
HP aC++ Release Notes

Version A.03.70

Edition 7

HP-UX Systems
Manufacturing Part Number: 5991-4872

June 2006

United States

© Copyright 2006 Hewlett-Packard Development Company L.P.

Legal Notices
The information contained herein is subject to change without notice.

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Printed in the United States

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Trademark Notices

UNIX is a registered trademark of The Open Group.
2

1 HP aC++ Release Notes

The information in this document applies to the release of HP aC++ compiler, version A.03.70,
for the HP-UX 11i operating system.
Chapter 1 3

HP aC++ Release Notes
Announcement
Announcement
The HP aC++ compiler is HP’s implementation of the ISO/IEC 14882 Standard for the C++
Programming Language (the international standard for C++) and largely conforms to this
standard.

HP aC++ provides a variety of performance related options, in addition to the options
described in these release notes. See HP aC++ Online Programmer’s Guide for more
information.

Features introduced in prior release versions are also listed and grouped by the compiler
version number.

This document discusses the following topics:

• "New Features in Version A.03.70" on page 5

• “New Features in Version A.03.65” on page 10

• “New Features in Version A.03.60” on page 15

• “New Features in Version A.03.55.02” on page 18

• “New Features in Version A.03.55” on page 19

• “New Features in Version A.03.50” on page 20

• “New Features in Version A.03.37” on page 24

• “New Features in Version A.03.33” on page 29

• “New Features in Version A.03.30” on page 44

• “New Features in Version A.03.27” on page 49

• “New Features in Version A.03.25” on page 52

• “New Features in Version A.03.13” on page 60

• “New Features in Version A.03.10” on page 61

• “New Features in Version A.03.04” on page 63

• “Installation Information” on page 65

• “Compatibility Information” on page 66

• “Problem Descriptions and Fixes, and Known Limitations” on page 70

• “Related Documentation” on page 79
Chapter 14

HP aC++ Release Notes
What’s in This Version
What’s in This Version
This section gives an overview of the new features introduced in this version of the HP aC++
compiler.

New Features in Version A.03.70

Following are the new features in HP aC++ version A.03.70:

• The HP Code Advisor, a source code analysis tool

• The -fshort-enums command-line option

• The _HP_NONSTD_FAST_IOSTREAM performance improvement directive

• The +rodata_array_init Option for Memory efficient initialization for local arrays

• Option mapping support for easy migration

• Configuration file to set sitewide default options

• C++ Standard Library Change

The HP Code Advisor, a source code analysis tool

This release introduces a new tool, HP Code Advisor (cadvise) that enables programmers to
detect various programming errors in C and C++ source code. This tool helps you to identify
potential coding errors, porting issues, and security errors.

You can invoke this tool from /opt/cadvise/bin/cadvise in the command line. For more
information on how to use the various options in this tool, see the HP code Advisor Release
Notes.

The updated version of the HP Code Advisor is also available for free download at:

http://www.hp.com/go/cadvise

The -fshort-enums Command-Line Option

This new command-line option allocates only as many bytes as required for the declared
range of possible values to an enum type. The enum type is equivalent to the smallest integral
type, which has enough memory space for the declared enumerator range.
Chapter 1 5

HP aC++ Release Notes
What’s in This Version
NOTE Using -fshort-enums causes the compiler to generate code that may be binary
incompatible with the code generated without this option. To generate
compatible code, do not use or define external enumerators (defined or used in
other source files or shared libraries) that are compiled without this option.

The _HP_NONSTD_FAST_IOSTREAM Performance Improvement Directive

HP aC++ A.03.70 has a new performance improvement preprocessor directive,
-D_HP_NONSTD_FAST_IOSTREAM, which improves the iostream performance. This directive
enables the following non-standard features:

• Sets ios_base::sync_with_stdio(false), which disables the default synchronization
with stdio.

• Sets std::cin.tie(0), which unties the cin from other streams.

• Replaces all occurrences of "std::endl" with "\n".

Enabling this directive might result in noticeable performance improvement, if the
application uses iostreams more often.

NOTE Do not enable -D_HP_NONSTD_FAST_IOSTREAM directive in any of the following
cases:

• If the application assumes C++ stream to be in sync with C stream

• If the application depends on stream flushing behavior with endl

• If the user uses "cout.unsetf(ios::unitbuf)" to unit buffer the output
stream.

The +rodata_array_init Option for Memory Efficient Initialization for Local Arrays

A new command-line option, +rodata_array_init is added in HP aC++ A.03.70 to enable
memory efficient initialization for local arrays.

When you use this option, the compiler allocates the local array initializers (that it generates
for initialized local arrays) to the read-only data section. By default, these initializers are
allocated to the data section.
Chapter 16

HP aC++ Release Notes
What’s in This Version
NOTE If the array is initialized with addresses, this option can cause an increase in
run time. The increase is based on the number of addresses in the array
initializer and the number of times the array is initialized. This overhead is
normally negligible.

Option Mapping Support for Easy Migration

The option mapping support available in HP aC++ A.03.70 facilitates easy migration of build
environment from a different compiler to HP aC++. You can use the option mapping files to
map the options in the third party compilers to HP aC++ equivalents

Mapping File:

The mapping file is a text file that defines the mapping rules. The compiler reads the mapping
file and applies the specified replacements to the options on the command line. This
minimizes the need to make Makefile or script changes. By default, the path for the mapping
file is set to the following location:

/opt/aCC/lib/option.map

You may either define the mapping rules in this file or set the mapping file path to an
alternate location. To specify an alternate location, set the CXX_MAP_FILE environment
variable, like the following example:

export CXX_MAP_FILE=/home/src/my_option.map (sh/ksh)
setenv CXX_MAP_FILE /home/src/my_option.map (csh)

where:
my_option.map is the name of the new mapping file.

To disable the use of the mapping file (in spite of having one in the default location), set the
above environment variable to NULL, like the following example:

export CXX_MAP_FILE= (sh/ksh)
export CXX_MAP_FILE="" (sh/ksh)
setenv CXX_MAP_FILE "" (csh)

Defining the Mapping Rules:

Following is the syntax for defining the rules in the mapping file:

LHS => RHS (Note the space before and after "=>")

Where:
LHS is the third party compiler optio.
RHS is the HP aC++ compiler option
Chapter 1 7

HP aC++ Release Notes
What’s in This Version
To define rules for options that have arguments, use the $<number>wildcard. For example, $1
for the first argument, and $2 for the second. If the third party compiler option (LHS) does not
match with any HP aC++ option, leave the RHS blank.

Example Rules:

The following example rules map gcc compiler options to corresponding HP aC++ compiler
options. The same rules can be used for mapping options from any third party compiler. The
syntax for the rule becomes as follows:

gcc_option => hp_option

• -Wtraditional =>
Ignores (removes) -Wtraditional, a gcc option from the command line.

• -shared => -b
Replaces -shared with -b at the command line.

• -rpath-link $1 =>
Deletes -rpath-link and the arguments from the command line.

• --gccopt $1=$2 => -hpopt $2
Replaces “--gccopt option=name" at the command line with "-hpopt name".

• -gccopt $1 => +xyz
Replaces "-gccopt optionarg" at the command-line with "+xyz".

• -Bstatic => -a archive -noshared
Replaces "-Bstatic" with "-a archive -noshared".

Configuration File to set Site-wide Default Options

You can specify default sitewide options for HP aC++ in a configuration file. On startup, HP
aC++ reads, and applies the default options from the file if the file is found and readable. No
default options are set if the file is not found or readable.

The default path of the configuration file is set to the following locations:

/var/ansic/share/cc.conf in C mode
/var/aCC/share/aCC.conf in C++ mode

To change the path of the configuration file, use the following environment variables:

CC_CONFIG in C mode
CXX_CONFIG in C++ mode

The options in the configuration file can be specified in the same format as that for CCOPTS
and CXXOPTS.

[options-list-1][<vbar> [options-list-2]]
Chapter 18

HP aC++ Release Notes
What’s in This Version
Where:
options-list-1 is applied before the options in the command line
options-list-2 is applied after the options in the command line
<vbar> is |

The final option ordering is as follows:

<file-options-1><envvar-options-1><commandline-options> <envvar-option
s-2><file-options-2>

NOTE No default configuration files are shipped with HP aC++. The system
administrator can create them, if required.

C++ Standard Library Change

Technical Corrigenda 1 (TC1) of the ANSI/ISO C++ Standard has changed the STL function
make_pair to take their arguments by value instead of const reference. This change brings the
HP library into compliance if the enabling macro -D__HP_TC1_MAKE_PAIR is specified at
compile time. For binary compatibility reasons, the default behavior is unchanged.
Chapter 1 9

HP aC++ Release Notes
New Features in Version A.03.65
New Features in Version A.03.65
HP aC++ version A.03.65 supports the following new features:

• +Onolibcalls=func1[,func2,...] Option

• Improved NRV Optimization

• Improved Compile Time

• Debugging of Inline Functions

• Improved Template Usability

• Destruct Locals when pthread_exit is Called

• Accessing Members of Enclosing Class from a Nested Class

• Performance Improvement of Strings With -mt

+Onolibcalls=func1[,func2,...] Option

Now, a list of function names can be specified as arguments to the +Onolibcalls option. The
function names can be given after a '=' following the +Onolibcalls option.

If multiple function names have to be specified, they must be separated by commas as shown.
There cannot be any intervening spaces or blanks. Multiple functions can also be specified
with multiple +Onolibcalls options.

The functions specified are expected to be part of the millicode routines' library.

This new syntax of the +Onolibcalls option allows users to selectively disable the inlining of
only the specified library routines. Previously, it was possible only to either inline all the
library routines (using +Olibcalls) or to disable all of them (using +Onolibcalls).

Improved NRV Optimization

From this release, the compiler does further optimizations with NRV (Named Return Value
optimization) to eliminate unnecessary calls with const initializations. For example:

#include <stdio.h>

struct C {
C() {}
C(C const &) { printf(“Copy Constructorn”); }

};
Chapter 110

HP aC++ Release Notes
New Features in Version A.03.65
const C func2() { return C(); }

int main() {
const C b = func2();

In this case, the compiler eliminates the copy constructor call.

Improved Compile Time

With this release, there is a significant reduction in compile time for applications involving
operator overloading and function overloading.

Debugging of Inline Functions

HP aC++ Version A.03.65 now supports debugging of inline functions. This feature enables
you to set breakpoints and watch points, do 'step-in' and 'step-out', and display, view, or
change the value of local variables in inline functions using WDB. To enable this feature, use
the +inline_debug option, which will implicitly pass the -g option to the compiler.

Improved Template Usability

This version significantly improves the support for C++ template features with more
conformance to the ISO/IEC 14882 C++ Standard. Specifically, support for member templates,
argument deduction, partial specialization, and dependent name lookup have been improved.

Destruct Locals when pthread_exit is Called

When pthread_exit is called in multithreaded C++ applications, the exiting thread exits
without calling destructors for the active local objects. This behavior is not always desirable,
certain applications might require the destructors to be called for objects on the stack of
exiting thread.

From this release, support is provided for calling destructors for active local objects when
pthread_exit is called on a thread. To enable this feature, you need to set the environment
variable aCC_PTHREAD_EXIT_CLEANUP=1|ON.

Consider the following example:

#include <pthread.h>

#include <stdio.h>

class A {

public :

A() { printf("A()\n"); }
Chapter 1 11

HP aC++ Release Notes
New Features in Version A.03.65
~A() { printf("~A()\n"); }

};

void foo() {

A a2;

pthread_exit((void *) 77);

}

void* bar(void *inThread) {

A a1;

foo();

return 0;

}

int main() {

pthread_t tid;

if (pthread_create(&tid, 0, &bar, NULL)) {

perror("pthread create failed\n");

}

pthread_join(tid, NULL);

return 0;

}

With this feature enabled, for this example, both the constructors and destructors will be
called for local variables a1 and a2 in functions foo and bar.

This feature requires exception handling info and if functions are compiled with +noeh, no
destructors will be called with no indication of a problem. This is similar to mixing and
matching +eh code with +noeh code and doing a throw across the mixture.

This feature is available only in the shared version of C++ runtime library and on HP-UX 11.x
PA-RISC versions.

Accessing Members of Enclosing Class from a Nested Class

Prior to this release, the aCC compiler disallowed accessing of members of enclosing class
from a nested class. Friend access was required for such cases. However, the C++ Standards
Committee is planning to relax this restriction and this feature is implemented in many
compilers.
Chapter 112

HP aC++ Release Notes
New Features in Version A.03.65
With this release, a member of a class can also access all names as it accesses the names in
the class of which it is a member:

class Enclosing {

static void f();

class Nested {

public:

void Help(Enclosing encl) {

Enclosing::f(); // ok, no error

encl.f(); // ok, no error

}

};

};

Performance Improvement of Strings With -mt

Two changes have been made to increase performance of strings with -mt.

The first helps -AP strings. Locking is no longer done for the null string. This should eliminate
thread contention when creating empty strings. This has always been available for -AA
strings.

In the second, a new flag has been defined to reduce the amount of space for string mutexes
and thereby increase performance when using either -AA or -AP strings.

Instead of having one mutex per string, there is now a fixed array of mutexes that are shared
amongst all strings.

Because this feature requires a new runtime, it is enabled with
-D__HPACC_FIXED_REFCNT_MUTEX and requires the following aC++ runtime patches:

PHSS_31855 'aC++ Runtime (IA: A.05.61, PA A.03.61)' 11.23

PHSS_32573 'HP aC++ -AA runtime libraries (aCC A.03.61)' 11.11

PHSS_32574 'HP aC++ -AA runtime libraries (aCC A.03.61)' 11.00

CAUTION If the appropriate aC++ runtime patch is not installed, the following unsats will
occur:

 HPMutexWrapper::init(int) -AP

 _HPMutexWrapper::init(int) -AA
Chapter 1 13

HP aC++ Release Notes
New Features in Version A.03.65
And the following new symbols are defined in aC++ runtime library (libCsup):

 __libCsup_mutex_alloc

 __libCsup_mutex_context

The number of string mutexes defaults to 64 and can be configured by:

export aCC_MUTEX_ARRAY_SIZE=##

You can mix code compiled with and without -D__HPACC_FIXED_REFCNT_MUTEX provided you
have the new aC++ runtime installed.
Chapter 114

HP aC++ Release Notes
New Features in Version A.03.60
New Features in Version A.03.60
HP aC++ version A.03.60 supports the following new features:

• Debugging of Optimized Code (DOC) in 64-Bit Mode

• Enhancements to C++ Runtime Support Library

• Improved Performance of C++ Virtual Calls at +O4

• Optimizer Tune-Up for PA8800

• Improved C++ Class Array Construction Performance

• Improved Compile Time

• Improved C++ Template Usability

Debugging of Optimized Code (DOC) in 64-Bit Mode

Now it is possible to debug code optimized at +O2 in 64-bit (wide) mode using HP aC++. Use
the compilation option -g +O2 +DD64 to achieve this.

