
HP aC++/HP ANSI C Release Notes

Version A.06.12

Edition 9

HP Itanium®-based Systems

Manufacturing Part Number: 5991-7408

December 2006

United States

© Copyright 2006 Hewlett-Packard Development Company L.P. All rights reserved.

2

Legal Notices
The information contained herein is subject to change without notice.

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Printed in the United States

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Trademark Notices

Itanium is a trademark or registered trademark of Intel Corporation or its subsidiaries in
the United States and other countries.

UNIX is a registered trademark of The Open Group.

Chapter 1 3

1 HP aC++/HP ANSI C Release Notes

The information in this document applies to the release of HP aC++ and HP ANSI C
compilers version A.06.12 for the HP-UX 11i v2 operating system on Integrity servers.

The HP ANSI C compiler supports ANSI programming language C standard ISO 9899:1990.
HP aC++ compiler supports the ISO/IEC 14882 Standard for the C++ Programming
Language (the international standard for C++). HP ANSI C and HP aC++ are distributed as a
single software bundle.

All information in this document is applicable to both HP C and HP aC++, unless stated
otherwise.

This version of the compiler includes fixes to reported problems and new or changed features
described under the New Features section below.

This document discusses the following topics:

• “What’s New in This Version” on page 5

• “Installation Information” on page 11

• “Compatibility Information” on page 13

• “Known Problems and Workarounds” on page 17

• “Related Documentation” on page 23

HP aC++/HP ANSI C Release Notes

Chapter 14

What’s New in This Version
New Features in Version A.06.12

Chapter 2 5

2 What’s New in This Version

This chapter gives an overview of the new command line options and features introduced in
this version of the HP aC++/HP C compiler.

Version A.06.12 of the HP aC++ compiler provides complete source and binary compatibility
(including OpenMP features) with earlier versions of the A.06.xx family. Version A.06.12 of
the HP C compiler has very few incompatibilities with earlier versions. These
incompatibilities have minimum or no impact on applications migrated to the Integrity
platform.

New Features in Version A.06.12
HP aC++ compiler version A.06.12 supports the following new features:

• +Ofast (-fast) and +Ofaster Options

• Interaction between +Oinit_check and +check=uninit

+Ofast (-fast) and +Ofaster Options

The +Ofast and +Ofaster options now cause the data and text page size to be 1MB instead of
4MB, for increased performance The +Ofast option no longer implies the unsafe
optimizations +Ointeger_overflow=aggressive and +Olibcalls.

Interaction between +Oinit_check and +check=uninit

When +Oinit_check and +check=uninit are used together, warnings will still be generated
at compile time for potentially uninitialized variables, but they will not be automatically
initialized by the compiler, so that lack of initialization can be detected at runtime.

What’s New in This Version
New Features in Version A.06.10

Chapter 26

New Features in Version A.06.10

Version A.06.10 of the HP aC++ compiler provides complete source and binary compatibility
(including OpenMP features) with earlier versions of the A.06.xx family.

HP aC++ compiler version A.06.10 supports the following new features:

• HP Code Advisor

• +cond_rodata Option (Obsoleted)

• +[no]dep_name Option (New)

• +expand_types_in_diag Option (New)

• +FPmode (Enhanced)

• +Ointeger_overflow Option (Default Changed)

• +Onolibcalls= Option (New)

• +wendian Option (New)

• +wlint Option (Enhanced)

• +wsecurity= Option (New)

• System-wide option configuration (New)

• [NO]PTRS_TO_GLOBALS Pragma (New)

• -AA -D_HP_NONSTD_FAST_IOSTREAM performance Macro (New)

• New function attributes

• Improved Diagnostics

• C++ Standard Library

HP Code Advisor

This release introduces a new tool "HP Code Advisor", that can be used for detecting various
programmer errors in C/C++ source code. Use this tool to identify potential coding errors,
porting issues and security errors.

The HP Code Advisor is being made available on both HP-UX PA and Integrity servers. It
leverages the advanced analysis capabilities of the C/C++ compilers for the Integrity servers.

What’s New in This Version
New Features in Version A.06.10

Chapter 2 7

Use "/opt/cadvise/bin/cadvise" to invoke the tool. A brief description is available with the
-help option.

$ /opt/cadvise/bin/cadvise -help

Additional information is available at: http://www.hp.com/go/cadvise/

+cond_rodata Option (Obsoleted)

The compiler now allocates more data in read-only memory. This option is now obsolete. The
compiler always behaves as if it had been specified. (Note: a previous posting of these notes
contained a typographic error. +cond_rodata was mispelled.)

