

HP OpenView Operations for UNIX

Performance Guide

Software Version: A.08.10

Manufacturing Part Number: None

24 March 2005

U.S.A.

© Copyright 2004-2005 Hewlett-Packard Development Company

Page i i

Legal Notices
Warranty
Hewlett-Packard makes no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular pur-
pose. Hewlett-Packard shall not be held liable for errors contained herein or direct, indi-
rect, special, incidental or consequential damages in connection with the furnishing, per-
formance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c) (1, 2).

Copyright Notices
© Copyright 2005 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained
in this material is subject to change without notice.

Trademark Notices
HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-
bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Intel386, Intel80386, Intel486, and Intel80496 are U.S. trademarks of Intel Corporation.

Intel Itanium™ Logo:Intel, Intel Inside and Itanium are trademarks or registered trade-
marks of Intel Corporation in the U.S. and other countries and are used under license.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

OpenView® is a registered U.S. trademark of Hewlett-Packard Company.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

OSF, OSF/1, OSF/Motif, Motif, and Open Software Foundation are trademarks of the
Open Software Foundation in the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.

SQL*Plus® is a registered U.S. trademark of Oracle Corporation, Redwoord City, Califor-
nia.

UNIX® is a registered trademark of the Open Group.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark
holders and are hereby acknowledged.

Disclaimer
The results published in this document are valid only for the following software versions:

§ OVO/UNIX A.08.10.160
§ Oracle 9.2.0.2/64

OVO/UNIX 8.10 Per form ance Guide

 Page v

Table of Contents

1 Introduction ___1

2 Executive Summary __2

3 Environment __3

3.1 Management Server...3
3.1.1 Hardware System ...3
3.1.2 Kernel Configuration ...3
3.1.3 Disk Setup ..4
3.1.4 OVO/UNIX Installation ..4
3.1.5 RDBMS Installation...4

3.2 Display Stations...5
3.2.1 HP-UX ..5
3.2.2 Windows...5

3.3 Managed Nodes ...5
3.4 The Message Generator ..6

3.4.1 Miscellaneous...6
3.4.2 The Message Profiles ...6

4 Test Results___9

4.1 Message Throughput...11
4.1.1 Test: Varying the number of active Java GUI’s ...11
4.1.2 Test: Message duplicates suppression ...13
4.1.3 Test: Diverting messages to MSI programs ..15
4.1.4 Test: Diverting messages to ECS circuits ...17
4.1.5 Test: HTTPS vs. DCE agent as message sender18

4.2 Java GUI Startup Time...25
4.2.1 Test: Varying the number of managed nodes and messages....................25
4.2.2 Test: Varying the number of CMA’s ..27

4.3 Message Acknowledgement ...30
4.3.1 Test: Varying the number of messages and acknowledge type.................30

4.4 Service Navigator Startup Time ..34
4.4.1 Test: Varying the shape and size of the service tree.................................35

OVO/UNIX 8.10 Per form ance Guide

Page vi

4.5 Performance of the History Message Filter..39
4.5.1 Test: Varying the search criteria ...39

4.6 Performance of the History Download ...44
4.6.1 Test: Varying the number of downloaded messages.................................44

4.7 Monitor Agent ..46
4.7.1 Test: Performance of monitor agent..46

4.8 SNMP Agent ...50
4.8.1 Test: Performance of SNMP agent ...50

4.9 Miscellaneous Tests ..54
4.9.1 Test: Policy and Instrumentation Deployment ...54
4.9.2 Test: Network Traffic...56
4.9.3 Test: Java GUI Resources..59
4.9.4 Test: Memory Consumption on Agent...61
4.9.5 Test: Performance of opcmon/opcmsg CLI ...62

5 Appendix __65

5.1 OVO message acknowledge internals..65

OVO/UNIX 8.10 Per form ance Guide

 Page vi i

Table of Figures
Figure 1: Message Throughput - Number of Java GUI's (DCE agent)12
Figure 2: Message Throughput - Number of Java GUIs (HTTPS agent)........................12
Figure 3: Message Manager queue length: HP PA DCE + HTTPS agents20
Figure 4: Message Manager queue length: HP Itanium DCE + HTTPS agents21
Figure 5: Message Manager queue length: Linux DCE + HTTPS agents22
Figure 6: Message manager queue length: HP PA HTTPS agents (BULK on/off)23
Figure 7: Java GUI Startup Time - Managed Nodes and Active Messages26
Figure 8: Java GUI Startup Time - CMA's ...29
Figure 9: Message Acknowledgement – Time for "Move" and "Mark"33
Figure 10 : The service tree model..34
Figure 11: Service Navigator Startup Times – 1 Java GUI ..37
Figure 12: Service Navigator Startup Times – 2 Java GUIs...38
Figure 13: Performance of History Filter – 50.000 history messages.............................42
Figure 14: Performance of History Filter - 100.000 history messages............................43
Figure 15: Performance of History Download ..45
Figure 16: Performance of Monitor Agent – Agent Queue lengths.................................48
Figure 17: Network Traffic for OVO Messages ..58
Figure 18: Java GUI – Memory Requirements ..60
Figure 19: Performance of opcmon/opcmsg CLI ...63

OVO/UNIX 8.10 Per form ance Guide

Page vi i i

Index of Tables
Table 1: Oracle Parameters ..5
Table 2: Message Throughput - Duplicates Counter ...14
Table 3: Message Throughput – MSI (DCE agent)..16
Table 4: Message Throughput – MSI (HTTPS agent)..16
Table 5: Message Throughput – ECS (DCE agent)...18
Table 6: Message Throughput – ECS (HTTPS agent)...18
Table 7: Message sending rate of HP PA agents ..24
Table 8: GUI Startup Time - Managed Nodes / Active Messages..................................26
Table 9: Java GUI Startup Time - CMA's in active messages..28
Table 10: Java GUI Startup Time - CMA's in history messages.....................................28
Table 11: Message Acknowledgement – Moved Messages ..31
Table 12: Message Acknowledgement – Marked Messages ...32
Table 13: Message Acknowledgement – Marked Messages (Motif GUI)32
Table 14: Service Navigator - Number of services in tree..35
Table 15: Service Navigator – Startup Times with no SLOD – 1 Java GUI....................36
Table 16: Service Navigator – Startup Times with no SLOD – 2 Java GUIs36
Table 17: Service Navigator – Startup Times with SLOD active – 1 Java GUI...............36
Table 18: Service Navigator – Startup Times with SLOD active – 2 Java GUIs.............36
Table 19: Performance of History Filter – 50.000 history messages..............................40
Table 20: Performance of History Filter – 100.000 history messages............................41
Table 21: Performance of History Download ...45
Table 22: Performance of Monitor Agent - 100 conditions and 5.000 messages47
Table 23: Performance of Monitor Agent - 1.000 conditions and 100.000 messages47
Table 24: Speed of Trap generator..51
Table 25: Test Scenarios – SNMP Agent ..51
Table 26: Test Results – SNMP Agent Performance...52
Table 27: Test Results – SNMP Agent Performance – NNM 7.553
Table 28: Policy and Instrumentation Deployment...55
Table 29: Network Traffic – HTTPS node..57
Table 30: Network Traffic – DCE node ..57
Table 31: Java GUI – Memory Requirements..59
Table 32: Agent – Memory Requirements ...61
Table 33: Performance of opcmon/opcmsg CLI...63

OVO/UNIX 8.10 Per form ance Guide

 Page ix

OVO/UNIX 8.10 Per form ance Guide

 Page 1

1 Introduction
With the growing importance of products addressing Integrated Network and Systems
management (INSM), HP OpenView Operations for UNIX (OVO/UNIX) will be used
more and more in large computing environments. The nature of OVO/UNIX lends it-
self to be the management tool of choice for regional or enterprise-wide management
activities.

The biggest challenge when measuring the performance of distributed network and
system management applications such as OVO/UNIX is not the measurement itself,
but the determination of the set of parameters having an effect on application per-
formance. Because it is not possible to provide general rules, this guide focuses on
the limitations and critical areas.

From a high level point of view there are three different kinds of parameters:

Ø static parameters (server and/or agent specific) like disc space requirements
and kernel configuration

Ø dynamic parameters (server and/or agent specific) like memory usage of
OVO/UNIX processes and CPU utilization

Ø network-related parameters like network utilization and protocol overhead

In addition, there are other application related parameters:

Ø number of operators working in parallel

Ø number of messages per second received by the OVO/UNIX management
server

Ø type of messages to be processed by the OVO/UNIX management server

Ø number of active and history messages held in the message browser

Ø number of nodes in the topology/object database that are maintained and
monitored by OVO/UNIX

Ø number of service objects in Service Navigator

Ø number of custom message attributes in messages

The question is often raised as to "how many OVO/UNIX agent nodes can be man-
aged by a single OVO/UNIX management system". Due to conception aspects it is
not possible to give a simple answer to this question. There is no fixed limit for the
number of nodes which can be controlled by an OVO/UNIX management server. The
capability of an OVO/UNIX management server is based on the number and type of
messages which have to be processed. Therefore, the number of nodes which can be
managed by a server heavily depends on how the management domain is set up.
The more features of the OVO/UNIX intelligent agents like local automatic actions
and message filtering are used, the less is the impact on performance of the
OVO/UNIX management server.

OVO/UNIX 8.10 Per form ance Guide

Page 2

2 Executive Summary
The main focus of the current OVO/UNIX performance tests was to show the per-
formance of the new OVO HTTPS agents compared to the traditional DCE agents.

In addition, the most interesting tests known from previous versions of the OVO/UNIX
Performance Guide were repeated for the new OVO/UNIX 8.10 release.

Some new test areas have been added, e.g. the performance of the SNMP trap inter-
ceptor, the performance of the OVO monitor agent and the performance of the op-
cmon/opcmsg command line interface.

Performance of OVO/UNIX 8.1 vs. OVO/UNIX 7.1

Tests regarding the message throughput have shown a maximum message proc-
essing rate on the server of up to 120 messages per second for OVO 7.1.

The current tests have shown a maximum message throughput of up to 120 mes-
sages per second, too.

è With OVO/UNIX 8.1, there is no loss in message throughput / message proc-
essing time on the management server.

 Performance of OVO HTTPS agents vs. OVO DCE agents
Comparing the message processing rate on the OVO server based on the agent
type (HTTPS vs. DCE), it can be seen that there is no significant difference be-
tween these agent types. Although the internals in the agent are implemented in a
different way, the messages on the server are processed at a comparable rate.