Earlier, DOC was available only in 32-bit (narrow) mode.

Enhancements to C++ Runtime Support Library

In C++, it is possible to make the compiler generate calls to pure virtual functions. When this
happens inadvertently, it can be hard to locate the class to which the pure virtual function
belongs. The HP aC++ runtime library has been enhanced to print the name of the containing
class when a pure virtual function is called during execution.

Example:

struct base {
base() { something(this); }
friend void something(base *b){ b->bar(); }
virtual void bar() = 0;

};

struct deri: public base{
void bar(){}
};
Chapter 1 15

HP aC++ Release Notes
New Features in Version A.03.60
int main(){
deri d;

}

When executing this program, the following message will be printed:

aCC runtime: pure virtual function called for class “base”.

Patches Required

Prior to running HP aC++, one of the following runtime library patches must be installed:

• PHSS_31221: s700_800 11.11 HP aC++ -AA runtime libraries

• PHSS_31852: s700_800 11.23 HP aC++ -AA runtime libraries

In addition, it is recommended that you install the core patches distributed on the extension
software media.

Improved Performance of C++ Virtual Calls at +O4

Performance of virtual calls at +O4 has been improved for C++ applications. This is expected
to provide performance benefits to user applications written in C++ which have lot of virtual
calls.

Optimizer Tune-Up for PA8800

PA8800 supports a cache line size of 128, whereas PA8700 had a cache line size of 64. A new
option +DA8800 is provided, to set the cache line size used by the compiler as 128. This also
sets the architecture version equivalent to +DA2.0N.

Improved C++ Class Array Construction Performance

This version has improved performance of C++ class array construction. However, this results
in an increase in the size of generated code. You can turn this feature off by setting
aCC_ARRAY_OPT environment variable to OFF or 0.

Improved Compile Time

With this release, there is a significant reduction in compile time for applications involving
static initializations of huge aggregates.
Chapter 116

HP aC++ Release Notes
New Features in Version A.03.60
Improved C++ Template Usability

This version has significantly improved support for C++ template features, with more
conformance to the ISO/IEC 14882 C++ Standard. Specifically, support for member templates,
the use of typename and template keywords, parsing of templates and robustness of the
templates have been improved.
Chapter 1 17

HP aC++ Release Notes
New Features in Version A.03.55.02
New Features in Version A.03.55.02
HP aC++ version A.03.55.02 supports the following new feature:

placement delete Feature Fully Supported

The placement delete feature is fully implemented in this version. If, during object
initialization, as part of a placement new call (for example, during constructor invocation on
a class object instance), an exception is thrown, then a matching placement delete call is
made, with the same arguments as placement new.

Example:

class A {
public:
void *operator new(size_t);
void operator delete(void *);
void *operator new(size_t, A*);
void operator delete(void*, A*);
// ...
};

Given the following placement new expression:

A *ps = new (ptr) A;

If the default constructor for class A exits by throwing an exception, the implementation looks
for an operator delete() in the scope of class A.

For an operator delete() to be considered, it must have parameters with types that match
those of the operator new() called. Because the first parameter of an operator new() is always
of type size_t and the first parameter of an operator delete() is always of type void*, the
first parameter of each function is not considered for this comparison.

The implementation looks in class A for an operator delete() of the following form:

void operator delete(void*, A*);

If operator delete() is found in class A, it is called to deallocate the storage. If operator
delete() is not found, then it is not called.
Chapter 118

HP aC++ Release Notes
New Features in Version A.03.55
New Features in Version A.03.55
HP aC++ version A.03.55 supports the following new features:

• -notrigraph Option

• NO_SIDE_EFFECTS Pragma

-notrigraph Option

This option inhibits the processing of trigraphs. The -notrigraph option, in previous
versions, caused the legacy preprocessor to be invoked, which ignored trigraphs. These
trigraphs were still interpreted by the compiler in the preprocessed source.

In this version, the -notrigraph option does not invoke the legacy preprocessor and also
suppresses the trigraphs from being interpreted.

This option is not recommended. The proper portable solution is to quote the "?" as "\?".

NO_SIDE_EFFECTS Pragma

This pragma states that functionname and all the functions that functionname calls will not
modify any of a program’s local or global variables. This pragma provides additional
information to the optimizer which results in more efficient code.

Syntax:

#pragma NO_SIDE_EFFECTS functionname,..., functionnameN

Example:

 #pragma NO_SIDE_EFFECTS foo

 // where foo is name of a function.
Chapter 1 19

HP aC++ Release Notes
New Features in Version A.03.50
New Features in Version A.03.50
HP aC++ version A.03.50 supports the following new features:

• Precompiled Header (PCH) Feature Fully Supported under -AA

• Debugging Optimized Code (DOC)

• +O[no]clone Option

• +O[no]memory[=malloc]

• Improved Prefetching and Data Locality for PA8800

• Improved Optimization of Exception Handling Code Sequences at Optimization Level
+O2 with +Oexception Option

• restrict Keyword

• Increased +O3/+O4 Robustness with aCC

• Support for gdb steplast

• +Olit=[all|none] Option

• Dynamic Unloading of C++ Runtime Shared Library (libCsup)

• Pragma INIT and Pragma FINI in 32-bit mode

Precompiled Header (PCH) Feature Fully Supported under -AA

Precompiled Header (PCH) is now fully supported with -AA option. That means PCH feature
can be used with STL (Standard Template Library).

Debugging Optimized Code (DOC)

Debugging of optimized code (at optimization level +O2) is more robust now. Debugging of
template functions is much improved.

+O[no]clone Option

This option provides user control to turn on [off] the cloning feature of the optimizer. This
option is primarily for users who may see a lot of cloning adversely affecting the performance
of their code, and want more control over cloning.
Chapter 120

HP aC++ Release Notes
New Features in Version A.03.50
Cloning is on by default, and is valid at optimization levels +O3 and +O4. When inlining is
turned off, cloning is turned off too.

+O[no]memory[=malloc]

This option enables [disables] memory optimizations. Specifying malloc in the list enables
[disables] optimizations which consolidate memory allocation procedure calls. This option is
disabled by default. This option is incompatible with +Oopenmp and +Oparallel, and is
ignored.

Improved Prefetching and Data Locality for PA8800

Taking advantage of the increased cache line length of PA8800 processor (128 bytes), the
compiler generates better code with improved data prefetching and data locality. This may
help improve the performance of loop intensive applications.

Improved Optimization of Exception Handling Code Sequences at
Optimization Level +O2 with +Oexception Option

The compiler now does a much more robust optimization in and around the code regions
containing try/catch constructs. This is expected to provide performance boost to C++
applications with a large amount of exception handling. This can be turned on with option
+Oexception.

restrict Keyword

This is a C99 feature. This keyword tells the optimizer that variables declared as restrict
cannot have aliases (using pointers). Thus optimizer can do better alias analysis.

As of the current release, only the keyword is supported without any accompanying
optimizations.

Increased +O3/+O4 Robustness with aCC

Robustness and usability of optimizations levels +O3/+O4 has been improved for C++
applications. This is expected to provide performance benefits to user applications written in
C++.
Chapter 1 21

HP aC++ Release Notes
New Features in Version A.03.50
Support for gdb steplast

In order to use the new steplast command of gdb, C++ programs must be built with -g0
option only.

NOTE Because of the extra debug information emitted to support this feature, it is
expected that there will be minor compatibility issues encountered while using
DDE. To be more specific, if you receive the following message from within DDE
when you have built using -g0,

 ?(dde/ui_line) File “.../test.c” has only NNN lines.

 Stopped at: \\test\main\134217746 (00002404)

you can turn off the extra debug information by setting the environment
variable aCC_ENABLE_STEPLAST to OFF.

$ export aCC_ENABLE_STEPLAST=OFF

+Olit=[all|none] Option

The +Olit option specifies the type of data items placed in the read-only data section. +Olit
can take the values all and none.

+Olit=all places all string variables and all const-qualified variables that do not require
load-time or run-time initialization in the read-only data section.

If +Olit=none is specified, no constants are placed in the read-only data section.

Dynamic Unloading of C++ Runtime Shared Library (libCsup)

It is safe to dynamically load and unload C++ shared libraries that directly or indirectly
depend on shared library, libCsup. It is no longer necessary to specify -lCsup on the link line
while building a non-C++ main executable.

Pragma INIT and Pragma FINI in 32-bit mode

Pragmas INIT and FINI now work in 32-bit mode too. Functionality of both the pragmas are
similar to their functionality in the 64-bit mode. See aCC online help (aCC +help) for more
information.
Chapter 122

HP aC++ Release Notes
New Features in Version A.03.50
Patches Required

The following patches must be installed in order to enable all these new features:

For HP-UX B.11.00:

• PHSS_28879 (aC++ runtime)

• PHSS_28869 (linker)

For HP-UX B.11.11:

• PHSS_28880 (aC++ runtime)

• PHSS_28871 (linker)
Chapter 1 23

HP aC++ Release Notes
New Features in Version A.03.37
New Features in Version A.03.37
New features in HP aC++ version A.03.37 are listed below:

• Rogue Wave Tools.h++ Version 7.1.1 Compatible with -AA

• UTF-16 Character Transformation Format Support

• __restrict Keyword Support

• +ub and +sb Options to Control Bitfield Signedness

• ANSI C++ Covariant Return Type

• Improved Support for PCH with -AA

• Improved Support for Pack and Align Pragmas

• Improved DOC (Debug Optimized Code) Support

• Performance Improvements to -AA iostream

• Thread Muted Contention Fix on Null Strings with -AP

Rogue Wave Tools.h++ Version 7.1.1 Compatible with -AA

Rogue Wave Tools.h++ library version 7.1.1 can now be used with -AA option, that is, it can be
used with the Standard C++ Library 2.1.1. Note that the earlier Tools.h++ library version
7.0.6 could not be used with -AA.

UTF-16 Character Transformation Format Support

The current compiler supports only ASCII strings or characters (8 bit chars with no
transliteration) as UTF-16. UTF-16 is described in the Unicode Standard, version 3.0
[UNICODE]. The definitive reference is Annex Q of ISO/IEC 10646-1 [ISO-10646].

Any string or character which is preceded by ‘u’ is recognized as a UTF-16 literal or character
and is stored as an unsigned short type.

Example:

#define _UTF16(x) u##x

#define UTF16(y) _UTF16(#y)

typedef unsigned short utf16_t;

utf16_t *utf16_str = UTF16(y); // u”y”
Chapter 124

HP aC++ Release Notes
New Features in Version A.03.37
int size = sizeof(u’t’); // size of 2 bytes

__restrict Keyword Support

The __restrict keyword is now recognized by the compiler. Refer to the description of the
C99 restrict type-qualifier keyword in ISO/IEC 9899:1999 (6.7.3).

+ub and +sb Options to Control Bitfield Signedness

The +ub option treats unqualified bit fields as unsigned. The +sb option treats unqualified bit
fields as signed. The +uc option overrides +sb option for char bitfields.

Note that in 64 bit mode, +sb option is set by default, to match HP C.

ANSI C++ Covariant Return Type

With this release, covariant return type feature is fully supported. Basically, return type of an
overriding function can be a pointer or reference to a class derived from the return type of the
base class.

Example 1:

class BaseClass

 {

 public:

 virtual BaseClass* foo();

 };

 class DerivedClass : public BaseClass

 {

 public:

 DerivedClass* foo();

 };

Example 2:

class BaseClass_1

 {
Chapter 1 25

HP aC++ Release Notes
New Features in Version A.03.37
 public:

 virtual BaseClass_1* foo();

 };

 class BaseClass_2

 {

 public:

 virtual BaseClass_2* goo();

 };

 class DerivedClass : public BaseClass_1, BaseClass_2

 {

 public:

 DerivedClass* goo();

 };

NOTE HP WDB3.1 does not support covariant return types. So, gdb can’t step into a
covariant function. However, setting a breakpoint at a covariant function and
running into it will work fine. Debugger will show the internal compiler
generated function, when a user does a backtrace, or finish, or return in gdb
at a covariant function.

Improved Support for PCH with -AA

Support for using the PCH feature with -AA option has been improved. A significant number
of problems have been addressed since the previous release. Note that, this feature is not fully
supported in -AA mode. There may be unexpected compile-time problems.

Improved Support for Pack and Align Pragmas

See HP aC++ Online Programmer’s Guide at http://docs.hp.com for more details.
Chapter 126

HP aC++ Release Notes
New Features in Version A.03.37
Improved DOC (Debug Optimized Code) Support

Ability to debug the optimized C++ code (DOC) has been improved significantly in this
release. To use these improvements, set the environment variable aCC_DOC_MODE to ON.

Example:

$ cat sample.C

 #include <stdio.h>

 int x = 1;

 int main() {

 int j = 4;

 printf(“we are here:%d:\n”, j);

 }

$ aCC_DOC_MODE=ON aCC -g -O sample.C

Now, with the improved DOC, while debugging the above sample program you can display the
correct value of local variable j.

NOTE In further releases, the above environment variable will be automatically set by
the compiler.

Performance Improvements to -AA iostream

Standard C++ Iostreams have been further tuned to improve the performance of I/O.
Sometimes, the obtained performance may be comparable to that of old iostream.h library
(that is, -AP).

Thread Muted Contention Fix on Null Strings with -AP

Using the string template (with -AP) in a threaded environment may result in excessive
contention on a single null string mutex. This is because of the usage of a single null string
object for default initialization and string modifications.

