

HP-UX Performance Cookbook

By Stephen Ciullo, HP Senior Technical Consultant
and

Doug Grumann, HP Performance Technology Center R&D Lead Engineer
revision 22OCT00

You are about to enjoy reading a how-to cookbook for analyzing general hp-ux system
performance. Optimizing performance is a very complex subject, which is why we're
doing this! We’ll not delve deeply into any particular nerdy facet of tuning, but you will
come away with good general information that will make your life easier as you continue
to pursue optimal performance on the systems you manage. You know you’ve achieved
optimal performance when you say to yourself: “Hey, nobody is bugging me about how
slow their application is running!”

Our target audience is the system administrator who is somewhat familiar with the
performance tools. We’ll use Glance and MeasureWare metrics for our thresholds,
though some of these metrics are also available in other tools. Our focus will be on hp-ux
11.0, and most of the information is relevant to other hp-ux releases as well.

Let’s get some general rules of thumb straight right at the beginning, so they won’t gum
up the works later:

- Don’t fix things that ain’t broke. If your users are happy with performance, then
why muck with it? You got better things to do. Take some time to build up
knowledge of what "normal" looks like on your systems. Later if something goes
wrong, then you'll be able to look at historical data and use that knowledge to drill
down quickly to the problem.

- You have to be willing to do the work to know what you’re doing. Did you read

that sentence twice? If you really have no idea why you’re changing something,
or what it means, then do the research first before you shoot yourself in the foot.

- When you do make changes, try to change one thing at a time. If you reconfigure

12 kernel variables all at once, chances are things will get worse anyway, but even
if it helps you’ll never know what change made the difference. If you only tweak
one thing, you’ll be able to evaluate the impact and build on that knowledge.

- None of the information in this paper comes with a guarantee. If this stuff were

simple, we would have to find something else to keep us employed (like web page
design). If any recommendation we provide doesn’t work for you, please let us
know... but don’t sue us!

- The age-old answer to every performance question is: “It Depends”. Every system
is different, and approaches that work great on one system may not work on
another. You know your systems better than we do, so keep that in mind.

If you want to get your money's worth out of reading this document (remember how much
you paid for it?), then scour every paragraph from here to the end. If you're feeling lazy
(like us), then skip down to the Resource Bottlenecks section unless you are setting up a
new machine. For each bottleneck area down there, we'll have a short list of ingredients.
If your system doesn't have those ingredients, then skip that subsection. If your situation
doesn't match any of our bottleneck recipes, then you can tell your boss that you're done,
you're bored, and you really think they should throw you more work to keep you busy!

System Setup

If you are setting up a system for the first time, you have some choices available to you
that people trying to tune 24x7 production servers don’t have. We’re sure you have
intensely researched system requirements, analyzed various hardware options, and of
course you’ve had the most bestest advice from HP as to how to configure the system. Or
not. It's hard to tell if you’ve bought the right combination of hardware and software, but
don't worry because you’ll know quickly after it goes into production.

CPU Setup

If you're not CPU-bottlenecked on a given system, then adding more processors will do
no good. If you have a CPU-intensive workload (and this is common), then more CPUs
are usually better. Some applications scale well (hopefully linearly) as the number of
CPUs increase: this is more likely to happen for workloads spending most of their CPU
time in User mode as opposed to System mode, though there are no guarantees. Some
applications definitely don't scale well with more processors (for example, an application
that only has one single-threaded process!). For some workloads, adding more processors
introduces more lock contention that can reduce scaling benefits. In any case, faster
(newer) processors will significantly improve throughput on CPU-intensive workloads,
no matter how many processors you have in the system. Processor speed is of course a
factor, but the newer processors like especially the PA8500 and PA8600 have significant
TLB, cache, and pipelining improvements that generally make them even more lots
better!

Memory Setup

Hey, memory is cheap so buy lots (a hardware vendor’s point of view). Application
providers will usually supply some guidelines for you to use for how much memory

you’ll need, though in practice it can be tough to predict memory utilization. You do not
want to get into a memory bottleneck situation, so you want enough memory to hold the
resident memory sets for all the applications you’ll be running, plus the memory needed
for the kernel, plus dynamic system memory like the filesystem buffer cache.

Resident memory and virtual memory can be tricky. Operating systems pretend to the
applications that there is more memory on your system than there really is. This is called
Virtual Memory, and is essentially the amount of memory allocated by programs for all
their data, including shared memory, heap space, program text, shared libraries, and
memory-mapped files. The total amount of virtual memory allocated to all processes on
your system roughly translates to the amount of swap space that is reserved (with the
exception of program text). Virtual memory actually has little to do with how much
actual physical memory is allocated because not all data mapped into virtual memory will
be active (“Resident”) in physical memory. Confused yet? Hey, memory is cheap so buy
lots.

Disk Setup

You may have planned for enough disk space to meet your needs, but also think about
how you’re going to distribute your data. In general, it is better to go with more smaller
disks then fewer bigger disks, as this gives you more flexibility to move things around to
relieve I/O bottlenecks. You should try to split your most heavily used logical volumes
across several different disks and I/O channels if possible.

When determining directory paths for applications, if possible try to keep the number of
levels from the filesystem root to a minimum. Extremely deep directory trees may impact
performance by requiring more lookups to access files. Conversely, file access can be
slowed when you have too many files (multiple thousands) in a given directory.

Swap Devices

You're going to want to configure enough swap to cover the largest virtual memory
demand your system is likely to hit (at least as much as the size of physical memory). Do
not enable pseudo-swap unless you must (if you don't have enough spare disk space for
swap). The idea is to configure lots of swap so you don’t run into limits reserving virtual
memory in applications, yet in the end not actually using it (i.e.: not paging to it). You
avoid paging out to swap by having enough physical memory so that you don’t get into a
memory bottleneck.

For the disk partitions that you dedicate to swap, the best scenario is to divide the space
evenly among drives with equivalent performance. For example, if you need 16GB of
swap and you can dedicate four 4GB drives of the same type, then you're set. If you only
have differing drives of different sizes available for swap, take at least two that are of the
same type and size and make them the highest priority (lowest number). This enables

page interleaving, meaning that paging requests will “round robin” to them. You don’t
want to page out to swap, but if you do start paging then you want it to go fast.

