
HP-UX 64-bit Porting and Transition
Guide

HP 9000 Computers

5966-9887

June 1998

© Copyright 1998 Hewlett-Packard Company

2

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with
the furnishing, performance, or use of this material.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the
copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of
Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304
U.S.A.

Contents

3

Related Documentation. .7

Finding this Manual .8

Printing History. .8

1. Overview

Overview of HP-UX 11.0 .10

Benefits for 64-bit Applications .11

HP-UX Compilers .13

Transition Tools .14

Cross-Platform Development .15
Compiler Options for Cross Development. .15
Compiling in Networked Environments .16

Compatibility with Previous Releases .17

2. Summary of Changes

HP C .20

HP aC++. .23

HP Fortran 90 .24
HP Fortran 90 and HP C Data Types .24
New Fortran 90 Features .25

Programming Toolset .27

64-bit Linker Toolset Features .29

Link Time Differences .30

Run Time Differences .32
Dynamic Path Searching for Shared Libraries.33
Symbol Searching in Dependent Libraries .35

4

Contents

System Libraries . 37

32-bit and 64-bit Application Interoperability . 38
General Issue. 38
Shared Memory . 38
Message Queues . 38
Memory-Mapped Files . 38
nlist . 39
X11/graphics . 39
Large Files. 40
pstat . 40

3. HP-UX 64-bit Porting Concepts

ILP32 and LP64 Data Models . 42
Data Type Sizes. 42
Huge Data . 43

ILP32 to LP64 Porting Concerns. 44
Data Truncation . 44
Pointers . 45
Data Type Promotion . 46
Data Alignment and Data Sharing . 48
Constants. 50
Bit Fields . 51
Bit Shifts and Bit Masks . 51
Enumerated Types . 52

Architecture Specific Changes . 53
Assembly Language . 53
Object File Format . 54
Procedure Calling Conventions . 54

HP-UX 64-bit Performance Considerations . 55
What Impacts Performance in 64-bit Applications 55

Contents

5

Tuning Your 64-bit Application .56

4. Transitioning C and aC++ Programs to 64-bit Mode

Step 1: Identify Programs that Need to Compile to 64-bit Mode58

Step 2: Identify Non-Portable Constructs .59

Step 3: Make Source Code Changes .60
Avoid Assigning longs to ints. .61
Avoid Arithmetic between Signed and Unsigned Numbers.62
Avoid Storing Pointers in ints .63
Avoid Truncating Function Return Values .64
Avoid Passing Invalid Structure References. .66
Avoid Pointer Arithmetic between longs and ints 67
Avoid Casting Pointers to ints or ints to Pointers 68
Avoid Using Unnamed and Unqualified Bit Fields 69
Avoid Using Literals and Masks that Assume 32 bits70
Avoid Hardcoding Size of Data Types .71
Avoid Hardcoding Bit Shift Values .72
Avoid Hardcoding Constants with malloc(), memory(3), string(3) . . .73
Use Appropriate Print Specifiers. .74

Step 4: Compile in 64-bit Mode. .75

5. Writing Portable Code

Making Code 64-bit Clean. .78

Using Integral Types Defined in <inttypes.h>. .79
Integer Data Types with Consistent Lengths.79
intfast Data Types with Defined Minimum Sizes.83

Guidelines for Using <inttypes.h> .84

Using portal.h .86

6

Contents

Using Portable Bit Masks . 87

Using pstat(2) instead of /dev/kmem. 89

Getting Configurable System Information . 90

Isolating System-Specific Code . 91

Using System-Specific Include Files . 92

Glossary

7

Preface
The HP-UX 64-bit Porting and Transition Guide is a tool to help you
transition to the HP-UX 64-bit platform. This manual describes the
changes you need to make to compile, link, and run programs in 64-bit
mode.

This Guide covers the following topics:

• Chapter 1, “Overview,” provides an overview of features available in
the 64-bit computing environment.

• Chapter 2, “Summary of Changes,” provides a summary of changes to
compiler products to support 64-bit development.

• Chapter 3, “HP-UX 64-bit Porting Concepts,” describes the 64-bit
data model and how it impacts porting.

• Chapter 4, “Transitioning C and aC++ Programs to 64-bit Mode,”
provides steps for transitioning C and aC++ programs to 64-bit mode.

• Chapter 5, “Writing Portable Code,” provides information on using
industry standard and HP-provided portability features.

Related Documentation
For more information on programming in the HP-UX 64-bit
environment, refer to the following documentation:

• HP-UX Applications Interoperability White Paper,
URL:http://www.software.hp.com/STK/

• HP C Online Reference (cc +help)

• HP aC++ Online Programmer’s Guide (aCC +help)

• HP Fortran 90 Programmer’s Reference and HP Fortran 90
Programmer’s Notes

• HP-UX Linker and Libraries Online User's Guide (ld +help)

• PA-RISC 2.0 Architecture by Gerry Kane (Prentice-Hall, ISBN
0-13-182734-0)

• Assembler Reference Manual (92432-90012)

8

Finding this Manual
The HP-UX 64-bit Porting and Transition Guide along with many other
HP-UX books is available on the HP-UX 11.0 Instant Information
CD-ROM and on the World-Wide Web. You can find this guide in the
following locations:

• http://docs.hp.com/hpux/development, the HP-UX Systems
Information & Documentation site

• http://www.software.hp.com/STK/, the HP-UX 11.0 Software
Transition Kit

Printing History
New editions of this manual will incorporate all material updated since
the previous edition.

The software version is the version level of the software product at the
time the manual was issued. Many product updates and fixes do not
require manual changes and, conversely, manual corrections may be
done without accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
updates.

You can send any suggestions for improvements in this manual to:

Languages Information Engineering Manager
Hewlett-Packard Company
Mailstop 42UD
11000 Wolfe Road
Cupertino, CA 95014-9804

Edition Date Part
Number

HP-UX Software
Version

First Edition November 1997 5966-9844 HP-UX 11.0

Second Edition June 1998 5966-9887 HP-UX 11.0 June 1998
Extension Pack

9

1 Overview

The HP-UX 11.0 release offers several features to enable the full power
of 64-bit computing. It includes tools to help you transition applications
from 32-bit to 64-bit mode. This chapter covers the following topics:

• Overview of the HP-UX 11.0 release

• Benefits of 64-bit mode

• HP-UX languages available for 64-bit development

• Tools to help you port

• The HP-UX 32-bit and 64-bit cross-platform development
environment

• Compatibility with previous releases

10 Chapter 1

Overview
Overview of HP-UX 11.0

Overview of HP-UX 11.0
The HP-UX 11.0 release includes a 64-bit version and a 32-bit version of
the operating system. This release of the operating system:

• Provides 64-bit addressing when the 64-bit version of HP-UX is
installed on HP 64-bit hardware platforms. This enables programs to
take advantage of very large address spaces and larger physical
memory limits.

• Provides kernel level threads for maximum efficiency of
multi-threaded applications.

• Complies with the latest NIS+ (Network Information Service) and
NFS PV3 de facto standards for more secure network name services
and larger network file systems.

• Runs in 32-bit mode on HP-UX 32-bit hardware platforms and in
either 32-bit or 64-bit mode on HP-UX 64-bit hardware platforms.

• Supports run-time execution of both 32-bit and 64-bit applications on
HP-UX 64-bit platforms.

• Supports inter-process communication between 32-bit and 64-bit
applications via message queues, pipes, shared memory, and
networking protocols.

• Provides a cross-platform development environment for developing
32-bit and 64-bit applications.

The following table shows the evolution of recent HP-UX releases:

Table 1-1 Capacity Limits of Recent HP-UX Releases

Attribute 10.01 10.10 10.20 64-bit 11.0

File System 4 GB 128 GB 128 GB 128 GB

File Size 2 GB 2 GB 128 GB
local, 2 GB
network

128 GB
local and
network

Physical
RAM

2 GB 3.75 GB 3.75 GB 4 TB

Chapter 1 11

Overview
Benefits for 64-bit Applications

Benefits for 64-bit Applications
Applications that are limited by the 32-bit address space need to
transition to 64-bit mode. Potential examples include:

• database management systems

• engineering and mechanical design automation systems

• simulation and modeling programs

• decision support applications

The advantages of transitioning applications from 32-bit mode to 64-bit
mode include:

• Large file caches on systems with large physical memory

Database servers have improved performance when they can load
significant portions of the database into memory.

• Large process data space mapped in a large virtual address space

Simulation programs need to be able to map the entire simulation
model into virtual memory.

• Large file support using standard system library calls

Shared
Memory

1.75 GB 1.75 GB 2.75 GB 8 TB

Process
Data Space

.9 GB 1.9 GB 1.9 GB 4 TB

File
Descriptors

2 K 60 K 60 K 60 K

of User Ids 60 K 60 K ~2,000 K ~2,000 K

Attribute 10.01 10.10 10.20 64-bit 11.0

12 Chapter 1

Overview
Benefits for 64-bit Applications

Some databases require data sets larger than 2 GB. It is simpler to
store information for a large data set in a single file. 64-bit
applications can use standard I/O routines to access files larger than
2 GB.

See Also:

See “HP-UX 64-bit Performance Considerations” on page 55 to learn
about what impacts performance in 64-bit mode.

Chapter 1 13

Overview
HP-UX Compilers

HP-UX Compilers
The following HP compiler products support both 64-bit and 32-bit
program development:

• HP C

• HP aC++

• HP Fortran 90

• HP Assembler

• HP DDE (debugger bundled with compilers)

• HP PAK (performance toolkit bundled with compilers)

• HP Linker toolset (bundled with the operating system)

The following HP compiler products do not support 64-bit program
development, but are available for 32-bit program development:

• HP Fortran 77

• HP Pascal

• HP MicroFocus COBOL

• HP C++ (cfront)

14 Chapter 1

Overview
Transition Tools

Transition Tools
There are several tools that can help you transition from previous
releases of HP-UX:

• HP-UX Software Transition Toolkit (STK)

Aids in transitioning your software to either the 32-bit or the 64-bit
version of HP-UX 11.0. You can use its tools and documentation to
identify and fix obsolete or changed APIs in C and C++ source code,
scripts, and makefiles. To use the HP-UX STK, you must install it.
The HP-UX STK is available free of charge on the HP-UX 11.0
Application Release CD-ROM, or via the World-Wide Web at
http://www.software.hp.com/STK/.

• HP C

Both lint and the HP C compiler provide options to help you
transition your software to the HP-UX 64-bit data model. See
Chapter 4, “Transitioning C and aC++ Programs to 64-bit Mode,” to
learn how to identify and fix 64-bit porting issues.

• HP-UX System Release Notes

Documents new, changed, and obsolete features, including:

• system header file changes

• system library changes

• 64-bit versions of system libraries

• source, data, and binary compatibility

• FlexeLint

Identifies non-portable constructs in C and aC++ programs. FlexeLint
is available from Gimpel Software.

Chapter 1 15

Overview
Cross-Platform Development

Cross-Platform Development
HP-UX 11.0 provides a cross-platform development environment. You
can compile and link both 32-bit and 64-bit applications on HP-UX 11.0
32-bit systems. Also, you can compile and link both 32-bit and 64-bit
applications on HP-UX 11.0 64-bit systems.

You can optionally install 64-bit versions of HP-UX 11.0 system libraries
on HP-UX 11.0 32-bit systems for cross-development. The 64-bit system
libraries are in separate directories from the 32-bit system libraries.

Linking 32-bit and 64-bit object files (.o , .sl , .a) together is not
supported. All modules in a program must be linked from either 32-bit
objects or 64-bit objects.

You will need access to a 64-bit hardware platform running the 64-bit
version of HP-UX 11.0 in order to test 64-bit programs.

Compiler Options for Cross Development
Unless specified, HP compilers generate object files that are compatible
with the hardware on which you are compiling.

HP-UX 64-bit platforms use the PA-RISC 2.0 system architecture. The
default compilation mode for these systems is 32-bit narrow mode for
PA-RISC 2.0. PA-RISC 2.0 narrow mode programs only run on PA-RISC
2.0 systems. The compiler command line option for this mode is +DA2.0
or +DA2.0N . (+DA means destination architecture.)

HP compilers generate 64-bit mode code when you specify the +DA2.0W
command-line option. This is known as PA-RISC 2.0 wide mode.
PA-RISC 2.0 wide mode programs only run on PA-RISC 2.0 systems
running the 64-bit version of HP-UX.

16 Chapter 1

Overview
Cross-Platform Development

Table 1-2 shows various compiler options for compiling to 32-bit and
64-bit mode and what systems the executables run on:

Table 1-2 Compiler Option / Hardware Architecture Run-time
Compatibility

1. HP C supports this option for compiling in 64-bit mode.
2. HP aC++, HP C, and HP Fortran 90 support this option for

compiling in 64-bit mode. (It is the same as +DD64.)

Please note the following cross-platform limitations:

• Debugging and program dump analysis tools for 64-bit programs are
only supported on 64-bit HP-UX.

• Kernel cross-platform development is not supported. If the device
driver refers to kernel header files and libraries, development must
be done on the same platform as the target run-time platform.

Compiling in Networked Environments
When compiles are performed using diskless workstations or
NFS-mounted file systems, the default code generation and scheduling is
based on the local host processor. The system model numbers of the hosts
where the source files reside do not affect the default code generation.

For More Information: • See the /opt/langtools/lib/sched.models file for system model
numbers, architectures, and processor names.

• Use the command model to determine the model number of your
system.