This fix is enabled with -D__HPACC_THREAD_NULL_STRING
Chapter 1 27

HP aC++ Release Notes
New Features in Version A.03.37
NOTE There is a very small chance that mixing objects or libraries compiled with and
without -D__HPACC_THREAD_NULL_STRING will lead to incompatibilities. This
is because the new implementation sets the null string reference count to
INT_MAX/2 whereas the old implementation would increment or decrement the
reference count. There is a very small chance that the reference count may
incorrectly go to 0 and the null string object may get deleted.

Patches Required

The following patches must be installed after installing version A.03.37 to able all new
features:

For HP-UX 11.00:

• PHCO_24723 (libc)

• PHCO_23792 (libpthread)

• PHSS_24303 (linker)

• PHSS_26945 (aC++ runtime)

• PHSS_25028 (libomp)

For HP-UX 11.11:

• PHCO_24400 (libc)

• PHCO_23846 (libpthread)

• PHSS_24304 (linker)

• PHSS_26946 (aC++ runtime)

• PHSS_25029 (libomp)
Chapter 128

HP aC++ Release Notes
New Features in Version A.03.33
New Features in Version A.03.33
New features in HP aC++ version A.03.33 are listed below:

• OpemMP Standard Supported

• aCC_MAXERR to Control Maximum Number of Compiler Errors

• Small Block Allocator for malloc

• Gather/Scatter Prefetch Pragma

• Support for SDK/XDK

• Support for _declspec

• -Bhidden and -Bhidden_def Command Line Options

• +Oprofile Option for Profile-Based Optimization

• Initialized Thread Local Storage

• -I- Option Enhanced to Perform prefixinclude Search

• Improved Optimization for HP_LONG_RETURN and +DA1.1

OpemMP Standard Supported

This release introduces full support for version 1.0 of the OpenMP C and C++ Application
Program Interface. This specification is available at http://www.openmp.org/specs.

To enable recognition of OpenMP pragmas, use the +Oopenmp command line option when
invoking aCC. This option is effective at any optimization level.

NOTE Currently +Onoparallel does not affect the OpenMP pragmas in

the source but still disables +Oautopar.

Because multithreading is involved, -mt must also be used with +Oopenmp. (Otherwise
runtime aborts may occur, especially with -AA.)

OpenMP programs require the libomp and libcps runtime support libraries to be present on
both the compilation and runtime systems. The compiler driver will automatically include
them when linking.

These libraries are installed by applying the appropriate patches:
Chapter 1 29

HP aC++ Release Notes
New Features in Version A.03.33
• PHSS_25028 - for 11.x prior to 11.11

• PHSS_25029 - for 11.11 and greater

It is recommended that you use the -N option when linking OpenMP programs to avoid
exhausting memory when running with large numbers of threads.

For this first release of aCC containing OpenMP, some debugging position information for
OpenMP constructs may not be accurate. In addition, symbols marked with the
threadprivate pragma may not be visible to the debugger. To work around this limitation,
use the __thread storage class specifier in the symbol declaration instead.

#if defined(__HP_aCC) && !defined(__THREAD)
 #define __THREAD __thread
 #else
 #define __THREAD
 #endif

 __THREAD int tprvt;
 #pragma omp threadprivate(tprvt)

OpenMP also supported in HP aC++ ANSI C mode (-Ae).

OpenMP Known Problems:

Initialization of firstprivate variables is erroneously done after calculation of the loop
iteration count. As a result, loops with iteration counts that depend on the value of
firstprivate variables will execute incorrectly. For example:

 int n = 100;
 #pragma omp for firstprivate(n)
 for (int i = 0; i < n; i++) {
 // Loop executes an indeterminate number of times because
 // private copy of n is not initialized prior to calculation
 // of loop iteration count.
 }

aCC_MAXERR to Control Maximum Number of Compiler Errors

The aCC_MAXERR environment variable allows you to set the maximum number of errors you
want the compiler to report before it terminates compilation. The current default is 12, but
you can set it to any number greater than zero.

The compiler may not be able to recover from all errors and still display:
Chapter 130

HP aC++ Release Notes
New Features in Version A.03.33
445 Cannot recover from earlier errors

instead of

699 Error limit reached: halting compilation

For example, the following increases the maximum to 100 errors:

$export aCC_MAXERR=100
 $aCC -c buggy.c

Small Block Allocator for malloc

The aC++ runtime now automatically enables malloc’s Small Block Allocator (SBA) after the
aCC runtime patch and libc patch appropriate for your system are installed. (See the
Required Patches section above.) This improves heap performance.

For more information see malloc(3) and mallopt(3) manpages.

The default values are:

M_MXFAST = 512 bytes

M_NLBLKS = 100

M_GRAIN = 8 bytes

If you want to change the defaults, the environment variable _M_SBA_OPTS can be used. The
format is:

export _M_SBA_OPTS=<maxfast>:<numlblks>:<grain>

If your existing application is already calling mallopt, then mallopt will likely return an
error because libCsup will have already called mallopt and allocated a small block by the
time the application calls mallopt.

If the above defaults are acceptable or you are already using _M_SBA_OPTS then the error
should just be ignored. If the defaults degrade performance, then either set _M_SBA_OPTS
with the values used by the application or disable this new feature by using the following:

export _M_SBA_OPTS=0:0:0

Applications with latent memory leaks may fail. If the application allocates a block that is too
small while SBA is disabled, the block may be padded such that a overrun of the end of the
allocated block might not cause a failure. But with SBA enabled, the next contiguous bytes
may have been used for control information and an overrun would corrupt the heap and cause
various aborts.
Chapter 1 31

HP aC++ Release Notes
New Features in Version A.03.33
Gather/Scatter Prefetch Pragma

A pragma is now supported to prefetch specified cache lines. The behavior of this pragma is
similar to +Odataprefetch but the prefetch pragma can access specific elements in indexed
arrays that are stored in cache. In addition, any valid lvalue can be used as an argument, but
the intent of the pragma is to support array processing.

Syntax

#pragma prefetch <argument>

There can be only one argument per pragma. The compiler generates instructions to prefetch
the cache lines starting from the address given in the argument. The array element values
prefetched must be valid. Reading outside the boundaries of an array results in undefined
behavior at runtime.

Example

The function below will prefetch ia and b, but not a[ia[i]] when compiled with the
command +O2 +Odataprefetch +DA2.0 (or +DA2.0W).

void testprefc2(int n, double *a, int *ia, double *b)
{
for (int i=0; i<n, i++) {
 b[i]=a[ia[i]];
}
}

Recording this routine as:

#define USER_SPECIFIED 30
void testprefc2(int n, double *a, int *ia, double *b)
{
int dist=(int)USER_SPECIFIED;
int nend=max(0,n_dist); /* so as not to read past the end of ia */
for(i=0;i<nend;i++) /* original loop is for (i=0;i<n;i++)*/
{
#pragma prefetch ia[i+4*dist]
#pragma prefetch a[ia[i+dist]]
 b[i]=a[ia[i]];
}
/* finish up last part with no prefetching */
Chapter 132

HP aC++ Release Notes
New Features in Version A.03.33
for (int i=nend;i<n;i++)
 b[i]=a[ia[i]];
}

The two pragma statements allow a[ia[i]] to be prefetched. Note that the compiler
continues to unroll the loops as in the original code.

There can be problems using the prefetch pragma when the kernel cannot allocate large
pages. Without large pages, there can be performance lost to Translation Lookaside Faults
(TLB). The optimal page size varies with different applications but 4MB page size is

a good average.

TLB faults occur when a particular page address does not reside in the TLB buffer. This
buffer contains the mapping of the virtual addresses to the absolute addresses of the pages
recently fetched in the cache. A TLB fault happens when a reference to a particular virtual
page address cannot be translated to an absolute address in the buffer.

Even when all the TLB and prefetch features are working, you are still limited by the memory
bandwidth of the system. The top bandwidth may be reduced by failing to load all the memory
slots in some PA-RISC systems. The memory controller depends on having all slots loaded to
get the best bank interleaving.

Support for SDK/XDK

The SDK/XDK feature helps in selecting components, headerfiles, and libraries installed in
alternate locations. You must set either one or both of the following environment variables:

• SDKROOT

• TARGETROOT

SDKROOT Environment Variable

The SDKROOT environment variable is used as a prefix for all references to tool set components
and must be set when you use a non-native development kit or a toolset installed at an
alternative location. Some of the toolset components are compiler drivers, Compiler
Applications, Preprocessor, Linker, and object file tools.

For example, if a compiler tool set is installed in directory /opt/xdk-ia/ then, export
SDKROOT=/opt/xdk-ia prefixes all references to the compiler tool set components with
/opt/xdk-ia.
Chapter 1 33

HP aC++ Release Notes
New Features in Version A.03.33
The following details the default tool set components location as specified in the above
command and its earlier location before the execution of the command:

Invoking the compiler driver aCC results in the invocation of tool set components from the
alternate location above.

If the compiler is non-native and installed in a different place, the directory path can be
prefixed for all references to the compiler. You have to set the environment variables XDKROOT
or SDKROOT to point to that directory.

For example, if the compiler is installed in directory /user/foo, then the command export
SDKROOT=/user/foo prefixes all references to the compiler with /user/foo.

For information on SDK usage scenarios, see HP-UX Software Development Kit User’s Guide
on http://devresource.hp.com.

TARGETROOT Environment Variable

The TARGETROOT environment variable is used as a prefix for all references to target set
components and must also be set when using a non-native development kit. Some of the
target set components are header files, archive libraries, and shared libraries.

For example, if a target tool set is installed in directory /opt/xdk-ia/ then, export
TARGETROOT=/opt/xdk-ia prefixes all references to the target tool set components with
/opt/xdk-ia.

Native Location Alternate Toolset Location

/opt/aCC/bin/aCC /opt/xdk-ia/opt/aCC/bin/aCC

/opt/aCC/lbin/ctcom /opt/xdk-ia/opt/aCC/lbin/ctcom

/opt/langtools/lbin/ucomp /opt/xdk-ia/opt/langtools/lbin/ucomp

Default Path New Path for Compiler

/opt/aCC/bin/aCC /user/foo/opt/aCC/bin/aCC

/opt/aCC/lbin/ctcom /user/foo/opt/aCC/lbin/ctcom

/opt/langtools/lbin/ucomp /user/foo/opt/langtools/lbin/ucomp
Chapter 134

HP aC++ Release Notes
New Features in Version A.03.33
The following details the default tool set components location as specified in the above
command and its earlier location before the execution of the command:

Environment variables like LPATH and options like -l or -L override $TARGETROOT prefixing.

Support for _declspec

This release supports __declspec(dllimport) and __declspec(dllexport) as keywords.
These keywords have the same semantics as in Microsoft Windows compilers and ease porting
of applications developed in Microsoft Windows compilers to HP-UX systems.

Support of these keywords enhances the performance of shared libraries and relieves the
usage of HP_DEFINED_EXTERNAL pragmas to hide the non-exported symbols.

Syntax and Semantics

__declspec (extended-attribute) declarator
 extended-attribute:
 dllimport
 | dllexport

1. Declaring a symbol with external linkage as __declspec(dllexport) tells the compiler
that the symbol should be exported from the current load module (shared library) and
made visible to other load modules.

2. Declaring a symbol with external linkage as __declspec(dllimport) tells the compiler
that the symbol is defined in a shared library and is outside the current load module.

3. Declaring a class with either the __declspec(dllexport) or __declspec(dllimport)
keyword results in all its member functions and static data members being marked for
export or import

4. Only symbols having external linkage can be declared using these keywords.

5. It is legal to selectively specify members of a class as dllexport or dllimport but
selective specification is not allowed if the class itself is exported or imported.

Native Location Alternate Tool Set Location

/usr/include /opt/xdk-ia/usr/include

/opt/aCC/include* /opt/xdk-ia/opt/aCC/include*

/usr/lib /opt/xdk-ia/usr/lib

/opt/aCC/lib /opt/xdk-ia/opt/aCC/lib
Chapter 1 35

HP aC++ Release Notes
New Features in Version A.03.33
-Bhidden and -Bhidden_def Command Line Options

The current behavior of the aC++ compiler on HP-UX systems is to export all symbols with
external linkage by default. In order to facilitate exporting only those symbols marked with
__declspec(dllexport) and hide the rest, use the following two options to hide the symbols
by default.

-Bhidden Command Line Option

This option hides of all the symbols used in the translation unit other than the ones prefixed
with __declspec(dllexport), __declspec(dllimport), or specified with pragma
HP_DEFINED_EXTERNAL.

-Bhidden_def Command Line Option

This option hides all the symbols defined in the translation unit other than the ones prefixed
with __declspec(dllexport) or specified with pragma HP_DEFINED_EXTERNAL.

Since all the functions marked as hidden (both defined and referenced in the translation unit)
are expected to be defined in the same load module, the compiler can optimize the calls to
those functions by generating direct calls. But this requires you to notify the compiler about
the functions not defined in the same load module and ask it to generate indirect calls to them
through the PLT. This can be done using the with pragma HP_DEFINED_EXTERNAL. You have
the option of choosing either of the following:

1. Hide the symbols defined and optimize calls to functions not defined in the current
translation unit (other than the ones specified using pragma HP_DEFINED_EXTERNAL).

2. Hide the symbols defined, but not optimize calls to functions not defined in the current
translation unit In this case, you do not have to worry about HP_DEFINED_EXTERNAL.

NOTE

1. To be able to use these features, the following linker patches need to be
installed:

• PHSS_24303 (for HP-UX 11.00)

• PHSS_24304 (for HP-UX 11.11)

2. main function is always exported.

3. Compiler generated vtables and typeids are always exported.
Chapter 136

HP aC++ Release Notes
New Features in Version A.03.33
4. The compiler defines macro __HP_WINDLL whenever -Bhidden or
-Bhidden_def options are used. This macro can be used for conditional
compilation. For example,

#ifdef __HP_WINDLL
#define DLLEXPORT __declspec(dllexport)
#define DLLIMPORT __declspec(dllimport)

#else
#define DLLEXPORT
#define DLLIMPORT

#endif

5. If an inline member function of a class is called from outside the shared
library where the class is defined and that function happens to reference
another member of the same class, you should make sure that the
referenced member also is exported. Otherwise the linker will fail to
resolve.

6. Ensure that the virtual member functions of a class defined in a shared
library are exported as needed. If virtual member functions are not
exported and another class derives from this class but does not override
these virtual functions, then there will be link-time errors. See example 8
below for an example scenario.

