
AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference

SC23-4872-00

���

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference

SC23-4872-00

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

Appendix

E,

“Notices,”

on

page

225.

First

Edition

(October

2002)

This

edition

applies

to

AIX

5L

Version

5.2

and

to

all

subsequent

releases

of

this

product

until

otherwise

indicated

in

new

editions.

A

reader’s

comment

form

is

provided

at

the

back

of

this

publication.

If

the

form

has

been

removed,

address

comments

to

Information

Development,

Department

H6DS-905-6C006,

11501

Burnet

Road,

Austin,

Texas

78758-3493.

To

send

comments

electronically,

use

this

commercial

Internet

address:

aix6kpub@austin.ibm.com.

Any

information

that

you

supply

may

be

used

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2002.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Who

Should

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Highlighting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Case-Sensitivity

in

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

ISO

9000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Related

Publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Chapter

1.

National

Language

Support

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Separation

of

Messages

from

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Conversion

between

Code

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Input

Method

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Converters

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Using

the

Message

Facility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Setting

National

Language

Support

for

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Changing

the

Language

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Changing

the

Default

Keyboard

Map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Chapter

2.

Locales

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Understanding

Locale

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Understanding

Locale

Categories

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Understanding

Locale

Environment

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Understanding

the

Character

Set

Description

(charmap)

Source

File

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Understanding

the

Locale

Definition

Source

File

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Multibyte

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Wide

Character

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Bidirectionality

and

Character

Shaping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Code

Set

Independence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

File

Name

Matching

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Radix

Character

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Programming

Model

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Chapter

3.

Subroutines

for

National

Language

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Locale

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Time

Formatting

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Monetary

Formatting

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Multibyte

and

Wide

Character

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Internationalized

Regular

Expression

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Chapter

4.

Code

Sets

for

National

Language

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Single-Byte

and

Multibyte

Code

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Unique

Code-Point

Range

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Data

Representation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Character

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

ASCII

Characters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Code

Set

Strategy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Code

Set

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

ISO

Code

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

IBM

PC

Code

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

UCS-2

and

UTF-8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

©

Copyright

IBM

Corp.

2002

iii

Chapter

5.

Converters

Overview

for

Programming

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Standard

Converters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Using

the

iconv

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Understanding

libiconv

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Using

Converters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

List

of

Converters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Writing

Converters

Using

the

iconv

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Chapter

6.

Input

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Input

Method

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Input

Method

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Input

Method

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Input

Method

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Programming

Input

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Working

with

Keyboard

Mapping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Using

Callbacks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Bidirectional

Input

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Cyrillic

Input

Method

(CIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Greek

Input

Method

(GIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Japanese

Input

Method

(JIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Korean

Input

Method

(KIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Latvian

Input

Method

(LVIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Lithuanian

Input

Method

(LTIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Thai

Input

Method

(THIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Vietnamese

Input

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Simplified

Chinese

Input

Method

(ZIM-UCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Single-Byte

Input

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Traditional

Chinese

Input

Method

(TIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Universal

Input

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Reserved

Keysyms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Chapter

7.

Message

Facility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Creating

a

Message

Source

File

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Creating

a

Message

Catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Displaying

Messages

outside

of

an

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Displaying

Messages

with

an

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Example

of

Retrieving

a

Message

from

a

Catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Writing

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Chapter

8.

Culture-Specific

Data

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Culture-Specific

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Culture-Specific

Algorithms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Example

of

Loading

a

Culture-Specific

Module

for

Arabic

Text

for

an

Application

.

.

.

.

.

.

.

.

. 163

Layout

(Bidirectional

Text

and

Character

Shaping)

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Appendix

A.

National

Language

Support

(NLS)

Reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

National

Language

Support

Checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

List

of

National

Language

Support

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Appendix

B.

Character

Maps

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

ISO

Code

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

IBM

Code

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Appendix

C.

NLS

Sample

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

iv

National

Language

Support

Guide

and

Reference

Message

Source

File

for

foo

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Creation

of

Message

Header

File

for

foo

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Single

Source,

Single

Path

Code-set

Independent

Version

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Single

Source,

Dual-Path

Version

Optimized

for

Single-Byte

Code

Sets

.

.

.

.

.

.

.

.

.

.

.

. 219

Appendix

D.

Use

of

the

libcur

Package

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Appendix

E.

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Contents

v

vi

National

Language

Support

Guide

and

Reference

About

This

Book

This

book

provides

information

on

how

to

provide

national

language

support

in

a

networked

environment.

Topics

include

locales,

code

sets,

input

methods,

subroutines,

and

culture-specific

information.

Who

Should

Use

This

Book

This

book

should

be

used

by

systems

administrators

who

want

to

customize

systems

to

provide

national

language

support

to

administer

their

systems.

Users

should

be

familiar

with

C

programming,

basic

system

administration,

and

command

line

usage.

Highlighting

The

following

highlighting

conventions

are

used

in

this

book:

Bold

Identifies

commands,

subroutines,

keywords,

files,

structures,

directories,

and

other

items

whose

names

are

predefined

by

the

system.

Also

identifies

graphical

objects

such

as

buttons,

labels,

and

icons

that

the

user

selects.

Italics

Identifies

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

user.

Monospace

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code

similar

to

what

you

might

write

as

a

programmer,

messages

from

the

system,

or

information

you

should

actually

type.

Case-Sensitivity

in

AIX

Everything

in

the

AIX

operating

system

is

case-sensitive,

which

means

that

it

distinguishes

between

uppercase

and

lowercase

letters.

For

example,

you

can

use

the

ls

command

to

list

files.

If

you

type

LS,

the

system

responds

that

the

command

is

″not

found.″

Likewise,

FILEA,

FiLea,

and

filea

are

three

distinct

file

names,

even

if

they

reside

in

the

same

directory.

To

avoid

causing

undesirable

actions

to

be

performed,

always

ensure

that

you

use

the

correct

case.

ISO

9000

ISO

9000

registered

quality

systems

were

used

in

the

development

and

manufacturing

of

this

product.

Related

Publications

The

following

books

contain

information

related

to

National

Language

Support:

v

Keyboard

Technical

Reference

v

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

v

The

Unicode

Standard

at

http://unicode.org.

©

Copyright

IBM

Corp.

2002

vii

viii

National

Language

Support

Guide

and

Reference

Chapter

1.

National

Language

Support

Overview

Many

system

variables

are

used

to

establish

the

language

environment

of

the

system.

These

variables

and

their

supporting

commands,

files,

and

other

tools,

are

referred

to

as

National

Language

Support

(NLS).

Topics

covered

in

this

chapter

are:

v

Chapter

2,

“Locales,”

on

page

7

v

“Understanding

Locale”

on

page

7

v

“Understanding

Locale

Categories”

on

page

8

v

“Understanding

Locale

Environment

Variables”

on

page

9

v

“Understanding

the

Locale

Definition

Source

File”

on

page

11

v

“Understanding

the

Character

Set

Description

(charmap)

Source

File”

on

page

11

v

“Converters

Overview”

on

page

2.

NLS

provides

commands

and

Standard

C

Library

subroutines

for

a

single

worldwide

system

base.

An

internationalized

system

has

no

built-in

assumptions

or

dependencies

on

language-specific

or

cultural-specific

conventions

such

as:

v

Code

sets

v

Character

classifications

v

Character

comparison

rules

v

Character

collation

order

v

Numeric

and

monetary

formatting

v

Date

and

time

formatting

v

Message-text

language.

All

information

pertaining

to

cultural

conventions

and

language

is

obtained

at

process

run

time.

The

following

capabilities

are

provided

by

NLS

to

maintain

a

system

running

in

an

international

environment:

v

“Separation

of

Messages

from

Programs”

v

“Conversion

between

Code

Sets”

Separation

of

Messages

from

Programs

To

facilitate

translations

of

messages

into

various

languages

and

to

make

the

translated

messages

available

to

the

program

based

on

a

user’s

locale,

it

is

necessary

to

keep

messages

separate

from

the

programs

and

provide

them

in

the

form

of

message

catalogs

that

a

program

can

access

at

run

time.

To

aid

in

this

task,

commands

and

subroutines

are

provided

by

the

message

facility.

For

more

information,

see

Chapter

7,

“Message

Facility,”

on

page

151.

Conversion

between

Code

Sets

A

character

is

any

symbol

used

for

the

organization,

control,

or

representation

of

data.

A

group

of

such

symbols

used

to

describe

a

particular

language

make

up

a

character

set.

A

code

set

contains

the

encoding

values

for

a

character

set.

It

is

the

encoding

values

in

a

code

set

that

provide

the

interface

between

the

system

and

its

input

and

output

devices.

©

Copyright

IBM

Corp.

2002

1

Historically,

the

effort

was

directed

at

encoding

the

English

alphabet.

It

was

sufficient

to

use

a

7-bit

encoding

method

for

this

purpose

because

the

number

of

English

characters

is

not

large.

To

support

larger

alphabets,

such

as

the

Asian

languages,

such

as

Chinese,

Japanese,

and

Korean,

additional

code

sets

were

developed

that

contained

multibyte

encodings.

A

character

is

any

symbol

used

for

the

organization,

control,

or

representation

of

data.

A

group

of

such

symbols

for

describing

a

particular

language

make

up

a

character

set.

A

code

set

contains

the

encoding

values

for

a

character

set.

The

encoding

values

in

a

code

set

provide

the

interface

between

the

system

and

its

input

and

output

devices.

An

internationalized

program

must

accurately

read

data

generated

in

different

code

set

environments

and

process

the

information

accurately.

You

can

use

nl_langinfo(CODESET)

to

obtain

the

current

code

set

in

a

process.

The

return

value

is

a

char

pointer

that

is

the

name

of

the

code

set

in

the

system.

Because

code

set

names

are

not

standard,

programs

should

not

depend

on

any

specific

value

for

this

string.

Knowing

the

current

code

set

can

aid

in

code-set

conversion.

NLS

supplies

converters

that

translate

character

encoding

values

found

in

different

code

sets.

For

more

information,

see

Chapter

5,

“Converters

Overview

for

Programming,”

on

page

83.

Input

Method

Support

The

input

of

characters

becomes

complicated

for

languages

having

large

character

sets.

For

example,

in

Chinese,

Korean,

and

Japanese,

where

the

number

of

characters

is

large,

it

is

not

possible

to

provide

one-to-one

key

mapping

for

a

keystroke

to

a

character.

However,

a

special

input

method

enables

the

user

to

enter

phonetic

or

stroke

characters

and

have

them

converted

into

native-language

characters.

A

keyboard

map

associated

with

each

keyboard

matches

sequences

of

one

or

more

keystrokes

with

the

appropriate

character

encoding.

For

more

information,

see

Chapter

6,

“Input

Methods,”

on

page

123.

Converters

Overview

National

Language

Support

(NLS)

provides

a

base

for

internationalization

to

allow

data

to

be

changed

from

one

code

set

to

another.

You

might

need

to

convert

text

files

or

message

catalogs.

There

are

several

standard

converters

for

this

purpose.

When

a

program

sends

data

to

another

program

residing

on

a

remote

host,

the

data

can

require

conversion

from

the

code

set

of

the

source

machine

to

that

of

the

receiver.

For

example,

when

communicating

with

an

IBM

VM

system,

the

system

converts

its

ISO8859-1

data

to

EBCDIC.

Code

sets

define

character

and

control

function

assignments

to

code

points.

These

coded

characters

must

be

converted

when

a

program

receives

data

in

one

code

set

but

displays

it

in

another

code

set.

For

more

information

on

converters,

see

Chapter

5,

“Converters

Overview

for

Programming,”

on

page

83.

Using

the

Message

Facility

To

facilitate

translation

of

messages

into

various

languages

and

to

make

them

available

to

a

program

based

on

a

user’s

locale,

it

is

necessary

to

keep

messages

separate

from

the

program

and

provide

them

in

the

form

of

message

catalogs

that

a

program

can

access

at

run

time.

To

aid

in

this

task,

the

Message

Facility

provides

commands

and

subroutines.

Message

source

files

containing

application

messages

are

created

by

the

programmer

and

converted

to

message

catalogs.

These

catalogs

are

used

by

the

application

to

retrieve

and

display

messages,

as

needed.

Message

source

files

can

be

translated

into

other

languages

and

converted

to

message

catalogs

without

changing

and

recompiling

a

program.

The

Message

Facility

includes

the

following

commands

for

displaying

messages

with

a

shell

script

or

from

the

command

line:

dspcat

Displays

all

or

part

of

a

message

catalog

2

National

Language

Support

Guide

and

Reference

dspmsg

Displays

a

selected

message

from

a

message

catalog

These

commands

use

the

NLSPATH

environment

variable

to

locate

the

specified

message

catalog.

The

NLSPATH

environment

variable

lists

the

directories

containing

message

catalogs.

These

directories

are

searched

in

the

order

in

which

they

are

listed.

For

example:

NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N

The

%L

and

%N

special

variables

are

defined

as

follows:

%L

Specifies

the

locale-specific

directory

containing

message

catalogs.

The

value

of

the

LC_MESSAGES

category

or

the

LANG

environment

variable

is

used

for

the

directory

name.

The

LANG,

LC_ALL,

or

LC_MESSAGES

environment

variable

can

be

set

by

the

user

to

the

locale

for

message

catalogs.

%N

Specifies

the

name

of

the

catalog

to

be

opened.

If

the

dspcat

command

cannot

find

the

message,

the

default

message

is

displayed.

You

must

enclose

the

default

message

in

single-quotation

marks

if

the

default

message

contains

%n$

format

strings.

If

the

dspcat

command

cannot

find

the

message

and

you

do

not

specify

a

default

message,

a

system-generated

error

message

is

displayed.

The

following

example

uses

the

dspcat

command

to

display

all

messages

in

the

existing

msgerrs.cat

message

catalog:

/usr/lib/nls/msg/$LANG/msgerrs.cat:

dspcat

msgerrs.cat

The

following

output

is

displayed:

1:1

Cannot

open

message

catalog

%s

Maximum

number

of

catalogs

already

open

1:2

File

%s

not

executable

2:1

Message

%d,

Set

%d

not

found

By

displaying

the

contents

of

the

message

catalog

in

this

manner,

you

can

find

the

message

ID

numbers

assigned

to

the

msgerrs

message

source

file

by

the

mkcatdefs

command

to

replace

the

symbolic

identifiers.

Symbolic

identifiers

are

not

readily

usable

as

references

for

the

dspmsg

command,

but

using

the

dspcat

command

as

shown

can

give

you

the

necessary

ID

numbers.

The

following

is

a

simple

shell

script

called

runtest

that

shows

how

to

use

the

dspmsg

command:

if

[

-

x

./test

]

./test;

else

dspmsg

msgerrs.cat

-s

1

2

’%s

NOT

EXECUTABLE

\n’

"test";

exit;

Note:

If

you

do

not

use

a

full

path

name,

as

in

the

preceding

examples,

be

careful

to

set

the

NLSPATH

environment

variable

so

that

the

dspcat

command

searches

the

correct

directory

for

the

catalog.

The

LC_MESSAGES

category

or

the

value

of

the

LANG

environment

variable

also

affects

the

directory

search

path.

Setting

National

Language

Support

for

Devices

NLS

uses

the

locale

setting

to

define

its

environment.

The

locale

setting

is

dependent

on

the

user’s

requirements

for

data

processing

and

language

that

determines

input

and

output

device

requirements.

The

system

administrator

is

responsible

for

configuring

devices

that

are

in

agreement

with

user

locales.

Chapter

1.

National

Language

Support

Overview

3

Terminals

(tty

Devices)

Use

the

setmaps

command

to

set

the

terminal

and

code-set

map

for

a

given

tty

or

pty.

The

setmaps

file

format

defines

the

text

of

the

code-set

map

file

and

the

terminal

map

file.

The

text

of

a

code-set

map

file

is

a

description

of

the

code

set,

including

the

type

(single

byte

or

multibyte),

the

memory

and

screen

widths

(for

multibyte

code-sets),

and

the

optional

converter

modules

to

push

on

the

stream.

The

code

set

map

file

is

located

in

the

/usr/lib/nls/csmap

directory

and

has

the

same

name

as

the

code

set.

For

more

information,

see

Converter

Modules

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

The

terminal-map-file

rules

associate

a

pattern

string

with

a

replacement

string.

The

operating

system

uses

an

input

map

file

to

map

input

from

the

keyboard

to

an

application

and

uses

an

output

map

file

to

map

output

from

an

application

to

the

display.

Printers

Virtual

printers

inherit

the

default

code

set

of

incoming

jobs

from

the

LANG

entry

in

the

/etc/environment

file.

A

printer

subsystem

can

support

several

virtual

printers.

If

more

than

one

virtual

printer

is

supported,

each

can

have

a

different

code

set.

The

suggested

printer

subsystem

scenarios

areas

follows:

v

The

first

scenario

involves

several

queues,

several

virtual

printers,

and

one

physical

printer.

Each

virtual

printer

has

its

own

code

set.

The

print

commands

specify

which

queue

to

use.

The

queue

in

turn

specifies

the

virtual

printer

with

the

appropriate

code

set.

In

this

scenario,

the

user

needs

to

know

which

queue

is

attached

to

which

virtual

printer

and

the

code

set

that

is

associated

with

each.

v

The

second

scenario

is

similar

to

the

first,

but

each

virtual

printer

is

attached

to

a

different

printer.

v

The

third

scenario

involves

using

the

qprt

command

to

specify

the

code

set.

In

this

option,

there

are

several

queues

available

and

one

virtual

printer.

The

virtual

printer

uses

the

inherited

default

code

set.

Use

the

qprt

command

with

the

-P-x

flags

to

specify

the

queue

and

code

set.

If

the

-P

flag

is

not

specified,

the

default

queue

is

used.

If

the

-x

flag

is

not

used,

the

default

code

set

for

the

virtual

printer

is

used.

Low-Function

Terminals

Low-function

terminals

(LFTs)

support

single-byte

code-set

languages

using

key

maps.

An

LFT

key

map

translates

a

key

stroke

into

a

character

string

in

the

code

set.

A

list

of

all

available

key

maps

is

in

the

/usr/lib/nls/loc

directory.

LFT

does

not

support

languages

that

require

multibyte

code

sets.

The

default

LFT

keyboard

setting

and

associated

font

setting

are

based

on

the

language

selected

during

installation.

The

possible

default

code

sets

are

as

follows:

v

ISO8859-1

v

ISO8859-2

v

ISO8859-5

v

ISO8859-6

v

ISO8859-7

v

ISO8859-8

v

ISO8859-9

v

ISO8859-15

You

can

change

the

default

settings

in

the

following

ways:

v

To

change

the

default

font

for

next

reboot,

use

the

chfont

command

with

the

-n

flag.

v

To

change

the

default

keyboard

for

next

reboot,

use

the

chkbd

command

with

the

-n

flag.

4

National

Language

Support

Guide

and

Reference

The

lsfont

and

lskbd

commands

list

all

the

fonts

and

keyboard

maps

that

are

currently

available

to

the

LFT.

The

LFT

font

libraries

for

all

the

supported

code

sets

are

in

the

/usr/lpp/fonts

directory.

Changing

the

Language

Environment

A

number

of

system

operations

are

affected

by

the

language

environment.

Some

of

these

operations

include

collation,

time

of

day

and

date

representation,

numeric

representation,

monetary

representation,

and

message

translation.

The

language

environment

is

determined

by

the

value

of

the

LANG

environment

variable,

and

you

can

change

that

value

with

the

chlang

command.

The

chlang

command

can

be

run

from

the

command

line

or

from

SMIT.

To

use

the

SMIT

fast

path

to

change

the

language

environment,

type

smit

chlang

on

the

command

line.

Changing

the

Default

Keyboard

Map

NLS

also

enables

you

to

specify

the

correct

keyboard

for

the

language

you

want

to

use.

The

operating

system

provides

a

number

of

keyboard

maps

for

this

purpose.

You

can

change

the

default

keyboard

map

for

LFT

terminals

using

Web-based

System

Manager

(type

wsm,

then

select

Devices),

the

SMIT

fast

path,

smit

chkbd,

or

the

chkbd

command.

The

change

does

not

go

into

effect

until

you

restart

the

system.

Note:

Do

not

assume

any

particular

physical

keyboard

is

in

use.

Use

an

input

method

based

on

the

locale

setting

to

handle

keyboard

input.

Related

Information

Chapter

1.

National

Language

Support

Overview

5

6

National

Language

Support

Guide

and

Reference

Chapter

2.

Locales

An

internationalized

system

has

no

built-in

assumptions

or

dependencies

on

code

set,

character

classification,

character

comparison

rules,

character

collation

order,

monetary

formatting,

numeric

punctuation,

date

and

time

formatting,

or

the

text

of

messages.

A

locale

is

defined

by

these

language

and

cultural

conventions.

An

internationalized

system

processes

information

correctly

for

different

locations.

For

example,

in

the

United

States,

the

date

format,

9/6/2002,

is

interpreted

to

mean

the

sixth

day

of

the

ninth

month

of

the

year

2002.

The

United

Kingdom

interprets

the

same

date

format

to

mean

the

ninth

day

of

the

sixth

month

of

the

year

2002.

The

formatting

of

numeric

and

monetary

data

is

also

country-specific,

for

example,

the

U.S.

dollar

and

the

U.K.

pound.

All

locale

information

must

be

accessible

to

programs

at

run

time

so

that

data

is

processed

and

displayed

correctly

for

your

cultural

conventions

and

language.

This

process

is

called

localization.

Localization

consists

of

developing

a

database

containing

locale-specific

rules

for

formatting

data

and

an

interface

to

obtain

the

rules.

Understanding

Locale

A

locale

comprises

the

language,

territory,

and

code

set

combination

used

to

identify

a

set

of

language

conventions.

These

conventions

include

information

on

collation,

case

conversion,

and

character

classification,

the

language

of

message

catalogs,

date-and-time

representation,

the

monetary

symbol,

and

numeric

representation.

Locale

information

contained

in

the

locale

definition

source

files

must

first

be

converted

into

a

locale

database

by

the

localedef

command.

The

setlocale

subroutine

can

then

access

this

information

and

set

locale

information

for

applications.

To

deal

with

locale

data

in

a

logical

manner,

locale

definition

source

files

are

divided

into

six

categories.

Each

category

contains

a

specific

aspect

of

the

locale

data.

The

LC_*

environment

variables

and

the

LANG

environment

variable

can

be

used

to

specify

the

desired

locale.

For

more

information

on

locale

categories,

see

“Understanding

Locale

Categories”

on

page

8.

Typical

User

Scenarios

Users

might

encounter

several

NLS-related

scenarios

on

the

system.

This

section

lists

common

scenarios

with

suggested

actions

to

be

taken.

v

User

keeps

default

code

set

The

user

might

be

satisfied

with

the

default

code

set

for

language-territory

combinations

even

where

more

than

one

code

set

is

supported.

The

user

might

keep

the

default

code

set

if

the

current

user

environment

uses

that

code

set,

or

if

the

user

is

new

and

has

no

code

set

preference.

The

language-territory

selected

at

system

installation

time

is

defaulted

to

the

appropriate

locale

based

on

the

default

code

set.

The

default

keyboard

mappings,

default

font,

and

message

catalogs

are

all

established

around

the

default

code

set.

This

scenario

requires

no

special

action

from

the

user.

v

User

changes

code

set

from

the

default

code

set

Users

of

a

Latin-1

or

Japanese

locale

might

want

to

migrate

their

data

and

NLS

environment

to

a

different

(nondefault)

code

set.

This

can

be

done

in

the

following

fashion:

–

When

the

user

has

existing

data

that

requires

conversion

Flat

text

files

that

require

conversion

to

the

preferred

code

set

can

be

converted

through

the

Users

application

in

Web-based

System

Manager,

the

SMIT

Manage

the

Language

Environment

menu,

or

the

iconv

utility.

User-defined

structured

files

require

conversion

through

user-written

conversion

tools

that

use

the

iconv

library

functions

to

convert

the

desired

text

fields

within

the

structured

files.

–

When

the

user

wants

to

change

to

the

other

code

set

Where

more

than

one

code

set

is

supported

for

a

language-territory

combination,

the

user

may

change

to

a

nondefault

locale

by

using:

©

Copyright

IBM

Corp.

2002

7

-

The

Users

application

in

Web-based

System

Manager

-

The

SMIT

Manage

Language

Environment

menu

-

The

chlang,

chkbd,

and

chfont

commands.

Locale

Naming

Conventions

Each

locale

is

named

by

its

locale

definition

source

file

name.

These

files

are

named

for

the

language,

territory,

and

code

set

information

they

describe.

The

following

format

is

used

for

naming

a

locale

definition

file:

language[_territory][.codeset][@modifier]

For

example,

the

locale

for

the

Danish

language

spoken

in

Denmark

using

the

ISO8859-1

code

set

is

da_DK.ISO8859-1.

The

da

stands

for

the

Danish

language

and

the

DK

stands

for

Denmark.

The

short

form

of

da_DK

is

sufficient

to

indicate

this

locale.

The

same

language

and

territory

using

the

ISO8859–15

code

set

is

indicated

by

da_DK.8859–15.

System-defined

locale

definition

files

are

provided

to

show

the

format

of

locale

categories

and

their

keywords.

The

/usr/lib/nls/loc

directory

contains

the

locale

definition

files

for

system-defined

locales.

The

C,

or

POSIX,

locale

defines

the

ANSI

C-defined

standard

locale

inherited

by

all

processes

at

startup

time.

To

obtain

a

list

of

system-defined

locale

definition

source

files,

enter

the

following

on

the

command

line:

/usr/lib/nls/lsmle

-c

Installation

Default

Locale

The

installation

default

locale

refers

to

the

locale

selected

at

installation.

For

example,

when

prompted,

a

user

can

specify

the

French

language

as

spoken

in

Canada

during

the

installation

process.

The

code

set

automatically

defaults

to

the

ISO8859-1

code

set.

With

this

information,

the

system

sets

the

value

of

the

default

locale,

specified

by

the

LANG

environment

variable,

to

fr_CA

(fr

for

ISO8859-1

French

and

CA

for

Canada).

Every

process

uses

this

locale

unless

the

LC_*

or

LANG

environment

variables

are

modified.

The

default

locale

can

be

changed

by

using

the

Manage

Language

Environment

menu

in

SMIT.

For

more

information

see

System

Management

Interface

Tool

(SMIT)

Overview

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

The

C

or

POSIX

Locale

This

locale

refers

to

the

ANSI

C

or

POSIX-defined

standard

for

the

locale

inherited

by

all

processes

at

startup

time.

The

C

or

POSIX

locale

assumes

the

7-bit

ASCII

character

set

and

defines

information

for

the

six

previous

categories.

Understanding

Locale

Categories

A

locale

category

is

a

particular

grouping

of

language-specific

and

cultural-convention-specific

data.

For

instance,

data

referring

to

date-and-time

formatting,

the

names

of

the

days

of

the

week,

names

of

the

months,

and

other

time-specific

information

is

grouped

into

the

LC_TIME

category.

Each

category

uses

a

set

of

keywords

that

describe

the

particulars

of

that

locale

subset.

The

following

standard

categories

can

be

defined

in

a

locale

definition

source

file:

LC_COLLATE

Defines

character-collation

or

string-collation

information.

LC_CTYPE

Defines

character

classification,

case

conversion,

and

other

character

attributes.

LC_MESSAGES

Defines

the

format

for

affirmative

and

negative

responses.

LC_MONETARY

Defines

rules

and

symbols

for

formatting

monetary

numeric

information.

8

National

Language

Support

Guide

and

Reference

LC_NUMERIC

Defines

rules

and

symbols

for

formatting

nonmonetary

numeric

information.

LC_TIME

Defines

a

list

of

rules

and

symbols

for

formatting

time

and

date

information.

Note:

Locale

categories

can

only

be

modified

by

editing

the

locale

definition

source

file.

Do

not

confuse

them

with

the

environment

variables

of

the

same

name,

which

can

be

set

from

the

command

line.

Understanding

Locale

Environment

Variables

National

Language

Support

(NLS)

uses

several

environment

variables

to

influence

the

selection

of

locales.

You

can

set

the

values

of

these

variables

to

change

search

paths

for

locale

information:

LANG

Specifies

the

installation

default

locale.

Note:

The

LANG

environment

variable

value

is

established

at

installation.

(This

is

the

locale

every

process

uses

unless

the

LC_*

environment

variables

are

set).

The

LANG

environment

variable

can

be

changed

by

using

the

Manage

Language

Environment

menu

in

SMIT.

For

more

information

about

using

SMIT,

see

System

Management

Interface

Tool

(SMIT)

Overview

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

The

C

and

POSIX

locales

are

designed

to

offer

the

best

performance.

LC_ALL

Overrides

the

value

of

the

LANG

environment

variable

and

the

values

of

any

other

LC_*

environment

variables.

LC_COLLATE

Specifies

the

locale

to

use

for

LC_COLLATE

category

information.

The

LC_COLLATE

category

determines

character-collation

or

string-collation

rules

governing

the

behavior

of

ranges,

equivalence

classes,

and

multicharacter

collating

elements.

LC_CTYPE

Specifies

the

locale

to

use

for

LC_CTYPE

category

information.

The

LC_CTYPE

category

determines

character

handling

rules

governing

the

interpretation

of

sequences

of

bytes

of

text

data

characters

(that

is,

single-byte

versus

multibyte

characters),

the

classification

of

characters

(for

example,

alpha,

digit,

and

so

on),

and

the

behavior

of

character

classes.

LC__FASTMSG

Specifies

that

default

messages

are

used

for

the

C

and

POSIX

locales

and

that

NLSPATH

are

ignored

when

LC__FASTMSG

is

set

to

true.

Otherwise,

POSIX

compliant

message

handling

will

be

performed.

The

default

value

will

be

LC__FASTMSG=true

in

the

/etc/environment

file.

LC_MESSAGES

Specifies

the

locale

to

use

for

LC_MESSAGES

category

information.

The

LC_MESSAGES

category

determines

rules

governing

affirmative

and

negative

responses

and

the

locale

(language)

for

messages

and

menus.

LC_MONETARY

Specifies

the

locale

to

use

for

LC_MONETARY

category

information.

The

LC_MONETARY

category

determines

the

rules

governing

monetary-related

formatting.

LC_NUMERIC

Specifies

the

locale

to

use

for

LC_NUMERIC

category

information.

The

LC_NUMERIC

category

determines

the

rules

governing

nonmonetary

numeric

formatting.

LC_TIME

Specifies

the

locale

to

use

for

LC_TIME

category

information.

The

LC_TIME

category

determines

the

rules

governing

date

and

time

formatting.

Chapter

2.

Locales

9

LOCPATH

Specifies

the

search

path

for

localized

information,

including

binary

locale

files,

input

methods,

and

code-set

converters.

Note:

All

setuid

and

setgid

programs

ignore

the

LOCPATH

environment

variable.

NLSPATH

Specifies

the

search

path

for

locating

message

catalog

files.

This

environment

variable

is

used

by

the

Message

Facility

component

of

the

NLS

subsystem.

See

the

catopen

subroutine

for

more

information

about

expected

format

of

the

NLSPATH

variable.

The

environment

variables

that

affect

locale

selection

can

be

grouped

into

three

priority

classes:

high,

medium,

and

low.

Environment

variables

in

the

high

priority

class

are:

v

LC_ALL

v

LC_COLLATE

v

LC_CTYPE

Environment

variables

in

the

medium

priority

class

are:

v

LC_MESSAGES

v

LC_MONETARY

v

LC_NUMERIC

v

LC_TIME

The

environment

variable

in

the

low

priority

class

is:

v

LANG

When

a

locale

is

requested

by

the

setlocale

subroutine

for

a

particular

category

or

for

all

categories,

the

environment

variable

settings

are

queried

by

their

priority

level

in

the

following

manner:

v

If

the

LC_ALL

environment

variable

is

set,

all

six

categories

use

the

locale

it

specified.

For

example,

if

the

LC_ALL

environment

variable

is

equal

to

en_US

and

the

LANG

environment

variable

is

equal

to

fr_FR,

a

call

to

the

setlocale

subroutine

sets

each

of

the

six

categories

to

the

en_US

locale.

v

If

the

LC_ALL

environment

variable

is

not

set,

each

individual

category

uses

the

locale

specified

by

its

corresponding

environment

variable.

For

example,

if

the

LC_ALL

environment

variable

is

not

set,

the

LC_COLLATE

environment

variable

is

set

to

de_DE,

and

the

LC_TIME

environment

variable

is

set

to

fr_CA,

then

a

call

to

the

setlocale

subroutine

sets

the

LC_COLLATE

category

to

de_DE

and

the

LC_TIME

category

to

fr_CA.

Neither

environment

variable

has

precedence

over

the

other

in

this

situation.

v

If

the

LC_ALL

environment

variable

is

not

set,

and

a

value

for

a

particular

LC_*

environment

variable

is

not

set,

the

value

of

the

LANG

environment

variable

determines

the

setting

for

that

specific

category.

For

example,

if

the

LC_ALL

environment

variable

is

not

set,

the

LC_CTYPE

environment

variable

is

set

to

en_US,

the

LC_NUMERIC

environment

variable

is

not

set,

and

the

LANG

environment

variable

is

set

to

is_IS,

then

a

call

to

the

setlocale

subroutine

sets

the

LC_CTYPE

category

to

en_US

and

the

LC_NUMERIC

category

to

is_IS.

The

LANG

environment

variable

specifies

the

locale

for

only

those

categories

not

previously

determined

by

an

LC_*

environment

variable.

v

If

the

LC_ALL

environment

variable

is

not

set,

a

value

for

a

particular

LC_*

environment

variable

is

not

set,

and

the

value

of

the

LANG

environment

variable

is

not

set,

the

locale

for

that

specific

category

defaults

to

the

C

locale.

For

example,

if

the

LC_ALL

environment

variable

is

not

set,

the

LC_MONETARY

environment

variable

is

set

to

sv_SE,

the

LC_TIME

environment

variable

is

not

set,

and

the

LANG

environment

variable

is

not

set,

then

a

call

to

the

setlocale

subroutine

sets

the

LC_MONETARY

category

to

sv_SE

and

the

LC_TIME

category

to

C.

10

National

Language

Support

Guide

and

Reference

Environment

Variables

Precedence

Example

The

following

table

shows

the

current

setting

of

the

environment

variables

and

the

effect

of

calling

setlocale(LC_ALL,″″).

The

last

column

indicates

the

locale

setting

after

setlocale(LC_ALL,″″)

is

called.

Environment

Variable

and

Category

Names

Value

of

Environment

Variables

Value

of

Category

After

Call

To

setlocale(LC_ALL,″″)

LC_COLLATE

de_DE

de_DE

LC_CTYPE

de_DE

de_DE

LC_MONETARY

en_US

en_US

LC_NUMERIC

(unset)

da_DK

LC_TIME

(unset)

da_DK

LC_MESSAGES

(unset)

da_DK

LC_ALL

(unset)

(not

applicable)

LANG

da_DK

(not

applicable)

Understanding

the

Character

Set

Description

(charmap)

Source

File

Using

the

character

set

description

(charmap)

source

file,

you

can

assign

symbolic

names

to

character

encodings.

Developers

of

character

set

description

(charmap)

source

files

can

choose

their

own

symbolic

names,

provided

that

these

names

do

not

conflict

with

the

standardized

symbolic

names

that

describe

the

portable

character

set.

The

charmap

file

resolves

problems

with

the

portability

of

sources,

especially

locale

definition

sources.

The

standardized

portable

character

set

is

constant

across

all

locales.

The

charmap

file

provides

the

capability

to

define

a

common

locale

definition

for

multiple

code

sets.

That

is,

the

same

locale

definition

source

can

be

used

for

code

sets

with

different

encodings

of

the

same

extended

characters.

A

charmap

file

defines

a

set

of

symbols

that

are

used

by

the

locale

definition

source

file

to

refer

to

character

encodings.

The

characters

in

the

portable

character

set

can

optionally

be

included

in

the

charmap

file,

but

the

encodings

for

these

characters

should

not

differ

from

their

default

encodings.

The

charmap

files

are

located

in

the

/usr/lib/nls/charmap

directory.

Understanding

the

Locale

Definition

Source

File

Unlike

environment

variables,

which

can

be

set

from

the

command

line,

locales

can

only

be

modified

by

editing

and

compiling

a

locale

definition

source

file.

If

a

desired

locale

is

not

part

of

the

library,

a

binary

version

of

the

locale

can

be

compiled

by

the

localedef

command.

Locale

behavior

of

programs

is

not

affected

by

a

locale

definition

source

file

unless

the

file

is

first

converted

by

the

localedef

command,

and

the

locale

object

is

made

available

to

the

program.

The

localedef

command

converts

source

files

containing

definitions

of

locales

into

a

run-time

format

and

copies

the

run-time

version

to

the

file

specified

on

the

command

line,

which

usually

is

a

locale

name.

Internationalized

commands

and

subroutines

can

then

access

the

locale

information.

For

information

on

preparing

source

files

to

be

converted

by

the

localedef

command,

see

Locale

Definition

Source

File

Format

in

AIX

5L

Version

5.2

Files

Reference.

Chapter

2.

Locales

11

Multibyte

Subroutines

Multibyte

subroutines

process

characters

in

file-code

form.

The

names

of

these

subroutines

usually

start

with

the

prefix

mb.

However,

some

multibyte

subroutines

do

not

have

this

prefix.

For

example,

the

strcoll

and

strxfrm

subroutines

process

characters

in

their

multibyte

form

but

do

not

have

the

mb

prefix.

The

following

standard

C

subroutines

operate

on

bytes

and

can

be

used

to

handle

multibyte

data:

strcmp,

strcpy,

strncmp,

strncpy,

strcat,

and

strncat.

The

standard

C

search

subroutines

strchr,

strrchr,

strpbrk,

strcspn,

strrchr,

strspn,

strstr,

and

strtok

can

be

used

in

the

following

cases:

v

Searching

or

scanning

for

characters

in

single-byte

code

sets

v

Searching

or

scanning

for

unique

code-point

range

characters

in

multibyte

strings

For

more

information

about

multibyte

character

subroutines,

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

Wide

Character

Subroutines

Wide

character

subroutines

process

characters

in

process-code

form.

Wide

character

subroutines

usually

start

with

a

wc

prefix.

However,

there

are

exceptions

to

this

rule.

For

example,

the

wide

character

classification

functions

use

an

isw

prefix.

To

determine

if

a

subroutine

is

a

wide

character

subroutine,

check

if

the

subroutine

prototype

defines

characters

as

wchar_t

data

type

or

wchar_t

data

pointer,

or

else

check

whether

the

subroutine

returns

a

wchar_t

data

type.

There

are

some

exceptions

to

this

rule.

For

example,

the

wide

character

classification

subroutines

accept

wint_t

data

type

values.

For

more

information

about

wide

character

subroutines,

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

Bidirectionality

and

Character

Shaping

An

internationalized

program

may

need

to

handle

bidirectionality

of

text

and

character

shaping.

Bidirectionality

(BIDI)

occurs

when

texts

of

different

direction

orientation

appear

together.

For

example,

English

text

is

read

from

left

to

right.

Hebrew

text

is

read

from

right

to

left.

If

both

English

and

Hebrew

texts

appear

on

the

same

line,

the

text

is

bidirectional.

Character

shaping

occurs

when

the

shape

of

a

character

is

dependent

on

its

position

in

a

line

of

text.

In

some

languages,

such

as

Arabic,

characters

have

different

shapes

depending

on

their

position

in

a

string

and

on

the

surrounding

characters.

For

more

information

about

bidirectionality

and

character

shaping,

see

“Layout

(Bidirectional

Text

and

Character

Shaping)

Overview”

on

page

165.

Code

Set

Independence

The

system

needs

certain

information

about

code

sets

to

communicate

with

the

external

environment.

This

information

is

hidden

by

the

code

set-independent

library

subroutines

(NLS

library).

These

subroutines

pass

information

to

the

code

set-dependent

functions.

Because

NLS

subroutines

handle

the

necessary

code

set

information,

you

do

not

need

explicit

knowledge

of

any

code

set

when

you

write

programs

that

process

characters.

This

programming

technique

is

called

code

set

independence.

To

see

a

sample

program

that

illustrates

internationalization

through

code-set

independent

programming,

see

Appendix

C,

“NLS

Sample

Program,”

on

page

217.

12

National

Language

Support

Guide

and

Reference

Determining

Maximum

Number

of

Bytes

in

Code

Sets

You

can

use

the

MB_CUR_MAX

macro

to

determine

the

maximum

number

of

bytes

in

a

multibyte

character

for

the

code

set

in

the

current

locale.

The

value

of

this

macro

is

dependent

on

the

current

setting

of

the

LC_CTYPE

category.

Because

the

locale

can

differ

between

processes,

running

the

MB_CUR_MAX

macro

in

different

processes

or

at

different

times

may

produce

different

results.

The

MB_CUR_MAX

macro

is

defined

in

the

stdlib.h

header

file.

You

can

use

the

MB_LEN_MAX

macro

to

determine

the

maximum

number

of

bytes

in

any

code

set

that

is

supported

by

the

system.

This

macro

is

defined

in

the

limits.h

header

file.

Determining

Character

and

String

Display

Widths

The

_max_disp_width

macro

is

operating-system-specific,

and

its

use

should

be

avoided

in

portable

applications.

If

portability

is

not

important,

you

can

use

the

_max_disp_width

macro

to

determine

the

maximum

number

of

display

columns

required

by

a

single

character

in

the

code

set

in

the

current

locale.

The

value

of

this

macro

is

dependent

on

the

current

setting

of

the

LC_CTYPE

category.

If

the

value

of

this

is

1

(one),

all

characters

in

the

current

code

set

require

only

one

display

column

width

on

output.

When

both

MB_CUR_MAX

and

_max_disp_width

are

set

to

1

(one),

you

can

use

the

strlen

subroutine

to

determine

the

display

column

width

needed

for

a

string.

When

MB_CUR_MAX

is

greater

than

one,

use

the

wcswidth

subroutine

to

find

the

display

column

width

of

the

string.

The

wcswidth

and

wcwidth

wide-character

display-width

subroutines

do

not

have

corresponding

multibyte

functions.

The

wcswidth

subroutine

does

not

indicate

how

many

characters

can

be

displayed

in

the

space

available

on

a

display.

The

wcwidth

subroutine

is

useful

for

this

purpose.

This

subroutine

must

be

called

repeatedly

on

a

wide-character

string

to

find

out

how

many

characters

can

be

displayed

in

the

available

positions

on

the

display.

Exceptions

to

Code

Set

Knowledge:

Unique

Code-Point

Range

Because

of

the

way

the

supported

code

sets

are

organized,

there

is

one

exception

to

the

statement:

″No

knowledge

of

the

underlying

code

set

can

be

assumed

in

a

program.″

When

a

multibyte

character

string

is

searched

for

any

character

within

the

unique

code-point

range

(for

example,

the

.

(period)

character),

it

is

not

necessary

to

convert

the

string

to

process

code

form.

It

is

sufficient

to

just

look

for

that

character

(.)

by

examining

each

byte.

This

exception

enables

the

kernel

and

utilities

to

search

for

the

special

characters

.

and

/

while

parsing

file

names.

If

a

program

searches

for

any

of

the

characters

in

the

unique

code-point

range,

the

standard

string

functions

that

operate

on

bytes

(such

as

the

strchr

subroutine),

should

be

used.

For

a

list

of

the

characters

in

the

unique

code-point

range,

see

“ASCII

Characters”

on

page

53.

File

Name

Matching

POSIX.2

defines

the

fnmatch

subroutine

to

be

used

for

file

name

matching.

An

application

can

use

the

fnmatch

subroutine

to

read

a

directory

and

apply

a

pattern

against

each

entry.

For

example,

the

find

utility

can

use

the

fnmatch

subroutine.

The

pax

utility

can

use

the

fnmatch

subroutine

to

process

its

pattern

operands.

Applications

that

must

match

strings

in

a

similar

fashion

can

use

the

fnmatch

subroutine.

Radix

Character

Handling

Note

that

the

radix

character,

as

obtained

by

nl_langinfo(RADIXCHAR),

is

a

pointer

to

a

string.

It

is

possible

that

a

locale

may

specify

this

as

a

multibyte

character

or

as

a

string

of

characters.

However,

in

AIX,

a

simplifying

assumption

is

made

that

the

RADIXCHAR

is

a

single-byte

character.

Chapter

2.

Locales

13

Programming

Model

The

programming

model

presented

here

highlights

changes

you

need

to

make

when

an

existing

program

is

internationalized

or

when

a

new

program

is

developed:

v

Provide

complete

internationalization.

Do

not

assume

that

characters

have

any

specific

properties.

Determine

the

properties

dynamically

by

using

the

appropriate

interfaces.

Do

not

assume

properties

of

code

sets,

except

for

the

ASCII

characters

with

code

points

in

the

unique

code-point

range.

v

Make

programs

code

set-independent.

Programs

should

not

assume

single-byte,

double-byte,

or

multibyte

encoding

of

any

sort.

Data

can

be

processed

in

either

process-code

or

file-code

form

by

using

the

appropriate

subroutines.

v

Provide

interaction

with

the

kernel

in

file-code

form

only.

The

kernel

does

not

handle

process

codes.

v

The

NLS

subroutine

library

can

handle

processing

based

on

file-code

as

well

as

processing

based

on

process-code.

Note:

Several

subroutines

based

on

process-code

form

do

not

have

corresponding

subroutines

based

on

file-code

form.

Due

to

this

asymmetry,

it

may

be

necessary

to

convert

strings

to

process-code

form

and

invoke

the

appropriate

process-code

subroutines.

v

Some

libraries

may

not

provide

processing

in

process-code

form.

An

application

needing

these

libraries

must

use

file-codes

when

invoking

functions

from

them.

v

Programs

can

process

characters

either

in

process-code

form

or

file-code

form.

It

is

possible

to

write

code

set-independent

programs

using

both

methods.

14

National

Language

Support

Guide

and

Reference

Chapter

3.

Subroutines

for

National

Language

Support

This

chapter

guides

programmers

in

using

subroutines

when

developing

portable

internationalized

programs.

Use

standard

Open

Group,

ISO/ANSI

C,

and

POSIX

functions

to

maximize

portability.

The

following

topics

are

covered

in

this

chapter:

v

“Locale

Subroutines”

v

“Time

Formatting

Subroutines”

on

page

20

v

“Monetary

Formatting

Subroutines”

on

page

21

v

“Multibyte

and

Wide

Character

Subroutines”

on

page

23

v

“Internationalized

Regular

Expression

Subroutines”

on

page

45

Note:

Do

not

use

the

layout

subroutines

in

the

libi18n.a

library

unless

the

application

is

doing

presentation

types

of

services.

Most

applications

deal

with

logically

ordered

text.

Locale

Subroutines

Programs

that

perform

locale-dependent

processing,

including

user

messages,

must

call

the

setlocale

subroutine

at

the

beginning

of

the

program.

This

call

is

the

first

executable

statement

in

the

main

program.

Programs

that

do

not

call

the

setlocale

subroutine

in

this

way

inherit

the

C

or

POSIX

locale.

Such

programs

perform

as

in

the

C

locale,

regardless

of

the

setting

of

the

LC_*

and

LANG

environment

variables.

Other

subroutines

are

provided

to

determine

the

current

settings

for

locale

data

formatting.

For

more

information

about

these

subroutines,

see

“Setting

the

Locale.”

The

locale

of

a

process

determines

the

way

that

character

collation,

character

classification,

date

and

time

formatting,

numeric

punctuation,

monetary

punctuation,

and

message

output

are

handled.

The

following

section

describes

how

to

set

and

access

information

about

the

current

locale

in

a

program

using

National

Language

Support

(NLS).

Setting

the

Locale

Every

internationalized

program

must

set

the

current

locale

using

the

setlocale

subroutine.

This

subroutine

allows

a

process

to

change

or

query

the

current

locale

by

accessing

locale

databases.

When

a

process

is

started,

its

current

locale

is

set

to

the

C

or

POSIX

locale.

A

program

that

depends

on

locale

data

not

defined

in

the

C

or

POSIX

locale

must

invoke

the

setlocale

subroutine

in

the

following

manner

before

using

any

of

the

locale-specific

information:

setlocale(LC_ALL,

"");

Accessing

Locale

Information

The

following

subroutines

provide

access

to

information

defined

in

the

current

locale

as

determined

by

the

most

recent

call

to

the

setlocale

subroutine:

localeconv

Provides

access

to

locale

information

defined

in

the

LC_MONETARY

and

LC_NUMERIC

categories

of

the

current

locale.

The

localeconv

subroutine

retrieves

information

about

these

categories,

places

the

information

in

a

structure

of

type

lconv

as

defined

in

the

locale.h

file,

and

returns

a

pointer

to

this

structure.

nl_langinfo

Returns

a

pointer

to

a

null-terminated

string

containing

information

defined

in

the

LC_CTYPE,

LC_MESSAGES,

LC_MONETARY,

LC_NUMERIC,

and

LC_TIME

categories

of

the

current

locale.

©

Copyright

IBM

Corp.

2002

15

rpmatch

Tests

for

positive

and

negative

responses,

which

are

specified

in

the

LC_MESSAGES

category

of

the

current

locale.

Responses

can

be

regular

expressions,

as

well

as

simple

strings.

The

rpmatch

subroutine

is

not

an

industry-standard

subroutine,

portable

applications

should

not

assume

that

this

subroutine

is

available.

The

localeconv

and

nl_langinfo

subroutines

do

not

provide

access

to

all

LC_*

categories.

The

current

locale

setting

for

a

category

can

be

obtained

by:

setlocale(Category,

(char*)0).

The

return

value

is

a

string

specifying

the

current

locale

for

Category.

The

following

example

determines

the

current

locale

setting

for

the

LC_CTYPE

category:

char

*ctype_locale;

ctype_locale

=

setlocale(LC_CTYPE,

(char*)0);

Examples

v

The

following

example

uses

the

setlocale

subroutine

to

change

the

locale

from

the

default

C

locale

to

the

locale

specified

by

the

environment

variables,

consistent

with

the

hierarchy

of

the

locale

environment

variables:

#include

<locale.h>

main()

{

char

*p;

p

=

setlocale(LC_ALL,

"");

/*

**

The

program

will

have

the

locale

as

set

by

the

**

LC_*

and

LANG

variables.

*/

}

v

The

following

example

uses

the

setlocale

subroutine

to

obtain

the

current

locale

setting

for

the

LC_COLLATE

category:

#include

<stdio.h>

#include

<locale.h>

main()

{

char

*p;

/*

set

the

current

locale

to

what

is

specified

*/

p

=

setlocale(LC_ALL,

"");

/*

The

current

locale

settings

for

all

the

**

categories

is

pointed

to

by

p

*/

/*

**

Find

the

current

setting

for

the

**

LC_COLLATE

category

*/

p

=

setlocale(LC_COLLATE,

NULL);

/*

**

p

points

to

a

string

containing

the

current

locale

**

setting

for

the

LC_COLLATE

category.

*/

}

v

The

following

example

uses

the

setlocale

subroutine

to

obtain

the

current

locale

setting

and

saves

it

for

later

use.

This

action

allows

the

program

to

temporarily

change

the

locale

to

a

new

locale.

After

processing

is

complete,

the

locale

can

be

returned

to

its

original

state.

16

National

Language

Support

Guide

and

Reference

#include

<stdio.h>

#include

<locale.h>

#include

<string.h>

#define

NEW_LOCALE

"MY_LOCALE"

main()

{

char

*p,

*save_locale;

p

=

setlocale(LC_ALL,

"");

/*

**

Initiate

locale.

p

points

to

the

current

locale

**

setting

for

all

the

categories

*/

save_locale

=

(char

*)malloc(strlen(p)

+1);

strcpy(save_locale,

p);

/*

Save

the

current

locale

setting

*/

p

=

setlocale(LC_ALL,

NEW_LOCALE);

/*

Change

to

new

locale

*/

/*

**

Do

processing

...

*/

/*

Change

back

to

old

locale

*/

p

=

setlocale(LC_ALL,

save_locale);

/*

Restore

old

locale

*/

free(save_locale);

/*

Free

the

memory

*/

}

v

The

following

example

uses

the

setlocale

subroutine

to

set

the

LC_MESSAGES

category

to

the

locale

determined

by

the

environment

variables.

All

other

categories

remain

set

to

the

C

locale.

#include

<locale.h>

main()

{

char

*p;

/*

**

The

program

starts

in

the

C

locale

for

all

categories.

*/

p

=

setlocale(LC_MESSAGES,

"");

/*

**

At

this

time

the

LC_COLLATE,

LC_CTYPE,

LC_NUMERIC,

**

LC_MONETARY,

LC_TIME

will

be

in

the

C

locale.

**

LC_MESSAGES

will

be

set

to

the

current

locale

setting

**

as

determined

by

the

environment

variables.

*/

}

v

The

following

example

uses

the

localeconv

subroutine

to

obtain

the

decimal-point

setting

for

the

current

locale:

#include

<locale.h>

main()

{

struct

lconv

*ptr;

char

*decimal;

(void)setlocale(LC_ALL,

"");

ptr

=

localeconv();

/*

**

Access

the

data

obtained.

For

example,

Chapter

3.

Subroutines

for

National

Language

Support

17

**

obtain

the

current

decimal

point

setting.

*/

decimal

=

ptr->decimal_point;

}

v

The

following

example

uses

the

nl_langinfo

subroutine

to

obtain

the

date

and

time

format

for

the

current

locale:

#include

<langinfo.h>

#include

<locale.h>

main()

{

char

*ptr;

(void)setlocale(LC_ALL,

"");

ptr

=

nl_langinfo(D_T_FMT);

}

v

The

following

example

uses

the

nl_langinfo

subroutine

to

obtain

the

radix

character

for

the

current

locale:

#include

<langinfo.h>

#include

<locale.h>

main()

{

char

*ptr;

(void)setlocale(LC_ALL,

"");

/*

Set

the

program’s

locale

*/

ptr

=

nl_langinfo(RADIXCHAR);

/*

Obtain

the

radix

character*/

}

v

The

following

example

uses

the

nl_langinfo

subroutine

to

obtain

the

setting

of

the

currency

symbol

for

the

current

locale:

#include

<langinfo.h>

#include

<locale.h>

main()

{

char

*ptr;

(void)setlocale(LC_ALL,

"");

/*

Set

the

program’s

locale

*/

ptr

=

nl_langinfo(CRNCYSTR);

/*

Obtain

the

currency

string*/

/*

The

currency

string

will

be

"-$"

in

the

U.

S.

locale.

*/

}

v

The

following

example

uses

the

rpmatch

subroutine

to

obtain

the

setting

of

affirmative

and

negative

response

strings

for

the

current

locale:

The

affirmative

and

negative

responses

as

specified

in

the

locale

database

are

no

longer

simple

strings;

they

can

be

regular

expressions.

For

example,

the

yesexpr

can

be

the

following

regular

expression,

which

will

accept

an

upper

or

lower

case

letter

y,

followed

by

zero

or

more

alphabetic

characters;

or

the

character

O

followed

by

K.

Thus,

yesexpr

may

be

the

following

regular

expression:

([yY][:alpha:]*|OK)

The

standards

do

not

contain

a

subroutine

to

retrieve

and

compare

this

information.

You

can

use

the

AIX-specific

rpmatch(const

char

*response)

subroutine.

#include

<stdio.h>

#include

<langinfo.h>

#include

<locale.h>

#include

<regex.h>

int

rpmatch(const

char

*);

/*

**

Returns

1

if

yes

response,

0

if

no

response,

**

-1

otherwise

*/

main()

{

int

ret;

char

*resp;

18

National

Language

Support

Guide

and

Reference

(void)setlocale(LC_ALL,

"");

do

{

/*

**

Obtain

the

response

to

the

query

for

yes/no

strings.

**

The

string

pointer

resp

points

to

this

response.

**

Check

if

the

string

is

yes.

*/

ret

=

rpmatch(resp);

if(ret

==

1){

/*

Response

was

yes.

*/

/*

Process

accordingly.

*/

}else

if(ret

==

0){

/*

Response

was

negative.

*/

/*

Process

negative

response.

*/

}else

if(ret<0){

/*

No

match

with

yes/no

occurred.

*/

continue;

}

}while(ret

<0);

}

v

The

following

example

provides

a

method

of

implementing

the

rpmatch

subroutine.

Note

that

most

applications

should

use

the

rpmatch

subroutine

in

libc.

The

following

implementation

of

the

rpmatch

subroutine

is

for

illustration

purposes

only.

Note

that

nl_langinfo(YESEXPR)

and

nl_langinfo(NOEXPR)

are

used

to

obtain

the

regular

expressions

for

the

affirmative

and

negative

responses

respectively.

#include

<langinfo.h>

#include

<regex.h>

/*

**

rpmatch()

performs

comparison

of

a

string

to

a

regular

expression

**

using

the

POSIX.2

defined

regular

expression

compile

and

match

**

functions.

The

first

argument

is

the

response

from

the

user

and

the

**

second

string

is

the

current

locale

setting

of

the

regular

expression.

*/

int

rpmatch(

const

char

*string)

{

int

status;

int

retval;

regex_t

re;

char

*pattern;

pattern

=

nl_langinfo(YESEXPR);

/*

Compile

the

regular

expression

pointed

to

by

pattern.

*/

if(

(

status

=

regcomp(

&re,

pattern,

REG_EXTENDED

|

REG_NOSUB

))

!=

0

){

retval

=

-2;

/*-2

indicates

yes

expr

compile

error

*/

return(retval);

}

/*

Match

the

string

with

the

compiled

regular

expression.

*/

status

=

regexec(

&re,

string,

(size_t)0,

(regmatch_t

*)NULL,

0);

if(status

==

0){

retval

=

1;

/*

Yes

match

found

*/

}else{

/*

Check

for

negative

response

*/

pattern

=

nl_langinfo(NOEXPR);

if(

(

status

=

regcomp(

&re,

pattern,

REG_EXTENDED

|

REG_NOSUB

))

!=

0

){

retval

=

-3;/*-3

indicates

no

compile

error

*/

return(retval);

}

status

=

regexec(

&re,

string,

(size_t)0,

(regmatch_t

*)NULL,

0);

if(status

==

0)

Chapter

3.

Subroutines

for

National

Language

Support

19

retval

=

0;/*

Negative

response

match

found

*/

}else

retval

=

-1;

/*

The

string

did

not

match

yes

or

no

response

*/

regfree(&re);

return(retval);

}

Time

Formatting

Subroutines

Programs

that

need

to

format

time

into

wide

character

code

strings

can

use

the

wcsftime

subroutine.

Programs

that

need

to

convert

multibyte

strings

into

an

internal

time

format

can

use

the

strptime

subroutine.

In

addition

to

the

strftime

subroutine

defined

in

the

C

programming

language

standard,

X/Open

Portability

Guide

Issue

4

defines

the

following

time

formatting

subroutines:

wcsftime

Formats

time

into

wide

character

code

strings

strptime

Converts

a

multibyte

string

into

an

internal

time

format

Examples

v

The

following

example

uses

the

wcsftime

subroutine

to

format

time

into

a

wide

character

string:

#include

<stdio.h>

#include

<langinfo.h>

#include

<locale.h>

#include

<time.h>

main()

{

wchar_t

timebuf[BUFSIZE];

time_t

clock

=

time(

(time_t*)

NULL);

struct

tim

*tmptr

=

localetime(&clock);

(void)setlocale(LC_ALL,

"");

wcsftime(

timebuf,

/*

Time

string

output

buffer

*/

BUFSIZ,

/*Maximum

size

of

output

string

*/

nl_langinfo(D_T_FMT),

/*

Date/time

format

*/

tmptr

/*

Pointer

to

tm

structure

*/

);

printf("%S\n",

timebuf);

}

v

The

following

example

uses

the

strptime

subroutine

to

convert

a

formatted

time

string

to

internal

format:

#include

<langinfo.h>

#include

<locale.h>

#include

<time.h>

main(int

argc,

char

**argv)

{

struct

tm

tm;

(void)setlocale(LC_ALL,

"");

if

(argc

!=

2)

{

...

/*

Error

handling

*/

}

20

National

Language

Support

Guide

and

Reference

if

(strptime(

argv[1],

/*

Formatted

time

string

*/

nl_langinfo(D_T_FMT),

/*

Date/time

format

*/

&tm

/*

Address

of

tm

structure

*/

)

==

NULL)

{

...

/*

Error

handling

*/

}

else

{

...

/*

Other

Processing

*/

}

}

Monetary

Formatting

Subroutines

Programs

that

need

to

specify

or

access

monetary

quantities

can

call

the

strfmon

subroutine.

Although

the

C

programming

language

standard

in

conjunction

with

POSIX

provides

a

means

of

specifying

and

accessing

monetary

information,

these

standards

do

not

define

a

subroutine

that

formats

monetary

quantities.

The

XPG4

strfmon

subroutine

provides

the

facilities

to

format

monetary

quantities.

No

defined

subroutine

converts

a

formatted

monetary

string

into

a

numeric

quantity

suitable

for

arithmetic.

Applications

that

need

to

do

arithmetic

on

monetary

quantities

may

do

so

after

processing

the

locale-dependent

monetary

string

into

a

number.

The

culture-specific

monetary

formatting

information

is

specified

by

the

LC_MONETARY

category.

