
HP OpenView GlancePlus

Adviser Reference Guide

HP-UX 11.0 and beyond
Manufacturing Part Number: Jxxxx-90xxx

June 2002

© Copyright 2002 Hewlett-Packard Company.

Legal Notices
Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is subject to
change without notice.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 for other agencies.

Use of this manual and flexible disk(s), tape cartridge(s), or CD-ROM(s)
supplied for this pack is restricted to this product only. Additional copies
of the programs may be made for security and back-up purposes only.
Resale of the programs in their present form or with alterations, is
expressly prohibited.

Copyright Notices. © Copyright 1983-2002 Hewlett-Packard Company,
all rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.
2

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® 2000 is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of
Microsoft Corporation.

Netscape and Netscape Navigator are U.S. trademarks of Netscape
Communications Corporation

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood
City, California.

Oracle7™ is a trademark of Oracle Corporation, Redwood City,
California.

OSF/Motif® and Open Software Foundation® are trademarks of the
Open Software Foundation, Inc. in the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.

UNIX® is a registered trademark of The Open Group.
 3

4

Contents
1. Introduction

2. Alarms and Symptoms
Introduction . 20
What is an Alarm? . 21
What is a Symptom? . 22

3. Editing Adviser Syntax
Introduction . 24
Using the GlancePlus Text Editor. 25

Syntax Editing Commands . 26
Using Your Own Text Editor . 27

4. Displaying GlancePlus Data
Introduction . 30
Printing CPU Total Utilization . 31
Printing CPU Utilization During High CPU Usage . 32
Sending E-mail Messages . 33
Printing Process Information Within a Loop . 34
Printing to a File . 36

5. Adviser Syntax Structure
Introduction . 38
Alarm Syntax . 39
Symptom Syntax . 40

6. Adviser Syntax Reference
Introduction . 42
Syntax Conventions . 43
Comments. 44
Conditions. 45
Constants . 46
Expressions. 47
Metric Names in Adviser Syntax . 48
Printlist . 50
Variables . 51
 5

Contents
7. Adviser Syntax Statements
Introduction . 54
ALARM Statement. 55

ALARM Example: Typical ALARM Statement. 56
ALARM Example: Using COMPOUND Statements . 57
ALARM Example: Using Multiple Conditions . 57
ALARM Example: Process Table . 58
ALARM Example: Swap Space . 58
ALARM Example: Yellow Alert . 59
ALARM Example: CPU Problem . 60

ALERT Statement . 61
ALERT Example . 61

ALIAS Statement. 62
ALIAS Example . 62

ASSIGNMENT Statement. 63
ASSIGNMENT Examples . 63

COMPOUND Statement . 64
COMPOUND Example . 64

EXEC Statement . 65
EXEC Examples . 65

GPM Statement . 66
GPM Example . 66

IF Statement . 67
IF Example . 67

LOOP Statement . 68
APPLICATION LOOP Example . 69
CPU LOOP Example . 70
DISK LOOP Example. 70
FILE SYSTEM LOOP Example. 71
NFS BY OPERATION LOOP Example . 72
NETWORK INTERFACE LOOP Example . 73
LOGICAL VOLUME Example . 74
PRM LOOP Example . 75
PRM_BYVG LOOP Example . 76
PROCESS LOOP Example. 77
SWAP LOOP Example . 78
6

Contents
SYSTEM CALL LOOP Example . 79
TT LOOP Example . 80
TTBIN LOOP Example . 81
TT LOOP ARM Example . 82

PRINT Statement . 86
PRINT Example . 86

SYMPTOM Statement . 87
SYMPTOM Example . 89
SYMPTOM Example: Global CPU Bottleneck . 90
 7

Contents
8

Conventions
The following typographical conventions are used in this manual.

Font What the Font Represents Example

Italic For book or manual titles, and for
manpage names.

Refer to the OpenView GlancePlus
Concepts Guide.

To provide emphasis. You must follow these steps.

To specify a variable that you must
supply when entering a command.

At the prompt type: rlogin
your_name where you supply your
login name.

Bold For the names of programs and
glossary terms.

The distinguishing attribute of
this class...

Computer Text and items on the computer
screen.

 The Root map window ...

The system replies: Press Enter

Command names Use the grep command ...

File and directory names. /usr/bin/X11

Process names. Check to see if pmd is running.

Window/dialog box names In the IP Internet map window...

Computer
Bold

Text that you must enter. At the prompt, type: ovstatus.

Keycap Keyboard keys. Press Return.

[Button] Buttons on the user interface. Click [NET]. Click on the [Apply]
button.

Menu
Items

A menu name followed by a colon (:)
means that you select the menu,
then the item. When the item is
followed by an arrow (->), a
cascading menu follows.

Select Edit:Find->Objects by
Comment
 9

10

Contact Information
Technical Support

Technical support information can be found on the HP OpenView World
Wide Web site at:

http://openview.hp.com/

Documentation Feedback

Your comments on and suggestions for the documentation help us
understand your needs and better meet them.

You can provide feedback about documentation via the HP
documentation site at:

http://docs.hp.com

You can also provide feedback via the following email address:
ovdoc@fc.hp.com

If you encounter serious errors in the documentation that impair your
ability to use your OpenView application, please contact the HP
Response Center or your support representative so that your feedback
can be entered into CHARTS (the HP Change Request Tracking System).

Training Information

For information on current HP OpenView training available, see the HP
OpenView World Wide Web site at:

http://openview.hp.com/

Select the Support panel to obtain information about scheduled classes,
training at customer sites, and class registration.
 11

12

Changes for This Release
This section summarizes the changes made to this document for this
release of GlancePlus:

❏ Added “Introduction” sections for each chapter.

❏ There are no functional changes in this release.
 13

14

1 Introduction
Chapter 1 15

Introduction
The GlancePlus Adviser monitors your system; it looks for
performance metrics that are exceeding their defined thresholds and
notifies you when such a condition exists. It sends alarms when specified
conditions occur, and notifies you of symptoms of potential bottlenecks.

The Adviser gets its commands from a text file that you can customize to
suit the needs of your organization. You can modify the syntax of the
Adviser text file to define performance metric thresholds, such as:

❏ when global swap space is nearly full,

❏ when the system process table is near capacity, and

❏ when your CPU has been running at 90% busy for more than 2
minutes.

The Adviser notifies you when it detects a condition that exceeds the
specified thresholds. You can configure it to:

❏ display information to stdout,

❏ execute a UNIX mail command, such as mailx, to send a message,

❏ make the GlancePlus ALARM button turn yellow or red or, if you are
running GlancePlus iconified, it can place a red or yellow border
around the GlancePlus icon, or

❏ display a specific GlancePlus window to help you analyze the
problem.

You specify Adviser symptoms and alarms in the syntax of the Adviser
text file. The syntax defines each of the specific thresholds and rules as
well as the actions that are triggered if certain conditions are present.

The Adviser syntax to be used is specified in a file that is identified at
run time with the -syntax <filename> option. If no syntax file is
specified, the Adviser looks for a user default file named
adviser.syntax in your home directory. If no user default is found, the
Adviser looks for a system default syntax file named adviser.syntax in
the /var/opt/perf/ directory.

By default, the GlancePlus Adviser is turned on whenever you run
glance or gpm. If you like, you can turn it off by using the
-adviser_off run-time parameter when you start glance or gpm.

Any output produced by the Adviser is sent to the file adviser.out in
your local directory.
Chapter 116

Introduction
You can also specify that the Adviser run alone without the GlancePlus
user interface. In this mode, Adviser sends its messages to stdout. To
run GlancePlus and the Adviser in this way, include the -adviser_only
option when you start glance or gpm.

A good way to learn how to customize the Adviser syntax is to make
small modifications to the default Adviser syntax file. The default
Adviser file is /var/opt/perf/adviser.syntax.
Chapter 1 17

Introduction
Chapter 118

2 Alarms and Symptoms
Chapter 2 19

Alarms and Symptoms
Introduction
Introduction
Alarms are simply a way to highlight metric conditions in GlancePlus. A
symptom is a combination of conditions that occurs during an interval
and contributes to a bottleneck on your system.

NOTE An interval is the period of time since the last measurement. GlancePlus
evaluates the Adviser SYMPTOMS and ALARMS at each interval. The
default interval is 15 seconds. To change the default interval, use the
Configure Measurement window.

Check the topics with detailed discussions and examples of how to create
alarms and symptoms using the Adviser syntax.

❏ What is an Alarm?

❏ What is a Symptom?
Chapter 220

Alarms and Symptoms
What is an Alarm?
What is an Alarm?
An alarm can trigger whenever conditions that you specify are met.
Alarms are based on any period of time you specify, which can be one
interval or longer. Conditions or events that you might want to set as
Adviser alarms include:

❏ when global swap space is nearly full

❏ when the page in rate is too high

❏ when your process table is near capacity

❏ when your CPU has been running at 75% utilization for the last two
minutes

Several screens let you look at alarm status and history. The status of
alarm conditions determines the color of the main window's [Alarm]
button. Several alarms are defined in the GlancePlus default Adviser
syntax. (To see the default syntax, open the Edit Adviser Syntax
window in GlancePlus.)
Chapter 2 21

Alarms and Symptoms
What is a Symptom?
What is a Symptom?
Complex alarms can be built based on symptoms. The GlancePlus
default Adviser syntax defines four bottleneck symptoms for you, then
defines alarms based on those symptoms. (Open the Edit Adviser
Syntax window in GlancePlus to see the default syntax.)