+[no]dep_name Option (New)

+[no]dep_name enforces strict dependent name lookup rules in templates. The default is
+nodep_name.

+expand_types_in_diag Option (New)

+expand_types_in_diag expands typedefs in diagnostics so that both the original and final
types are present.

+FPmode Option (Enhanced)

+FPmode specifies how the run time environment for floating-point operations should be
initialized at program start up. By default, modes are as specified by the IEEE floating-point
standard: all traps disabled, gradual underflow, and rounding to nearest. See ld(1) for
specific values of mode. To dynamically change these settings at run time, refer to fenv(5),
fesettrapenable(3M), fesetflushtozero(3M), and fesetround(3M).

+Ointeger_overflow (Default Changed)

The default setting for all optimization settings is now
"moderate".+Ointeger_overflow=moderate

+Onolibcalls= Option (New)

+Onolibcalls= allows you to turn off optimization for listed fun ctions.

+Onolibcalls=function1,function2,...

What’s New in This Version
New Features in Version A.06.10

Chapter 28

This allows you to turn off libcall optimizations (inlining or replacement) for calls to the listed
functions. This overrides system header files.

+wendian Option (New)

This option allows the user to identify areas in their source that might have porting issues
when going between little-endian and big-endian.

+wlint Option (Enhanced)

New diagnostic features have been added for this option. New checks have been added for
memory leaks, out-of-scope memory access, null pointer dereference, and out-of-bounds
access.

+wsecurity= Option (Enhanced)

The +wsecurity option now optionally takes a argument to control how verbosely the security
messages are emitted.

+wsecurity=[1|2|3|4] The default level is 2.

System-wide Option Configuration

There is a new ability to configure compiler options on a system-wide basis. The compiler now
reads the configuration file:

/var/aCC/share/aCC.conf (aC++), or

/var/ansic/share/cc.conf (ANSI C), if present.

The options in the configuration file can be specified in the same manner as that for CCOPTS
and CXXOPTS, namely:

[options-list-1][| [options-list-2]]

where options in options-list-1 are applied before the options in the command line, and
options in options-list-2 are applied after the options in the command line.

The final option ordering would be:

<file-options-1><envvar-options-1><command-line-options>

<envvar-options-2><file-options-2>

The config file options before the "|" character set the defaults for compilations, and the
options after the character override the user’s command line settings.

What’s New in This Version
New Features in Version A.06.10

Chapter 2 9

NOTE No configuration files are shipped along with aC++, but can be installed by the
system administrator, if required.

[NO]PTRS_TO_GLOBALS Pragma

#pragma [NO]PTRS_TO_GLOBALS <name>

This pragma aids alias analysis. It must be specified at global scope and immediately precede
the declaration of the variable or entry named. The pragma tells the optimizer whether the
global variable or entry "name" is accessed [is not accessed] through pointers.

-AA -D_HP_NONSTD_FAST_IOSTREAM Performance Improvement
Macro

A new performance improvement preprocessor macro, _HP_NONSTD_FAST_IOSTREAM can be
used to improve -AA iostream performance.

This macro enables the following non-standard features:

• Sets std::ios_base::sync_with_stdio(false), which disables the default
synchronization with stdio.

• Sets std::cin.tie(0), which unties the cin from other streams.

• Replaces all occurrences of "std::endl" with "\n".

Enabling this macro might result in noticeable performance improvement if the application
uses iostreams often.

NOTE Do not enable the macro in any of the following cases:

• If the application assumes a C++ stream to be in sync with a C stream.

• If the application depends on stream flushing behavior with endl.

• If the user uses "std::cout.unsetf(ios::unitbuf)" to unit buffer the
output stream.

What’s New in This Version
Earlier Versions

Chapter 210

New Function Attributes

__attribute__ is a language feature that allows you to add attributes to functions. The
capabilities are similar to those of #pragma. It is more integrated into the language syntax
than pragmas and its placement in the source code depends on the construct to which the
attribute is being applied.

The new function attributes in this release are "malloc", "non-exposing", "noreturn", and
"format". Refer to the Pragmas and Attributes online help topic for additional information.

Improved Diagnostics

Diagnostic messages now include more context to aid in tracing their root causes, including an
improved template instantiation traceback.

C++ Standard Library Change

Technical Corrigenda 1 has changed the STL function make_pair to take their arguments by
value instead of const reference. This change brings the HP library into compliance if the
enabling macro -D__HP_TC1_MAKE_PAIR is specified at compile time. For binary compatibility
reasons, the default behavior is unchanged.