Examples

1. In the following program, global variable glob is imported:

 class Hello
 {
 public:
 int x;
 };

 __declspec(dllimport) extern Hello glob;

 int main() { glob.x = 10; return 0;}

2. In the following program, symbols export_me and export_me_func() will be exported;
the rest of the symbols are hidden:

 __declspec(dllexport) int export_me;
 int iam_hidden;
 __declspec(dllexport) int export_me_func() { }
 void iam_hidden_func() { }
Chapter 1 37

HP aC++ Release Notes
New Features in Version A.03.33
3. In the following program, class ImportME is imported from outside the current load
module:

 class __declspec(dllimport) ImportME
 {
 public:
 void print();
 };

4. In the following program, only member function mem() is exported:

 class Test
 {
 public:
 __declspec(dllexport) mem();
 goo();
 };

5. In the following program, exporting symbols with internal linkage is illegal:

 __declspec(dllexport) static int static_int; //illegal
 int main()
 {
 __declspec(dllexport) int local_export; //illegal
 return 0;
 }

6. In the following program, importing defined symbols is illegal:

 __declspec(dllimport) int func() { } //illegal

7. In the following program, selectively exporting a member function when the class itself is
imported is illegal:

 class __declspec(dllimport) Employee
 {
 __declspec(dllexport) void mem(); // illegal
 };

8. In the following example, there are 2 source files: dll.C and caller.C. dll.C is used to
build the shared library containing the definition for class BaseClass. In caller.C, class
DerivedClass derives from BaseClass. Virtual member function foo() is overridden by
DerivedClass. But the other virtual member function goo() is not. Since goo() is not
exported from the shared library (dll.sl), the linker gives an unresolved symbol error.
You should be careful that all such functions are exported from the shared library.
Chapter 138

HP aC++ Release Notes
New Features in Version A.03.33
 //dll.h
 class BaseClass
 {
 public:
 BaseClass() { }
 virtual void foo();
 virtual void goo(); // should be exported as it is needed
 // in the derived class which does not
 }; // override it
 //end of dll.h

 //dll.C
 #include “dll.h”

 void BaseClass::foo() { }
 void BaseClass::goo() { }

 // end of dll.C

 //caller.C
 #include “dll.h”

 class DerivedClass : public BaseClass
 {
 public:
 void foo() { }
 };

 BaseClass *p;

 int main()
 {
 p = new DerivedClass;
 p->foo();
 }
 // end of caller.C

 $ aCC -Bhidden_def -o dll.sl dll.C +z -b
Chapter 1 39

HP aC++ Release Notes
New Features in Version A.03.33
 $ aCC caller.C dll.sl
 /usr/ccs/bin/ld: Unsatisfied symbols:
 BaseClass::goo() (first referenced in caller.o) (code)

The solution is to export member function goo() from the shared library using
__declspec(dllexport).

+Oprofile Option for Profile-Based Optimization

This release enhances the usability of PBO by providing the flexibility of choosing to generate
the PA-RISC machine code (SOMs) directly instead of the compiler’s intermediate code
(ISOMs) during the compilation phase itself. Behavior of the earlier versions of the compiler
has been to generate intermediate code during compilation phase when PBO options are used
(+I,+P), and generate final PA-RISC machine code during link-phase. As a result of this
behavior, when a large number of files are compiled with PBO options, code generation for all
the files would happen during link phase.

An obvious disadvantage of this is that, even when a single file is changed, code generation for
all other files will happen during link-phase, unless +Oreusedir= is used. This makes overall
compile-link time significantly high. With the new set of +Oprofile options, this
disadvantage can be overcome.

The options below do not produce ISOMs (Intermediate-code .o files) as do the +I, +P, and +O4
options. Therefore they will rebuild faster than the ISOM-building options, but cannot just be
relinked in the +P phase from the ISOMs built by the +I phase. The new options also do not
support cross-module optimization with the +O4 option. PBO build processes that do not
rebuild from source will not work with these new options, but processes that currently use
scripts to run ld -r commands on every ISOM to convert it to a SOM can use the aCC driver
with these new options instead of the scripts.

Following are the new options of +Oprofile:

+Oprofile=use

Use the profile database to optimize. This is similar in behavior to the +P option.

+Oprofile=use:filename

Specify filename as the name of the profile database file. This is similar in behavior to the +P
and +df options (that is, +P +df filename).

+Oprofile=collect

Instrument the application for profile based optimization. This is similar in behavior to the +I
option.
Chapter 140

HP aC++ Release Notes
New Features in Version A.03.33
+Oprofile=prediction:static

Select static branch prediction for this executable. This is a synonym for +Ostaticprediction.

NOTE Note the following while performing optimization using new options:

• The new options can be used only with -c (compile only), if not, the
optimization is performed as in the earlier versions of the compiler.

• The new options are available only at optimization levels below +O4. At +O4,
the compiler silently replaces +Oprofile by +I or +P.

• Mixing of old and new options while optimizing on the same command line
is disabled. For example, +Oprofile and +I/+P/+df in the same command
line are incompatible.

• The flow.data file must exist when compiling with +Oprofile=use,
instead of the link stage with +P.

Initialized Thread Local Storage

Static link time initialization of thread private variables (PODs only) is now supported.
Earlier versions of the compiler supported only uninitialized thread private variables.

For example:

 __thread int j = 2; // allowed with this release
 int main()
 j = 20;
 }

Since thread private memory is allocated during runtime, virtual addresses of the thread
private variables should not be used in situations where compile time evaluation of the
addresses is necessary. Following are some of the sample incorrect usages:

Example 1:

__thread int tpv_1;
 __thread int *ptr = &tpv_1; //incorrect

Example 2:

__thread int tpv_1;
 int *ptr = &tpv_1; //incorrect
Chapter 1 41

HP aC++ Release Notes
New Features in Version A.03.33
+O[no]inline=list Option

The list form is now available. It can contain the names of extern C functions or they must be
mangled names.

-I- Option Enhanced to Perform prefixinclude Search

The -I- option has been enhanced to do a prefixinclude search. The -I- option, by itself, is not
sufficient to handle the case involving a quoted include from a parent file which is not directly
on the quoted or bracketed search paths. Prefixinclude search provides additional support for
the case where, due to use of directory prefixes in #include directives in parent including
files, the directory of the including file is no longer directly on the include search list.

In the non -I- case, use of directory prefixes in parent #include directives causes the
compiler to look in some directory offset from the directory of the top-level source file.
Analogously, in the -I- case, use of directory prefixes in parent include files in effect define an
offset relative to the directories on the search list. This is equivalent to explicitly specifying
the directory prefix explicitly in the child #include “...” directive. In fact, modifying the
source #include directive in this way would allow the intended included file to be found
without requiring prefixinclude support in the preprocessor.

Here’s an example of the problem:

 $ ls
 a.c incl/ mk
 $ ls incl
 f.h x.h y.h

 $ cat a.c
 #include “incl/f.h”

 $ cat incl/f.h
 #include “incl/y.h”
 #include “x.h”

 $ cat incl/x.h
 int x;

 $ cat incl/y.h
 int y;

 $ aCC -c -I. a.c
Chapter 142

HP aC++ Release Notes
New Features in Version A.03.33
 $ # previous versions of aC++
 $ aCC -c -I. -I- -I. a.c
 “./incl/f.h”, line 2: Error: Could not open include file “x.h”.

NOTE Note that a.c compiles fine with -I. but with -I. -I- -I. it fails to find x.h in
-I.

With the prefixinclude feature in effect, the subdirectory prefix (in this case incl) is inherited
from the including file for #include “...” style includes. So, if an including file was included
as “prefix/includer” or <prefix/includer> then a file “includee” included by
“prefix/includer” is first searched for using “prefix/includee”, and if that fails, is next
searched for using “includee”. Using each of appropriate -I paths.

Searches for #include <...> files are not affected by prefixinclude, only #include “...” file
searches have been enhanced.

Improved Optimization for HP_LONG_RETURN and +DA1.1

The code for HP_LONG_RETURN and +DA1.1 has been optimized when +Oentrysched is used.
(Code for non-static member functions always turns on HP_LONG_RETURN). Note that
+Oentrysched may cause problems when using +eh, so is only recommended if using +noeh.
Chapter 1 43

HP aC++ Release Notes
New Features in Version A.03.30
New Features in Version A.03.30
New features in HP aC++ version A.03.30 are listed below.

• Standard C++ Library 2.0 Base on the New Rogue Wave SL 2.0

• Easier User of Threads with -mt

• Partial Support for ANSI C Compiler

Standard C++ Library 2.0 Base on the New Rogue Wave SL 2.0

The new -AA command line option enables use of the new 2.0 Standard C++ Library, which
includes the new standard conforming (templatized) iostream library. This is the first release
of the 2.0 library. It conforms to the ISO C++ standard.

The 2.0 library is a new addition to the HP C++ runtime is not compatible with the version
1.2.1 Standard C++ Library previously bundled with HP aC++. HP aC++ will continue
support for standard C++ library 1.2.1 without name or location change. Customers should
not notice any change when -AA is not used. However, the 1.2.1 library is deprecated and will
be replaced by the new library eventually.

If you wish to use the new 2.0 library, you must use the -AA option consistently to compile and
link all translation units. Mixing object files within an executable is not supported.

The version of the 2.0 Standard C++ library (libstd_v2) included in this release is
incompatible with the previous versions of the same library. Using the -AA option and the new
2.0 library creates a binary incompatibility with any other applications or libraries compiled
with the -AA option under the previous version of the aC++ product.

In order to use the new 2.0 library, you must recompile using the -AA option and you may need
to apply a runtime and/or header file patch appropriate to your operating system (see list
below). You do not need to install the header file patch if you use the A.03.30 compiler.The
header file patches are needed for A.03.27, A.03.26, A.03.25, and A.01.27.

You can avoid the binary incompatibility simply by not using the -AA option and foregoing use
of the 2.0 library. If you don’t use -AA, you should still install the patches. If you do use -AA
and you are on A.03.30, the header file patches are included in A.03.30 but you must still
install the runtime patches. Then you must recompile and relink any previous -AA
application.

HP does not take the creation of binary incompatibilities lightly. When one is created, it is
only after a careful consideration of options and ramifications. Our customers want to be able
to use the new 2.0 library. Doing this also ensures compatibility with the Multibyte Support
Chapter 144

HP aC++ Release Notes
New Features in Version A.03.30
Extensions made in the 11i (11.11) release of HP-UX. The A.03.25 version (PHSS_21906) had
an incorrect size and mangling for mbstate_t. The 11i defined value is 8 bytes, the libstd_v2
version is 4.

In particular the following template classes are now larger:

• std::basic_filebuf<>

• std::basic_fstream<>

• std::basic_ifstream<>

• std::basic_ofstream<>

• std::fpos<std::mbstate_t>

• std::mbstate_t

In addition to the possible silent corruption with this above change in size, the mangling was
changed to better detect this compatibility problem by changing the name.

std::mbstate_t was changed to mbstate_t.

std::tm was changed to tm.

So if you developed on A.03.25 with the beta, A.03.26 on 11i or on 11.0 with the Ecommerce
compiler, or A.01.27 for AR1200, or A.03.27 for AR1200, you will have the following problems
if you do not install both the following header file and runtime library patches:

• PHSS_22867 10.x header file

• PHSS_22354 10.x runtime

• PHSS_22868 11.x header file

• PHSS_22543 11.0 runtime

• PHSS_22898 11i runtime

NOTE Applications developed on A.01.27 may not have these problems yet because
there never was any runtime patch, except for a beta.

An ordinary program using iostreams experiencing this problem will get the following unsats:

• If existing application runs on new runtime patch:

/usr/lib/dld.sl: Unresolved symbol: do_out__Q2_3std14codecvt_bynameXTwTcTQ2_
3std9mbstate_t_CFRQ2_3std9mbstate_tPCwT2RPCwPcT5RPc (plabel) from a.out_old

/usr/lib/dld.sl: Unresolved symbol: do_in__Q2_3std14codecvt_bynameXTwTcTQ2_

3std9mbstate_t_CFRQ2_3std9mbstate_tPCcT2RPCcPwT5RPw (plabel) from a.out_old
Chapter 1 45

HP aC++ Release Notes
New Features in Version A.03.30
• Trying to link with new runtime without new headers:

/usr/ccs/bin/ld: Unsatisfied symbols:
 std::codecvt_byname<wchar_t,char,std::mbstate_t>::do_in(std::mbstate_t
 &,const char *,const char *,const char *&,wchar_t *,wchar_t *,wchar_t *&)
 const (code)

 std::codecvt_byname<wchar_t,char,std::mbstate_t>::do_out(std::mbstate_t
 &,const wchar_t *,const wchar_t *,const wchar_t *&,char *,char *,char *&)
 const (code)

• Running application linked with new headers on old runtime:

/usr/lib/dld.sl: Unresolved symbol: do_out__Q2_3std14codecvt_
bynameXTwTcT9mbstate_t_CFR9mbstate_tPCwT2RPCwPcT5RPc (code) from a.out_new

/usr/lib/dld.sl: Unresolved symbol: do_in__Q2_3std14codecvt_
bynameXTwTcT9mbstate_t_CFR9mbstate_tPCcT2RPCcPwT5RPw (code) from a.out_new

• Trying to link with old runtime with new headers:

/usr/ccs/bin/ld: Unsatisfied symbols:
 std::codecvt_byname<wchar_t,char,mbstate_t>::do_out(mbstate_t
 &,const wchar_t*,const wchar_t *,const wchar_t *&,char *,char *,char
 *&) const (code)

 std::codecvt_byname<wchar_t,char,mbstate_t>::do_in(mbstate_t
 &,const char *,const char *,const char *&,wchar_t *,wchar_t *,wchar_t

 *&) const (code)

Easier User of Threads with -mt

The new -mt option enables multi-threading capability without the need to set any other
flags, such as -l and -D. HP aC++ examines your environment and automatically selects and
sets the appropriate flags.

There are four possible sets of flags depending on your operating system and which libstd
you use.