An

application

can

obtain

information

pertaining

to

the

monetary

format

and

the

currency

symbol

by

calling

the

localeconv

subroutine.

Euro

Currency

Support

The

strfmon

subroutine

uses

the

information

from

the

locale’s

LC_MONETARY

category

to

determine

the

correct

monetary

format

for

the

given

language/territory.

Locales

can

handle

both

the

traditional

national

currencies

by

using

the

@preeuro

modifier,

as

well

as

the

common

European

currency

(euro).

Each

European

country

that

uses

the

euro

will

have

an

additional

LC_MONETARY

definition

with

the

@preeuro

modifier

appended.

This

alternate

format

is

invoked

when

specified

through

the

locale

environment

variables,

or

with

the

setlocale

subroutine.

To

use

the

French

locale,

UTF-8

codeset

environment,

and

euro

as

the

monetary

unit,

set:

LANG=FR_FR

To

use

the

French

locale,

UTF-8

codeset

environment,

and

French

francs

as

the

monetary

unit,

set:

LANG=FR_FR

LC_MONETARY=FR_FR@preeuro

Users

should

not

attempt

to

set

LANG=FR_FR@preeuro,

because

the

@preeuro

variant

for

locale

categories

other

than

LC_MONETARY

is

undefined.

Examples

v

The

following

example

uses

the

strfmon

subroutine

and

accepts

a

format

specification

and

an

input

value.

The

input

value

is

formatted

according

to

the

input

format

specification.

#include

<monetary.h>

#include

<locale.h>

#include

<stdio.h>

main(int

argc,

char

**argv)

{

char

bfr[256],

format[256];

int

match;

ssize_t

size;

float

value;

(void)

setlocale(LC_ALL,

"");

Chapter

3.

Subroutines

for

National

Language

Support

21

if

(argc

!=

3){

...

/*

Error

handling

*/

}

match

=

sscanf(argv[1],

"%f",

&value);

if

(!match)

{

...

/*

Error

handling

*/

}

match

=

sscanf(argv[2],

"%s",

format);

if

(!match)

{

...

/*Error

handling

*/

}

size

=

strfmon(bfr,

256,

format,

value);

if

(size

==

-1)

{

...

/*

Error

handling

*/

}

printf

("Formatted

monetary

value

is:

%s\n",

bfr);

}

The

following

table

provides

examples

of

other

possible

conversion

specifications

and

the

outputs

for

12345.67

and

-12345.67

in

a

U.S.

English

locale:

Conversion

Specification

Output

Description

%n

$12,345.67

-$12,345.67

Default

formatting

%15n

$12,345.67

-$12,345.67

Right

justifies

within

a

15-character

field.

%#6n

$

12,345.67

-$

12,345.67

Aligns

columns

for

values

up

to

999,999.

%=*#8n

$****12,345.67

-$****12,345.67

Specifies

a

fill

character.

%=0#8n

$000012,345.67

-$000012,345.67

Fill

characters

do

not

use

grouping.

%^#6n

$

12345.67

-$

12345.67

Disables

the

thousands

separator.

%^#6.0n

$

12346

-$

12346

Rounds

off

to

whole

units.

%^#6.3n

$

12345.670

-$

12345.670

Increases

the

precision.

%(#6n

$

12,345.67

($

12,345.67)

Uses

an

alternate

positive

or

negative

style.

%!(#6n

12,345.67

(

12,345.67)

Disables

the

currency

symbol.

v

The

following

example

converts

a

monetary

value

into

a

numeric

value.

The

monetary

string

is

pointed

to

by

input,

and

the

result

of

converting

it

into

numeric

form

is

stored

in

the

string

pointed

to

by

output.

Assume

that

input

and

output

are

initialized.

char

*input;

/*

the

input

multibyte

string

containing

the

monetary

string

*/

char

*output;

/*

the

numeric

string

obtained

from

the

input

string

*/

wchar_t

src_string[SIZE],

dest_string[SIZE];

wchar_t

*monetary,

*numeric;

wchar_t

mon_decimal_point,

radixchar;

wchar_t

wc;

localeconv

*lc;

/*

Initialize

input

and

output

to

point

to

valid

buffers

as

appropriate.

*/

/*

Convert

the

input

string

to

process

code

form*/

retval

=

mbstowcs(src_string,

input,

SIZE);

/*

Handle

error

returns

*/

monetary

=

src_string;

numeric

=

dest_string;

lc

=

localeconv();

/*

obtain

the

LC_MONETARY

and

LC_NUMERIC

info

*/

/*

Convert

the

monetary

decimal

point

to

wide

char

form

*/

retval

=

mbtowc(

&mon_decimal_point,

lc->mon_decimal_point,

MB_CUR_MAX);

22

National

Language

Support

Guide

and

Reference

/*

Handle

any

error

case

*/

/*

Convert

the

numeric

decimal

point

to

wide

char

form

*/

retval

=

mbtowc(

&radixchar,

lc->decimal_point,

MB_CUR_MAX);

/*

Handle

error

case

*/

/*

Assuming

the

string

is

converted

first

into

wide

character

**

code

form

via

mbstowcs,

monetary

points

to

this

string.

*/

/*

Pick

up

the

numeric

information

from

the

wide

character

**

string

and

copy

it

into

a

temp

buffer.

*/

while(wc

=

*monetary++){

if(iswdigit(wc))

*numeric++

=

wc;

else

if(

wc

==

mon_decimal_point)

*numeric++=radixchar;

}

*numeric

=

0;

/*

dest_string

has

the

numeric

value

of

the

monetary

quantity.

*/

/*

Convert

the

numeric

quantity

into

multibyte

form

*/

retval

=

wcstombs(

output,

dest_string,

SIZE);

/*

Handle

any

error

returns

*/

/*

Output

contains

a

numeric

value

suitable

for

atof

conversion.

*/

Multibyte

and

Wide

Character

Subroutines

The

external

representation

of

data

is

referred

to

as

the

file

code

representation

of

a

character.

When

file

code

data

is

created

in

files

or

transferred

between

a

computer

and

its

I/O

devices,

a

single

character

may

be

represented

by

one

or

several

bytes.

For

processing

strings

of

such

characters,

it

is

more

efficient

to

convert

these

codes

into

a

uniform-length

representation.

This

converted

form

is

intended

for

internal

processing

of

characters.

The

internal

representation

of

data

is

referred

to

as

the

process

code

or

wide

character

code

representation

of

the

character.

NLS

internationalization

of

programs

is

a

blend

of

multibyte

and

wide

character

subroutines.

A

multibyte

subroutine

uses

multibyte

character

sets.

A

wide

character

subroutine

uses

wide

character

sets.

Multibyte

subroutines

have

an

mb

prefix.

Wide

character

subroutines

have

a

wc

prefix.

The

corresponding

string-handling

subroutines

are

indicated

by

the

mbs

and

wcs

prefixes,

respectively.

Deciding

when

to

use

multibyte

or

wide

character

subroutines

can

be

made

only

after

careful

analysis.

This

section

contains

the

following

major

subsections

that

discuss

multibyte

and

wide

character

code

subroutines:

v

“Wide

Character

Classification

Subroutines”

on

page

28

v

“Multibyte

and

Wide

Character

String

Collation

Subroutines”

on

page

32

v

“Multibyte

and

Wide

Character

String

Comparison

Subroutines”

on

page

34

v

“Multibyte

and

Wide

Character

String

Collation

Subroutines”

on

page

32

v

“Wide

Character

String

Search

Subroutines”

on

page

37

v

“Working

with

the

Wide

Character

Constant”

on

page

45

Multibyte

Code

and

Wide

Character

Code

Conversion

Subroutines

The

internationalized

environment

of

NLS

blends

multibyte

and

wide

character

subroutines.

The

decision

of

when

to

use

wide

character

or

multibyte

subroutines

can

be

made

only

after

careful

analysis.

If

a

program

primarily

uses

multibyte

subroutines,

it

may

be

necessary

to

convert

the

multibyte

character

codes

to

wide

character

codes

before

certain

wide

character

subroutines

can

be

used.

If

a

program

uses

wide

character

subroutines,

data

may

need

to

be

converted

to

multibyte

form

when

invoking

subroutines.

Both

methods

have

drawbacks,

depending

on

the

program

in

use

and

the

availability

of

standard

subroutines

to

perform

the

required

processing.

For

instance,

the

wide

character

display-column-width

subroutine

has

no

corresponding

standard

multibyte

subroutine.

Chapter

3.

Subroutines

for

National

Language

Support

23

If

a

program

can

process

its

characters

in

multibyte

form,

this

method

should

be

used

instead

of

converting

the

characters

to

wide

character

form.

Attention:

The

conversion

between

multibyte

and

wide

character

code

depends

on

the

current

locale

setting.

Do

not

exchange

wide

character

codes

between

two

processes,

unless

you

have

knowledge

that

each

locale

that

might

be

used

handles

wide

character

codes

in

a

consistent

fashion.

With

the

exception

of

locales

based

on

the

IBM-eucTW

codeset,

AIX

locales

use

the

Unicode

character

value

as

a

wide

character

code.

Multibyte

Code

to

Wide

Character

Code

Conversion

Subroutines

The

following

subroutines

are

used

when

converting

from

multibyte

code

to

wide

character

code:

mblen

Determines

the

length

of

a

multibyte

character.

Do

not

use

p++

to

increment

a

pointer

in

a

multibyte

string.

Use

the

mblen

subroutine

to

determine

the

number

of

bytes

that

compose

a

character.

mbstowcs

Converts

a

multibyte

string

to

a

wide

character

string.

mbtowc

Converts

a

multibyte

character

to

a

wide

character.

Wide

Character

Code

to

Multibyte

Code

Conversion

Subroutines

The

following

subroutines

are

used

when

converting

from

wide

character

code

to

multibyte

character

code:

wcslen

Determines

the

number

of

wide

characters

in

a

wide

character

string.

wcstombs

Converts

a

wide

character

string

to

a

multibyte

character

string.

wctomb

Converts

a

wide

character

to

a

multibyte

character.

Examples

v

The

following

example

uses

the

mbtowc

subroutine

to

convert

a

character

in

multibyte

character

code

to

wide

character

code:

main()

{

char

*s;

wchar_t

wc;

int

n;

(void)setlocale(LC_ALL,"");

/*

**

s

points

to

the

character

string

that

needs

to

be

**

converted

to

a

wide

character

to

be

stored

in

wc.

*/

n

=

mbtowc(&wc,

s,

MB_CUR_MAX);

if

(n

==

-1){

/*

Error

handle

*/

}

if

(n

==

0){

/*

case

of

name

pointing

to

null

*/

}

/*

24

National

Language

Support

Guide

and

Reference

**

wc

contains

the

process

code

for

the

multibyte

character

**

pointed

to

by

s.

*/

}

v

The

following

example

uses

the

wctomb

subroutine

to

convert

a

character

in

wide

character

code

to

multibyte

character

code:

#include

<stdlib.h>

#include

<limits.h>

/*

for

MB_LEN_MAX

*/

#include

<stdlib.h>

/*

for

wchar_t

*/

main()

{

char

s[MB_LEN_MAX};

/*

system

wide

maximum

number

of

**

bytes

in

a

multibyte

character

r.

*/

wchar_t

wc;

int

n;

(void)setlocale(LC_ALL,"");

/*

**

wc

is

the

wide

character

code

to

be

converted

to

**

multibyte

character

code.

*/

n

=

wctomb(s,

wc);

if(n

==

-1){

/*

pwcs

does

not

point

to

a

valid

wide

character

*/

}

/*

**

n

has

the

number

of

bytes

contained

in

the

multibyte

**

character

stored

in

s.

*/

}

v

The

following

example

uses

the

mblen

subroutine

to

find

the

byte

length

of

a

character

in

multibyte

character

code:

#include

<stdlib.h>

#include

<locale.h>

main

{

char

*name

=

"h";

int

n;

(void)setlocale(LC_ALL,"");

n

=

mblen(name,

MB_CUR_MAX);

/*

**

The

count

returned

in

n

is

the

multibyte

length.

**

It

is

always

less

than

or

equal

to

the

value

of

**

MB_CUR_MAX

in

stdlib.h

*/

if(n

==

-1){

/*

Error

Handling

*/

}

}

v

The

following

example

obtains

a

previous

character

position

in

a

multibyte

string.

If

you

need

to

determine

the

previous

character

position,

starting

from

a

current

character

position

(not

a

random

byte

position),

step

through

the

buffer

starting

at

the

beginning.

Use

the

mblen

subroutine

until

the

current

character

position

is

reached,

and

save

the

previous

character

position

to

obtain

the

needed

character

position.

char

buf[];

/*

contains

the

multibyte

string

*/

char

*cur,

/*

points

to

the

current

character

position

*/

char

*prev,

/*

points

to

previous

multibyte

character

*/

Chapter

3.

Subroutines

for

National

Language

Support

25

char

*p;

/*

moving

pointer

*/

/*

initialize

the

buffer

and

pointers

as

needed

*/

/*

loop

through

the

buffer

until

the

moving

pointer

reaches

**

the

current

character

position

in

the

buffer,

always

**

saving

the

last

character

position

in

prev

pointer

*/

p

=

prev

=

buf;

/*

cur

points

to

a

valid

character

somewhere

in

buf

*/

while(p<

cur){

prev

=

p;

if(

(i=mblen(p,

mbcurmax))<=0){

/*

invalid

multibyte

character

or

null

*/

/*

You

can

have

a

different

error

handling

**

strategy

*/

p++;

/*

skip

it

*/

}else

{

p

+=

i;

}

}

/*

prev

will

point

to

the

previous

character

position

*/

/*

Note

that

if(

prev

==

cur),

then

it

means

that

there

was

**

no

previous

character.

Also,

if

all

bytes

up

to

the

**

current

character

are

invalid,

it

will

treat

them

as

**

all

valid

single-byte

characters

and

this

may

not

be

what

**

you

want.

One

may

change

this

to

handle

another

method

of

**

error

recovery.

*/

v

The

following

example

uses

of

the

mbstowcs

subroutine

to

convert

a

multibyte

string

to

wide

character

string:

#include

<stdlib.h>

#include

<locale.h>

main()

{

char

*s;

wchar_t

*pwcs;

size_t

retval,

n;

(void)setlocale(LC_ALL,

"");

n

=

strlen(s)

+

1;

/*string

length

+

terminating

null

*/

/*

Allocate

required

wchar

array

*/

pwcs

=

(wchar_t

*)malloc(n

*

sizeof(wchar_t)

);

retval

=

mbstowcs(pwcs,

s,

n);

if(retval

==

-1){

/*

Error

handle

*/

}

/*

**

pwcs

contains

the

wide

character

string.

*/

}

v

The

following

example

illustrates

the

problems

with

using

the

mbstowcs

subroutine

on

a

large

block

of

data

for

conversion

to

wide

character

form.

When

it

encounters

a

multibyte

that

is

not

valid,

the

mbstowcs

subroutine

returns

a

value

of

-1

but

does

not

specify

where

the

error

occurred.

Therefore,

the

mbtowc

subroutine

must

be

used

repeatedly

to

convert

one

character

at

a

time

to

wide

character

code.

Note:

Processing

in

this

manner

can

considerably

slow

program

performance.

During

the

conversion

of

single-byte

code

sets,

there

is

no

possibility

for

partial

multibytes.

However,

during

the

conversion

of

multibyte

code

sets,

partial

multibytes

are

copied

to

a

save

buffer.

During

the

next

call

to

the

read

subroutine,

the

partial

multibyte

is

prefixed

to

the

rest

of

the

byte

sequence.

26

National

Language

Support

Guide

and

Reference

Note:

A

null-terminated

wide

character

string

is

obtained.

Optional

error

handling

can

be

done

if

an

instance

of

an

invalid

byte

sequence

is

found.
#include

<stdio.h>

#include

<locale.h>

#include

<stdlib.h>

main(int

argc,

char

*argv[])

{

char

*curp,

*cure;

int

bytesread,

bytestoconvert,

leftover;

int

invalid_multibyte,

mbcnt,

wcnt;

wchar_t

*pwcs;

wchar_t

wbuf[BUFSIZ+1];

char

buf[BUFSIZ+1];

char

savebuf[MB_LEN_MAX];

size_t

mb_cur_max;

int

fd;

/*

**

MB_LEN_MAX

specifies

the

system

wide

constant

for

**

the

maximum

number

of

bytes

in

a

multibyte

character.

*/

(void)setlocale(LC_ALL,

"");

mb_cur_max

=

MB_CUR_MAX;

fd

=

open(argv[1],

0);

if(fd

<

0){

/*

error

handle

*/

}

leftover

=

0;

if(mb_cur_max==1){

/*

Single

byte

code

sets

case

*/

for(;;){

bytesread

=

read(fd,

buf,

BUSIZ);

if(bytesread

<=

0)

break;

mbstowcs(wbuf,

buf,

bytesread+1);

/*

Process

using

the

wide

character

buffer

*/

}

/*

File

processed

...

*/

exit(0);

/*

End

of

program

*/

}else{

/*

Multibyte

code

sets

*/

leftover

=

0;

for(;;)

{

if(leftover)

strncpy(buf,

savebuf

,leftover);

bytesread=read(fd,buf+leftover,

BUFSIZ-leftover);

if(bytesread

<=

0)

break;

buf[leftover+bytesread]

=

’\0’;

/*

Null

terminate

string

*/

invalid_multibyte

=

0;

bytestoconvert

=

leftover+bytesread;

cure=

buf+bytestoconvert;

leftover=0;

pwcs

=

wbuf;

/*

Stop

processing

when

invalid

mbyte

found.

*/

curp=

buf;

for(;curp<cure;){

mbcnt

=

mbtowc(pwcs,curp,

mb_cur_max);

if(mbcnt>0){

Chapter

3.

Subroutines

for

National

Language

Support

27

curp

+=

mbcnt;

pwcs++;

continue;

}else{

/*

More

data

needed

on

next

read*/

if

(

cure-curp<mb_cur_max){

leftover=cure-curp;

strncpy(savebuf,curp,leftover);

/*

Null

terminate

before

partial

mbyte

*/

*curp=0;

break;

}else{

/*Invalid

multibyte

found

*/

invalid_multibyte

=1;

break;

}

}

}

if(invalid_multibyte){

/*error

handle

*/

}

/*

Process

the

wide

char

buffer

*/

}

}

}

v

The

following

example

uses

the

wcstombs

and

wcslen

subroutines

to

convert

a

wide

character

string

to

multibyte

form:

#include

<stdlib.h>

#include

<locale.h>

main()

{

wchar_t

*pwcs;

/*

Source

wide

character

string

*/

char

*s;

/*

Destination

multibyte

character

string

*/

size_t

n;

size_t

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Calculate

the

maximum

number

of

bytes

needed

to

**

store

the

wide

character

buffer

in

multibyte

form

in

the

**

current

code

page

and

malloc()

the

appropriate

storage,

**

including

the

terminating

null.

*/

s

=

(char

*)

malloc(

wcslen(pwcs)

*

MB_CUR_MAX

+

1

);

retval=

wcstombs(

s,

pwcs,

n);

if(

retval

==

-1)

{

/*

Error

handle

*/

/*

s

points

to

the

multibyte

character

string.

*/

}

Wide

Character

Classification

Subroutines

The

majority

of

wide

character

classification

subroutines

are

similar

to

traditional

character

classification

subroutines,

except

that

wide

character

classification

subroutines

operate

on

a

wchar_t

data

type

argument

passed

as

a

wint_t

data

type

argument.

Generic

Wide

Character

Classification

Subroutines

In

the

internationalized

environment

of

National

Language

Support,

you

need

the

ability

to

create

new

character

class

properties.

For

example,

several

properties

are

defined

for

Japanese

characters

that

are

not

applicable

to

the

English

language.

As

more

languages

are

supported,

a

framework

enabling

applications

to

deal

with

a

varying

number

of

character

properties

is

needed.

The

wctype

and

iswctype

28

National

Language

Support

Guide

and

Reference

subroutines

allow

handling

of

character

classes

in

a

general

fashion.

These

subroutines

are

used

to

allow

for

both

user-defined

and

language-specific

character

classes.

The

action

of

wide

character

classification

subroutines

is

affected

by

the

definitions

in

the

LC_CTYPE

category

for

the

current

locale.

To

create

new

character

classifications

for

use

with

the

wctype

and

iswctype

subroutines,

create

a

new

character

class

in

the

LC_CTYPE

category

and

generate

the

locale

using

the

localedef

command.

A

user

application

obtains

this

locale

data

with

the

setlocale

subroutine.

The

program

can

then

access

the

new

classification

subroutines

by

using

the

wctype

subroutine

to

get

the

wctype_t

property

handle.

It

then

passes

to

the

iswctype

subroutine

both

the

property

handle

and

the

wide

character

code

of

the

character

to

be

tested.

The

following

subroutines

are

used

for

wide

character

classification:

wctype

Obtains

handle

for

character

property

classification.

iswctype

Tests

for

character

property.

Standard

Wide

Character

Classification

Subroutines

The

isw*

subroutines

determine

various

aspects

of

a

standard

wide

character

classification.

The

isw*

subroutines

also

work

with

single-byte

code

sets.

Use

the

isw*

subroutines

in

preference

to

the

wctype

and

iswctype

subroutines.

Use

the

wctype

and

iswctype

subroutines

only

for

extended

character

class

properties

(for

example,

Japanese

language

properties).

When

using

the

wide

character

functions

to

convert

the

case

in

several

blocks

of

data,

the

application

must

convert

characters

from

multibyte

to

wide

character

code

form.

Because

this

can

affect

performance

in

single-byte

code

set

locales,

consider

providing

two

conversion

paths

in

your

application.

The

traditional

path

for

single-byte

code

set

locales

would

convert

case

using

the

isupper,islower,

toupper,

and

tolower

subroutines.

The

alternate

path

for

multibyte

code

set

locales

would

convert

multibyte

characters

to

wide

character

code

form

and

convert

case

using

the

iswupper,

iswlower,

towupper

and

towlower

subroutines.

When

converting

multibyte

characters

to

wide

character

code

form,

an

application

needs

to

handle

special

cases

where

a

multibyte

character

may

split

across

successive

blocks.

The

following

is

a

list

of

standard

wide

character

classification

subroutines:

iswalnum

Tests

for

alphanumeric

character

classification.

iswalpha

Tests

for

alphabetic

character

classification.

iswcntrl

Tests

for

control

character

classification.

iswdigit

Tests

for

digit

character

classification.

iswgraph

Tests

for

graphic

character

classification.

iswlower

Tests

for

lowercase

character

classification.

iswprint

Tests

for

printable

character

classification.

iswpunct

Tests

for

punctuation

character

classification.

Chapter

3.

Subroutines

for

National

Language

Support

29

iswspace

Tests

for

space

character

classification.

iswupper

Tests

for

uppercase

character

classification.

iswxdigit

Tests

for

hexadecimal-digit

character

classification.

Wide

Character

Case

Conversion

Subroutines

The

following

subroutines

convert

cases

for

wide

characters.

The

action

of

wide

character

case

conversion

subroutines

is

affected

by

the

definition

in

the

LC_CTYPE

category

for

the

current

locale.

towlower

Converts

an

uppercase

wide

character

to

a

lowercase

wide

character.

towupper

Converts

a

lowercase

wide

character

to

an

uppercase

wide

character.

Example

The

following

example

uses

the

wctype

subroutine

to

test

for

the

NEW_CLASS

character

classification:

#include

<ctype.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wint_t

wc;

int

retval;

wctype_t

chandle;

(void)setlocale(LC_ALL,"");

/*

**

Obtain

the

character

property

handle

for

the

NEW_CLASS

**

property.

*/

chandle

=

wctype("NEW_CLASS")

;

if(chandle

==

(wctype_t)0){

/*

Invalid

property.

Error

handle.

*/

}

/*

Let

wc

be

the

wide

character

code

for

a

character

*/

/*

Test

if

wc

has

the

property

of

NEW_CLASS

*/

retval

=

iswctype(

wc,

chandle

);

if(

retval

>

0

)

{

/*

**

wc

has

the

property

NEW_CLASS.

*/

}else

if(retval

==

0)

{

/*

**

The

character

represented

by

wc

does

not

have

the

**

property

NEW_CLASS.

*/

}

}

Wide

Character

Display

Column

Width

Subroutines

When

characters

are

displayed

or

printed,

the

number

of

columns

occupied

by

a

character

may

differ.

For

example,

a

Kanji

character

(Japanese

language)

may

occupy

more

than

one

column

position.

The

number

of

display

columns

required

by

each

character

is

part

of

the

National

Language

Support

locale

database.

The

LC_CTYPE

category

defines

the

number

of

columns

needed

to

display

a

character.

No

standard

multibyte

display-column-width

subroutines

exist.

For

portability,

convert

multibyte

codes

to

wide

character

codes

and

use

the

required

wide

character

display-width

subroutines.

However,

if

the

30

National

Language

Support

Guide

and

Reference

__max_disp_width

macro

(defined

in

the

stdlib.h

file)

is

set

to

1

and

a

single-byte

code

set

is

in

use,

then

the

display-column

widths

of

all

characters

(except

tabs)

in

the

code

set

are

the

same,

and

are

equal

to

1.

In

this

case,

the

strlen

(string)

subroutine

gives

the

display

column

width

of

the

specified

string,

as

shown

in

the

following

example:

#include

<stdlib.h>

int

display_column_width;

/*

number

of

display

columns

*/

char

*s;

/*

character

string

*/

....

if((MB_CUR_MAX

==

1)

&&

(__max_disp_width

==

1)){

display_column_width

=

strlen(s);

/*

s

is

a

string

pointer

*/

}

The

following

subroutines

find

the

display

widths

for

wide

character

strings:

wcswidth

Determines

the

display

width

of

a

wide

character

string.

wcwidth

Determines

the

display

width

of

a

wide

character.

Examples

v

The

following

example

uses

the

wcwidth

subroutine

to

find

the

display

column

width

of

a

wide

character:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wint_t

wc;

int

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

wc

be

the

wide

character

whose

display

width

is

**

to

be

found.

*/

retval

=

wcwidth(wc);

if(retval

==

-1){

/*

**

Error

handling.

Invalid

or

nonprintable

**

wide

character

in

wc.

*/

}

}

v

The

following

example

uses

the

wcswidth

subroutine

to

find

the

display

column

width

of

a

wide

character

string:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs;

int

retval;

size_t

n;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs

point

to

a

wide

character

null

**

terminated

string.

Chapter

3.

Subroutines

for

National

Language

Support

31

**

Let

n

be

the

number

of

wide

characters

**

whose

display

column

width

is

to

be

determined.

*/

retval

=

wcswidth(pwcs,

n);

if(retval

==

-1){

/*

**

Error

handling.

Invalid

wide

or

nonprintable

**

character

ode

encountered

in

the

wide

**

character

string

pwcs.

*/

}

}

Multibyte

and

Wide

Character

String

Collation

Subroutines

Strings

can

be

compared

in

the

following

ways:

v

Using

the

ordinal

(binary)

values

of

the

characters.

v

Using

the

weights

associated

with

the

characters

for

each

locale,

as

determined

by

the

LC_COLLATE

category.

National

Language

Support

(NLS)

uses

the

second

method.

Collation

is

a

locale-specific

property

of

characters.

A

weight

is

assigned

to

each

character

to

indicate

its

relative

order

for

sorting.

A

character

may

be

assigned

more

than

one

weight.

Weights

are

prioritized

as

primary,

secondary,

tertiary,

and

so

forth.

The

maximum

number

of

weights

assigned

each

character

is

system-defined.

A

process

inherits

the

C

locale

or

POSIX

locale

at

its

startup

time.

When

the

setlocale

(LC_ALL,

″

″)

subroutine

is

called,

a

process

obtains

its

locale

based

on

the

LC_*

and

LANG

environment

variables.

The

following

subroutines

are

affected

by

the

LC_COLLATE

category

and

determine

how

two

strings

will

be

sorted

in

any

given

locale.

Note:

Collation-based

string

comparisons

take

a

long

time

because

of

the

processing

involved

in

obtaining

the

collation

values.

Perform

such

comparisons

only

when

necessary.

If

you

need

to

determine

whether

two

wide

character

strings

are

equal,

do

not

use

the

wcscoll

and

wcsxfrm

subroutines;

use

the

wcscmp

subroutine

instead.

The

following

subroutines

compare

multibyte

character

strings:

strcoll

Compares

the

collation

weights

of

multibyte

character

strings.

strxfrm

Converts

a

multibyte

character

string

to

values

representing

character

collation

weights.

The

following

subroutines

compare

wide

character

strings:

wcscoll

Compares

the

collation

weights

of

wide

character

strings.

wcsxfrm

Converts

a

wide

character

string

to

values

representing

character

collation

weights.

Examples

v

The

following

example

uses

the

wcscoll

subroutine

to

compare

two

wide

character

strings

based

on

their

collation

weights:

#include

<stdio.h>

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

32

National

Language

Support

Guide

and

Reference

extern

int

errno;

main()

{

wchar_t

*pwcs1,

*pwcs2;

size_t

n;

(void)setlocale(LC_ALL,

"");

/*

set

it

to

zero

for

checking

errors

on

wcscoll

*/

errno

=

0;

/*

**

Let

pwcs1

and

pwcs2

be

two

wide

character

strings

to

**

compare.

*/

n

=

wcscoll(pwcs1,

pwcs2);

/*

**

If

errno

is

set

then

it

indicates

some

**

collation

error.

*/

if(errno

!=

0){

/*

error

has

occurred...

handle

error

...*/

}

}

v

The

following

example

uses

the

wcsxfrm

subroutine

to

compare

two

wide

character

strings

based

on

collation

weights:

Note:

Determining

the

size

n

(where

n

is

a

number)

of

the

transformed

string,

when

using

the

wcsxfrm

subroutine,

can

be

accomplished

in

one

of

the

following

ways:

–

For

each

character

in

the

wide

character

string,

the

number

of

bytes

for

possible

collation

values

cannot

exceed

the

COLL_WEIGHTS_MAX

*

sizeof(wchar_t)

value.

This

value,

multiplied

by

the

number

of

wide

character

codes,

gives

the

buffer

length

needed.

To

the

buffer

length

add

1

for

the

terminating

wide

character

null.

This

strategy

may

slow

down

performance.

–

Estimate

the

byte-length

needed.

If

the

previously

obtained

value

is

not

enough,

increase

it.

This

may

not

satisfy

all

strings

but

gives

maximum

performance.

–

Call

the

wcsxfrm

subroutine

twice:

first

to

find

the

value

of

n,

and

a

second

time

to

transform

the

string

using

this

n

value.

This

strategy

slows

down

performance

because

the

wcsxfrm

subroutine

is

called

twice.

However,

it

yields

a

precise

value

for

the

buffer

size

needed

to

store

the

transformed

string.

The

method

you

choose

depends

on

the

characteristics

of

the

strings

used

in

the

program

and

the

performance

objectives

of

the

program.

#include

<stdio.h>

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

*pwcs2,

*pwcs3,

*pwcs4;

size_t

n,

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

the

string

pointed

to

by

pwcs1

and

pwcs3

be

the

**

wide

character

arrays

to

store

the

transformed

wide

**

character

strings.

Let

the

strings

pointed

to

by

pwcs2

**

and

pwcs4

be

the

wide

character

strings

to

compare

based

**

on

the

collation

values

of

the

wide

characters

in

these

**

strings.

**

Let

n

be

large

enough

(say,BUFSIZ)

to

transform

the

two

**

wide

character

strings

specified

by

pwcs2

and

pwcs4.

Chapter

3.

Subroutines

for

National

Language

Support

33

**

**

Note:

**

In

practice,

it

is

best

to

call

wcsxfrm

if

the

wide

**

character

string

is

to

be

compared

several

times

to

**

different

wide

character

strings.

*/

do

{

retval

=

wcsxfrm(pwcs1,

pwcs2,

n);

if(retval

==

(size_t)-1){

/*

error

has

occurred.

*/

/*

Process

the

error

if

needed

*/

break;

}

if(retval

>=

n

){

/*

**

Increase

the

value

of

n

and

use

a

bigger

buffer

pwcs1.

*/

}

}while

(retval

>=

n);

do

{

retval

=

wcsxfrm(pwcs3,

pwcs4,

n);

if

(retval

==

(size_t)-1){

/*

error

has

occurred.

*/

/*

Process

the

error

if

needed

*/

break;

if(retval

>=

n){

/*Increase

the

value

of

n

and

use

a

bigger

buffer

pwcs3.*/

}

}while

(retval

>=

n);

retval

=

wcscmp(pwcs1,

pwcs3);

/*

retval

has

the

result

*/

}

Multibyte

and

Wide

Character

String

Comparison

Subroutines

The

strcmp

and

strncmp

subroutines

determine

if

the

contents

of

two

multibyte

strings

are

equivalent.

If

your

application

needs

to

know

how

the

two

strings

differ

lexically,

use

the

multibyte

and

wide

character

string

collation

subroutines.

The

following

NLS

subroutines

compare

wide

character

strings:

wcscmp

Compares

two

wide

character

strings.

wcsncmp

Compares

a

specific

number

of

wide

character

strings.

Example

The

following

example

uses

the

wcscmp

subroutine

to

compare

two

wide

character

strings:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

*pwcs2;

int

retval;

(void)setlocale(LC_ALL,

"");

/*

**

pwcs1

and

pwcs2

point

to

two

wide

character

**

strings

to

compare.

*/

34

National

Language

Support

Guide

and

Reference

retval

=

wcscmp(pwcs1,

pwcs2);

/*

pwcs1

contains

a

copy

of

the

wide

character

string

**

in

pwcs2

*/

}

Wide

Character

String

Conversion

Subroutines

The

following

NLS

subroutines

convert

wide

character

strings

to

double,

long,

and

unsigned

long

integers:

wcstod

Converts

a

wide

character

string

to

a

double-precision

floating

point.

wcstol

Converts

a

wide

character

string

to

a

signed

long

integer.

wcstoul

Converts

a

wide

character

string

to

an

unsigned

long

integer.

Before

calling

the

wcstod,

wcstoul,

or

wcstol

subroutine,

the

errno

global

variable

must

be

set

to

0.

Any

error

that

occurs

as

a

result

of

calling

these

subroutines

can

then

be

handled

correctly.

Examples

v

The

following

example

uses

the

wcstod

subroutine

to

convert

a

wide

character

string

to

a

double-precision

floating

point:

#include

<stdlib.h>

#include

<locale.h>

#include

<errno.h>

extern

int

errno;

main()

{

wchar_t

*pwcs,

*endptr;

double

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs

point

to

a

wide

character

null

terminated

**

string

containing

a

floating

point

value.

*/

errno

=

0;

/*

set

errno

to

zero

*/

retval

=

wcstod(pwcs,

&endptr);

if(errno

!=

0){

/*

errno

has

changed,

so

error

has

occurred

*/

if(errno

==

ERANGE){

/*

correct

value

is

outside

range

of

**

representable

values.

Case

of

overflow

**

error

*/

if((retval

==

HUGE_VAL)

||

(retval

==

-HUGE_VAL)){

/*

Error

case.

Handle

accordingly.

*/

}else

if(retval

==

0){

/*

correct

value

causes

underflow

*/

/*

Handle

appropriately

*/

}

}

}

/*

retval

contains

the

double.

*/

}

v

The

following

example

uses

the

wcstol

subroutine

to

convert

a

wide

character

string

to

a

signed

long

integer:

Chapter

3.

Subroutines

for

National

Language

Support

35

#include

<stdlib.h>

#include

<locale.h>

#include

<errno.h>

#include

<stdio.h>

extern

int

errno;

main()

{

wchar_t

*pwcs,

*endptr;

long

int

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs

point

to

a

wide

character

null

terminated

**

string

containing

a

signed

long

integer

value.

*/

errno

=

0;

/*

set

errno

to

zero

*/

retval

=

wcstol(pwcs,

&endptr,

0);

if(errno

!=

0){

/*

errno

has

changed,

so

error

has

occurred

*/

if(errno

==

ERANGE){

/*

correct

value

is

outside

range

of

**

representable

values.

Case

of

overflow

**

error

*/

if((retval

==

LONG_MAX)

||

(retval

==

LONG_MIN)){

/*

Error

case.

Handle

accordingly.

*/

}else

if(errno

==

EINVAL){

/*

The

value

of

base

is

not

supported

*/

/*

Handle

appropriately

*/

}

}

}

/*

retval

contains

the

long

integer.

*/

}

v

The

following

example

uses

the

wcstoul

subroutine

to

convert

a

wide

character

string

to

an

unsigned

long

integer:

#include

<stdlib.h>

#include

<locale.h>

#include

<errno.h>

extern

int

errno;

main()

{

wchar_t

*pwcs,

*endptr;

unsigned

long

int

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs

point

to

a

wide

character

null

terminated

**

string

containing

an

unsigned

long

integer

value.

*/

errno

=

0;

/*

set

errno

to

zero

*/

retval

=

wcstoul(pwcs,

&endptr,

0);

if(errno

!=

0){

/*

error

has

occurred

*/

if(retval

==

ULONG_MAX

||

errno

==

ERANGE){

/*

**

Correct

value

is

outside

of

36

National

Language

Support

Guide

and

Reference

**

representable

value.

Handle

appropriately

*/

}else

if(errno

==

EINVAL){

/*

The

value

of

base

is

not

representable

*/

/*

Handle

appropriately

*/

}

}

/*

retval

contains

the

unsigned

long

integer.

*/

}

Wide

Character

String

Copy

Subroutines

The

following

NLS

subroutines

copy

wide

character

strings:

wcscpy

Copies

a

wide

character

string

to

another

wide

character

string.

wcsncpy

Copies

a

specific

number

of

characters

from

a

wide

character

string

to

another

wide

character

string.

wcscat

Appends

a

wide

character

string

to

another

wide

character

string.

wcsncat

Appends

a

specific

number

of

characters

from

a

wide

character

string

to

another

wide

character

string.

Example

The

following

example

uses

the

wcscpy

subroutine

to

copy

a

wide

character

string

into

a

wide

character

array:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

*pwcs2;

size_t

n;

(void)setlocale(LC_ALL,

"");

/*

**

Allocate

the

required

wide

character

array.

*/

pwcs1

=

(wchar_t

*)malloc(

(wcslen(pwcs2)

+1)*sizeof(wchar_t));

wcscpy(pwcs1,

pwcs2);

/*

**

pwcs1

contains

a

copy

of

the

wide

character

string

in

pwcs2

*/

}

Wide

Character

String

Search

Subroutines

The

following

NLS

subroutines

are

used

to

search

for

wide

character

strings:

wcschr

Searches

for

the

first

occurrence

of

a

wide

character

in

a

wide

character

string.

wcsrchr

Searches

for

the

last

occurrence

of

a

wide

character

in

a

wide

character

string.

wcspbrk

Searches

for

the

first

occurrence

of

a

several

wide

characters

in

a

wide

character

string.

wcsspn

Determines

the

number

of

wide

characters

in

the

initial

segment

of

a

wide

character

string.

wcscspn

Searches

for

a

wide

character

string.

wcswcs

Searches

for

the

first

occurrence

of

a

wide

character

string

within

another

wide

character

string.

wcstok

Breaks

a

wide

character

string

into

a

sequence

of

separate

wide

character

strings.

Examples

v

The

following

example

uses

the

wcschr

subroutine

to

locate

the

first

occurrence

of

a

wide

character

in

a

wide

character

string:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

Chapter

3.

Subroutines

for

National

Language

Support

37

main()

{

wchar_t

*pwcs1,

wc,

*pws;

int

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs1

point

to

a

wide

character

null

terminated

string.

**

Let

wc

point

to

the

wide

character

to

search

for.

**

*/

pws

=

wcschr(pwcs1,

wc);

if

(pws

==

(wchar_t

)NULL

){

/*

wc

does

not

occur

in

pwcs1

*/

}else{

/*

pws

points

to

the

location

where

wc

is

found

*/

}

}

v

The

following

example

uses

the

wcsrchr

subroutine

to

locate

the

last

occurrence

of

a

wide

character

in

a

wide

character

string:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

wc,

*pws;

int

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs1

point

to

a

wide

character

null

terminated

string.

**

Let

wc

point

to

the

wide

character

to

search

for.

**

*/

pws

=

wcsrchr(pwcs1,

wc);

if

(pws

==

(wchar_t

)NULL

){

/*

wc

does

not

occur

in

pwcs1

*/

}else{

/*

pws

points

to

the

location

where

wc

is

found

*/

}

}

v

The

following

example

uses

the

wcspbrk

subroutine

to

locate

the

first

occurrence

of

several

wide

characters

in

a

wide

character

string:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

*pwcs2,

*pws;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs1

point

to

a

wide

character

null

terminated

string.

**

Let

pwcs2

be

initialized

to

the

wide

character

string

**

that

contains

wide

characters

to

search

for.

*/

pws

=

wcspbrk(pwcs1,

pwcs2);

if

(pws

==

(wchar_t

)NULL

){

/*

No

wide

character

from

pwcs2

is

found

in

pwcs1

*/

38

National

Language

Support

Guide

and

Reference

}else{

/*

pws

points

to

the

location

where

a

match

is

found

*/

}

}

v

The

following

example

uses

the

wcsspn

subroutine

to

determine

the

number

of

wide

characters

in

the

initial

segment

of

a

wide

character

string

segment:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

*pwcs2;

size_t

count;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs1

point

to

a

wide

character

null

terminated

string.

**

Let

pwcs2

be

initialized

to

the

wide

character

string

**

that

contains

wide

characters

to

search

for.

*/

count

=

wcsspn(pwcs1,

pwcs2);

/*

**

count

contains

the

length

of

the

segment.

*/

}

v

The

following

example

uses

the

wcscspn

subroutine

to

determine

the

number

of

wide

characters

not

in

a

wide

character

string

segment:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

*pwcs2;

size_t

count;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs1

point

to

a

wide

character

null

terminated

string.

**

Let

pwcs2

be

initialized

to

the

wide

character

string

**

that

contains

wide

characters

to

search

for.

*/

count

=

wcscspn(pwcs1,

pwcs2);

/*

**

count

contains

the

length

of

the

segment

consisting

**

of

characters

not

in

pwcs2.

*/

}

v

The

following

example

uses

the

wcswcs

subroutine

to

locate

the

first

occurrence

of

a

wide

character

string

within

another

wide

character

string:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1,

*pwcs2,

*pws;

(void)setlocale(LC_ALL,

"");

/*

**

Let

pwcs1

point

to

a

wide

character

null

terminated

string.

**

Let

pwcs2

be

initialized

to

the

wide

character

string

Chapter

3.

Subroutines

for

National

Language

Support

39

**

that

contains

wide

characters

sequence

to

locate.

*/

pws

=

wcswcs(pwcs1,

pwcs2);

if

(pws

==

(wchar_t)NULL){

/*

wide

character

sequence

pwcs2

is

not

found

in

pwcs1

*/

}else{

/*

**

pws

points

to

the

first

occurrence

of

the

sequence

**

specified

by

pwcs2

in

pwcs1.

*/

}

}

v

The

following

example

uses

the

wcstok

subroutine

to

tokenize

a

wide

character

string:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs1

=

L"?a???b,,,#c";

wchar_t

*pwcs;

(void)setlocale(LC_ALL,

"");

pwcs

=

wcstok(pwcs1,

L"?");

/*

pws

points

to

the

token:

L"a"

*/

pwcs

=

wcstok((wchar_t

*)NULL,

L",");

/*

pws

points

to

the

token:

L"??b"

*/

pwcs

=

wcstok((wchar_t

*)NULL,

L"#,");

/*

pws

points

to

the

token:

L"c"

*/

}

Wide

Character

Input/Output

Subroutines

NLS

provides

subroutines

for

both

formatted

and

unformatted

I/O.

Formatted

Wide

Character

I/O

The

printf

and

scanf

subroutines

allow

for

the

formatting

of

wide

characters.

The

printf

and

scanf

subroutines

have

two

additional

format

specifiers

for

wide

character

handling:

%C

and

%S.

The

%C

and

%S

format

specifiers

allow

I/O

on

a

wide

character

and

a

wide

character

string,

respectively.

They

are

similar

to

the

%c

and

%s

format

specifiers,

which

allow

I/O

on

a

multibyte

character

and

string.

The

multibyte

subroutines

accept

a

multibyte

array

and

output

a

multibyte

array.

To

convert

multibyte

output

from

a

multibyte

subroutine

to

a

wide

character

string,

use

the

mbstowcs

subroutine.

Unformatted

Wide

Character

I/O

Unformatted

wide

character

I/O

subroutines

are

used

when

a

program

requires

code

set-independent

I/O

for

characters

from

multibyte

code

sets.

For

example,

use

the

fgetwc

or

getwc

subroutine

to

input

a

multibyte

character.

If

the

program

uses

the

getc

subroutine

to

input

a

multibyte

character,

the

program

must

call

the

getc

subroutine

once

for

each

byte

in

the

multibyte

character.

Wide

character

input

subroutines

read

multibyte

characters

from

a

stream

and

convert

them

to

wide

characters.

The

conversion

is

done

as

if

the

subroutines

call

the

mbtowc

and

mbstowcs

subroutines.

Wide

character

output

subroutines

convert

wide

characters

to

multibyte

characters

and

write

the

result

to

the

stream.

The

conversion

is

done

as

if

the

subroutines

call

the

wctomb

and

wcstombs

subroutines.

The

LC_CTYPE

category

of

the

current

locale

affects

the

behavior

of

wide

character

I/O

subroutines.

Reading

and

Processing

an

Entire

File:

If

a

program

must

go

through

an

entire

file

that

must

be

handled

in

wide

character

code

form,

use

one

of

the

following

ways:

40

National

Language

Support

Guide

and

Reference

v

In

the

case

of

multibyte

characters,

use

either

the

read

or

fread

subroutine

to

convert

a

block

of

text

data

into

a

buffer.

Convert

one

character

at

a

time

in

this

buffer

using

the

mbtowc

subroutine.

Handle

special

cases

of

multibyte

characters

crossing

block

boundaries.

For

multibyte

code

sets,

do

not

use

the

mbstowcs

subroutine

on

this

buffer.

On

an

invalid

or

a

partial

multibyte

character

sequence,

the

mbstowcs

subroutine

returns

-1

without

indicating

how

far

it

successfully

converted

the

data.

You

can

use

the

mbstowcs

subroutine

with

single-byte

code

sets

because

you

will

not

run

into

a

partial-byte

sequence

problem

with

single-byte

code

sets.

v

Use

the

fgetws

subroutine

to

obtain

a

line

from

the

file.

If

the

returned

wide

character

string

contains

a

wide

character

<new-line>,

then

a

complete

line

is

obtained.

If

there

is

no

<new-line>

wide

character,

the

line

is

longer

than

expected,

and

more

calls

to

the

fgetws

subroutine

are

needed

to

obtain

the

complete

line.

If

the

program

can

efficiently

process

one

line

at

a

time,

this

approach

is

recommended.

v

If

the

fgets

subroutine

is

used

to

read

a

multibyte

file

to

obtain

one

line

at

a

time,

a

split

multibyte

character

may

result.

Handle

this

condition

just

as

in

the

case

of

the

read

subroutine

breaking

up

a

multibyte

character

across

successive

reads.

If

you

can

guarantee

that

the

input

line

length

is

not

more

than

a

set

limit,

a

buffer

of

that

size

(plus

1

for

null)

can

be

used,

thereby

avoiding

the

possibility

of

a

split

multibyte

character.

If

the

program

can

efficiently

process

one

line

at

a

time,

this

approach

may

be

used.

Because

of

the

possibility

of

split

bytes

in

the

buffer,

use

the

fgetws

subroutine

in

preference

to

the

fgets

subroutine

for

multibyte

characters.

v

Use

the

fgetwc

subroutine

on

the

file

to

read

one

wide

character

code

at

a

time.

If

a

file

is

large,

the

function

call

overhead

becomes

large

and

reduces

the

value

of

this

method.

The

decision

of

which

of

these

methods

to

use

should

be

made

on

a

per

program

basis.

The

fgetsw

subroutine

option

is

recommended,

as

it

is

capable

of

optimum

performance

and

the

program

does

not

have

to

handle

the

special

cases.

Input

Subroutines:

The

wint_t

data

type

is

required

to

represent

the

wide

character

code

value

as

well

as

the

end-of-file

(EOF)

marker.

For

example,

consider

the

case

of

the

fgetwc

subroutine,

which

returns

a

wide

character

code

value:

wchar_t

fgetwc();

If

the

wchar_t

data

type

is

defined

as

a

char

value,

the

y-umlaut

symbol

cannot

be

distinguished

from

the

end-of-file

(EOF)

marker

in

the

ISO8859-1

code

set.

The

0xFF

code

point

is

a

valid

character

(y

umlaut).

Hence,

the

return

value

cannot

be

the

wchar_t

data

type.

A

data

type

is

needed

that

can

hold

both

the

EOF

marker

and

all

the

code

points

in

a

code

set.

int

fgetwc();

On

some

machines,

the

int

data

type

is

defined

to

be

16

bits.

When

the

wchar_t

data

type

is

larger

than

16

bits,

the

int

value

cannot

represent

all

the

return

values.

The

wint_t

data

type

is

therefore

needed

to

represent

the

fgetwc

subroutine

return

value.

The

wint_t

data

type

is

defined

in

the

wchar.h

file.

The

following

subroutines

are

used

for

wide

character

input:

fgetwc

Gets

next

wide

character

from

a

stream.

fgetws

Gets

a

string

of

wide

characters

from

a

stream.

getwc

Gets

next

wide

character

from

a

stream.

getwchar

Gets

next

wide

character

from

standard

input.

getws

Gets

a

string

of

wide

characters

from

a

standard

input.

ungetwc

Pushes

a

wide

character

onto

a

stream.

Output

Subroutines:

The

following

subroutines

are

used

for

wide

character

output:

fputwc

Writes

a

wide

character

to

an

output

stream.

fputws

Writes

a

wide

character

string

to

an

output

stream.

putwc

Writes

a

wide

character

to

an

output

stream.

putwchar

Writes

a

wide

character

to

standard

output.

Chapter

3.

Subroutines

for

National

Language

Support

41

putws

Writes

a

wide

character

string

to

standard

output.

Examples

v

The

following

example

uses

the

fgetwc

subroutine

to

read

wide

character

codes

from

a

file:

#include

<stdio.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wint_t

retval;

FILE

*fp;

wchar_t

*pwcs;

(void)setlocale(LC_ALL,

"");

/*

**

Open

a

stream.

*/

fp

=

fopen("file",

"r");

/*

**

Error

Handling

if

fopen

was

not

successful.

*/

if(fp

==

NULL){

/*

Error

handler

*/

}else{

/*

**

pwcs

points

to

a

wide

character

buffer

of

BUFSIZ.

*/

while((retval

=

fgetwc(fp))

!=

WEOF){

*pwcs++

=

(wchar_t)retval;

/*

break

when

buffer

is

full

*/

}

}

/*

Process

the

wide

characters

in

the

buffer

*/

}

v

The

following

example

uses

the

getwchar

subroutine

to

read

wide

characters

from

standard

input:

#include

<stdio.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wint_t

retval;

FILE

*fp;

wchar_t

*pwcs;

(void)setlocale(LC_ALL,

"");

index

=

0;

while((retval

=

getwchar())

!=

WEOF){

/*

pwcs

points

to

a

wide

character

buffer

of

BUFSIZ.

*/

*pwcs++

=

(wchar_t)retval;

/*

break

on

buffer

full

*/

}

/*

Process

the

wide

characters

in

the

buffer

*/

}

v

The

following

example

uses

the

ungetwc

subroutine

to

push

a

wide

character

onto

an

input

stream:

#include

<stdio.h>

#include

<locale.h>

#include

<stdlib.h>

42

National

Language

Support

Guide

and

Reference

main()

{

wint_t

retval;

FILE

*fp;

(void)setlocale(LC_ALL,

"");

/*

**

Open

a

stream.

*/

fp

=

fopen("file",

"r");

/*

**

Error

Handling

if

fopen

was

not

successful.

*/

if(fp

==

NULL){

/*

Error

handler

*/

else{

retval

=

fgetwc(fp);

if(retval

!=

WEOF){

/*

**

Peek

at

the

character

and

return

it

to

the

stream.

*/

retval

=

ungetwc(retval,

fp);

if(retval

==

EOF){

/*

Error

on

ungetwc

*/

}

}

}

}

v

The

following

example

uses

the

fgetws

subroutine

to

read

a

file,

one

line

at

a

time:

#include

<stdio.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

FILE

*fp;

wchar_t

*pwcs;

(void)setlocale(LC_ALL,

"");

/*

**

Open

a

stream.

*/

fp

=

fopen("file",

"r");

/*

**

Error

Handling

if

fopen

was

not

successful.

*/

if(fp

==

NULL){

/*

Error

handler

*/

}else{

/*

pwcs

points

to

wide

character

buffer

of

BUFSIZ.

*/

while(fgetws(pwcs,

BUFSIZ,

fp)

!=

(wchar_t

*)NULL){

/*

**

pwcs

contains

wide

characters

with

null

**

termination.

*/

}

}

}

v

The

following

example

uses

the

fputwc

subroutine

to

write

wide

characters

to

an

output

stream:

Chapter

3.

Subroutines

for

National

Language

Support

43

#include

<stdio.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

int

index,

len;

wint_t

retval;

FILE

*fp;

wchar_t

*pwcs;

(void)setlocale(LC_ALL,

"");

/*

**

Open

a

stream.

*/

fp

=

fopen("file",

"w");

/*

**

Error

Handling

if

fopen

was

not

successful.

*/

if(fp

==

NULL){

/*

Error

handler

*/

}else{

/*

Let

len

indicate

number

of

wide

chars

to

output.

**

pwcs

points

to

a

wide

character

buffer

of

BUFSIZ.

*/

for(index=0;

index

<

len;

index++){

retval

=

fputwc(*pwcs++,

fp);

if(retval

==

WEOF)

break;

/*

write

error

occurred

*/

/*

errno

is

set

to

indicate

the

error.

*/

}

}

}

v

The

following

example

uses

the

fputws

subroutine

to

write

a

wide

character

string

to

a

file:

#include

<stdio.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

int

retval;

FILE

*fp;

wchar_t

*pwcs;

(void)setlocale(LC_ALL,

"");

/*

**

Open

a

stream.

*/

fp

=

fopen("file",

"w");

/*

**

Error

Handling

if

fopen

was

not

successful.

*/

if(fp

==

NULL){

/*

Error

handler

*/

}else{

/*

**

pwcs

points

to

a

wide

character

string

**

to

output

to

fp.

*/

retval

=

fputws(pwcs,

fp);

if(retval

==

-1){

44

National

Language

Support

Guide

and

Reference

/*

Write

error

occurred

*/

/*

errno

is

set

to

indicate

the

error

*/

}

}

}

Working

with

the

Wide

Character

Constant

Use

the

L

constant

for

ASCII

characters

only.

For

ASCII

characters,

the

L

constant

value

is

numerically

the

same

as

the

code

point

value

of

the

character.

For

example,

L’a’

is

same

as

a.

The

L

constant

obtains

the

wchar_t

value

of

an

ASCII

character

for

assignment

purposes.

A

wide

character

constant

is

introduced

by

the

L

specifier.

For

example:

wchar_t

wc

=

L’x’

;

A

wide

character

code

corresponding

to

the

character

x

is

stored

in

wc.

The

C

compiler

converts

the

character

x

using

the

mbtowc

or

mbstowcs

subroutine

as

appropriate.

This

conversion

to

wide

characters

is

based

on

the

current

locale

setting

at

compile

time.

Because

ASCII

characters

are

part

of

all

supported

code

sets

and

the

wide

character

representation

of

all

ASCII

characters

is

the

same

in

all

locales,

L’x’

results

in

the

same

value

across

all

code

sets.

However,

if

the

character

x

is

non-ASCII,

the

program

may

not

work

when

it

is

run

on

a

different

code

set

than

used

at

compile

time.

This

limitation

impacts

some

programs

that

use

switch

statements

using

the

wide

character

constant

representation.

wchar.h

Header

File

The

wchar.h

header

file

declares

information

that

is

necessary

for

programming

with

multibyte

and

wide

character

subroutines.

The

wchar.h

header

file

declares

the

wchar_t,

wctype_t,

and

wint_t

data

types,

as

well

as

several

functions

for

testing

wide

characters.

Because

the

number

of

characters

implemented

as

wide

characters

exceeds

that

of

basic

characters,

it

is

not

possible

to

classify

all

wide

characters

into

the

existing

classes

used

for

basic

characters.

Therefore,

it

is

necessary

to

provide

a

way

of

defining

additional

classes

specific

to

some

locale.

The

action

of

these

subroutines

is

affected

by

the

current

locale.

The

wchar.h

header

file

also

declares

subroutines

for

manipulating

wide

character

strings

(that

is,

wchar_t

data

type

arrays).

Array

length

is

always

determined

in

terms

of

the

number

of

wchar_t

elements

in

an

array.

A

null

wide

character

code

ends

an

array.

A

pointer

to

a

wchar_t

data

type

array

or

void

array

always

points

to

the

initial

element

of

the

array.

Note:

If

the

number

of

wchar_t

elements

in

an

array

exceeds

the

defined

array

length,

unpredictable

results

can

occur.

Internationalized

Regular

Expression

Subroutines

Programs

that

contain

internationalized

regular

expressions

can

use

the

regcomp,

regexec,

regerror,

regfree,

and

fnmatch

subroutines.

The

following

subroutines

are

available

for

use

with

internationalized

regular

expressions.

regcomp

Compiles

a

specified

basic

or

extended

regular

expression

into

an

executable

string.

regexec

Compares

a

null-terminated

string

with

a

compiled

basic

or

extended

regular

expression

that

must

have

been

previously

compiled

by

a

call

to

the

regcomp

subroutine.

regerror

Provides

a

mapping

from

error

codes

returned

by

the

regcomp

and

regexec

subroutines

to

printable

strings.

regfree

Frees

any

memory

allocated

by

the

regcomp

subroutine

associated

with

the

compiled

basic

or

Chapter

3.

Subroutines

for

National

Language

Support

45

extended

regular

expression.

The

expression

is

no

longer

treated

as

a

compiled

basic

or

extended

regular

expression

after

it

is

given

to

the

regfree

subroutine.

fnmatch

Checks

a

specified

string

to

see

if

it

matches

a

specified

pattern.

You

can

use

the

fnmatch

subroutine

in

an

application

that

reads

a

dictionary

to

find

which

entries

match

a

given

pattern.

You

also

can

use

the

fnmatch

subroutine

to

match

path

names

to

patterns.

Examples

v

The

following

example

compiles

an

internationalized

regular

expression

and

matches

a

string

using

this

compiled

expression.

A

match

is

found

for

the

first

pattern,

but

no

match

is

found

for

the

second

pattern.

#include

<locale.h>

#include

<regex.h>

#define

BUFSIZE

256

main()

{

char

*p;

char

*pattern[]

=

{

"hello[0-9]*",

"1234"

};

char

*string

=

"this

is

a

test

string

hello112

and

this

is

test";

/*

This

is

the

source

string

for

matching

*/

int

retval;

regex_t

re;

char

buf[BUFSIZE];

int

i;

setlocale(LC_ALL,

"");

for(i

=

0;i

<2;

i++){

retval

=

match(string,

pattern[i],

&re);

if(retval

==

0){

printf("Match

found

\n");

}else{

regerror(retval,

&re,

buf,

BUFSIZE);

printf("error

=

%s\n",

buf);

}

}

regfree(

&re);

}

int

match(char

*string,

char

*pattern,

regex_t

*re)

{

int

status;

if((status=regcomp(

re,

pattern,

REG_EXTENDED))!=

0)

return(status);

status

=

regexec(

re,

string,

0,

NULL,

0);

return(status);

}

v

The

following

example

finds

all

substrings

in

a

line

that

match

a

pattern.

The

numbers

11

and

2001

are

matched.

Every

digit

that

is

matched

counts

as

one

match.

There

are

six

such

matches

corresponding

to

the

six

digits

supplied

in

the

string.

46

National

Language

Support

Guide

and

Reference

#include

<locale.h>

#include

<regex.h>

#define

BUFSIZE

256

main()

{

char

*p;

char

*pattern

=

"[0-9]";

char

*string

=

"Today

is

11

Feb

2001

";

int

retval;

regex_t

re;

char

buf[BUFSIZE];

regmatch_t

pmatch[100];

int

status;

char

*ps;

int

eflag;

setlocale(LC_ALL,

"");

/*

Compile

the

pattern

*/

if((status

=

regcomp(

&re,

pattern,

REG_EXTENDED))!=

0){

regerror(status,

&re,

buf,

120);

exit(2);

}

ps

=

string;

printf("String

to

match=%s\n",

ps);

eflag

=

0;

/*

extract

all

the

matches

*/

while(

status

=

regexec(

&re,

ps,

1,

pmatch,

eflag)==

0){

printf("match

found

at:

%d,

string=%s\n",

pmatch[0].rm_so,

ps

+pmatch[0].rm_so);

ps

+=

pmatch[0].rm_eo;

printf("\nNEXTString

to

match=%s\n",

ps);

eflag

=

REG_NOTBOL;

}

regfree(

&re);

}

v

The

following

example

uses

the

fnmatch

subroutine

to

read

a

directory

and

match

file

names

with

a

pattern.