By observing different metrics with corresponding thresholds and adding
values to the probability that these metrics contribute to a bottleneck,
the Adviser calculates one value that represents the combined
probability that a bottleneck is present.

Unlike the ALARM statement that monitors conditions over a period of
time normally longer than one interval, the SYMPTOM statement is
evaluated and updated every interval. This is why you might see the
CPU Bottleneck Symptom indication prior to a CPU Bottleneck Alarm.
Symptoms change rapidly and can become yellow, then red, then go back
to green. An alarm remains yellow or red until it is reviewed or reset.

You can also use the variables you defined in the SYMPTOM statements
in the Alarm section. And you can link the symptoms to the [CPU],
[Disk], [Network], and [Memory] buttons on the main GlancePlus
window to notify you of possible bottlenecks.

For every symptom that you define in the Adviser Syntax window, a
graph appears on the Symptom History window to show that particular
symptom's probability over time.
Chapter 222

3 Editing Adviser Syntax
Chapter 3 23

Editing Adviser Syntax
Introduction
Introduction
This chapter describes editing adviser syntax. You can edit the syntax in
two ways:

❏ Using the GlancePlus Text Editor

❏ Using Your Own Text Editor
Chapter 324

Editing Adviser Syntax
Using the GlancePlus Text Editor
Using the GlancePlus Text Editor
You can edit the adviser syntax from within GlancePlus. Here's how you
do it.

See “Syntax Editing Commands” on page 26 for instructions on using
the GlancePlus text editor. If errors display after you select
Check Syntax, see GlancePlus Messages in the online help for more
information.
Chapter 3 25

Editing Adviser Syntax
Using the GlancePlus Text Editor
Syntax Editing Commands

To edit text in the Edit Adviser Syntax window, you use various
editing commands. You cannot use the mouse to move the cursor in the
Edit Adviser Syntax window.

To replace text:

Each time you open the Edit Adviser Syntax window, the editing
function is in REPLACE MODE. You can overtype the syntax with
characters or blanks using the Replace Mode. To return to REPLACE
MODE after inserting text, press the Insert key.

To insert text:

To insert information in the Edit Adviser Syntax window, press the
Insert key. The message at the top of the Edit Adviser Syntax window
changes to INSERT MODE. To insert lines or characters, use the Insert
key.

To delete text:

To delete lines or characters, use the Delete key.

Moving the cursor in the Edit Adviser Syntax window:

To move the cursor one character at a time, use your keyboard arrow
keys. To page through text, use the Page Up and Page Down keys, or use
the vertical scroll bar on the right. To scroll through text horizontally,
use the Shift key and the left or right arrow keys.

NOTE Don't worry too much about making mistakes; you can always go back to
the default Adviser syntax by selecting the Default Syntax option from
the Reset menu in the Edit Adviser Syntax window.
Chapter 326

Editing Adviser Syntax
Using Your Own Text Editor
Using Your Own Text Editor
You can edit the adviser syntax using your favorite text editor. Here is
how to do it.

See “Syntax Editing Commands” on page 26 for instructions on using
the GlancePlus text editor.

If errors display after you select Check Syntax, see GlancePlus
Messages in the online help for more information.
Chapter 3 27

Editing Adviser Syntax
Using Your Own Text Editor
Chapter 328

4 Displaying GlancePlus Data
Chapter 4 29

Displaying GlancePlus Data
Introduction
Introduction
The following topics are described in this chapter:

❏ Printing CPU Total Utilization

❏ Printing CPU Utilization During High CPU Usage

❏ Sending E-mail Messages

❏ Printing Process Information Within a Loop

❏ Printing to a File
Chapter 430

Displaying GlancePlus Data
Printing CPU Total Utilization
Printing CPU Total Utilization
Follow these steps to print metric values to the terminal window from
which GlancePlus was started:

1. From the GlancePlus Main window, select Edit Adviser Syntax
from the Adviser menu to open the Edit Adviser Syntax window.

2. In the Edit Adviser Syntax window, press the Insert key and then
press Return a few times to insert several blank lines at the top of the
file.

3. Insert the following text in the space you just created at the top of the
syntax:

print gbl_cpu_total_util

4. From the Syntax menu, select Install Syntax. The Edit Adviser
Syntax window closes and the print statement executes the next time
GlancePlus updates its data.

When you select Install Syntax, GlancePlus checks your syntax for
correctness. If an error is found, an error message is displayed at the
top of the window. For an explanation of any syntax error messages,
see GlancePlus Messages in the online help.

5. Look at the window from which you started GlancePlus. The numbers
appearing in that window result from GlancePlus printing the value
of a global GlancePlus metric (your global CPU utilization) every
update interval.

Refer to “Printing CPU Utilization During High CPU Usage” on page
32 to see how you can print CPU utilization to stdlist only when
your CPU is very busy.
Chapter 4 31

Displaying GlancePlus Data
Printing CPU Utilization During High CPU Usage
Printing CPU Utilization During High CPU
Usage
Perhaps you want to print CPU utilization only when usage exceeds 90%
busy.

1. Go back to the Edit Adviser Syntax window and replace the line
you typed with the following:

IF gbl_cpu_total_util > 90 THEN
print "total cpu utilization is high: ", \
gbl_cpu_total_util

2. From the Syntax menu, select Install Syntax. The Edit Adviser
Syntax window closes, and the print statement executes the next
time GlancePlus updates its data.

When you select Install Syntax, GlancePlus checks your syntax for
correctness. If an error is found, an error message is displayed at the
top of the window. For an explanation of any syntax error messages,
see GlancePlus Messages in the online help.

3. Look at the window from which you started GlancePlus. You may not
see any numbers because data only displays when your CPU is more
than 90% busy.

4. To start a program that uses a lot of CPU and view what happens,
type the following at a shell prompt (sh or ksh) to cause a loop:

while true

do

A=1

done

This makes the shell loop until you interrupt it with Ctrl-c. When
the loop starts, the Adviser starts printing out information.
Chapter 432

Displaying GlancePlus Data
Sending E-mail Messages
Sending E-mail Messages
You can use metrics that are shown in different GlancePlus windows in
your Adviser syntax. Rather than printing metrics to stdout, you can
send the same information to yourself in an email message.

1. Go to the Edit Adviser Syntax Window, and replace the line you
typed with the following:

IF gbl_cpu_total_util > 90 THEN
exec "echo 'cpu is too high ", gbl_cpu_total_util, \
"% ' | mail root"

2. From the Syntax menu, select Install Syntax. The Edit Adviser
Syntax window closes.

When you select Install Syntax, GlancePlus checks your syntax for
correctness. If an error is found, an error message is displayed at the
top of the window. For an explanation of any syntax error messages,
see GlancePlus Messages in the online help.
Chapter 4 33

Displaying GlancePlus Data
Printing Process Information Within a Loop
Printing Process Information Within a Loop
To customize your syntax further, you can combine metrics, define
variables, and use looping constructs. This example shows how you can:

❏ Construct loops inside conditions which only execute when a potential
problem situation arises.

❏ Use variables inside the adviser syntax to keep track of things inside
loops. You could change the thresholds in this example to isolate
problems unique to your environment.

This example tests for an overall high global system mode CPU
utilization. When GlancePlus encounters this situation, it loops through
all the active processes, printing out information about the process with
the highest percentage of time spent in system mode.

1. Go back to the Edit Adviser Syntax window, and replace the line
you typed with the following:

// check for high system-mode cpu utilization, and when it
is high,
// print the highest sys cpu consuming process:
IF gbl_cpu_sys_mode_util > 50 THEN{
highestsys = 0
process loop {

IF proc_cpu_sys_mode_util > highestsys THEN{
highestpid = proc_proc_id
highestname = proc_proc_name
highestsys = proc_cpu_sys_mode_util

}
}
print "--- High system cpu rate = ",

gbl_cpu_sys_mode_util, " at ",
gbl_stattime, " ---"

print " Process with highest system cpu was pid ",
highestpid,

", name: ", highestname
print " which had", highestsys, " percent system mode

cpu ",
"utilization"

}

Chapter 434

Displaying GlancePlus Data
Printing Process Information Within a Loop
2. From the Syntax menu, select Install Syntax. The Edit Adviser
Syntax window closes, and the print statement executes the next
time GlancePlus updates its data.
Chapter 4 35

Displaying GlancePlus Data
Printing to a File
Printing to a File
You can print information to a file by using the PRINT statement in the
Adviser Syntax and by rerouting stdout to a file.

By using the PRINT statement, which sends its output to the defined
stdout of GlancePlus, you can format metrics with literal constants and
user-defined variables. To reroute the stdout, start GlancePlus by
appending <filename> to the command line. This causes all output
destined for stdout to be placed in the file specified by <filename>.