Earlier Versions
Information on features introduced in versions before A.06.12 can be found in Release Notes
for each compiler version located at the HP documentation website: www.docs.hp.com

Installation Information
Earlier Versions

Chapter 3 11

3 Installation Information

Read this entire document and any other release notes or readme files you may have before
you begin an installation.

To install your software, run the SD-UX swinstall command. This invokes a user interface
that will lead you through the installation.

For more information about installation procedures and related issues, refer to Managing
HP-UX Software with SD-UX and other README, installation, and upgrade documentation
provided or described in your HP-UX 11.x operating system package.

Depending on your environment, you may also need documentation for other parts of your
system, such as networking, system security, and windowing.

Installation Information
Hardware Requirements

Chapter 312

Hardware Requirements

IMPORTANT Compiling files at optimization level 2 (-O or +O2) and above increases the
amount of virtual memory needed by the compiler. In cases where very large
functions or files are compiled at +O2, or in cases where aggressive (+O3 and
above) optimization is used, ensure that the maxdsiz kernel tunable is set
appropriately on the machine where compilation takes place.

HP recommends a setting of 0x80000000, or 2 Gb (the default for this
parameter is 0x40000000, or 1 Gb) in such cases. Updating the maxdsiz
tunable will ensure that the compiler does not run out of virtual memory when
compiling large files or functions. In addition, maxssiz should be set to 128 MB
for very large or complex input files. Normally the default maxssiz setting of 64
MB will be sufficient.

HP recommends not reducing the maxfiles setting below the default value of
1024.

See the kctune man page for more information on how to change kernel tunable
parameters.

HP aC++ requires approximately 120 MB for the files in

/opt/aCC

HP ANSI C requires approximately 100 MB for the files in

/opt/ansic

The other components require approximately:

• 28 MB for WDB

• 60 MB for u2comp/be

• 26 MB for HP Caliper

• 105 MB for HP Code Advisor

For more precise sizes, use the command:

/usr/sbin/swlist -a size "YourProductNumber"

Compatibility Information
aC++ Standard Conformance and Compatibility Changes

Chapter 4 13

4 Compatibility Information

Maintaining binary compatibility is a key release requirement for new versions of HP aC++.
The compiler has maintained the same object model and calling convention and remains
compatible with the HP-UX runtime in the code that it generates as well as its intrinsic
runtime library (libCsup) across the various releases of HP aC++ and its run-time patch
stream.

aC++ Standard Conformance and Compatibility Changes
The following document provides the deattails of the differences that you can experience when
upgrading from HP aC++ Version 5.x to HP aC++ Version 6.0:

http://h21007.ww2.hp.com/dspp/tech/

tech_TechSoftwareDetailPage_IDX/1,1703,7274,00.html

Caliper Compatibility
For binaries containing objects generated with version A.05.38 of the compiler, it is
recommended that you use Caliper version 2.1 for performance measurements and PBO. You
can download Caliper 2.1 from www.hp.com/go/caliper.

WDB Compatibility
It is recommended that you use the latest version of the WDB debugger. You can obtain the
latest information on the debugger at Developer and Solution Partner page of the HP web
site: www.hp.com/go/wdb.

Compatibility Information
Difference in Class Size When Compiling in 32-bit and 64-bit Mode

Chapter 414

Difference in Class Size When Compiling in 32-bit and
64-bit Mode
The size of a class containing any virtual functions varies when compiled in 32-bit mode
versus 64-bit mode. The difference in size is caused by the virtual table pointer (a pointer to
an internal compiler table) in the class object. (The pointer is created for any class containing
one or more virtual functions.)

When compiling the following example in 32-bit mode, the output is 8. In 64-bit mode, the
output is 16.

extern "C" int printf(const char *,...);

class A {

int a;

public:

virtual void foo(); //virtual function foo, part of class A

};

void A::foo() {

return;

}

int main() {

printf("%d\n",sizeof(A));

}

Compatibility Information
Migrating From HP C++ (cfront) to HP aC++

Chapter 4 15

Migrating From HP C++ (cfront) to HP aC++
The compiler lists Errors, Future Errors, and Warnings. Expect to see more warnings, errors
and future errors reported in your code, many related to standards based syntax. For more
complete information, refer to the HP aC++ Transition Guide at:
http://www.hp.com/go/cpp

General Programming Information and Support Questions

For general background information and experience, subscribe to the cxx-dev list server (like
a notes group). Send a message to: majordomo@cxx.cup.hp.com

with the following command in the body of the message: subscribe list-name

The information about subscribing to the cxx-dev list server can be obtained from:

http://www.hp.com/go/cpp

Available list-names are as follows:

 cxx-dev (HP C++ Development Discussion List)

cxx-dev-announce (HP C++ Development Announcements)

cxx-dev-digest (HP C++ Development Discussion List Digest)

For additional help or information about the list server, send a message to
majordomo@cxx.cup.hp.com with the following command in the body of the message: help.