#include

<locale.h>

#include

<fnmatch.h>

#include

<sys/dir.h>

main(int

argc,

char

*argv[]

)

{

char

*pattern;

DIR

*dir;

struct

dirent

*entry;

int

ret;

setlocale(LC_ALL,

"");

dir

=

opendir(".");

pattern

=

argv[1];

Chapter

3.

Subroutines

for

National

Language

Support

47

if(dir

!=

NULL){

while(

(entry

=

readdir(dir))

!=

NULL){

ret

=

fnmatch(pattern,

entry->d_name,

FNM_PATHNAME|FNM_PERIOD);

if(ret

==

0){

printf("%s\n",

entry->d_name);

}else

if(ret

==

FNM_NOMATCH){

continue

;

}else{

printf("error

file=%s\n",

entry->d_name);

}

}

closedir(dir);

}

}

Related

Information

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15

provides

information

about

wide

character

and

multibyte

subroutines.

For

more

information

about

using

locales,

see

Chapter

2,

“Locales,”

on

page

7.

Character

Set

Description

(charmap)

source

file

format,

Locale

Definition

source

file

format.

For

specific

information

about

locale

categories

and

their

keywords,

see

the

LC_COLLATE

category,

LC_CTYPE

category,

LC_MESSAGES

category,

LC_MONETARY

category,

LC_NUMERIC

category,

and

LC_TIME

category.

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15

provides

information

about

wide

character

and

multibyte

subroutines.

The

strfmon

subroutine.

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15

provides

information

about

wide

character

and

multibyte

subroutines.

The

LC_COLLATE

category

of

the

locale

definition

file

in

AIX

5L

Version

5.2

Files

Reference.

The

LC_CTYPE

category

of

the

locale

definition

file

in

AIX

5L

Version

5.2

Files

Reference.

The

localedef

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3

“List

of

Wide

Character

Subroutines”

on

page

175

and

“List

of

Multibyte

Character

Subroutines”

on

page

175

The

getc

subroutine,

printf

subroutines,

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1;

and

read

subroutine,

scanf

subroutines,

setlocale

subroutine,

strlen

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2.

48

National

Language

Support

Guide

and

Reference

Chapter

4.

Code

Sets

for

National

Language

Support

The

internationalization

of

AIX

is

based

on

the

assumption

that

all

code

sets

can

be

divided

into

any

number

of

character

sets.

The

following

topics

are

covered

in

this

section:

v

“ASCII

Characters”

on

page

53

v

“Code

Set

Strategy”

on

page

55

v

“Code

Set

Structure”

on

page

55

v

“ISO

Code

Sets”

on

page

57

v

“IBM

PC

Code

Sets”

on

page

69

To

understand

code

sets,

it

is

necessary

to

first

understand

character

sets.

A

character

set

is

a

collection

of

predefined

characters

based

on

the

specific

needs

of

one

or

more

languages

without

regard

to

the

encoding

values

used

to

represent

the

characters.

The

choice

of

which

code

set

to

use

depends

on

the

user’s

data

processing

requirements.

A

particular

character

set

can

be

encoded

using

different

encoding

schemes.

For

example,

the

ASCII

character

set

defines

the

set

of

characters

found

in

the

English

language.

The

Japanese

Industrial

Standard

(JIS)

character

set

defines

the

set

of

characters

used

in

the

Japanese

language.

Both

the

English

and

Japanese

character

sets

can

be

encoded

using

different

code

sets.

The

ISO2022

standard

defines

a

coded

character

set

as

a

set

of

precise

rules

that

defines

a

character

set

and

the

one-to-one

relationship

between

each

character

and

its

bit

pattern.

A

code

set

defines

the

bit

patterns

that

the

system

uses

to

identify

characters.

A

code

page

is

similar

to

a

code

set

with

the

limitation

that

a

code-page

specification

is

based

on

a

16-column

by

16-row

matrix.

The

intersection

of

each

column

and

row

defines

a

coded

character.

Consider

the

following

when

working

with

code

sets:

v

Do

not

assume

the

size

of

all

characters

to

be

8

bits,

or

1

byte.

Characters

may

be

1,

2,

3,

4

or

more

bytes.

v

Do

not

assume

the

encoding

of

any

code

set.

v

Do

not

hard

code

names

of

code

sets,

locales,

or

fonts

because

it

can

impact

portability.

The

following

code

sets

are

supported:

v

Support

for

industry-standard

code

sets

is

provided.

The

ISO8859

family

of

code

sets

provides

a

range

of

single-byte

code

set

support

that

includes:

–

Latin-1

–

Latin-2

–

Cyrillic

–

Arabic

–

Greek

–

Hebrew

–

Turkish

The

following

industry-standard

code

sets

are

available:

–

The

IBM-eucJP

code

set

is

the

industry-standard

code

set

used

to

support

the

Japanese

locale.

–

The

IBM-eucKR

code

set

is

the

industry-standard

code

set

used

to

support

Korean

countries.

–

The

IBM-eucTW

code

set

is

the

industry-standard

code

set

used

to

support

Traditional

Chinese

countries.

©

Copyright

IBM

Corp.

2002

49

–

The

IBM-eucCN

code

set

is

the

industry-standard

code

set

used

to

support

countries

using

Simplified

Chinese.

–

The

UTF-8

code

set

is

a

Universal

Transformation

Format

of

Unicode/ISO10646

used

to

support

multiple

languages

at

once

(including

Simplified

Chinese,

Traditional

Chinese,

and

Chinese

characters

used

in

Japanese

and

Korean).

v

ISO8859-15

standard

codeset

is

a

replacement

standard

for

the

existing

ISO8859-1

codeset

that

is

currently

in

use

by

the

western

European

locales,

the

United

States,

and

Canada.

The

need

for

another

codeset

resulted

from

the

introduction

of

the

euro

currency

unit

and

the

need

for

European

countries

to

be

able

to

do

business

transactions

using

the

euro.

In

addition,

ISO8859-15

contains

7

additional

characters

for

the

French

and

Finnish

languages.

v

Support

is

also

provided

for

the

personal

computer

(PC)

based

code

sets

IBM-856,

IBM-943,

IBM-932,

and

IBM-1046.

IBM-856

is

a

single-byte

code

set

used

to

support

Hebrew

countries.

IBM-943

and

IBM-932

are

multibyte

code

set

used

to

support

the

Japanese

locale.

IBM-1046

is

a

single-byte

code

set

used

to

support

Arabic

countries.

v

IBM-1129

is

a

single-byte

code

set

used

to

support

Vietnamese.

v

TIS-620

is

a

single-byte

code

set

used

to

support

Thai.

v

IBM-1124

is

a

single-byte

code

set

used

to

support

Ukrainian.

v

Full

Unicode

support

is

provided

by

the

UTF-8

code

set

for

all

languages

and

territories

supported

by

AIX.

The

UTF-8

code

set

is

a

Universal

Transformation

Format

of

Unicode/ISO10646

used

to

support

multiple

languages

at

once.

The

UTF-8

code

set

provides

the

most

complete

solution

for

use

in

environments

where

multiple

languages

and

alphabets

must

be

processed.

The

Unicode/UTF-8

codeset

also

provides

full

support

for

the

common

European

currency

(euro).

v

IBM-1252

codeset

support

is

provided

as

a

compatibility

option

for

users

who

require

a

single

byte

codeset

environment

containing

the

euro

currency

symbol.

The

structure

of

the

IBM-1252

codeset

is

identical

to

the

industry-standard

codeset

ISO8859-1,

except

that

additional

graphic

characters

are

added

in

the

ISO

control

character

range

from

0x80

through

0x9F.

The

euro

currency

symbol

is

located

at

hexadecimal

value

0x80

in

the

IBM-1252

codeset.

Single-Byte

and

Multibyte

Code

Sets

A

single-byte

encoding

method

is

sufficient

for

representing

the

English

character

set

because

the

number

of

characters

is

not

large.

To

support

larger

alphabets,

such

as

Japanese

and

Chinese,

additional

code

sets

containing

multibyte

encodings

are

necessary.

All

supported

single-byte

and

multibyte

code

sets

contain

the

single-byte

ASCII

character

set.

Therefore,

programs

that

handle

multibyte

code

sets

must

handle

character

encodings

of

one

or

more

bytes.

An

example

of

a

single-byte

code

set

is

the

ISO

8859

family

of

code

sets.

Examples

of

multibyte

character

sets

are

the

IBM-eucJP

and

the

IBM-943

code

sets.

The

single-byte

code

sets

have

at

most

256

characters

and

the

multibyte

code

sets

have

more

than

256

(without

any

theoretical

limit).

Unique

Code-Point

Range

None

of

the

supported

code

sets

have

bytes

0x00

through

0x3F

in

any

byte

of

a

multibyte

character.

This

group

of

code

points

is

called

the

unique

code-point

range.

Furthermore,

these

code

points

always

refer

to

the

same

characters

as

specified

for

7-bit

ASCII.

This

is

a

special

property

governing

all

supported

code

sets.

ASCII

Characters

in

the

Unique

Code-Point

Range

(“ASCII

Characters”

on

page

53)

lists

the

characters

in

the

unique

code-point

range.

50

National

Language

Support

Guide

and

Reference

Data

Representation

Because

the

encoding

for

some

characters

requires

more

than

one

byte,

a

single

character

may

be

represented

by

one

or

several

bytes

when

data

is

created

in

files

or

transferred

between

a

computer

and

its

I/O

devices.

This

external

representation

of

data

is

referred

to

as

the

file

code

or

multibyte

character

code

representation

of

a

character.

For

processing

strings

of

such

characters,

it

is

more

efficient

to

convert

file

codes

into

a

uniform

representation.

This

converted

form

is

intended

for

internal

processing

of

characters.

This

internal

representation

of

data

is

referred

to

as

the

process

code

or

wide

character

code

representation

of

the

character.

An

understanding

of

multibyte

character

and

wide

character

codes

is

essential

to

the

overall

internationalization

strategy.

Multibyte

Character

Code

Data

Representation

A

multibyte

character

code

is

an

external

representation

of

data,

regardless

of

whether

it

is

character

input

from

a

keyboard

or

a

file

on

a

disk.

Within

the

same

code

set,

the

number

of

bytes

that

represent

the

multibyte

code

of

a

character

can

vary.

You

must

use

NLS

functions

for

character

processing

to

ensure

code

set

independence.

For

example,

a

code

set

may

specify

the

following

character

encodings:

C

=

0x43

*

=

0x81

0x43

*C

=

0x81

0x43&

0x43

A

program

searching

for

C,

not

accounting

for

multibyte

characters,

finds

the

second

byte

of

the

*C

string

and

assumes

it

found

C

when

in

fact

it

found

the

second

byte

of

the

*

(asterisk)

character.

Wide

Character

Code

Data

Representation

The

wide

character

code

was

developed

so

that

multibyte

characters

could

be

processed

more

efficiently

internally

in

the

system.

A

multibyte

character

representation

is

converted

into

a

uniform

internal

representation

(wide

character

code)

so

that

internally

all

characters

have

the

same

length.

Using

this

internal

form,

character

processing

can

be

done

in

a

code

set-independent

fashion.

The

wide

character

code

refers

to

this

internal

representation

of

characters.

The

wchar_t

data

type

is

used

to

represent

the

wide

character

code

of

a

character.

The

size

of

the

wchar_t

data

type

is

implementation-specific.

It

is

a

typedef

definition

and

can

be

found

in

the

ctype.h,

stddef.h,

and

stdlib.h

files.

No

program

should

assume

a

particular

size

for

the

wchar_t

data

type,

enabling

programs

to

run

under

implementations

that

use

different

sizes

for

the

wchar_t

data

type.

On

AIX

4.3,

the

wchar_t

datatype

is

implemented

as

an

unsigned

short

value

(16

bits).

On

AIX

5.1

and

later,

the

wchar_t

datatype

is

32–bit

in

the

64–bit

environment

and

16–bit

in

the

32–bit

environment.

.

The

locale

methods

have

been

standardized

such

that

in

most

locales,

the

value

stored

in

the

wchar_t

for

a

particular

character

will

always

be

its

Unicode

data

value.

For

applications

which

are

intended

to

run

only

on

AIX,

this

allows

certain

applications

handle

the

wchar_t

datatype

in

a

consistent

fashion,

even

if

the

underlying

codeset

is

unknown.

All

locales

use

Unicode

for

their

wide

character

code

values

(process

code),

except

the

IBM-eucTW

codeset.

The

IBM-eucTW

codeset

(LANG

=zh_TW)

contains

many

characters

that

are

not

contained

in

the

Unicode

standard.

Because

of

this,

it

is

impossible

to

represent

these

characters

with

a

Unicode

wide

character

value.

Applications

that

need

to

have

Unicode

based

wchar_t

data

for

Traditional

Chinese

should

use

the

Zh_TW

locale

(big5

codeset)

instead.

Do

not

assume

that

the

char

data

type

is

either

signed

or

unsigned.

This

is

platform-specific.

If

the

particular

system

that

is

used

defines

char

to

be

signed,

comparisons

with

full

8-bit

quantity

will

yield

incorrect

results.

As

all

the

8-bits

are

used

in

encoding

a

character,

be

sure

to

declare

char

as

unsigned

char

wherever

necessary.

Also,

note

that

if

a

signed

char

value

is

used

to

index

an

array,

it

may

yield

incorrect

results.

To

make

programs

portable,

define

8-bit

characters

as

unsigned

char.

Chapter

4.

Code

Sets

for

National

Language

Support

51

Character

Properties

Every

character

has

several

language-dependent

attributes

or

properties.

These

properties

are

called

class

properties.

For

example,

the

lowercase

letter

a

in

U.S.

English

has

the

following

properties:

v

alphabetic

v

hexadecimal

digit

v

printable

v

lowercase

v

graphic

Character

class

properties

are

specified

by

the

LC_CTYPE

category.

Collation-Order

Properties

Character

ordering

or

collation

refers

to

the

culture-specific

ordering

of

characters.

This

ordering

differs

from

that

based

on

the

ordinal

value

of

a

character

in

a

code

set.

Collation-based

ordering

is

dependent

on

the

language.

Character

collation

is

specified

by

the

LC_COLLATE

category.

The

term

collating

element

refers

to

one

or

more

characters

that

have

a

collation

value

in

a

specific

locale.

The

Spanish

ll

character

is

an

example

of

a

multicharacter

collating

element.

To

sort

the

characters

in

any

given

language

in

the

proper

order,

a

weight

is

assigned

to

each

character

so

that

the

characters

sort

as

expected.

However,

a

character’s

sort

value

and

code-point

value

are

not

necessarily

related.

One

set

of

weights

is

not

sufficient

to

sort

strings

for

all

languages.

For

example,

in

the

case

of

the

German

words

b<a-umlaut>ch

and

bane,

if

there

is

only

one

set

of

weights,

and

the

weight

of

the

letter

a

is

less

than

that

of

<a-umlaut>,

then

bane

sorts

before

b<a-umlaut>ch.

However,

the

opposite

result

is

correct.

To

satisfy

the

requirement

of

this

example,

two

sets

of

weights,

the

Primary

and

Secondary

Weights,

are

given

to

each

character

in

the

language.

In

the

case

of

the

characters

a

and

<a-umlaut>,

they

have

the

same

Primary

Weights,

but

differ

in

their

Secondary

Weights.

In

the

German

locale,

the

Secondary

Weight

of

a

is

less

than

that

of

<a-umlaut>.

The

sorting

algorithm

first

compares

the

two

strings

based

on

the

Primary

Weights

of

each

character.

If

the

Primary

Weight

values

are

the

same,

the

two

strings

are

compared

again

based

on

their

Secondary

Weights.

In

this

example,

the

Primary

Weights

of

the

first

two

characters

ba

and

b<a-umlaut>

are

the

same,

but

the

Primary

Weights

of

the

characters

that

follow

(c

and

n,

respectively)

differ.

As

a

result

of

this

comparison,

b<a-umlaut>ch

is

sorted

before

bane.

Here,

the

Secondary

Weights

are

not

used

to

collate

the

strings.

However,

as

in

the

case

of

the

strings

bach

and

b<a-umlaut>ch,

Secondary

Weights

must

be

used

to

get

the

proper

order.

When

compared

using

Primary

Weight

values,

these

two

strings

are

found

to

be

equivalent.

To

break

the

tie,

the

Secondary

Weights

of

a

and

<a-umlaut>

are

used.

Because

the

Secondary

Weight

of

a

is

less

than

that

of

<a-umlaut>,

the

string

bach

sorts

before

b<a-umlaut>ch.

Characters

having

the

same

Primary

Weights

belong

to

the

same

equivalence

class.

In

this

example,

the

characters

a

and

<a-umlaut>

are

said

to

be

members

of

the

same

equivalence

class.

In

string

collation,

each

pair

of

strings

is

first

compared

based

on

Primary

Weight.

If

the

two

strings

are

equal,

they

are

compared

again

based

on

their

Secondary

Weights.

If

still

equal,

they

are

compared

again

based

on

Tertiary

Weights

up

to

the

limit

set

by

the

COLL_WEIGHTS_MAX

collating

weight

limit

specified

in

the

sys/limits.h

file.

Code-Set

Width

Code-set

width

refers

to

the

maximum

number

of

bytes

required

to

represent

a

character

as

a

file

code.

This

information

is

specified

by

the

LC_CTYPE

category.

52

National

Language

Support

Guide

and

Reference

Code-Set

Display

Width

Code-set

display

width

refers

to

the

maximum

number

of

columns

required

to

display

a

character

on

a

terminal.

This

information

is

specified

by

the

LC_CTYPE

category.

ASCII

Characters

ASCII

is

a

code

set

containing

128

code

points

(0x00

through

0x7F).

The

ASCII

character

set

contains

control

characters,

punctuation

marks,

digits,

and

the

uppercase

and

lowercase

English

alphabet.

Several

8-bit

code

sets

incorporate

ASCII

as

a

proper

subset.

However,

throughout

this

document,

ASCII

refers

to

7-bit-only

code

sets.

To

emphasize

this,

it

is

referred

to

as

7-bit

ASCII.

The

7-bit

ASCII

code

set

is

a

proper

subset

of

all

supported

code

sets

and

is

referred

to

as

the

portable

character

set.

For

more

information,

see

Chapter

4,

“Code

Sets

for

National

Language

Support,”

on

page

49.

ASCII

Characters

in

the

Unique

Code-Point

Range

The

following

table

lists

the

ASCII

characters

in

the

unique

code-point

range.

These

characters

are

in

the

range

0x00

through

0x3F.

ASCII

Characters

in

the

Unique

Code-Point

Range

Symbolic

Name

Hex

Value

Glyph

Symbolic

Name

Hex

Value

Glyph

nul

00

space

20

blank

soh

01

exclamation-mark

21

!

stx

02

quotation-mark

22

″

etx

03

number-sign

23

#

eot

04

dollar-sign

24

$

enq

05

percent

25

%

ack

06

ampersand

26

&

alert

07

apostrophe

27

’

backspace

08

left-parenthesis

28

(

tab

09

right-parenthesis

29

)

newline

0A

asterisk

2A

*

vertical-tab

0B

plus-sign

2B

+

form-feed

0C

comma

2C

,

carriage-return

0D

hyphen

2D

-

so

0E

period

2E

.

si

0F

slash

2F

/

dle

10

zero

30

0

dc1

11

one

31

1

dc2

12

two

32

2

dc3

13

three

33

3

dc4

14

four

34

4

nak

15

five

35

5

syn

16

six

36

6

etb

17

seven

37

7

can

18

eight

38

8

em

19

nine

39

9

Chapter

4.

Code

Sets

for

National

Language

Support

53

ASCII

Characters

in

the

Unique

Code-Point

Range

Symbolic

Name

Hex

Value

Glyph

Symbolic

Name

Hex

Value

Glyph

sub

1A

colon

3A

:

esc

1B

semicolon

3B

;

is1

1C

less-than

3C

<

is2

1D

equal-sign

3D

=

is3

1E

greater-than

3E

>

is4

1F

question-mark

3F

?

Other

ASCII

Characters

The

following

table

lists

the

7-bit

ASCII

characters

that

are

not

in

the

unique

code-point

range.

These

characters

are

in

the

range

0x40

through

0x7F.

Other

ASCII

Characters

Symbolic

Name

Hex

Value

Glyph

Symbolic

Name

Hex

Value

Glyph

commercial-at

40

@

grave-accent

60

`

A

41

A

a

61

a

B

42

B

b

62

b

C

43

C

c

63

c

D

44

D

d

64

d

E

45

E

e

65

e

F

46

F

f

66

f

G

47

G

g

67

g

H

48

H

h

68

h

I

49

I

i

69

i

J

4A

J

j

6A

j

K

4B

K

k

6B

k

L

4C

L

l

6C

l

M

4D

M

m

6D

m

N

4E

N

n

6E

n

O

4F

O

o

6F

o

P

50

P

p

70

p

Q

51

Q

q

71

q

R

52

R

r

72

r

S

53

S

s

73

s

T

54

T

t

74

t

U

55

U

u

75

u

V

56

V

v

76

v

W

57

W

w

77

w

X

58

X

x

78

x

Y

59

Y

y

79

y

Z

5A

Z

z

7A

z

54

National

Language

Support

Guide

and

Reference

Other

ASCII

Characters

Symbolic

Name

Hex

Value

Glyph

Symbolic

Name

Hex

Value

Glyph

left-bracket

5B

[

left-brace

7B

{

backslash

5C

\

vertical-line

7C

|

right-bracket

5D

]

right-brace

7D

}

circumflex

5E

^

tilde

7E

~

underscore

5F

_

del

7F

Code

Set

Strategy

Each

locale

in

the

system

defines

which

code

set

it

uses

and

how

the

characters

within

the

code

set

are

manipulated.

Because

multiple

locales

can

be

installed

on

the

system,

multiple

code

sets

can

be

used

by

different

users

on

the

system.

While

the

system

can

be

configured

with

locales

using

different

code

sets,

all

system

utilities

assume

that

the

system

is

running

under

a

single

code

set.

Most

commands

have

no

knowledge

of

the

underlying

code

set

being

used

by

the

locale.

The

knowledge

of

code

sets

is

hidden

by

the

code

set-independent

library

subroutines

(NLS

library),

which

pass

information

to

the

code

set-dependent

subroutines.

Because

many

programs

rely

on

ASCII,

all

code

sets

include

the

7-bit

ASCII

code

set

as

a

proper

subset.

Because

the

7-bit

ASCII

code

set

is

common

to

all

supported

code

sets,

its

characters

are

sometimes

referred

to

as

the

portable

character

set.

The

7-bit

ASCII

code

set

is

based

on

the

ISO646

definition

and

contains

the

control

characters,

punctuation

characters,

digits

(0-9),

and

the

English

alphabet

in

uppercase

and

lowercase.

Code

Set

Structure

Each

code

set

is

divided

into

the

following

principal

areas:

Graphic

Left

(GL)

Columns

0-7

Graphic

Right

(GR)

Columns

8-F

The

first

two

columns

of

each

code

set

are

reserved

by

International

Organization

for

Standardization

(ISO)

standards

for

control

characters.

The

terms

C0

and

C1

are

used

to

denote

the

control

characters

for

the

Graphic

Left

and

Graphic

Right

areas,

respectively.

Note:

The

IBM

PC

code

sets

use

the

C1

control

area

to

encode

graphic

characters.

The

remaining

six

columns

are

used

to

encode

graphic

characters.

Graphic

characters

are

considered

to

be

printable

characters,

while

the

control

characters

are

used

by

devices

and

applications

to

indicate

some

special

function.

Control

Characters

Based

on

the

ISO

definition,

a

control

character

initiates,

modifies,

or

stops

a

control

operation.

A

control

character

is

not

a

graphic

character,

but

can

have

graphic

representation

in

some

instances.

The

control

characters

in

the

following

table

are

present

in

all

supported

code

sets

and

the

encoded

values

of

the

control

characters

are

consistent

throughout

the

code

sets.

Name

Value

Description

NUL

00

Null

Chapter

4.

Code

Sets

for

National

Language

Support

55

Name

Value

Description

SOH

01

Start

of

header

STX

02

Start

of

text

ETX

03

End

of

text

EOT

04

End

of

transmission

ENQ

05

Enquiry

ACK

06

Acknowledge

BEL

07

Bell

BS

08

Backspace

HT

09

Horizontal

tab

LF

0A

Line

feed

VT

0B

Vertical

tab

FF

0C

Form

feed

CR

0D

Carrier

return

SO

0E

Shift

Out

SI

0F

Shift

In

DLE

10

Data

link

escape

DC1

11

Device

control

1

DC2

12

Device

control

2

DC3

13

Device

control

3

DC4

14

Device

control

4

NAK

15

Not

acknowledge

SYN

16

Synchrous

idle

ETB

17

End

of

transmission

block

CAN

18

Cancel

EM

1

End

of

media

SUB

1A

Substitute

character

ESC

1B

Escape

character

IS4

1C

Info

Separator

Four

IS3

1D

Info

Separator

Three

IS2

1E

Info

Separator

Two

IS1

1F

Info

Separator

One

Graphic

Characters

Each

code

set

can

be

considered

to

be

divided

into

one

or

more

character

sets,

with

each

character

having

a

unique

coded

value.

The

ISO

standard

reserves

six

columns

for

encoding

characters

and

does

not

allow

graphic

characters

to

be

encoded

in

the

control

character

columns.

Single-Byte

and

Multibyte

Code

Sets

Code

sets

that

use

all

8

bits

of

a

byte

can

support

European,

Middle

Eastern,

and

other

alphabetic

languages.

Such

code

sets

are

called

single-byte

code

sets.

Single-byte

code

sets

have

a

limit

of

encoding

191

characters,

not

including

control

characters.

56

National

Language

Support

Guide

and

Reference

Languages

that

require

more

than

191

characters

use

a

mixture

of

single-byte

characters

(8

bits)

and

multibyte

characters

(more

than

8

bits).

The

system

can

support

any

number

of

bits

to

encode

a

character.

ISO

Code

Sets

The

code

sets

listed

in

the

following

topics

are

based

on

definitions

set

by

the

International

Organization

for

Standardization

(ISO).

ISO646-IRV

The

″ISO646-IRV

code

set″

below

defines

the

code

set

used

for

information

processing

based

on

a

7-bit

encoding.

The

character

set

associated

with

this

code

set

is

derived

from

the

ASCII

characters.

ISO8859

Family

ISO8859

is

a

family

of

single-byte

encodings

based

on

and

compatible

with

other

ISO,

American

National

Standards

Institute

(ANSI),

and

European

Computer

Manufacturer’s

Association

(ECMA)

code

extension

techniques.

The

ISO8859

encoding

defines

a

family

of

code

sets

with

each

member

containing

its

own

unique

character

sets.

The

7-bit

ASCII

code

set

is

a

proper

subset

of

each

of

the

code

sets

in

the

ISO8859

family.

While

the

ASCII

code

set

defines

an

order

for

the

English

alphabet,

the

Graphic

Right

(GR)

characters

are

not

ordered

according

to

any

specific

language.

The

locale

defines

the

language-specific

ordering.

Each

code

set

includes

the

ASCII

character

set

plus

its

own

unique

character

set.

The

ISO8859

encoding

figure

shows

the

ISO8859

general

encoding

scheme.

Chapter

4.

Code

Sets

for

National

Language

Support

57

Character

Encoding

Code

Point

Description

Count

000xxxxx

00–1F

Controls

32

00100000

20

Space

1

0xxxxxxx

21–7E

7-bit

94

01111111

7F

Delete

1

100xxxxx

80–9F

Controls

32

10100000

A0

No-break

Space

1

1xxxxxxx

A1–F

8-bit

96

Code

Set

ISO8859-1

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

ISO8859-1.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–1”

on

page

179.

58

National

Language

Support

Guide

and

Reference

Code

Set

ISO8859-2

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

ISO8859-2.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–2”

on

page

182.

Chapter

4.

Code

Sets

for

National

Language

Support

59

Code

Set

ISO8859-5

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

ISO8859-5.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–5”

on

page

184.

60

National

Language

Support

Guide

and

Reference

Code

Set

ISO8859-6

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

ISO8859-6.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–6”

on

page

187.

Chapter

4.

Code

Sets

for

National

Language

Support

61

Code

Set

ISO8859-7

The

following

figure

summarizes

the

available

symbols

and

layout

of

Code

Set

ISO8859-7.

This

code

set

is

made

up

of

an

ASCII

character

set

plus

its

own

unique

character

set.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–7”

on

page

188.

62

National

Language

Support

Guide

and

Reference

Code

Set

ISO8859-8

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

ISO8859-8.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–8”

on

page

190.

Chapter

4.

Code

Sets

for

National

Language

Support

63

Code

Set

ISO8859-9

The

following

figure

summarizes

the

available

symbols

and

layout

of

Code

Set

ISO8859-9.

This

code

set

is

made

up

of

an

ASCII

character

set

plus

its

own

unique

character

set.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–9”

on

page

192.

64

National

Language

Support

Guide

and

Reference

Code

Set

ISO8859-15

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

ISO8859-15.

For

a

textual

representation

of

this

code

set,

see

“ISO8859–15”

on

page

194.

Chapter

4.

Code

Sets

for

National

Language

Support

65

Extended

UNIX

Code

(EUC)

Encoding

Scheme

The

EUC

encoding

scheme

defines

a

set

of

encoding

rules

that

can

support

one

to

four

character

sets.

The

encoding

rules

are

based

on

the

ISO2022

definition

for

the

encoding

of

7-bit

and

8-bit

data.

The

EUC

encoding

scheme

uses

control

characters

to

identify

some

of

the

character

sets.

The

following

table

shows

the

basic

structure

of

all

EUC

encoding.

EUC

Character

Encoding

CS0

0xxxxxxx

CS1

1xxxxxxx
1xxxxxxx

1xxxxxxxx
1xxxxxxx

1xxxxxxxx

1xxxxxxx
...

CS2

10001110

1xxxxxxx
10001110

1xxxxxxx

1xxxxxxxx
10001110

1xxxxxxx

1xxxxxxxx

1xxxxxxxx
...

CS3

10001111

1xxxxxxx
10001111

1xxxxxxx

1xxxxxxxx
10001111

1xxxxxxx

1xxxxxxxx

1xxxxxxxx
...

The

term

EUC

denotes

these

general

encoding

rules.

A

code

set

based

on

EUC

conforms

to

the

EUC

encoding

rules

but

also

identifies

the

specific

character

sets

associated

with

the

specific

instances.

For

example,

IBM-eucJP

for

Japanese

refers

to

the

encoding

of

the

Japanese

Industrial

Standard

characters

according

to

the

EUC

encoding

rules.

The

first

set

(CS0)

always

contains

an

ISO646

character

set.

All

of

the

other

sets

must

have

the

most

significant

bit

(MSB)

set

to

1

and

can

use

any

number

of

bytes

to

encode

the

characters.

In

addition,

all

characters

within

a

set

must

have

the

following:

v

Same

number

of

bytes

to

encode

all

characters

v

Same

column

display

width

(number

of

columns

on

a

fixed-width

terminal)

All

characters

in

the

third

set

(CS2)

are

always

preceded

with

the

control

character

SS2

(single-shift

2,

0x8e).

Code

sets

that

conform

to

EUC

do

not

use

the

SS2

control

character

other

than

to

identify

the

third

set.

All

characters

in

the

fourth

set

(CS3)

are

always

preceded

with

the

control

character

SS3

(single-shift

3,

0x8f).

Code

sets

that

conform

to

EUC

do

not

use

the

SS3

control

character

other

than

to

identify

the

fourth

set.

IBM-eucJP

The

EUC

for

Japanese

is

an

encoding

consisting

of

single-byte

and

multibyte

characters.

The

encoding

is

based

on

ISO2022,

Japanese

Industrial

Standard

(JIS),

and

EUC

definitions.

The

IBM-eucJP

code

set

consists

of

the

following

character

sets:

JISCII

JISX0201

Graphic

Left

character

set

JISX0201.1976

Katakana/Hiragana

Graphic

Right

character

set

JISX0208.1983

Kanji

level

1

and

2

character

sets

IBM-udcJP

IBM-user

definable

characters

66

National

Language

Support

Guide

and

Reference

The

IBM-eucJP

code

set

is

also

capable

of

supporting

the

following:

JISX0212.1990

Supplemental

Kanji

The

IBM-eucJP

code

set

is

encoded

as

follows:

v

CS0

maps

JISX0201

Graphic

Left

characters

starting

at

the

0x00

position.

v

CS1

maps

the

JISX0208

character

set

starting

at

the

0xa1xa1

position.

The

positions

0xf5a1

through

0xfefe

(940

characters)

in

CS1

are

reserved

as

primary

user-definable

character

areas.

v

CS2

maps

the

JISX0201

Graphic

Right

starting

at

the

0x8ea1

position.

v

CS3

is

capable

of

mapping

JISX0212

starting

at

the

0x8fa1a1

position.

The

positions

0x8ff5a1

through

0x8ffefe

in

CS3

(940

characters)

are

reserved

as

secondary

user-definable

character

areas.

The

positions

0x8feea1

through

0x8ff4fe

in

CS3

(658

characters)

are

reserved

for

future

system

use.

Therefore,

users

should

not

use

this

area.

IBM-eucCN

The

EUC

for

the

Simplified

Chinese

language

is

an

encoding

consisting

of

characters

that

contain

1

or

2

bytes.

The

EUC

encoding

is

based

on

ISO2022,

GB2312

as

defined

by

the

People’s

Republic

of

China,

and

multibyte

character

definitions

unique

to

the

manufacturer.

The

current

GB2312

defines

6,763

Simplified

Chinese

characters

and

682

symbols.

The

IBM-eucCN

is

based

upon

a

concept

of

one

plane

containing

up

to

94x94

characters.

The

encoding

values

of

these

characters

range

from

0xa1a1

to

0xfefe.

The

GB2312

is

mapped

into

the

CS1

of

EUC.

Specifically,

the

IBM-eucCN

consists

of

the

following

character

sets:

ISO0646-IRV

7-bit

ASCII

character

set,

Graphic

Left.

GB2312.1980

Contains

7445

characters.

It

occupies

positions

0xa1a1

to

0xfedf

(some

user-defined

characters

scattered

in

0xa1a1

to

0xfedf).

IBM-udcCN

Scattered

in

GB.

It

occupies

positions

Oxa1a1

to

Oxfedf.

The

actual

values

are:

a2a1

--

a2b0

a1e3

--

a2e4

a1ef

--

a2f0

a2fd

--

a1fe

a4f4

--

a4fe

a5f7

--

a5fe

a6b9

--

a6c0

a6d9

--

a6fe

a7c2

--

a7d0

a7f2

--

a7fe

a8bb

--

a8c4

a8ea

--

a9a3

a9f0

--

affe

a7fa

--

d7fe

f8a1

--

fedf

IBM-sbdCN

Scattered

in

GB.

It

occupies

positions

0xfee0

to

0xfefe.

GB18030

GBK

stands

for

Guo

(national)

Biao

(Standard)

Kuo

(Extension).

GB18030

expands

the

national

″Industry

GB″

definition

to

contain

all

20,

902

Han

Characters

defined

in

Unicode

and

additional

DBCS

symbols

defined

in

Big-5

code

(Traditional

Chinese

PC

defacto

standard).

GB18030

defines

all

DBCS

characters

and

symbols

in

use

in

the

People’s

Republic

of

China

and

in

Taiwan.

Locale

Code

Set

Description

Zh_CN

GB18030

Simplified

Chinese,

GB18030

Locale

Code

Range

Words

Marks

A1A1-A9FE

846

GB2312,

GB12345

(GBK/1)

A840-A9A0

192

Big5,

Symbols

(GBK/5)

B0A1-F7FE

6768

GB2312

(GBK/2)

Chapter

4.

Code

Sets

for

National

Language

Support

67

Code

Range

Words

Marks

8140-A0FE

6080

GB13000

(GBK/3)

AA40-FEA0

8160

GB13000

(GBK/4)

AAA1-AFFE

564

User

defined

1

F8A1-FEFE

658

User

defined

2

A140-A7A0

672

User

defined

3

IBM-eucTW

The

EUC

for

the

Traditional

Chinese

language

is

an

encoding

consisting

of

characters

that

contain

1,

2

and

4

bytes.

The

EUC

encoding

is

based

on

ISO2022,

the

Chinese

National

Standard

(CNS)

as

defined

by

Taiwan,

and

multibyte

character

definitions

unique

to

the

manufacturer.

The

current

CNS

defines

13,501

Chinese

characters

and

684

symbols.

The

IBM-eucTW

is

based

upon

a

concept

of

15

planes,

each

containing

up

to

8836

(94x94)

characters.

The

encoding

values

of

these

characters

range

from

0xa1a1

to

0xfefe.

Characters

have

presently

been

defined

for

only

4

of

the

planes,

with

the

other

planes

being

reserved

for

future

expansion.

The

15

planes

are

mapped

into

the

CS1

and

CS2

of

EUC,

with

the

CS2

of

EUC

consisting

of

14

planes.

Specifically,

the

IBM-eucTW

consists

of

the

following

character

sets:

ISO646-IRV

7-bit

ASCII

character

set,

Graphic

Left.

CNS11643.1986-1

Plane

1,

containing

6085

characters

(5401+684).

This

plane

uses

positions

0ax1a1-0xc2c1

and

0xc4a1-0xfdcb.

CNS11643.1986-2

Plane

2,

containing

7650

characters.

This

plane

occupies

positions

0x8ea2a1a1-0x8ea2f2c4.

CNS11643.1992-3

Plane

4,

containing

7298

characters.

This

plane

occupies

positions

0x8ea4a1a1-0x8ea4eedc.

IBM-udcTW

Plane

12,

containing

6204

characters.

This

plane

is

reserved

for

the

User

Defined

Characters

(udc)

areas.

It

occupies

the

positions

0x8eaca1a1-0x8ea2f2c4.

IBM-sbdTW

Plane

13,

containing

325

characters.

This

plane

is

reserved

for

symbols

unique

to

the

manufacturer.

It

occupies

positions

0xeada1a1-0x8eada4cb.

Planes

3-11

are

expected

to

occupy

positions

0x8ea3xxxx

to

0x8eabxxxx.

Planes

14-15

are

expected

to

occupy

positions

0x8eaexxxx

to

0x8eafxxxx.

Big5

The

Traditional

Chinese

big5

locale,

Zh_TW,

code

set

is

the

most

commonly

used

code

set

in

the

PC

field

that

is

used

to

support

countries

using

Traditional

Chinese.

Big5

code

set

defines

13056

characters

and

1004

symbols.

It

includes

684

symbols

in

CNS11643.192,

as

well

as

325

symbols

unique

to

IBM.

Locale

Code

Set

Description

Zh_TW

Big5

(IBM-950)

Traditional

Chinese,

Big5

Locale

Code

Range

for

Big5

Locale:

Plan

Code

Range

Description

1

A140H

-

A3E0H

Symbol

and

Chinese

Control

Code

68

National

Language

Support

Guide

and

Reference

Plan

Code

Range

Description

1

A440H

-

C67EH

Commonly

Used

Characters

2

C940H

-

F9D5H

Less

Commonly

Used

Characters

UDF

FA40H

-

FEFE

User-Defined

Characters

8E40H

-

A0FEH

User-Defined

Characters

8140H

-

8DFEH

User-Defined

Characters

8181H

-

8C82H

User-Defined

Characters

F9D6H

-

F9F1H

User-Defined

Characters

Code

Set

Words

Code

Range

Marks

Commonly

Used

Area

5841

A140-C67E

Less

Commonly

Used

Area

7652

C940-F9D5

ET

Unique

Area

(1)

308

C6A1-C878

ET

Unique

Area

(2)

7

C8CD-C8D3

IBM

Unique

Area

251

F286-F9A0

Low-Byte

Range

81-A0

User-Defined

Area

(1)

785

FA40-FEFE

User-Defined

Area

(2)

2983

8E40-A0FE

User-Defined

Area

(3)

2041

8140-8DFE

User-Defined

Area

(4)

354

8181-8C82

Low-Byte

Range

81-AQ

User-Defined

Area

(5)

41

F9D6-F9FE

IBM-eucKR

The

EUC

for

the

Korean

language

is

an

encoding

consisting

of

single-byte

and

multibyte

characters.

The

encoding

is

based

on

ISO2022,

Korean

Standard

Code

set,

and

EUC

definitions.

The

Korean

EUC

code

set

consists

of

the

following

main

character

groups:

v

ASCII

(English)

v

Hangul

(Korean

characters)

The

Hangul

code

set

includes

Hangul

and

Hanja

(Chinese)

characters.

One

Hangul

character

can

comprise

several

consonants

and

vowels.

However,

most

Hangul

words

can

be

expressed

in

Hanja.

Each

Hanja

character

has

its

own

meaning

and

is

more

specific

than

Hangul.

The

IBM-eucKR

consists

of

the

following

character

sets:

ISO646-IRV

7-bit

ASCII

character

set,

Graphic

Left

KSC5601.1987-0

Korean

Graphic

Character

Set,

Graphic

Right

IBM

PC

Code

Sets

IBM

PC

code

sets

are

the

code

sets

originally

supported

on

the

IBM

PC

systems

and

AIX.

The

IBM

PC

code

sets

assign

graphic

characters

to

the

Control

One

(C1)

control

area.

Applications

that

depend

on

these

control

characters

cannot

support

these

code

sets.

The

ASCII

characters

are

encoded

with

the

most

significant

bit

(MSB)

zero

in

positions

0x20-0x7e.

The

extended

Latin

1,

combined

with

the

IBM

PC

unique

character

sets,

make

up

the

extended

set

of

Chapter

4.

Code

Sets

for

National

Language

Support

69

characters

which

are

encoded

in

positions

0x80-0xfe.

The

following

table

shows

the

location

of

the

control,

ASCII,

and

extended

characters

for

the

IBM-850

code

set.

Character

Encoding

Code

Point

Description

Count

000xxxxx

00–1F

Controls

32

00100000

20

Space

1

0xxxxxxx

21–7E

7-bit

94

01111111

7F

Delete

1

1xxxxxxx

80–FE

8-bit

17

11111111

FF

All

ones

1

The

IBM

PC

unique

character

set

includes

the

following:

IBM

PC

Unique

Character

Set

Symbol

Return

Code

Florin

sign

0x9f

Quarter-hashed

0xb0

Half-hashed

0xb1

Full-hashed

0xb2

Vertical

bar

0xb3

Right-side

middle

0xb4

Double

right-side

middle

0xb9

Double

vertical

bar

0xba

Double

upper

right-corner

box

0xbb

Double

lower

right-corner

box

0xbc

Upper

right-corner

box

0xbf

Lower

left-corner

box

0xc0

Bottom-side

middle

0xc1

Top-side

middle

0xc2

Left-side

middle

0xc3

Center-box

bar

0xc4

Intersection

0xc5

Double

lower

left-corner

box

0xc8

Double

upper

left-corner

box

0xc9

Double

bottom-side

middle

0xca

Double

top-side

middle

0xcb

Double

left-side

middle

0xcc

Double

center-box

bar

0xcd

Double

intersection

0xce

Small

i

dotless

0xd5

Lower

right-corner

box

0xd9

Upper

left-corner

box

0xda

Bright

character

cell

0xdb

70

National

Language

Support

Guide

and

Reference

IBM

PC

Unique

Character

Set

Symbol

Return

Code

Bright

character

cell

-

lower

half

0xde

Bright

character

cell

-

upper

half

0xdf

Overbar

0xee

Middle

dot,

Product

dot

0xfa

Vertical

solid

rectangle

0xfe

IBM-856

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

IBM-856.

For

a

textual

representation

of

this

code

set,

see

“IBM-856”

on

page

197.

Chapter

4.

Code

Sets

for

National

Language

Support

71

IBM-921

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

IBM-921.

For

a

textual

representation

of

this

code

set,

see

“IBM-921”

on

page

200.

72

National

Language

Support

Guide

and

Reference

IBM-922

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

IBM-922.

For

a

textual

representation

of

this

code

set,

see

“IBM-922”

on

page

202.

Chapter

4.

Code

Sets

for

National

Language

Support

73

IBM-943

and

IBM-932

Each

of

the

Japanese

IBM

PC

code

sets

are

an

encoding

consisting

of

single-byte

and

multibyte

coded

characters.

The

encoding

is

based

on

the

IBM

PC

code

set

and

places

the

JIS

characters

in

shifted

positions.

This

is

referred

to

as

Shift-JIS

or

SJIS.

IBM-943

is

a

newer

code

set

for

the

Japanese

locale

than

IBM-932.

IBM-943

is

a

compatible

code

set

for

the

Japanese

Microsoft

Windows

environment.

This

code

set

is

known

as

1983

ordered

shift-JIS.

The

differences

between

IBM-932

and

IBM-943

are

as

follows:

v

Previous

JIS

sequence

(1978

ordered)

is

applied

for

IBM-932

while

newer

JIS

sequence

(1983

ordered)

is

applied

for

IBM-943.

v

NEC

selected

characters

are

added

to

IBM-943.

v

NEC’s

IBM

selected

characters

are

added

to

IBM-943.

The

IBM-932

code

set

consists

of

the

following

character

sets:

JISCII

JISX0201

Graphic

Left

character

set

JISX0201.1976

Katakana/Hiragana

Graphic

Right

character

set

JISX0208.1983

Kanji

level

1

and

2

character

sets

IBM-udcJP

IBM

user-definable

characters

The

IBM-943

code

set

consists

of

the

following

character

sets:

JISCII

JISX0201

Graphic

Left

character

set

JISX0201.1976

Katakana/Hiragana

Graphic

Right

character

set

JISX0208.1990

Kanji

level

1

and

2

character

sets

IBM-udcJP

IBM

user-definable

characters

and

NEC’s

IBM

selected

characters

and

NEC

selected

characters

The

first

byte

of

each

character

is

used

to

determine

the

number

of

bytes

for

a

given

character.

The

values

0x20-0x7e

and

0xa1-oxdf

are

used

to

encode

JISX0201

characters,

with

exceptions.

The

positions

0x81-0x9f

and

0xe0-0xfc

are

reserved

for

use

as

the

first

byte

of

a

multibyte

character.

The

JISX0208

characters

are

mapped

to

the

multibyte

values

starting

at

0x8140.

The

second

byte

of

a

multibyte

character

can

have

any

value.

The

Shift-JIS

table

shows

where

these

characters

are

located

on

the

code

set.

Character

Encoding

Code

Point

Description

Count

000xxxxx

00–1f

Controls

32

00100000

20

Space

1

0xxxxxxx

21–7E

7-bit

ASCII

94

01111111

7F

Delete

1

10000000

80

Undefined

1

100xxxxx

01xxxxxx

[81–9F]

[40–7E]

Double

byte

1953

100xxxxx

1xxxxxxx

[81–9F]

[80–FC]

Double

byte

3975

10100000

A0

Undefined

1

1xxxxxxx

A1–DF

7-bit

single

byte

63

111xxxxx

01xxxxxx

[E0–FC]

[40–7E]

Double

byte

1827

111xxxxx

1xxxxxxx

[E0–FC]

[80–FC]

Double

byte

3625

11111101

FD

Undefined

1

11111110

FE

Undefined

1

74

National

Language

Support

Guide

and

Reference

Character

Encoding

Code

Point

Description

Count

11111111

FF

Undefined

1

The

following

table

shows

the

DBCS

portion

of

IBM-943.

Code

Point

Description

[81–84]

[40–7E]

and

[81–84]

[80–F0]

JIS

X

0208

(Non-Kanji)

[87]

[40–7E]

and

[87]

[80–F0]

NEC

selected

characters

[89–98]

[40–7E]

and

[88]

[9F-F0],

[89–97]

[80–F0],

[98]

[80–9F]

JIS

X0208

(Level-1

Kanji)

[99–9F]

[40–7E]

and

[98]

[9F-F0],

[99–9F]

[80–F0]

JIS

X0208

(Level-2

Kanji)

[E0–EA]

[40–7E]

and

[E0–EA]

[80–F0]

JIS

X0208

(Level-2

Kanji)

[ED–EE]

[40–7E]

and

[ED–EE]

[80–F0]

NEC

IBM

selected

characters

[F0–F9]

[40–7E]

and

[F0–F9]

[80–F0]

User-defined

characters

[FA]

[40–5C]

IBM

selected

characters

(non-Kanji)

[FA]

[5C-7E],

[FB-FC]

[40–7E]

and

[FA-FC]

[80–F0]

IBM

selected

characters

(Kanji)

The

following

table

shows

the

DBCS

portion

of

IBM-932.

Code

Point

Description

[81–98]

[40–7E]

and

[81–97]

[80–FC],

[98]

[80–9F]

JIS

X

0208

(Level-1

Kanji)

[99–9F]

[40–7E]

and

[98]

[9F-FC],

[99–9F]

[80–FC]

JIS

X

0208

(Level-2

Kanji)

[E0–EF]

[40–7E]

and

[E0–EF]

[80–FC]

JIS

X

0208

(Level-2

Kanji)

[F0–F9]

[40–7E]

and

[F0–F9]

[80–FC]

User-defined

characters

[FA–FC]

[40–7E]

and

[FA–FC]

[80–FC]

IBM

selected

characters

Chapter

4.

Code

Sets

for

National

Language

Support

75

IBM-1046

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

IBM-1046.

For

a

textual

representation

of

this

code

set,

see

“IBM-1046”

on

page

205.

76

National

Language

Support

Guide

and

Reference

IBM-1124

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

IBM-1124.

For

a

textual

representation

of

this

code

set,

see

“IBM-1124”

on

page

208.

Chapter

4.

Code

Sets

for

National

Language

Support

77

IBM-1129

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

IBM-1129.

For

a

textual

representation

of

this

code

set,

see

“IBM-1129”

on

page

210.

78

National

Language

Support

Guide

and

Reference

TIS-620

The

following

figure

summarizes

the

available

symbols

and

shows

the

layout

of

Code

Set

TIS-620.

For

a

textual

representation

of

this

code

set,

see

“TIS-620”

on

page

213.

Chapter

4.

Code

Sets

for

National

Language

Support

79

UCS-2

and

UTF-8

AIX

provides

a

set

of

codesets

that

address

the

needs

of

a

particular

language

or

a

language

group.

None

of

the

codesets

represented

in

the

ISO8859

family

of

codesets,

the

PC

codesets,

nor

the

Extended

UNIX

Code

(EUC)

codesets

allow

the

mixing

of

characters

from

different

scripts.

With

ISO8859-1,

you

can

mix

and

represent

the

Latin

1

characters

(languages

principally

spoken

in

the

U.S.,

Canada,

Western

Europe,

and

Latin

America).

ISO8859-2

covers

Eastern

European

languages;

ISO8859-5

covers

Cyrillic,

ISO8859-6

covers

Arabic,

ISO8859-7

covers

Greek,

ISO8859-8

covers

Hebrew,

ISO8859-9

covers

Turkish,

IBM-eucJP

covers

Japanese,

IBM-eucKR

covers

Korean,

IBM-eucTW

covers

Traditional

Chinese.

The

point

is

that

none

of

the

above

codesets

covers

all

of

the

languages.

The

International

Organization

for

Standardization

(ISO)

addressed

the

limited

language

coverage

by

code

sets

by

adopting

Unicode

as

the

encoding

for

the

2-octet

form

of

the

ISO10646

Universal

Multiple-Octet

Coded

Character

Set

(UCS-2).

The

32-bit

form

of

ISO10646

is

known

as

UCS-4

for

4-octet

form.

AIX

uses

the

16-bit

form

of

ISO10646

and

uses

the

standard

label

UCS-2

to

describe

this

encoding.

Although

UCS-2

is

ideal

for

an

internal

process

code,

it

is

not

suitable

for

encoding

plain

text

on

traditional

byte-oriented

systems,

such

as

AIX.

Therefore,

the

external

file

code

is

The

Open

Group’s

File

System

Safe

UCS

Transformation

Format

(FSS-UTF).

This

transformation

format

encoding

is

also

known

as

UTF-8,

and

UTF-8

is

the

label

that

is

used

for

this

encoding

on

AIX.

ISO10646

UCS-2

(Unicode)

Universal

Coded

Character

Set

(UCS)

is

the

name

of

the

ISO10646

standard

that

defines

a

single

code

for

the

representation,

interchange,

processing,

storage,

entry,

and

presentation

of

the

written

form

of

all

the

major

languages

of

the

world.

ISO10646

defines

canonical

character

codes

with

a

length

of

32

bits,

which

provides

code

numbers

for

over

4

billion

characters.

When

used

in

canonical

form

to

represent

text,

the

coding

is

referred

to

as

UCS-4

for

Universal

Coded

Character

Set

4-byte

form.

The

code

values

from

0x0000

through

0xFFFF

of

ISO

10646

can

be

represented

by

a

uniform

character

encoding

of

16

bits.

When

used

in

this

form

to

represent

text,

these

codes

are

referred

to

as

UCS-2,

for

Universal

Character

Set

2-octet

form.

This

range

is

also

called

the

Basic

Multilingual

Plane

(BMP)

of

ISO10646.

The

standard

is

arranged

so

that

the

most

useful

characters,

covering

all

major

existing

standards

worldwide,

are

assigned

within

this

range.

The

character

code

values

of

UCS-2

are

identical

to

those

of

the

Unicode

character

encoding

standard

published

by

the

Unicode

Consortium.

UCS-2

defines

codes

for

characters

used

in

all

major

written

languages.

In

addition

to

a

set

of

scientific,

mathematic,

and

publishing

symbols,

UCS-2

covers

the

following

scripts:

v

Arabic

v

Armenian

v

Bengali

v

Bopomofo

v

Cyrillic

v

Devanagari

v

Georgian

v

Greek

v

Gujarati

v

Gurmukhi

v

Hangul

v

Chinese

Hanzi

80

National

Language

Support

Guide

and

Reference

v

Hebrew

v

Hiragana

v

International

Phonetic

Alphabet

(IPA)

v

Katakana

v

Japanese

Kanji

v

Kannada

v

Korean

Hanja

v

Laotian

v

Latin

v

Malayalam

v

Oriya

v

Tamil

v

Teluga

v

Thai

v

Tibetan

The

ability

of

AIX

to

display

characters

in

the

scripts

mentioned

above

is

limited

to

the

availability

of

fonts.

AIX

provides

bitmap

fonts

for

most

of

the

major

languages

of

the

world,

as

well

as

a

Unicode-based

scalable

TrueType

font.

Use

of

this

font

requires

the

TrueType

font

rasterizer

for

AIX,

which

is

a

separately

installable

feature.

UCS-2

encodes

a

number

of

combining

characters,

also

known

as

non-spacing

marks

for

floating

diacritics.

These

characters

are

necessary

in

several

scripts

including

Indic,

Thai,

Arabic,

and

Hebrew.

The

combining

characters

are

used

for

generating

characters

in

Latin,

Cyrillic,

and

Greek

scripts.

However,

the

presence

of

combining

characters

creates

the

possibility

for

an

alternative

coding

for

the

same

text.

Although

the

coding

is

unambiguous

and

data

integrity

is

preserved,

the

processing

of

text

that

contains

combining

characters

is

more

complex.

To

provide

conformance

for

applications

that

choose

not

to

deal

with

the

combining

characters,

ISO10646

defines

the

following

implementation

levels:

Level

1

Does

not

allow

combining

characters.

Level

2

Allows

combining

marks

from

Thai,

Indic,

Hebrew,

and

Arabic

scripts.

Level

3

Allows

combining

marks,

including

ones

for

Latin,

Cyrillic,

and

Greek.

UCS-4

and

UTF-32

The

Unicode

standard

is

used

to

define

standard

character

encodings

for

most

of

the

commonly

used

languages

in

the

world.

The

2-byte

form

of

this

standard

is

commonly

referred

to

as

UCS-2.

However,

UCS-2

is

only

capable

of

representing

a

maximum

of

65,536

characters

as

a

2-byte

quantity.

The

4-byte

form

of

Unicode

is

referred

to

as

UCS-4

or

UTF-32,

and

is

capable

of

defining

the

complete

extensions

of

Unicode,

with

a

maximum

of

over

1,000,000

unique

characters

definable.

UTF-8

(UCS

Transformation

Format)

The

Open

Group

has

developed

a

transformation

format

for

UCS

designed

for

use

in

existing

file

systems.

The

intent

is

that

UCS

will

be

the

process

code

for

the

transformation

format,

which

is

usable

as

a

file

code.

UTF-8

has

the

following

properties:

v

It

is

a

superset

of

ASCII,

in

which

the

ASCII

characters

are

encoded

as

single-byte

characters

with

the

same

numeric

value.

Chapter

4.

Code

Sets

for

National

Language

Support

81

v

No

ASCII

code

values

occur

in

multibyte

characters,

other

than

those

that

represent

the

ASCII

characters.

v

The

first

byte

of

a

character

indicates

the

number

of

bytes

to

follow

in

the

multibyte

character

sequence

and

cannot

occur

anywhere

else

in

the

sequence.

The

UTF-8

encodes

UCS

values

in

the

0

through

0x7FFFFFFF

range

using

multibyte

characters

with

lengths

of

1,

2,

3,

4,

5,

and

6

bytes.

Single-byte

characters

are

reserved

for

the

ASCII

characters

in

the

0

through

0x7f

range.

These

characters

all

have

the

high

order

bit

set

to

0.

For

all

character

encodings

of

more

than

one

byte,

the

initial

byte

determines

the

number

of

bytes

used,

and

the

high-order

bit

in

each

byte

is

set.

Every

byte

that

does

not

start

with

the

bit

combination

of

10xxxxxx,

where

x

represents

a

bit

that

may

be

0

or

1,

is

the

start

of

a

UCS

character

sequence.

The

following

table

provides

UTF-8

multibyte

codes:

Bytes

Bits

Hex

Minimum

Hex

Maximum

Byte

Sequence

in

Binary

1

7

00000000

0000007F

0xxxxxxx

2

11

00000080

000007FF

110xxxxx

10xxxxxx

3

16

00000800

0000FFFF

1110xxxx

10xxxxxx

10xxxxxx

4

21

00010000

001FFFFF

11110xxx

10xxxxxx

10xxxxxx

10xxxxxx

5

26

00200000

03FFFFFF

111110xx

10xxxxxx

10xxxxxx

10xxxxx

10xxxxxx

6

31

04000000

7FFFFFFF

1111110x

10xxxxxx

10xxxxxx

10xxxxxx

10xxxxxx

10xxxxxx

The

UCS

value

is

just

the

concatenation

of

the

x

bits

in

the

multibyte

encoding.

When

there

are

multiple

ways

to

encode

a

value

(for

example,

UCS

0),

only

the

shortest

encoding

is

permitted.

The

following

subset

of

UTF-8

is

used

to

encode

UCS-2:

Bytes

Bits

Hex

Minimum

Hex

Maximum

Byte

Sequence

in

Binary

1

7

00000000

0000007F

0xxxxxxx

2

11

00000080

000007FF

110xxxxx

10xxxxxx

3

16

00000800

0000FFFF

1110xxxx

10xxxxxx

10xxxxxx

This

subset

of

UTF-8

requires

a

maximum

of

three

(3)

bytes.

UTF-16

UTF-16

is

the

UCS

Transformation

Format

for

16

planes

of

Group

00.

UTF-16

is

the

ISO/IEC

encoding

that

is

equivalent

to

the

Unicode

Standard

with

the

use

of

surrogates.

In

UTF-16,

each

UCS-2

code

value

represents

itself.

Non-BMP

code

values

of

ISO/EIC

10646

in

planes

1..16

are

represented

using

pairs

of

special

codes.

UTF-16

defines

the

transformation

between

the

UCS-4

code

positions

in

planes

1

to

16

of

Group

00

and

the

pairs

of

special

codes,

and

is

identical

to

the

transformation

defined

in

the

Unicode

Standard.

Related

Information

Low

Function

Terminal

(LFT)

Subsystem

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

Keyboard

Overview

82

National

Language

Support

Guide

and

Reference

Chapter

5.

Converters

Overview

for

Programming

National

Language

Support

(NLS)

provides

a

base

for

internationalization

in

which

data

often

can

be

changed

from

one

code

set

to

another.

Support

of

several

standard

converters

for

this

purpose

is

provided.

This

section

discusses

the

following

aspects

of

conversion:

v

“Standard

Converters”

v

“Understanding

libiconv”

on

page

84

v

“Using

Converters”

on

page

87

v

“List

of

Converters”

on

page

89

Data

sent

by

one

program

to

another

program

residing

on

a

remote

host

may

require

conversion

from

the

code

set

of

the

source

machine

to

that

of

the

receiver.

For

example,

when

communicating

with

a

VM

system,

the

workstation

converts

its

ISO8859-1

data

to

an

EBCDIC

form.

Code

sets

define

graphic

characters

and

control

character

assignments

to

code

points.

These

coded

characters

must

also

be

converted

when

a

program

obtains

data

in

one

code

set

but

displays

it

in

another

code

set.

The

system

provides

the

following

conversion

interfaces:

iconv

command

Allows

you

to

request

a

specific

conversion

by

naming

the

FromCode

and

ToCode

code

sets.

libiconv

functions

Allows

applications

to

request

converters

by

name.

For

more

information,

see

“Understanding

libiconv”

on

page

84.

The

system

provides

ready-to-use

libraries

of

converters.