Option PA-RISC 1.1
32-bit Platforms

PA-RISC 2.0
64-bit Platforms

+DA1.1 X X

+DAportable X X

+DA2.0 or +DA2.0N N/A X

+DD64 1 or +DA2.0W 2 N/A X

Chapter 1 17

Overview
Compatibility with Previous Releases

Compatibility with Previous Releases
HP-UX 11.0 is binary compatible with HP-UX 10.x. Fully bound shared
or archive applications that work on any HP-UX 10.x release continue to
work on this release without recompiling, relinking, or modifying the
application. A fully shared bound application consists of an executable
program and all of its related user shared libraries.

See also the HP C, HP aC++, and HP Fortran 90 release notes for
additional compatibility information.

18 Chapter 1

Overview
Compatibility with Previous Releases

19

2 Summary of Changes

Several changes and improvements have been made in support of the
HP-UX 64-bit architecture. These changes are included in:

• HP C

• HP aC++

• HP Fortran 90

• System libraries

• Programming toolset

• Run time differences

• Application interoperability

20 Chapter 2

Summary of Changes
HP C

HP C
To generate 32-bit mode code to run on HP-UX 64-bit systems, no new
compiler command line options are required.

To compile in 64-bit mode, use the +DD64 or +DA2.0W command line
options.

NOTE If you are porting from a previous release of HP-UX, be aware that
extended ANSI mode (-Ae) is the default compilation mode since the
HP-UX 10.30 release. See the HP C Programmer's Guide for information
on how to port to ANSI mode.

The HP C compiler on HP-UX 11.0 includes support for both the 32-bit
data model and the 64-bit data model. In 32-bit mode, int s, long s, and
pointer types are 32 bits in size. In 64-bit mode, long s and pointers are
64-bits, and int s remain 32-bits. Table 2-1 shows the differences in C
data type sizes and alignments:

Table 2-1 Differences between HP-UX 32-bit and 64-bit Data Models

You may need to make source code changes, when transitioning to the
HP-UX 64-bit data model, to correct assumptions made about the size
and relationship of int , long , and pointer data types. Examples of
programs that will require change include:

• Programs that assume that an int is the same size as a long .

• Programs that assume that an int is the same size as a pointer.

• Programs that perform arithmetic or comparison operations between
int s, longs and pointers, and between signed numeric types and
unsigned numeric types.

Data
Type

32-bit
Mode Size

(bits)

32-bit Mode
Alignment

(bits)

64-bit
Mode Size

(bits)

64-bit Mode
Alignment

(bits)

int 32 32 32 32

long 32 32 64 64

pointer 32 32 64 64

Chapter 2 21

Summary of Changes
HP C

• Programs that make assumptions about data item sizes and
alignment in structures.

• Programs that use hard-coded constants.

HP C 11.0 New Features

The following are new or changed HP C features included in the HP-UX
11.0 release:

Table 2-2 New and Changed HP C Features

Feature What it Does

+DD64 Recommended option for compiling in 64-bit mode on
the PA-RISC 2.0 architecture. The macros __LP64__
and _PA_RISC2_0 are #defined . (Same as +DA2.0W.)

+DA2.0W Compiles in 64-bit mode for the PA-RISC 2.0
architecture. The macros __LP64__ and _PA_RISC2_0
are #defined . (Same as +DD64.)

+DA2.0N Compiles in 32-bit mode (narrow mode) for the
PA-RISC 2.0 architecture. The macro _PA_RISC2_0 is
#defined . (Same as +DA2.0 .)

+DD32 Compiles in 32-bit mode and creates code compatible
with PA-RISC 1.1 architectures. (Same as +DA1.1 and
+DAportable .)

+hugesize Lowers the threshold for huge data objects allocated to
the huge data space (.hbss).

-dynamic Creates dynamically bound executables. The linker will
look for shared libraries first and then archive
libraries. This option is on by default when you compile
in 64-bit mode.

-noshared Creates statically bound executables. You cannot link
to shared libraries if you specify this option.

+M1 Turns on platform migration warnings. These features
may be unsupported in a future release.

+M2 Turns on HP-UX 64-bit data model warnings. (Use this
option with the +DA2.0W or +DD64 options.)

22 Chapter 2

Summary of Changes
HP C

For More Information: • See Chapter 3, “HP-UX 64-bit Porting Concepts.”

• See Chapter 4, “Transitioning C and aC++ Programs to 64-bit Mode.”

• See the HP C Online Reference (cc +help) for information about
advanced 64-bit optimization options.

• See the HP C/HP-UX Release Notes for information about huge data.

__LP64__ Macro that is automatically defined by the HP C
compiler when compiling in 64-bit mode. Can be used
within conditional directives to isolate 64-bit mode
code.

PACK or
HP_ALIGN
pragmas

Data alignment pragmas. The HP_ALIGN pragma
includes support for 64-bit mode. The new PACK
pragma provides a convenient way of specifying
alignment.

lint Identifies non-portable constructs. Use the +DD64 and
+M2 options to lint when transitioning to the HP-UX
64-bit data model.

Feature What it Does

Chapter 2 23

Summary of Changes
HP aC++

HP aC++
To generate 32-bit mode code to run on HP-UX 64-bit systems, no new
compiler command line options are required.

To compile in 64-bit mode, use the +DA2.0W command line option.

NOTE Applications written in HP C++ (cfront) must be migrated to aC++ prior
to compiling in 64-bit mode. For information on migrating to aC++, see
HP aC++ Migration Guide, URL: http://www.hp.com/lang/cpp/.

The aC++ compiler on HP-UX 11.0 includes support for both the 32-bit
data model and the 64-bit data model. In 32-bit mode, integer, long, and
pointer types are 32 bits in size. In 64-bit mode, long and pointer types
are 64 bits in size, and integers are 32 bits.

The following new HP aC++ features are included in the 11.0 release:

Table 2-3 New aC++ Features

For More Information: • See Chapter 3, “HP-UX 64-bit Porting Concepts.”

• See Chapter 4, “Transitioning C and aC++ Programs to 64-bit Mode.”

• See the HP aC++ Release Notes for information about huge data.

Feature What it Does

+DA2.0W Compiles in 64-bit mode for the PA-RISC 2.0 architecture.
The macros __LP64__ and _PA_RISC2_0 are #defined .

+DA2.0N Compiles in 32-bit mode for the PA-RISC 2.0 architecture.
The macro _PA_RISC2_0 is #defined . (Same as
+DA2.0 .)

+hugesize Lowers the threshold for huge data objects allocated to
the huge data space (.hbss).

__LP64__ Macro that is automatically defined by the HP aC++
compiler when compiling in 64-bit mode. Can be used
within conditional directives to isolate 64-lbit mode code.

24 Chapter 2

Summary of Changes
HP Fortran 90

HP Fortran 90
To generate 32-bit mode code to run on HP-UX 64-bit systems, no new
compiler command line options are required.

To compile in 64-bit mode, use the +DA2.0W command line option.

There are no HP Fortran 90 language differences between 32-bit and
64-bit programs. Recompiling should suffice to convert a 32-bit Fortran
program to run as a 64-bit program.

HP Fortran 90 and HP C Data Types
Whereas using the +DA2.0W option to compile HP Fortran 90 programs
in 64-bit mode has no effect on Fortran data types, the C language has
some differences in data type sizes. If your Fortran program calls
functions written in C and is compiled in 64-bit mode, the size
differences may require promoting data items that are passed to or from
the C functions.

Table 2-4 shows the differences between the corresponding data types in
HP Fortran 90 and C when compiling in 32-bit mode and in 64-bit mode.
Table 2-5 on page 25 shows the differences when the Fortran program is
compiled with the +autodbl option. (The +autodbl option increases the
default size of integer, logical, and real items to 8 bytes, and double
precision and complex items for 16 bytes.)

Table 2-4 Size Differences Between HP Fortran 90 and C Data Types

HP Fortran 90 Data
Types

C Data Types Sizes
(in Bits)32-Bit Mode 64-Bit Mode

INTEGER int or long int 32

INTEGER*4 int or long int 32

INTEGER*8 long long long or
long long

64

Chapter 2 25

Summary of Changes
HP Fortran 90

Table 2-5 Size Differences After Compiling with +autodbl

New Fortran 90 Features
The following are new features included in the HP-UX 11.0 release:

Table 2-6 New and Changed HP Fortran 90 Features

REAL float float 32

DOUBLE PRECISION double double 64

REAL*16 long double long double 128

HP Fortran 90 Data
Types

C Data Types Sizes
(in Bits)32-Bit Mode 64-Bit Mode

INTEGER long long long 64

INTEGER*4 int or long int 32

INTEGER*8 long long long 64

REAL double double 64

DOUBLE PRECISION long double long double 128

REAL*16 long double long double 128

HP Fortran 90 Data
Types

C Data Types Sizes
(in Bits)32-Bit Mode 64-Bit Mode

Feature What it Does

+DA2.0W Compiles in 64-bit mode for the PA-RISC 2.0
architecture.

26 Chapter 2

Summary of Changes
HP Fortran 90

In addition, HP Fortran 90 adds new parallelization directives, library
calls, fast math intrinsics, and optimization options.

For More Information: • See the HP Fortran 90 Release Notes for information about huge data.

• See the HP Fortran 90 Programmer’s Reference for information about
command-line options.

+DA2.0N Compiles in 32-bit mode (narrow mode) for the
PA-RISC 2.0 architecture.

+hugesize Lowers the threshold for huge COMMON blocks allocated
to the huge data space (.hbss).

+hugecommon
=name

Allocated specific COMMON blocks to the huge data space
(.hbss).

Feature What it Does

Chapter 2 27

Summary of Changes
Programming Toolset

Programming Toolset
Table lists HP-UX programming tools and shows whether they support
32-bit and 64-bit programs:

HP-UX Programming Tools

Tool What it Does 32-bit
Support

64-bit
Support

ar Creates an archive library. Yes Yes

chatr Changes an executable file's
internal attributes.

Yes Yes

elfdump Displays information about a
64-bit ELF object file.

No Yes

fastbind Improves start-up time of
programs that use shared
libraries.

Yes Yes

file Determines a file type and
lists its attributes.

Yes Yes

getconf Gets configurable system
information.

Yes Yes

HP DDE
debugger 1

Helps you find run-time
errors in programs.

Yes Yes

HP GDB
debugger
(vers.1.0) 1

Helps you find run-time
errors in programs.

Yes No

HP PAK:
puma,
ttv 1

Analyzes program
performance. Puma displays
program performance based
on statistical samplings. TTV
displays thread traces.

Yes Yes

CXperf2 Creates a profile of program
performance statistics.

Yes Yes

28 Chapter 2

Summary of Changes
Programming Toolset

1. Bundled with compilers. Tools that are not footnoted are bun-
dled with the OS.

2. CXperf is only supported on HP 9000 K-class and V-class serv-
ers. Available separately. Contact your HP sales office.

3. Included in the HP C/ANSI C Developer's Bundle.

lint 3 Detects defects,
non-portable, and inefficient
code in C programs.

Yes Yes

ldd Shows shared libraries used
by a program or shared
library.

No Yes

make Manages program builds. Yes Yes

nm Displays symbol table
information.

Yes Yes

profilers:
prof ,
gprof

Helps you locate parts of a
program most frequently
executed. Using this data,
you may restructure
programs to improve
performance.

Yes Yes

size Prints text, data, and bss
(uninitialized data) section
sizes of an object file.

Yes Yes

strip Strips symbol table and line
numbers from an object file.

Yes Yes

Tool What it Does 32-bit
Support

64-bit
Support

Chapter 2 29

Summary of Changes
64-bit Linker Toolset Features

64-bit Linker Toolset Features
The linker toolset provides the following new features for developing
64-bit programs:

Table 2-7 Summary of New Linker 64-bit Toolset Features

1. SVR4 compatible feature.

For More Information:

See the Linker and Libraries Online User Guide (ld +help).

64-bit Feature Description

dlopen(3X) family of
dynamic loading
routines 1

Routines for manipulating shared libraries.

libelf() library of
routines

Routines for manipulating the 64-bit ELF
object file format. Includes the nlist64()
routine to dump symbol information.

elfdump A tool that displays information about a
64-bit ELF object file.

ldd A tool that shows shared libraries used by a
program or shared library.

New options to ld and
chatr

Command line options to assist in the
development of 64-bit applications.

Standard SVR4
dynamic loading
features

Includes SVR4 dynamic path searching and
breadth-first symbol searching.

Mapfile support A linker option that lets you control the
organization of segments in executable files.
This feature is intended for embedded
systems development.

30 Chapter 2

Summary of Changes
Link Time Differences

Link Time Differences
Table 2-8 lists linker features that are not available in 64-bit mode:

Table 2-8 Unsupported Linker Features in 64-bit Mode

Option or Behavior Description

-A name Specifies incremental loading. 64-bit
applications must use shared libraries
instead.

-C n Does parameter type checking. This option
is unsupported.

-S Generates an initial program loader header
file. This option is unsupported.

-T Saves data and relocation information in
temporary files to reduce virtual memory
requirements during linking. This option is
unsupported.

-q , -Q , -n Generates an executable with file type
DEMAND_MAGIC, EXEC_MAGIC, and
SHARE_MAGIC respectively. These options
have no effect and are ignored in 64-bit
mode.

-N Causes the data segment to be placed
immediately after the text segment. This
option is accepted but ignored in 64-bit
mode. If this option is used because your
application data segment is large, then the
option is no longer needed in 64-bit mode. If
this option is used because your program is
used in an embedded system or other
specialized application, consider using
mapfile support with the -k option.

