
Software Package Builder 2.0
User’s Guide

for HP-UX 11i v1, 11i v2, and 11i v3

Edition 2
Manufacturing Part Number: 5991-7462

February 2007

United States

© Copyright 2002-2007 Hewlett-Packard Development Company, L.P. All rights reserved.

Legal Notices

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government License

Proprietary computer software. Valid license from HP required for
possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation,
and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notice

© Copyright 1999, 2004, 2007 Hewlett-Packard Development Company,
L.P. Confidential computer software. Valid license from HP required for
possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation,
and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice.
The only warranties for HP products and services are set forth in the
express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of
Microsoft Corporation.

Printed in the US.

Trademark Notices

Intel Itanium® Logo, Intel, Intel Inside and Itanium are trademarks or
registered trademarks of Intel Corporation in the US and other countries
and are used under license.
2

Intel®Itanium® Processor Family is a trademark of Intel Corporation in
the US and other countries and is used under license.

UNIX® is a registered trademark of The Open Group.

Publication History
The manual publication date and part number indicate its current
edition. The publication date will change when a new edition is released.
The manufacturing part number will change when extensive changes are
made.

• Software Package Builder 2.0 Users Guide for HP-UX 11i v1, 11i v2,
and 11i v3: February 2007, 5991-7462

• Software Package Builder 2.0 Users Guide for HP-UX 11i v1 and
11i v2: September 2004, 5990-6771

• Software Package Builder 1.0 Users Guide for HP-UX 11i v1 and
11i v2: December 2003, 5187-4494

• Software Package Builder 1.0 Users Guide for HP-UX 11i v1 and
11i v2: September 2003, 5187-3646

New editions of this manual will incorporate all material updated since
the previous edition. For the latest version, see the Software Package
Builder documentation on the Web:

http://docs.hp.com/

Please use the following Web form to send us feedback:

http://docs.hp.com/assistance/feedback.html
 3

About this Guide
This guide describes installing and getting started with Software
Package Builder. It also provides a basic overview of the software
packaging process and terminology. It assumes that you are an HP-UX
system administrator and familiar with installing and administering
software in these environments.

This guide applies to the February 2007 version of Software Package
Builder 2.0. If you need additional information for Software Package
Builder, visit the product Web site:

http://software.hp.com/products/SPB/
4

Typographic Conventions
We use the following typographical conventions.

mxtool (4) HP-UX manual page. mxtool is the name and (4) is the
section. From the command line, you can enter “man
mxtool” or “man 4 mxtool” to view the manpage. See
man (1).

Book Title Title of a book. On the Web and on the Instant
Information CD, it may be a hot link to the book itself.

Command Command name or qualified command phrase.

ComputerOut Text displayed by the computer.

KeyCap Name of a keyboard key.

Term Defined use of an important word or phrase.

UserInput Commands and other text that you type.

Variable Name of a variable that you may replace in a command
or function or information in a display that represents
several possible values.

[] Contents are optional in formats and command
descriptions. If the contents are a list separated by |,
you must choose one of the items.

{ } Contents are required in formats and command
descriptions. If the contents are a list separated by |,
you must choose one of the items.

... Preceding element may be repeated an arbitrary
number of times.

| Separates items in a list of choices.
 5

Contents
1. Introduction to Software Package Builder
Software Package Builder Overview. 10
Software Package Builder and HP-UX Software Distributor . 12

Software Distributor . 12
Software Package Builder . 12

System Requirements . 13
Optimizing Java . 14
Getting and Installing SPB . 15
Starting Software Package Builder. 16

2. Software Packaging
Software Packaging Overview. 20
Software Packaging Lifecycle . 21
Software Package Structure . 23

Organizing Filesystems . 23
Software Elements . 24
Software Package Hierarchy . 26

Product Specification File . 29
PSF Requirements and Recommendations . 29
Attributes . 29

Packaging Policies . 31

3. Software Package Builder Features
Introduction . 34
Screen Regions . 35

Package Structure . 35
Depot Region . 36
Attribute Table . 36
Messages Tab . 36
Policy Help Tab . 37
PSF View . 37
Menus . 37
Tool Bar . 38
Additional Information . 38
6

Contents
4. Getting Started with Software Package Builder
Getting Started Using the SPB GUI. 40

Creating a New PSF . 40
Managing Fileset Content . 41
Validating a PSF . 42
Setting Attributes . 43
To set attributes . 43

Using the SPB Command Line Interface . 45
Editing from the CLI . 45
Validating from the CLI . 45
Incorporating SPB into Automated Processes . 46

Additional Information . 47

5. Advanced Features
Managing Fileset Content . 50

Using Advanced Features. 52
Creating and Using a Subproduct. 59
Creating and Using a Bundle . 60
Creating and Using a Vendor or Category . 61
Creating and Using Vendor Defined Attributes . 62
Overview of Software Specification Attributes. 63

Working with Dependency Attributes . 65
Working with Depots . 69

Validating a Depot . 70
Comparing Two Depots . 70
Creating a PSF from a Depot . 70

Using Control Scripts. 72
Additional Information . 74

Glossary . 77
7

8

Introduction to Software Package Builder
1 Introduction to Software
Package Builder

The following topics are covered in this chapter:

• “Software Package Builder Overview” on page 10

• “Software Package Builder and HP-UX Software Distributor” on
page 12

• “System Requirements” on page 13

• “Getting and Installing SPB” on page 15

• “Starting Software Package Builder” on page 16
Chapter 1 9

Introduction to Software Package Builder
Software Package Builder Overview
Software Package Builder Overview
Software Package Builder (SPB) provides a visual method to create and
edit software packages using the HP-UX Software Distributor (SD-UX)
package format. Once software is packaged, it can easily be transferred
to a distribution medium, mass produced, and installed by
administrators. The SPB graphical user interface (GUI) provides a
window into the software package structure, showing attributes that can
be set for each package element. SPB loads packaging policies and
validates software package attributes against these policies. The SPB
command line interface (CLI) can also perform validation of software
package attributes against policies and can be added to an automated
process for editing and validation of a PSF.

SPB can assist with the following tasks:

• Creating a product specification file (PSF) to organize files into
products, filesets, and optionally, into bundles and subproducts

• Setting attribute values to define software package characteristics
such as revision, architecture, file permissions, and dependencies

• Validating the PSF against packaging policies to ensure successful
packaging into a software depot with the swpackage command

• Editing and validating the PSF automatically as part of a nightly
build process using SPB’s CLI

• Viewing and editing multiple PSF’s

• Viewing and validating depots and copying data from a depot to
create a PSF

• Testing or creating a software package by running the swpackage
command from within the SPB GUI
Chapter 110

Introduction to Software Package Builder
Software Package Builder Overview
Software Package Builder offers the following features:

Table 1-1 Features of Software Package Builder

Feature Description

Graphical User Interface (GUI)
for creating PSFs in SD-UX

format.

Provides an easy-to-use interface,
making the complex task of

creating a PSF easier.

Command Line Interface (CLI)
for automating nightly changes
to packages.

Provides a mechanism for easy
automation of PSF edits and
validation.

Policy validator for verifying a
package’s use of legal SD-UX
syntax.

Easy to create a valid PSF
without in-depth knowledge of all
the packaging policies.

Open source software can be
packaged in SD-UX format.

Easy to repackage software from
various formats into SD-UX,
allowing you to manage software
with the SD-UX software
management toolset.

User-specified rules files. Allows you to specify the rules file
you want to validate your PSF
against.

Depot view. Allows you to view and validate
depots and copy information from
a depot to create a PSF.

Package software. Allows you to run the swpackage
command from within the SPB
GUI to create a software package.
Chapter 1 11

Introduction to Software Package Builder
Software Package Builder and HP-UX Software Distributor
Software Package Builder and HP-UX
Software Distributor
It is important to understand the relationship between SPB and SD-UX.

Software Distributor

SD-UX provides a powerful set of tools for centralized HP-UX software
management. SD-UX commands are included with the HP-UX operating
system and allow you to package software into the SD-UX format, as well
as create, distribute, and manage software from software depots.

SD-UX provides utilities to support numerous software package
management tasks. Of these, the swpackage command creates a
software package by combining the files the user wants to deliver (which
may include control scripts) and a product specification file (PSF). The
software package is then placed in a software depot where it can be
distributed to customers and installed using the swinstall command.

The SD-UX packaging operations are based on the attribute values set in
the PSF. The PSF is a master file that is created for a given software
package to define the structure and describe all the characteristics and
file mappings. The PSF contains attribute information for all the
software elements contained in the package and must adhere to a strict,
hierarchical structure and set of packaging policy rules.

