User Service Guide

HP Integrity rx7640 and HP 9000 rp7440 Servers

Third Edition

Manufacturing Part Number : AB312-9003C January 2007

Printed in the U.S.A.

© Copyright 2007

Legal Notices

© Copyright 2007 Hewlett-Packard Development Company, L.P.

The information contained herein is subject to change without notice.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation. Linux is a U.S. registered trademark of Linus Torvalds. Intel is a trademark or registered trademark of Intel Corporation or its susidaries in the United States and other countries.

1. HP Integrity rx7640 Server and HP 9000 rp7440 Server Overview	
Detailed Server Description	
Dimensions and Components	
Front Panel	
Cell Board	
Cells and nPartitions	
Internal Disk Devices for the Server	
System Backplane	
I/O Subsystem	37
2. Server Site Preparation	
Dimensions and Weights	44
Electrical Specifications	46
Grounding	46
Circuit Breaker	46
System AC Power Specifications	46
Environmental Specifications	49
Temperature and Humidity	49
Cooling	51
Typical Power Dissipation and Cooling	52
Acoustic Noise Specification	52
Airflow	52
System Requirements Summary	54
Power Consumption and Air Conditioning	54
3. Installing the Server	
Receiving and Inspecting the Server Cabinet	
Unpacking the Server Cabinet	
Securing the Cabinet	60
Standalone and To-Be-Racked Systems	61
Rack-Mount System Installation	
Lifting the Server Cabinet Manually	
Using the RonI Model 17000 SP 400 Lifting Device	
	60
Wheel Kit Installation	
Wheel Kit Installation	
	76
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation.	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation. PCI-X Card Cage Assembly I/O Cards	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation.	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation. PCI-X Card Cage Assembly I/O Cards	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation. PCI-X Card Cage Assembly I/O Cards Installing an A6869B VGA/USB PCI Card in a Server Troubleshooting the A6869B VGA/USB PCI Card Cabling and Power Up.	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation. PCI-X Card Cage Assembly I/O Cards Installing an A6869B VGA/USB PCI Card in a Server Troubleshooting the A6869B VGA/USB PCI Card Cabling and Power Up. Checking the Voltage	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation. PCI-X Card Cage Assembly I/O Cards Installing an A6869B VGA/USB PCI Card in a Server Troubleshooting the A6869B VGA/USB PCI Card Cabling and Power Up. Checking the Voltage Voltage Check (Additional Procedure).	
Installing the Power Distribution Unit. Installing Additional Cards and Storage Installing Additional Hard Disk Drives Removable Media Drive Installation. PCI-X Card Cage Assembly I/O Cards Installing an A6869B VGA/USB PCI Card in a Server Troubleshooting the A6869B VGA/USB PCI Card Cabling and Power Up. Checking the Voltage	

	Core I/O Connections	. 96
	Setting Up the Customer Engineer Tool (PC)	. 96
	Turning on Housekeeping Power and Logging in to the MP	. 98
	Configuring LAN Information for the MP	100
	Accessing the Management Processor via a Web Browser	102
	Verifying the Presence of the Cell Boards	104
	System Console Selection	105
	Configuring the Server for HP-UX Installation	106
	Booting the Server	106
	Adding Processors with Instant Capacity	108
	Installation Checklist	109
4. :	Booting and Shutting Down the Operating System	
	Operating Systems Supported on Cell-based HP Servers	114
	System Boot Configuration Options	116
	HP 9000 Boot Configuration Options	116
	HP Integrity Boot Configuration Options	116
	Booting and Shutting Down HP-UX	121
	HP-UX Support for Cell Local Memory	121
	Adding HP-UX to the Boot Options List	121
	Booting HP-UX	122
	Shutting Down HP-UX	131
	Booting and Shutting Down HP OpenVMS I64	133
	HP OpenVMS I64 Support for Cell Local Memory	133
	Adding HP OpenVMS to the Boot Options List	133
	Booting HP OpenVMS	135
	Shutting Down HP OpenVMS	136
	Booting and Shutting Down Microsoft Windows	138
	Microsoft Windows Support for Cell Local Memory	138
	Adding Microsoft Windows to the Boot Options List	138
	Booting Microsoft Windows	140
	Shutting Down Microsoft Windows	141
	Booting and Shutting Down Linux	143
	Linux Support for Cell Local Memory	143
	Adding Linux to the Boot Options List	143
	Booting Red Hat Enterprise Linux	145
	Booting SuSE Linux Enterprise Server	146
	Shutting Down Linux	147
5.	Server Troubleshooting	
	Common Installation Problems	150
	The Server Does Not Power On	151
	The Server Powers On But Fails Power-On Self Test	151
	Server LED Indicators	152
	Front Panel LEDs	152
	Bulk Power Supply LEDs	154

PCI-X Power Supply LEDs	155
System and PCI I/O Fan LEDs	156
OL* LEDs	157
PCI-X OL* Card Divider LEDs	159
Core I/O LEDs	160
Core I/O Buttons	162
PCI-X Hot-Plug LED OL* LEDs	163
Disk Drive LEDs	165
Interlock Switches	165
Server Management Subsystem Hardware Overview	166
Server Management Overview	167
Server Management Behavior	168
Thermal Monitoring	168
Fan Control	168
Power Control	169
Updating Firmware	170
Firmware Manager	170
Using FTP to Update Firmware	170
Possible Error Messages	171
PDC Code FRU Reporting	172
Verifying Cell Board Insertion	174
Cell Board Extraction Levers	174
Customer Replaceable Units (CRUs)	
Hot-plug CRUs	178
Hot-Swap CRUs	
Other CRUs	
Safety and Environmental Considerations	
Communications Interference	179
Electrostatic Discharge	
Powering Off Hardware Components and Powering On the Server	180
Powering Off Hardware Components	
Powering On the System	
Removing and Replacing the Top Cover	
Removing the Top Cover	
Replacing the Top Cover	
Removing and Replacing a Side Cover	
Removing a Side Cover	
Replacing a Side Cover	
Removing and Replacing the Front Bezel	
Removing the Front Bezel	
Replacing the Front Bezel	
Removing and Replacing PCA Front Panel Board	187
D D . D . D . D . D . D . D . D .	
Removing the PCA Front Panel Board	

Removing and Replacing a Front Smart Fan Assembly	190
Removing a Front Smart Fan Assembly	191
Replacing a Front Smart Fan Assembly	191
Removing and Replacing a Rear Smart Fan Assembly	193
Removing a Rear Smart Fan Assembly	194
Replacing a Rear Smart Fan Assembly	194
Removing and Replacing a Disk Drive	195
Removing a Disk Drive	196
Replacing a Disk Drive	196
Removing and Replacing a Half-Height DVD/DAT Drive	198
Removing a DVD/DAT Drive	198
Installing a Half-Height DVD or DAT Drive	200
Internal DVD and DAT Devices That Are Not Supported In HP Integrity rx7640	200
Removable Media Cable Configuration for a Half-height DVD or DAT Drive	
Installing the Half-Height DVD or DAT drive	
Removing and Replacing a Slimline DVD Drive	204
Removing a Slimline DVD Drive	
Replacing a Slimline DVD Drive	204
Removing and Replacing a Dual Slimline DVD Carrier	
Removing a Slimline DVD Carrier	
Installation of Two Slimline DVD+RW Drives	
Removing and Replacing a PCI/PCI-X Card	210
Installing the New LAN/SCSI Core I/O PCI-X Card(s)	211
PCI/PCI-X Card Replacement Preliminary Procedures	211
Removing a PCI/PCI-X Card	212
Replacing the PCI/PCI-X Card	
Option ROM	212
Removing and Replacing a PCI Smart Fan Assembly	214
Removing a PCI Smart Fan Assembly	215
Replacing a PCI Smart Fan Assembly	215
Removing and Replacing a PCI-X Power Supply	216
Preliminary Procedures	216
Removing a PCI-X Power Supply	217
Replacing the PCI Power Supply	217
Removing and Replacing the System Backplane	218
Removing the System Backplane	219
Replacing the System Backplane	220
Removing and Replacing a Bulk Power Supply	221
Removing a BPS	221
Replacing a BPS	223
Configuring Management Processor (MP) Network Settings	224
7. HP Integrity rp7440 Server	
Electrical and Cooling Specifications	3
Boot Console Handler (BCH) for the HP 9000 rp7440 Server	
Booting an HP 9000 sx2000 Server to BCH	

HP-UX for the HP 9000 rp7440 Server	6
HP 9000 Boot Configuration Options	
Booting and Shutting Down HP-UX	
Standard HP-UX Booting	6
Single-User Mode HP-UX Booting	
LVM-Maintenance Mode HP-UX Booting	
Shutting Down HP-UX	
System Verification	
A. Replaceable Parts Replaceable Parts B. MP Commands	
Server Management Commands	
C. Templates	
Equipment Footprint Templates	28
Computer Room Layout Plan	24
T., J.,	90

Contents		

Tables

Table 1-1. Cell Board CPU Module Load Order	. 33
Table 1-2. Server DIMMs	. 35
Table 1-3. PCI-X paths for Cell 0	. 38
Table 1-4. PCI-X Paths Cell 1	. 39
Table 1-5. PCI-X Slot Types	. 40
Table 2-1. Server Dimensions and Weights	. 44
Table 2-2. Server Component Weights	. 44
Table 2-4. Weight Summary	. 45
Table 2-3. Example Weight Summary	. 45
Table 2-5. Power Cords	. 46
Table 2-6. AC Power Requirements	. 47
Table 2-7. System Power Requirements for the HP Integrity rx7640 Server	. 48
Table 2-8. Example ASHRAE Thermal Report	. 50
Table 2-9. Typical Server Configurations	. 52
Table 3-1. Wheel Kit Packing List	. 69
Table 3-2. Caster Part Numbers	. 73
Table 3-3. HP Integrity rx7640 PCI-X I/O Cards	. 80
Table 3-4. Single Phase Voltage Examples	. 88
Table 3-5. Factory-Integrated Installation Checklist	109
Table 5-1. Front Panel LEDs	152
Table 5-2. BPS LEDs	154
Table 5-3. PCI-X Power Supply LEDs	155
Table 5-4. System and PCI I/O Fan LEDs	157
Table 5-5. Cell Board OL* LED Indicators	158
Table 5-6. Core I/O LEDs	160
Table 5-7. Core I/O Buttons	163
Table 5-8. OL* LED States	163
Table 5-9. Disk Drive LEDs	165
Table 5-10. Ready Bit States	174
Table 6-1. Front Smart Fan Assembly LED Indications	190
Table 6-2. Rear Smart Fan Assembly LED Indications	193
Table 6-3. Unsupported Removable Media Devices	200
Table 6-4. Smart Fan Assembly LED Indications	214
Table 6-5. PCI-X Power Supply LEDs	217
Table 6-6. Default Configuration for Management Processor LAN	224
Table 7-1. System Power Requirements for the HP 9000 rp7440 Server	3
Table 7-2. Typical Server Configurations	
Table A-1. Server CRU Descriptions and Part Numbers	. 14
Table B-1. Service Commands	
Table B-2. Status Commands	. 18
Table B-3. System and Access Config Commands	. 19

Tables			

Figures

Figure 1-1. 8-Socket Server Block Diagram	
Figure 1-2. Server (Front View With Bezel)	
Figure 1-3. Server (Front View Without Bezel)	27
Figure 1-4. Right-Front View	
Figure 1-5. Left-Rear View	29
Figure 1-6. Front Panel LEDs and Power Switch	30
Figure 1-7. Cell Board	
Figure 1-8. CPU Locations on Cell Board	33
Figure 1-9. Memory Subsystem	34
Figure 1-10. Disk Drive and DVD Drive Location	36
Figure 1-11. System Backplane Block Diagram	37
Figure 1-12. PCI-X Board to Cell Board Block Diagram	38
Figure 2-1. Airflow Diagram	53
Figure 3-1. Removing the Polystraps and Cardboard	57
Figure 3-2. Removing the Shipping Bolts and Plastic Cover	58
Figure 3-3. Preparing to Roll Off the Pallet	59
Figure 3-4. Securing the Cabinet	60
Figure 3-5. Inserting Rear Handle Tabs into Chassis	63
Figure 3-6. Attaching the Front of Handle to Chassis	64
Figure 3-7. RonI Lifter	66
Figure 3-8. Positioning the Lifter to the Pallet	67
Figure 3-9. Raising the Server Off the Pallet Cushions	68
Figure 3-10. Component Locations	70
Figure 3-11. Left Foam Block Position	71
Figure 3-12. Right Foam Block Position	72
Figure 3-13. Foam Block Removal	73
Figure 3-14. Attaching a Caster to the Server	74
Figure 3-15. Securing Each Caster Cover to the Server	75
Figure 3-16. Completed Server	75
Figure 3-17. Disk Drive and DVD Drive Location	77
Figure 3-18. Removable Media Location	79
Figure 3-19. PCI I/O Slot Details	84
Figure 3-20. PCI/PCI-X Card Location	85
Figure 3-21. Voltage Reference Points for IEC 320 C19 Plug	87
Figure 3-22. Safety Ground Reference Check	88
Figure 3-23. Safety Ground Reference Check	90
Figure 3-24. Wall Receptacle Pinouts	92
Figure 3-25. AC Power Input Labeling	93
Figure 3-26. Distribution of Input Power for Each Bulk Power Supply	94
Figure 3-27. Two Cell Line Cord Anchor (rp7410, rp7420, rp7440, rx7620, rx7640)	95
Figure 3-28. Line Cord Anchor Attach Straps	95
Figure 3-29. Front Panel Display	99
Figure 3-30. MP Main Menu	.00

Figures

Figure 3-31. The lc Command Screen	01
Figure 3-32. The ls Command Screen	02
Figure 3-33. Example sa Command	03
Figure 3-34. Browser Window	
Figure 3-35. The du Command Screen	04
Figure 3-36. Console Output Device menu	05
Figure 5-1. Front Panel with LED Indicators	52
Figure 5-2. BPS LED Locations	54
Figure 5-3. PCI-X Power Supply LED Locations	55
Figure 5-4. Front, Rear and PCI I/O Fan LEDs	56
Figure 5-5. Cell Board LED Locations	58
Figure 5-6. PCI-X OL* LED Locations	59
Figure 5-7. Core I/O Card Bulkhead LEDs	60
Figure 5-8. Core I/O Button Locations	62
Figure 5-9. Disk Drive LED Location	65
Figure 5-10. Temperature States	68
Figure 5-11. Firmware Update Command Sample	71
Figure 5-12. Server Cabinet FRUs (Front View)	72
Figure 5-13. Server Cabinet FRUs (Rear View)	73
Figure 5-14. de Command Output	75
Figure 6-1. Top Cover	82
Figure 6-2. Top Cover Retaining Screws	83
Figure 6-3. Side Cover Locations	84
Figure 6-4. Side Cover Retaining Screws	84
Figure 6-5. Side Cover Removal Detail	85
Figure 6-6. Bezel hand slots	86
Figure 6-7. Front Panel Assembly Location	87
Figure 6-8. Front Panel Board Detail	88
Figure 6-9. Front Panel Board Cable Location on Backplane	89
Figure 6-10. Front Smart Fan Assembly Locations	90
Figure 6-11. Front Fan Detail	91
Figure 6-12. Rear Smart Fan Assembly Locations	93
Figure 6-13. Rear Fan Detail	94
Figure 6-14. Disk Drive Location	95
Figure 6-15. Disk Drive Detail	96
Figure 6-16. DVD/DAT Location	98
Figure 6-17. DVD/DAT Detail	99
Figure 6-18. Single SCSI and Power Cable in Drive Bay	00
Figure 6-19. SCSI and Power Cable Lengths	01
Figure 6-20. SCSI and Power Cable Lengths	02
Figure 6-21. SCSI and Power Cable Lengths	02
Figure 6-22. Power Cable Connection and Routing	03
Figure 6-23. DVD Drive Location	04

Figures

Figure 6-24. Slimline DVD Carrier Location	205
Figure 6-25. Data and Power Cable Configuration for Slimline DVD Installation	206
Figure 6-26. Top DVD/DAT and Bottom DVD Cables Nested Together	207
Figure 6-27. SCSI and Power Cables for Slimline DVD+RW Installation	207
Figure 6-28. SCSI and Power Cables for Slimline DVD Installation	208
Figure 6-29. PCI/PCI-X Card Location	210
Figure 6-30. PCI Smart Fan Assembly Location	214
Figure 6-31. PCI Smart Fan Assembly Detail	215
Figure 6-32. PCI-X Power Supply Location	216
Figure 6-33. PCI Power Supply Detail	217
Figure 6-34. System Backplane Location	218
Figure 6-35. System Backplane Removal	219
Figure 6-36. System Backplane Removed	219
Figure 6-37. BPS Location	221
Figure 6-38. Extraction Levers	222
Figure 6-39. BPS Detail	223
Figure C-1. Server Space Requirements	. 22
Figure C-2. Server Cabinet Template	. 25
Figure C-3. Planning Grid	. 26
Figure C.4. Planning Grid	27

Figures			

About this D	ocument	
This document covers	the HP Integrity rx7640 and HP 9000 rp7440 $\rm S$	ervers.
This document does not information concerning	ot describe system software or partition configured those topics, refer to the HP System Partitions	ration in any detail. For detailed s Guide: Administration for nPartitions.

Book Layout

This document contains the following chapters and appendices:

- Chapter 1 Overview
- Chapter 2 Site Preparation
- Chapter 3 Installing the Server
- Chapter 4 Operating System Boot and Shutdown
- Chapter 5 Server Troubleshooting
- Chapter 6 Removal and Replacement
- Chapter 7 HP 9000 rp7440 Server
- Appendix A Replaceable Parts
- Appendix B MP Commands
- Appendix C Templates
- Index

Intended Audience

This document is intended to be used by the customer to support the HP Integrity rx7640 and HP 9000 rp7440 Servers.

Publishing History

The Printing History below identifies the edition dates of this document. Updates are made to this publication on an unscheduled, *as needed*, basis. The updates will consist of a complete replacement document and pertinent on-line or CD-ROM documentation.

First Edition		March 2006
Second Edition		September 2006
Third Edition	Minor edits throughout. Added Chapter 7 for PA release.	January 2007

READ ME

Warranty Information

Each HP product is sold subject to the HP express limited warranty statement relating to that product. The BCS Global Limited Warranty and Technical Support statement provides important information about the nature and scope of the express limited warranty provided from the HP product, and contains certain disclaimers and limitations of liability by HP, which materially impact your rights. Accordingly, you are strongly advised to read carefully the BCS Global Limited Warranty and Technical Support statement before using your HP product. Your use of the HP product is deemed to be acceptance of the terms and conditions set forth in the BCS Global Limited Warranty and Technical Support statement.

You can view, print, or download the BCS Global Limited Warranty and Technical Support statement for your HP Enterprise Server product from our website at:

Select your system hardware and then click on the "BCS Global Limited Warranty and Technical Support" pdf link provided in the list of documentation.

To obtain warranty service for your HP 9000 Server (PA-RISC product family)

Support can be obtained from US & Canada at: 1-800-633-3600

To obtain warranty service for your HP Integrity Server (IPF-based product family)

- Warranty and support information for Itanium-based sever products is available on the Web at:
 - http://www.hp.com/support/itaniumservers
- Support can be obtained from US & Canada at: 1-800-593-6631
- For Worldwide locations, visit:

http://welcome.hp.com/country/us/en/wwcontact_us.html
You will be asked to provide the product number & serial number and may be required to provide dated
proof of purchase.

Product Technical Documentation

To obtain technical installation and support information pertaining to this product, refer to the following web site:

http://docs.hp.com

Server Support Information

For online access to technical support information, self-solve tools, online assistance, community forums of IT experts, broad multi-vendor knowledge base, monitoring and diagnostic tools, refer to the following web site:

To subscribe to HP's driver and support alerts/notifications program, refer to the following web site:

http://www.hp.com/go/e-updates

Related Information

You can access other information on HP server hardware management, Microsoft® Windows® administratuon, and diagnostic support tools at the following Web sites:

http://docs.hp.com

The main Web site for HP technical documentation is http://docs.hp.com.

Server Hardware Information:

http://docs.hp.com/hpux/hw/

The http://docs.hp.com/hpux/hw/ Web site is the systems hardware portion of docs.hp.com. It provides HP nPartition server hardware management information, including site preparation, installation, and more.

Windows Operating System Information

You can find information about administration of the Microsoft® Windows® operating system at the following Web sites, among others:

- http://docs.hp.com/windows nt/
- http://www.microsoft.com/technet/

Diagnostics and Event Monitoring: Hardware Support Tools

Complete information about HP hardware support tools, including online and offline diagnostics and event monitoring tools, is at the http://docs.hp.com/hpux/diag/ Web site. This site has documents, tutorials, FAQs, and other reference material.

Web Site for HP Technical Support: http://us-support2.external.hp.com

HP IT resource center Web site at http://us-support2.external.hp.com/provides comprehensive support information for IT professionals on a wide variety of topics, including software, hardware, and networking.

Books about HP-UX Published by Prentice Hall

The http://www.hp.com/hpbooks/ Web site lists the HP books that Prentice Hall currently publishes, such as HP-UX books including:

- *HP-UX 11i System Administration Handbook and Toolkit* http://www.hp.com/hpbooks/prentice/ptr_0130600814.html
- *HP-UX Virtual Partitions* http://www.hp.com/hpbooks/prentice/ptr_0130352128.html

HP books are available worldwide through bookstores, online booksellers, and office and computer stores.

Typographic Conventions

The following notational conventions are used in this publication.

WARNING A warning lists requirements that you must meet to avoid personal injury.

CAUTION A caution provides information required to avoid losing data or avoid losing system functionality.

NOTE A note highlights useful information such as restrictions, recommendations, or important details about HP product features.

- Commands and options are represented using this font.
- Text that you type exactly as shown is represented using this font.
- Text to be replaced with text that you supply is represented using this font.

Example:

"Enter the 1s -1 filename command" means you must replace filename with your own text.

Keyboard keys and graphical interface items (such as buttons, tabs, and menu items) are represented using this
font.

Examples:

The Control key, the OK button, the General tab, the Options menu.

• Menu —> Submenu represents a menu selection you can perform.

Example:

"Select the Partition —> Create Partition action" means you must select the Create Partition menu item from the Partition menu.

Example screen output is represented using this font.

HP Encourages Your Comments

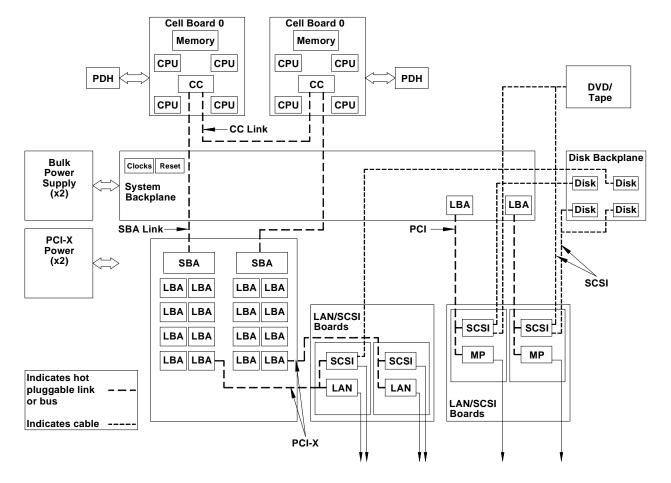
Hewlett-Packard welcomes your feedback on this publication. Please address your comments to **edit@presskit.rsn.hp.com** and note that you will not receive an immediate reply. All comments are appreciated.

1 HP Integrity rx7640 Server and HP 9000 rp7440 Server Overview

The HP Integrity rx7640 and HP 9000 rp7440 servers are members of HP's business-critical computing platform family in the mid-range product line.

The information in chapters one through six of this guide applies to the HP Integrity rx7640 and HP 9000 rp7440 servers, except for a few items specifically denoted as applying only to the HP Integrity rx7640 Server. Chapter seven covers any information specific to the HP 9000 rp7440 Server only.

The server is a $10U^1$ high, 8-socket symmetric multiprocessor (SMP) rack-mount or standalone server. Features of the server include:


- Up to 256 GB of physical memory provided by dual inline memory modules (DIMMs).
- Dual-core processors.
- Up to 16 processors with a maximum of 4 processor modules per cell board and a maximum of 2 cell boards.
- One cell controller (CC) per cell board.
- Turbo fans to cool CPUs and CCs on the cell boards.
- Up to four embedded hard disk drives.
- One half-height DVD drive, two slimline DVDs or one DAT drive.
- Two front chassis mounted N+1 fans.
- Two rear chassis mounted N+1 fans.
- Six N+1 PCI-X card cage fans.
- Two N+1 bulk power supplies.
- N+1 hot-swappable system oscillators.
- Sixteen PCI-X slots divided into two partitions. Each partition can accommodate up to eight PCI/PCI-X/PCI-X 2.0 cards.
- Up to two core I/O card sets.
- One manageability processor per core I/O card with failover capability when two or more core I/O cards are installed and properly configured.
- Four 220 V AC power plugs. Two are required and the other two provide power source redundancy.

^{1.} The U is a unit of measurement specifying product height. One U is equal to 1.75 inches.

Detailed Server Description

The following section provides detailed information about the server components.

Figure 1-1 8-Socket Server Block Diagram

Dimensions and Components

The following section describes server dimensions and components.

Figure 1-2 Server (Front View With Bezel)

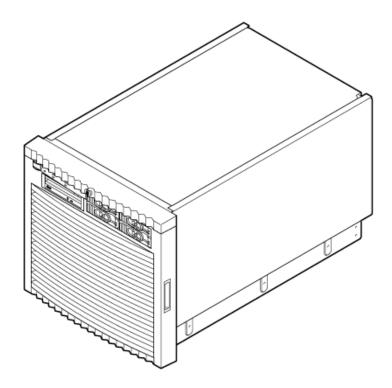
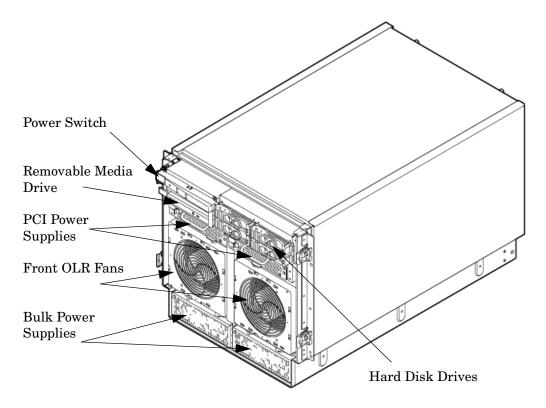
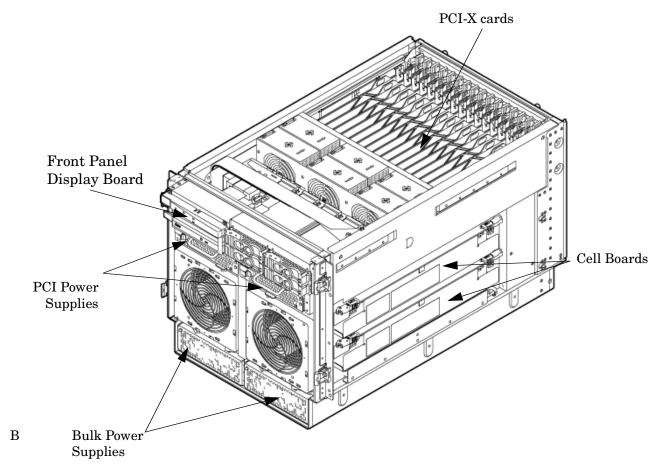



Figure 1-3 Server (Front View Without Bezel)

The server has the following dimensions:


- Depth: Defined by cable management constraints to fit into standard 36-inch deep rack:
 25.5 inches from front rack column to PCI connector surface
 26.7 inches from front rack column to MP Core I/O connector surface
 30 inches overall package dimension, including 2.7 inches protruding in front of the front rack columns.
- Width: 44.45 cm (17.5 inches), constrained by EIA standard 19 inch racks.
- Height: 10U 0.54 cm = 43.91 cm (17.287 inches). This is the appropriate height for a product that consumes 10U of rack height while allowing adequate clearance between products directly above and below this product. Fitting four server units per 2 m rack and upgrade of current 10U height products in the future are the main height constraints.

The mass storage section located in the front enables access to the 3.5-inch hard drives without removal of the bezel. This is especially helpful when the system is mounted in the lowest position in a rack. The mass storage bay also accommodates one 5.25-inch removable media device. The front panel display board, containing LEDs and the system power switch, is located directly above the 5.25-inch removable media bay.

Below the mass storage section and behind the removable front bezel are two, N+1 PCI-X power supplies.

The bulk power supply section is partitioned by a sealed metallic enclosure located in the bottom of the package. This enclosure houses the N+1 fully redundant BPSs. Install these power supplies from the front of the server after removing the front bezel.

Figure 1-4 Right-Front View

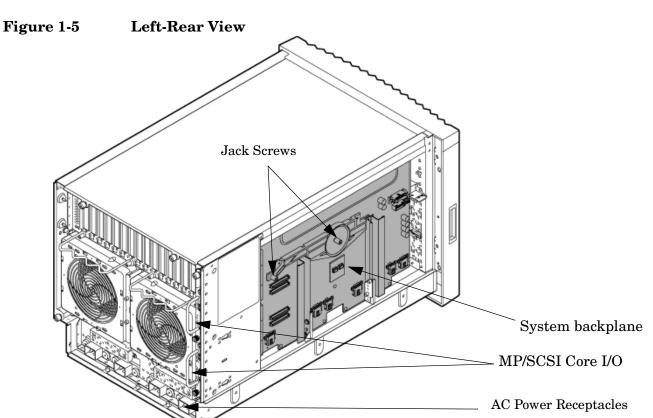
Access the PCI-X card section, located toward the rear, by removing the top cover.

The PCI card bulkhead connectors are located at the rear top.

The PCI OLR fan modules are located in front of the PCI-X cards. These six 9.2-cm fans are housed in plastic carriers. They are configured in two rows of three fans.

Four OLR system fan modules, externally attached to the chassis, are 15-cm (6.5-inch) fans. Two fans are mounted on the front surface of the chassis and two are mounted on the rear surface.

The cell boards are accessed from the right side of the chassis behind a removable side cover.


The two MP/SCSI boards are positioned vertically at the rear of the chassis.

The two hot-pluggable N+1 redundant bulk power supplies provide a wide input voltage range. They are installed in the front of the chassis, directly under the front fans.

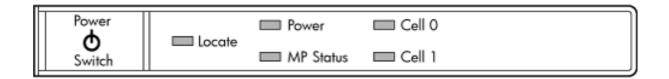
A cable harness that connects from the rear of the BPSs to the system backplane provides DC power distribution.

Access the system backplane by removing the left side cover. The system backplane hinges from the lower edge and is anchored at the top with two jack screws.

The SCSI ribbon-cable assembly routes from the mass storage area to the backside of the system backplane for connection to the MP/SCSI card, and to the AB290A LAN/SCSI PCI-X cards.

Front Panel

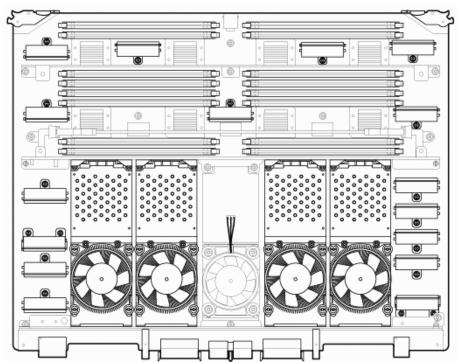
Front Panel Indicators and Controls


The front panel, located on the front of the server, includes the power switch. Refer to Figure 1-6.

Enclosure Status LEDs

The following status LEDs are on the front panel:

- Locate LED (blue)
- Power LED (tri-color)
- Management processor (MP) status LED (tri-color)
- Cell 0, 1 status (tri-color) LEDs


Figure 1-6 Front Panel LEDs and Power Switch

Cell Board

The cell board, illustrated in Figure 1-7, contains the processors, main memory, and the CC application specific integrated circuit (ASIC) which interfaces the processors and memory with the I/O, and to the other cell board in the server. The CC is the heart of the cell board, enabling communication with the other cell board in the system. It connects to the processor dependent hardware (PDH) and micro controller hardware. Each cell board holds up to two processor modules and 16 memory DIMMs. One or two cell boards can be installed in the server. A cell board can be selectively powered off for adding processors, memory, or for maintenance of the cell board, without affecting the other cell board in a configured partition.

Figure 1-7 Cell Board

The server has a 48 V distributed power system and receives the 48 V power from the system backplane board. The cell board contains DC-to-DC converters to generate the required voltage rails. The DC-to-DC converters on the cell board do not provide N+1 redundancy.

The cell board contains the following major buses:

- Two front side buses (FSB), each with up to two processors
- Four memory buses (one going to each memory quad)
- · Incoming and outgoing I/O bus that goes off board to an SBA chip
- Incoming and outgoing crossbar bus that goes off board to the other cell board
- PDH bus that goes to the PDH and microcontroller circuitry

All of these buses come together at the CC chip.

Because of space limitations on the cell board, the PDH and microcontroller circuitry resides on a riser board that plugs into the cell board at a right angle. The cell board also includes clock circuits, test circuits, and de-coupling capacitors.

PDH Riser Board

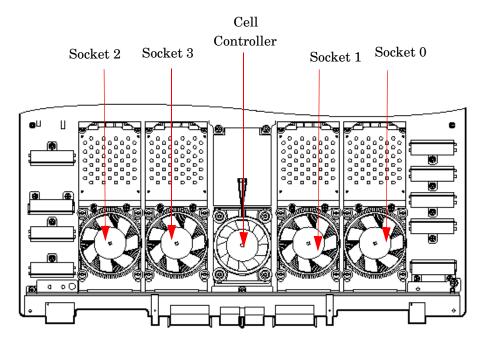
The PDH riser board is a small card that plugs into the cell board at a right angle. The PDH riser interface contains the following components:

- Microprocessor memory interface microcircuit
- Hardware including the processor dependant code (PDH) flash memory
- Manageability microcontroller with associated circuitry

The PDH obtains cell board configuration information from cell board signals and from the cell board local power module (LPM).

Central Processor Units

The cell board can hold up to four CPU modules. Each CPU module can contain up to two CPU cores on a single socket. Modules are populated in increments of one. On a cell board, the processor modules must be the same family, type, and clock frequencies. Mixing of different processors on a cell board or partition is not supported. Refer to Table 1-1 for the load order that must be maintained when adding processor modules to the cell board. Refer to Figure 1-8 for the locations on the cell board for installing processor modules.

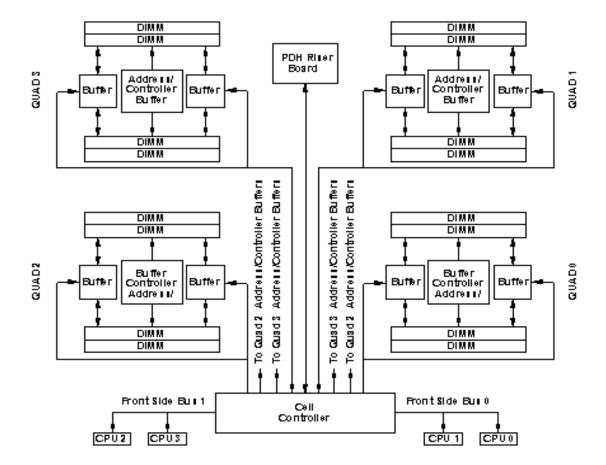

NOTE

Unlike previous HP cell based systems, the HP Integrity rx7640 server cell board does not require that a termination module be installed at the end of an unused FSB. System firmware is allowed to disable an unused FSB in the CC. This enables both sockets of the unused bus to remain unpopulated.

Table 1-1 Cell Board CPU Module Load Order

Number of CPU Modules Installed	Socket 2	Socket 3	Socket 1	Socket 0
1	Empty slot	Empty slot	Empty slot	CPU installed
2	CPU installed	Empty slot	Empty slot	CPU installed
3	CPU installed	Empty slot	CPU installed	CPU installed
4	CPU installed	CPU installed	CPU installed	CPU installed

Figure 1-8 CPU Locations on Cell Board



Memory Subsystem

Figure 1-9 shows a simplified view of the memory subsystem. It consists of two independent access paths, each path having its own address bus, control bus, data bus, and DIMMs. Address and control signals are fanned out through register ports to the synchronous dynamic random access memory (SDRAM) on the DIMMs.

The memory subsystem comprises four independent quadrants. Each quadrant has its own memory data bus connected from the cell controller to the two buffers for the memory quadrant. Each quadrant also has two memory control buses; one for each buffer.

Figure 1-9 Memory Subsystem

DIMMs

The memory DIMMs used by the server are custom designed by HP. Each DIMM contains DDR-II SDRAM memory that operates at 533 MT/s. Industry standard DIMM modules do not support the high availability and shared memory features of the server. Therefore, industry standard DIMM modules are not supported.

The server supports DIMMs with densities of 1, 2, and 4 Gb. Table 1-2 on page 35 lists each supported DIMM size, the resulting total system capacity, and the memory component density. Each DIMM is connected to two buffer chips on the cell board.

See Appendix C for more information on DIMM slot mapping and valid memory configurations.

Table 1-2 Server DIMMs

DIMM Size	Total Capacity	Memory Component Density
1 Gb	32 Gb	128 Mb
2 Gb	64 Gb	256 Mb
4 Gb	128 Gb	512 Mb

Cells and nPartitions

An nPartition comprises one or more cells working as a single system. Any I/O chassis that is attached to a cell belonging to an nPartition is also assigned to the nPartition. Each I/O chassis has PCI card slots, I/O cards, attached devices, and a core I/O card assigned to the I/O chassis.

On the server, each nPartition has its own dedicated portion of the server hardware which can run a single instance of the operating system. Each nPartition can boot, reboot, and operate independently of any other nPartitions and hardware within the same server complex.

The server complex includes all hardware within an nPartition server: all cabinets, cells, I/O chassis, I/O devices and racks, management and interconnecting hardware, power supplies, and fans.

A server complex can contain one or two nPartitions, enabling the hardware to function as a single system or as multiple systems.

NOTE	Partition configuration information is available on the Web at:	
	http://docs.hp.com	
Refer to HP System Partitions Guide: Administration for nPartitions for details.		

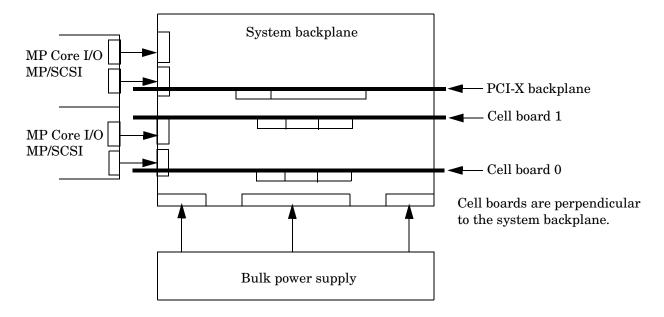
Internal Disk Devices for the Server

As Figure 1-10 shows, in a server cabinet, the top internal disk drives connect to cell 1 through the core I/O for cell 1. Both of the bottom disk drives connect to cell 0 through the core I/O for cell 0.

The DVD/DAT drive connects to cell 1 through the core I/O card for cell 1.

Figure 1-10 Disk Drive and DVD Drive Location

System Backplane


The system backplane contains the following components:

- The system clock generation logic
- The system reset generation logic
- DC-to-DC converters
- Power monitor logic
- Two local bus adapter (LBA) chips that create internal PCI buses for communicating with the core I/O card

The backplane also contains connectors for attaching the cell boards, the PCI-X backplane, the core I/O board set, SCSI cables, bulk power, chassis fans, the front panel display, intrusion switches, and the system scan card. Unlike Superdome or the HP Integrity rx8640, there are no Crossbar Chips (XBC) on the system backplane. The "crossbar-less" back-to-back CC connection increases performance.

Only half of the core I/O board set connects to the system backplane. The MP/SCSI boards plug into the backplane, while the LAN/SCSI boards plug into the PCI-X backplane.

Figure 1-11 System Backplane Block Diagram

System Bacplane to PCI-X Backplane Connectivity

The PCI-X backplane uses two connectors for the SBA link bus and two connectors for the high speed data signals and the manageability signals.