+cg pathname Specifies pathname for compiling I-SOMs to
SOMs. This option is unsupported.

Chapter 2 31

Summary of Changes
Link Time Differences

For More Information:

See the Linker and Libraries Online User Guide (ld +help).

+dpv Displays verbose messages regarding
procedures which have been removed due to
dead procedure elimination. Use the -v
linker option instead.

intra-library
versioning

Specified by using the HP_SHLIB_VERSION
pragma (C and aC++) or SHLIB_VERSION
directive (Fortran90). In 32-bit mode, the
linker lets you version your library by object
files. 64-bit applications must use SVR4
library-level versioning instead.

Duplicate code and
data symbols

Code and data cannot share the same
namespace in 64-bit mode. You should
rename the conflicting symbols.

All internal and
undocumented linker
options

These options are unsupported.

Option or Behavior Description

32 Chapter 2

Summary of Changes
Run Time Differences

Run Time Differences
Applications compiled and linked in 64-bit mode use a run-time dynamic
loading model similar to other SVR4 systems. There are two main areas
where program start-up changes in 64-bit mode:

• Dynamic path searching for shared libraries

• Symbol searching in dependent libraries

It is recommended that you use the standard SVR4 linking option (+std ,
which is on by default) when linking 64-bit applications. If there are
circumstances during the transition when you need 32-bit compatible
linking behavior, use the +compat option. This option forces the linker to
use 32-bit linking and dynamic loading behavior.

The following table summarizes the dynamic loader differences between
32-bit and 64-bit mode:

Table 2-9 Dynamic Loading Differences

Linker and Loader
Functions 32-bit Mode Behavior 64-bit Mode Behavior

+s and +b path_list ordering Ordering is significant. Ordering is insignificant by
default.

Use +compat to enforce
ordering.

Symbol searching in
dependent libraries

Depth first search order. Breadth first search order.

Use +compat to enforce
depth first ordering.

Run time path environment
variables

No run time environment
variables are available by
default. If +s is specified,
then SHLIB_PATH is
available.

LD_LIBRARY_PATH and
SHLIB_PATH are available.

 Use +noenv or +compat to
turn off run-time path
environment variables.

Chapter 2 33

Summary of Changes
Run Time Differences

For More Information: • See “Dynamic Path Searching for Shared Libraries” on page 33.

• See “Symbol Searching in Dependent Libraries” on page 35.

Dynamic Path Searching for Shared Libraries
Dynamic path searching is the process that allows the location of
shared libraries to be specified at run time. In 32-bit mode, you can
enable run-time dynamic path searching of shared libraries in two ways:

• by linking the program with +s , enabling the program to use the path
list defined by the SHLIB_PATH environment variable at run time.

• by storing a directory path list in the program with the linker option
+b path_list.

If +s or +b path_list is enabled, all shared libraries specified with the
-l library or -l: library linker options are subject to a dynamic path
lookup at run time.

In 64-bit mode, the dynamic path searching behavior has changed:

• The +s dynamic path searching option is enabled by default. It is not
enabled by default in 32-bit mode.

• The LD_LIBRARY_PATH environment variable is available in addition
to the SHLIB_PATH environment variable.

• An embedded run-time path list called RPATH may be stored in the
executable. If +b path_list is specified at link time, these directories
are added to RPATH. If +b path_list is not specified, the linker creates
a default RPATH consisting of:

1. directories in the -L option (if specified), followed by

2. directories in the LPATH environment variable (if specified).

+b path_list and -L directories
interaction

-L directories recorded as
absolute paths in
executables.

-L directories are not
recorded in executables.

 Add all directories specified
in -L to +b path_list.

Linker and Loader
Functions 32-bit Mode Behavior 64-bit Mode Behavior

34 Chapter 2

Summary of Changes
Run Time Differences

• By default, in 64-bit mode, the linker ignores the ordering of the +b
path_list and +s options.

• At run time, the dynamic loader searches directory paths in the
following order:

• LD_LIBRARY_PATH (if set), followed by

• SHLIB_PATH (if set), followed by

• RPATH, followed by

• the default locations /lib/pa20_64 and /usr/lib/pa20_64 .

Examples
The following are examples of specifying library paths in 32-bit and
64-bit mode:

• Linking to libraries by fully qualifying paths:

In this example, the program is linked with /opt/myapp/mylib.sl :

$ cc main.o /opt/myapp/mylib.sl Perform 32-bit link.
$ cc +DD64 main.o /opt/myapp/mylib.sl Perform 64-bit link.

At run-time, in both 32-bit and 64-bit mode, the dynamic loader only
looks in /opt/myapp to find mylib.sl .

• Linking to libraries using the -l library or -l: library options:

In this example, the +s option is not explicitly enabled at link time.
Two versions of a shared library called libfoo.sl exist; a 32-bit
version in /usr/lib and a 64-bit version in /usr/lib/pa20_64 :

$ cc main.o -lfoo -o main Perform 32-bit link.

When linked in 32-bit mode, main will abort at run time if
libfoo.sl is moved from /usr/lib . This is because the absolute
path name of the shared library /usr/lib/libfoo.sl is stored in
the executable.

$ cc +DD64 main.o -lfoo -o main Perform 64-bit link.

When linked in 64-bit mode, main will not abort at run time if
libfoo.sl is moved, as long as SHLIB_PATH or LD_LIBRARY_PATH
is set and point to libfoo.sl .

• Linking to libraries using -L and +b path_list:

Chapter 2 35

Summary of Changes
Run Time Differences

The -L option is used by the linker to locate libraries at link time. The
+b option is used to embed a library path list in the executable for use
at run time.

Here is the 32-bit mode example:

$ cc main.o -L. -Wl,+b/var/tmp -lme Link the program.
$ mv libme.sl /var/tmp/libme.sl Move libme.sl.
$ a.out Run the program.

In 32-bit mode, the dynamic loader searches paths to resolve external
references in the following order:

1. /var/tmp to find libme.sl found

2. /var/tmp to find libc.sl not found

3. /usr/lib/libc.sl found

Here is the 64-bit mode example:

$ cc +DD64 main.o -L. -Wl,+b/var/tmp -lme Link the program.
$ mv libme.sl /var/tmp/libme.sl Move libme.sl.
$ a.out Run the program.

In 64-bit mode, the dynamic loader searches paths to resolve external
references in the following order:

1. LD_LIBRARY_PATH (if set) to find libme.sl not found

2. SHLIB_PATH (if set) to find libme.sl not found

3. /var/tmp to find libme.sl found

4. LD_LIBRARY_PATH (if set) to find libc.sl not found

5. SHLIB_PATH (if set) to find libc.sl not found

6. /var/tmp to find libc.sl not found

7. /usr/lib/pa20_64/libc.sl found

Symbol Searching in Dependent Libraries
In 64-bit mode, the dynamic loader searches shared libraries using a
breadth-first search order. Breadth-first symbol searching is used on all
SVR4 platforms.

In 32-bit mode, the dynamic loader searches shared libraries using a
depth-first search order.

36 Chapter 2

Summary of Changes
Run Time Differences

Figure 2-1 shows an example program with shared libraries and
compares the two search methods:

Figure 2-1 Search Order of Dependent Libraries

The commands to build the libraries and the executable in Figure 2-1 are
shown:

ld -b lib2.o -o lib2.sl
ld -b lib3.o -o lib3.sl
ld -b lib1.o -L. -l3 -o lib1.sl
cc main.o -Wl,-L. -l1 -l2 -o main

In 32-bit mode, if a procedure called same_name() is defined in both
lib3.sl and lib2.sl , main calls the procedure defined in lib3.sl . In
64-bit mode, main calls the procedure in lib2.sl .

Chapter 2 37

Summary of Changes
System Libraries

System Libraries
HP-UX 64-bit systems provide a new subdirectory called pa20_64 for
64-bit versions of system and HP product libraries.

The 64-bit file system layout leaves the current 32-bit directory structure
intact. This helps preserve binary compatibility with 32-bit versions of
shared libraries whose paths are embedded in executables.

Figure 2-2 shows the new directory structure:

Figure 2-2 New Subdirectory for 64-bit Libraries (pa20_64)

The linker automatically finds the correct set of system libraries
depending on whether the application is compiled in 32-bit or 64-bit
mode.

Library providers are encouraged to supply both 32-bit and 64-bit
versions of application libraries. Be sure to develop a strategy for library
naming conventions, directory structures, link-time options, and
run-time environment variables.

38 Chapter 2

Summary of Changes
32-bit and 64-bit Application Interoperability

32-bit and 64-bit Application
Interoperability
Some restrictions apply when sharing objects, such as data and memory,
between 32-bit applications and 64-bit applications. These restrictions
also apply when sharing objects between 32-bit applications and the
64-bit version of the operating system.

This section summarizes topics described in the HP-UX Application
Interoperability White Paper, URL:http://www.software.hp.com/STK/.

General Issue
You should ensure that all data shared between a 64-bit and 32-bit
application is of the same size and alignment within both applications.

Shared Memory
32-bit applications can only attach to shared memory segments which
exist in a 32-bit virtual address space. 64-bit applications can attach to
shared memory segments in a 32-bit or 64-bit virtual address space. To
create a shareable memory segment between 32-bit and 64-bit
applications, your 64-bit application must specify the IPC_SHARE32 flag
with the IPC_CREAT flag when invoking shmget(2) . The IPC_SHARE32
flag causes the shared memory segment to be created in a 32-bit address
space.

Message Queues
The size of a message queue is defined as type size_t . If your 64-bit
application exchanges data with 32-bit applications via message queues,
make sure that the size of the message does not exceed the largest 32-bit
unsigned value.

Memory-Mapped Files
32-bit applications can only share memory-mapped files that are mapped
into a 32-bit virtual address space. 64-bit applications can share
memory-mapped files in a 32-bit or 64-bit virtual address space. To map

Chapter 2 39

Summary of Changes
32-bit and 64-bit Application Interoperability

a file into memory that is shareable between 64-bit and 32-bit
applications, your 64-bit application must specify the MAP_ADDR32 flag
with the MAP_SHARED flag when invoking mmap(2).

nlist
Symbols within 64-bit executables on 64-bit HP-UX are assigned 64-bit
values. An application extracting 64-bit values from the symbol table of a
64-bit executable needs 64-bit data fields. 32-bit mode applications must
either be ported to 64-bit mode in order to extract 64-bit symbols, or
must use the nlist64 (3C) function to accomplish this task.

X11/graphics
Although the X-server is supported on both the 32-bit and 64-bit versions
of HP-UX 11.0, the graphical user interface (GUI) for the client
application must be a 32-bit application.

64-bit versions of graphical libraries, such as X11/Motif and all 3D
libraries are not provided on HP-UX 11.0 since large memory and
process data space are not needed in the GUI component of the
application.

Many large applications already support the GUI component for the
application in a separate process from the backend processing
component and communicate via standard interprocess communication
mechanisms.

If you are converting your application to a 64-bit application, and the
GUI and backend are in separate processes, follow these guidelines:

• Leave the GUI component as a 32-bit application.

• Convert the backend process, which may need to take advantage of
more than 4GB of memory or process data space, to a 64-bit process.

If the GUI component and the processing component are in the same
process, the GUI component can be split into a separate process and can
communicate with the back-end processing component via standard
interprocess communication mechanisms.

40 Chapter 2

Summary of Changes
32-bit and 64-bit Application Interoperability

Large Files
32-bit applications can open, create and use large files. A large file is a
file that is 2GBs or greater. However, when creating or opening large
files, your 32-bit application must specify the O_LARGEFILE flag with the
open(2) system call.

Also, using lseek(2) within a 32-bit application to position a file
pointer beyond 2GB produces undefined results. You should use the
lseek64(2) interface instead.

For detailed information, see the HP-UX 11.0 white paper titled HP-UX
Large Files in /usr/share/doc/lg_files.ps .

pstat
The following pstat_get*(2) system calls may fail, with errno set to
EOVERFLOW, when invoked within 32-bit applications. This is because
within 64-bit HP-UX, many parameters, limits and addresses are 64-bit
values and they cannot fit into fields of the corresponding struct
pst_* data structure.

pstat_getdynamic(2)
pstat_getipc(2)
pstat_getproc(2)
pstat_getprocvm(2)
pstat_getshm(2)
pstat_getfile(2)

41

3 HP-UX 64-bit Porting Concepts

This chapter describes porting concerns of the HP-UX 64-bit data model
and performance considerations when transitioning to 64-bit platforms.

The following topics are included:

• The ILP32 and LP64 data models

• ILP32 to LP64 porting concerns

• Architecture-specific changes

• HP-UX 64-bit performance considerations

42 Chapter 3

HP-UX 64-bit Porting Concepts
ILP32 and LP64 Data Models

ILP32 and LP64 Data Models
The ANSI/ISO C standard specifies that C must support four signed and
four unsigned integer data types: char , short , int , and long . There
are few requirements imposed by the ANSI standard on the sizes of
these data types. According to the standard, int and short should be at
least 16 bits; and long should be at least as long as int , but not smaller
than 32 bits.

Traditionally, Kernighan and Ritchie (K&R) C assumes int is the most
efficient or fastest integer data type on a machine. ANSI C, with its
integral promotion rule, continues this assumption.

The HP-UX 32-bit data model is called ILP32 because int s, long s, and
pointers are 32 bits.

The HP-UX 64-bit data model is called LP64 because long s and pointers
are 64 bits. In this model, int s remain 32 bits.