Software Package Builder

SPB fits into this process by assisting with the creation and validation of
a PSF that the swpackage command uses to create the software package.
The structure of a software package and its software elements are
largely abstract and the packaging policy rules that the software
package must adhere to can also be very complex. SPB helps simplify the
process of creating a software package by providing a visual method for
creating the PSF, its software elements, attributes, and structure, as
well as automatically validating the PSF against packaging policy rules.
SPB provides a default set of packaging policies that validate your PSF,
however, you can also customize your own packaging policies.
Chapter 112

Introduction to Software Package Builder
System Requirements
System Requirements
The following table identifies the hardware and software requirements
for Software Package Builder (SPB).

For the latest system requirements, go to:

http://software.hp.com/products/SPB/

Table 1-2 SPB Requirements

Operating System • HP-UX 11i v1 (B.11.11)

• HP-UX 11i v2 (B.11.23)

• HP-UX 11i v3 (B.11.31)

Software Java 1.4 runtime environment (JRE) or
later

Free Disk Space • 6 MB minimum in the /opt directory

• 1 MB minimum recommended for data

RAM 256 MB
Chapter 1 13

Introduction to Software Package Builder
Optimizing Java
Optimizing Java
To achieve optimal Java performance, run the HPjconfig tool to tune
the kernel and list any Java-specific patches that are needed.

To access Java configuration information

Step 1. Visit the Web site

http://www.hp.com/go/java/

Step 2. Locate the section on HPjconfig for tuning HP-UX kernel parameters.

Step 3. Install Java-specific patches, as needed.
Chapter 114

Introduction to Software Package Builder
Getting and Installing SPB
Getting and Installing SPB
SPB is available as a selectable application with the release of HP-UX
11i v2 (B.11.23) and 11i v1 (B.11.11), and an optional application with
the release of 11i v3 (B.11.31). SPB can also be downloaded from the
Web.

Download SPB from the following URL:

http://software.hp.com/products/SPB/download.html

SPB is packaged in SD-UX format and can be installed with the
swinstall command.

For network installation, enter:

swinstall -s <host>:</path> SwPkgBuilder

For media installation, enter:

swinstall -s <media path>SwPkgBuilder

For depot installation, enter:

swinstall -d SwPkgBuilder @<host>:</depot path>
Chapter 1 15

Introduction to Software Package Builder
Starting Software Package Builder
Starting Software Package Builder
To launch SPB from the command line, enter:

/opt/spb/bin/spb

The SPB GUI will launch, and by default the application will use the
packaging policy rules file for the HP-UX version you are running on
your system.

About the Policy
Rules Files

The packaging policy rules file is an Extensible Markup Language (XML)
formatted file that describes the legal PSF syntax and any field value
constraints for your PSF.

You can use SPB to package software for a range of HP-UX releases,
older or newer than the system running SPB. To package software for a
newer version of HP-UX, specify the appropriate policy file as a
command line argument. To package software for an older release, use
the default, since policy files are backward compatible with previous
releases. For example, you can use the HP-UX 11i v3 policy file to
package software for a system running HP-UX 11i v2, but to package
software for an HP-UX 11i v3 system from a system running HP-UX 11i
v2, specify the HP-UX 11i v3 policy file via the command line.

The policies supplied with SPB are located in /opt/spb/data and are
named as follows:

• For HP-UX 11i v3 (B.11.31) - the default policy file is
113XPolicies_SD.xml

• For HP-UX 11i v2 (B.11.23) - the default policy file is
112XPolicies_SD.xml

• For HP-UX 11i v1 (B.11.11) - the default policy file is
11XPolicies_SD.xml

Specifying the
Packaging Policy
Rules File

Specify a packaging policy rules file other than the default by using the
-r option from the command line.

To launch SPB and specify the policy rules file, enter:

spb -r /opt/spb/data/<Myrules.xml>
Chapter 116

Introduction to Software Package Builder
Starting Software Package Builder
NOTE If only a file name is given as the argument, SPB will look in the default
policy rules file directory for the specified file. You can also specify an
absolute path to the file.

For additional information on this and other SPB command line options,
refer to the spb (1M) manpage.
Chapter 1 17

18

Software Packaging
2 Software Packaging

If you are new to software packaging, this chapter provides an overview
of the software packaging process and basic concepts. If you are already
an experienced packager, you may want to use this chapter as a review,
or move to Chapter 3, “Software Package Builder Features.”

This chapter covers the following topics:

• “Software Package Overview” on page 16

• “Software Packaging Lifecycle” on page 21

• “Software Package Structure” on page 23

• “Product Specification File” on page 29

• “Packaging Policies” on page 31
Chapter 2 19

Software Packaging
Software Packaging Overview
Software Packaging Overview
Application software is delivered in units called software packages. A
software package is a collection of files and directories required to install
a software product. Generally, a software package is designed and built
by the application developer after completing the development of the
application code.

 Building a software product into one or more software packages gives
you the ability to do the following:

• Transfer the software product to a distribution media

• Produce the software product in mass quantities

• Install the software product on multiple systems
Chapter 220

Software Packaging
Software Packaging Lifecycle
Software Packaging Lifecycle
The software packaging lifecycle is displayed in the figure below.

Figure 2-1 Software Packaging Lifecycle

1. Identify the software package contents - Determine what files
and directories you want to include in your software package. Your
software package can consist of products, filesets, files, and other,
optional software elements as discussed in “Software Elements” on
page 24.

2. Identify the software package structure - Design the software
package structure and plan the organization of the source and
destination filesystems.
Chapter 2 21

Software Packaging
Software Packaging Lifecycle
3. Create a Product Specification File (PSF) - Use SPB to create a
PSF to define the software package. SPB provides a GUI for creating
the PSF.

4. Validate the PSF - Determine that the PSF is valid prior to
creating the software package. SPB uses a packaging policy rules file
to validate the PSF.

5. Create the software package - Use the SD-UX swpackage
command to create your software package. This can be done from the
SPB GUI or the command line.

6. Install the software package - Use the SD-UX swinstall
command to install the contents of your software package.

7. Produce distribution media - Determine the appropriate method
of distribution.You can use the SD-UX swcopy command to create
copies of the package.

8. Test the installation - Test the installation of the software package
using the SD-UX swverify command.

TIP For detailed information on SD-UX commands, refer to the manpage for
individual commands or the Software Distributor Administration Guide
which can be found at:

http://www.docs.hp.com/en/SD
Chapter 222

Software Packaging
Software Package Structure
Software Package Structure
A software package is created from a hierarchy of software elements. The
hierarchy provides the structure needed by the filesystem to logically
identify packaged files. A software package also contains metadata
specific to each software element. The metadata is generated by setting
attribute values. This is all accomplished through the creation of a PSF
which defines the software package.

Once the software package is created, you can create a software depot
which acts as a repository for your software products. Software depots
can be managed using SD-UX commands.

The packaging process lets you create depots. The PSF is flexible enough
to fit many software build requirements and manufacturing process
needs.

Before you begin packaging software, ensure the following:

• SPB is installed and configured on the system where you intend to
create your software package.

• The software to be packaged is installed on the packaging system, or
the necessary files are available remotely.

Organizing Filesystems

One of the first steps in packaging software is determining what files
and directories you want included in the software package. The files
should follow certain guidelines to support the configuration you want.

As much as is feasible, you should group your source directories and files
so they correspond with the filesets and products you are using in the
software package. To make the maintenance of your software package
easier, when organizing your source and destination filesystems use the
following guidelines:

• Create filesets with consistent file access modes (i.e., file
permissions).

• Create directories with contents that are directed to the same
filesets.
Chapter 2 23

Software Packaging
Software Package Structure
• Group related files in the source filesystem that will directly
translate to the destination filesystem.

Software Elements

A software package is created from a hierarchy of software elements,
which are structured and defined in a PSF. The SPB-specific software
elements are as follows:

File A file is the lowest level of software element that can be
contained in a software package. Files are grouped
together to create filesets.

Fileset A fileset serves as a container for files, associated file
attributes, and separate control scripts. A fileset is
comprised of a group of files. Filesets are grouped and
contained in products. A fileset can only belong to one
product; however, a fileset may be referenced in
multiple subproducts within one product. A fileset can
also be included in multiple bundles through the
product it is contained within. A minimum of one
fileset is required for a PSF.

Product A product is a container for filesets, subproducts,
and/or control scripts specific to a software package.
Products are collections that form a set of related
software. A product can contain one fileset or multiple
filesets. Products can contain filesets specific to
different versions of the product and different
hardware platforms. All these different filesets can be
packaged together for distribution. A minimum of one
product is required for a PSF.

Subproduct A subproduct is a reference to groups of related filesets
within a product. For example, you might create a
subproduct that references a fileset grouping for the
entire runtime configuration, manuals, or
demonstration versions of the product. It is important
to remember that subproducts only reference filesets
and do not physically contain the fileset. The use of
subproducts is optional and considered an advanced
feature.
Chapter 224

Software Packaging
Software Package Structure
Bundle A bundle is a reference to filesets, subproducts and/or
products. Bundles may reference collections of filesets
that belong to several different products. Creating
bundles consisting of multiple filesets allows you to
treat several filesets as a single entity. By specifying a
bundle, all filesets under the bundle are included in the
operation. It is important to remember that bundles
only reference filesets, products, and/or subproducts
and do not physically contain these software elements.
The use of bundles is optional and considered an
advanced feature.

