanadmin_args="-M 1500"

To set the speed for a 100-Base-T interface to full duplex (the default is half-duplex) you
could use the setting:

init _hp_lanadmin_args="-S 1"

Setting the MTU value with lanadmin only works for the NIO/HPPB FDDI interface.

Additional lanadmin libraries have been added over time to allow many interfaces to
be controlled with the –X option to lanadmin.

This variable is only useful when placed into the installation file system so the changes are
available at boot time. For example:

(lan[].driver ~ "btlan") {

 _hp_lanadmin_args="-X 100FD"

97

}

You might choose to place the preceding configuration lines into the installation file
system if you have systems (using LAN interfaces controlled by the btlan driver44)
connected to switches that have been set to operate only at 100 Full Duplex.

The reason you would need to do this is that there are no startup scripts when installing a
system. The btlan driver attempts to auto-negotiate the speed and duplex settings with
the device to which it is connected. If the switch is set to 100 Full Duplex the auto-
negotiation fails and the system runs at 100 Half Duplex.

When the system and the switch attempt to communicate using mismatched duplexes,
the values result in problems and performance suffers. This leads to either very long
installation times or a failed installation.

For additional information, see "Problems that can be solved with _hp_lanadmin_args".

_hp_nfs_mount_opts

The _hp_nfs_mount_opts string variable is set in the INSTALLFS file and is used to supply
additional options to the NFS mounts that are performed during the installation. This is
intended for use when the default options are not appropriate for your network. (Refer
to mount_nfs(1M) for valid options). For example, to set the read and write NFS buffer
size to 1K:

init _hp_nfs_mount_opts="-orsize=1024 -owsize=1024"

This option must be given in the installation file system for it to take effect, although a
read buffer size of 4-8KB performs better for recovery over a local network. Otherwise, if
you were to read the value of this variable from the Ignite-UX server, the NFS file system
would already be mounted and the options would be too late to be applied.

Before Ignite-UX version C.6.0.x the instl_adm(4) manpage is incorrect; the NFS mount
command accepts one and only one –o option. All of the options to the –o parameter
must be given in a comma separated list. The following example does work:

init _hp_nfs_mount_opts="-orsize=1024,wsize=1024"

Do not use NFS mount options documented in mount_nfs(1M) that interfere with the
correct operation of Ignite-UX such as the following:

-oro — If you mount the file system read-only it is very hard for Ignite-UX to update files
on it. It is also incompatible with the –orw option provided by Ignite-UX (some file
systems are mounted read-only by Ignite-UX so the –orw option should not be given
either).

-obg — Never place the mount attempts into the background as once the mount
command returns successfully, Ignite-UX assumes that the file system has mounted and

44 The installation kernel used to install and recover HP-UX 11.0 and HP-UX 11i v1 (B.11.11) systems is based upon
the HP-UX 11i v1 kernel. When referring to kernel driver names you must use the driver name from HP-UX 11i v1.

98

then continues. Ignite-UX provides a retry mechanism using the
_hp_nfs_mount_retries variable.

-overs=2 — Unless absolutely necessary do not use this option as NFS v2 does not
allow you to use large files (golden image and recovery archives more than 2GB in size
fails to install/recover).

Other NFS options may be used as needed unless they interfere with the operation of
Ignite-UX.

_hp_nfs_mount_retries

The _hp_nfs_mount_retries integer variable is used to modify the default number of
times that the NFS mounts are retried before failing. If this variable is not set, the mounts
are retried 4 times before giving up. If you need to change this default, this variable
should be specified in the INSTALLFS file. For example, to set the number of retries to 8:

init _hp_nfs_mount_retries=8

This is the number of retry attempts that Ignite-UX performs when attempting to mount an
NFS file system. If Ignite-UX attempts to retry an NFS mount, messages similar to the
following appear on the console and in the client’s install.log file:

NOTE: Retrying: "/usr/sbin/mount -orw

10.0.0.1:/var/opt/ignite/clients /var/opt/ignite/clients"

NOTE: Retrying: "/usr/sbin/mount -orw

10.0.0.1:/var/opt/ignite/clients /var/opt/ignite/clients"

NOTE: Retrying: "/usr/sbin/mount -orw

10.0.0.1:/var/opt/ignite/clients /var/opt/ignite/clients"

...

The messages continue until either the amount of retries given in
_hp_nfs_mount_retries is exceeded or the NFS file system mounts successfully.

_hp_tftp_cmds

The _hp_tftp_cmds string variable can be specified in the INSTALLFS file to supply
additional instructions to the tftp commands that are used to transfer data during an
installation. The commands supplied with this variable are passed as input to the tftp
command along with the usual commands supplied by Ignite-UX. The most likely use of
this would be to modify the retransmission-timeout (rexmt) and overall timeout (timeout)
values. The default values that Ignite-UX uses are rexmt=2 timeout=25. (Refer to
tftp(1) for more details). The string assigned to this variable should contain one tftp
command statement per line. For example:

init _hp_tftp_cmds="rexmt 5

99

timeout 40"

Setting this variable can increase the number of retransmissions and the timeout. You
may want to increase these values if the system being installed is a long way (network-
wise) from the Ignite-UX server or if you have a fairly unreliable or overloaded network.

_hp_hide_other_disks

The _hp_hide_other_disks string variable can be set to one or more space-separated
hardware paths of disks that should be "hidden" from being configured or otherwise
modified during the install. It allows more disks to be hidden than what is provided by the
hide_boot_disk keyword.

This variable is not especially useful for installation purposes, as you need to know all of
the disk hardware paths that need to be hidden, which is difficult at installation time
unless you know exactly what is in the system beforehand and what it looks like.

This is more useful during recoveries as Ignite-UX currently does them, as you can ensure
that some disks cannot be accessed or modified during a recovery session.

_hp_saved_detail_level

The _hp_save_detail_level internal string variable is used in configuration files that
have been created by a Save-As operation in the Ignite-UX GUI. Like
_hp_cfg_detail_level, it contains a list of option characters that represent which
aspects of the configuration file have been modified. The format is identical to the
_hp_cfg_detail_level variable.

You should not use this variable in custom configurations. If you are using itool or other
Ignite-UX internal commands to create configuration files that place this variable into a
configuration file, you should remove any reference to this variable.

_hp_os_bitness

Beginning at HP-UX 11.00, the _hp_os_bitness string variable is used to package
software for running on a 32-bit operating system, 64-bit operating system, or both. The
_hp_os_bitness variable is set to either 32 or 64 when an operating system is chosen.
This is normally done in a configuration file by keying off the sw_sel for a 32- or 64-bit
operating system. The sw_sel statements for certain applications rely on the setting of
this variable to tell which version of the application to install.

This variable is set by the core operating system sw_sel that was selected, for example:

sw_sel "HPUXBase64" {

 description = "HP-UX 64-bit Base OS"

...

}

(sw_sel "HPUXBase64") {

 _hp_os_bitness = "64"

}

100

When the software HPUXBase64 is selected (so the test "(sw_sel "HPUXBase64")" returns
true) the variable _hp_os_bitness is set to 64. The make_config command
automatically does this for you. However, if you manually write configuration files
containing definitions of a core operating system depot or archive, you must set this
variable to the correct bitness.

_hp_force_autoboot

The _hp_force_autoboot string variable is used to modify the behavior of Ignite-UX with
respect to stable store's autoboot flag. The Ignite-UX configuration process has two parts
separated by a reboot. By default (_hp_force_autoboot="YES"), Ignite-UX guarantees
that autoboot is set during the installation process and then reset to its previous state (if
necessary) at the end of the installation. If _hp_force_autoboot="NO", Ignite-UX does
not modify the autoboot flag in stable storage. This may mean that you do not have to
do a manual boot from the primary path between the two parts of the Ignite-UX
installation.

Ignite-UX normally forces the system to perform the first reboot automatically when
rebooting from the installation kernel to the newly created or recovered kernel. This
reboot is forced no matter what the autoboot flag is set to (refer to setboot(1M)).
Ignite-UX forces it on if it was off; prior to the final reboot Ignite-UX returns the autoboot
flag to off. If _hp_force_autoboot is set to NO and the system’s autoboot flag is set to
off, the system cannot complete the recovery and boot the final recovered or installed
system, which leaves the system at the BCH, prompt).

Important:
If you disable autoboot and then install a system, the system
never executes a final reboot without manual intervention. HP
does not support booting into any other mode than the default
multi-user run level at this point. The installation or recovery
session has not yet completed and some steps must still be
performed by Ignite-UX. Booting into anything other than the
default run level does not allow the installation or recovery to
complete. This is the intended behavior of Ignite-UX and not a
flaw. In general (except when investigating Ignite-UX issues on
advice from HP Support), you should never change the value of
the _hp_force_autoboot variable.

_hp_ikernel_os_release

The _hp_ikernel_os_release variable is not defined in the Ignite-UX documentation
and it should never be set explicitly by any custom written Ignite-UX configuration files.

When a client boots, part of starting Ignite-UX for installation or recovery is to create a file
called "host.info". As of Ignite-UX version C.6.0.x, this variable is added to the
host.info file and gives the HP-UX revision that the installation kernel is running. Ignite-UX
uses this information to prevent you from selecting HP-UX releases that cannot be
installed by the installation kernel.

For example, with Ignite-UX version C.6.0.x for PA-RISC systems, the B.11.11 installation
kernel is used to install B.11.00 and B.11.11 client systems but cannot be used to install
B.11.23 systems. Therefore, if _hp_ikernel_os_release is set to B.11.11 Ignite-UX will not
allow you to install HP-UX B.11.23.

101

_hp_current_client_release

The _hp_current_client_release variable determines what release of HP-UX the
client is currently running and is used by the ignite and make_net_recovery
commands. This variable should not be set in any custom-written configuration file. It is
not used during installation or recovery.

_HP_CLONING

The _HP_CLONING variable is only created by make_net_recovery and
make_tape_recovery as part of the configuration for a recovery archive. There seems
to be some confusion about exactly what this variable does. It is defined as follows in the
control_cfg file:

enum _HP_CLONING

_HP_CLONING help_text "Cloning to different HW?"

_HP_CLONING = { "TRUE", "FALSE" }

(MODEL == "9000/800/SD16000")

{ init _HP_CLONING = "FALSE" }

else

{ init _HP_CLONING = "TRUE" }

This defines _HP_CLONING as an enum and means that it can only have a value from one
of the list of possible values that are defined for it (on the third line of the definition). The
second line defines the help text that appears when using the Additional button on the
Basic tab. If the model string matches the pattern, it defaults to FALSE; otherwise, it
defaults to TRUE.

If you are using a recovery archive containing this configuration to clone one system to
another with the same model string, you should manually change this value to TRUE
using the Additional button on the Basic tab. This is to force a new kernel to be created.
Although the model of system may be the same, it may have different I/O cards present.
If the driver for those I/O cards is not present in the kernel being recovered, the final
system will not have the drivers and those I/O cards will not be claimed.

The code that does this is in one of the scripts provided with Ignite-UX that is run during a
recovery (os_arch_post_l):

If cloning to a different model of machine, _HP_CLONING will

be true (it can also be set via the Additional UI screen). In

this case remove the kernel which will allow IUX to rebuild it,

plus remove device files which will get rebuilt by insf or

might be inappropriate.

if [["$_HP_CLONING" = "TRUE"]] ; then

 remove_devs

 rm -f /stand/vmunix

102

fi

This variable does not control anything else.

_hp_console_verbosity

The _hp_console_verbosity variable allows you to reduce the amount of information
that is printed to the screen when Ignite-UX executes a recovery or an installation. It has
a default value of five that sets Ignite-UX to print everything; however, it only has to be
three or more to print everything.

When set to two or less, it greatly reduces the amount of messages printed on the
console. The messages not printed on the console are printed to the install.log file.
This variable maybe useful when creating media for use by non-technical personnel who
may not understand the messages being printed or may become concerned with some
of the warning messages that Ignite-UX can print that may not be indicative of a real
problem.

This variable is set in the installation file system. The following example reduces the
number of messages written to the console during a recovery or installation by setting the
variable to zero:

init _hp_console_verbosity=0

Warning:
If you reduce the amount of messages printed and a failure
occurs, this may cause difficulties when attempting to determine
the root cause of failures that occur early in an installation or
recovery when the install.log file has not yet been moved to
permanent storage.

_hp_patch_save_files

The _hp_patch_save_files variable is not actually a special variable and by itself, it
means nothing to Ignite-UX. It is a construct used within the hw_patches_cfg file in the
per release data directory (/opt/ignite/data/Rel_B.##.##). This construct is an enum
that is accessible from the Additional button on the Basic tab in the Ignite-UX GUI. The
following is an example of the _hp_patch_save_files enum definition:

_hp_patch_save_files is used to determine if patches loaded from the

core are committed, or not committed and can later be backed out.

enum _hp_patch_save_files

_hp_patch_save_files = { "YES", "NO" }

init _hp_patch_save_files = "YES"

_hp_patch_save_files help_text "Save patched files?"

103

However, the description in the previous example is wrong because the patches are not
committed. This variable construct only controls whether the swinstall option -x
patch_save_files=true or false command is added to the swinstall command
line.

Later in the same file, the following construct is found:

(_hp_patch_save_files == "NO")

{

 sd_command_line += " -xpatch_save_files=false "

}

else

{

 # This is actually the default...

 sd_command_line += " -xpatch_save_files=true "

}

Again, this variable construct is specific to one configuration file. It is not a special
variable that controls all software installations during an Ignite-UX installation session.

_hp_umask

The _hp_umask variable allows you to set the umask to a custom value during a recovery
or installation session. If not set, the umask value used by Ignite-UX defaults to 022
(removes write permission from other and group).

When a recovery or installation session first starts the umask value is set to the value 022;
this is not configurable. The umask defined by _hp_umask is only set once the
configuration user interface has finished and phase one of the recovery or installation
session starts.

After the first reboot and the recovery or installation continues, the umask value from
_hp_umask is used to set the umask again.

Warning:
HP does not test Ignite-UX with any umask setting other than 022;
setting the umask to a more restrictive value may cause
installation failures. HP does not consider installation failures
caused by setting _hp_umask to a value other than the default
to be a defect in Ignite-UX.

Configuration for software to be installed
This section discusses the configuration files required for software, beginning with
applications.

104

Application software depots
The following example system has multiple depots, one for the HP-UX 11i v1 (B.11.11) core
operating system depot and the other two for different versions of vPars (HP product
number T1335AC):

swlist -l depot

Initializing...

Target "box2 " has the following depot(s):

 /var/opt/ignite/depots/Rel_B.11.11/core

 /var/opt/ignite/depots/T1335AC_A.02.02.00

 /var/opt/ignite/depots/recovery_cmds

 /var/opt/ignite/depots/T1335AC_A.02.03.02

You must create some configuration files for the depots with the make_config
command:

make_config -l 2 -s /var/opt/ignite/depots/T1335AC_A.02.03.02 \

 -c /var/opt/ignite/data/Rel_B.11.11/vpars_A.02.03.02.cfg

NOTE: make_config can sometimes take a long time to complete. Please be

 patient!

make_config -l 2 -s /var/opt/ignite/depots/T1335AC_A.02.03.02 \

 -c /var/opt/ignite/data/Rel_B.11.11/vpars_A.02.02.00.cfg

NOTE: make_config can sometimes take a long time to complete. Please be

 patient!

The configuration file produced for version A.02.02.00 of vPars contains the sw_source
statement for the depot. The depot is available over the network, it is an SD depot, and
is located on the server 10.0.0.1 at /var/opt/ignite/depots/T1335AC_A.02.02.00:

cat vpars_A.02.02.00.cfg

Software Sources

sw_source "/var/opt/ignite/depots/T1335AC_A.02.02.00" {

 source_type = "NET"

 sd_server = "10.0.0.1"

 sd_depot_dir = "/var/opt/ignite/depots/T1335AC_A.02.02.00"

 source_format = SD

105

}

Next is patch software. The patch is only applicable to 64-bit systems (so it becomes
invisible on 32-bit systems):

Other Software

sw_sel "b_PHSS_28764" {

 (_hp_os_bitness == "64") {

 description = "(PHSS_28764) vPar (A.02.02) monitor cumulative patch"

 sw_source = "/var/opt/ignite/depots/T1335AC_A.02.02.00"

 sw_category = "Uncategorized"

 sd_software_list = "b_PHSS_28764,r=1.0,a=HP-UX_B.11.11_64,v=HP"

 impacts = "/stand" 2288Kb

 visible_if = TRUE

 }

 else {

 visible_if = FALSE

 }

}

Although not shown here, make_bundles was run to create the bundle b_PHSS_28764.

Next is the vPars product:

sw_sel "T1335AC" {

 (_hp_os_bitness == "64") {

 description = "HP-UX Virtual Partitions"

 sw_source = "/var/opt/ignite/depots/T1335AC_A.02.02.00"

 sw_category = "OrderedApps"

 sd_software_list = "T1335AC,r=A.02.02.00,a=HP-UX_B.11.11_64,v=HP"

 impacts = "/usr" 2Kb

 impacts = "/etc/rc.config.d" 24Kb

 impacts = "/stand" 1136Kb

 impacts = "/usr/share" 1640Kb

 impacts = "/usr/sbin" 3712Kb

 impacts = "/usr/lib" 2747Kb

 impacts = "/usr/lbin" 1376Kb

106

 impacts = "/usr/contrib" 15304Kb

 impacts = "/sbin" 1595Kb

 impacts = "/usr/conf" 9578Kb

 impacts = "/usr/include" 640Kb

 impacts = "/usr/newconfig" 5664Kb

 impacts = "/usr/ccs" 10248Kb

 impacts = "/usr/bin" 208Kb

 impacts = "/sbin/init.d" 40Kb

 impacts = "/" 2Kb

 visible_if = TRUE

 }

 else {

 visible_if = FALSE

 }

}

The configuration file is not yet 100% complete and requires a manual change that
causes problems. Specifically, the patch defined by the sw_sel, b_PHSS_28764 needs
to be installed at the same time as T1335AC. Therefore, you need to make a small
change to the sw_sel clause for T1335AC:

sw_sel "T1335AC" {

 (_hp_os_bitness == "64") {

 description = "HP-UX Virtual Partitions"

 sw_source = "/var/opt/ignite/depots/T1335AC_A.02.02.00"

 sw_category = "OrderedApps"

 sd_software_list = "T1335AC,r=A.02.02.00,a=HP-UX_B.11.11_64,v=HP"

 impacts = "/usr" 2Kb

 impacts = "/etc/rc.config.d" 24Kb

 impacts = "/stand" 1136Kb

 impacts = "/usr/share" 1640Kb

 impacts = "/usr/sbin" 3712Kb

 impacts = "/usr/lib" 2747Kb

 impacts = "/usr/lbin" 1376Kb

 impacts = "/usr/contrib" 15304Kb

 impacts = "/sbin" 1595Kb

 impacts = "/usr/conf" 9578Kb

 impacts = "/usr/include" 640Kb

 impacts = "/usr/newconfig" 5664Kb

 impacts = "/usr/ccs" 10248Kb

 impacts = "/usr/bin" 208Kb

107

 impacts = "/sbin/init.d" 40Kb

 impacts = "/" 2Kb

 visible_if = TRUE

 corequisite="b_PHSS_28764"

 }

 else {

 visible_if = FALSE

 }

}

Because you want the patch to be installed automatically with vPars, you need to
manually add the corequisite configuration line. When located in the same depot,
the default swinstall behavior of autoselect_patches=true automatically selects
the patch with the installation of the relevant vPars bundle. The configuration file
changes used here are strictly needed only when the patch is not in the same depot.

Now you can look at the vPars software configuration file for the other version of vPars
(version A.02.03.02). The sw_source definition is to the previous version except the depot
is in a different location, so the sw_source has a different name as well.

cat vpars_A.02.03.02.cfg

Software Sources

sw_source "/var/opt/ignite/depots/T1335AC_A.02.03.02" {

 source_type = "NET"

 sd_server = "10.0.0.1"

 sd_depot_dir = "/var/opt/ignite/depots/T1335AC_A.02.03.02"

 source_format = SD

}

Now vPars version A.02.03.02 contains many software products, as depicted in the
following:

Other Software

sw_sel "VPARMGR" {

 description = "Virtual Partition Manager - HP-UX"

 sw_source = "/var/opt/ignite/depots/T1335AC_A.02.03.02"

 sw_category = "OrderedApps"

108

 sd_software_list = "VPARMGR,r=B.11.11.01.02,a=HP-UX_B.11.11_32/64,v=HP"

 impacts = "/var" 1Kb

 impacts = "/opt/webadmin" 1544Kb

 impacts = "/opt/vparmgr" 204Kb

 impacts = "/opt" 1Kb

 impacts = "/usr/share" 8Kb

}

sw_sel "VPARDoc" {

 description = "VPAR Documentation Bundle"

 sw_source = "/var/opt/ignite/depots/T1335AC_A.02.03.02"

 sw_category = "HPUXAdditions"

 sd_software_list = "VPARDoc,r=B.11.11.59,a=HP-UX_B.11.11_32/64,v=HP"

 impacts = "/tmp" 8Kb

 impacts = "/cdrom/vParsWINSTALL" 49664Kb

 impacts = "/cdrom/DOCS" 1192Kb

}

sw_sel "T1335AC" {

 (_hp_os_bitness == "64") {

 description = "HP-UX Virtual Partitions"

 sw_source = "/var/opt/ignite/depots/T1335AC_A.02.03.02"

 sw_category = "OrderedApps"

 sd_software_list = "T1335AC,r=A.02.03.02,a=HP-UX_B.11.11_64,v=HP"

 impacts = "/usr" 2Kb

 impacts = "/etc/rc.config.d" 24Kb

 impacts = "/stand" 1176Kb

 impacts = "/usr/share" 1640Kb

 impacts = "/usr/sbin" 3712Kb

 impacts = "/usr/lib" 2747Kb

 impacts = "/usr/lbin" 1376Kb

 impacts = "/usr/contrib" 15304Kb

 impacts = "/sbin" 1603Kb

 impacts = "/usr/conf" 9194Kb

 impacts = "/usr/include" 640Kb

 impacts = "/usr/newconfig" 5664Kb

 impacts = "/usr/ccs" 10248Kb

 impacts = "/usr/bin" 208Kb

 impacts = "/sbin/init.d" 40Kb

109

 impacts = "/" 2Kb

 visible_if = TRUE

 }

 else {

 visible_if = FALSE

 }

}

sw_sel "KRMonitor" {

 description = "EMS Kernel Resource Monitor"

 sw_source = "/var/opt/ignite/depots/T1335AC_A.02.03.02"

 sw_category = "HPUXAdditions"

 sd_software_list = "KRMonitor,r=B.11.11.04,a=HP-UX_B.11.11_32/64,v=HP"

...

Using both of these configuration files together (or the configuration file
/var/opt/ignite/data/Rel_B.11.11/vpars_A.02.03.02.cfg with anything else)
causes conflicts unless manual changes are made.

When make_config finds two or more bundles of the same name in one depot it places
a combination of the revision, architecture, and vendor into the sw_sel clause
name (enough of one or more of them to make the sw_sel name unique). When
make_config finds that a bundle name is unique in the depot, it does not place the
revision, architecture, or vendor in the name of the sw_sel clause.

If you included both of the preceding configurations, the duplicate names (in this case
"T1335AC") would cause issues. The information in the first definition of the sw_sel is
overruled with the information from the second definition. The reason for this is that
sw_sel clauses are stored by name, T1335AC, without regard to the configuration file
from which they were derived.