For specific support questions, contact your HP support representative.

For generic C++ questions, see documents and URLs listed in the HP aC++ Programmer’s
Guide, Information Map.

Compatibility Information
Migrating From HP C++ (cfront) to HP aC++

Chapter 416

Known Problems and Workarounds
Object Files Generated at +O4 or -ipo

Chapter 5 17

5 Known Problems and Workarounds

This section describes known problems and workarounds. Customers on support can use the
product number to assist them in finding SSB and SRB reports for HP aC++ or HPC. The
product number you can search for is B3910BA.

To verify the product number and version for your HP aC++ or HP C compiler, execute the
following HP-UX commands:

what /opt/aCC/bin/aCC

what /opt/aCC/lbin/ecom

what /opt/ansic/bin/cc

what /opt/ansic/lbin/ecom

Object Files Generated at +O4 or -ipo
Object files generated by the compiler at optimization level 4, called intermediate object files,
are intended to be temporary files. These object files contain an intermediate representation
of the user code in a format that is designed for advanced optimizations. The size of these
intermediate object files may be 3 to 10 times as large as normal object files. Hewlett-Packard
reserves the right to change the format of these files without notice in any compiler release or
patch. Use of intermediate files must be limited to the compiler that created them. For the
same reason, intermediate object files should not be included into archived libraries that
might be used by different versions of the compiler.

When an incompatible intermediate file is detected, the compiler will issue a message and
terminate.

Refer to the discussion of tunables in the Installation section for additional information.

Known Problems and Workarounds
Incompatibilities Between the Standard C++ Library Ver. 1.2.1 and the Draft Standard

Chapter 518

Incompatibilities Between the Standard C++ Library Ver.
1.2.1 and the Draft Standard
As the ANSI C++ standard has evolved over time, the Standard C++ Library has not always
kept up. Such is the case for the times function object in the functional header file. In the
standard, times has been renamed to multiplies.

If you want to use multiplies in your code, to be compatible with the ISO/ANSI C++
standard, use a conditional compilation flag on the aCC command line.

For example, for the following program, compile with the command line:

aCC -D__HPACC_USING_MULTIPLIES_IN_FUNCTIONAL test.c

 // test.c

 int times; //user defined variable

 #include <functional>

// multiplies can be used in

 int main() {}

 // end of test.c

The following flags are now automatically set with A.05.* and A.06.* compilers:

• -D__HPACC_USING_MULTIPLIES_IN_FUNCTIONAL

• -D__HPACC_THREAD_SAFE_RB_TREE

• -D__HPACC_USING_MULTIPLIES_IN_FUNCTIONAL

• -D__HPACC-FIX_FUNC_ADAPTER_OPERATOR

• -D__HPACC_FULL_ITERATOR_REL_OPS

• -D__HPACC_TEMPLATE_PAIR_CTOR

• -D__HPACC_MEM_FUN_ADAPTOR

Known Problems and Workarounds
Conflict Between macros.h and numeric_limits Class (min and max)

Chapter 5 19

Conflict Between macros.h and numeric_limits Class (min
and max)
If your code includes /usr/include/macros.h, note that the min and max macros defined in
macros.h conflict with the min and max functions defined in the numeric_limits class of the
Standard C++ Library. The following code, for example, would generate a compiler Error 134:

numeric_limits<unsigned int>::max();

If you must use the macros.h header, try undefining the macros that conflict:

...

#include <macros.h>

#undef max

#undef min

...

Known Limitations
The following is a list of known limitations for this release. Some of these limitations will be
removed in future releases of HP aC++. Please be aware that some of these limitations are
platform-specific.

• HP aC++ does not support large files (files greater than 2 GB) with <iostream.h> or
<iostream>

• Symbolic debugging information is not always emitted for objects which are not directly
referenced. For instance, if a pointer to an object is used but no fields are ever referenced,
then HP aC++ only emits symbolic debug information for the pointer type and not for the
type of object that the pointer points to. For instance, use of Widget * only emits debug
information for the pointer type Widget * and not for Widget. If you wish such
information, you can create an extra source file which defines a dummy function that has
a parameter of that type (Widget) and link it into the executable program.