SBA link bus signals are routed through the system backplane to the cell controller on each corresponding cell board.

The high speed data signals are routed from the SBA chips on the PCI-X backplane to the two LBA PCI bus controllers on the system backplane.

Clocks and Reset

The system backplane contains reset and clock circuitry that propagates through the whole system. The system backplane central clocks drive all major chip set clocks. The system central clock circuitry features redundant, hot-swappable oscillators.

I/O Subsystem

The cell board to the PCI-X board path runs from the CC to the SBA, from the SBA to the ropes, from the ropes to the LBA, and from the LBA to the PCI slots seen in Figure 1-12. The CC on cell board 0 and cell board 1 communicates through an SBA over the SBA link. The SBA link consists of both an inbound and an outbound link with an effective bandwidth of approximately 11.5 GB/sec. The SBA converts the SBA link protocol into "ropes." A rope is defined as a high-speed, point-to-point data bus. The SBA can support up to 16 of these high-speed bi-directional rope links for a total aggregate bandwidth of approximately 11.5 GB/sec.

Chapter 1 37

Each LBA acts as a bus bridge, supporting either one or two ropes and capable of driving 33 MHz or 66 MHz for PCI cards. The LBAs can also drive at 66 MHz or 133 MHz for PCI-X cards, and at 266 MHz for PCI-X mode 2 cards installed in mode 2 capable slots.

Figure 1-12 PCI-X Board to Cell Board Block Diagram

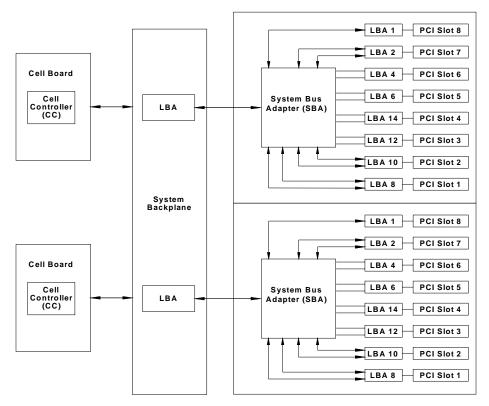


Table 1-3 and Table 1-4 list the mapping of PCI-X slots to boot paths. The cell column refers to the cell board installed in the server in cell slot 0 and in cell slot 1.

Table 1-3 PCI-X paths for Cell 0

Cell	PCI-X Slot	IO Chassis	Path		
0	1	0	0/0/8/1		
0	2	0	0/0/10/1		
0	3	0	0/0/12/1		
0	4	0	0/0/14/1		
0	5	0	0/0/6/1		
0	6	0	0/0/4/1		
0	7	0	0/0/2/1		
0	8	0	0/0/1/1		

Table 1-4 PCI-X Paths Cell 1

Cell	PCI-X Slot	I/O Chassis	Path
1	1	1	1/0/8/1
1	2	1	1/0/10/1
1	3	1	1/0/12/1
1	4	1	1/0/14/1
1	5	1	1/0/6/1
1	6	1	1/0/4/1
1	7	1	1/0/2/1
1	8	1	1/0/1/1

The server supports two internal SBAs. Each SBA provides the control and interfaces for eight PCI-X slots. The interface is through the rope bus (16 ropes per SBA). For each SBA, the ropes are divided in the following manner:

- A single rope is routed to support the core I/O boards through LBAs located on the system backplane.
- A single rope is routed to an LBA on the PCI backplane to support a slot for PCI and PCI-X cards (slot 8).
- Six ropes are bundled into double ropes to three LBAs. They support slots 1, 2, and 7 for PCI and PCI-X mode 1 cards.
- Eight fat ropes are bundled into quad ropes to four LBAs. They support slots 3, 4, 5, and 6 for PCI and PCI-X mode 2 cards.

NOTE PCI-X slots 1-7 are dual rope slots while slot 8 is a single rope slot. A rope is defined as a high speed point to point data bus.

The PCI-X backplane is the primary I/O interface for the server. It provides 16, 64-bit, hot-plug PCI/PCI-X slots. Fourteen of the slots have dual ropes connected to the LBA chips. The remaining two slots have a single rope connected to each LBA chip. Each of the sixteen slots are capable of 66 MHz/33 MHz PCI or 133 MHz/66 MHz PCI-X. Four slots in PCI-X support 266 MHz. All sixteen PCI slots are keyed for 3.3 volt connectors (accepting both Universal and 3.3 V cards). See Table 1-5 for more details.

The PCI-X backplane is physically one board, but it behaves like two independent partitions. SBA 0, its associated LBAs, and eight PCI-X slots form one I/O partition. SBA 1, its associated LBAs, and eight PCI-X slots form the other I/O partition. One I/O partition can be reset separately from the other I/O partition, but cannot be powered down independently.

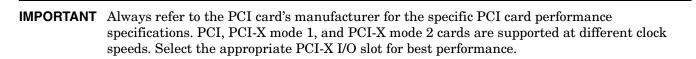


Table 1-5 lists the PCI-X slot types supported on the server.

Chapter 1 39

Table 1-5 PCI-X Slot Types

I/O Partition	Slota	Maximum MHz	Maximum Peak Bandwidth	Ropes	Supported Cards	PCI Mode Supported
0	8	133	533 MB/s	001	3.3 V	PCI or PCI-X Mode 1
	7	133	1.06 GB/s	002/003	3.3 V	PCI or PCI-X Mode 1
	6	266	2.13 GB/s	004/005	3.3 V or 1.5 V	PCI-X Mode 2
	5	266	2.13 GB/s	006/007	3.3 V or 1.5 V	PCI-X Mode 2
	4	266	2.13 GB/s	014/015	3.3 V or 1.5 V	PCI-X Mode 2
	3	266	2.13 GB/s	012/013	3.3 V or 1.5 V	PCI-X Mode 2
	2	133	1.06 GB/s	010/011	3.3 V	PCI or PCI-X Mode 1
	1	133	1.06 GB/s	008/009	3.3 V	PCI or PCI-X Mode 1
1	8	133	533 MB/s	001	3.3 V	PCI or PCI-X Mode 1
	7	133	1.06 GB/s	002/003	3.3 V	PCI or PCI-X Mode 1
	6	266	2.13 GB/s	004/005	3.3 V or 1.5 V	PCI-X Mode 2
	5	266	2.13 GB/s	006/007	3.3 V or 1.5 V	PCI-X Mode 2
	4	266	2.13 GB/s	014/015	3.3 V or 1.5 V	PCI-X Mode 2
	3	266	2.13 GB/s	012/015	3.3 V or 1.5 V	PCI-X Mode 2
	2	133	1.06 GB/s	010/011	3.3 V	PCI or PCI-X Mode 1
	1	133	1.06 GB/s	008/009	3.3 V	PCI or PCI-X Mode 1

a. Each slot will auto select the proper speed for the card installed up to the maximum speed for the slot. Placing high speed cards into slow speed slots will cause the card to be driven at the slow speed.

MP/SCSI Board

Up to two MP/SCSI cards can be plugged into the server. At least one MP/SCSI board is required (independent of partitions). An additional MP/SCSI board is required in a dual partition system. Both MP/SCSI boards are oriented vertically and plug into the system backplane. The MP/SCSI board incorporates a dual channel Ultra320 SCSI controller and is hot-pluggable.

LAN/SCSI Board

At least one LAN/SCSI board is required for the minimum system configuration. Two are required in a dual partition system. The LAN/SCSI board is a standard PCI form factor card with PCI card edge connectors. The PCI-X backplane has one slot location reserved for the required board and another that can accommodate either a second LAN/SCSI board or any other supported add-in PCI-X card. The LAN/SCSI board is hot-pluggable.

Mass Storage (Disk) Backplane

Internal mass storage connections to disks are routed on the mass storage backplane, which has connectors and termination logic. All hard disks are hot-plug, but removable media disks are not. The servers accommodate one internal, half-height, removable media device, or two internal, slim line DVD+RW removable media devices.. The mass storage backplane incorporates a circuit that enables power to the internal removable media device to be programmatically cycled.

Chapter 1 41

HP Integrity rx7640 Server and HP 9000 rp7440 Server Overview **Detailed Server Description**

2 Server Site Preparation

This chapter describes the basic server configuration and its physical specifications and requirements.

Chapter 2 43

Dimensions and Weights

This section provides dimensions and weights of the system components. Table 2-1 gives the dimensions and weights for a fully configured server.

Table 2-1 Server Dimensions and Weights

	Standalone	Packaged
Height- Inches (centimeters)	17.3 (43.9)	35.75 (90.8)
Width- Inches (centimeters)	17.5 (44.4)	28.0 (71.1)
Depth- Inches (centimeters)	30.0 (76.2)	28.38 (72.0)
Weight - Pounds (kilograms)	220.0 ^a (100.0)	665.0 ^b (302.0)

- a. This weight represents a fully configured server before it is installed in a rack.
- b. The packaged weight represents a server installed in a 2-m rack. The packaged weight includes a fully configured server in a 2-m rack with a rear door, rail slide kit, line cord anchor kit, interlock assembly, cable management arm, 120-lb ballast kit, and a 60-A PDU. The shipping box, pallet, and container, not included in the packaged weight in Table 2-1, adds approximately 150.0-lb to the total system weight when shipped. The size and number of miscellaneous pallets will be determined by the equipment ordered by the customer.

Table 2-2 provides component weights for calculating the weight of a server not fully configured. Table 2-3 provides an example of how to calculate the weight. Table 2-4 is a blank worksheet for calculating the weight of the server. To determine the overall weight, follow the example in Table 2-3, and complete the worksheet in Table 2-4 for your system.

Table 2-2 Server Component Weights

Quantity	Description	Weight lb (kg)
1	Chassis	90.0 (41.0)
1 - 2	Cell board	27.80 (12.61) each
1	System backplane	12 (5.44) (estimate)
1	PCI-X card cage assemply	20.4 (9.25)
2	Bulk power supply	18.0 (8.2) each
1	Mass storage backplane	1.0 (0.45)
2	PCI-X power supplies	5.0 (2.27) each
1 - 4	Hard disk drive	1.60 (0.73) each
1	Removable media disk drive	2.20 (1.00) each

Table 2-3 Example Weight Summary

Component	Quantity	Multiply	Weight (kg)	
Cell board	2	27.8 (12.16)	107.20 (48.64)	
PCI card (varies - used sample value)	4	0.34 (0.153)	1.36 (0.61)	
Power supply (BPS)	2	18 (8.2)	36.0 (16.4)	
DVD drive	1	2.2 (1.0)	4.4 (2.0)	
Hard disk drive	4	1.6 (0.73)	6.40 (2.90)	
Chassis with skins and front bezel cover	1	90.0(41.0)	131.0 (59.42)	
		Total weight	286.36 (129.89)	

Table 2-4 Weight Summary

Component	Quantity	Multiply By	Weight (kg)
Cell Board		27.8 (12.16)	
PCI Card		0.34 (0.153)	
Power Supply (BPS)		18 (8.2)	
DVD Drive		2.2 (1.0)	
Hard Disk Drive		1.6 (0.73)	
Chassis with skins and front bezel cover		90.0 (41.0)	
		Total weight	

Chapter 2 45

Electrical Specifications

This section provides electrical specifications for the server.

Grounding

The site building shall provide a safety ground and protective earth for each AC service entrance to all cabinets.

Install a protective earthing (PE) conductor that is identical in size, insulation material, and thickness to the branch-circuit supply conductors. The PE conductor must be green with yellow stripes. The earthing conductor must be connected from the unit to the building installation earth or if supplied by a separately derived system, at the supply transformer or motor-generator set grounding point.

Circuit Breaker

The Marked Electrical for the server is 15 amps per line cord. The recommended circuit breaker size is 20 amps for North America. For countries outside North America, consult your local electrical authority having jurisdiction for the recommended circuit breaker size.

The server contains four C20 power receptacles located at the bottom rear bulkhead. A minimum of two power cords must be used to maintain normal operation of the server. A second set of two cords can be added to improve system availability by protecting, for example, against power source failures or accidentally tripped circuit breakers. The server can receive AC input from two different AC power sources.

System AC Power Specifications

Power Cords

Table 2-5 lists the various power cables available for use with the server. Each power cord is 15 feet (4.5 meters) in length with a IEC 60320-1 C19 female connector attached to one end.

Table 2-5 Power Cords

Part Number	Description	Where Used
8120-6895	Stripped end, 240 volt	International - Other
8120-6897	Male IEC309, 240 volt	International - Europe
8121-0070	Male GB-1002, 240 volts	China
8120-6903	Male NEMA L6-20, 240 volt	North America/Japan

System Power Specifications

Table 2-6 lists the AC power requirements for the HP Integrity rx7640 and HP 9000 rp7440 servers. Table 2-7 lists the system power requirements for the HP Integrity rx7640 Server. For the system power requirements for the HP 9000 rp7440 Server, see Chapter 7. These tables provide information to help determine the amount of AC power needed for your computer room.

Table 2-6 AC Power Requirements

Requirements	Value	Comments
Nominal input voltage	200/208/220/230/240 (VAC rms)	
Frequency range (minimum - maximum)	50 - 60 (Hz)	
Number of phases	1	
Maximum input current	12 amps	Per line cord
Maximum inrush current	30 A peak for 15 ms	Per line cord
Power factor correction	>0.98 >0.95	At all loads of 50% - 100% of supply rating At all loads 0f 25% - 50% of supply rating
Ground leakage current (mA)	<3.0 (ma)	Per line cord

Chapter 2 47

Table 2-7 System Power Requirements for the HP Integrity rx7640 Server

Power Required (50-60 Hz)	Watts	VA	Comments
Maximum Theoretical Power	3166	3231	See Note 1
Marked Electrical Power		2640	12A @ 220 VAC, See Note 2
User-Expected Maximum Power	2128	2171	See Note 3

Note 1: Maximum Theoretical Power: or "Maximum Configuration" (Input power at the ac input expressed in Watts and Volt-Amps to take into account Power factor correction.)

The calculated sum of the maximum worst case power consumption for every subsystem in the server. This number will never be exceeded by a functioning server for any combination of hardware and software under any conditions.

Note 2: Marked Electrical Power: (Input power at the ac input expressed in Volt-Amps.)

The Marked Electrical Power is the rating given on the chassis label and represents the input power required for facility ac power planning and wiring requirements. This number represents the expected maximum power consumption for the server based on the power rating of the bulk power supplies. This number can safely be used to size ac circuits and breakers for the system under all conditions.

Note 3: User-Expected Maximum Power: or User Expected Maximum Power, (Input power at the ac input expressed in Watts and Volt-Amps.)

The measured maximum worst case power consumption. This number represents the larges power consumption that HP engineers were able to produce for the server with any combination of hardware under laboratory conditions using aggressive software applications designed specifically to work the system at maximum load. This number can safely be used to compute thermal loads and power consumption for the system under all conditions.

Environmental Specifications

This section provides the environmental, power dissipation, noise emission, and airflow specifications for the server.

Temperature and Humidity

The cabinet is actively cooled using forced convection in a Class C1-modified environment. The recommended humidity level for Class C1 is 40 to 55% relative humidity (RH).

Operating Environment

The system is designed to run continuously and meet reliability goals in an ambient temperature of 5° to 35° C at sea level. The maximum allowable temperature is derated 1° C per 1,000 feet of elevation above 3,000 feet above sea level up to 25° C at 10,000 feet. For optimum reliability and performance, the recommended operating range is 20° to 25° C. This meets or exceeds the requirements for Class 2 in the corporate and ASHRAE standard. See Table 2-8 on page 50 for an example of the ASHRAE thermal report.

Chapter 2 49

Table 2-8 Example ASHRAE Thermal Report

Toltage 208 Tolts Typical Teat Telease Vatts	Airflow, nominal	Airflow,	We	. 1.	T:	
leat elease			We	. 1 .	:	
Vatte		at 35° C		ıgnt	Over Syste Dimension (W x D x H	ıs
74005	cfm	(m ³ /hr)	lb	kg	Inches	mm
70	960	1631	192.2	87.4	h=17.29 w=17.50 d=30.00	439.17 444.50 762.00
128	960	1631	220	100	h=17.29 w=17.50 d=30.00	439.17 444.50 762.00
090	960	1637	N/A	N/A	h=17.29 w=17.50 d=30.00	439.17 444.50 762.00
		Minimum configuration	L			s, 2 GB,
		Full configur			boards, 8 CPUs, 64 GB, 2 O cards	
		Typical configuration		1 cell board, 4 CPUs, 32 GB, 1 core I/O card, 8 I/O cards, 2 hard drives		
1	28	28 960	28 960 1631 90 960 1637 Minimum configuration Full configur Typical	28 960 1631 220 90 960 1637 N/A Minimum configuration Full configuration Typical	28 960 1631 220 100	w=17.50 d=30.00 28

Environmental Temperature Sensor

To ensure that the system is operating within the published limits, the ambient operating temperature is measured using a sensor placed near the chassis inlet, between the cell boards. Data from the sensor is used to control the fan speed and to initiate system overtemp shutdown.

Non-Operating Environment

The system is designed to withstand ambient temperatures between -40 $^{\circ}$ to 70 $^{\circ}$ C under non-operating conditions.

Cooling

Internal Chassis Cooling

The cabinet incorporates front-to-back airflow across the cell boards and system backplane. Two 150 mm fans, mounted externally on the front chassis wall behind the cosmetic front bezel, push air into the cell section. Two 150 mm fans housed in cosmetic plastic fan carriers, mounted externally to the rear chassis wall, pull air through the cell section.

Each fan is controlled by a smart fan control board, embedded in the fan module plastic housing. The smart fan control board receives fan control input from the system fan controller on the system backplane and returns fan status information to the system fan controller. The smart fan control board also controls the power and the pulse width modulated control signal to the fan and monitors the speed indicator back from the fan. The fan status LED is driven by the smart fan control board.

Bulk Power Supply Cooling

Cooling for the bulk power supplies (BPS) is provided by two 60 mm fans contained within each BPS. Air flows into the front of the BPS and is exhausted out of the top of the power supply through upward facing vents near the rear of the supply. The air is then ducted out of the rear of the chassis with minimal leakage into the cell airflow plenum.

PCI/Mass Storage Section Cooling

Six 92 mm fans located between the mass storage devices and the PCI card cage provide airflow through these devices. The PCI fans are powered with housekeeping power and run at full speed at all times. The air is pulled through the mass storage devices and pushed through the PCI Card Cage. Perforation is provided between the PCI bulkheads to allow adequate exhaust ventilation.

Standby Cooling

Several components within the chassis consume significant amounts of power while the system is in standby mode. The system fans run at a portion of full speed during standby to remove the resulting heat from the cabinet. The fans within the power supply will operate at full speed during standby.

Chapter 2 51

Typical Power Dissipation and Cooling

Table 2-9 provides calculations for configurations for the HP Integrity rx7640 Server. For calculations for the HP 9000 rp7440 Server, see Chapter 7.

Table 2-9 Typical Server Configurations

Cell Boards	Memory Per Cell Board	PCI Cards (assumes 10 watts each)	DVDs	Hard Disk Drives	Core I/O	Bulk Power Supplies	Typical Power	Typical Cooling
Qty	GBytes	Qty	Qty	Qty	Qty	Qty	Watts	BTU/hr
2	32	16	2	4	2	2	2128	7265
2	16	8	0	2	2	2	1958	6685
2	8	8	0	2	2	2	1921	6558
1	8	8	0	1	1	2	1262	4308

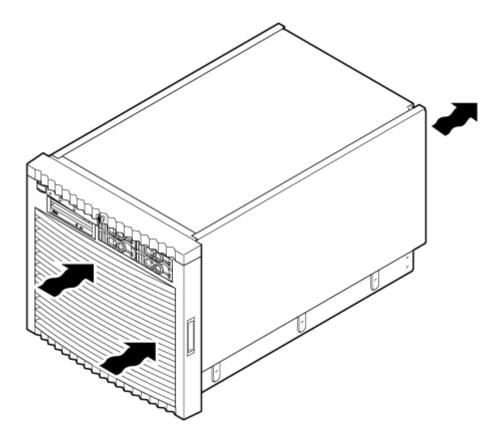
The air conditioning data is derived using the following equations.

- Watts x (0.860) = kcal/hour
- Watts x(3.414) = Btu/hour
- Btu/hour divided by 12,000 = tons of refrigeration required

NOTE

When determining power requirements you must consider any peripheral equipment that will be installed during initial installation or as a later update. Refer to the applicable documentation for such devices to determine the power and air-conditioning that is required to support these devices.

Acoustic Noise Specification


The acoustic noise specification for the server is 57.3 db (sound pressure level at bystander position) It is appropriate for dedicated computer room environments but not office environments. The LwA is 7.5 Bels. Care should be taken to understand the acoustic noise specifications relative to operator positions within the computer room or when adding servers to computer rooms with existing noise sources.

Airflow

The recommended server cabinet air intake temperature is between 20° and 25° C $(68^{\circ}$ and 77° F) at 960 CFM.

Figure 2-1 illustrates the location of the inlet and outlet airducts on a single cabinet. Air is drawn into the front of the server and forced out the rear.

Figure 2-1 Airflow Diagram

Chapter 2 53

System Requirements Summary

This section summarizes the requirements that must be considered in preparing the site for the server.

Power Consumption and Air Conditioning

To determine the power consumed and the air conditioning required, follow the guidelines in Table 2-9.

NOTE

When determining power requirements, consider any peripheral equipment that will be installed during initial installation or as a later update. Refer to the applicable documentation for such devices to determine the power and airconditioning that is required to support these devices.

Maximum power is the sum of the worst case power consumption of every subsystem in the box and should be used to size worst case power consumption. Typical power consumption numbers are what HP engineers have measured when running power-intensive applications. These are generally lower than maximum power numbers because all of the subsystems in the box to simultaneously drawing maximum power for long durations is uncommon.

3 Installing the Server

Inspect shipping containers when the equipment arrives at the site. Check equipment after the packing has been removed. This chapter discusses how to inspect and install the server.

Receiving and Inspecting the Server Cabinet

This section contains information about receiving, unpacking and inspecting the server cabinet.

NOTE

The server will ship in one of three different configurations. The configurations are:

- On a pallet installed in a server cabinet
- On a pallet for rack mount into an existing cabinet on the customer site
- On a pallet with a wheel kit for installation as a standalone server

HP shipping containers are designed to protect their contents under normal shipping conditions. A tilt indicator is installed on each carton shipped. The tilt indicator has two windows, and each window under normal conditions will show four beads present. If a carton has been mishandled, accidentally dropped, or knocked against something, the tilt indicator will indicate missing beads. If the container has been tilted to an angle that could cause equipment damage, the beads in the indicator will roll to the upper position.

After the equipment arrives at the customer site, carefully inspect each carton for signs of shipping damage. If the container is damaged, document the damage with photographs and contact the transport carrier immediately.

NOTE

The factory provides an installation warranty that is effective from the time the customer receives the shipment until Field Services turns the system over to the customer.

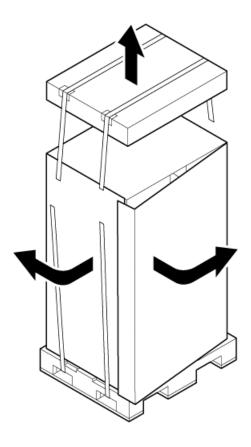
Upon inspection of a received system and during installation of the system, if any parts or accessories are missing or defective, they will be replaced directly from the factory by a priority process. To request replacement parts, the HP Installation Specialist must contact the local Order Fulfillment group which will coordinate the replacement with the factory.

Unpacking the Server Cabinet

This section contains information about unpacking the server cabinet.

WARNING

Wear protective glasses while cutting the plastic bands around the shipping container. These bands are under tension. When cut, they can spring back and cause serious eye injury.


NOTE

Position the pallet to allow enough space to roll the cabinet off the pallet before starting.

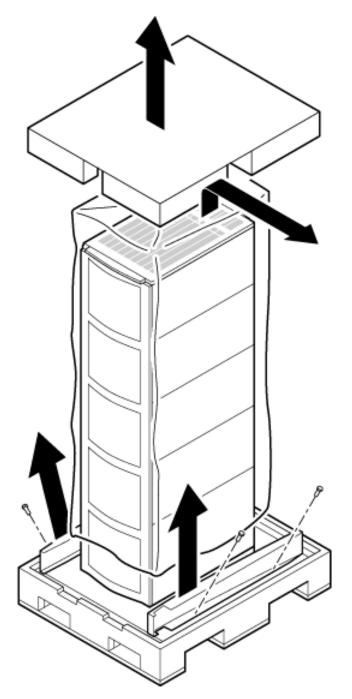
Remove the server cabinet using the following steps:

Step 1. Cut the polystrap bands around the shipping container.

Figure 3-1 Removing the Polystraps and Cardboard

Step 3. Remove the corrugated wrap from the pallet.

Step 4. Remove the packing materials.


CAUTION Cut the plastic wrapping material off rather than pull it off. Pulling the plastic covering off represents an electrostatic discharge (ESD) hazard to the hardware.

Step 5. Remove the four bolts holding down the ramps, and remove the ramps.

NOTE

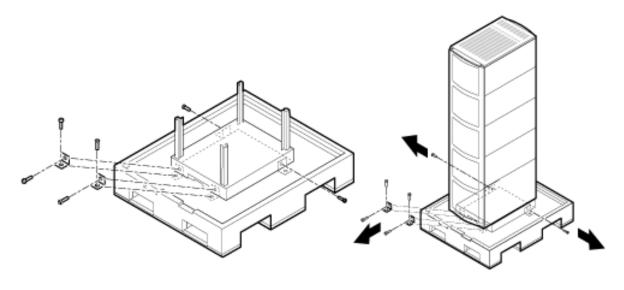

Figure 3-2 shows one ramp attached to the pallet on either side of the cabinet with each ramp secured to the pallet using two bolts. In an alternate configuration, the ramps are secured together on one side of the cabinet with one bolt.

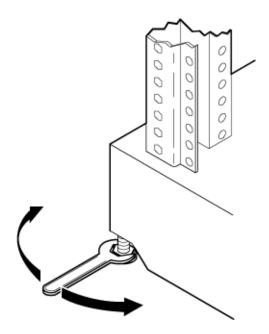
Figure 3-2 Removing the Shipping Bolts and Plastic Cover

Step 6. Remove the six bolts from the base that attaches the rack to the pallet.

Figure 3-3 Preparing to Roll Off the Pallet

WARNING

Be sure that the leveling feet on the rack are raised before you roll the rack down the ramp, and any time you roll the rack on the casters. Use caution when rolling the cabinet off the ramp. A single server in the cabinet weighs approximately 508 lb. It is strongly recommended that two people roll the cabinet off the pallet.


After unpacking the cabinet, examine it for damage that might have been obscured by the shipping container. If you discover damage, document the damage with photographs and contact the transport carrier immediately.

If the equipment has any damage, the customer must obtain a damage claim form from the shipping representative. The customer must complete the form and return it to the shipping representative.

Securing the Cabinet

When in position, secure and stabilize the cabinet using the leveling feet at the corners of the base (Figure 3-4). Install the anti-tip mechanisms on the bottom front and rear of the rack.

Figure 3-4 Securing the Cabinet

Standalone and To-Be-Racked Systems

Servers shipped in a stand-alone or to-be-racked configuration must have the core I/O handles and the PCI towel bars attached at system installation. Obtain and install the core I/O handles and PCI towel bars from the accessory kit A6093-04046. The towel bars and handles are the same part. Refer to service note A6093A-11.

Rack-Mount System Installation

Information is available to help with rack-mounting the server. This list is intended to guide the HP Installation Specialist to the documentation that has been written by the Rack and Power team. The server can be installed in both the 10000 Series Rack and the Rack System/E.

The external Web site is:

http://h18004.www1.hp.com/products/servers/platforms/rackandpower.html

The internal Web site for 10K Racks is:

http://isspit.corp.hp.com/application/view/ProdCenter.asp?OID=254479

The interal Web site for the System/E Racks is:

http://isspit.corp.hp.com/application/view/ProdCenter.asp?OID=1130382

NOTE

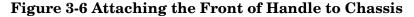
Lifting the Server Cabinet Manually

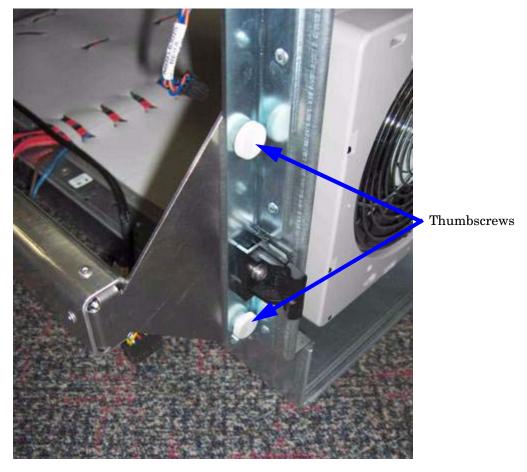
Use this procedure only if no HP approved lift is available.

CAUTION	-	This procedure must only be performed by four qualified HP Service Personnel utilizing proper lifting techniques and procedures.		
CAUTION		all electrostatic discharge (ESD) safety precautions before attempting this procedure. to follow ESD safety precautions can result in damage to the server.		
Step 1.	Follow the instructions on the outside of the service packaging to remove the banding and cardboard top from the server pallet.			
Step 2.		uce the weight by removing the bulk power supplies and cell boards. Place each on an ESD roved surface.		
	CAUTION	System damage can occur through improper removal and reinstallation of bulk power supplies and cell boards. Refer to Chapter 6, Removing and Replacing Components, for the correct procedures to remove and reinstall these components.		
Step 3.	Remove the	systems left and right side covers.		

The latest lift handles available for the 2-cell servers are symmetrical and can be

Step 4. Locate one handle and ensure the two thumbscrews are removed from its front flange.


installed on either side of the server.


Step 5. Insert the 2 protruding tabs on rear flange of handle into the slotted keyways in the server's chassis. See Figure 3-5.

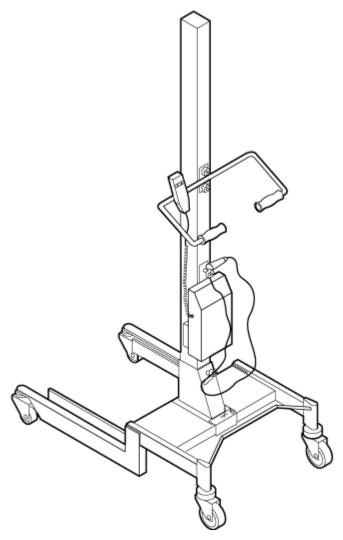
Step 6. Align the screw holes in the handle's front flange with the rack mounting holes in the server's rack mount flange. Secure with the two thumbscrews. See Figure 3-6 on page 64.

- **Step 7.** Repeat steps 2—4 to install the other handle on the other side of the server.
- **Step 8.** After handles are secured, server is ready to lift.
- **Step 9.** Handles are removed in reverse order of steps 2—4.
- **Step 10.** After moving the server, remove the lift handles from the chassis.
- **Step 11.** After the server is secured, replace the previously removed cell boards and bulk power supplies.
- **Step 12.** Reinstall the side covers and front bezel.

Using the RonI Model 17000 SP 400 Lifting Device

Use the lifter designed by the RonI company to rack-mount the server. The lifter can raise 400 lb/182 kg to a height of 5 feet. The lifter can be broken down into several components. When completely broken down, no single component weighs more than 25 lb/12 kg. The ability to break the lifter down makes it easy to transport from the office to the car and then to the customer site.

Documentation for the RonI lifter has been written by RonI and is available on the HP Cybrary: http://cybrary.inet.cpqcorp.net/ARCHIVE/PUBS/USERS/LIFTOFLEX-17000.pdf. Complete details on how to assemble the lifter, troubleshoot the lifter, and maintain the lifter are provided by RonI.

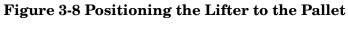

Use the following procedure to unload the server from the pallet after the lifter is assembled.

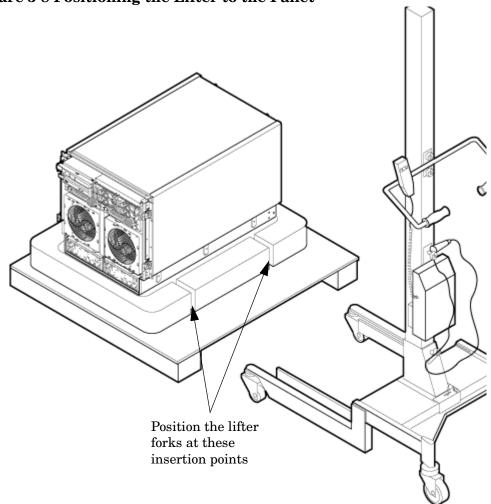
WARNING

Use caution when using the lifter. To avoid injury, because of the weight of the server, center the server on the lifter forks before raising it off the pallet.

Always rack the server in the bottom of a cabinet for safety reasons. Never extend more than one server from the same cabinet while installing or servicing another server product. Failure to follow these instructions could result in the cabinet tipping over.

Figure 3-7 RonI Lifter

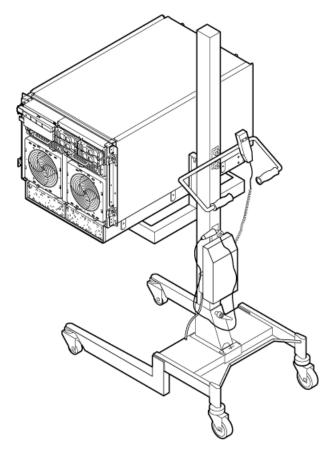



Step 1. Obtain the *HP J1530C Rack Integration Kit Installation Guide* before proceeding with the rack mount procedure. This guide covers these important steps:

- Installing the anti-tip stabilizer kit (A5540A)
- Installing the ballast kit (J1479A)
- Installing the barrel nuts on the front and rear columns
- Installing the slides

Step 2. Follow the instructions on the outside of the server packaging to remove the banding and carton top from the server pallet.

Step 3. Insert the lifter forks between the cushions.



Step 4. Carefully roll the lift forward until it is fully positioned against the side of the server.

Step 5. Slowly raise the server off the pallet until it clears the pallet cushions.

Figure 3-9 Raising the Server Off the Pallet Cushions

- **Step 6.** Carefully roll the lifter and server away from the pallet. Do not raise the server any higher than necessary when moving it over to the rack.
- **Step 7.** Follow the HP J1530C Rack Integration Kit Installation Guide to complete these steps:
 - Mounting the server to the slides
 - Installing the cable management arm (CMA)
 - Installing the interlock device assembly (if two servers are in the same cabinet)

Wheel Kit Installation

Compare the packing list (Table 3-1) with the contents of the wheel kit before beginning the installation. For a more updated list of part numbers, go to the HP Part Surfer web site at: http://www.partsurfer.hp.com.

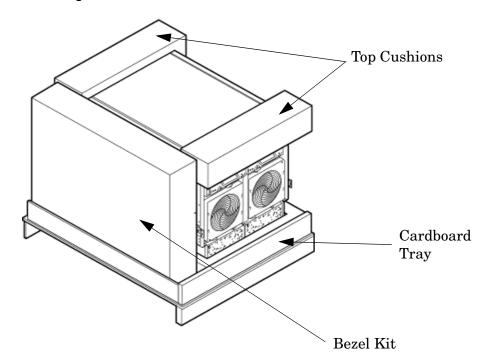
Table 3-1 Wheel Kit Packing List

Part Number	Description	Quantity
A6753-04013	Wheel Kit consisting of the following components:	1
A6753-04002	Side cover	1
A6753-04003	Side cover	1
A6753-04004	Top cover	1
A6753-00007	Caster cover	2
A6753-04001	Right front caster assembly	1
A6753-04005	Right rear caster assembly	1
A6753-04006	Left front caster assembly	1
A6753-04007	Left rear caster assembly	1
0515-2478	M4 x 0.7 8mm T15 steel zinc machine screw (Used to attach each caster to the chassis)	4
A6093-44013	Plywood unloading ramp	1
Not Applicable	Phillips head wood screw (Used to attach the ramp to the pallet)	2

Tools Required for Installation

The following list provides the installer with the recommended tools to perform the wheel kit installation.

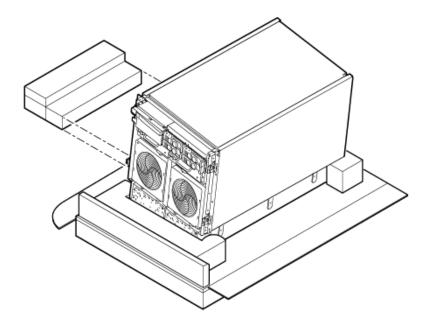
- Diagonal side cutters
- Safety glasses
- Torx screwdriver with T-15 bit
- Phillips head screwdriver


WARNING

Wear protective glasses while cutting the plastic bands around the shipping container. These bands are under tension. When cut, they can spring back and cause serious eye injury.

Use the following procedure to install the wheel kit.

- **Step 1.** Cut and remove the polystrap bands securing the HP server to the pallet.
- **Step 2.** Lift the carton top from the cardboard tray resting on the pallet.
- **Step 3.** Remove the bezel kit carton and the top cushions from the pallet.


Figure 3-10Component Locations

Step 4. Unfold bottom cardboard tray.

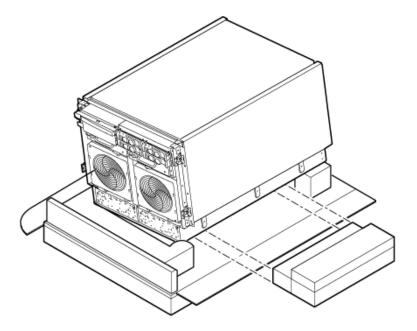

Step 5. Carefully tilt the server and place one of the foam blocks (A6093-44002) under the left side of the server. Do not remove any other cushions until instructed to do so.

Figure 3-11Left Foam Block Position

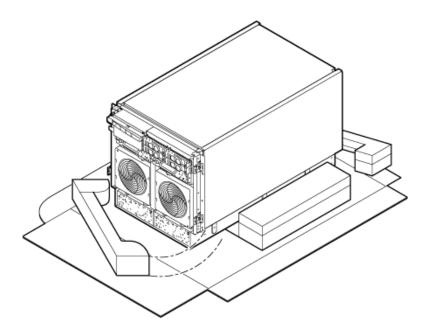

Step 6. Carefully tilt the server and place the other foam block provided in the kit under the right side of the server.

Figure 3-12Right Foam Block Position

Step 7. Remove the cushions from the lower front and rear of the server. Do not disturb the side cushions.

Figure 3-13Foam Block Removal

Step 8. Locate and identify the caster assemblies. Use the following table to identify the casters.

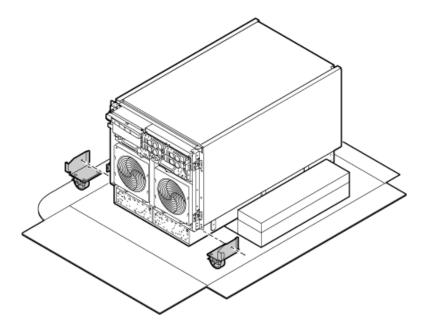

NOTE The caster part number is stamped on the caster mo	unting plate.
---	---------------

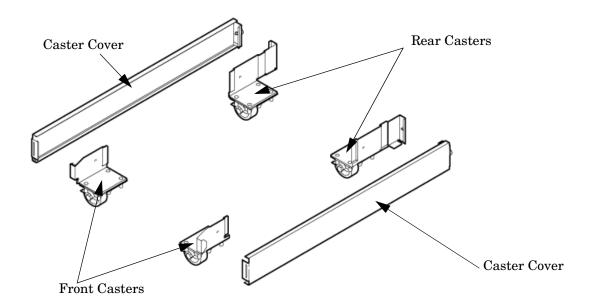
Table 3-2 Caster Part Numbers

Caster	Part Number
Right front	A6753-04001
Right rear	A6753-04005
Left front	A6753-04006
Left rear	A6753-04007

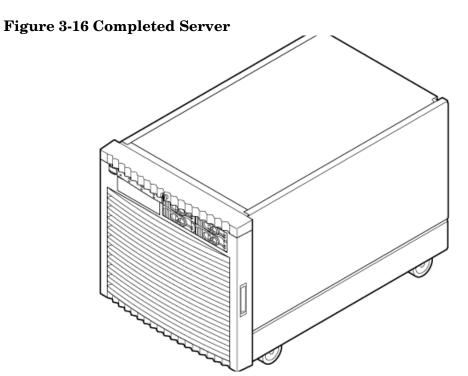
Step 9. Locate and remove one of the four screws from the plastic pouch. Attach the a caster to the server.