The memory consumption of the OVO HTTPS agents is higher than the require-
ments of the DCE agents. The tests have shown that approx. 50% more main
memory is needed by the HTTPS agent.

è There is no significant difference regarding the message processing rate be-
tween HTTPS and DCE agents.

è More main memory should be available for the HTTPS agents than for the
DCE agents.

Startup time of the Java GUI in OVO/UNIX 8.1 vs. OVO/UNIX 7.1

Looking at the time needed to start the Java GUI in identical situations, it can be
seen that there is no difference between the OVO/UNIX 8.1 and the OVO/UNIX
7.1 Java GUI for a low number of active messages (5.000). If a higher number of
active messages does exist in the message browser (50.000), the OVO/UNIX 8.1
Java GUI needs significantly less time than the OVO/UNIX 7.1 Java GUI to start
(60 seconds vs. 100 seconds).

è The OVO/UNIX 8.1 Java GUI starts faster than the OVO/UNIX 7.1 Java GUI
the more active messages exist.

OVO/UNIX 8.10 Per form ance Guide

 Page 3

3 Environment

3.1 Management Server

3.1.1 Hardware System
Network Dedicated 1000BT network for the display stations and for the managed

nodes.

Machine Type HP RP4440/8

Processor 8 x 875MHz

Main Memory 12 GB

Disk space 2 x 36GB internal

3 x 36 GB, 15kRPM via fiber channel (DS2405)

OS HP-UX 11i (11.11) / 64

Swap space 512 MB1

OS-Patches Latest OS patches as listed in the OVO installation guide.

3.1.2 Kernel Configuration
The kernel parameters were checked during the OVO setup – according to the an-
swers given in this phase.

The only kernel parameter which needed to be adjusted was nproc – it was set to
16.000 instead of the default value.

During the OVO configuration phase, the script asks for sizing parameters and
then computes the requirements for some kernel parameters. As a result of this
process and the answers given during the configuration, the kernel parameter
nproc was proposed to be set to 18560, which in turn would have forced the de-
pendent parameter shmseg to an illegal value. Thus, the highest possible value
for nproc was configured.

Parameters set during the configuration:

Parameter Value

Number of Java GUIs 50

Service Navigator GUIs 5

Number of Motif GUIs 10

Number of HTTPS agents 100

Number of DCE agents 10

1 Only a small swap space was reserved because the system was equipped with a significant amount of main

memory and configured in such a way that swapping was done entirely in memory. According to the perform-
ance specialists, the system should never begin to swap on disks or else the performance test results would be
less significant.

OVO/UNIX 8.10 Per form ance Guide

Page 4

3.1.3 Disk Setup
The setup of the disks was fixed for all tests according to the results of previous OVO
performance tests:

OS OV
DB

OVO
DB

3 disk stripeset for
OVO-DB

Operating System

OpenView databases and
variable data (/var/opt/OV)

OVO Oracle database

Five disks were used for the performance tests.

A separate disk for the operating system, a
second separate disk for the OpenView
databases and variable data, and a 3 disk
stripeset for the OVO Oracle database.

3.1.4 OVO/UNIX Installation
• Base Version A.08.10.160

• Linux DCE agent : A.07.25, Linux HTTPS agent A.08.10

3.1.5 RDBMS Installation
• ORACLE 9.2.0.2 / 64 Bit

• Configurable parameters in file initopenview.ora [default values in square brack-
ets].

Parameter Value [Default Value]

db_block_buffers 10000 [550]

shared_pool_size 128M [6000000]

db_files 80 [50]

db_file_multiblock_read_count 16 [8]

sort_area_size 262144 [-]

OVO/UNIX 8.10 Per form ance Guide

 Page 5

processes 200 [50]

log_buffer 1572864 [65536]

_attach_count_slack 2000

The redo logs 5 x 30 MB [3 x 20 MB]

Table 1: Oracle Parameters

3.2 Display Stations

3.2.1 HP-UX
Used for the Motif GUIs.

Machine Type 1 x RP3440/4

Main Memory 12 GB

CPU 4 x 750 MHz

OS HP-UX 11.11

3.2.2 Windows
Used only for the JAVA GUIs.

Machine Type 1 x DL580/4/3.0 1 x DL580/4/3.0

Main Memory 7.5 GB 13.7 GB

CPU 4 x 3.0 GHz 4 x 3.0 GHz

OS Windows 2003 Windows XP

3.3 Managed Nodes
The real managed nodes (those nodes which were used for the generation of mes-
sages) were added manually to the Node Bank, downloaded as configuration C0 and
always reloaded with each of the test configurations (configuration C0 is loaded via
the preparation script and only contains the managed nodes used for message gen-
eration).

Machine
Type

RP3440
/4

RP3440
/4

RX2600
/2

DL580
/4/1.6

DL580
/4/1.6

DL580
/4/1.6

Main
Memory

12 GB 12 GB 12 GB 3.75 GB 3.75 GB 3.75 GB

CPU 4 x 750
MHz

4 x 750
MHz

2 x 750
MHz

4 x 1.6
GHz

4 x 1.6
GHz

4 x 1.6
GHz

OS HP-UX
11.11

HP-UX
11.11

HP-UX
11.23

W2k3 W2k3 Linux
RHAS3.0
_U2

Agent
Type

HTTPS DCE DCE /
HTTPS

DCE HTTPS DCE /
HTTPS

OVO/UNIX 8.10 Per form ance Guide

Page 6

3.4 The Message Generator
The Message Generator is used to create the test messages. It consists of some pro-
grams (using the opcmsg API) and a Message Interface template.

The managed node generating the messages never turned out to be the critical factor
in message throughput. In all situations tested, the management server itself was the
element limiting the message throughput.

The Message Generator

• Is started on the real managed nodes running HP-UX.

• May generate messages for a configurable set of nodes (specified through the
range of node numbers) and node groups.

• Generates a fixed number of messages per node, and then stops.

• is configurable via a specification file which

§ assigns the real managed nodes to node groups specified on the command
line

§ maps the canonical node names nodeng_num used in message generator to
real node names (canonical or systematic node names are used to specify the
range of nodes for which messages are generated)

• Each managed node generates messages for the one and only message group.

3.4.1 Miscellaneous
• All nodes in the node groups are defined as ordinary OVO managed nodes of

type OTHER, with a name, but without an IP address, i.e. these nodes were not
reachable via IP.

• Real managed nodes do not generate messages for themselves, but are only
used to generate the messages for the virtual nodes. The OVO/UNIX agent is in-
stalled on the real managed nodes.

• The process opcmsgi tries to resolve the hostname for nodes given with the node
parameter of opcmsg. Thus, depending on the /etc/nsswitch.conf and the
size of the /etc/hosts (if searched), the generation for nodes even of type Non IP
lasts very long (timeouts of name servers and time used to search the /etc/hosts).

To avoid these delays, we introduce a very short /etc/hosts containing only the
necessary names and we construct a /etc/nsswitch.conf which directs the search
to the files only!

3.4.2 The Message Profiles
The Message Generator is able to create messages of various types. These types
are flagged with a special code in the message text which triggers a dedicated condi-
tion in the assigned Message Interface template.

The following list of message types is available:

• Normal messages

• Normal messages, but with flag “on server log only”

OVO/UNIX 8.10 Per form ance Guide

 Page 7

• messages with automatic action (Echo50)

• see profile AA, but output of automatic action is recorded as annotation (size
of annotation for the Echo50action is 50 characters)

• see profile AA, but message is automatically acknowledged

• see profile AC, but output of automatic action is recorded as annotation

• messages which are forwarded to the notification service

• messages which are forwarded to the trouble ticket service

• messages with fixed instructions

• a message mix comprised of 40% normal messages, 20% messages with
fixed instructions, 20% messages which are forwarded to the notification ser-
vice, 20% messages with automatic actions

OVO/UNIX 8.10 Per form ance Guide

 Page 9

4 Test Results
In this chapter we discuss the results of the tests which were done in the environment
described in the previous chapter.

The following areas were covered:

• Message Throughput – How many messages is the system able to process

• Test: Varying the number of active Java GUI’s on page 11

• Test: Message duplicates suppression on page 13

• Test: Diverting messages to MSI programs on page 15

• Test: Diverting messages to ECS circuits on page 17

• Test: HTTPS vs. DCE agent as message sender on page 18

• Java GUI startup time – How long does it take to be ready to work

• Test: Varying the number of managed nodes and messages on page 25

• Test: Varying the number of CMA’s on page 27

• Message acknowledgement using the Java GUI – How long does it take to clean
up the active message browser

• Test: Varying the number of messages and acknowledge type on page 30

• Service Navigator startup time

• Test: Varying the shape and size of the service tree on page 35

• Performance of the History Message filter – How long does it take to locate history
data

• Test: Varying the search criteria on page 39

• Performance of the download of history messages – How fast can we get rid of
those messages

• Test: Varying the number of downloaded messages on page 44

• The Monitor Agent

• Test: Performance of monitor agent on page 46

• The SNMP Agent

• Test: Performance of SNMP agent on page 50

• Miscellaneous

• Test: Policy and Instrumentation Deployment on page 54

OVO/UNIX 8.10 Per form ance Guide

Page 10

• Test: Network Traffic on page 56

• Test: Java GUI Resources on page 59

• Test: Memory Consumption on Agent on page 61

• Test: Performance of opcmon/opcmsg CLI on page 62

OVO/UNIX 8.10 Per form ance Guide

 Page 11

4.1 Message Throughput

4.1.1 Test: Varying the number of active Java GUI’s

4.1.1.1 Synopsis

The following metrics are computed in this test.

Metric • Number of messages per second (message
throughput) until all messages are shown in all
Java GUIs

• Number of messages per second (message
throughput) until all messages are stored in the
OVO DB

Parameter • Number of Java GUIs

• OVO HTTPS agent versus OVO DCE agent

4.1.1.2 Scenario

Measured Value • Time until the last expected message is shown in
all message browsers is taken as the result of this
test

• Time on server to receive all messages (Receive
Time of message) divided by number of messages
is taken as the “Rate of messages stored in the
OVO DB”.

Message Generator • 5.000 messages, severity normal

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 50 messages per node

• Operators used are responsible for 400 nodes

• Node bank has 2.000 managed nodes

• No history messages

Java GUI options • Different OVO/UNIX user accounts

• show all messages

• refresh interval 5 seconds 1

1 The refresh interval has an impact on the outcome of the bulk transfer of messages to the Java GUI, i.e. the

smaller the refresh interval, the smaller the performance gain of the bulk transfer. For most of the Java GUI
tests, the smaller refresh value was used to get more timely results. The recommendation for production use is
still 30 seconds – which is the default in the Java GUI.