The following example shows how to print global and process metrics to a
file:
Chapter 436

5 Adviser Syntax Structure
Chapter 5 37

Adviser Syntax Structure
Introduction
Introduction
The Adviser syntax is a simple script language that allows you to set
alarms and define symptom conditions. These alarms and symptoms
monitor your system and notify you when selected performance metrics
are exceeding threshold limits.

A default syntax file is provided in /var/opt/perf/adviser.syntax.
You can edit the syntax file to define your own alarms and symptoms.

A specific syntax file can be requested at run time with the -syntax
<filename> parameter. If no syntax file is specified, the Adviser looks for
a user default file, adviser.syntax in your home directory. If no user
default is found, the Adviser looks for the system default syntax file in
/var/opt/perf/adviser.syntax.

This chapter shows the structure for both the Alarm and Symptom
syntax. For more detailed information on the elements of the syntax,
check the desired element.

This chapter includes the following topics:

❏ Alarm Syntax

❏ Symptom Syntax
Chapter 538

Adviser Syntax Structure
Alarm Syntax
Alarm Syntax
ALARM condition [FOR duration {SECONDS, MINUTES, INTERVALS}]

[condition [FOR duration {SECONDS, MINUTES, INTERVALS}]] ...
[START statement]
[REPEAT [EVERY duration [SECONDS, MINUTES, INTERVALS]]
statement]
[END statement]

[(RED or CRITICAL), (YELLOW or WARNING), RESET] ALERT
statement

ALIAS variable = alias name
[VAR] variable = expression
{

compound statements
}
EXEC printlist
GPM -rpt reportlist
IF condition
THEN statement
[ELSE statement]

{APPLICATION, APP, CPU, DISK, DISK_DETAIL, FILESYSTEM, FS,
FS_DETAIL, LAN, LOGICALVOLUME, LV, LV_DETAIL, NETIF, NFS,
NFS_BYSYS_OPS, NFS_OP, PRM, PRM_BYVG, PROCESS, PROC, PROC_FILE,
PROC_REGION, PROC_SYSCALL, SWAP, SYSTEMCALL, SC, THREAD,
TRANSACTION, TT, TTBIN, TT_CLIENT, TT_INSTANCE, TT_UDM,
TT_RESOURCE, TT_INSTANCE_CLIENT, TT_INSTANCE_UDM, TT_CLIENT_UDM}
LOOP statement
PRINT printlist
Chapter 5 39

Adviser Syntax Structure
Symptom Syntax
Symptom Syntax
SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]

RULE measurement {>, <, <=, >=, ==, !=} value PROB probability

[RULE measurement {>, <, <=, >=, ==, !=} value PROB probability]
Chapter 540

6 Adviser Syntax Reference
Chapter 6 41

Adviser Syntax Reference
Introduction
Introduction
This chapter includes the following topics:

❏ Syntax Conventions

❏ Comments

❏ Conditions

❏ Constants

❏ Expressions

❏ Metric Names in Adviser Syntax

❏ Printlist

❏ Variables
Chapter 642

Adviser Syntax Reference
Syntax Conventions
Syntax Conventions

❏ Braces ({ }) indicate that one of the choices is required.

❏ Brackets ([]) indicate an optional item.

❏ Items separated by commas within brackets or braces are options.
Choose only one.

❏ Italics indicate a variable name that you will replace.

❏ All CAPS are Adviser syntax keywords.
Chapter 6 43

Adviser Syntax Reference
Comments
Comments
Syntax:

[any text or characters]

or

// [any text or characters]

You can precede comments either by double forward slashes (//) or the
pound sign (#). In both cases, the comment ends at the end of the line.
Chapter 644

Adviser Syntax Reference
Conditions
Conditions
A condition is defined as a comparison between two metric names, user
variables, or numeric constants.

item1 {>, <, >=, <=, ==, !=} item2 [OR item3 \
{>, <, >=, <=, ==, !=} item4]

or:

item1 {>, <, >=, <=, ==, !=} item2 [AND item3 \
{>, <, >=, <=, ==, !=} item4]

("==" means "equal", and "!=" means "not equal".)

Conditions are used in the ALARM statement and the IF statement.
They can be used to compare two numeric metrics, variables or
constants, and they can also be used between two string metric names,
user variables or string constants. For string conditions, only == or !=
can be used as operators.

You can use compound conditions by specifying the OR or AND operator
between subconditions.

Examples:

gbl_swap_space_reserved_util > 95
proc_proc_name == "test" OR proc_user_name == "tester"
proc_proc_name != "test" AND

proc_cpu_sys_mode_util > highest_proc_so_far
Chapter 6 45

Adviser Syntax Reference
Constants
Constants
Constants can be either alphanumeric or numeric. An alphanumeric
constant must be enclosed in double quotes. There are two kinds of
numeric constants: integer and real. Integer constants may contain only
digits and an optional sign indicator. Real constants may also include a
decimal point.

Examples:

345 Numeric integer

345.2 Numeric real

“Time is” Alphanumeric literal
Chapter 646

Adviser Syntax Reference
Expressions
Expressions
Use expressions to evaluate numerical values. An expression can be used
in a condition or an action.

An expression can contain:

❏ numeric constants

❏ numeric metric names

❏ numeric variables

❏ an arithmetic combination of the above

❏ a combination of the above grouped together using parentheses

Examples:

Iteration + 1
3.1416
gbl_cpu_total_util - gbl_cpu_user_mode_util
(100 - gbl_cpu_total_util) / 100.0
Chapter 6 47

Adviser Syntax Reference
Metric Names in Adviser Syntax
Metric Names in Adviser Syntax
You can directly reference metrics anywhere in the Adviser syntax. You
can use the following types of metrics in the Adviser syntax:

❏ global metrics (prefixed with gbl_ or tbl_)

❏ application metrics (prefixed with app_)

❏ process metrics (prefixed with proc_)

❏ disk metrics (prefixed with bydsk_)

❏ by CPU metrics (prefixed with bycpu_)

❏ file system metrics (prefixed with fs_)

❏ logical volume metrics (prefixed with lv_)

❏ network interface metrics (prefixed with bynetif_)

❏ swap metrics (prefixed with byswp_)

❏ ARM metrics (prefixed with tt_ or ttbin_)

❏ PRM metrics (prefixed with prm_)

You can only use process, logical volume, disk, file system, LAN, and
swap metrics within the context of a LOOP statement.

Metrics can contain alphanumeric (for example, gbl_machine or
app_name) or numeric data and can reflect several different kinds of
measurement. For example, the metric ending of a metric name indicates
what is being measured:

❏ a _util metric measures utilization in percentages

❏ a _rate metric measures units per second

❏ a _queue metric measures the number of processes or threads waiting
for a resource

If you are unsure of the unit of measure for a specific metric, refer to the
metric definition in online help.

You must associate an application metric with a specific application,
except when using the LOOP statement. To do this, specify the
application name followed by a colon, and then the metric name. For
example, other_apps:app_cpu_total_util specifies the total CPU
Chapter 648

Adviser Syntax Reference
Metric Names in Adviser Syntax
utilization for the application other_apps. Refer to the ALIAS statement
description for more information on using application metrics in the
syntax.

Application names, as defined by the parm file, may contain special
characters and embedded blanks. To use these names in the syntax
(where application names must match the form of a variable name), the
names are made case-insensitive and embedded blanks are converted to
underlines. This means that the application name defined as "Other
Apps" may be referenced in the syntax as "other_apps". For application
names defined with special characters, you must use the ALIAS
statement to specify an alternate name.

When explicitly qualified, application metrics may be referenced
anywhere in the syntax. Unqualified application metrics may only be
referenced within the context of the LOOP statement. This is an
iterative statement which implicitly qualifies application or process
metrics.

You can only reference process metrics within the context of a LOOP
statement. There is no way to explicitly reference a process.
Chapter 6 49

Adviser Syntax Reference
Printlist
Printlist
The printlist is any combination of properly formatted expressions,
Metric Names, user variables, or constants. See the examples for the
proper formatting.

Expression examples:

expression [|width[|decimals]]

Metric Names or User Variable examples:

metric names [|width[|decimals]]

or

user variables [|width[|decimals]]

The metric names or user variables must be alphanumeric.

Constant examples:

No formatting is necessary for constants.

Formatted Examples:

gbl_cpu_total_util|6|2 formats as '100.00'
(100.32 + 20)|6 formats as ' 120'
gbl_machine|5 formats as '7013/'
"User Label" formats as "User Label"
Chapter 650

Adviser Syntax Reference
Variables
Variables
Variables must begin with a letter and can include letters, digits, and the
underscore character. Variables are not case-sensitive.

