
© 2003 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Java Memory Management on HP-
UX

Laksh Venkatasubramanian

HP Java Labs

page 22/8/2005 (c) Copyright Hewlett Packard Company, 2005

HP-UX Virtual Memory Layout

• HP-UX 32 Bit Process
• Four 1 GB Quadrants
A) SHARE_MAGIC
B) EXEC_MAGIC

Shared Text

Shared Objects
(Libraries,

Memory Mapped Files)

DATA (private)
Private Memory Mapped Files

Shared Objects
(Libraries,

Memory Mapped Files)

0x00000000

0xc0000000

0x80000000

0x40000000

Shared Objects
(Libraries,

Memory Mapped Files)

Private Memory Mapped Files

Shared Objects
(Libraries,

Memory Mapped Files)

0x00000000

0xc0000000

0x80000000

0x40000000

Text (private)

DATA (private)
A B

STACKSTACK

page 32/8/2005 (c) Copyright Hewlett Packard Company, 2005

Type of Executables on HP-UX

There are 3 magic numbers that can be used for a 32-bit
executable (11.00 and greater).
/usr/bin/chatr labels the following type of executables in output

• SHARE_MAGIC: shared executable
• EXEC_MAGIC: normal executable
• SHMEM_MAGIC: normal SHMEM_MAGIC executable

For 64 bit (11.00 and greater) executables, there is currently no
need to have different magic numbers available as the standard
one allows up to 4TB for the program text, another 4TB for its
private data and a total of 8TB for shared areas.

page 42/8/2005 (c) Copyright Hewlett Packard Company, 2005

Type of Executables on HP-UX

• SHARE_MAGIC is the default on 11.0. SHARE_MAGIC is also
called DEMAND_MAGIC. With SHARE_MAGIC, quadrant 1 is
used for program text, quadrant 2 is used for program data,
and quadrants 3 and 4 are for shared items.

• EXEC_MAGIC allows a greater process data space by allowing
text and data to share quadrant 1. Quadrant 2 is still solely
used for data, and quadrants 3 and 4 are also the same as with
SHARE_MAGIC executables. EXEC_MAGIC applications are
created by linking the application with the -N option.

• SHMEM_MAGIC makes 2.75 GB of shared memory available to
an application. With SHMEM_MAGIC all of the text and data is
in quadrant 1 freeing up quadrant 2 for shared items. The
SHMEM_MAGIC processes on the system will share quadrant 2
for shared memory, as well as sharing quadrants 3 and 4 with
other processes on the system.

page 52/8/2005 (c) Copyright Hewlett Packard Company, 2005

EXEC_MAGIC vs SHARED_MAGIC

PDC I/O address
space

SameSamePDC I/O address
space

Quadrant 4
0xF0000000-
0xFFFFFFFF

Shared objectsPrivate
Data

SameShared objectsQuadrant 4
0xC0003000-
0xEFFFFFFF

Kernel gateway
page

SameSameKernel gateway pageQuadrant 4
0xC0000000-
0xC0000FFF

Shared objectsPrivate
Data

Private
Data

Shared objectsQuadrant 3
0x80000000-
0xBFFFFFFF

Data and StackSameSameData and StackQuadrant 2
0x40000000-
0x7FFFFFFF

Text only and read
only.

SameSameText starts at the
beginning of this
space and data starts
immediately after the
end of the text.

Quadrant 1
0x00000000-
0x3FFFFFFF

SHARED_MAGICQuad 4
Private
(q4p)

Quad 3
Private
(q3p)

EXEC_MAGIC

page 62/8/2005 (c) Copyright Hewlett Packard Company, 2005

Enabling 3rd and 4th quadrants for private
data

PA-RISC
• ‘chatr +q3p enable <program>’ - an extra 1Gb of private data

is made available to a process (Both SHARED_MAGIC and
EXEC_MAGIC program can have quadrant 3 and quadrant 4
private). You cannot access shared objects available to other
programs in their quadrant 3 when you enable this option.

• ‘chatr +q4p enable <program>’ - this changes quadrants 3 and
4 to be private. You cannot access any shared memory or
shared mmap'ed files available to other programs.

Before using q3 or q4 private programs check and see if there
are patches that are needed.

ITANIUM (11.23)
• `chatr +as mpas <program>’ will enable all quadrants to be private.

page 72/8/2005 (c) Copyright Hewlett Packard Company, 2005

Patches for q3p q4p functionality

HP-UX 11.0 PA-RISC

• Required Patches: PHKL_27282, PHKL_23409, PHKL_28766,
PHKL_26136

• 11.0 supports only q3p. It does not support q4p functionality.

HP-UX 11i (11.11) PA-RISC

• Required Patch: PHKL_28428 (or its superseded patch)
• 11.11 supports both q3p and q4p.