Vendor A vendor is a software element that lets you add
additional, detailed information about a PSF.

Category A category is a software element that can be used as a
selection mechanism for a software package. This
software element contains additional information
about the category. The category information is
referred to by the category_tag attribute within a
product, bundle, subproduct, or fileset.
Chapter 2 25

Software Packaging
Software Package Structure
Software Package Hierarchy

The software package hierarchy provides the structure needed by the
filesystem to identify packaged files. Figure 2-2 provides a graphical
representation of the hierarchical structure to which a valid PSF must
adhere.

Figure 2-2 Software Package Hierarchy

Containment vs.
Reference

There are two types of relationships that exist within the hierarchical
structure of a software package: containment and reference. If a
software element acts as a container, then the software elements it is
comprised of are physically contained. If a software element acts as a
reference, then the software elements it is comprised of are virtually
contained.
Chapter 226

Software Packaging
Software Package Structure
The difference between a containment relationship and a reference
relationship can be illustrated by the notion that a bundle can be
removed without actually removing the software elements that it
references. However, removing a product always removes the filesets it
contains, and the files contained in the filesets.

Table 2-1 provides a summary of a software package's structural
elements, their functions, and their relationship to other elements. The
structural elements are numbered to correspond with Figure 2-2 on
page 26:

Table 2-1 Structural Elements: Functions and Relationships

Structural
Element Function Relationship

Installed
Software (1)

A delivered and
installed software
package.

The installed software is a
valid and complete
software package.

Product (2) A collection of related
filesets and optionally,
subproducts and
control scripts.

A product is a container
for filesets, subproducts,
and optionally, control
scripts.

Bundle (3) A collection of related
filesets, subproducts,
and/or products.

A bundle is a reference
for groups of filesets,
subproducts, or products.

Fileset (4) A grouping of related
files and control
scripts.

A fileset is a container
for files and control
scripts. Filesets are
contained in products.

Subproduct (5) A grouping of related
filesets.

A subproduct is a
reference for groups of
related filesets within a
single product.

Control File (6) A control file performs
checks and other tasks
in the software
package.

Control files (scripts) are
contained in one or more
filesets and/or products.
Chapter 2 27

Software Packaging
Software Package Structure
File (7) Files serve as the
building blocks for a
software package.

Files are contained in
one or more filesets.

Table 2-1 Structural Elements: Functions and Relationships (Continued)

Structural
Element Function Relationship
Chapter 228

Software Packaging
Product Specification File
Product Specification File
A product specification file (PSF) defines the structure of a software
package. The PSF provides a "road map" that identifies the software
package according to its attributes, contents, compatibilities, and
dependencies. SPB has a GUI that allows you to structure your PSF and
define the attributes that apply to it.

The PSF maps files in your source file system area to create the
destination filesystem on a customer's system. In addition, the PSF can
direct the appropriate installation for the customer by filtering on
operating system (OS) and/or machine type attributes that are defined in
the PSF.

PSF Requirements and Recommendations

It is required that the PSF contain the following:

• One or more products

• One or more filesets and files for each product

It is recommended that the PSF contain the following:

• Vendor information for individual or groups of products

• The computer(s) and operating system(s) the software product
supports

• A description attribute for all software elements contained in the
PSF

Attributes

Attributes define the characteristics of the software elements in the
software package. For example, the attributes defined for a software
package can identify some of the following metadata:

• Where the product is installed;

• What revision of the product is installed;

• What architecture the product supports;

• Who developed the product; and
Chapter 2 29

Software Packaging
Product Specification File
• What operating system(s) support the product.

Each of the software element classes has its own set of attributes, and
each attribute has a value that defines it. Most attributes are optional;
however, there are a few required attributes. Assigning valid attributes
to software elements provides more control and precision when the
software package is installed, updated, and removed. The table below
provides a list of attributes that are required for a valid PSF.

Additional attributes are recommended for creating a more detailed
software package. If you use one of the software elements listed in
Table 2-3, it is highly recommended to set the following attributes:

Table 2-2 Required Attribute Values

Software Element Required Attribute

Product tag

Fileset tag

Subproduct tag, contents

Bundle tag, contents

Vendor tag

Category tag

Table 2-3 Recommended Attribute Values

Software Element Recommended Attribute

Product title, revision

Fileset title, revision

Subproduct title

Bundle title, revision

Vendor title

Category title

Corequisites revision, architecture, vendor

Prerequisites revision, architecture, vendor
Chapter 230

Software Packaging
Packaging Policies
Packaging Policies
Packaging policies are a set of rules that must be consistently followed to
create a valid software package. Packaging policies help ensure that the
software package you create in SPB is consistently named and
structured.

SPB validates your PSF against packaging policies, eliminating the need
for you to learn the intricacies of software package structuring. By
following a standard set of policies, you will experience fewer problems,
problems that can turn into longer test cycles and customer defects.
Packaging policies are implemented as Extensible Markup Language
(XML) files. The default policies supplied with SPB are located in
/opt/spb/data and are named as follows:

• For HP-UX 11i v3 (B.11.31) - the default policy file is
113XPolicies_SD.xml

• For HP-UX 11i v2 (B.11.23) - the default policy file is
112XPolicies_SD.xml

• For HP-UX 11i v1 (B.11.11) - the default policy file is
11XPolicies_SD.xml
Chapter 2 31

32

Software Package Builder Features
3 Software Package Builder
Features

This chapter introduces you to the graphical user interface (GUI) and its
features. The following topics are covered in this chapter:

• “Introduction” on page 34

• “Screen Regions” on page 35
Chapter 3 33

Software Package Builder Features
Introduction
Introduction
The SPB GUI is designed to simplify the process of creating a software
package by providing a visual method for creating the PSF, its software
elements, attributes, and structure, as well as automating validation of
the PSF against packaging policy rules. Figure 3-1 displays the main
window in the SPB GUI and the regions it contains.

Figure 3-1 SPB GUI
Chapter 334

Software Package Builder Features
Screen Regions
Screen Regions
The SPB GUI is comprised of the following main screen regions which
will be described in detail in the proceeding sections:

• “Package Structure” on page 35

• “Depot Region” on page 36

• “Attribute Table” on page 36

• “Messages Tab” on page 36

• “Policy Help Tab” on page 37

• “PSF View” on page 37

• “Menus” on page 37

• “Tool Bar” on page 38

Package Structure

The Package Structure displays a navigable hierarchy of the software
elements contained in the PSF. From the Package Structure region, you
can manage and build your PSF, view attribute information, edit the
software package structure, expand and collapse nodes, view detailed
information on a software element, and view detailed information on
software specification attributes and their status.

• Display a Software Element Attribute Table - Select a software
element from the Package Structure to display its attribute
information in the Attribute Table.

• Display a Software Specification Attribute Table - Select a
software specification element from the Package Structure to display
its attribute information in the Software Specification table.

• Expand and Collapse Nodes - Expand or collapse software
elements.

• Follow References - Follow a reference to the actual software
element within the Package Structure and return to the reference of
origin.
Chapter 3 35

Software Package Builder Features
Screen Regions
Depot Region

The depot region displays the properties and the structure of the active
depot. Within SPB, the depot is displayed as READ-ONLY. However, you
can copy information from the depot and paste it into a PSF. You can
also create a PSF from a depot.

Attribute Table

The Attribute Table displays attribute names and values for the software
elements contained in the PSF. The Attribute Table displays the
associated attribute information for the software element or reference
you have selected in the Package Structure.

• Drop-Down Lists - For attributes with boolean values, a drop-down
list appears when you click in the Attribute Value field.

• Enumerated Lists - For SD-UX specific values, an enumerated list
appears when you click in the Attribute Value field.

• Default Values - SPB provides default attribute values for a select
group of attributes.

• File Browser - For specifying a file’s path and name.

Messages Tab

The Messages tab displays error messages that are generated during
validation. The user can filter the validation message display based on
the severity of the message. Corresponding information displays in the
Policy Help tab to assist you in correcting errors.

• The following three types of messages can be generated:

— W (Warning) - Indicates something unexpected and potentially
undesirable occurred. A warning does not prevent an SD session
from proceeding.

— E (Error) - Indicates an invalid value provided by the packager
which may eventually prevent the product from being packaged
correctly

— N (Note) - Indicates an event that is not erroneous, unexpected,
or undesirable, but about which the packager should be aware.
Chapter 336

Software Package Builder Features
Screen Regions
• Select Specific Messages - By selecting a specific message, the
software element associated with the message appears highlighted
in the Project Structure tree and the corresponding attribute appears
highlighted in the Attribute Table.

Message Counter

A message counter is persistent in the lower, right-hand corner of the
SPB main window. The counter displays the active PSF’s validation
status. The number of errors, warnings, and notes are displayed. The
counter refreshes automatically upon data entry, revalidation, etc.