The

converter

libraries

are

found

in

the

/usr/lib/nls/loc/iconv/*

and

/usr/lib/nls/loc/iconvTable/*

directories.

Do

not

define

your

own

converter

unless

absolutely

necessary.

In

addition

to

code

set

converters,

the

converter

library

also

provides

a

set

of

network

interchange

converters.

In

a

network

environment,

the

code

sets

of

the

communications

systems

and

the

protocols

of

communication

determine

how

the

data

should

be

converted.

Interchange

converters

are

used

to

convert

data

sent

from

one

system

to

another.

Conversions

from

one

internal

code

set

to

another

code

set

require

code

set

converters.

When

data

must

be

converted

from

a

sender’s

code

set

to

a

receiver’s

code

set

or

from

8-bit

data

to

7-bit

data,

a

uniform

interface

is

required.

The

iconv

subroutines

provide

this

interface.

Standard

Converters

The

system

supports

standard

converters

for

use

with

the

iconv

command

and

subroutines.

The

following

are

code

set

converter

types:

Table

converter

Converts

single-byte

stateless

code

sets.

Performs

a

table

translation

from

one

byte

to

another

byte.

For

more

information,

see

“PC,

ISO,

and

EBCDIC

Code

Set

Converters”

on

page

90.

Algorithmic

converter

Performs

a

conversion

that

cannot

be

implemented

using

a

simple

single-byte

mapping

table.

All

multibyte

converters

are

implemented

using

this

method.

For

more

information,

see

“Multibyte

Code

Set

Converters”

on

page

94.

The

following

are

interchange

converter

types:

©

Copyright

IBM

Corp.

2002

83

7–bit

Converts

between

internal

code

sets

and

ISO2022

standard

interchange

formats

(7-bit).

For

more

information,

see

“Interchange

Converters—7-bit”

on

page

98.

8–bit

Converts

between

internal

code

sets

and

ISO2022

standard

interchange

formats

(8-bit).

For

more

information,

see

“Interchange

Converters—8-bit”

on

page

100.

compound

text

Converts

between

compound

text

and

internal

code

sets.

For

more

information,

see

“Interchange

Converters—Compound

Text”

on

page

103.

uucode

Provides

the

same

mapping

as

that

defined

in

the

uuencode

and

uudecode

command.

For

more

information,

see

“Interchange

Converters—uucode”

on

page

105.

UCS-2

Converts

between

UCS-2

and

other

code

sets.

For

more

information,

see

“UCS-2

Interchange

Converters”

on

page

106.

UCS-4

Converts

between

UCS-4

and

other

code

sets.

For

more

information,

see

“UCS-4

and

UTF-32”

on

page

81.

UTF-8

Converts

between

UTF-8

and

other

code

sets.

For

more

information,

see“UTF-8

Interchange

Converters”

on

page

108.

UTF-16

Converts

between

UTF-16

and

other

code

sets.

For

more

information,

see“UTF-16”

on

page

82.

UTF-32

Converts

between

UTF-32

and

other

code

sets.

For

more

information,

see“UCS-4

and

UTF-32”

on

page

81.

Low-level

converters

can

be

used

by

some

of

the

interchange

converters.

For

a

list

of

these

converters,

see

“Miscellaneous

Converters”

on

page

110.

Using

the

iconv

Command

Any

converter

installed

in

the

system

can

be

used

through

the

iconv

command,

which

uses

the

iconv

library.

The

iconv

command

acts

as

a

filter

for

converting

from

one

code

set

to

another.

For

example,

the

following

command

filters

data

from

PC

Code

(IBM-850)

to

ISO8859-1:

cat

File

|

iconv

-f

IBM-850

-t

ISO8859-1

|

tftp

-p

-

host

/tmp/fo

The

iconv

command

converts

the

encoding

of

characters

read

from

either

standard

input

or

the

specified

file

and

then

writes

the

results

to

standard

output.

Understanding

libiconv

The

iconv

application

programming

interface

(API)

consists

of

the

following

subroutines

that

accomplish

conversion:

iconv_open

Performs

the

initialization

required

to

convert

characters

from

the

code

set

specified

by

the

FromCode

parameter

to

the

code

set

specified

by

the

ToCode

parameter.

The

strings

specified

are

dependent

on

the

converters

installed

in

the

system.

If

initialization

is

successful,

the

converter

descriptor,

iconv_t,

is

returned

in

its

initial

state.

iconv

Invokes

the

converter

function

using

the

descriptor

obtained

from

the

iconv_open

subroutine.

The

inbuf

parameter

points

to

the

first

character

in

the

input

buffer,

and

the

inbytesleft

parameter

indicates

the

number

of

bytes

to

the

end

of

the

buffer

being

converted.

The

outbuf

parameter

points

to

the

first

available

byte

in

the

output

buffer,

and

the

outbytesleft

parameter

indicates

the

number

of

available

bytes

to

the

end

of

the

buffer.

84

National

Language

Support

Guide

and

Reference

For

state-dependent

encoding,

the

subroutine

is

placed

in

its

initial

state

by

a

call

for

which

the

inbuf

value

is

a

null

pointer.

Subsequent

calls

with

the

inbuf

parameter

as

something

other

than

a

null

pointer

cause

the

internal

state

of

the

function

to

be

altered

as

necessary.

iconv_close

Closes

the

conversion

descriptor

specified

by

the

cd

variable

and

makes

it

usable

again.

In

a

network

environment,

the

following

factors

determine

how

data

should

be

converted:

v

Code

sets

of

the

sender

and

the

receiver

v

Communication

protocol

(8-bit

or

7-bit

data)

The

following

table

outlines

the

conversion

methods

and

recommends

how

to

convert

data

in

different

situations.

See

the

“Interchange

Converters—7-bit”

on

page

98

and

the

“Interchange

Converters—8-bit”

on

page

100

for

more

information.

Outline

of

Methods

and

Recommended

Choices

Communication

with

system

using

the

same

code

set

Communication

with

system

using

different

code

set

(or

receiver’s

code

set

is

unknown)

Protocol

Protocol

Method

to

choose

7-bit

only

8-bit

7-bit

only

8-bit

as

is

Not

valid

Best

choice

Not

valid

Not

valid

if

remote

code

set

is

unknown

fold7

OK

OK

Best

choice

OK

fold8

Not

valid

OK

Not

valid

Best

choice

uucode

Best

choice

OK

Not

valid

Not

valid

If

the

sender

uses

the

same

code

set

as

the

receiver,

the

following

possibilities

exist:

v

When

protocol

allows

8-bit

data,

the

data

can

be

sent

without

conversions.

v

When

protocol

allows

only

7-bit

data,

the

8-bit

code

points

must

be

mapped

to

7-bit

values.

Use

the

iconv

interface

and

one

of

the

following

methods:

uucode

Provides

the

same

mapping

as

the

uuencode

and

uudecode

commands.

This

is

the

recommended

method.

For

more

information,

see

“Interchange

Converters—uucode”

on

page

105.

7–bit

Converts

internal

code

sets

using

7-bit

data.

This

method

passes

ASCII

without

any

change.

For

more

information,

see

“Interchange

Converters—7-bit”

on

page

98.

If

the

sender

uses

a

code

set

different

from

the

receiver,

there

are

two

possibilities:

v

When

protocol

allows

only

7-bit

data,

use

the

fold7

method.

v

When

protocol

allows

8-bit

data

and

you

know

the

receiver’s

code

set,

use

the

iconv

interface

to

convert

the

data.

If

you

do

not

know

the

receiver’s

code

set,

use

the

following

method:

8–bit

Converts

internal

code

sets

to

standard

interchange

formats.

The

8-bit

data

is

transmitted

and

the

information

is

preserved

so

that

the

receiver

can

reconstruct

the

data

in

its

code

set.

For

more

information,

see

“Interchange

Converters—8-bit”

on

page

100.

Using

the

iconv_open

Subroutine

The

following

examples

illustrate

how

to

use

the

iconv_open

subroutine

in

different

situations:

Chapter

5.

Converters

Overview

for

Programming

85

v

When

the

sender

and

receiver

use

the

same

code

sets,

and

if

the

protocol

allows

8-bit

data,

you

can

send

data

without

converting

it.

If

the

protocol

allows

only

7-bit

data,

do

the

following:

Sender:

cd

=

iconv_open("uucode",

nl_langinfo(CODESET));

Receiver:

cd

=

iconv_open(nl_langinfo(CODESET),

"uucode");

v

Whne

the

sender

and

receiver

use

different

code

sets,

and

if

the

protocol

allows

8-bit

data

and

the

receiver’s

code

set

is

unknown,

do

the

following:

Sender:

cd

=

iconv_open("fold8",

nl_langinfo(CODESET));

Receiver:

cd

=

iconv_open(nl_langinfo(CODESET),"fold8"

);

If

the

protocol

allows

only

7-bit

data,

do

the

following:

Sender:

cd

=

iconv_open("fold7",

nl_langinfo(CODESET));

Receiver:

cd

=

iconv_open(nl_langinfo(CODESET),

"fold7"

);

The

iconv_open

subroutine

uses

the

LOCPATH

environment

variable

to

search

for

a

converter

whose

name

is

in

the

following

form:

iconv/FromCodeSet_ToCodeSet

The

FromCodeSet

string

represents

the

sender’s

code

set,

and

the

ToCodeSet

string

represents

the

receiver’s

code

set.

The

underscore

character

separates

the

two

strings.

Note:

All

setuid

and

setgid

programs

ignore

the

LOCPATH

environment

variable.

Because

the

iconv

converter

is

a

loadable

object

module,

a

different

object

is

required

when

running

in

the

64-bit

environment.

In

the

64-bit

environment,

the

iconv_open

routine

uses

the

LOCPATH

environment

variable

to

search

for

a

converter

whose

name

is

in

the

following

form:

iconv/FromCodeSet_ToCodeSet__64.

The

iconv

library

automatically

chooses

whether

to

load

the

standard

converter

object

or

the

64-bit

converter

object.

If

the

iconv_open

subroutine

does

not

find

the

converter,

it

uses

the

from,to

pair

to

search

for

a

file

that

defines

a

table-driven

conversion.

The

file

contains

a

conversion

table

created

by

the

genxlt

command.

The

iconvTable

converter

uses

the

LOCPATH

environment

variable

to

search

for

a

file

whose

name

is

in

the

following

form:

iconvTable/FromCodeSet_ToCodeSet

If

the

converter

is

found,

it

performs

a

load

operation

and

is

initialized.

The

converter

descriptor,

iconv_t,

is

returned

in

its

initial

state.

Converter

Programs

versus

Tables

Converter

programs

are

executable

functions

that

convert

data

according

to

a

set

of

rules.

Converter

tables

are

single-byte

conversion

tables

that

perform

stateless

conversions.

Programs

and

tables

are

in

separate

directories,

as

follows:

/usr/lib/nls/loc/iconv

Converter

programs

86

National

Language

Support

Guide

and

Reference

/usr/lib/nls/loc/iconvTable

Converter

tables

After

a

converter

program

is

compiled

and

linked

with

the

libiconv.a

library,

the

program

is

placed

in

the

/usr/lib/nls/loc/iconv

directory.

To

build

a

table

converter,

build

a

source

converter

table

file.

Use

the

genxlt

command

to

compile

translation

tables

into

a

format

understood

by

the

table

converter.

The

output

file

is

then

placed

in

the

/usr/lib/nls/loc/iconvTable

directory.

Unicode

and

Universal

Converters

Unicode

(or

UCS-2)

conversion

tables

are

found

in:

$LOCPATH/uconvTable/*CodeSet*

The

$LOCPATH/uconv/UCSTBL

converter

program

is

used

to

perform

the

conversion

to

and

from

UCS-2

using

the

iconv

utilities.

A

Universal

converter

program

is

provided

that

can

be

used

to

convert

between

any

two

code

sets

whose

conversions

to

and

from

UCS-2

is

defined.

Given

the

following

uconv

tables:

X

->

UCS-2

UCS-2

->

Y

a

universal

conversion

can

be

defined

that

maps

the

following:

X

->

UCS-2

->

Y

by

use

of

the

$LOCPATH/iconv/Universal_UCS_Conv.

Universal

UCS

Converter

UCS-2

is

a

universal

16-bit

encoding

that

can

be

used

as

an

interchange

medium

to

provide

conversion

capability

between

virtually

any

code

sets.

The

conversion

can

be

accomplished

using

the

Universal

UCS

Converter,

which

converts

between

any

two

code

sets

XXX

and

YYY

as

follows:

XXX

<->

UTF-32

<->

YYY

The

XXX

and

YYY

conversions

must

be

included

in

the

supported

List

of

UCS-2

Interchange

Converters,

and

must

be

installed

on

the

system.

The

universal

converter

is

installed

as

the

file

/usr/lib/nls/loc/iconv/Universal_UCS_Conv.

The

conversion

between

multibyte

and

wide

character

code

depends

on

the

current

locale

setting.

Do

not

exchange

wide

character

codes

between

two

processes,

unless

you

have

knowledge

that

each

locale

that

might

be

used

handles

wide

character

codes

in

a

consistent

fashion.

Most

locales

for

this

operating

system

use

the

Unicode

character

value

as

a

wide

character

code,

except

locales

based

on

IBM-eucTW

codesets.

Using

Converters

The

iconv

interface

is

a

set

of

the

following

subroutines

used

to

open,

perform,

and

close

conversions:

v

iconv_open

v

iconv

v

iconv_close

Chapter

5.

Converters

Overview

for

Programming

87

Code

Set

Conversion

Filter

Example

The

following

example

shows

how

you

can

use

these

subroutines

to

create

a

code

set

conversion

filter

that

accepts

the

ToCode

and

FromCode

parameters

as

input

arguments:

#include

<stdio.h>

#include

<nl_types.h>

#include

<iconv.h>

#include

<string.h>

#include

<errno.h>

#include

<locale.h>

#define

ICONV_DONE()

(r>=0)

#define

ICONV_INVAL()

(r<0)

&&

(errno==EILSEQ))

#define

ICONV_OVER()

(r<0)

&&

(errno==E2BIG))

#define

ICONV_TRUNC()

(r<0)

&&

(errno==EINVAL))

#define

USAGE

1

#define

ERROR

2

#define

INCOMP

3

char

ibuf[BUFSIZ],

obuf[BUFSIZ];

extern

int

errno;

main

(argc,argv)

int

argc;

char

**argv;

{

size_t

ileft,oleft;

nl_catd

catd;

iconv_t

cd;

int

r;

char

*ip,*op;

setlocale(LC_ALL,"");

catd

=

catopen

(argv[0],0);

if(argc!=3){

fprintf(stderr,

catgets

(catd,NL_SETD,USAGE,"usage;conv

fromcode

tocode\n"));

exit(1);

}

cd=iconv_open(argv[2],argv[1]);

ileft=0;

while(!feof(stdin))

{

/*

*

After

the

next

operation,ibuf

will

*

contain

new

data

plus

any

truncated

*

data

left

from

the

previous

read.

*/

ileft+=fread(ibuf+ileft,1,BUFSIZ-ileft,stdin);

do

{

ip=ibuf;

op=obuf;

oleft=BUFSIZ;

r=iconv(cd,&ip,&ileft,&op,&oleft);

if(ICONV_INVAL()){

fprintf(stderr,

catgets(catd,NL_SETD,ERROR,"invalid

input\n"));

exit(2);

}

88

National

Language

Support

Guide

and

Reference

fwrite(obuf,1,BUFSIZ-oleft,stdout);

if(ICONV_TRUNC()

||

ICONV_OVER())

/*

*Data

remaining

in

buffer-copy

*it

to

the

beginning

*/

memcpy(ibuf,ip,ileft);

/*

*loop

until

all

characters

in

the

input

*buffer

have

been

converted.

*/

}

while(ICONV_OVER());

}

if(ileft!=0){

/*

*This

can

only

happen

if

the

last

call

*to

iconv()

returned

ICONV_TRUNC,

meaning

*the

last

data

in

the

input

stream

was

*incomplete.

*/

fprintf(stderr,catgets(catd,NL_SETD,INCOMP,"input

incomplete\n"));

exit(3);

}

iconv_close(cd);

exit(0);

}

Naming

Converters

Code

set

names

are

in

the

form

CodesetRegistry-CodesetEncoding

where:

CodesetRegistry

Identifies

the

registration

authority

for

the

encoding.

The

CodesetRegistry

must

be

made

of

characters

from

the

portable

code

set

(usually

A-Z

and

0-9).

CodesetEncoding

Identifies

the

coded

character

set

defined

by

the

registered

authority.

The

from,to

variable

used

by

the

iconv

command

and

iconv_open

subroutine

identifies

a

file

whose

name

should

be

in

the

form

/usr/lib/nls/loc/iconv/%f_%t

or

/usr/lib/nls/loc/iconvTable/%f_%t,

where:

%f

Represents

the

FromCode

set

name

%t

Represents

the

ToCode

set

name

List

of

Converters

Converters

change

data

from

one

code

set

to

another.

The

sets

of

converters

supported

with

the

iconv

library

are

listed

in

the

following

sections.

All

converters

shipped

with

the

BOS

Runtime

Environment

are

located

in

the

/usr/lib/nls/loc/iconv/*

or

/usr/lib/nls/loc/iconvTable/*

directory.

These

directories

also

contain

private

converters;

that

is,

they

are

used

by

other

converters.

However,

users

and

programs

should

only

depend

on

the

converters

in

the

following

lists.

Any

converter

shipped

with

the

BOS

Runtime

Environment

and

not

listed

here

should

be

considered

private

and

subject

to

change

or

deletion.

Converters

supplied

by

other

products

can

be

placed

in

the

/usr/lib/nls/loc/iconv/*

or

/usr/lib/nls/loc/iconvTable/*

directory.

Chapter

5.

Converters

Overview

for

Programming

89

Programmers

are

encouraged

to

use

registered

code

set

names

or

code

set

names

associated

with

an

application.

The

X

Consortium

maintains

a

registry

of

code

set

names

for

reference.

See

Chapter

4,

“Code

Sets

for

National

Language

Support,”

on

page

49

for

more

information

about

code

sets.

PC,

ISO,

and

EBCDIC

Code

Set

Converters

These

converters

provide

conversion

between

PC,

ISO,

and

EBCDIC

single-byte

stateless

code

sets.

The

following

types

of

conversions

are

supported:

PC

to/from

ISO,

PC

to/from

EBCDIC,

and

ISO

to/from

EBCDIC.

Conversion

is

provided

between

compatible

code

sets

such

as

Latin-1

to

Latin-1

and

Greek

to

Greek.

However,

conversion

between

different

EBCDIC

national

code

sets

is

not

supported.

For

information

about

converting

between

incompatible

character

sets,

refer

to

the

“Interchange

Converters—7-bit”

on

page

98

and

the

“Interchange

Converters—8-bit”

on

page

100.

Conversion

tables

in

the

iconvTable

directory

are

created

by

the

genxlt

command.

Compatible

Code

Set

Names

The

following

table

lists

code

set

names

that

are

compatible.

Each

line

defines

to/from

strings

that

may

be

used

when

requesting

a

converter.

Note:

The

PC

and

ISO

code

sets

are

ASCII-based.

Code

Set

Compatibility

Character

Set

Languages

PC

ISO

EBCDIC

Latin-1

U.S.

English,

Portuguese,

Canadian

French

N/A

ISO8859-1

IBM-037

Latin-1

Danish,

Norwegian

N/A

ISO8859-1

IBM-277

Latin-1

Finnish,

Swedish

N/A

ISO8859-1

IBM-278

Latin-1

Italian

N/A

ISO8859-1

IBM-280

Latin-1

Japanese

N/A

ISO8859-1

IBM-281

Latin-1

Spanish

N/A

ISO8859-1

IBM-284

Latin-1

U.K.

English

N/A

ISO8859-1

IBM-285

Latin-1

German

N/A

ISO8859-1

IBM-273

Latin-1

French

N/A

ISO8859-1

IBM-297

Latin-1

Belgian,

Swiss

German

N/A

ISO8859-1

IBM-500

Latin-2

Croatian,

Czechoslovakian,

Hungarian,

Polish,

Romanian,

Serbian

Latin,

Slovak,

Slovene

IBM-852

ISO88859-2

IBM-870

Cyrillic

Bulgarian,

Macedonian,

Serbian

Cyrillic,

Russian

IBM-855

ISO8859-5

IBM-880

IBM-1025

Cyrillic

Russian

IBM-866

ISO8859-5

IBM-1025

Hebrew

Hebrew

IBM-856

IBM-862

ISO8859-8

IBM-424

IBM-803

Turkish

Turkish

IBM-857

ISO8859-9

IBM-1026

Arabic

Arabic

IBM-864

IBM-1046

ISO8859-6

IBM-420

Greek

Greek

IBM-869

ISO8859-7

IBM-875

90

National

Language

Support

Guide

and

Reference

Code

Set

Compatibility

Character

Set

Languages

PC

ISO

EBCDIC

Greek

Greek

IBM-869

ISO8859-7

IBM-875

Baltic

Lithuanian,

Latvian,

Estonian

IBM-921

IBM-922

IBM-1112

IBM-1122

Note:

A

character

that

exists

in

the

source

code

set

but

does

not

exist

in

the

target

code

set

is

converted

to

a

converter-defined

substitute

character.

Files

The

following

table

describes

the

inconvTable

converters

found

in

the

/usr/lib/nls/loc/iconvTable

directory:

iconvTable

Converters

Converter

Table

Description

Language

IBM-037_IBM-850

IBM-037

to

IBM-850

U.S.

English,

Portuguese,

Canadian-French

IBM-273_IBM-850

IBM-273

to

IBM-850

German

IBM-277_IBM-850

IBM-277

to

IBM-850

Danish,

Norwegian

IBM-278_IBM-850

IBM-278

to

IBM-850

Finnish,

Swedish

IBM-280_IBM-850

IBM-280

to

IBM-850

Italian

IBM-281_IBM-850

IBM-281

to

IBM-850

Japanese-Latin

IBM-284_IBM-850

IBM-284

to

IBM-850

Spanish

IBM-285_IBM-850

IBM-285

to

IBM-850

U.K.

English

IBM-297_IBM-850

IBM-297

to

IBM-850

French

IBM-420_IBM_1046

IBM-420

to

IBM-1046

Arabic

IBM-424_IBM-856

IBM-424

to

IBM-856

Hebrew

IBM-424_IBM-862

IBM-424

to

IBM-862

Hebrew

IBM-500_IBM-850

IBM-500

to

IBM-850

Belgian,

Swiss

German

IBM-803_IBM-856

IBM-803

to

IBM-856

Hebrew

IBM-803_IBM-862

IBM-803

to

IBM-862

Hebrew

IBM-850_IBM-037

IBM-850

to

IBM-037

U.S.

English,

Portuguese,

Canadian-French

IBM-850_IBM-273

IBM-850

to

IBM-273

German

IBM-850_IBM-277

IBM-850

to

IBM-277

Danish,

Norwegian

IBM-850_IBM-278

IBM-850

to

IBM-278

Finnish,

Swedish

IBM-850_IBM-280

IBM-850

to

IBM-280

Italian

IBM-850_IBM-281

IBM-850

to

IBM-281

Japanese-Latin

IBM-850_IBM-284

IBM-850

to

IBM-284

Spanish

IBM-850_IBM-285

IBM-850

to

IBM-285

U.K.

English

IBM-850_IBM-297

IBM-850

to

IBM-297

French

IBM-850_IBM-500

IBM-850

to

IBM-500

Belgian,

Swiss

German

IBM-856_IBM-424

IBM-856

to

IBM-424

Hebrew

IBM-856_IBM-803

IBM-856

to

IBM-803

Hebrew

Chapter

5.

Converters

Overview

for

Programming

91

iconvTable

Converters

Converter

Table

Description

Language

IBM-856_IBM-862

IBM-856

to

IBM-862

Hebrew

IBM-862_IBM-424

IBM-862

to

IBM-424

Hebrew

IBM-862_IBM-803

IBM-862

to

IBM-803

Hebrew

IBM-862_IBM-856

IBM-862

to

IBM-856

Hebrew

IBM-864_IBM-1046

IBM-864

to

IBM-1046

Arabic

IBM-921_IBM-1112

IBM-921

to

IBM-1112

Lithuanian,

Latvian

IBM-922_IBM-1122

IBM-922

to

IBM-1122

Estonian

IBM-1112_IBM-921

IBM-1121

to

IBM-921

Lithuanian,

Latvian

IBM-1122_IBM-922

IBM-1122

to

IBM-922

Estonian

IBM-1046_IBM-420

IBM-1046

to

IBM-420

Arabic

IBM-1046_IBM-864

IBM-1046

to

IBM-864

Arabic

IBM-037_ISO8859-1

IBM-037

to

ISO8859-1

U.S.

English,

Portuguese,

Canadian

French

IBM-273_ISO8859-1

IBM-273

to

ISO8859-1

German

IBM-277_ISO8859-1

IBM-277

to

ISO8859-1

Danish,

Norwegian

IBM-278_ISO8859-1

IBM-278

to

ISO8859-1

Finnish,

Swedish

IBM-280_ISO8859-1

IBM-280

to

ISO8859-1

Italian

IBM-281_ISO8859-1

IBM-281

to

ISO8859-1

Japanese-Latin

IBM-284_ISO8859-1

IBM-284

to

ISO8859-1

Spanish

IBM-285_ISO8859-1

IBM-285

to

ISO8859-1

U.K.

English

IBM-297_ISO8859-1

IBM-297

to

ISO8859-1

French

IBM-420_ISO8859-6

IBM-420

to

ISO8859-6

Arabic

IBM-424_ISO8859-8

IBM-424

to

ISO8859-8

Hebrew

IBM-500_ISO8859-1

IBM-500

to

ISO8859-1

Belgian,

Swiss

German

IBM-803_ISO8859-8

IBM-803

to

ISO8859-8

Hebrew

IBM-852_ISO8859-2

IBM-852

to

ISO8859-2

Croatian,

Czechoslovakian,

Hungarian,

Polish,

Romanian,

Serbian

Latin,

Slovak,

Slovene

IBM-855_ISO8859-5

IBM-855

to

ISO8859-5

Bulgarian,

Macedonian,

Serbian

Cyrillic,

Russian

IBM-866_ISO8859-5

IBM-866

to

ISO8859-5

Russian

IBM-869_ISO8859-7

IBM-869

to

ISO8859-7

Greek

IBM-875_ISO8859-7

IBM-875

to

ISO8859-7

Greek

IBM-870_ISO8859-2

IBM-870

to

ISO8859-2

Croatian,

Czechoslovakian,

Hungarian,

Polish,

Romanian,

Serbian,

Slovak,

Slovene

IBM-880_ISO8859-5

IBM-880

to

ISO8859-5

Bulgarian,

Macedonian,

Serbian

Cyrillic,

Russian

IBM-1025_ISO8859-5

IBM-1025

to

ISO8859-5

Bulgarian,

Macedonian,

Serbian

Cyrillic,

Russian

IBM-857_ISO8859-9

IBM-857

to

ISO8859-9

Turkish

IBM-1026_ISO8859-9

IBM-1026

to

ISO8859-9

Turkish

92

National

Language

Support

Guide

and

Reference

iconvTable

Converters

Converter

Table

Description

Language

IBM-850_ISO8859-1

IBM-850

to

ISO8859-1

Latin

IBM-856_ISO8859-8

IBM-856

to

ISO8859-8

Hebrew

IBM-862_ISO8859-8

IBM-862

to

ISO8859-8

Hebrew

IBM-864_ISO8859-6

IBM-864

to

ISO8859-6

Arabic

IBM-1046_ISO8859-6

IBM-1046

to

ISO8859-6

Arabic

ISO8859-1_IBM-850

ISO8859-1

to

IBM-850

Latin

ISO8859-6_IBM-864

ISO8859-6

to

IBM-864

Arabic

ISO8859-6_IBM-1046

ISO8859-6

to

IBM-1046

Arabic

ISO8859-8_IBM-856

ISO8859-8

to

IBM-856

Hebrew

ISO8859-8_IBM-862

ISO8859-8

to

IBM-862

Hebrew

ISO8859-1_IBM-037

ISO8859-1

to

IBM-037

U.S.

English,

Portuguese,

Canadian

French

ISO8859-1_IBM-273

ISO8859-1

to

IBM-273

German

ISO8859-1_IBM-277

ISO8859-1

to

IBM-277

Danish,

Norwegian

ISO8859-1_IBM-278

ISO8859-1

to

IBM-278

Finnish,

Swedish

ISO8859-1_IBM-280

ISO8859-1

to

IBM-280

Italian

ISO8859-1_IBM-281

ISO8859-1

to

IBM-281

Japanese-Latin

ISO8859-1_IBM-284

ISO8859-1

to

IBM-284

Spanish

ISO8859-1_IBM-285

ISO8859-1

to

IBM-285

U.K.

English

ISO8859-1_IBM-297

ISO8859-1

to

IBM-297

French

ISO8859-1_IBM-500

ISO8859-1

to

IBM-500

Belgian,

Swiss

German

ISO8859-2_IBM-852

ISO8859-2

to

IBM-852

Croatian,

Czechoslovakian,

Hungarian,

Polish,

Romanian,

Serbian

Latin,

Slovak,

Slovene

ISO8859-2_IBM-870

ISO8859-2

to

IBM-870

Croatian,

Czechoslovakian,

Hungarian,

Polish,

Romanian,

Serbian

Latin,

Slovak,

Slovene

ISO8859-5_IBM-855

ISO8859-5

to

IBM-855

Bulgarian,

Macedonian,

Serbian

Cyrillic,

Russian

ISO8859-5_IBM-880

ISO8859-5

to

IBM-880

Bulgarian,

Macedonian,

Serbian

Cyrillic,

Russian

ISO8859-5_IBM-1025

ISO8859-5

to

IBM-1025

Bulgarian,

Macedonian,

Serbian

Cyrillic,

Russian

ISO8859-6_IBM-420

ISO8859-6

to

IBM-420

Arabic

ISO8859-5_IBM-866

ISO8859-5

to

IBM-866

Russian

ISO8859-7_IBM-869

ISO8859-7

to

IBM-869

Greek

ISO8859-7_IBM-875

ISO8859-7

to

IBM-875

Greek

ISO8859-8_IBM-424

ISO8859-8

to

IBM-424

Hebrew

ISO8859-8_IBM-803

ISO8859-8

to

IBM-803

Hebrew

ISO8859-9_IBM-857

ISO8859-9

to

IBM-857

Turkish

ISO8859-9_IBM-1026

ISO8859-9

to

IBM-1026

Turkish

Chapter

5.

Converters

Overview

for

Programming

93

Multibyte

Code

Set

Converters

Multibyte

code-set

converters

convert

characters

among

the

following

code

sets:

v

PC

multibyte

code

sets

v

EUC

multibyte

code

sets

(ISO-based)

v

EBCDIC

multibyte

code

sets

The

following

table

lists

code

set

names

that

are

compatible.

Each

line

defines

to/from

strings

that

may

be

used

when

requesting

a

converter.

Code

Set

Compatibility

Language

PC

ISO

EBCDIC

Japanese

IBM-932

IBM-eucJP

IBM-930,

IBM-939

Japanese

(MS

compatible)

IBM-943

IBM-eucJP

IBM-930,

IBM-939

Korean

IBM-934

IBM-eucKR

IBM-933

Traditional

Chinese

IBM-938,

big-5

IBM-eucTW

IBM-937

Simplified

Chinese

IBM-1381

IBM-eucCN

IBM-935

1.

Conversions

between

Simplified

and

Traditional

Chinese

are

provided

(IBM-eucTW

<—>

IBM-eucCN

and

big5

<—>

IBM-eucCN).

2.

UTF-8

is

an

additional

code

set.

See

“UTF-8

Interchange

Converters”

on

page

108

for

more

information.

Files

The

following

list

describes

the

Multibyte

Code

Set

converters

that

are

found

in

the

/usr/lib/nls/loc/iconv

directory.

Converter

Description

IBM-eucJP_IBM-932

IBM-eucJP

to

IBM-932

IBM-eucJP_IBM-943

IBM-eucJP

to

IBM-943

IBM-eucJP_IBM-930

IBM-eucJP

to

IBM-930

IBM-eucCN_IBM-936(PC5550)

IBM-eucCN

to

IBM-936(PC5550)

IBM-eucCN_IBM-935

IBM-eucCN

to

IBM-935

IBM-eucJP_IBM-939

IBM-eucJP

to

IBM-939

IBM-eucCN_IBM-1381

IBM-eucCN

to

IBM-1381

IBM-943_IBM-932

IBM-943

to

IBM-932

IBM-932_IBM-943

IBM-932

to

IBM-943

IBM-930_IBM-932

IBM-930

to

IBM-932

IBM-930_IBM-943

IBM-930

to

IBM-943

IBM-930_IBM-eucJP

IBM-930

to

IBM-eucJP

IBM-932_IBM-eucJP

IBM-932

to

IBM-eucJP

IBM-932_IBM-930

IBM-932

to

IBM-930

IBM-943_IBM-eucJP

IBM-943

to

IBM-eucJP

IBM-943_IBM-930

IBM-943

to

IBM-930

IBM-936(PC5550)_IBM-935

IBM-936(PC5550)

to

IBM-935

IBM-936_IBM-935

IBM-936

to

IBM-935

94

National

Language

Support

Guide

and

Reference

Converter

Description

IBM-932_IBM-939

IBM-932

to

IBM-939

IBM-939_IBM-932

IBM-939

to

IBM-932

IBM-943_IBM-939

IBM-943

to

IBM-939

IBM-939_IBM-943

IBM-939

to

IBM-943

IBM-935_IBM-936(PC5550)

IBM-935

to

IBM-936(PC5550)

IBM-935_IBM-936

IBM-935

to

IBM-936

IBM-1381_IBM-935

IBM-1381

to

IBM-935

IBM-935_IBM-1381

IBM-935

to

IBM-1381

IBM-935_IBM-eucCN

IBM-935

to

IBM-eucCN

IBM-936(PC5550)_IBM-eucCN

IBM-936(PC5550)

to

IBM-eucCN

IBM-eucTW_IBM-eucCN

IBM-eucTW

to

IBM-eucCN

big5_IBM-eucCN

big5

to

IBM-eucCN

IBM-1381_IBM-eucCN

IBM-1381

to

IBM-eucCN

IBM-939_IBM-eucJP

IBM-939

to

IBM-eucJP

IBM-eucKR_IBM-934

IBM-eucKR

to

IBM-934

IBM-934_IBM-eucKR

IBM-934

to

IBM-eucKR

IBM-eucKR_IBM-933

IBM-eucKR

to

IBM-933

IBM-933_IBM-eucKR

IBM-933

to

IBM-eucKR

IBM-eucTW_IBM-937

IBM-eucTW

to

IBM-937

IBM-938_IBM-937

IBM-938

to

IBM-937

big-5_IBM-937

big-5

to

IBM-937

IBM-eucCN_IBM-eucTW

IBM-eucCN

to

IBM-eucTW

IBM-937_IBM-eucTW

IBM-937

to

IBM-eucTW

IBM-937_IBM-938

IBM-937

to

IBM-938

IBM-eucTW_IBM-938

IBM_eucTW

to

IBM_938

IBM-eucCN_big5

IBM-eucCN

to

big5

IBM-eucTW_big-5

IBM_eucTW

to

big-5

IBM-937_big-5

IBM-937

to

big-5

CNS11643.1992-3_IBM-eucTW

CNS11643.1992-3

to

IBM_eucTW

CNS11643.1992-3-GL_IBM-eucTW

CNS11643.1992-3-GL

to

IBM_eucTW

CNS11643.1992-3-GR_IBM-eucTW

CNS11643.1992-3-GR

to

IBM_eucTW

CNS11643.1992-4_IBM-eucTW

CNS11643.1992-4

to

IBM_eucTW

CNS11643.1992-4-GL_IBM-eucTW

CNS11643.1992-4-GL

to

IBM_eucTW

CNS11643.1992-4-GR_IBM-eucTW

CNS11643.1992-4-GR

to

IBM_eucTW

IBM-eucTW_CNS11643.1992-3

IBM_eucTW

to

CNS11643.1992-3

IBM-eucTW_CNS11643.1992-3-GL

IBM_eucTW

to

CNS11643.1992-3-GL

IBM-eucTW_CNS11643.1992-3-GR

IBM_eucTW

to

CNS11643.1992-3-GR

IBM-eucTW_CNS11643.1992-4

IBM_eucTW

to

CNS11643.1992-4

IBM-eucTW_CNS11643.1992-4-GL

IBM_eucTW

to

CNS11643.1992-4-GL

IBM-eucTW_CNS11643.1992-4-GR

IBM_eucTW

to

CNS11643.1992-4-GR

IBM-eucCN_GB2312.1980-1

IBM-eucCN

to

GB2312.1980-1

Chapter

5.

Converters

Overview

for

Programming

95

Converter

Description

IBM-eucCN_GB2312.1980-1-GL

IBM-eucCN

to

GB2312.1980-1-GL

IBM-eucCN_GB2312.1980-1-GR

IBM-eucCN

to

GB2312.1980-1-GR

IBM-937_csic

IBM-937

to

csic

csic_IBM-937

csic

to

IBM-937

IBM-938_csic

IBM-938

to

csic

csic_IBM-938

csic

to

IBM-938

IBM-eucTW_ccdc

IBM-eucTW

to

ccdc

ccdc_IBM-eucTW

ccdc

to

IBM-eucTW

IBM-eucTW_cns

IBM-eucTW

to

cns

cns_IBM-eucTW

cnd

to

IBM-eucTW

IBM-eucTW_csic

IBM-eucTW

to

csic

csic_IBM-eucTW

csic

to

IBM-eucTW

IBM-eucTW_sops

IBM-ecuTW

to

sops

sops_IBM-eucTW

sops

to

IBM-eucTW

IBM-eucTW_tca

IBM-eucTW

to

tca

tca_IBM-eucTW

tca

to

IBM-eucTW

big5_cns

big5

to

cns

cns_big5

cns

to

big5

big5_csic

big5

to

csic

csic_big5

csic

to

big5

big5_ttc

big5

to

ttc

ttc_big5

ttc

to

big5

big5_ttcmin

big5

to

ttcmin

ttcmin_big5

ttcmin

to

big5

big5_unicode

big5

to

unicode

unicode_big5

unicode

to

big5

big5_wang

big5

to

wang

wang_big5

wang

to

big5

ccdc_csic

ccdc

to

csic

csic_ccdc

csic

to_ccdc

csic_sops

csic

to

sops

sops_csic

sops

to

csic

CNS11643.1986-1_big5

CNS11643.1986-1

to

big5

big5_CNS11643.1986-1

big5

to

CNS11643.1986-1

CNS11643.1986-1-GR_big5

CNS11643.1986-1-GR

to

big5

big5_CNS11643.1986-1-GR

big5

to

CNS11643.1986-1-GR

CNS11643.1986-2_big5

CNS11643.1986-2

to

big5

big5_CNS11643.1986-2

big5

to

CNS11643.1986-2

CNS11643.1986-2-GR_big5

CNS11643.1986-2-GR

to

big5

big5_CNS11643.1986-2-GR

big5

to

CNS11643.1986-2-GR

CNS11643.CT-GR_big5

CNS11643.CT-GR

to

big5

96

National

Language

Support

Guide

and

Reference

Converter

Description

big5_CNS11643.CT-GR

big5

to

CNS11643.CT-GR

IBM-sbdTW-GR_big5

IBM-sbdTW-GR

to

big5

big5_IBM-sbdTW-GR

big5

to

IBM-sbdTW-GR

IBM-sbdTW.CT-GR_big5

IBM-sbdTW.CT-GR

to

big5

big5_IBM-sbdTW.CT-GR

big5

to

IBM-sbdTW.CT-GR

IBM-sbdTW_big5

IBM-sbdTW

to

big5

big5_IBM-sbdTW

big5

to

IBM-sbdTW

IBM-udcTW-GR_big5

IBM-udcTW-GR

to

big5

big5_IBM-udcTW-GR

big5

to

IBM-udcTW-GR

IBM-udcTW.CT-GR_big5

IBM-udcTW.CT-GR

to

big5

big5_IBM-udcTW.CT-GR

big5

to

IBM-udcTW.CT-GR

ISO8859-1_big5

ISO8859

to

big5

big5_ISO8859-1

big5

to

ISO8859

IBM-sbdTW_big5

IBM-sbdTW

to

big5

big5_IBM-sbdTW

big5

to

IBM-sbdTW

big5_ASCII-GR

big5

to

ASCII-GR

ASCII-GR_big5

ASCII-GR

to

big5

GBK_big5

GBK

to

big5

big5_GBK

big5

to

GBK

GBK_IBM-eucTW

GBK

to

IBM-eucTW

IBM-eucTW_GBK

IBM-eucTW

to

GBK

CNS11643.1986-1_GBK

CNS11643.1986-1

to

GBK

GBK_CNS11643.1986-1

GBK

to

CNS11643.1986-1

CNS11643.1986-2_GBK

CNS11643.1986-2

to

GBK

GBK_CNS11643.1986-2

GBK

to

CNS11643.1986-2

CNS11643.1986-1-GR_GBK

CNS11643.1986-1-GR

to

GBK

GBK_CNS11643.1986-1-GR

GBK

to

CNS11643.1986-1-GR

CNS11643.1986-2-GR_GBK

CNS11643.1986-2-GR

to

GBK

GBK_CNS11643.1986-2-GR

GBK

to

CNS11643.1986-2-GR

CNS11643.1986-1-GL_GBK

CNS11643.1986-1-GL

to

GBK

GBK_CNS11643.1986-1-GL

GBK

to

CNS11643.1986-1-GL

CNS11643.1986-2-GL_GBK

CNS11643.1986-2-GL

to

GBK

GBK_CNS11643.1986-2-GL

GBK

to

CNS11643.1986-2-GL

CNS11643.CT-GR_GBK

CNS11643.CT-GR

to

GBK

GBK_CNS11643.CT-GR

GBK

to

CNS11643.CT-GR

GB2312.1980.CT-GR_GBK

GB2312.1980.CT-GR

to

GBK

GBK_GB2312.1980.CT-GR

GBK

to

GB2312.1980.CT-GR

GB2312.1980-0_GBK

GBK2312.1980-0

to

GBK

GBK_GB2312.1980-0

GBK

to

GBK2312.1980-0

GB2312.1980-0-GR_GBK

GB2312.1980-0-GR

to

GBK

GBK_GB2312.1980-0-GR

GBK

to

GB2312.1980-0-GR

Chapter

5.

Converters

Overview

for

Programming

97

Converter

Description

GB2312.1980-0-GL_GBK

GB2312.1980-0-GL

to

GBK

GBK_GB2312.1980-0-GL

GBK

to

GB2312.1980-0-GL

ASCII-GR_GBK

ASCII-GR

to

GBK

GBK_ASCII-GR

GBK

to

ASCII-GR

ISO8859-1_GBK

ISO8859-1

to

GBK

GBK_ISO8859-1

GBK

to

ISO8859-1

IBM-eucCN_GBK

IBM-eucCN

to

GBK

GBK_IBM-eucCN

GBK

to

IBM-eucCN

Interchange

Converters—7-bit

This

converter

provides

conversion

between

internal

code

and

7-bit

standard

interchange

formats

(fold7).

The

fold7

name

identifies

encodings

that

can

be

used

to

pass

text

data

through

7-bit

mail

protocols.

The

encodings

are

based

on

ISO2022.

For

more

information

about

fold7,

see

“Understanding

libiconv”

on

page

84.

The

fold7

converters

convert

characters

from

a

code

set

to

a

canonical

7-bit

encoding

that

identifies

each

character.

This

type

of

conversion

is

useful

in

networks

where

clients

communicate

with

different

code

sets

but

use

the

same

character

sets.

For

example:

IBM-850

<—>

ISO8859-1

Common

Latin

characters

IBM-932

<—>IBM-eucJP

Common

Japanese

characters

The

following

escape

sequences

designate

standard

code

sets:

Escape

Sequence

Standard

Code

Set

01/11

02/04

04/00

GL

JIS

X0208.1978-0.

01/11

02/04

02/08

04/01

GL

left

half

of

GB2312.1980-0.

01/11

02/08

04/02

GL

7-bit

ASCII

or

left

half

of

ISO8859-1.

01/11

02/14

04/01

GL

right

half

of

ISO8859-1.

01/11

02/14

04/02

GL

right

half

of

ISO8859-2.

01/11

02/14

04/03

GL

right

half

of

ISO8859-3.

01/11

02/14

04/04

GL

right

half

of

ISO8859-4.

01/11

02/14

04/06

GL

right

half

of

ISO8859-7.

01/11

02/14

04/07

GL

right

half

of

ISO8859-6.

01/11

02/14

04/08

GL

right

half

of

ISO8859-8.

01/11

02/14

04/12

GL

right

half

of

ISO8859-5.

01/11

02/14

04/13

GL

right

half

of

ISO8859-9.

01/11

02/08

04/09

GL

right

half

of

JIS

X0201.1976-0.

01/11

02/08

04/10

GL

left

half

of

JIS

X0201.1976.

01/11

02/04

04/02

GL

JIS

X0208.1983-0.

01/11

02/04

02/08

04/02

GL

JIS

X0208.1983-0.

01/11

02/04

02/08

04/00

GL

JISX0208.1978-0.

01/11

02/05

02/15

03/01

M

L

06/09

06/02

06/13

02/13

03/08

03/05

03/00

00/02

GL

right

half

of

IBM-850

unique

characters.

Characters

common

to

ISO8859-1

do

not

use

this

escape

sequence.

98

National

Language

Support

Guide

and

Reference

Escape

Sequence

Standard

Code

Set

01/11

02/05

02/15

03/02

M

L

06/09

06/02

06/13

02/13

07/05

06/04

06/03

04/10

05/00

00/02

GL

Japanese)

IBM-udcJP)

user-definable

characters.

01/11

02/04

02/08

04/03

GL

KSC5601-1987.

01/11

02/04

02/09

03/00

GL

CNS11643-1986-1.

01/11

02/04

02/10

03/01

GL

CNS11643-1986-2.

01/11

02/05

02/15

03/00

M

L

05/05

05/04

04/06

02/13

03/07

00/02

UCS-2

encoded

as

base64;

used

only

for

those

characters

not

encoded

by

any

of

the

other

7-bit

escape

sequences

listed

above.

When

converting

from

a

code

set

to

fold7,

the

escape

sequence

used

to

designate

the

code

set

is

chosen

according

to

the

order

listed.

For

example,

the

JISX0208.1983-0

characters

use

01/11

01/04

04/02

as

the

designation.

Files

The

following

list

describes

the

fold7

converters

that

are

found

in

the

/usr/lib/nls/loc/iconv

directory:

Converter

Description

fold7_IBM-850

Interchange

format

to

IBM-850

fold7_IBM-921

Interchange

format

to

IBM-921

fold7_IBM-922

Interchange

format

to

IBM-922

fold7_IBM-932

Interchange

format

to

IBM-932

fold7_IBM-943

Interchange

format

to

IBM-943

fold7_IBM_1124

Interchange

format

to

IBM-1124

fold7_IBM_1129

Interchange

format

to

IBM-1129

fold7_IBM_eucCN

Interchange

format

to

IBM-eucCN

fold7_IBM-eucJP

Interchange

format

to

IBM-eucJP

fold7_IBM-eucKR

Interchange

format

to

IBM-eucKR

fold7_IBM-eucTW

Interchange

format

to

IBM-eucTW

fold7_ISO8859-1

Interchange

format

to

ISO8859-1

fold7_ISO8859-2

Interchange

format

to

ISO8859-2

fold7_ISO8859-3

Interchange

format

to

ISO8859-3

fold7_ISO8859-4

Interchange

format

to

ISO8859-4

fold7_ISO8859-5

Interchange

format

to

ISO8859-5

fold7_ISO8859-6

Interchange

format

to

ISO8859-6

fold7_ISO8859-7

Interchange

format

to

ISO8859-7

fold7_ISO8859-8

Interchange

format

to

ISO8859-8

fold7_ISO8859-9

Interchange

format

to

ISO8859-9

fold7_TIS-620

Interchange

format

to

TIS-620

fold7_UTF-8

Interchange

format

to

UTF-8

fold7_big5

Interchange

format

to

big5

fold7_GBK

Interchange

format

to

GBK

IBM-921_fold7

IBM-921

to

interchange

format

IBM-922_fold7

IBM-922

to

interchange

format

Chapter

5.

Converters

Overview

for

Programming

99

Converter

Description

IBM-850_fold7

IBM-850

to

interchange

format

IBM-932_fold7

IBM-932

to

interchange

format

IBM-943_fold7

IBM-943

to

interchange

format

IBM-1124_fold7

IBM-1124

to

interchange

format

IBM-1129_fold7

IBM-1129

to

interchange

format

IBM-eucCN_fold7

IBM-eucCN

to

interchange

format

IBM-eucJP_fold7

IBM-eucJP

to

interchange

format

IBM-eucKR_fold7

IBM-eucKR

to

interchange

format

IBM-eucTW_fold7

IBM-eucTW

to

interchange

format

ISO8859-1_fold7

ISO8859-1

to

interchange

format

ISO8859-2_fold7

ISO8859-2

to

interchange

format

ISO8859-3_fold7

ISO8859-3

to

interchange

format

ISO8859-4_fold7

ISO8859-4

to

interchange

format

ISO8859-5_fold7

ISO8859-5

to

interchange

format

ISO8859-6_fold7

ISO8859-6

to

interchange

format

ISO8859-7_fold7

ISO8859-7

to

interchange

format

ISO8859-8_fold7

ISO8859-8

to

interchange

format

ISO8859-9_fold7

ISO8859-9

to

interchange

format

TIS-620_fold7

TIS-620

to

interchange

format

UTF-8_fold7

UTF-8

to

interchange

format

big5_fold7

big5

to

interchange

format

GBK_fold7

GBK

to

interchange

format

Interchange

Converters—8-bit

This

converter

provides

conversions

between

internal

code

and

8-bit

standard

interchange

formats

(fold8).

The

fold8

name

identifies

encodings

that

can

be

used

to

pass

text

data

through

8-bit

mail

protocols.

The

encodings

are

based

on

ISO2022.

For

more

information

about

fold8,

see

“Understanding

libiconv”

on

page

84.

The

fold8

converters

convert

characters

from

a

specific

code

set

encoding

to

a

canonical

8-bit

encoding

that

identifies

each

character.

This

type

of

conversion

is

useful

in

networks

where

clients

communicate

with

different

code

sets

but

use

the

same

character

sets.

For

example:

IBM-850

<—>

ISO8859-1

Common

Latin

characters

IBM-932

<—>IBM-eucJP

Common

Japanese

characters

The

following

escape

sequences

designate

standard

code

sets.

Escape

Sequence

Standard

Code

Set

01/11

02/04

02/09

04/01

GR

right

half

of

GB2312.1980-0.

01/11

02/13

04/01

GR

right

half

of

ISO8859-1.

01/11

02/13

04/02

GR

right

half

of

ISO8859-2.

01/11

02/13

04/03

GR

right

half

of

ISO8859-3.

01/11

02/13

04/04

GR

right

half

of

ISO8859-4.

100

National

Language

Support

Guide

and

Reference

Escape

Sequence

Standard

Code

Set

01/11

02/13

04/06

GR

right

half

of

ISO8859-7.

01/11

02/13

04/07

GR

right

half

of

ISO8859-6.

01/11

02/13

04/08

GR

right

half

of

ISO8859-8.

01/11

02/13

04/13

GR

right

half

of

ISO8859-5.

01/11

02/13

04/13

GR

right

half

of

ISO8859-9.

01/11

02/09

04/09

GR

right

half

of

JIS

X0201.1976-1.

01/11

02/04

02/09

04/02

GR

JIS

X0208.1983-1.

01/11

02/04

02/09

04/00

GR

JISX0208.1978-1.

01/11

02/09

04/02

GR

7-bit

ASCII

or

left

half

of

ISO8859-1.

01/11

02/05

02/15

03/01

M

L

04/09

04/02

04/13

02/13

03/08

03/05

03/00

00/02

GR

right

half

of

IBM-850

unique

characters.

Characters

common

to

ISO8859-1

should

not

use

this

escape

sequence.

01/11

02/05

02/15

03/02

M

L

04/09

04/02

04/13

02/13

07/05

06/04

06/03

04/10

05/00

00/02

GR

right

half

of

Japanese

user-definable

characters.

01/11

02/08

04/02

GL

7-bit

ASCII

or

left

half

of

ISO8859-1.

01/11

02/14

04/01

GL

right

half

of

ISO8859-1.

01/11

02/14

04/02

GL

right

half

of

ISO8859-2.

01/11

02/14

04/03

GL

right

half

of

ISO8859-3.

01/11

02/14

04/04

GL

right

half

of

ISO8859-4.

01/11

02/14

04/06

GL

right

half

of

ISO8859-7.

01/11

02/14

04/07

GL

right

half

of

ISO8859-6.

01/11

02/14

04/08

GL

right

half

of

ISO8859-8.

01/11

02/14

04/12

GL

right

half

of

ISO8859-5.

01/11

02/14

04/13

GL

right

half

of

ISO8859-9.

01/11

02/08

04/09

GL

right

half

of

JIS

X0201.1976-0.

01/11

02/08

04/10

GL

left

half

of

JIS

X0201.1976.

01/11

02/04

02/08

04/02

GL

JIS

X0208.1983-0.

01/11

02/04

04/02

GL

JIS

X0208.1983-0.

01/11

02/04

04/00

GL

JIS

X0208.1978-0.

01/11

02/05

02/15

03/01

M

L

06/09

06/02

06/13

02/13

03/08

03/05

03/00

00/02

GL

right

half

of

IBM-850

unique

characters.

Characters

common

to

ISO8859-1

do

not

use

this

escape

sequence.

01/11

02/05

02/15

03/02

M

L

06/09

06/02

06/13

02/13

07/05

06/04

06/03

04/10

05/00

00/02

GL

Japanese

(IBM-udcJP)

user-definable

characters.

01/11

02/04

02/09

04/03

GR

KSC5601-1987.

01/11

02/04

02/09

03/00

GR

CNS11643-1986-1.

01/11

02/04

02/10

03/01

GR

CNS11643-1986-2.

01/11

02/05

02/15

03/02

M

L

04/09

04/02

04/13

02/13

07/05

06/04

06/03

05/05

05/08

00/02

GR

right

half

of

Traditional

Chinese

user-definable

characters.

01/11

02/05

02/15

03/02

M

L

04/09

04/02

04/13

02/13

07/03

06/02

06/04

05/05

05/08

00/02

GR

right

half

of

IBM-850

unique

symbols.

01/11

02/04

02/08

04/03

GL

KSC5601-1987.

01/11

02/05

02/15

03/02

M

L

06/09

06/02

06/13

02/13

07/05

06/04

06/03

05/05

05/08

00/02

GL

Traditional

Chinese

(IBM-udcTW)

user-definable

characters.

Chapter

5.

Converters

Overview

for

Programming

101

Escape

Sequence

Standard

Code

Set

01/11

02/05

02/15

03/02

M

L

06/09

06/02

06/13

02/13

07/03

06/02

06/04

05/05

05/08

00/02

GL

Traditional

Chinese

IBM-850

unique

symbols

(IBM-shdTW)

user-definable

characters.

01/11

02/05

02/15

03/00

M

L

05/05

05/04

04/06

02/13

03/08

00/02

UCS-2

encoded

as

UTF-8;

used

only

for

those

characters

not

encoded

by

any

of

the

above

escape

sequences

listed

above.

When

converting

from

a

code

set

to

fold8,

the

escape

sequence

used

to

designate

the

code

set

is

chosen

according

to

the

order

listed.

For

example,

the

JISX0208.1983-0

characters

use

01/11

02/04

02/08

04/02

as

the

designation.

Files

The

following

list

describes

the

fold8

converters

found

in

the

/usr/lib/nls/loc/iconv

directory:

Converter

Description

fold8_IBM-850

Interchange

format

to

IBM-850

fold8_IBM-921

Interchange

format

to

IBM-921

fold8_IBM-922

Interchange

format

to

IBM-922

fold8_IBM-932

Interchange

format

to

IBM-932

fold8_IBM-943

Interchange

format

to

IBM-943

fold8_IBM-1124

Interchange

format

to

IBM-1124

fold8_IBM-1129

Interchange

format

to

IBM-1129

fold8_IBM-eucCN

Interchange

format

to

IBM-eucCN

fold8_IBM-eucJP

Interchange

format

to

IBM-eucJP

fold8_IBM-eucKR

Interchange

format

to

IBM-eucKR

fold8_IBM-eucTW

Interchange

format

to

IBM-eucTW

fold8_IBM-eucCN

Interchange

fromat

to

IBM-eucCN

fold8_ISO8859-1

Interchange

format

to

ISO8859-1

fold8_ISO8859-2

Interchange

format

to

ISO8859-2

fold8_ISO8859-3

Interchange

format

to

ISO8859-3

fold8_ISO8859-4

Interchange

format

to

ISO8859-4

fold8_ISO8859-5

Interchange

format

to

ISO8859-5

fold8_ISO8859-6

Interchange

format

to

ISO8859-6

fold8_ISO8859-7

Interchange

format

to

ISO8859-7

fold8_ISO8859-8

Interchange

format

to

ISO8859-8

fold8_ISO8859-9

Interchange

format

to

ISO8859-9

fold8_TIS-620

Interchange

format

to

TIS-620

fold8_UTF-8

Interchange

format

to

UTF-8

fold8_big5

Interchange

format

to

big5

fold8_GBK

Interchange

format

to

GBK

IBM-921_fold8

IBM-921

to

interchange

format

IBM-922_fold8

IBM-922

to

interchange

format

IBM-850_fold8

IBM-850

to

interchange

format

IBM-932_fold8

IBM-932

to

interchange

format

102

National

Language

Support

Guide

and

Reference

Converter

Description

IBM-943_fold8

IBM-943

to

interchange

format

IBM-1124_fold8

IBM-1124

to

interchange

format

IBM-1129_fold8

IBM-1129

to

interchange

format

IBM-eucCN_fold8

IBM-eucCN

to

interchange

format

IBM-eucJP_fold8

IBM-eucJP

to

interchange

format

IBM-eucKR_fold8

IBM-eucKR

to

interchange

format

IBM-eucTW_fold8

IBM-eucTW

to

interchange

format

IBM-eucCN_fold8

IBM-eucCN

to

interchange

format

ISO8859-1_fold8

ISO8859-1

to

interchange

format

ISO8859-2_fold8

ISO8859-2

to

interchange

format

ISO8859-3_fold8

ISO8859-3

to

interchange

format

ISO8859-4_fold8

ISO8859-4

to

interchange

format

ISO8859-5_fold8

ISO8859-5

to

interchange

format

ISO8859-6_fold8

ISO8859-6

to

interchange

format

ISO8859-7_fold8

ISO8859-7

to

interchange

format

ISO8859-8_fold8

ISO8859-8

to

interchange

format

ISO8859-9_fold8

ISO8859-9

to

interchange

format

TIS-620_fold8

TIS-620

to

interchange

format

UTF-8_fold8

UTF-8

to

interchange

format

big5_fold8

big5

to

interchange

format

GBK_fold8

GBK

to

interchange

format

Interchange

Converters—Compound

Text

Compound

text

interchange

converters

convert

between

compound

text

and

internal

code

sets.

Compound

text

is

an

interchange

encoding

defined

by

the

X

Consortium.

It

is

used

to

communicate

text

between

X

clients.

Compound

text

is

based

on

ISO2022

and

can

encode

most

character

sets

using

standard

escape

sequences.

It

also

provides

extensions

for

encoding

private

character

sets.

The

supported

code

sets

provide

a

converter

to

and

from

compound

text.

The

name

used

to

identify

the

compound

text

encoding

is

ct.

The

following

escape

sequences

are

used

to

designate

standard

code

sets

in

the

order

listed

below.

01/11

02/05

02/15

03/01

M

L

04/09

04/02

04/13

02/13

03/08

03/05

03/00

00/02

GR

right

half

of

IBM-850

unique

characters.

Characters

common

to

ISO8859-1

should

not

use

this

escape

sequence.

01/11

02/05

02/15

03/02

M

L

04/09

04/02

04/13

02/13

07/05

06/04

06/03

04/10

05/00

00/02

GR

right

half

of

Japanese

user-definable

characters.

01/11

02/05

02/15

03/01

M

L

06/09

06/02

06/13

02/13

03/08

03/05

03/00

00/02

GL

right

half

of

IBM-850

unique

characters.

Characters

common

to

ISO8859-1

do

not

use

this

escape

sequence.

01/11

02/05

02/15

03/02

M

L

06/09

06/02

06/13

02/13

07/05

06/04

06/03

04/10

05/00

00/02

GL

Japanese

(IBM-udcJP)

user-definable

characters.

Chapter

5.