Define a variable by assigning something to it. The following example
defines the numeric variable highest_CPU_value by assigning it a value
of zero.

highest_CPU_value = 0

The following example defines the alphanumeric variable my_name by
assigning it a null string value.

my_name = ""
Chapter 6 51

Adviser Syntax Reference
Variables
Chapter 652

7 Adviser Syntax Statements
Chapter 7 53

Adviser Syntax Statements
Introduction
Introduction
This chapter contains information about:

❏ ALARM Statement

❏ ALERT Statement

❏ ALIAS Statement

❏ ASSIGNMENT Statement

❏ COMPOUND Statement

❏ EXEC Statement

❏ GPM Statement

❏ IF Statement

❏ LOOP Statement

❏ PRINT Statement

❏ SYMPTOM Statement
Chapter 754

Adviser Syntax Statements
ALARM Statement
ALARM Statement
Use the ALARM statement to notify you when certain events, which you
define, occur on your system. Using the ALARM statement, the Adviser
can notify you in a number of different ways:

❏ through messages to the Alarm History window

❏ through messages sent to your originating shell

❏ by automatically opening a GlancePlus window

Syntax:

ALARM condition [FOR duration {SECONDS, MINUTES, INTERVALS}]
[condition [FOR duration {SECONDS, MINUTES, INTERVALS}]] ...

[START statement]

[REPEAT [EVERY duration [SECONDS, MINUTES, INTERVAL, INTERVALS]]
statement]

[END statement]

The ALARM statement must be a top-level statement. It cannot be
nested within any other statement.

However, you can include several ALARM conditions in a single ALARM
statement, in which case all conditions must be true for the alarm to
trigger. And you can also use a COMPOUND Statement, which is
executed at the appropriate time during the alarm cycle.

START, REPEAT, and END are ALARM statement keywords. Each of
these keywords specifies a statement. You must have a START, REPEAT,
or END in an ALARM statement, and they must be listed in correct
order.

The alarm cycle begins on the first interval that all of the alarm
conditions have been true for at least the specified duration. At that
time, the Adviser executes the START statement, and on each
subsequent interval checks the REPEAT condition. If enough time has
transpired, the statement for the REPEAT clause is executed. This
continues until one or more of the alarm conditions becomes false. This
completes the alarm cycle and the END statement is executed.
Chapter 7 55

Adviser Syntax Statements
ALARM Statement
If you omit the EVERY specification from the REPEAT statement, the
Adviser executes the REPEAT statement at each interval.

ALARM Example: Typical ALARM Statement

The following ALARM example sets a red alert when the semaphore
table is almost full. It is similar to a predefined Alarm in the default
syntax. Do not add this to your syntax without removing the default, or
your subsequent alert messages may be confusing.

ALARM tbl_sem_table_util > 90 FOR 1 MINUTE

START RED ALERT "Semaphore Table is nearly full"

REPEAT EVERY 30 SECONDS
RED ALERT "Semaphore Table still nearly full"

END RESET ALERT "End of Semaphore Table full condition"

This ALARM example tests the metric tbl_sem_table_util to see if it
is greater than 90. If it is, the RED ALERT statement changes the
[ALARM] button label on the GlancePlus Main window (or on the
GlancePlus icon if you are running in iconified mode) to red and places
the Semaphore Table is nearly full message in the Alarm History
window.

The REPEAT statement checks for the tbl_sem_table_util condition
every 30 seconds. As long as the condition is greater than 90, the
REPEAT tells the Adviser to maintain a RED ALERT condition and
sends the Semaphore Table still nearly full message to the Alarm
History window.

When the tbl_sem_table_util condition goes below 90, the RESET
ALERT statement turns off the alert color and logs the
End of Semaphore Table full condition message in the Alarm
History window.
Chapter 756

Adviser Syntax Statements
ALARM Statement
ALARM Example: Using COMPOUND Statements

Use the following example to use a COMPOUND statement within the
ALARM statement. This example shows you how to make the Adviser
open a window when an event occurs and how to print a statement to
your originating GlancePlus shell:

ALARM cpu_bottleneck > 90 FOR 1 MINUTE
START {
RED ALERT "Your CPU is bottlenecked."
GPM -rpt cpugraph
PRINT "CPU is running at: ", gbl_cpu_total_util

}
END
RESET ALERT "CPU crisis is over."

ALARM Example: Using Multiple Conditions

You can have more than one test condition in the ALARM statement. In
this case, each statement must be true for the alarm button to activate.
For example:

ALARM gbl_cpu_total_util > 90 FOR 2 MINUTES
gbl_cpu_sys_mode_util > 50 FOR 1 MINUTES
START RED ALERT
"The CPU is busy and System Mode CPU utilization is
high."

END RESET ALERT "The CPU alert is now over."

This ALARM example tests the metric gbl_cpu_total_util and
CPU_Bottleneck. If both conditions are true, the RED ALERT statement
sets a critical alert. When either test condition becomes false, the RESET
is executed.
Chapter 7 57

Adviser Syntax Statements
ALARM Statement
ALARM Example: Process Table

ALARM tbl_proc_table_util > 90 FOR 1 MINUTES
START RED ALERT "Proc table is nearly full"
END RESET ALERT "End of Proc table full condition"

This alarm turns the [ALARM] button red when the process table is full.
This red alert alarm also shows up in the Alarm History window.

ALARM Example: Swap Space

//GLOBAL SWAP ALARM
symp_swap_util = gbl_swap_space_used / gbl_swap_space_avail
ALARM symp_swap_util > 0.9
START
RED ALERT "GLOBAL SWAP space is nearly full"

END RESET ALERT "GLOBAL SWAP space crisis is over"

The new variable, symp_swap_util, represents swap utilization. The
Adviser sends an alarm when the swap utilization exceeds 90%. On the
next interval that symp_swap_util falls below 90%, the alarm condition
becomes false, and the ALARM is reset.
Chapter 758

Adviser Syntax Statements
ALARM Statement
ALARM Example: Yellow Alert

ALARM Symp_Global_Cpu_Bottleneck > 50 FOR 2 MINUTES

START YELLOW ALERT "CPU Bottleneck probability= ",
Symp_Global_Cpu_Bottleneck, "% for the last 2 minutes"

REPEAT every 2 minutes
YELLOW ALERT "CPU Bottleneck probability= ",
Symp_Global_Cpu_Bottleneck, "% for the last 2 minutes"

END
RESET ALERT " CPU Bottleneck Yellow Alert over, probability=",
Symp_Global_Cpu_Bottleneck, "%"

The ALARM tests the SYMPTOM variable, which is defined in the
SYMPTOM Statement Symp_Global_Cpu_Bottleneck. If the
SYMPTOM variable is greater than 50 for two minutes, the ALARM
notifies you with a YELLOW ALERT to your main GlancePlus window.
The CPU Bottleneck probability message is recorded in the Alarm
History window.

The ALARM REPEATs every 2 minutes until the ALARM condition is
false. At that time, END RESETs the ALERT and posts the
corresponding message to the Alarm History window. During each
interval that the Symp_Global_Cpu_Bottleneck is greater than 50%, the
CPU Util global bar heading is highlighted.
Chapter 7 59

Adviser Syntax Statements
ALARM Statement
ALARM Example: CPU Problem

ALARM

gbl_cpu_total_util > 90 FOR 30 SECONDS

gbl_run_queue > 3 FOR 30 SECONDS

START YELLOW ALERT "CPU AT ", gbl_cpu_total_util,
"% at ", gbl_stattime

REPEAT EVERY 300 SECONDS {
RED ALERT "CPU AT ", gbl_cpu_total_util
exec "/usr/bin/pager -n 555-3456"

}

END ALERT "CPU at ", gbl_cpu_total_util, "% at ",
gbl_stattime, " - RELAX"

This example lights a yellow alert on the [ALARM] button or icon and
writes a message to the Alarm History window whenever CPU
utilization exceeds 90% for 30 seconds and the CPU run queue exceeds 3
for 30 seconds.

If both conditions remain true, gpm generates a red alert, writes another
message to the Alarm History window and runs a program to page the
system administrator.

When either of the alarm conditions fails to be true, the [ALARM] button
or icon resumes its normal color and a message is written to the Alarm
History window giving the global CPU utilization, the time the alert
ended, and a note to RELAX.
Chapter 760

Adviser Syntax Statements
ALERT Statement
ALERT Statement
The ALERT statement is used to place a message in the Alarm History
window. Whenever an ALARM detects a problem it can execute an
ALERT statement to activate the [ALARM] button label on the
GlancePlus Main window or the icon border to notify you of a problem.
A user-customized message, specified by printlist, records the event in
the Alarm History window. You can use the ALERT statement in
conjunction with an ALARM statement.

Syntax:

[(RED or CRITICAL), (YELLOW or WARNING), RESET] ALERT
printlist

RED and YELLOW, are synonymous with CRITICAL and WARNING.
These keywords place the printlist in the Alarm History window,
along with the time and alarm level, in red or yellow characters. They
also change the text color of the [ALARM] button on the Main window to
red or yellow, or if iconified, set the icon border to a flashing red or yellow
color. If you prefer, you can set a no priority alert (not red or yellow, just
information to the Alarm History window).

RESET records the printlist in the Alarm History window and resets
any colors on the icon or [ALARM] button to their normal color.

ALERT Example

An example an ALERT statement is:

RED ALERT "CPU utilization = ", gbl_cpu_total_util,
" at ", gbl_stattime

When executed this statement turns the [ALARM] button label red or, if
GlancePlus is iconified, puts a flashing red border in the icon and writes
a message in the Alarm History window that reads, for example:

CPU utilization = 85.6 at 14:43:10
Chapter 7 61

Adviser Syntax Statements
ALIAS Statement
ALIAS Statement
Use the ALIAS statement to assign a variable to an application name
that contains special characters or imbedded blanks.