You can configure other lower priority swap devices to make up the difference. The ones
you had set at the highest priority are the ones that will be paged to first, and in most
cases the lower priority swap areas will have their space "reserved" but not "used", so
performance won't be an issue with them. It's OK for the lower-priority areas to be
slower and not interleaved. We'll talk about swap some more in the Disk and Memory
Bottlenecks sections below.

Logical Volumes

Generally, your application/middleware vendor will have the best recommendations for
optimizing the disk layouts for their software. Database vendors may recommend
bypassing the filesystem (using raw logical volumes) for best performance. With newer
disk arrays like the XP, performance on "cooked" volumes is equivalent. In any case, it's
a good idea to assign different applications to unique volume groups (physical disks) to
reduce the chance of them impacting each other.

There's a lot of LVM functionality built to support High Availability. Options like LVM
Mirroring (writing multiple times) and the LVM Mirror Write Cache are "anti-
performance" in most cases. Sometimes for read-intensive workloads, mirroring can
improve performance because reads can be satisfied from the fastest disk in the mirror,
but in most cases you should think of LVM as a space management tool... it's not built for
performance. Stephen tells customers "there comes a time when you have to decide
whether you want High Availability or Performance.. ya can't have both, but, you can
make your HA environment perform better".

LVM Parallel scheduling policy is better than Serial/Sequential. LVM striping can help
with disk I/O-intensive workloads. If you are going to use LVM striping, then make the
stripe size the same as the underlying filesystem block size. You want to set up striping
across disks that are similar in size and speed.

Filesystems - VxFS

If you are using filesystems, VxFS (JFS) is preferable over HFS. If you use HFS, set the
block size to 64K and the fragment size to 8K. The JFS block size is generally not
important.

For best performance, it is wise to have the Online (advanced) JFS product. Using it, you
can better manipulate specific mount options and adjust for performance (see man-pages
for fsadm_vxfs and mount_vxfs). Some of the options below are only available with
Online JFS.

In general, for VxFS filesystems use these mount options:

delaylog, nodatainlog

For VxFS filesystems with primarily sequential access, use:

mincache=direct, convosync=direct

On /tmp and other “scratch” filesystems where data integrity in the unlikely event of a
system failure is not critical, use the following mount options:

tmplog, nolog, mincache=tmpcache, convosync=delay

There is almost always a JFS “mega-patch” available. Keep current on JFS patch levels
for best performance.

If your application will be I/O-intensive and HFS filesystem-based, then we recommend
you turn the kernel configuration option fs_async on. This decreases recoverability
somewhat, as more data could be lost if the system crashes, but in most cases the risk will
be worth it. You should have a decent backup/recovery strategy in place regardless, and
UPS to avoid downtime due to power outages.

Network Setup

Every networking situation is unique, and although networking can be the most important
performance factor in today’s distributed application environments, there is little
available at the system level to tune networking. Some general tips:

- Make sure your servers are running on at least as fast a network as their clients.

We’ve seen servers on a 10Mbit LAN trying to handle many clients running on
100Mbit!

- Make sure your network card is running full duplex. Some auto-negotiation protocols
with the network hardware may inadvertently set your card into half-duplex mode.
Stephen recommends you never ever turn autonegotiation on! It seems to mess up all
the time! In any case make absolutely sure the duplex settings match at both ends of
the cable. If your system's Network Interface Card is "hardwired" to 100FD, then
your corresponding switch port *MUST* be at 100FD or you will be in a world of
hurt!

- Record and periodically examine the network topology and performance, as things
always tend to degrade over time. Invest in Network Node Manager or other network
monitoring tools.

- Use PCI NICs wherever possible. If that is not possible, use HSC NICs. If that is not
possible, then and only then use EISA or HP-PB NICs, but really consider upgrading
to a system with PCI slots as soon as you can. HP-PB and EISA do not do justice to
100Mbit networking. HSC does not do justice to Gigabit Networking.

NFS setup

Here’s some general advice when setting up a NFS environment:
- Use NFS V3. Remember the clients need to be talking V3 as well as the server.
- Use of the automounter can cause unproductive flushes of data from the buffer cache.

If you do use autofs or automounter, then indirect mounts are more flexible than
direct.

- Bump up the number of nfsd daemons on the server to be twice the number of
physical disks you are exporting, but don't go above 200 nfsds.

- If using NFS V2, export filesystems with async option whenever possible.
- Keep the filesystem buffer cache big on the server (see discussion below) but small on

clients.
- On clients, run 16 biods unless you know better.

For both clients and servers, make sure you keep current on the latest NFS kernel patches.

Kernel Tunables

Some people use the sam templates for setting up their configurable kernel parameters.
Stephen says: “Don’t”. What follows is a brief rundown of our general recommendations
for the tunables that are most important to performance. For background as to the
definitions of these parameters, their ranges, and additional information, look at the sam
utility's online help.

bufpages
Use this to set the number of pages in a fixed-size filesystem buffer cache. If you set
bufpages then make sure nbuf is zero. To get a 300-megabyte fixed buffer cache, which
is our recommendation on any system with 800 megabytes or more of memory, set
bufpages to 76800. The exception to this rule is for big file servers like NFS, ftp, or web
servers. On these systems, you can increase the buffer cache size so long as you don't
cause memory pressure. See our Buffer Cache discussion under the Disk Bottlenecks
section for more information.

create_fastlinks

This will speed up path lookups when you create links on HFS filesystems. It doesn't do
anything for VxFS (VxFS does this already). Set to 1 if your key filesystems are on HFS.

dbc_max_pct

This determines the percentage of main memory to which the dynamic filesystem buffer
cache is allowed to grow (when nbuf and bufpages are zero). The default is 50% of
memory, but this is major overkill in most cases. With a huge bufcache, you’re more
likely to get into a situation where free memory is low and you’ll need to pageout or
shrink the buffer cache in order to meet memory demands for active processes. You do
not want to get into that situation. If you really want to use a dynamic buffer cache, start
with dbc_max_pct at 25. If you have over 2 gigabytes of physical memory, start with it
even smaller. We have a subsection below delving more into Buffer Cache issues.