To prevent this issue, you need to distinguish between the products in the first
configuration file and the second configuration file. So change vPars A.02.02 to the
following:

sw_sel "T1335AC,r=A.02.02.00" {

 (_hp_os_bitness == "64") {

...

 exrequisite="T1335AC,r=A.02.03.02"

 visible_if = TRUE

 }

 else {

 visible_if = FALSE

 }

}

110

This puts the revision number into the name of the sw_sel. When you have multiple
versions of a product available to an installation session (but potentially in different
depots), it is a good idea to manually include the version number in the configuration.
In the second configuration file the same product needs to become the following:

sw_sel "T1335AC,r=A.02.03.02" {

 (_hp_os_bitness == "64") {

...

 exrequisite="T1335AC,r=A.02.02.00"

 visible_if = TRUE

 }

 else {

 visible_if = FALSE

 }

}

The exrequisite statements are added to make sure that you cannot select both
products at the same time. In this case, to change from one revision of the vPars bundle
to the other, simply select it. The originally selected version is automatically unselected
because of the exrequisite statement.

Core operating system depot configuration
The following example shows a configuration file for a core operating system depot:

cat core.cfg

Software Sources

sw_source "core" {

 description = "HP-UX Core Software"

 source_format = SD

 sd_server = "10.0.0.1"

 sd_depot_dir = "/var/opt/ignite/depots/Rel_B.11.11/core"

 source_type = "NET"

 load_order = 0

}

The sw_source definition for the core operating system depot contains the information
needed to define an SD depot. The load_order of 0 (zero) is important for a core
operating system depot. The load order determines the order in which Ignite-UX loads

111

the software. Other software products can be loaded at load order 0 except when the
core operating system is an archive rather than a depot. When loading a core
operating system archive, you can have one and only one sw_sel installed at
load_order 0.

If you place any other software in the core operating system depot, swinstall resolves
dependencies from the source depot that it is installing from before attempting to satisfy
dependencies from the target. If you were to use "-x reinstall=true" on a swinstall
command to install a product that had dependencies on the core operating system,
you could also reinstall parts of the core operating system along with the product. The
easiest way to prevent this from happening is to avoid placing additional software
products in the core operating system depot or to never load software from that depot
outside of Ignite-UX (you may know to never use –x reinstall=true but you may want
to use that depot in the future with that option).

Next are the sw_sel definitions of the 32-bit and 64-bit Base HP-UX bundles. Effectively
the same definitions are generated for a core operating system depot. Never include
the definitions of multiple core operating system depots within one clause in the
/var/opt/ignite/INDEX file because they start to override each other and cause
issues with the install.

In the preceding example, the impacts statements for the bundles have been removed
to make the clauses easier to read. Now, look at the 64-bit sw_sel clause. The name of
the sw_sel clause is HPUXBase64. Its description is set to HP-UX 64bit Base OS. It has
a sw_source set to core that was defined earlier. Always try to place the sw_source
definition and the software products that reference it in the same configuration file to
prevent dependencies between configuration files.

Next is the software category. For more information on categories and other software
attributes (including special handling for some attributes), see the section on "Categories
and other Ignite-UX software attributes" because some categories are handled specially.
Some categories are not shown to the user as being available for selection.

The sd_software_list next defines the software that this sw_sel references. In this
case, it is the bundle HPUXBase64 with the attributes revision ("r=") B.11.11,
architecture ("a=") HP-UX_B.11.11, and vendor ("v=") HP.

Next exrequisite = sw_category makes sure that no other software with the same
software category can be selected at the same time as this bundle. This automatically
unselects any other sw_sel with the same software category set. This is to prevent both
the 64- and 32-bit bundles from being selected simultaneously. That is the end of the
software definition.

The following example tests to see if sw_sel HPUXBase64 is selected (the surrounding
parenthesis make this a test) and the variable _hp_os_bitness is set to 64, if the 64-bit
Base operating system has been selected.

HPUX Base OS

sw_sel "HPUXBase64" {

112

 description = "HP-UX 64-bit Base OS"

 sw_source = "core"

 sw_category = "HPUXBaseOS"

 sd_software_list = "HPUXBase64,r=B.11.11,a=HP-UX_B.11.11_64,v=HP"

...

 exrequisite = sw_category

}

(sw_sel "HPUXBase64") {

 _hp_os_bitness = "64"

}

The following example is the definition of the 32-bit Base HP-UX bundle. It is very similar to
the 64-bit one. It also has the exrequisite = sw_category attribute which prevents
the selection of the 32-bit and 64-bit Base HP-UX bundle at the same time.
sw_sel "HPUXBase32" {

 description = "HP-UX 32-bit Base OS"

 sw_source = "core"

 sw_category = "HPUXBaseOS"

 sd_software_list = "HPUXBase32,r=B.11.11,a=HP-UX_B.11.11_32,v=HP"

...

 exrequisite = sw_category

}

(sw_sel "HPUXBase32") {

 _hp_os_bitness = "32"

}

Next are the operating environment (OE) definitions for the Base HP-UX 11i v1 OEs. These
definitions determine whether the system can run a 64-bit operating system or not.
Ignoring the contents of the sw_sel clauses, the sw_sel "OE90BaseOS64" is
automatically selected if the system can run 64-bit HP-UX. The visible_if prevents the
Operating Environment (OE) from being seen if the system cannot run a 64-bit version of
HP-UX).

init sw_sel "OE90BaseOS64" {

 description = "HP-UX 11i Base OS-64bit"

 sw_source = "core"

 sw_category = "HPUXEnvironments"

 corequisite = "HPUXBase64"

 visible_if = can_run_64bit

} = (can_run_64bit)

The 32-bit OE is only visible if the system can run a 32-bit version of HP-UX; remember
some older systems can run either. The 32-bit OE is automatically selected if the system

113

cannot run 64-bit HP-UX or if the system can run 32-bit HP-UX, and the 64-bit Base OE is
not currently selected (so you must end up with one or the other selected).

init sw_sel "OE91BaseOS32" {

 description = "HP-UX 11i Base OS-32bit"

 sw_source = "core"

 sw_category = "HPUXEnvironments"

 corequisite = "HPUXBase32"

 visible_if = can_run_32bit

} = (! can_run_64bit) | (can_run_32bit) & !(sw_sel "OE90BaseOS64")

Now you have some code selecting on the model that it runs on and choosing a
language (the sw_sel clause for "English" is not shown in this section but it does exist in
the configuration file).

The items of most interest here are the regular expressions shown since they need
improvement. The next section discusses what the regular expressions do.

The regular expression "9000/8.*" means match for the pattern 9000/8 followed by
any zero or more of any character. The "." means any character and the following "*"
changes that to mean zero (0) or more of that character. The regular expression
"9000/8" is more precise since it just matches any string containing "9000/8"; the ".*"
is superfluous. Since the expression is not anchored,45 nothing else is needed in the
regular expression.

The same thing applies to the "ia64 .* server .*", it could be more simply written as
"ia64.*server". Since it is an unanchored expression, you do not have to worry about
what comes before or after the string. The changed expression matches ia64 followed
by zero or more of any character followed by server. Again, because it is unanchored
you do not care about what comes after the server part of the expression so there is no
need for an explicit ".*" at the end of the expression.

For PA-RISC servers and Itanium®-based servers, when the Base HP-UX OE is selected, the
sw_sel "English" is automatically selected.

HARDWARE_MODEL ~ "9000/8.*" | MODEL ~ "ia64 .* server .*" {

 (sw_sel "OE91BaseOS32") | (sw_sel "OE90BaseOS64") {

 init sw_sel "English" = TRUE

 }

45 Regular Expression anchoring involves a "^" to indicate the start of the line to match against, and "$" to
indicate the end of the line. For example 'print "baaaa" |grep "^aaaa"' does not match anything
because the text being passed through grep starts with a "b". The "^aaaa" says to only match lines starting
with "aaaa" at the very start of the line, so the expression is anchored to the start of the line. The use of "$"
similarly anchors the expression to the end of the line.

114

} # end of hardware-specific section

else {

The same thing discussed previously about regular expressions also applies to the
workstation regular expressions that follow.

If you have a workstation, initialize the sw_sel clause, "Global", to be TRUE.
HARDWARE_MODEL ~ "9000/7.*" | MODEL ~ "ia64 .* workstation .*" {

 (sw_sel "OE91BaseOS32") | (sw_sel "OE90BaseOS64") {

 init sw_sel "Global" = TRUE

 }

} # end of hardware-specific section

Otherwise the sw_sel "English" is set to TRUE.
else {

 (sw_sel "OE91BaseOS32") | (sw_sel "OE90BaseOS64") {

 init sw_sel "English" = TRUE

 }

}

}

The following example shows the OE definitions for all of the OEs on the B.11.11 OE
media. The definitions are similar to the other sw_sel definitions already discussed. The
impacts statements have been removed, but the impacts are different for 32-bit and 64-
bit installations. Subsequent OE definitions have been removed from this discussion of the
core configuration file. So have the Languages clauses that follow them.

Operating Environments

sw_sel "HPUX11i-OE-MC" {

 description = "HP-UX Mission Critical Operating Environment Component"

 sw_source = "core"

 sw_category = "OpEnvironments"

 sd_software_list= "HPUX11i-OE-MC,r=B.11.11.0212,a=HP-
UX_B.11.11_32/64,v=HP"

 (_hp_os_bitness == "32") {

115

...

 }

 (_hp_os_bitness == "64") {

...

 }

}

sw_sel "HPUX11i-OE-Ent" {

 description = "HP-UX Enterprise Operating Environment Component"

 sw_source = "core"

 sw_category = "OpEnvironments"

 sd_software_list = "HPUX11i-OE-Ent,r=B.11.11.0212,a=HP-
UX_B.11.11_32/64,v=HP"

 (_hp_os_bitness == "32") {

...

 }

 (_hp_os_bitness == "64") {

...

 }

}

sw_sel "HPUX11i-OE" {

 description = "HP-UX 11i Operating Environment Component"

 sw_source = "core"

 sw_category = "OpEnvironments"

 sd_software_list = "HPUX11i-OE,r=B.11.11.0212,a=HP-UX_B.11.11_32/64,v=HP"

 (_hp_os_bitness == "32") {

...

 }

 (_hp_os_bitness == "64") {

...

 }

}

Next is a discussion on the definition of some other software that can be installed.

Other Software

116

The following definition of Perl from the OE media automatically selects Perl to be
installed. The sw_sel configuration is initialized to TRUE. However, you can deselect the
software from installation on the Software tab in the Ignite-UX GUI.

init sw_sel "perl" {

 description = "Perl Programming Language"

 sw_source = "core"

 sw_category = "OrderedApps"

 sd_software_list = "perl,r=D.5.8.0.B,a=HP-UX_B.11.11_32/64,v=HP"

 impacts = "/opt" 92854Kb

} = TRUE

The following software is the Online Diagnostics bundle. This is an example of always-
installed software. It is automatically loaded with any HPUXBaseOS bundle. You cannot
unselect this software bundle from being installed.

sw_sel "OnlineDiag" {

 description = "HPUX 11.11 Support Tools Bundle, Jun 2004"

 sw_source = "core"

 sw_category = "HPUXAdditions"

 sd_software_list="OnlineDiag,r=B.11.11.14.15,a=HP-UX_B.11.11_32/64,v=HP"

 impacts = "/usr" 66792Kb

 impacts = "/opt" 943Kb

 impacts = "/var" 12395Kb

 impacts = "/sbin" 80Kb

 impacts = "/etc" 5342Kb

 impacts = "/dev" 1Kb

 load_with_any ~ "HPUXBaseOS" . "*"

}

Next is a list of available keyboard layouts. If the system has some hardware controlled
by the ps2 driver, then the keyboards controlled by the has_ps2 test are added to the
list of available keyboards. Not Applicable is always a valid choice even if the system
does have a keyboard attached.

The follow-on test, has_usb, adds more keyboard choices if the system being installed
has USB hardware attached to the system. The default is set at the very end to have the
keyboard set to "Not Applicable". HP workstations and servers do not have ps2 and USB
keyboards so you can have one or the other but not both types of keyboards connected
to a workstation or server.

The available keyboards are shown in the Ignite-UX GUI on the Basic tab using the
Keyboards… button. When you select that button, a list of keyboards available for

117

selection appears and is generated from this configuration (most servers only show Not
Applicable).

Keyboards

_hp_keyboard = { "Not_Applicable" }

has_ps2 {

 _hp_keyboard += {

 "PS2_DIN_Arabic",

 "PS2_DIN_Belgian",

 "PS2_DIN_Belgian_Euro",

 "PS2_DIN_Bulgarian",

 "PS2_DIN_Canada_TBITS-3",

 "PS2_DIN_Canadian_French",

 "PS2_DIN_Czech",

 "PS2_DIN_Czech_Euro",

 "PS2_DIN_Danish",

 "PS2_DIN_Danish_Euro",

 "PS2_DIN_Euro_Spanish",

 "PS2_DIN_Euro_Spanish_Euro",

 "PS2_DIN_French",

 "PS2_DIN_French_Euro",

...

 "PS2_DIN_T_Chinese",

 "PS2_DIN_Turkish",

 "PS2_DIN_UK_English",

 "PS2_DIN_UK_English_Euro",

 "PS2_DIN_US_English",

 "PS2_DIN_US_English_Euro"

 }

}

has_usb {

 _hp_keyboard += {

 "USB_PS2_DIN_Belgian",

 "USB_PS2_DIN_Belgian_Euro",

 "USB_PS2_DIN_Danish",

 "USB_PS2_DIN_Danish_Euro",

118

 "USB_PS2_DIN_Euro_Spanish",

 "USB_PS2_DIN_Euro_Spanish_Euro",

…

 "USB_PS2_DIN_Swiss_French2_Euro",

 "USB_PS2_DIN_Swiss_German2",

 "USB_PS2_DIN_Swiss_German2_Euro",

 "USB_PS2_DIN_T_Chinese",

 "USB_PS2_DIN_UK_English",

 "USB_PS2_DIN_UK_English_Euro",

 "USB_PS2_DIN_US_English",

 "USB_PS2_DIN_US_English_Euro"

 }

}

init _hp_keyboard = "Not_Applicable"

Impacts statements
Previous sections have explained impacts statements in some detail and the
circumstances in which they may not accurately represent space usage. This section
describes how you might decide to structure your impacts and what level to go with your
impacts because such decisions may not be straightforward.

HP-UX installation media is discussed first. The impacts statements on the installation
media are all at level one. Consider what limitations this may cause, that is, what
problems the following set of (partial) impacts could cause:

impacts = "/usr" 687920Kb

impacts = "/opt" 95300Kb

impacts = "/var" 23395Kb

Most people encounter no problems. The previous statements assume that you did not
create any extra file systems apart from the default file systems that Ignite-UX would
create. The impacts do not cause a problem for most people, because Ignite-UX only
creates file systems at the top level by default, for example: /home, /var, /opt, and
/usr.

What happens if you want to create the following extra file systems (for an application)?

 /opt/application

 /opt/application/static

 /var/opt/application

 /var/opt/application/data

 /var/opt/application/tmp

119

Ignite-UX has no information about what data might be stored in these file systems
because it has no impacts statements that affect them. Suppose that the impacts are
only one level deep and everything is being tracked against /var and /opt for the
application:
 impacts = "/opt" 1048576Kb

 impacts = "/var " 3673088Kb

If you create those extra file systems, you might easily misjudge their size. Because the
impacts statements have tracked all of the space against /var and /opt, Ignite-UX
cannot know how much space is needed under those file systems so it does not alert
you. If your situation is like this, it would make sense to set up your own Ignite-UX server
with the correct impacts keywords rather than attempting to use installation media.

Assume that the file systems needed for this application are those in Table 5:

Table 5

Mount point File System Size (Mb) Space Used (Mb)

/opt/application/ 1024Mb 768Mb

/opt/application/static 512Mb 384Mb

/var/opt/application 2048Mb 1512Mb

/var/opt/application/data 16384Mb 2011Mb

/var/opt/application/tmp 16384Mb 64Mb

Impacts statements for the sw_sel clause associated with this application look like the
following:

impacts = "/opt/application" 786432Kb

impacts = "/opt/application/static" 393216Kb

impacts = "/var/opt/application" 1548288Kb

impacts = "/var/opt/application/data" 2059264Kb

impacts = "/var/opt/application/tmp" 65536Kb

The impacts statements place the required impacts at the places where the application
(in the environment in which it is installed) has mount points. With this information, Ignite-
UX is aware of the impacts associated with each file system.

Creating impacts in this manner (for our optional application with only five impacts
statements at up to four levels deep) is a manual job for two reasons:

First, Ignite-UX normally creates impacts at every directory up to the level that you
specify. If you have an archive and you use the archive_impact command to
generate the impacts with the option –l 4, the archive_impact command lists the
space used in every directory up to the fourth level deep. With a large directory
structure, this can generate thousands of impacts statements. When Ignite-UX processes
a large amount of impacts statements it can slow down to a significant degree.

120

Combining those large numbers of impacts statements down into a few that match
planned mount points is a manual task (and, unfortunately, if the software ever changes
you need to do it all again).

Impact Hints

• Keep impact levels to the minimum required to minimize their affect Ignite-UX
performance.

• If you need detailed impacts, you can always summarize impacts into the most
appropriate form manually (impacts based upon expected mount points) without
having to have thousands of impacts statements.

Second, applications may require extra space. In the preceding application, what
would you do if the application only installed a few MB into the file system
/var/opt/application/data but then when configured needed the rest of the space?

You have to plan to have the space there when the application is installed. Sometimes
you must manually change impacts statements to increase the impacts on a directory or
directory structure because of space requirements on a file system that are not reflected
in the size of the software to be installed.

An example of this might be database table spaces that may be required when an
application creates a database at initial installation. If this occurs, manually changing
impacts statements is the only way to account for the extra space required. Manually
increasing the impacts in this case prevents anyone from decreasing the file system size
to the point that failures occur.

Categories and other Ignite-UX software attributes
The instl_adm(4) manpage states the following about sw_category:

sw_category cat-tag-string { description = string }
 The sw_category definition provides a grouping mechanism for

 sw_sel's to reference. The user interface uses the sw_category

 to help the user browse the software more easily. There are six

 values of cat-tag-string that the user interface treats special.
 Software that are in these groups are represented in special

 locations and by special methods in the user interface. These

 values are: "HPUXBaseOS", "HPUXEnvironments", "Languages",

 "LanguagesUI", "OpEnvironments", and "UserLicenses" .The only

 attribute associated with a sw_category is a description.

The following is what is special about these categories:

• OpEnvironments— OEs defined in a configuration are available for selection in the
Ignite-UX GUI on the Basic tab in the Environments: list. They are not selectable using
the Software tab.

• HPUXBaseOS— used for the HPUXBase32 and HPUXBase64 bundles that are included in
HP-UX B.11.11. In HP-UX B.11.23, there is a single HPUXBaseOS bundle that is 64-bit only

121

(the tag and category have the same name). These bundles also control the setting of
_hp_os_bitness in a core configuration file.

• Languages— in HP-UX 11.00, these pseudo-bundles were extracted from the
HPUXEnvironments bundles like HPUXEng64RT. If you selected "English" and the "64-bits
CDE Environment" options, this bundle would be selected. In HPU-UX B.11.11 and later,
these were pseudo-bundles that when selected cause LanguagesUI category bundles
to get installed as a result.

• LanguagesUI— these bundles are not shown at all using the user interface; instead,
they are automatically selected based upon the bundles with the sw_category tag
set to Languages. Take, for example, Swedish from the B.11.11 core configuration file:

init sw_sel "Swedish"{

 description="Swedish CDE Environment"

 sw_source="core"

 sw_category="Languages"

} = FALSE

init sw_sel "CDE-Swedish"{

 description="Swedish CDE Environment"

 sw_source="core"

 sw_category="LanguagesUI"

 sd_software_list="CDE-Swedish,r=B.11.11,a=HP-
UX_B.11.11_32/64,v=HP"

 load_with_all="Swedish"

 impacts="/usr" 70992K

 impacts="/opt" 9098K

 impacts="/sbin" 54K

 impacts="/" 55K

 visible_if=FALSE

 locale={"sv_SE.iso88591:Swedish","sv_SE.utf8:Swedish",

 "SET_NULL_LOCALE:English","ASK_AT_FIRST_BOOT","C:English"}

} = FALSE

When Swedish is selected, the bundle CDE-Swedish is automatically selected for
installation because it has the configuration load_with_any set to "Swedish".

• UserLicenses— this category is no longer very relevant. HP-UX 11.00 started out with
different levels of user licenses. Later, a patch/software bundle was added that
provided an unlimited user license to all installations. At HP-UX B.11.11 and later, an
unlimited user license is provided as standard.

122

Defining a custom software configuration
The section of instl_adm(4) that defines software configuration is quite long but very
useful; only sections of it are discussed here. If you require more information, review the
section titled "Software Source and Selections".

Do not attempt to write configuration files for SD depots; instead use the make_config
command because it correctly defines all configuration data needed. You can then
customize the configuration file produced by make_config.
The general structure for specifying software is as follows:

 sw_source src-tag-string
 {

 source-attributes...
 }

 sw_category cat-tag-string
 {

 description = string
 }

 sw_sel sel-tag-string
 {

 sw_source src-tag-string

 sw_category cat-tag-string

 selection-attributes...
 }

 init sw_sel sel-tag-string=Boolean

Looking at a network recovery sw_source and sw_sel

To see how software is defined, look at the way that make_net_recovery builds a
definition of an archive:

sw_source "core archive"{

 description = "Recovery Archive"

 load_order = 0

 source_format = archive

 change_media = FALSE

 post_load_script = "/opt/ignite/data/scripts/os_arch_post_l"

 post_config_script = "/opt/ignite/data/scripts/os_arch_post_c"

123

 # if nfs_source is used, be sure to export the source.

 (source_type == "NET") {

 nfs_source = "10.0.0.1:/var/opt/ignite/recovery/archives/systema"

 }

 # ftp_source and remsh_source are alternate ways to copy

 # the archive. An example of the ftp syntax:

 # ftp_source = "anonymous@15.1.54.123:iux"

 # remsh_source = "user@15.1.54.123"

}

In the above example, there is a sw_source definition called core archive that has a
description of Recovery Archive. The archive is loaded at load order 0 (this is a
requirement for a core operating system archive if it is a recovery archive or a golden
image; you can only have one archive at load order 0). The attribute change_media is
set to FALSE because you do not want to be prompted to change the media. It does
not make sense to change media when the source is over the network using NFS.

You then test to see if the source_type is "NET" and if it defines the nfs_source to point
to the archive.

In the comments regarding other network access methods, .the source_type variable
defaults to the type of media that the system was booted from (although this
automatically becomes "NET" when an Ignite-UX server is being used, regardless of
whether the system was booted from disk or tape).

Next, categories are defined because you are going to have to provide one sw_sel in
the Languages category and another in the HPUXEnvironments category:

Software Categories

sw_category "Languages" {

 description = "Languages"

}

sw_category "HPUXEnvironments"{

 description = "HP-UX Operating Environments"

}

You can now define a sw_sel, called "golden image1", to hold the definition of the
Recovery Archive. The init command is used to initialize the sw_sel and at the end

124

of the definition it is set to TRUE. This allows the Ignite-UX GUI to change this value
(although changing the value in this case does not make sense).

You then define the sw_source; the sw_source appears earlier in this configuration file.
The sw_category for the sw_sel is set to HPUXEnvironments. This so that the description
Recovery Archive appears in the Environments: selection list in the Ignite-UX GUI so it
can be easily selected. The archive_type is then defined, in this case it is a gzipped tar
file (refer to instl_adm(4) for other valid types).

Next, the archive path relative to the NFS mount point in the sw_source is given. The
recovery archive is only visible if the system can run 64-bit HP-UX. If the sw_sel "golden
image1" is selected, set _hp_os_bitness to 64, and then set the variable so it cannot be
changed using the Additional button on the Basic tab of the Ignite-UX GUI.