OVO/UNIX 8.10 Per form ance Guide

Page 12

4.1.1.3 Results

Figure 1 shows the message throughput based on the number of running Java GUIs,
the message generator is an OVO DCE agent.

Figure 1: Message Throughput - Number of Java GUI's (DCE agent)

The same metrics are shown in Figure 2 – the message generator is now an OVO
HTTPS agent.

Figure 2: Message Throughput - Number of Java GUIs (HTTPS agent)

OVO/UNIX 8.10 Per form ance Guide

 Page 13

4.1.1.4 Interpretation

The following facts may be derived from these results:

• The message throughput decreases linear as more Java GUI’s are started and
free CPUs are available to server the associated GUI processes. If more GUIs are
started and there are no free CPUs anymore, the message throughput will drop
faster.

• Message throughput regarding the arrival in the OVO/UNIX database is higher
than the throughput regarding the display of messages in the Java message
browser.

• The impact of the agent type sending the messages may be neglected. Almost
the same throughput is achieved for HTTPS and DCE agent.

4.1.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Only the number of Java GUI’s needed at the moment should be started since the
OVO/UNIX database message throughput decreases with an increasing number
of Java GUI’s started.

• Whether a HTTPS or DCE agent is used has almost no impact on the message
throughput if multiple Java GUIs are started.

4.1.2 Test: Message duplicates suppression

4.1.2.1 Synopsis

The following metrics are computed in this test.

Metric • Number of messages per second (message
throughput) until all messages are shown in the
Admin GUI

Parameter • Message duplicate counter active vs. inactive

• Number of different message keys (0, 1)

OVO/UNIX 8.10 Per form ance Guide

Page 14

4.1.2.2 Scenario

Measured Value • Time until the last expected message is shown in
the Admin GUI message browser

Message Generator • 5.000 messages, severity normal, all messages
were different (message text contained a unique
number)

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 50 messages per node

• Operators used are responsible for 400 nodes

• Node bank has 2.000 managed nodes

• No history messages

Java GUI options • No Java GUIs were started

Miscellaneous • The feature “Add duplications as annotations” was
turned off

In the previous performance tests, modifying the number of message keys
showed very little impact on the computed metric values, thus for the current
tests it has been decided to use only zero and one different metric key.
In addition, there were no significant differences between using an OVO DCE
agent vs. using an OVO HTTPS agent as the message generator.

4.1.2.3 Results

The following table lists the message throughput in messages per second.

Legend:

OFF OVO/UNIX feature Message Duplicates Counter was turned off

0 Message Duplicates Counter turned on, no message keys used

1 Message Duplicates Counter turned on, same key for all messages

Message Keys OFF 0 1

Msgs/sec 122 46 122

Table 2: Message Throughput - Duplicates Counter

OVO/UNIX 8.10 Per form ance Guide

 Page 15

4.1.2.4 Interpretation

The following facts may be derived from these results:

• The loss of performance if message duplicates are counted is small if message
keys are used.

• The number of different message keys has a small impact on the performance
(the more message keys, the longer the time to process the messages) [Previous
tests].

• If duplicates are to be counted without using message keys, the processing time
is approx. 3 times of the time needed when using message keys.

4.1.2.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• If message duplicate suppression is enabled, message keys should be attached
to the messages – even if every message gets its own key.

4.1.3 Test: Diverting messages to MSI programs

4.1.3.1 Synopsis

The following metrics are computed in this test.

Metric • Number of messages per second (message
throughput) until all messages are arrived in the
Admin GUI via the message stream interface (MSI)

Parameter • Number of MSI programs

4.1.3.2 Scenario

Measured Value • Time until the last expected message is shown in
the Admin GUI message browser

Message Generator • 5.000 messages, severity normal

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 50 messages per node

• Operators used are responsible for 400 nodes

• Node bank has 2.000 managed nodes

• No history messages

Java GUI options • No Java GUIs were started

OVO/UNIX 8.10 Per form ance Guide

Page 16

Miscellaneous • All messages were diverted to one or more MSI
programs using the agent MSI. The MSI programs
simply wrote the unmodified message back to the
message stream.

• Because all MSI programs got the same set of
messages and each MSI program wrote its mes-
sages back to the MSI stream, a multiple of the ini-
tial 5.000 messages was seen in the message
browser (5.000 messages per MSI program).

4.1.3.3 Results

The following table lists the results of this test.

MSI Progs None Agent
1xMSI

Agent
2xMSI

Agent
5xMSI

Messages 5.000 5.000 10.000 25.000

Throughput [Msg/s] 119 119 119 119

Table 3: Message Throughput – MSI (DCE agent)

MSI Programs None Agent
1xMSI

Agent
2xMSI

Agent
5xMSI

Messages 5.000 5.000 10.000 25.000

Throughput [Msg/s] 113 116 116 116

Table 4: Message Throughput – MSI (HTTPS agent)

Legend:

MSI Progs:
None

No MSI program was active, messages were processed directly without
diverting

MSI Progs:
Agent nxMSI

n MSI programs were active using the agent message stream interface;
thus, n times 5.000 messages were actually stored in the OVO data-
base.

OVO/UNIX 8.10 Per form ance Guide

 Page 17

4.1.3.4 Interpretation

The following facts may be derived from these results:

• Using the agent message stream interface to feed OVO/UNIX with diverted mes-
sages results in no performance penalty if the messages are sent from a DCE
agent.

• If a HTTPS agent is used as the message generator, the message throughput is
slightly lower than for the DCE agent (3%). In addition, if more MSI programs are
used the message throughput for the DCE sender is more stable than for the
HTTPS sender (HTTPS: 2.5% difference).

• Registering more MSI programs did not have a significant impact on the message
throughput.

4.1.3.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Using the message stream interface results in no performance loss.

4.1.4 Test: Diverting messages to ECS circuits

4.1.4.1 Synopsis

The following metrics are computed in this test.

Metric • Number of messages per second (message
throughput) until all messages are arrived in the
Admin GUI via the event correlation system (ECS)

Parameter • OVO DCE agent vs. OVO HTTPS agent

4.1.4.2 Scenario

Measured Value • Time until the last expected message is shown in
the Admin GUI message browser

Message Generator • 5.000 messages, severity normal

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 50 messages per node

• Operators used are responsible for 400 nodes

• Node bank has 2.000 managed nodes

• No history messages

Java GUI options • No Java GUIs were started

Miscellaneous • All messages were diverted to one ECS circuit run-
ning on the agent. The ECS circuit simply wrote the
unmodified message back to the message stream.

OVO/UNIX 8.10 Per form ance Guide

Page 18

4.1.4.3 Results

The following tables list the results of this test.

ECS circuits 0 1

Messages 5.000 5.000

Throughput [Msg/s] 119 116

Table 5: Message Throughput – ECS (DCE agent)

ECS circuits 0 1

Messages 5.000 5.000

Throughput [Msg/s] 116 119

Table 6: Message Throughput – ECS (HTTPS agent)

4.1.4.4 Interpretation

The following facts may be derived from these results:

• Using the agent ECS interface to feed OVO/UNIX with diverted messages results
in no performance penalty.

• The agent type (DCE vs. HTTPS) had no significant impact on the message
throughput (3% difference).

4.1.4.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Using the ECS interface results in no performance loss.

4.1.5 Test: HTTPS vs. DCE agent as message sender

4.1.5.1 Synopsis

The following metrics are computed in this test.

Metric • Number of messages in the OVO message man-
ager queue on the OVO server over time in case a
large number of messages is generated on the
managed nodes

Parameter • Number of OVO agents

• OVO DCE agent vs. OVO HTTPS agent

• Platform of OVO agents

OVO/UNIX 8.10 Per form ance Guide

 Page 19

4.1.5.2 Scenario

Measured Value • Number of messages in the OVO message man-
ager queue over time until the queue is empty

Message Generator • 100.000 messages, severity normal

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 50 messages per node

• Operators used are responsible for 400 nodes

• Node bank has 2.000 managed nodes

• No history messages

Java GUI options • No Java GUIs were started

Miscellaneous • n/a

4.1.5.3 Results

The graph for the number of elements in the queue of process opcmsgm over time (in
seconds) beginning from the start of the message generator is shown in the following
diagrams.

The x-axis shows the time in seconds, the left y-axis shows the number of messages
in the queue and the right y-axis shows the message change rate in messages per
second.

Legend:

#Items The number of messages for this point of time

Rate The message rate in messages per second computed using the current and
the previous data point

OVO/UNIX 8.10 Per form ance Guide

Page 20

Figure 3 shows the queue length for HP PA agents. One test was done with one DCE
agent sending 100.000 messages, the next text was done with one HTTPS agent
sending 100.000 messages, and the last test was done using one DCE and one
HTTPS agent sending 50.000 messages each.

The left y-axis shows the total number of items in the OVO server message manager
queue over time, the right y-axis shows the change rate of items in the message
manager queue over time, in items per second.

Figure 3: Message Manager queue length: HP PA DCE + HTTPS agents

Number
of Items

Change
Rate

OVO/UNIX 8.10 Per form ance Guide

 Page 21

Interpretation

• The rate by which the messages are processed once they are in the message
manager queue is independent of the agent type.

• The DCE agent is able to send messages faster than the HTTPS agent.

• If both a HTTPS agent and a DCE agent are sending messages, the message re-
ception rate in the server is more than the sum of the individual scenario (DCE
sending alone and HTTPS sending alone).

• The DCE agent is able to send messages at a constant rate, where the HTTPS
agent rate is not constant. The rate of the single HTTPS agent does not exceed
the rate of the single DCE agent.

The next Figure 4 shows the queue length on the server in case HP Itanium agents
are used. One test was done with one DCE agent running on a HP Itanium system
sending 100.000 messages; the next test was done with once HTTPS agent running
on a HP Itanium system sending 100.000 messages.

Figure 4: Message Manager queue length: HP Itanium DCE + HTTPS agents

OVO/UNIX 8.10 Per form ance Guide

Page 22

Interpretation

• The rate by which the messages are processed once they are in the message
manager queue is independent of the agent type.

• The DCE agent is able to send messages faster than the HTTPS agent.

• The DCE agent is able to send messages at a constant rate, where the HTTPS
agent rate is not constant. The rate of the single HTTPS agent does not exceed
the rate of the single DCE agent.