Known Problems and Workarounds
Known Limitations

Chapter 520

• Known limitations of exception handling features:

— Interoperability with setjmp/longjmp (undefined by the ISO/ANSI C++ international
standard) is unimplemented. Executing longjmp does not cause any destructors to be
run.

— If an unhandled exception is thrown during program initialization phase (that is,
before the main program begins execution) destructors for some constructed objects
may not run.

— HP aC++ does not support the linker option -Bsymbolic. Use the compile time option
-Bprotected_def if you want to throw types out of a shared library. This limitation
also occurs for dynamic_cast and RTTI.

• Known limitations of signal handling features:

— Throwing an exception from a signal handler is not supported, since a signal can occur
anyplace, including optimized regions of code in which the values of destructible
objects are temporarily held in registers. Exception handling depends on destructible
object being up-to-date in memory, but this condition is only guaranteed at call sites.

— Issuing a longjmp in a signal handler is not recommended for the same reason that
throwing an exception is not supported. The signal handler interrupts processing of
the code resulting in undefined data structures with unpredictable results.

• Source-level debugging of C++ shared libraries is supported. However, there are
limitations related to debugging C++ shared libraries, generally associated with classes
whose member functions are declared in a shared library, and that have objects declared
outside the shared library where the class is defined. Refer to the appropriate release
notes and manuals for the operating system and debugger you are using. Refer also to the
Software Status Bulletin for additional details.

• Instantiation of shared objects with virtual functions in shared memory is not supported.

• Using shl_load(3X) or dlopen(3C) with Library-Level Versioning:

Once library-level versioning is used, calls to shl_load() or dlopen() (see
shl_load(3X)) should specify the actual version of the library that is to be loaded.

For example, if libA.so is now a symbolic link to libA.so.1, then calls to dynamically
load this library should specify the latest version available when the application is
compiled, such as:

shl_load("libA.so.1", BIND_DEFERRED, 0);

This will insure that, when the application is migrated to a system that has a later
version of libA available, the actual version desired is the one that is dynamically loaded.

Known Problems and Workarounds
Known Limitations

Chapter 5 21

• Memory Allocation Routine alloca()

The compiler supports the built in function, alloca, defined in the /usr/include/alloca.h
header file. The implementation of the alloca() routine is system dependent, and its use
is not encouraged.

alloca() is a memory allocation routine similar to malloc() (see malloc(3C)). The
syntax is:

void *alloca(size_t <size>);

alloca() allocates space from the stack of the caller for a block of at least <size> bytes,
but does not initialize the space. The space is automatically freed when the calling routine
exits.

NOTE Memory returned by alloca() is not related to memory allocated by other
memory allocation functions. Behavior of addresses returned by alloca()
as parameters to other memory functions is undefined.

To use this function, you must use the <alloca.h> header file.

Known Problems and Workarounds
Known Limitations

Chapter 522

Related Documentation
Online Documentation

Chapter 6 23

6 Related Documentation

Documentation for HP aC++ / HP C is described in the following sections.

Online Documentation
The following online documentation is included with the HP aC++/HP C products:

• HP aC++ Programmer’s Guide
Access this guide in any of the following ways:

— Use the +help command line option: /opt/aCC/bin/aCC +help

— From your web browser, enter the appropriate URL:
file:/opt/aCC/html/C/guide/index.htm

NOTE All of the files composing the guide are installed in the
/opt/aCC/html/C/guide/ directory. If you choose to move the entire
English guide to a different location without having to edit any links,
you need to move all of the subdirectories in /opt/aCC/html/C/guide/.

— The guide (excluding Rogue Wave documentation) is also available on the World Wide
Web at http://docs.hp.com/hpux/dev/index.html.

• HP-UX 64-bit Porting and Transition Guide

This guide helps developers transition applications from an HP-UX 32-bit platform to the
HP-UX 64-bit platform. It is available on the HP-UX 11.x CD-ROM and on the World
Wide Web at: http://docs.hp.com/hpux/dev/index.html

• HP Linker and Libraries Online User Guide

To access, use the command: /usr/ccs/bin/ld +help

• HP Wildebeest Debugger (HP WDB)

HP WDB documentation is available in /opt/langtools/wdb/doc

HP WDB and its related documentation are available online at
http://www.hp.com/go/wdb

Related Documentation
Online Documentation

Chapter 624

• Rogue Wave Software Standard C++ Library 2.2.1 Class Reference

This reference contains an alphabetical listing of all of the classes, algorithms, and
function objects in the updated Rogue Wave Standard C++ Library. The library includes
the standard iostream library and has namespace std enabled.