Operating Environments

64-bit OS archives

init sw_sel "golden image1" {

 description = "Recovery Archive"

 sw_source = "core archive"

 sw_category = "HPUXEnvironments"

 archive_type = gzip tar

 # For NFS, the path to the archive is relative to the mount point

 # specified in the sw_source:

 (source_type == "NET") {

 nfs_source = "10.0.0.1:/var/opt/ignite/images"

 }

...

 visible_if = can_run_64bit

} = TRUE

(sw_sel "golden image1") {

 _hp_os_bitness = "64"

}

_hp_os_bitness visible_if false

125

Next, a language is set up so there is a choice of no locale English, or C locale and
English. Your choice depends on the languages that would be available depend on the
system at the time the recovery archive was created:

sw_source "no select" {

 source_format = cmd

}

init sw_sel "English" {

 description = "English Language Environment"

 sw_source = "no select"

 sw_category = "Languages"

 locale = { "SET_NULL_LOCALE:English", "C:English" }

} = TRUE

Using a sw_sel to run commands instead of installing software

The following configuration acts in a similar way to the language selection earlier. The
source_format of cmd in the sw_source definitions does not cause any software to be
loaded. The load order statement forces the command to run after everything else (in
case someone does anything at the default load order of 5). The source_format of cmd
gives you a great deal of flexibility in running scripts.

You have to define any sw_category that you want to use. Before you can use a
software category, you must define a sw_category. This is not true for the sw_category
"Uncategorized"; this sw_category is applied to any software that does not explicitly
define a sw_category. If all software is given, the Uncategorized sw_category will not
appear on the Software tab in the Ignite-UX GUI. You should not explicitly assign a
sw_category Uncategorized to any software. In the following example, the
sw_category of "SiteSpecific" is defined.

The sw_sel, however, defines a post_load_cmd that runs:

sw_category "SiteSpecific" {

 description = "Local Site Commands"

}

sw_source "site commands" {

 source_format = cmd

 load_order = 10

}

init sw_sel "Run site commands" {

126

 description = "Run site commands after OS loaded"

 sw_source = "site commands"

 sw_category = "SiteSpecific"

 post_load_script="/var/opt/ignite/scripts/run_after_load"

} = TRUE

The difference between this method and placing a post_load_cmd into the core
operating system load sw_sel is that you have the opportunity to prevent the
commands from running the Ignite-UX GUI by deselecting the software (even though in
this case there really is no "software").

However, be aware that any script you run must be either accessible using tftp, if this is
a network installation, or located in the SCRIPTS file, if the installation is happening from
media (in the LIF produced by make_medialif).

If you want to run a script that has already been installed with other software, use a cmd
hook instead of a script hook:
init sw_sel "Run site commands" {

 description = "Run site commands after OS loaded"

 sw_source = "site commands"

 sw_category = "SiteSpecific"

 post_load_cmd="/opt/site/bin/run_after_load"

} = TRUE

You must ensure that the load order associated with the sw_source prevents the "cmd"
sw_source from running until after any software that it depends on has been loaded (if it
has dependencies).

Using a sw_sel to apply kernel parameters
You can use a sw_sel clause to control the application of kernel parameters to a
system, as well. The Ignite-UX configuration items that can be used to change kernel
parameters (from the instl_adm(4) manpage) are as follows:

mod_kernel = cplx-string

mod_kernel += cplx-string

 This keyword can be used to add drivers or tunable parameters to

 the system's kernel that is built during the Ignite-UX process.

 The format of cplx-string may be either "driver" or "tunable

 value".

 The largest of any tunable parameter that exists in either the

 /stand/system file or that is specified will be used. Beginning

 with the 11.23 release, if a tunable is not found in

127

 /stand/system, then it will also be compared with the default

 value as reported by kctune. Ignite-UX does not compare the

 values of formulas to discrete numerical values, or two formulas,

 or hexadecimal values, in order to determine which is larger. It

 will issue a note message stating that it will assume the last

 mod_kernel keyword parsed is larger (regardless of whether it is

 a formula or discrete numerical value) and will apply it. There

 is no bounds checking done on tunable parameters.

 Decimal values should be in the range from 0 to 2147483647

 (2"31-1). The shell that is used to evaluate these values uses

 signed 32-bit arithmetic for decimal values, and it has problems

 when values exceed this limit. If larger values are needed,

 convert them to hexadecimal since the shell does not evaluate

 them.

 Note that any allowable syntax supported by the config command

 can be used in mod_kernel keywords. This includes formulas. For

 example, it is possible to use:

 mod_kernel += "ninode (20+8*MAXUSERS+NPTY+" + ${"%d" _inc} + ")"

 assuming _inc has been initialized to some value in the

 configuration file.

 The = operator will override any prior global mod_kernel

 assignments. The += operator will add to any prior settings.

 Notice that mod_kernel statements may also be associated with a

 sw_sel definition. The = operator does not have any effect on

 mod_kernel assignments made in a sw_sel.

 Beginning with the 11.23 release, the format for cplx-string
 arguments was enhanced. There are two new formats specifically

 that are understood (in addition to the older formats). They are:

 mod_kernel += "tunable name value"

 mod_kernel += "module name [state]"

 The former is the same as how tunables were handled before only

 the keyword tunable is put at the beginning. The latter is how

128

 kernel modules are added to the system. The optional state
 argument has one of four values: static, auto, loaded and best.

 No checking is performed on this value. See kcmodule(1M) for more

 information.

 Actions involving mod_kernel are done before those for both

 set_kernel and rm_kernel.

set_kernel = cplx-string

set_kernel += cplx-string

 This keyword is the same for drivers as the mod_kernel keyword in

 that it will add the driver to the kernel. For tunables it

 differs from mod_kernel in that it will set the tunable to the

 arbitrary value as defined by cplx-string. No comparisons or

 checks are performed with prior or default values. Actions

 involving set_kernel are done after those for mod_kernel but

 before those for rm_kernel.

rm_kernel = cplx-string

rm_kernel += cplx-string

 This keyword will remove the driver or tunable from the

 /stand/system file. For drivers, this implies the driver will be

 removed from the kernel. For tunables, this implies that the

 tunable will revert back to its default value. Actions involving

 rm_kernel are done after those for both mod_kernel and

 set_kernel.

The following example shows that a new category is created, called KernelConfig,
which defines sets of kernel parameters that can be applied to a system. Ignite-UX does
not do any parameter validation. That is followed by the "no-op" sw_source clause:

sw_category "KernelConfig" {

 description = "Kernel Configuration sets"

}

sw_source "Kernel Configuration" {

 source_format = cmd

 load_order = 11

}

The first sw_sel defines a set of kernel parameters that can be applied to a system when
Java is installed. The only new items here are the exrequisite statement and

129

set_kernel. The set_kernel statements enable you to easily set the formula as the
value to be assigned to a kernel tunable since Ignite-UX does not attempt to check the
value being assigned to the kernel tunable. It is simply set to that value.

The exrequisite ensures that if this sw_sel is selected, none of the exrequisites are
also selected (they are unselected when this sw_sel is selected).

sw_sel "Kernel Config for Java" {

 description = "Tunable settings required for Java 1.4.2"

 sw_source = "site commands"

 sw_category = "KernelConfig"

 exrequisite = "Kernel Config for Servers"

 exrequisite += "Kernel Config for Workstations"

 set_kernel = "maxusers 400"

 set_kernel += "max_thread_proc maxusers*3"

 set_kernel += "maxfiles 2048"

 set_kernel += "maxfiles_lim 2048"

 set_kernel += "ncallout 2*((((nproc*7)/4)+16)*2)"

 set_kernel += "nkthread 2*max_thread_proc"

 set_kernel += "nfile (2*nproc)+1000"

 set_kernel += "nproc ((maxusers*5)+64)"

}

The next two sw_sels reinforce the use of exrequisites. Because all the sw_sel clauses
explicitly state that if one is selected the other two cannot be, only one of them can be
selected at any time.

sw_sel "Kernel Config for Servers" {

 description = "Tunable settings required for Servers"

 sw_source = "site commands"

 sw_category = "KernelConfig"

 exrequisite = "Kernel Config for Java"

 exrequisite += "Kernel Config for Workstations"

 set_kernel = "maxdsiz 0x4000000"

 set_kernel += "maxusers 128"

}

sw_sel "Kernel Config for Workstations" {

 description = "Tunable settings required for Workstations"

 sw_source = "site commands"

 sw_category = "KernelConfig"

 exrequisite = "Kernel Config for Java"

 exrequisite += "Kernel Config for Servers"

 set_kernel = "maxdsiz 0x4000000"

 set_kernel += "maxusers 96"

}

In the following example, you have a configuration that to apply to sw_sel so it will
automatically select which sw_sel (containing the kernel configuration changes) to
apply. If the sw_sel "B9789AA, r=1.3.1.09.08" is selected, then the sw_sel
"Kernel Config for Java" will be automatically selected; otherwise, if this is a server

130

selected then, "Kernel Config for Servers" will be selected. If neither of these are
selected, the "Kernel Config for Workstations" will be selected.

(sw_sel "B9789AA,r=1.3.1.09.08") {

 init sw_sel "Kernel Config for Java" = TRUE

} else {

 (HARDWARE_MODEL ~ "9000/8" | MODEL ~ "ia64.*server") {

 init sw_sel "Kernel Config for Servers" = TRUE

 } else {

 init sw_sel "Kernel Config for Workstations" = TRUE

 }

}

It is important to understand that, starting at HP-UX B.11.23, the format of the cplx-
string arguments to mod_kernel, set_kernel, and rm_kernel have changed and are
incompatible with the previous format. The following information is from the Ignite-UX
Reference:

"Beginning with the B.11.23 release, the format for cplx-string arguments is
enhanced. There are additional formats:

mod_kernel += "tunable name value"

mod_kernel += "module name [state]"

The first performs the same as it did previously with the addition of the keyword
tunable. The second describes how kernel modules are added to the client. The
optional state argument has one of four values: static, auto, loaded and best. No
syntax checking is performed for this value. See kcmodule(1M) for more information."

So to tune maxdsiz at HP-UX B.11.11, you would need to set it as follows:
set_kernel = "maxdsiz 0x4000000"

At HP-UX B.11.23, you would need to use:
set_kernel = "tunable maxdsiz 0x4000000"

Under a lot of circumstances configuration files are not shared between HP-UX revisions;
so this does not create an immediate problem. However, if you do share a configuration
file that tunes the kernel between HP-UX releases, you should probably do it as follows.
This example assumes that you wish different tunables for HP-UX B.11.00, B.11.11, and
B.11.23:

...

(release == "B.11.00") {

 set_kernel = "maxdsiz 0x4000000"

 set_kernel += "maxusers 64"

} else {

131

 (release == "B.11.11") {

 set_kernel = "maxdsiz 0x4000000"

 set_kernel += "maxusers 96"

 } else {

 (release == "B.11.23") {

 set_kernel = "tunable maxdsiz 0x4000000"

 } else {

 error +="release " + ${release} + " not supported by this

 configuration."

 }

 }

}

...

A configuration file shared between only HP-UX B.11.00 and B.11.11 does not need to be
written this way. It is only needed when you adjust kernel tunables in the one
configuration for HP-UX B.11.23 (and future releases of HP-UX) and HP-UX B.11.11 and
B.11.00.

Forcing software (sw_sel) clauses to be installed
Be careful when marking software automatically for installation using a configuration file.
If you mark it in the following way (set it directly equal to TRUE), the software is marked as
required in the Ignite-UX GUI and you cannot manually unselect the software:

sw_sel "Kernel Config" {

 description = "Tunable settings"

 sw_source = "site commands"

 sw_category = "KernelConfig"

 set_kernel = "maxdsiz 0x4000000"

 set_kernel += "maxusers 96"

}=TRUE

Compare the previous software clause to the following. Because it starts with init you
can change its state using the Ignite-UX GUI during installation, although by default it is
marked for installation.

init sw_sel "Kernel Config" {

 description = "Tunable settings"

 sw_source = "site commands"

 sw_category = "KernelConfig"

 set_kernel = "maxdsiz 0x4000000"

 set_kernel += "maxusers 96"

}=TRUE

132

You can force software installation in other ways such as with the keywords
load_with_any and load_with_all. However, you should not combine usage of the
init keyword with these methods.

Keep this in mind when defining software because you do not want to force software
onto a system unintentionally.

Automating dependencies in software
This section explains the ways of enforcing dependencies between software with Ignite-
UX.

Corequisites are used to enforce dependencies between software that you want to
load at the same time:

corequisite [+]= tag-string

 Indicates that the sw_sel referred to by tag-string should
 be loaded along with this sw_sel. Multiple corequisites may

 be listed using one corequisite statement per, and by using

 the += operator.

In the following example, there are the sw_sel "Product XYZ" and "Product XYZ –
4GL". The 4GL product requires the other product to be installed as well, so introduced
here is a corequisite for the 4GL to install automatically "Product XYZ" when it is
selected for installation.

sw_sel "Product XYZ" {

 description = "Product XYZ base runtime"

 sw_source = "Applications for 11i Version 1"

 sw_category = "SiteApps"

 sd_software_list = "ProductXYZ,r=4.0,v=XYZCorp"

}

sw_sel "Product XYZ – 4GL" {

 description = "4GL option for Product XYZ"

 sw_source = "Applications for 11i Version 1"

 sw_category = "SiteApps"

 corequisite = "Product XYZ"

 sd_software_list = "ProductXYZ4GL,r=4.0,v=XYZCorp"

}

See "Using a sw_sel to apply kernel parameters" for exrequisite examples.
exrequisite [+]= tag-string

133

 Defines an exclusive relationship between the current sw_sel

 and the one referenced by tag-string. This will prevent the
 referenced sw_sel from being selected any time that this

 sw_sel is selected (and vice-versa). The += operator may be

 used to define multiple exrequisites.

Instead of automatically selecting something for installation based upon the name of a
sw_sel clause, exrequisite instead works on the name of a sw_category46. This form
could be used to set up two sets of incompatible software in different software
categories and to use the name of the sw_category as an exrequisite to software in
the other category.

exrequisite = sw_category

 Specifies that this sw_sel is to be exclusive with all other

 software in the same category. This attribute can be used

 in addition to other exrequisites and does not override them

 even though the += operator is not used in this case.

The load_with_any configuration item gives you flexibility in automatically selecting
software to be installed, based upon what other software may be selected for
installation. By using the = sign with load_with_any, you specify that when any of the
listed sw_sel clauses are selected, this sw_sel is selected also.

load_with_any = tag-string [[| tag-string]...]
 Specifies that when any of the one or more sw_sels listed

 are selected, that this sw_sel should be selected for

 loading as well. Multiple tags may be listed separated by

 the | character.

The following form enables regular expression matching (not EREs, only those allowed by
fnmatch(3)) to select the software or category that software should be loaded with.

load_with_any ~ tag-regexp [[| tag-regexp]...]

load_with_any ~ category.tag-regexp ...
 Similar to above, except that when the ~ operator is used

 instead of =, then the sw_sel tags listed are treated as

46 Be careful when creating sw_category names that are the same as sw_sel names. Using exrequisites
can cause Ignite-UX to produce unexpected results if you use the same name for an existing sw_sel and
sw_category.

134

 fnmatch(3C) regular expressions that can be used to match
 any selection fitting the given pattern. (Note that this operator uses

 fnmatch(3C) pattern matching expressions. Other uses of the ~ operator in

 the configuration file, uses extended regular expressions. This

 difference is for compatibility with some existing data.) The category

 string can be specified (with a "." separator) in order to limit the

 matches to those selections in the specified software category.

The following example uses expression matching:

sw_sel "perl" {

 description = "Perl Programming Language"

 sw_source = "core"

 sw_category = "OrderedApps"

 sd_software_list = "perl,r=B.5.6.1.C,a=HP-UX_B.11.11_32/64,v=HP"

 impacts = "/opt" 49480Kb

 load_with_any ~ "HPUXBaseOS" . "*"

}

The preceding load_with_any automatically selects perl to be loaded when any
sw_sel with a category of HPUXBaseOS is selected.

The load_with_all configuration item enables you to specify a list of sw_sel clauses
that must all be selected automatically to select a sw_sel for installation:

load_with_all = tag-string [[& tag-string]...]
 Specifies that when all the sw_sels listed are selected,

 then this sw_sel should be selected as well. Multiple tags

 may be listed separated by the & character.

 If multiple load_with_* keywords are specified, the list of

tag-strings will be added to any already listed for the

respective keyword.

The load_with_* configuration items automatically unselect sw_sel clauses as
appropriate when you are changing what sw_sel clauses are selected for installation
(that is, enforce dependencies). There is one exception to this rule: if you manually
select a sw_sel for installation and it has any load_with_* configuration items that are
not satisfied, it cannot be automatically unselected because it was manually selected.

135

Installing patches
Patches are best installed using software configuration rather than command hooks like
"post_load_cmd" because a new kernel is built after all software is installed. If you install
patches using command hooks, a new kernel is not built, which may cause some unusual
behavior in HP-UX where commands depend on kernel functionality that is not in the
kernel.

Configuration for volume and disk groups
In this section, the default configuration file for an HP-UX release is assumed always to be
included before any others. Because internal variables defined by that configuration file
must be set for Ignite-UX to work correctly.

Overview
The general format for Disk Group, Volume Group, and whole disk layout is as follows:

partitioned_disk

{

 physical_volume disk[hw_path|index]
 {

 physical_volume-attributes...
 }

 fs_partition

 {

 file-system-attributes...
 }

 swap_partition

 {

 swap-attributes...
 }

}

volume_group group_name
{

 volume_group-attributes...

 physical_volume group "pvgname"
 {

 physical_volume disk[hw_path|index]
 {

 physical_volume-attributes...
 }

136

 ...

 }

 ...

 physical_volume disk[hw_path|index]
 {

 physical_volume-attributes...
 }

 ...

 logical_volume

 {

 file-system/swap-attributes...
 }

 logical_volume "lvname"
 {

 file-system/swap-attributes...
 }

 ...

}

Note that partitioned disks are not used very often in more modern systems as the size of
the boot disk cannot be more than approximately 2GB in size on PA-RISC systems. There
is no such restriction on Itanium®-based systems.

Before looking at anything in detail, the attributes that can be set in each of the
preceding examples are introduced in the following configuration examples. For more
details on the individual attributes, refer to instl_adm(4).

Configuration examples
The following section presents several different disk configuration examples. They may
prove useful when developing your own configurations.

This section does not discuss the extra space that may be allocated to file systems
because of impacts configuration statements or the effect that variables such as
_hp_addnl_pct_free or _hp_efi_partition_size may have.

Example one (custom disk layout)
This example defines a configuration that is dependent on whether or not a particular
software product is installed:

This config file builds on top of the default config file for

an OS release since it reuses some of the same variables.

137

It should be included into a cfg clause in the index file after

the default config file for a release. The following software

should be defined in any clauses that includes this file:

"Product XYZ"

"Product XYZ - 4GL"

Remember that if you change the disk configuration, the disk layout name is changed to
"Modified LVM Layout". Consequently, things defined in the configuration may no longer
be evaluated anymore. For example, you can set the name of the volume group in the
configuration in this example using the Additional button on the Basic tab in the Ignite-
UX GUI (see _my_volume_name later in this section). However, once you modify some
part of the disk layout, the name of the layout becomes "Modified LVM Layout" and
changing the value of _my_volume_name no longer has any effect.

The name is defined by using the selection list produced by the Additional button on the
Basic tab in the Ignite-UX GUI. For the selection, "Name of the root volume group" you
can select vg00 or vgroot. However, you can also enter a new name into the field and
that will be used (since it was not defined as an enum you cannot enforce a choice from
the available names).

The name can be changed on the Additional button. However, it only takes effect
when the disk layout selected is "Custom configuration for Product XYZ".

Allow the user to change the name of the root volume group

_my_volume_name = { "vg00" , "vgroot" }

init _my_volume_name = "vg00"

_my_volume_name help_text "Name of root volume group"

_my_volume_name visible_if TRUE

Here a new disk layout name is being added to the configuration, not setting it as one of
the choices. This configuration file builds on top of the existing default operating system
release configuration file. It is not a replacement because many variables need to be
defined that are not worth the effort to set.

Add a new disk layout type

_hp_disk_layout += { "Custom configuration for Product XYZ" }

The test on sw_sel Product XYZ to the variable set _hp_disk_layout to Custom
configuration for Product XYZ is only evaluated once. If Product XYZ is not

138

selected for installation by the time this configuration file is parsed, you must manually
change the disk layout to Custom configuration for Product XYZ during installation.
That is, after selecting the software products that the disk configuration depends on, if
they are to be installed, to make sure that the optional logical volume is created.

To make the disk configuration modifiable, remember to use init before the
_hp_disk_layout.47

Automatically select the disk layout if product XYZ is being

installed.

(sw_sel "Product XYZ") {

 init _hp_disk_layout = "Custom configuration for Product XYZ"48

}

Next is the definition of the disk layout Custom configuration for Product XYZ:

(_hp_disk_layout == "Custom configuration for Product XYZ") {

First, make sure that all disks are greater than 36GB. An error will be issued if there are
smaller disks because this disk layout is only intended for disks 36GB or higher.

Note:
This prevents the user from proceeding with an installation (or
force a non-interactive installation to become interactive) if the
size of the root disk is less than what is being tested for49.

Looking for errors where possible can help ensure that a configuration does not allow
someone to do something that cannot work.

(disk[_hp_root_disk].size < 34000Mb) {

 error+="This configuration cannot be used with disks of less than
36Gb"

47 Without "init" in front of the _hp_disk_layout variable, the Ignite-UX GUI cannot make changes to the disk
configuration since all changes (in this case) are saved into the disk layout called "Modified LVM Layout". If the
Ignite-UX GUI cannot change _hp_disk_layout, then the name of the disk layout cannot be changed and
no file system changes asked for on the file system tab are honored.
48 You cannot not have an effects relationship between a variable and a software selection (or a use model).
If this software product is selected and the disk layout is set to "Custom configuration for Product XYZ",
unselecting the software does not cause the disk layout to be reevaluated.
49 Keep in mind that GB for disks is not 36*1024*1024*1024 (38654705664) bytes but approximately
36*1000*1000*1000 (36000000000) bytes, a difference of over 2GB. This test, to verify whether the size is less than
34000MB (35651584000 bytes), is approximately correct.

139

 }

You can now you start the definition of the volume group that has its name set by the
variable _my_volume_group; the volume group is explicitly defined to be the LVM:

volume_group _my_volume_name

{

 #

 # Only allow LVM

 #

 usage = LVM

You now define some volume group attributes, specifically the maximum number of
physical extents (Ignite-UX changes this to suit the disks as required). In addition, you set
up the PE size here as well. The default configuration file sets the variable up
_hp_root_disk for you.

Setup for defaults allowing of 36 and 72Gb disks as boot disk

max_physical_extents = 2500

(disk[_hp_root_disk].size < 40000MB) {

 physical_extent_size=8

} else {

 physical_extent_size=16

}

The root disk was found by Ignite-UX for us

physical_volume disk[_hp_root_disk]

Now you define the root file system. In all of these file systems, you are not giving them
explicit names; this is left up to Ignite-UX. Here, you only set the minimum number of fields
for the root file system attributes:

Define the root file system

logical_volume

{

140

 mount_point = "/"

 usage=VxFS

 size=400Mb

 contiguous_allocation = true

 bad_block_relocate = false

}

Next is primary swap and dump. This configuration does not define a secondary swap.
The size is interesting; allocate at least _hp_min_swap as the size. The variable
_hp_min_swap again is set by the default configuration file. The maximum size is
_hp_pri_swap; however, depending on the available disk space, the actual amount of
space allocated is somewhere between _hp_min_swap and _hp_pri_swap.

Define the swap/dump

logical_volume

{

 mount_point = "primary"

 usage=SWAP_DUMP

 contiguous_allocation = true

 bad_block_relocate = false

 size = _hp_min_swap | remaining | _hp_pri_swap

}

Currently, for PA-RISC systems, the boot file system must be HFS. For Itanium®-based
systems, the boot file system can be either HFS or VxFS. So here, you define a fixed-size
boot file system (/stand) to be HFS. HFS is the most compatible, although you could add
tests to see if the system is Itanium®-based or PA-RISC and then change the file system
type based upon that information.