Policy Help Tab

The Policy Help tab displays detailed information on packaging policy
rules used to validate your PSF. You can use policy help information to
assist in resolving validation errors in your PSF.

• Display Policy Help for a Specific Attribute - Select an attribute
name from the Attribute Table and policy help information for the
selected attribute displays.

• Display Policy Help for a Validation Error - Select a validation
error and click the Policy Help tab for information to aid in error
resolution.

• Access additional attribute information - Click the SPB Help
link from the Policy Help tab to view additional information from the
SPB Help system.

PSF View

The PSF View tab allows you to view portions of the PSF as you build it.
The PSF display is read-only text.

Select a software element from the Package Structure for which you are
interested in viewing the PSF syntax and select the PSF View tab to
display the PSF syntax.

Menus

The following is a brief overview of the menu options provided in the SPB
GUI:
Chapter 3 37

Software Package Builder Features
Screen Regions
• File Menu - Contains the standard file-related functions.

• View Menu - Provides options for changing your view of the
Package Structure and filtering on various attributes.

• Structure Menu - Contains commands for adding software
elements to the Package Structure. This menu provides basic editing
functions.

• Attributes Menu - Contains commands for adding and editing
Vendor Defined Attributes.

• Tools Menu - Contains options for building a package.

• Validation Menu - Contains options for changing the view of the
Messages tab and filtering on the validating message level(s) to
display.

• Help Menu - Provides access to the help system, tutorial and
context-sensitive help.

Tool Bar

The icons displayed in the Toolbar provide shortcuts for some of the most
commonly used commands.

Additional Information

For more information about SPB, see the SPB Help system and Quick
Start Tutorial. An example of some of the topics available in the online
help include:

• Screen Regions

• Dialog Boxes

• Menus

• Accessing Help

• Using the SPB CLI

• Using the SPB GUI
Chapter 338

Getting Started with Software Package Builder
4 Getting Started with Software
Package Builder

This chapter provides tasks to introduce you with the features of SPB
using the graphical user interface (GUI) and the command line interface
(CLI). This chapter covers the following topics:

• “Getting Started Using the SPB GUI” on page 40

• “Using the SPB Command Line Interface” on page 45
Chapter 4 39

Getting Started with Software Package Builder
Getting Started Using the SPB GUI
Getting Started Using the SPB GUI
Get started using SPB by familiarizing yourself with how to create a
PSF, add a product and filesets, manage fileset content, validate a PSF,
and set attributes.

Creating a New PSF

This procedure walks you through the steps required to create a valid
PSF.

To create a PSF

Step 1. Launch the SPB GUI.

/opt/spb/bin/spb

Step 2. From the main menu, select File->New PSF.

Step 3. Select File->Save As to name and save the new PSF.

Step 4. Select the new PSF in the Package Structure.
Its associated attributes display in the Attribute table.

NOTE At a minimum, a valid PSF must contain one product, one fileset, and
one file.

To create a product and add filesets

Step 1. From the main menu, select Structure->Add Element(s)->Product.
The Product dialog box displays.

Step 2. Enter a product name.

Step 3. Select a predefined fileset name by selecting from the list provided
OR
Enter a new name in the Fileset Name field.

Step 4. Click Add.
Chapter 440

Getting Started with Software Package Builder
Getting Started Using the SPB GUI
Step 5. To save and exit, click OK once all filesets have been added to the
product.

Managing Fileset Content

Step 1. From the Package Structure, highlight the fileset to which you want to
add files.

Step 2. From the Structure menu, select Add Element(s)->Files.
The Manage Fileset Content dialog is displayed.

To create a destination filesystem

Step 1. Click Add Directory.
A new directory, titled NewDirectory1, appears in the Destination
Filesystem.

Step 2. Double-click on the NewDirectory1.
This places you in edit mode.

Step 3. Replace NewDirectory1 by typing your new directory path and press
ENTER.
The entire path is automatically built for you.

Step 4. Repeat this process until you have created the structure for the
destination filesystem.

IMPORTANT A source path must be specified for all directories added to the
Destination Filesystem.

To map a file from the source to the destination filesystem

Step 1. From the Destination Filesystem, select the directory into which you
want to map files.

Step 2. Navigate the Source Filesystem and locate the appropriate directory
path.

Step 3. Select the directory or files you want to add to the Destination
Filesystem.
Chapter 4 41

Getting Started with Software Package Builder
Getting Started Using the SPB GUI
Step 4. Click Add. The directory or file(s) are added to the selected directory in
the Destination Filesystem.

Step 5. Repeat this process until you have mapped all the appropriate source
files to the Destination Filesystem.

Step 6. From the Destination Filesystem, select the directory you want to map
files into.

To set file (or directory) permissions

Step 1. Select the appropriate file (or directory) from the Destination Filesystem.

Step 2. From the File Attributes table (or Directory Attributes table), click in the
Mode field.

Step 3. Select the mode appropriate for your file (or directory).

Step 4. Once you have set all desired file permissions, click OK to exit and
return to the main window.

TIP You can apply a common mode across a select group of files in the File
Attributes table by right-clicking in a Mode field and selecting Apply to
All.

NOTE SPB by default assigns the file mode access for a destination file or
directory by inheriting the setting from the original source. If you wish to
accept the default settings, you need not do anything.

Validating a PSF

Within SPB, validation occurs when you:

• Open an existing PSF

• Enter data
Chapter 442

Getting Started with Software Package Builder
Getting Started Using the SPB GUI
The results of the validation process appear on the Messages tab. If the
PSF is valid, the message Validation Status: PSF Passed
Validation appears. If it is invalid, you should debug the PSF as
directed by the information provided in the Policy Help tab.

Setting Attributes

Most attributes are optional; however, there are a few required
attributes. Setting optional attributes can help to provide more control
and precision when the software package is installed, updated, and
removed.

You can filter which attributes you want to display in the Attribute Table
by selecting to view only the required and currently set attributes.

To filter the attribute display

Step 1. Highlight any software element in the Package Structure.

Step 2. From the View menu, select Show Required or Set Attributes.

Step 3. View how the Attribute Table display has changed.
The required attributes that you may have entered, along with any
pre-set, default attribute display.

To set attributes

Step 1. Highlight a software element in the Package Structure.
Its associated Attribute Table displays.

Step 2. In the Attribute Table, click in the desired Attribute Value field and
enter valid data.

NOTE At any time, you may select the Policy Help tab to review packaging
policy information for the attribute you have currently selected.

Step 3. Press Enter.

Step 4. Verify you have entered a valid attribute value by looking in the
Messages tab.

Continue this process until you have entered all desired attribute values.
Chapter 4 43

Getting Started with Software Package Builder
Getting Started Using the SPB GUI
NOTE Remember, you are able to validate your PSF in real-time. Every time
you enter new data into the PSF, SPB revalidates the file.
Chapter 444

Getting Started with Software Package Builder
Using the SPB Command Line Interface
Using the SPB Command Line Interface
From the command line interface, you can perform the following tasks:

• Edit a PSF

• Validate a PSF

• Specify a user-defined packaging policy rules file

Editing from the CLI

You can make edits to a PSF from the command line.

To replace an attribute value for a specified file at the command line, use
the following two options in combination:

• The -f option specifies the PSF to be edited or validated.

• The -e option specifies the attribute value(s) to be replaced in the
PSF indicated by the -f option.

NOTE The modified PSF is written to stdout unless re-directed to a file using
the -o option.

Example To replace the revision of product SPBdemo in the PSF file
/opt/SPB/demo with revision A.2.0, you would enter the following:

spb -f /opt/SPB/demo -e SPBdemo revision A.2.0 -o

SPBdemoRev2.psf

Validating from the CLI

To validate a specified file from the command line, use the following two
options in combination: The -f option specifies the PSF to be edited or
validated. The -V option validates the PSF indicated by the -f option.

• The -f option specifies the PSF to be edited or validated.

• The -V option validates the PSF indicated by the -f option.
Chapter 4 45

Getting Started with Software Package Builder
Using the SPB Command Line Interface
 Example To validate the PSF file located in /opt/SPB/demo/demo1, you would
type the following:

spb -f /opt/SPB/demo/demo1 -V

Incorporating SPB into Automated Processes

For packagers with automated processes, the build process usually
includes generating a PSF. To take advantage of SPB's validation
capability, include the SPB validation command after the PSF
generation step in the automated process.

Example To perform validation on the generated PSF, invoke the following
command in your process:

spb -f psf_file -V 2> psferrors

where psf_file is the name of the generated PSF and psferrors is the
file where validation errors are stored. Packagers can then examine this
file and determine the appropriate course of action. You can debug the
PSF using the SPB GUI with packaging policy help located in the Policy
Help tab. The return values of the validation also indicate which
message was the most severe message.