Syntax:

ALIAS variable = "alias name"

ALIAS Example

Because you cannot use special characters or imbedded blanks in the
syntax, using the application name "other user root" in the PRINT
statement below would have caused an error. Using ALIAS, you can still
use "other user root" or other strings with blanks and special
characters within the syntax.

ALIAS otherapp = "other user root"

PRINT "CPU for other root login processes is: ",
otherapp:app_cpu_total_util
Chapter 762

Adviser Syntax Statements
ASSIGNMENT Statement
ASSIGNMENT Statement
Use the ASSIGNMENT statement to assign a numeric or alphanumeric
value, expression, to the user variable.

Syntax:

[VAR] variable = expression
[VAR] variable = alphaitem
[VAR] variable = alphaitem

ASSIGNMENT Examples

A user variable is determined to be numeric or alphanumeric at the first
assignment. You cannot mix variables of different types in an
assignment statement.

1. This example assigns an alphanumeric application name to a new
user variable:

myapp_name = other:app_name

2. This example is incorrect because it assigns a numeric value to a user
variable that was previously defined as alphanumeric (in example 1):

myapp_name = 14

3. This example assigns a numeric value to a new user variable:

highest_cpu = gbl_cpu_total_util

4. This example is incorrect because it assigns an alphanumeric literal
to a user variable that was previously defined as numeric (in example
3):

highest_cpu = "Time is"
Chapter 7 63

Adviser Syntax Statements
COMPOUND Statement
COMPOUND Statement
Use the COMPOUND statement with the IF statement, the LOOP
statement, and the START, REPEAT, and END clauses of the ALARM
statement. By using a COMPOUND statement, a list of statements can
be executed.

Syntax

{
statement
statement
}

Construct compound statements by grouping a list of statements inside
braces ({}). The compound statement can then be treated as a single
statement within the syntax.

Compound statements cannot include ALARM and SYMPTOM
statements. (Compound is a type of statement and not a keyword.)

COMPOUND Example

highest_cpu = highest_cpu
IF gbl_cpu_total_util > highest_cpu THEN

// Begin compound statement
{

highest_cpu = gbl_cpu_total_util
PRINT "Our new high CPU value is ", highest_cpu, "%"

}
// End compound statement

In this example, highest_cpu = highest_cpu defines a variable called
highest_cpu. The Adviser saves the highest_cpu value and notifies you
only when that highest_cpu value is exceeded by a higher highest_cpu
value.

In the example, if you replaced highest_cpu = highest_cpu with
highest_cpu = 0, then the highest_cpu value would be reset to zero at
each interval.

You would be notified at each interval what your highest_cpu value is.
Chapter 764

Adviser Syntax Statements
EXEC Statement
EXEC Statement
Use the EXEC statement to execute a UNIX command from within your
Adviser syntax. You could use the EXEC command, for example, if you
wanted to send a mail message to the MIS staff each time a certain
condition is met.

Syntax

EXEC printlist

The resulting printlist is submitted to your operating system for
execution.

Because the EXEC command you specify may execute once every update
interval, be careful when using the EXEC statement with UNIX
commands or scripts that have high overhead. For example, you would
not want to rebuild the kernel inside a gpm EXEC statement.

EXEC Examples

In the following example, EXEC executes the UNIX mailx command at
every interval.

EXEC "echo 'gpm mailed you a message' | mailx root"

In the following example, EXEC executes the UNIX mailx command
only when the gbl_disk_util_peak metric exceeds 20.

IF gbl_disk_util_peak > 20 THEN
EXEC "echo 'gpm detects high disk utilization' | mailx
root"
Chapter 7 65

Adviser Syntax Statements
GPM Statement
GPM Statement
Use the GPM command to have selected GlancePlus windows display
whenever conditions that you specify are met.

Syntax:

GPM -rpt reportlist

The reportlist contains the GlancePlus window names for the
windows you want to display. In reportlist, the window names should
be separated by commas. Refer to the Windows List in the online help for
GlancePlus windows.

GPM Example

IF gbl_run_queue > 3 THEN
GPM -rpt CpuGraph
Chapter 766

Adviser Syntax Statements
IF Statement
IF Statement
Use the IF statement to test conditions you define in the Adviser
syntax.

Syntax:

IF condition THEN statement [ELSE statement]

The IF statement tests the condition. If true, the statement after the
THEN is executed. If the condition is false, then the action depends on
the optional ELSE clause.

If an ELSE clause has been specified, the statement following it is
executed. Otherwise, the IF statement does nothing. The statement can
be a COMPOUND statement which tells the Adviser to execute multiple
statements.

IF Example

IF gbl_cpu_total_util > 90 THEN
PRINT "The CPU is running hot at: ", gbl_cpu_total_util

ELSE IF gbl_cpu_total_util < 20 THEN
PRINT "The CPU is idling at: ", gbl_cpu_total_util

In this example, the IF statement is checking the condition
(gbl_cpu_total_util > 90). If the condition is true, then "The CPU is
running hot at: " is displayed on stdout along with the % of CPU
used.

If the (gbl_cpu_total_util > 90) condition is false, ELSE IF goes to
the next line and checks the condition (gbl_cpu_total_util < 20). If
that condition is true, then "The CPU is idling at: " is displayed on
stdout along with the % of CPU used.
Chapter 7 67

Adviser Syntax Statements
LOOP Statement
LOOP Statement
Use LOOP statements to find information about your system. For
example, you can find the process that uses the highest percentage of
CPU or the swap area that is being utilized most. You find this
information with the LOOP statement and with corresponding
statements that use metric names for the system conditions on which
you are gathering information.

Syntax:

{APPLICATION, APP, CPU, DISK, DISK_DETAIL, FILESYSTEM,
FS, FS_DETAIL, LAN, LOGICALVOLUME, LV, LV_DETAIL, NETIF,
NFS, NFS_BYSYS_OPS, NFS_OP, PRM, PRM_BYVG, PROCESS, PROC,
PROC_FILE, PROC_REGION, PROC_SYSCALL, SWAP, SYSTEMCALL,
SC, THREAD, TRANSACTION, TT, TTBIN, TT_CLIENT,
TT_INSTANCE, TT_UDM, TT_RESOURCE, TT_INSTANCE_CLIENT,
TT_INSTANCE_UDM, TT_CLIENT_UDM}
LOOP statement

A LOOP can be nested within other syntax statements, but you can only
nest up to five levels. The statement may be a COMPOUND statement
which contains a block of statements to be executed on each iteration of
the loop. A BREAK statement allows the escape from a LOOP statement.

If you have a LOOP statement in your syntax for collecting specific data
and there is no corresponding metric data on your system, the Adviser
skips that LOOP and continues to the next syntax statement or
instruction. For example, if you have defined a LOGICAL VOLUME
LOOP, but have no logical volumes on your system, the Adviser skips
that LOGICAL VOLUME LOOP and continues to the next syntax
statement.

Loops that do not exist on your platform generate a syntax error.

As LOOP statement iterates through each interval, the values for the
metric used in the statement change. For example, the following LOOP
statement executes the PRINT statement once for each active
application on the system, causing the name of each application to be
printed.

APP LOOP

PRINT app_name
Chapter 768

Adviser Syntax Statements
LOOP Statement
On a threaded operating system such as HP_UX 11.0, the Adviser
supports a THREAD LOOP. A thread loop can be nested inside a process
loop in order to examine each thread for a particular process. If you do
reference a PROC_ metric inside a thread loop, it could return unexpected
results (thread information).

A thread loop can also exist outside a process loop. In this case, it
examines all threads active on the system. You should not nest a process
loop within a thread loop.

Because LOOP statements are initiated at each interval, use them with
discretion due to possible performance implications. This caution is
especially appropriate with regards to using nested LOOP statements.

APPLICATION LOOP Example

Use the APPLICATION LOOP statement to cycle through all active
applications.

You can use global (gbl_), table (tbl_), or application (app_) metrics
with the APPLICATION LOOP.

The following example uses an Application LOOP to find the application
with the highest CPU for an interval.

big_app = ""
highest_cpu = 0
APPLICATION LOOP
IF (app_cpu_total_util > highest_cpu) THEN
{
highest_cpu = app_cpu_total_util
big_app = app_name

}
IF (highest_cpu > 20) THEN
YELLOW ALERT "The application ", big_app,
" is the highest CPU user at", highest_cpu, "%"

After finding the application, the Adviser writes a message to the Alarm
History window with the app_name and CPU value, if the CPU value is
greater than 20.
Chapter 7 69

Adviser Syntax Statements
LOOP Statement
CPU LOOP Example

Use the CPU LOOP statement to cycle through data about CPU use on
your system. You can use global (gbl_), table (tbl_), or by CPU (bycpu_
metrics with the CPU LOOP.

This example prints CPU usage percentage for each CPU on your
system.