Define /stand

logical_volume

{

 mount_point = "/stand"

 usage=HFS

 blksize = _hp_HFS_blksize

 fragsize = _hp_HFS_fragsize

 contiguous_allocation = true

141

 bad_block_relocate = false

 size = 300Mb

}

Next, you define /tmp; the size is predicated on the current selection state of Product
XYZ – 4GL at the time the configuration is parsed. If the software is selected when the
configuration is parsed, the size is different from when it is not selected. If the software
changes state after this disk layout is chosen, the size does not change because of it.50

Important:
Size is only defined based upon software selection when the
configuration is initially parsed.

If the product Product XYZ – 4GL is selected, the size is a minimum 100MB and up to
400MB depending on the remaining disk space. If the product Product XYZ – 4GL is
not selected, the size is a minimum 50MB and up to 200MB depending on the remaining
disk space.

Define /tmp

logical_volume

{

 mount_point = "/tmp"

 usage=VxFS

 (sw_sel "Product XYZ - 4GL") {

 size = 100Mb | remaining | 400Mb

 } else {

 size = 50Mb | remaining | 200Mb

 }

}

The next file system is /usr. The minimum size is 500MB. Depending on available disk
space, the volume may be expanded to require a minimum of 20 percent free space
after the file system impacts statements associated with software being installed into
/usr are taken into account.

Minimum free percentages of disk space may be a good compromise for file systems in
systems where you know how much space is needed and you only require some
additional overhead space to be left available (this is true for file systems such as /usr
and /opt).

50 You cannot have effects relationships between variables and software selections and use models.

142

Define /usr

logical_volume

{

 mount_point = "/usr"

 usage=VxFS

 size = 500Mb | remaining | 20% free

}

The /var file system has a different definition for its size. It is whatever space can be
allocated up to 1000MB plus the size of _hp_pri_swap. Therefore, the final size for this file
system depends on the free disk space once minimum sizes have been allocated to file
systems.

Define /var

logical_volume

{

 mount_point = "/var"

 usage=VxFS

 size = remaining | 1000Mb + _hp_pri_swap

}

The /var/opt/pxyz file system is only defined to be created if the software product
Product XYZ – 4GL is selected for installation when this disk layout is selected. This is
similar to the previous size tests for /tmp. This file system is not defined if the product
Product XYZ – 4GL is selected for installation after the disk layout has been changed
to Custom configuration for Product XYZ. Similarly, the file system is not removed
from the disk layout if the product Product XYZ – 4GL is unselected unless the disk
layout is changed and then changed back to Custom configuration for Product
XYZ. Of course, it could be manually removed.

Define /var/opt/pxyz

(sw_sel "Product XYZ - 4GL") {

 logical_volume

 {

143

 mount_point = "/var/opt/pxyz"

 usage=VxFS

 size = remaining | 2000Mb

 }

}

The last volumes are defined as follows:

Define /var/tmp

logical_volume

{

 mount_point = "/var/tmp"

 usage=VxFS

 size = remaining | 1000Mb

}

Define /opt

logical_volume

{

 mount_point = "/opt"

 usage=VxFS

 (sw_sel "Product XYZ - 4GL") {

 size = remaining | 1500Mb

 } else {

 size = remaining | 20% free

 }

}

Define /home

logical_volume

{

 mount_point = "/home"

 usage=VxFS

 size = 500Mb

}

144

The default configuration files make setting up a disk configuration much more complex
than for a relatively simple disk configuration.

To change the layout of this root volume group to be VxVM, you must set the name of
the disk group to rootdg; instead of giving the user a choice of names, change usage =
LVM to usage = VXVM.

Example two (selection of disk layout based on hardware)
The configuration example in this section shows a fragment of a disk layout definition that
selects the disk layout based upon the model string and the size of the disk you are
installing to (you do not need to worry about the disk layout itself).

You must first add the new disk layout names into _hp_disk_layout. Remember to add
them as choices because you want the user to be able to select them using Ignite-UX
GUI:

Add new disk layout types

_hp_disk_layout+= { "Custom configuration rp8400 w/18Gb disks",

 "Custom configuration rp8400 w/36Gb disks",

 "Custom configuration rp8400 w/72Gb disks",

 "Custom configuration rp8400 w/>100Gb disks" }

The following test makes sure that the root disk size is at least the minimum required size
for installing an rp8400 system51. If the root disk is too small, an error message is presented
to users to prevent them from being able eventually to select Go! in the Ignite-UX GUI
and install the system. The only recourse is to change the disk layout or increase the size
of the root disk by selecting a new one.

(hardware_model == "9000/800/SD16K-A" & disk[_hp_root_disk].size < 16000Mb) {

 error += "This configuration does not support installing disks of
<18Gb please choose another disk to install to that is at least 18Gb in size"

}

The following test determines whether the disk layout should be changed to Custom
configuration rp8400 w/18GB disks. A similar test is done for all of the other disk
layouts that you can set.
(hardware_model == "9000/800/SD16K-A" & disk[_hp_root_disk].size >= 16000Mb &

 disk[_hp_root_disk].size < 30000Mb) {

 init _hp_disk_layout = "Custom configuration rp8400 w/18Gb disks"

51 The rp8400 is a marketing name for a system. The model string of the system is actually 9000/800/SD16K-A.

145

}

(hardware_model == "9000/800/SD16K-A" & disk[_hp_root_disk].size >= 30000Mb &

 disk[_hp_root_disk].size < 60000Mb) {

 init _hp_disk_layout = "Custom configuration rp8400 w/36Gb disks"

}

(hardware_model == "9000/800/SD16K-A" & disk[_hp_root_disk].size >= 60000Mb &

 disk[_hp_root_disk].size < 100000Mb) {

 init _hp_disk_layout = "Custom configuration rp8400 w/72Gb disks"

}

(hardware_model == "9000/800/SD16K-A" & disk[_hp_root_disk].size >= 100000Mb)
{

 init _hp_disk_layout = "Custom configuration rp8400 w/>100Gb disks"

}

Next, you start the Custom configuration rp8400 w/18GB disks disk layout
definition. The tests that you perform inside the definition prevent anyone from misusing
the defined layout for the wrong system type and disk size. These tests reinforce the
previous default selection code.

(_hp_disk_layout == "Custom configuration rp8400 w/18Gb disks") {

 volume_group "vg00"

 {

 usage = LVM

 (hardware_model != "9000/800/SD16K-A") {

 error += "This disk layout is for use with a rp8400"

 }

 (disk[_hp_root_disk].size < 16000Mb |

 disk[_hp_root_disk].size > 30000Mb) {

 error += "Disk size not between 16000Mb and 30000Mb"

 }

...

You leave the custom configuration at that point since you are only looking for some
other tests for automating selection and enforcing it with tests and the error keyword.
Instead of using error, using warning might alert the user to choose the selection when
the tests fail (for example, to use it on an rp7410 instead).

146

Example three
The example in this section is intended for use in an installation file system not in
configuration files. The best use of this configuration is in an installation file system
contained in LIF and used to boot a system using tape|CD|DVD so it does not use DHCP
to gain an IP address. This section does not discuss other configuration items you might
set like _hp_lanadmin_args.

This example is intended for use with PA-RISC systems. For information on how to achieve
these same results with Itanium®-based systems (or to create media that can be used on
both hardware architectures), see "Building an Installation DVD" in the Ignite-UX
Administration Guide, Edition 18 or later. Additionally, this section contains information
about the placement of a LIF inside an El-Torito boot image for use with Itanium®-based
systems.

Part A (custom configuration in installation file system)
This part of the example deals with simply providing an IP address and network
information that can be applied to an LIF (and hence to the installation file system within
the LIF). This method requires you to build a different LIF for every system and place it
onto media separately.

The following configuration is needed to contact the Ignite-UX server:

server="10.0.0.2"

netmask[]="255.255.255.0"

route_gateway[0]="10.0.1.1"

route_destination[0]="default"

disable_dhcp=true

This line gives the system its IP address:

ip_addr[]="10.0.1.45"

Doing this may not be very useful on multi-homed hosts because the LAN interface at the
lowest hardware address is given the IP address. To give the IP address to a specific LAN
interface you must do the following:

ip_addr[0/0/0/0]="10.0.1.45"

This is applied to an LIF (created with make_medialif –m) with the instl_adm
command. The LIF can then be placed on media.

Note:
Unless you are using unallocated IP addresses, a boot tape or
CD|DVD created in this way is specific to a system. You do not

147

want to boot another system with it while the IP address is in use
on a live system.

Part B (Installation file system custom network config)
This part of the example deals with providing a more generic (for example, can be used
on multiple systems and has information unique to each) solution for IP address and
network information that can be applied to an LIF (and therefore to the installation file
system within the LIF).

The following section would be generic to all systems located on one LAN segment; they
can all access the same gateway:

server="10.0.0.2"

netmask[]="255.255.255.0"

route_gateway[0]="10.0.1.1"

route_destination[0]="default"

disable_dhcp=true

For the system-specific parts, each of the definitions of the IP address is protected by a
test on the MAC address:

(lla[0/0/0/0] == "080009654321") {

 ip_addr[0/0/0/0]="10.0.1.45"

}

(lla[2/0/2] == "080009654123") {

 ip_addr[2/0/2]="10.0.1.46"

}

(lla[1/0/0/0] == "080009654213") {

 ip_addr[1/0/0/0]="10.0.1.47"

}

...

This enables the tape or CD|DVD to be used on all systems within one subnet.

Configuration parameters in the installation file
system
This section discusses configuration parameters that are most suited to being placed in
an installation file system using instl_adm. The most likely reason that you would place
them in the installation file system would be that they need to be seen by Ignite-UX to
control the way that Ignite-UX works before it attempts to mount the client's directory
from an Ignite-UX server (in a network installation).

148

For more information regarding the configuration parameters discussed in this section,
see "Configuration examples" and "Example three" in this document. In addition, refer to
instl_adm(4).

Networking
The information in this section only applies to the usage of Ignite-UX after the installation
kernel has started running AND after the installation file system has been loaded (since
the configuration is stored in the first 8KB of the installation file system).

The following networking configuration parameters are covered elsewhere in this
document. For more information, see the following:

_hp_lanadmin_args (see "_hp_lanadmin_args")

_hp_nfs_mount_opts (see "_hp_nfs_mount_opts")

_hp_nfs_mount_retries (see "_hp_nfs_mount_retries")

_hp_tftp_cmds (see "_hp_tftp_cmds")

The following networking options are best set within an installation file system since Ignite-
UX must be aware of them either before it contacts the Ignite-UX server or when it is
attempting to start networking.

The DHCP configuration parameters are mentioned here because Ignite-UX requests an
IP address using DHCP when it starts and before it first attempts to make contact with the
Ignite-UX server.

• dhcp_class_id—this configuration item can be used "as is" (for example, applies to
every LAN interface) or can be given optional LAN information so the DHCP class id is
only expected to be used with one particular LAN interface, for example,
dhcp_class_id[0/0/0]="Ignite_clients".
This item is extremely useful if you have no control over the other DHCP servers on the
network and do not want to accept temporary IP addresses from those servers. For
example, the following configuration splits Itanium®-based and PA-RISC clients into two
different DHCP classes:

is_hppa {

 dhcp_class_id = "Ignite_PA_clients"

} else {

 dhcp_class_id = "Ignite_IA_clients"

}

The else condition implicitly means Itanium®-based systems since Ignite-UX currently
supports only PA-RISC and Itanium®-based systems. This also assumes that you would
want to share the same installation file system configuration. This condition effectively
limits what the client responds to52.

52 In a recovery situation, if you want to use DHCP to gain an IP address, Ignite-UX only adds the specific client IP address that
actually created the recovery archive into the /etc/exports file. If you can accept DHCP responses from anyone, the potential

149

• dhcp_server—this keyword can be used to limit the responses that are accepted by a
particular server.
This is not as flexible as the dhcp_class_id keyword. If the DHCP server is down, no
response is accepted. Compare that to a setup where you have two DHCP servers,
each one willing to serve out different IP addresses to the one class id. If one Ignite-UX
server goes down, the other DHCP server can still provide an IP address (although not
as many are available).
The dhcp_server configuration item can apply to all LAN interfaces (for example,
dhcp_server = "10.0.0.53") or to one particular LAN interface (for example,
dhcp_server[0/0/0] = "10.0.0.54").

• dhcp_misc_opts—the dhcp_misc_opts configuration item can apply to all LAN
interfaces (for example, dhcp_misc_opts = "-l 6") or to one particular LAN
interface (for example, dhcp_misc_opts[0/0/0] = "-l 6").
Care should be taken when using the dhcp_misc_opts configuration item. The
options provided are for /usr/lbin/dhcpclient. Since this is a back-end command,
its options are not officially documented and this option should only be used when
requested by HP.
The only option you are likely to be asked to add is the option to print debugging
output: dhcp_misc_opts = "-l 6".

• disable_dhcp—when set to TRUE in the installation file system, this item prevents Ignite-
UX from attempting to get an IP address using DHCP. You can use this item when you
want to manually give Ignite-UX its information (or if you have defined the IP address
information in the installation file system).

Problems that can be solved with _hp_lanadmin_args
When a kernel first boots (this is true even of a normal kernel that is not used for
installation) all of the 100bt and Gigabit LAN interfaces attempt to autonegotiate the
LAN speed and duplex settings.

In the example set up, an
rp8400 is connected to an
HP Procurve 9315m routing
switch.

When the switch point to
which port the system is
connected is set to
autonegotiate, the switch,
and the system both
autonegotiate the speed
and duplex. When the
switch is set to a speed and
duplex value,
autonegotiation fails

list of IP addresses that you may need to configure can get quite large, so many manual changes maybe required to the
/etc/exports file on the Ignite-UX server. This assumes that archives are written to the Ignite-UX server.

150

between the system and the switch. This causes the system to revert to 100HD (half-
duplex) and the switch continues using its hard-set speed (100FD or full-duplex, for
example). Duplex mismatches that can occur in these circumstances can cause
extreme throughput problems and Ignite-UX can appear hung or take a significantly
longer time to complete tasks.

During a normal system startup, the system does not experience these problems because
the system startup scripts have ideally been modified to set the speed and duplex values
correctly for the LAN interface, assuming it is not going to autonegotiate. When using
Ignite-UX, startup scripts cannot be used to set the speed and duplex values for your LAN
interfaces.

To match the speed and duplex values, you must use the _hp_lanadmin_args variable
to set these values correctly in the installation file system. This variable should only be set
using instl_adm. For example, you could add the following configuration:

 (lan[].driver == "btlan")

{

_hp_lanadmin_args="-X 100FD"

}

This sets all LAN interfaces controlled by the LAN driver btlan to 100 full duplex in the
installation file system by obtaining the current settings from the installation file system
using the following command:

instl_adm -d > /tmp/installfs.config

Next, you update the file to contain the extra configuration. If a similar configuration
exists already, you may need to consider it when you add a new configuration. The
updated configuration must be placed back into the installation file system using the
following command:

instl_adm –f /tmp/installfs.config

The instl_adm command attempts to keep the installation file systems synchronized. If
you want only to apply a configuration to specific file systems, do not use the –f option;
only use the –F option to give explicit installation file system names. However, you should
try to keep the various installation file systems consistent.

This issue creates difficulties when you mix system types that are running at different
duplexes and speeds, rather than setting the systems to autonegotiate both. To avoid
this situation, you should develop and follow a consistent approach to speed and duplex
settings.

If you have a gigabit switch set to only operate at 1000FD (gigabit speed with full duplex)
and the gigabit interface on system is attempting to autonegotiate the speed and
duplex, a 1000FD link will be achieved. This is because the only duplex supported at

151

gigabit speeds is full duplex. However, this is only true of 1000Base-T interfaces so
1000Base-SX interfaces must autonegotiate or they will fail to form a link.

Note that if you are using 1000Base-T interfaces and the switch is autonegotiating link
speed and duplex or it is hard set to use 1000FD, you should not need to use
_hp_lanadmin_args to force any speed/duplex values.

Control
The _hp_keyboard (see the "_hp_keyboard" section) control configuration item although
not strictly an installation file system variable, it is a good idea to set this to a keyboard
type if all of the systems that have keyboards are the same type. This prevents HP-UX
from asking for a keyboard type when you have a graphics console.

The following control options are best set within an installation file system because Ignite-
UX must be aware of them before it contacts either the Ignite-UX server or when it is
attempting to start networking:

• run_ui—this configuration item controls whether the installation process should be
interactive or not. If set to FALSE, the Ignite-UX GUI does not run and it is assumed that
the configuration files provide the complete configuration required to install the
system. If this is not true and there is not enough information, the installation changes
to become interactive.
Be careful when setting this item to FALSE as it is possible (if the system is booted from
the network) to reinstall the system without any way to prevent it (except using the
console, powering off, or resetting the system). This is regardless of how you set
control_from_server (see next configuration item).

• control_from_server—this configuration item is used to determine if the Ignite-UX
server that Ignite-UX has connected to should control the session or not. If set to TRUE,
you must run ignite (the command) on the server and then manage the client
remotely (you can break out of server control on the client console).

• use_expert_ui—this configuration item is very useful if you are an advanced user of
Ignite-UX and want to run the Ignite-UX GUI most of the time instead of using "Wizard"
mode. Using the Ignite-GUI, provides a much finer level of control over the system to
be installed than Wizard mode does. To make the Ignite-UX GUI the default, add the
following line to the installation file system:

use_expert_ui = true

Environment variables
With the env_vars configuration item, you can place environment variables into the
environment of the programs that are run by Ignite-UX. Setting an environment variable
is done in the following way:

env_vars += "TZ=JST-9"

The preceding example sets the time zone for the installation to Japanese Standard
Time.

152

Although this time zone does not define daylight savings, if you set a time zone that does
have daylight savings you should be very careful. Take, for example, the time zone
Australian Eastern time zone (EST-10EDT). Since the installation file system does not have
a tztab file, when the time zone US EASTERN (EST5EDT) is in daylight savings it assumes
EST-10EDT is also in daylight savings. In reality these time zones never actually overlap
because one is in the northern hemisphere and the other in the southern.

The following environment variables are special and affect the installation or recovery
process:

• INST_NET_RESPONSE_TIMEOUT—this variable provides safety for systems. The
instl_adm(4) manpage states the following information about the variable:

When booting an install client from the network, this sets the amount of
time that the system will wait for a user response before it reboots in
assumption that the system booted from the install server accidentally.
Setting seconds to 0 (zero) will disable the timeout and the system will
not prompt for a response.

If this value is set to >0 the following message appears:

Please press <return/enter> (within %d seconds) to continue loading the
network-install utility:

If that times out, it is followed by the following message, so users know that the system is
rebooting:

Unless you select <return/enter> within 10 seconds, the system will
reboot:

If neither Enter nor Return is selected within 10 seconds, the system reboots.

• INST_ALLOW_WARNINGS—this variable again provides for the safety of systems (or in this
case, disks):
Setting this environment variable is useful for non-interactive install
sessions when warnings about disks containing data cause the installation to
switch to interactive mode. Setting seconds to 1 will cause all warnings to
be ignored and the installation will proceed. Setting seconds to greater than
1 will allow the user that many seconds to read the warning and stop the
installation by pressing <return>.

You should be very careful about setting this variable away from the default of 0. A
non-default value can be dangerous when you are doing a clean installation or
cloning a system (especially to one with the same model string53). The following
happens, depending on what value you set it to:

53 When you set INST_ALLOW_WARNINGS to a non-zero value and you are performing a non-interactive recovery
(especially cloning to the same hardware) or installation, it is possible that the warnings can be extremely
important. For example, if you are cloning between systems of the same model but the boot disks are at
different hardware paths (especially on a Fibre Channel attached array) and you do not interrupt the boot
process in time, the installation/recovery session may have overwritten production data or data belonging to a
different system.

153

0 – A yes/no question is asked: Do you wish to cancel the non-interactive
installation in order to respond to the warnings above?. There is no
timeout associated with this question; Ignite-UX waits indefinitely for a response.

1 – This message appears: Continuing despite above warnings because
INST_ALLOW_WARNINGS=1. The installation/recovery proceeds regardless.

>1 – This message appears: Press <Return/Enter> within <num> seconds to
cancel batch-mode installation: . You have that number of seconds to press
Return or Enter to cancel the non-interactive session to enter the user interface.

• INST_ENABLE_NETWORK—this environment variable is useful when you have created
media from which to boot a system, but you need the installation process to start
networking (for example, one of the scripts used needs to contact another host). For
example, setting this variable to 1 does this:

env_vars += "INST_ENABLE_NETWORK=1"

Unless use_dhcp has been set to FALSE, the system attempts to contact a DHCP
server at that point.

• LOADFILE_RETRY_COUNT—this has the following description in the instl_adm(4)
manpage:

This can be used change the default number of times that the internal
loadfile command will retry a failed attempt to retrieve data from the
server or media. Usually this retry mechanism is used to overcome tftp
transfer problems. The default value is 5.

As an alternative, you can use the _hp_tftp_cmds to change the re-transmission and
timeout values when tftp is actually used.

Managing configurations with unifdef
You may find when writing configuration files that many of them tend to end up looking
the same. There are at least two programs that you can use in conjunction with
configuration files to make similar files more maintainable.

The program you can use at is unifdef (The second program is m4, but how to use m4 is
not discussed.)

The following example looks at the configuration files discussed in "Configuration
examples – Part B". Suppose you have one very long configuration file that you want to
save into an LIF, but over time you have finally exceeded the 8KB limit on configuration
data so you have a configuration file that looks like the following:

server="10.0.0.2"

netmask[]="255.255.255.0"

route_gateway[0]="10.0.1.1"

route_destination[0]="default"

disable_dhcp=true

(lla[0/0/0/0] == "080009654321") {

 ip_addr[0/0/0/0]="10.0.1.45"

154

}

(lla[2/0/2] == "080009654123") {

 ip_addr[2/0/2]="10.0.1.46"

}

(lla[1/0/0/0] == "080009654213") {

 ip_addr[1/0/0/0]="10.0.1.47"

}

...

(lla[0/0/0/0] == "08000A654321") {

 ip_addr[0/0/0/0]="10.0.2.45"

}

(lla[2/0/2] == "08000A654123") {

 ip_addr[2/0/2]="10.0.2.46"

}

(lla[1/0/0/0] == "08000A654213") {

 ip_addr[1/0/0/0]="10.0.2.47"

}

You will want to use unifdef on this file so that you can maintain it in one file but also be
able to create separate files to apply to LIFs (because you want to be able to set IP
addresses automatically on the systems you boot). First, though, you need to insert some
other things into the file.

The unifdef command recognizes the following C preprocessor directives:

#ifdef

#ifndef

#if

#else

#endif

With these directives, you can change the configuration file as follows:

server="10.0.0.2"

netmask[]="255.255.255.0"

route_gateway[0]="10.0.1.1"

route_destination[0]="default"

disable_dhcp=true

#ifdef LAN_SEGMENT_1

(lla[0/0/0/0] == "080009654321") {

 ip_addr[0/0/0/0]="10.0.1.45"

}

(lla[2/0/2] == "080009654123") {

155

 ip_addr[2/0/2]="10.0.1.46"

}

(lla[1/0/0/0] == "080009654213") {

 ip_addr[1/0/0/0]="10.0.1.47"

}

...

#endif

#ifdef LAN_SEGMENT_2

(lla[0/0/0/0] == "08000A654321") {

 ip_addr[0/0/0/0]="10.0.2.45"

}

(lla[2/0/2] == "08000A654123") {

 ip_addr[2/0/2]="10.0.2.46"

}

(lla[1/0/0/0] == "08000A654213") {

 ip_addr[1/0/0/0]="10.0.2.47"

}

...