HP-UX 11i v1.5 (11.22) ITANIUM
• Does not support q3p, q4p functionality

HP-UX 11i v2 (11.23) ITANIUM
No patches are required

page 82/8/2005 (c) Copyright Hewlett Packard Company, 2005

Kernel tunables

• maxdsiz, maxdsiz_64bit
Controls the size of the DATA region. We can call this the C-
heap to differentiate this from the JAVA-heap. sbrk(),malloc(),
etc. allocate memory in this region.

• maxssiz, maxssiz_64bit
Controls the size of the primordial thread (main thread) stack.
By default, the JVM restricts the size of this stack to 2MB.

• maxtsiz, maxtsiz_64bit
Controls the size of the TEXT region. This contains the
executable.

page 92/8/2005 (c) Copyright Hewlett Packard Company, 2005

Kernel tunables

• Even though maxdsiz may be set to a large value, the actual
available heap space (DATA) might be much lower because the
memory mapped (mmap) segments that are mapped private,
STACK, TEXT (EXEC_MAGIC case), Java heap, Java threads,
etc. also share this address space.

• Similarly, even though maxtsiz might be a large value, it
consumes only as much physical/virtual memory as the
executable requires.

• On the contrary, maxssiz consumes as much virtual space as
the value it is set to. In other words , raising maxssiz may
cause user processes which use all (or nearly all) of the
previously available data area to fail allocation with the
[ENOMEM] error, even with maxdsiz set above the current
amount of memory allocated for data by this process.

page 102/8/2005 (c) Copyright Hewlett Packard Company, 2005

Kernel tunables

SWAP
• swapinfo –mt (displays swap space usage on the system)

Mb Mb Mb PCT START/ Mb
TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 4096 0 4096 0% 0 - 1 /dev/vg00/lvol2
reserve - 266 -266
memory 4089 1313 2776 32%
total 8185 1579 6606 19% - 0 -

Swap is reserved at the time virtual memory is allocated for a
process. But when the lazy-swap option is enabled, swap is
allocated at the time of actual use of memory.

page 112/8/2005 (c) Copyright Hewlett Packard Company, 2005

Glance Memory Regions (/opt/perf/bin/gpm)
Java Heap - Permanent

Java Heap - Old

Code Cache

Java Heap - New

JVM Runtime
Compiler Threads

Main Thread Stack

DATA = C-heap

Java Thread

page 122/8/2005 (c) Copyright Hewlett Packard Company, 2005

Glance Memory Regions

• RSS (Resident Set Size) - The size (in KB unless otherwise
indicated) of the resident memory occupied by a memory
region

• VSS (Virtual Set Size) - The size (in KB unless otherwise
indicated) of the virtual memory occupied by a memory region

page 132/8/2005 (c) Copyright Hewlett Packard Company, 2005

Java Memory Regions

• The JAVA threads are private mmap segments. The default size
for this mmap is 512KB(32bit), 1MB(64bit).

• JVM CodeCache (holds compiled JAVA methods) is a private
mmap segment. The default size is 32MB.

• The JAVA heap is a private mmap (Use -XheapInitialSizes to
determine sizes of different generations) segment. The three
regions in HotSpot JVM heap (new, old and permanent) are
allocated as three different mmap regions in 32bit mode in
1.3.1 or greater JVMs.

The JAVA heap is mapped MAP_NORESERVE (lazy swap). When
multiple processes are spawned, memory and swap have to be
estimated carefully, otherwise running processes may abort in
the middle of a run due to insufficient swap space, instead of
processes aborting at startup time.

page 142/8/2005 (c) Copyright Hewlett Packard Company, 2005

java -XheapInitialSizes

Defaults when no options are specified-
NewRatio: 3
SurvivorRatio: 8
MaxTenuringThreshold: 32
Survivor size: 589824
Eden size: 5177344
New Size reserved: 22347776 initial: 6356992
Old Size reserved: 44761088 initial: 12779520
Perm Size reserved: 67108864 initial: 1048576

New size will default to around 1/3rd the total heap size if –Xmn
is not specified. –Xmn is an alias for –XX:NewSize. If this value
is higher than MaxNewSize, MaxNewSize will be set to this value
as well. New generation will be resized to 1/3rd the total heap as
the heap grows from –Xms to –Xmx.

page 152/8/2005 (c) Copyright Hewlett Packard Company, 2005

Large Heap Size with 32-bit Java

For Java invoked from the command line, Java will
automatically choose an appropriate executable.

PA-RISC
• For heaps less than 1500MB, the executable is ‘java’
(EXEC_MAGIC executable).

• For heaps greater than or equal to 1500MB, and less than
2400MB the executable is ‘java_q3p’ (HP-UX 11.00 or greater).

• For heaps of 2400MB to 3800MB, the executable is ‘java_q4p’
(HP-UX 11.11 or greater).