Option matrix for -mt:

| OS 10.20 (user thread) | OS 11.x (kernel thread)
 ---------+--------------------------------+-------------------------------
 old-lib | -D_REENTRANT | -D_REENTRANT
 libstd | -DRW_MULTI_THREAD | -DRW_MULTI_THREAD
 1.2.1 | -DRWSTD_MULTI_THREAD | -DRWSTD_MULTI_THREAD
 | -D_THREAD_SAFE | -D_THREAD_SAFE
 & | | -D_POSIX_C_SOURCE=199506L
 librwtool| |
 7.0.x | -lcma | -lpthread
Chapter 146

HP aC++ Release Notes
New Features in Version A.03.30
 ---------+--------------------------------+------------------------------
 new-lib | -D_REENTRANT | -D_REENTRANT
 (-AA) | -D_RW_MULTI_THREAD | -D_RW_MULTI_THREAD
 | -D_RWSTD_MULTI_THREAD | -D_RWSTD_MULTI_THREAD
 libstd | | -D_POSIX_C_SOURCE=199506L
 2.2.1 | |
 | -lcma | -lpthread
-----------+--------------------------------+-----------------------------------

Macros used to compile multi-thread source code:

• _REENTRANT

Required by system header files that provide reentrant functions (suffixed by _r).

• RW_MULTI_THREAD/_RW_MULTI_THREAD

Required by Rogue Wave toolsh++ header files and libraries. RW_MULTI_THREAD is used by
toolsh++ 7.0.x. _RW_MULTI_THREAD is used by toolsh++ 8.x (not yet available).

• RWSTD_MULTI_THREAD/_RWSTD_MULTI_THREAD

Required by Rogue Wave standard library header files and libraries.
RWSTD_MULTI_THREAD is used by libstd 1.2.1. _RWSTD_MULTI_THREAD is used by libstd
2.2.1 when compiling with -AA.

• _POSIX_C_SOURCE=199506L

Required by pthread.

• Using -D__HPACC_THREAD_SAFE_RB_TREE:

The Rogue Wave Standard C++ Library 1.2.1 (libstd) and Tools.h++ 7.0.6 (librwtool)
are not thread safe if the underlying implementation rb_tree class is involved. In other
words, if the tree header file (which includes tree.cc) under /opt/aCC/include/ is used,
these libraries are not thread safe. Most likely, it is indirectly referenced by including the
standard C++ library container class map or set headers, or by including a RogueWave
tools.h++ header like tvset.h, tpmset.h, tpmset.h, tvset.h, tvmset.h, tvmset.h,
tpmap.h.

Since changing the rb_tree implementation to make it thread safe would break binary
compatibility, the preprocessing macro __HPACC_THREAD_SAFE_RB_TREE must be defined.
Whether or not this macro is defined when compiling a file that includes the tree header,
its use must be consistent. For example, a new object file compiled with the macro defined
should not be linked with older ones that were compiled without the macro defined.
Library providers whose library is built with the macro defined may need to notify their
users to also compile their source with the macro defined when the tree header is
included.
Chapter 1 47

HP aC++ Release Notes
New Features in Version A.03.30
This macro is not set by -mt, You must set it explicitly on the command line.

• _THREAD_SAFE

Required by thread safe cfront compatible libstream header files and library. For the
frequently used objects cout, cin, cerr, and clog, you can specify the -D_THREAD_SAFE
compile time flag for any file that includes <iostream.h>. In this case, a new instance of
the object is transparently created for each thread that uses it. All instances share the
same file descriptor.

• libcma.*

User thread library used in 10.20 system.

• libpthread.*

Kernel thread library used on 11.x systems.

Partial Support for ANSI C Compiler

The -Ae option restricts the compiler to the ANSI C mode. This option turns on the ANSI C
c89 mode and allows compilation of c89 compatible C source programs just like C compiler.
Additional HP ANSI-C compiler features supported under the -Ae option may be enabled by
this option in the future. For limitations see HP aC++ Online Programmer’s Guide.
Chapter 148

HP aC++ Release Notes
New Features in Version A.03.27
New Features in Version A.03.27
New features in HP aC++ version A.03.27 are listed below.

• Rogue Wave Standard C++ Library 2.2.1

• Transitioning from the Prior to the New Standard C++ Library

• Incremental Linking in 64-bit Mode

Rogue Wave Standard C++ Library 2.2.1

The Rogue Wave Standard C++ Library 2.2.1 (libstd_v2) is now bundled with HP aC++. This
library includes the standard iostream library and has namespace std enabled.

To use the new library, you must specify the -AA command line option. Note the following:

• The +A option is not supported with -AA and may give various link or run-time errors.

• The Rogue Wave Tools.h++ Version 7.0.6 library cannot be used with -AA.

• The prior library (Rogue Wave Standard C++ Library 1.2.1) is the default.

• The prior libraries (Rogue Wave Standard C++ Library 1.2.1 and Rogue Wave Tools.h++
Version 7.0.6) are not compatible with the 2.2.1 library. Code compiled without -AA is
incompatible with code compiled with -AA.

Common Migration Problem When Using -AA Option

The following example shows a common problem when using the -AA option. The result of
using the new overloads of strchr (on a const char*) is now a const char*. Error 440
results if “p” is not declared as a const char*.

 #include <string.h>
 int main() {
 char *p = strchr(“abc”, ‘c’);
 }

 $ aCC -c strchr.c
 $ aCC -c strchr.c -AA
 Error 440: “strchr.c”, line 3 # Cannot initialize ‘char *’ with
 ‘const char *’. char *p = strchr(“abc”, ‘c’);
 ^^^^^^^^^^^^^^^^^^
Chapter 1 49

HP aC++ Release Notes
New Features in Version A.03.27
Transitioning from the Prior to the New Standard C++ Library

The following topics discuss changes when transitioning from the prior version to the new
Standard C++ library:

Source Code Changes

Since the new Standard C++ Library (libstd_v2) includes the new iostream library and has
namespace std enabled, significant changes may be required in your source code. For
example, the following program will no longer compile:

#include <iostream> // ported from <iostream.h>
 int main() {
 cout << “Hello, World” << endl;
 }

Because both cout and endl are now in namespace std, they must be referenced as
std::cout and std::endl. Alternatively, using declarations or using directives can be added
to your code to make them visible outside of the namespace std scope. The following is
correct:

#include <iostream>
 int main() {
 std::cout << “Hello, World” << std::endl;
 }

iostream_compat Directory

To help with code transition to the new C++ standard, an iostream_compat directory is
provided. It contains some header files that are just wrappers. You can include files in the
iostream_compat directory even when specifying the -AA option, to make symbols like cout
visible in global scope.

For example, <iostream.h> is in iostream_compat, and it includes the new <iostream>
header followed by a using directive (using namespace std). So the following program will
also compile, with warning 890:

 #include <iostream.h>
 int main() {
 cout << “Hello, World” << endl;
 }

To turn off the warning, specify the +W890 command line option.
Chapter 150

HP aC++ Release Notes
New Features in Version A.03.27
NOTE In general, you are encouraged to use header names as specified in the C++
standard. We do not guarantee the inclusion of non-standard compliant
headers in our future releases. See the C++ international standard for detailed
language rules.

Threads

As with prior compiler releases, one version of libstd_v2 is provided for use with both
threaded and non-threaded code. To compile threaded applications, macro
-D_RWSTD_MULTI_THREAD must be used. -D_THREAD_SAFE is no longer needed.

See HP aC++ Online Programmer’s Guide for more information.

Limitations

USL’s Standard Components Library (lib++.a) is not and will not be available with -AA.

Incremental Linking in 64-bit Mode

In the edit-compile-link-debug development cycle, link time is a significant component. With
incremental linking, any unchanged object files can be reused without being reprocessed.
Incremental linking allows you to insert object code into an output file (executable or shared
library) that you created earlier, without relinking any unmodified object files. Time required
to relink after the initial incremental link depends on the number of modules you modify.

To use incremental linking, specify the +ild option on the aCC command line. If the output
file does not already exist or if it was created without the +ild option, the linker performs an
initial incremental link. The output file produced is suitable for subsequent incremental links.

The +ild option is valid in 64-bit mode for both executable and shared library links. The +ild
option is not valid for relocatable links, options (or tools) that strip the output module, and
with some optimization options.

In certain situations (for example, when internal padding space is exhausted), the
incremental linker must perform an initial incremental link. You can avoid such unexpected
initial incremental links by periodically rebuilding the output file with the +ildrelink
option.

You can debug the resulting executable or shared library produced by the incremental linker
using the WDB debugger with incremental-linking support.

See Online Linker and Libraries User’s Guide (ld +help) and ld(1) manpage for more
information.
Chapter 1 51

HP aC++ Release Notes
New Features in Version A.03.25
New Features in Version A.03.25
New features in HP aC++ version A.03.25 are listed below.

• +ESplabel Option

• +inline_level [i]n Option

• -fast Option (Run-time Performance and Porting to HP-UX)

• Fix and Continue Debugging

• HP-PAK and Blink Link no Longer bundled with HP aC++

• +Ofailsafe Option new Defaults

• +DD[data_model] Option

• +ESlit Option New Default

• Function Try Blocks as Defined in the C++ Standard

• #assert and #unassert Preprocessor Directives

• enum x { x1, }; Trailing Comma now Generates Warning 921

• +m[d] and +M[d] Options Have Changed Behavior

• +uc Option for Porting to HP-UX

• Predefined String Variable Identifiers for Function Names

• Macros Having a Variable Number of Arguments

• Alignment of long double Data Type in 64-bit mode Changed to 16-bytes

• -D__HPACC_THREAD_SAFE_RB_TREE Macro Ensures Thread Safety

+ESplabel Option

The +ESplabel option affects how function pointers are dereferenced in generated code.
Using this option can improve run-time performance at the expensive of a slight increase in
code size for every call. The option can only be used:

• In an environment where there are shared libraries.

• With +DA2.0 or +DA2.0W.
Chapter 152

HP aC++ Release Notes
New Features in Version A.03.25
+inline_level [i]n Option

The +inline_level [i]n option does implicit inlining of small functions that are not
explicitly tagged with the inline keyword. Such inlining happens in addition to explicitly
inlined functions. As before, +d and +inline_level 0 turn off all inlining, including implicit
inlining.

-fast Option (Run-time Performance and Porting to HP-UX)

The -fast option selects a combination of compilation options for optimum execution speed
for reasonable build times. Currently chosen options are:

• +O2, +Olibcalls, and +FPD

• If +noeh occurs before -fast, then +Oentrysched is also added.

Fix and Continue Debugging

Fix and continue debugging is now supported with HP aC++. Fix and continue speeds up the
edit-compile-debug cycle by allowing you to make changes to a program from within the WDB
debugger and continue debugging without having to exit the debugger and rebuild.

See the WDB debugger release notes for details about how to use fix and continue from either
the WDB GUI interface or the WDB command line.

HP-PAK and Blink Link no Longer bundled with HP aC++

HP-Pak and Blink Link are no longer bundled with HP aC++ (on HP-UX 11.0).

+Ofailsafe Option new Defaults

There are new default settings for the +Ofailsafe option. Refer to HP aC++ Online
Programmer’s Guide for more information.

+DD[data_model] Option

The +DD[data_model] option specifies the compiler data model as either 32-bit (ILP32) or
64-bit (LP64).
Chapter 1 53

HP aC++ Release Notes
New Features in Version A.03.25
+ESlit Option New Default

The +FP[flags] option specifies how the run-time environment for floating-point operations
should be initialized at program start up. The default is that all exception behaviors are
disabled. See ld(1) for specific flag values. To dynamically change these settings at run time,
see fesetenv(3M).

By default, string literal data now resides in read-only memory rather than read-write
memory. This new default may result in improved run-time performance, because read-only
memory is shared. The +ESlit command line option can be used to explicitly specify this
behavior. +ESnolit reverts to storing string literal data in read-write memory.

NOTE This new default option may cause programs to abort with signal 10 at
run-time.

String literals (quoted character strings) are typed as “const char[]” and programs that
attempt to modify string literal data are violating the semantics of this const type. Modifying
string literal data at the source level translates to writing data into read-only memory at
runtime and will result in the process receiving a signal 10 (bus error). Below is an example of
such a program:

 void f(char *s) { // Warning 829: const char* -> char*
 s[0] = ‘S’; // abort: write into read-only memory
 }
 int main() {
 f(“string literal”);
 return 0;
 }

Programs that attempt to write into a string literal’s read-only memory will trigger warnings
and errors at compile-time. Fixing the program’s compile-time errors and warnings has the
benefit of enabling the use of +ESlit, thus taking advantage of improved run-time efficiency
and improving the application’s portability.

The following code generates the compile-time errors shown below:

 int main() {
 const char *p = “quoted string”;
 char* c=p; // Error 440

 void main2() {
 const char *p = “quoted string”;
 char* c;
 c=p; // Error 203
Chapter 154

HP aC++ Release Notes
New Features in Version A.03.25
 aCC -c foo.C
 Error 440: “foo.C”, line 3 # Cannot initialize ‘char *’ with
 ‘const char *’. char* c=p;
 ^
 Error 203: “foo.C”, line 8 # Cannot assign ‘char *’ with ‘
 const char *’. c=p;

^

If you see a compile-time warning like the following:

Warning 829: Implicit conversion of string literal to ‘char*’ is deprecated.

These could be suppressed by a cast or const_cast like the above, then no further messages
will occur. Or they could be suppressed by using +W829. A compile-time error is generated
unless a cast is done, in which case there is no message, and a SIGBUS signal 10 could be
generated at runtime.

Note that if you used a cast at compile-time to suppress the error/warning you will have no
idea where to change the code to fix the runtime abort. If you want to find the source of your
problem, look for const_cast or warning 829, or any indication that you put the cast in the
source.

When using the debugger, you can print out what you’re trying to modify and search for the
string to find the source of the problem.

In A.03.15, A.01.23 and prior compiler versions, only floating-point constant values were
placed in read-only memory. Other constants and literals were placed in read-write memory.

HP aC++ continues to more strictly conform to the C++ Standard, enabling porting to
additional platforms. Due to closer conformance with the standard, you may see more compile
time warnings and errors.

Function Try Blocks as Defined in the C++ Standard

HP aC++ now provides function try blocks, as defined in the C++ Standard. Function try
blocks are sometimes necessary with class constructor destruction. A function try block is the
only means of ensuring that all exceptions thrown during the construction of an object are
caught within the constructor.