NOTE The LP64 data model is the emerging standard on 64-bit UNIX systems
provided by leading system vendors. Applications that transition to the
LP64 data model on HP-UX systems are highly portable to other LP64
vendor platforms.

Data Type Sizes
The size of the base HP C data types under the HP-UX implementation
of ILP32 and LP64 are shown in Table 3-1:

Table 3-1 HP C/HP-UX 32-bit and 64-bit Base Data Types

Data Type ILP32 Size
(bits)

LP64 Size
(bits)

char 8 8

short 16 16

int 32 32

long 32 64

long long 1 64 64

Chapter 3 43

HP-UX 64-bit Porting Concepts
ILP32 and LP64 Data Models

1. The long long data type is an HP
value-added extension.

2. Sized enums are available in 32-bit and
64-bit mode.

Huge Data
In general, huge data is any data that is larger than can be represented
on a 32-bit system. Hence, huge data is only supported on 64-bit systems.

More specifically, huge data is any data greater than a certain size placed
into a huge data segment (hbss segment). Smaller objects are placed into
a bss segment.

In general, data objects on 32-bit systems can be as large as 228 bytes or
256 megabytes whereas on 64-bit systems data objects can be as large as
258 bytes or larger in some cases.

HP C/HP-UX supports uninitialized arrays, structs, and unions to a
maximum of 258 bytes. HP aC++ supports uninitialized arrays and
C-style structs and unions to a maximum of 261 bytes.

For More Information For details see the HP C/HP-UX Release Notes, the HP aC++ Release
Notes, or the HP Fortran 90 Release Notes.

pointer 32 64

float 32 32

double 64 64

long double 128 128

enum 2 32 32

Data Type ILP32 Size
(bits)

LP64 Size
(bits)

44 Chapter 3

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

ILP32 to LP64 Porting Concerns
Some fundamental changes occur when moving from the ILP32 data
model to the LP64 data model:

• long s and int s are no longer the same size.
• pointers and int s are no longer the same size.
• pointers and long s are 64 bits and are 64-bit aligned.
• Predefined types size_t and ptrdiff_t are 64-bit integral types.

These differences can potentially impact porting in the following areas:

• Data truncation
• Pointers
• Data type promotion
• Data alignment and data sharing
• Constants
• Bit shifts and bit masks
• Bit fields
• Enumerated types

See Also:

See Chapter 4, “Transitioning C and aC++ Programs to 64-bit Mode,” to
learn how to identify and fix 64-bit porting issues.

Data Truncation
Truncation problems can happen when assignments are made between
64-bit and 32-bit data items. Since int s, long s, and pointers are 32 bits
in ILP32, mixed assignments between these data types do not present
any special concerns. However, in the LP64 data model, long s and
pointers are no longer the same size as int s. In LP64, truncation will
occur when pointers or long s are assigned to int s.

In LP64, truncation can occur during:

• initialization

• assignments

• parameter passing

• return statements

Chapter 3 45

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

• casts

Pointers and long s are not the only data types whose size has changed.
Some data types defined in header files that are 32 bits under ILP32 —
for example, off_t — are now 64 bits. Variables declared with off_t
may be truncated when assigned to int s in LP64.

Pointers
Avoiding pointer corruption is an important concern when migrating to
LP64:

• Assigning a 32-bit hexadecimal constant or an int to a pointer type
will result in an invalid address and may cause errors when the
pointer is dereferenced.

• Casting a pointer to an int results in truncation.

• Casting an int to a pointer may cause errors when the pointer is
dereferenced.

• Functions that return pointers, when declared improperly, may
return truncated values.

• Comparing an int to a pointer may cause unexpected results.

Pointer arithmetic is a source of difficulty in migration.

Standard C behavior increments a pointer by the size of the data type to
which it points. This means if the variable p is a pointer to long , then
the operation (p + 1) increments the value of p by 4 bytes in ILP32 and
by 8 bytes in LP64.

Casts between long* to int* are problematic because the object of a
long pointer is 64 bits in size, but the object of an int pointer is only 32
bits in size.

46 Chapter 3

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

Data Type Promotion
When comparisons and arithmetic operations are performed between
variables and constants with different data types, ANSI C first converts
these types to compatible types. For example, when a short is compared
to a long , the short is first converted to a long . This conversion process
is called data type promotion.

Certain data type promotions result in signed numbers being treated as
unsigned numbers. When this happens, you can occasionally get
unexpected results. For example:

long result;
int i = -2;
unsigned in t j = 1;
result = i + j;

In ANSI C under the 32-bit data model, the results are shown:

Figure 3-1 Data Type Promotion Example in ILP32

The intermediate result (an unsigned int) and the final result (a
signed long) have the same internal representation because they are
both 32 bits. Since the final result is signed, the answer is -1 .

Chapter 3 47

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

In ANSI C under the 64-bit data model, the results are different:

Figure 3-2 Data Type Promotion Example in LP64

When the 32-bit intermediate result (an unsigned int) is converted to
the 64-bit final result (a signed long), the left 32 bits are zero-filled.
This results in a very large 64-bit positive number.

48 Chapter 3

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

Data Alignment and Data Sharing
Data alignment rules determine where fields are located in memory.
There are differences between the LP64 data alignment rules and the
ILP32 data alignment rules.

In ILP32, pointers and long s are 32 bits and are aligned on 32-bit
boundaries. In LP64, pointers and long s are 64 bits and are aligned on
64-bit boundaries.

Applications that do not consider alignment differences between ILP32
and LP64 can have trouble sharing binary data. Data exchanged
between ILP32 and LP64 mode programs, whether via files, remote
procedure calls, or other messaging protocols, may not be aligned as
expected.

Table 3-2 shows the data alignment for C data types:

Table 3-2 ILP32 and LP64 Data Alignment

1. aligned on the same boundary as its most strictly aligned member.

Data Type ILP32 Size
(bytes)

ILP32
Alignment

LP64 Size
(bytes)

LP64
Alignment

char 1 1-byte 1 1-byte

short 2 2-byte 2 2-byte

int 4 4-byte 4 4-byte

long 4 4-byte 8 8-byte

long long 8 8-byte 8 8-byte

pointer 4 4-byte 8 8-byte

float 4 4-byte 4 4-byte

double 8 8-byte 8 8-byte

long double 16 8-byte 16 16-byte

struct depends on
members 1

depends on
members

depends on
members

depends on
members

enum 4 4-byte 4 4-byte

Chapter 3 49

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

Structure Member Alignment
Data alignment of structures is affected by porting from ILP32 to LP64.
Structure members may be padded differently in ILP32 and LP64 in
order for the structure members to begin on specific alignment
boundaries.

Here is an example structure that is aligned differently for ILP32 and
LP64:

struct tnode {
 long count;
 char class;
 struct tnode *left;
 short id;
 struct tnode *right;
}

The tnode structure is aligned according to the alignment shown in
Table 3-2. Figure 3-3 shows the alignment for tnode in ILP32:

Figure 3-3 ILP32 Alignment of struct tnode

In ILP32, this data structure contains 20 bytes.

Figure 3-4 shows the alignment for the tnode structure in LP64.

50 Chapter 3

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

Figure 3-4 LP64 Alignment of struct tnode

In LP64, this data structure contains 40 bytes.

In the example shown, the same structure definition has different sizes
and the structure members have different offsets.

For More Information:

For information on how to create portable data structures, see the HP C
Programmer’s Guide or HP-UX Applications Interoperability White
Paper, URL://www.software.hp.com/STK/.

Constants
When a program with hexadecimal constants is ported from ILP32 to
LP64, the data types assigned to the constants may change. The
following table illustrates some common hex constants and their types:

Constant ANSI C ILP32 ANSI C LP64

0x7fffffff int int

Chapter 3 51

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

In LP64, 32-bit hexadecimal constants may no longer set pointers or
masks to the correct value. In LP64, the first 32 bits of 64-bit pointers
contain significant information.

Bit Fields
Unqualified bit fields are unsigned by default in LP64. In ILP32,
unqualified bit fields are signed by default.

Bit fields of enumerated types are signed if the enumeration base type is
signed and unsigned if the enumeration base type is unsigned.

Unnamed, non-zero length bit fields do not affect the alignment of a
structure or union in LP64. In ILP32, unnamed, non-zero length bit
fields affect the alignment of structures and unions.

Bit Shifts and Bit Masks
Bit shifts and bit masks are sometimes coded with the assumption that
the operations are performed in variables that have the same data type
as the result. In cases such as:

a = b operation c

the data type used for the intermediate result of the operation depends
on the types of b and c . The intermediate result is then promoted to the
type of a. If the result requires 64 bits, but b and c are 32-bit data types,
then the intermediate result either overflows or is truncated before being
assigned to a.

In the following example, the left operand 1 is a small numeric constant
which the compiler treats as a 32-bit value in both ILP32 and LP64:

unsigned long y;
y = (1 << 32); /* Overflows in both data models. */

0x7fffffffL long long

0x80000000 unsigned int unsigned int

0x80000000L unsigned long long

Constant ANSI C ILP32 ANSI C LP64

52 Chapter 3

HP-UX 64-bit Porting Concepts
ILP32 to LP64 Porting Concerns

This bit shift uses a 32-bit data type as the intermediate result. In 64-bit
mode, the operation overflows and the final result is undefined as shown:

Figure 3-5 Bit Shift Overflow in LP64

You can use suffixes such as L and UL for long and unsigned long if
you need long constants. For example, in 64-bit mode, the above code
fragment can be changed to:

y = (1L << 32); /* 2^32 in LP64. Overflows in ILP32. */

Enumerated Types
In LP64, enumerated types are signed only if one or more of the
enumeration constants defined for that type is negative. If all
enumeration constants are non-negative, the type is unsigned. In ILP32,
enumerated types are always signed.

Chapter 3 53

HP-UX 64-bit Porting Concepts
Architecture Specific Changes

Architecture Specific Changes
There is a class of porting issues that is not strictly caused by the 64-bit
architecture, but is a side-effect of the 64-bit architecture.

Assembly Language
Assembly language code may need changes due to the 64-bit PA-RISC
2.0 calling conventions. You may also want to take advantage of the new
instructions for improved performance.

The following summarizes items that may need adjustments:

• The procedure calling conventions are different. For example, the
number of items passed on the stack may be different.

• Instead of ldw and stw , use ldd and std when loading and storing
64-bit values.

• Addresses are capable of holding 64-bit values.

• The 64-bit ELF object file format is more restrictive than the 32-bit
object file format. Therefore, the set of legal instructions is more
restrictive.

• Instead of .word , use the .dword pseudo-op when allocating storage
for a pointer.

• Alignment of data items may be different.

• In 64-bit mode, the Assembler ignores the .CALL directive. This
means the linker does not ensure that the caller and called procedure
agree on argument locations. If you do not know the prototype of the
called procedure, you must pass floating point parameters in both the
corresponding general registers and corresponding floating-point
registers.

For More Information: • See the HP Assembler Reference Manual for more details about 64-bit
Assembler changes.

• See ELF-64 Object File Format,
URL:http://www.software.hp.com/STK/.

54 Chapter 3

HP-UX 64-bit Porting Concepts
Architecture Specific Changes

Object File Format
HP PA-RISC 1.0 and 1.1-based systems use the System Object Module
(SOM) object file format. This is a proprietary format. It is the common
representation of code and data for all compilers which generate code for
PA-RISC 1.x-based systems.

HP PA-RISC 2.0-based systems use the SOM object file format in 32-bit
mode and the industry-standard Executable and Linking Format (ELF)
in 64-bit mode. If your application manipulates the object file format, it
should support both the 64-bit ELF format and the 32-bit SOM format.

To identify the ELF format within scripts, use the HP-UX file
command. To identify the ELF format within programs, use the nlist64
APIs in libelf.sl .

Procedure Calling Conventions
The procedure calling conventions for the 64-bit PA-RISC 2.0
architecture are different. You may be impacted if your code depends on
stack unwinds, uses assembly language, or passes data in and out of the
kernel.

See 64-bit Runtime Architecture for PA-RISC 2.0,
URL:http://www.software.hp.com/STK/ for details.

Chapter 3 55

HP-UX 64-bit Porting Concepts
HP-UX 64-bit Performance Considerations

HP-UX 64-bit Performance
Considerations
Most applications should remain as 32-bit applications on HP-UX 64-bit
systems. However, some applications manipulate very large data sets
and are constrained by the 4GB address space limit in 32-bit mode.
These applications can take advantage of the larger address space and
larger physical memory limits of 64-bit systems.

Some I/O bound applications can trade off memory for disk I/O. By
restructuring I/O bound applications to map larger portions of data into
memory on large physical memory machines, disk I/O can be reduced.
This reduction in disk I/O can improve performance because disk I/O's
are more time-consuming than memory access.

Memory-constrained applications, such as large digital circuit
simulations, may also benefit by transitioning to 64-bit mode. Some
simulations are so large that they cannot run without major code
modifications in a 32-bit address space.

What Impacts Performance in 64-bit
Applications
Typical applications do not require more virtual memory than what is
available in 32-bit mode. When compiled in 32-bit mode on HP-UX 64-bit
platforms, these applications usually perform better than when
recompiled in 64-bit mode on the same 64-bit platform. Some of the
reasons for this include:

• 64-bit programs are larger. Depending on the application, the
increase in the program size can increase cache and TLB misses and
place greater demand on physical memory.

• 64-bit long division is more time-consuming than 32-bit integer
division.