Converters

Overview

for

Programming

103

Files

The

following

list

describes

the

compound

text

converters

that

are

found

in

the

/usr/lib/nls/loc/iconv

directory:

Converter

Description

ct_IBM-850

Interchange

format

to

IBM-850

ct_IBM-921

Interchange

format

to

IBM-921

ct_IBM-922

Interchange

format

to

IBM-922

ct_IBM-932

Interchange

format

to

IBM-932

ct_IBM-943

Interchange

format

to

IBM-943

ct_IBM-1124

Interchange

format

to

IBM-1124

ct_IBM-1129

Interchange

format

to

IBM-1129

ct_IBM-eucCN

Interchange

format

to

IBM-eucCN

ct_IBM-eucJP

Interchange

format

to

IBM-eucJP

ct_IBM-eucKR

Interchange

format

to

IBM-eucKR

ct_IBM-eucTW

Interchange

format

to

IBM-eucTW

ct_ISO8859-1

Interchange

format

to

ISO8859-1

ct_ISO8859-2

Interchange

format

to

ISO8859-2

ct_ISO8859-3

Interchange

format

to

ISO8859-3

ct_ISO8859-4

Interchange

format

to

ISO8859-4

ct_ISO8859-5

Interchange

format

to

ISO8859-5

ct_ISO8859-6

Interchange

format

to

ISO8859-6

ct_ISO8859-7

Interchange

format

to

ISO8859-7

ct_ISO8859-8

Interchange

format

to

ISO8859-8

ct_ISO8859-9

Interchange

format

to

ISO8859-9

ct_TIS-620

Interchange

format

to

TIS-620

ct_big5

Interchange

format

to

big5

ct_GBK

Interchange

format

to

GBK

IBM-850_ct

IBM-850

to

interchange

format

IBM-921_ct

IBM-921

to

interchange

format

IBM-922_ct

IBM-922

to

interchange

format

IBM-932_ct

IBM-932

to

interchange

format

IBM-943_ct

IBM-943

to

interchange

format

IBM-1124_ct

IBM-1124

to

interchange

format

IBM-1129_ct

IBM-1129

to

interchange

format

IBM-eucCN_ct

IBM-eucCN

to

interchange

format

IBM-eucJP_ct

IBM-eucJP

to

interchange

format

IBM-eucKR_ct

IBM-eucKR

to

interchange

format

IBM-eucTW_ct

IBM-eucTW

to

interchange

format

ISO8859-1_ct

ISO8859-1

to

interchange

format

ISO8859-2_ct

ISO8859-2

to

interchange

format

ISO8859-3_ct

ISO8859-3

to

interchange

format

ISO8859-4_ct

ISO8859-4

to

interchange

format

104

National

Language

Support

Guide

and

Reference

Converter

Description

ISO8859-5_ct

ISO8859-5

to

interchange

format

ISO8859-6_ct

ISO8859-6

to

interchange

format

ISO8859-7_ct

ISO8859-7

to

interchange

format

ISO8859-8_ct

ISO8859-8

to

interchange

format

ISO8859-9_ct

ISO8859-9

to

interchange

format

TIS-620_ct

TIS-620

to

interchange

format

big5_ct

big5

to

interchange

format

GBK_ct

GBK

to

interchange

format

Interchange

Converters—uucode

This

converter

provides

the

same

mapping

as

the

uuencode

and

uudecode

commands.

During

conversion

from

uucode,

62

bytes

at

a

time

(including

a

new-line

character

trailing

the

record)

are

converted,

and

generating

45

bytes

in

outbuf.

Files

The

following

list

describes

the

uucode

converters

found

in

the

/usr/lib/nls/loc/iconv

directory:

Converter

Description

IBM-850_uucode

IBM-850

to

uucode

IBM-921_uucode

IBM-921

to

uucode

IBM-922_uucode

IBM-922

to

uucode

IBM-932_uucode

IBM-932

to

uucode

IBM-943_uucode

IBM-943

to

uucode

IBM-1124_uucode

IBM-1124

to

uucode

IBM-1129_uucode

IBM-1129

to

uucode

IBM-eucJP_uucode

IBM-eucJP

to

uucode

IBM-eucKR_uucode

IBM-eucKR

to

uucode

IBM-eucTW_uucode

IBM-eucTW

to

uucode

IBM-eucCN_uucode

IBM-eucCN

to

uucode

ISO8859-1_uucode

ISO8859-1

to

uucode

ISO8859-2_uucode

ISO8859-2

to

uucode

ISO8859-3_uucode

ISO8859-3

to

uucode

ISO8859-4_uucode

ISO8859-4

to

uucode

ISO8859-5_uucode

ISO8859-5

to

uucode

ISO8859-6_uucode

ISO8859-6

to

uucode

ISO8859-7_uucode

ISO8859-7

to

uucode

ISO8859-8_uucode

ISO8859-8

to

uucode

ISO8859-9_uucode

ISO8859-9

to

uucode

TIS-620_uucode

TIS-620

to

uucode

big5_uucode

big5

to

uucode

GBK_uucode

GBK

to

uucode

uucode_IBM-850

uucode

to

IBM-850

Chapter

5.

Converters

Overview

for

Programming

105

Converter

Description

uucode_IBM-921

uucode

to

IBM-921

uucode_IBM-922

uucode

to

IBM-922

uucode_IBM-932

uucode

to

IBM-932

uucode_IBM-943

uucode

to

IBM-943

uucode_IBM-1124

uucode

to

IBM-1124

uucode_IBM-1129

uucode

to

IBM-1129

uucode_IBM-eucCN

uucode

to

IBM-eucCN

uucode_IBM-eucJP

uucode

to

IBM-eucJP

uucode_IBM-eucKR

uucode

to

IBM-eucKR

uucode_IBM-eucTW

uucode

to

IBM-eucTW

uucode_ISO8859-1

uucode

to

ISO8859-1

uucode_ISO8859-2

uucode

to

ISO8859-2

uucode_ISO8859-3

uucode

to

ISO8859-3

uucode_ISO8859-4

uucode

to

ISO8859-4

uucode_ISO8859-5

uucode

to

ISO8859-5

uucode_ISO8859-6

uucode

to

ISO8859-6

uucode_ISO8859-7

uucode

to

ISO8859-7

uucode_ISO8859-8

uucode

to

ISO8859-8

uucode_ISO8859-9

uucode

to

ISO8859-9

uucode_TIS-1124

uucode

to

TIS-1129

uucode_big5

uucode

to

big5

uucode_GBK

uucode

to

GBK

UCS-2

Interchange

Converters

UCS-2

uses

a

universal

16-bit

encoding.

Conversions

for

each

code

set

are

provided

in

both

directions,

between

the

code

set

and

UCS-2.

For

more

information,

see

Chapter

4,

“Code

Sets

for

National

Language

Support,”

on

page

49.

UCS-2

converters

are

found

in

/usr/lib/nls/loc/uconvTable

and

/usr/lib/nls/loc/uconv

directories.

The

uconvdef

command

is

used

to

generate

new

converters

or

to

customize

existing

UCS-2

converters.

Converter

Description

ISO8859-1

UCS-2

<—>

ISO

Latin-1

ISO8859-2

UCS-2

<—>

ISO

Latin-2

ISO8859-3

UCS-2

<—>

ISO

Latin-3

ISO8859-4

UCS-2

<—>

ISO

Latin-4

ISO8859-5

UCS-2

<—>

ISO

Cyrillic

ISO8859-6

UCS-2

<—>

ISO

Arabic

ISO8859-7

UCS-2

<—>

ISO

Greek

ISO8859-8

UCS-2

<—>

ISO

Hebrew

ISO8859-9

UCS-2

<—>

ISO

Turkish

JISX0201.1976-0

UCS-2

<—>

Japanese

JISX0201-0

106

National

Language

Support

Guide

and

Reference

Converter

Description

JISX0208.1983-0

UCS-2

<—>

Japanese

JISX0208-0

CNS11643.1986-1

UCS-2

<—>

Chinese

CNS11643-1

CNS11643.1986-2

UCS-2

<—>

Chinese

CNS11643-2

KSC5601.1987-0

UCS-2

<—>

Korean

KSC5601-0

IBM-eucCN

UCS-2

<—>

Simplified

Chinese

EUC

IBM-udcCN

UCS-2

<—>

Simplified

Chinese

user-defined

characters

IBM-sbdCN

UCS-2

<—>

Simplified

Chinese

IBM-specific

characters

GB2312.1980-0

UCS-2

<—>

Simplified

Chinese

GB

IBM-1381

UCS-2

<—>

Simplified

Chinese

PC

data

code

IBM-935

UCS-2

<—>

Simplified

Chinese

EBCDIC

IBM-936

UCS-2

<—>

Simplified

Chinese

PC5550

IBM-eucJP

UCS-2

<—>

Japanese

EUC

IBM-eucKR

UCS-2

<—>

Korean

EUC

IBM-eucTW

UCS-2

<—>

Traditional

Chinese

EUC

IBM-udcJP

UCS-2

<—>

Japanese

user-defined

characters

IBM-udcTW

UCS-2

<—>

Traditional

Chinese

user-defined

characters

IBM-sbdTW

UCS-2

<—>

Traditional

Chinese

IBM-specific

characters

UTF-8

UCS-2

<—>

UTF-8

IBM-437

UCS-2

<—>

USA

PC

data

code

IBM-850

UCS-2

<—>

Latin-1

PC

data

code

IBM-852

UCS-2

<—>

Latin-2

PC

data

code

IBM-857

UCS-2

<—>

Turkish

PC

data

code

IBM-860

UCS-2

<—>

Portuguese

PC

data

code

IBM-861

UCS-2

<—>

Icelandic

PC

data

code

IBM-863

UCS-2

<—>

French

Canadian

PC

data

code

IBM-865

UCS-2

<—>

Nordic

PC

data

code

IBM-869

UCS-2

<—>

Greek

PC

data

code

IBM-921

UCS-2

<—>

Baltic

Multilingual

data

code

IBM-922

UCS-2

<—>

Estonian

data

code

IBM-932

UCS-2

<—>

Japanese

PC

data

code

IBM-943

UCS-2

<—>

Japanese

PC

data

code

IBM-934

UCS-2

<—>

Korea

PC

data

code

IBM-936

UCS-2

<—>

People’s

Republic

of

China

PC

data

code

IBM-938

UCS-2

<—>

Taiwanese

PC

data

code

IBM-942

UCS-2

<—>

Extended

Japanese

PC

data

code

IBM-944

UCS-2

<—>

Korean

PC

data

code

IBM-946

UCS-2

<—>

People’s

Republic

of

China

SAA

data

code

IBM-948

UCS-2

<—>

Traditional

Chinese

PC

data

code

IBM-1124

UCS-2

<—>

Ukranian

PC

data

code

IBM-1129

UCS-2

<—>

Vietnamese

PC

data

code

TIS-620

UCS-2

<—>

Thailand

PC

data

code

Chapter

5.

Converters

Overview

for

Programming

107

Converter

Description

IBM-037

UCS-2

<—>

USA,

Canada

EBCDIC

IBM-273

UCS-2

<—>

Germany,

Austria

EBCDIC

IBM-277

UCS-2

<—>

Denmark,

Norway

EBCDIC

IBM-278

UCS-2

<—>

Finland,

Sweden

EBCDIC

IBM-280

UCS-2

<—>

Italy

EBCDIC

IBM-284

UCS-2

<—>

Spain,

Latin

America

EBCDIC

IBM-285

UCS-2

<—>

United

Kingdom

EBCDIC

IBM-297

UCS-2

<—>

France

EBCDIC

IBM-500

UCS-2

<—>

International

EBCDIC

IBM-875

UCS-2

<—>

Greek

EBCDIC

IBM-930

UCS-2

<—>

Japanese

Katakana-Kanji

EBCDIC

IBM-933

UCS-2

<—>

Korean

EBCDIC

IBM-937

UCS-2

<—>

Traditional

Chinese

EBCDIC

IBM-939

UCS-2

<—>

Japanese

Latin-Kanji

EBCDIC

IBM-1026

UCS-2

<—>

Turkish

EBCDIC

IBM-1112

UCS-2

<—>

Baltic

Multilingual

EBCDIC

IBM-1122

UCS-2

<—>

Estonian

EBCDIC

IBM-1124

UCS-2

<—>

Ukranian

EBCDIC

IBM-1129

UCS-2

<—>

Vietnamese

EBCDIC

TIS-620

UCS-2

<—>Thailand

EBCDIC

UTF-8

Interchange

Converters

UTF-8

is

a

universal,

multibyte

encoding

described

in

the

“UCS-2

and

UTF-8”

on

page

80.

Conversions

for

each

code

set

are

provided

in

both

directions,

between

the

code

set

and

UTF-8.

UTF-8

conversions

are

usually

done

by

using

the

Universal_UCS_Conv

and

/usr/lib/nls/loc/uconv/UTF-8

converter.

For

more

information,

see

“UCS-2

Interchange

Converters”

on

page

106.

Converter

Description

ISO8859-1

UTF-8

<—>

ISO

Latin-1

ISO8859-2

UTF-8

<—>

ISO

Latin-2

ISO8859-3

UTF-8

<—>

ISO

Latin-3

ISO8859-4

UTF-8

<—>

ISO

Latin-4

ISO8859-5

UTF-8

<—>

ISO

Cyrillic

ISO8859-6

UTF-8

<—>

ISO

Arabic

ISO8859-7

UTF-8

<—>

ISO

Greek

ISO8859-8

UTF-8

<—>

ISO

Hebrew

ISO8859-9

UTF-8

<—>

ISO

Turkish

JISX0201.1976-0

UTF-8

<—>

Japanese

JISX0201-0

JISX0208.1983-0

UTF-8

<—>

Japanese

JISX0208-0

CNS11643.1986-1

UTF-8

<—>

Chinese

CNS11643-1

CNS11643.1986-2

UTF-8

<—>

Chinese

CNS11643-2

108

National

Language

Support

Guide

and

Reference

Converter

Description

KSC5601.1987-0

UTF-8

<—>

Korean

KSC5601-0

IBM-eucCN

UTF-8

<—>

Simplified

Chinese

EUC

IBM-eucJP

UTF-8

<—>

Japanese

EUC

IBM-eucKR

UTF-8

<—>

Korean

EUC

IBM-eucTW

UTF-8

<—>

Traditional

Chinese

EUC

IBM-udcJP

UTF-8

<—>

Japanese

user-defined

characters

IBM-udcTW

UTF-8

<—>

Traditional

Chinese

user-defined

characters

IBM-sbdTW

UTF-8

<—>

Traditional

Chinese

IBM-specific

characters

UCS-2

UTF-8

<—>

UCS-2

IBM-437

UTF-8

<—>

USA

PC

data

code

IBM-850

UTF-8

<—>

Latin-1

PC

data

code

IBM-852

UTF-8

<—>

Latin-2

PC

data

code

IBM-857

UTF-8

<—>

Turkish

PC

data

code

IBM-860

UTF-8

<—>

Portuguese

PC

data

code

IBM-861

UTF-8

<—>

Icelandic

PC

data

code

IBM-863

UTF-8

<—>

French

Canadian

PC

data

code

IBM-865

UTF-8

<—>

Nordic

PC

data

code

IBM-869

UTF-8

<—>

Greek

PC

data

code

IBM-921

UTF-8

<—>

Baltic

Multilingual

data

code

IBM-922

UTF-8

<—>

Estonian

data

code

IBM-932

UTF-8

<—>

Japanese

PC

data

code

IBM-943

UTF-8

<—>

Japanese

PC

data

code

IBM-934

UTF-8

<—>

Korea

PC

data

code

IBM-935

UTF-8

<—>

Simplified

Chinese

EBCDIC

IBM-936

UTF-8

<—>

People’s

Republic

of

China

PC

data

code

IBM-938

UTF-8

<—>

Taiwanese

PC

data

code

IBM-942

UTF-8

<—>

Extended

Japanese

PC

data

code

IBM-944

UTF-8

<—>

Korean

PC

data

code

IBM-946

UTF-8

<—>

People’s

Republic

of

China

SAA

data

code

IBM-948

UTF-8

<—>

Traditional

Chinese

PC

data

code

IBM-1124

UTF-8

<—>

Ukrainian

PC

data

code

IBM-1129

UTF-8

<—>

Vietnamese

PC

data

code

TIS-620

UTF-8

<—>

Thailand

PC

data

code

IBM-037

UTF-8

<—>

USA,

Canada

EBCDIC

IBM-273

UTF-8

<—>

Germany,

Austria

EBCDIC

IBM-277

UTF-8

<—>

Denmark,

Norway

EBCDIC

IBM-278

UTF-8

<—>

Finland,

Sweden

EBCDIC

IBM-280

UTF-8

<—>

Italy

EBCDIC

IBM-284

UTF-8

<—>

Spain,

Latin

America

EBCDIC

IBM-285

UTF-8

<—>

United

Kingdom

EBCDIC

IBM-297

UTF-8

<—>

France

EBCDIC

Chapter

5.

Converters

Overview

for

Programming

109

Converter

Description

IBM-500

UTF-8

<—>

International

EBCDIC

IBM-875

UTF-8

<—>

Greek

EBCDIC

IBM-930

UTF-8

<—>

Japanese

Katakana-Kanji

EBCDIC

IBM-933

UTF-8

<—>

Korean

EBCDIC

IBM-937

UTF-8

<—>

Traditional

Chinese

EBCDIC

IBM-939

UTF-8

<—>

Japanese

Latin-Kanji

EBCDIC

IBM-1026

UTF-8

<—>

Turkish

EBCDIC

IBM-1112

UTF-8

<—>

Baltic

Multilingual

EBCDIC

IBM-1122

UTF-8

<—>

Estonian

EBCDIC

IBM-1124

UTF-8

<—>

Ukranian

EBCDIC

IBM-1129

UTF-8

<—>

Vietnamese

EBCDIC

IBM-1381

UTF-8

<—>

Simplified

Chinese

PC

data

code

GB18030

UTF-8<—>

Simplified

Chinese

TIS-620

UTF-8

<—>

Thailand

EBCDIC

Miscellaneous

Converters

A

set

of

low-level

converters

used

by

the

code

set

and

interchange

converters

is

provided.

These

converters

are

called

miscellaneous

converters.

These

low-level

converters

may

be

used

by

some

of

the

interchange

converters.

However,

the

use

of

these

converters

is

discouraged

because

they

are

intended

for

support

of

other

converters.

Files

The

following

list

describes

the

miscellaneous

converters

found

in

the

/usr/lib/nls/loc/iconv

and

/usr/lib/nls/loc/iconvTable

directories:

Converter

Description

IBM-932_JISX0201.1976-0

IBM-932

to

JISX0201.1976-0

IBM-932_JISX0208.1983-0

IBM-932

to

JISX0208.1983-0

IBM-932_IBM-udcJP

IBM-932

to

IBM-udcJP

(Japanese

user-defined

characters)

IBM-943_JISX0201.1976-0

IBM-943

to

JISX0201.1976-0

IBM-943_JISX0208.1983-0

IBM-943

to

JISX0208.1983-0

IBM-943_IBM-udcJP

IBM-943

to

IBM-udcJP

(Japanese

user-defined

characters

IBM-eucJP_JISX0201.1976-0

IBM-eucJP

to

JISX0201.1976-0

IBM-eucJP_JISX0208.1983-0

IBM-eucJP

to

JISX0208.1983-0

IBM-eucJP_IBM-udcJP

IBM-eucJP

to

IBM-udcJP

(Japanese

user-defined

characters)

IBM-eucKR_KSC5601.1987-0

IBM_eucKR

to

KSC5601.1987-0

IBM-eucTW_CNS11643.1986-1

IBM-eucTW

to

CNS11643.1986.1

IBM-eucTW_CNS11643.1986-2

IBM-eucTW

to

CNS11643.1986-2

IBM-eucCN_GB2312.1980-0

IBM-eucCN

to

GB2312.1980-0

110

National

Language

Support

Guide

and

Reference

Writing

Converters

Using

the

iconv

Interface

This

section

provides

information

about

the

iconv

subroutines

and

structures

in

preparation

for

writing

code

set

converters.

Included

in

this

discussion

are

an

overview

of

the

control

flow

and

the

order

in

which

the

framework

operates,

details

about

writing

code

set

converters,

and

an

example

including

the

code,

header

file,

and

a

makefile.

This

section

applies

to

the

iconv

framework

within

AIX.

Under

the

framework

of

the

iconv_open,

iconv

and

iconv_close

subroutines,

you

can

create

and

use

several

different

types

of

converters.

Applications

can

call

these

subroutines

to

convert

characters

in

one

code

set

into

characters

in

a

different

code

set.

The

access

and

use

of

the

iconv_open,

iconv

and

iconv_close

subroutines

is

standardized

by

X/Open

Portability

Guide

Issue

4.

Code

Sets

and

Converters

Code

sets

can

be

classified

into

two

categories:

stateful

encodings

and

stateless

encodings.

Stateful

Code

Sets

and

Converters

The

stateful

encodings

use

shift-in

and

shift-out

codes

to

change

state.

Shift-out

can

be

used

to

indicate

the

start

of

host

double-byte

data

in

a

data

stream

of

characters,

and

shift-in

can

be

used

to

indicate

the

end

of

this

double-byte

character

data.

When

the

double-byte

data

is

off,

it

signals

the

start

of

single-byte

character

data.

An

example

of

such

a

stateful

code

set

is

IBM-930

used

mainly

on

mainframes

(hosts).

Converters

written

to

do

the

conversion

of

stateful

encodings

to

other

code

sets

tend

to

be

complex

because

of

the

extra

processing

needed.

Stateless

Code

Sets

and

Converters

The

stateless

code

sets

are

those

that

can

be

classified

as

one

of

the

following

types:

v

Single-byte

code

sets,

such

as

ISO8859

family

(ISO8859-1,

ISO8859-2,

and

so

on)

v

Multibyte

code

sets,

such

as

IBM-eucJP

(Japanese),

IBM-932

(Shift-JIS).

Note

that

conversions

are

meaningful

only

if

the

code

sets

represent

the

same

characters.

The

simplest

types

of

code-set

conversion

can

be

found

in

single-byte

code

set

converters,

such

as

the

converter

from

ISO8859-1

to

IBM-850.

These

single-byte

code

set

converters

are

based

on

simple

table-based

conversions.

The

conversion

of

multibyte

character

encodings,

such

as

IBM-eucJP

to

IBM-932,

are

in

general

based

on

an

algorithm

and

not

on

tables,

because

the

tables

can

get

lengthy.

Overview

of

iconv

Framework

Structures

The

iconv

framework

consists

of

the

iconv_open,

iconv

and

iconv_close

subroutines,

and

is

based

on

a

common

core

structure

that

is

part

of

all

converters.

The

core

structure

is

initialized

at

the

load

time

of

the

converter

object

module.

After

the

loading

of

the

converter

is

complete,

the

main

entry

point,

which

is

always

the

instantiate

subroutine,

is

invoked.

This

initializes

the

core

structure

and

returns

the

core

converter

descriptor.

This

is

further

used

during

the

call

to

the

init

subroutine

provided

by

the

converter

to

allocate

the

converter-specific

structures.

This

init

subroutine

returns

another

converter

descriptor

that

has

a

pointer

to

the

core

converter

descriptor.

The

init

subroutine

allocates

memory

as

needed

and

may

invoke

other

converters

if

needed.

The

init

subroutine

is

the

place

for

any

converter-specific

initialization,

whereas

the

instantiate

subroutine

is

a

generic

entry

point.

After

the

converter

descriptor

for

this

converter

is

allocated

and

initialized,

the

next

step

is

to

provide

the

actual

code

needed

for

the

exec

part

of

the

functionality.

If

the

converter

is

a

table-based

converter,

the

only

need

is

to

provide

a

source

file

format

that

conforms

to

the

input

needs

of

the

genxlt

utility,

which

takes

this

source

table

as

the

input

and

generates

an

output

file

format

usable

by

the

iconv

framework.

iconv.h

File

and

Structures

The

iconv.h

file

in

/usr/include

defines

the

following

structures:

Chapter

5.

Converters

Overview

for

Programming

111

typedef

struct

__iconv_rec

iconv_rec,

*iconv_t;

struct

__iconv_rec

{

_LC_object_t

hdr;

iconv_t

(*open)(const

char

*tocode,

const

char

*fromcode);

size_t

(*exec)(iconv_t

cd,

char

**inbuf,

size_t

*inbytesleft,

char

**outbuf,

size_t

*outbytesleft);

void

(*close)(iconv_t

cd);

};

The

common

core

structure

is

as

follows

(/usr/include/iconv.h):

typedef

struct

_LC_core_iconv_type

_LC_core_iconv_t;

struct

_LC_core_iconv_type

{

_LC_object_t

hdr;

/*

implementation

initialization

*/

_LC_core_iconv_t

*(*init)();

size_t

(*exec)();

void

(*close)();

};

Every

converter

has

a

static

memory

area,

which

contains

the

_LC_core_iconv_t

structure.

It

is

initialized

in

the

instantiate

subroutine

provided

as

part

of

the

converter

program.

iconv

Control

Flow

An

application

invokes

a

code

set

converter

by

the

following

call:

iconv_open(char

*to_codeset,

char

*from_codeset)

The

to

and

from

code

sets

are

used

in

selecting

the

converter

by

way

of

the

search

path

defined

by

the

LOCPATH

environment

variable.

The

iconv_open

subroutine

uses

the

_lc_load

subroutine

to

load

the

object

module

specified

by

concatenating

the

from

and

to

code

set

names

to

the

iconv_open

subroutine.

CONVERTER

NAME=

"from_codeset"

+

"_"

+"to_codeset"

If

the

from_codeset

is

IBM-850

and

the

to_codeset

is

ISO8859-1,

the

converter

name

is

IBM-850_ISO8859-1.

After

loading

the

converter,

its

entry

point

is

invoked

by

the

_lc_load

loader

subroutine.

This

is

the

first

call

to

the

converter.

The

instantiate

subroutine

then

initializes

the

_LC_core_iconv_t

core

structure.

The

iconv_open

subroutine

then

calls

the

init

subroutine

associated

with

the

core

structure

thus

returned.

The

init

subroutine

allocates

the

converter-specific

descriptor

structure

and

initializes

it

as

needed

by

the

converter.

The

iconv_open

subroutine

returns

this

converter-specific

structure.

However,

the

return

value

is

typecast

to

iconv_t

in

the

user’s

application.

Thus,

the

application

does

not

see

the

whole

of

the

converter-specific

structure;

it

sees

only

the

public

iconv_t

structure.

The

converter

code

itself

uses

the

private

converter

structure.

Applications

that

use

iconv

converters

should

not

change

the

converter

descriptor;

the

converter

descriptor

should

be

used

as

an

opaque

structure.

An

entry

point

is

declared

in

every

converter

so

that

when

the

converter

is

opened

by

a

call

to

the

iconv_open

subroutine,

that

entry

point

is

automatically

invoked.

The

entry

point

is

the

instantiate

subroutine

that

should

be

provided

in

all

converters.

The

entry

point

is

specified

in

the

makefile

as

follows:

LDENTRY=-einstantiate

When

the

converter

is

loaded

on

a

call

to

the

iconv_open

subroutine,

the

instantiate

subroutine

is

invoked.

This

subroutine

initializes

a

static

core

conversion

descriptor

structure

_LC_core_iconv_t

cd.

The

core

conversion

descriptor

cd

contains

pointers

to

the

init,

_iconv_exec,

and

_iconv_close

subroutines

supplied

by

the

specific

converter.

The

instantiate

subroutine

returns

the

core

conversion

descriptor

to

be

used

later.

The

_LC_core_iconv_t

structure

is

defined

in

/usr/include/iconv.h.

When

the

iconv_open

subroutine

is

called,

the

following

actions

occur:

112

National

Language

Support

Guide

and

Reference

1.

The

converter

is

found

using

the

LOCPATH

environment

variable,

the

converter

is

loaded,

and

the

instantiate

subroutine

is

invoked.

On

success,

it

returns

the

core

conversion

descriptor.

(_LC_core_iconv_t

*cd).

The

instantiate

subroutine

provided

by

the

converter

is

responsible

for

initializing

the

header

in

the

core

structure.

2.

The

iconv_open

subroutine

then

invokes

the

init

subroutine

specified

in

the

core

conversion

descriptor.

The

init

subroutine

provided

by

the

converter

is

responsible

for

allocation

of

memory

needed

to

hold

the

converter

descriptor

needed

for

this

specific

converter.

For

example,

the

following

might

be

the

structure

needed

by

a

stateless

converter:

typedef

struct

_LC_sample_iconv_rec

{

LC_core_iconv_t

core;

}

_LC_sample_iconv_t;

To

initialize

this,

the

converter

has

to

do

the

following

in

the

init

subroutine:

static

_LC_sample_iconv_t*

init

(_LC_core_iconv_t

*core_cd,

char*

toname,char*

fromname)

{

_LC_sample_iconv_t

*cd;

/*

converter

descriptor

*/

/*

**

Allocate

a

converter

descriptor

**/

if(!(cd

=

(

_LC_sample_iconv_t

*)

malloc

(

sizeof(_LC_sample_iconv_t

))))

return

(NULL);

/*

**

Copy

the

core

part

of

converter

descriptor

which

is

**

passed

in

*/

cd->core

=

*core_cd;

/*

**

Return

the

converter

descriptor

*/

return

cd;

}

An

application

invokes

the

iconv

subroutine

to

do

the

actual

code

set

conversions.

The

iconv

subroutine

invokes

the

exec

subroutine

in

the

core

structure.

An

application

invokes

the

iconv_close

subroutine

to

free

any

memory

allocated

for

conversions.

The

iconv_close

subroutine

invokes

the

close

subroutine

in

the

core

structure.

Writing

a

Code

Set

Converter

This

section

provides

information

on

how

to

write

a

converter

using

the

concepts

explained

so

far.

Every

converter

should

define

the

following

subroutines:

v

instantiate

v

init

v

iconv_exec

v

iconv_close

The

converter-specific

structure

should

have

the

core

iconv

structure

as

its

first

element.

For

example:

typedef

struct

_LC_example_rec

{

/*

Core

should

be

the

first

element

*/

_LC_core_iconv_t

core;

/*

The

rest

are

converter

specific

data

(optional)

*/

iconv_t

curcd;

Chapter

5.

Converters

Overview

for

Programming

113

iconv_t

sb_cd;

iconv_t

db_cd;

unsigned

char

*cntl;

}

_LC_example_iconv_t;

Another

converter

structure:

typedef

struct

_LC_sample_iconv_rec

{

_LC_core_iconv_t

core;

}

_LC_sample_iconv_t;

Algorithm-Based

Stateless

Converters

Every

converter

should

have

the

subroutines

previously

specified.

Only

the

subroutine

headers

are

provided

without

details,

except

for

the

instantiate

subroutine

that

is

common

to

all

converters

and

should

be

coded

in

the

same

way.

The

following

example

of

an

algorithm-based

stateless

converter

is

a

sample

converter

of

the

IBM-850

code

set

to

the

ISO8859-1

code

set.

#include

<stdlib.h>

#include

<iconv.h>

#include

"850_88591.h"

/*

*

Name

:

_iconv_exec()

*

*

This

contains

actual

conversion

method.

*/

static

size_t

_iconv_exec(_LC_sample_iconv_t

*cd,

unsigned

char**

inbuf,

size_t

*inbytesleft,

unsigned

char**

outbuf,

size_t

*outbytesleft)

/*

*

cd

:

converter

descriptor

*

inbuf

:

input

buffer

*

outbuf

:

output

buffer

*

inbytesleft

:

number

of

data(in

bytes)

in

input

buffer

*

outbytesleft

:

number

of

data(in

bytes)

in

output

buffer

*/

{

}

/*

*

Name

:

_iconv_close()

*

*

Free

the

allocated

converter

descriptor

*/

static

void

_iconv_close(iconv_t

cd)

{

}

/*

*

Name

:

init()

*

*

This

allocates

and

initializes

the

converter

descriptor.

*/

static

_LC_sample_iconv_t

*init

(_LC_core_iconv_t

*core_cd,

char*

toname,

char*

fromname)

{

}

/*

*

Name

:

instantiate()

*

*

Core

part

of

a

converter

descriptor

is

initialized

here.

*/

_LC_core_iconv_t

*instantiate(void)

114

National

Language

Support

Guide

and

Reference

{

static

_LC_core_iconv_t

cd;

/*

*

*

Initialize

_LC_MAGIC

and

_LC_VERSION

are

**

defined

in

<lc_core.h>.

_LC_ICONV

and

_LC_core_iconv_t

**

are

defined

in

<iconv.h>.

*/

cd.hdr.magic

=

_LC_MAGIC;

cd.hdr.version

=

_LC_VERSION;

cd.hdr.type_id

=

_LC_ICONV;

cd.hdr.size

=

sizeof

(_LC_core_iconv_t);

/*

*

Set

pointers

to

each

method.

*/

cd.init

=

init;

cd.exec

=

_iconv_exec;

cd.close

=

_iconv_close;

/*

*

Returns

the

core

part

*/

return

&cd;

}

Stateful

Converters

Because

stateful

converters

need

more

information,

they

provide

additional

converter-dependent

information.

The

following

example

of

a

stateful

converter

is

a

sample

converter

of

IBM-930

to

IBM-932

code

set.

The

host.h

file

contains

the

following

structure:

typedef

struct

_LC_host_iconv_rec

{

_LC_core_iconv_t

core;

iconv_t

curcd;

iconv_t

sb_cd;

iconv_t

db_cd;

unsigned

char

*cntl;

}

_LC_host_iconv_t;

#include

<stdlib.h>

#include

<sys/types.h>

#include

<iconv.h>

#include

"host.h"

/*

**

The

_iconv_exec

subroutine

to

be

invoked

via

cd->exec()

*/

static

int

_iconv_exec(_LC_host_iconv_t

*cd,

unsigned

char

**inbuf,

size_t

*inbytesleft,

unsigned

char

**outbuf,

size_t

*outbytesleft)

{

unsigned

char

*in,

*out;

int

ret_value;

if

(!cd){

errno

=

EBADF;

return

NULL;

}

if

(!inbuf)

{

cd->curcd

=

cd->sb_cd;

return

ICONV_DONE;

}

do

{

Chapter

5.

Converters

Overview

for

Programming

115

if

((ret_value

=

iconv(cd->curcd,

inbuf,

inbytesleft,

outbuf,

outbytesleft))

!=

ICONV_INVAL)

return

ret_value;

in

=

*inbuf;

out

=

*outbuf;

if

(in[0]

==

SO)

{

if

(cd->curcd

==

cd->db_cd){

errno

=

EILSEQ;

return

ICONV_INVAL;

}

cd->curcd

=

cd->db_cd;

}

else

if

(in[0]

==

SI)

{

if

(cd->curcd

==

cd->sb_cd){

errno

=

EILSEQ;

return

ICONV_INVAL;

}

cd->curcd

=

cd->sb_cd;

}else

if

(in[0]

<=

0x3f

&&

cd->curcd

==

cd->sb_cd)

{

if

(*outbytesleft

<

1){

errno

=

E2BIG;

return

ICONV_OVER;

}

out[0]

=

cd->cntl[in[0]];

*outbuf

=

++out;

(*outbytesleft)--;

}

else

{

errno

=

EILSEQ;

return

ICONV_INVAL;

}

*inbuf

=

++in;

(*inbytesleft)--;

}

while

(1);

}

/*

**

The

iconv_close

subroutine

is

a

macro

accessing

this

**

subroutine

as

set

in

the

core

iconv

structure.

*/

static

void

_iconv_close(_LC_host_iconv_t

*cd)

{

if

(cd)

{

if

(cd->sb_cd)

iconv_close(cd->sb_cd);

if

(cd->db_cd)

iconv_close(cd->db_cd);

free(cd);

}else{

errno

=

EBADF;

}

}

/*

**

The

init

subroutine

to

be

invoked

when

iconv_open()

is

called.

*/

static

_LC_host_iconv_t

*init(_LC_core_iconv_t

*core_cd,

char*

toname,

char*

fromname)

{

_LC_host_iconv_t*

cd;

int

i;

for

(i

=

0;

1;

i++)

{

if

(!_iconv_host[i].local)

return

NULL;

if

(strcmp(toname,

_iconv_host[i].local)

==

0

&&

strcmp(fromname,

_iconv_host[i].host)

==

0)

116

National

Language

Support

Guide

and

Reference

break;

}

if

(!(cd

=

(_LC_host_iconv_t

*)

malloc(sizeof(_LC_host_iconv_t))))

return

(NULL);

if

(!(cd->sb_cd

=

iconv_open(toname,

_iconv_host[i].sbcs)))

{

free(cd);

return

NULL;

}

if

(!(cd->db_cd

=

iconv_open(toname,

_iconv_host[i].dbcs)))

{

iconv_close(cd->sb_cd);

free(cd);

return

NULL;

}

cd->core

=

*core_cd;

cd->cntl

=

_iconv_host[i].fcntl;

cd->curcd

=

cd->sb_cd;

return

cd;

}

/*

**

The

instantiate()

method

is

called

when

iconv_open()

loads

the

**

converter

by

a

call

to

__lc_load().

*/

_LC_core_iconv_t

*instantiate(void)

{

static

_LC_core_iconv_t

cd;

cd.hdr.magic

=

_LC_MAGIC;

cd.hdr.version

=

_LC_VERSION;

cd.hdr.type_id

=

_LC_ICONV;

cd.hdr.size

=

sizeof

(_LC_core_iconv_t);

cd.init

=

init;

cd.exec

=

_iconv_exec;

cd.close

=

_iconv_close;

return

&cd;

}

Examples

v

This

example

provides

sample

code

for

a

stateless

converter

that

performs

an

algorithm-based

convertion

of

the

IBM-850

code

set

to

the

ISO8859-1

code

set.

The

file

name

for

this

example

is

850_88591.c.

#include

<stdlib.h>

#include

<iconv.h>

#include

"850_88591.h"

#define

DONE

0

/*

*

Name

:

_iconv_exec()

*

*

This

contains

actual

conversion

method.

*/

static

size_t

_iconv_exec(_LC_sample_iconv_t

*cd,

unsigned

char**

inbuf,

size_t

*inbytesleft,

unsigned

char**

outbuf,

size_t

*outbytesleft)

/*

*

cd

:

converter

descriptor

*

inbuf

:

input

buffer

*

outbuf

:

output

buffer

*

inbytesleft

:

number

of

data(in

bytes)

in

input

buffer

*

outbytesleft

:

number

of

data(in

bytes)

in

output

buffer

Chapter

5.

Converters

Overview

for

Programming

117

*/

{

unsigned

char

*in;

/*

point

the

input

buffer

*/

unsigned

char

*out;

/*

point

the

output

buffer

*/

unsigned

char

*e_in;

/*

point

the

end

of

input

buffer*/

unsigned

char

*e_out;

/*

point

the

end

of

output

buffer*/

/*

*

If

given

converter

discripter

is

invalid,

*

it

sets

the

errno

and

returns

the

number

*

of

bytes

left

to

be

converted.

*/

if

(!cd)

{

errno

=

EBADF;

return

*inbytesleft;

}

/*

*

If

the

input

buffer

does

not

exist

or

there

*

is

no

character

to

be

converted,

it

returns

*

0

(no

characters

to

be

converted).

*/

if

(!inbuf

||

!(*inbytesleft))

return

DONE;

/*

*

Set

up

pointers

and

initialize

other

variables

*/

e_in

=

(in

=

*inbuf)

+

*inbytesleft;

e_out

=

(out

=

*outbuf)

+

*outbytesleft;

/*

*

Perform

code

point

conversion

until

all

input

*

is

consumed.

*

When

error

occurs

(i.e.

buffer

overflow),

error

*

number

is

set

and

exit

this

loop.

*/

while

(in

<

e_in)

{

/*

*

If

there

is

not

enough

space

left

in

output

buffer

*

to

hold

the

converted

data,

it

stops

converting

and

*

sets

the

errno

to

E2BIG.

*/

if

(e_out

<=

out)

{

errno

=

E2BIG;

break;

}

/*

*

Convert

the

input

data

and

store

it

into

the

output

*

buffer,

then

advance

the

pointers

which

point

to

the

*

buffers.

*/

*out++

=

table[*in++];

}

/*

while

*/

/*

*

Update

the

pointers

to

the

buffers

and

*

input

/output

byte

counts

*/

*inbuf

=

in;

*outbuf

=

out;

*inbytesleft

=

e_in

-

in;

*outbytesleft

=

e_out

-

out;

118

National

Language

Support

Guide

and

Reference

/*

*

Reurn

the

number

of

bytes

left

to

be

converted

*

(0

for

successful

conversion

completion)

*/

return

*inbytesleft;

}

/*

*

Name

:

_iconv_close()

*

*

Free

the

allocated

converter

descriptor

*/

static

void

_iconv_close(iconv_t

cd)

{

if

(!cd)

free(cd);

else

/*

*

If

given

converter

is

not

valid,

*

it

sets

the

errno

to

EBADF

*/

errno

=

EBADF;

}

/*

*

Name

:

init()

*

*

This

allocates

and

initializes

the

converter

descriptor.

*/

static

_LC_sample_iconv_t*

init

(_LC_core_iconv_t

*core_cd,

char*

toname,

char*

fromname)

{

_LC_sample_iconv_t

*cd;

/*

converter

descriptor

*/

/*

*

Allocate

a

converter

descriptor

*/

if

(!(cd

=

(_LC_sample_iconv_t

*)

malloc(sizeof(_LC_sample_iconv_t))))

return

(NULL);

/*

*Copy

the

core

part

of

converter

descriptor

which

is

passed

*in

*/

cd->core

=

*core_cd;

/*

*

Return

the

converter

descriptor

*/

return

cd;

}

/*

*

Name

:

instantiate()

*

*

Core

part

of

a

converter

descriptor

is

initialized

here.

*/

_LC_core_iconv_t*

instantiate(void)

{

static

_LC_core_iconv_t

cd;

/*

*

Initialize

*

_LC_MAGIC

and

_LC_VERSION

are

defined

in

<lc_core.h>.

*

_LC_ICONV

and

_LC_core_iconv_t

are

defined

in

<iconv.h>.

*/

cd.hdr.magic

=

_LC_MAGIC;

Chapter

5.

Converters

Overview

for

Programming

119

cd.hdr.version

=

_LC_VERSION;

cd.hdr.type_id

=

_LC_ICONV;

cd.hdr.size

=

sizeof

(_LC_core_iconv_t);

/*

*

Set

pointers

to

each

method.

*/

cd.init

=

init;

cd.exec

=

_iconv_exec;

cd.close

=

_iconv_close;

/*

*

Returns

the

core

part

*/

return

&cd;

}

v

This

example

contains

a

sample

header

file

named

850_88591.h.

#ifndef

_ICONV_SAMPLE_H

#define

_ICONV_SAMPLE_H

/*

*

Define

_LC_sample_iconv_t

*/

typedef

struct

_LC_sample_iconv_rec

{

_LC_core_iconv_t

core;

}

_LC_sample_iconv_t;

static

unsigned

char

table[]

=

{

/*

|

|

|

IBM-850

ISO8859-1

|

|_______________________________________|

/*

0x00

*/

0x00,

/*

0x01

*/

0x01,

/*

0x02

*/

0x02,

/*

0x03

*/

0x03,

/*

0x04

*/

0x04,

/*

0x05

*/

0x05,

/*

0x06

*/

0x06,

/*

0x07

*/

0x07,

/*

0x08

*/

0x08,

/*

0x09

*/

0x09,

/*

0x0A

*/

0x0A,

/*

0x0B

*/

0x0B,

/*

0x0C

*/

0x0C,

/*

0x0D

*/

0x0D,

.

.

.

/*

0xF3

*/

0xBE,

/*

0xF4

*/

0xB6,

/*

0xF5

*/

0xA7,

/*

0xF6

*/

0xF7,

/*

0xF7

*/

0xB8,

/*

0xF8

*/

0xB0,

/*

0xF9

*/

0xA8,

/*

0xFA

*/

0xB7,

/*

0xFB

*/

0xB9,

/*

0xFC

*/

0xB3,

/*

0xFD

*/

0xB2,

/*

0xFE

*/

0x1A,

/*

0xFF

*/

0xA0,

};

#endif

120

National

Language

Support

Guide

and

Reference

v

This

example

is

a

sample

makefile.

SHELL

=

/bin/ksh

CFLAGS

=

$(COMPOPT)

$(INCLUDE)

$(DEFINES)

INCLUDE

=

-I.

COMPOPT

=

DEFINES

=

-D_POSIX_SOURCE

-D_XOPEN_SOURCE

CC

=

/bin/xlc

LD

=

/bin/ld

RM

=

/bin/rm

SRC

=

850_88591.c

TARGET

=

850_88591

ENTRY_POINT

=

instantiate

$(TARGET)

:

cc

-e

$(ENTRY_POINT)

-o

$(TARGET)

$(SRC)

-l

iconv

clean

:

$(RM)

-f

$(TARGET)

$(RM)

-f

*.o

Related

Information

“List

of

National

Language

Support

Subroutines”

on

page

174.

Chapter

4,

“Code

Sets

for

National

Language

Support,”

on

page

49

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

The

iconv

command,

uuencode

and

uudecode

commands.

The

iconv_open

subroutine,

iconv

subroutine,

iconv_close

subroutine.

“List

of

National

Language

Support

Subroutines”

on

page

174.

Chapter

4,

“Code

Sets

for

National

Language

Support,”

on

page

49

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

The

iconv

command,

uuencode

and

uudecode

commands.

The

iconv_open

subroutine,

iconv

subroutine,

iconv_close

subroutine.

Chapter

5.

Converters

Overview

for

Programming

121

122

National

Language

Support

Guide

and

Reference

Chapter

6.

Input

Methods

For

an

application

to

run

in

the

international

environment

for

which

National

Language

Support

(NLS)

provides

a

base,

input

methods

are

needed.

The

Input

Method

is

an

application

programming

interface

(API)

that

allows

you

to

develop

applications

independent

of

a

particular

language,

keyboard,

or

code

set.

Each

type

of

input

method

has

the

following

features:

Keymaps

Set

of

input

method

keymaps

(imkeymaps)

that

works

with

the

input

method

and

determines

the

supported

locales.

Keysyms

Set

of

key

symbols

(keysyms)

that

the

input

method

can

handle.

Modifiers

Set

of

modifiers

or

states,

each

having

a

mask

value,

that

the

input

method

supports.

Input

Method

Introduction

An

input

method

is

a

set

of

functions

that

translates

key

strokes

into

character

strings

in

the

code

set

specified

by

your

locale.

Input

method

functions

include

locale-specific

input

processing

and

keyboard

controls

(for

example,

Ctrl,

Alt,

Shift,

Lock,

and

Alt-Graphic).

The

input

method

allows

various

types

of

input,

but

only

keyboard

events

are

dealt

with

in

this

chapter.

Your

locale

determines

which

input

method

should

be

loaded,

how

the

input

method

runs,

and

which

devices

are

used.

The

input

method

then

defines

states

and

their

outcome.

When

the

input

method

translates

a

keystroke

into

a

character

string,

the

translation

process

takes

into

account

the

keyboard

and

the

code

set

you

are

using.

You

can

write

your

own

input

method

if

you

do

not

have

a

standard

keyboard

or

if

you

customize

your

code

set.

Many

languages

use

a

small

set

of

symbols

or

letters

to

form

words.

To

enter

text

with

a

keyboard,

you

press

keys

that

correspond

to

symbols

of

the

alphabet.

When

a

character

in

your

alphabet

does

not

exist

on

the

keyboard,

you

must

press

a

combination

of

keys.

Input

methods

provide

algorithms

that

allow

you

to

compose

such

characters.

Some

languages

use

an

ideographic

writing

system.

They

use

a

unique

symbol,

rather

than

a

group

of

letters,

to

represent

a

word.

For

instance,

the

character

sets

used

in

China,

Japan,

Korea,

and

Taiwan

have

more

than

5,000

characters.

Consequently,

more

than

one

byte

must

be

used

to

represent

a

character.

Moreover,

a

single

keyboard

cannot

include

all

the

required

ideographic

symbols.

You

need

input

methods

that

can

compose

multibyte

characters.

The

/usr/lib/nls/loc

directory

contains

the

input

methods

installed

on

your

system.

You

can

list

the

contents

of

this

directory

to

determine

which

input

methods

are

available

to

you.

Input

method

file

names

have

the

format

Language_Territory.im.

For

example,

the

fr_BE.im

file

is

the

input

method

file

for

the

French

language

as

used

in

Belgium.

Through

a

well-structured

protocol,

input

methods

allow

applications

to

support

different

input

without

using

locale-specific

input

processing.

In

AIX,

the

input

method

is

provided

in

the

aixterm.

When

characters

typed

from

the

AIXwindows

interface

reach

the

server,

the

characters

are

in

the

form

of

key

codes.

A

table

provided

in

the

client

converts

key

codes

into

keysyms,

a

predefined

set

of

codes.

Any

key

code

generated

by

a

keyboard

should

have

a

keysym.

These

keysyms

are

maintained

and

allocated

by

the

MIT

X

Consortium.

The

keysyms

are

passed

to

the

client

aixterm

terminal

emulator.

In

the

aixterm,

the

input

keysyms

are

converted

into

file

codes

by

the

input

method

and

are

then

sent

to

the

application.

The

X

server

is

designed

to

work

with

the

display

adapter

provided

in

the

system

hardware.

The

X

server

communicates

with

the

X

client

through

sockets.

Thus,

the

server

and

the

client

can

reside

on

different

systems

in

a

network,

provided

they

can

communicate

with

each

other.

The

data

from

the

keyboard

enters

the

X

server,

and

from

the

server,

it

is

©

Copyright

IBM

Corp.

2002

123

passed

to

the

terminal

emulator.

The

terminal

emulator

passes

the

data

to

the

application.

When

data

comes

from

applications

to

the

display

device,

it

passes

through

the

terminal

emulator

by

sockets

to

the

server

and

from

the

server

to

the

display

device.

Input

Method

Names

The

set

of

input

methods

available

depends

on

which

locales

have

been

installed

and

what

input

methods

those

locales

provide.

The

name

of

the

input

method

usually

corresponds

to

the

locale.

For

example,

the

Greek

Input

Method

is

named

el_GR,

which

is

the

same

as

the

locale

for

the

Greek

language

spoken

in

Greece.

When

there

is

more

than

one

input

method

for

a

locale,

any

secondary

input

method

is

identified

by

a

modifier

that

is

part

of

the

locale

name.

For

example,

the

French

locale,

as

spoken

in

Canada,

has

three

input

methods,

the

default

and

two

alternative

methods.

The

input

method

names

are:

fr_CA

Default

input

method

fr_CA@im=alt

Alternative

input

method

fr_CA.im__64

64-bit

input

method

The

fr

portion

of

the

locale

represents

the

language

name

(French),

and

the

CA

represents

the

territory

name

(Canada).

The

@im=alt

string

is

the

modifier

portion

of

the

locale

that

is

used

to

identify

the

alternative

input

method.

All

modifier

strings

are

identified

by

the

format

@im=Modifier.

Because

the

input

method

is

a

loadable

object

module,

a

different

object

is

required

when

running

in

the

64-bit

environment.

In

the

64-bit

environment,

the

input

method

library

automatically

appends

__64

to

the

name

when

searching

for

the

input

method.

In

the

preceding

example,

the

name

of

the

input

method

would

be

fr_CA.im__64.

It

is

possible

to

name

input

methods

without

using

the

locale

name.

Because

the

libIM

library

does

not

restrict

names

to

locale

names,

the

calling

application

must

ensure

that

the

name

passed

to

libIM

can

be

found.

However,

applications

should

request

only

modifier

strings

of

the

form

@im=Modifier

and

that

the

user’s

request

be

concatenated

with

the

return

string

from

the

setlocale

(LC_CTYPE,NULL)

subroutine.

Input

Method

Areas

Complex

input

methods

require

direct

dialog

with

users.

For

example,

the

Japanese

Input

Method

may

need

to

show

a

menu

of

candidate

strings

based

on

the

phonetic

matches

of

the

keys

that

you

enter.

The

feedback

of

the

key

strokes

appears

in

one

or

more

areas

on

the

display.

The

input

method

areas

are

as

follows:

Status

Text

data

and

bitmaps

can

appear

in

the

Status

area.

The

Status

area

is

an

extension

of

the

light-emitting

diodes

(LEDs)

on

the

keyboard.

Pre-edit

Intermediate

text

appears

in

the

Pre-edit

area

for

languages

that

compose

before

the

client

handles

the

data.

A

common

feature

of

input

methods

is

that

you

press

a

combination

of

keys

to

represent

a

single

character

or

set

of

characters.

This

process

of

composing

characters

from

keystrokes

is

called

pre-editing.

Auxiliary

Menus

and

dialogs

that

allow

you

to

customize

the

input

method

appear

in

the

Auxiliary

area.

You

can

have

multiple

Auxiliary

areas

managed

by

the

input

method

and

independent

of

the

client.

124

National

Language

Support

Guide

and

Reference

Management

for

input

method

areas

is

based

on

the

division

of

responsibility

between

the

application

(or

toolkit)

and

the

input

method.

The

divisions

of

responsibility

are

as

follows:

v

Applications

are

responsible

for

the

size

and

position

of

the

input

method

area.

v

Input

methods

are

responsible

for

the

contents

of

the

input

area.

The

input

method

area

cannot

suggest

a

placement.

Input

Method

Command

An

Input

Method

is

a

set

of

subroutines

that

translate

key

strokes

into

character

strings

in

the

code

set

specified

by

a

locale.

Input

Method

subroutines

include

logic

for

locale-specific

input

processing

and

keyboard

controls

(Ctrl,

Alt,

Shift,

Lock,

Alt

Graphic).

The

following

command

allows

for

the

customizing

of

input

method

mapping

for

the

use

of

input

method

subroutines:

keycomp

Compiles

a

keyboard

mapping

file

into

an

input

method

keymap

file.

Programming

Input

Methods

The

input

method

is

a

programming

interface

that

allows

applications

to

run

in

an

international

environment

provided

through

NLS.

The

input

method

has

the

following

characteristics:

v

Localized

input

support

(defined

by

locale)

v

Multiple

keyboard

support

v

Multibyte

character-input

processing

Note:

Do

not

assume

any

particular

physical

keyboard

is

in

use.

Use

an

input

method

based

on

the

locale

setting

to

handle

keyboard

input.

Initialization

You

can

use

the

IMQueryLanguage

subroutine

to

determine

if

an

input

method

is

available

without

initializing

it.

An

application

(toolkit)

initializes

a

locale-specific

input

method

by

calling

the

IMInitialize

subroutine,

which

initializes

a

locale-specific

input

method

editor

(IMED).

The

subroutine

uses

the

LOCPATH

environment

variable

to

search

for

the

input

method

named

by

the

LANG

environment

variable.

The

LOCPATH

environment

variable

specifies

a

set

of

directory

names

used

to

search

for

input

methods.

If

the

input

method

is

found,

the

IMInitialize

subroutine

uses

the

load

subroutine

to

load

the

input

method

and

attach

the

imkeymap

file.

When

the

input

method

is

accessed,

an

object

of

the

type

IMFep

(input

method

front-end

processor)

is

returned.

The

IMFep

should

be

treated

as

an

opaque

structure.

The

IMInitialize

subroutine

links

the

converter

function

using

the

load

subroutine.

The

load

subroutine

is

similar

to

the

exec

subroutine

and

links

the

converter

program

at

run-time.

Since

the

IMInitialize

subroutine

is

called

as

a

library

function,

it

must

preserve

security

for

certain

programs.

When

the

IMInitialize

subroutine

is

called

from

a

set

root

ID

program,

it

ignores

the

LOCPATH

environment

variable

and

searches

for

converters

only

in

the

/usr/lib/nls/loc/iconv

and

/etc/nls/loc/iconv

directories.

Each

IMFep

inherits

the

locale’s

code

set

when

the

IMInitialize

subroutine

is

called.

Consequently,

strings

returned

by

the

IMFilter

and

IMLookupString

subroutines

are

in

the

locale’s

code

set.

Changing

the

locale

after

the

IMInitialize

subroutine

is

called

does

not

affect

the

code

set

of

the

IMFep.

For

each

IMFep,

the

application

can

use

the

IMCreate

subroutine

to

create

one

or

more

IMObject

instances.

The

IMObject

manages

its

own

state

and

can

manage

several

Input

Method

Areas

(see

“Input

Method

Areas”

on

page

124).

How

each

IMObject

defines

input

processing

depends

on

the

code

set

and

keyboard

associated

with

the

locale.

In

the

simplest

case,

a

single

IMObject

is

needed

if

the

application

is

managing

a

single

dialog

with

the

user.

The

input

method

also

supports

other

user

interfaces

where

the

application

allows

multiple

dialogs

with

the

user,

and

each

dialog

requires

one

IMObject.

Chapter

6.

Input

Methods

125

The

difference

between

an

IMFep

and

IMObject

is

that

the

IMFep

is

a

handle

that

binds

the

application

to

the

code

of

the

input

method,

while

the

IMObject

is

a

handle

that

represents

an

instance

of

a

state

of

an

input

device,

such

as

a

keyboard.

The

IMFep

does

not

represent

a

state

of

the

input

method.

Each

IMObject

is

initialized

to

a

specific

input

state

and

is

changed

according

to

the

sequence

of

events

it

receives.

After

the

IMObject

is

created,

the

application

can

process

key

events.

The

application

should

pass

key

events

to

the

IMObject

using

the

IMFilter

and

IMLookupString

subroutines.

These

subroutines

are

provided

to

isolate

the

internal

processing

of

the

IMED

from

the

customized

key

event

mapping

process.

Input

Method

Management

The

input

method

provides

the

following

subroutines

for

maintenance

purposes:

IMInitialize

Initializes

the

standard

input

method

for

a

specified

language.

Returns

a

handle

to

an

IMED

associated

with

the

locale.

The

handle

is

an

opaque

structure

of

type

IMFep.

IMQueryLanguage

Checks

whether

the

specified

language

is

supported.

IMCreate

Creates

one

instance

of

a

particular

input

method.

This

subroutine

must

be

called

before

any

key

event

processing

is

performed.

IMClose

Closes

the

input

method.

IMDestroy

Destroys

an

instance

of

an

input

method.

Input

Method

Keymap

Management

The

input

method

provides

several

subroutines

to

map

key

events

to

a

string.

The

mapping

is

maintained

in

an

imkeymap

file

located

in

the

LOCPATH

directory.

The

subroutines

used

for

mapping

are

as

follows:

IMInitializeKeymap

Initializes

the

imkeymap

associated

with

a

specified

language.

IMFreeKeymap

Frees

resources

allocated

by

the

IMInitializeKeymap

subroutine.

IMAIXMapping

Translates

a

pair

of

key-symbol

and

state

parameters

to

a

string

and

returns

a

pointer

to

that

string.

IMSimpleMapping

Translates

a

pair

of

key-symbol

and

state

parameters

to

a

string

and

returns

a

pointer

to

that

string.

Key

Event

Processing

Input

processing

begins

when

you

press

keys

on

the

keyboard.

The

application

must

have

created

an

IMObject

before

calling

these

functions:

IMFilter

Asks

the

IMED

to

indicate

if

a

key

event

is

used

internally.

If

the

IMED

is

composing

a

localized

string,

it

maps

the

key

event

to

that

string.

IMLookupString

Maps

the

key

event

to

a

localized

string.

IMProcessAuxiliary

Notifies

the

input

method

of

input

for

an

auxiliary

area.

IMIoctl

Performs

a

variety

of

control

or

query

operations

on

the

input

method.

Callbacks

The

IMED

communicates

directly

with

the

user

by

using

the

Input

Method-Callback

(IM-CB)

API

to

access

the

graphic-dependent

functions

(callbacks)

provided

by

the

application.

The

application

attaches

the

callbacks,

which

perform

output

functions

and

query

information,

to

the

IMObject

during

initialization.

The

application

still

handles

all

the

input.

The

set

of

callback

functions

that

the

IMED

uses

to

communicate

with

a

user

must

be

provided

by

the

caller.

See

“Using

Callbacks”

on

page

128

for

a

discussion

of

the

subroutines

defined

by

the

IM-CB

API.

126

National

Language

Support

Guide

and

Reference

Input

Method

Structures

The

major

structures

used

by

the

input

method

are

as

follows:

IMFepRec

Contains

the

front

end

information

IMObjectRec

Contains

the

common

part

of

input

method

objects

IMCallback

Registers

callback

subroutines

to

the

IMFep

IMTextInfo

Contains

information

about

the

text

area,

primarily

the

pre-editing

string

IMAuxInfo

Defines

the

contents

of

the

auxiliary

area

and

the

type

of

processing

requested

IMIndicatorInfo

Indicates

the

current

value

of

the

indicators

IMSTR

Designates

strings

that

are

not

null-terminated

IMSTRATT

Designates

strings

that

are

not

null-terminated

and

their

attributes

Working

with

Keyboard

Mapping

The

following

model

shows

how

input

methods

are

used

by

applications.

Use

this

information

to

help

you

customize

keyboard

mapping.

Input

processing

is

divided

into

three

steps:

1.

keycode/keystate(raw)

-

>

keysym/modifier(new)

This

step

is

application

and

environment-dependent.

The

application

is

responsible

for

mapping

the

raw

key

event

into

a

keysym/modifier

for

input

to

the

input

method.

In

the

AIXwindows

environment,

the

client

uses

the

server’s

keysym

table,

xmodmap,

which

is

installed

at

the

server,

to

perform

this

step.

The

xmodmap

defines

the

mapping

of

the

Shift,

Lock,

and

Alt-Graphic

keys.

The

client

uses

the

xmodmap

as

well

as

the

Shift

and

Lock

modifiers

from

the

X

event

to

determine

the

keysym/modifier

represented

by

this

event.