#assert and #unassert Preprocessor Directives

#assert and #unassert preprocessor directives allow you to set a predicate name or
predicate name and token to be tested with a #if directive. The -ext option must also be
specified at compile and link time.
Chapter 1 55

HP aC++ Release Notes
New Features in Version A.03.25
enum x { x1, }; Trailing Comma now Generates Warning 921

Most frequently reported migration issue: enum x { x1, };

The trailing comma is an error, and aC++ now generates Warning 921.

+m[d] and +M[d] Options Have Changed Behavior

Behavior of the +m[d] and +M[d] options has changed. When used with the -E option, only
dependency file information is generated, and there is no preprocessing output.

Behavior when combining the +m[d] or +M[d] option with the -P option is unchanged. Both
dependency information and preprocessing output are generated.

+uc Option for Porting to HP-UX

The +uc option allows you to change the compiler default (signed char) and treat an
unqualified (plain) char data type as unsigned char. This may help in porting code from
other environments to HP-UX.

Predefined String Variable Identifiers for Function Names

As a debugging aid, HP aC++ predefines three string variables for each current function. This
functionality provides compatibility with the C99 standard and with GNU/gcc style coding.

For C99 style coding:

• __func__ indicates the function name as it appears in the source.

For GNU/gcc style coding:

• __FUNCTION__ indicates the function name as it appears in the source.

• __PRETTY_FUNCTION__ indicates the function name, its argument types, and its return
type.

You can use the predefined variables in your code, as in the following examples.

For C99 style coding:

 void foo() {
 printf(“The function name is %s.\n”, __func__);
 }

Output from the example would be:

The function name is foo.
Chapter 156

HP aC++ Release Notes
New Features in Version A.03.25
For GNU/gcc style coding:

 #include <stdio.h>

 class a {
 public:
 sub (int i)
 {
 printf (“__FUNCTION__ = %s\n”, __FUNCTION__);
 printf (“__PRETTY_FUNCTION__ = %s\n”, __PRETTY_FUNCTION__);
 }
 };

 int main (void)
 {
 a ax;
 ax.sub (0);
 return 0;
 }

Output from the example would be:

__FUNCTION__ = sub

__PRETTY_FUNCTION__ = int a::sub (int)

NOTE These names are not macros. They are predefined string variables. For
example, #ifdef __FUNCTION__ has no special meaning inside a function,
since the preprocessor does not recognize __FUNCTION__. Also note, the names
__FUNCTION__, __PRETTY_FUNCTION__, and __func__ are reserved for use by
the compiler. If any other identifier is explicitly declared using any of these
names, the behavior is undefined.

Macros Having a Variable Number of Arguments

A macro can be defined to accept a variable number of arguments, much as you would define
a function. This provides compatibility with the C99 standard and GNU/gcc style coding. If
you have coded your macros in GNU/gcc style, you can expect GNU/gcc style behavior. If you
have coded your macros to C99 standards, you can expect C99 style behavior.

For C99 style coding:
Chapter 1 57

HP aC++ Release Notes
New Features in Version A.03.25
If there is an ellipsis (...) in the identifier-list in the macro definition, then the trailing
arguments, including any separating comma preprocessing tokens, are merged to form a
single item: the variable arguments. The number of arguments so combined is such that,
following merger, the number of arguments is one more than the number of parameters in the
macro definition (excluding the ...).

Any __VA_ARGS__ identifier occurring in the replacement list is treated as if it were a
parameter. The variable arguments form the preprocessing tokens used to replace it.
Following are examples:

#define debug(...) fprintf(stderr, __VA_ARGS__)
 #define showlist(...) puts(#__VA_ARGS__)
 #define report(test, ...)((test)?puts(#test):printf(VA_ARGS__))

 debug(“Flag”);
 debug(“X = %d\n”, x);
 showlist(The first, second, and third items.);
 report(x>y, “X is %d but y is %d”, x, y);

Will be expanded to:

fprintf(stderr, “Flag”);
 fprintf(stderr, “X = %d\n”, x);
 puts(“The first, second, and third items.”);
 ((x>y)?puts(“x>y”):printf(“x is %d but y is %d”, x, y))

For GNU/gcc style coding:

Similar to the variable arguments function described above, a macro can accept a variable
number of arguments. Following is an example:

#define Myprintf(format, args...) \
 fprintf (stderr, format, ## args)

 Myprintf (“%s:%d: “, input_file_name, line_number)

Will be expanded to:

fprintf (stderr, “%s:%d: “ , input_file_name, line_number)

Note the use of ## to handle the case when args matches no arguments. In this case, args is
empty, and if there is no ##, the macro expansion could be like the following invalid syntax:

fprintf (stderr, “success!\n” ,)

By using ##, the comma is concatenated with empty valued arguments, and is discarded at
macro expansion.
Chapter 158

HP aC++ Release Notes
New Features in Version A.03.25
In the case mentioned above, gcc currently discards only the last preceding sequence of
non-whitespace characters, while HP aC++ discards the last preprocessor token.

Alignment of long double Data Type in 64-bit mode Changed to
16-bytes

Alignment of the long double data type in 64-bit mode (+DA2.0W) is now 16-bytes. This
ensures compatibility with the HP PA-RISC ABI and HP C.

In particular, the layout and alignment of a struct that contains jmp_buf are now identical for
HP C and HP aC++ (since jmp_buf is a typedef that is defined with a long double).

For code compiled with the prior 8-byte default, a problem occurs when a long double is a field
in a class, struct or union. When the structure in question is shared between C and C++ there
is a 50% chance that the fields are not on the same offsets in both languages, and the wrong
data will be accessed.

Symptoms of this problem might be:

• Wrong runtime results and corruption

• Various aborts if there are pointers that occur after the long double fields

NOTE If you must use the prior 8-byte alignment for long double, use

 the -Wc,-longdouble,old_alignment option.

-D__HPACC_THREAD_SAFE_RB_TREE Macro Ensures Thread Safety

The Rogue Wave Standard C++ Library 1.2.1 (libstd) and Tools.h++ 7.0.6 (librwtool) are not
thread safe in all cases. The -D__HPACC_THREAD_SAFE_RB_TREE preprocessor macro ensures
thread safety.

For more details, refer to HP aC++ Online Programmer’s Guide.
Chapter 1 59

HP aC++ Release Notes
New Features in Version A.03.13
New Features in Version A.03.13
New features in HP aC++ version A.03.13 are listed below.

• The latest linker patch (PHSS_19866) is needed to use shared libraries and +objdebug.

• A new debugging option, +objdebug, enables faster links and smaller executable file sizes
for large applications.

• Header File Caching is an additional, simplified method of precompiling header files.

• Additional Options for Standardizing Your Code:

— -Wc,-ansi_for_scope,[on] enables standard scoping rules for init-declarations in
for statements.

— -Aa sets all C++ standard options on (currently Koenig lookup and for scoping rules).

• Additional Options for Code Optimization:

— +O<optlevel#>=name1[,name2,...,nameN]

— +O[no]promote_indirect_calls

— +Oreusedir=DirectoryPath

• A new template option, +inst_directed, to suppress assigner output in object files. Use
it instead of the +inst_none option with code that contains explicit instantiations only
and does not require automatic (assigner) instantiation.

• A new Japanese language version of the HP aC++ Online Programmer’s Guide is located
at: /opt/aCC/html/ja_JP.SJIS

• +M[d] and +m[d] options to output the header files upon which your source

 code depends in a format accepted by the make(1) command.

• +We option to selectively interpret a warning or future error as an error.

• The __HP_aCC predefined macro to identify the HP aC++ compiler.
Chapter 160

HP aC++ Release Notes
New Features in Version A.03.10
New Features in Version A.03.10
New features in HP aC++ version A.03.10 are listed below.

• Standards based features include the following:

— Covariant return types (except for covariant return types with multiply inheriting
types)

— Koenig lookup (Note: You must specify the -Wc,-koenig_lookup,on option.)

• The -I- header file option invokes view-pathing. This option overrides the default
-I<directory> option header file search path.

• The +inline_level<num> option now defaults to 0, no inlining is done (same as +d
option).

• Additional options for verbose compile and link information:

— +dryrun - Requests compiler subprocess information without running the
subprocesses.

— +time - Requests subprocess execution times.

— -V - Requests the current compiler and linker version numbers.

• Huge data - Support for uninitialized, non-automatic data objects to a maximum size of
2^61 bytes for arrays and C style structs and unions.

• Advanced options to support optimization of parallel code on HP9000 K-Class and V-Class
servers:

— +O[no]autopar - Parallelize loops that are safe to parallelize.

— +O[no]dynsel - Enable workload-based dynamic selection of parallelizable loops.

— +O[no]loop_block - Enable [disable] blocking of eligible loops for improved cache
performance.

— +O[no]loop_unroll_jam - Enable [disable] loop unrolling and jamming.

— +O[no]parallel - Transform [do not transform] eligible loops for parallel execution
on a multiprocessor system.

— +O[no]report[=<report_type>] - Produce a Loop Report.

— +O[no]sharedgra - Enable [disable] global register allocation.

— +tm<target> - Compile code for optimization with a specific machine architecture.
Chapter 1 61

HP aC++ Release Notes
New Features in Version A.03.10
• Option +DO<osname> allows you to set the target operating system for the compiler.

• The +Oinlinebudget=<n> option now works correctly.
Chapter 162

HP aC++ Release Notes
New Features in Version A.03.04
New Features in Version A.03.04
New features in HP aC++ version A.03.04 are listed below.

• The aC++ default template instantiation mechanism has changed to compile-time
instantiation (CTTI). For source code containing templates, the new default may result in
faster compile-time processing.

 The previous default behavior remains available by specifying the +inst_auto
command-line option when compiling and linking. If you provide archive or shared
libraries for distribution, you may want to use +inst_auto to ensure consistent behavior
between each distribution of your libraries.

Also, if you provide either archive or shared library products, and your customers need to
use the prior template instantiation default in their builds, you must compile your
libraries by using the +inst_auto option.

Refer to HP aC++ Online Programmer’s Guide and to the online technical paper, Using
Templates in HP aC++ for details about template instantiation and migration.

• Member templates are supported, including those in pre-compiled headers.

• Updated versions of the Rogue Wave Standard C++ Library (version 1.2.1) and the
Tools.h++ Foundation Class Library (version 7.0.6) are provided. HTML documentation
for these libraries is also updated.

• The aC++ compiler on HP-UX 11.00 includes support for both the 32-bit data model
(ILP32) and the 64-bit data model (LP64). For ILP32, integer, long, and pointer data
is 32 bits in size. For LP64, long and pointer data is 64 bits in size, an integer is 32 bits.
The default target architecture continues to be determined by the host system and the
/opt/langtools/lib/sched.models file. The default compilation mode remains
unchanged (32-bit).

The new HP-UX 64-bit Porting and Transition Guide includes extensive 32-bit/64-bit
information. 64-bit information is also found in the HP Linker and Libraries User Guide
and in the HP aC++ Online Programmer’s Guide.

• By default, the new __LP64__ preprocessing macro is defined by the compiler when
processing in 64-bit mode. The compiler defines the __PA_RISC2_0 macro for PA2.0 in
both 32-bit and 64-bit modes. You can use these macros within conditional directives to
isolate 64-bit code.

• New 64-bit system libraries are located in /usr/lib/pa20_64. 32-bit libraries remain in
/usr/lib.
Chapter 1 63

HP aC++ Release Notes
New Features in Version A.03.04
• The +Z compiler option is the default in 64-bit mode (PIC on). The default in 32-bit mode
remains non-PIC.

• Advanced optimization options, +Omultiprocessor and +Oextern, are provided to
optimize code for processor configuration and external symbol usage, respectively.
Chapter 164

HP aC++ Release Notes
Installation Information
Installation Information
Read this entire document and any other release notes or Readme files you may have before
you begin an installation.

To install your software, run the SD-UX swinstall command. This command invokes a user
interface that will lead you through the installation. For more information about installation
procedures and related issues, refer to Managing HP-UX Software with SD-UX and other
README, installation, and upgrade documentation provided or described in your HP-UX
11.x operating system package.

Depending on your environment, you may also need documentation for other parts of your
system, such as networking, system security, and windowing.

Hardware Requirements

HP aC++ requires approximately 115 MB of disk space; approximately 51 MB for the files in
/opt/aCC, 18 MB for WDB, and 30 MB for DDE.

For more precise sizes, use the command:

/usr/sbin/swlist -a size "YourProductNumber”

Patch Installation Requirements

Prior to running HP aC++, one of the following runtime library patches must be installed:

• PHSS_31221: s700_800 11.11 HP aC++ -AA runtime libraries

• PHSS_31852: s700_800 11.23 HP aC++ -AA runtime libraries

In addition, it is recommended that you install the core patches distributed on the extension
software media.

Current Runtime Support Library Required

To work correctly, an application must be linked to, or run with, an HP aC++ runtime support
library (libCsup.a and libCsup.sl) that comes with this version of HP aC++ or a
subsequent version. Linking with an older version of libCsup.a or running your application
with an older version of libCsup.sl may cause spurious failures.
Chapter 1 65

HP aC++ Release Notes
Compatibility Information
Compatibility Information
Maintaining binary compatibility is a key release requirement for new versions of HP aC++.
The compiler has maintained the same object model and calling convention and remains
compatible with the HP-UX runtime in the code that it generates as well as its intrinsic
runtime library (libCsup) across the various releases of HP aC++ and its runtime patch
stream.

For the Standard Template Library (libstd) and a generic component/tool library
(librwtool), HP aC++ relies on Rogue Wave’s Standard Library and Tools.h++ libraries.
From the initial release of HP aC++ through the patch release of version A.01.06, Rogue
Wave’s Standard Library version 1.2 and Tools.h++ version 7.0.3 compatible libraries were
bundled with the compiler.

At the HP aC++ A.01.07 release, the runtime libraries were updated to Rogue Wave’s
Standard Library version 1.2.1 and Tools.h++ version 7.0.6. These libraries introduced
additional data members in some base classes resulting in incompatibility with the previous
versions.

Floating-Point Exceptions Must be Raised Prior to Entering Library
Routines

Programmers who use floating-point arithmetic must ensure that floating-point exceptions
are raised before entering a library routine. For example, a floating-point divide should be
followed by a floating-point store. If you fail to do so, code within the library may raise a
floating-point exception, interrupting the library code rather than the user code.