fs_async

This will allow asynchronous writes of file metadata to disk for HFS filesystems. This
speeds up performance at a nominal potential risk to data integrity (if the system crashes
then some filesystems may be more likely in need of repair). This has no effect on VxFS
filesystems where metadata is recoverable from the intent log. Don't turn fs_async on
when Oracle (or any other 3rd party) tells you that they won't support you if it's on.
Otherwise, the only reason not to have it on is if you don't do backups, or you don't trust
us!

max_thread_proc

Maximum number of threads allowed in each process, set to 200, unless told otherwise by
your more knowledgeable software vendor. If you are configuring a NFS/TCP server
(running nfsktcpd), bump this up to 1000.

maxdsiz and maxdsiz_64
Data size limit for 32bit and 64bit applications, respectively. The default 32bit limit (just
64MB) is frequently hit by processes, and so it should be bumped up. Set them both to
the highest data set size of any program you’ll be running, or just bump them up to their
maximum values. The only risk with huge limits is that programs with memory leaks are
more likely to degrade performance rather than aborting. To be safe you can bump up
maxssiz and maxtsiz as well but these limits are less commonly hit.

maxfiles and maxfiles_lim
Soft and hard limits on per-process file opens.. quite often set too low. Bump maxfiles
to 200 if its not already 200, and higher on web and file servers. Bump maxfiles_lim up
if you encounter program problems.

maxswapchunks

With the default swchunk of 2048, setting this to 16384 allows for a maximum possible
swap configuration of 32 gigabytes. There's no reason to set it lower, even if you're not
going to configure that much swap. Don't modify swchunk unless you need to in order to
get past the limit.

maxuprc

Set this to 200 if its not already more than that. Fifty processes per user default limit is
often not enough.

maxusers

A good value for most systems to start with this is 128. This is used to size many other
tunables, so don't go overboard.

nfile

The default formula usually works this out to around this value, but 3000 is a pretty good
starting point. Bump nfile up if you see high File Table utilization (>80%) in Glance
(System Tables Report).

ninode

This only affects the inode cache size for HFS filesystems (the VxFS cache is not
configurable). Note, though, that the kernel configurable ncsize which controls the
Dynamic Name Lookup Cache (DNLC) for all filesystem types is (by default) based on
ninode. Set ninode to 4000 if only /stand is on HFS, set it to 15000 or higher to be safe
if you have many filesystems on HFS. Even higher values are useful for dedicated file
servers.

nproc

This is heavily dependent on your expected workload, but for most systems, 1024 is
enough for the maximum number of processes. Don't overconfigure this by setting it to
30000 when you'll only have 400 processes in your workload, as nproc influences things
like the size of the midaemon's shared memory segment (used by Glance to keep track of
process data). Process table utilization is tracked in Glance’s System Tables Report.

npty

EDA/MDA applications may need this bumped up (number of remote sessions). Like
nfile, you can leave this alone unless you see the number of Pseudo Terminals nearing
the limit in Glance.

swapmem_on

This trick to enable pseudo swap is used to increase the amount of reservable virtual
memory. It's only useful when you can't configure as much swap as you need. The
problem is, managing pseudo-swap takes up some memory itself, and can slow
performance! We recommend you set this to 0 unless you have a boatload of memory
and not enough disk available for allocating to swap.

timeslice

Leave this set at 10. If this gets set less than 10, excessive context switching overhead
will usually result.

What’s Yer Problem?

OK so let’s talk about real life now, which begins after you’ve been thrust into a situation
on a critical server where some (or all) the applications are running slow and nobody has
any idea what’s wrong but you’re supposed to fix it. Now…

If you’re good, really good, then you’ve been collecting some historical information on
the system you manage and you have a decent understanding of how the system looks
when it's behaving normally. Some people just leave glance running occasionally to see
what resources the system is usually consuming (cpu, memory, disk, network, and kernel
tables) or you use MeasureWare to log the data and export it or view the metrics with
PerfView. Its important to understand the baseline, because then when things go awry
you can see right off what resource is out of whack (awry and out-of-whack being
technical terms). If you have been bad, very bad, or unlucky, then you have no idea

what’s normal and you’ll need to start from scratch: chase the most likely bottlenecks
which show up in the tools and hope you’re on the right track. Start from the global level
(system-wide view) and then drill down to get more detail on specific resources that are
busy.

It's very helpful to understand the structure of the applications that are running and how
they use resources. For example, if you know your system is a dedicated database server
and that all the critical databases are on raw logical volumes, then you will not waste your
time by trying to tune filesystem options and buffercache efficiency: they would not be
relevant when all the disk I/O is in raw mode. If you’ve taken the time to bucket all the
important processes into MeasureWare applications via parm file definitions, then you
can compare relative application resource usage and (hopefully) jump right to the set of
processes involved in the problem. There are typically many active processes on busy
servers, so you want to understand enough about the performance problem to know which
processes are the ones you need to focus on.

If an application or process is actually failing to run or it is aborting after some amount of
time, then you may not have a performance problem, but instead the failure probably has
something to do with a limit being exceeded. Common problems include
underconfigured kernel parameters or swap space. You can usually look these errors up
in the hp-ux documentation and it will point you to which kernel tunable to bump up.
Glance’s System Tables report can be helpful. Also, make sure you've kept the system
updated with the most recent patch bundles relevant to performance and the subsystems
your workload uses (like networking!). If nothing is actually failing, but things are just
running slowly, then the real fun begins!

Resource Bottlenecks

The bottom line on system resources is that you would actually like to see them fully
utilized. After all, you paid for them! High utilization is not the same as a bottleneck. A
bottleneck is a symptom of a resource that is fully utilized and has a queue of processes
or threads waiting for it. The processes stuck waiting will run slower than they would if
there were no queue on the bottlenecked resource.

Generic Bottleneck Recipe Ingredients:
- A resource is in use, and
- Processes or threads are spending time waiting on that resource.

Starting with the next section, we'll start drilling down into specific bottleneck types. Of
course, we'll not be able to categorize every potential bottleneck, but we'll try to cover the
most common ones. At the beginning of each type of bottleneck, we'll start with the few
primary indicators we look at to categorize problems ourselves, then drill down into
subcategories as needed. You can quickly scan the "ingredients" lists to see which one
matches what you have. After all, all great cooks start with the right ingredients!