For

example,

if

you

press

the

XK_a

keysym

with

a

Shift

modifier,

the

xmodmap

maps

it

to

the

XK_A

keysym.

Because

you

used

the

Shift

key

to

map

the

key

code

to

a

keysym,

the

application

should

mask

the

Shift

modifier

from

the

original

X

event.

Consequently,

the

input

to

the

input

method

would

be

the

XK_A

keysym

and

no

modifier.

In

another

environment,

if

the

device

provides

no

additional

information,

the

input

method

receives

the

XK_a

keysym

with

the

Shift

modifier.

The

input

method

should

perform

the

same

mapping

in

both

cases

and

return

the

letter

A.

2.

keysym/modifier(new)

-

>

localized

string

This

step

depends

on

the

localized

IMED

and

varies

with

each

locale.

It

notifies

the

IMED

that

a

key

event

occurred

and

to

ask

for

an

indication

that

their

IMED

uses

the

key

event

internally.

This

occurs

when

the

application

calls

the

IMFilter

subroutine.

If

the

IMED

indicates

that

the

key

event

is

used

for

internal

processing,

the

application

ignores

the

event.

Because

the

IMED

is

the

first

to

see

the

event,

this

step

should

be

done

before

the

application

interprets

the

event.

The

IMED

only

uses

key

events

that

are

essential.

If

the

IMED

indicates

the

event

is

not

used

for

internal

processing,

the

application

performs

the

next

step.

3.

keysym/modifier(new)

-

>

customized

string

This

step

occurs

when

the

application

calls

the

IMLookupString

subroutine.

The

input

method

keymap

(created

by

the

keycomp

command)

defines

the

mapping

for

this

phase.

It

is

the

last

attempt

to

map

the

key

event

to

a

string

and

allows

a

user

to

customize

the

mapping.

If

the

keysym/modifier

(new)

combination

is

defined

in

the

input

method

keymap

(imkeymap),

a

string

is

returned.

Otherwise,

the

key

event

is

unknown

to

the

input

method.

Chapter

6.

Input

Methods

127

Input

Method

Keymaps

The

input

method

provides

support

for

user-defined

imkeymaps,

allowing

you

to

customize

input

method

mapping.

The

input

methods

support

imkeymaps

for

each

locale.

The

file

name

for

imkeymaps

is

similar

to

that

of

input

methods,

except

that

the

suffix

for

imkeymap

files

is

.imkeymap

instead

of

.im.

This

example

uses

the

Italian

input

method

to

illustrate

how

you

can

customize

your

imkeymap

file:

1.

Copy

the

default

imkeymap

source

file

to

your

$HOME

directory

by

typing:

cd

$HOME

cp

/usr/lib/nls/loc/it_IT.ISO8859-1.imkeymap.src

.

2.

Edit

the

imkeymap

source

file

following

the

default

file

format

by

typing:

vi

it_IT.ISO8859-1.imkeymap.src

3.

Compile

the

imkeymap

source

file

by

typing:

keycomp

<

it_IT.ISO8859-1.imkeymap.src

>

it_IT.ISO8859-1.imkeymap

4.

Make

sure

the

LOCPATH

environment

variable

specifies

$HOME

before

/usr/lib/nls/loc

by

typing:

LOCPATH=$HOME:$LOCPATH

Note:

All

setuid

and

setgid

programs

ignore

the

LOCPATH

environment

variable.

Inbound

and

Outbound

Mapping

The

imkeymaps

map

a

key

symbol

to

a

file

code

set

string.

The

localized

imkeymaps

found

in

the

/usr/lib/nls/loc

library

are

defined

to

include

mapping

for

all

of

the

inbound

keys.

The

imkeymaps

provide

the

following

types

of

mapping:

Inbound

mapping

Mapping

of

a

keysym/modifier

that

generates

a

target

string

encoded

in

the

code

set

of

the

locale.

Outbound

mapping

Mapping

of

a

keysym/modifier

that

does

not

generate

a

target

string

included

in

the

code

set

of

the

locale.

A

special

imkeymap,

/usr/lib/nls/loc/C@outbound.imkeymap,

defines

outbound

mapping

for

all

keyboards

made

by

this

manufacturer

and

is

primarily

intended

for

use

by

aixterm.

This

imkeymap

includes

mapping

of

PF

keys,

cursor

keys,

and

other

special

keys

commonly

used

by

applications.

Internationalized

applications

that

use

standard

input

and

standard

output

should

limit

their

dependency

on

outbound

mapping,

which

does

not

vary

on

different

keyboards.

For

example,

the

Alt-a

is

defined

in

the

same

way

on

all

keyboards

made

by

this

manufacturer.

Yet,

the

Alt-tilde

is

different

depending

on

the

keyboard

used.

The

aixterm

bases

its

outbound

mapping

on

the

C@outbound

imkeymap.

Applications

that

require

more

mapping

should

modify

the

localized

imkeymap

source

to

include

the

necessary

definitions.

Using

Callbacks

Applications

that

use

input

methods

should

provide

callback

functions

so

that

the

Input

Method

Editor

(IMED)

can

communicate

with

the

user.

The

type

of

input

method

you

use

determines

whether

or

not

callbacks

are

necessary.

For

example,

the

single-byte

input

method

does

not

need

callbacks,

but

the

Japanese

input

method

uses

them

extensively

with

the

pre-edit

facility.

Pre-editing

allows

processing

of

characters

before

they

are

committed

to

the

application.

When

you

use

an

input

method,

only

the

application

can

insert

or

delete

pre-edit

data

and

scroll

the

text.

Consequently,

the

echo

of

the

keystrokes

is

achieved

by

the

application

at

the

request

of

the

input

method

logic

through

callbacks.

128

National

Language

Support

Guide

and

Reference

When

you

enter

a

keystroke,

the

application

calls

the

IMFilter

subroutine.

Before

returning,

the

input

method

can

call

the

echoing

callback

function

for

inserting

new

keystrokes.

After

a

character

has

been

composed,

the

IMFilter

subroutine

returns

it,

and

the

keystrokes

are

deleted.

In

several

cases,

the

input

method

logic

has

to

call

back

the

client.

Each

of

these

is

defined

by

a

callback

action.

The

client

specifies

which

callback

should

be

called

for

each

action.

Types

of

callbacks

are

described

as

follows:

v

Text

drawing

The

IMED

uses

text

callbacks

to

draw

any

pre-editing

text

currently

being

composed.

When

the

callbacks

are

needed,

the

application

and

the

IMED

share

a

single-line

buffer,

where

the

editing

is

performed.

The

IMED

also

provides

cursor

information

that

the

callbacks

then

present

to

the

user.

The

text

callbacks

are

as

follows:

IMTextDraw

Asks

the

application

program

to

draw

the

text

string

IMTextHide

Tells

the

application

program

to

hide

the

text

area

IMTextStart

Notifies

the

application

program

of

the

length

of

the

pre-editing

space

IMTextCursor

Asks

the

application

program

to

move

the

text

cursor

v

Indicator

(status)

The

IMED

uses

indicator

callbacks

to

request

internal

status.

The

IMIoctl

subroutine

works

with

the

IMQueryIndicatorString

command

to

retrieve

the

text

string

that

provides

the

internal

status.

Indicator

callbacks

are

similar

to

text

callbacks,

except

that

instead

of

sharing

a

single-line

buffer,

a

status

value

is

used.

The

indicator

callbacks

are

as

follows:

IMIndicatorDraw

Tells

the

application

program

to

draw

the

status

indicator

IMIndicatorHide

Tells

the

application

program

to

hide

the

status

indicator

IMBeep

Tells

the

application

program

to

emit

a

beep

sound

v

Auxiliary

The

IMED

uses

auxiliary

callbacks

to

request

complex

dialogs

with

the

user.

Consequently,

these

callbacks

are

more

sophisticated

than

text

or

indicator

callbacks.

The

auxiliary

callbacks

are

as

follows:

IMAuxCreate

Tells

the

application

program

to

create

an

auxiliary

area

IMAuxDraw

Tells

the

application

program

to

draw

an

auxiliary

area

IMAuxHide

Tells

the

application

program

to

hide

an

auxiliary

area

IMAuxDestroy

Tells

the

application

program

to

destroy

an

auxiliary

area

The

IMAuxInfo

structure

defines

the

dialog

needed

by

the

IMED.

The

contents

of

the

auxiliary

area

are

defined

by

the

IMAuxInfo

structure,

found

in

the

/usr/include/im.h

library.

The

IMAuxInfo

structure

contains

the

following

fields:

IMTitle

Defines

the

title

of

the

auxiliary

area.

This

is

a

multibyte

string.

If

title.len

is

0,

no

title

displays.

Chapter

6.

Input

Methods

129

IMMessage

Defines

a

list

of

messages

to

be

presented.

From

the

applications

perspective,

the

IMMessage

structure

should

be

treated

as

informative,

output-only

text.

However,

some

input

methods

use

the

IMMessage

structure

to

conduct

a

dialog

with

the

user

in

which

the

key

events

received

by

way

of

the

IMFilter

or

IMLookupString

subroutine

are

treated

as

input

to

the

input

method.

In

such

cases,

the

input

method

may

treat

the

IMMessage

structure

as

either

a

selectable

list

or

a

prompt

area.

In

either

case,

the

application

displays

only

the

message

contents.

The

IMProcessAuxiliary

subroutine

need

not

be

called

if

the

IMSelection

structure

contains

no

IMPanel

structures

and

the

IMButton

field

is

null.

The

message.nline

indicates

the

number

of

messages

contained

in

the

IMMessage

structure.

Each

message

is

assumed

to

be

a

single

line.

Control

characters,

such

as

\t,

are

not

recognized.

The

text

of

each

message

is

defined

by

the

IMSTRATT

structure,

which

consists

of

both

a

multibyte

string

and

an

attribute

string.

Each

attribute

is

mapped

one-to-one

for

each

byte

in

the

text

string.

If

message.cursor

is

True,

then

the

IMMessage

structure

defines

a

text

cursor

at

location

message.cur_row,

message.cur_col.

The

message.cur_col

field

is

defined

in

terms

of

bytes.

The

message.maxwidth

field

contains

the

maximum

width

of

all

text

messages

defined

in

terms

of

columns.

IMButton

Indicates

the

possible

buttons

that

can

be

presented

to

a

user.

The

IMButton

field

tells

the

application

which

user

interface

controls

should

be

provided

for

the

end

user.

The

button

member

is

of

type

int

and

may

contain

the

following

masks:

IM_OK

Present

the

OK

button.

IM_CANCEL

Present

the

CANCEL

button.

IM_ENTER

Present

the

ENTER

button.

IM_RETRY

Present

the

RETRY

button.

IM_ABORT

Present

the

ABORT

button.

IM_YES

Present

the

YES

button.

IM_NO

Present

the

NO

button.

IM_HELP

Present

the

HELP

button.

IM_PREV

Present

the

PREV

button.

IM_NEXT

Present

the

NEXT

button.

The

application

should

use

the

IMProcessAuxiliary

subroutine

to

communicate

the

button

selection.

130

National

Language

Support

Guide

and

Reference

IMSelection

Defines

a

list

of

items,

such

as

ideographs,

that

an

end

user

can

select.

This

structure

is

used

when

the

input

method

wants

to

display

a

large

number

of

items

but

does

not

want

to

control

how

the

list

is

presented

to

the

user.

The

IMSelection

structure

is

defined

as

a

list

of

IMPanel

structures.

Not

all

applications

support

IMSelection

structures

inside

the

IMAuxInfo

structure.

Applications

that

do

support

IMSelection

structures

should

perform

the

IM_SupportSelection

operation

using

the

IMIoctl

subroutine

immediately

after

creation

of

the

IMObject.

In

addition,

not

all

applications

support

multiple

IMPanel

structures.

Therefore,

the

panel_row

and

panel_col

fields

are

restricted

to

a

setting

of

1

by

all

input

methods.

Each

IMPanel

structure

consists

of

a

list

of

IMItem

fields

that

should

be

treated

as

a

two-dimensional,

row/column

list

whose

dimensions

are

defined

as

item_row

times

item_col.

If

item_col

is

1,

there

is

only

one

column.

The

size

of

the

IMPanel

structure

is

defined

in

terms

of

bytes.

Each

item

within

the

IMPanel

structure

is

less

than

or

equal

to

panel->maxwidth.

The

application

should

use

the

IMProcessAuxiliary

subroutine

to

communicate

one

or

more

user

selections.

The

IM_SELECTED

value

indicates

which

item

is

selected.

The

IM_CANCEL

value

indicates

that

the

user

wants

to

terminate

the

auxiliary

dialog.

hint

Used

by

the

input

method

to

provide

information

about

the

context

of

the

IMAuxInfo

structure.

A

value

of

IM_AtTheEvent

indicates

that

the

IMAuxInfo

structure

is

associated

with

the

last

event

passed

to

the

input

method

by

either

the

IMFilter

or

IMLookupString

subroutine.

Other

hints

are

used

to

distinguish

when

multiple

IMAuxInfo

structures

are

being

displayed.

status

Used

by

the

input

method

for

internal

processing.

This

field

should

not

be

used

by

applications.

Each

IMAuxInfo

structure

is

independent

of

the

others.

The

method

used

for

displaying

the

members

is

determined

by

the

caller

of

the

input

method.

The

IMAuxInfo

structure

is

used

by

the

IMAuxDraw

callback.

Initializing

Callbacks

All

callbacks

must

be

identified

when

you

call

the

IMCreate

subroutine.

The

IMCallback

structure

contains

the

address

for

each

callback

function.

The

caller

of

the

IMCreate

subroutine

must

initialize

the

IMCallback

structure

with

the

addresses.

The

callback

functions

can

be

called

before

the

IMCreate

subroutine

returns

control

to

the

caller.

Usually,

the

IMTextStart

callback

is

called

to

identify

the

size

of

the

pre-edit

buffer.

Bidirectional

Input

Method

The

Bidirectional

Input

Method

(BIM)

is

similar

to

the

Single-Byte

Input

Method

except

that

it

is

customized

to

process

the

Arabic

and

Hebrew

keyboards.

BIM

also

links

the

Hebrew

and

Arabic

states

to

the

Latin

states.

The

Alt+Right

Shift

keys

allow

the

user

to

toggle

between

the

Arabic/Hebrew

and

Latin

language

layers.

The

use

of

these

keys

is

derived

from

BIM.

The

features

of

BIM

are

as

follows:

v

Supports

Arabic,

Hebrew,

and

Latin

states

v

Supports

the

ISO8859-6,

ISO8859-8,

IBM-1046,

and

IBM-856

code

sets

v

Performs

diacritical

composing

Keymaps

The

following

keymaps

are

supported

on

BIM:

v

ar_AA.ISO8859-6.imkeymap

v

ar_AA@alt.ISO8859-6.imkeymap

v

Ar_AA.IBM-1046.imkeymap

v

Ar_AA@alt.IBM-1046.imkeymap

v

iw_IL.ISO8859-8.imkeymap

Chapter

6.

Input

Methods

131

v

iw_IL@alt.ISO8859-8.imkeymap

v

Iw_IL.IBM-856.imkeymap

v

Iw_IL@alt.IBM-856.imkeymap

Key

Settings

The

following

key

settings

are

supported

on

BIM:

scr-rev()

Reverses

the

screen

orientation

and

sets

the

keyboard

layer

to

the

default

language

of

the

new

orientation.

ltr-lang()

Enables

the

Latin

keyboard

layer.

rtl-lang()

Enables

the

Arabic/Hebrew

keyboard

layer.

col-mod()

Enables

the

column

heading

adjustment,

which

handles

each

word

as

a

separate

column.

auto-push()

Toggles

the

Autopush

mode,

which

handles

mixed

left-to-right

and

right-to-left

text.

When

you

enable

the

Autopush

mode,

reversed

segments

are

automatically

initiated

and

terminated

according

to

the

entered

character

or

the

selected

language

layer.

Thus,

you

are

relieved

of

manually

invoking

the

Push

function.

chg-push()

Toggles

the

Push

mode.

This

mode

causes

the

cursor

to

remain

in

its

position

and

pushes

the

typed

characters

in

the

direction

opposed

to

the

field

direction.

shp-in()

Shapes

Arabic

characters

in

their

initial

forms.

shp-is()

Shapes

Arabic

characters

in

their

isolated

forms.

shp-p()

Shapes

Arabic

characters

in

their

passthru

forms.

shp-asd()

Shapes

Arabic

characters

in

their

automatic

forms.

shp-m()

Shapes

Arabic

characters

in

their

middle

forms.

shp-f()

Shapes

Arabic

characters

in

their

final

forms.

Modifiers

The

following

modifiers

are

supported

on

BIM:

ShiftMask

0x01

LockMask

0x02

ControlMask

0x04

Mod1Mask

(Left-Alt)

0x08

Mod2Mask

(Right-Alt)

0x10

Cyrillic

Input

Method

(CIM)

The

Cyrillic

Input

Method

(CIM)

is

similar

to

the

Single-Byte

Input

Method,

except

that

it

is

customized

for

processing

the

Cyrillic

keyboard.

The

features

of

CIM

are

as

follows:

v

Supports

Cyrillic

and

Latin

states.You

can

toggle

between

the

two

states

by

pressing

the

Alt

key

and

the

Left

or

Right

Shift

key

simultaneously.

Note:

The

Alt-Graphic

(Right

Alt)

key

can

be

used

to

generate

additional

characters

within

each

keyboard

layer.

v

For

the

Russian

and

Bulgarian

locales,

both

101-key

and

102-key

keyboard

drivers

are

supported.

v

Supports

the

ISO8859-5

code

set.

Keymap

The

following

keymaps

are

supported

on

the

CIM:

v

bg_BG.ISO8859-5.imkeymap

v

mk_MK.ISO8859-5.imkeymap

v

sr_SP.ISO8859-5.imkeymap

132

National

Language

Support

Guide

and

Reference

v

ru_RU.ISO8859-5.imkeymap

v

be-BY.ISO8859-5.imkeymap

v

uk-UA.ISO8859-5.imkeymap

Keysyms

The

CIM

uses

the

keysyms

in

the

XK_CYRILLIC,

XK_LATIN1,

and

XK_MISCELLANY

groups.

The

following

reserved

keysyms

are

unique

to

the

input

method

of

this

system:

XK_dead_acute

0x180000b4

XK_dead_grave

0x18000060

XK_dead_circumflex

0x1800005e

XK_dead_diaeresis

0x180000a8

XK_dead_tilde

0x1800007e

XK_dead_caron

0x180001b7

XK_dead_breve

0x180001a2

XK_dead_doubleacute

0x180001bd

XK_dead_degree

0x180000b0

XK_dead_abovedot

0x180001ff

XK_dead_macron

0x180000af

XK_dead_cedilla

0x180000b8

XK_dead_ogonek

0x180001b2

XK_dead_accentdiaeresis

0x180007ae

Modifiers

The

following

modifiers

are

supported

on

CIM:

ShiftMask

0x01

LockMask

0x02

ControlMask

0x04

Mod1Mask

(Left-Alt)

0x08

Mod2Mask

(Right-Alt)

0x10

The

following

internal

modifier

is

supported

on

CIM:

Cyrillic

Layer

0x20

Greek

Input

Method

(GIM)

The

Greek

Input

Method

(GIM)

is

similar

to

the

Single-Byte

Input

Method

(SIM),

but

handles

both

Latin

and

Greek

character

sets,

by

providing

two

layers

or

states

of

keyboard

mappings,

which

correspond

to

the

two

character

sets.

The

keyboard

is

initially

in

the

Latin

input

state.

However,

if

the

left-shift

key

is

pressed

while

the

left-alt

key

is

held

down,

the

keyboard

is

put

in

the

Greek

input

state.

The

keyboard

can

be

returned

to

the

Latin

state

by

pressing

the

right-shift

key,

while

the

left-alt

key

is

held

down.

These

are

locking

shift

keys,

because

the

state

is

locked

when

they

are

pressed.

While

in

the

Greek

state,

the

input

method

recognizes

the

following

diacritical

characters

and

valid

subsequent

characters

for

diacritical

composing

as

shown

in

the

following

table:

Greek

Composing

Characters

Chapter

6.

Input

Methods

133

Keysym

Valid

Composing

Characters

dead_acute

uppercase

and

lowercase:

alpha,

epsilon,

eta,

iota,

omicron,

upsilon,

omega

dead_diaeresis

uppercase

and

lowercase:

iota,

upsilon

dead_accentdiaeresis

lowercase

only:

iota,

upsilon

In

the

Latin

state,

there

are

no

composing

diacriticals,

and

the

keys

shown

in

the

table

above

are

treated

as

simple

graphic

characters.

The

Greek

and

Single-Byte

Input

Methods

also

differ

in

their

handling

of

illegal

diacritical

composing

sequences.

In

such

cases,

the

GIM

beeps

and

returns

no

characters.

The

SIM

does

not

beep

and

returns

both

the

diacritical

character

and

a

graphic

character

associated

with

the

invalid

key.

Note:

The

Alt-Graphic

(right-alt)

key

can

be

used

to

generate

additional

characters

within

each

keyboard

state.

Keymap

The

following

keymap

is

supported

on

GIM:

v

el_GR.ISO8859-7.imkeymap

Keysyms

The

GIM

uses

the

keysyms

in

the

XK_LATIN1,

XK_GREEK,

and

XK_MISCELLANY

groups.

The

following

reserved

keysyms

are

unique

to

the

input

method

of

this

system.

XK_dead_acute

0x180000b4

XK_dead_grave

0x18000060

XK_dead_circumflex

0x1800005e

XK_dead_diaeresis

0x180000a8

XK_dead_tilde

0x1800007e

XK_dead_caron

0x180001b7

XK_dead_breve

0x180001a2

XK_dead_doubleacute

0x180001bd

XK_dead_degree

0x180000b0

XK_dead_abovedot

0x180001ff

XK_dead_macron

0x180000af

XK_dead_cedilla

0x180000b8

XK_dead_ogonek

0x180001b2

XK_dead_accentdiaeresis

0x180007ae

Modifiers

The

following

modifiers

are

supported

on

GIM:

ShiftMask

0x01

LockMask

0x02

ControlMask

0x04

Mod1Mask

(Left-Alt)

0x08

Mod2Mask

(Right-Alt)

0x10

The

following

internal

modifier

is

supported

on

GIM:

Greek

Layer

0x20

134

National

Language

Support

Guide

and

Reference

Japanese

Input

Method

(JIM)

The

Japanese

Input

Method

(JIM)

provides

Japanese

input.

The

features

include

the

following:

v

Supports

Romaji

to

Kana

character

conversion

(RKC).

v

Supports

Kana

to

Kanji

character

conversion

(KKC).

v

Includes

Hankaku

(half-width)

and

Zenkaku

(full-width)

character

input.

v

Provides

system

and

user

dictionary

lookup.

v

Provides

run-time

registration

of

a

word

to

the

user

dictionary.

v

Requires

Callback

functions

to

support:

–

Status

and

Pre-edit

drawing

–

All

candidate

menus

–

JIS

Kutan

number

input

and

IBM

Kanji

number

input

v

Supports

IBM-943,

IBM-932

and

IBM-eucJP

code

sets.

For

internal

processing,

the

JIM

uses

the

IBM-942

code

set.

However,

the

JIM

supports

any

code

set,

such

as

IBM-eucJP,

that

can

be

converted

from

IBM-932.

v

Located

in

the

/usr/lib/nls/loc/JP.im

file.

All

other

localized

input

methods

are

aliases

to

this

file.

The

Japanese

code

sets

consist

of

the

following

character

groups:

v

Katakana

v

Hiragana

v

Kanji

Katakana

and

Hiragana

consist

of

approximately

50

characters

each

and

form

the

set

of

phonetic

characters

referred

to

as

Kana.

All

of

the

sounds

in

the

Japanese

language

can

be

represented

in

Kana.

Kanji

is

a

set

of

ideographs.

A

simple

concept

can

be

represented

by

a

single

Kanji

character,

while

more

complicated

meanings

can

be

formed

with

strings

of

Kanji

characters.

Several

thousand

Kanji

characters

exist.

The

Japanese

also

use

the

Roman

alphabet.

Called

Romaji,

the

Roman

alphabet

consists

of

26

characters.

It

is

used

mostly

in

technical

and

professional

environments

to

represent

technical

vocabulary

that

does

not

exist

in

Japanese.

A

typical

sentence

is

usually

a

mixture

of

Katakana,

Hiragana,

Kanji,

Romaji,

numbers,

and

other

characters.

Japanese

Character

Processing

The

Japanese

Industrial

Standard

(JIS)

specifies

about

7000

Kanji

characters

processed

by

computer

systems.

Japanese

products

made

by

this

manufacturer

support

all

of

the

standard

characters,

as

well

as

others.

Input

of

the

characters

is

accomplished

through

the

following:

v

Kana-to-Kanji

conversion

(KKC)

v

Romaji-to-Kana

conversion

(RKC)

The

following

special

keys

appear

on

the

106-key

Japanese

keyboard

to

allow

for

these

conversions:

Special

Japanese

Keys

Key

Function

Key

Name

Description

of

Function

KKC

Non-conversion

key

muhenkan

Leaves

Kana

characters

as

is.

KKC

Conversion

key

henkan

Converts

Kana

to

Kanji.

Chapter

6.

Input

Methods

135

KKC

All

Candidates

key

zenkouho

Shows

all

possible

Kanji

representatives.

RKC

Romaji

Mode

key

romaji

Toggles

RKC

on

and

off.

Hiragana

Shift

key

hiragana

Becomes

Hiragana

shift

state.

Katakana

Shift

key

katakana

Becomes

Katakana

shift

state.

Romaji

Shift

key

eisu

Becomes

Romaji

shift

state.

Note:

Shift

states

are

maintained

until

you

press

another

shift

key.

The

initial

state

is

Romaji.

Kana-To-Kanji

Conversion

(KKC)

Technology

The

Japanese

Input

Method’s

(JIM)

KKC

technology

is

based

on

the

fact

that

every

Kanji

character

or

set

of

Kanji

characters

has

a

phonetic

sound

or

sounds

that

can

be

expressed

by

Katakana

or

Hiragana

characters.

It

is

much

easier

to

input

Hiragana

or

Katakana

characters

than

Kanji

characters.

The

JIM

analyzes

the

phonetic

values

of

the

Hiragana

and

Katakana

characters

to

determine

the

best

Kanji-character

equivalent.

Such

phonetic

analysis

depends

on

the

dictionary

and

tables

provided

to

the

JIM.

Input

Modes

The

JIM

has

the

following

modes

that

can

be

used

to

control

the

input

processing:

v

Keyboard

Mapping

Allows

invocation

of

alphanumeric,

Katakana,

or

Hiragana

modes.

v

Character

Size

Inputs

in

Zenkaku

(full-width)

or

Hankaku

(half-width)

mode.

v

RKC

off/on

Inputs

Kana

directly

or

invokes

the

pre-edit

composing

mode

to

input

Kana

with

a

combination

of

alphabetic

characters.

The

pre-editing

facility

allows

processing

of

characters

before

they

are

committed

to

the

application.

When

the

keyboard-mapping

mode

is

alphanumeric

and

the

character

size

mode

is

Hankaku,

the

JIM

maps

keys

to

Romaji

characters.

This

mode

combination

is

known

as

the

″English″

mode.

Pre-editing

is

not

needed

in

English

mode

and

cannot

be

invoked

regardless

of

the

RKC

mode

setting.

The

other

mode

combinations

may

initiate

pre-editing

and

characters

generated

in

these

modes

are

not

ASCII.

The

following

keys

are

used

to

perform

Kana-to-Kanji

conversion

by

the

JIM.

Keysym

Keyboard

Mapping

Katakana

Katakana

shift

Eisu_toggle

Alphanumeric

shift

Hiragana

Hiragana

shift

Keysym

Character

Size

Zenkaku_Hankaku

Full-width

or

Half-width

toggle

Hankaku

Half-width

Zenkaku

Full-width

Keysym

RKC

on/off

Alt-Hiragana

Enables/Disables

Romaji-to-Kana

conversion

136

National

Language

Support

Guide

and

Reference

Romaji

*The

same

effect

*

Keysyms

unique

to

the

manufacturer

The

following

keys

are

also

used

when

the

JIM

is

pre-editing

a

Kanji

string.

Keysym

Kanji

pre-edit

Muhenkan

Non-conversion

-

commit

Kana

Henkan

Conversion

-

get

next

candidate

Kanji

Same

as

Henkan

BunsetsuYomi

*Moves

back

a

phrase

MaeKouko

*Moves

to

previous

candidate

LeftDouble

*Moves

cursor

two

characters

left

RightDouble

*Moves

cursor

two

characters

right

ErInput

*Discards

the

current

pre-edit

string

Keysym

Auxiliary

pre-edit

Alt-Henkan

All

candidates

Touroku

Run-time

registration

ZenKouho

*All

candidates

(the

same

effect)

KanjiBangou

*Kanji

Number

Input

HenkanMenu

*Changes

conversion

mode

*

Keysyms

unique

to

the

manufacturer

Keyboard

Mapping

The

following

keyboard

mapping

states

are

possible:

Alphanumeric

(Romaji),

Katakana,

and

Hiragana.

Each

state

is

invoked

by

a

keysym

that

acts

as

a

locking

shift

key.

The

keysyms

are

Katakana,

Eisu_toggle,

and

Hiragana

shift.

When

one

of

these

keysyms

is

pressed,

keyboard

mapping

enters

the

state

associated

with

the

key.

This

state

is

maintained

until

one

of

the

other

keysyms

is

pressed.

The

initial

shift

state

is

Eisu_toggle,

which

can

be

changed

by

customization.

When

you

invoke

the

Hiragana

or

Katakana

state,

each

key

is

mapped

to

a

phonetic

character

within

the

respective

character

set.

For

example,

if

you

press

q,

a

Hiragana

character

pronounced

″ta″

is

produced

during

Hiragana

shift

state,

a

Katakana

character

pronounced

″ta″

is

produced

during

Katakana

shift

state,

or

a

Romaji

q

is

produced

during

Eisu_toggle

shift

state.

On

Japanese

IBM

keyboards,

the

tops

of

keys

show

all

three

symbols.

Also,

when

keyboard

mapping

is

in

Hiragana

state,

the

input

method

is

automatically

put

into

a

composing

pre-editing

mode

where

each

Hiragana

character

can

be

converted

into

a

Kanji

character.

See

“Kanji

Pre-edit”

on

page

138

for

more

information.

Some

keys

have

two

Hiragana

or

Katakana

characters

assigned.

For

example,

the

7

key

has

large

and

small

Hiragana

characters

both

having

the

pronunciation

″ya″.

These

characters

are

not

uppercase

and

lowercase

equivalents

of

each

other

because

Kanji,

Hiragana,

and

Katakana

do

not

have

uppercase

and

lowercase.

The

small

characters

are

used

to

express

special

phonetic

sounds.

These

characters

can

be

distinguished

by

using

the

shift

key.

Chapter

6.

Input

Methods

137

Character

Size

A

subset

of

the

Japanese

character

set

is

represented

in

both

full-width

and

half-width.

Kanji

ideographic

characters

are

usually

full-width.

The

phonetic

and

ASCII

characters

have

both

full-width

and

half-width

representations.

The

user

controls

character

size

by

pressing

the

Zenkaku_Henkaku

keysym,

which

toggles

between

full-width

and

half-width.

Romaji-To-Kana

Conversion

(RKC)

For

users

familiar

with

alphanumeric

keyboards,

it

is

easier

to

type

the

phonetic

sounds

rather

than

the

Hiragana

or

Katakana

characters.

The

JIM

provides

Romaji-to-Kana

conversion

(RKC),

allowing

the

user

to

type

in

the

phonetic

sounds

of

Hiragana

or

Katakana

characters

on

an

alphanumeric

keyboard.

Kanji

Pre-edit

When

operating

in

Romaji-To-Kana

conversion

mode,

you

must

follow

two

steps

to

produce

Kanji

characters.

First,

the

user

inputs

Hiragana

characters

by

typing

their

Romaji

phonetic

characters.

In

this

step,

you

produce

a

Hiragana

character

by

typing

1

to

3

Romaji

alphabetic

keys

that

compose

the

phonetic

sound

of

the

Hiragana

character.

Second,

convert

the

Hiragana

characters

to

Kanji

characters

by

pressing

the

Henkan

key.

Many

Kanji

characters

may

be

associated

with

a

single

phonetic

phrase.

The

Henkan

key

displays

the

most

likely

Kanji

candidates.

Repeated

pressing

of

the

Henkan

key

displays

all

the

additional

candidates.

For

example,

when

you

enter

the

Kanji

characters

for

the

phonetic

sound

″k-a-n-j-i″,

you

must

do

two

things:

1.

Set

the

keyboard

mapping

to

the

Hiragana

state.

2.

Enable

Romaji-to-Kana

mapping

by

pressing

the

Alt-Hiragana

key.

This

action

invokes

the

alphanumeric

keyboard.

You

can

now

press

the

keys

that

spell

″kanji″.

As

each

phonetic

sound

is

completed,

a

Hiragana

character

displays.

The

Hiragana

character

is

displayed

with

visual

feedback

to

indicate

that

the

JIM

is

composing

in

a

pre-edit

state.

The

character

is

underlined

and

shown

in

reverse

video.

This

feedback

facility

is

known

as

a

callback.

See

“Using

Callbacks”

on

page

128

for

more

information.

To

convert

the

Hiragana

character

within

the

pre-edit

string

to

a

Kanji

character,

press

the

Henkan

key.

The

most

likely

candidate

associated

with

the

phonetic

Hiragana

sound

displays.

Pressing

this

key

repeatedly

shows

other

candidates.

During

the

composition

process,

the

pre-edit

string

is

partitioned

into

segments

that

can

be

considered

Kanji

words.

After

a

string

of

kana

characters

is

converted

into

a

candidate,

it

is

treated

as

one

of

these

convertible

segments.

While

the

pre-edit

string

is

displayed,

the

JIM

uses

the

cursor

key

and

other

keys

to

manipulate

the

string.

To

commit

the

pre-edit

string

to

the

program,

the

user

presses

the

Enter

key.

In

this

case,

the

Enter

key

code

itself

is

not

sent

to

the

program,

only

the

string.

The

Muhenkan

keysym

can

also

be

used

to

turn

off

pre-edit

and

commit

the

Hiragana

or

Katakana

character

directly

to

the

program.

The

following

table

depicts

the

shift

state

transition

and

the

interaction

of

the

RKC

mode

key

with

the

shift

states.

Character

Encoding

Code

Points

Description

Count

000xxxxx

00–1F

Controls

32

138

National

Language

Support

Guide

and

Reference

00100000

20

Space

1

0xxxxxxx

21–7E

7-bit

ASCII

94

01111111

7F

Delete

1

10000000

80

Undefined

1

100xxxxx

01xxxxxx

[81–9F]

[40–7E]

Double

byte

1953

100xxxxx

1xxxxxxx

[81–9F]

[80–FC]

Double

byte

3844

10100000

A0

Undefined

1

1xxxxxxx

A1–DF

8-bit

single

byte

63

111xxxxx

01xxxxxx

[E0–FC]

[40–7E]

Double

byte

1827

111xxxxx

1xxxxxxx

[E0–FC]

[80–FC]

Double

byte

3596

11111101

FD

Undefined

1

11111110

FE

Undefined

1

11111111

FF

All

ones

1

The

JIM

has

the

following

types

of

auxiliary

areas:

v

All

Candidates

menu

v

Kanji

Number

Input

dialog

v

Conversion

Mode

menu

v

Runtime

Registration

dialog

A

Kana-to-Kanji

conversion

operation

on

a

string

of

Hiragana

or

Katakana

characters

can

yield

from

one

to

a

hundred

Kanji

candidates.

At

worst,

you

would

have

to

press

the

conversion

key

more

than

a

hundred

times

to

get

the

correct

Kanji

character.

In

such

cases,

it

is

more

convenient

to

find

the

correct

character

by

requesting

the

All

Candidates

menu

with

the

ZenKouho

or

the

Alt-Henkan

keysym.

This

menu

displays

if

the

current

target

(a

Kanji

word

that

the

cursor

is

pointing

to

in

the

pre-edit

area)

has

several

alternative

candidates

associated

with

it.

The

menu

contains

multiple

candidates

for

selection.

The

All

Candidates

menu

disappears

when

the

Reset

keysym

is

pressed,

the

Enter

key

is

pressed,

or

a

candidate

is

selected.

A

Kanji

Number

Input

dialog

prompts

the

user

to

select

the

Kanji

character

by

entering

3

to

5

digits.

The

digits

represent

the

code

of

the

character.

Online

dictionaries

allow

a

user

to

search

for

the

code.

The

ordering

formats

for

these

dictionaries

vary.

For

example,

one

dictionary

lists

codes

by

phonetic

sound.

Another

dictionary

orders

codes

by

the

number

of

strokes

used

to

compose

the

character.

The

KanjiBangou

keysym

invokes

this

menu.

The

menu

is

terminated

with

either

the

Reset

or

Return

keysym.

The

HenkanMenu

keysym

invokes

the

Conversion

Mode

menu.

Four

items

are

displayed

for

selection.

The

most

important

items

are

the

word-conversion

mode

and

phrase-conversion

mode.

Make

a

selection

by

choosing

a

number

and

pressing

the

Return

keysym.

This

menu

is

terminated

when

either

a

selection

is

made

or

the

Reset

keysym

is

pressed.

A

run-time

registration

dialog

prompts

the

user

to

input

a

Kana

string

and

a

Kanji

string

for

registering

the

mapping

of

the

strings

in

the

user

dictionary.

After

the

pair

is

registered,

the

JIM

can

use

it

as

a

conversion

candidate.

The

menu

is

terminated

with

the

Escape

or

Reset

keysym.

The

presentation

of

menus

depends

on

the

interface

environment

in

which

the

JIM

is

operating.

For

example,

some

interfaces

support

scrolling

menus

that

use

the

Page

Down

and

Page

Up

keys.

Chapter

6.

Input

Methods

139

Keymaps

The

following

keymaps

are

supported

by

the

JIM:

v

ja_JP.IBM-eucJP.imkeymap

v

Ja_JP.IBM-932.imkeymap

v

Ja_JP.IBM-943.imkeymap

Keysyms

The

JIM

uses

the

keysyms

in

the

XK_KATAKANA,

XK_LATIN1,

and

XK_MISCELLANY

groups.

The

following

reserved

keysyms

are

unique

to

the

input

method

of

this

system:

XK_BunsetsuYomi

0x1800ff05

Back

a

phrase

to

Yomi

XK_MaeKouho

0x1800ff04

Previous

candidate

XK_ZenKouho

0x1800ff01

All

candidates.

XK_KanjiBangou

0x1800ff02

Kanji

number

input.

XK_HenkanMenu

0x1800ff03

Changes

conversion

mode.

XK_LeftDouble

0x1800ff06

Moves

cursor

two

characters

left.

XK_RightDouble

0x1800ff07

Moves

cursor

two

characters

right.

XK_LeftPhrase

0x1800ff08

Reserved

for

future

use.

XK_RightPhrase

0x1800ff09

Reserved

for

future

use.

XK_ErInput

0x1800ff0a

Discards

the

current

pre-edit

string

XK_Resetreset

0x1800ff0b

Reset

XK_Kanji

Convert

Hiragana

to

Kanji.

XK_Muhenkan

Cancels

conversion.

XK_Romaji

Puts

JIM

in

Romaji

input

mode.

XK_Hiragana

Puts

JIM

in

Hiragana

input

mode.

XK_Katakana

Puts

JIM

in

Katakana

input

mode.

XK_Zenkaku_Hankaku

Toggles

between

full-width

and

half-width

character

input

mode.

XK_Touroku

Registers

a

word

to

the

user

dictionary.

XK_Eisu_toggle

Puts

JIM

in

alphanumeric

input

mode.

Modifiers

The

following

modifiers

are

supported

by

the

JIM:

ShiftMask

0x01

LockMask

0x02

ControlMask

0x04

Mod1Mask

(Left-Alt)

0x08

Mod2Mask

(Right-Alt)

0x10

The

following

internal

modifiers

are

supported

by

the

JIM:

Kana

0x20

Romaji

0x40

140

National

Language

Support

Guide

and

Reference

Korean

Input

Method

(KIM)

The

Korean

EUC

code

set

consists

of

the

following

main

character

groups:

v

ASCII

(English)

v

Hangul

(Korean

characters)

The

Hangul

code

set

includes

Hangul

and

Hanja

(Chinese)

characters.

One

Hangul

character

can

comprise

several

consonants

and

vowels.

However,

most

Hangul

words

can

be

expressed

in

Hanja.

Each

Hanja

character

has

its

own

meaning

and

is

thus

more

specific

than

Hangul.

The

current

Korean

standard

code

set,

KSC5601,

contains

8224

Hangul,

Hanja,

and

special

characters.

To

comply

with

the

Korean

standard

Extended

UNIX

Code

(EUC),

this

code

set

is

assigned

to

CS1

of

the

EUC.

Input

of

characters

can

be

accomplished

through

the

following:

v

ASCII

ASCII

mode

is

used

for

entering

English

characters.

v

Hangul

The

XK_Hangul

key

invokes

Hangul

mode,

which

must

be

used

to

enter

Hangul

characters.

After

Hangul

mode

is

invoked,

the

KIM

composes

incoming

consonants

and

vowels

according

to

Hangul

composition

rules.

A

Hangul

character

is

composed

of

a

consonant

followed

by

a

vowel.

A

final

consonant

is

optional.

If

incoming

characters

violate

the

construct

rule,

a

warning

beep

is

sounded.

There

are

about

1500

special

characters

in

the

standard

code

set.

These

characters

must

be

entered

with

the

Code

Input

function

of

the

KIM.

The

Code

Input

key

invokes

the

Code

Input

function.

When

the

Code

Input

function

is

invoked,

the

code

point

for

a

desired

character

can

be

entered

in

the

Code

Input

auxiliary

window.

v

Hanja

The

XK_Hangul_Hanja

key

invokes

the

Hanja

mode.

Hanja

characters

can

only

be

converted

from

the

appropriate

Hangul

character.

There

are

two

modes

for

Hangul-to-Hanja

Conversion

(HHC):

single-candidate

and

multi-candidate.

In

this

context,

a

candidate

is

a

selection

of

possible

character

choices.

In

single-candidate

mode,

the

candidates

display

one

by

one

on

the

command

line.

In

multi-candidate

mode,

up

to

ten

candidates

at

a

time

display

in

an

auxiliary

window.

When

the

Hanja

conversion

mode

is

employed,

any

Hangul

character

can

be

converted

into

Hanja

when

the

Conversion

key

is

pressed.

Similarly,

any

Hanja

word

can

be

converted

to

the

appropriate

Hangul

word.

Hanja

can

also

be

entered

with

the

Code

Input

function

in

the

same

manner

used

for

entering

Hangul.

To

allow

for

these

conversions,

the

following

special

keys

appear

on

the

106-key

Korean

keyboard.

Special

Korean

Keys

Key

Function

Keysym

Description

of

Function

Hangul/English

toggle

key

XK_Hangul

Toggles

between

Hangul

and

English

modes

Hanja

toggle

key

XK_Hangul_Hanja

Toggles

Hanja

mode

on

and

off

Code

Input

key

XK_Hangul_

Codeinput

Invokes

the

Code

Input

function,

which

allows

characters

to

be

entered

by

their

code

points

HHC

All-Candidate

key

XK_Hangul_

MultipleCandidate

Invokes

the

multi-candidate

mode

Chapter

6.

Input

Methods

141

HHC

Conversion

key

XK_Hangul_

Conversion

Invokes

the

single-candidate

mode

and

also

scrolls

forward

through

the

candidates

in

both

single-candidate

and

multi-candidate

modes

HHC

Non-Conversion

key

XK_Hangul_

NonConversion

Scrolls

backwards

through

the

candidates

Latvian

Input

Method

(LVIM)

The

Latvian

Input

Method

(LVIM)

is

similar

to

the

Single-Byte

Input

Method

(SIM),

except

that

it

is

customized

for

processing

the

Latvian

keyboard.

The

features

of

LVIM

are

as

follows:

v

Supports

QWERTY

and

Ergonomic

groups,

as

two

main

groups.

There

are

two

more

supplementary

groups

which

are

accessible

through

dead

keys

from

both

main

groups:

–

Pressing

the

left-alt

key

and

left-shift

key

simultaneously,

puts

keyboard

in

the

Ergonomic

group.

–

Pressing

the

left-alt

key

and

right-shift

key

simultaneously,

puts

keyboard

in

the

QWERTY

group.

v

Supports

the

IBM-921

code

set.

Keymap

The

following

keymap

is

supported

by

the

LVIM:

v

Lv_LV.IBM-921.imkeymap

Lithuanian

Input

Method

(LTIM)

The

Lithuanian

Input

Method

(LTIM)

is

similar

to

the

Single-Byte

Input

Method

(SIM),

except

that

it

is

customized

for

processing

the

Lithuanian

keyboard.

The

features

of

LTIM

are

as

follows:

v

Supports

Programmed

and

Lithuanian

groups,

as

two

main

groups.

There

are

two

more

supplementary

groups

which

are

accessible

through

dead

keys

from

both

main

groups.

–

Pressing

the

left-alt

key

and

left-shift

key

simultaneously,

puts

keyboard

in

the

Lithuanian

group.

–

Pressing

the

left-alt

key

and

right-shift

key

simultaneously,

puts

keyboard

in

the

Programmed

group.

v

Supports

the

IBM-921

code

set.

Keymap:

The

following

keymap

is

supported

by

the

LTIM:

v

Lt_LT.IBM-921.imkeymap

Thai

Input

Method

(THIM)

The

Thai

Input

Method

is

similar

to

the

Single-Byte

Input

Method

(SIM),

except

that

it

is

customized

for

processing

the

Thai

language.

Specifically,

it

is

designed

to

prevent

entry

of

combinations

of

Thai

characters

(consonants,

upper/lower

vowels,

tone

marks)

that

are

not

valid

in

the

Thai

language.

The

features

of

the

THIM

are

as

follows:

v

Supports

Latin

and

Thai

groups,

as

the

two

main

groups

on

the

keyboard.

–

Pressing

the

left-alt

key

and

left-shift

key

puts

the

keyboard

in

the

Thai

group.

–

Pressing

the

left-alt

key

and

right-shift

key

puts

the

keyboard

in

the

Latin

group.

v

Supports

the

TIS-620

codeset.

142

National

Language

Support

Guide

and

Reference

Keymap

The

following

keymap

is

supported

by

the

THIM:

v

th_TH.TIS-620.imkeymap

Vietnamese

Input

Method

The

Vienamese

Input

Method

(VNIM)

is

similar

to

the

Single-Byte

Input

Method

(SIM),

except

that

it

is

customized

for

processing

the

Vietnamese

language.

Specifically,

it

is

designed

to

prevent

entry

of

combinations

of

Vietnamese

characters

(tone

marks),

that

are

not

valid

in

the

Vietnamese

language.

The

Vietnamese

tone-mark

characters

can

only

be

entered

immediately

after

one

of

the

Vietnamese

vowels

(a,

e,

i,

o,

u,

y,

a-circumflex,

e-circumflex,

o-circumflex,

a-breve,

o-horn,

or

u-horn).

The

VNIM

supports

a

single

keyboard

layer,

including

some

pre-composed

characters

and

Vietnamese

tone

marks.

The

VNIM

supports

the

IBM-1129

codeset.

Keymap

The

following

keymap

is

supported

by

the

VNIM:

v

Vi_VN.IBM-1129.imkeymap

Simplified

Chinese

Input

Method

(ZIM-UCS)

The

UCS-2

code

set

consists

of

almost

all

character

groups.

The

following

character

groups

exist

for

the

ZH_CN

locale:

v

ASCII

(English)

v

Glyphs

v

Chinese,

Japanese,

and

Korean

(CJK)

Characters

(unification

characters)

The

CJK

character

set

contains

20,992

character

positions,

but

only

20,902

positions

are

assigned

to

Chinese

characters.

The

pronunciation

of

simplified

Chinese

is

represented

by

phonetic

symbols

called

Bopomofo.

There

are

25

phonetic

symbols.

Simplified

Chinese

characters

are

represented

by

one

to

three

phonetic

symbols.

ZIM-UCS

features

the

following

characteristics:

v

The

following

commonly

used

input

methods

exist:

Intelligent

ABC

An

input

method

based

on

the

phonetic

representation

of

Chinese

characters.

Pin

Yin

Input

Method

An

input

method

based

on

the

phonetic

representation

of

Chinese

characters.

A

Chinese

character

is

divided

into

one

or

several

phonemes

according

to

its

pronunciation.

Wu

Bi

(Five

Strike)

Input

Method

An

input

method

based

on

the

grapheme

representation

of

Chinese

characters.

According

to

the

WuBi

grapheme

input

method,

Chinese

characters

are

classified

into

three

levels:

stroke,

radical

and

single-character.

Zheng

Ma

An

input

method

based

on

the

grapheme

representation

of

Chinese

word.

Chapter

6.

Input

Methods

143

Biao

Xing

Ma

Input

Method

An

input

method

in

which

a

Chinese

character

is

divided

into

several

components,or

radicals.

When

coding

a

character,

these

radicals

are

presented

with

the

corresponding

English

letters.

Internal

Code

Input

Method

An

input

method

in

accordance

with

the

code

table

defined

in

GB18030

(Chinese

Internal

Code

Specification)

and

UCS-2

(Unicode

System

Version

2).

v

Half-width

and

full-width

character

input.

Supports

ASCII

characters

in

both

single-byte

and

multibyte

modes.

v

Auxiliary

window

to

support

all

the

candidate

lists.

For

example,

Intelligent

ABC

generate

a

list

of

possible

characters

that

contain

the

same

sound

symbols

(radicals).

Users

select

the

desired

characters

by

pressing

the

conversion

key.

v

Over-the-spot

pre-editing

drawing

area.

Allows

entry

of

radicals

in

reverse

video

area

that

temporarily

covers

the

text

line.

The

complete

character

is

sent

to

the

editor

by

pressing

the

conversion

key.

The

UCS-ZIM

files

are

in

the

/usr/lib/nls/loc

directory.

The

UCS-ZIM

keymap

is

in

the

/usr/lib/nls/loc/ZH_CN.UTF-8.imkeymap

directory.

Chinese

(CJK)

Character

Processing

UCS-ZIM

is

invoked

by

pressing

one

of

the

input

method

keys.

Each

radical

or

phonetic

symbol

is

assigned

to

a

key.

The

user

inputs

radicals

or

phonetic

symbols

to

an

over-the-spot

pre-editing

area.

For

internal

code

input

method,

a

character

is

generated

when

the

last

key

is

pressed.

Other

input

methods

generate

a

list

of

candidates

that

display

in

a

window.

The

user

chooses

the

desired

character

by

selecting

the

candidate

number.

Invalid

input

generates

a

beep

and

an

error

message.

The

glyphs

can

be

input

using

the

ABC

input

method.

Single-Byte

Input

Method

The

Single-Byte

Input

Method

(SIM)

is

the

standard

that

supports

most

of

the

locales.

SIM

is

a

mapping

function

that

supports

simple

composing

defined

on

workstation

keyboards

associated

with

single-byte

locales.

SIM

supports

any

keyboard,

code

set,

and

language

that

the

keycomp

command

can

describe.

You

can

customize

SIM

using

imkeymaps.

The

coded

strings

returned

by

the

input

method

depend

on

the

imkeymap.

Most

single-byte

locales

share

one

SIM.

The

SIM

features

are

as

follows:

v

Supports

101-key

and

102-key

keyboard

mapping.

v

Supports

Alt-Numpad

composing.

When

you

press

the

Alt

key,

the

input

method

composes

a

character

by

using

the

next

three

numeric

keys

pressed.

The

three

numeric

keys

represent

the

decimal

encoding

of

the

character.

For

example,

entering

the

sequence

XK_0,

XK_9,

XK_7

maps

to

the

character

a

(097).

v

Supports

the

Num-Lock

state

for

the

numeric

keypad.

v

Supports

diacritical

composing.

The

e-umlaut

key

is

an

example

of

diacritical

composing.

To

compose

e-umlaut,

the

user

presses

the

appropriate

diacritical

key

(umlaut)

followed

by

an

alphabetic

key

(e).

The

specific

set

of

diacritical

keys

in

use

depend

on

the

locale

and

keyboard

definition.

When

a

space

follows

a

diacritical

key,

the

diacritical

character

represented

by

the

key

is

returned

if

it

is

in

the

locale’s

code

set.

v

Does

not

require

callback

functions.

v

Located

in

the

/usr/lib/nls/loc/sbcs.im

file.

Most

of

the

other

localized

input

methods

are

aliases

to

this

file.

144

National

Language

Support

Guide

and

Reference

Keymaps

The

following

keymaps

are

used

by

the

SIM:

cs_CZ.ISO8859-2.imkeymap

da_DK.ISO8859-1.imkeymap

de_CH.ISO8859-1.imkeymap

de_DE.ISO8859-1.imkeymap

en_GB.ISO8859-1.imkeymap

en_GB.ISO8859-1@alt.imkeymap

en_US.ISO8859-1.imkeymap

es_ES.ISO8859-1.imkeymap

Et_EE.IBM-922

-

imkeymap

pl_PL.ISO8859-2@alt.imkeymap

sq_AL.ISO8859-1.imkeymap

fi_FI.ISO8859-1.imkeymap

fi_FI.ISO8859-1@alt.imkeymap

fr_BE.ISO8859-1.imkeymap

fr_CA.ISO8859-1.imkeymap

fr_CH.ISO8859-1.imkeymap

fr_FR.ISO8859-1.imkeymap

fr_FR.ISO8859-1@alt.imkeymap

hr_HR.ISO8859-2.imkeymap

hu_HU.ISO8859-2.imkeymap

is_IS.ISO8859-1.imkeymap

it_IT.ISO8859-1.imkeymap

it_IT.ISO8859-1@alt.imkeymap

nl_BE.ISO8859-1.imkeymap

nl_NL.ISO8859-1.imkeymap

no_NO.ISO8859-1.imkeymap

pl_PL.ISO8859-2.imkeymap

pt_BR.ISO8859-1.imkeymap

pt_PT.ISO8859-1.imkeymap

ro_RO.ISO8859-2.imkeymap

sh_SP.ISO8859-2.imkeymap

sl_SI.ISO8859-2.imkeymap

sk_SK.ISO8859-2.imkeymap

sv_SE.ISO8859-1.imkeymap

sv_SE.ISO8859-1@alt.imkeymap

tr_TR.ISO8859-1.imkeymap

Reserved

Keysyms

The

following

keysyms

are

unique

to

this

input

method

and

are

described

in

the

/usr/include/X11/aix_keysym.h

file.

XK_dead_acute

0x180000b4

XK_dead_grave

0x18000060

XK_dead_circumflex

0x1800005e

XK_dead_diaeresis

0x180000a8

XK_dead_tilde

0x1800007e

XK_dead_caron

0x180001b7

XK_dead_breve

0x180001a2

XK_dead_doubleacute

0x180001bd

XK_dead_degree

0x180000b0

XK_dead_abovedot

0x180001ff

Chapter

6.

Input

Methods

145

XK_dead_macron

0x180000af

XK_dead_cedilla

0x180000b8

XK_dead_ogonek

0x180001b2

XK_dead_accentdieresis

0x180007ae

Modifiers

The

following

modifiers

are

used

by

the

SIM:

ShiftMask

0x01

LockMask

0x02

ControlMask

0x04

Mod1Mask

(Left-Alt)

0x08

Mod2Mask

(Right-Alt)

0x10

Mod5Mask

(Num

Lock)

0x80

Traditional

Chinese

Input

Method

(TIM)

The

Traditional

Chinese

code

sets

consist

of

the

following

character

groups:

v

ASCII

(English)

v

Traditional

Chinese

characters

The

Traditional

Chinese

character

set

contains

more

than

100,000

characters,

but

only

about

5000

are

frequently

used.

Each

character

comprises

one

to

five

components

known

as

radicals.

The

pronunciation

of

Traditional

Chinese

is

represented

by

phonetic

symbols

called

Dsu-Yin

or

Bo-Po-Mo-Fo.

There

are

37

phonetic

symbols,

as

well

as

four

intonation

indicators.

Chinese

characters

are

represented

by

one

to

three

phonetic

symbols.

The

character

can

include

one

intonation

symbol.

The

omission

of

an

intonation

symbol

implies

a

fifth

intonation

accent.

TIM

Features

TIM

features

the

following

characteristics:

v

The

following

input

methods

are

used:

Tsang-Jye

Supports

radicals

to

generate

a

character.

Most

frequently

used

by

data

entry

personnel.

Simplified

Tsang-Jye

Supports

wildcard

input

and

radicals.

Also

allows

entry

of

partial

characters.

Phonetic

symbols

Inputs

a

character

based

on

its

pronunciation.

Internal

Code

Generates

characters

by

EUC

hexadecimal,

code

point

input.

Decimal

value

Generates

characters

by

decimal

value.

Can

be

invoked

from

any

of

the

input

modes.

v

Half-width

and

full-width

character

input.

Supports

ASCII

characters

in

both

single-byte

and

multibyte

modes.

v

System-defined

and

user-definable

character

input.

v

Auxiliary

window

to

support

all

the

candidate

lists.

Simplified

Tsang-Jye

and

phonetic

input

methods

generate

a

list

of

character

candidates

that

contains

the

same

input

radicals

or

sound

symbols.

Users

select

characters

by

pressing

the

corresponding

number.

146

National

Language

Support

Guide

and

Reference

v

Over-the-spot

pre-editing

drawing

area.

Allows

entry

of

radicals

in

reverse

video

area

that

temporarily

covers

the

text

line.

The

complete

character

is

sent

to

the

editor

by

pressing

the

conversion

key.

The

TIM

file

is

found

in

the

/usr/lib/nls/loc/TW.im

directory.

The

TIM

keymap

is

found

in

the

/usr/lib/nls/loc/zh_TW.IBM-eucTW.imkeymap

directory.

Traditional

Chinese

Character

Processing

TIM

is

invoked

by

pressing

one

of

the

input-method

keys.

Each

radical

or

phonetic

symbol

is

assigned

to

a

key.

The

user

inputs

radicals

or

phonetic

symbols

to

an

over-the-spot

pre-editing

area.

For

Tsang-Jye

and

Internal

Code

input,

a

character

is

generated

when

the

conversion

key

is

pressed.

Simplified

Tsang-Jye

and

Phonetic

input

generate

a

list

of

candidates

that

display

in

a

swindow.

The

user

chooses

the

desired

character

by

selecting

the

candidate

number.

Invalid

input

generates

a

beep

and

an

error

message.

The

following

special

keys

for

the

Traditional

Chinese

Input

Method

are

defined

on

the

Traditional

Chinese

106-key

keyboard.

Special

Traditional

Chinese

Keys

Key

Function

Keysym

Description

of

Function

Tsang-Jye

Shift

key

XK_Chinese

_Tsangjei

Invokes

both

the

Tsang-Jye

and

Simplified

Tsang-Jye

input

methods.

Phonetic

Shift

key

XK_Chinese

_Phonetic

Invokes

the

Phonetic

input

method.

Half/Full-Width

toggle

key

XK_Chinese

_Full_Half

Toggles

between

half-width

and

full-width.

Conversion

key

XK_Convert

Converts

radical

and

phonetic

symbols

or

EUC

code

symbols

into

characters.

Displays

the

candidate

list

in

an

auxiliary

window,

if

needed.

Non-Conversion

key

XK_Non

_Convert

Interprets

a

phonetic

symbol

as

a

character.

English/Numeric

key

XK_Alph_Num

Invokes

ASCII

mode.

ALT-Tsang-Jye

Shift

key

XK_Internal

_Code

Invokes

Internal

Code

input

method.

ALT

plus

number

keypad

Invoke

the

decimal

value

input

method.

Universal

Input

Method

The

Universal

Input

Method

is

used

in

the

Unicode/UTF-8

locales

to

provide

complete

multlingual

input

method

support.

Features

of

the

Universal

Input

Method

are

as

follows:

v

Supports

Input

Method

Switching

–

Pressing

the

Ctrl

key

and

the

left

Alt

and

the

letter

i

simultaneously,

presents

a

menu

listing

the

other

available

input

methods.

Selecting

an

input

method

from

the

list

remaps

the

keyboard

and

loads

the

given

input

method,

allowing

character

entry

using

the

loaded

input

method.

v

Supports

Point

and

Click

Character

Input

–

Pressing

the

Ctrl

key

and

the

left

Alt

and

the

letter

l

simultaneously,

presents

a

menu

listing

the

various

categories

of

characters

contained

in

the

Unicode

standard.

Selecting

a

character

list

presents

a

matrix

of

the

available

characters

from

the

list.

Clicking

on

a

given

character

will

then

send

that

character

through

the

input

method

to

the

application.

–

Pressing

the

Ctrl

key

and

the

left

Alt

and

the

letter

c

returns

to

the

application,

or

if

already

in

the

application,

returns

to

the

most

recently

used

character

list

for

point

and

click

character

entry.

v

Supports

the

UTF-8

code

set.

Chapter

6.