This is because the unwind component of libcl.a and libcl.sl uses floating-point
operations in more places than earlier versions of the library. HP aC++ uses unwind
functionality to support throw/catch exception handling. Programs which do not raise
floating-point exceptions before entering unwind library routines may have the exception
raised from within the unwind routine.

Difference in Class Size When Compiling in 32-Bit and 64-Bit Mode

The size of a class containing any virtual functions varies when compiled in 32-bit mode
versus 64-bit mode. The difference in size is caused by the virtual table pointer (a pointer to
an internal compiler table) in the class object. (The pointer is created for any class containing
one or more virtual functions.)

When compiling the following example in 32-bit mode, the output is 8. In 64-bit mode, the
output is 16.
Chapter 166

HP aC++ Release Notes
Compatibility Information
extern "C" int printf(const char *,...);

class A {
int a;

public:
virtual void foo(); //virtual function foo, part of class A

};
void A::foo() {

return;
}

int main() {
printf("%d\n",sizeof(A));

}

Content of .o Files may Change

The following applies when you use the aCC command that invokes the assigner. The content
of a given .o file can potentially change when it is used in a closure (with the +inst_close
option) or link operation. The change may occur in either of the following cases:

• You change the order of .o file’s on the link line. For example, if you compile and link A.c
and B.c multiple times as follows, the contents of A.o and B.o may not be the same
following the second link as they were following the first link:

aCC -c A.c B.c
aCC A.o B.o

aCC -c A.c B.c
aCC B.o A.o

• You link a .o file with different objects. In the following example, the content of A.o may
not be the same following the second link as it was following the first link:

aCC A.o B.o

aCC A.o C.o

The Named Return Value (NRV) Optimization

The +[no]nrv option disables (default) or enables the named return value (NRV)
optimization. For this optimization to work correctly in conjunction with exception handling,
the application must be linked to an HP aC++ run-time support library that comes with
version HP aC++ A.01.04 or a later version.
Chapter 1 67

HP aC++ Release Notes
Compatibility Information
Linking with a prior library may cause spurious failures. If the shared version of this library
is selected (default), the platform on which the application is run must also have that release
of the HP aC++ runtime support library (libCsup.sl).

The NRV optimization eliminates a copy-constructor call by allocating a local object of a
function directly in the caller’s context if that object is always returned by the function. For
example:

struct A {
A(A const&); // copy constructor

};

A f(A const& x) {
A a(x);
return a; // Will not call the copy constructor if the

} // optimization is enabled.

This optimization will not be performed if the copy constructor was not declared by the
programmer. Although this optimization is allowed by the ISO/ANSI C++ standard, it may
have noticeable side effects.

Example:

aCC +nrv app.C

Linker Compatibility Warnings

Beginning with the HP-UX 10.20 release, the linker generates compatibility warnings. These
warnings include HP 9000 architecture issues, as well as linker features that may change
over time.

Compatibility warnings can be turned off with the +v[no]compatwarnings linker option.
Also, detailed warnings can be turned on with the +vallcompatwarnings linker option.

Link time compatibility warnings include the following:

• Linking PA-RISC 2.0 Object Files on any System

PA-RISC 1.0 programs will run on 1.1 and 2.0 systems. PA-RISC 2.0 programs will not
run on 1.1 or 1.0 systems.

• Dynamic Linking with -A

If you do dynamic linking with -A, you should migrate to using the Shared Library
Management Routines. These routines are also described in the sh_load(3X) man page.

• Procedure Call Parameter and Return Type Checking
Chapter 168

HP aC++ Release Notes
Compatibility Information
The current linker checks the number of symbols, parameters, and procedure calls across
object files. In future, you should expect HP compilers to perform cross-module type
checking, instead of the linker. This impacts HP Fortran programs.

• Duplicate Names Found for Code and Data Symbols

The current linker can create a program that has a code and data symbol with the same
name. In future, the linker will adopt a single name space for all symbols. This means
that code and data symbols cannot share the same name. Renaming the conflicting
symbols solves this problem.

• Unsatisfied Symbols Found when Linking to Archive Libraries

If you specify the -v option with the +vallcompatwarnings option and link to archive
libraries, you may see new warnings.

• Versioning within a Shared Library

If you do versioning within a shared library with the HP_SHLIB_VERSION (C and C++) or
the SHLIB_VERSION (Fortran) compiler directive, you should migrate to the industry
standard and faster performing library-level versioning.
Chapter 1 69

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
Problem Descriptions and Fixes, and Known Limitations
This chapter summarizes the known problems and limitations of the current version of HP
aC++ except as otherwise noted.

NOTE Since HP-UX 10.10 is the last supported OS for PA-RISC 1.0 architecture
machines, HP-UX 11.00/11i no longer support execution of PA-RISC 1.0 code,
and 11.00/11i compilers no longer support the compilation of PA-RISC 1.0 code.

Known Problems

Customers on support can use the product number to assist them in finding SSB and SRB
reports for HP aC++. The product number you can search for is B3911DB (for workstations)
and B3913DB (for servers). To verify the product number and version for your HP aC++
compiler, run the following HP-UX commands:

what /opt/aCC/lbin/ctcom*

what /opt/aCC/bin/aCC

Following are known problems and workarounds:

• Incompatibilities Between Standard C++ Library Version 1.2.1 and the Draft Standard

• Changes to the math.h System Header File

• Conflict Between macros.h and numeric_limits Class (min and max)

• Unsatisfied Symbols if using Non-Current Runtime Support Library

• Unsatisfied Symbols for Inline Template Functions

• Potential Binary Incompatibility of Objects Built with HP-UX v 10.10/10.20 HP aC++

• Potential Source Incompatibility of Objects Built with HP-UX v 10.10/10.20 HP aC++

• Binary Compatibility Between HP-UX 11.00 Bundle from the June 2000 Support Plus
Media Revision B.11.00.49 and HP-UX 11.00

• Binary Incompatibilities without Changes

• Binary Incompatibilities with Changes
Chapter 170

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
Incompatibilities Between Standard C++ Library Version 1.2.1 and the Draft
Standard

As the ANSI C++ standard has evolved over time, the Standard C++ Library has not always
kept up. Such is the case for the times function object in the functional header file. In the
standard, times has been renamed to multiplies.

If you want to use multiplies in your code, to be compatible with the ISO/ANSI C++
standard, use a conditional compilation flag on the aCC command line. For example, for the
following program, compile with the command line:

aCC -D__HPACC_USING_MULTIPLIES_IN_FUNCTIONAL test.c

// test.c
int times; //user defined variable
#include <functional>

// multiplies can be used in
int main() {}
// end of test.c

Depending on the existence of the conditional compilation flag, functional defines either
times, or multiplies, not both. If you have old source that uses times in header functional
and also new sources that use multiplies, the sources cannot be mixed.

Mixing the two sources would constitute a non-conforming program, and the old and new
sources may or may not link. If your code uses the old name times, and you want to continue
to use the now non-standard times function object, you do not need to do change the old
source to compile it.

Changes to the math.h System Header File

At the HP-UX 11.00/11i release, the math.h header file has changed in the following ways:

• fmax and fmin are new functions. If you have used these function names in your code in a
prior release and want to continue using them, you must rename your functions. If this is
a problem in your code, you will see the following error:

The overloading mechanism cannot tell a double (double , double) from
a ... (1103)

• The _ABS function has been renamed. To continue using this function, replace any call to
_ABS() with abs().
Chapter 1 71

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
Conflict Between macros.h and numeric_limits Class (min and max)

If your code includes /usr/include/macros.h, the min and max macros defined in macros.h
conflict with the min and max functions defined in the numeric_limits class of the Standard
C++ Library. The following code, for example, would generate a compiler Error 134:

numeric_limits<unsigned int>::max();

If you must use the macros.h header, try undefining macros that conflict:

...
#include <macros.h>
#undef max
#undef min
...

Unsatisfied Symbols if using Non-Current Runtime Support Library

If you see the following message, you may be using a non-current version of the HP aC++
run-time support library.

/opt/aCC/lbin/ld: Unsatisfied symbols:
Class tables [Vtable] dependent on key function:
"__versioned_type_info::~__versioned_type_info()" (data)

For example, if you are a library distributor, you must ensure that your customers use the
same version or a newer version of the libCsup runtime library. If necessary, you should
install the most current HP aC++ library support patch and distribute this patch to your
customers.

Unsatisfied Symbols for Inline Template Functions

If you use explicit instantiation instead of closing a library, and you compile with the
+inst_auto option, then unsatisfied symbols are generated for inline template functions that
are too large to inline.

Potential Binary Incompatibility of Objects Built with HP-UX v 10.10/10.20 HP aC++

The underlying type corresponding to the size_t typedef has changed from unsigned int to
unsigned long. Similarly, ptrdiff_t has changed from int to long. These changes make
the 10.10 and 10.20 HP aC++ runtime libraries incompatible with subsequent compiler
releases. The changes will cause compatibility problems when size_t is used in a non-extern
"C" interface. (The mangled signature would be different.)

Due to these changes, if object files are recompiled or linked, then all C++ files must be
recompiled. This implies that third party libraries in archive form also need to be recompiled
or resupplied.
Chapter 172

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
Potential Source Incompatibility of Objects Built with HP-UX v 10.10/10.20 HP aC++

When your code overloads system header file functions, it is possible that C++ source files that
compile without error using HP aC++ for HP-UX 10.10 or 10.20 might not compile with a
subsequent compiler release. The example below shows why this potential problem exists.

#include <time.h>
time_t ff (time_t t) { return t; }
time_t ff (long t) { return t; } // This causes a duplicate.
time_t ff (char t) { return t; } // This causes an ambiguity.
int main () { long tt = ff (1L); return 0; }

ff is overloaded to take either a time_t, long, or char parameter. On a 10.10 or 10.20 system
where time_t is a long, the call to ff in main resolves to ff(time_t). On a 10.30 system,
however, where time_t is an int, the code fails to compile.

The following error is generated:

Error 225: "t1.C", line 4 # Ambiguous overloaded function call; more than
one acceptable function found. Two such functions that matched were "int
ff(char)" ["t1.C", line 5] and "int ff(int)" ["t1.C", line 3].

int main () { long tt = ff (1L); }

Binary Compatibility Between HP-UX 11.00 Bundle from the June 2000 Support
Plus Media Revision B.11.00.49 and HP-UX 11.00

An application that ran on the HP-UX 11.00 release will generally continue to run with the
same behavior on 32-bit and 64-bit HP-UX 11.00 bundle from the June 2000 Support Plus
media revision B.11.00.49, provided that any dependent shared libraries are also present. An
executable is a binary file that has been processed directly by the HP linker (ld) or indirectly
with the compiler, and can be run by the HP-UX loader (exec).

The following describe exceptions to binary compatibility between the 11.00 and June 2000
Support Plus media revision B.11.00.49 releases. These conditions can occur during your
development process, but rarely affect deployed applications.

• Binary Incompatibilities without Changes

• Binary Incompatibilities with Changes

Binary Incompatibilities without Changes

Under the following condition, when you compile your source code without any changes (to
source code, options, or makefiles), you create relocatable object files or executables that
cannot be moved back to a 11.00 system.
Chapter 1 73

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
Instrumented Code with PBO or +O4 Optimization If you use PBO
(+Oprofile=collect compiler option) or the +O4 option during development and recompile
with your June 2000 Support Plus media revision B.11.00.49 compiler, you create
instrumented objects (ISOM) that an 11.00 system does not recognize.

One of the following types of error messages is generated if you attempt to link the objects
created using your June 2000 Support Plus media revision B.11.00.49 compiler on an 11.00
system.

• If you compile with +O3 or +O4, the following message and a stack trace is generated:

report error (13-12299-434) to your nearest HP service
representative (8911)

• If you compile with +O2 +Oprofile=collect, the following message and a stack trace is
generated:

Backend Assert ** Ucode versions earlier then v.4 no longer supported.
(5172)

NOTE This code is not backward-compatible with the 11.00 release. Instrumented
object files cannot be moved backward.

Binary Incompatibilities with Changes

When you make changes to your source code, options, or makefiles to use new features of the
June 2000 Support Plus media revision B.11.00.49 release, you may introduce the following
areas of binary incompatibility. You can apply patches to the 11.00 release to accommodate
the relocatable object file or executable on an 11.00 release for backward compatibility.

• Huge Data Features

• 64-Bit Open Graphics Library Support

• Compiling with +DO and +Olibcall for Improved Math Performance

• Parallel Programming Enhancements

Huge Data Features If you make changes to your source code or use the +hugesize=n
option and recompile with your June 2000 Support Plus media revision B.11.00.49 compiler to
use huge data features (for example, declaring a very large array), you must install the
PHKL_14088 (June 2000 Support Plus media revision B.11.00.49) kernel patch (or
superseding patch) to use your executable with these features on a 11.00 system.

You must also apply the PHSS_16587 aC++ runtime and PHSS_16841 linker-tools patches for
huge data support.
Chapter 174

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
64-Bit Open Graphics Library Support The June 2000 Support Plus media revision
B.11.00.49 extension provides 64-bit OGL support to improve performance. If you make
changes to your source code to recompile using these OGL headers, an unresolved symbols
message is generated when you link your executable on an 11.00 system.

Compiling with +DO and +Olibcall for Improved Math Performance If you recompile
your code with your June 2000 Support Plus media revision B.11.00.49 compiler using
+Olibcalls and +DO11.0EP9812 options for improved performance, an unresolved symbols
message is generated if you link or run your new executable on an 11.00 system. Possible
symbols include:

• $$vsin2_20

• $$vcos2_20

• $$vsinf2_20

• $$vcosf2_20

• $$vcossinf_20

• $$vcossinf_20

• $$expf_20

• $$expf

• $$vexpf2_20

• $$vexp2_20

Install the PHSS_14582 milli (or superseding) patch if you must link your executable on an
11.00 system.

Parallel Programming Enhancements If you change your source code and recompile it
with your June 2000 Support Plus media revision B.11.00.49 compiler to take advantage of
parallel programming features, you receive the error unresolved symbols if you link your
executable on an 11.00 system. Install the PHSS_16587 aC++ runtime patch, PHSS_16841
linker-tools patch, and June 2000 Support Plus media revision B.11.00.49 driver to provide
the correct driver and support library for an 11.00 system.

Known Limitations

Following are some of the limitations HP aC++.