Figure 3-14Attaching a Caster to the Server

- **Step 10.** Attach the remaining casters to the server using the screws supplied in the plastic pouch.
- **Step 11.** Remove the foam blocks from the left and right side of the server.
- **Step 12.** Locate the plywood ramp.
- **Step 13.** Attach the ramp to the edge of the pallet.


NOTE	There are two pre-drilled holes in the ramp. Use the two screws taped to the ramp to attach the ramp to the pallet.
	attach the ramp to the panet.

- **Step 14.** Carefully roll the server off the pallet and down the ramp.
- **Step 15.** Locate the caster covers.


NOTE Th	ne caster covers are designed to fit on either side of the server.
---------	--

Step 16. Insert the slot on the caster cover into the front caster. Secure the cover to the server by tightening the captive screw on the cover at the rear of the server.

Figure 3-15 Securing Each Caster Cover to the Server

Step 17. Wheel kit installation is complete when both caster covers are attached to the server, and the front bezel and all covers are installed.

Installing the Power Distribution Unit

The server may ship with a power distribution unit (PDU). Two 60 A PDUs available for the server. Each PDU 3 U high and is mounted horizontally between the rear columns of the server cabinet. The 60 A PDUs are delivered with an IEC-309 60 A plug.

The 60 A NEMA¹ PDU has four 20 A circuit breakers and is constructed for North American use. Each of the four circuit breakers has two IEC²-320 C19 outlets providing a total of eight IEC-320 C19 outlets.

The 60A IEC PDU has four 16A circuit breakers and is constructed for International use. Each of the four circuit breakers has two IEC-320 C19 outlets providing a total of eight IEC-320 C19 outlets.

Each PDU is 3U high and is rack-mounted in the server cabinet.

Documentation for installation will accompany the PDU. The documentation can also be found at the external Rack Solutions Web site at:

http://www.hp.com/racksolutions

This PDU might be referred to as a Relocatable Power Tap outside HP.

The PDU installation kit contains the following:

- PDU with cord and plug
- Mounting hardware
- Installation instructions

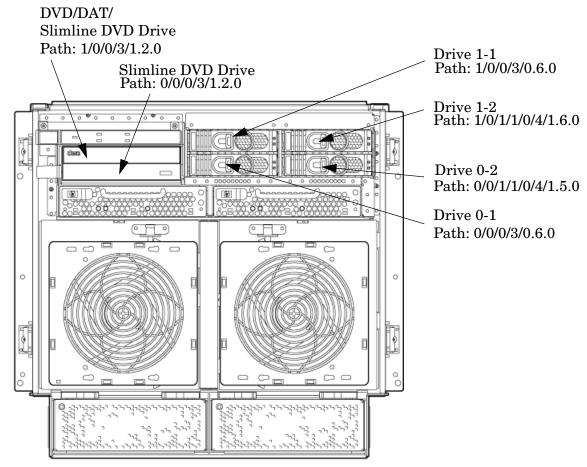
^{1.} The acronym NEMA stands for National Electrical Manufacturers Association.

^{2.} The acronym IEC stands for International Electrotechnical Commission.

Installing Additional Cards and Storage

This section provides information on additional products ordered after installation and any dependencies for these add-on products.

The following options may be installed in the server.


- Additional hard disk drive storage
- Removable media device storage
- PCI and PCI-X I/O cards

Installing Additional Hard Disk Drives

The disk drives are located in the front of the chassis (Figure 3-17). The hard disk drives are hot-plug drives.

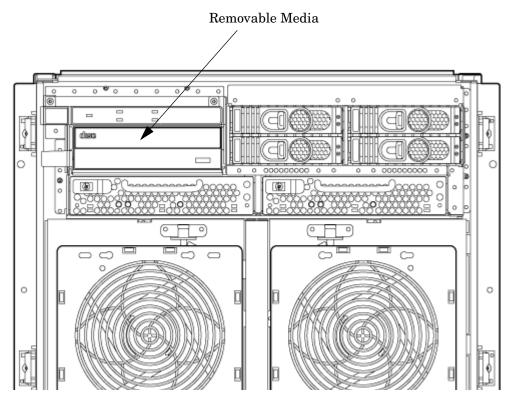
A list of replacement disk drives for the server is in Appendix A of the HP Service Guide. The list contains both removable media disk drives and hard disk drives.

Figure 3-17 Disk Drive and DVD Drive Location

Use the following procedure to install the disk drives:

Step 1. Be sure the front locking latch is open, then position the disk drive in the chassis.

Installing Additional Cards and Storage


- **Step 2.** Slide the disk drive into the chassis, a slow firm pressure is needed to properly seat the connector.
- **Step 3.** Press the front locking latch to secure the disk drive in the chassis.
- **Step 4.** If the server OS is running, spin up the disk by entering one of the following commands:

#diskinfo -v /dev/rdsk/cxtxdx
#ioscan -f

Removable Media Drive Installation

The DVD drive, or DAT tape drive is located in the left front of the chassis. The server power must be turned off before installation. See Chapter 4, Booting and Shutting Down the Operating System, see "Powering Off Hardware Components and Powering On the Server" on page 180, and see "Removing and Replacing a Half-Height DVD/DAT Drive" on page 198.

Figure 3-18 Removable Media Location

- **Step 1.** Remove the front bezel.
- **Step 2.** Remove the filler panel from the server.
- **Step 3.** Install the left and right media rails and clips to the drive.
- **Step 4.** Connect the cables to the rear of the drive
- **Step 5.** Fold the cables out of the way and slide the drive into the chassis.

The drive easily slides into the chassis; however, a slow firm pressure is needed for proper seating. The front locking tab will latch to secure the drive in the chassis.

- **Step 6.** Replace the front bezel.
- **Step 7.** Power on the server, and power up nPartitions.
- **Step 8.** Verify operation of the drive.

PCI-X Card Cage Assembly I/O Cards

The server supports a number of PCI and PCI-X I/O cards. Table 3-3 lists the cards currently supported on the server.

Several cards can lose boot functionality in the HP Integrity rx7640 server. The customer must use another I/O card to retain boot functionality if the customer's card is not supported in the rx7640 server.

Table 3-3 HP Integrity rx7640 PCI-X I/O Cards

Part Number	Card Description	HP-UX	Windows®	Linux®	VMS
A4926A	Gigabit Ethernet (1000b-SX)				
A4929A	Gigabit Ethernet (1000b-T)				
A5158A	FCMS - Tachlite				
A5230A	10/100b-TX (RJ45)				
A5506B	4-port 10/100b-TX				
A5838A	2-port Ultra2 SCSI/2-Port 100b-T Combo				
A6386A	Hyperfabric II				
A6749A	64-port Terminal MUX				
A6795A	2G FC Tachlite	В			
A6825A	Next Gen 1000b-T	b	b		
A6826A ¹	2-port 2Gb FC	В			В
A6828A	1-port U160 SCSI	В	В		
A6829A	2-port U160 SCSI	В	В		
A6847A	Next Gen 1000b-SX	b	b		
A6869B ²	Obsidian 2 VGA/USB	В			В
A7011A	1000b-SX Dual Port	b	b	b	
A7012A	1000b-T Dual Port	b	b	b	
A7173A	2-port U320 SCSI	В	В	В	В
A9782A ¹	1000b-T GigE/2G FC Combo	Bb			В
A9784A ¹	PCI-X 1000b-T GigE/2G FC Combo	Bb			В
A9890A	2-port Smart Array 6402 (U320)	В	В	В	В
A9891A	4-port Smart Array 6402 (U320)	В	В		В
AB232A ¹	Emulex 9802 Fibre Channel		В		
AB286A	PCI-X 2-port 4X InfiniBand HCA (HPC)				

Table 3-3 HP Integrity rx7640 PCI-X I/O Cards (Continued)

Part Number	Card Description	HP-UX	Windows®	Linux®	VMS
AB286C	PCI-X 2-Port 4X InfiniBand HCA (HPC)-RoHS				
AB287A	10 GbE - Fiber (PCI-X 133)	b	b	b	
AB290A	U320 SCSI/GigE Combo Card	Bb	Bb	Bb	В
AB345A	PCI-X 2-port 4X InfiniBand HCA				
AB378B ¹	QLogic 1-port 4Gb FC card (PCI-X 266)	В			В
AB379B ¹	QLogic 2-port 4Gb FC card (PCI-X 266)	В	В	В	В
AB429A ¹	1-Port 4Gb FC QLogic – AB378A equivalent		В	В	
AB465A ¹	2-port 1000b-T 2Gb FC Combo	Bb			В
AB466A ¹	Emulex 1050DC Fibre Channel		В		
AB467A ¹	Emulex 1050D Fibre Channel		В		
AB545A	4-Port 1000b-T Ethernet	b			
$AD167A^1$	Emulex 4Gb/s		В	В	
$AD168A^1$	Emulex 4Gb/s DC		В	В	
AD278A	8-Port Terminal MUX				
AD279A	64-Port Terminal MUX				
J3525A	2-port Serial				
337972-B21	SA P600 (Redstone)		В	В	
374191-B21	Broadcom 5706 rNIC -SX				
374193-B21	Broadcom 5706 rNIC -T				

B- Supports Mass Storage Boot

b- Supports LAN Boot

Bb- Supports Mass Storage and LAN Boot

- 1. Factory integration (software load) of the OpenVMS, Windows, and Linux operating systems via Fibre Channel is NOT supported.
- 2. Boot support is limited to OS installation, updating, and repairing media.

IMPORTANT The above list of part numbers is current and correct as of September 2006. Part numbers change often. Check the following website to ensure you have the latest part numbers associated with this server:

http://partsurfer.hp.com/cgi-bin/spi/main

Installing an Additional PCI-X Card

The server implements manual release latch (MRL) hardware for use in online add or replacement (OLAR) operations. If an MRL is left open while the server is booting, HP-UX can incorrectly cache PCI slot power status causing OLAR operations to fail. To prevent this situation, ensure all the MRLs are closed before booting the server.

If OLAR reports that a slot is present and powered off, but no OLAR operations to turn power on to that slot have succeeded even after the MRL is closed, the MRL may have been left open during boot. To clear this condition, close the MRL for the PCI slot then power off the PCI slot using the rad -o command. This will allow future OLAR operations to succeed on this PCI slot.

IMPORTANT The installation process varies depending on what method for installing the PCI card is selected. PCI I/O card installation procedures should be downloaded from the http://docs.hp.com/ Web site. Background information and procedures for adding a new PCI I/O card using online addition are found in the Interface Card OL* Support Guide.

PCI I/O OL* Card Methods

There are three methods for performing OL* operations on PCI I/O cards.

The Peripheral Device Tool (pdweb) Web-based method of performing OL*. pdweb

olrad The command line method of performing OL*.

Attention

The hardware system slot based method of performing OL*. Button

Adding a PCI I/O Card Using the Attention Button

The following prerequisites for this procedure:

- Drivers for the card have already been installed.
- No drivers are associated with the slot.
- The green power LED is steady OFF. Should the empty slot be in the ON state use the olrad command or the pdweb tool to power the slot **OFF**.
- The yellow attention LED if steady **OFF** or is blinking if a user has requested the slot location.
- Refer to the host bus adapter (HBA) documentation for details on card installation.
- Run the olrad -q command to determine the status of all the PCI I/O slots.

• Obtain a copy of the interface card guide for instructions on preparing the operating system for the online addition of the PCI I/O card before attempting to insert a PCI I/O card into the PCI-X card cage assembly backplane slot.

This procedure describes how to perform an online addition of a PCI card using the attention button for cards whose drivers support online add or replacement (OLAR). The attention button is also referred to as the doorbell.


- **Step 1.** Remove the top cover.
- **Step 2.** Remove the PCI bulkhead filler panel.
- **Step 3.** Flip the PCI manual retention latch (MRL) for the card slot to the open position. Refer to Figure 3-19.
- **Step 4.** Install the new PCI card in the slot.

	NOTE Apply a slow, firm pressure to properly seat the card into the backplane.		
Step 5.	Flip the PCI	MRL for the card slot to the closed position.	
	CAUTION	Working out of sequence or not completing the actions within each step could cause the system to crash.	
		Do not press the attention button until the latch is locked.	

Step 6. Press the attention button.

The green power LED will start to blink.

Figure 3-19 PCI I/O Slot Details

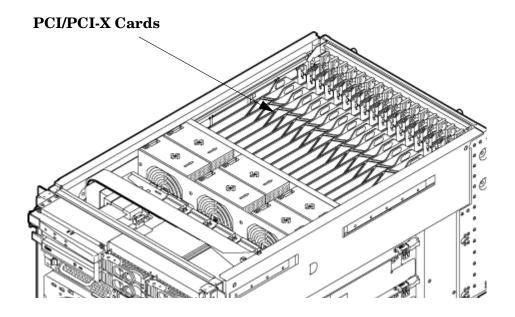
- **Step 7.** Wait for the green power LED to stop blinking.
- **Step 8.** Check for errors in the hotplugd daemon log file (default: /var/adm/hotplugd.log).

The critical resource analysis (CRA) performed while doing an attention button initiated add action is very restrictive and the action will not complete—it will fail—to protect critical resources from being impacted.

For finer control over CRA actions use pdweb or the olrad command. Refer to the Interface Card OL* Support Guide located on the Web at http://docs.hp.com for details.

- **Step 9.** Replace the top cover.
- **Step 10.** Connect all cables to the installed PCI card.

Installing an A6869B VGA/USB PCI Card in a Server


The A6869B VGA/USB PCI card is a dual function combo card, hosting VGA and universal serial bus (USB) controllers. Both of these devices sit behind a PCI-PCI bridge. The A6869B VGA/USB PCI card operates at the conventional 66MHz/64 bit PCI rate and is universally keyed. All signalling and form factors conform to the *PCI Local Bus Specification 2.3*. The VGA controller has 128Mbits of DDR-1 RAM for use as a frame buffer.

The A6869B VGA/USB PCI card can be installed into any slot in a PCI/PCI-X backplane.

IMPORTANT If you are installing the A6869B in HP servers based on the sx1000 chipset, such as HP Superdome, rx7620 or rx8620, the system firmware must be updated to a minimum revision of 3.88.

IMPORTANT Search for available PCI slots that support the conventional clock speed to conserve availability of higher speed PCI-X card slots to PCI-X cards that utilize the higher bandwidth. This applies to mid-range as well as high-end HP server I/O PCI-X backplanes.

Figure 3-20 **PCI/PCI-X Card Location**

IMPORTANT Some PCI I/O cards, such as the A6869B VGA/USB PCI card, cannot be added or replaced online (while Windows® remains running). For these cards, you must shut down Windows® on the nPartition before performing the card replacement or addition. See the section on Shutting Down nPartitions and Powering off Hardware Components in the appropriate service guide.

- 1. If the A6869B VGA/USB PCI card is currently not installed, follow proper procedures to shut down the nPartition and power-off the appropriate PCI power domain.
- 2. Locate a vacant conventional clock speed PCI slot where the A6869B VGA/USB PCI card will reside.
- 3. Position the PCI card over the empty slot, observing that edge connector keyways match on the PCI backplane connector.
- 4. Using a slow firm pressure, seat the card down into the slot.
- 5. Connect the monitor, mouse, and keyboard cables to the card.
- 6. Connect power, and turn on the monitor.

7. Follow proper procedures to power-on the PCI power domain and boot the Windows® nPartition. Once Windows® has completely booted, the video, keyboard and mouse are ready for use.

Troubleshooting the A6869B VGA/USB PCI Card

The following provides some troubleshooting solutions and a URL to a useful reference site.

No Console Display

Black Screen. No text displayed.

Hardware problem.

* Must have supported power enabled.

* Must have a functional VGA/USB PCI card.

* Must have a functional PCI slot. Select another slot on same partition/backplane.

* Must have the VGA/USB PCI card firmly seated in PCI backplane

 slot .

* Must have a supported monitor.

* Must have verified cable connections to VGA/USB PCI card.

Display unreadable.

* Ensure system FW supports the VGA/USB PCI card.

* Ensure graphics resolution is compatible and set correctly.

Reference URL

There are many features available for HP Servers at this website including links to download Windows® Drivers.

HP Servers Technical Support

http://www.hp.com/support/itaniumservers

Cabling and Power Up

After the system has been unpacked and moved into position, it must be connected to a source of AC power. The AC power must be checked for the proper voltage before the system is powered up. This chapter describes these activities.

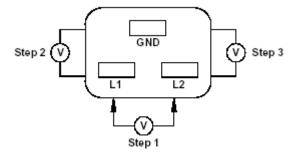
Checking the Voltage

This section provides voltage check information for use on the customer site. The empahsis focuses on measuring the voltages at the power cord plug and specified as an IEC 320 C19 type plug. This end plugs directly into the back of the server chassis.

NOTE

Perform these procedures for each power cord that will be plugged directly into the back of the server. If you do not obtain the expected results from this procedure during the voltage check, refer to the section titled "Voltage Check (Additional Procedure)" on page 91."

Preface


The server requires a minimum of 2 power cords. To enable full power redundancy, 4 power cords may be used. When using 4 power cords, dual power sources may be used to provide additional power source protection.

Power cords are designated and labeled A0, A1, B0 and B1. Cords A0 and B0 should be energized from the same power source and cords A1 and B1 should be energized from a second, independently qualified power surce. The cord labeling corresponds to the labeling at the servers power receptacles.

Voltage Range Verification of Receptacle

Use this procedure to measure the voltage between L1 and L2, L1 to ground, and L2 to ground. Refer to Figure 3-21 for voltage reference points when performing the following measurements.

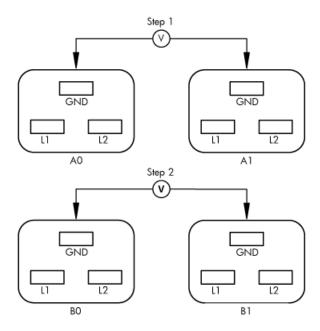
Figure 3-21 Voltage Reference Points for IEC 320 C19 Plug

IMPORTANT Perform these measurements for every power cord that plugs into the server.

- **Step 11.** Measure the voltage between L1 and L2. This is considered to be a phase-to-phase measurement in North America. In Europe and certain parts of Asia-Pacific, this measurement is referred to as a phase-to-neutral measurement. The expected voltage should be between 200–240 V AC regardless of the geographic region.
- **Step 12.** Measure the voltage between L1 and ground. In North America, verify that this voltage is between 100–120 V AC. In Europe and certain parts of Asia-Pacific, verify that this voltage is between 200–240 V AC.
- **Step 13.** Measure the voltage between L2 and ground. In North America, verify that this voltage is between 100–120 VAC. In Europe and certain parts of Asia-Pacific, verify that this voltage is 0 (zero) V AC.

Table 3-4 provides single phase voltage measurement examples dependent on the geographic region where these measurements are taken.

Table 3-4 Single Phase Voltage Examples


	Japan	North America	Europe ^a
L1-L2	210V	208V or 240V	230V
L1-GND	105V	120V	230V
L2-GND	105V	120V	0V

a. In some European countries there may not be a polarization.

Verifying the Safety Ground (Single Power Source)

Use this procedure to measure the voltage level between A0 and A1. It also verifies the voltage level between B0 and B1. Take measurements between ground pins. Refer to Figure 3-22 for ground reference points when performing these measurements.

Figure 3-22 Safety Ground Reference Check

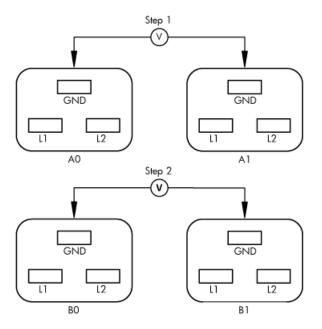
WARNING	SHOCK HAZARD
	Risk of shock hazard while testing primary power.
	Use properly insulated probes.
	Be sure to replace access cover when finished testing primary power.

Step 1. Measure the voltage between A0 and A1 as follows:

- 1. Take the AC voltage down to the lowest scale on the volt meter.
- 2. Insert the probe into the ground pin for A0.
- 3. Insert the other probe into the ground pin for A1.
- 4. Verify that the measurement is between 0-5 V AC.

If the measurement is 5 V or greater, escalate the situation. Do not attempt to plug the power cord into the server cabinet.

Step 2. Measure the voltage between B0 and B1 as follows:


- 1. Take the AC voltage down to the lowest scale on the volt meter.
- 2. Insert the probe into the ground pin for B0.
- 3. Insert the other probe into the ground pin for B1.
- 4. Verify that the measurement is between 0-5 V AC.

If the measurement is $5\ V$ or greater, escalate the situation. Do not attempt to plug the power cord into the server cabinet.

Verifying the Safety Ground (Dual Power Source)

Use this procedure to measure the voltage level between A0 and A1, between B0 and B1, between A0 and B0, and between A1 and B1. Take all measurements between ground pins. Refer to Figure 3-23 for ground reference points when performing these measurements.

Figure 3-23 Safety Ground Reference Check

WARNING SHOCK HAZARD

Risk of shock hazard while testing primary power.

Use properly insulated probes.

Be sure to replace access cover when finished testing primary power.

Step 1. Measure the voltage between A0 and A1 as follows:

- 1. Take the AC voltage down to the lowest scale on the volt meter.
- 2. Insert the probe into the ground pin for A0.
- 3. Insert the other probe into the ground pin for A1.
- 4. Verify that the measurement is between 0-5 V AC.

If the measurement is 5 V or greater, escalate the situation. Do not attempt to plug the power cord into the server cabinet.

Step 2. Measure the voltage between B0 and B1 as follows:

- 1. Take the AC voltage down to the lowest scale on the volt meter.
- 2. Insert the probe into the ground pin for B0.
- 3. Insert the other probe into the ground pin for B1.

4. Verify that the measurement is between 0-5 V AC.

If the measurement is 5 V or greater, escalate the situation. Do not attempt to plug the power cord into the server cabinet.

- **Step 3.** Measure the voltage between A0 and B0 as follows:
 - 1. Take the AC voltage down to the lowest scale on the volt meter.
 - 2. Insert the probe into the ground pin for A0.
 - 3. Insert the other probe into the ground pin for B0.
 - 4. Verify that the measurement is between 0-5 V AC.

If the measurement is 5 V or greater, escalate the situation. Do not attempt to plug the power cord into the server cabinet.

- **Step 4.** Measure the voltage between A1 and B1 as follows:
 - 1. Take the AC voltage down to the lowest scale on the volt meter.
 - 2. Insert the probe into the ground pin for A1.
 - 3. Insert the other probe into the ground pin for B1.
 - 4. Verify that the measurement is between 0-5 V AC.

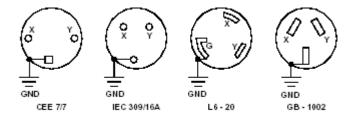
If the measurement is 5 V or greater, escalate the situation. Do not attempt to plug the power cord into the server cabinet.

Voltage Check (Additional Procedure)

The voltage check ensures that all phases (and neutral, for international systems) are connected correctly to the cabinet and that the AC input voltage is within limits.

Perform this procedure if the previous voltage check procedure did not yield the expected results.

NOTE


If you use an uninterrupted power supply (UPS), refer to the applicable UPS documentation for information on connecting the server and checking the UPS output voltage. UPS user documentation is shipped with the UPS. Documentation is also available at:

http://www.hp.com/racksolutions

- **Step 1.** Verify that site power is **OFF**.
- **Step 2.** Open the site circuit breakers.
- **Step 3.** Verify that the receptacle ground connector is connected to ground. Refer to Figure 3-24 for connector details.

Step 4. Set the site power circuit breaker to **ON**.

Figure 3-24 Wall Receptacle Pinouts

WARNING SHOCK HAZARD

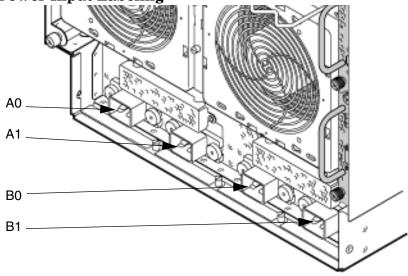
Risk of shock hazard while testing primary power.
Use properly insulated probes.

Be sure to replace access cover when finished testing primary power.

- **Step 5.** Verify that the voltage between receptacle pins X and Y is between 200 and 240V AC.
- **Step 6.** Set the site power circuit breaker to **OFF**.
- **Step 7.** Route and connect the server power connector to the site power receptacle.
 - For locking type receptacles, line up the key on the plug with the groove in the receptacle.
 - Push the plug into the receptacle and rotate to lock the connector in place.

WARNING Do not set site AC circuit breakers serving the processor cabinets to ON before verifying that the cabinet has been wired into the site AC power supply correctly. Failure to do so may result in injury to personnel or damage to equipment when AC power is applied to the cabinet.

- **Step 8.** Set the site power circuit breaker to **ON**.
- **Step 9.** Set the server power to **ON**.
- **Step 10.** Check that the indicator light on each power supply is lit.


Connecting AC Input Power

The server can receive AC input power from two different AC power sources. If two separate power sources are available, the server can be plugged into the separate power sources, increasing system realibility if one power source fails. The main power source is defined to be A0 and B0. The redundant power source is defined to be A1 and B1. See Figure 3-25 for the AC power input label scheme.

NOTE

When running the server with a single power source, either A0 and B0 or A1 and B1 should be used. All other combinations are not supported. Either combination requires two power cords.

Figure 3-25 AC Power Input Labeling

The server has two power cord configurations:

- All four line cords (preferred configuration)
- Cords A0 and B0 only

A single-line-cord configuration is not allowed.

The power cord configuration is passed to the operating system using the pwrgrd (Power Grid) command. Each of the five selections in the pwrgrd command matches one of the configurations. The appropriate option should be selected for the actual line cord configuration. With the correct configuration selected, the LEDs should be green. when the pwrgrd command is invoked, the following menu is displayed.

MP:CM> pwrgrd

The current power grid configuration is: Single grid

Power grid configuration preference.

- 1. Single grid
- 2. Dual grid

Select Option:

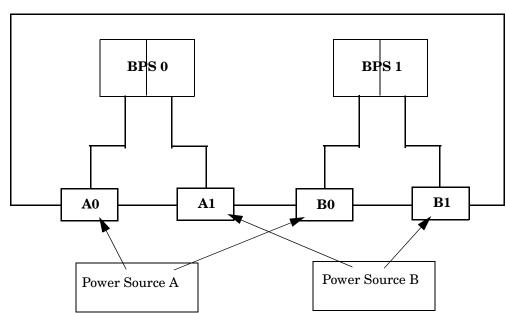


Figure 3-26 Distribution of Input Power for Each Bulk Power Supply

WARNING

Voltage is present at various locations within the server whenever a power source is connected. This voltage is present even when the main power switch is in the off position. To completely remove power, all power cords must be removed from the server. Failure to observe this warning could result in personal injury or damage to equipment.

CAUTION

Do not route data and power cables together in the same cable management arm.

Do not route data and power cables in parallel paths in close proximity to each other. The suggested minimum distance between the data and power cables is 3 inches (7.62 cm).

The power cord has current flowing through it, which creates a magnetic field. The potential to induce electromagnetic interference in the data cables exists, which can cause data corruption.

NOTE

Label the AC power cords during the installation. One suggestion is to use tie wraps that have the flag molded into the tie wrap. The flag can be labeled using the appropriate two characters to represent the particular AC power input (for example, A0). Another suggestion would be to use color coded plastic bands. Use one color to represent the first pair A0/A1 and another color to represent the second pair B0/B1 (provided a second power source is available at the customer site).

NOTE

System firmware will prevent boot when a single power cord configuration is detected.

Installing The Line Cord Anchor (for rack mounted servers)

The line cord anchor is attached to the rear of the server when rack mounted. It provides a method to secure the line cords to the server preventing accidental removal of the cords from the server.

Two Cell Server Installation (rp7410, rp7420, rp7440, rx7620, rx7640)

There are 3 studs with thumb nuts located at the rear of the server chassis. The line cord anchor installs on these studs.

To install the line cord anchor:

- 1. Remove and retain the thumb nuts from the studs.
- 2. Install the line cord anchor over the studs. Refer to Figure 3-27, "Two Cell Line Cord Anchor (rp7410, rp7420, rp7440, rx7620, rx7640),"
- 3. Tighten the thumb nuts onto the studs.
- 4. Weave the power cables through the line cord anchor. Leave enough slack to allow the plugs to be disconnected from the receptacles without removing the cords from the line cord anchor.
- 5. Use the supplied straps to attach the cords to the anchor. Refer to Figure 3-28, "Line Cord Anchor Attach Straps,"

Figure 3-27 Two Cell Line Cord Anchor (rp7410, rp7420, rp7440, rx7620, rx7640)

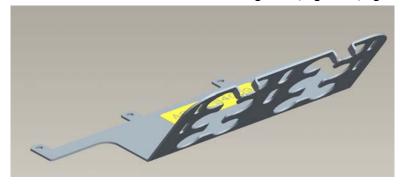
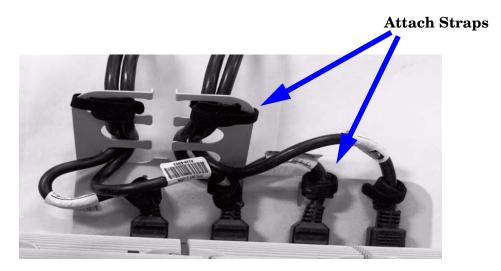



Figure 3-28 Line Cord Anchor Attach Straps

Core I/O Connections

Each server can have up to two core I/O board sets installed which allows for two partitions to operate, or MP core I/O redundancy in a single or dual partition configuration. Each core I/O board set consists of two boards: the MP/SCSI board and the LAN/SCSI board. The MP/SCSI board is oriented vertically and accessed from the back of the server. The LAN/SCSI is accessed from the PCI expansion card bay. Only the primary core I/O board set (MP/SCSI slot 1 and LAN/SCSI slot 8, chassis 1) is required for a single partition implementation. The secondary MP/SCSI board is not necessary for full operation; however, without the secondary MP/SCSI and LAN/SCSI boards, only the top two internal disks can be accessed.

MP/SCSI I/O Connections

The MP/SCSI board is required to update firmware, access the console, turn partition power on or off, access one of the HDDs and one of the removable media devices, and utilize other features of the system. For systems running a single partition, one MP/SCSI board is required. A second MP/SCSI board is required for a dual-partition configuration, or if you want to enable primary or secondary MP failover for the server.

Connections to the MP/SCSI board include the following:

- DB9 connector for Local Console
- 10/100 Base-T LAN RJ45 connector (for LAN and Web Console access)
 This LAN uses standby power and is active when AC is present and the front panel power switch is off.
- Internal LVD Ultra 320 SCSI channel for connections to internal mass storage
- Internal SE Ultra SCSI channel for connection to an internal removable media device.

LAN/SCSI Connections

The LAN/SCSI board is a PCI form factor card that provides the basic external I/O connectivity for the system.

Connections to the LAN/SCSI board include the following:

- PCI-X to PCI-X bridge for multi-device compatibility
- Two LVD Ultra 320 SCSI channel controllers: one for internal connection to one of the HDD devices, and the other is available for connection to an external device
- Two 10/100/1000 Base-T LAN RJ45 connectors

The primary LAN interface is located on the LAN/SCSI board installed in the right-most slot when viewing the system from the back.

Management Processor Access

NOTE

The primary MP/SCSI board is located in the lower MP/SCSI board slot.

Setting Up the Customer Engineer Tool (PC)

The CE Tool is usually a laptop. It allows communication with the Management Processor (MP) in the server. The MP monitors the activity of either a one-partition or a multiple-partition configuration.

During installation, communicating with the MP enables such tasks as:

Verifying that the components are present and installed correctly

- Setting the MP LAN configurations
- Shutting down cell board power

Establish communication with the MP by connecting the CE Tool to the local RS-232 port on the MP core I/O card.

Setting CE Tool Parameters

After powering on the CE Tool, ensure the communications settings are as follows:

- 8 data bits/ no parity
- 9600 baud
- na (Receive)
- na (Transmit)

If the CE Tool is a laptop using Reflection 1, ensure communications settings are in place, using the following procedure:

- **Step 1.** From the Reflection 1 Main screen, pull down the **Connection** menu and select **Connection Setup**.
- Step 2. Select Serial Port.
- Step 3. Select Com1.
- Step 4. Check the settings and change, if required.Go to More Settings to set Xon/Xoff. Click OK to close the More Settings window.
- **Step 5.** Click **OK** to close the Connection Setup window.
- **Step 6.** Pull down the **Setup** menu and select **Terminal** (under the **Emulation** tab).
- **Step 7.** Select the VT100 HP terminal type.
- Step 8. Click Apply.

This option is not highlighted if the terminal type you want is already selected.

Step 9. Click OK.

Connecting the CE Tool to the Local RS232 Port on the MP

This connection enables direct communications with the MP. **Only one window can be created** on the CE Tool to monitor the MP. When enabled, it provides direct access to the MP and any partition.

Use the following procedure to connect the CE Tool to the Local RS-232 Port on the MP:

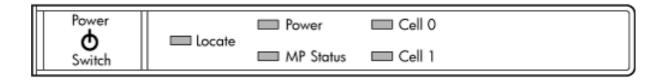
- 1. Connect one end of a null modem cable (9-pin to 9-pin) (Part Number 5182-4794) to the cable connector labeled CONSOLE.
- 2. Connect the other end of the RS-232 cable to the CE Tool.

Turning on Housekeeping Power and Logging in to the MP

After connecting the serial device, it is possible to log in to the Management Processor (MP). +3.3 DC Housekeeping power (HKP) (also known as standby power) is active as soon as AC power is applied to the server. As the MP uses housekeeping power, it is possible to log in to the MP even when the power switch is in the OFF position. The power switch is a DC power switch that controls +48V DC.

Before powering up the server for the first time:

- 1. Verify that the AC voltage at the input source is within specifications for each server being installed.
- 2. If not already done so, power on the serial display device.


The preferred tool is the CE tool running Reflection 1.

To set up a communications link and log in to the MP:

1. Apply power to the server cabinet.

On the front of the server, a solid green Power LED and a solid green MP Status LED will illuminate after about 30 seconds. Refer to Figure 3-29.

Figure 3-29 Front Panel Display

2. Check the bulk power supply LED for each BPS.

When on, the breakers distribute power to the BPSs. AC power is present at the BPSs:

- When power is first applied. The BPS LEDs will be flashing amber.
- After 30 seconds has elapsed. The flashing amber BPS LED for each BPS becomes a flashing green LED.

Refer to power cord policies to interpret LED indicators.

- 3. Log in to the MP:
 - a. Enter Admin at the login prompt. The login is case sensitive.
 - It takes a few moments for the MP prompt to display. If it does not, be sure the laptop serial device settings are correct: 8 bits, no parity, 9600 baud, and na for both Receive and Transmit. Then, try again.

b. Enter Admin at the password prompt. The password is case sensitive.

The MP Main Menu is displayed:

Figure 3-30 MP Main Menu

```
Welcome to
rx7640's Management Processor

MP MAIN MENU:

CO: Consoles
VFP: Virtual Front Panel
CM: Command Menu
CL: Console Logs
SL: Show Event Logs
FW: Firmware Update
HE: Help
X: Exit Connection

[metro-s] MP>
```

Configuring LAN Information for the MP

This section describes how to set and verify the server management processor (MP) LAN port information. LAN information includes the MP network name, the MP IP address, the subnet mask, and the gatway address. This information is provided by the customer.

To set the MP LAN IP address:

Step 1. At the MP Main Menu prompt (MP>) enter cm to enter the MP Command.

NOTE	If the Command Menu is not shown, enter q to return to the MP Main Menu, then
	enter cm

Step 2. From the MP Command Menu prompt (MP:CM>) enter lc (for LAN configuration).

The screen displays the default values and asks if you want to modify them. Write down the information or log it in a file, as it may be required for future troubleshooting. See Figure 3-31.

Figure 3-31 The lc Command Screen

MP:CM> 1c

This command modifies the LAN parameters.

Current configuration of MP customer LAN interface

MAC address : 00:12:79:b4:03:1c

IP address : 15.11.134.222 0x0f0b86de

Hostname : metro-s

Subnet mask : 255.255.248.0 0xfffff800 Gateway : 15.11.128.1 0x0f0b8001

Status : UP and RUNNING

Link : Connected 100Mb Half Duplex

Do you want to modify the configuration for the MP LAN? (Y/[N]) q

NOTE The value in the IP address field has been set at the factory. Obtain the LAN IP address from the customer.

Step 3. At the prompt, Do you want to modify the configuration for the MP LAN?, enter Y.

The current IP address is shown; and the following prompt displays: Do you want to modify it? (Y/[N])

- Step 4. Enter Y.
- **Step 5.** Enter the new IP address.

The customer must provide this address for network interface 0.

- **Step 6.** Confirm the new address.
- **Step 7.** Enter the MP Hostname.

This is the host name for the customer LAN. The name can be as many as 64 characters in length, and include alphanumeric characters, - (dash), _ (under bar),. (period), or a space. HP recommends that the name be a derivative of the complex name. For example, Acme.com_MP.

Step 8. Enter the LAN parameters for the Subnet mask and Gateway address fields.

This information must come from the customer.

When this step is completed, the system will indicate that the parameters have been updated and return to the MP Command Menu prompt (MP:CM>)

Step 9. To check the LAN parameters and status, enter the 1s command at the MP Command Menu prompt (MP:CM>).

Step 10. A screen similar to the following is displayed, allowing verification of the settings:

Figure 3-32 The ls Command Screen

[metro-s] MP:CM> ls

Current configuration of MP customer LAN interface MAC address : 00:12:79:b4:03:02

IP address : 15.99.49.26 0x0f63311a

Hostname : metro-s

Subnet mask : 255.255.248.0 Oxfffff800 Gateway : 15.99.49.254 Ox0f6331fe

Status : UP and RUNNING

Step 11. To return to the MP main menu, enter ma.

Step 12. To exit the MP, enter x at the MP main menu.

Accessing the Management Processor via a Web Browser

Web browser access is an embedded feature of the MP/SCSI card. The Web browser enables access to the server through the LAN port on the core I/O card. MP configuration must be done from an ASCII console connected to the Local RS232 port..

NOTE The MP/SCSI card has a separate LAN port from the system LAN port. It requires a separate LAN drop, IP address, and networking information from that of the port used by HP-UX.

Before starting this procedure, the following information is required:

- IP address for the MP LAN
- Subnet mask
- Gateway address
- Host name (this is used when messages are logged or printed)

To configure the LAN port for a Web browser, perform the following steps:

- **Step 1.** Connect to the MP using a serial connection.
- **Step 2.** Configure the MP LAN. Refer to "Configuring LAN Information for the MP".
- **Step 3.** Type CM to enter the Command Menu.

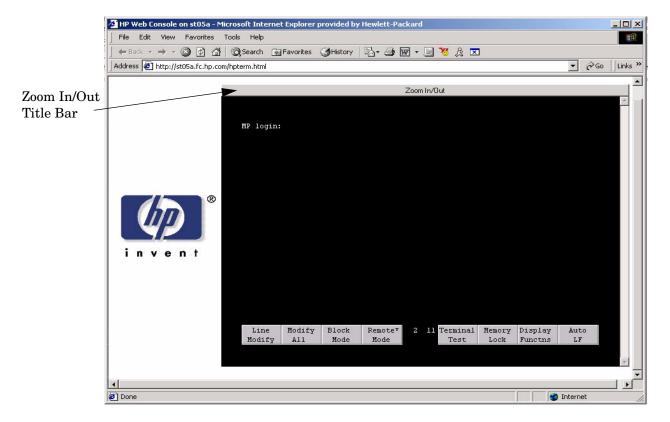
Step 4. Type SA at the MP:CM> prompt to display and set MP remote access.

Figure 3-33 Example sa Command

[metro-s] MP:CM> sa

This command displays and allows modification of access parameters.

T - Telnet access : Enabled. H - SSH access : Enabled.


W - Web Console : Enabled (SSL NOT active).

N - Network Diagnostics : Disabled. I - IPMI Lan access : Disabled. S - SNMP : Enabled.