Print "----------", glb_stattime, "----------"
CPU LOOP
PRINT "CPU # ", bycpu_id, " used ", bycpu_cpu_total_util, "

% CPU"

On a system with two CPUs, the resulting output for two intervals:

----------10:52:01----------
CPU # 0 used 0.6 % CPU
CPU # 1 used 3.4 % CPU
----------10:52:11----------
CPU # 0 used 0.4 % CPU
CPU # 1 used 2.3 % CPU

DISK LOOP Example

Use the DISK LOOP statement to loop through your configured disk
devices. When you use this LOOP, the Adviser checks for specific disk
information that appears in the IO by Disk window. You can use global
(gbl_), table (tbl_) or by disk metrics with the DISK LOOP.

This example prints the physical write rate for each disk on your system.

PRINT "---------------------", gbl_stattime,
"--------------------"
DISK LOOP
PRINT bydsk_devname, " write rate: ", bydsk_phys_write_rate

On a system with three disks, the resulting output for two intervals:

---------------------11:00:23------------------------
/dev/hdisk0 write rate: 2.4
/dev/hdisk1 write rate: 0.0
/dev/cd0 write rate: 0.0

---------------------11:00:33------------------------
/dev/hdisk0 write rate: 0.0
/dev/hdisk1 write rate: 0.0
/dev/cd0 write rate: 0.0
Chapter 770

Adviser Syntax Statements
LOOP Statement
FILE SYSTEM LOOP Example

The FILE SYSTEM LOOP is designed to loop through configured file
systems and allow the Adviser to report on information accessible in the
IO By File System window. You can use global (gbl_), table (tbl_), or
IO by file system (fs_) metrics with the FILE SYSTEM LOOP.

The following example reports the space utilized for each file system
device on a system with three devices.

PRINT "-------------------", gbl_stattime,
"----------------------"
FS LOOP
PRINT fs_devname, " is ", fs_space_util, "% full at ",
fs_max_size," megabytes"

The output for two intervals on a system with three file systems is:

---------------------11:11:28------------------------
/dev/hd4 is 77.9% full at 32 megabytes
/dev/hd2 is 94.9% full at 928 megabytes
/dev/hd9var is 93.9% full at 56 megabytes

---------------------11:11:38------------------------
/dev/hd4 is 77.9% full at 32 megabytes
/dev/hd2 is 94.9% full at 928 megabytes
/dev/hd9var is 93.6% full at 56 megabytes
Chapter 7 71

Adviser Syntax Statements
LOOP Statement
NFS BY OPERATION LOOP Example

Use the NFS BY OPERATION LOOP to loop through NFS operations
performed. When you use this LOOP, the Adviser checks for specific NFS
operations that appear in the NFS By Operation window. You can use
either global (gbl_), table (tbl_), or by operation metrics with the
NFS_OP LOOP.

The following example prints the server and client operations performed:

PRINT "--------------------", gbl_stattime,
"---------------------"
NFS_OP LOOP
PRINT byop_server_count," server and ",byop_client_count,
" client ",byop_name," operations performed"

On a system performing no activity as an NFS server but with users
doing directory listing on another NFS server, the resulting output is:

---------------------14:55:41------------------------

0 server and 0 client null operations performed
0 server and 2 client getattr operations performed
0 server and 0 client setattr operations performed
0 server and 0 client root operations performed
0 server and 886 client lookup operations performed
0 server and 884 client readlink operations performed
0 server and 0 client read operations performed
0 server and 0 client writecache operations performed
0 server and 0 client write operations performed
0 server and 0 client create operations performed
0 server and 0 client remove operations performed
0 server and 0 client rename operations performed
0 server and 0 client link operations performed
0 server and 0 client symlink operations performed
0 server and 0 client mkdir operations performed
0 server and 0 client rmdir operations performed
0 server and 28 client readdir operations performed
0 server and 1 client statfs operations performed
Chapter 772

Adviser Syntax Statements
LOOP Statement
NETWORK INTERFACE LOOP Example

Use the NETWORK INTERFACE LOOP to loop through configured LAN
devices and to report on information from the Network by Interface
window. You can use global (gbl_), table (tbl_), or by network interface
(bynetif_) metrics with the LAN LOOP.

This version will only work with hp-ux 11.x.If you want it to
work for 10.20 you need to remove the "BYNETIF_QUEUE," string
below as that metric is only available from 11.x glance.

The following string variable should be changed to the interface
of interest. For example:
netif_to_examine = "lan0"
If you want to see all interfaces, leave it an empty string (""):
netif_to_examine = ""

initialize variables:

headers_printed = headers_printed
netif loop {
print information for the selected interface or if null then all:
IF (BYNETIF_NAME == netif_to_examine) or

(netif_to_examine == "") THEN
{

print headers the first time through the loop:
IF headers_printed == 0 THEN

{
print "Time Interface InPkts OutPkts OutQ Colls Errs"
print " "
headers_printed = 1

}
print one line per interface reported:

print GBL_STATTIME, " ", BYNETIF_NAME|8,
BYNETIF_IN_PACKET, BYNETIF_OUT_PACKET,
BYNETIF_QUEUE, BYNETIF_COLLISION, BYNETIF_ERROR

(note that some interface types do not report collisions or
errors)

}
}
print " "

The resulting output:

Time Interface InPkts OutPkts OutQ Colls Errs

22:43:42 lan3 49 3 0 0 0
22:43:42 lan0 0 0 0 0 0
22:43:42 lan1 0 0 0 0 0
Chapter 7 73

Adviser Syntax Statements
LOOP Statement
22:43:42 lan2 0 0 0 0 0
22:43:42 lo0 0 0 0 0 0

22:43:47 lan3 329 2 0 0 0
22:43:47 lan0 0 0 0 0 0
22:43:47 lan1 0 0 0 0 0
22:43:47 lan2 0 0 0 0 0
22:43:47 lo0 0 0 0 0 0

LOGICAL VOLUME Example

Use LOGICAL VOLUME loops to loop through your configured logical
volumes. You can use either global (gbl_), table (tbl_), or logical volume
metrics with the LOGICAL VOLUME LOOP.

PRINT "-----------------", gbl_stattime, "-------------------"
LV LOOP
PRINT "Volume ", lv_dirname, " was read at a rate of ",
lv_read_rate, " per second"

The resulting output for two intervals on a system with logical volumes:

----------------------------11:46:50------------------------------
Volume /dev/vg00 was read at a rate of 0.0 per second
Volume /dev/vg00/group was read at a rate of 0.0 per second
Volume /dev/vg00/1vol3 was read at a rate of 314.3 per second

----------------------------11:47:00------------------------------
Volume /dev/vg00 was read at a rate of 0.0 per second
Volume /dev/vg00/group was read at a rate of 0.0 per second
Volume /dev/vg00/1vol3 was read at a rate of 70.6 per second
Chapter 774

Adviser Syntax Statements
LOOP Statement
PRM LOOP Example

Use the PRM LOOP to cycle through information found in the PRM
Group List Window. You can use global (gbl_), table (tbl_), or
application metrics with the PRM LOOP.

The following PRM LOOP example checks for high run queue and any
PRM groups exceeding their CPU entitlements.

IF gbl_run_queue > 3 THEN {
print " "

print "--- High run queue = ", gbl_run_queue, " at ",
gbl_stattime,

" ---"
prm loop {

IF app_prm_state > 2 THEN
IF app_cpu_total_util > app_prm_cpu_entitlement THEN
print " Note PRM group ", app_name_prm_groupname,
" exceeds entitlement."

}
}

The output printed at each interval is:

--- High run queue = 3.4 at 15:53:29 ---
Note PRM group Testing exceeds entitlement.
Chapter 7 75

Adviser Syntax Statements
LOOP Statement
PRM_BYVG LOOP Example

Use the PRM_BYVG loop to loop through PRM groups for a volume
group. (Note that PRM information is only available for volume groups
that are specified in the PRM configuration file.) The PRM_BYVG loop
must be nested within a LV loop. The following example displays disk
resource usage statistics by PRM group.

PRM loop {
disk_state = app_prm_disk_state

}

IF disk_state == 0 THEN{
print " Disk manager state: Not Installed"

}

else IF disk_state == 1 THEN {
print " Disk manager state: Reset"

}

else IF disk_state == 2 THEN {
print " Disk manager state: Disabled"

}

else IF disk_state == 3 THEN {

print " Disk manager state: Enabled"

lv loop {

IF lv_type == "G" THEN {

print " Volume Group: ", lv_dirname
print " % % KB"
print "PRM Group PRMID entitled achieved transferred"
print "---"

prm_byvg loop {
print prm_byvg_prm_groupname|13, prm_byvg_prm_groupid|5,
prm_byvg_group_entitlement|8, prm_byvg_group_util|8,
prm_byvg_transfer

}
print " "

}
}

}

Chapter 776

Adviser Syntax Statements
LOOP Statement
The output at each interval is:

Disk manager state: Enabled
Volume Group: /dev/vg00

% % KB

PRM Group PRMID entitled achieved transferred

PRM_SYS 0 0 100 8
OTHERS 1 50 0 0
tools 2 50 0 0

PROCESS LOOP Example

Use the PROCESS LOOP statement to cycle through all active processes.
You can use either global (gbl_), table (tbl_), or process (proc_) metrics
with the PROCESS LOOP. The following example uses a PROCESS
LOOP to find the process with the highest CPU for an interval.

big_proc_id = 0
big_proc_name = ""
big_proc_cpu = 0
PROCESS LOOP
IF proc_cpu_total_util > big_proc_cpu THEN {
big_proc_cpu = proc_cpu_total_util
big_proc_name = proc_proc_name
big_proc_id = proc_proc_id

}

IF big_proc_cpu > 10 THEN
YELLOW ALERT "Possible loop, process ", big_proc_name,
" pid ", big_proc_id|6|0, " using ", big_proc_cpu, " % CPU"
Chapter 7 77

Adviser Syntax Statements
LOOP Statement
SWAP LOOP Example

Use the SWAP LOOP to LOOP through the configured swap areas and
allow the Adviser to report on information from the Swap Space window.
You can use table (tbl_) or global (gbl_) or by swap (byswp_) metrics
with the SWAP LOOP.