If you'd like to understand more about what makes a bottleneck, consider the example of
a disk backup. A process involved in the backup application will be reading from disk
and writing to a backup device (another disk, a tape device, or over the network). This
process cannot back up data infinitely fast. It will be limited by some resource. That
resource could be the disk that it's backing up (indicated by the source disk being nearly
100% busy). That resource could be the output device for the backup. The backup could
also be limited by the CPU (perhaps in a compression algorithm, indicated by that process
using 100% CPU). You could make the backup go faster if you added some speed to the
specific resource it is constrained by, but if the backup completes in the timeframe you
need it to and it doesn’t impact any other processing, then there is no problem and making
it run faster is not the best use of your time.

Now, if your backup is not finishing before your server starts to get busy, then you may
find that applications running concurrently with it are dog-slow. This would be because
your applications are contending for the same resource that the backup has in use. Now
you have a true performance bottleneck! One of the most common performance problem
scenarios is a backup running too long and interfering with daily processing. Often the
easiest way to “solve” that problem is to tune what files and disks are being backed up, to
make sure you balance the need for data integrity with performance.

If you are starting your performance analysis knowing what application and processes are
running slower than they should, then look at those specific processes and see what
they’re waiting on most of the time. This is not always as easy as it sounds, because unix
is not typically very good at telling what things are waiting for. Glance and MeasureWare
have the concept of Blocked States (also known as Wait Reasons). You can select a
process in Glance, and then get into the Wait States screen for it to see what percentage of
time it is waiting for different resources. Unfortunately, these don’t always point you
directly to the source of the problem. Some of them, such as Priority, are easier: if a
process is blocked on Priority that means that it was stuck waiting for CPU time as a
higher-priority process ran. Some other wait reasons, such as Streams (Streams
subsystem I/O) are trickier. If a process is spending most of its time blocked on Streams,
then it may be waiting because a network is bottlenecked, but (more likely) it is idle
reading from a Stream waiting until something writes to it. User login shells sit in Stream
wait when waiting for terminal input.

Metrics

We're focusing on performance, not performance metrics. We'll need to discuss many
different metrics as we drill down, but we don't want to get into the gory details of the
exact metric definitions or how they are derived. If you have Glance on a system, run
gpm and click on the Help -> User's Guide menu selection, then in the help window click
on the Performance Metrics section to see definitions. If you have MeasureWare on your
system, a place to go for the definitions is /opt/perf/paperdocs/mwa/C/methp.txt.

There are also many documents focusing on tools, benchmarks, optimization methods,
and metrics. We'll include some pointers in the References section below.

We'll use the word "process" to mean either a process or a thread. A few apps are multi-
threaded, and each thread in hp-ux 11 can be a separate execution entity. Therefore, a
single process with 10 threads can fully load 10 processors (each thread using 100% cpu,
the parent process using "1000%" cpu – note process metrics do not take the number of
CPUs into account). This is similar to 10 separate single-threaded processes each using
100% CPU. For the sake of simplicity, we'll say "processes" instead of "processes or
threads" in the following discussions.

CPU Bottlenecks

CPU Bottleneck Recipe Ingredients:
- Consistent high global CPU utilization (GBL_CPU_TOTAL_UTIL > 90%), and
- Significant "Run Queue" or Load Average (GBL_PRI_QUEUE or

GBL_RUN_QUEUE > 3).

- Processes blocked on Priority (PROC_STOP_REASON = PRI).

It's easy to tell if you have a CPU bottleneck. The overall CPU utilization (averaged over
all processors) will be near 100% and some processes are always waiting to run. It is not
always easy to find out why the CPU bottleneck is happening. Here’s where its important
to have that baseline knowledge of what the system looks like when its running normally,
so you’ll have an easier time spotting the processes and applications which are
contributing to a problem. The priority queue metric, derived from process-blocked
states and available only in MeasureWare and Glance, shows the average number of
processes waiting for any CPU (that, is, blocked on PRI). It doesn't matter how many
processors there are on the system. Stephen likes to use this more than the Run Queue.
The Run Queue is an average of how many processes were "runnable" on each processor.
This works out to be similar or the same as the Load Average metric, displayed by the top
or uptime commands. Different perftools use either the running average or the
instantaneous value. Prior to hp-ux 11.11, the run queue includes processes waiting for
disk I/O, which is confusing.

To diagnose CPU bottlenecks, look first to see whether most of the total CPU time is
spent in System (kernel) mode or User (outside kernel) mode. Jump to the subsection
below that most closely matches your situation.

System CPU Bottlenecks

System CPU Bottleneck Recipe Ingredients:
- CPU bottleneck symptoms from above, and
- Most of the time spent in the kernel (GBL_CPU_SYS_MODE_UTIL > 50%).

If you are spending most of your CPU time in System mode, then you'll want to break that
down further and see what activity is causing processes to spend so much time in the
kernel. First, check to see if most of the overhead is due to context switching. This is the
kernel running different processes all the time. If you're doing a lot of context switching,
then you'll want to figure out why, because this is not productive work. This is a whole
topic in itself, so jump down to the next section on Context Switching Bottlenecks.
Assuming it isn't that, see if GBL_CPU_INTERRUPT_UTIL is > 30%. If so, you likely have
some kind of I/O bottleneck instead of a CPU bottleneck (that is, your CPU bottleneck is
being caused by an I/O bottleneck), or just maybe you have a flaky I/O card. Switch gears
and address the I/O issue first (Disk or Networking bottleneck). Memory bottlenecks can
also come disguised as System CPU bottlenecks: if memory is fully utilized and you see
paging, look at the memory issue first.

Assuming at this point most of your kernel time is spent in system calls
(GBL_CPU_SYSCALL_UTIL >30%), then its time to try to see what specific system calls are
going on. Its best if you can use Glance on the system at the time the problem is active.
If you can do this, count your lucky stars and skip to the next paragraph. If you are stuck
with looking at historical data or using other tools, it won't include specific system call
breakdowns, so you'll need to try to work from other metrics. Try looking at process data
during the bad time and see which processes are the worst (highest
PROC_CPU_SYSCALL_UTIL) and look at their other metrics or known behavior to see if
you can determine the reason why that process would be doing excessive syscalls.