Select access mode to change (q to quit) : q

- **Step 5.** Enter W to modify web access mode.
- **Step 6.** Enter option 2 to enable web access.
- **Step 7.** Launch a Web browser on the same subnet using the IP address for the MP LAN port.

Figure 3-34 Browser Window

- **Step 8.** Select the emulation type you want to use.
- **Step 9.** Click anywhere on the Zoom In/Out title bar to generate a full screen MP window.
- **Step 10.** Login to the MP when the login window appears.

Access to the MP via a Web browser is now possible.

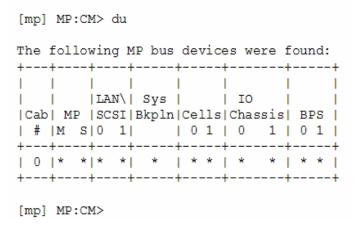
Verifying the Presence of the Cell Boards

To perform this activity, either connect to the MP using a console, or connect the CE Tool (laptop) to the RS-232 Local port on the MP/SCSI card.

After logging in to the MP, verify that the MP detects the presence of all the cells installed in the cabinet. It is important for the MP to detect the cell boards. If it does not, the partitions will not boot.

To determine if the MP detects the cell boards:

Step 1. At the MP prompt, enter cm.


This displays the Command Menu. The Command Menu enables viewing or modifying the configuration and viewing the utilities controlled by the MP.

To view a list of the commands available, enter he. Press Enter to see more than one screen of commands. Use the Page Up and Page Down keys to view the previous or next screen of commands. To exit the Help Menu, enter q.

Step 2. From the command prompt (MP:CM>), enter du.

The du command displays the MP bus topology. A screen similar to the following is displayed:

Figure 3-35 The du Command Screen

There will be an asterisk (*) in the column marked MP.

Step 3. Verify that there is an asterisk (*) for each of the cells installed in the cabinet, by comparing what is in the *Cells* column with the cells physically located inside the cabinet.

Figure 3-35 shows that cells are installed in slots 0 and 1. In the cabinet, cells should be physically located in slots 0 and 1.

System Console Selection

Each operating system requires that the correct console type be selected from the firmware selection menu. The following section describes how to determine the correct console device.

If an operating system is being installed or the system configuration is being changed the system console setting must be checked to ensure it matches the hardware and OS. Not checking the console selection can result in the system using an unexpected device as a console, which can appear as a system hang when booting.

Step 1. Determine the console you want to use.

Depending on your operating system and your hardware you can select one of two possible devices as your system console. The possibilities are:

- Management Processor (MP) Serial Port
- VGA device
- **Step 2.** Select the appropriate console device (deselect unused devices):
 - a. Choose the "Boot option maintenance menu" choice from the main Boot Manager Menu.
 - b. Select the Console Output, Input or Error devices menu item for the device type you are modifying:
 - "Select Active Console Output Devices"
 - "Select Active Console Input Devices"
 - "Select Active Console Error Devices"
 - c. Available devices will be displayed for each menu selection. Figure 3-36 shows a typical output of selecting the Console Output Devices menu.

Figure 3-36 Console Output Device menu

EFI Boot Maintenance Manager ver 1.10 [14.61]

Select the Console Output Device(s)

```
Acpi(PNP0501,0)/Uart(9600 NB1)/VenMsg(PcAnsi)
Acpi(PNP0501,0)/Uart(9600 NB1)/VenMsg(Vt100)
Acpi(PNP0501,0)/Uart(9600 NB1)/VenMsg(Vt100+)
Acpi(PNP0501,0)/Uart(9600 NB1)/VenMsg(VtUtf8)
Acpi(HWP0002,700)/Pci(0|1)/Uart(9600 NB1)/VenMsg(PcAnsi)
Acpi(HWP0002,700)/Pci(0|1)/Uart(9600 NB1)/VenMsg(Vt100)
Acpi(HWP0002,700)/Pci(0|1)/Uart(9600 NB1)/VenMsg(Vt100+)
Acpi(HWP0002,700)/Pci(0|1)/Uart(9600 NB1)/VenMsg(VtUtf8)
* Acpi(HWP0003,400)/Pci(0|0)
Save Settings to NVRAM
Exit
```

d. Choose the correct device for your system and deselect others. See "Interface Differences Between Itanium-based Systems" for details about choosing the appropriate device.

- e. Select "Save Settings to NVRAM" and then "Exit" to complete the change.
- f. A system reset is required for the changes to take effect.

VGA Consoles

Any device that has a Pci section in its path and does not have a Uart section will be a VGA device. If you require a VGA console, choose the device and unmark all others. Figure 3-36 shows that a VGA device is selected as the console.

Interface Differences Between Itanium-based Systems

Each Itanium-based system has a similar interface with minor differences. Some devices may not be available on all systems depending on system design or installed options.

Other Console Types

Any device that has a Uart section but no Pci section is a system serial port. To use the system serial port (if available) as your console device, select the system serial device entry that matches your console type(PcAnsi, Vt100, Vt100+, VtUtf8) and deselect everything else.

If you choose either a system or MP serial port HP recommends that you use a vt100+ capable terminal device.

Additional Notes on Console Selection

Each Operating System makes decisions based on the EFI Boot Maintenance Manager menu's Select Active Console selections to determine where to send its output. If incorrect console devices are chosen the OS may fail to boot or will boot with output directed to the wrong location. Therefore, any time new potential console devices are added to the system or anytime NVRAM on the system is cleared console selections should be reviewed to ensure that they are correct.

Configuring the Server for HP-UX Installation

Installation of the HP-UX operating system requires the server hardware to have a specific configuration. If the server's rootcell value is incorrectly set an install of HP-UX will fail.

To verify and set the proper rootcell value:

- **Step 1.** At the EFI Shell interface prompt enter the rootcell command with no arguments. The current value for rootcell will be displayed. If the value is '1' continue with installing HP-UX.
- Step 2. To set the rootcell value to '1', at the EFI Shell interface prompt, enter 'rootcell 1'.
- **Step 3.** At the EFI Shell interface prompt, enter reset to save the new rootcell value.
- **Step 4.** Continue with installation of HP-UX.

Booting the Server

Power on the server either by pressing the power switch on the front panel or by using the PE command to power on the cabinet or complex at the management processor Command Menu.

If you are using a LAN crossover cable with the laptop, review server activity for each partition configured while the server powers on and boots. You can open Windows for the complex and for each partition. HP recommends that at least two windows be opened:

Step 1. A window showing all activity in the complex. Following the installation procedure in this document causes a window to be open at startup.

To display activity for the complex:

- 1. Open a separate Reflection window and connect to the MP.
- 2. From the MP Main Menu, select the VFP command with the s option.
- **Step 2.** A window showing activity for a single partition.

To display activity for each partition as it powers on:

- **Step 1.** Open a separate Reflection window and connect to the MP.
- **Step 2.** Select the VFP command and select the desired partition to view.

There should be no activity on the screen at this point in the installation process.

NOTE You cannot open more than one window using a serial display device.

To power on the server:

- **Step 1.** At the MP:CM> prompt, use the PE X command to power on the complex, or the PE T command for each cabinet. The following events occur:
 - Power is applied to the server.
 - Processor-dependent code (PDC) starts to run on each cell.
 - The cell self-test executes.
 - Hardware initializes for the server.
 - Console communication is established.
- **Step 2.** After the cell has joined the partition or after boot is blocked (BIB) is displayed at the Virtual Front Panel (VFP), return to the MP Main Menu by pressing **Ctrl+B**.
- **Step 3.** Enter co to enter console mode.
- **Step 4.** Enter the partition number of the partition to boot.
- Step 5. Press Enter.

Selecting a Boot Partition Using the MP

At this point in the installation process, the hardware is set up, the MP is connected to the LAN, the AC and DC power have been turned on, and the self-test is completed. Now the configuration can be verified.

After the DC power on and the self-test is complete, use the MP to select a boot partition.

- **Step 1.** From the MP Main Menu, enter cm.
- Step 2. From the MP Command Menu, enter bo.
- **Step 3.** Select the partition to boot. Partitions can be booted in any order.
- **Step 4.** Return to the MP Main Menu by entering ma from the MP Command Menu.

Step 5. Enter the console by typing co at the MP Main Menu.

Exit the MP to return automatically to the Extensible Firmware Interface (EFI) Shell menu.

Verifying the System Configuration Using the EFI Shell

From the EFI main menu, enter the POSSE shell by entering co. Typing help will list all the command categories available in the shell:

- configuration -- goes to the configuration menu, where system configuration can be reset, configured or viewed.
- memory -- memory related commands.

Once the parameters have been verified, enter x to return to the EFI Main Menu.

Booting HP-UX Using the EFI Shell

If the Instant Ignition was ordered, HP-UX will have been installed in the factory at the Primary Path address. If HP-UX is at a path other than the Primary Path, do the following:

- **Step 1.** Type cm to enter the Command Menu from the Main Menu.
- **Step 2.** MP: CM> bo This command boots the selected partition.

Select a partition to boot:

- **Step 3.** Return to the Main Menu: MP:CM> ma
- Step 4. From the Main Menu, go to the Consoles Menu: MP> co

Select a partition number.

- **Step 5.** Return to the Main Menu by pressing **Ctrl+B**.
- **Step 6.** At the EFI Shell prompt, select the file system to boot. Generally this is fs0.

Shell> fs0:

Step 7. At the fs0 prompt, type HPUX to boot the HP-UX operating system:

fso: \> hpux

NOTE

If the partition fails to boot or if the server was shipped without Instant Ignition, booting from a DVD that contains the operating system and other necessary software might be required.

Adding Processors with Instant Capacity

The Instant Capacity program provides access to additional CPU resources beyond the amount that was purchased for the server. This provides the ability to activate additional CPU power for unexpected growth and unexpected spikes in workloads.

Internally,Instant Capacity systems physically have more CPUs, called Instant Capacity CPUs, than the number of CPUs actually purchased. These Instant Capacity CPUs reside in the purchased system, but they belong to HP and therefore are HP assets. A nominal "Right-To-Access Fee" is paid to HP for each Instant Capacity CPU in the system. At any time, any number of Instant Capacity CPUs can be "activated." Activating an Instant Capacity CPU automatically and instantaneously transforms the Instant Capacity

CPU into an instantly ordered and fulfilled CPU upgrade that requires payment. After the Instant Capacity CPU is activated and paid for, it is no longer an Instant Capacity CPU, but is now an ordered and delivered CPU upgrade for the system.

The following list offers information needed to update to iCAP version 8.x:

- HP-UX HWEnable11i Hardware Enablement Patches for HP-UX11i v2, June 2006
- B9073BA B.11.23.08.00.00.95 HP-UX iCOD Instant Capacity (iCAP)
- Kernel entry diag2 module diag2 best [413F2ED6]
- B8465BA A.02.00.04 HP WBEM Services for HP-UX
- NPar Provider B.11.23.01.03.00.06 nPartition Provider

Current information on installing, configuring, and troubleshooting iCAP version 8.x is available at: http://docs.hp.com/en/B9073-90129/index.html.

Information on the latest release notes for iCAP version 8.x can be found at: http://docs.hp.com/en/B9073-90134/index.html.

NOTE	Ensure that the customer is aware of the Instant Capacity email requirements. Refer to
	http://docs.hp.com for further details.

Installation Checklist

The checklist in Table 3-5 is an installation aid. Use it only after you have installed several systems by following the detailed procedures described in the body of this document. This checklist is a compilation of the tasks described in this manual, and is organized as follows:

Procedures The procedures outlined in this document in order

In-process The portion of the checklist that allows you to comment on the current status of a procedure

Completed The final check to ensure that a step has been completed and comments

Major tasks are in **bold type**, sub tasks are indented.

Table 3-5 Factory-Integrated Installation Checklist

Procedure		In-process			Completed	
		Initials	Comments	Initials	Comments	
Obtain LAN information						
Veri	fy site preparation					
	Site grounding verified					
	Power requirements verified					
Che	ck inventory					
Inspect shipping containers for damage						

Chapter 3 109

Table 3-5 Factory-Integrated Installation Checklist (Continued) (Continued)

Procedure	In-process	Completed	
Unpack SPU cabinet			
Allow proper clearance			
Cut polystrap bands			
Remove cardboard top cap			
Remove corrugated wrap from the pallet			
Remove four bolts holding down the ramps and remove the ramps			
Remove antistatic bag			
Check for damage (exterior and interior)			
Position ramps			
Roll cabinet off ramp			
Unpack the peripheral cabinet (if ordered)			
Unpack other equipment			
Remove and dispose of packaging material			
Move cabinet(s) and equipment to computer room			
Move cabinets into final position			
Position cabinets next to each other (approximately 1/2 inch)			
Adjust leveling feet			
Install anti-tip plates			
Inspect cables for proper installation			
Set up CE tool and connect to Remote RS-232 port on MP			
Apply power to cabinet (Housekeeping)			
Check power to BPSs			
Log in to MP			
Set LAN IP address on MP			

Table 3-5 Factory-Integrated Installation Checklist (Continued) (Continued)

Procedure	In-process	Completed
Connect customer console		
Set up network on customer console		
Verify LAN connection		
Verify presence of cells		
Power on cabinet (48 V)		
Verify system configuration and set boot parameters		
Set automatic system restart		
Boot partitions		
Configure remote login (if required). See Appendix B.		
Verify remote link (if required)		
Install non-factory, integrated I/O cards (if required)		
Select PCI card slot		
Install PCI card		
Verify installation		
Route cables using the cable management arm		
Install other peripherals (if required)		
Perform visual inspection and complete installation		
Set up network services (if required)		
Enable iCOD (if available)		
Final inspection of circuit boards		
Final inspection of cabling		
Area cleaned and debris and packing materials disposed of		
Account for tools		
Dispose of parts and other items		

Chapter 3 111

Table 3-5 Factory-Integrated Installation Checklist (Continued) (Continued)

Procedure	In-process	Completed	
Make entry in Gold Book (recommended)			
Customer acceptance and signoff (if required)			

4 Booting and Shutting Down the Operating System

This chapter presents procedures for booting an operating system (OS) on an nPartition (hardware partition) and procedures for shutting down the OS.

Operating Systems Supported on Cell-based HP Servers

HP supports nPartitions on cell-based HP 9000 servers and cell-based HP Integrity servers. The following list describes the OSes supported on cell-based servers based on the HP sx2000 chipset.

- HP 9000 servers have PA-RISC processors and include the following cell-based models based on the HP sx2000 chipset:
 - HP 9000 Superdome (SD16B, SD32B, and SD64B models)
 - HP rp8440
 - HP rp7440

These HP 9000 servers run HP-UX 11i Version 1 (B.11.11). Refer to "Booting and Shutting Down HP-UX" on page 121 for details on booting an OS on these servers.

- HP Integrity servers have Intel® Itanium® 2 processors and include the following cell-based models based on the HP sx2000 chipset:
 - HP Integrity Superdome (SD16B, SD32B, and SD64B models)
 - HP rx8640
 - HP rx7640

All HP Integrity servers based on the HP sx2000 chipset run the following OSes:

- HP-UX 11i Version 2 (B.11.23) Refer to "Booting and Shutting Down HP-UX" on page 121 for details.
- Microsoft® Windows® Server 2003 Refer to "Booting and Shutting Down Microsoft Windows" on page 138 for details.

HP Integrity servers based on the HP sx2000 chipset run the following OSes only in nPartitions that have dual-core Intel® Itanium® 2 processors:

— HP OpenVMS I64 8.3 — Supported only in nPartitions that have dual-core Intel® Itanium® 2 processors. Prior releases of OpenVMS I64 are not supported on servers based on the HP sx2000 chipset.

Refer to "Booting and Shutting Down HP OpenVMS I64" on page 133 for details.

Red Hat Enterprise Linux 4 Update 4— On servers based on the HP sx2000 chipset, is supported only
in nPartitions that have dual-core Intel® Itanium® 2 processors. Prior releases of Red Hat Enterprise
Linux are not supported on servers based on the HP sx2000 chipset.

NOTE

Red Hat Enterprise Linux 4 will be supported soon after the release of cell-based HP Integrity servers with the Intel® Itanium® 2 dual-core processor. It is not supported on these servers when they first release.

Refer to "Booting and Shutting Down Linux" on page 143 for details.

 SuSE Linux Enterprise Server 10 — On servers based on the HP sx2000 chipset, is supported only in nPartitions that have dual-core Intel® Itanium® 2 processors. Prior releases of SuSE Linux Enterprise Server are not supported on servers based on the HP sx2000 chipset.

NOTE

SuSE Linux Enterprise Server 10 is supported on HP rx8640 servers, and will be supported on other cell-based HP Integrity servers with the Intel® Itanium® 2 dual-core processor (rx7640 and Superdome) soon after the release of those servers.

Refer to "Booting and Shutting Down Linux" on page 143 for details.

NOTE

On servers based on the HP sx2000 chipset, each cell has a cell local memory (CLM) parameter, which determines how firmware may interleave memory residing on the cell. The supported and recommended CLM setting for the cells in an nPartition depends on the OS running in the nPartition. Some OSes support using CLM, and some do not. For details on CLM support for the OS you will boot in an nPartition, refer to the booting section for that OS.

System Boot Configuration Options

This section briefly discusses the system boot options you can configure on cell-based servers. You can configure boot options that are specific to each nPartition in the server complex.

HP 9000 Boot Configuration Options

On cell-based HP 9000 servers the configurable system boot options include boot device paths (PRI, HAA, and ALT) and the autoboot setting for the nPartition. To set these options from HP-UX, use the setboot command. From the BCH system boot environment, use the PATH command at the BCH Main Menu to set boot device paths, and use the PATHFLAGS command at the BCH Configuration menu to set autoboot options. For details, issue HELP command at the appropriate BCH menu, where command is the command for which you want help.

HP Integrity Boot Configuration Options

On cell-based HP Integrity servers, you must properly specify the ACPI configuration value, which affects the OS startup process and on some servers can affect the shutdown behavior. You also can configure boot device paths and the autoboot setting for the nPartition. The following list describes each configuration option:

• Boot Options List

The boot options list is a list of loadable items available for you to select from the EFI Boot Manager menu. Ordinarily, the boot options list includes the EFI Shell and one or more OS loaders.

The following example includes boot options for HP OpenVMS, Microsoft Windows, HP-UX, and the EFI Shell. The final item in the EFI Boot Manager menu, the Boot Configuration menu, is not a boot option. The Boot Configuration menu enables system configuration through a maintenance menu.

```
EFI Boot Manager ver 1.10 [14.61] Please select a boot option

HP OpenVMS 8.3

EFI Shell [Built-in]

Windows Server 2003, Enterprise

HP-UX Primary Boot: 4/0/1/1/0.2.0

Boot Option Maintenance Menu

Use ^ and v to change option(s). Use Enter to select an option
```

NOTE

In some versions of EFI, the Boot Configuration menu is listed as the Boot Option Maintenance Menu.

To manage the boot options list for each system use the EFI Shell, the EFI Boot Configuration menu, or OS utilities.

At the EFI Shell, the bcfg command supports listing and managing the boot options list for all OSs except Microsoft Windows. On HP Integrity systems with Windows installed the \MSUtil\nvrboot.efi utility is provided for managing Windows boot options from the EFI Shell. On HP Integrity systems with OpenVMS installed, the \efi\vms\vms_bcfg.efi and \efi\vms\vms_show utilities are provided for managing OpenVMS boot options.

The EFI Boot Configuration menu provides the Add a Boot Option, Delete Boot Option(s), and Change Boot Order menu items. (If you must add an EFI Shell entry to the boot options list, use this method.)

To save and restore boot options, use the EFI Shell variable command. The variable -save file command saves the contents of the boot options list to the specified file on an EFI disk partition. The variable -restore file command restores the boot options list from the specified file that was previously saved. Details also are available by entering help variable at the EFI Shell.

OS utilities for managing the boot options list include the HP-UX setboot command and the HP OpenVMS @SYSSMANAGER: BOOT OPTIONS.COM command.

The OpenVMS I64 installation and upgrade procedures assist you in setting up and validating a boot option for your system disk. HP recommends that you allow the procedure to do this. Alternatively, you can use the @SYS\$MANAGER: BOOT_OPTIONS.COM command (also referred to as the OpenVMS I64 Boot Manager utility) to manage boot options for your system disk. The OpenVMS I64 Boot Manager (BOOT_OPTIONS.COM) utility is a menu-based utility and is easier to use than EFI. To configure OpenVMS I64 booting on Fibre Channel devices, you must use the OpenVMS I64 Boot Manager utility (BOOT_OPTIONS.COM). For more information on this utility and other restrictions, refer to the HP OpenVMS for Integrity Servers Upgrade and Installation Manual.

For details, refer to the following sections.

- To set HP-UX boot options refer to "Adding HP-UX to the Boot Options List" on page 121.
- To set OpenVMS boot options refer to "Adding HP OpenVMS to the Boot Options List" on page 133.
- To set Windows boot options refer to "Adding Microsoft Windows to the Boot Options List" on page 138.
- To set Linux boot options refer to "Adding Linux to the Boot Options List" on page 143.

Hyper-Threading

nPartitions that have dual-core Intel® Itanium® 2 processors can support Hyper-Threading. Hyper-Threading provides the ability for processors to create a second virtual core that allows additional efficiencies of processing. For example, a dual-core processor with Hyper-Threading active can simultaneously run four threads.

The EFI Shell cpuconfig command can enable and disable Hyper-Threading for an nPartition whose processors support it. Recent releases of the nPartition Commands and Partition Manager also support Hyper-Threading.

Details of the cpuconfig command are given below and are available by entering help cpuconfig at the EFI Shell.

- cpuconfig threads Reports Hyper-Threading status for the nPartition
- cpuconfig threads on Enables Hyper-Threading for the nPartition. After enabling Hyper-Threading the nPartition must be reset for Hyper-Threading to be active.
- cpuconfig threads off Disables Hyper-Threading for the nPartition. After disabling Hyper-Threading the nPartition must be reset for Hyper-Threading to be inactive

After enabling or disabling Hyper-Threading, the nPartition must be reset for the Hyper-Threading change to take effect. Use the EFI Shell reset command.

Enabled means that Hyper-Threading will be active on the next reboot of the nPartition. *Active* means that each processor core in the nPartition has a second virtual core that enables simultaneously running multiple threads.

Autoboot Setting

You can configure the autoboot setting for each nPartition either by using the autoboot command at the EFI Shell, or by using the Set Auto Boot TimeOut menu item at the EFI Boot Option Maintenance menu.

To set autoboot from HP-UX, use the setboot command.

ACPI Configuration Value—HP Integrity Server OS Boot

On cell-based HP Integrity servers you must set the proper ACPI configuration for the OS that will be booted on the nPartition.

To check the ACPI configuration value, issue the acpiconfig command with no arguments at the EFI Shell.

To set the ACPI configuration value, issue the acpiconfig value command at the EFI Shell, where value is either default or windows. Then reset the nPartition by issuing the reset EFI Shell command for the setting to take effect.

The ACPI configuration settings for the supported OSes are in the following list.

— HP-UX ACPI Configuration: default

On cell-based HP Integrity servers, to boot or install the HP-UX OS, you must set the ACPI configuration value for the nPartition to default.

For details, refer to "ACPI Configuration for HP-UX Must Be default" on page 123.

HP OpenVMS I64 ACPI Configuration: default

On cell-based HP Integrity servers, to boot or install the HP OpenVMS I64 OS, you must set the ACPI configuration value for the nPartition to default.

For details, refer to "ACPI Configuration for HP OpenVMS I64 Must Be default" on page 135.

— Windows ACPI Configuration: windows

On cell-based HP Integrity servers, to boot or install the Windows OS, you must set the ACPI configuration value for the nPartition to windows.

For details, refer to "ACPI Configuration for Windows Must Be windows" on page 140.

Red Hat Enterprise Linux ACPI Configuration: default

On cell-based HP Integrity servers, to boot or install the Red Hat Enterprise Linux OS, you must set the ACPI configuration value for the nPartition to default.

For details, refer to "ACPI Configuration for Red Hat Enterprise Linux Must Be default" on page 145.

SuSE Linux Enterprise Server ACPI Configuration: default

On cell-based HP Integrity servers, to boot or install the SuSE Linux Enterprise Server OS, you must set the ACPI configuration value for the nPartition to default.

For details, refer to "ACPI Configuration for SuSE Linux Enterprise Server Must Be default" on page 146.

ACPI Softpowerdown Configuration—OS Shutdown Behavior

On HP rx7620, rx7640, rx8620, and rx8640 servers, you can configure the nPartition behavior when an OS is shut down and halted. The two options are to have hardware power off when the OS is halted, or to have the nPartition be made inactive (all cells are in a boot-is-blocked state). The normal OS shutdown behavior on these servers depends on the ACPI configuration for the nPartition.

You can run the acpiconfig command with no arguments to check the current ACPI configuration setting; however, softpowerdown information is displayed only when different from normal behavior.

To change the nPartition behavior when an OS is shut down and halted, use either the acpiconfig enable softpowerdown EFI Shell command or the acpiconfig disable softpowerdown command, and then reset the nPartition to make the ACPI configuration change take effect.

acpiconfig enable softpowerdown

When set on HP rx7620, rx7640, rx8620, and rx8640 servers, acpiconfig enable softpowerdown causes nPartition hardware to be powered off when the OS issues a shutdown for reconfiguration command (for example, shutdown -h or shutdown /s).

This is the normal behavior on HP rx7620, rx7640, rx8620, and rx8640 servers with a windows ACPI configuration setting.

When softpowerdown is enabled on HP rx7620, rx7640, rx8620, and rx8640 servers, if one nPartition is defined in the server, then halting the OS powers off the server cabinet, including all cells and I/O chassis. On HP rx7620, rx7640, rx8620, and rx8640 servers with multiple nPartitions, halting the OS from an nPartition with softpowerdown enabled causes only the resources on the local nPartition to be powered off.

To power on hardware that has been powered off, use the PE command at the management processor Command Menu.

acpiconfig disable softpowerdown

When set on HP rx7620, rx7640, rx8620, and rx8640 servers, acpiconfig disable softpowerdown causes nPartition cells to remain at a boot-is-blocked state when the OS issues a shutdown for reconfiguration command (for example, shutdown -h or shutdown /s). In this case, an OS shutdown for reconfiguration makes the nPartition inactive.

This is the normal behavior on HP rx7620, rx7640, rx8620, and rx8640 servers with an ACPI configuration setting of default.

To make an inactive nPartition active, use the management processor BO command to boot the nPartition past the boot-is-blocked state.

Boot Modes on HP Integrity nPartitions: nPars and vPars Modes

On cell-based HP Integrity servers, each nPartition can be configured in either of two boot modes:

— nPars Boot Mode

In nPars boot mode, an nPartition is configured to boot any single operating system in the standard environment. When an nPartition is in nPars boot mode, it cannot boot the vPars monitor and therefore does not support HP-UX virtual partitions.

— vPars Boot Mode

In vPars boot mode, an nPartition is configured to boot into the vPars environment. When an nPartition is in vPars boot mode, it can only boot the vPars monitor and therefore it only supports HP-UX virtual partitions and it does not support booting HP OpenVMS I64, Microsoft Windows, or other operating systems. On an nPartition in vPars boot mode, HP-UX can boot only within a virtual partition (from the vPars monitor) and cannot boot as a standalone, single operating system in the nPartition.

CAUTION

An nPartition on an HP Integrity server cannot boot HP-UX virtual partitions when in nPars boot mode. Likewise, an nPartition on an HP Integrity server cannot boot an operating system outside of a virtual partition when in vPars boot mode.

To display or set the boot mode for an nPartition on a cell-based HP Integrity server, use any of the following tools as appropriate. Refer to *Installing and Managing HP-UX Virtual Partitions (vPars)*, Sixth Edition, for details, examples, and restrictions.

- parconfig EFI shell command

The parconfig command is a built-in EFI shell command. Refer to the help parconfig command for details.

— \EFI\HPUX\vparconfig EFI shell command

The vparconfig command is delivered in the \EFI\HPUX directory on the EFI system partition of the disk where HP-UX virtual partitions has been installed on a cell-based HP Integrity server. For usage details, enter the vparconfig command with no options.

- vparenv HP-UX command

On cell-based HP Integrity servers only, the vparenv HP-UX command is installed on HP-UX 11iv2 (B.11.23) systems that have the HP-UX virtual partitions software. Refer to *vparenv* (1m) for details.

NOTE

On HP Integrity servers, nPartitions that do not have the parconfig EFI shell command do not support virtual partitions and are effectively in nPars boot mode.

HP recommends that you do not use the parconfig EFI shell command and instead use the \EFI\HPUX\vparconfig EFI shell command to manage the boot mode for nPartitions on cell-based HP Integrity servers.

Refer to *Installing and Managing HP-UX Virtual Partitions (vPars)*, Sixth Edition, for details.

Booting and Shutting Down HP-UX

This section presents procedures for booting and shutting down HP-UX on cell-based HP servers and a procedure for adding HP-UX to the boot options list on HP Integrity servers.

- To determine whether the cell local memory (CLM) configuration is appropriate for HP-UX, refer to "HP-UX Support for Cell Local Memory" on page 121.
- To add an HP-UX entry to the nPartition boot options list on an HP Integrity server, refer to "Adding HP-UX to the Boot Options List" on page 121.
- To boot HP-UX, refer to "Booting HP-UX" on page 122.
- To shut down HP-UX, refer to "Shutting Down HP-UX" on page 131.

HP-UX Support for Cell Local Memory

On servers based on the HP sx2000 chipset, each cell has a cell local memory (CLM) parameter, which determines how firmware interleaves memory residing on the cell.

IMPORTANT HP-UX 11i Version 2 (B.11.23) supports using CLM. The optimal CLM settings for HP-UX B.11.23 depend on the applications and workload the OS is running.

To check CLM configuration details from an OS, use Partition Manager or the parstatus command. For example, the parstatus -V -c# command and parstatus -V -p# command report the CLM amount requested and CLM amount allocated for the specified cell (-c#, where # is the cell number) or the specified nPartition (-p#, where # is the nPartition number). For details, refer to the *HP System Partitions Guide* or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

To display CLM configuration details from the EFI Shell on a cell-based HP Integrity server, use the info mem command. If the amount of noninterleaved memory reported is less than 512 MB, then no CLM is configured for any cells in the nPartition (and the indicated amount of noninterleaved memory is used by system firmware). If the info mem command reports more than 512 MB of noninterleaved memory, then use Partition Manager or the parstatus command to confirm the CLM configuration details.

To set the CLM configuration, use Partition Manager or the parmodify command. For details, refer to the *HP System Partitions Guide* or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

Adding HP-UX to the Boot Options List

This section describes how to add an HP-UX entry to the system boot options list.

You can add the \EFI\HPUX\HPUX.EFI loader to the boot options list from the EFI Shell or EFI Boot Configuration menu (or in some versions of EFI, the Boot Option Maintenance Menu).

See "Boot Options List" on page 116 for additional information about saving, restoring, and creating boot options.

NOTE

On HP Integrity servers, the OS installer automatically adds an entry to the boot options list.

Adding an HP-UX Boot Option

This procedure adds an HP-UX item to the boot options list from the EFI Shell.

To add an HP-UX boot option when logged in to HP-UX, use the setboot command. For details, refer to the *setboot* (1M) manpage.

Step 1. Access the EFI Shell environment.

Log in to the management processor, and enter CO to access the system console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

Step 2. Access the EFI System Partition for the device from which you want to boot HP-UX (fsX: where X is the file system number).

For example, enter fs2: to access the EFI System Partition for the bootable file system number 2. The EFI Shell prompt changes to reflect the file system currently accessed.

The full path for the HP-UX loader is \EFI\HPUX\HPUX.EFI, and it should be on the device you are accessing.

Step 3. At the EFI Shell environment, use the bofg command to manage the boot options list.

The bcfg command includes the following options for managing the boot options list:

- bcfg boot dump Display all items in the boot options list for the system.
- bcfg boot rm #—Remove the item number specified by # from the boot options list.
- bcfg boot mv #a #b— Move the item number specified by #a to the position specified by #b in the boot options list.
- bcfg boot add # file.efi "Description" Add a new boot option to the position in the boot options list specified by #. The new boot option references file.efi and is listed with the title specified by Description.

For example, bcfg boot add 1 \EFI\HPUX\HPUX.EFI "HP-UX 11i" adds an HP-UX 11i item as the first entry in the boot options list.

Refer to the help bcfg command for details.

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment press **^B** (**Control+B**); this exits the system console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Booting HP-UX

This section describes the following methods of booting HP-UX:

- "Standard HP-UX Booting" on page 123 The standard ways to boot HP-UX. Typically, this results in booting HP-UX in multiuser mode.
- "Single-User Mode HP-UX Booting" on page 127 How to boot HP-UX in single-user mode.
- "LVM-Maintenance Mode HP-UX Booting" on page 129 How to boot HP-UX in LVM-maintenance mode.

Refer to "Shutting Down HP-UX" on page 131 for details on shutting down the HP-UX OS.

CAUTION ACPI Configuration for HP-UX Must Be default

On cell-based HP Integrity servers, to boot the HP-UX OS, an nPartition ACPI configuration value must be set to default.

At the EFI Shell interface, enter the acpiconfig command with no arguments to list the current ACPI configuration. If the acpiconfig value is not set to default, then HP-UX cannot boot. In this situation you must reconfigure acpiconfig; otherwise, booting will be interrupted with a panic when the HP-UX kernel is launched.

To set the ACPI configuration for HP-UX:

- 1. At the EFI Shell interface, enter the acpiconfig default command.
- 2. Enter the reset command for the nPartition to reboot with the proper (default) configuration for HP-UX.

Standard HP-UX Booting

This section describes how to boot HP-UX on cell-based HP 9000 servers and cell-based HP Integrity servers.

- On HP 9000 servers, to boot HP-UX refer to "HP-UX Booting (BCH Menu)" on page 123.
- On HP Integrity servers, to boot HP-UX use either of the following procedures:
 - "HP-UX Booting (EFI Boot Manager)" on page 125
 - "HP-UX Booting (EFI Shell)" on page 125

HP-UX Booting (BCH Menu)

From the BCH Menu, use the ${\tt BOOT}$ command to boot the HP-UX OS. The BCH Menu is available only on HP 9000 servers.

Step 1. Access the BCH Main Menu for the nPartition on which you want to boot HP-UX.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console. When accessing the console, confirm that you are at the BCH Main Menu (the Main Menu: Enter command or menu> prompt). If you are at a BCH menu other than the Main Menu, then enter MA to return to the BCH Main Menu.

Step 2. Choose which device to boot.

From the BCH Main Menu, use the PATH command to list any boot path variable settings. The primary (PRI) boot path normally is set to the main boot device for the nPartition. You also can use the SEARCH command to find and list potentially bootable devices for the nPartition.

```
Main Menu: Enter command or menu > PATH

Primary Boot Path: 0/0/2/0/0.13
0/0/2/0/0.d (hex)

HA Alternate Boot Path: 0/0/2/0/0.14
0/0/2/0/0.e (hex)

Alternate Boot Path: 0/0/2/0/0.0
```

```
0/0/2/0/0.0 (hex)
```

Main Menu: Enter command or menu >

Step 3. Boot the device by using the BOOT command from the BCH interface.

You can issue the BOOT command in any of the following ways:

BOOT

Issuing the BOOT command with no arguments boots the device at the primary (PRI) boot path.

• BOOT bootvariable

This command boots the device indicated by the specified boot path, where *bootvariable* is the PRI, HAA, or ALT boot path.

For example, BOOT PRI boots the primary boot path.

• BOOT LAN INSTALL or BOOT LAN. ip-address INSTALL

The BOOT... INSTALL commands boot HP-UX from the default HP-UX install server or from the server specified by ip-address.

• BOOT path

This command boots the device at the specified path. You can specify the path in HP-UX hardware path notation (for example, 0/0/2/0/0.13) or in path label format (for example, P0 or P1).

If you specify the path in path label format, then path refers to a device path reported by the last SEARCH command.

After you issue the ${\tt BOOT}$ command, the BCH interface prompts you to specify whether you want to stop at the ISL prompt.

To boot the /stand/vmunix HP-UX kernel from the device without stopping at the ISL prompt, enter n to automatically proceed past ISL and execute the contents of the AUTO file on the chosen device. (By default the AUTO file is configured to load /stand/vmunix.)

To boot an HP-UX kernel other than /stand/vmunix, or to boot HP-UX in single-user or LVM-maintenance mode, stop at the ISL prompt and specify the appropriate arguments to the hpux loader.

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the BCH environment, press **^B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

HP-UX Booting (EFI Boot Manager)

From the EFI Boot Manager menu, select an item from the boot options list to boot HP-UX using that boot option. The EFI Boot Manager is available only on HP Integrity servers.

Refer to "ACPI Configuration for HP-UX Must Be default" on page 123 for required configuration details.

Step 1. Access the EFI Boot Manager menu for the nPartition on which you want to boot HP-UX.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

Step 2. At the EFI Boot Manager menu, select an item from the boot options list.

Each item in the boot options list references a specific boot device and provides a specific set of boot options or arguments to be used when booting the device.

- **Step 3.** Press **Enter** to initiate booting using the chosen boot option.
- **Step 4.** Exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment, press **B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter x at the Main Menu.

HP-UX Booting (EFI Shell)

From the EFI Shell environment, to boot HP-UX on a device first access the EFI System Partition for the root device (for example fs0:) and then enter HPUX to initiate the loader. The EFI Shell is available only on HP Integrity servers.

Refer to "ACPI Configuration for HP-UX Must Be default" on page 123 for required configuration details.

Step 1. Access the EFI Shell environment for the nPartition on which you want to boot HP-UX.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

Step 2. At the EFI Shell environment, issue the acpiconfig command to list the current ACPI configuration for the local nPartition.

On cell-based HP Integrity servers, to boot the HP-UX OS, an nPartition ACPI configuration value must be set to default. If the acpiconfig value is not set to default, then HP-UX cannot boot; in this situation you must reconfigure acpiconfig or booting will be interrupted with a panic when launching the HP-UX kernel.

To set the ACPI configuration for HP-UX:

- **a.** At the EFI Shell interface enter the acpiconfig default command.
- **b.** Enter the reset command for the nPartition to reboot with the proper (default) configuration for HP-UX.
- **Step 3.** At the EFI Shell environment, issue the map command to list all currently mapped bootable devices. The bootable file systems of interest typically are listed as fs0:, fs1:, and so on.
- **Step 4.** Access the EFI System Partition for the device from which you want to boot HP-UX (fsX: where X is the file system number).

For example, enter fs2: to access the EFI System Partition for the bootable file system number 2. The EFI Shell prompt changes to reflect the file system currently accessed.

The file system number can change each time it is mapped (for example, when the nPartition boots, or when the map -r command is issued).

Step 5. When accessing the EFI System Partition for the desired boot device, issue the HPUX command to initiate the HPUX.EFI loader on the device you are accessing.

The full path for the loader is \EFI\HPUX\HPUX.EFI. When initiated, HPUX.EFI references the \EFI\HPUX\AUTO file and boots HP-UX using the default boot behavior specified in the AUTO file.

You are given 10 seconds to interrupt the automatic booting of the default boot behavior. Pressing any key during this 10-second period stops the HP-UX boot process and enables you to interact with the HPUX. EFI loader. To exit the loader (the HPUX> prompt), enter exit (this returns you to the EFI Shell).

To boot the HP-UX OS, do not type anything during the 10-second period given for stopping at the HPUX.EFI loader.

```
Shell> map
Device mapping table
  fs0 : Acpi(000222F0,269)/Pci(0|0)/Scsi(Pun8,Lun0)/HD(Part1,Sig72550000)
  blk0 : Acpi(000222F0,269)/Pci(0|0)/Scsi(Pun8,Lun0)
  blk1 : Acpi(000222F0,269)/Pci(0|0)/Scsi(Pun8,Lun0)/HD(Part1,Sig72550000)
  blk2 : Acpi(000222F0,269)/Pci(0|0)/Scsi(Pun8,Lun0)/HD(Part2,Sig72550000)
  blk3 : Acpi(000222F0,2A8)/Pci(0|0)/Scsi(Pun8,Lun0)
  blk4 : Acpi(000222F0,2A8)/Pci(0|1)/Scsi(Pun2,Lun0)
Shell> fs0:
fs0:\> hpux
(c) Copyright 1990-2002, Hewlett Packard Company.
All rights reserved
HP-UX Boot Loader for IA64 Revision 1.723
Press Any Key to interrupt Autoboot
\efi\hpux\AUTO ==> boot vmunix
Seconds left till autoboot -
```

Step 6. Exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment, press **^B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Single-User Mode HP-UX Booting

This section describes how to boot HP-UX in single-user mode on cell-based HP 9000 servers and cell-based HP Integrity servers.