• 64-bit programs that use 32-bit signed integers as array indexes
require additional instructions to perform sign extension each time
an array is referenced.

56 Chapter 3

HP-UX 64-bit Porting Concepts
HP-UX 64-bit Performance Considerations

• By default, 64-bit object modules can be placed into shared and
archive libraries and used in main programs. 32-bit code must be
compiled with the +z or +Z option if it is used in shared libraries.

Tuning Your 64-bit Application
Here are some ways to improve the performance of your 64-bit
application:

• Avoid performing mixed 32-bit and 64-bit operations, such as adding
a 32-bit data type to a 64-bit type. This operation requires the 32-bit
type to be sign-extended to clear the upper 32 bits of the register.

• Avoid 64-bit long division whenever possible.

• Eliminate sign extension during array references. Change
unsigned int , int and signed int variables used as array
indexes to long variables.

• Consider compiling with the +Onoextern option if your 64-bit object
modules are not used in a shared library.

• Consider compiling with the +ESfic and the +Onoextern options if
your application is fully archive bound.

See the HP C Online Reference (cc +help) or the HP aC++ Online
Programmer’s Guide (aCC +help) for information on using
+Onoextern and +ESfic.

57

4 Transitioning C and aC++
Programs to 64-bit Mode

Applications that need to take advantage of the larger address space
available on HP-UX 64-bit platforms must be recompiled in 64-bit mode.
Applications that do not need the larger address space, but need to
perform 64-bit integer arithmetic can remain in 32-bit mode by using the
long long 64-bit data type. This chapter provides information about
when and how to port C and aC++ programs to 64-bit mode.

• “Step 1: Identify Programs that Need to Compile to 64-bit Mode” on
page 58

• “Step 2: Identify Non-Portable Constructs” on page 59

• “Step 3: Make Source Code Changes” on page 60

• “Step 4: Compile in 64-bit Mode” on page 75

58 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 1: Identify Programs that Need to Compile to 64-bit Mode

Step 1: Identify Programs that Need to
Compile to 64-bit Mode
The decision to compile in 64-bit mode depends on your application’s
virtual memory requirements.

Applications requiring more than .75GB of private data or more than
1.75GB of shared memory should transition to 64-bit mode.

In 32-bit mode, the largest address space, by default, that a single
process can allocate is as follows:

• .75GB for private data

• 1.75GB for shared memory

If you need to declare huge data objects, you must compile in 64-bit
mode. See “Huge Data” on page 43 for more information.

Applications using the following features to extend the address space in
32-bit mode should also transition to 64-bit mode:

• -N linker option (EXEC_MAGIC flag) to access private data spaces
larger than .75 GB

• -M option to chatr (SHMEM_MAGIC flag) to access shared memory
larger than 1.75 GB

NOTE The SHMEM_MAGICfunctionality will be unsupported on a future
implementation of the architecture.

If your application uses data files that are greater than 2GB, you can use
the large file interface64() routines in 32-bit mode on HP-UX 32-bit and
64-bit platforms. These routines are known as the *64() APIs. To access
files larger than 2 GB using standard I/O routines, you must transition
to 64-bit mode.

64-bit main programs can only call 64-bit libraries. Therefore, library
providers for 64-bit applications must transition their libraries to 64-bit
mode.

Chapter 4 59

Transitioning C and aC++ Programs to 64-bit Mode
Step 2: Identify Non-Portable Constructs

Step 2: Identify Non-Portable Constructs
Use the HP C compiler or lint to find non-portable code when
transitioning C programs to the LP64 data model.

A specialized lint tool, such as FlexeLint, can be purchased separately
to help you convert 32-bit aC++ code to 64-bit code.

To turn on LP64 warnings when compiling C programs, use the +M2 and
+DD64 (or +M2 and +DA2.0W) command line options:

cc +DD64 +M2 -c myprog.c

This command line compiles in ANSI mode with HP value-added
extensions (-Ae is the default since the HP-UX 10.30 release), turns on
64-bit porting warnings with +M2, suppresses linking with -c , and
creates a 64-bit object module with +DD64.

lint provides the same 64-bit porting warnings as the HP C compiler.

NOTE lint additionally performs parameter checking on function calls that
span compilation units.

To turn on LP64 warnings in lint , use the +M2 and +DD64 options:

lint +DD64 +M2 myprog.c

You should address all LP64 warnings issued by HP C before creating a
64-bit application.

60 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Step 3: Make Source Code Changes
If you are already using lint along with the HP C +w1 compile-line
option, your port to the LP64 data model should be straightforward.
When transitioning to 64-bit mode, strive to maintain a single set of
source files and header files for both data models. Consider the following
guidelines before porting to 64-bit mode:

• Data Truncation

• “Avoid Assigning longs to ints” on page 61
• “Avoid Storing Pointers in ints” on page 63
• “Avoid Truncating Function Return Values” on page 64
• “Use Appropriate Print Specifiers” on page 74

• Data Type Promotion

• “Avoid Arithmetic between Signed and Unsigned Numbers” on
page 62

• Pointers

• “Avoid Pointer Arithmetic between longs and ints” on page 67
• “Avoid Casting Pointers to ints or ints to Pointers” on page 68
• “Avoid Storing Pointers in ints” on page 63
• “Avoid Truncating Function Return Values” on page 64

• Structures

• “Avoid Using Unnamed and Unqualified Bit Fields” on page 69
• “Avoid Passing Invalid Structure References” on page 66

• Hardcoded Constants

• “Avoid Using Literals and Masks that Assume 32 bits” on page 70
• “Avoid Hardcoding Size of Data Types” on page 71
• “Avoid Hardcoding Bit Shift Values” on page 72
• “Avoid Hardcoding Constants with malloc(), memory(3), string(3)”

on page 73

Chapter 4 61

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Avoid Assigning longs to ints
Data can be truncated when long s are assigned to int s.

To avoid this data truncation problem, change long to int assignments
to assignments with the same data types.

Simple Assignment Truncation

Before:

int a;
long b;
. . .
a = b; /* if b > maximum value of a 32-bit integer, then
 the result of the assignment is truncated. */

Solution:

Decide if variable b must be long . If it must be long , make both
variables long . Otherwise, make both variables int .

Bit Shift Truncation

The following long to int assignment causes an overflow condition,
which leads to unexpected results:

Before:

#include <limits.h>
int main()
{
 long base = LONG_MAX;
 int final_result;
 final_result = base << (LONG_BIT-1); /* LONG_BIT-1 = 63 bits */
 printf("%016x\n",final_result);
}

The hex value for the base variable before the bit shift is:

0x 7FFF FFFF FFFF FFFF

The hex value of the intermediate result of the bit shift is:

0x 8000 0000 0000 0000

This 64-bit intermediate result is truncated when assigned to
final_result . The final_result is:

0x 0000 0000 0000 0000

62 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

This code works in 32-bit mode since int and long are the same size.
The code produces unexpected results in 64-bit mode since
final_result is no longer big enough to hold the long value in base .

Solution:

To fix this code, make the variables final_result and base the same
data type.

Diagnostic Message:

HP C generates the following LP64 migration warning for the above two
examples when +M2 and +DD64 are enabled:

warning 720: LP64 migration: Assignment may overflow integer
variable_name.

Avoid Arithmetic between Signed and
Unsigned Numbers
Data is promoted differently in 64-bit mode than in 32-bit mode when
unsigned int s are compared to long s, and when int s are compared to
unsigned long s.

To avoid unintended data promotion problems, ANSI C programs should
perform arithmetic operations and comparisons only when all operands
are signed or when all operands are unsigned.

Comparison between Signed and Unsigned Numbers

The following program yields different results in 32-bit mode and 64-bit
mode:

Before:

 1 int main()
 2 {
 3 long L = -1;
 4 unsigned int i= 1;
 5 if (L > i)
 6 printf ("L is greater than i\n");
 7 else
 8 printf ("L is not greater than i\n");
 9 return 0;
10 }

In 32-bit ANSI C mode, the long value of -1 is promoted to an unsigned
32-bit number, making it a large positive number. In 32-bit mode, this
program prints:

Chapter 4 63

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

L is greater than i

In 64-bit ANSI C mode, both operands are promoted to signed 64-bit
numbers. In 64-bit mode, this program prints:

L is not greater than i

Diagnostic Message:

HP C generates the following LP64 migration warning for this example
when +M2 and +DD64 are enabled:

line 5: warning 734: LP64 migration: Different types treated as
signed for >.

Solution:

The code should be fixed so it produces consistent results in 32-bit and
64-bit mode. Either declare i as long :

long i = 1;

or cast i to a long :

if (L > (long) i);

Avoid Storing Pointers in ints
Pointers will be truncated in 64-bit mode if they are assigned to ints.To
avoid truncation of pointers, store memory addresses in variables
declared as pointers or declared with intptr_t (defined in
<inttypes.h>). Store the differences between two pointers in variables
declared with ptrdiff_t (defined in <stddef.h>).

Before:

int i; / * 32-bit data type * /
int j = &i; / * This causes unexpected results. * /

Diagnostic Message:

HP C generates the following LP64 migration warning for this example
when +M2 and +DD64 are enabled:

warning 727: LP64 migration: Initialization truncates pointer
into 32-bit integer.

64 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Solution:

The solution uses the intptr_t type definition. This construct is
portable across 32-bit and 64-bit platforms.

#include <inttypes.h>
int i; / * 32-bit data type * /
intptr_t j = &i; / * This uses the portable typedef. * /

Avoid Truncating Function Return Values
The return value from function calls can be truncated if its data type is
larger than or incompatible with the variable to which it is assigned.

Be aware that the C compiler assumes that functions return a value of
type int , unless the function is properly declared.

To avoid truncation of function return values, use ANSI C function
prototypes for user-defined functions and standard header files for C
library functions.

Function Prototype Truncation

In the following example, calculate_offset() returns the difference
between two pointers. In 32-bit mode, the result can be assigned to an
int or long . In 64-bit mode, the result must be assigned to a 64-bit long
or ptrdiff_t , as defined in <stddef.h> . The size of a pointer type may
vary from platform to platform and from mode to mode. Therefore, using
ptrdiff_t protects your application from different pointer sizes.

Before:

 1 int calculate_offset(int *base_address, int *ptr);
 2 int main()
 3 {
 4 int *base_address, *ptr;
 5 int offset;
 6 offset = calculate_offset(base_address, ptr);
 7 printf("The value of the pointer offset is \

8 %d\n", offset);
 9 return 0;
10 }
11 int calculate_offset(int *base_address, int *ptr)
12 {
13 return (ptr - base_address);
14 }

Diagnostic Message:

line 12: warning 720: LP64 migration: Return may overflow integer.

Chapter 4 65

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Solution:

One solution is to replace the int return type defined in the function
prototype and in calculate_offset() with the portable ptrdiff_t :

#include <stddef.h>
ptrdiff_t calculate_offset(int *base_address, int *ptr);

In 64-bit mode, this type definition is a long .

System Library Truncation of Return Values

The C library function malloc() returns a pointer. In the following
example, a function prototype is not defined for malloc() . This leads to
a run-time abort because the pointer returned by malloc() is truncated
to an int .

Before:

1 int main ()
2 {
3 int *buffer;
4 buffer = malloc (sizeof(int));
5 *buffer = 1234;
6 printf ("The address of buffer is %p\n", &buffer);
7 printf ("The contents of buffer are %p\n", buffer);
8 printf ("The dereferenced value of buffer is \
9 %d\n", *buffer);
10 return 0;
11 }

At run time, this program aborts with a segmentation fault.

Diagnostic Message:

HP C generates the following LP64 migration warning for the above
example when +M2 and +DD64 are enabled:

line 4: warning 724: LP64 migration: Assignment converts
default int return type to pointer "buffer".

Solution:

One way to fix this code is to include the <stdlib.h> header file, which
contains the ANSI C function prototype and the K&R C function
declaration for malloc() :

 1 #include <stdlib.h>
 2 int main ()
 3 {
 4 int *buffer;
 5 buffer = malloc (sizeof(int));
 6 *buffer = 1234;

66 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

 7 printf ("The address of buffer is %p\n", &buffer);
 8 printf ("The contents of buffer are %p\n", buffer);
 9 printf ("The dereferenced value of buffer is %d\n", *buffer
);
10 return 0;
11 }

At run time, this program now displays:

The address of buffer is 800003ffff8004d8
The contents of buffer are 8000000000005e60
The dereferenced value of buffer is 1234

Avoid Passing Invalid Structure References
HP C no longer treats a structure passed by value the same as a
structure passed by reference. When calling functions that expect a
pointer to a structure, be sure to explicitly pass a pointer to the
structure.

Before:

1 struct st_tag {int i;} a;
2 int main() {
3 int I;
4 I = foo(a);
5 return I;
6 }
7 int foo (struct st_tag *x) {
8 return (x->i);
9 }

Diagnostic Message:

By default, lint provides the following warning for this example:

FTN arg conflict, struct/union passed instead of ptr to
 struct/union
 foo(arg 1) ex.c(7) :: ex.c(4)

Solution:

1 struct st_tag {int i;} *a;
2 int main() {
3 int I;
4 I = foo(&a); /* Pass address of struct. */
5 return I;
6 }
 . . .

The solution is to pass the address of struct a rather than the
structure itself to foo() .

Chapter 4 67

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Avoid Pointer Arithmetic between longs and
ints
Dereferencing pointers using the wrong data type can yield incorrect
results. In ILP32, a long pointer can be used to dereference an int
value, and an int pointer can be used to dereference a long value
because both values are the same length and alignment. In 64-bit mode,
if a long value is dereferenced using an int pointer, only the first 32 bits
of the 64-bit value will be retrieved.