• HP aC++ does not support the xdb debugger. Instead, use the HP WDB debugger.

• Known limitations of 64-bit Applications:
Chapter 1 75

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
— Use of optimization levels greater than 0 with debugging options is not supported.

— Limitation when unloading shared libraries in 32-bit and 64-bit applications:

Normally, at program termination (exit) or at a call to shl_unload() or dlclose(),
all explicitly loaded libraries are closed automatically and static destructors are
executed at that time.

When a 32-bit and 64-bit application call shl_unload() or dlclose() and that
causes libCsup to be unloaded, it fails when it executes static destructors at program
termination. This causes a program abort. This happens because related code and
data of libCsup are no longer present. See defect JAGaa86491.

• HP aC++ does not support installation and execution on HP-UX 9.x, 10.00, and 10.01
systems.

• HP aC++ does not support large files (greater than 2 GB) with <iostream.h> or
<iostream>.

• Known limitations of exception handling features:

— Interoperability with setjmp/longjmp (undefined by the ISO/ANSI C++ international
standard) is unimplemented. Executing longjmp does not cause destructors to be run.

— If an unhandled exception is thrown during program initialization phase (that is,
before the main program begins execution) destructors for some constructed objects
may not run.

— Symbolic debugging information is not always emitted for objects which are not
directly referenced. For instance, if a pointer to an object is used but no fields are ever
referenced, then HP aC++ only emits symbolic debug information for the pointer type
and not for the type of object that the pointer points to.

For instance, use of Widget * only emits debug information for the pointer type
Widget * and not for Widget. To generate such information, create an extra source
file which defines a dummy function that has a parameter of that type (Widget) and
link it into the executable program.

• Known limitations of signal handling features:

— Throwing an exception from a signal handler is not supported, since a signal can occur
at any place, including optimized regions of code in which the values of destructible
objects are temporarily held in registers. Exception handling depends on destructible
objects being up-to-date in memory, but this condition is only guaranteed at call sites.

— Issuing a longjmp in a signal handler is not recommended for the same reason that
throwing an exception is not supported. The signal handler interrupts processing of
the code resulting in undefined data structures with unpredictable results.
Chapter 176

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
• Source-level debugging of C++ shared libraries is supported. However, there are
limitations related to debugging C++ shared libraries, associated with classes whose
member functions are declared in a shared library, and that have objects declared outside
the shared library where the class is defined. Refer to the appropriate release notes and
manuals for the operating system and debugger you are using.

• Instantiation of shared objects with virtual functions in shared memory is not supported.

• When you call the shl_load(3X) routines in libdld.sl either directly or indirectly (as
and when your application calls use the +A option), an unresolved externals error is
generated.

If you want to link archive libraries and libdld.sl, use the -Wl,-a, archive option.
The following example directs the linker to use the archive version of standard libraries
and (by default) libdld.sl.

 aCC prog.o -Wl,-a,archive

• Using shl_load with Library-Level Versioning

Once library-level versioning is used, calls to shl_load() should specify the actual
version of the library that is to be loaded. For example, if libA.sl is now a symbolic link
to libA.1, then calls to dynamically load this library should specify the latest version
available when the application is compiled, such as:

shl_load("libA.1", BIND_DEFERRED, 0);

This will ensure that, when the application is migrated to a system that has a later
version of libA available, the actual version desired is the one that is dynamically loaded.

• Memory Allocation Routine alloca()

The compiler supports the built in function, alloca(), defined in the
/usr/include/alloca.h header file. The implementation of the alloca() routine is
system dependent, and its use is not encouraged.

alloca() is a memory allocation routine similar to malloc(). The syntax is:

void *alloca(size_t <size>);

alloca() allocates space from the stack of the caller for a block of least size bytes, but
does not initialize the space. The space is automatically freed when the calling routine
exits.

NOTE Memory returned by alloca() is not related to memory allocated by other
memory allocation functions. Behavior of addresses returned by alloca()
as parameters to other memory functions is undefined.
Chapter 1 77

HP aC++ Release Notes
Problem Descriptions and Fixes, and Known Limitations
To use this function, you must use the <alloca.h> header file.
Chapter 178

HP aC++ Release Notes
Related Documentation
Related Documentation
Documentation for HP aC++ is described in the following sections.

Online Documentation

The following online documentation is included with the HP aC++ product:

• HP aC++ Online Programmer’s Guide

Access this guide in any of the following ways:

— Use the +help command line option: /opt/aCC/bin/aCC +help

— From your web browser, enter the URL:

file:/opt/aCC/html/C/guide/index.htm

— The guide (excluding Rogue Wave documentation) is also available on the World Wide
Web at http://docs.hp.com/en/dev.html.

• HP-UX 64-bit Porting and Transition Guide

This guide helps developers transition applications from an HP-UX 32-bit platform to the
HP-UX 64-bit platform.

It is available on the HP-UX 11.x CD-ROM and on the World Wide Web at
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,647,00
.html

• HP Linker and Libraries Online User Guide

To access, use the command: /usr/ccs/bin/ld +help

• HP Wildebeest Debugger (HP WDB)

All of the HP WDB documentation is available online in the following directory:
/opt/langtools/wdb/doc

The most current HP WDB and its related documentation is available online at
http://www.hp.com/go/wdb

• Rogue Wave Software Standard C++ Library 2.2.1 Class Reference

This reference contains an alphabetical listing of all of the classes, algorithms, and
function objects in the updated Rogue Wave Standard C++ Library. The library includes
the standard iostream library and has namespace std enabled.
Chapter 1 79

HP aC++ Release Notes
Related Documentation
The reference is provided as HTML formatted files. You can view these files with an
HTML browser by opening the file /opt/aCC/html/libstd_v2/stdref/index.htm or
select the hyperlink from HP aC++ Online Programmer’s Guide.

• Rogue Wave Software Standard C++ Library 2.2.1 User’s Guide

This guide gives information about library usage and includes an extensive discussion of
locales and iostreams.

The guide is provided as HTML formatted files. You can view these files with an HTML
browser by opening the file /opt/aCC/html/libstd_v2/stdug/index.htm or select the
hyperlink from HP aC++ Online Programmer’s Guide.

• Rogue Wave Software Standard C++ Library 1.2.1 Class Reference

This reference provides an alphabetical listing of all of the classes, algorithms, and
function objects in the prior Rogue Wave implementation of the Standard C++ Library. It
is provided as HTML formatted files. You can view these files with an HTML browser by
opening the file /opt/aCC/html/libstd/ref.htm.

• Rogue Wave Software Tools.h++ 7.0.6 Class Reference

This reference describes all of the classes and functions in the Tools.h++ Library. It is
intended for use with Rogue Wave Standard C++ Library 1.2.1.

The reference is provided as HTML formatted files. You can view these files with an
HTML browser by opening the file /opt/aCC/html/librwtool/ref.htm.

There are 8 templates documented in the main part of the manual as still supported. This
is incorrect. The interfaces for the following 8 templates must be translated to the new
interface with two extra template arguments:

RWTPtrHashDictionary ==> RWTPtrHashMap
RWTPtrHashDictionaryIterator ==> RWTPtrHashMapIterator
RWTPtrHashTable ==> RWTPtrHashMultiSet
RWTPtrHashTableIterator ==> RWTPtrHashMultiSetIterator
RWTValHashDictionary ==> RWTValHashMap
RWTValHashDictionaryIterator ==> RWTValHashMapIterator
RWTValHashTable ==> RWTValHashMultiSet
RWTValHashTableIterator ==> RWTValHashMultiSetIterator

Refer to defect CR JAGaa90638.

NOTE Refer to the HP aC++ Online Programmer’s Guide Information Map for how
to obtain additional Rogue Wave documentation and information.
Chapter 180

HP aC++ Release Notes
Related Documentation
• HP aC++ Release Notes is this document. The online ASCII file can be found at
/opt/aCC/newconfig/RelNotes/ACXX.release.notes.

• Online manual pages for aCC and c++filt are at /opt/aCC/share/man/man1.Z.

Manual pages for the Standard C++ Library and the cfront compatibility libraries
(IOStream and Standard Components) are provided under /opt/aCC/share/man/man3.Z.

Online C++ Example Source Files

Online C++ example source files are located in the /opt/aCC/contrib/Examples/RogueWave
directory. These include examples for the Standard C++ Library and for the Tools.h++
Library.

Printed Documentation

HP aC++ Release Notes is this document. A printed copy of the release notes is provided with
the HP aC++ product. Release notes are also provided online, as noted above.

Other Documentation

Refer to the HP aC++ Online Programmer’s Guide Information Map for documentation
listings, URLs, and course information related to the C++ language.

The following documentation is available for use with HP aC++.

• Parallel Programming Guide for HP-UX Systems (B6056-90006) describes efficient
parallel programming techniques available for the HP Fortran 90, HP C, and HP aC++
compilers on HP-UX.

This document is available on the HP-UX 11.x CD-ROM and on the World Wide Web at
the following URL: http://docs.hp.com/en/dev.html.

To order a paper copy, contact Hewlett-Packard’s Support Materials Organization (SMO)
at 1-800-227-8164 and provide the above part number.

To order printed versions of Hewlett-Packard documents, refer to manuals(5).

HP aC++ World Wide Web Homepage

Access the HP aC++ World Wide Web homepage at the following URL:
http://www.hp.com/go/cpp.

Refer to the homepage for the latest information regarding:

• Frequently Asked Questions
Chapter 1 81

HP aC++ Release Notes
Related Documentation
• Release Version and Patch Table

• Purchase and Support Information

• Documentation Links

• Compatibility between Releases.
Chapter 182

	HP aC++ Release Notes
	1 HP aC++ Release Notes
	Announcement
	What’s in This Version
	New Features in Version A.03.70

	New Features in Version A.03.65
	+Onolibcalls=func1[,func2,...] Option
	Improved NRV Optimization
	Improved Compile Time
	Debugging of Inline Functions
	Improved Template Usability
	Destruct Locals when pthread_exit is Called
	Accessing Members of Enclosing Class from a Nested Class
	Performance Improvement of Strings With -mt

	New Features in Version A.03.60
	Debugging of Optimized Code (DOC) in 64-Bit Mode
	Enhancements to C++ Runtime Support Library
	Improved Performance of C++ Virtual Calls at +O4
	Optimizer Tune-Up for PA8800
	Improved C++ Class Array Construction Performance
	Improved Compile Time
	Improved C++ Template Usability

	New Features in Version A.03.55.02
	placement delete Feature Fully Supported

	New Features in Version A.03.55
	-notrigraph Option
	NO_SIDE_EFFECTS Pragma

	New Features in Version A.03.50
	Precompiled Header (PCH) Feature Fully Supported under -AA
	Debugging Optimized Code (DOC)
	+O[no]clone Option
	+O[no]memory[=malloc]
	Improved Prefetching and Data Locality for PA8800
	Improved Optimization of Exception Handling Code Sequences at Optimization Level +O2 with +Oexcep...
	restrict Keyword
	Increased +O3/+O4 Robustness with aCC
	Support for gdb steplast
	+Olit=[all|none] Option
	Dynamic Unloading of C++ Runtime Shared Library (libCsup)
	Pragma INIT and Pragma FINI in 32-bit mode
	Patches Required

	New Features in Version A.03.37
	Rogue Wave Tools.h++ Version 7.1.1 Compatible with -AA
	UTF-16 Character Transformation Format Support
	__restrict Keyword Support
	+ub and +sb Options to Control Bitfield Signedness
	ANSI C++ Covariant Return Type
	Improved Support for PCH with -AA
	Improved Support for Pack and Align Pragmas
	Improved DOC (Debug Optimized Code) Support
	Performance Improvements to -AA iostream
	Thread Muted Contention Fix on Null Strings with -AP
	Patches Required

	New Features in Version A.03.33
	OpemMP Standard Supported
	aCC_MAXERR to Control Maximum Number of Compiler Errors
	Small Block Allocator for malloc
	Gather/Scatter Prefetch Pragma
	Support for SDK/XDK
	Support for _declspec
	-Bhidden and -Bhidden_def Command Line Options
	+Oprofile Option for Profile-Based Optimization
	Initialized Thread Local Storage
	+O[no]inline=list Option
	-I- Option Enhanced to Perform prefixinclude Search
	Improved Optimization for HP_LONG_RETURN and +DA1.1

	New Features in Version A.03.30
	Standard C++ Library 2.0 Base on the New Rogue Wave SL 2.0
	Easier User of Threads with -mt
	Partial Support for ANSI C Compiler

	New Features in Version A.03.27
	Rogue Wave Standard C++ Library 2.2.1
	Transitioning from the Prior to the New Standard C++ Library
	Incremental Linking in 64-bit Mode

	New Features in Version A.03.25
	+ESplabel Option
	+inline_level [i]n Option
	-fast Option (Run-time Performance and Porting to HP-UX)
	Fix and Continue Debugging
	HP-PAK and Blink Link no Longer bundled with HP aC++
	+Ofailsafe Option new Defaults
	+DD[data_model] Option
	+ESlit Option New Default
	Function Try Blocks as Defined in the C++ Standard
	#assert and #unassert Preprocessor Directives
	enum x { x1, }; Trailing Comma now Generates Warning 921
	+m[d] and +M[d] Options Have Changed Behavior
	+uc Option for Porting to HP-UX
	Predefined String Variable Identifiers for Function Names
	Macros Having a Variable Number of Arguments
	Alignment of long double Data Type in 64-bit mode Changed to 16-bytes
	-D__HPACC_THREAD_SAFE_RB_TREE Macro Ensures Thread Safety

	New Features in Version A.03.13
	New Features in Version A.03.10
	New Features in Version A.03.04
	Installation Information
	Hardware Requirements
	Patch Installation Requirements
	Current Runtime Support Library Required

	Compatibility Information
	Floating-Point Exceptions Must be Raised Prior to Entering Library Routines
	Difference in Class Size When Compiling in 32-Bit and 64-Bit Mode
	Content of .o Files may Change
	The Named Return Value (NRV) Optimization
	Linker Compatibility Warnings

	Problem Descriptions and Fixes, and Known Limitations
	Known Problems
	Known Limitations

	Related Documentation
	Online Documentation
	Online C++ Example Source Files
	Printed Documentation
	Other Documentation
	HP aC++ World Wide Web Homepage