IMPORTANT SPB cannot read a PSF from stdin, therefore, it cannot be used in a pipe
symbol (|). The following command will not work correctly:

cat psf_file | spb -V

Return Values

Upon completion of the validation process using the CLI, SPB returns
one of the following values to indicate the severity of the message:

0 Normal exit. Validation performed with no errors.

1 Validation found a warning.

2 Validation found an error.

For additional information on this and other SPB command line options,
refer to the spb (1M) manpage.
Chapter 446

Getting Started with Software Package Builder
Additional Information
Additional Information
For more information about SPB, see the SPB Help system and Quick
Start Tutorial. An example of some of the topics available in the online
help include:

• Product Dialog Box

• Manage Fileset Content Dialog Box

• Overriding Default File Permissions

• File Mapping Options

• Addressing Packaging Problems

• Restructuring the Software Package

• Modifying an Existing Package for the Next Release
Chapter 4 47

48

Advanced Features
5 Advanced Features

If you are an experienced packager, you might want to use SPB to add
advanced features to your PSF.

This chapter covers the following advanced topics:

• “Managing Fileset Content” on page 50

• “Creating and Using a Subproduct” on page 59

• “Creating and Using a Bundle” on page 60

• “Creating and Using a Vendor or Category” on page 61

• “Creating and Using Vendor Defined Attributes” on page 62

• “Overview of Software Specification Attributes” on page 63

• “Working with Depots” on page 69

• “Using Control Scripts” on page 72
Chapter 5 49

Advanced Features
Managing Fileset Content
Managing Fileset Content
This section provides additional information on the Manage Fileset
Content dialog box and its advanced features. The following figure
highlights the regions and features.
Chapter 550

Advanced Features
Managing Fileset Content
Figure 5-1 Manage Fileset Content Dialog Box

The Manage Fileset Content dialog allows you to map source files and
directories to the destination filesystem and exercise control over
directory and file attributes. The following is a description of the regions
and features identified in Figure 5-1 on page 51:
Chapter 5 51

Advanced Features
Managing Fileset Content
Regions and
Features

1. Source Filesystem - Allows navigation of the Source Filesystem for
selection of files and directories to be mapped to the Destination
Filesystem.

2. Add button - Adds the files or directories selected from the Source
Filesystem to the Destination Filesystem. Multiple files or
directories may be selected for addition. If the Recursive checkbox
is selected, all files or directories contained in the selected directory
will be implicitly added.

3. Move-up Directory Level button - Allows you to move up one
directory level in the Source Filesystem. The button is represented
by a folder and up arrow, located at the bottom of the Source
Filesystem.

4. Destination Filesystem - Displays the destination filesystem
structure you have created for the package.

5. Destination Filesystem buttons:

• Add Directory button - Adds a new directory to the
Destination Filesystem. You can edit the directory name in the
Destination Filesystem view or in the Directory Attributes table.
Multiple directories can be added by specifying a path for the
directory name.

• Add File button - Adds a new file to the Destination
Filesystem.

6. Directory Attributes and File Attributes Tables:

• Directory Attributes table - Allows you to set permissions and
other system properties.

• Files Attributes table - Allows you to edit the source path, and
set permissions and other system properties.

7. Advanced Options button - Launches the Advanced Options
dialog box that allows you to customize file mode access permissions
and enable the Implicit and/or Include file mapping functionality.

Using Advanced Features

File Mapping
Options

Numerous options are available from within the Manage Fileset Content
dialog box when mapping files from the Source Filesystem to the
Destination Filesystem:
Chapter 552

Advanced Features
Managing Fileset Content
• Recursive - The recursive option adds the selected directory and all
its contents recursively. Individual filenames are listed in the PSF.

• File * - This option is similar to the Recursive option; however, all
files are implicitly added and represented only by an asterisk (*).
The individual filenames are not listed in the PSF using this option.
If you want to recursively include files and directories from the
Source Filesystem without explicitly listing each file and directory,
select the File * option.

• Include - This option allows you to enable the ability to map a file to
the Destination Filesystem, which consists of a list of files, in PSF
syntax, to include in the package.

IMPORTANT If File * is used to add files, you will not be able to display the individual
filenames from the Destination Filesystem. This makes it difficult to
determine if you are delivering more files or directories than intended. A
common problem encountered when using the File * option is the
accidental inclusion of source control directories (e.g., RCS, CVS) and/or
editor scratch files to the package. Selecting the Recursive option is an
alternative way to explicitly add all files and directories under a
particular directory. Using the Recursive option allows the packager to
display and verify the files and directories that will be included, avoiding
accidental inclusion of unnecessary files.

Setting File
Mapping Options

You can set one of three file mapping options using the following steps:

To set the recursive option

Step 1. Select the Recursive checkbox.

Step 2. Once the appropriate source and destination directories have been
selected, click Add.

Step 3. Continue adding directories recursively or clear the Recursive
checkbox.

To set the file * or include option

Step 1. Click the Advanced Options button.
The Advanced Options dialog box displays, as shown in Figure 5-2.
Chapter 5 53

Advanced Features
Managing Fileset Content
Figure 5-2 Advanced Options Dialog Box

Step 2. Select the file mapping option you want to enable by clicking in the check
box. This will enable the mapping option and display a checkbox on the
Manage Fileset Content main window, as shown below.

Figure 5-3 File Mapping Options Enabled
Chapter 554

Advanced Features
Managing Fileset Content
Step 3. From the main window, select the appropriate file mapping option.

Step 4. Once the source and destination directories have been selected, click
Add.

Step 5. Continue adding directories using the selected file mapping method or
clear the checkbox.

NOTE Only one file mapping option can be applied at a time. Once you have
selected a file mapping option, you must clear the checkbox to disable the
option.

File Mode Access
Permissions

In the Mode field of the Directory Atributes and File Attributes tables (as
shown in Figure 5-1 on page 51) a drop-down list is displayed that allows
you to select file mode access permissions. You can select from the
following options:

For File Attributes:

• Executable (0555)

• Data (0444)

• Writable (0644)

• Inherit - File will inherit permissions from the file system. The
default mode permission is Inherit.

• Specify - A Mode dialog box appears allowing you to set your own
permissions.

For Directory Attributes:

• Directory (0755)

• Inherit - File will inherit permissions from the directory. The default
mode permission is Inherit.

• Specify - A Mode dialog box appears allowing you to set your own
permissions.

To apply a mode to all files

Step 1. Place the cursor in any of the file's Mode fields and right-click.
A drop-down list is displayed.
Chapter 5 55

Advanced Features
Managing Fileset Content
Step 2. Select Apply to All.
A Mode dialog box appears.

Step 3. Select the appropriate mode for all files that currently appear in the File
Attributes table.
Chapter 556

Advanced Features
Managing Fileset Content
To change the default representation of the Mode field

The default representation for file mode access permissions is octal (e.g.,
0644). However, you have the option to display the symbolic
representation for permissions (e.g., rw-r--r--).

Step 1. Select the Advanced Options button.
The Advanced Options dialog box displays, as shown below.

Figure 5-4 Permissions Selections

Step 2. Select Symbolic to change the mode permissions display.

Step 3. Click OK. The Mode field now displays a symbolic representation, as
shown below.
Chapter 5 57

Advanced Features
Managing Fileset Content
Figure 5-5 Symbolic Permissions Representation
Chapter 558

Advanced Features
Creating and Using a Subproduct
Creating and Using a Subproduct
Using subproducts provides a way for you to organize filesets into
different groupings beyond that provided within a product. A subproduct
is a reference to groups of logically related filesets. For example, you
might create a subproduct that references a fileset grouping for the
entire runtime configuration. It is important to remember that
subproducts only reference filesets and do not physically contain them.

Specifying a subproduct lets you group filesets within a larger product
specification. Attribute values are used to define the subproduct. If a
subproduct is specified, the subproduct attributes, tag and contents are
required for a valid PSF.

To create a subproduct

Step 1. Select the appropriate product element in the Package Structure that
contains filesets.

Step 2. From the main menu, select Structure->Add
Element(s)->Subproduct.

Step 3. Enter a subproduct name.

Step 4. Select the appropriate filesets to add to the subproduct.

Step 5. Click Add.

Step 6. Continue this process until all subproduct content has been added.

Step 7. To save and exit, click OK once all contents have been added.
Chapter 5 59

Advanced Features
Creating and Using a Bundle
Creating and Using a Bundle
A bundle is a reference to filesets, products, and/or subproducts. Bundles
may reference collections of filesets that belong to several different
products. Creating bundles consisting of multiple filesets allows you to
treat several filesets as a single entity. By specifying a bundle, all filesets
under the bundle are included in an operation. It is important to
remember that bundles only reference filesets, subproducts, and/or
products and do not physically contain these software elements.

NOTE Generally, performing a single operation on a bundle is the same as
performing it individually on all the filesets listed in the bundle.

To create a bundle

Step 1. From the main menu, select Structure->Add Elements(s)->Bundle.

Step 2. Enter a bundle name.