The following example reports on the swap space available on a system
with two swap devices.

PRINT "-------------------", gbl_stattime, "----------------------"
SWAP LOOP
PRINT BYSWP_SWAP_SPACE_NAME, " has ", BYSWP_SWAP_SPACE_USED,
" used out of", BYSWP_SWAP_SPACE_AVAIL, " megabytes "

On a system with one swap area, the output printed for two intervals is:

---------------------15:31:59------------------------
/dev/hd6 has 37 used out of 128 megabytes

---------------------15:32:09------------------------
/dev/hd6 has 37 used out of 128 megabytes
Chapter 778

Adviser Syntax Statements
LOOP Statement
SYSTEM CALL LOOP Example

Use the SYSTEM CALL LOOP to cycle through calls on your system.
When you use the SYSTEM CALL LOOP, the Adviser checks for
information available in the System Call window. You can use global
(gbl_), table (tbl_), or system call (syscall_) metrics with the SYSTEM
CALL LOOP.

The following example checks for a high system call rate, then prints the
most frequent call.

IF gbl_syscall_rate > 6000 THEN {
print " "
print "--- High syscall rate = ", gbl_syscall_rate, " at ",
gbl_stattime, " ---"

highestrate = 0

systemcall loop {
IF syscall_call_rate > highestrate THEN {
highestrate = syscall_call_rate
highestcall = syscall_call_name

}
}
print " Most frequent syscall was ", highestcall, " at",
highestrate, " per second"

}

The output is:

--- High syscall rate = 6750.6 at 15:50:27 ---

Most frequent syscall was gettimeofday at 6632.90 per second
Chapter 7 79

Adviser Syntax Statements
LOOP Statement
TT LOOP Example

Use the TT LOOP to loop through transaction information that has been
recorded during the last interval. When you use this LOOP, the Adviser
checks for specific transaction information that appears in the
Transaction Tracking window. You can use global (gbl_), table (tbl_),
or transaction tracking (tt_) metrics with TT LOOP.

The following example prints the number of completed transactions and
the average response time for each registered transaction name on your
system.

PRINT "-------------------", gbl_stattime,
"----------------------"
TT LOOP
PRINT tt_name, " had ", tt_count, " transactions; ",
"response time ", tt_wall_time_per_tran, " secs"

On a system with four transactions, the resulting output for two
intervals is:

-------------------------13:24:44--------------------------

First_Transaction had 1 transactions; response time 1.000355 secs
Second_Transaction had 1 transactions; response time 2.000221 secs
Third_Transaction had 1 transactions; response time 3.000231 secs
Fourth_Transaction had 0 transactions; response time 0.000000 secs

-------------------------13:24:54--------------------------

First_Transaction had 3 transactions; response time 1.000383 secs
Second_Transaction had 1 transactions; response time 2.000216 secs
Third_Transaction had 0 transactions; response time 0.000000 secs
Fourth_Transaction had 0 transactions; response time 0.000000 secs
Chapter 780

Adviser Syntax Statements
LOOP Statement
TTBIN LOOP Example

Use the TTBIN LOOP, which must be nested within a TT loop, to loop
through the response time bins of each active transaction on your
system. When you use this LOOP, the Adviser checks for specific
transaction information that appears in the Transaction Graph window.
You can use global (gbl_), table (tbl_), transaction tracking, or
transaction tracking bin metrics with the TTBIN LOOP.

The following example prints the response time bins for each transaction
name which had any completed transactions during the interval.

PRINT "--------------------", gbl_stattime, "---------------------"
TT LOOP
IF (tt_count > 0) THEN
{
print "Transaction ", tt_name, " had ", tt_count, " transactions"
lower_bin_limit = 0
TTBIN LOOP
{
IF (ttbin_trans_count > 0) THEN {
print " ", ttbin_trans_count, " were between ",
lower_bin_limit, " and ", ttbin_upper_range, " seconds"

lower_bin_limit = ttbin_upper_range

 }
 }

}

On a system with four transactions, the printed output for two intervals
is:

-------------------------13:46:31--------------------------
Transaction First_Transaction had 4 transactions

2 were between 1.00 and 2.000000 seconds
Transaction Second_Transaction had 1 transactions

1 were between 2.00 and 3.000000 seconds
Transaction Third_Transaction had 1 transactions

1 were between 3.00 and 5.000000 seconds

-------------------------13:46:41--------------------------
Transaction First_Transaction had 3 transactions

1 were between 1.00 and 2.000000 seconds
Transaction Second_Transaction had 1 transactions

1 were between 2.00 and 3.000000 seconds
Transaction Fourth_Transaction had 1 transactions

1 were between 3.00 and 5.000000 seconds
Chapter 7 81

Adviser Syntax Statements
LOOP Statement
TT LOOP ARM Example

With ARM 2.0, the TT_CLIENT, TT_INSTANCE and TT_UDM loops can
be nested within a TT LOOP. The TT_CLIENT loop lists the correlated
transactions, the TT_INSTANCE loop lists up to 2048 transaction
instances, and the TT_UDM loop lists user measurements for a given
transaction. You can use global (gbl_), table (tbl_) or transaction
tracking metrics with the TT LOOP.

Within a TT_CLIENT loop a user can nest a TT_CLIENT_UDM loop to
display user measurements on a per correlator basis. A
TT_INSTANCE_UDM loop, or TT_INSTANCE_CLIENT loop may be
nested within the TT_INSTANCE loop to see correlators or user
measurements specific to a given instance.

The examples below show how multiple loops can be used to look at user
measurements for any given transaction instance.

Example 1: Look for SLO Violations

The following example loops through all transactions looking for
SLO violations, then prints the UDM information for all
instances:

print "---------------------", GBL_STATTIME, "--------------------"

tt loop {

IF tt_slo_count > 0 THEN {
print " "
print "SLO violation count:", tt_slo_count,
" for transaction:", tt_name, " user:", tt_uname,
" app:", tt_app_name, " threshold: ", tt_slo_threshold

tt_instance loop {
starttime = gbl_stattime - gbl_interval
IF tt_instance_stop_time > starttime THEN {

found a completed instance in the transaction, print info:
print "instance pid:", tt_instance_proc_id,
" wall time:", tt_instance_wall_time

tt_instance_udm loop {
print " ", tt_instance_user_measurement_name|44,
" value= ", tt_instance_user_measurement_value

}
}

Chapter 782

Adviser Syntax Statements
LOOP Statement
}
}

}

The following is the output for one interval:

----------------------------17:19:03----------------------------
SLO violation count: 1 for transaction:Client_tra00
user:gracel app:Client_Appl0 threshold: 5.000000
instance pid: 12137 wall time: 13.0407

SLO violation count: 1 for transaction:Server_transaction
user:joe app:Server_Application threshold: 5.000000
instance pid: 12137 wall time: 13.0358

Metric #1 - Type 1 is a COUNTER32 value= 32
Metric #2 - Type 4 is a GAUGE32 value= 37
Metric #3 - Type 2 is a COUNTER64 value= 19088743
Metric #4 - Type 9 is a STRING8 value= String 8
Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 2.000
Metric #6 - Type 8 is a NUMERICID64 value= 19088434
The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 3.0291
Metric #1 - Type 1 is a COUNTER32 value= 32
Metric #2 - Type 4 is a GAUGE32 value= 37
Metric #3 - Type 2 is a COUNTER64 value= 19088743
Metric #4 - Type 9 is a STRING8 value= String 8
Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333
Metric #6 - Type 8 is a NUMERICID64 value= 19088434
The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 3.0256
Metric #1 - Type 1 is a COUNTER32 value= 32
Metric #2 - Type 4 is a GAUGE32 value= 37
Metric #3 - Type 2 is a COUNTER64 value= 19088743
Metric #4 - Type 9 is a STRING8 value= String 8
Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333
Metric #6 - Type 8 is a NUMERICID64 value= 19088434
The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 2.0201
Metric #1 - Type 1 is a COUNTER32 value= 32
Metric #2 - Type 4 is a GAUGE32 value= 37
Metric #3 - Type 2 is a COUNTER64 value= 19088743
Metric #4 - Type 9 is a STRING8 value= String 8
Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333
Metric #6 - Type 8 is a NUMERICID64 value= 19088434
The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 1.0101
Metric #1 - Type 1 is a COUNTER32 value= 32
Metric #2 - Type 4 is a GAUGE32 value= 37
Metric #3 - Type 2 is a COUNTER64 value= 19088743
Metric #4 - Type 9 is a STRING8 value= String 8
Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333
Chapter 7 83