#endif

You can now use unifdef to create a configuration file for LAN segment one:

$ unifdef –t54 -DLAN_SEGMENT_1 -ULAN_SEGMENT_2 lan.cfg

server="10.0.0.2"

netmask[]="255.255.255.0"

route_gateway[0]="10.0.1.1"

route_destination[0]="default"

disable_dhcp=true

(lla[0/0/0/0] == "080009654321") {

 ip_addr[0/0/0/0]="10.0.1.45"

}

(lla[2/0/2] == "080009654123") {

 ip_addr[2/0/2]="10.0.1.46"

}

(lla[1/0/0/0] == "080009654213") {

 ip_addr[1/0/0/0]="10.0.1.47"

54 The –t option treats the input as plain text rather than C style source code. Because this configuration does
not look like C style source code, always use the –t option.

156

}

...

Note that unifdef is not a general C preprocessor; you must explicitly define or undefine
variables before they are evaluated in the input file. If you require more functionality
than unifdef provides, refer to m4(1).

Coping with auto_adm and boot changes in HP-UX
B.11.23
Because PA-RISC systems have two possible kernels that they may need to boot with the
release of Ignite-UX C.6.0, there needs to be some way to interact with the boot loader
to boot the desired kernel.

Two criteria must be met:

• The installation process must be capable of a non-interactive installation or recovery.
• The installation process must provide a mechanism for selecting a kernel version.

These changes were made to the initial system loader (ISL) to enable it to understand a
new format of AUTO file (this ISL is provided as part of Ignite-UX in the LIF file
/opt/ignite/boot/boot_lif). This new format is capable of showing you a menu-like
selection and asking you to choose a kernel to boot. Of course, to provide for non-
interactive installation and recovery, there is a time-out value for a response and a
default response.

With PA-RISC systems, using Ignite-UX version C.6.0.x or later, an HP-UX B.11.11 kernel is
used to install and recover HP-UX B.11.11 and HP-UX 11.0 systems, and an HP-UX B.11.23
kernel is used to install and recover HP-UX B.11.23 systems. You cannot install or recover
HP-UX B.11.11 or HP-UX 11.0 systems using the HP-UX B.11.23 kernel, and the HP-UX B.11.11
kernel cannot install or recover an HP-UX B.11.23 system. There is only a 64-bit HP-UX
B.11.23 PA-RISC kernel. Ignite-UX prevents you from performing an unsupported
installation using an incorrect kernel during installation.

Note the following:

• Currently, auto_adm only affects PA-RISC systems. There is only one Itanium®-based
kernel shipped with Ignite-UX; no method is required to select between it and another
kernel.

• This command exists from Ignite-UX version C.6.0.x onwards.
• With Ignite-UX version C.6.0.x, the new auto_adm formats in the AUTO file provide an

enhancement to the current form of the AUTO file; they are not a replacement.

Looking at auto_adm
As stated in the auto_adm(1M) manpage, the following forms are allowed:

 /opt/ignite/bin/auto_adm -n -T timeout -M message -l label -c command
-b

 device -i image [-o outfile] [-O output_format] [-?]

157

 /opt/ignite/bin/auto_adm -a -l label -c command -b device -i image

 [-f infile] [-o outfile] [-O output_format] [-?]

 /opt/ignite/bin/auto_adm -A appendfile -f infile [-o outfile]

 [-O output_format] [-?]

 /opt/ignite/bin/auto_adm -L label record_modifier [-f infile]

 [-o outfile] [-O output_format] [-?]

 /opt/ignite/bin/auto_adm -d -L label [-f infile] [-o outfile]

 [-O output_format] [-?]

 /opt/ignite/bin/auto_adm -D -L label [-f infile] [-o outfile]

 [-O output_format] [-?]

 /opt/ignite/bin/auto_adm -T timeout [-f infile] [-o outfile]

 [-O output_format] [-?]

 /opt/ignite/bin/auto_adm -M message [-f infile] [-o outfile]

 [-O output_format] [-?]

ISL and CONF format data
CONF data
The auto_adm manpage does not correctly document all of the allowed combinations
of options. For instance, the preceding forms of the command do not allow the
following example:

auto_adm -f /opt/ignite/boot/boot_lif

timeout = 0

default = 1

message = Choose a boot action

label = target OS is B.11.00

bootcmd = boot

boot = (;0)

image = /boot/Rel_B.11.00/INSTALL

158

label = target OS is B.11.11

bootcmd = boot

boot = (;0)

image = /boot/Rel_B.11.11/INSTALL

label = target OS is B.11.23 PA

bootcmd = boot

boot = (;0)

image = /boot/Rel_B.11.23/WINSTALL

This reads the AUTO file from the LIF and prints it in the auto_conf (CONF) format.

In the CONF format, the timeout line specifies the amount of time (in seconds) to wait
before taking the default action. The default line specifies the default action to take,
which, in this case, boots a kernel for HP-UX 11.0. The message line specifies the message
that is displayed after booting and showing the menu options to select a target
operating system to boot.

The auto_adm(4) manpage lists the following definitions for label, bootcmd, boot, and
image:
label=string

A string label that is displayed to the user on the console describing what action is
performed if this boot image is loaded. For example, "Install 64-bit HP-UX B.11.11". The
string need not be enclosed in quotes.
bootcmd=cmd

The SSL command to be executed if this image is selected. Refer to hpux(1M) for more
information.
boot=hwpath

The hardware path relative to the boot LIF containing the desired boot image.
Typically (0;). See hpux(1M) for more information.
image=path

The path of the image to be booted relative to the hardware path specified in the
boot directive.

The bootcmd field should match the following form of the secondary loader (see
hpux(1M)):

hpux [-F] [-lm] [-vm] [-lq] [-a[C|R|S|D] devicefile] [-fnumber]

 [-istring] [boot] [devicefile]

If, for example, you wanted to enable debug-level logging from boot logging
automatically, you need to change the bootcmd string to the following:

bootcmd = -i3

159

The auto_adm command is intended for the management of the AUTO file in an LIF that is
used by Ignite-UX. The bootcmd field only accepts one argument.

ISL data
The following example presents the same data as the CONF data although it is translated
into ISL format:

auto_adm -f ./output -o ./isl -O ISL

cat isl

hpux KernelPrompt "Choose a boot action" 0 1

reset

"target OS is B.11.00" boot (;0)/boot/Rel_B.11.00/INSTALL

"target OS is B.11.11" boot (;0)/boot/Rel_B.11.11/INSTALL

"target OS is B.11.23 PA" boot (;0)/boot/Rel_B.11.23/WINSTALL

"Exit" reboot

auto_adm -f ./lif -D -L "target OS is B.11.11" -O ISL

hpux KernelPrompt "Choose a boot action" 0 2

reset

"target OS is B.11.00" boot (;0)/boot/Rel_B.11.00/INSTALL

"target OS is B.11.11" boot (;0)/boot/Rel_B.11.11/INSTALL

"target OS is B.11.23 PA" boot (;0)/boot/Rel_B.11.23/WINSTALL

"Exit" reboot

The auto_adm command operates on CONF or ISL format data equally well. The default
destination, if –o is not given, is to send the result to stdout.

Usage examples
Creating new files
This is the form of the auto_adm command used to create new files:

/opt/ignite/bin/auto_adm -n -T timeout -M message -l label -c command -b

 device -i image [-o outfile] [-O output_format] [-?]

The –n means that a new file is being created and the other options allow you to provide
enough data to give the higher-level menu information and the first option on the menu.
The following example creates the file:
auto_adm -n -T 10 -M "Please select something to boot" \

160

> -l "HP-UX 11.0 32bit55" -c boot -b "(;0)" \

> -i boot/Rel_B.11.00/INSTALL -o boot.adm -O CONF

$ cat boot.adm

timeout = 10

default = 1

message = Please select something to boot

label = HP-UX 11.0 32bit56

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.00/INSTALL

To create the same thing but on ISL format, you can use the following format of the
command:

auto_adm -n -T 10 -M "Please select something to boot" \

> -l "HP-UX 11.0 32bit" -c boot -b "(;0)" \

> -i boot/Rel_B.11.00/INSTALL -o boot.isl -O ISL

$ cat boot.isl

hpux KernelPrompt "Please select something to boot" 10 1

reset

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"Exit" reboot

Adding new menu entries to a file
The following the form of the auto_adm command is used to add new menu selections
into the file:

/opt/ignite/bin/auto_adm -a -l label -c command -b device -i image

 [-f infile] [-o outfile] [-O output_format] [-?]

First, add some entries into the auto_conf file in ISL format using auto_adm:

auto_adm -a -l "HP-UX 11.0 32bit w/debug logging" -c "-i3" \

> -b "(;0)" -i boot/Rel_B.11.00/INSTALL -f boot.isl -o boot.isl2 -O ISL

55 This format is not strictly 32-bit, as it correctly boots 32-bit and 64-bit capable systems (but not V class systems).
56 Even though this menu choice says 32-bit, the PA-RISC primary loader (ISL) changes the INSTALL kernel to
WINSTALL if the system can only run a 64-bit kernel. So, even though the one line says 32-bit, it actually supports
both 32-bit and 64-bit systems.

161

auto_adm -a -l "HP-UX 11.0 64bit" -c "boot" \

> -b "(;0)" -i boot/Rel_B.11.00/INSTALL -f boot.isl2 -o boot.isl -O ISL

$ cat boot.isl

hpux KernelPrompt "Please select something to boot" 10 1

reset

"HP-UX 11.0 64bit" boot (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.0 32bit w/debug logging" -i3 (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"Exit" reboot

You can make some similar changes in CONF format:

$ auto_adm -a -l "HP-UX 11.11 64bit" -c "boot" \

> -b "(;0)" -i boot/Rel_B.11.11/WINSTALL -f boot.adm -o boot.adm2 -O CONF

$ auto_adm -a -l "HP-UX 11.23 64bit" -c "boot" \

> -b "(;0)" -i boot/Rel_B.11.23/WINSTALL -f boot.adm2 -o boot.adm -O CONF

$ cat boot.adm

timeout = 10

default = 1

message = Please select something to boot

label = HP-UX 11.23 64bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.23/WINSTALL

label = HP-UX 11.11 64bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.11/WINSTALL

label = HP-UX 11.0 32bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.00/INSTALL

Using an "append" file
The auto_adm command also enables you to take records sitting in one file and append
them to an input file, combining them into one output file. The following form does this:

162

/opt/ignite/bin/auto_adm -A appendfile -f infile [-o outfile]

 [-O output_format] [-?]

For example:

cat boot.append

label = HP-UX 11.11 64bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.11/WINSTALL

label = HP-UX 11.11 32bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.11/INSTALL

cat boot.isl

hpux KernelPrompt "Please select something to boot" 30 1

reset

"HP-UX 11.0 32bit w/debug logging" -i3 (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"Exit" reboot

auto_adm -A boot.append -f boot.isl -o boot.combined -O ISL

cat boot.combined

hpux KernelPrompt "Please select something to boot" 30 1

reset

"HP-UX 11.0 32bit w/debug logging" -i3 (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.11 64bit" boot (;0)boot/Rel_B.11.11/WINSTALL

"HP-UX 11.11 32bit" boot (;0)boot/Rel_B.11.11/INSTALL

"Exit" reboot

Note that the file given with the –A option must be in CONF format; if you use ISL format,
the command generates errors.

Updating a menu entry in a file
The following form of auto_adm enables you to update a boot menu entry:

/opt/ignite/bin/auto_adm -L label record_modifier [-f infile]

 [-o outfile] [-O output_format] [-?]

163

The record modifier consists of the following:

record_modifier consists of at least one (and optionally any

 combination) of -l label, -c command, -b device, and/or -i image.

This enables you to update a boot menu entry. The following examples only look at CONF
format files. First change the boot field for the label HP-UX 11.23 64bit:

auto_adm -L "HP-UX 11.23 64bit" -c "-i3" \

> -f boot.adm -o boot.adm2 -O CONF

$ cat boot.adm2

timeout = 10

default = 1

message = Please select something to boot

label = HP-UX 11.23 64bit

bootcmd = boot

boot = -i3

image = boot/Rel_B.11.23/WINSTALL

label = HP-UX 11.11 64bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.11/WINSTALL

label = HP-UX 11.0 32bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.00/INSTALL

Rename the label HP-UX 11.23 64bit to HP-UX 11.23 64bit (PA-RISC):

$ auto_adm -L "HP-UX 11.23 64bit" -l "HP-UX 11.23 64bit (PA-RISC)" \

> -f boot.adm2 -o boot.adm -O CONF

$ cat boot.adm

timeout = 10

default = 1

message = Please select something to boot

164

label = HP-UX 11.23 64bit (PA-RISC)

bootcmd = -i3

boot = (;0)

image = boot/Rel_B.11.23/WINSTALL

label = HP-UX 11.11 64bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.11/WINSTALL

label = HP-UX 11.0 32bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.00/INSTALL

Deleting a menu entry from a file
The boot menu entries are removed from a file using the following form of auto_adm:

/opt/ignite/bin/auto_adm -d -L label [-f infile] [-o outfile]

 [-O output_format] [-?]

To remove a boot menu entry, you simply need to provide the label name from the file:

$ auto_adm -L "HP-UX 11.23 64bit (PA-RISC)" -d -f boot.adm -o boot.adm2 -O
CONF

$ cat boot.adm2

timeout = 10

default = 1

message = Please select something to boot

label = HP-UX 11.11 64bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.11/WINSTALL

label = HP-UX 11.0 32bit

bootcmd = boot

boot = (;0)

image = boot/Rel_B.11.00/INSTALL

165

Changing the default menu choice
Using auto_adm , you can also change the default menu choice with the following form
of the command:

/opt/ignite/bin/auto_adm -D -L label [-f infile] [-o outfile]

 [-O output_format] [-?]

The following example shows the change in default menu choices from the first to the
second option:

$ cat boot.adm

hpux KernelPrompt "Please select something to boot" 10 1

reset

"HP-UX 11.23 64bit (PA-RISC)" -i3 (;0)boot/Rel_B.11.23/WINSTALL

"HP-UX 11.11 64bit" boot (;0)boot/Rel_B.11.11/WINSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"Exit" reboot

$ auto_adm -D -L "HP-UX 11.11 64bit" -f boot.adm -o boot.adm2 -O ISL

$ cat boot.adm2

hpux KernelPrompt "Please select something to boot" 10 2

reset

"HP-UX 11.23 64bit (PA-RISC)" -i3 (;0)boot/Rel_B.11.23/WINSTALL

"HP-UX 11.11 64bit" boot (;0)boot/Rel_B.11.11/WINSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"Exit" reboot

Changing the timeout
The timeout value is used by the boot loader to determine how long to wait for user input
before executing the default menu choice (see the next section for more information
about how to set the default menu choice).

/opt/ignite/bin/auto_adm -T timeout [-f infile] [-o outfile]

 [-O output_format] [-?]

In the following example, you can see the timeout change from 10 to 30 seconds (the
second last field on the first line) for this file in ISL format:

166

$ cat boot.isl2

hpux KernelPrompt "Please select something to boot" 10 1

reset

"HP-UX 11.0 32bit w/debug logging" -i3 (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"Exit" reboot

$ auto_adm -T 30 -f boot.isl2 -o boot.isl -O ISL

$ cat boot.isl

hpux KernelPrompt "Please select something to boot" 30 1

reset

"HP-UX 11.0 32bit w/debug logging" -i3 (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"Exit" reboot

Updating the prompt message
The prompt message is what the boot loader prompts you with when you are asked to
make a selection from the available options. The form of the command that enables
you to change the prompt message is as follows:

/opt/ignite/bin/auto_adm -M message [-f infile] [-o outfile]

 [-O output_format] [-?]

The following example uses this form to change the prompt message:

auto_adm -M "Please select an option" -f boot.combined -o boot.final -O ISL

cat boot.final

hpux KernelPrompt "Please select an option" 30 1

reset

"HP-UX 11.0 32bit w/debug logging" -i3 (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.0 32bit" boot (;0)boot/Rel_B.11.00/INSTALL

"HP-UX 11.11 64bit" boot (;0)boot/Rel_B.11.11/WINSTALL

"HP-UX 11.11 32bit" boot (;0)boot/Rel_B.11.11/INSTALL

"Exit" reboot

Into and out of an LIF file
The auto_adm command automatically recognizes an LIF file when provided as the
argument to –f or –o options and handles the format of the data correctly. In the
following example, the data is extracted from the boot LIF provided with Ignite-UX and at

167

the same time changes the timeout from 120 seconds to 30 seconds. You can compare
the data with lifcp:

$ auto_adm -T 30 -f ./boot_lif -o boot.tmp -O ISL

$ lifcp ./boot_lif:AUTO -

hpux KernelPrompt "Choose Operating System to Install :" 120 1

reset

"target OS is B.11.00" boot (;0)/boot/Rel_B.11.00/INSTALL

"target OS is B.11.11" boot (;0)/boot/Rel_B.11.11/INSTALL

"target OS is B.11.23 PA" boot (;0)/boot/Rel_B.11.23/WINSTALL

"Exit" reboot

$ cat boot.tmp

hpux KernelPrompt "Choose a boot action" 30 1

reset

"target OS is B.11.00" boot (;0)/boot/Rel_B.11.00/INSTALL

"target OS is B.11.11" boot (;0)/boot/Rel_B.11.11/INSTALL

"target OS is B.11.23 PA" boot (;0)/boot/Rel_B.11.23/WINSTALL

"Exit" reboot

You can put the data back into an LIF by specifying the LIF as the output file (it is placed
into the AUTO file within the LIF).

Installation configurations using Software Distributor
depots
The following is an example process for configuring support on an Ignite-UX server to
allow you to install systems using Software Distributor (SD) depots as the repository for the
software.

It is important to note the following:

• How to configure instl_bootd or DHCP servers to allow clients to boot over the
network is not discussed. For more information, refer to the Ignite-UX Administration
Guide and instl_bootd(1M).

• How to setup depots up remote to the Ignite-UX server is not discussed; the simplest
location for depots is on the Ignite-UX server.

• How to use this process with versions earlier than the C.6.0.x version of Ignite-UX is not
discussed. If you are using a version of Ignite-UX and some commands do not work as
shown, you should consider updating your Ignite-UX.

You should review the entire section before following any of the instructions because
consequences and issues related to running commands are discussed throughout.

168

Getting started
The first step is to choose the HP-UX 11i v1 Operating Environment (OE) media that you
want to use. To make an informed decision you should review the Cloning and Recovery
Issues using Ignite-UX White Paper. The issues that this paper discusses are relevant to
installing a system (particularly a new system) because you must choose the OE that
provides support for all of the hardware in the system.

Creating the core operating system depot
To create the core operating system depot the make_depots command is used. You will
be copying the December 2003 HP-UX 11i Version 1 OE media into a core operating
system depot in this example. You will use the defaults for the make_depots command;
you only need to give the block device57 of the DVD drive to define the location of the
final depot and the release you will be copying as follows:

make_depots -r B.11.11 -s /dev/dsk/c0t1d0

If the command is successful, no output is displayed by make_depots.

Important:
To successfully copy the contents of the core operating system
DVD58 to a depot on the Ignite-UX server, you must have the
patches that enable the Rock Ridge extensions natively on HP-
UX installed on the Ignite-UX server. Also, to successfully copy the
contents of the HP-UX 11i Version 2 May 2005 or later OE media
on an 11i Version 1 or 11.0 Ignite-UX server, you must upgrade to
Ignite-UX version C.6.2 and have the patches that enable the
Rock Ridge extensions natively on HP-UX installed on the Ignite-
UX server. On an 11i Version 2 Ignite-UX server, you need only to
upgrade to Ignite-UX version C.6.2.

The system on which this example was developed (running HP-UX B.11.11) required these
patches:

PHCO_25841 1.0 Add Rock Ridge extension to mount_cdfs(1M)

PHKL_26269 1.0 Rock Ridge extension for ISO-9660

PHKL_28025 1.0 Rock Ridge extension for ISO-9660

There are no patches required for HP-UX B.11.23. The equivalent patches for HP-UX 11.0
are:

PHCO_26449 1.0 Add Rock Ridge extension to mount_cdfs(1M)

57 The manpage for make_depots indicates that a DVD/CD-ROM drive must be given using the block device. A character
device would be assumed to be a tape dive containing a serial core operating system depot on a tape. Also you can give a
normal SD depot in the form <host>:<path>; a regular file name would be considered a tape depot on disk.
58 HP-UX 11.0 is delivered on one CD only; only that CD is needed to install a system. HP-UX 11i v1 is delivered on both CD and
DVD. HP-UX 11i v2 is only delivered on DVD.

169

PHKL_26450 1.0 Rock Ridge extension for ISO-9660

PHKL_28060 1.0 Y2k; Rock Ridge extension for ISO-9660

The make_depots command above assumes that there was no previous depot created
at /var/opt/ignite/depots/Rel_B.11.11/core. If such a depot exists, you should
use the –d option of make_depots to have the new depot created in a new location. If
you need to maintain multiple core operating system (OE) depots for a release of HP-UX,
you should consider placing them into depots that indicate what version of the media
the depot contains for easy identification. For example, if you are creating depots for
the December 2003 and June 2004 HP-UX 11i v1 Mission Critical OE media you could use
the following commands:

make_depots -r B.11.11 -s /dev/dsk/c0t1d0 –d \

 /var/opt/ignite/depots/Rel_B.11.11/core_1203_mc

make_depots -r B.11.11 -s /dev/dsk/c0t1d0 –d \

 /var/opt/ignite/depots/Rel_B.11.11/core_0604_mc

Important:
If you need to install different OEs from your Ignite-UX server, you
must ensure that the only the OEs that the client system is
licensed to run are installed on the system.

Alternatively, you could use the following commands to remove the contents of the
existing depot before running the previous commands:

swreg –u –l depot /var/opt/ignite/depots/Rel_B.11.11/core

rm –rf /var/opt/ignite/depots/Rel_B.11.11/core

If everything is successful, you will have a depot at the following location containing the
OE media for HP-UX B.11.11:

swlist -d -s /var/opt/ignite/depots/Rel_B.11.11/core

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.11/core

Bundle(s):

 100BaseT-00 B.11.11.01 EISA 100BaseT;Supptd W=A4308B;SW=J2780BA

 100BaseT-01 B.11.11.01 HP-PB 100BaseT;Supptd HW=A3495A;SW=J2759BA

...

170

 HPUXBase32 B.11.11 HP-UX 32-bit Base OS

 HPUXBase64 B.11.11 HP-UX 64-bit Base OS

 HPUXBaseAux B.11.11.0312 HP-UX Base OS Auxiliary

 HWEnable11i B.11.11.0312.4 Hardware Enablement Patches for HP-UX 11i
v1, December 2003

...

 hpuxwsWebmin A.1.0.05.02 HP-UX Webmin-based Admin

 hpuxwsXml A.1.0.01.02 HP-UX XML Web Server Tools

 perl B.5.6.1.F Perl Programming Language

 scsiU320-00 B.11.11.00 PCI SCSI U320; Supptd HW=A7173A

The log file that make_depots creates contains more detailed information. By default,
the log file is in /var/opt/ignite/logs/make_depots.

Other methods for creating the Core OS depot
There are other methods for creating the Core OS depot59. Some better than others and
some having unique pitfalls.

Using the Ignite-UX GUI
You can use the Ignite-UX GUI on your Ignite-UX server to create a core operating system
(OE) depot using the following process:

1. On your Ignite-UX server, enter /opt/ignite/bin/ignite.

2. Select Run Tutorial/Server Setup… from the Actions menu.

59 Note that make_depots and the option in the Ignite-UX GUI to setup software depots is not just for core operating system (OE)
media, you can copy other media using this method such as the applications CD/DVD as well.

171

3. Click the Server Setup button.

4. The third step, Set up Software, allows you to create a core operating system depot.
Click the Next button in this and the Next or OK buttons on the following dialog boxes
until the following dialog box appears.