If you can catch the problem live, you can use Glance to drill down further. We like to
use gpm for this because of its more flexible sorting and metric selection. Go into
Reports->System Info->System Calls, and in this window configure the sort field to be
the syscall rate. The most-often called syscall will be listed first. You can also sort by
CPU time to see which syscalls are taking the most CPU time, as some syscalls are
significantly more expensive than others are. In gpm's Process List report, you can
choose the PROC_CPU_SYS_MODE_UTIL metric to sort on and the processes spending the
most time in the kernel will be listed first. Select a process from the list and pull down
the Process System Calls report and (after a few update intervals) you'll see the syscalls
that process is using. Keep in mind that not all system calls map directly to libc
interfaces so you may need to be a little kernel-savvy to translate syscall info back into
program source code. Once you find out which processes are involved in the bottleneck,
and what they are doing, the tricky part is determining why. We leave this as an exercise
for the user!

Common programming mistakes like repetitive gettimeofday or select calls (we've seen
thousands per second in some poorly designed programs) may be at the root of a System
CPU bottleneck. Another common cause is excessive stat-type filesystem syscalls (the
find command is good at generating these, as well as shells with excessive search PATH
variables). Once we traced the root cause of a bottleneck back to a program which was
opening and closing /dev/null in a loop!

On busy and large multiprocessor systems, system CPU bottlenecks can be the result of
contention over internal kernel resources such as data structures that can only be accessed
on behalf of one CPU at a time. You may have heard of "spinlocks", which is what
happens when processors must sit and spin waiting for a lock to be released on things like
virtual memory or I/O control structures. This shows up in the tools as System CPU time,
and it's hard to distinguish from other issues. Typically, this is OK because there's not
much from the sysadmin perspective that you can do about it anyways. Spinlocks are an
efficient way to keep processors from tromping over critical kernel structures, but some
workloads (like those doing a lot of file manipulations) tend to have more contention. If
programs never make system calls then they won't be slowed down by the kernel.
Unfortunately, this is not always possible!

Here's a plug for a contrib system trace utility put together by a very good friend of ours
at HP. Its called tusc, and its very useful for tracing activity and system calls made by
specific processes: very useful for application developers. It's currently available via ftp
from ftp.cup.hp.com under dist/networking/misc/.

Context Switching Bottlenecks

Context Switching System CPU Bottleneck Recipe Ingredients:
- System CPU bottleneck symptoms from above, and
- Lots of CPU time spent Switching (GBL_CPU_CSWITCH_UTIL > 30%).

A context switch can occur for one of two reasons: either the currently executing process
puts itself to sleep (by making a library or system call that waits), or the currently
executing process is forced off the CPU because the OS has determined that it needs to
schedule a different (higher priority) process. When a system spends a lot of time context
switching (which is essentially overhead), useful processing can be bogged down. One
common cause of extreme context switching is workloads that have a very high fork rate.
In other words, processes are being created (and presumably completed) very often.
Frequent logins are a great source of high fork rates, as shell login profiles often run many
short-lived processes. Keeping user shell rc files clean can avoid a lot of this overhead.
Since faster systems can handle faster fork rates, it's hard to set a rule of thumb, but you
can monitor GBL_STARTED_PROC over time and watch for spikes. Trying to track down
who's forking too much is easy with gpm; just use Choose Metrics to get PROC_FORK into
the Process List report, and sort on it. Another good sort column for this type of problem
is PROC_CPU_CSWITCH_UTIL.

If you don't have a high process creation rate, then high context switch rates is probably
an issue with the application. Semaphore contention is a common cause of context
switches, as processes repeatedly block on semaphore waits. There's typically very little
you can do to change the behavior of the application itself, but there may be some
external controls that you can change to make it more efficient. Often by lengthening the
amount of time each process can hold a CPU, you can decrease scheduler thrashing.

Make sure the kernel timeslice parameter is at least at the default of 10 (10 10-
millisecond clock ticks is .1 second), and consider doubling it.

User CPU Bottlenecks

User CPU Bottleneck Recipe Ingredients:
- CPU bottleneck symptoms from above, and
- Most of the time spent in user code (GBL_CPU_USER_MODE_UTIL > 50%).

If your system is spending most of its time executing outside the kernel, then that's
typically a good thing. You just may want to make sure you are executing the "right" user
code. Look at the processes using most of the cpu (sort the Glance process list by
PROC_CPU_TOTAL_UTIL) and see if the processes getting most of the time are the ones
you'd want to get most of the time. In Glance, you can select a process and drill down to
see more detailed information. If a process is spending all of its time in user mode,
making no system calls (thus no I/O), it might be stuck in a loop. If shell processes (sh,
ksh, csh,..) are hogging the CPU, check the user to make sure they aren't stuck
(sometimes network disconnects can lead to stale shells stuck in loops).

If the wrong applications are getting all the CPU time at the expense of the applications
you want, this will be shown as important processes being blocked on Priority a lot.
There are several tools that you can use to adjust process priorities. The HP PRM product
(Process Resource Manager) is worth checking into to provide CPU control per
application. Its companion product HP WLM (WorkLoad Manager) provides for
automation of PRM controls. A more short-term remedy may be judicious use of the
renice command, which you can also invoke via Glance on a selected process. Increasing
the nice value will decrease its processing priority relative to other timeshare processes.

The easiest solution to solve a CPU bottleneck may simply be to buy more processing
power. In general, more better faster CPUs will make things run more better faster.
Another approach is application optimization, and tools like HP CxPerf can be useful if
you have source code access to your applications. The HP Developer's Resource web
mentioned in the References section below can be a good place to search for tools.

Disk Bottlenecks

Disk Bottleneck Recipe Ingredients:
- Consistent high utilization on at least one disk device (GBL_DISK_UTIL_PEAK

or highest BYDSK_UTIL > 50%).

- Significant queuing lengths (GBL_DISK_SUBSYSTEM_QUEUE > 3 or any
BYDSK_REQUEST_QUEUE > 1).

- Processes or threads blocked on I/O wait reasons (PROC_STOP_REASON =
CACHE, DISK, IO).