- On HP 9000 servers, to boot HP-UX in single-user mode, refer to "Single-User Mode HP-UX Booting (BCH Menu)" on page 127.
- On HP Integrity servers, to boot HP-UX in single-user mode, refer to "Single-User Mode HP-UX Booting (EFI Shell)" on page 128.

Single-User Mode HP-UX Booting (BCH Menu)

From the BCH Menu, you can boot HP-UX in single-user mode by issuing the BOOT command, stopping at the ISL interface, and issuing hpux loader options. The BCH Menu is available only on HP 9000 servers.

Step 1. Access the BCH Main Menu for the nPartition on which you want to boot HP-UX in single-user mode.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console. When accessing the console, confirm that you are at the BCH Main Menu (the Main Menu: Enter command or menu> prompt). If you are at a BCH menu other than the Main Menu, then enter MA to return to the BCH Main Menu.

Step 2. Boot the desired device by using the BOOT command at the BCH interface, and specify that the nPartition stop at the ISL prompt prior to booting (reply y to the "stop at the ISL prompt" question).

```
Main Menu: Enter command or menu > BOOT 0/0/2/0/0.13

BCH Directed Boot Path: 0/0/2/0/0.13

Do you wish to stop at the ISL prompt prior to booting? (y/n) >> y
Initializing boot Device.

....

ISL Revision A.00.42 JUN 19, 1999

ISL>
```

Step 3. From the ISL prompt, issue the appropriate Secondary System Loader (hpux) command to boot the HP-UX kernel in the desired mode.

Use the hpux loader to specify the boot mode options and to specify which kernel to boot on the nPartition (for example, /stand/vmunix).

• To boot HP-UX in single-user mode:

```
ISL> hpux -is boot /stand/vmunix
```

Example 4-1 on page 128 shows output from this command.

• To boot HP-UX at the default run level:

```
ISL> hpux boot /stand/vmunix
```

To exit the ISL prompt and return to the BCH interface, issue the EXIT command instead of specifying one of the hpux loader commands.

Refer to the *hpux* (1M) manpage for a detailed list of hpux loader options.

Example 4-1Single-User HP-UX Boot

```
ISL Revision A.00.42 JUN 19, 1999
ISL> hpux -is /stand/vmunix
Boot
: disk(0/0/2/0/0.13.0.0.0.0.0;0)/stand/vmunix
8241152 + 1736704 + 1402336 start 0x21a0e8
....
INIT: Overriding default level with level 's'
INIT: SINGLE USER MODE
INIT: Running /sbin/sh
#
```

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the BCH environment, press **B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter x at the Main Menu.

Single-User Mode HP-UX Booting (EFI Shell)

From the EFI Shell environment, boot in single-user mode by stopping the boot process at the HPUX.EFI interface (the HP-UX Boot Loader prompt, HPUX>) by entering the boot -is vmunix command. The EFI Shell is available only on HP Integrity servers.

Refer to "ACPI Configuration for HP-UX Must Be default" on page 123 for required configuration details.

Step 1. Access the EFI Shell environment for the nPartition on which you want to boot HP-UX in single-user mode.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

- **Step 2.** Access the EFI System Partition for the device from which you want to boot HP-UX (fsX: where X is the file system number).
- **Step 3.** When accessing the EFI System Partition for the desired boot device, issue the HPUX command to initiate the \EFI\HPUX\HPUX.EFI loader on the device you are accessing.
- **Step 4.** Boot to the HP-UX Boot Loader prompt (HPUX>) by pressing any key within the 10 seconds given for interrupting the HP-UX boot process. You will use the HPUX.EFI loader to boot HP-UX in single-user mode in the next step.

After you press any key, the HPUX.EFI interface (the HP-UX Boot Loader prompt, HPUX>) is provided. For help using the HPUX.EFI loader, enter the help command. To return to the EFI Shell, enter exit.

Step 5. At the HPUX.EFI interface (the HP-UX Boot Loader prompt, HPUX>), enter the boot -is vmunix command to boot HP-UX (the /stand/vmunix kernel) in single-user (-is) mode.

Step 6. Exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment, press **^B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter x at the Main Menu.

LVM-Maintenance Mode HP-UX Booting

This section describes how to boot HP-UX in LVM-maintenance mode on cell-based HP 9000 servers and cell-based HP Integrity servers.

- On HP 9000 servers, to boot HP-UX in LVM-maintenance mode, refer to "LVM-Maintenance Mode HP-UX Booting (BCH Menu)" on page 129.
- On HP Integrity servers, to boot HP-UX in LVM-maintenance mode, refer to "LVM-Maintenance Mode HP-UX Booting (EFI Shell)" on page 130.

LVM-Maintenance Mode HP-UX Booting (BCH Menu)

From the BCH Menu, you can boot HP-UX in LVM-maintenance mode by issuing the BOOT command, stopping at the ISL interface, and issuing hpux loader options. The BCH Menu is available only on HP 9000 servers.

Step 1. Access the BCH Main Menu for the nPartition on which you want to boot HP-UX in LVM-maintenance mode.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console. When accessing the console, confirm that you are at the BCH Main Menu (the Main Menu: Enter command or menu> prompt). If you are at a BCH menu other than the Main Menu, then enter MA to return to the BCH Main Menu.

- **Step 2.** Boot the desired device by using the BOOT command at the BCH interface, and specify that the nPartition stop at the ISL prompt prior to booting (reply y to the "stop at the ISL prompt" question).
- **Step 3.** From the ISL prompt, issue the appropriate Secondary System Loader (hpux) command to boot the HP-UX kernel in the desired mode.

To boot HP-UX in LVM-maintenance mode:

ISL> hpux -lm boot /stand/vmunix

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the BCH environment, press **^B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

LVM-Maintenance Mode HP-UX Booting (EFI Shell)

From the EFI Shell environment, boot in LVM-maintenance mode by stopping the boot process at the HPUX.EFI interface (the HP-UX Boot Loader prompt, HPUX>) by entering the boot <code>-lm vmunix</code> command. The EFI Shell is available only on HP Integrity servers.

Refer to "ACPI Configuration for HP-UX Must Be default" on page 123 for required configuration details.

Step 1. Access the EFI Shell environment for the nPartition on which you want to boot HP-UX in LVM-maintenance mode.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

- **Step 2.** Access the EFI System Partition for the device from which you want to boot HP-UX (fsX: where X is the file system number).
- **Step 3.** When accessing the EFI System Partition for the desired boot device, issue the HPUX command to initiate the \EFI\HPUX\HPUX.EFI loader on the device you are accessing.
- **Step 4.** Type any key within the 10 seconds given for interrupting the HP-UX boot process. This stops the boot process at the HPUX.EFI interface (the HP-UX Boot Loader prompt, HPUX>).
- **Step 5.** At the HPUX.EFI interface, enter the boot -lm vmunix command to boot HP-UX (the /stand/vmunix kernel) in LVM-maintenance (-lm) mode.
- **Step 6.** Exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment, press **^B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter x at the Main Menu.

Shutting Down HP-UX

When HP-UX is running on an nPartition, you can shut down HP-UX using the shutdown command.

On nPartitions you have the following options when shutting down HP-UX:

- To shut down HP-UX and reboot an nPartition: shutdown -r
 - On cell-based HP Integrity servers, the shutdown -r command is equivalent to the shutdown -R command.
- To shut down HP-UX and halt an nPartition: shutdown -h
 - On cell-based HP Integrity servers, the shutdown -h command is equivalent to the shutdown -R -H command.
- To perform a reboot for reconfiguration of an nPartition: shutdown -R
- To hold an nPartition at a shutdown for reconfiguration state: shutdown -R -H

For details, refer to the *shutdown* (1M) manpage.

NOTE

On HP rx7620, rx7640, rx8620, and rx8640 servers, you can configure the nPartition behavior when an OS is shut down and halted (shutdown -h or shutdown -R -H). The two options are to have hardware power off when the OS is halted, or to have the nPartition be made inactive (all cells are in a boot-is-blocked state).

The normal behavior for HP-UX shut down and halt is for the nPartition to be made inactive.

For details, refer to "ACPI Softpowerdown Configuration—OS Shutdown Behavior" on page 118.

Shutting Down HP-UX

From the HP-UX command line, issue the shutdown command to shut down the HP-UX OS.

Step 1. Log in to HP-UX running on the nPartition that you want to shut down.

Log in to the management processor for the server and use the Console menu to access the system console. Accessing the console through the MP enables you to maintain console access to the system after HP-UX has shut down.

Step 2. Issue the shutdown command with the appropriate command-line options.

The command-line options you specify dictate the way in which HP-UX is shut down, whether the nPartition is rebooted, and whether any nPartition configuration changes take place (for example, adding or removing cells).

Use the following list to choose an HP-UX shutdown option for your nPartition:

Shut down HP-UX and halt the nPartition.

On cell-based HP Integrity servers, the shutdown $\neg h$ command puts an nPartition into the shutdown for reconfiguration state; for details, refer to the discussion of shutdown $\neg R$ $\neg H$ in this list.

Shut down HP-UX and reboot the nPartition.

Issue the shutdown -r command to shut down and reboot the nPartition.

On cell-based HP Integrity servers, the shutdown -r command is equivalent to the shutdown -R command.

Perform a reboot for reconfiguration of the nPartition.

Issue the HP-UX shutdown -R command to perform a reboot for reconfiguration.

This shuts down HP-UX, reconfigures the nPartition if needed, and reboots the nPartition.

Reboot the nPartition and put it into the shutdown for reconfiguration state.

Use the HP-UX shutdown $\ \ -R \ \ -H$ command to hold the nPartition in the shutdown for reconfiguration state.

This leaves the nPartition and all its cells in an inactive state (the nPartition can be reconfigured remotely), unless the normal behavior has been modified. For details, refer to "ACPI Softpowerdown Configuration—OS Shutdown Behavior" on page 118.

To reboot the nPartition, you must do so manually by using the BO command at the management processor Command Menu.

If HP-UX is halted on the nPartition, thus not allowing you to use the shutdown command, you can reboot or reset the nPartition by issuing commands from the management processor Command Menu.

Booting and Shutting Down HP OpenVMS I64

This section presents procedures for booting and shutting down HP OpenVMS I64 on cell-based HP Integrity servers and procedures for adding HP OpenVMS to the boot options list.

- To determine whether the cell local memory (CLM) configuration is appropriate for HP OpenVMS, refer to "HP OpenVMS I64 Support for Cell Local Memory" on page 133.
- To add an HP OpenVMS entry to the boot options list, refer to "Adding HP OpenVMS to the Boot Options List" on page 133.
- To boot HP OpenVMS on a cell-based HP Integrity server, refer to "Booting HP OpenVMS" on page 135.
- To shut down HP OpenVMS, refer to "Shutting Down HP OpenVMS" on page 136.

HP OpenVMS I64 Support for Cell Local Memory

On servers based on the HP sx2000 chipset, each cell has a cell local memory (CLM) parameter, which determines how firmware interleaves memory residing on the cell.

IMPORTANT HP OpenVMS I64 does not support using CLM. Before booting OpenVMS on an nPartition, you must ensure that the CLM parameter for each cell in the nPartition is set to zero (0). Although you might be able to boot OpenVMS on an nPartition with CLM configured, any memory configured as cell local is unusable, and such a configuration is untested and unsupported.

To check CLM configuration details from an OS, use Partition Manager or the parstatus command. For example, the parstatus -V -c#command and parstatus -V -p#command report the CLM amount requested and CLM amount allocated for the specified cell (-c#, where # is the cell number) or the specified nPartition (-p#, where # is the nPartition number). For details, refer to the HP System Partitions Guide or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

To display CLM configuration details from the EFI Shell on a cell-based HP Integrity server, use the info mem command. If the amount of noninterleaved memory reported is less than 512 MB, then no CLM is configured for any cells in the nPartition (and the indicated amount of noninterleaved memory is used by system firmware). If the info mem command reports more than 512 MB of noninterleaved memory, then use Partition Manager or the parstatus command to confirm the CLM configuration details.

To set the CLM configuration, use Partition Manager or the parmodify command. For details, refer to the HP System Partitions Guide or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

Adding HP OpenVMS to the Boot Options List

On HP Integrity servers, you can use the following procedures to manage boot options list entries for HP OpenVMS.

You can add the \efi\vms\vms_loader.efi loader to the boot options list from the EFI Shell or EFI Boot Configuration menu (or in some versions of EFI, the Boot Option Maintenance Menu).

See "Boot Options List" on page 116 for additional information about saving, restoring, and creating boot options.

NOTE

OpenVMS I64 installation and upgrade procedures assist you in setting up and validating a boot option for your system disk. HP recommends that you allow the procedure to do this.

To configure booting on Fibre Channel devices, you must use the OpenVMS I64 Boot Manager utility (BOOT_OPTIONS.COM). For more information on this utility and other restrictions, refer to the *HP OpenVMS for Integrity Servers Upgrade and Installation Manual*.

Adding an HP OpenVMS Boot Option

This procedure adds an HP OpenVMS item to the boot options list from the EFI Shell.

To add an HP OpenVMS boot option when logged in to OpenVMS, use the @SYS\$MANAGER: BOOT_OPTIONS.COM command.

Step 1. Access the EFI Shell environment.

Log in to the management processor, and enter CO to access the system console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

Step 2. Access the EFI System Partition for the device from which you want to boot HP OpenVMS (fsX:, where X is the file system number).

For example, enter fs2: to access the EFI System Partition for the bootable file system number 2. The EFI Shell prompt changes to reflect the file system currently accessed.

The full path for the HP OpenVMS loader is \efi\vms\vms_loader.efi, and it should be on the device you are accessing.

Step 3. At the EFI Shell environment, use the bofg command to manage the boot options list.

You can also accomplish this step by using the \efi\vms_bcfg.efi and \efi\vms_bms_show.efi utilities, which are available on the EFI System Partition for HP OpenVMS. Both vms_bcfg and vms_show are unique utilities for OpenVMS I64. The vms_bcfg utility differs from the bcfg EFI command in that vms_bcfg enables you to specify boot devices using device names consistent with OpenVMS naming conventions.

The bcfg command includes the following options for managing the boot options list:

- bcfg boot dump Display all items in the boot options list for the system.
- bcfg boot rm #—Remove the item number specified by # from the boot options list.
- bcfg boot mv #a #b— Move the item number specified by #a to the position specified by #b in the boot options list.
- bcfg boot add # file.efi "Description" Add a new boot option to the position in the boot options list specified by #. The new boot option references file.efi and is listed with the title specified by Description.

For example, bcfg boot add 1 \efi\vms\vms_loader.efi "HP OpenVMS" adds an HP OpenVMS item as the first entry in the boot options list.

Refer to the help bcfg command for details.

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment, press **B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter x at the Main Menu.

Booting HP OpenVMS

To boot HP OpenVMS I64 on a cell-based HP Integrity server use either of the following procedures.

- "Booting HP OpenVMS (EFI Boot Manager)" on page 135
- "Booting HP OpenVMS (EFI Shell)" on page 136

CAUTION ACPI Configuration for HP OpenVMS I64 Must Be default

On cell-based HP Integrity servers, to boot the HP OpenVMS OS, an nPartition ACPI configuration value must be set to default.

At the EFI Shell interface, enter the acpiconfig command with no arguments to list the current ACPI configuration. If the acpiconfig value is not set to default, then OpenVMS cannot boot. In this situation, you must reconfigure acpiconfig; otherwise, booting will fail and report the INCONSTATE code when OpenVMS is launched.

To set the ACPI configuration for HP OpenVMS I64:

- 1. At the EFI Shell interface enter the acpiconfig default command.
- 2. Enter the reset command for the nPartition to reboot with the proper (default) configuration for OpenVMS.

Booting HP OpenVMS (EFI Boot Manager)

From the EFI Boot Manager menu, select an item from the boot options list to boot HP OpenVMS using the selected boot option.

Step 1. Access the EFI Boot Manager menu for the system on which you want to boot HP OpenVMS.

Log in to the management processor, and enter CO to select the system console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

Step 2. At the EFI Boot Manager menu, select an item from the boot options list.

Each item in the boot options list references a specific boot device and provides a specific set of boot options or arguments to use when booting the device.

- **Step 3.** Press **Enter** to initiate booting using the selected boot option.
- **Step 4.** Exit the console and management processor interfaces when you have finished using them.

To exit the EFI environment press **B** (**Control+B**); this exits the system console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Booting HP OpenVMS (EFI Shell)

From the EFI Shell environment, to boot HP OpenVMS on a device first access the EFI System Partition for the root device (for example fs0:), and enter \efi\vms\vms_loader to initiate the OpenVMS loader.

Step 1. Access the EFI Shell environment for the system on which you want to boot HP OpenVMS.

Log in to the management processor, and enter CO to select the system console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

- **Step 2.** At the EFI Shell environment, issue the map command to list all currently mapped bootable devices. The bootable file systems of interest typically are listed as fs0:, fs1:, and so on.
- **Step 3.** Access the EFI System Partition for the device from which you want to boot HP OpenVMS (fsX:, where X is the file system number).

For example, enter fs2: to access the EFI System Partition for the bootable file system number 2. The EFI Shell prompt changes to reflect the file system currently accessed.

Also, the file system number might change each time it is mapped (for example, when the system boots, or when the map -r command is issued).

Step 4. When accessing the EFI System Partition for the desired boot device, issue the \efi\vms\vms_loader command to initiate the vms_loader.efi loader on the device you are accessing.

```
fs5:> \efi\vms\vms_loader.efi
```

```
HP OpenVMS Industry Standard 64 Operating System, Version V8.2-1
Copyright 1976-2005 Hewlett-Packard Development Company, L.P.

%PKAO, Copyright (c) 1998 LSI Logic PKW V3.2.20 ROM 4.19
%PKAO, SCSI Chip is SYM53C1010/66, Operating mode is LVD Ultra3 SCSI
%SMP-I-CPUTRN, CPU #01 has joined the active set.
%SMP-I-CPUTRN, CPU #02 has joined the active set.
```

Step 5. Exit the console and management processor interfaces when you have finished using them.

To exit the EFI environment press **B** (**Control+B**); this exits the system console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Shutting Down HP OpenVMS

This section describes how to shut down the HP OpenVMS OS on cell-based HP Integrity servers.

Shutting Down HP OpenVMS

From the HP OpenVMS command line, issue the **@SYS\$SYSTEM: SHUTDOWN** command to shut down the OpenVMS OS.

Step 1. Log in to HP OpenVMS running on the system that you want to shut down.

Log in to the management processor (MP) for the server and use the Console menu to access the system console. Accessing the console through the MP enables you to maintain console access to the system after HP OpenVMS has shut down.

Step 2. At the OpenVMS command line (DCL) issue the @SYS\$SYSTEM: SHUTDOWN command and specify the shutdown options in response to the prompts given.

>@SYS\$SYSTEM:SHUTDOWN

```
SHUTDOWN -- Perform an Orderly System Shutdown
                    on node RSNVMS
How many minutes until final shutdown [0]:
Reason for shutdown [Standalone]:
Do you want to spin down the disk volumes [NO]?
Do you want to invoke the site-specific shutdown procedure [YES]?
Should an automatic system reboot be performed [NO]? yes
When will the system be rebooted [shortly via automatic reboot]:
Shutdown options (enter as a comma-separated list):
REBOOT_CHECK
                     Check existence of basic system files
                     Save AUTOGEN feedback information from this boot
SAVE FEEDBACK
DISABLE_AUTOSTART
                     Disable autostart queues
POWER_OFF
                     Request console to power-off the system
Shutdown options [NONE]:
%SHUTDOWN-I-OPERATOR, this terminal is now an operator's console
```

NOTE HP OpenVMS I64 currently does not support the POWER_OFF shutdown option.

The SYS\$SYSTEM: SHUTDOWN. COM command prompts establish the shutdown behavior, including the shutdown time and whether the system is rebooted after it is shut down.

- To perform a reboot for reconfig from OpenVMS I64 running on an nPartition, issue @SYS\$SYSTEM: SHUTDOWN. COM from OpenVMS, and then enter Yes at the "Should an automatic system reboot be performed" prompt.
- To perform a shutdown for reconfig of an nPartition running OpenVMS I64:
 - 1. Issue @SYS\$SYSTEM: SHUTDOWN.COM from OpenVMS and enter No at the "Should an automatic system reboot be performed" prompt.
 - 2. Access the management processor and, from the management processor Command Menu, issue the RR command and specify the nPartition. The nPartition you specify will be put in the shutdown for reconfig state.

Booting and Shutting Down Microsoft Windows

This section presents procedures for booting and shutting down the Microsoft Windows OS on cell-based HP Integrity servers and a procedure for adding Windows to the boot options list.

- To determine whether the cell local memory (CLM) configuration is appropriate for Windows, refer to "Microsoft Windows Support for Cell Local Memory" on page 138.
- To add a Windows entry to the boot options list, refer to "Adding Microsoft Windows to the Boot Options List" on page 138.
- To boot Windows, refer to "Booting Microsoft Windows" on page 140.
- To shut down Windows, refer to "Shutting Down Microsoft Windows" on page 141.

Microsoft Windows Support for Cell Local Memory

On servers based on the HP sx2000 chipset, each cell has a cell local memory (CLM) parameter, which determines how firmware interleaves memory residing on the cell.

IMPORTANT Microsoft Windows supports using CLM on cell-based HP Integrity servers. For best performance in an nPartition running Windows, HP recommends that you configure the CLM parameter to 100 percent for each cell in the nPartition.

To check CLM configuration details from an OS, use Partition Manager or the parstatus command. For example, the parstatus -V -c#command and parstatus -V -p#command report the CLM amount requested and CLM amount allocated for the specified cell (-c#, where # is the cell number) or the specified nPartition (-p#, where # is the nPartition number). For details, refer to the HP System Partitions Guide or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

To display CLM configuration details from the EFI Shell on a cell-based HP Integrity server, use the info mem command. If the amount of noninterleaved memory reported is less than 512 MB, then no CLM is configured for any cells in the nPartition (and the indicated amount of noninterleaved memory is used by system firmware). If the info mem command reports more than 512 MB of noninterleaved memory, then use Partition Manager or the parstatus command to confirm the CLM configuration details.

To set the CLM configuration, use Partition Manager or the parmodify command. For details, refer to the HP System Partitions Guide or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

Adding Microsoft Windows to the Boot Options List

To add a Microsoft Windows entry to the system boot options list, you must do so from EFI. Use the \MSUtil\nvrboot.efi utility to import boot options from the EFI\Microsoft\WINNT50\Boot00... file on the device from which Windows is loaded.

See "Boot Options List" on page 116 for additional information about saving, restoring, and creating boot options.

NOTE

On HP Integrity servers, the OS installer automatically adds an entry to the boot options list.

Adding a Microsoft Windows Boot Option

This procedure adds the Microsoft Windows item to the boot options list.

Step 1. Access the EFI Shell environment.

Log in to the management processor, and enter CO to access the system console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

Step 2. Access the EFI System Partition for the device from which you want to boot Microsoft Windows (fsX: where X is the file system number).

For example, enter fs2: to access the EFI System Partition for the bootable file system number 2. The EFI Shell prompt changes to reflect the file system currently accessed.

The full path for the Microsoft Windows loader is \efi\microsoft\winnt50\ia641dr.efi, and it should be on the device you are accessing. (However, you must initiate this loader only from the EFI Boot Menu and not from the EFI Shell.)

Step 3. List the contents of the \EFI\Microsoft\WINNT50 directory to identify the name of the Windows boot option file (Boot00nn) that you want to import into the system boot options list.

```
fs0:\> 1s EFI\Microsoft\WINNT50
Directory of: fs0:\EFI\Microsoft\WINNT50

09/18/03 11:58a <DIR> 1,024 .
09/18/03 11:58a <DIR> 1,024 .
12/18/03 08:16a 354 Boot0001
1 File(s) 354 bytes
2 Dir(s)
```

fs0:\>

Step 4. At the EFI Shell environment, issue the \MSUtil\nvrboot.efi command to launch the Microsoft Windows boot options utility.

```
fs0:\> msutil\nvrboot
NVRBOOT: OS Boot Options Maintenance Tool [Version 5.2.3683]
```

```
1. SUSE SLES 9
2. HP-UX Primary Boot: 0/0/1/0/0.2.0
* 3. Windows Server 2003, Datacenter
4. EFI Shell [Built-in]

* = Windows OS boot option

(D)isplay (M)odify (C)opy E(x)port (I)mport (E)rase (P)ush (H)elp (Q)uit
Select>
```

Step 5. Use the Import command to import the Windows boot options file.

```
Select> i
Enter IMPORT file path: \EFI\Microsoft\WINNT50\Boot0001
Imported Boot Options from file: \EFI\Microsoft\WINNT50\Boot0001
Press enter to continue
```

Step 6. Press **Q** to quit the NVRBOOT utility, and exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment press **B** (**Control+B**); this exits the system console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Booting Microsoft Windows

You can boot the Windows Server 2003 OS on an HP Integrity server by using the EFI Boot Manager to choose the appropriate Windows item from the boot options list.

Refer to "Shutting Down Microsoft Windows" on page 141 for details on shutting down the Windows OS.

CAUTION ACPI Configuration for Windows Must Be windows

On cell-based HP Integrity servers, to boot the Windows OS, an nPartition ACPI configuration value must be set to windows.

At the EFI Shell, enter the acpiconfig command with no arguments to list the current ACPI configuration. If the acpiconfig value is not set to windows, then Windows cannot boot. In this situation, you must reconfigure acpiconfig; otherwise, booting will be interrupted with a panic when Windows is launched.

To set the ACPI configuration for Windows: At the EFI Shell enter the acpiconfig windows command, and then enter the reset command for the nPartition to reboot with the proper (windows) configuration for Windows.

NOTE Microsoft Windows Booting on HP Integrity Servers

The recommended method for booting Windows is to use the EFI Boot Manager menu to choose a Windows entry from the boot options list. Using the ia64ldr.efi Windows loader from the EFI Shell is not recommended.

Windows Booting

From the EFI Boot Manager menu, select an item from the boot options list to boot Windows using that boot option. The EFI Boot Manager is available only on HP Integrity servers.

Refer to "ACPI Configuration for Windows Must Be windows" on page 140 for required configuration details.

Step 1. Access the EFI Boot Manager menu for the system on which you want to boot Windows.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

Step 2. At the EFI Boot Manager menu, select an item from the boot options list.

Each item in the boot options list references a specific boot device and provides a specific set of boot options or arguments to be used when booting the device.

- **Step 3.** Press **Enter** to initiate booting using the chosen boot option.
- **Step 4.** When Windows begins loading, wait for the Special Administration Console (SAC) to become available.

The SAC interface provides a text-based administration tool that is available from the nPartition console. For details, refer to the SAC online help (type ? at the SAC> prompt).

Step 5. Exit the console and management processor interfaces if you are finished using them.

To exit the console environment, press **B** (**Control+B**); this exits the console and returns to the management processor Main menu. To exit the management processor, enter X at the Main menu.

Shutting Down Microsoft Windows

You can shut down the Windows OS on HP Integrity servers using the Start menu or the shutdown command.

CAUTION

Do not shut down Windows using Special Administration Console (SAC) restart or shutdown commands under normal circumstances.

Issuing restart or shutdown at the SAC> prompt causes the system to restart or shut down immediately and can result in the loss of data.

Instead, use the Windows Start menu or the shutdown command to shut down without loss of data.

To shut down Windows use either of the following methods.

• Select Shut Down from the Start menu, and select either Restart or Shut down from the drop-down menu.

Selecting the **Restart** menu item shuts down and restarts the system. Selecting the **Shut down** menu item shuts down the system.

You can use this method when using the Windows graphical interface.

Issue the shutdown command from the Windows command line.

Refer to the procedure "Windows Shutdown from the Command Line" on page 142 for details.

You can issue this command from a command prompt through the Special Administration Console (SAC) or from any other command line.

The Windows shutdown command includes the following options:

/s Shut down the system. This is the equivalent of Start—>Shut Down, Shut down.

/r Shut down and restart the system. This is the equivalent of **Start—>Shut Down, Restart**.

/a Abort a system shutdown.

/t xxx Set the timeout period before shutdown to xxx seconds. The timeout period can range

from 0-600, with a default of 30.

Refer to the help shutdown Windows command for details.

NOTE

On HP rx7620, rx7640, rx8620, and rx8640 servers, performing a shutdown using shutdown /s (or the equivalent **Start—>Shut Down**, **Shut down**) powers off the server cabinet or powers off the cells and I/O chassis assigned to the nPartition. You can customize this behavior. For details, refer to "ACPI Softpowerdown Configuration—OS Shutdown Behavior" on page 118.

On HP Integrity Superdome servers, the Windows shutdown /s command shuts down the system and keeps all cells at the boot-is-blocked (BIB) inactive state.

Windows Shutdown from the Command Line

From the Windows command line, issue the shutdown command to shut down the OS.

Step 1. Log in to Windows running on the system that you want to shut down.

For example, access the system console and use the Windows SAC interface to start a command prompt, from which you can issue Windows commands to shut down the the system.

Step 2. Check whether any users are logged in.

Use the query user or query session command.

Step 3. Issue the shutdown command and the appropriate options to shut down the Windows Server 2003 on the system.

You have the following options when shutting down Windows:

• To shut down Windows and reboot:

shutdown /r

Alternatively, you can select the **Start** —> **Shut Down** action and select **Restart** from the drop-down menu.

• To shut down Windows and not reboot (either power down server hardware or put an nPartition into a shutdown for reconfiguration state):

shutdown /s

Alternatively, you can select the **Start** —> **Shut Down** action and select **Shut down** from the drop-down menu.

• To abort a shutdown (stop a shutdown that has been initiated): **shutdown** /a

For example:

```
shutdown /r /t 60 /c "Shut down in one minute."
```

This command initiates a Windows system shutdown-and-reboot after a timeout period of 60 seconds. The /c option specifies a message that is broadcast to any other users of the system.

Booting and Shutting Down Linux

This section presents procedures for booting and shutting down the Linux OS on cell-based HP Integrity servers and a procedure for adding Linux to the boot options list.

- To determine whether the cell local memory (CLM) configuration is appropriate for Red Hat Enterprise Linux or SuSE Linux Enterprise Server, refer to "Linux Support for Cell Local Memory" on page 143.
- To add a Linux entry to the nPartition boot options list, refer to "Adding Linux to the Boot Options List" on page 143.
- To boot Red Hat Enterprise Linux, refer to "Booting Red Hat Enterprise Linux" on page 145.
- To boot SuSE Linux Enterprise Server, refer to "Booting SuSE Linux Enterprise Server" on page 146.
- To shut down Linux, refer to "Shutting Down Linux" on page 147.

Linux Support for Cell Local Memory

On servers based on the HP sx2000 chipset, each cell has a cell local memory (CLM) parameter, which determines how firmware interleaves memory residing on the cell.

IMPORTANT Red Hat Enterprise Linux does not support using CLM. Before booting Red Hat Enterprise Linux on an nPartition, you must ensure that the CLM parameter for each cell in the nPartition is set to zero (0). Although you might be able to boot Red Hat Enterprise Linux on an nPartition with CLM configured, any memory configured as cell local is unusable, and such a configuration is untested and unsupported.

> SuSE Linux Enterprise Server supports using CLM. The optimal CLM settings for SuSE Linux Enterprise Server depend on the applications and workload the OS is running.

To check CLM configuration details from an OS, use Partition Manager or the parstatus command. For example, the parstatus -V -c#command and parstatus -V -p#command report the CLM amount requested and CLM amount allocated for the specified cell (-c#, where # is the cell number) or the specified nPartition (-p#, where # is the nPartition number). For details, refer to the HP System Partitions Guide or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

To display CLM configuration details from the EFI Shell on a cell-based HP Integrity server, use the info mem command. If the amount of noninterleaved memory reported is less than 512 MB, then no CLM is configured for any cells in the nPartition (and the indicated amount of noninterleaved memory is used by system firmware). If the info mem command reports more than 512 MB of noninterleaved memory, then use Partition Manager or the parstatus command to confirm the CLM configuration details.

To set the CLM configuration, use Partition Manager or the parmodify command. For details, refer to the HP System Partitions Guide or the Partition Manager Web site (http://docs.hp.com/en/PARMGR2/).

Adding Linux to the Boot Options List

This section describes how to add a Linux entry to the system boot options list. The processes for adding both Red Hat Enterprise Linux and SuSE Linux Enterprise Servers are given here.

You can add the \EFI\redhat\elilo.efi loader or the \efi\SuSE\elilo.efi loader to the boot options list from the EFI Shell or EFI Boot Configuration menu (or in some versions of EFI, the Boot Option Maintenance Menu).

See "Boot Options List" on page 116 for additional information about saving, restoring, and creating boot options.

NOTE On HP Integrity servers, the OS installer automatically adds an entry to the boot options list.

Adding a Linux Boot Option

This procedure adds a Linux item to the boot options list.

Step 1. Access the EFI Shell environment.

Log in to the management processor, and enter CO to access the system console.

When accessing the console, confirm that you are at the EFI Boot Manager menu (the main EFI menu). If you are at another EFI menu, select the Exit option from the submenus until you return to the screen with the EFI Boot Manager heading.

From the EFI Boot Manager menu, select the EFI Shell menu option to access the EFI Shell environment.

Step 2. Access the EFI System Partition for the device from which you want to boot Linux (fsX:, where X is the file system number).

For example, enter fs2: to access the EFI System Partition for the bootable file system number 2. The EFI Shell prompt changes to reflect the file system currently accessed.

The full path for the Red Hat Enterprise Linux loader is \EFI\redhat\elilo.efi, and it should be on the device you are accessing.

The full path for the SuSE Linux Enterprise Server loader is \efi\SuSE\elilo.efi, and it should be on the device you are accessing.

Step 3. At the EFI Shell environment, use the bcfg command to manage the boot options list.

The bcfg command includes the following options for managing the boot options list:

- bcfg boot dump Display all items in the boot options list for the system.
- bcfg boot rm #—Remove the item number specified by # from the boot options list.
- bcfg boot mv #a #b— Move the item number specified by #a to the position specified by #b in the boot options list.
- bcfg boot add # file.efi "Description" Add a new boot option to the position in the boot options list specified by #. The new boot option references file.efi and is listed with the title specified by Description.

For example, bcfg boot add 1 \EFI\redhat\elilo.efi "Red Hat Enterprise Linux" adds a Red Hat Enterprise Linux item as the first entry in the boot options list.

Likewise, bcfg boot add 1 \efi\SuSE\elilo.efi "SLES 9" adds a SuSE Linux item as the first entry in the boot options list.

Refer to the help bcfg command for details.

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the EFI environment press **B** (**Control+B**); this exits the system console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Booting Red Hat Enterprise Linux

You can boot the Red Hat Enterprise Linux OS on HP Integrity servers using either of the methods described in this section.

Refer to "Shutting Down Linux" on page 147 for details on shutting down the Red Hat Enterprise Linux OS.

CAUTION ACPI Configuration for Red Hat Enterprise Linux Must Be default

On cell-based HP Integrity servers, to boot the Red Hat Enterprise Linux OS, an nPartition ACPI configuration must be value set to default.

At the EFI Shell, enter the acpiconfig command with no arguments to list the current ACPI configuration. If the acpiconfig value is not set to default, then Red Hat Enterprise Linux could panic. In this situation, you must reconfigure acpiconfig to eliminate any bus address conflicts and ensure all I/O slots have unique addresses.

To set the ACPI configuration for Red Hat Enterprise Linux:

- At the EFI Shell enter the acpiconfig default command.
- Enter the reset command for the nPartition to reboot with the proper (default) configuration for Red Hat Enterprise Linux.

Use either of the following methods to boot Red Hat Enterprise Linux:

• Choose a Red Hat Enterprise Linux entry from the EFI Boot Manager menu.

To load the Red Hat Enterprise Linux OS at the EFI Boot Manager menu, choose its entry from the list of boot options.

Choosing a Linux entry from the boot options list boots the OS using ELILO.EFI loader and the elilo.conf file.

• Initiate the ELILO. EFI Linux loader from the EFI Shell.

Refer to the procedure "Booting Red Hat Enterprise Linux (EFI Shell)" on page 145 for details.

After choosing the file system for the boot device (for example, fs0:), you can initiate the Linux loader from the EFI Shell prompt by entering the full path for the ELILO.EFI loader.

On a Red Hat Enterprise Linux boot device EFI System Partition, the full paths to the loader and configuration files are:

```
\EFI\redhat\elilo.efi
\EFI\redhat\elilo.conf
```

By default the <code>ELILO.EFI</code> loader boots Linux using the kernel image and parameters specified by the default entry in the <code>elilo.conf</code> file on the EFI System Partition for the boot device.

To interact with the ELILO. EFI loader, interrupt the boot process (for example, type a space) at the ELILO boot prompt. To exit the ELILO. EFI loader, use the exit command.

Booting Red Hat Enterprise Linux (EFI Shell)

Use this procedure to boot Red Hat Enterprise Linux from the EFI Shell.

Chapter 4 145

Refer to "ACPI Configuration for Red Hat Enterprise Linux Must Be default" on page 145 for required configuration details.

Step 1. Access the EFI Shell.

From the system console, select the EFI Shell entry from the EFI Boot Manager menu to access the shell.

Step 2. Access the EFI System Partition for the Red Hat Enterprise Linux boot device.

Use the map EFI Shell command to list the file systems (fs0, fs1, and so on) that are known and have been mapped.

To select a file system to use, enter its mapped name followed by a colon (:). For example, to operate with the boot device that is mapped as fs3, enter fs3: at the EFI Shell prompt.

Step 3. Enter ELILO at the EFI Shell command prompt to launch the ELILO. EFI loader.

If needed, you can specify the loader's full path by entering \EFI\redhat\elilo at the EFI Shell command prompt.

Step 4. Allow the ELILO. EFI loader to proceed with booting the Red Hat Enterprise Linux kernel.

By default, the ELILO. EFI loader boots the kernel image and options specified by the default item in the elilo.conf file.

To interact with the ELILO. EFI loader, interrupt the boot process (for example, type a space) at the ELILO boot prompt. To exit the loader, use the exit command.

Booting SuSE Linux Enterprise Server

You can boot the SuSE Linux Enterprise Server 9 OS on HP Integrity servers using either of the methods described in this section.

Refer to "Shutting Down Linux" on page 147 for details on shutting down the SuSE Linux Enterprise Server OS.

CAUTION ACPI Configuration for SuSE Linux Enterprise Server Must Be default

On cell-based HP Integrity servers, to boot the SuSE Linux Enterprise Server OS, an nPartition ACPI configuration value must be set to default.

At the EFI Shell, enter the acpiconfig command with no arguments to list the current ACPI configuration. If the acpiconfig value is not set to default, then SuSE Linux Enterprise Server could panic.

To set the ACPI configuration for SuSE Linux Enterprise Server:

- At the EFI Shell enter the acpiconfig default command.
- Enter the reset command for the nPartition to reboot with the proper (default) configuration for SuSE Linux Enterprise Server.

Use either of the following methods to boot SuSE Linux Enterprise Server:

• Choose a SuSE Linux Enterprise Server entry from the EFI Boot Manager menu.

To load the SuSE Linux Enterprise Server OS at the EFI Boot Manager menu, choose its entry from the list of boot options.

Choosing a Linux entry from the boot options list boots the OS using ELILO.EFI loader and the elilo.conf file.

• Initiate the ELILO. EFI Linux loader from the EFI Shell.

Refer to the procedure "Booting SuSE Linux Enterprise Server (EFI Shell)" on page 147 for details.

After choosing the file system for the boot device (for example, fs0:), you can initiate the Linux loader from the EFI Shell prompt by entering the full path for the ELILO. EFI loader.

On a SuSE Linux Enterprise Server boot device EFI System Partition, the full paths to the loader and configuration files are:

```
\efi\SuSE\elilo.efi
\efi\SuSE\elilo.conf
```

By default the ELILO. EFI loader boots Linux using the kernel image and parameters specified by the default entry in the elilo.conf file on the EFI System Partition for the boot device.