Before:

 1 int main()
 2 {
 3 long array[5];
 4 int i; /* i: index for array */
 5 int *j; /* j: pointer to int */
 6 long *k; /* k: pointer to long */
 7 for (i = 0; i < 4; i++)
 8 array[i]=i + 1;
 9
10 j = array + 2; /* incrementing pointer */
11 printf ("The address of j is %p\n", &j);
12 printf ("The contents of j are %p\n", j);
13 printf ("The dereferenced value of j is %d\n", *j);
14
15 k = array + 2; /* incrementing pointer */
16 printf ("The address of k is %p\n", &k);
17 printf ("The contents of k are %p\n", k);
18 printf ("The dereferenced value of k is %d\n", *k);
19 return 0;
20 }

At run time, this program prints the following result:

The address of j is 800003ffff800510
The contents of j are 800003ffff8004f0
The dereferenced value of j is 0

The address of k is 800003ffff800518
The contents of k are 800003ffff8004f0
The dereferenced value of k is 3

Both j and k point to the same address, 800003ffff8004f0 . Since j is
a pointer to an int , it only displays the first 4 bytes of the array, while k
displays the entire 8 bytes as shown:

68 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Figure 4-1

Diagnostic Message:

HP C generates the following LP64 migration warning for this example
when +M2 and +DD64 are enabled:

line 10: warning 728: LP64 migration: Assignment converts long*
to int* “j”.

Solution:

The solution is to change j from an int pointer to a long pointer
because the object of the pointer is an array of long s.

 1 int main()
 2 {
 3 long array[5];
 4 int i; /* i: index for array */
 5 long *j; /* j: pointer to long */
 6 long *k; /* k: pointer to long */
 . . .

Avoid Casting Pointers to ints or ints to
Pointers
Casts made between pointers and int s will lead to unexpected results in
64-bit mode because pointers and int s are no longer the same size.

The following program aborts because of pointer truncation that results
from casting a pointer as an int and storing the results in a 32-bit
variable:

1 int main()
2 {
3 int i = 7;
4 int j;
5 int *p;
6 p = &i;

Chapter 4 69

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

7 j = (int)p;
8 p = j;
9 j=*p;
10 return 0;
11 }

Diagnostic Message:

HP C generates the following LP64 migration warning for this example
when +M2 and +DD64 are enabled:

line 7: warning 727: LP64 migration: Cast truncates pointer
into 32 bit integer.

line 8: warning 725: LP64 migration: Assignment converts 32 bit
integer to pointer "p".

Avoid Using Unnamed and Unqualified Bit
Fields
The default run time behavior changes for programs that use unqualified
or unnamed bit fields in 64-bit mode.

To avoid data alignment problems and unexpected results in programs
that use bit fields, follow these guidelines:

• Use named bit fields if you expect bit fields to affect structure
alignment.

• Always explicitly declare bit fields as signed or unsigned variables in
ANSI C.

Before:

 1 struct {
 2 char foo;
 3 long : 3; /* Unnamed bit field */
 4 short c:5;
 5 } mystruct;
 6 int main()
 7 {
 8 mystruct.c = -1;
 9 if (mystruct.c < 0)
10 printf ("The bit field is less than zero \n");
11 /* Go here in ILP32 */
12 else
13 printf ("The bit field is not less than zero \n");
14 /* Go here in LP64 */
15 printf("Size of the struct: %d\n", sizeof (mystruct));
16 return 0;
17 }

70 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

In 32-bit mode, this program prints:

The bit field is less than zero.
Size of the struct: 4

In 64-bit mode, this program prints:

The bit field is not less than zero.
Size of the struct: 2

Diagnostic Message:

line 4: warning 751: LP64 migration: Unqualified bitfields
are unsigned by default.

line 1: warning 750: LP64 migration: Unnamed, non-zero
bitfields do not affect alignment.

Solution:

The code should be fixed so it produces consistent results in 32-bit and
64-bit mode. In ANSI C, a portable solution is:

• name the bit field,

• declare signed types, and

• change the long variable to an int .

struct {
 char foo;
 signed int b: 3;
 signed short c: 5;
 . . .

Avoid Using Literals and Masks that Assume
32 bits
Programs that assign hardcoded numeric constants to longs in 32-bit
mode may get different results in 64-bit mode if they assume a long is
32 bits. In 64-bit mode, this assumption is incorrect.

To avoid setting incorrect bit mask and hexadecimal values, use
pre-processor directives with the the __LP64__ predefined type to
generate platform specific code. Or, consider using the complement (~)
operator.

Chapter 4 71

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Using the __LP64__ Predefined Macro and Complement (~) Operator

In the following example, the programmer wants to set all but the last 4
bits of the long value to 1. This code works in 32-bit mode. However, in
64-bit mode, it sets the leftmost 32 bits to 0, the next 28 bits to 1, and the
last 4 bits to 0.

Before:

long L = 0xFFFFFFF0; / * 32-bit hex constant '1111...0000' * /

Solution 1:

#ifdef __LP64__
 long L = 0xFFFFFFFFFFFFFFF0;
#else
 long L = 0xFFFFFFF0;
#endif

The solution ifdef s the long to the correct 64-bit value.

Solution 2:

long L = ~0xFL; /* Sets the rightmost 4 bits to 0. */

The solution uses the complement (~) operator to reverse each bit in the
operand. The suffix L is required for the long value so that HP C uses
the correct length for the constant.

Avoid Hardcoding Size of Data Types
grep for hardcoded system constants that represent sizes of data types.

Here are some common 32-bit system constants:

4 number of bytes in a 32-bit pointer

32 number of bits in a 32-bit pointer

2147483647 maximum value of 32-bit signed integer

-2147483648 minimum value of 32-bit signed integer

4294967295 maximum value of 32-bit unsigned integer

0x7fffffff maximum value of 32-bit signed integer in
hexadecimal format

0xffffffff maximum value of 32-bit unsigned integer in
hexadecimal format

72 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

0x80000000 minimum value of 32-bit signed integer in hexadecimal
format

Instead of hardcoding values, use the macro values in include files, such
as <limits.h> and <inttypes.h> . Examples of macros in
<limits.h> include INT_MAX, LONG_MAX, and CHAR_BIT. See the man
page for limits(5) for more information. A better solution is to use the
sizeof() operator.

Before:

offset = n * 4; /* Assumes long is 32 bits. */

Solution 1:

offset = n * sizeof(long); /* Works if long is 32 bits
 or 64 bits. */

Solution 2:

long val;
offset = n * sizeof(val); /* Optimal! The algorithm adjusts
 to current size of val. */

Avoid Hardcoding Bit Shift Values
Check for hardcoded values in bit shift operations. The following
examples only get expected results in 32-bit mode because they all
hardcode a shift range of 32 bits:

Before:

unsigned long n, newexp;
n = n >> (32 - newexp); /* Not portable! Assumes long is 32 bits.*/

Solution:

#include <limits.h>
unsigned long n, newexp;
n = n >> (LONG_BIT - newexp);

Uses the portable LONG_BIT from <limits.h> .

Before:

Here is an example that turns on the high bit (signed or leftmost bit):

long n;
n = 1 << 32-1; /* Not portable! Assumes long is 32 bits. */

Chapter 4 73

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

Solution 1:

#include <limits.h>
long n;
n = ~ LONG_MAX; /* This is portable. */

Solution 2:

#include <limits.h>
long n;
n = 1L << LONG_BIT-1; /* This is portable. */

Avoid Hardcoding Constants with malloc(),
memory(3), string(3)
Check for hardcoded constants in programs that use the memory(3C) and
string(3C) family of functions. Unfortunately, hardcoding constants is
common when the following routines are used:

• malloc(3C) family of memory allocators — realloc() , calloc() ,
valloc() , alloc()

• memory(3C) family of memory operators — memccpy() , memcmp(),
memcpy() , memmove()

• string(3C) family of string operators — strcpy() , strcat() ,
strncmp() , strncpy()

Before:

#include <stdlib.h>
#define BSIZE 4096 /* Buffer size */
char **pointer_buffer;
pointer_buffer=(char **)malloc(BSIZE*4); /* Assumes pointer
 is 4 bytes. */

The pointer_buffer is a buffer of pointers. The malloc() function
attempts to allocate enough space for this buffer. This code does not
allocate enough space for pointer_buffer because the size of a pointer
is 8 bytes in 64-bit mode. Silent data corruption or a core dump can
happen when the upper bound of the buffer is reached.

Diagnostic Message:

None.

Solution:

74 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 3: Make Source Code Changes

#include BSIZE 4096 /* Buffer size */
#include <stdlib.h>
void **pointer_buffer;
pointer_buffer=(void **)malloc(BSIZE*(sizeof(void *)));

The sizeof(void *) operator replaces the hardcoding of the size of a
pointer.

Use Appropriate Print Specifiers
When using varargs , stdarg , or variable argument interfaces such as
printf() , you must ensure that the algorithms that use the variable
parameters are consistent with the 64-bit data model.

Before:

long value;
printf("value = %d\n", value);

The d specifier prints a 32-bit integer.

After:

long value;
printf("value = %ld\n", value);

The ld specifier prints a 64-bit integer in 64-mode and a 32-bit integer in
32-bit mode.

Before:

long offset;
printf("offset =%x\n", offset);

The x specifier prints a 32-bit hexadecimal number.

After:

#include <inttypes.h>
int64_t offset;
printf("offset =" %PRIx64 "\n", offset);

The PRIx64 macro prints a 64-bit integer in both modes.

Chapter 4 75

Transitioning C and aC++ Programs to 64-bit Mode
Step 4: Compile in 64-bit Mode

Step 4: Compile in 64-bit Mode
To compile in 64-bit mode, update makefiles with the appropriate
options:

+DD64 Compiles C programs in 64-bit mode. Use this option
for compatibility with future architectures.

+DA2.0W Compiles aC++,C, or Fortran 90 programs in 64-bit
mode.

If you are building 64-bit applications on HP-UX 11.0 32-bit systems, be
sure to request and verify that 64-bit versions of system libraries are
installed. For example, verify that /usr/lib/pa20_64/libc.sl is
installed.

64-bit applications only run on 64-bit systems.

64-bit main programs and object files can only link with 64-bit object files
and 64-bit versions of shared or archive libraries.

76 Chapter 4

Transitioning C and aC++ Programs to 64-bit Mode
Step 4: Compile in 64-bit Mode

77

5 Writing Portable Code

This chapter provides information on coding practices for developing
code that is portable between HP-UX 32-bit, 64-bit, and other UNIX
systems. It includes how to use industry-standard header files and
HP-UX extensions that isolate platform-specific code.

The following topics are included:

• Making code 64-bit clean

• Using integral types defined in <inttypes.h>

• Guidelines for using <inttypes.h>

• Using pstat(2) instead of /dev/kmem

• Getting configurable system information

• Isolating system-specific code

• Using system-specific include files

78 Chapter 5

Writing Portable Code
Making Code 64-bit Clean

Making Code 64-bit Clean
If your application is targeted for execution on both ILP32 and LP64, it
should be 64-bit clean. Tools to help make your code 64-bit clean include:

• using lint ,

• compiling in ANSI C or aC++, and

• using the portable header file <inttypes.h> .

To make code 64-bit clean, follow these guidelines:

• Use the same source code and header files for both 32-bit and 64-bit
programs.

• Use appropriate data types consistently and strictly.

For example, use off_t consistently for file offsets and fpos_t for
file positions.

• Use integral types in <inttypes.h> , where applicable, instead of
int and long

• Use fixed/scalable width integral types, algorithms, and masks as
appropriate.

Fixed types remain a consistent size on 32-bit and 64-bit platforms.
For example, use int32_t , defined in <inttypes.h> , if int s and
long s should be 32 bits in your application. Scalable types can grow
and scale without modification to future architectures.

• Perform boundary checking on integral type ranges.

• Update 64-bit code in cases where 32-bit and 64-bit processes share
the same memory segment.

Chapter 5 79

Writing Portable Code
Using Integral Types Defined in <inttypes.h>

Using Integral Types Defined in
<inttypes.h>
The <inttypes.h> header files provide the following features that help
you write portable code:

• integral type definitions
• macros for constants
• macros for printf() /scanf() specifiers

When you use <inttypes.h> , you can maintain one set of source files
for both data models. Using the typedef s and constants included in
these header files protects your code from underlying data model
changes. It also reduces the need to #ifdef platform-specific code, which
improves the readability of your source code.

There are two <inttypes.h> header files. The following information is
included in <sys/_inttypes.h> :

• basic integral data types for 8, 16, 32, and 64 bits
• macros that can create constants of a specific size and sign

The following information is included in <inttypes.h> :

• data types for pointers
• data types for the most efficient integer types
• data types for the largest integer types
• data types for the smallest integral types of at least 8, 16, 32, and 64

bits

Integer Data Types with Consistent Lengths
The basic types in <sys/_inttypes.h> have consistent lengths on
UNIX 32-bit and 64-bit platforms. Use these basic data types instead of
the standard C language types whenever you want data types to remain
the same size across different architectures.

Table 5-1 shows the basic integral types in <sys/_inttypes.h> :

80 Chapter 5

Writing Portable Code
Using Integral Types Defined in <inttypes.h>

Table 5-1 C Basic Integer Types in <sys/_inttypes.h>

The pointer data types are signed and unsigned integer data types that
are large enough to hold a pointer. A pointer can be moved to or from
these data types without corruption.