The reference is provided as HTML formatted files. You can view these files with an
HTML browser by opening the file /opt/aCC/html/libstd_v2/stdref/index.htm or
select the hyperlink from HP aC++ Programmer’s Guide.

• Rogue Wave Software Standard C++ Library 2.2.1 User’s Guide

This guide gives information about library usage and includes an extensive discussion of
locales and iostreams.

The guide is provided as HTML formatted files. You can view these files with an HTML
browser by opening the file /opt/aCC/html/libstd_v2/stdug/index.htm or select the
hyperlink in the main online help topic for HP aC++.

• Rogue Wave Software Standard C++ Library 1.2.1 Class Reference

This reference provides an alphabetical listing of all of the classes, algorithms, and
function objects in the prior Rogue Wave implementation of the Standard C++ Library. It
is provided as HTML formatted files. You can view these files with an HTML browser by
opening the file /opt/aCC/html/libstd/ref.htm.

• Rogue Wave Software Tools.h++ 7.0.6 Class Reference

This reference describes all of the classes and functions in the Tools.h++ Library. It is
intended for use with Rogue Wave Standard C++ Library 1.2.1.

The reference is provided as HTML formatted files. You can view these files with an
HTML browser by opening the file /opt/aCC/html/librwtool/ref.htm.

There are 8 templates documented in the main part of the manual as still supported. This
is incorrect. The interfaces for the following 8 templates must be translated to the new
interface with two extra template arguments:

RWTPtrHashDictionary ==> RWTPtrHashMap
RWTPtrHashDictionaryIterator ==> RWTPtrHashMapIterator
RWTPtrHashTable ==> RWTPtrHashMultiSet
RWTPtrHashTableIterator ==> RWTPtrHashMultiSetIterator
RWTValHashDictionary ==> RWTValHashMap
RWTValHashDictionaryIterator ==> RWTValHashMapIterator
RWTValHashTable ==> RWTValHashMultiSet
RWTValHashTableIterator ==> RWTValHashMultiSetIterator

Refer to defect CR JAGaa90638.

Related Documentation
Online Documentation

Chapter 6 25

NOTE Refer to the HP aC++ Online Programmer’s Guide Information Map for how
to obtain additional Rogue Wave documentation and information.

• HP aC++ Release Notes is this document. The online ASCII file can be found at
/opt/aCC/newconfig/RelNotes/ACXX.release.notes.

• Online man pages for aCC and c++filt are at /opt/aCC/share/man/man1.Z.

Man pages for the Standard C++ Library and the cfront compatibility libraries
(IOStream and Standard Components) are provided under /opt/aCC/share/man/man3.Z.

Online C++ Example Source Files

Online C++ example source files are located in the /opt/aCC/contrib/Examples/RogueWave
directory. These include examples for the Standard C++ Library and for the Tools.h++
Library.

Printed Documentation

HP aC++/HP C Release Notes is this document. A printed copy of the release notes is
provided with the HP aC++ / HP C product. Release notes are also provided online, as noted
above.

Other Documentation

Refer to the HP aC++ Programmer’s Guide Information Map for documentation listings,
URLs, and course information related to the C++ language.

The following documentation is available for use with HP aC++.

• Parallel Programming Guide for HP-UX Systems (B6056-90006) describes efficient
parallel programming techniques available for the HP Fortran 90, HP C, and HP aC++
compilers on HP-UX.

This document is available on the HP-UX 11.x CD-ROM and on the World Wide Web at
the following URL: http://docs.hp.com/hpux/dev/index.html.

To order a paper copy, contact Hewlett-Packard’s Support Materials Organization (SMO)
at 1-800-227-8164 and provide the above part number.

To order printed versions of other Hewlett-Packard documents, refer to manuals(5).

Related Documentation
Online Documentation

Chapter 626

HP aC++ World Wide Web Homepage

Access the HP aC++ World Wide Web Homepage at the following URL:
http://www.hp.com/go/cpp.

Refer to the homepage for the latest information regarding:

• Frequently Asked Questions

• Release Version and Patch Table

• Purchase and Support Information

• Documentation Links

• Compatibility between Releases.

HP C World Wide Web Homepage

Access the HP C World Wide Web Homepage at the following URLs:

• http://www.hp.com/go/c