Step 3. Select a software element from the Available Product Content list you
want to add to the bundle.

Step 4. Click Add.

Step 5. To save and exit, click OK once all contents have been added to the
bundle.
Chapter 560

Advanced Features
Creating and Using a Vendor or Category
Creating and Using a Vendor or Category
Adding a vendor or category to your PSF provides more detail about its
contents. For example you can:

• Add a vendor to display information regarding the PSF contents. The
vendor’s information will display when using the swlist command.

• Add a category to further identify the software package contents.

To add a vendor or category

Step 1. From the main menu, select Structure->Add Element(s)->Vendor (or
Category, as appropriate.) The new tag displays in the Package
Structure, and its associated Attribute Table.

Step 2. In the Attribute Table:

• (Required) Enter a tag in the Attribute Value field.

• (Optional) Enter a title in the Attribute Title field.

• (Optional) Enter a description in the Attribute Value field.
Chapter 5 61

Advanced Features
Creating and Using Vendor Defined Attributes
Creating and Using Vendor Defined
Attributes
Vendor Defined Attributes (VDAs) are optional but can be useful in
providing additional information about a software package. A VDA may
be created for any software element in the PSF. VDAs are noted during
packaging modification with the swmodify command. You can list any
attribute with the swlist command.

To create a vendor defined attribute

Step 1. In the Package Structure, select the software element for which you
want to create a VDA.

Step 2. From the main menu, select Attributes->Vendor Defined Attributes.
The Vendor Defined Attributes dialog displays.

Step 3. Enter an Attribute Name.

Step 4. Enter the associated Attribute Value.

Step 5. Repeat Steps 3 and 4 until you have added all the VDAs you require.

Step 6. Click OK.
The VDA displays at the bottom of the Attribute Table for the selected
software element.

To edit a vendor defined attribute

Once you have created a VDA, you can edit the attribute value as you
would any other attribute within the Attribute Table:

Step 1. From the main menu, navigate to Attributes->Vendor Defined
Attributes.

Step 2. From the Vendor Defined Attributes dialog box, you can perform the
following tasks:

• Edit a VDA name.

• Delete a VDA.

• Arrange a VDAs order of appearance in the Attribute Table.
Chapter 562

Advanced Features
Overview of Software Specification Attributes
Overview of Software Specification Attributes
Software specification attributes are used to define a relationship or an
assignment between a designated software element and other software
element(s). Every attribute value in the PSF must use a designated
value type, for software specification attributes this value type is
software_specification. By using the software_specification
value type to define a software specification attribute, you gain the
ability to specify the software elements in greater detail.

There are three types of software specification attributes:

• Dependency attributes

— Corequisites attributes

— Prerequisites attributes

• Ancestor attributes

• Contents attributes

NOTE Software specification attributes are treated differently than other
attributes within the SPB GUI. For a software packager, it can be
important to view the real-time status of software specification
attributes. For this reason, these attributes are displayed in the Package
Structure beneath the designated software element and are preceded by
an icon which indicates its resolution status.

Software
Specification
Attributes

Dependency Attributes - A dependency attribute can only be specified
for a fileset. Dependency attributes define a relationship between a
specified fileset and another software element (fileset or product). The
specified fileset is dependent on the other software element in the
manner designated. A fileset dependency can be defined between the
dependent fileset and the following:

• A fileset(s) residing in the same product

• A fileset(s) residing in a different product

• An entire product
Chapter 5 63

Advanced Features
Overview of Software Specification Attributes
Corequisites The corequisites attribute defines a fileset dependency
that requires another fileset or product to be installed
and configured in order for the dependent fileset to
operate correctly. Multiple corequisites may be defined.

Prerequisites The prerequisites attribute defines a fileset
dependency that requires another fileset to be installed
and/or configured correctly before it can be installed or
configured. Prerequisites imply an install-time
dependency. Multiple prerequisites may be defined.

Ancestor Attribute

The ancestor attribute defines the name of a previous version of a fileset.
This attribute designates the list of filesets that will match the current
fileset when installed on a target system, if the match_target
installation option is specified.

Contents Attribute

The contents attribute defines the list of the software elements contained
within a subproduct or bundle. This attribute is automatically generated
when you create and add content to a bundle or subproduct. You can only
edit this attribute when it is used to define bundle contents.

Resolving
Software
Specifications

For a software specification attribute to be resolved with respect to other
software on the source depot, it must be:

• Complete (if the dependency is an entire product or subproduct it
must exist completely in the source depot),

• Free of errors (e.g., no incompatibility errors), and

• Available from the source depot or exist on the target host. (If the
dependency is not available from the source, the dependency must
exist on the target host.)

SPB and
Validation

When assigning dependencies in your PSF using the SPB GUI, you
should be aware of what SPB will and will not validate or resolve.

SPB will:

• Validate syntax for defined software specification attribute values

• Validate software specification attributes in the local PSF

• Validate dependency attributes contained in an OR corequisites set
or an OR prerequisites set
Chapter 564

Advanced Features
Overview of Software Specification Attributes
SPB will not:

• Resolve a software specification attribute that is external to the local
PSF (e.g., in a depot on another system)

• Import a software specification attribute that is external to the local
PSF

Software elements and their associated software specification attributes
are displayed in the Package Structure. You can view the status of a
software specification attribute and where applicable, edit its associated
attributes.

SPB provides real-time verification for the status of software
specification attributes. Table 5-1 shows the Package Structure
representation symbols and the status each defines:

Working with Dependency Attributes

Software that depends on other software to install or run correctly is
considered to have a dependency. When you specify software for the
swconfig, swcopy, swinstall, swremove, swverify commands, these
commands may automatically select additional software to meet
dependencies.

Multiple dependency attributes may be specified for a corequisites
attribute or a prerequisites attribute. There are two types of
relationships that can be used when defining multiple dependency
attributes:

Table 5-1 Software Specification Status

Icon Representation Status

Resolved

Unresolved but may be found externally
from the local PSF and will swpackage
without an error

Unresolved and will cause an error with
swpackage
Chapter 5 65

Advanced Features
Overview of Software Specification Attributes
• AND - Use the AND relationship to specify multiple dependency
attributes, each of which must be satisfied. The AND relationship is
the default.

• OR - Use the OR relationship to specify multiple dependency
attributes in a set, where only one of the set must satisfy the
dependency

NOTE The following procedures apply to both corequisites or prerequisites
dependency attributes.

To add a dependency attribute using the AND relationship

NOTE When setting a dependency attribute, the AND relationship is the
default.

Step 1. From the Package Structure, select the fileset for which you want to add
a corequisites attribute.

Step 2. Select Structure->Add Element(s)->Corequisites.
The Corequisites dialog box appears.

Step 3. From the Available Content, select the software elements you want to
add to the fileset as a corequisites attribute.

Step 4. Click Add.

Step 5. Continue adding corequisites as needed.

Step 6. Click OK once all corequisites attributes have been added to the
fileset.

To add a dependency attribute using the OR relationship

IMPORTANT Use the OR relationship when you need to specify multiple
corequisites or prerequisites attributes in a set, where only one of
the set must satisfy the dependency. An OR relationship is specified
within an OR corequisites set (or OR prerequisite set). The software
specification value for a given OR set is comprised of the individual
Chapter 566

Advanced Features
Overview of Software Specification Attributes
software specification for each corequisites (or prerequisites)
attribute it contains. When a new corequisite or prerequisite is added to
an OR set, the software specification value for that attribute is appended
to the OR set's software specification and separated by the pipe symbol
(|).

Step 1. From the Package Structure, select the fileset for which you want to add
an OR corequisites set.

Step 2. Select Structure->Add Element(s)->Corequisites. The Corequisites
dialog box appears.

Step 3. Select the OR Relations tab.

Step 4. Click Add Set. A new, empty OR corequisites set is added to the Fileset
Content.

Step 5. From the Fileset Content, select the appropriate OR corequisites set.

Step 6. From the Available Content, select the software element(s) you want to
add to the OR corequisites set.
Multiple software elements may be selected to add to the set.

Step 7. Click Add. The OR corequisites set now contains the additional
corequisites attributes.

Step 8. Click OK once all OR corequisites sets and their contents have been
added.

To add remote content as a dependency attribute

NOTE For this procedure, you will use an existing corequisites attribute as a
template for specifying remote content as a corequisites attribute.

Step 1. From the Package Structure, select the fileset for which you want to add
remote content.

Step 2. Select Structure->Add Element(s)->Corequisites .The Corequisites
dialog box appears.

Step 3. From the Fileset Content, select the corequisites attribute you want to
use as a template.
Chapter 5 67

Advanced Features
Overview of Software Specification Attributes
Step 4. Edit the Software Spec field as appropriate to specify the remote content.

IMPORTANT The software specification cannot contain spaces.

Step 5. Click Add Content.
The Fileset Content now contains the new, remote corequisites
attribute.