• The HP Itanium agents are able to send their messages faster than the HP PA
agents (14%).

Figure 5 shows the queue length on the server in case Linux agents are used. One
test was done with one DCE agent running on a Linux system sending 100.000 mes-
sages; the next test was done with once HTTPS agent running on a Linux system
sending 100.000 messages.

Figure 5: Message Manager queue length: Linux DCE + HTTPS agents

OVO/UNIX 8.10 Per form ance Guide

 Page 23

Interpretation

• The rate by which the messages are processed once they are in the message
manager queue is independent of the agent type.

• The HTTPS agent is able to send messages faster than the DCE agent (66%).

• The DCE agent is able to send messages at a constant rate, where the HTTPS
agent rate is not constant. The rate of the single HTTPS agent does not exceed
the rate of the single DCE agent.

• The Linux HTTPS agent is able to send messages nearly as fast as HP-PA and
HP Itanium agents. The Linux DCE agent is significantly slower.

Figure 6 shows the queue length on the server where one HP PA HTTPS agent was
sending 100.000 messages. One test was performed using the default OVO parame-
ters, for the other test, the OVO parameter MAX_MESSAGE_BULK was set to the value
1, which effectively turns the bulk mode off. This value controls the number of mes-
sages which are authenticated together.

Figure 6: Message manager queue length: HP PA HTTPS agents (BULK on/off)

OVO/UNIX 8.10 Per form ance Guide

Page 24

Interpretation

• The parameter MAX_MESSAGE_BULK had almost no impact on the message
throughput.

4.1.5.4 Interpretation

The following facts may be derived from these results:

• There is no significant difference in the message sending rate for HTTPS and
DCE agents – besides Linux. For Linux, the DCE agent is significantly slower than
the HTTPS agent.

• If HTTPS and DCE agent were both sending messages, the message reception
rate was higher than in case the single agents were sending messages.

• More message manager processes were able to process messages faster than a
single process.

4.1.5.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Use HTTPS and DCE agents at the same time ...

• If message bursts are not avoidable, ensure that the time of silence is long
enough to process all queued messages.

In Table 7, the sending rate of HP PA agents are listed. This is the number of mes-
sages per second the agent is able to send to the OVO server. As can be seen from
the table, there is no real significant difference between the agent types.

Agent Type DCE HTTPS

Sending Rate [Msgs/s] 450 410

Table 7: Message sending rate of HP PA agents

OVO/UNIX 8.10 Per form ance Guide

 Page 25

4.2 Java GUI Startup Time

4.2.1 Test: Varying the number of managed nodes and messages

4.2.1.1 Synopsis

The following metrics are computed in this test.

Metric • Startup time of two Java GUIs

• Startup time of two Motif GUIs

Parameter • Number of managed nodes the users are responsi-
ble for

• Number of active messages

4.2.1.2 Scenario

Measured Value • Time until the last GUI of a type is started and fully
functional.

Message Generator • 5.000 and 50.000 messages, severity normal, were
generated before the test started

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 50 and 500 messages per node

• Operators used are responsible for 500 and 2.000
nodes

• Node bank has 10.000 managed nodes

• No history messages

Java GUI options • Different OVO/UNIX user accounts

• show all messages

• refresh interval 5 seconds

4.2.1.3 Results

The Table 8 lists the results of this test: the time in seconds needed to start two Java
and two Motif GUIs with different OVO/UNIX user accounts. The tests for the different
GUI types were done separately.

For the Motif GUIs, the startup time for the 2nd start was taken, thus the time for build-
ing the map cache was not included.

OVO/UNIX 8.10 Per form ance Guide

Page 26

500 500 2.000 2.000 Responsible Nodes

Active Messages Motif Java Motif Java

5.000 45 13 155 15

50.000 57 60 167 61

Table 8: GUI Startup Time - Managed Nodes / Active Messages

4.2.1.4 Interpretation

Figure 7 shows the bar charts for the tests, with a varying number of managed nodes
the OVO/UNIX user is responsible for and a varying number of active messages.

Figure 7: Java GUI Startup Time - Managed Nodes and Active Messages

OVO/UNIX 8.10 Per form ance Guide

 Page 27

The following facts may be derived from these results:

• The number of managed nodes in the OVO/UNIX user’s realm has a significant
impact on the startup time of the Motif GUI. There is almost no impact on the
startup time of the Java GUI.

• The number of active messages has an impact on the startup time of the Java
GUI, although a significant increase is seen only in the range of 50.000 messages
and above.

4.2.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Up to 2.000 managed nodes and 50.000 active messages, the startup times of
the Java GUI are approx. 60 seconds. Thus, too many active messages should
be prevented (use duplicate suppression, event correlation, etc.).

• The number of managed nodes in the OVO users realm should be kept as small
as possible, if the Motif operator GUI is used

4.2.2 Test: Varying the number of CMA’s

4.2.2.1 Synopsis

The following metrics are computed in this test.

Metric • Startup time of two Java GUIs displaying all CMAs
attached to the OVO messages.

Parameter • Number of CMAs attached to the messages

• Number of active and history messages

OVO/UNIX 8.10 Per form ance Guide

Page 28

4.2.2.2 Scenario

Measured Value • The time until the last Java GUI is up and func-
tional, i.e. messages are displayed in the message
browser. The Java GUI was configured in such a
way that all CMAs were shown in the browser.

Message Generator • 1.000 and 10.000 messages, severity normal, were
generated before the test started

• A varying number of CMAs was attached to each
message. Each CMA had a length of 20 characters

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 10 and 100 messages per node

• Operators used are responsible for 500 nodes

• Node bank has 10.000 managed nodes

• No history messages for the first test

• No active messages for the second test

Java GUI options • Different OVO/UNIX user accounts

• show all messages

• refresh interval 5 seconds

4.2.2.3 Results

Table 9 lists the results of this test: the time in seconds needed to start 2 Java GUI’s
with different OVO/UNIX user accounts, with a varying number of active messages
(and CMAs) and no history messages.

Number of CMA's 0 1 5 10 50

Active messages

1.000 9 9 11 12 16

10.000 18 21 25 32 84

Table 9: Java GUI Startup Time - CMA's in active messages

Table 10 lists the result where no active messages were present, but a varying num-
ber of history messages.

Number of CMA's 0 1 5 10 50

History messages

1.000 9 8 9 9 9

10.000 9 9 9 9 9

Table 10: Java GUI Startup Time - CMA's in history messages

OVO/UNIX 8.10 Per form ance Guide

 Page 29

4.2.2.4 Interpretation

Figure 8 shows a visualization of the results of this test. No graph is shown for the
test with history messages only.

Figure 8: Java GUI Startup Time - CMA's

The following facts may be derived from these results:

• The number of customer message attributes per message has an impact on the
startup time of the Java GUI – although this impact is very small.

• The delay in the startup time of the Java GUI depends on the number of CMA’s
per message in a linear function.

4.2.2.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Using CMA’s imposes little penalty on the startup time of the Java GUI.

OVO/UNIX 8.10 Per form ance Guide

Page 30

4.3 Message Acknowledgement

4.3.1 Test: Varying the number of messages and acknowledge type

4.3.1.1 Synopsis

The following metrics are computed in this test.

Metric • This test measures the time needed to acknowl-
edge multiple messages using the Java GUI.

Parameter • The number of Java GUIs

• The number of acknowledged messages in one
operation

• The internal handling of the acknowledgement
(messages are moved vs. messages are marked)

4.3.1.2 Scenario

Measured Value • The time needed to acknowledge multiple mes-
sages using the Java GUI. Messages were ac-
knowledged on one Java GUI, the time until the last
message disappeared on all started Java GUI’s
was taken as the result of this test.

Message Generator • 50.000 messages, severity normal, were generated
before the test started. No messages were gener-
ated during the acknowledgement.

• A varying number of CMAs was attached to each
message. Each CMA had a length of 20 characters

• Messages are targeted to 100 nodes in 4 node
groups, i.e. 500 messages per node

• Operators used are responsible for 500 nodes

• Node bank has 10.000 managed nodes

• No history messages did exist prior to the test

OVO/UNIX 8.10 Per form ance Guide

 Page 31

Java GUI options • Different OVO/UNIX user accounts – but same re-
sponsibility

• show all messages

• refresh interval 5 seconds

Environment • For the first part of the test, acknowledged mes-
sages were moved from the active to the history
database table. Since the acknowledgement was
started from the Java GUI, and the Java GUI ac-
knowledges only single messages, each acknowl-
edged message is moved from the act to the his-
tory table this way if the standard OVO/UNIX pa-
rameters are used.

• For the second part of the test, acknowledged
messages were only marked as acknowledged in
the active message database table. If the
OVO/UNIX parameter OPC_DIRECT_ACKN_LIMIT
is set to 0 using the ovconfchg1 tool, then even if
the single acknowledgements are started from the
Java GUI, the messages are only marked, not
moved.

• For both tests, the OVO/UNIX message mover
process was disabled (OVO/UNIX parameter
OPC_ACK_MOVE_INTERVAL 0 using the
ovconfchg2,3, 4 tool.

4.3.1.3 Results

The following Table 11 lists the results of this test. For this first part of the test, the
acknowledged messages were moved from the active messages table to the history
messages table. Shown is the time in seconds until the last message disappeared
from the last Java GUI message browser.

Number of ackn. Msgs

Number of Java GUI's

1.000 5.000 10.000

1 31 126 316

5 28 153 370

Table 11: Message Acknowledgement – Moved Messages

1 The parameter was set with: ovconfchg –ovrg server –ns opc –set OPC_DIRECT_ACKN_LIMIT 0
2 The parameter was set with: ovconfchg –ovrg server –ns opc –set OPC_ACK_MOVE_INTERVAL 0
3 In a production environment where acknowledged messages are downloaded quickly on a regular basis (e.g.

every 24 hours), the message mover process could be disabled at all. Thus, all acknowledged messages would
only be marked and never moved in the OVO database tables until they are finally downloaded.

4 See “OVO message acknowledge internals” on page 65 for more details.

OVO/UNIX 8.10 Per form ance Guide

Page 32

The following Table 12 lists the results of the second part of this test. In the second
part, the messages were only marked, not moved.

Number of ackn. Msgs

Number of Java GUI's

1.000 5.000 10.000

1 18 72 144

5 22 94 187

Table 12: Message Acknowledgement – Marked Messages

Upon special request, we repeated the marked message test with the Motif GUI.
Table 13 shows the results for this test.