172

5. Select Copy CD/DVD using the adjacent radio button then click Next to copy the
core operating system (OE) media into a depot. Note the Use CD/DVD option, which
allows you use a directly mounted DVD rather than have it copied to another depot
for usage. If you had multiple DVD drives attached to your Ignite-UX server, you could
mount all of the depots directly from their DVDs and save disk space.60

6. Insert the media as requested and click OK.

60 If you manually mount a DVD, you can run make_config on the depot and then create a cfg clause referencing the
configuration file. You must register the depot on the DVD using swreg to avoid errors. When remote systems attempt to
access the mounted DVD as a depot they may be denied access to it. To determine whether a depot is registered or not, use
swlist –l depot, which displays the path to the depot if it is registered.

173

7. Select the correct CD or DVD device from the drop-down button then click OK.

8. Enter the location and name of the depot that the core operating system (OE) to
which the media will be copied then click OK.

The size displayed in the dialog box may not be correct as it is a static message and
the 3-400Mb is not based upon the size of the depot on the CD or DVD.

9. Review the information you have entered to be sure it is correct and then click OK. A
status dialog box appears so that you can monitor the software copying.

174

You should not click OK in the status dialog box until the process of copying the
CD/DVD is complete as an error results.

10. Once complete click OK and a log file dialog box similar to the following appears:

175

Once the process is completes successfully: the depot exists, a configuration file is
created for it, and the configuration file is added to the appropriate default
configuration clause /var/opt/ignite/INDEX. If you do not want the configuration
file added to the cfg clauses in the INDEX file that it has been added to, you must
remove it from each clause using manage_index. Allowing manage_index to update
the /var/opt/ignite/INDEX file indiscriminately may have unintended side affects so
you should review the INDEX file to ensure that it remains correct for your environment.

11. If you are using CDs, change the CD and click OK; if you are using a DVD click Cancel
then OK in the next dialog box to continue. The following dialog box appears:

12. Click OK.

176

13. Click Yes to setup more depots or No to finish the process.

14. Click Finish to complete the process.

The pitfalls of using CDs instead of DVDs
If you are creating a depot, you should be very careful if you are using the OE CDs
instead of the OE DVD. The make_depots command has a limitation in that it will not
prompt for subsequent CDs and will only copy the first CD into the depot. However, it is
safe to subsequently re-run the make_depots command on each of the CDs to copy
them into the same depot; do not copy them into different depots.

Creating the configuration file to describe the depot
The make_config command is used to create the configuration file that describes the
core operating system (OE) depot you just created. The easiest way to do this since the
depot is local and in /var/opt/ignite/depots/Rel_B.11.11 is as follows:

177

make_config –s /var/opt/ignite/depots/Rel_B.11.11/core \

 -c /var/opt/ignite/data/Rel_B.11.11/core_cfg

Warning:
HP does not support placing different versions of an OE in one
depot. Instead, you must keep different OEs in different depots.

This creates the configuration file that describes the depot in
/var/opt/ignite/data/Rel_B.11.11 and it is named core_cfg61. However, it does
not update /var/opt/ignite/INDEX so that you can create your own custom cfg
clause later. If everything completes successfully, you should see the following message
only:

NOTE: make_config can sometimes take a long time to complete. Please be

 patient!

An alternative to this is to use the following command:

make_config –r B.11.11

This command automatically creates configuration files for all of the depots under
/var/opt/ignite/depots/Rel_B.11.11. However, this form of the command will also
update the /var/opt/ignite/INDEX file (typically updating all cfg clauses affecting
the given HP-UX release with information about the configuration files). This may not be
desirable.

For example, if you run the following command:

make_config -r B.11.11 -s core_1203_mc

Then the configuration file will be created and the /var/opt/ignite/INDEX file will be
updated (only showing the Default B.11.11 clause) to be:

cat /var/opt/ignite/INDEX

...

cfg "HP-UX B.11.11 Default" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

61 This is why it was suggested earlier that if you have multiple core operating system (OE) depots, you should give them names
that include the release date of the media and an indication (if required) of the OE type.

178

 "/var/opt/ignite/data/Rel_B.11.11/core_1203_mc_cfg"

 "/var/opt/ignite/config.local"

}

If you then run the following command:

make_config -r B.11.11

In addition to creating the configuration file, the /var/opt/ignite/INDEX file will be
updated as in the following excerpt of the file:

cfg "HP-UX B.11.11 Default" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

 "/var/opt/ignite/data/Rel_B.11.11/core_1203_mc_cfg"

 "/var/opt/ignite/data/Rel_B.11.11/core_cfg"

 "/var/opt/ignite/config.local"

}

You should avoid multiple core operating system (OE) definitions within the one cfg
clause. The contents of the second configuration file defining a core operating system
(OE) depot override the configuration in the first.

This command does not cause any additional changes to occur and make_config
would only add the core_cfg configuration file to every B.11.11 clause in the INDEX
file.

make_config –r B.11.11 –s core

For information about the contents of core operating system (OE) configuration file, see
the "Core operating system depot configuration" section.

Creating a minimalist cfg clause for installation
You can create a cfg clause in /var/opt/ignite/INDEX that will allow you to install a
system.

manage_index -n "HP-UX B.11.11 Default" –c \

 "Custom B.11.11 installation using SD"

manage_index -a -f /var/opt/ignite/data/Rel_B.11.11/core_cfg \

 -c "Custom B.11.11 installation using SD"

You use manage_index to avoid using the variations of make_config that indiscriminately
change cfg clauses in the INDEX file. In this case, you are copying the default B.11.11
clause (the changes from make_config in the previous section have been undone prior
to doing this step).

179

When complete you have a new cfg clause in the INDEX file:

cat /var/opt/ignite/INDEX

...

cfg "Custom B.11.11 installation using SD" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

 "/var/opt/ignite/data/Rel_B.11.11/core_cfg"

 "/var/opt/ignite/config.local"

}

Comments on the SD based cfg clause
The clause created does nothing except install a generic core operating system (OE)
from an SD depot (with the patches included with the operating system). The important
thing is that it will install HP-UX. To enable this all you have had to do is create a core
operating system (OE) depot, run make_config once, and then manage_index twice.

In the following sections, you will add to this by adding new depots to allow additional
applications to be installed and custom configuration to be executed.

You have saved a lot of time by using the default configuration files that Ignite-UX
supplies for every HP-UX revision (the config and hw_patches_cfg files) as a basic
configuration for file systems and some additional configuration for patching. The
release-specific (in this case /opt/ignite/data/Rel_B.11.11/config) configuration
file supplies some important variable definitions. Including this file prevents changes to
Ignite-UX in the future from impacting you because you automatically receive changes
to the release-specific config and hw_patches_cfg files as with each new release of
Ignite-UX.

How to setup your environment to boot systems so that they can contact your Ignite-UX
server to allow you to install systems is not discussed in this paper. For more information
on completing the setup of your server, refer to the Ignite-UX Administration Guide.

Extending the generic SD cfg clause with applications
In this section, you will enhance the core operating system (OE) bundle that you
previously created by making available some of the applications from the HP
Application Media. In this example, you will be copying the December 2003 Application
DVD. The application media is created and copied in much the same way as "Creating
the core operating system depot".

Creating the application depot
First, you must copy the applications from the DVD into a depot so that you can use
them. The following command begins the process:

make_depots -d /var/opt/ignite/depots/Rel_B.11.11/apps_1203 \

 -s /dev/dsk/c0t1d0

180

If the media contains codeword-protected applications, so you must supply the
codewords directly to the make_depots command (for more information, see
make_depots(1M)). This command can take a long time to complete.

Creating a configuration for the application depot
Since you created the depot, you can create the configuration file for the depot using
the following command:

make_config -s /var/opt/ignite/depots/Rel_B.11.11/apps_1203 \

 -c /var/opt/ignite/data/Rel_B.11.11/apps_1203_cfg

Remember that you do not use the –r option so that manage_index is run by
make_config to update every cfg clause that uses HP-UX B.11.11 to include the file. You
should only add the apps_1203_cfg file to one cfg clause.

After you run the following command to add apps_1203_cfg to the cfg clause, you can
install any applications that are in the depot:

manage_index -a -f /var/opt/ignite/data/Rel_B.11.11/apps_1203_cfg \

 -c "Custom B.11.11 installation using SD"

An example problem
It is often helpful to examine a real life problem. The previous process created a problem
by adding the applications configuration file to the same cfg clause as the core
operating system (OE) depot. This issue was touched on previously and this section
describes it in further detail.

In /var/opt/ignite/data/Rel_B.11.11/core_cfg is the following definition of Perl:

init sw_sel "perl" {

 description = "Perl Programming Language"

 sw_source = "core"

 sw_category = "OrderedApps"

 sd_software_list = "perl,r=B.5.6.1.F,a=HP-UX_B.11.11_32/64,v=HP"

 impacts = "/opt" 68657Kb

} = TRUE

In /var/opt/ignite/data/Rel_B.11.11/apps_1203_cfg is this definition of Perl62:

init sw_sel "perl" {

 description = "Perl Programming Language"

 sw_source = "/var/opt/ignite/depots/Rel_B.11.11/apps_1203"

 sw_category = "OrderedApps"

62 Perl is not the only product affected by the issue. There are other products that the core operating system (OE) media and
the applications media have in common.

181

 sd_software_list = "perl,r=B.5.6.1.F,a=HP-UX_B.11.11_32/64,v=HP"

 impacts = "/opt" 68657Kb

} = TRUE

The two previous examples have the same sw_sel name so they are the same. When
the second perl sw_sel clause is parsed, Ignite-UX assumes that it is an update to the
existing definition of Perl already found because the clauses are named identically. The
attributes of the sw_sel, such as the sw_source, are updated by the second definition,
which replaces the first definition of Perl.

Perl is an always-loaded product; by default, it is marked to be loaded. There is the
possibility that this could cause a problem if the application media and the core
operating system (OE) media do not have the same release date. If you have newer
core operating system (OE) media and a much older application depot being
referenced, problems like the following could occur:

• An older version of Ignite-UX is referenced in the applications depot and it may not
support the system being installed. For example, if you create a recovery tape and the
installation kernel on the tape does not support the current system it may panic on first
boot when you need to recover the system.

• The kernel drivers in the application depot are also located in the core operating
system (OE) depot including SCSI, Fibre Channel, and Gigabit Ethernet drivers. If you
are referencing older versions of the drivers and the system is newer, you may have
hardware in the system that is not supported by the older drivers and this causes
problems.

There are four solutions to this problem:

• Edit the apps_1203_cfg file and change the name of the sw_sel clauses so that they
are unique and descriptive of the clause's content. This allows you to address the two
software selection clauses uniquely. It also ensures that the intended software is
selected from the core operating system (OE) depot, and that software from the
applications media is not selected inadvertently. This is time consuming and if you
want to update the configuration file using make_config you must reapply the
changes.

• Remove all of the software bundles that exist in the core operating system (OE) depot
and the applications depot. You would run make_depots on the applications DVD
then use swremove on the applications depot. HP does not recommend this solution.

• Place the application media into the core operating system (OE) depot rather than
putting it into a separate depot. This means that you must manage the depots as one.
Note that you cannot update an OE in a depot. If you wish to use a new OE in an
existing depot, you must remove the entire contents of the depot before using
make_depots to copy in new software from OE and applications media.

• Ensure that the Core OS (OE) media and applications media are always synchronized.

182

Resolving applications that are not in SD format
There are two solutions when you find that you have an application that is not in SD
format:

• Package an application in SD format
• Define an application in a non-SD format

The following topics describe both solutions.

Package an application in SD format
You could learn how to write an SD product specification file (psf) for use with swpackage
to produce an SD depot of your application. Learning how to write a PSF can be difficult
and time consuming. For information regarding the creation of PSF files, see Software
Distributor Administration Guide for HP-UX 11i.

Alternatively, you can use the HP Software Package Builder (SPB) product makes it easy
to package applications into SD format. SPB provides a window into the software
package structure, showing attributes that can be set for each package element.

You can find SPB product information and download it from the HP Software Depot at:

http://software.hp.com/portal/swdepot/displayProductInfo.do?productNumber=SwPkgBuilder

Once you have the software in SD format, using either solution, you can:

1. copy it into a depot;
2. run make_config to generate a config file;
3. then run manage_index to add the configuration file to the desired cfg clause in
/var/opt/ignite/INDEX.

Important:
SD depots must contain software in bundles after you have
packaged the software. If it is not packaged at the bundle
level, you will have to create a bundle for it with the
make_bundles command.

Define an application in a non-SD format
You either have the option of providing applications in non-SD format in tar or cpio
format archives that have been gzipped or compressed. This section explains how to
write a configuration file that describes an application in non-SD format63.

The archive that you will be installing the application with is assumed to contain no
system specific configuration.

You should configure the application as necessary with the command and script hooks
provided by Ignite-UX. The scripts that may be executed while installing the application
should never query the user because not all installations are attended. For a non-
interactive installation (the user does not have access to the console), a script that seeks
input from the console would effectively hang the installation process.

63 This section is not relevant to core operating system (OE) golden images. Additional configuration steps are required to
define a core operating system (OE) versus an application golden image.

183

http://software.hp.com/portal/swdepot/displayProductInfo.do?productNumber=SwPkgBuilder

Writing the configuration file for an application in non-SD format

In the following example, the application configuration file that this configuration will be
placed in is /var/opt/ignite/data/Rel_B.11.11/myapps_cfg.

Definition of where my application is located

sw_source "my application archive" {

 description = "my application"

 source_format = archive

 source_type="NET"

 nfs_source = "10.2.72.150:/var/opt/ignite/My_Applications"

}

Next, you define a sw_source for the application including its location on the NFS server
(at IP address 10.2.72.150) in the /var/opt/ignite/My_Applications directory.
Remember, this directory must be exported from the NFS server so that it can be
mounted. If you choose to limit access to this directory, remember that you may want
servers that obtain IP address via DHCP to be able to mount the directory when setting its
permissions.

sw_category "SiteApps" {

 description = "My site applications"

}

The previous example defines a category that you can easily pick out in the list of
applications in the Software tab of the Ignite-UX GUI.

Next, define a 64-bit version of the application and ensure that you can load both the
32-bit and 64-bit versions of the application by making them exrequisties of each other.
The impacts statements are generated with the archive_impact command, and then
manually tailored to account for extra space in /opt, /var, and /tmp that the
application requires as in the following example.

sw_sel "MyApp,v=1.0,64bit" {

 description = "My Application version 1.0"

 sw_source = "my application archive"

 sw_category = "SiteApps"

 archive_type = gzip tar

 archive_path = "myapps64-1.0.tar.gz"

 impacts = "/opt" 160154Kb

 impacts = "/tmp" 500Kb

 impacts = "/var" 450334Kb

 exrequisite="MyApp,v=1.0,32bit"

 post_load_cmd="/opt/myapp/bin/initialize"

}

184

You must ensure that only one version of the application is installed and that the user
cannot change it. For example, allowing a user to install the 64-bit version with 32-bit HP-
UX. The following example automatically selects the version based upon the HP-UX
Base OS bundle has been selected.

sw_sel "MyApp,v=1.0,32bit" {

 description = "My Application version 1.0"

 sw_source = "my application archive"

 sw_category = "SiteApps"

 archive_type = gzip tar

 archive_path = "myapps32-1.0.tar.gz"

 impacts = "/opt" 165154Kb

 impacts = "/tmp" 500Kb

 impacts = "/var" 450334Kb

 exrequisite="MyApp,v=1.0,64bit"

 post_load_cmd="/opt/myapp/bin/initialize"

}

The software selection of MyApp was not created using init so the user cannot change
the selection. It cannot be deselected nor can the version be changed.

(sw_sel "HPUXBase64") {

 sw_sel "MyApp,v=1.0,64bit"=TRUE

}

(sw_sel "HPUXBase32") {

 sw_sel "MyApp,v=1.0,32bit"=TRUE

}

The new software selection you created, MyApp, appears on the Software tab of the
Ignite-UX GUI:

185

The selection of the 64-bit product is marked as Required because the 64-bit OE has
been selected.

If you placed the init before the sw_sel, the Ignite-UX GUI would allow you to change
the software selection. The software would then be marked with Yes or No to indicate
whether it will be installed. This is not recommended because it allows users to install the
64-bit version with a 32-bit installation; this should be avoided and is illustrated in the
following example:

(sw_sel "HPUXBase64") {

 init sw_sel "MyApp,v=1.0,64bit"=TRUE

}

(sw_sel "HPUXBase32") {

 init sw_sel "MyApp,v=1.0,32bit"=TRUE

}

Since the examples presented are installing onto HP-UX B.11.11, you do not have to worry
about issues resulting from code compiled for PA-RISC or Itanium-based systems. If this is
a consideration as it is with HP-UX B.11.23, you must use the following test to determine
the system type. For more information, see instl_adm(4).

 is_hppa

186

 is_ia64

 Boolean values that indicate if a system is PA-RISC or

 Itanium®-based architecture, respectively.

Additional system hardware tests are explained in the following section.

Using noncore.cfg to define applications
Ignite-UX provides a template that you can use to define non-SD (archive based)
applications in the file /opt/ignite/data/examples/noncore.cfg. The following is an
excerpt from this file:

Filename: noncore.cfg

@(#) noncore.cfg $Revision: 10.10 $

Description:

The template file provides a description of itself and how you can use it to define non-
core operating system software installations.

If the software source is not an "SD" depot, then the

make_config command cannot be used to generate a config file

to represent it and therefore the config file would have to

be manually created. This example gives a starting template

to use for such a config file.

This config file would be used for a non-coreOS (application)

tar/cpio archive.

When you copy this file do not make the name noncore.cfg, rather rename it to a
name that allows you to observe what application it is defining. The following excerpt
describes this concept:

This config file should be copied to:

/var/opt/ignite/data/Rel_B.<release>/<filename>

then edit this new file to match your situation.

The values that you will most likely need to change in this

new file are:

nfs_source - IP address and directory path to server

directory containing the archives.

archive_path - path name of archive to be loaded from the

187

nfs_source location.

sw_source - tag name of the software source.

sw_sel - tag name of the software select.

description - description of software.

impacts - amount of space needed, for a given selection,

on each named file system.

Also, you may need to:

- add or delete any sw_sel's you do not need.

- run /opt/ignite/lbin/archive_impact on each

archive and replace the "impacts" statements with

those given by the archive_impact tool.

When done editing this config file, be sure to run:

/opt/ignite/bin/instl_adm -T -f <filename>

to check for syntax errors. Then either use manage_index, or

manually edit the /var/opt/ignite/INDEX file to add a reference

to the copy of the file you edited.

Note:

This example shows the use of an NFS mounted directory

from the Ignite-UX server to the client in order to obtain

access to the archives. You could also use the ftp_source or

remsh_source keywords instead.

In order to use the nfs_source keyword as shown, you must first

export the directory given in the nfs_source keyword. This is

accomplished by editing the Ignite-UX server file /etc/exports

and adding the export information. When editing is complete,

be sure to run the "/usr/sbin/exportfs -av" command (as root)

to make the take effect.

See also:

- instl_adm(4) for syntax documentation

- instl_adm(1M) for checking syntax (-T option)

- archive_impact(1M) for generating "impacts" statements

- ignite(5) for general overview

The sw_source stanzas define the location of the archives that you want to reference
using sw_sel clauses. In the following excerpt, the source format is set to archive so
Ignite-UX will search the archive definitions in the sw_sel clauses that use this sw_source.

 ###

 ## Software Sources

 ###

 sw_source "Per-Discipline Packs" {

188

 description = "Software Apps for Individual Disciplines"

 source_format = archive

 source_type = "NET"

 # Change this to be your NFS server's IP and path:

 nfs_source = "14.12.99.113:/var/opt/ignite/archives"

 }

The software categories, sw_category are defined next. Categories are a good way of
grouping software together though if you create too many categories it may become
more difficult to find software in the Software tab of the Ignite-UX GUI rather than easier.
The following excerpt is an example of a sw_category definition:

 ###

 ## Software Categories

 ###

 sw_category "Disciplines" {

 description = "Software for Individual Disciplines"

 }

Next is a test of the hardware model string. The expression is set to 9000/* meaning that
if the string returned contains 9000 followed by zero or more slashes (/) then the first set
of software defined in the following excerpt is for PA-RISC systems only. The software
definitions that follow the else are for Itanium®-based systems.

Note that the HARDWARE_MODEL clause is only needed if the sw_sels

inside it can only be installed on a certain type of machine.

HARDWARE_MODEL ~ "9000/*" {

 ##

 ## Software Selections

 ###

The sw_sel clauses are self-explanatory. The important parts are:

• The src, which defines where the software is located.
• The archive type, which defines that it is a gzipped tar archive though it could be

compressed or in cpio format.
• The archive name or path of the archive.
• The impacts statements that enable Ignite-UX to determine how much additional file

system space is required for the application.

 sw_sel "EE pack" {

 description = "Software Apps for Electrical Engineering PA clients"

 sw_source = "Per-Discipline Packs"

189

 archive_type = gzip tar

 archive_path = "ee_client_archive_PA.gz"

 sw_category = "Disciplines"

 impacts = "/var" 12568Kb

 impacts = "/usr" 23468Kb

 impacts = "/" 2Kb

 }

The following sw_sel defines a different application, but shares all of the same attributes.

 sw_sel "ME pack" {

 description = "Software Apps for Mechanical Engineering PA clients"

 sw_source = "Per-Discipline Packs"

 archive_type = gzip tar

 archive_path = "me_client_archive_PA.gz"

 sw_category = "Disciplines"

 impacts = "/var" 23678Kb

 impacts = "/usr" 12986Kb

 impacts = "/opt" 56892Kb

 impacts = "/" 64Kb

 }

The following sw_sel is for Itanium®-based systems is very similar to the software product
that definition for PA-RISC systems in the previous excerpts. The only differences are the
archive_path names and the impacts statements. Notice that the software products
have the same name since they cannot both be defined at the same time. Any
software that depends on this software product can use the one name as a
dependency (for example, in conjunction with corequisite or exrequisite).

} else { # IPF software selections:

 ##

 ## Software Selections

 ###

 sw_sel "EE pack" {

 description = "Software Apps for Electrical Engineering IPF clients"

 sw_source = "Per-Discipline Packs"

 archive_type = gzip tar

 archive_path = "ee_client_archive_IPF.gz"

 sw_category = "Disciplines"

 impacts = "/var" 18852Kb

 impacts = "/usr" 35202Kb

 impacts = "/" 3Kb

 }

The next example sw_sel defines a different application, but shares all of the same
attributes.

190

 sw_sel "ME pack" {

 description = "Software Apps for Mechanical Engineering IPF clients"

 sw_source = "Per-Discipline Packs"

 archive_type = gzip tar

 archive_path = "me_client_archive_IPF.gz"

 sw_category = "Disciplines"

 impacts = "/var" 35517Kb

 impacts = "/usr" 19479Kb

 impacts = "/opt" 85338Kb

 impacts = "/" 96Kb

 }

}

SD and archive bitness comparison
You may have noticed an issue with the non-SD application example. Special effort was
taken to ensure that a 64-bit version of the product was not installed on a 32-bit system.
You could set SD to do this automatically. On PA-RISC systems, you would set the SD
attribute os_name. For example using swlist -l fileset -a name -a os_name to
look at some of the installed filesets results in the following:

FCMassStorage HP-UX

 FCMassStorage.FCMS-ENG-A-MAN HP-UX

 FCMassStorage.FCMS-INIT HP-UX

 FCMassStorage.FCMS-JPN-E-MAN HP-UX

 FCMassStorage.FCMS-JPN-S-MAN HP-UX

 FCMassStorage.FCMS-KRN HP-UX:*64

 FCMassStorage.FCMS-RUN HP-UX

 FDDI-KRN-COM HP-UX

 FDDI-KRN-COM.FDDI467-KRN HP-UX:*64

...