Step 6. Continue adding corequisites attributes as needed or click OK to exit.
Chapter 568

Advanced Features
Working with Depots
Working with Depots
Within SPB you can search for and open depots. In the Depot region, the
depot properties and the depot structure are displayed. When a depot is
opened in SPB, it is READ-ONLY.

Within SPB you can perform the following depot-related tasks:

• Visually compare two or more depots.

• Create a PSF from a depot.

• Validate a depot.

Refer to Figure 5-6 to view the Depot region, which includes the depot
properties and depot structure displays.

Figure 5-6 Depot Regions
Chapter 5 69

Advanced Features
Working with Depots
Validating a Depot

To validate a depot perform the following:

1. From the main menu, select File->Open Depot.

2. Specify the hostname, path and name of the depot.

3. Review the validation messages for the depot.

Depot validation occurs in the exact same manner as a PSF. Upon
opening the depot, it is automatically validated.

NOTE The depot is opened as a READ-ONLY file. Validation errors can be
viewed but cannot be resolved from within SPB.

Comparing Two Depots

Use SPB to compare two or more depots that have identical content but
different revision information. This information is displayed in the Depot
Properties and in the Attribute Table.

1. Once a depot is open and active, highlight the PSF element.

2. View the Attribute Table to compare depot properties

NOTE The depot properties, which are set by SD when the depot is created are
not valid PSF attributes. Therefore, the Depot Properties will appear in
the PSF as comments.

Creating a PSF from a Depot

Use SPB to create a PSF template with similar software elements from a
depot. Once the PSF is created, you can edit accordingly.

1. Select the appropriate depot tab.

2. From the main menu, select File->Save As.
Chapter 570

Advanced Features
Working with Depots
3. Rename the depot and save as a PSF.
The new PSF is created and its associated tab appears at the top of
the Package Structure.

NOTE The depot properties, which are set by SD when the depot is created are
not valid PSF attributes. Therefore, the Depot Properties will appear in
the PSF as comments.When a PSF is created from a depot, the source
information for files is lost.
Chapter 5 71

Advanced Features
Using Control Scripts
Using Control Scripts
You can use control scripts to customize the behavior of your software
package. SD-UX supports execution of both product and fileset control
scripts. These shell scripts allow you to perform customized checks and
operations as part of your regular software management tasks. The
swinstall, swconfig, swverify, swask, and swremove commands can
execute one or more of these scripts. Control scripts are usually supplied
by software vendors, but you can write your own. All control scripts are
optional.

Product level control scripts are run if any fileset within that product is
selected for installation, configuration, verification, or removal. The
activities in product control scripts must pertain to all filesets in that
product, but not to any one fileset in particular.

Actions you want to apply to every fileset in a product should be in the
appropriate product level control script. Fileset scripts must pertain only
to the installation, configuration, or removal of that fileset, and not to
any other fileset or to a parent product.

Control scripts can perform a wide variety of customizing and
configuration tasks, such as (but not limited to):

• Verifying if someone is actively using the product and, if so,
preventing reinstallation, update or removal

• Ensuring the local host system is compatible with the software
(scripts can check beyond the compatibility enforced by the product's
uname attributes)

• Removing obsolete files or previously installed versions of the
product

• Creating links to, or additional copies of, files after they have been
installed

• Copying configurable files into place on first-time installation

• Conditionally copying configurable files into place on later updates

• Modifying existing configuration files for new features

• Rebuilding custom versions of configuration files

• Creating device files or custom programs
Chapter 572

Advanced Features
Using Control Scripts
• Killing and/or starting daemons

For more detailed information, refer to the chapter regarding the use of
control scripts in the Software Distributor Administration Guide located
at the following Web site:

http://docs.hp.com/en/SD
Chapter 5 73

Advanced Features
Additional Information
Additional Information
For more information about SPB, see the SPB Help system and Quick
Start Tutorial. An example of some of the topics available in the online
help include:

• Advanced Options Dialog Box

• Bundles Dialog Box

• Subproducts Dialog Box

• Vendor Defined Attributes Dialog Box

• Dependency Attributes

• Setting an OR Relationship for Dependency Attributes

• Working with Software Specification Attributes

— Corequisites Dialog Box

— Prerequisites Dialog Box

— Ancestors Dialog Box

• Running the swpackage Command

— Tools Menu

— Configuration Dialog Box

— Command Output Tab
Chapter 574

75

76

Glossary
corequisites
Glossary

A-B

ancestor An attribute that names a
previous version of a fileset. This is used to
match filesets on a target system. If the
match_target option is set to true, SD-UX
matches the ancestor fileset name to the new
fileset name.

and relationship The default relationship
for specifying one or more dependency
attributes (corequisites or prerequisites)
where all dependencies must be satisfied.

architecture An attribute that represents
the operating system platform on which the
product runs. (e.g., IA/PA)

attribute Information that describes a
software elements characteristics.
Attributes are an essential part of the
product specification file (PSF), providing
such information as a product's name, title
and description.

bundle A collection of references to filesets
and/or products grouped for a specific
purpose. By specifying a bundle, all products
or filesets referenced in that bundle are
automatically included in the operation.

C

category The type of software being
packaged.

checkinstall script An optional script
associated with a product or fileset that is
executed by swinstall during the analysis
phase. The result returned by the script
determines if the fileset can be installed or
updated.

checkremove script An optional script
associated with a fileset that is executed
during the swremove analysis phase. The
result returned by the script determines if
the fileset can be removed.

command line interface (CLI) The set of
commands that can be executed directly
from the operating system's command shell.

configure script An optional script
associated with a fileset and automatically
executed by swinstall (or manually
executed by swconfig) after the installation
of filesets is complete.

container A software element that
physically stores the elements it contains.

control script An optional script packaged
with software or added to software by
modifying the IPD. Control scripts are run
during swconfig, swinstall, swremove, or
swverify operations. Control scripts may
include: configure or unconfigure for
swconfig; checkinstall, preinstall,
postinstall and configure scripts for
swinstall; the checkremove, unconfigure,
preremove, and postremove scripts for
swremove; and the fix or verify script for
swverify.

copyright An attribute that defines the
copyright for the destination depot (media)
being created/modified by swpackage. It
refers to the copyright information for the
software product.

corequisites A dependency in which a
fileset requires that another fileset be
installed and configured at the same time.
For example, if fileset A requires that fileset
B is installed at the same time, fileset B is a
corequisites.
Glossary 77

Glossary
dependency
D-E

dependency A relationship between
filesets in which one requires another in a
specific manner. For example, before fileset
A can be installed, it may require fileset B to
be installed. SD-UX supports corequisite and
prerequisite dependencies.

dependent A fileset that has a dependency
on another fileset. For example, if fileset A
depends on fileset B, then B is a dependent
or has a dependency on A.

depot A repository of software products and
a catalog, organized so SD-UX commands
can use it as a software source. The contents
of a depot reside in a directory structure
with a single, common root. A depot can exist
as a directory tree on a SD-UX file system,
on a CD-ROM, or as a tar archive on a tape.
All depots share a single logical format,
independent of the type of media on which
the depot resides. Depots can reside on a
local or remote system. You can package
software directly into a depot or copy
packaged software into the depot from
elsewhere.

description An attribute for products and
filesets, usually a paragraph description of
that product or fileset.

destination The path at which a file will be
installed.

destination filesystem The filesystem
structure that will be created on the target
system when the software product is
installed.

directory An optional keyword that ends
the software element specification in a PSF.
No value is required.

end An optional keyword that ends the
software element specification in a PSF. No
value is required.

F-L

fileset A collection of related files. A fileset
serves as a container for files, associated file
attributes, and separate control scripts.
Most SD-UX operations are performed on
filesets.

graphical user interface (GUI) A
program interface that takes advantage of
the computer's graphics capabilities to make
the program easier to use.

is_locatable In packaging, an attribute that
defines whether a product can be installed to
an alternate product directory or not. If
specified, the attribute is set to a value of
true. If not specified, the attribute is
assigned a value of false.

M-O

machine_type In packaging, an attribute
that describes the type of systems on which
the product will run. (If not specified, the
keyword is assigned a wildcard value (*)
meaning it will run on all machines. If there
are multiple machine platforms, you must
separate each machine designation with a
vertical bar (|). (e.g., IA64)

media Physical data storage media on
which software is stored, such as tape,
CD-ROM, or DVD.

multiple architecture multiple
architecture - A single product that contains
different versions of the same fileset which
differ by their architecture attribute.
Glossary78

Glossary
root
optional attribute An attribute whose
inclusion in the product specification file is
optional, will not effect the users ability to
create a software package using swpackage.

or dependency set Used to identify
multiple corequisites or prerequisites
attributes for a fileset where only one of the
set must satisfy the dependency.

or corequisites set See OR dependency
set.

or prerequisites set See OR dependency
set.