Number of ackn. Msgs

Number of Motif GUI's

1.000 5.000 10.000

1 2 10 20

5 2 10 20

Table 13: Message Acknowledgement – Marked Messages (Motif GUI)

OVO/UNIX 8.10 Per form ance Guide

 Page 33

4.3.1.4 Interpretation

Figure 9 visualizes the times needed for one Java GUI.

Figure 9: Message Acknowledgement – Time for "Move" and "Mark"

The following facts may be derived from these results:

• Marking the messages on acknowledgement is faster than moving the acknowl-
edged messages from the active to the history database table.

• The time loss when messages are moved between the database tables is con-
stant (7 – 9 seconds per 1.000 messages).

• Message acknowledgement takes longer if more Java GUI’s are displaying those
messages.

4.3.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• For optimizing the usability of the Java GUI, acknowledged messages should be
marked only, and later – automatically – moved to the history table.

OVO/UNIX 8.10 Per form ance Guide

Page 34

4.4 Service Navigator Startup Time
For these tests, the shape and the size of the service tree is varied.

We used trees with the following attributes:

• Varying depth and width

• No Use Factor or Links, i.e. associations from services to their nephews (chil-
dren of siblings)

The number of services at level k is k
k mL = where 0=k for the root level.

The total number of services in the tree: 1
11

−
−+

m
mn

 where

• m is the breadth (number of children for each service)

• n is the depth (number of levels below the top level; see Figure 10)

Figure 10 : The service tree model

1 m
…

1 m …

1

1 m …

m …

Level 0: L0 = 1

Level 1: L1 = m1

Level 2: L2 = m2

Level 3: L3 = m3

Lk is the number of
services at level k.

OVO/UNIX 8.10 Per form ance Guide

 Page 35

4.4.1 Test: Varying the shape and size of the service tree

4.4.1.1 Synopsis

The following metrics are computed in this test.

Metric • The time needed to start one and two Java GUIs
for different OVO/UNIX users which have the same
service tree assigned.

Parameter • The number of levels in the service tree (depth).

• The number of children for each intermediate ser-
vice in the tree (breadth).

• The feature “Service Load on Demand” was turned
off and turned on.

4.4.1.2 Scenario

Measured Value • This test measures the startup time of the Java GUI
in situations where a service tree is assigned to the
OVO/UNIX user starting the GUI – thus the “startup
time of the service navigator”.

Message Generator • No messages were generated and used for this
test.

Java GUI options • Different OVO/UNIX user accounts – but same ser-
vice tree

4.4.1.3 Results

The Table 14 lists the total number of services in the tree, depending on the number
of levels and the breadth of the tree. Configurations shown in orange (B/D = 10/10,
B/D = 40/5, B/D = 40/10) were not tested, the configurations in yellow (B/D = 3/10,
B/D = 40/3) are used to compare the impact of the shape of the tree for two trees with
a nearly identical total number of services.

Depth of tree 3 5 10

Breadth of tree

3 40 364 88573

10 1111 111111 1,1111E+10

40 65641 105025641 1,0755E+16

Table 14: Service Navigator - Number of services in tree

OVO/UNIX 8.10 Per form ance Guide

Page 36

Table 15 and Table 16 show the times needed to start the Java GUI’s with “Service
Load on Demand” not in effect.

Depth of tree 3 5 10

Breadth of tree

3 8 9 286

10 12 273

40 60

Table 15: Service Navigator – Startup Times with no SLOD – 1 Java GUI

Depth of tree 3 5 10

Breadth of tree

3 8 10 472

10 14 458

40 97

Table 16: Service Navigator – Startup Times with no SLOD – 2 Java GUIs

With “Service Load on Demand” in effect, the startup time of the Java GUIs was con-
stant: 8 seconds. See Table 17 and Table 18.

Depth of tree 3 5 10

Breadth of tree

3 8 8 8

10 8 8

40 8

Table 17: Service Navigator – Startup Times with SLOD active – 1 Java GUI

Depth of tree 3 5 10

Breadth of tree

3 8 8 8

10 8 8

40 8

Table 18: Service Navigator – Startup Times with SLOD active – 2 Java GUIs

OVO/UNIX 8.10 Per form ance Guide

 Page 37

4.4.1.4 Interpretation

In Figure 11, the result of this test with one running Java GUI is visualized.

The bars marked with the yellow arrow show the results of the configurations with a
nearly identical total number of services, but with different number of levels and dif-
ferent breadth.

Figure 11: Service Navigator Startup Times – 1 Java GUI

OVO/UNIX 8.10 Per form ance Guide

Page 38

In Figure 12, the result of this test with two running Java GUIs is visualized.

The bars marked with the yellow arrow show the results of the configurations with a
nearly identical total number of services, but with different number of levels and dif-
ferent breadth.

Figure 12: Service Navigator Startup Times – 2 Java GUIs

The following facts may be derived from these results:

• The feature “Service Load on Demand” works as expected: constant startup time
for the Java GUI.

• The total number of services is not the only attribute which has an impact on the
startup time. Instead, the number of the service levels - the depth of the tree – has
the strongest impact on the startup time (see figures for depth 10, breadth 3 vs.
depth 3, breadth 40).

OVO/UNIX 8.10 Per form ance Guide

 Page 39

4.4.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• If deep service trees are used – service trees with more than 5 levels – then the
feature “Service Load on Demand” should be used to avoid long delays in the
startup time of the Java GUI.

4.5 Performance of the History Message Filter

4.5.1 Test: Varying the search criteria

4.5.1.1 Synopsis

The following metrics are computed in this test.

Metric • The time needed from starting the search in the
GUI until the number of expected history messages
was shown in the message browser was taken as
the result of this test.

Parameter • The number of Java GUIs

• The number of history messages in the OVO data-
base

• The search criteria

o search for a node

o search for an object string

o search for a message pattern

o search for a CMA

4.5.1.2 Scenario

Measured Value • This test measures the performance of the filter
mechanism used to locate messages in the
OVO/UNIX history messages database table, i.e.
acknowledged messages. The time needed from
starting the search until the number of expected
messages was shown in the message browser was
taken as the result of this test.

Message Generator • 50.000 / 100.000 history messages of severity
normal were generated before this test

• No active messages did exist

• No messages were generated during the test

• All message had 10 CMAs, 20 characters per CMA

• Operators user are responsible for 500 nodes

• Node bank has 10.000 managed nodes

OVO/UNIX 8.10 Per form ance Guide

Page 40

Java GUI options • Different OVO/UNIX user accounts – but same re-
sponsibility

• show last 50 messages

• refresh interval 5 seconds

Environment • If multiple Java GUIs were used for the test, the
other GUIs (other than the one starting the timed
search) were performing the “node not found”
search.

• Automatic download if history messages was dis-
abled

• Messages were moved to the opc_hist_messages
table by opcdbmsgsmv (message mover process)

4.5.1.3 Results

Table 19 lists the results of this test with 50.000 history messages. Listed are times in
seconds from the start of the search until the last expected message was shown in
the message browsers. In addition, the numbers of expected messages are shown in
parenthesis.

Search time [s]
Motif 1 Java

GUI
5 Java
GUIs

- Node: found (500) 1 5 5

- Node: not found (0) 25 133 314

- Object: found (500) 1 8 10

- Object: not found (0) 1 1 2

- Message pattern (500) 18 80 284

- Message pattern (0) 18 80 242

- CMA: found (500) n/a 30 93

- CMA: not found (0) n/a 4 10

Table 19: Performance of History Filter – 50.000 history messages

OVO/UNIX 8.10 Per form ance Guide

 Page 41

In Table 20, the results for 100.000 history messages are shown.

Search time [s]
Motif 1 Java

GUI
5 Java
GUIs

- Node: found (1000) 1 16 10

- Node: not found (0) 57 244 884

- Object: found (1000) 5 17 19

- Object: not found (0) 1 1 4

- Message pattern (1000) 98 179 713

- Message pattern (0) 40 183 690

- CMA: found (1000) n/a 139 301

- CMA: not found (0) n/a 13 39

Table 20: Performance of History Filter – 100.000 history messages

OVO/UNIX 8.10 Per form ance Guide

Page 42

4.5.1.4 Interpretation

In Figure 13, the test results for 50.000 history messages are shown. The number of
expected messages in the searches is 500.

Figure 13: Performance of History Filter – 50.000 history messages

OVO/UNIX 8.10 Per form ance Guide

 Page 43

In Figure 14, the test results for 100.000 history messages are shown. The number of
expected messages in the searches is 1.000.

Figure 14: Performance of History Filter - 100.000 history messages

The following facts may be derived from these results:

• Locating history messages when non existing managed nodes are used as the
search criteria shows a severe loss of performance.

• Locating history messages using the Motif GUI performs better than using the
Java GUI.

• The number of history messages has a linear impact on the time needed for the
search.

• The number of Java GUIs performing a parallel search has a direct impact on the
time needed for the search.

OVO/UNIX 8.10 Per form ance Guide

Page 44

• Due to the necessary matching algorithm, searching by message text pattern
takes longer than searching for a fixed text string.

4.5.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Try to avoid typos when locating history messages via the names of managed
nodes. Ensure that only existing node names are used as the search criteria.

• The number of history messages should be kept as small as possible if searches
are frequently performed.

• When searching for a message text, use fixed text strings rather than text patterns
where appropriate.

4.6 Performance of the History Download

4.6.1 Test: Varying the number of downloaded messages

4.6.1.1 Synopsis

The following metrics are computed in this test.

Metric • The time to download a varying number of history
messages.

Parameter • The number of history messages in the OVO data-
base

4.6.1.2 Scenario

Measured Value • This test measures the time needed to download a
varying number of history messages. The download
tool opchistdwn was started on the command line.

Message Generator • 10.000 / 50.000 / 100.000 history messages of se-
verity normal were generated before this test

• No active messages did exist

• No messages were generated during the test

• Node bank has 10.000 managed nodes

Java GUI options • No Java GUIs were started for this test

Environment • Automatic downloading of history messages was
disabled.

• Default OVO configuration regarding mark-
ing/moving acknowledged messages was used.

• The OVO message mover process was disabled
(OPC_ACK_MOVE_INTERVAL 0).

OVO/UNIX 8.10 Per form ance Guide

 Page 45

4.6.1.3 Results

Table 21 lists the results of this test. Shown are the times in seconds beginning with
the start of the opchistdwn utility until its termination. In addition, the messages
downloaded per second are shown, too.