Notice that os_name is set to HP-UX:*64 for some of the filesets in the previous example.
In the file, /opt/ignite/data/Rel_B.11.11/config that is included into the
configuration clause that you setup is the following configuration code:

sd_command_line += " -x os_release=" +${release}

(_hp_os_bitness == "64")

{

 (!can_run_64bit)

 {

 ERROR += "This system model: \"" +${model}+ "\" is not supported for
running 64bit HP-UX, you must select the 32bit selection"

 }

 sd_command_line += " -x os_name=HP-UX:64 "

}

191

This code allows SD to select common and 64-bit only filesets (and not include 32-bit only
filesets) into the operating system. Because there is nothing similar for archives, you must
do this manually.

Adding the non-SD application configuration file to the INDEX file

Now you can easily add the application configuration file to our cfg clause in the
configuration file using the following command:

manage_index -a -f /var/opt/ignite/data/Rel_B.11.11/myapps_cfg \

 -c "Custom B.11.11 installation using SD"

The software is now ready to install.

Installing patches from a depot
Installing patches from a depot is explained in the following three topics.

Setting up the depot
In this section, you will setup a depot containing the patches that you made sure were
installed earlier to enable the system to read the DVD containing the core operating
system (OE) software.

At this point, you have a depot containing the patches that is observed using swlist:

swlist -l depot

Initializing...

Target "test" has the following depot(s):

...

 /var/opt/ignite/depots/Rel_B.11.11/patches_iso

swlist -d @ /var/opt/ignite/depots/Rel_B.11.11/patches_iso

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.11/patches_iso

No Bundle(s) on test:/var/opt/ignite/depots/Rel_B.11.11/patches_iso

Product(s):

 PHCO_25841 1.0 Add Rock Ridge extension to mount_cdfs(1M)

 PHKL_26269 1.0 Rock Ridge extension for ISO-9660

 PHKL_28025 1.0 Rock Ridge extension for ISO-9660

Unfortunately, Ignite-UX does not work with products and filesets so you must package
the product patches into bundles.

192

Packaging the patches into a bundle
Previously the use of the make_bundles command to package products into bundles
was discussed; see "Package an application in SD format". The following command
quickly places the patches into a bundle:

make_bundles -b -i -n "ISO_patches" \

-t "Patches to enable Rock Ridge natively" -r 1.0 \

/var/opt/ignite/depots/Rel_B.11.11/patches_iso

Generating list of unbundled filesets...

======= 10/11/04 23:37:34 EST BEGIN swpackage SESSION

 * Session started for user "root@test.rc.aus.hp.com".

 * Source: test:/var/tmp/psf.24606

 * Target:

 test:/var/opt/ignite/depots/Rel_B.11.11/patches_iso

 * Software selections:

 *

 * Beginning Selection Phase.

 * Reading the Product Specification File (PSF)

 "/var/tmp/psf.24606".

 * Reading the bundle "ISO_patches" at line 11.

 * Selection Phase succeeded.

 * Beginning Analysis Phase.

 * Analysis Phase succeeded.

 * Beginning Package Phase.

 * Packaging the bundle

 "ISO_patches,r=1.0,a=HP-UX_B.11.11_32/64,v=HP".

 * Package Phase succeeded.

======= 10/11/04 23:37:35 EST END swpackage SESSION

You can see that the patches have all been placed into a bundle with the following
command:

swlist -d @ /var/opt/ignite/depots/Rel_B.11.11/patches_iso

Initializing...

Contacting target "test"...

Target: test:/var/opt/ignite/depots/Rel_B.11.11/patches_iso

Bundle(s):

193

 ISO_patches 1.0 Patches to enable Rock Ridge natively

Generating a configuration
Next, you must create a configuration file to describe the SD depot. This is very easy and
only requires the make_config command:

make_config -s /var/opt/ignite/depots/Rel_B.11.11/patches_iso \

 -c /var/opt/ignite/data/Rel_B.11.11/patches_iso_cfg

The generated configuration file looks like the following:

Software Sources

sw_source "/var/opt/ignite/depots/Rel_B.11.11/patches_iso" {

 source_type = "NET"

 sd_server = "10.2.72.150"

 sd_depot_dir = "/var/opt/ignite/depots/Rel_B.11.11/patches_iso"

 source_format = SD

}

Other Software

sw_sel "ISO_patches" {

 description = "Patches to enable Rock Ridge natively"

 sw_source = "/var/opt/ignite/depots/Rel_B.11.11/patches_iso"

 sw_category = "Uncategorized"

 sd_software_list = "ISO_patches,r=1.0,a=HP-UX_B.11.11_32/64,v=HP"

 (_hp_os_bitness == "32") {

 impacts = "/sbin" 224Kb

 impacts = "/usr" 184Kb

 }

 (_hp_os_bitness == "64") {

 impacts = "/sbin" 224Kb

 impacts = "/usr" 224Kb

 }

}

The last step is to add the configuration file to the cfg clause you are assembling in the
INDEX file using the following command:

manage_index -a -f /var/opt/ignite/data/Rel_B.11.11/patches_iso_cfg \

194

 -c "Custom B.11.11 installation using SD"

Customizing configuration
In the current INDEX file, you have the following cfg clause:

cfg "Custom B.11.11 installation using SD" {

 description "This selection supplies the default system configuration
that HP supplies for the B.11.11 release."

 "/opt/ignite/data/Rel_B.11.11/config"

 "/opt/ignite/data/Rel_B.11.11/hw_patches_cfg"

 "/var/opt/ignite/data/Rel_B.11.11/core_cfg"

 "/var/opt/ignite/data/Rel_B.11.11/myapps_cfg"

 "/var/opt/ignite/data/Rel_B.11.11/apps_1203_cfg"

 "/var/opt/ignite/data/Rel_B.11.11/patches_iso_cfg"

 "/var/opt/ignite/config.local"

}

You have a rich feature set to build on top of, the advantage to this is that the config
and hw_patches_cfg files provide a good working base on which you can build a
generic system or a customized system.

To begin customizing the system you must create a new configuration file then add it to
the cfg clause with the following commands:

touch /var/opt/ignite/data/Rel_B.11.11/custom_cfg

manage_index -a -f /var/opt/ignite/data/Rel_B.11.11/custom_cfg \

 -c "Custom B.11.11 installation using SD"

You have a file to which you can start adding configuration information to customize the
existing configuration files. HP does not recommend that you customize configuration
files generated by Ignite-UX commands. If the software in the depot changes, it is much
easier to recreate them using Ignite-UX commands than it is to maintain them manually.

For example, rather than changing the configuration files that define a software product
to set it to be installed you can add configuration information to this new file to install the
software just for this cfg clause. This means the configuration file that describes the
depot could be used in other cfg clauses as well to define the contents of a depot
without having to take additional action. You could add the following configuration
information:

init sw_sel "B3901BA"=TRUE

init sw_sel "B5725AA"=TRUE

sw_sel "ISO_patches"=TRUE

This would install the ANSI/C compiler, the complete version of Ignite-UX, and the patch
bundle you created previously onto the system being installed. Users running the Ignite-
UX GUI to interactively change the software to be installed could change whether the

195

ANSI/C compiler or Ignite-UX is installed. The user has no choice in the installation of the
ISO patches you packaged earlier since the software selection is set to TRUE without
using init, which means that the Ignite-UX GUI cannot change the selection.

Next, you could define a custom disk layout that is a choice between the existing disk
layouts defined in /opt/ignite/data/Rel_B.11.11/config or completely replacing
them so you do not have a choice of any of the default disk layouts. To implement this
choice you would add the following:

 _hp_disk_layout = {

 "MyApp custom disk layout"

 }

None of the default disk layout choices defined in
/opt/ignite/data/Rel_B.11.11/config would be available (although not shown
here you must define the disk layout that would be used).

Alternatively, you could use the following example that adds the new disk layout to list of
available choices and then sets it to be the default choice (anyone installing a system
could still use the other layouts defined in the
/opt/ignite/data/Rel_B.11.11/config).

 _hp_disk_layout += {

 "MyApp custom disk layout"

 }

 init _hp_disk_layout="MyApp custom disk layout"

It is important to use a good foundation, building on top of the release default
configuration files and the depot (software) configuration files enables you to easily
create more complex configurations.

If you maintain the core operating system (OE) and the applications media in different
depots, you may need to make customizations for the bundles you have created that
define patches. If some products are installed from the applications depot instead of
the core operating system (OE) depot and you have patches that depend on the filesets
in the bundles that are taken from the applications depot, you may need to set the
load_order on sw_sel clauses describing patches to be >10. This guarantees that the
patches are loaded after all software from the applications depot is installed.

You can do this by directly modifying the configuration files created to describe the
patches or by adding a sw_sel similar to the following to the customization file; not in the
configuration file that actually defines the patches:

sw_sel "ISO_patches" {

 load_order=15

}

This takes advantage of something that described earlier. If you have a sw_sel
mentioned twice, the information defined in the second clause overrides the information
previously defined. In this case, no load_order was defined for the sw_sel,
ISO_patches so the change adds the existing definition to change its load order since
the default is 5.

196

A load_order of 10 ensures that the patches are loaded after the core operating
system (OE), which is loaded at load_order 0, and the applications that default to
load_order 5.

Installing with SD wrap-up
The previous sections illustrated the following concepts:

• How simple it can be to use SD to install systems; installation from an Ignite-UX server
over the network was employed in the examples presented.

• How to setup your Ignite-UX server for use with SD installations.
• How to manage your configuration explaining some of the issues that you face when

managing your configuration.
• Why it is a good idea to separate configuration that belongs to depots or archives from

the default configuration supplied with Ignite-UX and custom configuration that you
may layer over the default.

• Where possible you should not modify the configuration files created by Ignite-UX
commands. If you change the software in a depot, you will probably want to recreate
the configuration file that describes the depot; if you have manual changes you must
review the file and reapply the same changes to the new configuration file. This is time
consuming so keeping the configuration separate means you only have to be aware
of changes and review the customizations layered on top of the other configuration
files periodically.

Installation configurations using golden images
It is important to look at how to create the cfg clause used for a golden image
installation in the INDEX file.

Golden image configuration file explanation
Provided with Ignite-UX is a configuration file that you can use to define a golden image
installation. This file is /opt/ignite/data/examples/core11.cfg and the following is an
example of this file:

Filename: core11.cfg (template for B.11.* systems)

@(#) core11.cfg $Revision: 10.10 $

Description:

This is an sample configuration file that enables an OS archive

to be installed via Ignite-UX.

Before Ignite-UX can use an OS archive like that created by

make_sys_image(1M), the following must be done:

197

The instructions for how to use this config file are actually located in it as
comments (see below).

- Make an OS archive of the desired system using

/opt/ignite/data/scripts/make_sys_image

(see make_sys_image(1M) for details).

- Determine if you want to use ftp, NFS, or remsh to access

the OS archive (stored on the Ignite-UX server).

- Make a copy this sample configuration file.

- Edit your copy of this configuration file and modify:

- The IP addresses of the Ignite-UX server.

- The paths to OS archives.

- The sw_sel keyword descriptions.

- remove any extra sw_sel clauses.

- run /opt/ignite/lbin/archive_impact on each OS archive

and replace the "impacts" statements with those given

by the archive_impact tool.

- Edit the /var/opt/ignite/INDEX file. If you already have a

stanza in the INDEX file that refers to an SD depot, then

you will probably want to make a new stanza ("cfg" clause)

that does not have references to the core SD cfg files, and

insert the path to your newly edited configuration file.

The end result should look something like this:

HP recommends that /opt/ignite/data/Rel_B.xx.yy/config is included first, similarly
with SD installs there is information already defined that allows you to start with a very
strong configuration that you can customize for your environment.

It is easiest to begin customizing by renaming core11.cfg to a new name and placing it
in /opt/ignite/data/Rel_B.xx.yy/config. It is likely that you will have more than
one golden image installation defined for any one HP-UX revision so customizing
core11.cfg directly is not recommended.

cfg "HP-UX via an OS archive" {

description "11.00 system using archives."

"/opt/ignite/data/Rel_B.11.00/config"

"/opt/ignite/data/Rel_B.11.00/core11.cfg"

"/var/opt/ignite/config.local"

}

- If you have additional archives or applications in an SD

depot that you would like loaded along with this archive,

you may create a configuration file for them and add it to

the INDEX file entry as well.

See make_config(1M) for creating configuration files for an

SD depot. See the example file "noncore.cfg" for setting

198

up application archives.

- After making changes, always run:

/opt/ignite/bin/instl_adm -T

to check the syntax.

Software Sources

In the sw_source clause for the core operating system archive, the source format is
archive so sw_sel definitions that use this sw_source must be archives as well. Since
this archive contains the core operating system, it must be loaded at load order zero
(0)64.

sw_source "core archive" {

 description = "HP-UX Core Operating System Archives"

 load_order = 0

 source_format = archive

 source_type="NET"

 # When using this configuration file with a tape or CD-ROM where the

 # archive is on the same piece of media, then un-comment the next

 # line to prevent a prompt to change media during install.

 # change_media=FALSE

The following instructions, the two scripts given as the post_load_script and the
post_config_script are required and you should not remove them.

However, there may be instances in which you may need to change the contents of the
two scripts (for more information, see "Instances that may require modifying
os_arch_post_l"). If you need to modify these files, you must never change the
versions under /opt because when you upgrade Ignite-UX new versions of the files are
installed in that location. In other words, your modifications are overwritten and are lost.
Instead, you should copy them to /var/opt/ignite/scripts and then modify them.
Note that if you have multiple golden images that require different changes in
post_load|config_scripts, you should rename the scripts and then reference the
new names for each golden image installations.

Periodically after upgrading Ignite-UX you should check to see what differences exist
between the new scripts in /opt/ignite/data/scripts and any scripts you may have
created using these examples. Ignite-UX may deliver enhancements or defect fixes that

64 Only one archive can be loaded at load order zero (0), and it must be the core operating system archive. For technical
reasons if the core operating system archive cannot fit within a certain size (cannot be written to a CD) then you must attempt
to split out the software that can be loaded after load order one. For example, /opt.

199

you need in these scripts. If you want to take advantage of these updates, you must
manually merge the changes.

 # The following 2 scripts should be reviewed to see if the defined

 # defaults are applicable. If you need to modify them, copy them

 # to /var/opt/ignite/scripts first and change the paths here.

 post_load_script = "/opt/ignite/data/scripts/os_arch_post_l"

 post_config_script = "/opt/ignite/data/scripts/os_arch_post_c"

 # If nfs_source is used, be sure to export the source.

 nfs_source = "10.2.72.150:/var/opt/ignite/My_Golden_Images"

 # ftp_source and remsh_source are alternate ways to copy the

 # archive. For example:

 # ftp_source = "anonymous@10.2.72.150:myusername"

 # remsh_source = "myusername@10.2.72.150"

}

Software Categories

Next, categories that define the software that can be installed using the Ignite-UX GUI
are defined.

sw_category "Languages" {

 description = "Languages"

}

sw_category "HPUXEnvironments" {

 description = "HP-UX Operating Environments"

}

Note that there are no Operating Environment (OE) definitions. This is not possible
because software packaged in SD format is required.

Operating Environments

OS archives

Next is an example 32-bit operating system archive sw_sel. Note that the logic in this
stanza dictates that if the system can run 32-bit HP-UX, it becomes the default golden
image to be installed. If you want to change this test so that any system that could run
64-bit HP-UX, you would replace the logic that sets the sw_sel to TRUE or FALSE in the

200

golden image - 32 bit OS clause with !can_run_64bit and in the golden image -
32 bit OS clause replace the final test with can_run_64bit.

The use of exrequisite prevents users from choosing the 32-bit and the 64-bit core
operating systems to load at the same time. Also, the use of visible_if prevents one
or the other core operating system archive from appearing if the system can only run 32-
bit or 64-bit HP-UX but not both. This is a good practice since you should not confuse
users performing installations by offering software that cannot be installed onto the
system as a choice.

If you are installing HP-UX B.11.23, you would remove the 32-bit sw_sel (since HP-UX
B.11.23 for PA-RISC systems does not provide a 32-bit kernel). If you needed to support a
mixture of PA-RISC and Itanium®-based systems, consider placing it with the definition of
an archive for Itanium®-based systems.

init sw_sel "golden image - 32 bit OS" {

 description = "English HP-UX 11.00 CDE - 32 Bit OS"

 sw_source = "core archive"

 sw_category = "HPUXEnvironments"

 archive_type = gzip tar

 # For NFS, the path to the archive is relative to the mount point

 # specified in the "nfs_source" keyword within the sw_source stanza

 # above:

 archive_path = "hp_client1_B.11.00_32bitCDE.gz"

 # ftp and remsh sources can use a full path:

 # archive_path = "/pub/IUXarchives/hp_client1_B.11.00_32bitCDE.gz"

 # The data for the "impacts" statements are found by running:

 # /opt/ignite/lbin/archive_impact -t -g <OS_archive>

 impacts = "/" 27Kb

 impacts = "/.dt" 35Kb

 impacts = "/etc" 1864Kb

 impacts = "/export" 1Kb

 impacts = "/home" 1Kb

 impacts = "/opt" 74096Kb

 impacts = "/sbin" 13449Kb

 impacts = "/stand" 1Kb

 impacts = "/tmp" 1Kb

 impacts = "/users" 40Kb

 impacts = "/usr" 225951Kb

 impacts = "/var" 5705Kb

 exrequisite += "golden image - 64 bit OS"

 visible_if = can_run_32bit

} = (can_run_32bit)

Following is the example for a 64-bit golden archive. All of the information previously
presented regarding the 32-bit golden image are applicable to a 64-bit golden archive
as you can see in the example.
init sw_sel "golden image - 64 bit OS" {

201

 description = "English HP-UX 11.00 CDE - 64 Bit OS"

 sw_source = "core archive"

 sw_category = "HPUXEnvironments"

 archive_type = gzip cpio

 archive_path = "hp_client1_B.11.00_64bitCDE.gz"

 impacts = "/" 421Kb

 impacts = "/sbin" 30086Kb

 impacts = "/opt" 78654Kb

 impacts = "/usr" 276420Kb

 impacts = "/var" 10059Kb

 exrequisite += "golden image - 32 bit OS"

 visible_if = can_run_64bit

} = (!can_run_32bit)

You must set _hp_os_bitness; this variable is required by Ignite-UX to determine the
"bitness" of the kernel being installed. Depending on which archive has been selected,
this variable is set to the corresponding value.

Tip:
If you install HP-UX B.11.23, you must unconditionally set
_hp_os_bitness to 64.

Set the variable _hp_os_bitness depending on which of the archive

sw_sels was selected. This variable is used by configuration files

generated via make_config to determine which version (32-bit or

64-bit) of a bundle will be loaded.

(sw_sel "golden image - 32 bit OS") {

 _hp_os_bitness = "32"

}

(sw_sel "golden image - 64 bit OS") {

 _hp_os_bitness = "64"

}

Following is a definition for the English language. The sw_source associated with it is a
dummy sw_source. In other words, the source format is cmd and does not have any
scripts so it does nothing. Note that the sw_sel does set the locale that you can choose
from in the Ignite-UX GUI.

Languages

Specified so that the selector in the UI will not be empty.

Cannot use the "core archive" sw_source because there are no

archives associated with it.

The "no select" sw_source is a no-op source since it is "cmd"

format, and does not have any scripts specified. Every sw_sel needs

a sw_source.

202

sw_source "no select" {

 source_format = cmd

}

init sw_sel "English" {

 description = "English Language Environment"

 sw_source = "no select"

 sw_category = "Languages"

 locale = { "SET_NULL_LOCALE:English", "C:English" }

} = TRUE

If you wish to be able to select, for example, Japanese locales during installation, you
would have to customize the configuration file to describe the locales available in the
golden image. For example, you could replace the locale line above with the following
configuration:
 locale = { "ja_JP.SJIS:Japanese", "ja_JP.eucJP:Japanese",

"ja_JP.utf8:Japanese", "SET_NULL_LOCALE:English", "C:English" }

This would allow you to select any of the Japanese or English locales available on the
system. Note that the "English" description can be misleading. The locale
SET_NULL_LOCALE means the default system locale (POSIX/C) and C are explicitly the
POSIX/C locale.

The locale line in the configuration file should not be wrapped; rather, it should be on
one contiguous line. You should never add locales that do not exist in the golden image
to the configuration.

The format of a entry in the locale list is:
"<locale>:<description>"

Where <locale> is the name of the locale shown in the output of the "locale -a"
command on the system on which the golden image was created (for example
ja_JP.SJIS). This is followed immediately by a colon and then by a description of the
locale. The description cannot contain white space; if you need more than one word in
the description, replace any white space by the underscore ("_") character. For example
"ja_JP.SJIS:Japanese_SJIS" has the space between Japanese and SJIS replaced
with an underscore. Remember that the locale list entry must be enclosed by double
quotes, as seen above, when placed into a configuration file.

You should also be aware that even though a locale might not be listed, it only means
that it cannot be selected via the Ignite-UX GUI. Any locale that was present when the
golden image was created will still be available on any system installed using the golden
image.

The next section defines default keyboards. You could add other keyboards depending
on your environment or replace the defaults with those applicable to you.

Keyboards

Newer machines use USB as the keyboard interface. This example

203

shows a way to handle both older (PS2) and newer (USB) keyboards.

There are many other keyboard types available, see itemap(1m).

has_ps2 {

 _hp_keyboard = {

 "Not_Applicable",

 "PS2_DIN_US_English",

 "PS2_DIN_US_English_Euro"

 }

 init _hp_keyboard = "PS2_DIN_US_English"

}

has_usb {

 _hp_keyboard = {

 "Not_Applicable",

 "USB_PS2_DIN_US_English",

 "USB_PS2_DIN_US_English_Euro"

 }

 init _hp_keyboard = "USB_PS2_DIN_US_English"

}

Instances that may require modifying os_arch_post_l
There are circumstances in which you may want to modify os_arch_post_l. For
example, the following excerpt is from the os_arch_post_l script:

Networking files:

/etc/hosts

/etc/resolv.conf

/etc/rc.config.d/namesvrs

By default, these files will be constructed from the information

in the config file. The starting point for the hosts file is the

/usr/newconfig version, which just has a loopback entry. The other
files

are built from scratch. To get the archive versions of these files,

uncomment only the save_file lines here and comment out the rm line.

Using save_file will restore the file as-is from the archive. Using

merge_file will allow Ignite-UX to make changes to the file based

on what the config file or changes made in the UI.

#save_file /etc/hosts

#merge_file /etc/hosts

rm -f /etc/resolv.conf

#save_file /etc/resolv.conf

204

#merge_file /etc/resolv.conf

#save_file /etc/rc.config.d/namesvrs

#merge_file /etc/rc.config.d/namesvrs:

By default, during an installation 65 from an archive, the final versions of these files are
taken from /usr/newconfig. If you have a complex configuration that needs to be
preserved from the archive version of the file, you must uncomment the corresponding
merge_file entry.

For example, if your /etc/hosts file contains extra entries that you need to preserve, you
would uncomment the merge_file /etc/hosts line in your os_arch_post_l script. In
the case of /etc/hosts, it may not be a good idea to use save_file as it means that
any changes Ignite-UX made to /etc/hosts would be overwritten by the version saved
from the archive.

In summary you can use:

• save_file to keep the version of the file from the Operating System archive
preventing Ignite-UX from making changes to the file;

• merge_file to keep the version of the file from the Operation System archive but allow
Ignite-UX to make customizations to it based upon the configuration for the installation
session.

Creating a golden image
The creation of a golden image is not discussed in this white paper though for more
information, see make_sys_image(1M) and the Ignite-UX Administration Guide.

It is important to realize that a golden image is an archive created by make_sys_image
at clean level 2 (make_sys_image -l 2) so it contains no host-specific information
where possible. You should not call a make_net_recovery or make_sys_image archive
created at any other clean level for a golden image. In other words, to be a golden
image, the archive must be created at clean level 2 using make_sys_image.