Table 5-2 Pointer Types in <inttypes.h>

Using Integer Data Types with Consistent Lengths
One way to improve portability of programs that require integral data
items to be 32-bits or 64-bits long, regardless of the hardware platform,
is to #include the <inttypes.h> header file, and to make the
following substitutions:

Type Definition
Name Description

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

int64_t 64-bit signed integer

uint64_t 64-bit unsigned integer

Type Definition
Name 32-bit Mode 64-bit Mode

intptr_t 32-bit signed integer 64-bit signed integer

uintptr_t 32-bit unsigned
integer

64-bit unsigned
integer

Chapter 5 81

Writing Portable Code
Using Integral Types Defined in <inttypes.h>

Table 5-3

Excerpts from <sys/_inttypes.h>
Here are some typedefs in <sys/_inttypes.h> that conform to the
XPG5 standard:

typedef int int32_t; /* 32-bit signed integral type */
typedef int64_t intmax_t; /* largest signed integral type */
typedef unsigned long uint64_t; /* 64-bit unsigned integral type
*/

Here are some HP extensions:

#define INT32_C(_c) /* Create a 32-bit signed constant */
#define UINT32_C(_c) /* Create a 32-bit unsigned constant */

#define UINT64_MAX /* If this macro tests false, the unsigned
 64-bit data type is not supported on
 the platform. */

#define PRId64 /* printf specifier for a 64-bit integral value */
#define SCNd64 /* scanf specifier for a 64-bit integral value */

Examples Using Consistent Length Data Types and
Macros
The following code uses constructs that are not 64-bit clean:

Instead of Use

short int16_t

unsigned short uint16_t

int int32_t

unsigned int uint32_t

long int32_t or int64_t

unsigned long uint32_t or unint64_t

long long int64_t

unsigned long long uint64_t

82 Chapter 5

Writing Portable Code
Using Integral Types Defined in <inttypes.h>

Before:

#include <limits.h>
#include <stdio.h>
 . . .
long value;
long mask = 1L << ((sizeof(long) * CHAR_BIT)-1);
scanf("%ld", &value);
if (value = 0x7fffffff) /* Test for max 32-bit value. */
 printf("Number is %ld\n", value);
if (mask & value) /* Handle bad value. */
 . . .

The after code has been made 64-bit clean by using <inttypes.h> :

After:

#include <limits.h>
#include <stdio.h>
#include <inttypes.h>
 . . .
int32_t value;
int32_t mask = INT32_C(1)<<((sizeof(int32_t) * CHAR_BIT)-1);
scanf("%" SCNd32, &value);
if (value = INT32_MAX) /* Test for max 32-bit value.*/
 printf("Maximum 32-bit signed integer is \

%" PRId32 "\n", value);
if (mask & value) /* Handle bad value. */
 . . .

Example 2: Formatted I/O using printf(3S)
Use the PRIx n constants defined in <inttypes.h> to select the correct
printf() formatting option for the data types defined in
<inttypes.h> . For example:

Before:

long result_value;
printf ("Result = %lx\n", result_value);

After:

#include <inttypes.h>
int32_t result_value;
printf ("Result = %" PRIx32 "\n", result_value);

The before code prints a 32-bit number on 32-bit platforms and a 64-bit
number on a 64-bit platform. The after code prints a 32-bit number,
regardless of the platform. The macro PRIx32 from <inttypes.h> is
used instead of the literal lx . PRIx32 is then defined as the appropriate
formatting symbol.

Chapter 5 83

Writing Portable Code
Using Integral Types Defined in <inttypes.h>

intfast Data Types with Defined Minimum
Sizes
When execution speed of programs is important, use the intfast x_t
data types in <inttypes.h> . You select data types based on the
minimum integer size required by your application. The <inttypes.h>
header file then maps the intfast data types to the fastest appropriate
data type for the target hardware platform. These data types include:

intfast_t fastest signed integral data type of at least 16-bits

intfast8_t fastest signed integral data type at least 8-bits long

uintfast8_t fastest unsigned integral data type at least 8-bits long

intfast16_t fastest signed integral data type at least 16-bits long

uintfast16_t fastest unsigned integral data type at least 16-bits long

intfast32_t fastest signed integral data type at least 32-bits long

uintfast32_t fastest unsigned integral data type at least 32-bits long

Example Using intfastn_t Data Types
Suppose you need a loop to execute as fast as possible on a target
platform. You could change the following:

Before:

int i, j;
j = 0;
for (i = 1; i<=127; i++)
{
 j = j+i;
}

to use the most efficient and portable integer data types as follows:

After:

intfast8_t i;
intfast16_t j = 0;
for (i =1; i<=INT8_MAX; i++)
{
 j = j+i;
}

84 Chapter 5

Writing Portable Code
Guidelines for Using <inttypes.h>

Guidelines for Using <inttypes.h>
When porting to 64-bit mode, you should only use 64-bit data types when
they are required. This data type may not be processed efficiently on
some platforms. Programs may run slower and executable file sizes may
be bigger.

Here are additional guidelines:

• Use int32_t for integers that must be 32 bits in length on 64-bit
systems in order for programs to work correctly.

Because <inttypes.h> is available on both 32-bit and 64-bit HP-UX
platforms, int32_t works in both environments.

• Use the smallest integral type possible in order to control the size of
the application.

• Use the intfast n_t data types for counters and counter loops that
need to be fast due to frequent expression evaluations (such as
incrementing).

• Use the constant that matches the integer type definition.

For example, use the constant UINT64_FAST_MAX with
uint_fast64_t . Do not use INT_MAX or UINT_MAX with
uint_fast64_t .

• Use intmax_t or uintmax_t for items that must be the largest
available integral type as specified by the compiler.

The sizes of these data types may change in a future release, but they
will always be the largest integral type supported on the platform,
regardless of possible performance implications.

• Limit the use of x64_t data types:

• These types cannot automatically take advantage of potentially
higher limits for future integral sizes.

• Older 32-bit systems may not have a 64-bit integral data type.
Therefore, int64_t and uint64_t data types may need to be
protected by #ifdef s if the source code is shared between 64-bit
and older 32-bit systems.

Chapter 5 85

Writing Portable Code
Guidelines for Using <inttypes.h>

• Convert long long to int64_t . Convert unsigned long long to
uint64_t .

• End user APIs reflect the data types defined by standards such as
X/Open, POSIX.2, or legacy HP definitions. They will not cause source
level incompatibilities.

The function prototype looks the same in any integral data type
model. Therefore, your application will be protected when there are
changes to the underlying size of data types. For example, the
function prototype for lseek() :

 off_t lseek(int fildes, off_t offset, int whence);
 int fseek(FILE *stream, long int offset, int whence);

looks the same on a 32-bit or 64-bit system.

• Use the same type definition names supported by the API definition.
For example, use off_t in your code offsets. Do not assume off_t is
an int , long , or any other data type.

• Data declarations related to API parameters or return values should
be of the same consistent data definition as defined by the function
prototype.

• Integral types (for example, long) that must be 32 bits on a 32-bit
system and 64 bits on a 64-bit system can be left as long . These types
will automatically be declared with the correct size.

• Use scalable masks with scalable typedef s and fixed size masks
with fixed size typedef s. (See “Using Portable Bit Masks” on page
87 for examples.)

86 Chapter 5

Writing Portable Code
Using portal.h

Using portal.h
The portal.h header file helps you to write code that is portable across
HP-UX 32-bit and 64-bit systems. This header file contains macros for
setting bit masks and sign bits of data types defined in <inttypes.h>
and for convenience it includes the header files <limits.h> and
<inttypes.h> .

To #include this header file, type:

#include <sys/portal.h>

Examples of some macros contained in portal.h follow:

• SET_MASK_BIT(bit_num, data_type) — Creates a mask that has one
bit set.

For example:

SET_MASK_BIT(SIGN_BIT(int64_t), int64_t)

turns on the high bit in a 64-bit integer.

• SIGN_BIT (data_type) — Returns the bit position of the sign bit for
the specified type.

For example:

SIGN_BIT(int32_t)

returns the position of the sign bit in a 32-bit integer.

• SIGN_EXTEND (value, old_type, new_type) — Sign extends from one
data type to another.

For example:

char c;
int64_t i;
i = SIGN_EXTEND(c, char, int64_t);

converts the 8-bit integer stored in a char data type to a 64-bit
integer and correctly extends the sign.

For additional information, see the man page for portal.h(5).

Chapter 5 87

Writing Portable Code
Using Portable Bit Masks

Using Portable Bit Masks
Use scalable masks with scalable typedef s. Scalable types, such as int
and long , may be different sizes on different platforms. For example, use
the portable bit mask construct:

• Solution 1:

#include <inttypes.h>
#ifdef __LP64__
 int64_t node_id=0xfffffffffffffffc;
#else
 int32_t node_id=0xfffffffc;

or:

• Solution 2:

#include <inttypes.h>
intmax_t node_id = ~0x3;

instead of the non-portable construct:

long node_id = 0xfffffffc;

When compiled on an HP-UX 32-bit platform, the first 2 constructs above
result in the intended value:

1111 1111 1111 1111 1111 1111 1111 1100

However, when compiled on an HP-UX 64-bit platform, the first and
second construct produce the correct binary value:

1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 1111 1111 1111 1111 1111 1100

while the third construct generates an incorrect bit mask value:

0000 0000 0000 0000 0000 0000 0000 0000
1111 1111 1111 1111 1111 1111 1111 1100

88 Chapter 5

Writing Portable Code
Using Portable Bit Masks

Use fixed size masks with fixed size type definitions. For example, if you
want a 32-bit mask, use the portable construct:

#include <inttypes.h>
int32_t intmask = INT32_MAX;

instead of:

long intmask = 0x7fffffff;

Chapter 5 89

Writing Portable Code
Using pstat(2) instead of /dev/kmem

Using pstat(2) instead of /dev/kmem
Avoid writing programs that read system files such as /dev/kmem
directly. These files may have different formats on different systems.
Instead, use the pstat(2) routines to get system information. These
routines were first introduced in the HP-UX 10.0 release. Using pstat(2),
information can be retrieved about the following:

• memory — static, dynamic, shared, virtual

• system CPU processors

• system processes and messaging

• disks, swap space, and file systems

• semaphores

NOTE The pstat(2) routines are HP-specific routines and are not available on
other vendor platforms.

For More Information: See the pstat(2) man page.

90 Chapter 5

Writing Portable Code
Getting Configurable System Information

Getting Configurable System
Information
Instead of hardcoding system values, use any of the portable
alternatives:

• Use sysconf(2) , confstr(3C) , and getconf(1) to get
configurable system information, such as determining if the
underlying operating system is 64 bits or 32 bits.

• Use pathconf(2) to get configurable pathnames for files and
directory values.

• Use <limits.h> to get static system limits.

Beginning with the 11.0 release, sysconf() returns additional
information:

• the processor implementation

• the operating system execution mode — 32 bit or 64 bit

• whether the system is capable of running a 64-bit operating system

Additionally, the confstr() system call returns the appropriate
compiler options, libraries, and lint options to build and check an
application in a 32-bit or 64-bit programming environment.

For More Information: • See the man page for limits(5) for details on macros available in
<limits.h> .

• See the man pages for sysconf(2), confstr(3C), getconf(1), and
pathconf(2).

Chapter 5 91

Writing Portable Code
Isolating System-Specific Code

Isolating System-Specific Code
Use conditional directives to isolate sections of platform or
release-specific code. This is useful when the number of lines of release
or platform-specific source code is small in relation to the number of lines
of common code. You could, for example, encapsulate code that is
different between the 32-bit and 64-bit HP-UX with conditional
directives.

The following example uses a #define macro within a conditional
directive:

#ifdef __LP64__
 . . . /* LP64 specific code goes here */
#else
 . . . /* ILP32 specific code goes here */
#endif
 . . . /* Code common to both platforms goes here */

92 Chapter 5

Writing Portable Code
Using System-Specific Include Files

Using System-Specific Include Files
Sometimes platform or release-specific source code differences are large.
These differences can be isolated in different #include files and then be
referenced by conditional directives.

Here is an example of including 32-bit or 64-bit type definitions
depending on the word size of the machine:

#include <limits.h>
#if WORD_BIT > 32
 . . . /* integers must be 64-bit */
include "typedefs_64.h"
#else
 . . . /* integers must be 32-bit */
include "typedefs_32.h"
#endif /* 32-bit environment */

Glossary 93

Glossary

archive library A library created
by the ar command, which
contains one or more object
modules. By convention, archive
library file names end with .a.
Compare with “shared library.”

breadth-first search order The
dependent library search
algorithm used when linking and
loading 64-bit applications.

bss segment A segment of
memory in which uninitialized
data is stored. Compare with “hbss
segment,” “text segment” and
“data segment.” For details, refer
to a.out(4).

data alignment Refers to the way
a system or language aligns data
structures in memory.

data segment A segment of
memory containing a program’s
initialized data. Compare with “bss
segment,” “hbss segment” and
“text segment”. For details, refer to
a.out(4).

data type promotion The
conversion of operands with
different data types to compatible
types for comparison and
arithmetic operations.

dependency Occurs when a
shared library depends on other
libraries — that is, when the
shared library was built (with ld
-b…), other libraries were
specified on the command line. See
also "dependent library."

dependent library A library
that was specified on the command
line when building a shared library
(with ld -b…). See "dependency."

depth-first search order The
dependent library search
algorithm used when linking and
loading 32-bit applications.

dynamic loader Code that
attaches a shared library to a
program. See dld.sl(5).

dynamic path searching The
process that allows the location of
shared libraries to be specified at
run time.

external reference A reference
to a symbol defined outside an
object file.

hbss segment A segment of
memory in which uninitialized
huge data is stored. Compare with
“bss segment,” “text segment” and
“data segment.” For details, refer
to a.out(4).