Number of messages 10.000 50.000 100.000

Time for download 30,8 144,7 337,3

Time / 1.000 messages 3,1 2,9 3,4

Messages per second 324,7 345,5 296,5

Table 21: Performance of History Download

4.6.1.4 Interpretation

Figure 15 shows the visualization of the results of this test. Shown are the times
needed to download the messages and the times to download 1.000 messages.

The opchistdwn process took 50% of one CPU, the Oracle database disk array was
used up to 20%.

Figure 15: Performance of History Download

OVO/UNIX 8.10 Per form ance Guide

Page 46

The following facts may be derived from these results:

• The download speed varies between 300 and 345 messages per second.

• The time needed to download 1.000 history messages seems to be constant.

4.6.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• The download of history can be simply extrapolated once a reference download
has been timed.

4.7 Monitor Agent

4.7.1 Test: Performance of monitor agent

4.7.1.1 Synopsis

The following metrics are computed in this test.

Metric • Time to generate 5.000 and 100.000 messages.

• Number of elements in the monitor & message
agent queue.

Parameter • Number of conditions in the monitor policy

• Position of firing condition in monitor policy

4.7.1.2 Scenario

Measured Value • This test measures the time needed to generate
5.000 and 100.000 messages via the OVO monitor
agent.

Message Generator • A varying number of monitor values was generated
and sent to an external monitor policy via the op-
cmon(3) API.

• The conditions were ordered according to their
threshold, thus the position of the firing condition
could be controlled via the value sent to the monitor
agent.

• Node bank has 10.000 managed nodes

Java GUI options • No Java GUIs were started for this test

Environment • One external monitor policy was used with a vary-
ing number of conditions.

• HP-UX 11.11 HTTPS agent

OVO/UNIX 8.10 Per form ance Guide

 Page 47

4.7.1.3 Results

Table 22 lists the results of the test were 100 conditions were used and 5.000 mes-
sages were generated.

Matching
Condition

Time DB
[s]

Rate DB
[Msgs/s]

1 38 132

50 39 128

100 38 132

Table 22: Performance of Monitor Agent - 100 conditions and 5.000 messages

Table 23 lists the results of the test were 1.000 conditions were used and 100.000
messages were generated.

Matching
Condition

Time DB
[s]

Rate DB
[Msgs/s]

1 717 139

500 714 140

1000 735 136

Table 23: Performance of Monitor Agent - 1.000 conditions and 100.000 messages

OVO/UNIX 8.10 Per form ance Guide

Page 48

Figure 16 shows the number of items in the message and monitor agent queue for
the last test (1.000 conditions and 100.000 messages). The queue lengths were
taken in regular intervals (1 second) beginning with the generation of the first mes-
sage until all expected messages were shown in the message browser.

Figure 16: Performance of Monitor Agent – Agent Queue lengths

4.7.1.4 Interpretation

The following facts may be derived from these results:

• The monitor agent can generate messages faster than the server can receive
them (agent has finished its tasks after 420 seconds the latest, where the server
takes approx. 700 seconds to process the messages).

• The position of the firing monitor condition has no significant impact on the mes-
sage processing rate on the management server – because the server is the limit-
ing factor.

• The position of the firing monitor condition has a significant impact on the mes-
sage generation rate on the agent.
If the 1st condition fires, the message agent part which forwards the data to the
server is the limiting part. This can be seen in the graph: monitor queue (which
collects the monitor values) does not fill up, but the message agent queue (which
collects the messages to be sent to the server) fills up.

OVO/UNIX 8.10 Per form ance Guide

 Page 49

If the 1.000th condition matches, the monitor agent part which processes the val-
ues is the limiting part. This can be seen in the graph: monitor queue fills up;
message agent queue is nearly empty.

• From the data where the 1.000th condition matches, we can see that the rate by
which the monitor values are stored in the monitor agent queue is approx. 4.400
values per second, where the rate by which these values are processed is
approx. 235 values per second.

• From the data where the 500th condition matches, we can see that the rate by
which the monitor values are stored in the monitor agent queue is approx. 4.150
values per second, where the rate by which these values are processed is
approx. 445 values per second.

• From the data where the 1st condition matches, we can see that the rate by which
the messages are stored in the message agent queue is approx. 4.500 messages
per second, where the rate by which these messages are processed is approx.
775 messages per second.

• The processing of the monitor agent queue is faster than the processing of the
message agent queue if the first conditions fires. Thus, the limiting factor for send-
ing the messages is the processing of the message agent queue.

• The processing of the monitor agent queue is slower than the processing of the
message agent queue if the firing conditions are located at higher list positions
(500, 1000). Thus, the limiting factor for sending the messages is the processing
of the monitor agent queue.

4.7.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• To send monitor messages fast, avoid having long condition lists.

• Have frequently used conditions at the beginning of the condition list.

OVO/UNIX 8.10 Per form ance Guide

Page 50

4.8 SNMP Agent

4.8.1 Test: Performance of SNMP agent

4.8.1.1 Synopsis

The following metrics are computed in this test.

Metric • Message generated per second via the SNMP trap
interceptor.

• Number of lost SNMP traps.

Parameter • Number of SNMP traps per second sent to the trap
interceptor

• Location of trap interceptor

4.8.1.2 Scenario

Measured Value • This test measures the number of SNMP messages
generated (and thus the number of SNMP traps
processed) and the time needed for this task.

Message Generator • 1.000 / 10.000 SNMP traps were sent using
“snmptrap –L <count>”. Each SNMP trap had a
length of 40 bytes (only SNMP payload).

• No active messages did exist

• No other messages than SNMP messages were
generated during the test

• Node bank has 10.000 managed nodes

Java GUI options • No Java GUIs were started for this test

Environment • A single SNMP template was assigned to the trap
destination. A simple OVO message was generated
for the trap.

• HP-UX 11.11 agent

OVO/UNIX 8.10 Per form ance Guide

 Page 51

4.8.1.3 Results

First, a test was made to show the number of SNMP traps “snmptrap” is able to
generate at full speed. Table 24 shows the result of this test. Thus, the SNMP trap
generator is fast enough for the actual tests.

Traps Time [s] Traps/s

100.000 2,30 43.478

1.000.000 15,00 66.666

5.000.000 81,00 61.728

Table 24: Speed of Trap generator

The different test scenarios are shown in Table 25.
Test Trap Destination

3-1a ovtrapi DCE Agent

3-1b NNM DCE Agent

3-1c NNM HTTPS Agent

3-1d ovtrapi HTTPS Agent

3-1e NNM HTTPS Server

Table 25: Test Scenarios – SNMP Agent

Table 26 lists the results of the tests. The SNMP traps were sent in multiple chunks of
a varying size, after each chunk a delay of 1 second was inserted. Sending all SNMP
traps at once showed that the trap receiver was not able to process all the traps, thus
traps were lost (even if NNM was the trap receiver).

In tests were NNM was the trap receiver, the information regarding NNM was added
to the result table, too.

Legend:

Traps Sent Number of total traps sent in this test

Chunk Size Number of traps sent at once without any delay in between.
After each chunk a delay of 1 second was implemented.

Traps Received (NNM) Number of total traps received by NNM in this test

Time NNM Time in seconds until all traps were received by NNM.

Rate NNM Number of traps per second which were received by NNM

Traps Received (OVO) Number of total traps received by the OVO trap interceptor

Time DB Times in seconds until all SNMP messages were stored in
the OVO database.

Note that this is a server based metric.

Rate DB Number of SNMP messages per seconds which were stored
in the OVO database.

OVO/UNIX 8.10 Per form ance Guide

Page 52

Test Traps

Sent
Chunk size

1 sec delay
after each

chunk

Traps
received
(NNM)

Time
NNM

[msg/s]

Rate NNM
[msg/s]

Traps
received

(OVO)

Time
DB
[s]

Rate DB
[msg/s]

3-1a 1.000 1.000 - - - 744 7 106

 1.000 500 - - - 1000 8 125

 10.000 500 - - - 10.000 89 112

 3-1b 1.000 1.000 1.000 3 333 1.000 9 111

 1.000 500 1.000 3 333 1.000 9 111

 10.000 10.000 5.972 15 398 5.972 52 115

 10.000 5.000 6.241 15 416 6.242 52 120

 10.000 2.000 6.097 15 406 6.097 51 120

 10.000 1.000 10.000 24 417 10.000 83 120

 10.000 500 10.000 24 417 10.000 84 119

 3-1c 1.000 1.000 1.000 2 500 1.000 8 125

 10.000 10.000 5.991 14 428 5.991 51 117

 10.000 1.000 9.978 24 416 9.979 84 119

 10.000 500 10.000 23 435 10.000 84 119

 3-1d 1.000 1.000 - - - 740 7 106

 1.000 500 - - - 1.000 10 100

 10.000 500 - - - 10.000 84 119

 3-1e 1.000 1.000 1.000 3 333 1.000 9 111

 10.000 10.000 7.542 18 419 6.543 54 121

 10.000 1.000 10.000 24 417 10.000 85 118

 10.000 500 10.000 24 417 10.000 84 119

Table 26: Test Results – SNMP Agent Performance

OVO/UNIX 8.10 Per form ance Guide

 Page 53

The last test 3-1e was repeated with a NNM 7.5 installation. Table 27 shows the re-
sults.
Test Traps

sent
Chunk size

1 sec delay
after each

chunk

Traps
received
(NNM)

Time
NNM

[msg/s]

Rate NNM
[msg/s]

Traps
received

(OVO)

Time
DB
[s]

Rate DB
[msg/s]

 3-1e 1.000 1.000 1.000 3 333 1.000 10 100

 10.000 10.000 5.296 19 279 5.296 52 102

 10.000 5.000 5.173 18 287 5.173 49 106

 10.000 1.000 9.967 35 285 9.967 103 97

 10.000 500 10.000 35 286 10.000 87 115

 98.754 98.754 52.204 180 290 52.204 489 107

Table 27: Test Results – SNMP Agent Performance – NNM 7.5

4.8.1.4 Interpretation

The following facts may be derived from these results:

• NNM is able to process SNMP Trap bursts of up to 1.000 traps per second with-
out missing traps. Beginning with a burst of 2.000 traps/s, NNM starts missing
traps. This is independent of the agent type (HTTPS vs. DCE).

• The OVO ovtrapi is able to process SNMP Trap bursts of up to 500 traps per sec-
ond without missing traps. Starting with bursts of 1.000 traps/s ovtrapi misses
traps.

• The message generation rate is nearly independent of which process receives the
SNMP traps, NNM or ovtrapi. This rate is approx. 120 messages per second.