Final words about golden image installations
If you look at the example cfg clause from the /var/opt/ignite/INDEX file described
in the core11.cfg file, you can see similarities between it and the SD-based cfg clause:

cfg "HP-UX via an OS archive" {

 description "11.00 system using archives."

 "/opt/ignite/data/Rel_B.11.00/config"

 "/opt/ignite/data/Rel_B.11.00/core11.cfg"

 "/var/opt/ignite/config.local"

}

65 This does not apply to recovery situations. A merge_file is executed for the files in the os_post_arch_l script. You can find
out what files maybe merged or saved automatically in a recovery situation by searching os_arch_post_l for
"RECOVERY_MODE".

205

Both clauses include the release-specific configuration file config before any other
configuration files are defined. Then the configuration file that defines the location of
the core operating system (OE) is defined.

Because config.local must always be loaded last, you can see that after the entry for
core11.cfg is the point at which you would begin adding additional configuration files
to install other software like patches, additional applications, and customizations.

With virtually no changes, the contents, and methods explained in the "Installation
configurations using Software Distributor depots" section can be used here. This is
because the name of the core operating system sw_sel will change so some small
changes are required if you have corequisites, exrequisities, or other dependencies on
this name66).

Understanding what is_net_info_temporary does
Ignite-UX differentiates temporary and permanent network settings with the use of the
final keyword. The final keyword is placed in front on networking attributes to indicate
that they should apply to the final system. This behavior can change based upon the
value of the is_net_info_temporary variable.

Information picked up from a DHCP/bootp server is placed into the configuration without
the final keyword. Configuration files may also define network configuration without the
final keyword. This configuration is treated in the same way as networking information
picked up from a DHCP/bootp server.

When is_net_info_temporary is set to true, only networking information with the final
keyword will be reflected in the network settings of the final system. When set to false (the
default), networking information without the final keyword can override networking
information specified with the final keyword.

To illustrate this, let’s look at an example. The following partial configuration shows two
DNS name servers defined for a system with the final keyword:

 final dns_nameserver[0] = "10.1.1.10"

 final dns_nameserver[1] = "10.1.1.30"

The entry from /etc/bootptab used to provide this system with network information
when booting over the network looks like:

66The SD-based installation examples include a dependency between an application and which of the sw_sels, HPUXBase32
or HPUXBase64,was selected. This would change to be based upon the sw_sel name of the core operating system (OE)
golden images.

206

ignite-defaults:\

 ht=ethernet:\

 hn:\

 bf=/opt/ignite/boot/nbp.efi:\

 bs=48

ig0001:\

 tc=ignite-defaults:\

 ha=0073217D1429:\

 ip=10.1.1.119:\

 sm=255.255.255.0:\

 gw=10.1.1.1:\

 ds=10.1.1.10 *** DNS server

When booted using this bootp entry, Ignite-UX adds the following entry into the
configuration automatically:

 dns_nameserver[0] = "10.1.1.10"

With is_net_info_temporary set to false, the information Ignite-UX will write into
/etc/resolv.conf for the DNS name server is:

 nameserver 10.1.1.10

However with is_net_info_temporary set to true, the configuration marked with final is
used instead:

 nameserver 10.1.1.10
 nameserver 10.1.1.30

This shows Ignite-UX using the networking configuration marked with the final keyword
when is_net_info_temporary is set to true and using the networking configuration not
marked with final when is_net_info_temporary set to false (in this case information
picked up from a DHCP/bootp server).

If is_net_info_temporary is set to false, the following non-final networking information
may be applied to the system unless the configuration already defines it with the final
keyword:

- hostname

- DNS domain name

- NIS domain name

- NIS server

- NTP server

207

If is_net_info_temporary is set to false, the following networking information not
marked final will be used instead of what is defined as final in the configuration:

- lan interface information (e.g. IP address, netmask, ...)

- DNS name servers

- DNS domain search list

If is_net_info_temporary is set to false, routing information not marked final will be
applied to the system, but only if the configuration defines no final routing information.

This information is accurate as of Ignite-UX version C.6.6 (but it has not changed in a long
time before that release of Ignite-UX).

If you encounter issues with any of the above information changing please investigate
how you have set is_net_info_temporary (to true or false) and decide how it should
be set to achieve the result you require.

How do I…
There are many times when questions arise regarding the use of Ignite-UX and the many
utilities provided by the product. This section provides the answers to some of the more
common questions that can occur.

How do I remove the warning message that occurs when
compiling a kernel on PA-RISC systems?
When compiling a kernel in Ignite-UX on PA-RISC systems, it is likely that the following
message from the linker, when it is linking the kernel, will appear:

/usr/ccs/bin/ld: (Warning) Linker features were used that may not be supported
in future releases. The +vallcompatwarnings option can be used to display
more details, and the ld(1) man page contains additional information. This
warning can be suppressed with the +vnocompatwarnings option.

You can prevent this warning by adding the following to your custom configuration:

Stop the kernel linker warning from printing # when compiling a new kernel
is_hppa {

 env_vars += "LD_OPTS=+vnocompatwarnings"

}

208

How do I recognize if a disk exists or not from within a
configuration file?
It is easy to see if a disk exists or not within an Ignite-UX configuration file. For example:

(disk[0/1/0/8/0.15.0].size == 0) {

 error += "Disk at 0/1/0/8/0.15.0 does not exist"

}

The previous example configuration excerpt adds an error message if the disk does not
exist. This allows you to create a configuration that will alert you when disks that should
be there are not. However, this same error keyword will prevent an actual install from
occurring; so use this only if it is an actual fatal problem.

If you want to be alerted conditionally if the disk does exist, the example changes to the
following:

(disk[0/1/0/8/0.15.0].size != 0) {

 ...

}

You could use this logic to conditionally define a disk layout only if the disks that it refers
to exist. This would allow you to create unique disk layouts for various systems that have
disks at different hardware addresses.

The size of a disk that does not exist on the system should always evaluate to zero.
However, some disk arrays may present zero size disk LUNs. If there is a possibility of
encountering this issue then you should consider the following example as an alternative
(note that a zero length LUN is not be useful in a disk layout definition):

((disk[0/1/0/8/0.15.0].model ~ ".")) {

 ...

}

The logic inside the inner parenthesis tests whether the model string is set or not. The ~
does an extended regular expression match and the "." means match (one of) any
character. Using this logic ensures that there is a disk LUN present at that address
because it contains a model string so the configuration within the braces is evaluated
only if the disk does exist.

You can change the sense of the test by adding a logical not operator (!):

(! (disk[0/1/0/8/0.15.0].model ~ ".")) {

 ...

}

209

Outside the inner parenthesis the ! (logical not) changes the sense of the test so it
becomes TRUE if no model string is reported for that hardware path. This test could be
used to perform actions if the disk did not exist.

For a more complete test, you could combine the previous examples as follows:

((disk[0/1/0/8/0.15.0].model ~ ".") & (disk[0/1/0/8/0.15.0].size != 0)) {

 init _my_var1=disk[0/1/0/8/0.15.0].model

 init _my_var2=disk[0/1/0/8/0.15.0].size

 note += "Disk at 0/1/0/8/0.15.0 has a model of " + ${_my_var1}

 note += "Disk at 0/1/0/8/0.15.0 has a size of " + ${_my_var2} }

This test ensures that the disk at the given hardware path has a model string and a non-
zero size. If either test fails, the configuration it protects will not be evaluated. On a test
system, this configuration produced the following output:

NOTE: Disk at 0/1/0/8/0.15.0 has a model of SEAGATE_ST39173WC

NOTE: Disk at 0/1/0/8/0.15.0 has a size of 8891556K

This result is because the disk did exist. The logic that you would use to see if a disk does
not exist would be as follows:

(! (disk[0/1/0/8/0.15.0].model ~ ".") & (disk[0/1/0/8/0.15.0].size ==

0)) {

 ...

}

How do I create the CD equivalent of a tape created by
make_boot_tape?
Although this question does not appear to be related to custom configuration, you can
place custom configuration in the installation file systems contained on a custom
installation CD that you create.

The following example instructions were developed using Ignite-UX version B.5.4. These
instructions are applicable to Ignite-UX version C.6.0 and greater, however you will need
to select an operating system revision using the -r option.

With Ignite-UX version B.5.4 this method creates a CD that can boot HP-UX 11.0 and
B.11.11 systems and Itanium®-based systems running HP-UX B.11.23 (running OEs released
before September 2004). With Ignite-UX C.6.0, you are queried for the HP-UX release so
you can create a CD that supports Itanium®-based and PA-RISC systems running HP-UX
B.11.23; you must create a different CD to support PA-RISC systems running HP-UX 11.0
and B.11.11.

210

You must install the correct Ignite-UX software to support the HP-UX revision for which you
wish to create these CDs. In other words, if you install the HP-UX 11.0/B.11.11 bundles for
Ignite-UX C.6.0 you will not be able to create a CD supporting B.11.23 since you have not
installed the software supports that release of HP-UX.

Create a LIF. If you are using Ignite-UX versions before C.6.0, enter:

make_medialif -m -l ./my_lif

If you are using Ignite-UX versions C.6.0 and later, enter:

 make_medialif –m –r B.XX.YY –l ./my_lif

where, B.XX.YY is the release of HP-UX for which you want to create the LIF. See Column 1
in Table 2 for a list of HP-UX releases you can use and what it will allow you to install or
recover.

To verify the lif contents, use the following commands:

lifls -l ./my_lif

volume ISL10 data size 804676 directory size 3 04/11/15 13:57:02

filename type start size implement created

===

ISL -12800 16 306 0 04/11/15 13:57:03

AUTO -12289 328 1 0 04/11/15 13:57:03

HPUX -12928 336 848 0 04/11/15 13:57:03

FWWKAR4 BIN 1184 1 0 04/11/15 13:57:03

FWWKAR5 BIN 1192 1 0 04/11/15 13:57:03

FWWKAR6 BIN 1200 1 0 04/11/15 13:57:04

FWWKAR7 BIN 1208 1 0 04/11/15 13:57:04

FWWKAR8 BIN 1216 1 0 04/11/15 13:57:04

INSTALL -12290 1224 68184 0 04/11/15 13:57:09

INSTALLFS -12290 69408 35840 0 04/11/15 13:57:12

VINSTALLFS -12290 69408 35840 0 04/11/15 13:57:12

WINSTALLFS -12290 69408 35840 0 04/11/15 13:57:12

IINSTALL -12290 105248 197630 0 04/11/15 13:57:26

VINSTALL -12290 302880 73806 0 04/11/15 13:57:32

WINSTALL -12290 376688 83837 0 04/11/15 13:57:38

IINSTALLFS -12290 460528 116224 0 04/11/15 13:57:47

PAD BIN 576752 256 0 04/11/15 13:57:48

If you have customizations to apply to the installation file systems, you should apply
them now using instl_adm.

The instl_adm command , prior to Ignite-UX version C.6.0.x, will not update the
Itanium®-based installation file system IINSTALLFS if any PA-RISC installation file
systems are present (this issue is being addressed at this time; review the release notes
for your version of Ignite-UX to determine if it has been resolved). If you wish to apply
custom configuration to the Itanium®-based installation file system, you must perform
the following commands:

211

lifcp ./mylif:IINSTALLFS ./IINSTALLFS

instl_adm -f output -F ./IINSTALLFS

lifrm ./mylif:IINSTALLFS

lifcp -r -T-12290 -K2 ./IINSTALLFS ./mylif:IINSTALLFS

This assumes that the configuration you wish to apply is located within the file called
output above.

Remember that these steps are not required if the LIF does not contain any of the PA-
RISC installation file systems (INSTALLFS, WINSTALLFS, or VINSTALLFS) or if you are
using Ignite-UX C.6.0.x or greater. Note that with Ignite-UX C.6.0.x and greater, all of
the installation file systems will be updated by instl_adm. If you wish to maintain
different configurations in each filesystem, you must manually modify the Itanium-
based installation filesystem, IINSTALLFS as previously described.

Tip:
If you only wish to support PA-RISC systems, you can write the LIF
you just created directly onto a CD and use it to boot systems.

4. You must create a pseudo-root for our CD image; this is necessary to add support for
Itanium®-based systems. Enter the following commands:

mkdir top

mv my_lif top

cp /opt/ignite/boot/EFI_CD_image top/EFI_CD_image

cd top

5. Create an ISO image that can be written to a CD. You may need to load additional
software from your applications media to get the mkisofs command onto your
system.

/opt/mkisofs/bin/mkisofs -no-emul-boot -b EFI_CD_image \

-eltorito-alt-boot -no-emul-boot -b my_lif -o ../cdfs.out $(pwd)

Messages similar to the following appear:

Size of boot image is 10240 sectors -> No emulation

Size of boot image is 288504 sectors -> No emulation

6.69% done, estimate finish Mon Nov 15 18:05:23 2004

13.39% done, estimate finish Mon Nov 15 18:05:31 2004

20.07% done, estimate finish Mon Nov 15 18:05:28 2004

26.77% done, estimate finish Mon Nov 15 18:05:27 2004

33.45% done, estimate finish Mon Nov 15 18:05:26 2004

40.15% done, estimate finish Mon Nov 15 18:05:26 2004

46.83% done, estimate finish Mon Nov 15 18:05:26 2004

53.54% done, estimate finish Mon Nov 15 18:05:25 2004

60.21% done, estimate finish Mon Nov 15 18:05:25 2004

212

66.92% done, estimate finish Mon Nov 15 18:05:25 2004

73.60% done, estimate finish Mon Nov 15 18:05:25 2004

80.30% done, estimate finish Mon Nov 15 18:05:25 2004

86.98% done, estimate finish Mon Nov 15 18:05:25 2004

93.68% done, estimate finish Mon Nov 15 18:05:25 2004

Total translation table size: 2048

Total rock ridge attributes bytes: 0

Total directory bytes: 0

Path table size(bytes): 10

Max brk space used 9000

74736 extents written (145 Mb)

6. Ensure that there are no mkisofs command errors. Older versions of mkisofs do not

accept the -no-emul-boot option given twice, only accept the use of the –b option
once, and would not accept the -eltorito-alt-boot option at all.

7. Place a LIF directory at the start of the ISO image with the instl_combine command
so that the media will boot:

/opt/ignite/lbin/instl_combine -C cdfs.out

Itanium®-based systems do not require a LIF to be present to boot (PA-RISC systems
do), but the kernel loader used to install Itanium®-based systems does read the
installation kernel and file system from the LIF. Later in the installation process, other
files will be read from the LIF.

For more information regarding how to create custom installation media, refer to the
Ignite-UX Administration Guide.

8. You can now write the ISO image onto a CD. The ISO image created in this example
was written onto the CD using Cdrecord on an Itanium®-based system:

cdrecord -data -v speed=4 dev=4,0,0 /var/tmp/cdfs.out

It is important to realize that some Windows-based CD writing software cannot create
CDs that will boot on Itanium®-based systems. The CDs produced by some CD writing
software may boot PA-RISC systems, but fail to boot Itanium®-based systems.

This CD, like a tape created by make_boot_tape, allows you to boot a system locally so
that it can contact an Ignite-UX server. In addition, this media is capable of performing a
dual-media recovery. For more information regarding dual-media recovery, refer to the
Ignite-UX Administration Guide.

213

How do I enable the X server and CDE during a golden image
install?
The information provided here is intended only for golden image installs and not for SD-
UX based installations. You should not use these commands during an SD-UX based
installation. It is also assumed that you are using a version of Ignite-UX recent enough to
support the graphics card in question (for newer graphics cards), and that the golden
image has the required products and patches loaded to support the graphics card and
input device.

The following configuration can be placed into a custom configuration file to enable
CDE:

(graphics[].model ~ ".") {
 post_configure_cmd+="cp -p /usr/dt/config/Xservers
/etc/dt/config/Xservers"
 post_configure_cmd+="/usr/dt/bin/dtconfig -e"
} else {
 post_configure_cmd+="/usr/dt/bin/dtconfig -d"
}

When a golden image is created on a system without a graphics card, CDE and the X
server are disabled from starting. When the golden image is then loaded onto a system
with a graphics card, CDE and the X server still won't start by default. The reason for this is
that CDE disabled the X server from starting on the system without a graphics card where
the golden image was created, and CDE then never checks again to see if any other
system where the golden image is loaded has a graphics card.

CDE disables the X server by commenting out a line in /etc/dt/config/Xservers.
Therefore, replace this file with /usr/dt/config/Xservers to make CDE check to see if
the local X server can be started on its next attempt at starting up. During a golden
image installation, this allows you to automatically enable the X server so CDE will start it
after installation.

Please note the following limitation, though. The above configuration assumes that the
commands above are all that are needed to enable the X server. The contents of the
configuration files in /etc/X11 may not be compatible with the newly installed system if
they have been customized. You may need to replace files in /etc/X11 to successfully
get the X server started and working as desired. How to configure files in /etc/X11 is
beyond the scope of this document, however. For information on how to configure the X
server files in /etc/X11, please review the SD-UX configuration scripts associated with the
X server filesets located under /var/adm/sw/products.

214

Summary
A firm understanding of how to design, maintain, test and troubleshoot configuration files
is essential in reducing business resources. With careful consideration and planning, you
can create custom configuration files that improve mass deployments and system
standardization.

For more information
The following relevant documents are available online at the HP Technical
Documentation Web site at http://www.docs.hp.com/:

Ignite-UX Administration Guide

Successful System Cloning Using Ignite-UX

Managing HP-UX Software With SD-UX

Software Distributor Administration Guide for HP-UX 11i

HP-UX 11.0 Installation and Update Guide

Release Notes for HP-UX 11.0

HP-UX 11i v[1|1.6|2] Installation and Update Guide

HP-UX 11i v[1|1.6|2] Release Notes

Managing Systems and Workgroups: A Guide for HP-UX System Administrators

Additionally, there are a number of white papers pertinent to Ignite-UX that are located
at the HP Technical Documentation Web site.

Product information regarding Ignite-UX for HP-UX is available at the HP Software Depot
at

http://www.docs.hp.com/en/IUX/

215

http://www.docs.hp.com/
http://www.docs.hp.com/en/IUX/

© Copyright 2004, 2005 Hewlett-Packard Development
Company, L.P.

Confidential computer software. Valid license from HP required
for possession, use or copying. Consistent with FAR 12.211 and
12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor's standard
commercial license.

The information contained herein is subject to change without
notice. The only warranties for HP products and services are set
forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

Intel Itanium® Logo, Intel, Intel Inside and Itanium are
trademarks or registered trademarks of Intel Corporation in the
US and other countries and are used under license.

Intel® Itanium® Processor Family is a trademark of Intel
Corporation in the US and other countries and is used under
license

MPN 5991-0691, 12/2005

216

	
	Abstract
	Introduction
	Typographic Conventions
	HP-UX 11i release names and release identifiers
	
	Configuration files and INDEX files
	The INDEX file
	The CINDEX file
	The per-client configuration file
	The global config.local file
	The recovery config.local file
	Order of precedence of configuration files
	Testing the order of precedence
	What is in a configuration (cfg) clause?
	The make_net_recovery configuration files
	The make_tape_recovery configuration files
	Files created by make_config
	Using the manage_index command
	A variety of uses
	Adding a configuration file to a clause or "release"
	Adding scripts to the INDEX file
	Removing cfg clauses from an INDEX file
	Setting the default cfg clause in an INDEX file
	Listing the names of cfg clauses in an INDEX file
	Listing the name of the default cfg clause in an INDEX file
	Renaming a cfg clause in an INDEX file
	Creating a new cfg clause from an existing clause
	Removing a configuration file from a cfg clause
	Removing a script from an INDEX file
	List the names of all configuration files in a cfg clause
	Display the description of a cfg clause

	Using the make_bundles command
	Why do you need to use make_bundles?
	Choosing which form of make_bundles to use
	The make_bundles first form
	The make_bundles second form
	The make_bundles third form

	Changes that can impact make_bundles

	Using the instl_dbg command
	Introduction
	Requirements
	Using the itool command
	Combining instl_dbg and itool
	Running instl_dbg
	Other instl_dbg options
	The hw.info and host.info files
	Creating both files

	Miscellaneous configuration tips
	Analyzing the HP-UX default B.11.11 cfg clause
	The release-specific configuration file

	Special variables
	_hp_locale
	_hp_cfg_detail_level
	_hp_pri_swap
	_hp_min_swap
	_hp_disk_layout
	_hp_default_cur_lan_dev
	_hp_default_final_lan_dev
	_hp_keyboard
	_hp_root_disk
	_hp_boot_dev_path
	_hp_primary_path
	_hp_primary_partition_size
	_hp_efi_partition_size
	_hp_service_partition_size
	_hp_root_grp_disks
	_hp_root_grp_striped
	_hp_addnl_fs_free_pct
	_hp_ignore_sw_impact
	_hp_custom_sys
	_hp_lanadmin_args
	_hp_nfs_mount_opts
	_hp_nfs_mount_retries
	_hp_tftp_cmds
	_hp_hide_other_disks
	_hp_saved_detail_level
	_hp_os_bitness
	_hp_force_autoboot
	_hp_ikernel_os_release
	_hp_current_client_release
	_HP_CLONING
	_hp_console_verbosity
	_hp_patch_save_files
	_hp_umask

	Configuration for software to be installed
	Application software depots
	Core operating system depot configuration
	Impacts statements
	Categories and other Ignite-UX software attributes
	Defining a custom software configuration
	Looking at a network recovery sw_source and sw_sel
	Using a sw_sel to run commands instead of installing software
	Using a sw_sel to apply kernel parameters
	Forcing software (sw_sel) clauses to be installed
	Automating dependencies in software

	Installing patches

	Configuration for volume and disk groups
	Overview

	Configuration examples
	Example one (custom disk layout)
	Example two (selection of disk layout based on hardware)
	Example three
	Part A (custom configuration in installation file system)
	Part B (Installation file system custom network config)

	Configuration parameters in the installation file system
	Networking
	Problems that can be solved with _hp_lanadmin_args
	Control
	Environment variables

	Managing configurations with unifdef
	Coping with auto_adm and boot changes in HP-UX B.11.23
	Looking at auto_adm
	ISL and CONF format data
	CONF data
	ISL data

	Usage examples
	Creating new files
	Adding new menu entries to a file
	
	Using an "append" file
	Updating a menu entry in a file
	Deleting a menu entry from a file
	Changing the default menu choice
	Changing the timeout
	Updating the prompt message
	Into and out of an LIF file

	Installation configurations using Software Distributor depots
	Getting started
	Creating the core operating system depot
	Other methods for creating the Core OS depot
	Using the Ignite-UX GUI
	The pitfalls of using CDs instead of DVDs

	Creating the configuration file to describe the depot
	Creating a minimalist cfg clause for installation
	Comments on the SD based cfg clause
	Extending the generic SD cfg clause with applications
	Creating the application depot
	Creating a configuration for the application depot
	An example problem

	Resolving applications that are not in SD format
	Package an application in SD format
	Define an application in a non-SD format
	Writing the configuration file for an application in non-SD format

	Using noncore.cfg to define applications
	SD and archive bitness comparison
	Adding the non-SD application configuration file to the INDEX file

	Installing patches from a depot
	Setting up the depot
	Packaging the patches into a bundle
	Generating a configuration

	Customizing configuration
	Installing with SD wrap-up

	Installation configurations using golden images
	Golden image configuration file explanation
	Instances that may require modifying os_arch_post_l
	Creating a golden image
	Final words about golden image installations

	Understanding what is_net_info_temporary does
	How do I…
	How do I remove the warning message that occurs when compiling a kernel on PA-RISC systems?
	How do I recognize if a disk exists or not from within a configuration file?
	How do I create the CD equivalent of a tape created by make_boot_tape?
	How do I enable the X server and CDE during a golden image install?

	Summary
	For more information