Input

Methods

147

Keymap

XX_XX.UTF-8.imkeymap

Reserved

Keysyms

The

keysyms

listed

are

reserved

for

use

by

the

input

methods:

XK_dead_acute

0x180000b4

XK_dead_grave

0x18000060

XK_dead_circumflex

0x1800005e

XK_dead_diaeresis

0x180000a8

XK_dead_tilde

0x1800007e

XK_dead_caron

0x180001b7

XK_dead_breve

0x180001a2

XK_dead_doubleacute

0x180001bd

XK_dead_degree

0x180000b0

XK_dead_abovedot

0x180001ff

XK_dead_macron

0x180000af

XK_dead_cedilla

0x180000b8

XK_dead_ogonek

0x180001b2

XK_dead_accentdieresis

0x180007ae

XK_BunsetsuYomi

0x1800ff05

XK_MaeKouho

0x1800ff04

XK_ZenKouho

0x1800ff01

XK_KanjiBangou

0x1800ff02

XK_HenkanMenu

0x1800ff03

XK_LeftDouble

0x1800ff06

XK_RightDouble

0x1800ff07

XK_LeftPhrase

0x1800ff08

XK_RightPhrase

0x1800ff09

XK_ErInput

0x1800ff0a

XK_Reset

0x1800ff0b

Reserved

Keysyms

for

Traditional

Chinese

XK_Full_Size

0xff42

XK_Phonetic

0xff48

XK_Alph_Num

0xaff50

XK_Non_Convert

0xaff52

XK_Convert

0xaff51

XK_Tsang_Jye

0xff47

XK_Internal_Code

0xff4a

Reserved

Keysyms

for

Simplified

Chinese

(ZIM

and

ZIM-UCS)

XK_Alph_Num

0xaff47

XK_Non_Convert

0xaff59

XK_Row_Column

0xaff48

XK_PinYin

0xaff49

XK_English_Chinese

0xaff50

XK_ABC

0xaff51

XK_Fivestroke

0xaff62

XK_User-defined

0xaff56

148

National

Language

Support

Guide

and

Reference

XK_Legend

0xaff55

XK_ABC_Set_Option

0xaff60

XK_Half_full

0xaff53

Related

Information

The

IMClose

subroutine,

IMCreate

subroutine,

IMDestroy

subroutine,

IMInitialize

subroutine,

IMInitializeKeymap

subroutine,

IMloctl

subroutine,

IMFilter

subroutine,

IMLookupString

subroutine,

IMProcessAuxiliary

subroutine,

IMQueryLanguage

subroutine.

Chapter

6.

Input

Methods

149

150

National

Language

Support

Guide

and

Reference

Chapter

7.

Message

Facility

To

facilitate

translations

of

messages

into

various

languages

and

make

them

available

to

a

program

based

on

a

user’s

locale,

it

is

necessary

to

keep

messages

separate

from

the

program

by

providing

them

in

the

form

of

message

catalogs

that

the

program

can

access

at

run

time.

To

aid

in

this

task,

commands

and

subroutines

are

provided

by

the

Message

Facility.

Message

source

files

containing

application

messages

are

created

by

the

programmer

and

converted

to

message

catalogs.

The

application

uses

these

catalogs

to

retrieve

and

display

messages,

as

needed.

Translating

message

source

files

into

other

languages

and

then

converting

the

files

to

message

catalogs

does

not

require

changing

and

recompiling

a

program.

The

following

information

is

provided

for

understanding

the

Message

Facility:

v

“Creating

a

Message

Source

File”

v

“Creating

a

Message

Catalog”

on

page

155

v

“Displaying

Messages

outside

of

an

Application

Program”

on

page

157

Creating

a

Message

Source

File

The

Message

Facility

provides

commands

and

subroutines

to

retrieve

and

display

program

messages

located

in

externalized

message

catalogs.

A

programmer

creates

a

message

source

file

containing

application

messages

and

converts

it

to

a

message

catalog

with

the

gencat

command.

To

create

a

message-text

source

file,

open

a

file

using

any

text

editor.

Enter

a

message

identification

number

or

symbolic

identifier.

Then

enter

the

message

text

as

shown

in

the

following

example:

1

message-text

$

(This

message

is

numbered)

2

message-text

$

(This

message

is

numbered)

OUTMSG

message-text

$

(This

message

has

a

symbolic

identifier

\

called

OUTMSG)

4

message-text

$

(This

message

is

numbered)

Usage

Considerations

Consider

the

following:

v

One

blank

character

must

exist

between

the

message

ID

number

(or

identifier)

and

the

message

text.

v

A

symbolic

identifier

must

begin

with

an

alphabetic

character

and

can

contain

only

letters

of

the

alphabet,

decimal

digits,

and

underscores.

v

The

first

character

of

a

symbolic

identifier

cannot

be

a

digit.

v

The

maximum

length

of

a

symbolic

identifier

is

64

bytes.

v

Message

ID

numbers

must

be

assigned

in

ascending

order

within

a

single

message

set,

but

need

not

be

contiguous.

0

(zero)

is

not

a

valid

message

ID

number.

v

Message

ID

numbers

must

be

assigned

as

if

intervening

symbolic

identifiers

are

also

numbered.

If,

for

example,

you

had

numbered

the

lines

as

in

the

previous

example,

1,

2,

OUTMSG,

and

3,

the

program

would

contain

an

error,

because

the

mkcatdefs

command

also

assigns

numbers

to

symbolic

identifiers,

and

would

have

assigned

number

3

to

the

OUTMSG

symbolic

identifier.

Note:

Symbolic

identifiers

are

specific

to

the

Message

Facility.

Portability

of

message

source

files

can

be

affected

by

the

use

of

symbolic

identifiers.

Adding

Comments

to

the

Message

Source

File

You

can

include

a

comment

anywhere

in

a

message

source

file

except

within

message

text.

Leave

at

least

one

space

or

tab

(blank)

after

the

$

(dollar

sign).

The

following

is

an

example

of

a

comment:

$

This

is

a

comment.

©

Copyright

IBM

Corp.

2002

151

Comments

do

not

appear

in

the

message

catalog

generated

from

the

message

source

file.

Comments

can

help

developers

in

the

process

of

maintaining

message

source

files,

translators

in

the

process

of

translation,

and

writers

in

the

process

of

editing

and

documenting

messages.

Use

comments

to

identify

what

variables,

such

as

%s,

%c,

and

%d,

represent.

For

example,

create

a

note

that

states

whether

the

variable

refers

to

a

user,

file,

directory,

or

flag.

Comments

also

should

be

used

to

identify

obsolete

messages.

For

clarity,

you

should

place

a

comment

line

directly

beneath

the

message

to

which

it

refers,

rather

than

at

the

bottom

of

the

message

catalog.

Global

comments

for

an

entire

set

can

be

placed

directly

below

the

$set

directive.

Continuing

Messages

on

the

Next

Line

All

text

following

the

blank

after

the

message

number

is

included

as

message

text,

up

to

the

end

of

the

line.

Use

the

escape

character

\

(backslash)

to

continue

message

text

on

the

following

line.

The

\

(backslash)

must

be

the

last

character

on

the

line

as

in

the

following

example:

5

This

is

the

text

associated

with

\

message

number

5.

These

two

physical

lines

define

the

single-line

message:

This

is

the

text

associated

with

message

number

5.

Note:

The

use

of

more

than

one

blank

character

after

the

message

number

or

symbolic

identifier

is

specific

to

the

Message

Facility.

Portability

of

message

source

files

can

be

affected

by

the

use

of

more

than

one

blank.

Including

Special

Characters

in

the

Message

Text

The

\

(backslash)

can

be

used

to

insert

special

characters

into

the

message

text.

These

special

characters

are

as

follows:

\n

Inserts

a

new-line

character.

\t

Inserts

a

horizontal

tab

character.

\v

Inserts

a

vertical

tab

character.

\b

Inserts

a

backspace

character.

\r

Inserts

a

carriage-return

character.

\f

Inserts

a

form-feed

character.

\\

Inserts

a

\

(backslash)

character.

\ddd

Inserts

a

single-byte

character

associated

with

the

octal

value

represented

by

the

valid

octal

digits

ddd.

Note:

One,

two,

or

three

octal

digits

can

be

specified.

However,

you

must

include

a

leading

zero

if

the

characters

following

the

octal

digits

are

also

valid

octal

digits.

For

example,

the

octal

value

for

$

(dollar

sign)

is

44.

To

display

$5.00,

use

\0445.00,

and

not

\445.00,

or

the

5

will

be

parsed

as

part

of

the

octal

value.

\xdd

Inserts

a

single-byte

character

associated

with

the

hexadecimal

value

represented

by

the

two

valid

hexadecimal

digits

dd.

You

must

include

a

leading

zero

to

avoid

parsing

errors

(see

the

note

about

\ddd).

\xdddd

Inserts

a

double-byte

character

associated

with

the

hexadecimal

value

represented

by

the

four

valid

hexadecimal

digits

dddd.

You

must

include

a

leading

zero

to

avoid

parsing

errors

(see

the

note

about

\ddd).

Defining

a

Character

to

Delimit

Message

Text

You

can

use

the

$quote

directive

in

a

message

source

file

to

define

a

character

for

delimiting

message

text.

This

character

should

be

an

ASCII

character.

The

format

is:

$quote

[character]

[comment]

152

National

Language

Support

Guide

and

Reference

Use

the

specified

character

before

and

after

the

message

text.

In

the

following

example,

the

$quote

directive

sets

the

quote

character

to

_

(underscore),

and

then

disables

it

before

the

last

message,

which

contains

quotation

marks:

$quote

_

Use

an

underscore

to

delimit

message

text

$set

MSFAC

Message

Facility

-

symbolic

identifiers

SYM_FORM

_Symbolic

identifiers

can

contain

alphanumeric

\

characters

or

the

_

(underscore

character)\n_

SYM_LEN

_Symbolic

identifiers

can

be

up

to

65

\

characters

long

\n_

5

_You

can

mix

symbolic

identifiers

and

numbers

\n_

$quote

MSG_H

Remember

to

include

the

_msg_h_

file

in

your

program\n

The

last

$quote

directive

in

the

previous

example

disables

the

underscore

character.

In

the

following

example,

the

$quote

directive

defines

″

(double

quotation

marks)

as

the

quote

character.

The

quote

character

must

be

the

first

non-blank

character

following

the

message

number.

Any

text

following

the

next

occurrence

of

the

quote

character

is

ignored.

$quote

"

Use

a

double

quote

to

delimit

message

text

$set

10

Message

Facility

-

Quote

command

messages

1

"Use

the

$quote

directive

to

define

a

character

\

\n

for

delimiting

message

text"

2

"You

can

include

the

\"quote\"

character

in

a

message

\n

\

by

placing

a

\\

in

front

of

it"

3

You

can

include

the

"quote"

character

in

a

message

\n

\

by

having

another

character

as

the

first

nonblank

\

\n

character

after

the

message

ID

number

$quote

4

You

can

disable

the

quote

mechanism

by

\n

\

using

the

$quote

directive

without

a

character

\n\

after

it

The

preceding

example

illustrates

two

ways

the

quote

character

can

be

included

in

message

text:

v

Place

a

\

(backslash)

in

front

of

the

quote

character.

v

Use

some

other

character

as

the

first

non-blank

character

following

the

message

number.

This

disables

the

quote

character

only

for

that

message.

The

preceding

example

also

shows

the

following:

v

A

\

(backslash)

is

still

required

to

split

a

quoted

message

across

lines.

v

To

display

a

\

(backslash)

in

a

message,

place

another

\

(backslash)

in

front

of

it.

v

You

can

format

a

message

with

a

new-line

character

by

using

\n.

v

Using

the

$quote

directive

with

no

character

argument

disables

the

quote

mechanism.

Assigning

Message

Set

Numbers

and

Message

ID

Numbers

All

message

sets

require

a

set

number

or

symbolic

identifier.

Use

the

$set

directive

in

a

source

file

to

give

a

group

of

messages

a

number

or

identifier:

$set

n

[

comment

]

The

message

set

number

is

specified

by

the

value

of

n,

a

number

between

1

and

NL_SETMAX.

Instead

of

a

number,

you

can

use

a

symbolic

identifier.

All

messages

following

the

$set

directive

are

assigned

to

that

set

number

until

the

next

occurrence

of

a

$set

directive.

The

default

set

number

is

1.

Set

numbers

must

be

assigned

in

ascending

order,

but

need

not

be

in

series.

Empty

sets

are

created

for

skipped

numbers.

However,

large

gaps

in

the

number

sequence

can

decrease

efficiency

and

performance.

Moreover,

performance

is

not

enhanced

by

using

more

than

one

set

number

in

a

catalog.

You

can

also

include

a

comment

in

the

$set

directive,

as

follows:

Chapter

7.

Message

Facility

153

$set

10

Communication

Error

Messages

$set

OUTMSGS

Output

Error

Messages

Many

AIX

message

sets

have

a

symbolic

identifier

of

the

form

MS_PROG,

where

MS

represents

Message

Set

and

PROG

is

the

name

of

the

program

or

utility

related

to

the

message

set.

For

example:

$set

MS_WC

Message

Set

for

the

wc

Utility

$set

MS_XLC1

Message

Set

1

for

the

C

For

AIX

compiler

$set

MS_XLC2

Message

Set

2

for

the

C

For

AIX

compiler

Removing

Messages

from

a

Catalog

The

$delset

directive

removes

all

of

the

messages

belonging

to

a

specified

set

from

an

existing

catalog:

$delset

n

[

comment

]

The

message

set

is

specified

by

n.

The

$delset

directive

must

be

placed

in

the

proper

set-number

order

with

respect

to

any

$set

directives

in

the

same

source

file.

You

can

also

include

a

comment

in

the

$delset

directive.

Length

of

Message

Text

The

$len

directive

establishes

the

maximum

display

length

of

message

text:

$len

[n

[

comment

]

]

If

n

is

not

specified

or

if

the

$len

directive

is

not

included,

the

message

text

display

is

set

to

the

NL_TEXTMAX

value.

The

message-text

display

length

is

the

maximum

number

of

bytes

allowed

for

a

message.

Any

subsequent

specification

of

a

$len

directive

overrides

a

previous

specification.

The

value

of

n

cannot

exceed

the

NL_TEXTMAX

value.

Content

of

Message

Text

Whenever

possible,

tell

users

exactly

what

has

happened

and

what

they

can

do

to

remedy

the

situation.

The

following

example

shows

how

cause

and

recovery

information

can

improve

a

message:

Original

Message:

Bad

arg

Revised

Message:

Specify

year

as

a

value

between

1

and

9999.

The

message

Bad

arg

does

not

help

users

much;

whereas

the

message

Do

not

specify

more

than

2

files

on

the

command

line

tells

users

exactly

what

they

must

do

to

make

the

command

work.

Similarly,

the

message

Line

too

long

does

not

give

recovery

information

to

users.

The

message

Line

cannot

exceed

20

characters

provides

the

missing

information.

Examples

of

Message

Source

Files

1.

The

following

example

message

source

file

uses

numbers

for

message

ID

numbers

and

for

message

set

numbers:

$

This

is

a

message

source

file

sample.

$

Define

the

Quote

Character.

$quote

"

$set

1

This

is

the

set

1

of

messages.

1

"The

specified

file

does

not

have

read

permission

on\n"

2

"The

%1$s

file

and

the

%2$s

file

are

same\n"

3

"Hello

world!\n"

$Define

the

quote

character

$quote

’

$set

2

This

is

the

set

2

of

messages

1

’fieldef:

Cannot

open

%1$s

\n’

2

’Hello

world\n’

154

National

Language

Support

Guide

and

Reference

2.

The

following

example

message

source

file

uses

symbolic

identifiers

for

message

ID

numbers

and

for

message

set

numbers:

$

This

is

a

message

source

file

sample.

$

Define

the

Quote

Character.

$quote

"

$set

MS_SET1

This

is

the

set

1

of

messages.

MSG_1

"The

specified

file

does

not

have

read

permission

on\n"

MSG_2

"The

%1$s

file

and

the

%2$s

file

are

same\n"

MSG_3

"Hello

world\n"

$Define

the

quote

character

$quote

$set

2

This

is

the

set

2

of

messages.

$EMSG_1

’fieldef:

Cannot

open

%1$s\n’

$EMSG_2

’Hello

world!\n’

3.

The

following

examples

show

how

symbolic

identifiers

can

make

the

specification

of

a

message

more

understandable:

catgets(cd,

1,

1,

"default

message")

catgets(cd,

MS_SET1,

MSG_1,

"default

message")

Creating

a

Message

Catalog

The

Message

Facility

provides

commands

and

subroutines

to

retrieve

and

display

program

messages

located

in

externalized

message

catalogs.

A

programmer

creates

a

message

source

file

containing

application

messages

and

converts

it

to

a

message

catalog.

Translating

message

source

files

into

other

languages

and

then

converting

the

files

to

message

catalogs

does

not

require

changing

or

recompiling

a

program.

To

create

a

message

catalog,

process

your

completed

message

source

file

with

the

message

facility’s

gencat

command.

This

command

can

be

used

in

the

following

ways:

v

Use

the

gencat

command

to

process

a

message

source

file

containing

set

numbers,

message

ID

numbers,

and

message

text.

Message

source

files

containing

symbolic

identifiers

cannot

be

processed

directly

by

the

gencat

command.

The

following

example

uses

the

information

in

the

x.msg

message

source

file

to

generate

a

catalog

file:

gencat

x.cat

x.msg

v

Use

the

mkcatdefs

command

to

preprocess

a

message

source

file

containing

symbolic

identifiers.

The

resulting

file

is

then

piped

to

the

gencat

command.

The

mkcatdefs

command

produces

a

SymbolName_msg.h

file

containing

definition

statements.

These

statements

equate

symbolic

identifiers

with

set

numbers

and

message

ID

numbers

assigned

by

the

mkcatdefs

command.

The

SymbolName_msg.h

file

should

be

included

in

programs

using

these

symbolic

identifiers.

The

mkcatdefs

command

is

specific

to

AIX.

The

following

example

uses

the

information

in

the

x.msg

message

source

file

to

generate

the

x_msg.h

header

file:

mkcatdefs

x

x.msg

v

Use

the

runcat

command

to

automatically

process

a

source

file

containing

symbolic

identifiers.

The

runcat

command

invokes

the

mkcatdefs

command

and

pipes

its

output

to

the

gencat

command.

The

runcat

command

is

specific

to

AIX.

The

following

example

uses

the

information

in

the

x.msg

message

source

file

to

generate

the

x_msg.h

header

file

and

the

X.cat

catalog

file:

runcat

x

x.msg

The

preceding

example

is

equivalent

to

the

following

example:

mkcatdefs

x

x.msg

|

gencat

x.cat

If

a

message

catalog

with

the

name

specified

by

the

CatalogFile

parameter

exists,

the

gencat

command

modifies

the

catalog

according

to

the

statements

in

the

message

source

files.

If

a

message

catalog

does

not

exist,

the

gencat

command

creates

a

catalog

file

with

the

name

specified

by

the

CatalogFile

parameter.

Chapter

7.

Message

Facility

155

You

can

specify

any

number

of

message

text

source

files.

Multiple

files

are

processed

in

the

sequence

you

specify.

Each

successive

source

file

modifies

the

catalog.

If

you

do

not

specify

a

source

file,

the

gencat

command

accepts

message

source

data

from

standard

input.

Catalog

Sizing

A

message

catalog

can

be

virtually

any

size.

The

maximum

numbers

of

sets

in

a

catalog,

messages

in

a

catalog,

and

bytes

in

a

message

are

defined

in

the

/usr/include/limits.h

file

by

the

following

macros:

NL_SETMAX

Specifies

the

maximum

number

of

set

numbers

that

can

be

specified

by

the

$set

directive.

If

the

NL_SETMAX

limit

is

exceeded,

the

gencat

command

issues

an

error

message

and

does

not

create

or

update

the

message

catalog.

NL_MSGMAX

Specifies

the

maximum

number

of

message

ID

numbers

allowed

by

the

system.

If

the

NL_MSGMAX

limit

is

exceeded,

the

gencat

command

issues

an

error

message

and

does

not

create

or

update

the

message

catalog.

NL_TEXTMAX

Specifies

the

maximum

number

of

bytes

a

message

can

contain.

If

the

NL_TEXTMAX

limit

is

exceeded,

the

gencat

command

issues

an

error

message

and

does

not

create

or

update

the

message

catalog.

Examples

1.

This

example

shows

how

to

create

a

message

catalog

from

a

source

file

containing

message

identification

numbers.

The

following

is

the

text

of

the

hello.msg

message

source

file:

$

file:

hello.msg

$set

1

prompts

1

Please,

enter

your

name.

2

Hello,

%s

\n

$

end

of

file:

hello.msg

To

create

the

hello.cat

message

catalog

from

the

hello.msg

source

file,

type:

gencat

hello.cat

hello.msg

2.

This

example

shows

how

to

create

a

message

catalog

from

a

source

file

with

symbolic

references.

The

following

is

the

text

of

the

hello.msg

message

source

file

that

contains

symbolic

references

to

the

message

set

and

the

messages:

$

file:

hello.msg

$quote

"

$set

PROMPTS

PLEASE

"Please,

enter

your

name."

HELLO

"Hello,

%s

\n"

$

end

of

file:

hello.msg

The

following

is

the

text

of

the

msgerrs.msg

message

source

file

that

contains

error

messages

that

can

be

referenced

by

their

symbolic

IDs:

$

file:

msgerrs.msg

$quote

"

$set

CAT_ERRORS

MAXOPEN

"Cannot

open

message

catalog

%s

\n

\

Maximum

number

of

catalogs

already

open

"

NOT_EX

"File

%s

not

executable

\n

"

$set

MSG_ERRORS

NOT_FOUND

"Message

%1$d,

Set

%2$d

not

found

\n

"

$

end

of

file:

msgerrs.msg

To

process

the

hello.msg

and

msgerrs

message

source

files,

type:

runcat

hello

hello.msg

runcat

msgerrs

msgerrs.msg

/usr/lib/nls/msg/$LANG/msgerrs.cat

The

runcat

command

invokes

the

mkcatdefs

and

gencat

commands.

The

first

call

to

the

runcat

command

takes

the

hello.msg

source

file

and

uses

the

second

parameter,

hello,

to

produce

the

hello.cat

message

catalog

and

the

hello_msg.h

definition

file.

156

National

Language

Support

Guide

and

Reference

The

hello_msg.h

definition

file

contains

symbolic

names

for

the

message

catalog

and

symbolic

IDs

for

the

messages

and

sets.

The

symbolic

name

for

the

hello.cat

message

catalog

is

MF_HELLO.

This

name

is

produced

automatically

by

the

mkcatdefs

command.

The

second

call

to

the

runcat

command

takes

the

msgerrs.msg

source

file

and

uses

the

first

parameter,

msgerrs,

to

produce

the

msgerrs_msg.h

definition

file.

Because

the

third

parameter,

/usr/lib/nls/msg/$LANG/msgerrs.cat,

is

present,

the

runcat

command

uses

this

parameter

for

the

catalog

file

name.

This

parameter

is

an

absolute

path

name

that

specifies

exactly

where

the

runcat

command

must

put

the

file.

The

symbolic

name

for

the

msgerrs.cat

catalog

is

MF_MSGERRS.

Displaying

Messages

outside

of

an

Application

Program

The

following

commands

allow

you

to

display

messages

outside

of

an

application

program.

These

commands

are

specific

to

AIX.

dspcat

Displays

the

messages

contained

in

the

specified

message

catalog.

The

following

example

displays

the

messages

located

in

the

x.cat

message

source

file:

dspcat

x.cat

dspmsg

Displays

a

single

message

from

a

message

catalog.

The

following

example

displays

the

message

located

in

the

x.cat

message

source

file

that

has

the

ID

number

of

1

and

the

set

number

of

2:

dspmsg

x.cat

-s

2

1

You

can

use

the

dspmsg

command

in

shell

scripts

when

a

message

must

be

obtained

from

a

message

catalog.

Displaying

Messages

with

an

Application

Program

When

programming

with

the

Message

Facility,

you

must

include

the

following

items

in

your

application

program:

v

The

CatalogFile_msg.h

definition

file

created

by

the

mkcatdefs

or

runcat

command

if

you

used

symbolic

identifiers

in

the

message

source

file,

or

the

limits.h

and

nl_types.h

files

if

you

did

not

use

symbolic

identifiers

v

A

call

to

initialize

the

locale

environment

v

A

call

to

open

a

catalog

v

A

call

to

read

a

message

v

A

call

to

display

a

message

v

A

call

to

close

the

catalog

The

following

subroutines

provide

the

services

necessary

for

displaying

program

messages

with

the

message

facility:

setlocale

Sets

the

locale.

Specify

the

LC_ALL

or

LC_MESSAGES

environment

variable

in

the

call

to

the

setlocale

subroutine

for

the

preferred

message

catalog

language.

catopen

Opens

a

specified

message

catalog

and

returns

a

catalog

descriptor,

which

you

use

to

retrieve

messages

from

the

catalog.

catgets

Retrieves

a

message

from

a

catalog

after

a

successful

call

to

the

catopen

subroutine.

printf

Converts,

formats,

and

writes

to

the

stdout

(standard

output)

stream.

catclose

Closes

a

specified

message

catalog.

The

following

C

program,

hello,

illustrates

opening

the

hello.cat

catalog

with

the

catopen

subroutine,

retrieving

messages

from

the

catalog

with

the

catgets

subroutine,

displaying

the

messages

with

the

printf

subroutine,

and

closing

the

catalog

with

the

catclose

subroutine.

Chapter

7.

Message

Facility

157

/*

program:

hello

*/

#include

<nl_types.h>

#include

<locale.h>

nl_catd

catd;

main()

{

/*

initialize

the

locale

*/

setlocale

(LC_ALL,

"");

/*

open

the

catalog

*/

catd=catopen("hello.cat",NL_CAT_LOCALE);

printf(catgets(catd,1,1,"Hello

World!"));

catclose(catd);

/*

close

the

catalog

*/

exit(0);

}

In

the

previous

example,

the

catopen

subroutine

refers

to

the

hello.cat

message

catalog

only

by

file

name.

Therefore,

you

must

make

sure

that

the

NLSPATH

environment

variable

is

set

correctly.

If

the

message

catalog

is

successfully

opened

by

the

catopen

subroutine,

the

catgets

subroutine

returns

a

pointer

to

the

specified

message

in

the

hello.cat

catalog.

If

the

message

catalog

is

not

found

or

the

message

does

not

exist

in

the

catalog,

the

catgets

subroutine

returns

the

Hello

World!

default

string.

Understanding

the

NLSPATH

Environment

Variable

The

NLSPATH

environment

variable

specifies

the

directories

to

search

for

message

catalogs.

The

catopen

subroutine

searches

these

directories

in

the

order

specified

when

called

to

locate

and

open

a

message

catalog.

If

the

message

catalog

is

not

found,

the

message-retrieving

routine

returns

the

program-supplied

default

message.

See

the

/etc/environment

file

for

the

NLSPATH

default

path.

Retrieving

Program-Supplied

Default

Messages

All

message-retrieving

routines

return

the

program-supplied

default

message

text

if

the

desired

message

cannot

be

retrieved

for

any

reason.

Program-supplied

default

messages

are

generally

brief

one-line

messages

that

contain

no

message

numbers

in

the

text.

Users

who

prefer

these

default

messages

can

set

the

LC_MESSAGES

category

to

the

C

locale

or

unset

the

NLSPATH

environment

variable.

When

none

of

the

LC_ALL,

LC_MESSAGES,

or

LANG

environment

variables

are

set,

the

LC_MESSAGES

category

defaults

to

the

C

locale.

Setting

the

Language

Hierarchy

Multilingual

users

may

specify

a

language

hierarchy

for

message

text.

To

set

the

language

hierarchy

for

the

system

default

or

for

an

individual

user,

see

“Changing

the

Language

Environment”

on

page

5,

or

use

SMIT.

To

use

SMIT,

to

set

the

language

hierarchy,

type

the

SMIT

fastpath

smit

mlang

at

the

command

line.

Select

Change

/

Show

Language

Hierarchy.

OR

At

the

command

line,

type:

smit

Select

System

Environments.

Select

Manage

Language

Environment.

Select

Change

/

Show

Language

Hierarchy.

158

National

Language

Support

Guide

and

Reference

Example

of

Retrieving

a

Message

from

a

Catalog

This

example

has

three

parts:

the

message

source

file,

the

command

used

to

generate

the

message

catalog

file,

and

an

example

program

using

the

message

catalog.

1.

The

following

example

shows

the

example.msg

message

source

file:

$quote

"

$

every

message

catalog

should

have

a

beginning

set

number.

$set

MS_SET1

MSG1

"Hello

world\n"

MSG2

"Good

Morning\n"

ERRMSG1

"example:

1000.220

Read

permission

is

denied

for

the

file

%s.\n"

$set

MS_SET2

MSG3

"Howdy\n"

2.

The

following

command

uses

the

example.msg

message

source

file

to

generate

the

example.h

header

file

and

the

example.cat

catalog

file

in

the

current

directory:

runcat

example

example.msg

3.

The

following

example

program

uses

the

example.h

header

file

and

accesses

the

example.cat

catalog

file:

#include

<locale.h>

#include

<nl_types.h>

#include

"example_msg.h"

/*contains

definitions

for

symbolic

identifiers*/

main()

{

nl_catd

catd;

int

error;

(void)setlocale(LC_ALL,

"");

catd

=

catopen(MF_EXAMPLE,

NL_CAT_LOCALE);

/*

**

Get

the

message

number

1

from

the

first

set.

*/

printf(

catgets(catd,MS_SET1,MSG1,"Hello

world\n")

);

/*

**

Get

the

message

number

1

from

the

second

set.

*/

printf(

catgets(catd,

MS_SET2,

MSG3,"Howdy\n")

);

/*

**

Display

an

error

message.

*/

printf(

catgets(catd,

MS_SET1,

ERRMSG1,"example:

100.220

Permission

is

denied

to

read

the

file

%s.\n")

,

filename);

catclose(catd);

}

Writing

Messages

The

following

tips

help

you

make

messages

meaningful

and

concise:

v

Plan

for

the

internationalization

of

all

messages,

including

messages

that

are

displayed

on

panels.

v

Allow

sufficient

space

for

translated

messages

to

be

displayed.

Translated

messages

often

occupy

more

display

columns

than

the

original

message

text.

In

general,

allow

about

20%

to

30%

more

space

for

translated

messages,

but

in

some

cases,

you

might

need

to

allow

100%

more

space

for

translated

messages.

v

Use

message

catalogs

to

externalize

any

user

and

error

messages.

X

applications

can

use

resource

files

to

externalize

messages

for

each

locale.

v

Provide

default

messages.

Chapter

7.

Message

Facility

159

v

Make

each

message

in

a

message

source

file

be

a

complete

entity.

Building

a

message

by

concatenating

parts

makes

translation

difficult.

v

Use

the

$len

directive

in

the

message

source

file

to

control

the

maximum

display

length

of

the

message

text.

(The

$len

directive

is

specific

to

the

Message

Facility.)

v

Use

symbolic

identifiers

to

specify

the

set

number

and

message

number.

Programs

should

refer

to

set

numbers

and

message

numbers

by

their

symbolic

identifiers,

not

by

their

actual

numbers.

(The

use

of

symbolic

identifiers

is

specific

to

the

Message

Facility.)

v

Facilitate

the

reordering

of

sentence

clauses

by

numbering

the

%s

variables.

This

allows

the

translator

to

reorder

the

clauses

if

needed.

For

example,

if

a

program

needs

to

display

the

English

message:

The

file

%s

is

referenced

in

%s,

a

program

may

supply

the

two

strings

as

follows:

printf(message_pointer,

name1,

name2)

The

English

message

numbers

the

%s

variables

as

follows:

The

file

%1$s

is

referenced

in

%2$s\n

The

translated

equivalent

of

this

message

may

be:

%2$s

contains

a

reference

to

file

%1$s\n

v

Do

not

use

sys_errlist[errno]

to

obtain

an

error

message.

This

defeats

the

purpose

of

externalizing

messages.

The

sys_errlist[]

is

an

array

of

error

messages

provided

only

in

the

English

language.

Use

strerror(errno)

,

as

it

obtains

messages

from

catalogs.

v

Do

not

use

sys_siglist[signo]

to

obtain

an

error

message.

This

defeats

the

purpose

of

externalizing

messages.

The

sys_siglist[]

is

an

array

of

error

messages

provided

only

in

the

English

language.

Use

psignal()

,

as

it

obtains

messages

from

catalogs.

v

Use

the

message

comments

facility

to

aid

in

the

maintenance

and

translation

of

messages.

v

In

general,

create

separate

message

source

files

and

catalogs

for

messages

that

apply

to

each

command

or

utility.

Describing

Command

Syntax

in

Messages

v

Show

the

command

syntax

in

the

usage

statement.

For

example,

a

possible

usage

statement

for

the

rm

command

is:

Usage:

rm

[-firRe]

[--]

File

...

v

Capitalize

the

first

letter

of

such

words

as

File,

Directory,

String,

and

Number

in

usage

statement

messages.

v

Do

not

abbreviate

parameters

on

the

command

line.

For

example,

Num

spelled

out

as

Number

can

be

more

easily

translated.

v

Use

only

the

following

delimiters

in

usage

statement

messages:

[]

Encloses

an

optional

parameter.

{}

Encloses

multiple

parameters,

one

of

which

is

required.

|

Separates

parameters

that

cannot

both

be

chosen.

For

example,

[a|b]

indicates

that

you

can

choose

a,

b

,

or

neither

a

nor

b

;

and

{a|b}

indicates

that

you

must

choose

a

or

b

.

...

Follows

a

parameter

that

can

be

repeated

on

the

command

line.

Note

that

there

is

a

space

before

the

ellipsis.

-

Indicates

standard

input.

v

Do

not

use

any

delimiters

for

a

required

parameter

that

is

the

only

choice.

For

example:

banner

String

v

Put

a

space

character

between

flags

that

must

be

separated

on

the

command

line.

For

example:

unget

[-n]

[-rSID]

[-s]

{File|-}

v

Do

not

separate

flags

that

can

be

used

together

on

the

command

line.

For

example:

wc

[-cwl]

{File

...|-}

160

National

Language

Support

Guide

and

Reference

v

Put

flags

in

alphabetic

order

when

the

order

of

the

flags

on

the

command

line

does

not

make

a

difference.

Put

lowercase

flags

before

uppercase

flags.

For

example:

get

-aAijlmM

v

Use

your

best

judgment

to

determine

where

you

should

end

lines

in

the

usage

statement

message.

The

following

example

shows

a

lengthy

usage

statement

message:

Usage:

get

[-e|-k]

[-c

Cutoff]

[-i

List]

[-r

SID]

[-w

String]

[-x

List]

[-b]

[-gmnpst]

...

Continue

the

usage

information

on

a

second

line,

if

necessary.

For

example:

Usage:

get

[-e|-k]

[-c

Cutoff]

[-i

List]

[-r

SID]

[-w

String]

[-x

List]

[-b]

[-gmnpst]

[-l[p]]

File

...

Writing

Style

for

Messages

Clear

writing

aids

in

message

translation.

The

following

guidelines

on

the

writing

style

of

messages

include

terminology,

punctuation,

mood,

voice,

tense,

capitalization,

format,

and

other

usage

questions.

v

Write

concise

messages.

One-sentence

messages

are

preferable.

v

Use

complete-sentence

format.

v

Add

articles

(a,

an,

the)

when

necessary

to

eliminate

ambiguity.

v

Capitalize

the

first

word

of

the

sentence,

and

use

a

period

at

the

end

of

the

sentence.

v

Use

the

present

tense.

Do

not

use

future

tense

in

a

message.

For

example,

use

the

sentence:

The

cal

command

displays

a

calendar.

Instead

of:

The

cal

command

will

display

a

calendar.

v

Do

not

use

the

first

person

(I

or

we)

in

messages.

v

Avoid

using

the

second

person

(you)

except

in

help

and

interactive

text.

v

Use

active

voice.

The

following

example

shows

how

a

message

written

in

passive

voice

can

be

turned

into

an

active

voice

message.

Passive:

Month

and

year

must

be

entered

as

numbers.

Active:

Enter

month

and

year

as

numbers.

v

Use

the

imperative

mood

(command

phrase)

and

active

verbs

such

as

specify,

use,

check,

choose,

and

wait.

v

State

messages

in

a

positive

tone.

The

following

example

shows

a

negative

message

made

more

positive.

Negative:

Don’t

use

the

f

option

more

than

once.

Positive:

Use

the

-f

flag

only

once.

v

Use

words

only

in

the

grammatical

categories

shown

in

a

dictionary.

If

a

word

is

shown

only

as

a

noun,

do

not

use

it

as

a

verb.

For

example,

do

not

solution

a

problem

or

architect

a

system.

v

Do

not

use

prefixes

or

suffixes.

Translators

may

not

know

what

words

beginning

with

re-,

un-,

in-,

or

non-

mean,

and

the

translations

of

messages

that

use

prefixes

or

suffixes

may

not

have

the

meaning

you

intended.

Exceptions

to

this

rule

occur

when

the

prefix

is

an

integral

part

of

a

commonly

used

word.

For

example,

the

words

previous

and

premature

are

acceptable;

the

word

nonexistent

is

not

acceptable.

v

Do

not

use

parentheses

to

show

singular

or

plural,

as

in

error(s),

which

cannot

be

translated.

If

you

must

show

singular

and

plural,

write

error

or

errors.

You

may

also

be

able

to

revise

the

code

so

that

different

messages

are

issued

depending

on

whether

the

singular

or

plural

of

a

word

is

required.

v

Do

not

use

contractions.

v

Do

not

use

quotation

marks,

both

single

and

double

quotation

marks.

For

example,

do

not

use

quotation

marks

around

variables

such

as

%s,

%c,

and

%d

or

around

commands.

Users

might

interpret

the

quotation

marks

literally.

v

Do

not

hyphenate

words

at

the

ends

of

lines.

Chapter

7.

Message

Facility

161

v

Do

not

use

the

standard

highlighting

guidelines

in

messages,

and

do

not

substitute

initial

or

all

caps

for

other

highlighting

practices.

(Standard

highlighting

includes

such

guidelines

as

boldface

for

commands,

subroutines,

and

files;

italics

for

variables

and

parameters;

typewriter

or

courier

font

for

examples

and

displayed

text.)

v

Do

not

use

the

and/or

construction.

This

construction

does

not

exist

in

other

languages.

Usually

it

is

better

to

say

or

to

indicate

that

it

is

not

necessary

to

do

both.

v

Use

the

24-hour

clock.

Do

not

use

a.m.

or

p.m.

to

specify

time.

For

example,

write

1:00

p.m.

as

1300.

v

Avoid

acronyms.

Only

use

acronyms

that

are

better

known

to

your

audience

than

their

spelled-out

version.

To

make

a

plural

of

an

acronym,

add

a

lowercase

s

without

an

apostrophe.

Verify

that

the

acronym

is

not

a

trademark

before

using

it.

v

Do

not

construct

messages

from

clauses.

Use

flags

or

other

means

within

the

program

to

pass

on

information

so

that

a

complete

message

may

be

issued

at

the

proper

time.

v

Do

not

use

hard-coded

text

as

a

variable

for

a

%s

string

in

a

message.

v

End

the

last

line

of

the

message

with

\n

(indicating

a

new

line).

This

applies

to

one-line

messages

also.

v

Begin

the

second

and

remaining

lines

of

a

message

with

\t

(indicating

a

tab).

v

End

all

other

lines

with

\n\

(indicating

a

new

line).

v

Force

a

newline

on

word

boundaries

where

needed

so

that

acceptable

message

strings

display.

The

printf

subroutine,

which

often

is

used

to

display

the

message

text,

disregards

word

boundaries

and

wraps

text

whenever

necessary,

sometimes

splitting

a

word

in

the

middle.

v

If,

for

some

reason,

the

message

should

not

end

with

a

newline

character,

leave

writers

a

comment

to

that

effect.

v

Precede

each

message

with

the

name

of

the

command

that

called

the

message,

followed

by

a

colon.

The

following

example

is

a

message

containing

a

command

name:

OPIE

"foo:

Opening

the

file."

v

Tell

the

user

to

Press

the

———

key

to

select

a

key

on

the

keyboard,

including

the

specific

key

to

press.

For

example:

Press

the

Ctrl-D

key

v

Do

not

tell

the

user

to

Try

again

later,

unless

the

system

is

overloaded.

The

need

to

try

again

should

be

obvious

from

the

message.

v

Use

the

word

″parameter″

to

describe

text

on

the

command

line,

the

word

″value″

to

indicate

numeric

data,

and

the

words

″command

string″

to

describe

the

command

with

its

parameters.

v

Do

not

use

commas

to

set

off

the

one-thousandth

place

in

values.

For

example,

use

1000

instead

of

1,000.

v

If

a

message

must

be

set

off

with

an

*

(asterisk),

use

two

asterisks

at

the

beginning

of

the

message

and

two

at

asterisks

at

the

end

of

the

message.

For

example:

**

Total

**

v

Use

the

words

″log

in″

and

″log

off″

as

verbs.

For

example:

Log

in

to

the

system;

enter

the

data;

then

log

off.

v

Use

the

words

″user

name,″

″group

name,″

and

″login″

as

nouns.

For

example:

The

user

is

sam.

The

group

name

is

staff.

The

login

directory

is

/u/sam.

v

Do

not

use

the

word

″superuser.″

Note

that

the

root

user

may

not

have

all

privileges.

v

Use

the

following

frequently

occurring

standard

messages

where

applicable:

Preferred

Standard

Message

Less

Desirable

Message

Cannot

find

or

open

the

file.

Can’t

open

filename.

Cannot

find

or

access

the

file.

Can’t

access

The

syntax

of

a

parameter

is

not

valid.

syntax

error

162

National

Language

Support

Guide

and

Reference

Chapter

8.

Culture-Specific

Data

Handling

Culture-specific

data

handling

may

be

part

of

a

program,

and

such

a

program

may

supply

different

data

for

different

locales.

In

addition,

a

program

may

use

different

algorithms

to

process

character

data

based

on

the

language

and

culture.

For

example,

recognition

of

the

start

and

end

of

a

word

and

the

method

of

hyphenation

of

a

word

across

two

lines

varies

depending

on

the

locale.

Programs

that

deal

with

such

functionality

need

access

to

these

tables

or

algorithms

based

on

the

current

locale

setting

at

run

time.

You

can

handle

such

programs

in

the

following

ways:

v

Compile

all

the

algorithms

and

tables,

and

load

them

with

the

program.

This

method

makes

it

difficult

to

add

or

modify

the

algorithms

and

tables.

Whenever

a

new

algorithm

or

table

is

added,

the

entire

program

must

be

relinked.

v

Keep

the

locale-specific

algorithms

and

tables

in

a

file,

and

load

them

at

run

time,

depending

on

the

current

locale

setting.

This

method

makes

it

easier

to

modify

and

add

algorithms

and

tables.

However,

there

is

no

standard

defined

way

to

load

algorithms.

In

AIX,

you

can

achieve

this

using

the

load

subroutine,

but

programs

that

use

the

load

subroutine

might

not

be

portable

to

other

systems.

Culture-Specific

Tables

If

the

culture-specific

data

can

be

processed

by

accessing

tables

based

on

the

current

locale

setting,

then

this

can

be

accomplished

by

using

the

standard

file

I/O

subroutines

(fopen,

fread,

open,

read,

and

so

on).

Such

tables

must

be

provided

in

the

directory

defined

in

/usr/lpp/Name

where

Name

is

the

name

of

the

particular

application

under

the

appropriate

locale

name.

Standard

path

prefix

/usr/lpp/Name

(AIX-specific

pathname)

Culture-specific

directory

Obtain

the

current

locale

for

the

appropriate

category

that

describes

the

tables.

Concatenate

it

to

the

above

prefix.

Access

Use

standard

file

access

subroutines

(fopen,

fread,

and

so

on)

as

appropriate.

Culture-Specific

Algorithms

The

culture-specific

algorithms

reside

in

the

/usr/lpp/Name/%L

directory.

Here

%L

represents

the

current

locale

setting

for

the

appropriate

category.

Use

the

load

subroutine

to

access

program-specific

algorithms

from

an

object

module.

Standard

path

prefix

/usr/lpp/Name

Culture-specific

directory

Obtain

the

current

locale

for

the

appropriate

category.

Concatenate

it

to

the

above

prefix.

Method

Concatenate

the

method

name

to

it.

Example

of

Loading

a

Culture-Specific

Module

for

Arabic

Text

for

an

Application

Header

File

The

methods.h

include

file

has

one

structure

as

follows:

©

Copyright

IBM

Corp.

2002

163

struct

Methods

{

int

version;

char

*(*hyphen)();

char

*(*wordbegin)();

char

*(*wordend)();

}

;

Main

Program

In

this

example,

the

program

name

is

textpr.

The

main

program

determines

the

module

to

load

and

invokes

it.

Note

that

the

textpr.h

include

file

is

used

to

specify

the

path

name

of

the

load

object.

This

way,

the

path

name,

which

is

system-specific,

can

be

changed

easily.

#include

<stdio.h>

#include

<errno.h>

#include

"methods.h"

#include

"textpr.h"

/*

contains

the

pathname

where

the

load

object

can

be

found

*/

extern

int

errno;

main()

{

char

libpath[PATH_MAX];

/*

stores

the

full

pathname

of

the

load

object

*/

char

*prefix_path=PREFIX_PATH;

/*

from

textpr.h

*/

char

*method=METHOD;

/*

from

textpr.h

*/

int

(*func)();

char

*path;

/*

Methods

*/

int

ver;

char

*p;

struct

Methods

*md;

setlocale(LC_ALL,

"");

path

=

setlocale(LC_CTYPE,

0);

/*

obtain

the

locale

for

LC_CTYPE

category

*/

/*

Construct

the

full

pathname

for

the

*/

/*

object

to

be

loaded

*/

strcpy(libpath,

prefix_path);

strcat(libpath,

path);

strcat(libpath,

"/");

strcat(libpath,

method);

func

=

load(conv,

1,

libpath);

/*

load

the

object

*/

if(func==NULL){

strerror(errno);

exit(1);

}

/*

invoke

the

loaded

module

");

md

=(struct

Methods

*)

func();

/*

Obtain

the

methods

structure

*/

ver

=

md->version;

/*

Invoke

the

methods

as

needed

*/

p

=

(md->hyphen)();

p

=

(md->wordbegin)();

p

=

(md->wordend)();

}

164

National

Language

Support

Guide

and

Reference

Methods

This

module

contains

culture-specific

algorithms.

In

this

example,

it

provides

the

Arabic

method.

The

method.c

program

follows:

#include

"methods.h"

char

*Arabic_hyphen(char

*);

char

*Arabic_wordbegin(char

*);

char

*Arabic_wordend(char

*);

static

struct

Methods

ArabicMethods=

{

1,

Arabic_hyphen,

Arabic_wordbegin,

Arabic_wordend

}

;

struct

Methods

*start_methods()

{

/*

startup

methods

*/

return

(

&ArabicMethods);

}

char

*Arabic_hyphen(char

*string)

{

/*

Arabic

hyphen

*/

return(

string

);

}

char

*Arabic_wordbegin(char

*string)

{

/*Arabic

word

begin

*/);

return(

string

);

}

char

*Arabic_wordend(char

*string)

{

/*

Arabic

word

end

*/;

return(

string);

}

Include

File

The

textpr

include

file

contains

the

path

name

of

the

module

to

be

loaded.

#define

PREFIX_PATH

"/usr/lpp/textpr"

/*

This

is

an

AIX-specific

pathname

*/

Layout

(Bidirectional

Text

and

Character

Shaping)

Overview

Bidirectional

(BIDI)

text

results

when

texts

of

different

direction

orientation

appear

together.

For

example,

English

text

is

read

from

left

to

right.

Arabic

and

Hebrew

texts

are

read

from

right

to

left.

If

both

English

and

Hebrew

texts

appear

on

the

same

line,

the

text

is

bidirectional.

For

further

information

about

directional

text

and

character

shaping,

including

a

list

of

available

publications,

see

the

following

web

address:

http://www.opengroup.org

Write

bidirectional

text

according

to

the

following

guidelines:

v

Arabic

and

Hebrew

words

are

written

from

right

to

left.

(A

character

string

is

considered

a

word

for

the

purposes

of

sequencing

in

an

alphanumeric

environment.)

v

Numbers

and

English

quotations

are

written

from

left

to

right.

v

Digits

and

their

punctuation

marks

are

written

from

left

to

right.

Chapter

8.

Culture-Specific

Data

Handling

165

Bidirectional

script

is

read

from

right

to

left

and

from

top

to

bottom.

If

the

embedded

text

is

contained

in

one

line,

the

text

is

written

from

left

to

right

and

embedded

in

the

bidirectional

text.

However,

if

the

embedded

text

is

split

between

two

or

more

lines,

the

correct

order

must

be

maintained

in

the

left-to-right

portions

to

allow

top-to-bottom

reading.

For

example,

right-to-left

text

embedded

in

left-to-right

text

that

is

contained

in

one

line

is

written

as

follows:

THERE

IS

txet

lanoitceridib

deddebme

IN

THIS

SENTENCE.

Right-to-left

text

embedded

in

left-to-right

text

that

is

split

between

two

lines

is

written

as

follows:

THERE

IS

senil

owt

neewteb

tilps

si

taht

txet

lanoitceridib

deddebme

IN

THIS

SENTENCE.

Both

texts

maintain

readability

even

though

the

embedded

text

is

split.

Data

Streams

Bidirectional

text

environments

use

the

following

data

streams:

Visual

Data

Streams

The

system

organizes

characters

in

the

sequence

in

which

they

are

presented

on

the

screen.

If

a

visual

data

stream

is

presented

from

left

to

right,

the

first

character

of

the

data

stream

is

on

the

left

side

of

the

viewport

(screen,

window,

line,

field,

and

so

on).

If

the

same

data

stream

is

presented

on

a

right-to-left

viewport,

the

initial

character

of

the

data

stream

is

on

the

right.

If

a

language

of

opposite

writing

orientation

is

embedded

in

the

visual

data

stream,

the

sequence

of

each

text

is

preserved

when

the

viewport

orientation

is

reversed.

For

example,

(the

lowercase

text

represents

bidirectional

text)

if

the

keystroke

order

is

:

THERE

IS

bidirectional

text

IN

THIS

SENTENCE.

then

the

visual

data

stream

is:

THERE

IS

txet

lanoitceridib

IN

THIS

SENTENCE.

This

visual

data

stream’s

presentation

on

a

left-to-right

viewport

is

left-justified,

as

follows:

THERE

IS

txet

lanoitceridib

IN

THIS

SENTENCE.

------->

<-----------------

---------------->

The

arrows

indicate

reading

direction.

If

you

change

the

viewport

orientation

to

right-to-left,

the

visual

data

stream

is

reversed,

right-justified,

and

unreadable,

as

follows:

.ECNETNES

SIHT

NI

bidirectional

text

SI

EREHT

<----------------

----------------->

<-------

Thus,

if

English

text

is

embedded

in

Arabic

or

Hebrew

text,

both

texts

are

in

proper

reading

order

only

on

a

left-to-right

viewport.

The

same

is

true

for

Arabic

or

Hebrew

embedded

in

English.

Reversing

the

viewport

orientation

makes

both

texts

unreadable.

166

National

Language

Support

Guide

and

Reference

Logical

Data

Streams

The

system

organizes

characters

in

a

readable

sequence.

The

bidirectional

presentation-management

functions

arrange

text

strings

in

a

readable

order.

If

a

logical

data

stream

is

presented

on

a

left-to-right

viewport,

the

initial

character

of

the

data

stream

is

presented

on

the

left

side.

If

the

same

data

stream

is

presented

on

a

right-to-left

viewport,

the

initial

character

of

the

data

stream

is

presented

on

the

right

side,

though

it

is

still

presented

in

a

readable

order.

If

a

language

of

opposite

writing

orientation

is

embedded

in

the

logical

data

stream,

the

orientations

of

each

text

are

preserved

by

the

bidirectional

presentation-management

functions.

For

example,

if

the

keystroke

order

is:

THERE

IS

bidirectional

text

IN

THIS

SENTENCE.

then

the

logical

data

stream

is

the

same.

For

example:

THERE

IS

bidirectional

text

IN

THIS

SENTENCE.

This

logical

data

stream’s

presentation

on

a

left-to-right

viewport

(left-justified)

is

as

follows:

THERE

IS

txet

lanoitceridib

IN

THIS

SENTENCE.

------->

<-----------------

---------------->

The

logical

data

stream’s

presentation

on

a

right-to-left

viewport

(right-justified)

is

as

follows:

IN

THIS

SENTENCE.

txet

lanoitceridib

THERE

IS

---------------->

<-----------------

------->

The

logical

data

stream

is

readable

on

both

viewport

orientations.

Cursor

Movement

Cursor

movement

on

a

screen

containing

bidirectional

text

is

as

follows:

Visual

The

cursor

moves

from

its

current

position

left

or

right

to

the

next

character,

or

up

or

down

to

the

next

row.

For

example,

if

the

cursor

is

located

at

the

end

of

the

first

left-to-right

part

of

a

mixed

sentence:

THERE

IS_txet

lanoitceridib

IN

THIS

SENTENCE.

then,

moving

the

cursor

visually

to

the

right

causes

it

to

move

one

character

to

the

right,

as

follows:

THERE

IS

txet

lanoitceridib

IN

THIS

SENTENCE.

The

cursor

moves

without

regard

to

the

contents

of

the

text.

Logical

The

cursor

moves

from

its

current

position

to

the

next

or

previous

character

in

the

data

stream.

The

character

may

be

adjacent

to

the

cursor’s

position,

elsewhere

in

the

same

line,

or

on

another

line

on

the

screen.

Logical

cursor

movement

requires

scanning

the

data

stream

to

find

the

next

logical

character.

For

example,

if

the

cursor

is

located

at

the

end

of

the

first

left-to-right

part

of

a

mixed

sentence:

THERE

IS_txet

lanoitceridib

IN

THIS

SENTENCE.

then,

moving

the

cursor

logically

to

the

next

character

causes

the

data

stream

to

be

scanned

to

find

the

next

logical

character.

The

cursor

moves

to

the

next

logical

part

of

the

sentence,

as

follows:

THERE

IS

txet

lanoitceridib_IN

THIS

SENTENCE.

The

cursor

moves

according

to

content.

Character

Shaping

Character

shaping

occurs

when

the

shape

of

a

character

is

dependent

on

its

position

in

a

line

of

text.

In

some

languages,

such

as

Arabic,

characters

have

different

shapes

depending

on

their

position

in

a

string

and

on

the

surrounding

characters.

Chapter

8.

Culture-Specific

Data

Handling

167

The

following

characteristics

determine

character

shaping

in

Arabic

script:

v

The

written

language

has

no

equivalent

to

capital

letters.

v

The

characters

have

different

shapes,

depending

on

their

position

in

a

string

and

on

the

surrounding

characters.

v

The

written

language

is

cursive.

Most

characters

of

a

word

are

connected,

as

in

English

handwriting.

v

Joined

characters

can

form

nonspacing

characters.

Additionally,

a

character

can

have

a

vowel

or

diacritic

mark

written

over

or

under

it.

v

Characters

can

vary

in

length,

resulting

in

an

output

of

two

coded

shapes.

Methods

of

Character

Shaping

Implement

character

shaping

separately

from

other

system

components.

However,

character

shaping

should

be

accessible

as

a

utility

by

other

system

components.

The

system

may

use

character

shaping

in

the

following

ways:

v

As

the

user

enters

data

into

the

computer,

the

system

uses

character

shaping

to

shape

the

characters.

The

system

stores

these

characters

in

their

shaped

format.

This

method

avoids

the

need

to

use

character

shaping

every

time

these

characters

are

displayed.

This

method

is

meant

for

static

data

such

as

menus

and

help.

This

method

requires

preprocessing

for

correct

sorting,

searching,

or

indexing

of

the

characters.

The

characters

may

need

reshaping

after

processing

for

proper

presentation.

v

As

the

user

enters

data

into

the

computer,

the

system

stores

the

characters

in

their

unshaped

format.

This

method

allows

for

sorting,

searching

or

indexing

of

the

characters.

However,

the

system

must

use

character

shaping

every

time

the

characters

are

displayed.

Base

shapes

are

isolated

shapes

that

were

not

generated

by

character

shaping.

Use

base

shapes

during

editing,

searching

for

character

strings,

or

other

text

operations.

Use

shaping

only

when

the

text

is

displayed

or

printed.

If

characters

are

stored

in

their

shaped

form,

the

system

must

deshape

them

before

sorting,

collating,

searching,

or

indexing.

Character

shapes

that

are

not

shape-determined

according

to

their

position

in

a

string

are

needed

for

specific

character-handling

applications,

as

well

as

for

communication

with

different

coding

environments.

Contextual

Character

Shaping

In

general,

contextual

character

shaping

is

the

selection

of

the

required

shape

of

a

character

in

a

given

font

depending

on

its

position

in

a

word

and

its

surrounding

characters.

The

following

shapes

are

possible:

Isolated

A

character

that

is

connected

to

neither

a

preceding

nor

succeeding

character

Final

A

character

that

is

connected

to

a

preceding

character

but

not

with

a

succeeding

character

Initial

A

character

connected

to

a

succeeding

character

but

not

with

a

preceding

character

Middle

A

character

connected

to

both

a

preceding

and

succeeding

character

A

character

may

also

have

any

of

the

following

characteristics:

v

Connecting

to

a

preceding

character

v

Connecting

to

a

succeeding

character

v

Allowing

surrounding

characters’

connections

to

pass

through

it

Acronyms,

part

numbers,

and

graphic

characters

do

not

need

contextual

character

shaping.

To

properly

enter

these

characters,

turn

off

the

contextual

character

shaping

and

use

a

specific

keyboard

interface

for

exact

selection

of

the

desired

shape.

Tag

these

characters

by

field,

line,

or

control

character

for

later

presentation.

168

National

Language

Support

Guide

and

Reference

Appendix

A.

National

Language

Support

(NLS)

Reference

This

reference

provides

the

following

information:

v

“National

Language

Support

Checklist”

v

“List

of

National

Language

Support

Subroutines”

on

page

174

National

Language

Support

Checklist

The

National

Language

Support

(NLS)

Checklist

provides

a

way

to

analyze

a

program

for

NLS

dependencies.

By

going

through

this

list,

one

can

determine

what,

if

any,

NLS

functions

must

be

considered.

This

is

useful

for

both

programming

and

testing.

If

you

identify

a

set

of

NLS

items

that

a

program

depends

on,

a

test

strategy

can

be

developed.

This

facilitates

a

common

approach

to

testing

all

programs.

All

major

NLS

considerations

have

been

identified.

However,

this

list

is

not

all-encompassing.

There

may

be

other

NLS

questions

that

are

not

listed.

Program

Operation

Checklist

1.

Does

the

program

display

translatable

messages

to

the

user,

either

directly

or

indirectly?

An

example

of

indirect

messages

are

those

that

are

stored

in

libraries.

If

yes:

v

Are

these

messages

externalized

from

the

program

by

way

of

the

message

facility

subroutines?

v

Have

you

provided

message

source

files

for

all

such

messages?

v

What

is

the

locale

under

which

the

program

runs?

–

If

it

runs

in

the

locale

determined

by

the

locale

environment

variables,

did

you

invoke

the

setlocale

subroutine

in

the

following

manner?

setlocale(LC_ALL,

"")

Note:

See

“Setting

the

Locale”

on

page

15

for

setlocale

subroutine

examples.

The

locale

categories,

in

their

predefined

hierarchical

order,

are:

LC_ALL,

LC_COLLATE,

LC_CTYPE,

LC_MESSAGES,

LC_MONETARY,

LC_NUMERIC,

and

LC_TIME.

See

“Understanding

Locale

Environment

Variables”

on

page

9

for

more

information

on

the

LC_ALL

category.

–

If

the

program

runs

in

the

″C″

locale,

except

for

displaying

messages

in

the

locale

specified

by

the

locale

environment

variables,

did

you

invoke

the

setlocale

subroutine

in

the

following

manner?

setlocale(LC_MESSAGES,

"")

v

After

invoking

the

setlocale

subroutine,

did

you

invoke

the

catopen

subroutine

in

the

following

manner?

catopen(catalog_name,

NL_CAT_LOCALE)

v

Did

you

invoke

the

catopen

subroutine

with

the

proper

catalog

name?

v

See

the

Chapter

7,

“Message

Facility,”

on

page

151

for

more

information

about

translatable

messages.

2.

Does

the

program

compare

text

strings?

If

yes:

v

Are

the

strings

compared

to

check

equality

only?

If

yes:

–

Use

the

strcmp

or

strncmp

subroutine.

–

Do

not

use

the

strcoll

or

strxfrm

subroutine.

©

Copyright

IBM

Corp.

2002

169

v

Are

the

strings

compared

to

see

which

one

sorts

before

the

other,

as

defined

in

the

current

locale?

If

yes:

–

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

–

Use

the

strcoll,

strxfrm,

wcscoll,

or

wcsxfrm

subroutine.

–

Do

not

use

the

strcmp

or

strncmp

subroutine.

3.

Does

the

program

parse

path

names

of

files?

If

yes:

v

If

looking

for

/

(slash),

use

the

strchr

subroutine.

v

If

looking

for

characters,

be

aware

that

the

file

names

can

include

multibyte

characters.