To interact with the ELILO.EFI loader, interrupt the boot process (for example, type a space) at the ELILO boot prompt. To exit the ELILO.EFI loader, use the exit command.

Booting SuSE Linux Enterprise Server (EFI Shell)

Use this procedure to boot SuSE Linux Enterprise Server 9 from the EFI Shell.

Refer to "ACPI Configuration for SuSE Linux Enterprise Server Must Be default" on page 146 for required configuration details.

Step 1. Access the EFI Shell.

From the system console, select the EFI Shell entry from the EFI Boot Manager menu to access the shell.

Step 2. Access the EFI System Partition for the SuSE Linux Enterprise Server boot device.

Use the map EFI Shell command to list the file systems (fs0, fs1, and so on) that are known and have been mapped.

To select a file system to use, enter its mapped name followed by a colon (:). For example, to operate with the boot device that is mapped as fs3, enter **fs3**: at the EFI Shell prompt.

Step 3. Enter ELILO at the EFI Shell command prompt to launch the ELILO. EFI loader.

If needed, you can specify the loader's full path by entering \efi\SuSE\elilo at the EFI Shell command prompt.

Step 4. Allow the ELILO. EFI loader to proceed with booting the SuSE Linux kernel.

By default, the ELILO. EFI loader boots the kernel image and options specified by the default item in the elilo.conf file.

To interact with the ELILO.EFI loader, interrupt the boot process (for example, type a space) at the ELILO boot prompt. To exit the loader, use the exit command.

Shutting Down Linux

Use the shutdown command to shut down Red Hat Enterprise Linux or SuSE Linux Enterprise Server.

Chapter 4 147

The Red Hat Enterprise Linux and SuSE Linux Enterprise Server shutdown command includes the following options:

-h Halt after shutdown.

On cell-based HP Integrity servers, this either powers down server hardware or puts the nPartition into a shutdown for reconfiguration state.

Use the PE command at the management processor Command Menu to manually power on or power off server hardware, as needed.

-r Reboot after shutdown.

-c Cancel an already running shutdown.

time When to shut down (required). You can specify the time option in any of the following ways:

- Absolute time in the format hh:mm, in which hh is the hour (one or two digits) and mm is the minute of the hour (two digits).
- Number of minutes to wait in the format +m, in which m is the number of minutes.
- now to immediately shut down; this is equivalent to using +0 to wait zero minutes.

Refer to the shutdown(8) Linux manpage for details. Also refer to the Linux manpage for the poweroff command.

NOTE

On HP rx7620, rx7640, rx8620, and rx8640 servers, you can configure the nPartition behavior when an OS is shut down and halted (shutdown -h or poweroff). The two options are to have hardware power off when the OS is halted or to have the nPartition be made inactive (all cells are in a boot-is-blocked state).

The normal behavior for Red Hat Enterprise Linux or SuSE Linux Enterprise Server shut down and halt is for the nPartition to be made inactive.

For details, refer to "ACPI Softpowerdown Configuration—OS Shutdown Behavior" on page 118.

Shutting Down Linux

From the command line for Red Hat Enterprise Linux or SuSE Linux Enterprise Server, issue the shutdown command to shut down the OS.

Step 1. Log in to Linux running on the system you want to shut down.

Log in to the management processor (MP) for the server and use the Console menu to access the system console. Accessing the console through the MP enables you to maintain console access to the system after Linux has shut down.

Step 2. Issue the shutdown command with the desired command-line options, and include the required time argument to specify when the operating shutdown is to occur.

For example, shutdown -r +20 will shut down and reboot the system starting in 20 minutes.

5 Server Troubleshooting

This chapter contains tips and procedures for diagnosing and correcting problems with the server and its field replaceable units (FRUs). Information about the various status LEDs on the server is also included.

Common Installation Problems

The following sections contain general procedures to help you locate installation problems.

CAUTION

Do not operate the server with the top cover removed for an extended period of time. Overheating can damage chips, boards, and mass storage devices. However, you can safely remove the top cover while the server is running to remove and replace PCI hot-plug cards.

Most problems are the result of incorrect system and SCSI subsystem configurations.

To troubleshoot an installation problem, perform the following checks in the order given:

- a. Check all cable and power connections, including those in the rack, and so on.
- b. Ensure the server is configured properly.
 - Check the Setup Utility. If the error is a network-related problem, determine if the server has enough memory and hard disk drive capacity.
- c. Verify all cables and boards are securely plugged in to the appropriate connectors or slots.
- d. Remove all extra options, such as disk drives, one at a time, checking the affect of each on the server.
- e. Unplug the power cord, wait 20 seconds, plug-in the power cord and restart the server.
- f. If you suspect a hardware error:
 - 1. Log users off the LAN and power down the server.
 - 2. Simplify the server to the minimum configuration.

The minimum configuration consists of the following:

- One cell board
- One processor
- One pair of memory DIMMs
- One MP/SCSI card
- One LAN/SCSI card
- System backplane
- PCI-X backplane
- One BPS
- One PCI power module
- One power cord
- g. Remove all third-party options and reinstall each one, one at a time, checking the server after each installation.
- h. Replace the top cover and reconnect the power cord and other cables. Boot the server. If it does not function properly, refer to the procedures in the following section.

The Server Does Not Power On

To check for power related problems, use the checklist below:

- a. Check the LED for each bulk power supply (BPS).
 - The LED is located in the lower left hand corner of the power supply face. Table 5-2 shows the states of the LEDs.
- b. Verify that the power supply and a minimum of two power cords are plugged in to the chassis.
 - A yellow LED indicates that the line cord connections are not consistent with the pwrgrd settings.

NOTE	A minimum of two power cords must be connected to A0 and B0 or A1 and B1. If the front
	panel yellow power LED continues to flash with two power cords connected then the server
	may not be in an N+1 configuration. Four power cords will be required.

c. Remove and replace any suspect BPS.

The Server Powers On But Fails Power-On Self Test

Use this checklist when the server fails power on self test (POST):

- a. Check for error messages on the system console.
- b. Check for fault LEDs.
- c. Check for error messages in the MP logs.

Server LED Indicators

The server has LEDs that indicate the health of the server. This section defines those LEDs.

Front Panel LEDs

There are five LEDs located on the front panel.

Figure 5-1 Front Panel with LED Indicators

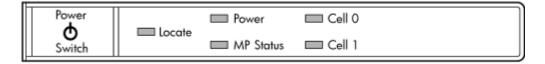


Table 5-1 Front Panel LEDs

LED	Status	Description
Power	Off	48 V Off
	Red	BPS or PCI power module absent.
	Yellow	Non-redundant power condition exists
	Flash Green	Server cabinet is powering off. OS shutdown is in progress.
	On Green	48 V Good.
MP Status	Green	At least one MP is installed and active
	(solid)	
	Off	No MPs are installed or at least one is installed but not active
	Red (flashing)	Cabinet overtemp condition exists
	Red	Cabinet shutdown for thermal reasons
	(solid)	
	Yellow	Cabinet fan slow or failed, master slave failover.
	(flashing)	
	Yellow	FPGA detects no MPs present or functioning
	(solid)	

Table 5-1 Front Panel LEDs (Continued)

LED	Status	Description
Cell 0 and Cell 1 Green		Cell power on
	(solid)	
	Off	Cell power off
	Red	Cell fault. Cell powered off due to power problem or
	(solid)	HPMC/MC event from cell
	Yellow (flashing)	Cell fault warning Latches not latched, LPM not ready, VRMs reporting not good or OT Cell fan slow/failed
	Yellow (Solid)	Cell not present
Locate	Blue	User requests locator ON and specifies (1 - 72) hour
	(flashing)	off timeout. Default timeout is 24 hours.
	Off	Timeout. Or user requests locator off.

Bulk Power Supply LEDs

There is a single three-color LED on each bulk power supply.

Figure 5-2 BPS LED Locations

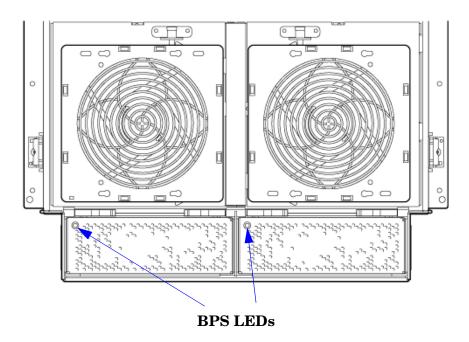


Table 5-2 BPS LEDs

LED Indication	Description	
Blinking Green	BPS is in standby state with no faults or warnings	
Green	BPS is in run state (48 volt output enabled) with no faults or warnings	
Blinking Yellow	BPS is in standby or run state with warning(s) present but no faults	
Yellow	BPS is in standby state with recoverable fault(s) present but no non-recoverable faults	
Blinking RED	BPS state might be unknown, non-recoverable fault(s) present	
Red	Not Used	
Off	BPS fault or failure, no power cords installed or no power to the chassis	

PCI-X Power Supply LEDs

There are three LEDs on the PCI-X power supply. Green and yellow LEDs follow OL^* operation. A multi-color LED reports warnings and faults.

Figure 5-3 PCI-X Power Supply LED Locations

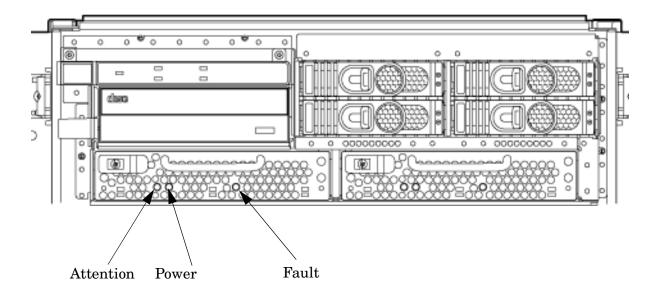


Table 5-3 PCI-X Power Supply LEDs

LED	Driven By	State	Description
Power		On Green	All output voltages generated by the power supply are within limits.
		Off	Power to entire system has been removed.
Attention	MP through PCI LPM ^a	Yellow	Not used.
Fault	•	Off	Normal operation.

Table 5-3 PCI-X Power Supply LEDs (Continued)

LED	Driven By	State	Description
		Flash Red	Power supply has shut down due to an over temperature condition, a failure to regulate the power within expected limits, or a current-limit condition.

a. LPM stands for local power monitor

System and PCI I/O Fan LEDs

There is a single three-color LED on each system and PCI I/O fan.

Figure 5-4 Front, Rear and PCI I/O Fan LEDs

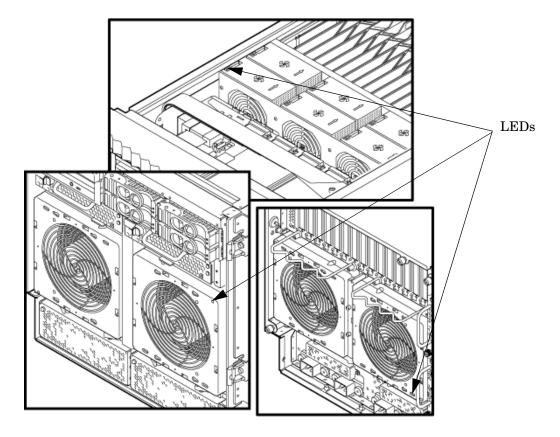


Table 5-4 System and PCI I/O Fan LEDs

LED	Driven By	State	Description
Fan Status	Fan	On Green	Normal
		Flash Yellow	Predictive failure
		Flash Red	Failed
		Off	No power

OL* LEDs

Cell Board LEDs

There is one green power LED located next to each ejector on the cell board in the server that indicates the power is good. When the LED is illuminated green, power is being supplied to the cell board and it is unsafe to remove the cell board from the server.

There is one yellow attention LED located next to each ejector lever on the cell board in the server. When the LED is flashing yellow, it is safe to remove the cell board from the server.

Figure 5-5 Cell Board LED Locations

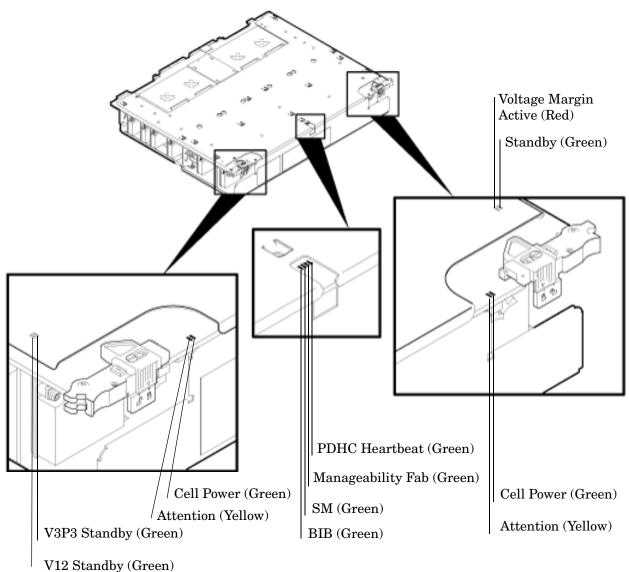
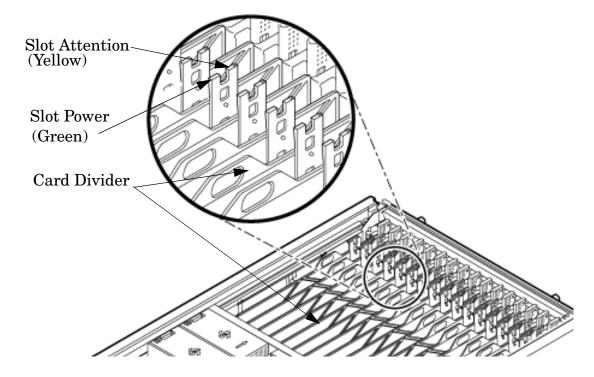


Table 5-5 Cell Board OL* LED Indicators

Location	LED	Driven by	State	Description
On cell board (located in the server cabinet)	Power	Cell LPM	On Green	3.3 V Standby and Cell_Pwr_Good


Table 5-5 Cell Board OL* LED Indicators (Continued)

Location	LED	Driven by	State	Description
			Off	3.3 V Standby off, or 3.3 V Standby on and no Cell_Pwr_Good
	Attention	MP via GPM	Flash Yellow	Safe to remove the cell board from the system

PCI-X OL* Card Divider LEDs

The PCI-X OL* card LEDs are located on each of the 16 PCI-X slot dividers in the PCI-X card cage assembly area. The green power LED indicates whether power is supplied to the card slot. The yellow attention LED states are defined in Table 5-8 on page 163.

Figure 5-6 PCI-X OL* LED Locations

Core I/O LEDs

The core I/O LEDs are located on the bulkhead of the installed core I/O PCA. Refer to Table $\,$ on page 160 to determine status and description.

Figure 5-7 Core I/O Card Bulkhead LEDs

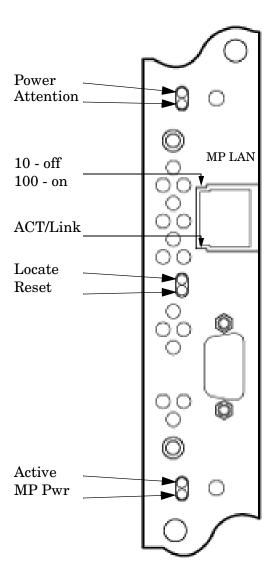


Table 5-6 Core I/O LEDs

LED (as silk-screened on the bulkhead)	State	Description
Power	On Green	I/O power on

Table 5-6 Core I/O LEDs (Continued)

LED (as silk-screened on the bulkhead)	State	Description
Attention	On Yellow	PCI attention
MP LAN 10 BT	On Green	MP LAN in 10 BT mode
MP LAN 100 BT	On Green	MP LAN in 100 BT mode
ACT/Link	On Green	MP LAN activity
Locate	On Blue	Locater LED
Reset	On Amber	Indicates that the MP is being reset
Active	On Green	This core I/O is managing the system
MP Power	On Green	Indicates standby power is on

Core I/O Buttons

There are two recessed buttons on the back of the core I/O card, as explained in Table 5-7.

Figure 5-8 Core I/O Button Locations

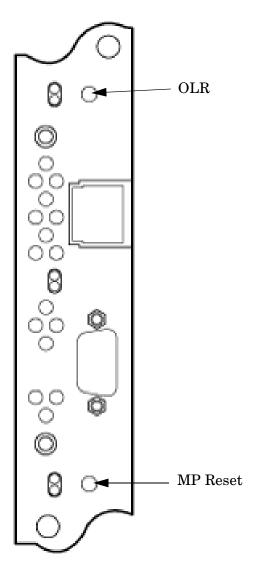


Table 5-7 Core I/O Buttons

Button Identification (as silk-screened on the bulkhead)	Location	Function
MP RESET	Center of the core I/O card	Resets the MP NOTE: If the MP RESET button is held for longer than five seconds, it will clear the MP password and reset the LAN, RS-232 (serial port), and modem port parameters to their default values. LAN Default Parameters IP Address—192.168.1.1 Subnet mask—255.255.255.0 Default gateway—192.168.1.1 Hostname—gsp0 RS-232 (Serial Port) Default Parameters 9600 baud 8 bits No parity
OLR (Symbol next to button is shown below)	Top end of the core I/O card	Request OL* for this core I/O slot NOTE: The OLR function is not enabled for the core I/O card.

PCI-X Hot-Plug LED OL* LEDs

Table 5-8 OL* LED States

State	Power (Green)	Attention (Yellow)
Normal operation, slot power on	On	Off
Slot selected, slot power on	On	Flashing
Slot needs attention, slot power on	On	On
Slot available, slot power off	Off	Off
Ready for OL*, slot power off	Off	Flashing
Fault detected, slot power off	Off	On

Table 5-8 OL* LED States (Continued)

State	Power (Green)	Attention (Yellow)
Slot powering down or up	Flashing	Off

Disk Drive LEDs

There are two tri-color LED on each disk drive.

Figure 5-9 Disk Drive LED Location

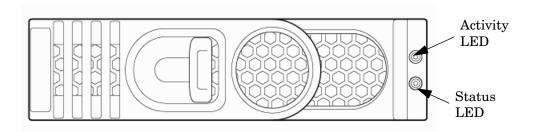


Table 5-9 Disk Drive LEDs

Activity LED	Status LED	Flash Rate	Description
Off	Green	Steady	Normal operation, power applied
Green	Off	Steady	Green stays on during foreground drive self-test
Green	Off	Flutter at rate of activity	I/O Disk activity
Off	Yellow	Flashing at 1Hz or 2 Hz	Predictive failure, needs immediate investigation
Off	Yellow	Flashing at 0.5Hz or 1Hz	Operator inducing manually
Off	Yellow	Steady	Module fault, critical
Off	Off	LEDs off	Unit not powered or installed

Interlock Switches

There are three interlock switches located in the server. Both side covers and the top cover have an interlock switch located underneath each cover.

- Side Covers—If either side cover is removed while the system is powered on, the system fans on the front and rear increase in speed to ensure adequate cooling. An event code is generated to indicate a side cover was removed.
- Top Cover—If the top cover is removed while the system power is on, the PCI-X card cage assembly I/O fan speed will not change. An event code is generated to indicate the top cover was removed.

Server Management Subsystem Hardware Overview

Server management for the server is provided by an MP on the core I/O board. The server management hardware is powered by standby power that is available whenever the server is plugged into primary AC power. This allows service access even if the DC power to the server is switched off.

The MP communicates with the server subsystems, sensors, and PDC by internal buses.

Connection to the management processor is by way of three I/O paths:

- An RS-232 port for a local terminal
- A 10/100/1000 baseT LAN port (Web console)

When the server is configured with one core I/O board, that board must be in slot 1, since the primary MP is always on the core I/O board in slot 1.

When the server is configured for two partitions, it must contain two core I/O boards, one for each partition. It will also contain two MPs. In this case, the MP in slot 1 is the primary MP and provides all of the server management functions. The MP on the core I/O board in slot 0 is a secondary MP and redirects the operating system gettys to the primary MP over an internal MP-to-MP link. All external connections to the MP must be to the primart MP in slot 1. The secondary MP ports will be disabled.

The server configuration cannot be changed without the MP.

In the event of a primary MP failure, the secondary MP automatically becomes the primary MP.

Server Management Overview

Server management consists of four basic functional groups:

- Chassis management
- Chassis logging
- Console and session redirection
- Service access

Chassis Management

Chassis management consists of control and sensing the state of the server subsystems:

- Control and sensing of bulk power
- Control and sensing of DC-to-DC converters
- · Control and sensing of fans
- Control of the front panel LEDs
- Sensing temperature
- Sensing of the power switch
- Sensing chassis intrusion
- Reading FRU PROMS

Chassis Logging

Chassis logging consists of maintaining logs of chassis codes:

- Boot codes
- Activity codes
- Error codes

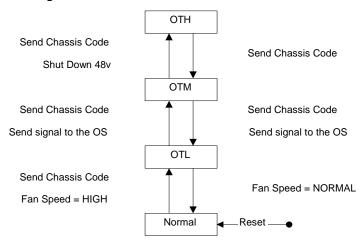
Console and Session Redirection

Console and session redirection allows the console and session terminals to be connected over RS-232, a modem, or a LAN connection (Web console).

Service Access

Service access allows access to and control of server state. Service access is secured by a password. Service access functions include:

- Access to chassis logs
- Configuration of partitions
- Control for online addition and replacement
- Access to the virtual front panel
- Transfer of control and reset


Server Management Behavior

This section describes how the system responds to over-temperature situations, how the firmware controls and monitors fans, and how it controls power to the server.

Thermal Monitoring

The manageability firmware is responsible for monitoring the ambient temperature in the server and taking appropriate action if this temperature becomes too high. The ambient temperature of the server is broken into four ranges: normal, overtemp low (OTL), overtemp medium (OTM), and overtemp high (OTH). Figure 5-10 shows the actions taken at each range transition. Actions for increasing temperatures are shown on the left; actions for decreasing temps are shown on the right.

Figure 5-10 Temperature States

On large temperature swings, the server will transition through all states in order. It might go to the following state immediately, but each of the preceding actions will occur. If the temperature reaches the highest range, the server will be shut down immediately by the manageability firmware.

Fan Control

There are three sets of fans in the system: those on the I/O bay, the front and rear fans that are connected to the main backplane, and those on the cell boards. The front fans are run off of standby power, and will be running any time AC input power is supplied to the server. All of the fans turn on when 48 V power is supplied to the system.

As shown Figure 5-10, the fan behavior is related to the temperature state. The fans will be set to high speed when the ambient temperature is anywhere above the normal operating range. The front and rear fans will be set to high speed any time a chassis intrusion switch is triggered when removing a side cover.

Altimeter Circuit

The system backplane contains an altimeter circuit. This circuit is used to adjust the chassis fan speeds for the operating altitude at power on and during MP initialization. The chassis fans consist of the two front fans, two rear fans, and the six PCI-X I/O assembly fans. If an altimeter failure is detected, the information is logged as an Event ID then propagated to the OS level to be picked up by monitoring diagnostics.

The altimeter circuit is checked at power on by the MP. If an expected value is returned from the altimeter circuit, the altimeter is determined good. The altimeter reading is then set in non-volatile random access memory (NVRAM) on board the core I/O card. If the value is ever lost like for a core I/O replacement, the NVRAM will be updated at next boot provided the altimeter is functioning normally. If the altimeter has failed, and the stable storage value has been lost because of a core I/O failure or replacement, the MP will adjust the fan speeds for sea-level operation.

NOTE

Fans driven to a high RPM in dense air cannot maintain expected RPM and will be considered bad by the MP leading to a "False Fan Failure" condition.

Power Control

If active, the manageability firmware is responsible for monitoring the power switch on the front panel. Setting this switch to the ON position is a signal to the MP to turn on 48 V DC power to the server. The PE command can also be used to send this signal. This signal does not always generate a transition to the powered state. The following conditions prevent the manageability firmware from applying 48 V DC power to the server:

- Insufficient number of active bulk power supplies
- Insufficient number of I/O fans
- Insufficient number of main fans
- Ambient temperature is in an OVERTEMP HIGH condition

Unless one of the following conditions occurs, 48 V DC power to the server is maintained:

- A main fan failure causes there to be an insufficient number of main fans.
- A I/O fan failure causes there to be an insufficient number of I/O fans.
- Ambient temperature reaches an OVERTEMP HIGH condition.
- The front panel power switch is turned OFF.
- The PE command is issued to the manageability firmware to turn off power to the server cabinet.

Updating Firmware

The following sections describe how to update firmware using either Firmware Manager (FM) or FTP.

Firmware Manager

You can update firmware by using the HP Firmware Manager (HP FM). HP FM is a set of tools for updating firmware on an Integrity or PA-RISC system. HP FM is packaged with firmware and distributed through the web.

HP FM provides two methods of updating firmware. The method to use depends on whether or not the operating system is running on the system:

- HP OS-Initiated Firmware Manager (HP OSIFM) Use HP OSIFM if the HP-UX, Linux, or Windows operating system is running on the system. HP OSIFM provides a firmware package in a patch or product file for HP-UX and a Smart Component for Windows and Linux. You download the patch, product, or Smart Component to a system, and then use the operating system to update the firmware.
- HP Offline Firmware Manager (HP OFM) Use HP OFM if the operating system is not running on the system, or to update the firmware for a device in the boot path. HP OFM provides a firmware package as an .ISO image that you download to a system to create a CD. You then use the CD to boot the system and update the firmware. HP OFM is available only for Integrity systems.

For more procedures on downloading and updating firmware using FM, see the HP Firmware Manager User's Guide at http://www.docs.hp.com/en/hw.html#System%20Firmware.

Using FTP to Update Firmware

The following section contains instructions for using FTP to update firmware.

- The user logs into the server console through the LAN, local serial, or remote serial locations.
- The user gives the FW command to start the firmware update.

NOTE

The LAN configuration for the server must be set for the FTP connection to function correctly regardless of whether the console LAN, local serial, or other connection is used to issue the FW command.

FW - Firmware Update

- Access Level: Administrator
- Scope: Complex
- Description: This command prompts the user for the location of the firmware software and the FLASH handle (from a list) which represents all upgradeable entities.

Figure 5-11 illustrates the output and questions requiring responses. Once the user replies Y to the confirmation request, the firmware update makes the connection to the FTP server at the IP address given using the user and password details supplied. The appropriate files will be downloaded and burned into the selected Flash memories. Note that the firmware update validates the image to determine that the image name supplied is that of a valid image type prior to burning the image into the Flash memory.

CAUTION

Instructions for updating the firmware are contained in the firmware release notes for each version of firmware. The procedure should be followed exactly for each firmware update otherwise the system could be left in an unbootable state. Figure 5-11 should not be used as an upgrade procedure and is provided only as an example.

Figure 5-11 Firmware Update Command Sample

```
[metro-s] MP> fw

Welcome to the Firmware Update Utility

(Use <Ctrl-b> to return to main menu.)

Current Server Settings:
    Server : 15.11.130.234
    FW Source Directory : kmix_pa_2.1D
    User Name : fwupdate

Update firmware from this source? ([Y]/N) y

Enter password: ERROR: Cannot connect to server!
```

Possible Error Messages

- Could not ping host
- Could not validate CRC of packet
- Could not find firmware update
- Invalid password

PDC Code FRU Reporting

The processor dependent code (PDC) interface defines the locations for the FRUs. These locations are denoted in the following figures to aid in physically locating the FRU when the diagnostics point to a specific FRU that has failed or may be failing in the near future.

Figure 5-12 Server Cabinet FRUs (Front View)

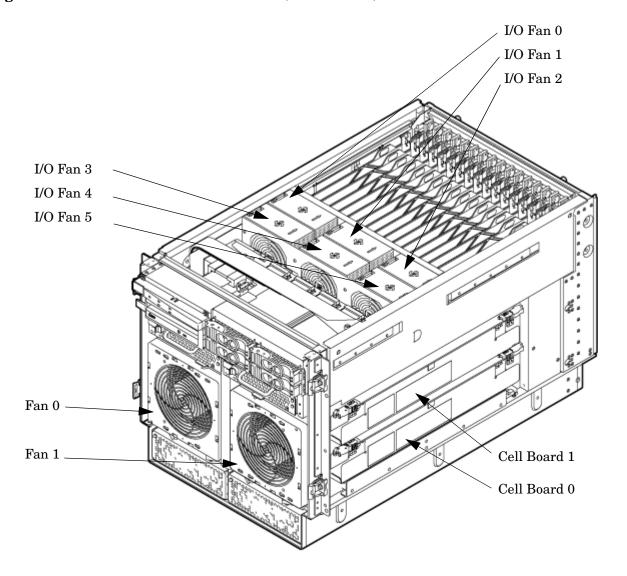
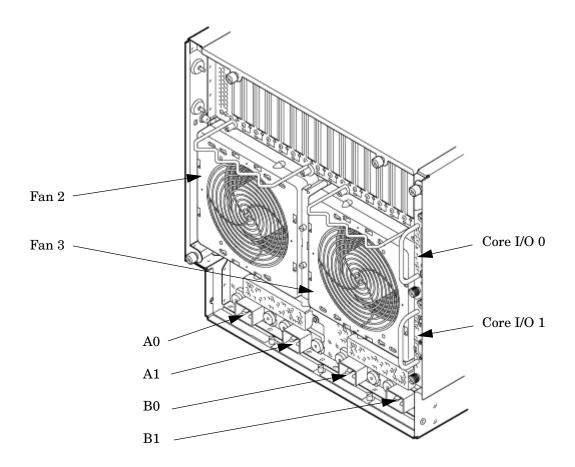



Figure 5-13 Server Cabinet FRUs (Rear View)

Verifying Cell Board Insertion

Cell Board Extraction Levers

It is important that both extraction levers on the cell board be in the locked position. Both levers must be locked for the cell board to power up and function properly.

Power to the cell board should only be removed using the MP:CM>PE command or by shutting down the partition or server. Therefore, if the levers become unlocked, the partition will not have a chance to logically shut down, and damage could occur to the operating system.

If the cell board is powered on and one lever becomes unlocked, the cell board will stay powered on. However, if the cell board is powered off, it will not power on again until both levers are in the locked position.

The lever status can be determined by issuing the MP:CM>DE command and viewing the power status of the cell board controller (PDHC). The "ready" bit will only be true when both levers are locked and all VRMs are installed. This status can be used to determine if both levers are locked and the cell board is properly installed in the chassis. See Figure 5-14 on page 175 for a sample of the output.

If the state is "RDY" denoted by capital letters in the computer output then the "ready bit" is true. If the state is "rdy" as denoted by lower case letters in the computer output then the "ready bit" is false. Refer to Table 5-10 for details.

Table 5-10 Ready Bit States

Ready Bit State	MP:CM> DE Command Power Status	Meaning
True	"RDY" (denoted by upper case letters)	All cell VRMs are installed and both cell latches are locked.
False	"rdy" (denoted by lower case letters)	One or more VRMs are not installed or failed and/or one or more cell latches are not locked.

Figure 5-14 de Command Output

```
MP:CM> de
Display summary status of the selected MP device.
                   (Bulk Power Supplies)
(Cabinet Utilities: Fans, Intrusion, Clock's etc.)
      B - BPS
     Ū - CLU
      A - PACI (Partition Console Interface)
        - MP
                   (Management Processor)
        - PM (Power Management)
- Cell Board Controller (PDHC)
        - PM
                                                                                    Ready Bit (RDY)
                                                                                    is set to true
     Select device: h
Enter cell number: 1
Cell Controller (PDHC) status. Cell 1
FW Revision : 3.006 built FRI AUG 15 12:01:54 2003
MICE Revision : 1.0
                       : 0x3b (err bib SMG CCO cci I2C PWR)
PDHC state
Attention Led is off
Power Status : 0x7c (12USTBY RDY) EN PWR vflt tflt fanflt)
LED State
                   : 0x0e (BIB SMG I2C heartbeat)
IO Connection Status : 0x01 (Connection OK)
IO Chassis Phys Location : 0x01 (cabinet=0, PCI Backplane=0, PCI Domain=1)
Core Cell Number : 0x81 (cabinet=0, cell=1, Valid)
Temp Fault Status : 0\times00 (cpu0 cpu1 cpu2 cpu3 mmu cell) CPU 0 Temp : 47 deg C CPU 1 Temp : 0 deg C
CPU 1 Temp
CPU 2 Temp
CPU 3 Temp
                                             deg C
                                       59
                                    : 0
MMU Temp
                                             deg C
                                      30
                                             deg C
Cell Board Temp
                                     : 28
                                    : 0 \times 00 \text{cc} (See PS command for detail) : 0 \times 00 (OK)
Fan Status
Local I2C Bus Status
MP:CM>
```

Server Troubleshooting

Verifying Cell Board Insertion

6 Removing and Replacing Components

This chapter provides a detailed description of the server customer replaceable unit (CRU) removal and replacement procedures. The sections contained in this chapter are:

Chapter 6 177

Customer Replaceable Units (CRUs)

The following section lists the different types of CRUs the server supports.

Hot-plug CRUs

A CRU is defined as hot-plug if it can be removed from the chassis while the system remains operational, but requires software intervention prior to removing the CRU.

The following are remove and replace procedures for hot-plug CRUs:

- Removing and Replacing a Disk Drive
- Removing and Replacing a Slimline DVD Drive
- Removing and Replacing a Dual Slimline DVD Carrier
- Removing and Replacing a PCI/PCI-X Card

Hot-Swap CRUs

A CRU is hot-swap if it can be removed from the chassis while the server remains operational and requires no software intervention before it is removed.

The following list identifies procedures for removing and replacing the hot-swap CRUs in the aerver:

- Removing and Replacing a Front Smart Fan Assembly
- Removing and Replacing a Rear Smart Fan Assembly
- Removing and Replacing a PCI Smart Fan Assembly
- Removing and Replacing a Bulk Power Supply
- Removing and Replacing the PCI Power Supply

Other CRUs

To remove and replace the CRUs that are neither hot-plug nor hot-swap, you must shut down HP-UX in the nPartition where the CRU resides and turn off power to the CRU before removing it. Refer to "Powering Off Hardware Components and Powering On the Server" on page 180 and Chapter 4 "Operating System Boot and Shutdown" for complete instructions.

Procedures for these CRUs include:

- Removing and Replacing a Half-Height DVD/DAT Drive
- Removing and Replacing PCA Front Panel Board
- Removing and Replacing a PCI-X Power Supply

Safety and Environmental Considerations

WARNING

Before proceeding with any installation, maintenance, or service on a system that requires physical contact with electrical or electronic components, be sure that either power is removed or safety precautions are followed to protect against electric shock and equipment damage. Observe all WARNING and CAUTION labels on equipment. All installation and service work must be done by qualified personnel.

Communications Interference

HP system compliance tests are conducted with HP supported peripheral devices and shielded cables, such as those received with the system. The system meets interference requirements of all countries in which it is sold. These requirements provide reasonable protection against interference with radio and television communications.

Installing and using the system in strict accordance with HP's instructions minimizes the chances that the system will cause radio or television interference. However, HP does not guarantee that the system will not interfere with radio and television reception.

Take these precautions:

- Use only shielded cables.
- Install and route the cables according to the instructions provided.
- Ensure that all cable connector screws are firmly tightened.
- Use only HP supported peripheral devices.
- Ensure that all panels and cover plates are in place and secure before system operation.

Electrostatic Discharge

HP systems and peripherals contain assemblies and components that are sensitive to electrostatic discharge (ESD). Carefully observe the precautions and recommended procedures in this document to prevent component damage from static electricity.

Take these precautions:

- Prepare an ESD safe work surface large enough to accommodate the various assemblies handled during the upgrade. Use a grounding mat and an anti-static wrist strap, such as those included in the ESD Field Service Kit (9300-1609).
- The anti-static bag can not function as a static dissipating mat. Do not use the anti-static bag for any other purpose than to enclose a product.
- Treat all assemblies, components, and interface connections as static-sensitive.
- When unpacking cards, interfaces, and other accessories that are packaged separately from the system, keep the accessories in the conductive plastic bags until you are ready to install them.
- Avoid working in carpeted areas, and keep body movement to a minimum while installing accessories.

Chapter 6 179

Powering Off Hardware Components and Powering On the Server

When you remove and replace hardware, you might need to power off hardware components as part of the remove and replace procedure.

This section gives details on how to power the hardware components off and on.

Powering Off Hardware Components

To power off individual components or the entire cabinet:

- **Step 1.** Log in to the management processor (MP) of the server.
- **Step 2.** If the component you will power off is assigned to an nPartition, then use the Virtual Front Panel (VFP) to view the current boot state of the nPartition.

Shut down HP-UX on the nPartition before you power off any of the hardware assigned to the nPartition. Refer to Chapter 4 "Operating System Boot and Shutdown."

When you are certain the nPartition is not running HP-UX, you can power off components that belong to the nPartition.

Refer to Chapter 4 "Operating System Boot and Shutdown" for details on determining the nPartition boot state and shutting down HP-UX.

Step 3. Access the MP Command menu.

From the MP Main menu, enter CM to access the Command Menu.

Step 4. Use the MP Command Menu PS command to check details about the hardware component you plan to power off.

The PS command enables you to check the status of the cabinet, system backplane, MP core I/O, PCI power domains—or bricks—in the I/O card cage and cells.

Step 5. Use the MP Command Menu PE command to power off the hardware component.

Using the PE command, you can power on or off the cabinet (including all cells and I/O in the cabinet), individual cells along with their associated I/O domain, or PCI power domains (bricks).

Using the Command menu PE command to manage cabinet power is equivalent to using the front panel power switch.

Step 6. To disable *all power* in the entire cabinet, disconnect all power cords to disable all housekeeping power.

IMPORTANT Because of power redundancy capabilities, it is important to plug each power cord into its proper receptacle. Label each power cord to indicate its correct receptacle.

WARNING Ensure that the cabinet power has been turned off before disconnecting any power cords.

Step 7. Perform the hardware removal and replacement procedure for the powered off component.

Powering On the System

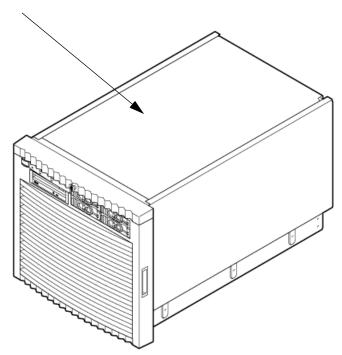
To power on the system after a repair:

- **Step 1.** If needed, reconnect all power cords to the appropriate receptacles and power on the system.
- **Step 2.** Use the MP Command Menu PE command to power on the hardware component that was powered off and replaced.
- **Step 3.** Use the PS command to verify that power is enabled to the newly replaced part. For example: Enter C from within the PS command to select cell.

If power is absent from the part, enter the PE command and select T to power on the entire cabinet.

NOTE	You may need to allow time for some components to complete power on self test (POST) before a complete status is available.
------	---

- Step 4. Reboot each nPartition. Refer to Chapter 4 "Operating System Boot and Shutdown."
- **Step 5.** Verify system functionality by using the Online Diagnostic Support Tools Manager (STM) exerciser.


Removing and Replacing the Top Cover

It is necessary to remove and replace one or more of the covers to access the components within the server chassis.

CAUTION

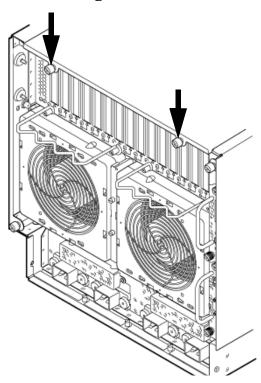

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Figure 6-1 Top Cover

Removing the Top Cover

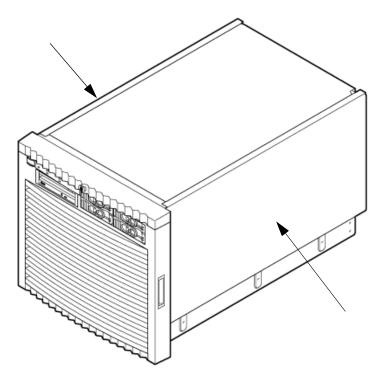
Figure 6-2 Top Cover Retaining Screws

- **Step 1.** Connect to ground with a wrist strap and grounding mat. Refer to "Electrostatic Discharge" on page 179 for more information.
- **Step 2.** Loosen the retaining screws securing the cover to the rear of the chassis.
- **Step 3.** Slide the cover toward the rear of the chassis.
- **Step 4.** Lift the cover up and away from the chassis.