Disk bottlenecks are easy to solve: Just recode all your programs to keep all their data
locked in memory all the time! Hey, memory is cheap! Sadly, this isn't always (say ever)
possible, so the next bestest alternative is to focus your disk tuning efforts on the I/O
hotspots. The perfect scenario for disk I/O is to spread the applications' I/O activity out
over as many different I/O cards, LUNs, and physical spindles as possible to maximize
overall throughput and avoid bottlenecks on any particular I/O path. Sadly, this isn't
always possible either because of the constraints of the application, downtime for
reconfigurations, etc.

To find the hotspots, use a performance tool that shows utilization on the different disk
devices. Both sar and iostat have by-disk information, as of course do Glance and
MeasureWare. We usually start by looking at historical data and focus on the disks that
are most heavily utilized at the specific times when there is a perceived problem with
performance. Using PerfView, you can draw a Class Compare graph of all disks using
the BYDSK_UTIL metric to see utilization trends, and use the BYDSK_REQUEST_QUEUE to
look for queuing. If you're not looking at the data from times when a problem occurs, you
may be tuning the wrong things! If a disk is busy over 50% of the time, and there's a
queue on the disk, then there's an opportunity to tune. Note that MeasureWare's metric
GBL_DISK_UTIL_PEAK is not an average, nor does it track just one disk over time. This
metric is showing you the utilization of the busiest disk of all the disks for a given
interval, and of course a different disk could be the busiest disk every interval. The other
useful global metric for disk bottlenecks is the GBL_DISK_SUBSYSTEM_QUEUE that shows
you the average number of processes blocked on wait reasons related to Disk I/O, similar
to how GBL_PRI_QUEUE works for CPU.

If your busiest disk is a swap device, then you have a memory bottleneck masquerading
as a disk bottleneck and you should address the memory issues first if possible. Also, see
the discussion above under System (Disk) Setup for optimizing swap device
configurations for performance.

Glance can be particularly useful if you can run it while a disk bottleneck is in progress,
because there are separate reports from the perspective of By-Filesystem, By-Logical
Volume, and By-Disk. You can also see the logical (read/write syscall) I/O versus
physical I/O breakdown as well as physical I/O split by type (Filesystem, Raw, Virtual
Memory (paging), and System (inode activity)). In Glance, you can sort the process list
on PROC_DISK_PHYS_IO_RATE, then select the processes doing most of the I/O and bring
up their list of open file descriptors that may help pinpoint the specific files that are
involved. The problem with all the system perftools is that the internals of the disk
hardware are opaque to them. You can have disk arrays that show up as a single "disk" in
the perftool, and specialized tools may be needed to analyze the internals of the array.
The disk array vendor is where you'd go for these tools.

Some general tips for improving disk I/O throughput include:

- Spread your disk I/O out as much as possible. It is better to keep 10 disks 10% busy
than one disk 100% busy. Try to spread busy filesystems (and/or logical volumes) out
across multiple physical disks.

- Avoid excessive logging. Different applications may have configuration controls that
you can manipulate. For VxFS, managing the intent log is important. For suggested
VxFS mount options, see the System Setup section above.

In most cases, a very few processes will be responsible for most of the I/O overhead on a
system. Watch for I/O “abuse”: applications that create huge numbers of files or ones
that do large numbers of opens/closes of scratch files. You can tell if this is a problem if
you see a lot of “System”-type I/O on a busy disk (BYDSK_SYSTEM_IO_RATE), or you see a
high volume and low hit rate on the Dynamic Name Lookup Cache (GBL_MEM_DNLC_HIT,
at the end of Glance’s Disk Report). To track things down, you can look for processes
doing lots of I/O and spending significant amounts of time in System CPU. If you catch
them live, drill down into Glance’s Process System Calls report to see what calls they’re
making. Unfortunately, unless you own the source code to the application (or the person
who does owes you a big favor), there is little you can do to correct inefficient I/O
programming.

Buffer Cache Bottlenecks

Bufcache Bottleneck Recipe Ingredients:
- Moderate utilization on at least one disk device (GBL_DISK_UTIL_PEAK or

highest BYDSK_UTIL > 25), and
- Low Bufcache read hit percentage (GBL_MEM_CACHE_HIT_PCT < 90%).

- Processes or threads blocked on Cache (PROC_STOP_REASON = CACHE).

If you're seeing these symptoms, then you may want to bump up the filesystem Buffer
Cache size, especially if you're managing a NFS, ftp, web, or other file server where you'd
want the bufcache to take up lots of memory so long as you don't start paging out because
of memory pressure. We more often find that Buffer Cache is overconfigured than
underconfigured. HP's default for the maximum size of the buffer cache (50%
dbc_max_pct) is simply too big for any system with 1 gigabyte or more of physical
memory. For most (nearly all) systems, no matter how many googlebytes of memory you
have, Stephen recommends a maximum of 300MB dedicated to bufcache. Folks with
2GB or 4GB of bufcache configured today might consider this rule of thumb to be a "9.5
on their sphincter scale", but huge bufcaches lead to additional overhead just managing
them, and generally do more harm than good. If you manage a Database server with
primary I/O paths going to raw devices then the filesystem buffer cache just gets in the
way.

You can use the dynamic buffer cache (dbc_min_pct and dbc_max_pct) instead of
configuring a fixed size bufcache (via nbuf or bufpages), but generally its simpler just to
set bufpages to a value that works for you. For most systems that aren't dedicated file

servers, if you have 800MB of memory or more, we recommend you set bufpages to
76800 (this times 4K per page equals 300MB). If you want to be more anal about it, try
watching your buffer cache read hit rate over time (GBL_MEM_CACHE_HIT_PCT), making
sure you watch it when the system is busy. In Glance, this metric appears towards the end
of the Disk Report screen. The cache hit rate metrics aren’t very accurate in any tool,
because the underlying instrumentation is “screwed up” (another technical term). The hit
rate behavior is very dependent on your workload, but if you usually see the hit rate over
90%, and you don’t have much of free memory, and your bufcache size
(TBL_BUFFER_CACHE_USED, found in Glance in the System Tables Report) is bigger than
300MB, and then reconfigure the bufcache size to be the larger of either half its current
size or 300MB. After the reconfiguration, go back at watch the hit rate some more.
Lather, Rinse, Repeat.