P

patch Software designed to update specific
bundles, products, subproducts, filesets, or
files on your system. By definition, patch
software is packaged with the is_patch
attribute set to true.

postinstall script An optional script
associated with a fileset that is executed by
swinstall after the corresponding fileset has
been installed or updated.

postremove script An optional script
associated with a fileset that is executed by
swremove after the corresponding fileset has
been removed.

preinstall script An optional script
associated with a fileset that is executed by
swinstall before installing or updating the
fileset.

preremove script An optional script
associated with a fileset that is executed by
swremove before removing the fileset.

prerequisites A dependency in which one
fileset requires another fileset to be installed
and configured before the first fileset can be
installed or configured. For example, fileset
A may require that fileset B is installed
before fileset A can be installed. Therefore,
fileset B is a prerequisite for fileset A.

product A collection of filesets, subproducts
and/or control scripts that form a set of
related software.

product specification file (PSF) A file
that defines the structure of a software
package and maps your source filesystem
area to create the destination filesystem on a
target system. A PSF identifies the software
package according to its attributes, contents,
compatibilities, and dependencies.

Q-R

readme This attribute provides either the
location of the text file containing the
README information or the text value
itself.

reference A software element that virtually
stores (or references) the data for the
software elements it contains.

remote content A software element that is
external to the local PSF.

required attribute An attribute whose
inclusion in the product specification file is
mandatory and will cause an error if the
user attempt to create a software package
using swpackage.

root The root directory of a system (/).
Glossary 79

Glossary
root directory
root directory The directory on a target
system in which all the files of the selected
products will be installed. The default (/),
can be changed to install into a directory
that will eventually act as the root to
another system.

S

SD-UX HP-UX Software Distributor. The
format and syntax of SD-UX software in
depots.

software depot A SD-UX format structure
that contains one or more software products
that can be installed on other systems or
copied to other depots.

software element A product specification
file (PSF) is comprised of five software
elements that can be packaged, distributed,
installed, or managed by Software
Distributor (SD-UX). A software element
may be a file, fileset, product, subproduct, or
bundle.

software package Installable Software
Distributor format software created with
swpackage. Packaged software can be placed
in a depot for distribution.

software specification attribute
Attributes that are used to define a
relationship or an assignment between a
designated software element and other
software element(s). Software specification
attributes are defined using a
software_specification value type.

software specification value type
Defines a software element in great detail
using the SD software_selection syntax,
including information such as revision,
architecture and version.

source filesystem The directory and
associated files which comprise your
software product. Files are mapped from the
source filesystem to create the destination
filesystem on a target system via the PSF.

subproduct A software element that
serves as a reference for groups of logically
related filesets. A subproduct can be used to
partition a product that contains many
filesets or to offer the user different views of
the filesets. Subproducts are optional and
considered an advanced packaging topic.

swinstall A SD-UX command that installs
software.

swlist A SD-UX command that lists
software elements, their attributes, and
their organization. It lists both installed
software and software contained within a
depot.

swpackage A SD-UX command that uses a
product specification file (PSF) to organize
software products and package them into a
depot. The depot can be accessed directly by
SD-UX commands or mastered onto
CD-ROM or tape.

swremove A SD-UX command that
removes previously installed software or
removes packaged software from a depot.

swverify A SD-UX command that verifies
installed software or depot software for
correctness and completeness.

T-Z

tag In packaging, an attribute that defines
the distribution tag or software element's
name attribute for the destination depot
(media).
Glossary80

Glossary
vendor tag
unconfigure script An optional script
associated with a fileset that is executed by
swremove before the removal of filesets
begins.

vendor The vendor for the software being
packaged. If a vendor specification is
included in the PSF, the vendor and tag
attributes are required for swpackage.

vendor defined attribute An attribute
you define to provide additional information
about a software package. A vendor defined
attribute (VDA) may be created for any
software element in the product specification
file.

vendor tag Associates the product or
bundle with the last-defined vendor object, if
that object has a matching tag attribute.
Glossary 81

Glossary
unconfigure script
Glossary82

Index

A
adding

remote content, 67
advanced options, 52

dialog box, 54, 57
ancestor attributes, 63
and dependency relationship, 65
attribute table, 36
attributes, 29

directory, 52
display, 43
file, 52
recommended, 30
required, 30
software specification, 63

B
bundle, 25, 60

C
category, 25, 61
command

spb, 45
command line interface (CLI), 45

editing, 45
return values, 46
validation, 45

commands
installation, 15

contents attributes, 63
control scripts, 72
corequisites attributes, 63
creating

bundle, 60
category, 61
destination filesystem, 41
directories, 52
fileset, 40
product, 40
PSF, 40
subproduct, 59
VDAs, 62
vendor, 61

D
dependency attribute

adding, 66
corequisites, 66
prerequisites, 66

dependency attributes, 63, 65
relationships, 65

destination filesystem, 52
creating, 41

directory attributes, 52
directory permissions, 42

F
file, 24

mapping, 41
permissions, 55

file * option, 53
file attributes, 52
file mapping, 52

file *, 52
include option, 52
recursive option, 52

file mode access permissions, 55
file permissions, 42
fileset, 24

creating, 40
fileset content, 50
filesystems

organizing, 23

G
graphical user interface (GUI), 34

menus, 38
screen regions, 34
toolbar, 38

I
icons

software specification attributes, 65
include option, 53
installation, 15

J
java

optimizing, 13

M
manage fileset content, 41

advanced options, 51
destination filesystem, 51
dialog box, 50, 51
83

features, 51
regions, 51
source filesystem, 51

mapping files, 41
menus, 38
messages

error, 36
generation, 36
note, 36
selection, 36

messages tab, 36

O
or corequisites set, 66
or dependency relationship, 65
or prerequisites set, 66
organizing filesystems, 23

P
package structure, 35
packaging policies, 31

default rules file, 31
policy help tab, 37
specifying rules file, 16

policy help tab, 37
prerequisites attributes, 63
product, 24

creating, 40
product specification file (PSF), 29

creating, 40
PSF

validation, 42
PSF view tab, 37

R
recursive option, 53
remote content, 67
resolving

software specification attributes, 64
return values, 46

S
screen regions

attribute table, 36
messages tab, 36
package structure, 35
policy help tab, 37
PSF view, 37

setting

attributes, 43
file * option, 53
file permissions display, 57
include option, 53, 54
mode field, 55
permissions, 42
recursive option, 53

software elements, 24
bundle, 25
category, 25
file, 24
fileset, 24
product, 24
subproduct, 24
vendor, 25

software package
hierarchy, 26
lifecycle, 21
structure, 23

Software Package Builder (SPB)
and SD-UX, 12
benefits, 10
installation, 15
manpage, 16
overview, 10

software specification attributes
ancestors, 63
contents, 63
dependency, 63
icons, 65
resolving, 64
status, 65
validating, 64

source filesystem, 41, 52
spb command

options, 45
structural elements, 27
subproduct, 24, 59
system requirements, 13

T
tool bar, 38

U
using

and dependency relationship, 66
dependency attributes, 65
or dependency relationship, 66
84

V
validating

CLI, 45
PSF, 42
software specification attributes, 64

validation, 42
vendor, 25, 61
vendor defined attributes (VDAs), 62
85

	1 Introduction to Software Package Builder
	Software Package Builder Overview
	Software Package Builder and HP-UX Software Distributor
	Software Distributor
	Software Package Builder

	System Requirements
	Optimizing Java
	Getting and Installing SPB
	Starting Software Package Builder

	2 Software Packaging
	Software Packaging Overview
	Software Packaging Lifecycle
	Software Package Structure
	Organizing Filesystems
	Software Elements
	Software Package Hierarchy

	Product Specification File
	PSF Requirements and Recommendations
	Attributes

	Packaging Policies

	3 Software Package Builder Features
	Introduction
	Screen Regions
	Package Structure
	Depot Region
	Attribute Table
	Messages Tab
	Message Counter

	Policy Help Tab
	PSF View
	Menus
	Tool Bar
	Additional Information

	4 Getting Started with Software Package Builder
	Getting Started Using the SPB GUI
	Creating a New PSF
	Managing Fileset Content
	Validating a PSF
	Setting Attributes
	To set attributes

	Using the SPB Command Line Interface
	Editing from the CLI
	Validating from the CLI
	Incorporating SPB into Automated Processes

	Additional Information

	5 Advanced Features
	Managing Fileset Content
	Figure�5�1 Manage Fileset Content Dialog Box
	Using Advanced Features

	Creating and Using a Subproduct
	Creating and Using a Bundle
	Creating and Using a Vendor or Category
	Creating and Using Vendor Defined Attributes
	Overview of Software Specification Attributes
	<TABLE>
	Working with Dependency Attributes

	Working with Depots
	Figure�5�6 Depot Regions
	Validating a Depot
	Comparing Two Depots
	Creating a PSF from a Depot

	Using Control Scripts
	Additional Information
	Glossary
	Index
	A
	B
	C
	D
	F
	G
	I
	J
	M
	O
	P
	R
	S
	T
	U
	V