• If NNM is used and is able to process the SNMP trap bursts without missing traps,
all traps are forwarded to OVO.

• The message generation rate is slightly lower if NNM 7.5 is used.

• NNM 7.5 starts missing traps for bursts of approx. 1.000 traps per second.

4.8.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• If there is a need to process SNMP trap bursts of more than 500 traps per sec-
ond, NNM should be used as the trap receiver – if possible.

• Consider implementing multiple different OVO agents as SNMP trap destinations,
i.e. use the distributed approach. Note that in this case one trap should only be
sent to one OVO agent to prevent the generation of duplicate messages.

OVO/UNIX 8.10 Per form ance Guide

Page 54

4.9 Miscellaneous Tests

4.9.1 Test: Policy and Instrumentation Deployment

4.9.1.1 Synopsis

The following metrics are computed in this test.

Metric • Time needed to deploy instrumentation and poli-
cies.

Parameter • Number of policies

• Number of conditions in policies

• Agent type and platform

4.9.1.2 Scenario

Measured Value • This test measure the time needed to deploy differ-
ent sets of policies and instrumentation to different
agent types and platforms.

• The first time recorded is the total time needed from
deployment start (Admin GUI) until the arrival of the
completion message in the browser. This time in-
cludes the time needed for the policy creation for
HTTPS agents.

• The second time was taken from the starting the
deployment from the command line. This time does
not include the policy creation step for HTTPS
agents.

Message Generator • No messages were generated during the test

Java GUI options • No Java GUIs were started for this test

Environment • The OSSPI was used for the deployment tests.

o HP: Quickstart HP-UX, 1 Message, 8 Monitor,
8 Logfile Policies

o Linux: Quickstart Linux, 1 Message, 5 Monitor,
9 Logfile Policies

o Windows: Core/Windows 2000: 1 Message,
33 Monitor, 7 Logfile Policies

• OSSPI instrumentation contained 134 files (15 from
CHO tests)

• Installed server patch A.08.11

• No tests were performed for HP Itanium DCE
agents

OVO/UNIX 8.10 Per form ance Guide

 Page 55

4.9.1.3 Results

Table 28 lists the results of this test. Shown are the times in seconds needed to com-
plete the operation. For HTTPS agents, both the total time (policy creation and de-
ployment) and the time needed only for deployment is listed. For DCE agents, only
the total time is listed since there is no policy creation step.

Platform HP

PA
DCE

HP PA
HTTPS

HP IA
HTTPS

Win
DCE

Win
HTTPS

Linux
DCE

Linux
HTTPS

Number of
policies Tot Tot Depl Tot Depl Tot Tot Depl Tot Tot Depl
 Monitor:
 1 cond

1 2 2 2 2 2 2 2 2 2 2 2
50 3 17 2 15 14 3 11 6 3 10 8

100 5 38 30 33 27 15 23 14 3 21 14
 Monitor:
1 cond +
action

100 4 32 30 31 26 4 26 14 4 21 14
 Monitor:
1000 conds

1 3 3 2 3 2 3 3 2 3 3 2
50 95 79 23 71 20 80 68 14 70 65 14

100 187 144 45 135 38 130 131 28 167 126 27
 OSSPI
policies 3 8 6 7 6 3 9 5 2 5 3

OSSPI in-
strumenta-
tion 3 42 - 36 - 3 12 - 9 20 -

Table 28: Policy and Instrumentation Deployment

4.9.1.4 Interpretation

The following facts may be derived from these results – only the results with the fix
are discussed:

• The number of policies has a linear impact on the deployment time.

• The number of policy conditions has a linear impact on the deployment time.

• Deployment to DCE agents is faster than the deployment to HTTPS nodes.

• Adding actions to the policies does not result in additional deployment time.

• Deployment to Linux HTTPS agents is significantly faster than deployment to HP-
PA DCE agents (only 67% of HP-PA time).

• Deployment of the OSSPI policies is fairly fast (3 – 9 seconds).

OVO/UNIX 8.10 Per form ance Guide

Page 56

• Deployment of the OSSPI instrumentation is significantly faster for DCE agents.

4.9.1.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• The deployment to HTTPS takes more time than the deployment to the DCE
agent (except on Linux).

• Deployment of policies to HTTPS agents take longer for the first time – where the
policy creation is needed.

4.9.2 Test: Network Traffic

4.9.2.1 Synopsis

The following metrics are computed in this test.

Metric • Number of packets and bytes per OVO message
sent from the agent to the server.

Parameter • Number of messages

• Size of message text (i.e. size of the message)

• Agent type (HTTPS vs. DCE)

4.9.2.2 Scenario

Measured Value • This test measures the network traffic for messages
sent from the OVO agent to the OVO server.

Message Generator • Messages with severity normal and with a varying
length of message text were generated on Win-
dows managed nodes

Java GUI options • No Java GUIs were started for this test

Environment • The network traffic was captured and analyzed

OVO/UNIX 8.10 Per form ance Guide

 Page 57

4.9.2.3 Results

Table 29 lists the results of this test for a Windows HTTPS node.

The last column lists the number of bytes in the communication between agent and
server per message.

HTTPS Agent (Windows)

No.
Mes-

sages

Length of
message

text

Packets
To Srv

Packets
from Srv

Bytes to
Srv

Bytes
from
Srv

Bytes to
Srv per

Msg

Comm.
Bytes

per Msg

 200 50 119 22 141979 2646 710 723

 500 50 292 48 353043 4869 706 716

 1.000 50 574 110 703038 8589 703 712

Average 50 706 717

 200 500 198 61 239176 4986 1196 1221

 500 500 487 146 595816 10749 1192 1213

 1.000 500 964 355 1189458 24065 1189 1214

Average 500 1192 1216

Table 29: Network Traffic – HTTPS node

The results for the same test, but for a DCE agent, are shown in Table 30.

DCE Agent (Windows)

Messages Length of
message

text

Packets
To Srv

Packets
from Srv

Bytes to
Srv

Bytes
from
Srv

Bytes to
Srv per

Msg

Comm.
Bytes

per Msg

 200 50 201 201 190322 26934 952 1086

 500 50 501 501 475622 67134 951 1086

 1.000 50 1001 1001 951122 134134 951 1085

Average 50 951 1086

 200 500 201 201 206322 26934 1032 1166

 500 500 501 501 515622 67134 1031 1166

 1.000 500 1001 1001 1031122 134134 1031 1165

Average 500 1031 1166

Table 30: Network Traffic – DCE node

OVO/UNIX 8.10 Per form ance Guide

Page 58

4.9.2.4 Interpretation

If the average values for the communication bytes are set in relation to the length of
the message text, we have the graphs as shown in Figure 17.

Figure 17: Network Traffic for OVO Messages

The following facts may be derived from these results:

• The amount of network traffic exchanged between agent and server for a mes-
sage depends linear on the size of the message text.

• For short message texts, fewer bytes are exchanged for HTTPS communication
than for DCE communication, i.e. the fixed overhead of DCE communication is
higher.

• For longer message texts, the size of the HTTPS messages grows faster than the
size of the DCE messages, i.e. the variable overhead of HTTPS communication is
higher.

4.9.2.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• Small messages should be used for HTTPS agent – if network traffic is a factor.

661*11.1
1076*18.0

+=
+=

MsgLenComBytes
MsgLenComBytes

HTTPS

DCE

OVO/UNIX 8.10 Per form ance Guide

 Page 59

4.9.3 Test: Java GUI Resources

4.9.3.1 Synopsis

The following metrics are computed in this test.

Metric • Memory size required by Java GUIs on display sta-
tion and on OVO server.

Parameter • Number of messages

• Number of Java GUIs

4.9.3.2 Scenario

Measured Value • This test measures the free memory available on
the Java display station and the OVO sever for dif-
ferent scenarios.

Message Generator • Message were generated upfront and not during
the test

Java GUI options • Different OVO/UNIX user accounts – but same re-
sponsibility.

• show all messages

• refresh interval 5 seconds

Environment • n/a

4.9.3.3 Results

Table 31 lists the results for this test.

Active Messages 0 5.000

Number of Java GUIs

Memory
consumption

on server
[MB]

Memory
consumption

on GUI
[MB]

Memory
consumption

on server
[MB]

Memory
consumption

on GUI
[MB]

0 0 0 0 0

1 20 41,60 50 47,7

5 80 179,3 210 203,7

Table 31: Java GUI – Memory Requirements

OVO/UNIX 8.10 Per form ance Guide

Page 60

4.9.3.4 Interpretation

Figure 18 shows the visualization of the test results.

Figure 18: Java GUI – Memory Requirements

The following facts may be derived from these results:

• One Java GUI needs approx 16 – 20MB of main memory on the management
server, plus 6 MB per 1.000 active messages.

• One Java GUI needs approx 36 – 42MB of main memory on the display station,
plus 1.2 MB per 1.000 active messages.

4.9.3.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• The main memory needed on the server and the display station may be approx.
computed.

OVO/UNIX 8.10 Per form ance Guide

 Page 61

4.9.4 Test: Memory Consumption on Agent

4.9.4.1 Synopsis

The following metrics are computed in this test.

Metric • Memory size required by the OVO agent

Parameter • Number of policies loaded by the agent

• Agent type and platform

4.9.4.2 Scenario

Measured Value • This test measures the memory required by all
OVO agent processes

Message Generator • No messages were generated during this test

Java GUI options • No Java GUIs were used for this test

Environment • The OSSPI policies were distributed to the agent

• Shared memory is counted only once

4.9.4.3 Results

Table 32 lists the results for this test.
Agent

HP PA
DCE

HP PA
HTTPS

HP Itanium
HTTPS

Linux
HTTPS

W2k3
DCE

W2k3
HTTPS

No poli-
cies

 Mem on
Agent
[MB]

Mem on
Agent [MB]

Mem on
Agent [MB]

Mem on
Agent
[MB]

Mem on
Agent
[MB]

Mem on
Agent
[MB]

 User Mem 15,4 14,6 44 18,2 11,5 18,6

 Virtual Mem 28,2 49,7 92,2

All kind of
policies User Mem 28,5 31,9 60 26,4 23 29,3

 Virtual Mem 46,8 72,9 129,2

Lcore-
Virt-Mem 92,8 90

Table 32: Agent – Memory Requirements

OVO/UNIX 8.10 Per form ance Guide

Page 62

4.9.4.4 Interpretation

The following facts may be derived from these results:

• The HTTPS agent needs more main memory than the DCE agent. The LCore
components are listed separately in the table (HP).