94 Glossary

Glossary

huge data In general, any data
object larger than can be
represented on a 32-bit system;
more specifically, any data object
greater than a specified threshold
that is placed in an hbss segment.

ILP32 The HP-UX 32-bit data
model. In this model, int s, long s
and pointers are 32 bits in size.

LP64 The HP-UX 64-bit data
model. In this model, long s and
pointers are 64 bits in size and
int s are 32 bits.

link order The order in which
object files and libraries are
specified on the linker command
line.

magic number A number that
identifies how an executable file
should be loaded. Possible values
are SHARE_MAGIC,
DEMAND_MAGIC, and
EXEC_MAGIC. Refer to magic(4) for
details.

object code See relocatable
object code.

object file A file containing
machine language instructions and
data in a form that the linker can
use to create an executable
program.

object module A file containing
machine language code and data in
a form that the linker can use to
create an executable program or
shared library.

pipe An input/output channel
intended for use between two
processes: One process writes into
the pipe, while the other reads.

pragma A C directive for
controlling the compilation of
source.

relocatable object code

Machine code that is generated by
compilers and assemblers. It is
relocatable in the sense that it
does not contain actual addresses;
instead, it contains symbols
corresponding to actual addresses.
The linker decides where to place
these symbols in virtual memory,
and changes the symbols to
absolute virtual addresses.

shared executable An a.out
file whose text segment is
shareable by multiple processes.

shared library A library, created
by the ld command, which
contains one or more PIC object

Glossary 95

Glossary

modules. Shared library file names
end with .sl . Compare with
"archive library."

standard input/output library

A collection of routines that
provide efficient and portable
input/output services for most C
programs.

text segment A segment of read-
only memory in which a program's
machine language instructions are
typically stored. Compare with
"bss segment" and "data segment."
For details, refer to a.out(4).

96 Glossary

Glossary

Index

Index 97

Symbols
#include files for machine

specific code, 92
+b path_list linker option, 32, 33
+cg linker option, 30
+compat linker option, 32
+DA1.1 compile-line option, 16
+DA2.0 compile-line option, 16
+DA2.0N compile-line option, 21
+DA2.0W compile-line option,

16, 21, 23, 25
+DAportable compile-line

option, 16
+DD32 compile-line option, 21
+DD64 compile-line option, 16,

21, 59
+dpv linker option, 31
+ESfic compile-line option, 56
+M1 compile-line option, 21
+M2 compile-line option, 21, 59
+Onoextern compile-line option,

56
+s linker option, 33
+sb compile-line option, 69
+std linker option, 32
+w1 compile-line option, 60
/usr/lib/pa20_64, 33, 37
/usr/lib/pa20_64/libc.sl, 75
__LP64__ compiler macro, 22,

23, 70, 91
~ complement operation, 70

Numerics
32-bit (PA-RISC 1.1)

architecture, 16
64-bit (PA-RISC 2.0)

architecture, 10, 15
64-bit clean, defined, 78
64-bit data model, 20, 42
64-bit mode

benefits, 11
how to transition, 57

A
-A name linker option, 30
-Ae compile-line option, 59
alignment of data in 64-bit mode,

48
application interoperability, 40
ar, 27
architecture changes, 53
arithmetic between signed and

unsigned numbers, 62
array indexing, 55
assembly language changes, 53
assignments between ints and

longs, 61

B
benefits of compiling in 64-bit

mode, 11
benefits of HP-UX 11.00, 10
binary data, 48
bit fields, 51, 69
bit masks, 51, 70

defining portable bit masks, 87
bit shifts, 51, 61, 72
breadth-first order, 93
BSIZE in stdlib.h, 73

C
C compiler, 14

compiling in 64-bit mode, 59
data type sizes, 42

-C linker option, 30
casts between long* and int*, 45
casts between pointers and ints,

68
CHAR_BIT macro, 72
chatr, 27
compatibility with previous

releases, 17
compile-line options

+DA1.1, 16
+DA2.0, 16

+DA2.0N, 21
+DA2.0W, 16, 21, 23, 25
+DAportable, 16
+DD32, 21
+DD64, 16, 21, 59
+ESfic, 56
+M1, 21
+M2, 21, 59
+Onoextern, 56
+sb, 22, 69
+se, 22
+w1, 60
-Ae, 59
-dynamic, 21
-noshared, 21

compilers
HP aC++, 13
HP C, 13
HP C++, 13
HP Fortran 90, 13
HP Micro Focus COBOL, 13
HP Pascal, 13
options for cross-development,

15
compiling

in 64-bit mode, 75
networked environments, 16

complement operator (~), 70
confstr() function, 90
constants

hardcoding, 60
hexadecimal constants, 50

cross-platform development, 15,
17

CXperf tool, 27

D
data alignment, 93

in 64-bit mode, 48
pragmas, 22
structures, 49

data sharing, 48

98 Index

Index

data truncation, 44, 60
data type promotion, 46, 60, 93

signed and unsigned numbers,
62

data type sizes for C, 42
DDE debugger, 27
debuggers, 27
debugging applications, 16
default directories for shared

libraries, 33
DEMAND_MAGIC, 31
dependency, shared library, 93
dependent library, 32, 93
depth-first order, 93
-dynamic compile-line option, 21
dynamic loader, 93

E
ELF object file format, 53, 54
elfdump tool, 27, 29
enumerated types, 52
environment variables

LD_LIBRARY_PATH, 29
RPATH, 33
SHLIB_PATH, 33

EXEC_MAGIC, 31, 58
external reference, 93

F
fastbind, 27
features in 64-bit mode, 11
file command, 27
FlexeLint, 14
Fortran 90, 24
Fortran 90 summary of changes,

24
function prototype truncation,

66
functions

confstr(), 90
libelf(), 29
lseek(), 40

lseek64(), 40
malloc(), 65
open(), 40
pstat(2), 40
shmget(), 38
sysconf(), 90

G
GDB debugger, 27
getconf command, 27, 90
gprof profiler, 28
graphics interface on 64-bit HP-

UX, 39
grepping for hard-coded

constants, 71
guidelines for using inttypes.h,

84
guidelines on transitioning to 64-

bit mode, 60, 78

H
hard-coding constants, 60, 71,

73
bit shift operations, 72

hardware architecture and run-
time compatibility, 16

HP aC++
summary of changes, 23

HP C
summary of changes, 20

HP CXperf tool, 27
HP Fortran 90, 24

summary of changes, 24
HP Performance Analysis

Toolkit (HP PAK), 13
HP_ALIGN data alignment

pragma, 22
HP_SHLIB_VERSION pragma,

31
HP-UX 11.00 features, 10
HP-UX 64-bit data model, 20, 42
HP-UX compilers, 13

huge data, 43, 94
+hugecommon option in

Fortran 90, 26
+hugesize option in C, 21
+hugesize option in C++, 23
+hugesize option in Fortran 90,

26

I
ILP32 data model, 42
ILP32 to LP64 porting concerns,

44
INT_MAX macro, 72
int16_t type definition, 80, 81
int32_t type definition, 80, 81
int64_t type definition, 73, 80,

81
int8_t type definition, 80
intptr_t type definition, 63, 80
intra-library versioning, 31
inttypes.h header file, 79

guidelines on using, 81
using intptr_t type definition,

63
IPC_CREAT flag to shmget(), 38
IPC_SHARE32 flag to shmget(),

38
isolating machine-specific code,

91

K
kernel cross-platform

development, 16

L
-L linker option, 33
-l linker option, 33
-l: linker option, 33
large files, 11, 40
ldd command, 27, 28, 29
libelf() functions, 29
libraries

Index

Index 99

intra-library versioning, 31
location of system libraries, 37
searching of shared libraries,

32
library

dependent, 93
shared, 95

limits.h header file, 71, 72
link order, 94
linker options

+b path_list, 32
+cg, 30
+compat, 32
+dpv, 31
+k, 29
+std, 32
-A name, 30
-C, 30
-N, 30
-n, 30
-Q, 30
-q, 30
-S, 30
-T, 30

linker toolset
new features, 29
unsupported features, 30

linking
64-bit programs, 15
restrictions, 75

lint, 14, 22, 28
invoking LP64 migration

warnings, 59
LONG_BIT macro, 72
LONG_MAX macro, 61, 72
LP64 data model

defined, 42
LP64 diagnostics

invoking, 59
warning 720, 64
warning 724, 65
warning 725, 69
warning 727, 63, 69

warning 728, 68
warning 734, 63
warning 750, 70
warning 751, 70

LPATH environment variable,
33

lseek() function, 40
lseek64() function, 40

M
macros

__LP64__ compiler macro, 70
CHAR_BIT, 72
INT_MAX, 72
LONG_MAX, 61, 72

make, 27
make command, 28
malloc() function, 65
malloc(3C) functions, 73
MAP_ADDR32 flag to mmap(),

38
MAP_SHARED flag to mmap(),

38
mapfile support with +k linker

option, 29
masks, 70
memory footprint in 64-bit mode,

55
memory(3C) functions, 73
memory-mapped files, 38
message queues, 38
mmap() function, 38

N
-N linker option, 58
-n linker option, 31
NFS PV3 de facto standard, 10
NFS-mounted file systems and

compiling, 16
NIS+ (Network Information

Service), 10
nlist64(3C) function, 39

nm command, 27, 28
-noshared compile-line option,

21

O
O_LARGEFILE flag to open(),

40
object file, 94
object file format, 54
object module, 94
open() function, 40
overview of HP-UX 11.00, 10

P
PACK data alignment pragma,

22
PA-RISC 1.1 architecture, 16
PA-RISC 1.1 object file format,

54
PA-RISC 2.0 architecture, 10
PA-RISC 2.0 calling conventions,

53
PA-RISC 2.0 object file format,

54
performance considerations, 56

64-bit mode, 55
performance tools, 13, 27
pipe, 94
pointer arithmetic, 67
pointers, 45, 60
portal.h header file, 86
porting aC++ programs to 64-bit

mode, 57
porting aids

ANSI C, 78
FlexeLint, 14
HP C, 14, 59
inttypes.h header file, 64
lint, 14, 59
making code 64-bit clean, 78
portal.h header file, 86

100 Index

Index

Software Transition Toolkit
(STK), 14

porting C programs to 64-bit
mode, 57

porting concepts
assembly language, 53
bit fields, 51
bit shifts and bit masks, 51
constants, 50
data alignment and sharing,

48
data truncation, 44
data type promotion, 46
ELF object file format, 54
enumerated types, 52
ILP32 data model, 42
LP64 data model, 44
performance considerations,

55
pointers, 45

pragma, 94
pragmas

HP_ALIGN, 22
HP_SHLIB_VERSION

pragma, 31
PACK, 22
SHLIB_VERSION pragma, 31

printf() function
formatted I/O using inttypes.h,

82
specifiers, 74

PRIx64 macro in inttypes.h, 74
procedure calling conventions,

54
prof profiler, 28
programming toolset, 27
promotion of data types in 64-bit

mode, 46, 60
pstat(2) functions, 40, 89
ptrdiff_t, 44
ptrdiff_t type definition, 64

Q
-Q linker option, 31
-q linker option, 31

R
relocatable object code, 94
RPATH environment variable,

33
running 64-bit programs, 75
run-time architecture changes,

54
run-time behavior changes, 32,

69

S
-S linker option, 30
SHARE_MAGIC, 31
shared executable, 94
shared library, 95

dependency, 93
dependent library, 93
dynamic loader, 93

sharing memory between 32-bit
and 64-bit programs, 38

SHLIB_PATH environment
variable, 33

SHLIB_VERSION pragma, 31
SHMEM_MAGIC flag, 58
shmget() function, 38
signed and unsigned numbers,

62
size command, 28
size of data types, 42
size_t, 38, 44
sizeof() operator, 72
Software Transition Toolkit

(STK), 10, 14
source code changes in 64-bit

data model, 60
standard I/O library, 95
stddef.h header file, 63, 64
stdlib.h header file, 65

string(3C) functions, 73
strip command, 28
structures, 60

data alignment, 49
invalid structure references,

66
symbol searching in dependent

libraries, 32
symbol table

extracting 64-bit values, 39
sys/_inttypes.h header file, 79
sysconf() function, 90
system libraries, 37

T
-T linker option, 30
text segment, 95
threads support, 10
tools

ldd, 29
porting aids, 14
programming toolset, 27

transitioning aC++ programs to
64-bit mode, 57

transitioning C programs to 64-
bit mode, 57

truncating data, 44, 60, 61

U
uint16_t type definition, 80, 81
uint32_t type definition, 81
uint64_t type definition, 80, 81
uint8_t type definition, 80
uintptr_t type definition, 80

W
warnings

LP64 warning 724, 65
LP64 warning 725, 69
LP64 warning 727, 63, 69
LP64 warning 728, 68
LP64 warning 734, 63

Index

Index 101

LP64 warning 750, 70
LP64 warning 751, 70

writing portable code, 77
64-bit clean, 78
guidelines on transitioning to

64-bit data model, 60
isolating system-specific code,

91
using inttypes.h, 79
using portable bit masks, 87
using portal.h, 86
using pstat() functions, 89

X
X11/graphics, 39