ITANIUM
• For heaps of 1500MB to 3500MB, the executable is `java_q4p’
(HP-UX 11.23 or greater)

page 162/8/2005 (c) Copyright Hewlett Packard Company, 2005

Large Heap Size with 32-bit Java

HP-UX 11.11 (PA-RISC)
• Because of segmentation in the HP-UX virtual address space,

when the Java heap is larger than 3000MB, either new space (-
Xmn) or old space (-mx minus -Xmn) must be approximately
850MB or less (applicable to 11.11 only).

HP-UX 11.00 or greater
• You do not need to directly invoke any of the q3p or q4p

programs. Just invoke 'java' as usual, and the appropriate
program will be run for you.

page 172/8/2005 (c) Copyright Hewlett Packard Company, 2005

Components in a JAVA program

• Virtual Machine is written in C/C++
• JAVA code
• JAVA code calling native methods
• Native code calling into JAVA code

page 182/8/2005 (c) Copyright Hewlett Packard Company, 2005

Memory Allocation

• JAVA heap
All objects that are created with the ‘new’ keyword in JAVA

reside here.
• C heap

Memory allocated in native code with
– ‘malloc’ in C

– ‘new’ in C++

page 192/8/2005 (c) Copyright Hewlett Packard Company, 2005

• Necessary to make a distinction between live objects and
reachable objects
Reachable objects- If we can reach an object from the root
set through any number of intermediate references, it is
termed reachable
Live objects- These are reachable objects that are currently
being used by the program

Java Objects

page 202/8/2005 (c) Copyright Hewlett Packard Company, 2005

• When JNI references are not cleaned up properly, they
could prevent the collection of some unwanted JAVA
objects

• All objects that are reachable may not be live
- objects that are being referenced by some

long living objects. Even though their use in the program
is over, they cannot be garbage collected as the long
living objects are still alive

Java Objects

page 212/8/2005 (c) Copyright Hewlett Packard Company, 2005

• Java Heap Object Retention:
– Unaccountable growth of the Java Heap

• C Heap Memory Leak:
– Constantly increasing DATA RSS and VSS
– System running out of swap space
– Programs failing with out of memory (ENOMEM) errors

Symptoms of Process Memory Growth

page 222/8/2005 (c) Copyright Hewlett Packard Company, 2005

• Virtual address space limitations
• Insufficient java heap
• Low values for kernel parameters

max_thread_proc Number of threads per process
nkthread Total number of threads
maxdsiz Data region size
nfiles Total number of open files
maxfiles Soft limit for number of open files

per process
maxfiles_lim hard maximum number of file

descriptors per process

Reasons for Out of Memory Errors

page 232/8/2005 (c) Copyright Hewlett Packard Company, 2005

Virtual Address Space Usage: Example 1

A) maxtsiz – 1GB (Upper limit for TEXT region)
B) maxdsiz – 1GB (Upper limit for DATA region)
Address space is reserved for TEXT and DATA in incremental
amounts as needed.
C) maxssiz – 400MB (Upper limit for STACK region, reserved upfront)
D) Java heap - -Xms1GB –Xmx1GB (Perm gen- 64MB default. Not

included in mx value.)

• New Size reserved: 357892096 initial: 357892096
• Old Size reserved: 715849728 initial: 715849728
• Perm Size reserved: 67108864 initial: 1048576

E) JVM Code Cache – 32MB
F) 300 threads in the application (300 * 512KB = 150MB)

Space left for the DATA (C-heap) region
Approximate (only significant, greater than 5MB, regions
shown in calculation)

2 GB – C – D – E – F - space consumed by TEXT

page 242/8/2005 (c) Copyright Hewlett Packard Company, 2005

Virtual Address Space Usage: Example 2

A) maxtsiz – 1GB
B) maxdsiz – 1GB
C) maxssiz – 400MB
D) Java heap - -Xms500m –Xmx1500m (will invoke java_q3p)

• New Size reserved: 524288000 initial: 174718976
• Old Size reserved: 1048576000 initial: 349569024
• Perm Size reserved: 67108864 initial: 1048576

E) JVM Code Cache – 32MB
F) 300 threads in the application (300 * 512KB = 150MB)

Space available for the Java thread stacks
Approximate (only significant, greater than 5MB, regions
shown in calculation)

3 GB – C – D – E – space consumed by TEXT – space consumed
by DATA

page 252/8/2005 (c) Copyright Hewlett Packard Company, 2005

OutOfMemoryError: Example 3

Throwable: java.lang.OutOfMemoryError: unable to
create new native thread
java.lang.OutOfMemoryError: unable to create new
native thread

at java.lang.Thread.start(Native Method)

CHECK
• Whether there is enough space for private mmaps for

thread stacks.
• The number of threads in glance/gpm and see whether

max_thread_proc and nkthread are set appropriately.