Replacing the Top Cover

Step 1. Orient the cover on the top of the chassis.

NOTE Carefully seat the cover to avoid damage to the intrusion switch.


Step 2. Slide the cover into position using a slow firm pressure to properly seat the cover.

Step 3. Tighten the retaining screws to secure the cover to the chassis.

Removing and Replacing a Side Cover

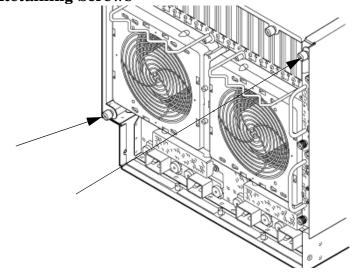

It is necessary to remove and replace one or both of the side covers to access the components within the server chassis.

Figure 6-3 Side Cover Locations

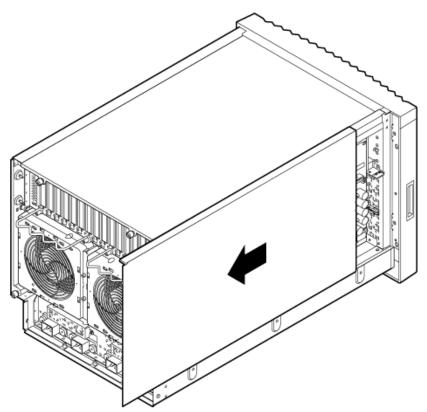
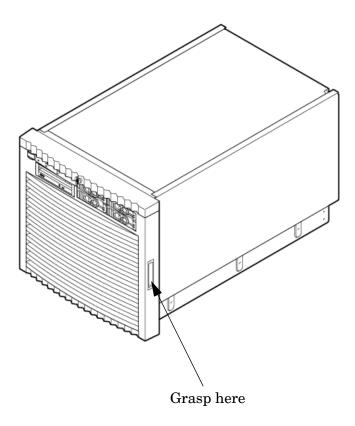

Removing a Side Cover

Figure 6-4 Side Cover Retaining Screws

- **Step 1.** Connect to ground with a wrist strap and grounding mat. Refer to "Electrostatic Discharge" on page 179 for more information.
- **Step 2.** Loosen the retaining screw securing the cover to the rear of the chassis.
- **Step 3.** Slide the cover toward the rear of the chassis; then rotate outward and remove from chassis.

Figure 6-5 Side Cover Removal Detail



Replacing a Side Cover

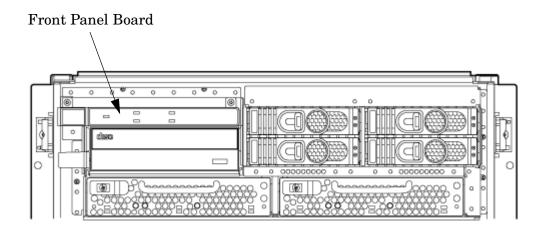
- **Step 1.** Slide the cover in position.
- **Step 2.** The cover easily slides into position. Use a slow firm pressure to properly seat the cover.
- **Step 3.** Tighten the retaining screw to secure the cover to the chassis.

Removing and Replacing the Front Bezel

Figure 6-6 Bezel hand slots

Removing the Front Bezel

Step 1. From the front of the server, grasp both sides of the bezel and pull firmly toward you. The catches will release and the bezel will pull free.


Replacing the Front Bezel

Step 1. From the front of the server, grasp both sides of the bezel and push toward the server. The catches will secure the bezel to the chassis.

Removing and Replacing PCA Front Panel Board

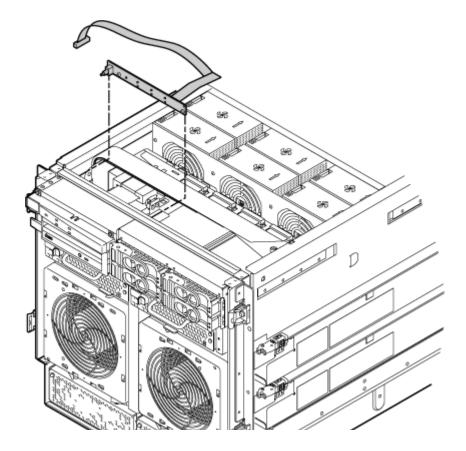
The front panel board is located in the front of the chassis. All system power must be removed before attempting to remove or replace this component.

Figure 6-7 Front Panel Assembly Location

Removing the PCA Front Panel Board

- **Step 1.** Remove the front bezel and the top and left side covers.
- **Step 2.** Follow proper procedures to power off the server.
- **Step 3.** Disconnect the SCSI cables from MSBP and move them out of the way.

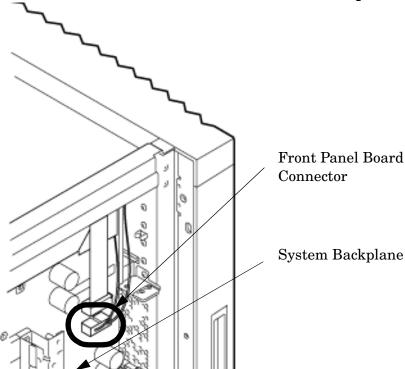
 This helps provide access to the common tray cage cover.
- **Step 4.** Disconnect the DVD power cable from the mass storage backplane. (
- **Step 5.** Disconnect the front panel cable from the system backplane. (Figure 6-8).
- **Step 6.** Unscrew the captive fastener on the common tray cage cover.
- **Step 7.** Apply firm pressure to slide the common tray cage cover to the rear, then lift. Place the cable as far back as possible to gain clear access to the front panel.
- **Step 8.** Remove the front panel bezel by removing the two screws. After the screws are removed, press the tab in the center of the bezel to release the bezel.
- **Step 9.** Remove the two screws revealed upon removing the bezel.
- **Step 10.** Place your left hand under the sheet metal wall that acts as a handle, and simultaneously, gently lift the handle upward and pull on the cable. This action disengages the tabs on the PCA front panel from the slots on the common tray cage
- **Step 11.** Gently pull the cable and handle toward the rear of the chassis until the steel power button that was initially protruding though the chassis clears the hole.


- **Step 12.** Rotate the top edge of the board toward you about 30 degrees by lifting on the handle with your left hand.
- **Step 13.** Angle the board such that the right side with the cable moves away from you and the opposite side with the power connector moves towards you.

Ensure that the power switch does not get stuck in one of the many holes in the front of the chassis. This rotation is best accomplished by gently pulling the cable with your right hand toward the rear of the cabinet.

Step 14. Remove the cable end of the board first by gently pulling the cable with your right hand and adjusting the angle of the board with your left hand.

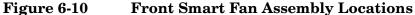
After the first tab on the board is outside the cavity, removal should proceed easily.


Figure 6-8 Front Panel Board Detail

Replacing the Front Panel Board

- **Step 1.** Slide the front panel into its slot from inside the server.
- **Step 2.** Insert the left side of the board into the slot first; the right side of the board is angled toward the rear of the chassis. Insert the right side of the board.
 - Ensure that the power switch does not get caught in one of the many holes in the front of the chassis. Push the panel forward until the lock tabs click.
- **Step 3.** Attach the front panel bezel. Align the light pipes with the slots in the chassis and push toward the rear of the chassis, then press the tab in the center of the bezel to snap it into place.
- **Step 4.** Tighten the two screws to secure the fron panel bezel to the chassis.
- **Step 5.** Replace the common tray cage cover.
- **Step 6.** Tighten the captive fastener on the common tray cage cover.
- **Step 7.** Attach the front panel cable to the system backplane.
- **Step 8.** Attach the DVD power cable.
- **Step 9.** Attach the SCSI cables to the MSBP.
- **Step 10.** Replace the front bezel and the top and left side covers.
- **Step 11.** Follow proper procedures to power on the server.

Figure 6-9 Front Panel Board Cable Location on Backplane



Removing and Replacing a Front Smart Fan Assembly

The Front Smart Fan Assembly is located in the front of the chassis. The fan assembly is a hot swappable component.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

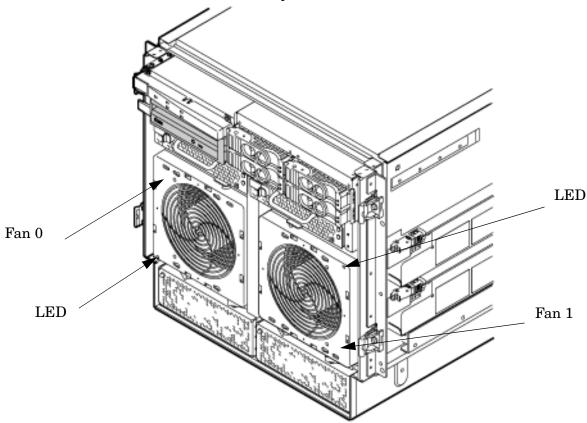


Table 6-1 Front Smart Fan Assembly LED Indications

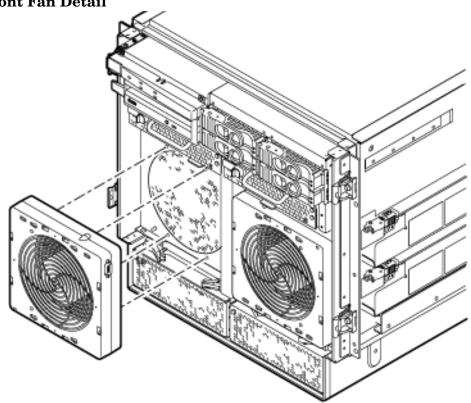

LED State	Meaning
On Green	Fan is at speed and in sync or not at speed less than six seconds
Flashing Yellow	Fan is not keeping up with speed/sync pulse for greater than six seconds

Table 6-1 Front Smart Fan Assembly LED Indications (Continued)

LED State	Meaning
Flashing Red	Fan failed/stalled or has run slow or fast for greater than six seconds
Off	Fan is not installed or no power is applied to fan

Removing a Front Smart Fan Assembly

- **Step 1.** Remove the front bezel.
- **Step 2.** Pull the fan release pin upward away from the fan.
- **Step 3.** Slide the fan away from the connector.
- **Step 4.** Pull the fan away from the chassis.

Replacing a Front Smart Fan Assembly

- **Step 1.** Position the fan assembly on the chassis fan guide pins.
- **Step 2.** Slide the fan into the connector.
- **Step 3.** Verify that the fan release pin is in the locked position.

Step 4. Replace the front bezel.

NOTE

The fan LED should show fan is operational (green).

Removing and Replacing a Rear Smart Fan Assembly

The Rear Smart Fan Assembly is located in the rear of the chassis. The fan assembly is a hot swappable component.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Table 6-2 Rear Smart Fan Assembly LED Indications

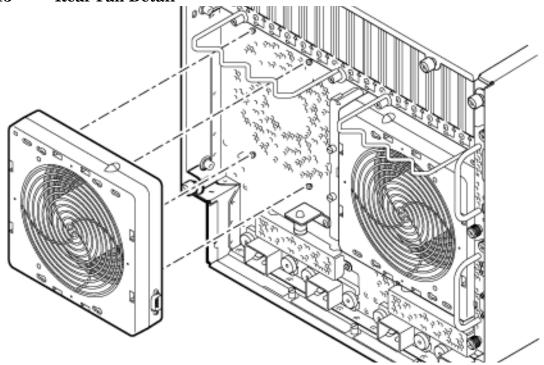

LED State	Meaning
On Green	Fan is at speed and in sync or not at speed less than six seconds
Flashing Yellow	Fan is not keeping up with speed/sync pulse for greater than six seconds

Table 6-2 Rear Smart Fan Assembly LED Indications (Continued)

LED State	Meaning
Flashing Red	Fan failed/stalled or has run slow or fast for greater than six seconds
Off	Fan is not installed or no power is applied to fan

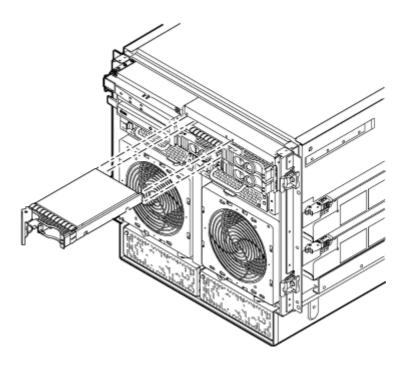
Removing a Rear Smart Fan Assembly

- **Step 1.** Pull the fan release pin upward away from the fan.
- **Step 2.** Slide the fan away from the connector.
- **Step 3.** Pull the fan away from the chassis.

Replacing a Rear Smart Fan Assembly

- **Step 1.** Carefully position the fan assembly on the chassis fan guide pins.
- **Step 2.** Slide the fan into the connector.
- **Step 3.** Verify that the fan release pin is in the locked position.

NOTE A gree	en fan LED indicates the fan is operational.
-------------	--


Removing and Replacing a Disk Drive

The disk drives are located in the front of the chassis. The nPartition must be shut down to remove or replace the drive that serves as the boot disk, if the boot disk is not mirrored. Refer to "Powering Off Hardware Components and Powering On the Server" on page 180 for more information. The remainder of the internal disk drives are hot-pluggable.

CAUTION

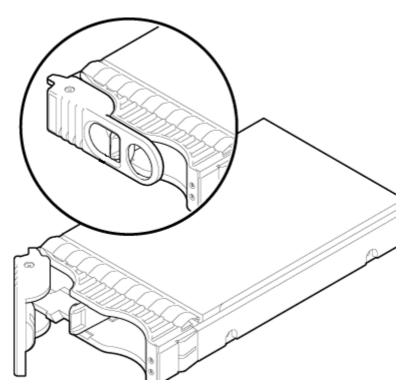

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Figure 6-14 Disk Drive Location

Removing a Disk Drive

Figure 6-15 Disk Drive Detail

Step 1. Disengage the front locking latch on the disk drive by pushing the release tab to the right and the latch lever to the left.

Step 2. Pull forward on the front locking latch and carefully slide the disk drive from the chassis.

Replacing a Disk Drive

NOTE Sometimes using the diskinfo and ioscan commands will produce cached data. To resolve this, these commands should be run when the disk drive is removed.

Step 1. Before installing the disk drive, enter the following command:

#diskinfo -v /dev/rdsk/cxtxdx

Step 2. Enter the following command:

#ioscan -f

The response message after running this command is:

NO_HV

Step 3. Be sure the front locking latch is open, then position the disk drive in the chassis.

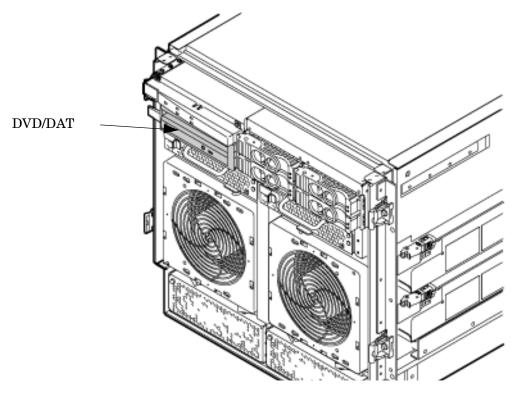
Step 4. Slide the disk drive into the chassis. Use a slow firm pressure to properly seat the connection.

- **Step 5.** Depress the front locking latch to secure the disk drive in the chassis.
- **Step 6.** Spin up the disk by entering one of the following commands:

#diskinfo -v /dev/rdsk/cxtxdx
#ioscan -f

#pvcreate

#vgcfgrestore

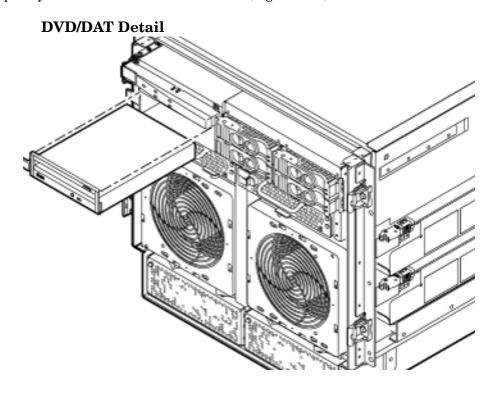

Removing and Replacing a Half-Height DVD/DAT Drive

The DVD/DAT drive is located in the front of the chassis (Figure 6-16). The system power to this component must be removed before attempting to remove or replace it. Refer to "Powering Off Hardware Components and Powering On the Server" on page 180 for more information.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Figure 6-16 DVD/DAT Location



Removing a DVD/DAT Drive

- **Step 1.** To remove the DVD/DAT, depress the front locking latch to loosen the drive from the chassis.
- **Step 2.** Partially slide the drive out.
- **Step 3.** Disengage the cables from the rear of the DVD/DAT.
- **Step 4.** Remove the rails and clips from the drive.

Step 5. Completely slide the drive from the chassis. (Figure 6-17).

Figure 6-17

Installing a Half-Height DVD or DAT Drive.

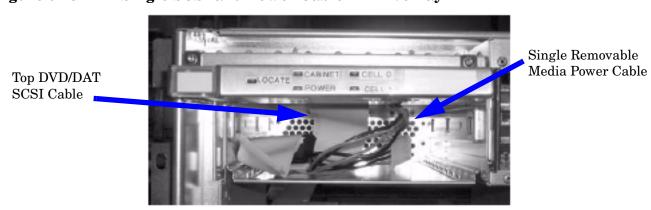
CAUTION The following section describes precise instructions for removable media cable measurement and orientation. Failure to comply will damage drive(s), data, and power cables.

Use this section to configure and install a half-height DVD or DAT drive.

Internal DVD and DAT Devices That Are Not Supported In HP Integrity rx7640

Table 6-3 refers to DVD or DAT drives that are not supported in the HP Integrity rx7640 server.

Table 6-3 Unsupported Removable Media Devices

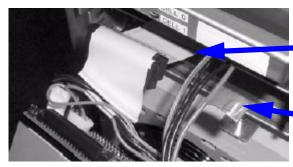

System	DVD Product #	DAT Product #
rp7410	A6180A—DVD Drive	A6182A—DAT40 DDS4 half-height
rp7420	AB351A—DVD+RW half-height ¹	A9878A—DAT 40Gb half-height
rx7620	AB351A—DVD+RW half-height ¹	A9878A—DAT 40Gb half-height

1. Product number AB351B is supported and supersedes the obsolete AB351A.

Removable Media Cable Configuration for a Half-height DVD or DAT Drive

Installation of the half-height DVD or DAT drive requires that only the *Top DVD/DAT* SCSI data cable and one power cable is configured into the removable media drive bay. For proper installation the power cable must run to the right of the data cable. See Figure 6-18.

Figure 6-18 Single SCSI and Power Cable in Drive Bay



The following procedure provides information on configuring the removable media drive bay cables for use with the half-height DVD or DAT drive.

Step 1. Turn off power and remove the top cover.

- **Step 2.** If the cable configuration appears as shown in Figure 6-18 with one power cable and the *Top DVD/DAT* data cable, proceed with the installation of the drive as described in "Installing the Half-Height DVD or DAT drive" on page 202.
- **Step 3.** Move the SCSI cables that connect to the mass storage backplane out of the way.
- **Step 4.** Move the removable media data cables out of the way.
- **Step 5.** Remove the metal removable media bay cover.
- **Step 6.** Carefully unfold the *Bottom DVD* data cable at the bends marked with green and unnest from the *Top DVD/DAT* cable.
- **Step** 7. Locate the data cable labeled *Top DVD/DAT*. This cable must be used for a DVD or DAT drive.
- **Step 8.** Carefully fold the *Top DVD/DAT* data cable and insert it into the media bay. The cable must extend out of the drive bay so the black line aligns with the front of the chassis. The cable terminator remains outside of the drive bay in the top of the chassis.
- **Step 9.** Insert one power cable into the drive bay to the right of the data cable as shown in Figure 6-19. The power cable must extend out of the drive bay so the red flag on the red wire aligns with the front of the chassis. See Figure 6-19.

Figure 6-19SCSI and Power Cable Lengths

NOTE

Black Line on SCSI Data Cable

Red Cable Length Flag

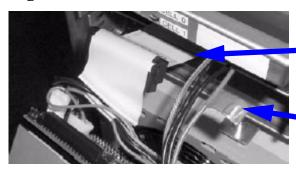
Step 10. Carefully position the metal removable media cover over the SCSI data and power cable and fasten into place.

CAUTION	Ensure the service length of the cables remains fixed as described in steps 7 and 8 when securing the removable media cover. Failure to comply will damage the removable media drive, data, and power cables.

The SCSI data cable end folds over the metal cover.

Step 11. Carefully fold the *Bottom DVD* data cable at the orange lines and lay it in the server chassis. See Figure 6-20.

Figure 6-20 SCSI and Power Cable Lengths


Folded Bottom DVD Cable

- **Step 12.** Connect both removable media power cables to the mass storage backplane and secure the unused power cable by coiling it.
- **Step 13.** Replace the top cover.
- **Step 14.** Connect the SCSI cables to the mass storage backplane.
- **Step 15.** Proceed to "Installing the Half-Height DVD or DAT drive" on page 202 for installation of the drive.

Installing the Half-Height DVD or DAT drive

Step 1. Ensure the cables are the correct length. The black line on the SCSI cable and the red flag on the red power cable must align with the front of the front bezel. See Figure 6-21.

Figure 6-21 SCSI and Power Cable Lengths

Black Line on SCSI Data Cable

Red Cable Length Flag

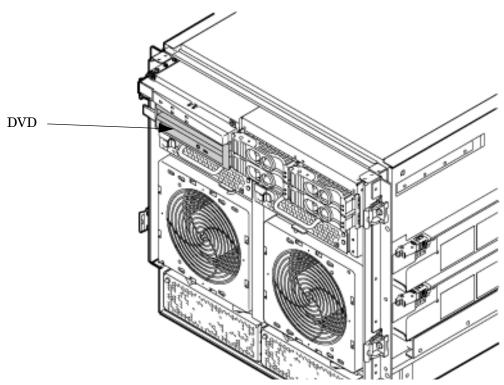
- **Step 2.** On the rear of the DVD drive, insert the removable media power cable through the keyed rectangular opening. See Figure 6-22.
- **Step 3.** Plug the DVD drive power cable into the removable media power cable.

Step 4. Tightly route the yellow, two black and one red wire through the cable clip as shown in Figure 6-22.

Figure 6-22 Power Cable Connection and Routing

Removable Media Power Cable Routed Through the Cable Clip on the Back of the DVD Drive.

- **Step 5.** Connect the SCSI cable to the rear of the drive.
- **Step 6.** Install the left and right media rails and clips to the drive.
- **Step 7.** Fold the cables out of the way and slide the drive into the chassis. The drive easily slides into the chassis; however, a slow firm pressure is needed for proper seating. The front locking tab will latch to secure the drive in the chassis.


Removing and Replacing a Slimline DVD Drive

The Slimline DVD drive is located in the front of the chassis. This CRU is hot-pluggable.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Figure 6-23 DVD Drive Location

Removing a Slimline DVD Drive

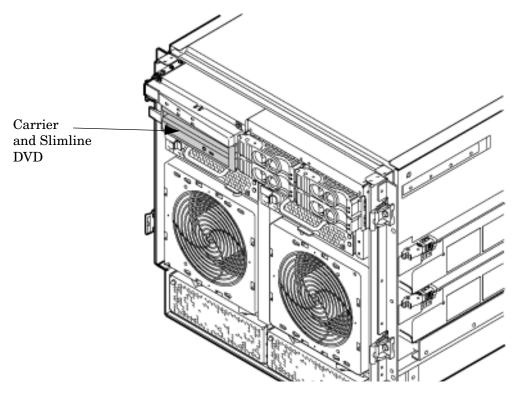
Step 1. To remove the DVD drive, press the drive release mechanism to release the drive from the drive bay.

Step 2. Slide the drive out of the DVD carrier.

Replacing a Slimline DVD Drive

Step 1. Slide the drive into the DVD carrier until it clicks into place.

Removing and Replacing a Dual Slimline DVD Carrier


The Slimline DVD carrier is located in the front of the chassis. The system power to this component must be removed before attempting to remove or replace it. Refer to "Powering Off Hardware Components and Powering On the Server" on page 180 for more information.

The carrier holds two Slimline DVDs. The carrier has 2 SCSI-to-IDE converter PCAs that enable the Slimline DVDs to be hot-pluggable CRUs.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Figure 6-24 Slimline DVD Carrier Location

Removing a Slimline DVD Carrier

To remove the carrier, use the following procedure:

- **Step 1.** Depress the front locking latch to loosen the carrier from the chassis.
- **Step 2.** Partially slide the carrier out.
- **Step 3.** Disengage the cables from the rear of the carrier.
- **Step 4.** Completely slide the carrier from the chassis.

Power Cables

Installation of Two Slimline DVD+RW Drives.

The HP Integrity rx7640 server can be configured with two slimline DVD+RW drives. Installation of the slimline DVD+RW drives requires that two core IO card sets are installed in the server. When the slimline DVD+RW drives are installed, the top drive is associated with cell 1 and the bottom drive is associated with cell 0.

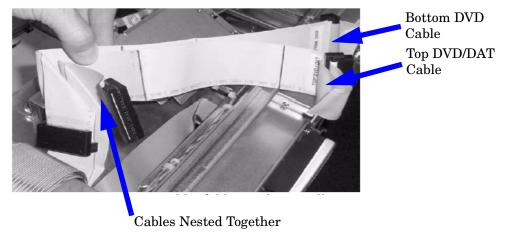
Installation of the slimline DVD+RW drives requires the following configuration of the data and power cables in the removable media drive bay.

Removable Media Cable Configuration for the Slimline DVD+RW Drives

Installation of the slimline DVD+RW drives requires that both SCSI data cables (*Top DVD/DAT* and *Bottom DVD*) and both power cables are installed into the removable media drive bay. For proper installation the power cables must be routed to the left of the data cables as shown in Figure 6-25.

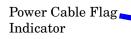
Figure 6-25 Data and Power Cable Configuration for Slimline DVD Installation

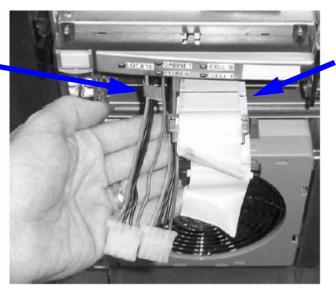
TOTAL STATE OF THE STATE OF THE


Data Cables: The Black Line Indicates the Correct Length.

The following procedure provides information on configuring the removable media drive bay cables for use with the slimline DVD+RW drives.

- **Step 1.** If the cable configuration appears as shown in figure Figure 6-25 with two power cables and both the *Top DVD/DAT* and *Bottom DVD* data cables, proceed with the installation of the drives as described in "Installing the Slimline DVD+RW Drives" on page 208.
- **Step 2.** Turn off power and remove the top cover.
- **Step 3.** Move the SCSI cables on top of the mass storage backplane out of the way.
- **Step 4.** Move the removable media data cables out of the way.
- **Step 5.** Remove the metal removable media bay cover.
- **Step 6.** Unfold bends marked in orange and flatten the cable marked *Bottom DVD*.


Step 7. Fold the *Bottom DVD* cable at green stripe then nest the *Top DVD/DAT* and *Bottom DVD* cables together and fold as shown in Figure 6-26.


Figure 6-26 Top DVD/DAT and Bottom DVD Cables Nested Together

- **Step 8.** Insert the two power cables into the media bay so they are on the left side of the drive bay when viewed from the front of the system.
- **Step 9.** Carefully insert the SCSI cables into the media bay. The SCSI cables lay on top of the power cables previously inserted into the media bay. The SCSI cables must extend out of the drive bay so the black line on each cable aligns with the front of the chassis. The SCSI cables extend from the drive bay at different lengths. The cable terminators remain ouside of the drive bay in the top of the chassis. When correctly installed, the cables must be configured as shown in Figure 6-27.

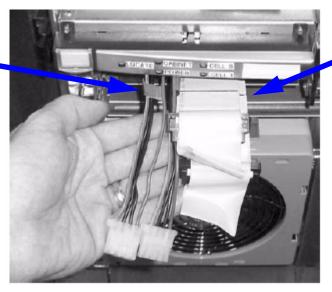
Figure 6-27SCSI and Power Cables for Slimline DVD+RW Installation

SCSI Cable Length Indicator

Step 10. Carefully position the metal removable media cover over the SCSI data and power cables and fasten into place.

CAUTION Ensure the service length of the cables remains fixed as described in steps 7 when securing the removable media cover. Failure to comply will damage th removable media drives, data, and power cables.	
NOTE	The SCSI data cable end folds over the metal cover. The terminators sit on top of the metal removable media cover.

- **Step 11.** Connect the removable media power cables into the mass storage backplane connectors.
- **Step 12.** Replace the top cover.
- **Step 13.** Connect the SCSI cables to the mass storage backplane.
- **Step 14.** Proceed with Installing the Slimline DVD+RW Drives.


Installing the Slimline DVD+RW Drives

Step 1. Ensure the cables are the correct length. The black line on the SCSI cables and the red flags on the red power cables must align with the front of the front bezel. See Figure 6-28.

IMPORTANT The SCSI connectors must be on the right and the power cables must be on the left when viewed from the front of the server for proper installation. See Figure 6-28. Cross the power cables under the SCSI cables in the top of the server before the cables are inserted into the drive bay

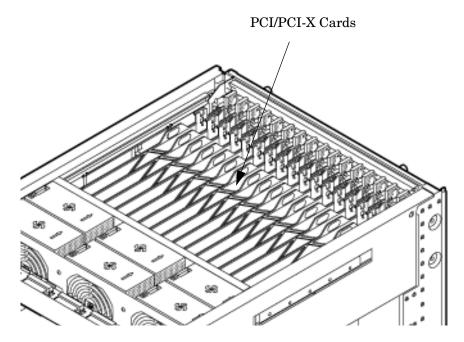
Figure 6-28SCSI and Power Cables for Slimline DVD Installation

Power Cable Flag Indicator

SCSI Cable Length Indicator

- **Step 2.** Connect the SCSI cables to the rear of the drive carrier. The SCSI cables are labeled to indicate the top and bottom drives.
- **Step 3.** Connect the power cables to the rear of the drive carrier.

- **Step 4.** Install the left and right media rails and clips to the drive carrier.
- **Step 5.** Fold the cables out of the way and slide the drive carrier into the chassis.
 - **a.** The carrier easily slides into the chassis; however, a slow firm pressure is needed for proper seating.
 - **b.** The front locking tab will latch to secure the carrier in the chassis.
- **Step 6.** Install the slimline drives into the carrier.


Removing and Replacing a PCI/PCI-X Card

The PCI/PCI-X cards are located in the rear of the chassis in the PCI-X card cage. PCI/PCI-X cards are hot pluggable components.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Figure 6-29 **PCI/PCI-X Card Location**

PCI/PCI-X I/O cards can be removed and replaced by using the SAM (/usr/sbin/sam) application or by using Partition Manager (/opt/parmgr/bin/parmgr).

This procedure describes how to perform an online replacement of a PCI/PCI-X card using SAM, for cards whose drivers support online add or replacement (OLAR).

IMPORTANT Some PCI/PCI-X I/O cards cannot be added or replaced online (while HP-UX remains running). For these cards, you must shut down HP-UX on the nPartition before performing the card replacement or addition. See "Powering Off Hardware Components and Powering On the Server" on page 180.

Installing the New LAN/SCSI Core I/O PCI-X Card(s)

IMPORTANT The new LAN/SCSI Core I/O PCI-X cards must be installed in slot 8 in both IO Chassis 1 and 0 of the PCI-X backplane. When a SCSI RAID PCI-X card is installed, you must follow the RAID card manufacturer's instructions for supported backplane slot locations.

> Previous versions of the 2-cell server LAN/SCSI Core I/O cards (rx7620/rp7420) were installed in the PCI backplane in IO Chassis 0, slot 1 and IO Chassis 1, slot 8.

The rx7620/rp7420 configuration is not supported in the rx7640/rp7440 servers.

The new LAN/SCSI Core I/O PCI-X card(s) must be installed in the following order:

- Step 1. If the system will be configured with one Core I/O card set, the LAN/SCSI card must be installed in PCI-X IO Chassis 1, slot number 8. This slot is reserved for the primary Core I/O LAN/SCSI card.
- **Step 2.** If a second Core I/O card set is installed, it must be installed in PCI-X IO Chassis 0, slot number 8. This slot is reserved for the second Core I/O LAN/SCSI card.

CAUTION

When a LAN/SCSI PCI card is added to an HP Integrity rx7640 server as part of a core I/O set, it must not have an external SCSI device connected to port B of the LAN/SCSI PCI card. Data corruption will result to each of the connected SCSI devices.

If a LAN/SCSI PCI card is installed individually (non-core I/O set), additional SCSI devices can be connected to the external bulkhead *ports A and B*.

The LAN/SCSI PCI card is supported as an add-on (non-core I/O set) PCI card for HP Integrity rx7640 server.

PCI/PCI-X Card Replacement Preliminary Procedures

- Step 1. Run SAM (/usr/sbin/sam) and from the main SAM Areas screen select the Peripheral Devices area, then select the Cards area.
- Step 2. From the I/O Cards screen, select the card you will replace and then select the Actions—>Replace menu item.
- **Step 3.** Wait for SAM to complete its critical resource analysis for the selected card and then review the analysis results.

If no critical resources will be disabled by taking the selected card offline, click the **OK** button to suspend the card's driver and power off the card's PCI-X slot. Proceed with the next step.

If SAM detected that the selected PCI/PCI-X card cannot be taken offline, you will not be able to click the OK button and cannot replace the card while HP-UX remains running. In this case, you must shut down HP-UX on the nPartition before replacing the defective card.

Step 4. Locate the PCI-X slot where the selected card resides.

On the server, you can view the PCI-X slots and slot LEDs from the rear of the cabinet.

The selected slot will be powered off (its green power LED will be off), and the slot's amber attention indicator (a dark orange yellow LED) will be blinking.

Removing a PCI/PCI-X Card

- **Step 1.** Label and remove the cable(s) connected to the PCI/PCI-X card to be removed.
- **Step 2.** Remove the top cover.
- **Step 3.** Flip the card slot's PCI MRL to the open position.
- **Step 4.** Firmly pull up on the tabs on the card separator.
- **Step 5.** Remove the card from the PCI slot.

Replacing the PCI/PCI-X Card

Step 1. Position the replacement PCI/PCI-X card in the slot.

NOTE	Use a slow firm pressure to properly set the card into its connection. PCI/PCI-X cards
	tend to be difficult to install.

- **Step 2.** Flip the card slot's PCI MRL to the closed position.
- **Step 3.** Replace the top cover.
- **Step 4.** Connect all cables to the replacement PCI/PCI-X card.
- **Step 5.** In SAM's Replace Card window, click the **OK** button.

SAM powers the PCI slot back on and turns off the slot's attention indicator. SAM also resumes the card's driver operations.

- **Step 6.** Confirm that the replacement card is online and powered on, using SAM's I/O Cards screen.
- Step 7. Exit SAM

Option ROM

To allow faster booting, system firmware does not auto-scan PCI devices with an Option ROM. In order to boot from a PCI connected device with an Option ROM, it must be added to the table of boot devices as follows:

- **Step 1.** Install the I/O card into the chassis.
- **Step 2.** Boot the server to the EFI shell.
- **Step 3.** Execute the EFI search command.

To add a single card:

```
search <cell> <pci_slot #>
```

To add all cards:

search all

Step 4. Execute the following EFI command:

map -r

Step 5. Enter the Boot Manager by executing the following command:

exit

Step 6. From the EFI Boot Manager Menu, select "Boot Option Maintenance Menu" and then from the Main Menu, select "Add a Boot Option". Now add the device as a new boot device.

Updating Option ROMs

The Option ROM on a PCI I/O card can be "flashed" or updated. The procedure to flash an I/O card follows.

- **Step 1.** Install the I/O card into the chassis.
- **Step 2.** Boot the server to the EFI shell.
- **Step 3.** Execute the EFI search command.

To add a single card:

search <cell> <pci_slot #>

To add all cards:

search all

Step 4. Execute the following EFI command:

map -r

NOTE

Each I/O card type and firmware image update may require a different flash utility and procedure. Follow the instructions in the .txt file included with the latest *HP IPF Offline Diagnostic & Utilities* CDROM.

Step 5. Load the *HP IPF Offline Diagnostic & Utilities* CDROM.

The CDROM will contain the flash utility for IO each card type, firmware images, and a .txt file that will include instructions and information about updating the firmware images.

Removing and Replacing a PCI Smart Fan Assembly

The PCI Smart Fan Assembly is located at the front of the PCI cardcage, toward the middle top portion of the server. The fan assembly is a hot swappable component.

CAUTION Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

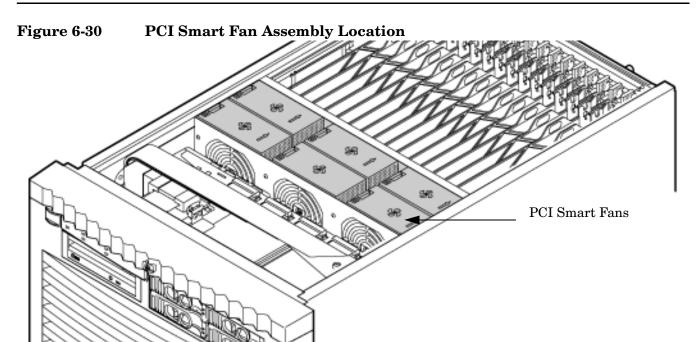
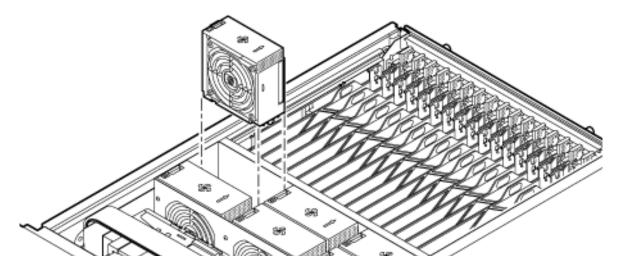



Table 6-4 Smart Fan Assembly LED Indications

LED State	Meaning
On Green	Fan is at speed and in sync or not at speed less than six seconds
Flashing Yellow	Fan is not keeping up with speed/sync pulse for greater than six seconds
Flashing Red	Fan failed/stalled or has run slow or fast for greater than six seconds
Off	Fan is not installed or no power is applied to fan

Removing a PCI Smart Fan Assembly

Figure 6-31 PCI Smart Fan Assembly Detail

Step 1. Remove the top cover.

Step 2. Grasp the fan with thumb and forefinger while depressing the locking tab.

NOTE	The two right side fans, as viewed from the front, are located very close to the
	chassis. It might be necessary to use a tool, such as a flatblade screwdriver, to assist in removing them.

Step 3. Slide the fan upward from the chassis.

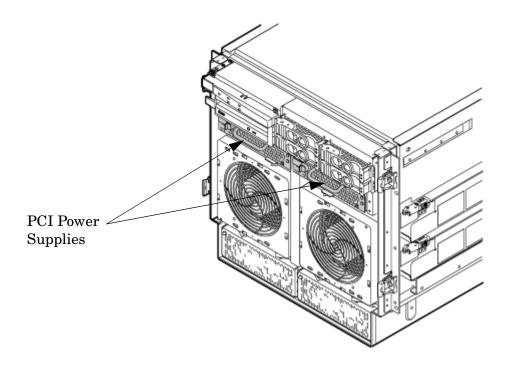
Replacing a PCI Smart Fan Assembly

Step 1. Carefully position the fan assembly in the chassis.

Step 2. The fan easily slides into the chassis. Use a slow firm pressure to properly seat the connection.

Step 3. Replace the top cover.

NOTE A green fan LED indicates the fan is operational.