Adviser Syntax Statements
LOOP Statement
Metric #6 - Type 8 is a NUMERICID64 value= 19088434
The last field is always a STRING32 value= 0

Example 2: ARM 2.0 syntax

The following example prints info for all completed transactions
during the interval.

print "-------------------", GBL_STATTIME, "--------------------"

header_printed = 0
tt loop {

tt_instance loop {

starttime = GBL_STATTIME - GBL_INTERVAL

IF TT_INSTANCE_STOP_TIME > starttime THEN {

IF header_printed == 0 THEN {
print " "
print "TranID StartTime StopTime",
" "

header_printed = 1
}

print TT_TRAN_ID|6, " ", TT_INSTANCE_START_TIME, " ",
TT_INSTANCE_STOP_TIME

print " TranName: ",TT_NAME|40
}

}
}

The following is the output for one interval:

-----------------------------17:21:24-----------------------------
TranID StartTime StopTime

3 Wed Jun 3 17:21:07 1998 Wed Jun 3 17:21:20 1998
TranName: Client_tra00

7 Wed Jun 3 17:21:07 1998 Wed Jun 3 17:21:20 1998
TranName: Server_transaction

7 Wed Jun 3 17:21:17 1998 Wed Jun 3 17:21:20 1998
TranName: Server_transaction

7 Wed Jun 3 17:21:17 1998 Wed Jun 3 17:21:20 1998
TranName: Server_transaction

7 Wed Jun 3 17:21:18 1998 Wed Jun 3 17:21:20 1998
Chapter 784

Adviser Syntax Statements
LOOP Statement
TranName: Server_transaction

7 Wed Jun 3 17:21:19 1998 Wed Jun 3 17:21:20 1998
TranName: Server_transaction
Chapter 7 85

Adviser Syntax Statements
PRINT Statement
PRINT Statement
Use the PRINT statement to print to stdout data you are collecting. You
may want to use the PRINT statement to log metrics or calculated
variables.

Syntax:

PRINT printlist

PRINT Example

PRINT "The Application OTHER has a total CPU of ",

other:app_cpu_total_util, "%"

When executed, this statement prints a message to the window that
initiated GlancePlus like the following:

The Application OTHER has a total CPU of 89%
Chapter 786

Adviser Syntax Statements
SYMPTOM Statement
SYMPTOM Statement
Syntax:

SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]
RULE measurement {>, <, >=, <=, ==, !=} value PROB probability
[RULE measurement {>, <, >=, <=, ==, !=} value PROB probability]

.

.

.

The keywords SYMPTOM and RULE are exclusive for the SYMPTOM
statement and cannot be used in other syntax statements. The
SYMPTOM statement must be a top-level statement and cannot be
nested within any other statement.

variable is a variable name which will be the name of this symptom, as
well as a graph title in the Symptom History window. Variable names
defined in the SYMPTOM statement can be used in other syntax
statements, but the variable value should not be changed in those
statements.

TYPE defines the type of symptom and connects the SYMPTOM
information to the [CPU], [Disk], [Memory], or [Network] button on the
GlancePlus Main window. The symptom type can only be CPU, Disk,
Memory, or Network. However, you can define more than one CPU, Disk,
Memory, or Network symptom. For example, if you have two TYPE =
CPU symptoms, each with their own set of RULEs, then the symptom
with the highest probability determines the color of the [CPU] button
label.

RULE is an option of the SYMPTOM statement and cannot be used
independently. You can use as many RULE options within the
SYMPTOM statement as you need.

The SYMPTOM variable is evaluated according to the RULEs at each
interval.

❏ measurement is the name of a variable or metric that is evaluated as
part of the RULE

❏ value is a constant, variable, or metric that is compared to the
measurement

❏ probability is a numeric constant, variable, or metric
Chapter 7 87

Adviser Syntax Statements
SYMPTOM Statement
The probabilities for each true SYMPTOM RULE are added together to
create a SYMPTOM value. The SYMPTOM value then appears in bar
graph form in the Symptom History window. The SYMPTOM value also
appears in the Symptom Status window and the Symptom Snapshot
window alphanumerically, if the SYMPTOM evaluates to yellow or red.

The sum of all probabilities where the condition between measurement
and value is true is the probability that the symptom is occurring.
Chapter 788

Adviser Syntax Statements
SYMPTOM Statement
SYMPTOM Example

Syntax:

SYMPTOM CPU_Bottleneck TYPE=CPU
RULE gbl_cpu_total_util > 50 PROB 25
RULE gbl_cpu_total_util > 85 PROB 25
RULE gbl_cpu_total_util > 90 PROB 25
RULE gbl_run_queue > 3 PROB 50

SYMPTOM CPU_Level TYPE=CPU
RULE gbl_cpu_sys_mode_util > 40 PROB 25
RULE gbl_cpu_sys_mode_util > 50 PROB 25
RULE gbl_cpu_sys_mode_util > 60 PROB 25
RULE gbl_cpu_sys_mode_util > 70 PROB 50

Whichever CPU symptom defined above has the highest total probability
(PROB), is the symptom that determines the label color of the [CPU]
button on the GlancePlus Main window.
Chapter 7 89

Adviser Syntax Statements
SYMPTOM Statement
SYMPTOM Example: Global CPU Bottleneck

SYMPTOM Symp_Global_Cpu_Bottleneck TYPE=CPU
RULE gbl_cpu_total_util > 50 PROB 25
RULE gbl_cpu_total_util > 85 PROB 25
RULE gbl_cpu_total_util > 90 PROB 25
RULE gbl_run_queue > 3 PROB 75

This SYMPTOM statement establishes a new variable called
Symp_Global_Cpu_Bottleneck. TYPE=CPU links the SYMPTOM to the
[CPU] button on the GlancePlus Main window.

The new variable receives a probability every update interval which is
computed by summing a value according to the RULES below the
SYMPTOM statement.

If the computed probability is between 51 and 90, the [CPU] button
letters on the Main window are turned to yellow for that interval.

❏ If the probability is 91 or more, then the [CPU] button letters are
turned red.

❏ If the probability is 50 or less, the [CPU] button letters are turned to
their normal color.

For example, if the CPU utilization (gbl_cpu_total_util) for the
interval was 93% and the run queue was 2, then the first three rules
would all be true so that 25 would be added to the probability three
times. Since the fourth rule would not be true, 75 would not be added.
Thus the Symp_Global_Cpu_Bottleneck variable would have a value of
75 (percent) that interval and the Main screen [CPU] button letters
would be turned yellow (because the probability is between 51 and 90).

If there are several RULES that pertain to CPU in the Adviser Syntax
and any of them were to achieve a sufficient probability, the [CPU]
button letters turn the appropriate color. If a RULE causes the letters to
turn yellow and another RULE causes them to turn red, the highest
probability (turning red) is reflected on the [CPU] button.
Chapter 790

	Changes for This Release
	1 Introduction
	2 Alarms and Symptoms
	Introduction
	What is an Alarm?
	What is a Symptom?

	3 Editing Adviser Syntax
	Introduction
	Using the GlancePlus Text Editor
	Syntax Editing Commands

	Using Your Own Text Editor

	4 Displaying GlancePlus Data
	Introduction
	Printing CPU Total Utilization
	Printing CPU Utilization During High CPU Usage
	Sending E-mail Messages
	Printing Process Information Within a Loop
	Printing to a File

	5 Adviser Syntax Structure
	Introduction
	Alarm Syntax
	Symptom Syntax

	6 Adviser Syntax Reference
	Introduction
	Syntax Conventions
	Comments
	Conditions
	Constants
	Expressions
	Metric Names in Adviser Syntax
	Printlist
	Variables

	7 Adviser Syntax Statements
	Introduction
	ALARM Statement
	ALARM Example: Typical ALARM Statement
	ALARM Example: Using COMPOUND Statements
	ALARM Example: Using Multiple Conditions
	ALARM Example: Process Table
	ALARM Example: Swap Space
	ALARM Example: Yellow Alert
	ALARM Example: CPU Problem

	ALERT Statement
	ALERT Example

	ALIAS Statement
	ALIAS Example

	ASSIGNMENT Statement
	ASSIGNMENT Examples

	COMPOUND Statement
	COMPOUND Example

	EXEC Statement
	EXEC Examples

	GPM Statement
	GPM Example

	IF Statement
	IF Example

	LOOP Statement
	APPLICATION LOOP Example
	CPU LOOP Example
	DISK LOOP Example
	FILE SYSTEM LOOP Example
	NFS BY OPERATION LOOP Example
	NETWORK INTERFACE LOOP Example
	LOGICAL VOLUME Example
	PRM LOOP Example
	PRM_BYVG LOOP Example
	PROCESS LOOP Example
	SWAP LOOP Example
	SYSTEM CALL LOOP Example
	TT LOOP Example
	TTBIN LOOP Example
	TT LOOP ARM Example

	PRINT Statement
	PRINT Example

	SYMPTOM Statement
	SYMPTOM Example
	SYMPTOM Example: Global CPU Bottleneck