• If policies are deployed to the managed nodes, the growth in main memory is
higher for the HTTPS agent than for the DCE agent.

• The difference in main memory requirements between DCE and HTTPS agent is
higher for HP-PA agents than for Windows 2003 agent.

4.9.4.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• HTTPS agents need more main memory than DCE agents.

4.9.5 Test: Performance of opcmon/opcmsg CLI

4.9.5.1 Synopsis

The following metrics are computed in this test.

Metric • Time needed to start 1.000 opcmon/opcmsg com-
mands in sequence

Parameter • Agent type and platform

4.9.5.2 Scenario

Measured Value • This test measures time needed to start 1.000 op-
cmon and opcmsg commands in sequence

Message Generator • Messages of severity normal were generated for
this test.

Java GUI options • No Java GUIs were used for this test

Environment • The command line interface was used for this test.

• The monitor values were sent to an external moni-
tor policy.

• No tests were performed for HP Itanium DCE
agents

OVO/UNIX 8.10 Per form ance Guide

 Page 63

4.9.5.3 Results

Table 33 lists the results for this test.

Number of Executions 1.000

Platform
opcmon

[s]
opcmsg

[s]
opcmon
[calls/s]

opcmsg
[calls/s]

Windows 2003 x86 HTTPS 95 96 10,5 10,4

Windows 2003 x86 DCE 72 81 13,9 12,3

Linux Red Hat x86 HTTPS 47 47 21,3 21,3

Linux Red Hat x86 DCE 21 21 47,6 47,6

HP-UX 11.23 IA HTTPS 128 129 7,8 7,8

HP-UX 11.23 IA DCE Not Tested

HP-UX 11.11 PA HTTPS 310 310 3,2 3,2

HP-UX 11.11 PA DCE 53 53 18,9 18,9

Table 33: Performance of opcmon/opcmsg CLI

Figure 19 shows the visualization of the result.

Figure 19: Performance of opcmon/opcmsg CLI

OVO/UNIX 8.10 Per form ance Guide

Page 64

4.9.5.4 Interpretation

The following facts may be derived from these results:

• The time for one opcmon/opcmsg command to complete is very high for HTTPS
agents on HP systems.

• The DCE versions of the tools are always faster than the HTTPS versions – on
the same platform.

• Event the Linux HTTPS agent is faster than the HP-PA DCE agent – and 7 times
faster than the HP-PA HTTPS agent.

4.9.5.5 Conclusions

Regarding the tests in this chapter, the following conclusions may be drawn:

• If opcmon/opcmsg needs to be called at a high rate on HP HTTPS agents, an al-
ternative architecture should be considered (API calls, MSI programs, background
process which is feed by a light communication channel).

OVO/UNIX 8.10 Per form ance Guide

 Page 65

5 Appendix

5.1 OVO message acknowledge internals
Note that the parameters described in this section have to be set in the
opcsvinfo file for OVO versions prior to 8.0. Beginning with OVO 8.0, the
opcsvinfo file has been substituted by a separate data store, for which the
parameters have to be set using

“ovconfchg –ovrg server –ns opc –set <parameter> <value>”

When a message is acknowledged the related rows out of several tables
(opc_act_messages, opc_msg_text, opc_orig_msg_text and if applicable
opc_annotation and opc_anno_text) get moved into the corresponding history
tables.

There is however an exception to this rule:

If more than 50 messages get acknowledged, then these messages are not
moved immediately into the corresponding history tables but are just
flagged as being acknowledged. A background job (opcdbmsgmv) which is
scheduled to run every 2 hours, will move these messages into the history
tables at a later point in time thus not blocking the GUI which started the
message acknowledge steps. Several parameters allow tuning of all these
steps if this is needed:

OPC_ACK_MOVE_INTERVAL

Description:
Interval in seconds in which the opcdbmsgmv process is started by the
opcctlm process to move the flagged (acknowledged) messages to the history
tables.

Default: 7200 seconds (= 2 hours)

How to use this variable:
If set to 0, the message move is disabled.
The history download will recognize marked messages and download them.

The message move should only be disabled in these cases; otherwise the ac-
tive tables might grow to sizes which can seriously impact the performance
of the GUI:

• for test purposes
• if regular history downloads are run and history messages are

not kept very long in the DB.
• opcdbmsgmv is run by other means (cron or an OVO scheduled ac-

tion at specific times)

Example:
configure the opcdbmsgmv process to run every hour in the configuration:

• OPC_ACK_MOVE_INTERVAL 3600

OVO/UNIX 8.10 Per form ance Guide

Page 66

OPC_DIRECT_ACKN_LIMIT

Description:
This variable helps determine whether the messages to be acknowledged
should be moved to the history tables immediately or whether this move can
be deferred. If more messages than this limit (default value: 50 messages)
are acknowledged then they are only flagged as acknowledged and are moved
in the background by the opcdbmsgmv process.

How to use this variable:
It is not expected that normal operation in the browser would require mass
acknowledgements of messages.

If regularly 10, 20 or more messages are acknowledged at once in the GUI
and this is perceived as slow, then this variable should be set to a value
below the number of messages acknowledged at once. So modifying this vari-
able will have a direct impact on the GUI performance.

Note, that the Java GUI uses the APIs and therefore acknowledges one mes-
sage at a time. If you want that messages acknowledged by the Java GUI are
only marked, set OPC_DIRECT_ACKN_LIMIT to 1.

Example:
configure the acknowledgment process so that messages are always marked;
add following line to the configuration data:

• OPC_DIRECT_ACKN_LIMIT 1

OPC_ACK_COMMIT_COUNT

Description:
for performance reasons whenever multiple messages need to be acknowledged,
these get grouped together and multiple messages are committed in one
transaction. This count allows defining the number of messages to be com-
mitted in one transaction.

Default : 100 messages

How to use this variable:
Please be careful when increasing this value as this might cause locking
conflicts on the DB if set too high! Every commit will release locks on the
message tables thus allowing for better concurrency. When would you in-
crease this value?

• if you want to speed up opcdbmsgmv

When would you decrease this value?

• if locking conflicts occurred during message acknowledgement.

Modifying this variable will have an impact on the opcdbmsgmv performance.

Example:
configure the acknowledgement process to always perform a commit after 50
messages were moved to the history tables.
In the configuration data:

OVO/UNIX 8.10 Per form ance Guide

 Page 67

OPC_ACK_COMMIT_COUNT 50

Sample scenarios

The settings of these variables depend on the environment. Therefore, there
is not one set of settings that is optimal for all customers. Here are some
sample configurations and appropriate settings for these cases:

• Many acknowledgements, OVO is used in the day shift only:

In this case, it makes sense to always mark messages by adding fol-
lowing info to the configuration data:

OPC_DIRECT_ACKN_LIMIT 1

Further it makes sense to run opcdbmsgmv in the night after other
maintenance tasks (history download, backup and so on). Since
OPC_ACK_MOVE_INTERVAL only allows specifying an interval and not a
fix time, you can do following: Disable the automatic scheduling by
adding following info to the configuration data:
OPC_ACK_MOVE_INTERVAL to 0

Now setup an OVO scheduled action that is run once per night and runs
opcdbmsgmv.

• History messages are kept only short time:

In this case, it makes sense to always mark messages by adding fol-
lowing info to the configuration data:

OPC_DIRECT_ACKN_LIMIT 1

It also makes sense to disable opcdbmsgmv and let the history
download handle the marked messages. Since history messages are not
kept very long, the
impact of the marked messages in the active message tables on start-
ing OVO GUIs is small. To disable opcdbmsgmv, add following info to
the configuration data:

OPC_ACK_MOVE_INTERVAL to 0

• If you want all messages to be moved immediately:

Set the variable OPC_DIRECT_ACKN_LIMIT to a very high number (for ex-
ample 1000000), so that the messages are always moved immediately to
the history tables.

• Many lock timeouts caused by opcdbmsgmv

You see a lot of lock timeout errors like the following in the opcer-
ror file while opcdbmsgmv is running:

04/05/00 15:12:03 OpC message acknowledge utility(3095)
[chk_sqlcode.scp:99]:
Database: ORA-00054: resource busy and acquire with NOWAIT specified
(OpC50-15)
Retry. (OpC51-22)

OVO/UNIX 8.10 Per form ance Guide

Page 68

OVO does three retries if a lock timeout occurs. If some tasks cannot
be finished within this three retries, you may reduce the amount of
messages that are processed by opcdbmsgmv within one transaction.
This reduces the time that other processes have to wait. You can do
this by reducing the value of OPC_ACK_COMMIT_COUNT, for example from
the default of 100 to 50.

	1 Introduction
	2 Executive Summary
	3 Environment
	3.1 Management Server
	3.1.1 Hardware System
	3.1.2 Kernel Configuration
	3.1.3 Disk Setup
	3.1.4 OVO/UNIX Installation
	3.1.5 RDBMS Installation

	3.2 Display Stations
	3.2.1 HP-UX
	3.2.2 Windows

	3.3 Managed Nodes
	3.4 The Message Generator
	3.4.1 Miscellaneous
	3.4.2 The Message Profiles

	4 Test Results
	4.1 Message Throughput
	4.1.1 Test: Varying the number of active Java GUI’s
	4.1.2 Test: Message duplicates suppression
	4.1.3 Test: Diverting messages to MSI programs
	4.1.4 Test: Diverting messages to ECS circuits
	4.1.5 Test: HTTPS vs. DCE agent as message sender

	4.2 Java GUI Startup Time
	4.2.1 Test: Varying the number of managed nodes and messages
	4.2.2 Test: Varying the number of CMA’s

	4.3 Message Acknowledgement
	4.3.1 Test: Varying the number of messages and acknowledge type

	4.4 Service Navigator Startup Time
	4.4.1 Test: Varying the shape and size of the service tree

	4.5 Performance of the History Message Filter
	4.5.1 Test: Varying the search criteria

	4.6 Performance of the History Download
	4.6.1 Test: Varying the number of downloaded messages

	4.7 Monitor Agent
	4.7.1 Test: Performance of monitor agent

	4.8 SNMP Agent
	4.8.1 Test: Performance of SNMP agent

	4.9 Miscellaneous Tests
	4.9.1 Test: Policy and Instrumentation Deployment
	4.9.2 Test: Network Traffic
	4.9.3 Test: Java GUI Resources
	4.9.4 Test: Memory Consumption on Agent
	4.9.5 Test: Performance of opcmon/opcmsg CLI

	5 Appendix
	5.1 OVO message acknowledge internals