Memory Bottlenecks

Memory Bottleneck Recipe Ingredients:
- High physical memory utilization (GBL_MEM_UTIL > 95%), and
- Significant pageout rate (GBL_MEM_PAGEOUT_RATE > 1), or
- Any deactivations (GBL_MEM_SWAPOUT_RATE > 0), or
- Vhand process consistently active (vhand's PROC_CPU_TOTAL_UTIL > 5%).

- Processes or threads blocked on virtual memory (GBL_MEM_QUEUE > 0 or
PROC_STOP_REASON = VM).

It is a good thing to remember not to forget about your memory.

When a program touches a virtual address on a page that is not in physical memory, the
result will be a "page in". When the hp-ux needs to make room in physical memory, or
when a memory-mapped file is posted, the result will be a "page out". What used to be
called swaps, where whole working sets were transferred from memory to a swap area,
has now been replaced by deactivations, where pages belonging to a selected
(unfortunate) process are all marked to be paged out. This does not mean they all are
paged out, though! We could go into a lot of detail on this subject, but we'll spare you.

Here's what you need to know: Ignore pageins. They just happen. When memory
utilization is high, then watch out for pageouts, as they are often (but not always!) a
memory bottleneck indicator. Don't worry about pageouts that happen when memory
utilization is not high (memory-mapped file writes). If memory utilization is high and
you see any deactivations then you really have a problem. If memory utilization is less
than 90%, then don't worry be happy.

OK so let's say we got you worried. Maybe you're seeing high memory utilization and a
few pageouts. Maybe it gets worse over time until the system is rebooted (this is classic:
"we reboot once a week just because"). One common cause of a memory bottleneck is an
overly large filesystem buffer cache. If your buffer cache size is over 300MB, then think

about shrinking it (see previous section about bufcache). Another common cause of
memory bottlenecks is a memory "leak" in an application. Memory leaks happen when
processes allocate (virtual) memory and forget to release it.

If you have done a good job organizing your MeasureWare parm file applications, then
comparing their virtual memory trends (APP_MEM_VIRT) over time can be very helpful to
see if any applications have memory leaks. Using PerfView, you can draw a Class
Compare graph of all Applications using the APP_MEM_VIRT metric to see this graphically.
If you don't have applications organized well, you can use Glance and sort on
PROC_MEM_VIRT to see the processes using most memory. In Glance, select a process
with a large virtual set size and drill into the Process Memory Regions report to see great
information about each region the process has allocated. Memory leaks are usually
characterized by the DATA region growing slowly over time. Restarting the app or
rebooting are workarounds, of course, but correcting the offending program is a better
solution.

If you don't have any memory leaks, your buffer cache is reasonably sized, and you still
have memory pressure, then the only solution may be to buy more memory. Most
database servers allocate huge shared memory segments, and you'll want to make sure
you have enough physical memory to keep them from paging. Be careful about programs
getting "out of memory" errors, though, because those are usually related to not having
enough swap space reservable or hitting a configuration limit. Relevant kernel
parameters are dbc_min_pct, dbc_max_pct, bufpages, nbuf, maxswapchunks,

swapmem_on, maxtsiz, maxssiz, and especially maxdsiz (see System Setup Kernel
Tunables section above).

You can also get into some fancy areas such as configuring memory windows (usually
needed if you have multiple instances of 32bit applications using lots of shared memory
like 32bit Oracle and SAP), or large page sizes (useful for some apps that have very large
working sets and good data locality to avoid TLB thrashing). These topics are a little too
deep for this dissertation and are of limited applicability. Only use them if your
application supplier recommends it.

Swap

It's very important to realize that there are two separate issues with regards to swap
configuration. You need to always have at least as much “reservable” swap as your
applications will ever request. This is essentially the system’s limit on virtual memory
(for stack, heap, data, and shared memory). The amount of swap actually in use is a
completely separate issue: the system typically reserves much more swap than is ever in
use. Swap only gets used when pageouts occur; it is reserved whenever virtual memory
(other than for program text) is allocated.

As mentioned above in the Disk Setup section, you want to have at least two fixed device
swap partitions allocated on your system for fast paging when you do need to page ins

and outs. Make sure they are the same size, on different physical disks, and at the same
swap priority, which should be a number less than that of any other swap areas (lower
numbers are higher priority). Monitor using Glance's Swap Space report or swapinfo to
make sure the system keeps most or all of the “used” swap on these devices (or in
memory). Once you do that, you can take care of having enough “reservable” swap by
several methods (watch GBL_SWAP_SPACE_UTIL). Since unused reserved swap never
actually has any I/Os done to it, you can bump up the limit of virtual memory by enabling
lower-priority swap areas on slow "spare" disks. We recommend you not turn on pseudo
swap (swapmem_on = 1, see Kernel Tunables discussion above), as this can hurt
performance. We recommend against enabling filesystem swap areas, but you can do this
as long as you’re sure they don’t get used (by setting their swap priority to a higher
number than all other areas).

Networking Bottlenecks

Networking Bottleneck Recipe Ingredients:
- High (dependent on configuration) network packet rates

(GBL_NET_PACKET_RATE > 2*average).

- Any Output Queuing (GBL_NET_OUTQUEUE > 0).

- Higher than normal number of processes or threads blocked networking
(PROC_STOP_REASON = NFS, LAN, RPC, Socket (if not idle), or
GBL_NETWORK_SUBSYSTEM_QUEUE > average).

- One CPU with a high System mode or Interrupt CPU utilization while other
CPUs are mostly idle (BYCPU_CPU_INTERRUPT_UTIL > 30).

- From lanadmin, frequent incrementing of "Outbound Discards" or "Excessive
Collisions".

Networking bottlenecks can be very tricky to analyze. The system-level performance
tools do not provide enough information to drill down very much. Glance and
MeasureWare have metrics for packet, collision and error rates by interface. Revision
C.02.60 and later of glance includes additional networking metrics like per-interface byte
rates. Collisions in general aren't a good performance indicator. They "just happen" on
active networks, but sometimes they can indicate a duplex mismatch or a network out of
spec. Excessive collisions are one type of collision that does indicate a network
bottleneck.

At the global level, metrics look for times when packet rates are higher than normal, see
if those times also have any output queue length. If so, see if there is a repeated pattern
and focus on the workload during those times. You may also be able to see network
bottlenecks by watching for higher than normal values for networking wait states in
processes (which is used to derive MeasureWare's network subsystem queue metric). The
netstat and lanadmin commands give you more detailed information, but they can be
tricky to understand. Tools like OpenView Network Node Manager are specifically
designed to monitor the network from a non-system-centric point of view.