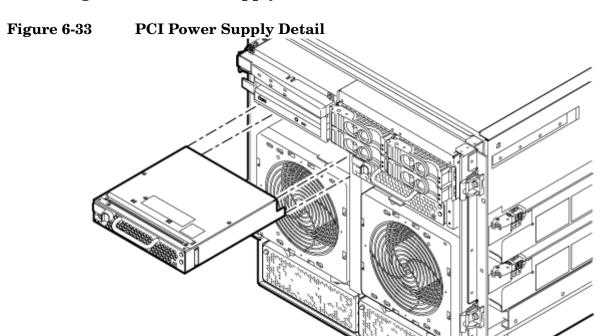

Removing and Replacing a PCI-X Power Supply

The PCI-X power supply is located in the front of the chassis. The PCI-X power supply is N+1 and a hot-swap unit.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Figure 6-32 PCI-X Power Supply Location


Preliminary Procedures

- **Step 1.** Remove the front bezel.
- **Step 2.** Identify the failed power supply. Table 6-5 identifies the meaning of the PCI-X Power Supply LED state.
- **Step 3.** Connect to ground with a wrist strap and grounded mat.
- **Step 4.** Visually inspect the replacement part for proper number and revision.

Table 6-5 PCI-X Power Supply LEDs

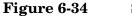
LED	Driven By	State	Description
Power	Each supply	On Green	All output voltages generated by the power supply are within limits.
		Off	Power to entire system has been removed.
Fault	ter		Power supply has shut down due to an over temperature condition, a failure to regulate the power within expected limits, or a current-limit condition.
		Off	Normal operation.

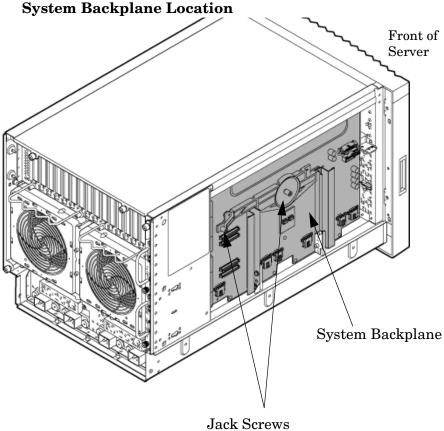
Removing a PCI-X Power Supply

- **Step 1.** Securely grasp the handle on the front of the power supply.
- **Step 2.** Slide and hold the locking tab to the right and pull the PCI-X supply from the chassis.

Replacing the PCI Power Supply

- **Step 1.** Slide the power supply in the chassis until the thumb latch clicks into the locked position.
- **Step 2.** The module easily slides into the chassis; apply a slow, firm pressure to properly seat the connection.
- **Step 3.** Verify the status of the power supply LEDs. Green LED should be **ON** and the fault LED should be **OFF**.


Chapter 6 217


Removing and Replacing the System Backplane

The system backplane is located on the left side of the chassis (Figure 6-34). All system power must be removed before attempting to remove or replace this component.

CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

Removing the System Backplane

Figure 6-35 System Backplane Removal

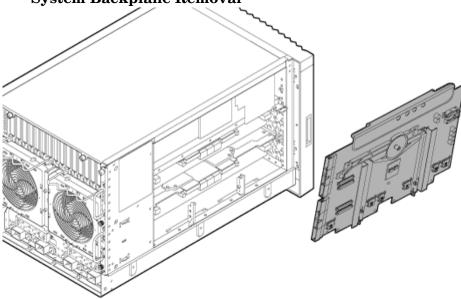
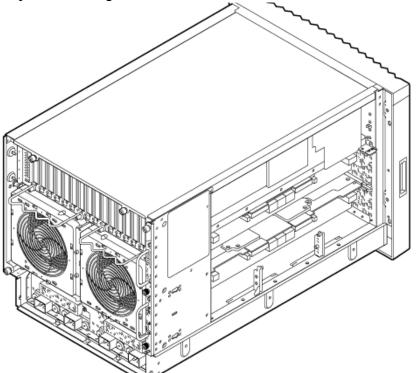



Figure 6-36 System Backplane Removed

- **Step 1.** Shut down the system partitions and remove all power cables.
- Step 2. Extend Core MP/SCSI I/O board(s) approximately 1.5 inches from system connectors.

Step 3. Remove the side covers.

Chapter 6 219

Step 4. Remove all cell boards from system.

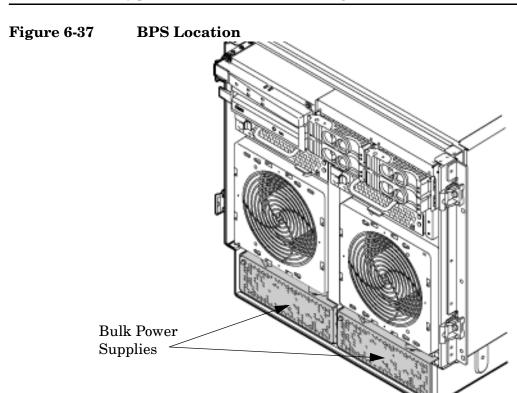
NOTE If the system is not in a rack, extending the cell boards approximately four inches from the system backplane connectors is sufficient.

- **Step 5.** Label and disconnect all cables connected to the system backplane.
- **Step 6.** Remove the left and right hard attach brackets from each side.
- **Step 7.** Support the system backplane and alternately loosen the two Jack screws until the system backplane releases from the chassis. Tilt the backplane back to a 45 degree angle and lift out from the hinged bottom.

Replacing the System Backplane

- **Step 1.** Position the system backplane at a 45 degree angle in the chassis.
- **Step 2.** Align tabs at the bottom of the backplane with the slots on the bottom of the chassis.
- **Step 3.** Tilt the backplane forward until it is resting against the chassis.
- **Step 4.** Alternately tighten the two Jack screws until the backplane is secure.

NOTE	Watch for system board flex. Overcompression will break and render the board
	useless.


- **Step 5.** Install the left and right hard attach brackets to each side.
- **Step 6.** Reconnect all cables on the system backplane.
- **Step 7.** Reconnect Core MP/SCSI I/O board(s).
- **Step 8.** Reconnect all cell boards.
- **Step 9.** Replace the side covers.
- **Step 10.** Power up the server.

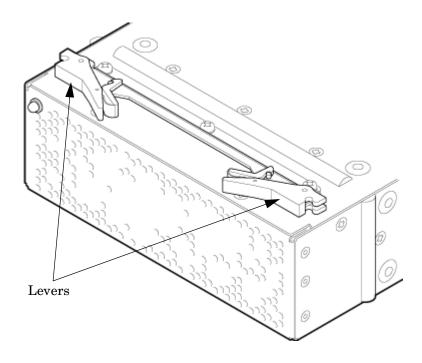
Removing and Replacing a Bulk Power Supply

The bulk power supply is located in the front of the chassis. The BPS is a hot swappable component.

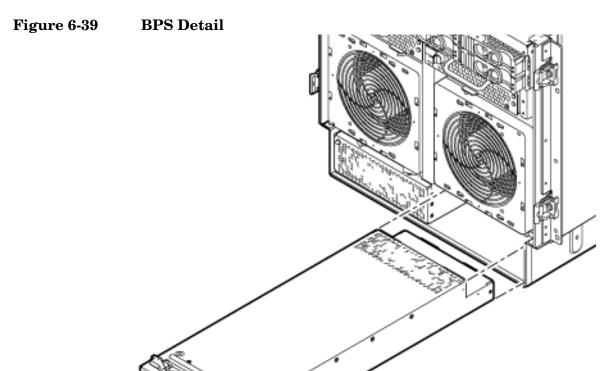
CAUTION

Observe all ESD safety precautions before attempting this procedure. Failure to follow ESD safety precautions could result in damage to the server.

IMPORTANT When a BPS is pulled from the server and then immediately re-inserted, the server might report an overcurrent condition and shut down.


Removing a BPS

Step 1. Remove the front bezel.


Chapter 6 221

Step 2. Press in on the extraction lever release mechanism and pull outward.

Figure 6-38 Extraction Levers

Step 3. Slide the BPS forward using the extractions levers to remove it from the chassis.

CAUTION Use caution when handling the BPS. A BPS weighs 18 lbs.

Replacing a BPS

- **Step 1.** Verify that the extraction levers are in the open position, then insert the BPS into the empty slot.
- **Step 2.** The BPS easily slides into the chassis. Use a slow firm pressure to properly seat the connection.
- **Step 3.** Ensure the BPS has seated by closing the extraction levers.
- **Step 4.** Replace the front bezel.

NOTE The BPS LED should show BPS operational and no fault. The BPS LED should GREEN.	be
--	----

Chapter 6 223

Configuring Management Processor (MP) Network Settings

After removing and replacing the core I/O in the server, verify the MP LAN network settings, using the settings from the original (replaced) core I/O.

To *configure* management processor network settings, use the MP Command menu's **LC** command. To *list* the current management processor (MP) network configuration, use the **LS** command.

Default Management Processor Network Settings

Table 6-6 lists an example of the default MP LAN network settings for the server.

Table 6-6 Default Configuration for Management Processor LAN

MP LAN IP Address	192.168.1.1
MP LAN Host Name	gsp0
MP LAN Subnet Mask	255.255.255.0
MP LAN Gateway	192.168.1.1

This procedure (Command menu, \mathbf{LC} command) configures the management processor's MP LAN network settings from the management processor Command menu.

Step 1. Connect to the server complex management processor and enter CM to access the Command menu.

Use telnet to connect to the management processor, if possible.

If a management processor is at its default configuration (including default network settings), connect to it using either of these methods:

- Establish a direct serial cable connection through the management processor local RS-232 port.
- Access a PC or workstation on the same subnet as the management processor, modify its
 network routing tables to include the default MP LAN IP address, then telnet to the
 management processor. The procedure to modify networking and connect is:
 - 1. Access a PC or workstation on the management processor subnet.
 - 2. Modify the network routing tables for the PC or workstation by using the

route add 192.168.1.1 ClientName

command, where

ClientName Is the network name of the PC or workstation.

From a PC command prompt:

route add 192.168.1.1 ClientName

On an HP-UX workstation log in as root and use this command:

/usr/sbin/route add 192.168.1.1 ClientName

After reconfiguring the management processor networking, remove these network routing table changes with the route delete command.

3. Enter this command to confirm the new network connection to the management processor:

4. Use the

telnet 192.168.1.1

command from the PC or workstation to connect to the management processor.

Step 2. From the management processor Command menu, enter **LS** to *list* the current network settings, and, if needed, use the **LC** command to *reconfigure* the network settings for the management processor.

The LC command enables modifications to the MP LAN and/or the private LAN configuration.

Cancel all changes to the management Processor LAN configuration at any time by replying ${\bf Q}$ to any of the LC command prompts.

Step 3. Ensure that the MP networking configuration is correct.

Chapter 6 225

Removing and Replacing Components

Configuring Management Processor (MP) Network Settings

7 HP Integrity rp7440 Server

The following information describes material specific to the HP 9000 rp7440 Server and the PA-8900 processor.

The following is covered in this chapter:

• System Power Requirements for the rp7440 Server

Chapter 7 1

HP Integrity rp7440 Server

- Boot Console Handler (BCH) for the HP 9000 rp7440 Server
- HP-UX for the HP 9000 rp7440 Server
- PA-8900 Processor Module
- System Verification

Electrical and Cooling Specifications

This section describes the electrical and power dissipation specifications for the HP 9000 rp7440 Server.

Tables 7-1 and 7-2 list the system power, power dissipation, and cooling requirements for the server. For more information on system power specifications, see Chapter 2.

Table 7-1 System Power Requirements for the HP 9000 rp7440 Server

Power Required(50-60 Hz)	Watts	VA	Comments
Maximum Theoretical Power	3092	3130	See # 1
Marked Electrical Power		2640	12A@ 220 VAC, see # 2
User-Expected Maximum Power	2078	2120	see # 3

- 1. "Maximum theoretical power" is used to describe input power at the AC input. It is expressed in Watts and Volt-Amps to take into account power factor correction. The calculated sum is the maximum worst-case power consumption for every subsystem in the server. This number will not be exceeded by a properly functioning server for any combination of hardware and software.
- 2. "Marked electrical power" is the input power measured at the AC input expressed in Volt-Amps. The marked electrical power is the rating given on the chassis label and represents the input power required for facility AC power planning and wiring requirements. This number represents the expected maximum power consumption for the server based on the power rating of the bulk power supplies. This number can safely be used to size AC circuits and breakers for the system.
- 3. "User-Expected Maximum Power" is the input power measured at the AC input expressed in Watts and Volt-Amps, and the measured worst-case power consumption. This number represents the largest power consumption for the server under laboratory conditions, using aggressive software applications designed specifically to work the system at maximum loads and power consumption.

Chapter 7 3

Table 7-2 provides calculations for the configurations shown in the table.

Table 7-2 Typical Server Configurations

Cell Boards	Memory Per Cell Board	PCI Cards (assumes 10 watts each)	DVDs	Hard Disk Drives	Core I/O	Bulk Power Supplies	Typical Power	Typical Cooling
Qty	GBytes	Qty	Qty	Qty	Qty	Qty	Watts	BTU/hr
2	32	16	3	2	2	2	2078	7096
2	16	8	2	2	2	2	1908	6515
2	8	8	2	2	2	2	1871	6389
1	8	8	1	1	1	2	1237	4224

The air conditioning data is derived using the following equations.

- Watts x (0.860) = kcal/hour
- Watts x(3.414) = Btu/hour
- Btu/hour divided by 12,000 = tons of refrigeration required

NOTE

When determining power requirements you must consider any peripheral equipment that will be installed during initial installation or as a later update. Refer to the applicable documentation for such devices to determine the power and air-conditioning that is required to support these devices.

Boot Console Handler (BCH) for the HP 9000 rp7440 Server

Booting an HP 9000 sx2000 Server to BCH

After you power on the server or use the management processor (MP) BO command to boot an nPartition past boot-is-blocked (BIB), the nPartition console will show activity while the firmware is initialized and will stop at the BCH Main Menu (the Main Menu: Enter command or menu> prompt).

Use the BCH DI command to redisplay the current menu and its available commands.

```
Main Menu: Enter command or menu > di
---- Main Menu ------
     Command
                                       Description
     BOot [PRI | HAA | ALT | <path>]
                                       Boot from specified path
     PAth [PRI | HAA | ALT] [<path>]
                                       Display or modify a path
     SEArch [ALL | <cell> | <path>]
                                       Search for boot devices
     ScRoll [ON OFF]
                                       Display or change scrolling capability
     COnfiguration menu
                                       Displays or sets boot values
     INformation menu
                                       Displays hardware information
     SERvice menu
                                       Displays service commands
     DIsplay
                                       Redisplay the current menu
     HElp [<menu> | <command>]
                                       Display help for menu or command
                                       Restart Partition
                                       Reset to allow Reconfig Complex Profile
     RECONFIGRESET
Main Menu: Enter command or menu >
```

For information about any of the available BCH commands, use the HE command.

Chapter 7 5

HP-UX for the HP 9000 rp7440 Server

HP supports nPartitions on cell-based HP 9000 servers. The HP 9000 rp7440 Server runs HP-UX 11i Version 1 (B.11.11).

HP 9000 Boot Configuration Options

On cell-based HP 9000 servers the configurable system boot options include boot device paths (PRI, HAA, and ALT) and the autoboot setting for the nPartition. To set these options from HP-UX, use the setboot command. From the BCH system boot environment, use the PATH command at the BCH Main Menu to set boot device paths, and use the PATHFLAGS command at the BCH Configuration menu to set autoboot options. For details, issue HELP command at the appropriate BCH menu, where command is the command for which you want help.

Booting and Shutting Down HP-UX

This section presents procedures for booting and shutting down HP-UX on cell-based HP 9000 servers.

Standard HP-UX Booting

HP-UX Booting (BCH Menu)

From the BCH Menu, use the BOOT command to boot the HP-UX OS. The BCH Menu is available only on HP 9000 servers.

Step 1. Access the BCH Main Menu for the nPartition on which you want to boot HP-UX.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console. When accessing the console, confirm that you are at the BCH Main Menu (the Main Menu: Enter command or menu> prompt). If you are at a BCH menu other than the Main Menu, then enter MA to return to the BCH Main Menu.

Step 2. Choose which device to boot.

From the BCH Main Menu, use the PATH command to list any boot path variable settings. The primary (PRI) boot path normally is set to the main boot device for the nPartition. You also can use the SEARCH command to find and list potentially bootable devices for the nPartition.

```
Main Menu: Enter command or menu > PATH

Primary Boot Path: 0/0/2/0/0.13
0/0/2/0/0.d (hex)

HA Alternate Boot Path: 0/0/2/0/0.14
0/0/2/0/0.e (hex)

Alternate Boot Path: 0/0/2/0/0.0
0/0/2/0/0.0 (hex)

Main Menu: Enter command or menu >
```

Step 3. Boot the device by using the BOOT command from the BCH interface.

You can issue the BOOT command in any of the following ways:

BOOT

Issuing the BOOT command with no arguments boots the device at the primary (PRI) boot path.

• BOOT bootvariable

This command boots the device indicated by the specified boot path, where *bootvariable* is the PRI, HAA, or ALT boot path.

For example, BOOT PRI boots the primary boot path.

• BOOT LAN INSTALL or BOOT LAN.ip-address INSTALL

The BOOT... Install commands boot HP-UX from the default HP-UX install server or from the server specified by ip-address.

BOOT path

This command boots the device at the specified path. You can specify the path in HP-UX hardware path notation (for example, 0/0/2/0/0.13) or in path label format (for example, P0 or P1).

If you specify the path in path label format, then path refers to a device path reported by the last SEARCH command.

After you issue the BOOT command, the BCH interface prompts you to specify whether you want to stop at the ISL prompt.

To boot the /stand/vmunix HP-UX kernel from the device without stopping at the ISL prompt, enter n to automatically proceed past ISL and execute the contents of the AUTO file on the chosen device. (By default the AUTO file is configured to load /stand/vmunix.)

To boot an HP-UX kernel other than /stand/vmunix, or to boot HP-UX in single-user or LVM-maintenance mode, stop at the ISL prompt and specify the appropriate arguments to the hpux loader.

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the BCH environment, press **^B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Single-User Mode HP-UX Booting

This section describes how to boot HP-UX in single-user mode on cell-based HP 9000 servers.

Chapter 7 7

Single-User Mode HP-UX Booting (BCH Menu)

From the BCH Menu, you can boot HP-UX in single-user mode by issuing the BOOT command, stopping at the ISL interface, and issuing hpux loader options. The BCH Menu is available only on HP 9000 servers.

Step 1. Access the BCH Main Menu for the nPartition on which you want to boot HP-UX in single-user mode

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console. When accessing the console, confirm that you are at the BCH Main Menu (the Main Menu: Enter command or menu> prompt). If you are at a BCH menu other than the Main Menu, then enter MA to return to the BCH Main Menu.

Step 2. Boot the desired device by using the BOOT command at the BCH interface, and specify that the nPartition stop at the ISL prompt prior to booting (reply y to the "stop at the ISL prompt" question).

```
Main Menu: Enter command or menu > BOOT 0/0/2/0/0.13

BCH Directed Boot Path: 0/0/2/0/0.13

Do you wish to stop at the ISL prompt prior to booting? (y/n) >> y
Initializing boot Device.

....

ISL Revision A.00.42 JUN 19, 1999

ISL>
```

Step 3. From the ISL prompt, issue the appropriate Secondary System Loader (hpux) command to boot the HP-UX kernel in the desired mode.

Use the hpux loader to specify the boot mode options and to specify which kernel to boot on the nPartition (for example, /stand/vmunix).

• To boot HP-UX in single-user mode:

```
ISL> hpux -is boot /stand/vmunix
```

Example 7-1 on page 8 shows output from this command.

• To boot HP-UX at the default run level:

```
ISL> hpux boot /stand/vmunix
```

To exit the ISL prompt and return to the BCH interface, issue the EXIT command instead of specifying one of the hpux loader commands.

Refer to the hpux (1M) manpage for a detailed list of hpux loader options.

Example 7-1 Single-User HP-UX Boot

```
ISL Revision A.00.42 JUN 19, 1999
ISL> hpux -is /stand/vmunix
Boot
: disk(0/0/2/0/0.13.0.0.0.0.0;0)/stand/vmunix
8241152 + 1736704 + 1402336 start 0x21a0e8
```

```
INIT: Overriding default level with level 's'
INIT: SINGLE USER MODE
INIT: Running /sbin/sh
#
```

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the BCH environment, press **^B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

LVM-Maintenance Mode HP-UX Booting

This section describes how to boot HP-UX in LVM-maintenance mode on cell-based HP 9000 servers.

LVM-Maintenance Mode HP-UX Booting (BCH Menu)

From the BCH Menu, you can boot HP-UX in LVM-maintenance mode by issuing the BOOT command, stopping at the ISL interface, and issuing hpux loader options. The BCH Menu is available only on HP 9000 servers.

Step 1. Access the BCH Main Menu for the nPartition on which you want to boot HP-UX in LVM-maintenance mode.

Log in to the management processor, and enter CO to access the Console list. Select the nPartition console. When accessing the console, confirm that you are at the BCH Main Menu (the Main Menu: Enter command or menu> prompt). If you are at a BCH menu other than the Main Menu, then enter MA to return to the BCH Main Menu.

- **Step 2.** Boot the desired device by using the BOOT command at the BCH interface, and specify that the nPartition stop at the ISL prompt prior to booting (reply y to the "stop at the ISL prompt" question).
- **Step 3.** From the ISL prompt, issue the appropriate Secondary System Loader (hpux) command to boot the HP-UX kernel in the desired mode.

To boot HP-UX in LVM-maintenance mode:

```
ISL> hpux -lm boot /stand/vmunix
```

Step 4. Exit the console and management processor interfaces if you are finished using them.

To exit the BCH environment, press **B** (**Control+B**); this exits the nPartition console and returns to the management processor Main Menu. To exit the management processor, enter X at the Main Menu.

Shutting Down HP-UX

When HP-UX is running on an nPartition, you can shut down HP-UX using the $\mbox{shutdown}$ command.

On nPartitions you have the following options when shutting down HP-UX:

- To shut down HP-UX and reboot an nPartition: shutdown -r
- To shut down HP-UX and halt an nPartition: shutdown -h

Chapter 7 9

HP-UX for the HP 9000 rp7440 Server

- To perform a reboot for reconfiguration of an nPartition: shutdown -R
- To hold an nPartition at a shutdown for reconfiguration state: shutdown -R -H

Shutting Down HP-UX

From the HP-UX command line, issue the shutdown command to shut down the HP-UX OS.

Step 1. Log in to HP-UX running on the nPartition that you want to shut down.

Log in to the management processor for the server and use the Console menu to access the system console. Accessing the console through the MP enables you to maintain console access to the system after HP-UX has shut down.

Step 2. Issue the shutdown command with the appropriate command-line options.

The command-line options you specify dictate the way in which HP-UX is shut down, whether the nPartition is rebooted, and whether any nPartition configuration changes take place (for example, adding or removing cells).

Use the following list to choose an HP-UX shutdown option for your nPartition:

- Shut down HP-UX and halt the nPartition.
- Shut down HP-UX and reboot the nPartition.

Issue the shutdown -r command to shut down and reboot the nPartition.

• Perform a reboot for reconfiguration of the nPartition.

Issue the HP-UX shutdown -R command to perform a reboot for reconfiguration.

This shuts down HP-UX, reconfigures the nPartition if needed, and reboots the nPartition.

Reboot the nPartition and put it into the shutdown for reconfiguration state.

Use the HP-UX shutdown -R -H command to hold the nPartition in the shutdown for reconfiguration state.

This leaves the nPartition and all its cells in an inactive state (the nPartition can be reconfigured remotely), unless the normal behavior has been modified.

To reboot the nPartition, you must do so manually by using the ${\tt BO}$ command at the management processor Command Menu.

If HP-UX is halted on the nPartition, thus not allowing you to use the shutdown command, you can reboot or reset the nPartition by issuing commands from the management processor Command Menu.

System Verification

The minimum firmware version supported at release of the HP 9000 rp7440 Server is rp8440 and rp7440 Firmware Version 1.0.

After the system firmware is updated, use the management processor (MP) cm menu to verify status using the systev command.

MP:CM> sysrev

Cabinet firmware revision report

PROGRAMMABLE HARDWARE :

PROGRAMMABLE HARI	JWARE :			
System Backplane	: GPM	EMMUX		
		001.000.000		
IO Backplane	: IO_LPM-0	IO_LPM-1		
		001.001.001		
Core IO	: CIO-0			
	001.002.000			
	CELL_LPM	CELL_JTAG		
Cell 0 : Cell 1 :		000.000.000	000.000.000	- not installed
FIRMWARE:				
Core IO				
MP-0	: B.002.005.0	08		
	: 002.006.0			
	в.002.005.0			
ED-1	: 002.006.0	00		
Cell 0 - not inst	talled			
PDHC	B.000.000.0	00		
PDHC	B.000.000.0	00		
	: 000.000.0	00		
	: 000.000.0	00		
Cell 1				
PDHC	: B.023.003.0	31 - Active		
PDHC	B.022.002.0	03		

Chapter 7 11

HP Integrity rp7440 Server

System Verification

PDC_FW : 042.006.000 - Active

IPF_FW : 004.080.000

Verify that the processors are reporting by using the management processor (MP) Main Menu and using the in pr command to display their status:

Main Menu: Enter command or menu > in pr

PROCESSOR INFORMATION

	Cab/							Processor	
Cell	Slot	CPU	Spee	ed	HVERSION	SVERSION	CVERSION	State	
1	0/1	0A	1068	MHz	0x8900	0x0491	0x0401	Active	
		0B	1068	MHz	0x8900	0×0491	0×0401	Idle	
		1A	1068	MHz	0x8900	0×0491	0×0401	Idle	
		1B	1068	MHz	0x8900	0×0491	0×0401	Idle	
		2A	1068	MHz	0x8900	0x0491	0x0401	Idle	
		2B	1068	MHz	0x8900	0x0491	0x0401	Idle	
		3A	1068	MHz	0x8900	0x0491	0x0401	Idle	
		3B	1068	MHz	0x8900	0x0491	0x0401	Idle	

Partition Total Cells: 1

Partition Total Processors: 8

Partition Active Processors: 8

Partition Deconfigured Processors: 0

A Replaceable Parts

Replaceable Parts

This appendix contains the server CRU list. For a more updated list of part numbers, go to the HP Part Surfer web site at: http://www.partsurfer.hp.com.

Table A-1 Server CRU Descriptions and Part Numbers

CRU DESCRIPTION	Replacement P/N	Exchange P/N			
POWER CORDS AND CABLES					
Pwr Crd C19/unterminated interntl-Europe	8120-6895	None			
Pwr Crd C19/IEC-309 L6-20 4.5m BLACK CA ASSY	8120-6897	None			
Pwr Crd C19/L6-20 4.5m BLACK C	8120-6903	None			
240V N.AMERICAN UPS 4.5M C19/L	8120-8494	None			
Pwr Crd C19/GB 1002 4.5m BLACK CA ASSY	8121-0070	None			
C19/C20, BLK, 2.5m - Jumper	8121-0802	None			
C19/C20, BLK, 4.5m - Jumper	8121-0806	None			
MASS STORAGE DEVICES					
DVD + RW Drive	AB351-67002	None			
DVD+RW Slimline Drive	AD143-2100A	None			
DVD+RW Slimline Carrier + 2 A-cards	AD013-2101A	None			
Removable DAT 40i (DDS4)	DW009-67201	DW009-69201			
36 GB Ultra 320 15K RPM SCSI Disk	AB420-2101A	AB420-69001			
73 GB Ultra 320 15K RPM SCSI Disk	AB421-2101A	AB421-69001			
146 GB Ultra 320 10K RPM SCSI Disk	AB422-2101A	AB422-69001			
300 GB Ultra 320 10K RPM SCSI Disk	AB423-2101A	AB423-69001			
FANS					
Assy, Smart Fan FT and RR	A6752-67129	None			
Assy, Smart Fan PCI C/C	A6752-67030	None			
KITS					
Side/Top Covers Kit (Graphite)	AB312-67002	None			
Removeable Media Kit	A6752-67011	None			

 Table A-1
 Server CRU Descriptions and Part Numbers (Continued)

CRU DESCRIPTION	Replacement P/N	Exchange P/N
POWER		
AC Power Supply	0957-2183	None
PCI-X N+1 Power Module	0950-4637	None
OTHER COMPONENTS		
Nameplate, rp7440	A9959-3401A	None
Nameplate, rx7640	AB312-2108A	None
Box, DVD Filler (Carbon)	A6912-00014	None
Assy, Bezel, No NamePlate (Graphite)	A7025-04001	None
Snap, Bezel Attach	C2786-40002	None

Replaceable Parts

Replaceable Parts

B MP Commands

This appendix contains a list of the Server Management Commands.

Server Management Commands

Table B-1 lists the server management commands.

Table B-1 Service Commands

Command	Description
ВО	Boot a partition
DATE	Set the time and date
DF	Display FRU Information of an Entity
LOC	Display and Set Locator LED status
MA	Return to Main Menu
PE	Power entities on or off
PWRGRD	Allows user to configure the power grid
RE	Reset entity
RR	Reset partition for reconfiguration
RS	Reset a partition
SYSREV	Returns all System Revisions
TC	Send a TOC signal to a partition
TE	Broadcast a message to all users of the MP command handler
WHO	Display list of MP connected users

Table B-2 lists the server status commands

Table B-2 Status Commands

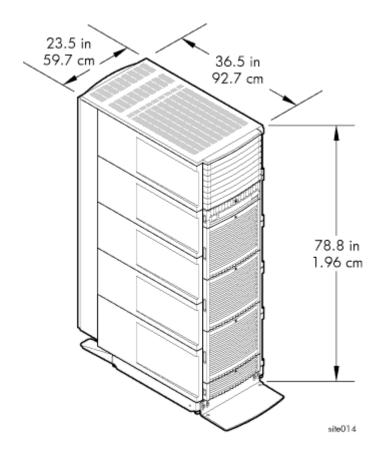
Command	Description
СР	Display partition cell assignments
DE	Display entity status
DU	Display devices on bus
HE	Display the list of available commands
LS	Display LAN connected console status
PS	Display detailed power and hardware configuration status

Table B-3 lists the server system and access config commands

Table B-3 System and Access Config Commands

Command	Description
CA	Configure Asynchronous and Modem parameters
CC	Initiate a Complex Configuration
CG	Generate ssl key pair and self signed certificate
СР	Display partition cell assignments
DC	Reset parameters to default configuration
DI	Disconnect Remote or LAN console
ID	Change certain stable complex configuration profile fields
IF	Display network interface information
IT	Modify command interface inactivity time-out
LC	Configure LAN connections
LS	Display LAN connected console status
PARPERM	Enable/Disable interpartition security
PD	Modify default Partition for this login session
RL	Re-key complex profile lock
RU	Reset MP bus device
SA	Display and set MP remote access
SNMP	Set SNMP daemon parameters
SO	Configure security options and access control
UPS	Set parameters for ups monitoring via snmp
XD	MP Diagnostic and reboot

MP Commands


Server Management Commands

C Templates

This appendix contains blank floor plan grids and equipment templates. Combine the necessary number of floor plan grid sheets to create a scaled version of the computer room floor plan.

Figure C-1 illustrates the overall dimensions required for the server.

Figure C-1 Server Space Requirements

Equipment Footprint Templates

Equipment footprint templates are drawn to the same scale as the floor plan grid (1/4 inch = 1 foot). These templates show basic equipment dimensions and space requirements for servicing.

The service areas shown on the template drawings are lightly shaded.

The equipment templates should be used with the floor plan grid to define the location of the equipment that will be installed in your computer room.

NOTE

Photocopying typically changes the scale of drawings copied. If any templates are copied, then all templates and floor plan grids must also be copied.

Computer Room Layout Plan

Use the following procedure to create a computer room layout plan:

- **Step 1.** Remove several copies of the floor plan grid.
- **Step 2.** Cut and join them together (as necessary) to create a scale model floor plan of your computer room.
- **Step 3.** Remove a copy of each applicable equipment footprint template.
- **Step 4.** Cut out each template selected in step 3; then place it on the floor plan grid created in step 2.
- **Step 5.** Position pieces until the desired layout is obtained; then fasten the pieces to the grid. Mark locations of computer room doors, air-conditioning floor vents, utility outlets, and so on.

NOTE

Attach a reduced copy of the completed floor plan to the site survey. HP installation specialists use this floor plan during equipment installation.

Figure C-2 Server Cabinet Template

Scale: 1/4 inch = 1 foot

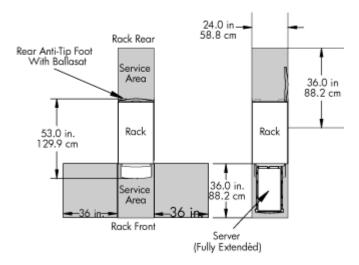


Figure C-3 Planning Grid

Scale: 1/4 inch = 1 foot

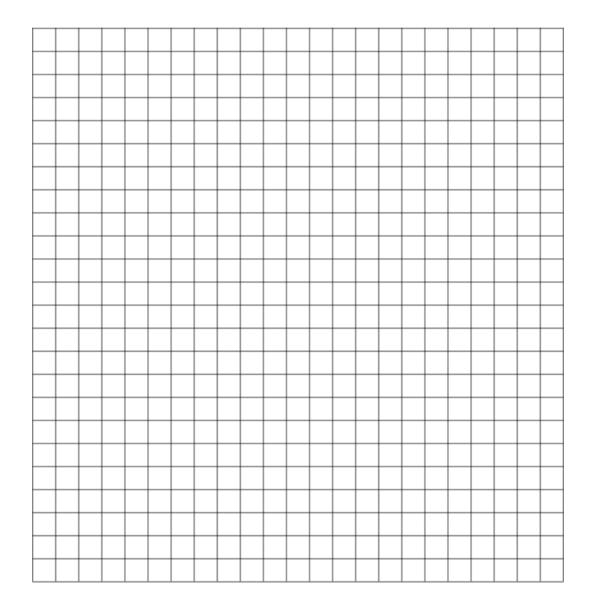
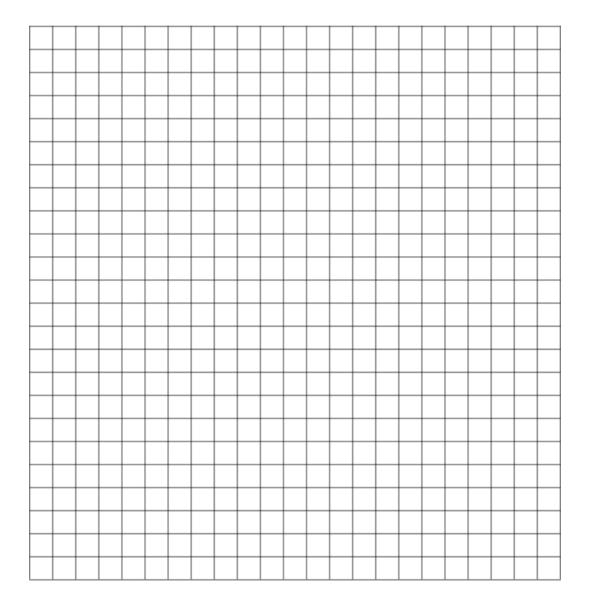



Figure C-4 Planning Grid

Scale: 1/4 inch = 1 foot

Templates

Computer Room Layout Plan

A	DATE, 19
ac power	DC, 19
voltage check, 91	DF, 18, 19
access	DI, 19
commands, 18	di (Display) command, 107
air ducts, 53	dimensions and weights, 44
illustrated, 53	DIMMs, 33
AR, 19	memory, 33
ASIC, 24	disk, 150, 195, 196 internal, 41, 96
	removing and replacing, 196
В	disk drive, 24
backplane	DL, 19
mass storage, 41, 44, 187	du (display MP bus topology) command, 104
PCI, 37, 41	DVD/CD, 24
system, 29, 37, 40, 44, 51, 189, 218, 219, 220	,
removing and replacing, 218, 219, 220	${f E}$
BO, 18, 19 BPS (Bulk Power Supply), 99	EL, 19
DIS (Durk Tower Suppry), 99	electrical specifications, 46
C	electrostatic discharge, 179
C	environmental considerations, 179
CA, 19	equipment footprint templates, 23
cards	ER, 19
core I/O, 166	error message, 171
CC, 19	ESD precautions
cell board, 28, 29, 31, 44, 51, 97, 104, 106, 157	ESD kit, part number, 179
verifying presence, 104	
cell controller, 24	${f F}$
chassis	facility guidelines
login, 167	computer room layout, 24
management, 167	equipment footprint templates, 23
checklist	fan
installation, 109	control, 168
cm (Command Menu) command, 104	fans, 24
co (Console) command, 107	field replaceable unit (FRU)
command, 18, 19	FRU, 178
co (Console), 107	firmware update, 171
CTRL-B, 107	front panel, 30
di (Display), 107	front panel display, 99
PE, 181	FW, 19
scsi default, 181	2 11, 20
	G
ser, 181	
T, 181	getty, 166
vfp (Virtual Front Panel), 106	
commands	${f H}$
cm (Command Menu), 104	HE, 18
du (display MP bus topology), 104	high availability (HA), 166
communications interference, 179	hot-pluggable
component	defined, 178
power requirements, 47	hot-swappable
computer room layout plan, 24	defined, 178
configuration, 166	housekeeping power, 98
console, 166	HP-UX, 166
redirection, 167	rootcell, 106
controls, 30	HP-UX Installation, 106
core I/O, 24	111 021 11150411401011, 100
core I/O card, 166	I
CP, 18, 19	
	I/O bay, 168
D	ID, 19
DAT 24	IF, 19

Index

inspecting for damage, 56 installation	OTH, 168 OTL, 168
checklist, 109	OTM, 168
warranty, 56	overtemp, 168
interference, 179	D
IP address default, 100	P
IT, 19	password
11, 10	MP, 99
K	PCI, 24 PCI backplane, 37, 41
Keystone system	PD, 19
air ducts, 53	PDC
,	Processor Dependent Code, 107
L	PDH riser board, 32
LAN, 166	PE, 18, 19 Platform Dependent Code (PDC), 166
LC, 19	Platform Dependent Code (PDC), 166 power, 181
LED	applying cabinet, 106
Attention, 99	cabinet switch, 107
Bulk Power Supply, 99	control, 168
management processor, 30	housekeeping, 98, 106
remote port, 30	plugs, 24
SP Active, 99 Standby Payor Cood, 99	requirement, 24
Standby Power Good, 99 traffic light, 30	power cords, 46
login name	power requirements
MP, 99	component, 47 power supplies, 24
LS, 18, 19	processor
, ,	service, 24
M	Processor Dependent Code
MA, 18, 19	PDC, 107
management hardware, 166	processors, 24
Management Processor (MP), 96	PS, 18
management processor (MP), 166	PWRGRD, 19
failure, 166	R
mass storage backplane, 41, 44, 187 memory, 24	
monitoring, 168	RE, 18, 19 Reflection 1, 98, 106
MP	RL, 19
login name, 99	rootcell
password, 99	setting value of, 106
MP (Management Processor)	RR, 18, 19
logging in, 98	RS, 18, 19 RS, 232, 166
powering on, 98 MP core I/O, 27, 28, 29, 37, 40, 96, 97	RS-232, 166 RU, 19
MP/SCSI, 28, 29, 37, 40, 96, 219, 220	1,0,10
removing and replacing, 219, 220	S
MR, 18, 19	safety considerations, 179
MS, 18	serial display device
A.T.	connecting, 96, 98
N	recommended windows, 106
N+1, 24	setting parameters, 96, 97
ND, 19	server, 166
noise emission specifications, 52 null modem cable	computer room layout, 24
connectivity, 98	configuration, 166
part number, 98	front panel, 30
-	management, 166 management commands, 18, 19
0	management overview, 167
operating environment, 49	status commands, 18
· · · · · · · · · · · · · · · · · · ·	,

Index

```
service access, 167
service processor, 24, 166
session redirection, 167
SO, 19
space requirements
 computer room layout, 24
 equipment footprint templates, 23
Standby power LED, 30
status ĽĖDs, 30
SYSREV, 18, 19
system
 commands, 18
 configuration, 166
 power on, 181
system backplane, 29, 37, 40, 44, 51, 189, 218, 219,
 removing and replacing, 218, 219, 220
system configuration, verifying, 107
system specifications, 43
\mathbf{T}
TC, 18, 19
TE, 18, 19
temperature, 168
 states, 168
turbocoolers, 24
\mathbf{U}
unpacking
 inspecting for damage, 56
update firmware, 171
verifying system configuration, 107
voltage check, 91
warranty, 56
web console, 166
WHO, 18, 19
wrist strap, 179
\mathbf{X}
XD, 19
```