One thing that has caused problems for several customers is a mismatch regarding duplex
auto negotiation between your system's LAN card (NIC) and its switch. Both sides
should be either half-duplex or full duplex. You should check both to make sure they
match. You can use lanscan to get the card interface number and then: lanadmin –x

CrdIn# to show its setting (on newer interfaces). Stephen says its better just to turn auto
negotiation off and manage the configuration "by hand" (though you'll need to go back
and recheck if the cables get switched around). High collision rates (which are
misleading as they are actually errors) have been seen on systems with mismatches in
either duplex or speed settings, and improve (along with performance) when the
configuration is corrected.

On some systems, you may see a high Interrupt CPU percentage on a single CPU. This
can be caused by interrupts from the NIC saturating the CPU assigned to that NIC. If you
see this symptom, you might consider adding a second NIC and possibly trunking it with
Auto Port Aggregation to preserve the single IP address.

Here's some things to try if you suspect a network bottleneck: Run the command
netstat –s twice, spaced 30 seconds apart. Look at the change in tcp sent data packet
retransmissions, and any udp socket overflows or ip fragments dropped after timeout
(reassembly timeouts). You can grab a copy of the utility beforeafter from
ftp.cup.hp.com under dist/networking/tools/ and it will help parse the output.

For lanadmin, you can watch for inbound and outbound discard and error counts and
excessive collisions. The ftp.cup.hp.com source also has some information on figuring
out byte rates for interfaces and diagnosing network bottlenecks via lanadmin at:
 ftp://ftp.cup.hp.com/dist/networking/briefs/sane_glance.txt
Be careful as on fast networks like gigabit, the 32-bit counters shown by these tools roll
over frequently.

If you use NFS a lot, see the configuration tips above in the System Setup section. The
nfsstat command and Glance's NFS Reports can be helpful in monitoring traffic
especially on the server. If the NFS By System report on the server shows one client
causing lots of activity, run Glance on that client and see which processes may be causing
it. We've seen users on clients doing repeated (and unnecessary) "find" commands across
NFS mounts, which can drag a server down. On the client side, use nfsstat to watch for
retransmits and timeouts that can indicate a network or server problem.

Other Bottlenecks

Other Bottleneck Recipe Ingredients:
- No obvious major resource bottleneck.

- Processes or threads active, but spending significant time blocked on other
resources (PROC_CPU_TOTAL_UTIL > 0 and PROC_STOP_REASON = IPC,
MSG, SEM, PIPE, GRAPH).

If you dropped down through the cookbook to this last entry (meaning we didn't peg the
"easy" bottlenecks), now you really have an interesting situation. Performance is a mess
but there's no obvious bottleneck. You're best recourse at this point is to try to focus on
the problem from the symptom side. Chances are performance isn't always bad. At what
specific times is it bad? Make a record, then go back and look at your historical
performance data or compare glance screens from times when performance tanks versus
times when it zips (more technical terms). Do any of the global metrics look significantly
different? Pay particular attention to process blocked states (what are active processes
blocking on besides Priority?). Semaphore and other Interprocess Communication
subsystems often have internal bottlenecks. In MeasureWare, look for higher than normal
values for GBL_IPC_SUBSYSTEM_QUEUE.

Once you find out when the problems occur, work on what processes are the focus of the
problem. Are all applications equally affected? If the problem is restricted to one
application, what are its processes most often waiting on? Does the problem only occur
when some other application is active (there could be an interaction issue)? You can drill
down in Glance into the process wait states and system calls to see what its doing. In
MeasureWare, be wary of the PROC_*_WAIT_PCT metrics as they actually reflect the
percentage of time over the life of the process not during the interval they are logged.
You may need some application-specific help at this point to do anything useful. One
trial and error method is to move some applications (or users) off the system to see if you
can reduce the contention even if you haven't nailed it. Alternatively, you can call
Stephen and ask for a consulting engagement!

If you’ve done your work and tuned the system as best you can, you might wonder “at
what point can I just blame bad performance on the application itself?” Feel free to do
this at any time, especially if it makes you feel good.

Conclusion

Conclusion? Conclusion? There is no conclusion! The performance saga never ends.
But seriously folks, we believe that one of the biggest problems in the world of
performance and tuning is misdiagnosis. Be as sure as you can be about what you think
your “problem” is; for example, don’t let a memory (paging and deactivation) issue fool
you into thinking you have a CPU or disk bottleneck. Remember to change one thing at a
time or you’ll never know what it was that made performance “better”. You might even
have attained more better performance if you had not modified one of those 12 things.

The most important thing to keep in mind is: Performance tuning is a Science.. yeah,
right!?! We think NOT! Performance tuning is more like a mixture of art, witchcraft,
voodoo, a little smoke (and mirrors), and a dash of luck. May yours be the good kind.

References

HP Developer's Resource library:

http://devresource.hp.com/devresource/Topics/Optimization/Perf.html

HP Technical Server Performance References:

http://performance.techservers.hp.com/workingwithservers.html

HP Documentation Archive:

http://docs.hp.com

HP Networking tools contrib archive:
(Acknowledgements to Rick Jones for this, and for his ongoing contributions towards us
getting our facts straight!):

ftp://ftp.cup.hp.com/dist/networking/

Doug’s Making Your GlancePlus Pak Perform paper:
 http://www.openview.hp.com/Uploads/504.pdf

	HP-UX Performance Cookbook
	System Setup
	CPU Setup
	Memory Setup
	Disk Setup

	Swap Devices
	Logical Volumes
	Filesystems - VxFS
	
	Network Setup

	NFS setup
	Kernel Tunables
	What’s Yer Problem?
	Resource Bottlenecks

	Metrics
	
	CPU Bottlenecks

	System CPU Bottlenecks
	Context Switching Bottlenecks
	User CPU Bottlenecks
	
	Disk Bottlenecks
	Buffer Cache Bottlenecks
	Memory Bottlenecks

	Swap
	
	Networking Bottlenecks
	Other Bottlenecks

	Conclusion
	References