In

such

cases,

invoke

the

setlocale

subroutine

in

the

following

manner

and

then

use

appropriate

search

subroutines:

setlocale(LC_ALL,

"")

4.

Does

the

program

use

system

names,

such

as

node

names,

user

names,

printer

names,

and

queue

names?

If

yes:

v

System

names

can

have

multibyte

characters.

v

To

identify

a

multibyte

character,

first

invoke

the

setlocale

subroutine

in

the

following

manner

and

then

use

appropriate

subroutines

in

the

library.

setlocale(LC_ALL,

"")

5.

Does

the

program

use

character

class

properties,

such

as

uppercase,

lowercase,

and

alphabetic?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Do

not

make

assumptions

about

character

properties.

Always

use

system

subroutines

to

determine

character

properties.

v

Are

the

characters

restricted

to

single-byte

code

sets?

If

yes:

–

Use

one

of

the

ctype

subroutines:

isalnum,

isalpha,

iscntrl,

isdigit,

isgraph,

isprint,

isspace,

or

isxdigit.

If

not,

the

characters

may

be

multibyte

characters:

–

Use

the

iswalnum,

iswalpha,

iswcntrl,

iswdigit,

iswgraph,

iswlower,

iswprint,

iswpunct,

iswspace,

iswupper,

or

iswxdigit

subroutine.

See

“Wide

Character

Classification

Subroutines”

on

page

28

for

more

information.

6.

Does

the

program

convert

the

case

(upper

or

lower)

of

characters?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Are

the

characters

restricted

to

single-byte

code

sets?

If

yes:

–

Use

these

conv

subroutines:

_tolower,

_toupper,

tolower,

or

toupper.

If

not,

the

characters

may

be

multibyte

characters:

–

Use

the

towlower

or

towupper

subroutine.

See

“Wide

Character

Classification

Subroutines”

on

page

28

for

more

information.

7.

Does

the

program

keep

track

of

cursor

movement

on

a

tty

terminal?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

170

National

Language

Support

Guide

and

Reference

setlocale(LC_ALL,

"")

v

You

may

need

to

determine

the

display

column

width

of

characters.

Use

the

wcwidth

or

wcswidth

subroutine.

8.

Does

the

program

perform

character

I/O?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Are

the

characters

restricted

to

single-byte

code

sets?

If

yes:

–

Use

following

subroutine

families:

-

fgetc,

getc,

getchar,

getw

-

fgets,

gets

-

fputc,

putc,

putchar,

putw

-

printf,

scanf

If

not:

–

Use

following

subroutine

families:

-

fgetwc,

getwc,

getwchar

-

fgetws,

getws

-

fputwc,

putwc,

putwchar

9.

Does

the

program

step

through

an

array

of

characters?

If

yes:

v

Is

the

array

limited

to

single-byte

characters

only?

If

yes:

–

Does

not

require

setlocale(LC_ALL,

″″)

–

If

p

is

the

pointer

to

this

array

of

single-byte

characters,

step

through

this

array

using

p++.

If

not:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Use

the

mblen

or

wcslen

subroutine.

10.

Does

the

program

need

to

know

the

maximum

number

of

bytes

used

to

encode

a

character

within

the

code

set?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Use

the

MB_CUR_MAX

macro.

11.

Does

the

program

format

date

or

time

numeric

quantities?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Use

the

nl_langinfo

or

localeconv

subroutine

to

obtain

the

locale-specific

information.

v

Use

the

strftime

or

strptime

subroutine.

v

See

“Setting

the

Locale”

on

page

15

and

“Euro

Currency

Support”

on

page

21

for

more

information.

12.

Does

the

program

format

numeric

quantities?

If

yes:

Appendix

A.

National

Language

Support

(NLS)

Reference

171

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Use

the

nl_langinfo

or

localeconv

subroutine

to

obtain

the

locale-specific

information.

v

Use

the

following

pair

of

subroutines,

as

needed:

printf,

scanf.

13.

Does

the

program

format

monetary

quantities?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Use

the

nl_langinfo

or

localeconv

subroutine

to

obtain

the

locale-specific

information.

v

Use

the

strfmon

subroutine

to

format

monetary

quantities.

v

See

“Setting

the

Locale”

on

page

15

and

“Euro

Currency

Support”

on

page

21

for

more

information.

14.

Does

the

program

search

for

strings

or

locate

characters?

If

yes:

v

Are

you

looking

for

single-byte

characters

in

single-byte

text?

–

Does

not

require

setlocale(LC_ALL,

″″)

–

Use

standard

libc

string

subroutines

such

as

the

strchr

subroutine.

v

Are

you

looking

for

characters

in

the

range

0x00-0x3F

(the

unique

code-point

range)?

–

Does

not

require

setlocale(LC_ALL,

″″)

–

Use

standard

libc

string

subroutines

such

as

the

strchr,

strcspn,

strpbrk,

strrchr,

strspn,

strstr,

strtok,

and

memchr

subroutines.

v

Are

you

looking

for

characters

in

the

range

0x00-0xFF?

–

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

–

Two

methods

are

available:

Use

the

mblen

subroutine

to

skip

multibyte

characters.

Then,

on

encountering

single-byte

characters,

check

for

equality.

See

checklist

item

2.

OR

Convert

the

search

character

and

the

searched

string

to

wide

character

form,

and

then

use

wide

character

search

subroutines.

See

“Wide

Character

String

Search

Subroutines”

on

page

37

for

more

information.

15.

Does

the

program

perform

regular-expression

pattern

matching?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Use

the

regcomp,

regexec,

or

regerror

subroutine.

16.

Does

the

program

ask

the

user

for

affirmative/negative

responses?

If

yes:

v

Invoke

the

setlocale

subroutine

in

the

following

manner:

setlocale(LC_ALL,

"")

v

Put

the

prompt

in

the

message

catalog.

Use

the

catopen

and

catgets

subroutines

to

retrieve

the

catalog

and

display

the

prompt.

v

Use

the

rpmatch

subroutine

to

match

the

user’s

response.

v

See

the

Chapter

7,

“Message

Facility,”

on

page

151

for

more

information.

17.

Does

the

program

use

special

box-drawing

characters?

If

yes:

172

National

Language

Support

Guide

and

Reference

v

Do

not

use

code

set-specific

box-drawing

characters.

v

Instead

use

the

box-drawing

characters

and

attributes

specified

in

the

terminfo

file.

18.

Does

the

program

perform

culture-specific

or

locale-specific

processing

that

is

not

addressed

here?

If

yes:

v

Externalize

the

culture-specific

modules.

Do

not

make

them

part

of

the

executable

program.

v

Load

the

modules

at

run

time

using

subroutines

provided

by

the

system,

such

as

the

load

subroutine.

v

If

the

system

does

not

provide

such

facilities,

link

them

statically

but

provide

them

in

a

modular

fashion.

AIXwindows

Checklist

The

remaining

checklist

items

are

specific

to

the

AIXwindows

systems.

1.

Does

your

program

use

the

font

set

specification

in

order

to

be

code-set

independent

in

X

applications?

2.

Does

your

client

use

labels,

buttons,

or

other

output-only

widgets

to

display

translatable

messages?

If

yes:

v

Invoke

the

*XtSetLanguageProc

subroutine

in

the

following

manner:

XtSetLanguageProc(NULL,

NULL,

NULL);

v

Messages

can

be

placed

in

either

message

catalogs

or

localized

resource

files.

See

checklist

items

1

or

20,

respectively.

v

To

make

the

widgets

code

set-independent,

specify

fonts

that

use

font

sets.

3.

Does

your

client

use

X

resource

files

to

define

the

text

of

labels,

buttons,

or

text

widgets?

If

yes:

v

Put

all

resources

that

need

translation

in

one

place.

v

Consider

using

message

catalogs

for

the

text

strings.

See

the

Chapter

7,

“Message

Facility,”

on

page

151

for

more

information.

v

Do

not

use

translated

color

names,

since

color

names

are

restricted

to

one

encoding.

The

only

portable

names

are

encoded

in

the

portable

character

set.

v

Put

language-specific

resource

files

in

/usr/lib/X11/%L/app-defaults/%N,

where

%L

is

the

name

of

the

locale,

such

as

fr_FR,

and

%N

is

the

name

of

the

client.

4.

Is

keyboard

input

localized

by

language?

If

yes:

v

Invoke

the

*XtSetLanguageProc

subroutine

in

the

following

manner:

XtSetLanguageProc(NULL,

NULL,

NULL);

v

Use

the

XmText

or

XmTextField

widgets

for

all

text

input.

Some

of

the

XmText

widgets’

arguments

are

defined

in

terms

of

character

length

instead

of

byte

length.

The

cursor

position

is

maintained

in

character

position,

not

byte

position.

v

Are

you

using

the

XmDrawingArea

widget

to

do

localized

input?

–

Use

the

input

method

subroutines

to

do

input

processing

in

different

languages.

See

the

Chapter

6,

“Input

Methods,”

on

page

123

and

the

IMAuxDraw

Callback

subroutine

for

more

information.

5.

Does

your

client

present

lists

or

labels

consisting

of

localized

text

from

user

files

rather

than

from

X

resource

files?

If

yes:

v

Invoke

the

*XtSetLanguageProc

subroutine

in

the

following

manner:

XtSetLanguageProc(NULL,

NULL,

NULL);

v

Use

the

XmStringCreateSimple

subroutine

to

create

the

XmString

data

type

for

localized

text.

The

XmStringCreate

subroutine

can

be

used,

but

XmSTRING_DEFAULT_CHARSET

is

preferable.

Appendix

A.

National

Language

Support

(NLS)

Reference

173

v

To

make

the

widgets

code-set

independent,

specify

fonts

by

using

font

sets.

Font

resources

(for

example,

*fontList:

instead)

in

the

app-defaults

files

should

use

the

upper

case

and

class

form

rather

than

the

lower

case

form

(for

example,

*FontList:

instead).

This

allow

the

desktop

style

manager

to

affect

the

application

font

selection.

6.

Does

your

program

do

any

presentation

operations

(Xlib

drawing,

printing,

formatting,

or

editing)

on

bidirectional

text?

If

yes:

v

Use

the

XmText

or

XmTextField

in

the

Xm

(Motif)

library.

These

widgets

are

enabled

for

bidirectional

text.

See

″Layout

(Bidirectional)

Support

in

Xm

(Motif)

Library″

in

AIX

5L

Version

5.2

AIXwindows

Programming

Guide

for

more

information.

v

If

the

Xm

library

can

not

be

used,

use

the

layout

subroutines

to

perform

any

re-ordering

and

shaping

on

the

text.

v

Store

and

communicate

the

text

in

the

implicit

(logical)

form.

Some

utilities

(for

example,

aixterm)

support

the

visual

form

of

bidirectional

text,

but

most

NLS

subroutines

can

not

process

the

visual

form

of

bidirectional

text.

If

the

response

to

all

the

above

items

is

no,

then

the

program

probably

has

no

NLS

dependencies.

In

this

case,

you

may

not

need

the

locale-setting

subroutine

setlocale

and

the

catalog

facility

subroutines

catopen

and

catgets.

List

of

National

Language

Support

Subroutines

The

National

Language

Support

(NLS)

subroutines

are

used

for

handling

locale-specific

information,

manipulating

wide

characters

and

multibyte

characters,

and

using

regular

expressions.

For

more

information

about

NLS

subroutines,

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

List

of

Locale

Subroutines

The

following

subroutines

are

provided

to

obtain

and

process

locale-specific

data:

localeconv

Retrieves

locale-dependent

conventions

of

a

program

locale.

nl_langinfo

Returns

information

on

language

or

cultural

area

in

a

program

locale.

rpmatch

Determines

whether

a

response

is

affirmative

or

negative

in

the

current

locale.

setlocale

Changes

or

queries

a

program’s

current

locale.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines.”

List

of

Time

and

Monetary

Formatting

Subroutines

strfmon

Formats

monetary

strings

according

to

the

current

locale.

strftime

Formats

time

and

date

according

to

the

current

locale.

strptime

Converts

a

character

string

to

a

time

value

according

to

the

current

locale.

wcsftime

Converts

time

and

date

into

a

wide

character

string

according

to

the

current

locale.

For

more

information

about

NLS

subroutines

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines.”

174

National

Language

Support

Guide

and

Reference

List

of

Multibyte

Character

Subroutines

mblen

Determines

the

length

of

a

multibyte

character.

mbstowcs

Converts

a

multibyte

character

string

to

a

wide

character

string.

mbtowc

Converts

a

multibyte

character

to

a

wide

character.

For

more

information

about

multibyte

character

subroutines

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines”

on

page

174.

List

of

Wide

Character

Subroutines

The

following

subroutines

process

characters

in

process-code

form:

fgetwc

Gets

a

wide

character

or

word

from

an

input

stream.

fgetws

Gets

a

wide

character

string

from

a

stream.

fputwc

Writes

a

wide

character

or

a

word

to

a

stream.

fputws

Writes

a

wide

character

string

to

a

stream.

getwc

Gets

a

wide

character

or

word

from

an

input

stream.

getwchar

Gets

a

wide

character

or

word

from

an

input

stream.

getws

Gets

a

wide

character

string

from

a

stream.

iswalnum

Determines

if

the

wide

character

is

alphanumeric.

iswalpha

Determines

if

the

wide

character

is

alphabetic.

iswcntrl

Determines

if

the

wide

character

is

a

control

character.

iswctype

Determines

the

property

of

a

wide

character.

iswdigit

Determines

if

the

wide

character

is

a

digit.

iswgraph

Determines

if

the

wide

character

(excluding

″space

characters″)

is

a

printing

character.

iswlower

Determines

if

the

wide

character

is

lowercase.

iswprint

Determines

if

the

wide

character

(including

″space

characters″)

is

a

printing

character.

iswpunct

Determines

if

the

wide

character

is

a

punctuation

character.

iswspace

Determines

if

the

wide

character

is

a

blank

space.

iswupper

Determines

if

the

wide

character

is

uppercase.

iswxdigit

Determines

if

the

wide

character

is

a

hexadecimal

digit.

putwc

Writes

a

wide

character

or

a

word

to

a

stream.

putwchar

Writes

a

wide

character

or

a

word

to

a

stream.

putws

Writes

a

wide

character

string

to

a

stream.

strcoll

Compares

two

strings

based

on

their

collation

weights

in

the

current

locale.

strxfrm

Transforms

a

string

into

locale

collation

values.

towlower

Converts

an

uppercase

wide

character

to

a

lowercase

wide

character.

towupper

Converts

a

lowercase

wide

character

to

an

uppercase

wide

character.

ungetwc

Pushes

a

wide

character

onto

a

stream.

wcsid

Returns

the

charsetID

of

a

wide

character.

wcscat

Concatenates

wide

character

strings.

wcschr

Searches

for

a

wide

character.

wcscmp

Compares

wide

character

strings.

wcscoll

Compares

the

collation

weights

of

wide

character

strings.

wcscpy

Copies

a

wide

character

string.

wcscspn

Searches

for

a

wide

character

string.

wcslen

Determines

the

number

of

characters

in

a

wide

character

string.

wcsncat

Concatenates

a

specified

number

of

wide

characters.

wcsncmp

Compares

a

specified

number

of

wide

characters.

wcsncpy

Copies

a

specified

number

of

wide

characters.

wcspbrk

Locates

the

first

occurrence

of

wide

characters

in

a

wide

character

string.

wcsrchr

Locates

the

last

occurrence

of

wide

characters

in

a

wide

character

string.

Appendix

A.

National

Language

Support

(NLS)

Reference

175

wcsspn

Returns

the

number

of

wide

characters

in

the

initial

segment

of

a

string.

wcstod

Converts

a

wide

character

string

to

a

double-precision

floating

point

value.

wcstok

Breaks

a

wide

character

string

into

a

sequence

of

separate

wide

character

strings.

wcstol

Converts

a

wide

character

string

to

a

long

integer

value.

wcstombs

Converts

a

sequence

of

wide

characters

to

a

sequence

of

multibyte

characters.

wcstoul

Converts

a

wide

character

string

to

an

unsigned,

long

integer

value.

wcswcs

Locates

the

first

occurrence

of

a

wide

character

sequence

in

a

wide

character

string.

wcswidth

Determines

the

display

width

of

a

wide

character

string.

wcsxfrm

Converts

a

wide

character

string

to

values

representing

character

collation

weights.

wctomb

Converts

a

wide

character

to

a

multibyte

character.

wctype

Gets

a

handle

for

valid

property

names

as

defined

in

the

current

locale.

wcwidth

Determines

the

display

width

of

a

wide

character.

For

more

information

about

wide

character

subroutines

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines”

on

page

174.

List

of

Layout

Library

Subroutines

The

following

subroutines

of

the

Layout

library

(libi18n.a)

transform

bidirectional

and

context-dependent

text

to

different

formats:

layout_object_create

Initializes

a

layout

context.

layout_object_free

Frees

a

LayoutObject

structure.

layout_object_editshape

Edits

the

shape

of

the

context

text.

layout_object_getvalue

Queries

the

current

layout

values

of

a

LayoutObject

structure.

layout_object_setvalue

Sets

the

layout

values

of

a

LayoutObject

structure.

layout_object_shapeboxchars

Shapes

box

characters.

layout_object_transform

Transforms

the

text

according

to

the

current

layout

values

of

a

LayoutObject

structure.

For

more

information

about

Layout

library

subroutines

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines”

on

page

174.

List

of

Message

Facility

Subroutines

The

Message

Facility

consists

of

standard

defined

subroutines

and

commands,

and

manufacturer

value-added

extensions

to

support

externalized

message

catalogs.

These

catalogs

are

used

by

an

application

to

retrieve

and

display

messages,

as

needed.

The

following

Message

Facility

subroutines

get

messages

for

an

application:

catopen

Opens

a

catalog.

catgets

Gets

a

messages

from

a

catalog.

catclose

Closes

a

catalog.

strerror

Maps

an

error

number

to

an

error-message

string

appropriate

for

the

current

locale.

For

more

information

about

multibyte

character

subroutines

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines”

on

page

174.

176

National

Language

Support

Guide

and

Reference

List

of

Converter

Subroutines

In

an

internationalized

environment,

it

is

often

necessary

to

convert

data

from

one

code

set

to

another.

The

following

converter

subroutines

are

supported

for

this

purpose:

iconv_open

Performs

the

initialization

required

to

convert

characters

from

the

code

set

specified

by

the

FromCode

parameter

to

the

code

set

specified

by

the

ToCode

parameter.

iconv

Invokes

the

converter

function

using

the

descriptor

obtained

from

the

iconv_open

subroutine.

iconv_close

Closes

the

conversion

descriptor

specified

by

the

cd

variable

and

makes

it

usable

again.

ccsidtocs

Returns

the

code-set

name

of

the

corresponding

coded

character

set

IDs

(CCSID).

cstoccsid

Returns

the

CCSID

of

the

corresponding

code-set

name.

For

more

information

about

multibyte

character

subroutines

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines”

on

page

174.

List

of

Input

Method

Subroutines

The

Input

Method

is

a

set

of

subroutines

that

translate

key

strokes

into

character

strings

in

the

code

set

specified

by

a

locale.

The

Input

Method

subroutines

include

logic

for

locale-specific

input

processing

and

keyboard

controls

(for

example,

Ctrl,

Alt,

Shift,

Lock,

and

Alt-Graphic).

The

following

subroutines

support

this

Input

Method:

IMAIXMapping

Translates

a

pair

of

KeySymbol

and

State

parameters

to

a

string

and

returns

a

pointer

to

that

string.

IMAuxCreate

Tells

the

application

program

to

create

an

auxiliary

area.

IMAuxDestroy

Notifies

the

callback

to

destroy

any

knowledge

of

the

auxiliary

area.

IMAuxDraw

Tells

the

application

program

to

draw

the

auxiliary

area.

IMAuxHide

Tells

the

application

program

to

hide

the

auxiliary

area.

IMBeep

Tells

the

application

program

to

emit

a

beep

sound.

IMClose

Closes

the

input

method.

IMCreate

Creates

one

instance

of

a

particular

input

method.

IMDestroy

Destroys

an

input

method

instance.

IMFilter

Checks

whether

a

keyboard

event

is

used

by

the

input

method

for

its

internal

processing.

IMFreeKeymap

Frees

resources

allocated

by

the

IMInitialzieKeymap

subroutine.

IMIndicatorDraw

Tells

the

application

program

to

draw

the

indicator.

IMIndicatorHide

Tells

the

application

program

to

hide

the

indicator.

IMInitialize

Initializes

the

input

method

for

a

particular

language.

IMInitializeKeymap

Initializes

the

input

method

for

a

particular

language.

IMIoctl

Performs

a

variety

of

control

or

query

operations

on

the

input

method.

IMLookupString

Maps

a

keyboard-symbol/state

pair

to

a

string

defined

by

the

user.

IMProcessAuxiliary

Notifies

the

input

method

of

input

for

an

auxiliary

area.

IMQueryLanguage

Checks

to

see

if

the

specified

language

is

supported.

IMSimpleMapping

Translates

a

pair

of

KeySymbol

and

State

parameters

to

a

string

a

returns

a

pointer

to

that

string.

IMTextCursor

Sets

the

new

display

cursor

position.

IMTextDraw

Asks

the

application

program

to

draw

the

next

string.

IMTextHide

Tells

the

application

program

to

hide

the

text

area.

IMTextStart

Notifies

the

application

program

of

the

length

of

the

pre-editing

space.

IMTextStart

Notifies

the

application

program

of

the

length

of

the

pre-editing

space.

Appendix

A.

National

Language

Support

(NLS)

Reference

177

List

of

Regular

Expression

Subroutines

The

following

subroutines

handle

regular

expressions:

regcomp

Compiles

a

regular

expression

for

comparison

by

the

regexec

subroutine.

For

more

information

about

multibyte

character

subroutines

see

Chapter

3,

“Subroutines

for

National

Language

Support,”

on

page

15.

For

more

NLS

subroutines

see

“List

of

National

Language

Support

Subroutines”

on

page

174.

178

National

Language

Support

Guide

and

Reference

Appendix

B.

Character

Maps

This

appendix

contains

textual

representations

of

the

following

character

maps

discussed

in

Chapter

4,

“Code

Sets

for

National

Language

Support,”

on

page

49:

v

“ISO

Code

Sets”

v

“IBM

Code

Sets”

on

page

197

ISO

Code

Sets

The

following

ISO

code

sets

are

described:

v

“ISO8859–1”

v

“ISO8859–2”

on

page

182

v

“ISO8859–5”

on

page

184

v

“ISO8859–6”

on

page

187

v

“ISO8859–7”

on

page

188

v

“ISO8859–8”

on

page

190

v

“ISO8859–9”

on

page

192

v

“ISO8859–15”

on

page

194

ISO8859–1

Table

1.

ISO8859–1

Code

set

Symbolic

Name

Hex

Value

no

break

space

A0

inverted

exclamation

mark

A1

cent

sign

A2

pound

sign

A3

currency

sign

A4

yen

sign

A5

broken

bar

A6

section

sign

A7

diaeresis

A8

copyright

sign

A9

feminine

ordinal

indicator

AA

left-pointing

double

angle

quotation

mark

AB

not

sign

AC

soft

hyphen

AD

registered

sign

AE

macron

AF

degree

sign

B0

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

acute

accent

B4

©

Copyright

IBM

Corp.

2002

179

Table

1.

ISO8859–1

Code

set

(continued)

Symbolic

Name

Hex

Value

micro

sign

B5

pilcrow

sign

B6

middle

dot

B7

cedilla

B8

superscript

one

B9

masculine

ordinal

indicator

BA

right-pointing

double

angle

quotation

mark

BB

vulgar

fraction

one

quarter

BC

vulgar

fraction

one

half

BD

vulgar

fraction

three

quarters

BE

inverted

question

mark

BF

latin

capital

letter

A

with

grave

C0

latin

capital

letter

A

with

acute

C1

latin

capital

letter

A

with

circumflex

C2

latin

capital

letter

A

with

tilde

C3

latin

capital

letter

A

with

diaeresis

C4

latin

capital

letter

A

with

ring

above

C5

latin

capital

letter

AE

C6

latin

capital

letter

C

with

cedilla

C7

latin

capital

letter

E

with

grave

C8

latin

capital

letter

E

with

acute

C9

latin

capital

letter

E

with

circumflex

CA

latin

capital

letter

E

with

diaeresis

CB

latin

capital

letter

I

with

grave

CC

latin

capital

letter

I

with

acute

CD

latin

capital

letter

I

with

circumflex

CE

latin

capital

letter

I

with

diaeresis

CF

latin

capital

letter

eth

D0

latin

capital

letter

n

with

tilde

D1

latin

capital

letter

O

with

grave

D2

latin

capital

letter

O

with

acute

D3

latin

capital

letter

O

with

circumflex

D4

latin

capital

letter

O

with

tilde

D5

latin

capital

letter

O

with

diaeresis

D6

multiplication

sign

D7

latin

capital

letter

O

with

stroke

D8

latin

capital

letter

U

with

grave

D9

latin

capital

letter

U

with

acute

DA

latin

capital

letter

U

with

circumflex

DB

latin

capital

letter

U

with

diaeresis

DC

180

National

Language

Support

Guide

and

Reference

Table

1.

ISO8859–1

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

capital

letter

Y

with

acute

DD

latin

capital

letter

thorn

DE

latin

small

letter

sharp

S

DF

latin

small

letter

A

with

grave

E0

latin

small

letter

A

with

acute

E1

latin

small

letter

A

with

circumflex

E2

latin

small

letter

A

with

tilde

E3

latin

small

letter

A

with

diaeresis

E4

latin

small

letter

A

with

ring

above

E5

latin

small

letter

AE

E6

latin

small

letter

C

with

cedilla

E7

latin

small

letter

E

with

grave

E8

latin

small

letter

E

with

acute

E9

latin

small

letter

E

with

circumflex

EA

latin

small

letter

E

with

diaeresis

EB

latin

small

letter

I

with

grave

EC

latin

small

letter

I

with

acute

ED

latin

small

letter

I

with

circumflex

EE

latin

small

letter

I

with

diaeresis

EF

latin

small

letter

eth

F0

latin

small

letter

n

with

tilde

F1

latin

small

letter

O

with

grave

F2

latin

small

letter

O

with

acute

F3

latin

small

letter

O

with

circumflex

F4

latin

small

letter

O

with

tilde

F5

latin

small

letter

O

with

diaeresis

F6

division

sign

F7

latin

small

letter

O

with

stroke

F8

latin

small

letter

U

with

grave

F9

latin

small

letter

U

with

acute

FA

latin

small

letter

U

with

circumflex

FB

latin

small

letter

U

with

diaeresis

FC

latin

small

letter

Y

with

acute

FD

latin

small

letter

thorn

FE

latin

small

letter

y

with

diaeresis

FF

Appendix

B.

Character

Maps

181

ISO8859–2

Table

2.

ISO8859–2

Code

set

Symbolic

Name

Hex

Value

no

break

space

A0

latin

capital

letter

A

with

ogonek

A1

bleve

A2

capital

letter

L

with

stroke

A3

currency

sign

A4

latin

capital

letter

L

with

caron

A5

latin

capital

letter

S

with

acute

A6

section

sign

A7

diaeresis

A8

latin

capital

letter

S

with

caron

A9

latin

capital

letter

S

with

cedilla

AA

latin

capital

letter

T

with

caron

AB

latin

capital

letter

Z

with

acute

AC

soft

hyphen

AD

latin

capital

letter

Z

with

caron

AE

latin

capital

letter

Z

with

dot

above

AF

degree

sign

B0

latin

small

letter

A

with

ogenek

B1

ogenek

B2

latin

small

letter

L

with

stroke

B3

acute

accent

B4

latin

small

letter

L

with

caron

B5

latin

small

letter

S

with

acute

B6

caron

B7

cedilla

B8

latin

small

letter

S

with

caron

B9

latin

small

letter

S

with

cedilla

BA

latin

small

letter

T

with

caron

BB

latin

small

letter

Z

with

acute

BC

double

acute

accent

BD

latin

small

letter

Z

with

caron

BE

latin

small

letter

Z

with

dot

above

BF

latin

capital

letter

R

with

acute

C0

latin

capital

letter

A

with

acute

C1

latin

capital

letter

A

with

circumflex

C2

latin

capital

letter

A

with

breve

C3

latin

capital

letter

A

with

diaeresis

C4

latin

capital

letter

L

with

acute

C5

182

National

Language

Support

Guide

and

Reference

Table

2.

ISO8859–2

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

capital

letter

C

with

acute

C6

latin

capital

letter

C

with

cedilla

C7

latin

capital

letter

C

with

caron

C8

latin

capital

letter

E

with

acute

C9

latin

capital

letter

E

with

ogonek

CA

latin

capital

letter

E

with

diaeresis

CB

latin

capital

letter

E

with

caron

CC

latin

capital

letter

I

with

acute

CD

latin

capital

letter

I

with

circumflex

CE

latin

capital

letter

D

with

caron

CF

latin

capital

letter

D

with

stroke

D0

latin

capital

letter

N

with

acute

D1

latin

capital

letter

N

with

caron

D2

latin

capital

letter

O

with

acute

D3

latin

capital

letter

O

with

circumflex

D4

latin

capital

letter

O

with

double

acute

D5

latin

capital

letter

O

with

diaeresis

D6

multiplication

sign

D7

latin

capital

letter

R

with

caron

D8

latin

capital

letter

U

with

ring

above

D9

latin

capital

letter

U

with

acute

DA

latin

capital

letter

U

with

double

acute

DB

latin

capital

letter

U

with

diaeresis

DC

latin

capital

letter

Y

with

acute

DD

latin

capital

letter

T

with

cedilla

DE

latin

small

letter

sharp

S

DF

latin

small

letter

R

with

acute

E0

latin

small

letter

A

with

acute

E1

latin

small

letter

A

with

circumflex

E2

latin

small

letter

A

with

breve

E3

latin

small

letter

A

with

diaeresis

E4

latin

small

letter

L

with

acute

E5

latin

small

letter

C

with

acute

E6

latin

small

letter

C

with

cedilla

E7

latin

small

letter

C

with

caron

E8

latin

small

letter

E

with

acute

E9

latin

small

letter

E

with

ogonek

EA

latin

small

letter

E

with

diaeresis

EB

latin

small

letter

E

with

caron

EC

latin

small

letter

I

with

acute

ED

Appendix

B.

Character

Maps

183

Table

2.

ISO8859–2

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

small

letter

I

with

circumflex

EE

latin

small

letter

D

with

caron

EF

latin

small

letter

D

with

stroke

F0

latin

small

letter

N

with

acute

F1

latin

small

letter

N

with

caron

F2

latin

small

letter

O

with

acute

F3

latin

small

letter

O

with

circumflex

F4

latin

small

letter

O

with

double

acute

F5

latin

small

letter

O

with

diaeresis

F6

division

sign

F7

latin

small

letter

R

with

caron

F8

latin

small

letter

U

with

ring

above

F9

latin

small

letter

U

with

acute

FA

latin

small

letter

Uwith

double

acute

FB

latin

small

letter

U

with

diaeresis

FC

latin

small

letter

Y

with

acute

FD

latin

small

letter

T

with

cedilla

FE

dot

above

FF

ISO8859–5

Table

3.

ISO8859–5

Code

set

Symbolic

Name

Hex

Value

no

break

space

A0

cyrillic

capital

letter

io

A1

cyrillic

capital

letter

dje

A2

cyrillic

capital

letter

gje

A3

cyrillic

capital

letter

ukrainian

ie

A4

cyrillic

capital

letter

dze

A5

cyrillic

capital

letter

byelorussian-ukrainian

I

A6

cyrillic

capital

letter

yi

A7

cyrillic

capital

letter

je

A8

cyrillic

capital

letter

lje

A9

cyrillic

capital

letter

nje

AA

cyrillic

capital

letter

tshe

AB

cyrillic

capital

letter

kje

AC

soft

hyphen

AD

cyrillic

capital

letter

short

U

AE

cyrillic

capital

letter

dzhe

AF

cyrillic

capital

letter

A

B0

184

National

Language

Support

Guide

and

Reference

Table

3.

ISO8859–5

Code

set

(continued)

Symbolic

Name

Hex

Value

cyrillic

capital

letter

be

B1

cyrillic

capital

letter

ve

B2

cyrillic

capital

letter

ghe

B3

cyrillic

capital

letter

de

B4

cyrillic

capital

letter

ie

B5

cyrillic

capital

letter

zhe

B6

cyrillic

capital

letter

ze

B7

cyrillic

capital

letter

I

B8

cyrillic

capital

letter

short

I

B9

cyrillic

capital

letter

ka

BA

cyrillic

capital

letter

el

BB

cyrillic

capital

letter

em

BC

cyrillic

capital

letteren

BD

cyrillic

capital

letter

O

BE

cyrillic

capital

letter

pe

BF

cyrillic

capital

letter

er

C0

cyrillic

capital

letter

es

C1

cyrillic

capital

letter

te

C2

cyrillic

capital

letter

U

C3

cyrillic

capital

letter

ef

C4

cyrillic

capital

letter

ha

C5

cyrillic

capital

letter

tse

C6

cyrillic

capital

letter

che

C7

cyrillic

capital

letter

sha

C8

cyrillic

capital

letter

shcha

C9

cyrillic

capital

letter

hard

sign

CA

cyrillic

capital

letter

yeru

CB

cyrillic

capital

letter

soft

sign

CC

cyrillic

capital

letter

E

CD

cyrillic

capital

letter

tu

CE

cyrillic

capital

letter

ya

CF

cyrillic

small

letter

A

D0

cyrillic

small

letter

be

D1

cyrillic

small

letter

ve

D2

cyrillic

small

letter

ghe

D3

cyrillic

small

letter

de

D4

cyrillic

small

letter

ie

D5

cyrillic

small

letter

zhe

D6

cyrillic

small

letter

ze

D7

cyrillic

small

letter

I

D8

Appendix

B.

Character

Maps

185

Table

3.

ISO8859–5

Code

set

(continued)

Symbolic

Name

Hex

Value

cyrillic

small

letter

short

I

D9

cyrillic

small

letter

ka

DA

cyrillic

small

letter

el

DB

cyrillic

small

letter

em

DC

cyrillic

small

letter

en

DD

cyrillic

small

letter

O

DE

cyrillic

small

letter

pe

DF

cyrillic

small

letter

er

E0

cyrillic

small

letter

es

E1

cyrillic

small

letter

te

E2

cyrillic

small

letter

U

E3

cyrillic

small

letter

ef

E4

cyrillic

small

letter

ha

E5

cyrillic

small

letter

tse

E6

cyrillic

small

letter

che

E7

cyrillic

small

letter

sha

E8

cyrillic

small

letter

shcha

E9

cyrillic

small

letter

hard

sign

EA

cyrillic

small

letter

yeru

EB

cyrillic

small

letter

soft

sign

EC

cyrillic

small

letter

E

ED

cyrillic

small

letter

yu

EE

cyrillic

small

letter

ta

EF

numero

sign

F0

cyrillic

small

letter

io

F1

cyrillic

small

letter

dje

F2

cyrillic

small

letter

gje

F3

cyrillic

small

letter

ukrainian

ie

F4

cyrillic

small

letter

dze

F5

cyrillic

small

letter

byelorussian-ukrainian

I

F6

cyrillic

small

letter

yi

F7

cyrillic

small

letter

je

F8

cyrillic

small

letter

lje

F9

cyrillic

small

letter

nje

FA

cyrillic

small

letter

tshe

FB

cyrillic

small

letter

kje

FC

selection

sign

FD

cyrillic

small

letter

short

U

FE

cyrillic

small

letter

dzhe

FF

186

National

Language

Support

Guide

and

Reference

ISO8859–6

Table

4.

ISO8859–6

Symbolic

Name

Hex

Value

no-break

space

A0

currency

sign

A4

Arabic

comma

AC

soft

hyphen

AD

Arabic

semicolon

BB

Arabic

question

mark

BF

Arabic

letter

hamza

C1

Arabic

letter

alef

with

madda

above

C2

Arabic

letter

alef

with

hamza

above

C3

Arabic

letter

waw

with

hamza

above

C4

Arabic

letter

alef

with

hamza

below

C5

Arabic

letter

yeh

with

hamza

above

C6

Arabic

letter

alef

C7

Arabic

letter

beh

C8

Arabic

letter

teh

marbuta

C9

Arabic

letter

teh

CA

Arabic

letter

theh

CB

Arabic

letter

jeem

CC

Arabic

letter

hah

CD

Arabic

letter

khah

CE

Arabic

letter

dal

CF

Arabic

letter

thal

D0

Arabic

letter

reh

D1

Arabic

letter

zain

D2

Arabic

letter

seen

D3

Arabic

letter

sheen

D4

Arabic

letter

sad

D5

Arabic

letter

dad

D6

Arabic

letter

tah

D7

Arabic

letter

zah

D8

Arabic

letter

ain

D9

Arabic

letter

ghain

DA

Arabic

letter

tatweel

E0

Arabic

letter

feh

E1

Arabic

letter

qaf

E2

Arabic

letter

kaf

E3

Arabic

letter

lam

E4

Arabic

letter

meem

E5

Appendix

B.

Character

Maps

187

Table

4.

ISO8859–6

(continued)

Symbolic

Name

Hex

Value

Arabic

letter

noon

E6

Arabic

letter

heh

E7

Arabic

letter

waw

E8

Arabic

letter

alef

maksura

E9

Arabic

letter

yeh

EA

Arabic

letter

fathatan

EB

Arabic

letter

dammatan

EC

Arabic

letter

kasratan

ED

Arabic

letter

fatha

EE

Arabic

letter

damma

EF

Arabic

letter

kasra

F0

Arabic

letter

shadda

F1

Arabic

letter

sukun

F2

ISO8859–7

Table

5.

ISO8859–7

Code

set

Symbolic

Name

Hex

Value

no

break

space

A0

left

single

quotation

mark

A1

right

single

quotation

mark

A2

puond

sign

A3

euro

sign

A4

broken

bar

A6

section

sign

A7

diaeresis

A8

copyright

sign

A9

left-pointing

double

angle

quotation

mark

AB

not

sign

AC

soft

hyphen

AD

horizontal

bar

AF

degree

sign

B0

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

greek

tonos

B4

greek

dialytika

tonos

B5

greek

capital

letter

alpha

with

tonos

B6

middle

dot

B7

greek

capital

letter

epsilon

with

tonos

B8

188

National

Language

Support

Guide

and

Reference

Table

5.

ISO8859–7

Code

set

(continued)

Symbolic

Name

Hex

Value

greek

capital

letter

eta

with

tonos

B9

greek

capital

letter

iota

with

tonos

BA

right-pointing

double

angle

quotation

mark

BB

greek

capital

letter

omicron

with

tonos

BC

vulgar

fraction

one

half

BD

greek

capital

letter

upsilon

with

tonos

BE

greek

capital

letter

omega

with

tonos

BF

greek

small

letter

iota

with

dialytika

and

tonos

C0

greek

capital

letter

alpha

C1

greek

capital

letter

beta

C2

greek

capital

letter

gamma

C3

greek

capital

letter

delta

C4

greek

capital

letter

epsilon

C5

greek

capital

letter

zeta

C6

greek

capital

letter

eta

C7

greek

capital

letter

theta

C8

greek

capital

letter

iota

C9

greek

capital

letter

kappa

CA

greek

capital

letter

lambda

CB

greek

capital

letter

mu

CC

greek

capital

letter

nu

CD

greek

capital

letter

xi

CE

greek

capital

letter

omicron

CF

greek

capital

letter

pi

D0

greek

capital

letter

rho

D1

greek

capital

letter

sigma

D3

greek

capital

letter

tau

D4

greek

capital

letter

upsilon

D5

greek

capital

letter

phi

D6

greek

capital

letter

chi

D7

greek

capital

letter

psi

D8

greek

capital

letter

omega

D9

greek

capital

letter

iota

with

dialytika

DA

greek

capital

letter

upsilon

with

dialytika

DB

greek

small

letter

alpha

with

tonos

DC

greek

small

letter

epsilon

with

tonos

DD

greek

small

letter

eta

with

tonos

DE

greek

small

letter

iota

with

tonos

DF

greek

small

letter

upsilon

with

dialytika

and

tonos

E0

greek

small

letter

alpha

E1

Appendix

B.

Character

Maps

189

Table

5.

ISO8859–7

Code

set

(continued)

Symbolic

Name

Hex

Value

greek

small

letter

beta

E2

greek

small

letter

gamma

E3

greek

small

letter

delta

E4

greek

small

letter

epsilon

E5

greek

small

letter

zeta

E6

greek

small

letter

eta

E7

greek

small

letter

theta

E8

greek

small

letter

iota

E9

greek

small

letter

kappa

EA

greek

small

letter

lambda

EB

greek

small

letter

mu

EC

greek

small

letter

nu

ED

greek

small

letter

xi

EE

greek

small

letter

omicron

EF

greek

small

letter

pi

F0

greek

small

letter

rho

F1

greek

small

letter

final

sigma

F2

greek

small

letter

sigma

F3

greek

small

letter

tau

F4

greek

small

letter

upsilon

F5

greek

small

letter

phi

F6

greek

small

letter

chi

F7

greek

small

letter

psi

F8

greek

small

letter

omega

F9

greek

small

letter

iota

with

dialytika

FA

greek

small

letter

upsilon

with

dialytika

FB

greek

small

letter

omicron

with

tonos

FC

greek

small

letter

upsilon

with

tonos

FD

greek

small

letter

omega

with

tonos

FE

ISO8859–8

Table

6.

ISO8859–8

Code

set

Symbolic

Name

Hex

Value

no-break

space

A0

cent

sign

A2

pound

sign

A3

currency

sign

A4

yen

sign

A5

broken

bar

A6

190

National

Language

Support

Guide

and

Reference

Table

6.

ISO8859–8

Code

set

(continued)

Symbolic

Name

Hex

Value

section

sign

A7

diaeresis

A8

copyright

sign

A9

multiplication

sign

AA

left-pointing

double

angle

quotation

mark

AB

not

sign

AC

soft

hyphen

AD

registered

sign

AE

overline

AF

degree

sign

B0

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

acute

accent

B4

micro

sign

B5

pilcrow

sign

B6

middle

dot

B7

cedilla

B8

superscript

one

B9

division

sign

BA

right-pointing

double

angle

quotation

mark

BB

vulgar

fraction

one

quarter

BC

vulgar

fraction

one

half

BD

vilgar

fraction

three

quarters

BE

double

low

line

DF

hebrew

letter

alef

EO

hebrew

letter

bet

E1

hebrew

letter

gimel

E2

hebrew

letter

dalet

E3

hebrew

letter

he

E4

hebrew

letter

vav

E5

hebrew

letter

zayin

E6

hebrew

letter

het

E7

hebrew

letter

tet

E8

hebrew

letter

yod

E9

hebrew

letter

final

kaf

EA

hebrew

letter

kaf

EB

hebrew

letter

lamed

EC

hebrew

letter

final

mem

ED

hebrew

letter

mem

EE

Appendix

B.

Character

Maps

191

Table

6.

ISO8859–8

Code

set

(continued)

Symbolic

Name

Hex

Value

hebrew

letter

final

nun

EF

hebrew

letter

nun

F0

hebrew

letter

samekh

F1

hebrew

letter

ayin

F2

hebrew

letter

final

pe

F3

hebrew

letter

pe

F4

hebrew

letter

final

tsadi

F5

hebrew

letter

tsadi

F6

hebrew

letter

qof

F7

hebrew

letter

resh

F8

hebrew

letter

shin

F9

hebrew

letter

tav

FA

ISO8859–9

Table

7.

ISO8859–9

Code

set

Symbolic

Name

Hex

Value

no-break

space

A0

inverted

exclamation

mark

A1

cent

sign

A2

pound

sign

A3

currency

sign

A4

yen

sign

A5

broken

bar

A6

section

sign

A78

diaeresis

A8

copyright

sign

A9

feminine

ordinal

indicator

AA

left-pointing

double

quotation

mark

AB

not

sign

AC

sofy

hyphen

AD

registered

sign

AE

macron

AF

degree

sign

B0

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

acute

accent

B4

micro

sign

B5

pilcrow

sign

B6

192

National

Language

Support

Guide

and

Reference

Table

7.

ISO8859–9

Code

set

(continued)

Symbolic

Name

Hex

Value

middle

dot

B7

cedilla

B8

superscript

one

B9

masculine

ordinal

indicator

BA

right

pointing

double

angle

quotation

mark

BB

vulgar

fraction

one

quarter

BC

vulgar

fraction

one

half

BD

vulgar

fraction

three

quarters

BE

inverted

question

mark

BF

latin

capital

letter

A

with

grave

C0

latin

capital

letter

A

with

acute

C1

latin

capital

letter

A

with

circumflex

C2

latin

capital

letter

A

with

tilde

C3

latin

capital

letter

A

with

diaeresis

C4

latin

capital

letter

A

with

ring

above

C5

latin

capital

letter

AE

C6

latin

capital

letter

C

with

cedilla

C7

latin

capital

letter

E

with

grave

C8

latin

capital

letter

E

with

acute

C9

latin

capital

letter

E

with

circumflex

CA

latin

capital

letter

E

with

diaeresis

CB

latin

capital

letter

I

with

grave

CC

latin

capital

letter

I

with

acute

CD

latin

capital

letter

I

with

circumflex

CE

latin

capital

letter

I

with

diaeresis

CF

latin

capital

letter

G

with

breve

D0

latin

capital

letter

N

with

tilde

D1

latin

capital

letter

O

with

grave

D2

latin

capital

letter

O

with

acute

D3

latin

capital

letter

O

with

circumflex

D4

latin

capital

letter

O

with

tilde

D5

latin

capital

letter

O

with

diaeresis

D6

multiplication

sign

D7

latin

capital

letter

O

with

stroke

D8

latin

capital

letter

U

with

grave

D9

latin

capital

letter

U

with

acute

DA

latin

capital

letter

U

with

circumflex

DB

latin

capital

letter

U

with

diaeresis

DC

latin

capital

letter

I

with

dot

above

DD

latin

capital

letter

S

with

cedilla

DE

Appendix

B.

Character

Maps

193

Table

7.

ISO8859–9

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

small

letter

sharp

S

DF

latin

small

letter

A

with

grave

E0

latin

small

letter

A

with

acute

E1

latin

small

letter

A

with

circumflex

E2

latin

small

letter

A

with

tilde

E3

latin

small

letter

A

with

diaeresis

E4

latin

small

letter

A

with

ring

above

E5

latin

small

letter

AE

E6

latin

small

letter

C

with

cedilla

E7

latin

small

letter

E

with

grave

E8

latin

small

letter

E

with

acute

E9

latin

small

letter

E

with

circumflex

EA

latin

small

letter

E

with

diseresis

EB

latin

small

letter

I

with

grave

EC

latin

small

letter

I

with

acute

ED

latin

small

letter

I

with

circumflex

EE

latin

small

letter

I

with

diaeresis

EF

latin

small

letter

G

with

breve

F0

latin

small

letter

N

with

tilde

F1

latin

small

letter

O

with

grave

F2

latin

small

letter

O

with

acute

F3

latin

small

letter

O

with

circumflex

F4

latin

small

letter

O

with

tilde

F5

latin

small

letter

O

with

diaeresis

F6

division

sign

F7

latin

small

letter

O

with

stroke

F8

latin

small

letter

U

with

grave

F9

latin

small

letter

U

with

acute

FA

latin

small

letter

U

with

circumflex

FB

latin

small

letter

U

with

diaeresis

FC

latin

small

letter

dotless

I

FD

latin

small

letter

S

with

cedilla

FE

latin

small

letter

Y

with

diaeresis

FF

ISO8859–15

Table

8.

ISO8859–1

Code

set

Symbolic

Name

Hex

Value

no-break

space

A0

inverted

exclamation

mark

A1

194

National

Language

Support

Guide

and

Reference

Table

8.

ISO8859–1

Code

set

(continued)

Symbolic

Name

Hex

Value

cent

sign

A2

pound

sign

A3

euro

sign

A4

yen

sign

A5

latin

capital

letter

S

with

caron

A6

section

sign

A7

letin

small

letter

S

with

caron

A8

copyright

sign

A9

feminine

ordinal

indicator

AA

left-pointing

double

angle

quotation

mark

AB

not

sign

AC

soft

hyphen

AD

registered

sign

AE

macron

AF

degree

sign

B0

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

latin

capital

letter

Z

with

caron

B4

micro

sign

B5

pilcrow

sign

B6

middle

dot

B7

latin

small

letter

Z

with

caron

B8

superscript

one

B9

masculine

ordinal

indicator

BA

right-pointing

bouble

angle

quotation

marks

BB

latin

capital

ligature

oe

BC

latin

small

ligature

oe

BD

latin

capital

letter

Y

with

diaeresis

BE

inverted

question

mark

BF

latin

capital

letter

A

with

grave

C0

latin

capital

letter

A

with

acute

C1

latin

capital

letter

A

with

circumflex

C2

latin

capital

letter

A

with

tilde

C3

latin

capital

letter

A

with

diaeresis

C4

latin

capital

letter

A

with

ring

above

C5

latin

capital

letter

AE

C6

latin

capital

letter

C

with

cedilla

C7

latin

capital

letter

E

with

grave

C8

latin

capital

letter

E

with

acute

C9

Appendix

B.

Character

Maps

195

Table

8.

ISO8859–1

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

capital

letter

W

with

circumflex

CA

latin

capital

letter

E

with

diaeresis

CB

latin

capital

letter

I

with

grave

CC

latin

capital

letter

I

with

acute

CD

latin

capital

letter

I

with

circumflex

CE

latin

capital

letter

I

with

diaeresis

CF

latin

capital

letter

eth

D0

latin

capital

letter

N

with

tilde

D1

latin

capital

letter

O

with

grave

D2

latin

capital

letter

O

with

acute

D3

latin

capital

letter

O

with

circumflex

D4

latin

capital

letter

O

with

tilde

D5

latin

capital

letter

O

with

diaeresis

D6

multiplication

sign

D7

latin

capital

letter

O

with

stroke

D8

latin

capital

letter

U

with

grave

D9

latin

capital

letter

U

with

acute

DA

latin

capital

letter

U

with

circumflex

DB

latin

capital

letter

U

with

diaeresis

DC

latin

capital

letter

Y

with

acute

DD

latin

capital

letter

thorn

DE

latin

small

letter

sharp

S

DF

latin

small

letter

A

with

grave

EO

latin

small

letter

A

with

acute

E1

latin

small

letter

A

with

circumflex

E2

latin

small

letter

A

with

tilde

E3

latin

small

letter

A

with

diaeresis

E4

latin

small

letter

A

with

ring

above

E5

latin

small

letter

AE

E6

latin

small

letter

C

with

cedilla

E7

latin

small

letter

E

with

grave

E8

latin

small

letter

E

with

acute

E9

latin

small

letter

E

with

circumflex

EA

latin

small

letter

E

with

diaeresis

EB

latin

small

letter

I

with

grave

EC

latin

small

letter

I

with

acute

ED

latin

small

letter

I

with

circumflex

EE

latin

small

letter

I

with

diaeresis

EF

latin

small

letter

eth

F0

latin

small

letter

N

with

tilde

F1

196

National

Language

Support

Guide

and

Reference

Table

8.

ISO8859–1

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

small

letter

O

with

grave

F2

latin

small

letter

O

with

acute

F3

latin

small

letter

O

with

circumflex

F4

latin

small

letter

O

with

tilde

F5

latin

small

letter

O

with

diaeresis

F6

division

sign

F7

latin

small

letter

O

with

stroke

F8

latin

small

letter

U

with

grave

F9

latin

small

letter

U

with

acute

FA

latin

small

letter

U

with

circumflex

FB

latin

small

letter

U

with

diaeresis

FC

latin

small

letter

Y

with

acute

FD

latin

small

letter

thorn

FE

latin

small

letter

Y

with

diaeresis

FF

IBM

Code

Sets

The

following

IBM

PC

code

sets

are

described:

v

“IBM-856”

v

“IBM-921”

on

page

200

v

“IBM-922”

on

page

202

v

“IBM-1046”

on

page

205

v

“IBM-1124”

on

page

208

v

“IBM-1129”

on

page

210

v

“TIS-620”

on

page

213

IBM-856

Table

9.

IBM–856

Code

set

Symbolic

Name

Hex

Value

hebrew

letter

alef

80

hebrew

letter

bet

81

hebrew

letter

gimel

82

hebrew

letter

dalet

83

hebrew

letter

he

84

hebrew

letter

vav

85

hebrew

letter

zayin

86

hebrew

letter

het

87

hebrew

letter

tet

88

hebrew

letter

yod

89

hebrew

letter

final

kaf

8A

hebrew

letter

kaf

8B

Appendix

B.

Character

Maps

197

Table

9.

IBM–856

Code

set

(continued)

Symbolic

Name

Hex

Value

hebrew

letter

lamed

8C

hebrew

letter

final

mem

8D

hebrew

letter

mem

8E

hebrew

letter

final

nun

8F

hebrew

letter

nun

90

hebrew

letter

samekh

91

hebrew

letter

ayin

92

hebrew

letter

final

pe

93

hebrew

letter

pe

94

hebrew

letter

final

tsadi

95

hebrew

letter

tsadi

96

hebrew

letter

qof

97

hebrew

letter

resh

98

hebrew

letter

shin

99

hebrew

letter

tav

9A

pound

sign

9C

multiplication

sign

9E

registered

sign

A9

not

sign

AA

vulgar

fraction

one

half

AB

vulgar

fraction

one

quarter

AC

left

pointing

double

angle

quotation

mark

AE

right

pointing

double

angle

quotation

mark

AF

light

shade

B0

medium

shade

B1

dark

shade

B2

box

drawings

light

vertical

B3

box

drawings

light

vertical

and

left

B4

copyright

sign

B8

box

drawings

double

vertival

and

left

B9

box

drawings

double

vertical

BA

box

drawings

double

down

and

left

BB

box

drawings

double

up

and

left

BC

cent

sign

BD

yen

sign

BE

box

drawings

light

down

and

left

BF

box

drawings

light

up

and

right

C0

box

drawings

light

up

and

horizontal

C1

box

drawings

light

down

and

horizontal

C2

box

drawings

light

vertical

and

right

C3

198

National

Language

Support

Guide

and

Reference

Table

9.

IBM–856

Code

set

(continued)

Symbolic

Name

Hex

Value

box

drawings

light

horizontal

C4

box

drawings

light

vertical

and

horizontal

C5

box

drawings

double

up

and

right

C8

box

drawings

double

down

and

right

C9

box

drawings

double

up

and

horizontal

CA

box

drawings

double

down

and

horizontal

CB

box

drawings

double

vertical

and

right

CC

box

drawings

double

horizontal

CD

box

drawings

double

vertical

and

horizontal

CE

currency

sign

CF

box

drawings

light

up

and

left

D9

box

drawings

light

down

and

right

DA

full

block

DB

lower

half

block

DC

broken

bar

DD

upper

half

block

DF

micro

sign

E6

overline

EE

acute

accent

EF

soft

hyphen

F0

plus-minus

sign

F1

double

low

line

F2

vulgar

fraction

three

quarters

F3

pilcrow

sign

F4

section

sign

F5

division

sign

F6

cedilla

F7

degree

sign

F8

diaeresis

F9

middle

dot

FA

superscript

one

FB

superscript

three

FC

superscript

two

FD

black

square

FE

no-break

space

FF

Appendix

B.

Character

Maps

199

IBM-921

Table

10.

IBM–921

Code

set

Symbolic

Name

Hex

Value

no-break

space

A0

right

double

quotation

mark

A1

cent

sign

A2

pound

sign

A3

euro

sign

A4

double

low-9

quotation

mark

A5

broken

bar

A6

section

sign

A7

latin

capital

letter

O

with

stroke

A8

copyright

sign

A9

latin

capital

letter

R

with

cedilla

AA

left-pointing

double

angle

quotation

mark

AB

not

sign

AC

soft

hyphen

AD

registered

sign

AE

latin

capital

letter

AE

AF

degree

sign

B0

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

left

double

quotation

mark

B4

micro

sign

B5

pilcrow

sign

B6

middle

dot

B7

latin

small

letter

O

with

stroke

B8

superscript

one

B9

latin

small

letter

R

with

cedilla

BA

right-pointing

double

angle

quotation

mark

BB

vulgar

fraction

one

quarter

BC

vulgar

fraction

one

half

BD

vulgar

fraction

three

quarters

BE

latin

small

letter

AE

BF

latin

capital

letter

A

with

ogonek

C0

latin

capital

letter

I

with

ogonek

C1

latin

capital

letter

A

with

macron

C2

latin

capital

letter

C

with

acute

C3

latin

capital

letter

A

with

diaeresis

C4

latin

capital

letter

A

with

ring

above

C5

200

National

Language

Support

Guide

and

Reference

Table

10.

IBM–921

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

capital

letter

E

with

ogonek

C6

latin

capital

letter

E

with

macron

C7

latin

capital

letter

C

with

caron

C8

latin

capital

letter

E

with

acute

C9

latin

capital

letter

Z

with

acute

CA

latin

capital

letter

E

with

dot

above

CB

latin

capital

letter

G

with

cedilla

CC

latin

capital

letter

K

with

cedilla

CD

latin

capital

letter

I

with

macron

CE

latin

capital

letter

L

with

cedilla

CF

latin

capital

letter

S

with

caron

D0

latin

capital

letter

N

with

acute

D1

latin

capital

letter

N

with

cedilla

D2

latin

capital

letter

O

with

acute

D3

latin

capital

letter

O

with

macron

D4

latin

capital

letter

O

with

tilde

D5

latin

capital

letter

O

with

diaeresis

D6

multiplication

sign

D7

latin

capital

letter

U

with

ogonek

D8

latin

capital

letter

L

with

stroke

D9

latin

capital

letter

S

with

acute

DA

latin

capital

letter

U

with

macron

DB

latin

capital

letter

U

with

diaeresis

DC

latin

capital

letter

Z

with

dot

above

DD

latin

capital

letter

Z

with

caron

DE

latin

small

letter

sharp

S

DF

latin

small

letter

A

with

ogonek

E0

latin

small

letter

I

with

ogonek

E1

latin

small

letter

A

with

macron

E2

latin

small

letter

C

with

acute

E3

latin

small

letter

A

with

diaeresis

E4

latin

small

letter

A

with

ring

above

E5

latin

small

letter

E

with

ogonek

E6

latin

small

letter

E

with

macron

E7

latin

small

letter

C

with

caron

E8

latin

small

letter

E

with

acute

E9

latin

small

letter

Z

with

acute

EA

latin

small

letter

E

with

dot

above

EB

latin

small

letter

G

with

cedilla

EC

latin

small

letter

K

with

cedilla

ED

Appendix

B.

Character

Maps

201

Table

10.

IBM–921

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

small

letter

I

with

macron

EE

latin

small

letter

L

with

cedilla

EF

latin

small

letter

S

with

caron

F0

latin

small

letter

N

with

acute

F1

latin

small

letter

N

with

cedilla

F2

latin

small

letter

O

with

acute

F3

latin

small

letter

O

with

macron

F4

latin

small

letter

O

with

tilde

F5

latin

small

letter

O

with

diaeresis

F6

division

sign

F7

latin

small

letter

U

with

ogonek

F8

latin

small

letter

L

with

stroke

F9

latin

small

letter

S

with

acute

FA

latin

small

letter

U

with

macron

FB

latin

small

letter

U

with

diaeresis

FC

latin

small

letter

Z

with

dot

above

FD

latin

small

letter

Z

with

caron

FE

right

single

quotation

mark

FF

IBM-922

Table

11.

IBM–922

Code

set

Symbolic

Name

Hex

Value

no

break

space

A0

inverted

exclamation

mark

A1

cent

sign

A2

pound

sign

A3

euro

sign

A4

yenb

sign

A5

broken

bar

A6

section

sign

A7

diaeresis

A8

copyright

sign

A9

feminine

ordinal

indicator

AA

left-pointing

double

angle

quotation

mark

AB

not

sign

AC

soft

hyphen

AD

registered

sign

AE

macron

AF

degree

sign

B0

202

National

Language

Support

Guide

and

Reference

Table

11.

IBM–922

Code

set

(continued)

Symbolic

Name

Hex

Value

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

acute

accent

B4

micro

sign

B5

pilcrow

sign

B6

middle

dot

B7

cedilla

B8

superscript

one

B9

masculine

ordinal

indicator

BA

right-pointing

double

angle

quotation

mark

BB

vulgar

fraction

one

quarter

BC

vulgar

fraction

one

half

BD

vulgar

fraction

three

quarters

BE

inverted

question

mark

BF

latin

capital

letter

A

with

grave

C0

latin

capital

letter

A

with

acute

C1

latin

capital

letter

A

with

circumflex

C2

latin

capital

letter

A

with

tilde

C3

latin

capital

letter

A

with

diaeresis

C4

latin

capital

letter

A

with

ring

above

C5

latin

capital

letter

AE

C6

latin

capital

letter

C

with

cedilla

C7

latin

capital

letter

E

with

grave

C8

latin

capital

letter

E

with

acute

C9

latin

capital

letter

E

with

circumflex

CA

latin

capital

letter

E

with

diaeresis

CB

latin

capital

letter

I

with

grave

CC

latin

capital

letter

I

with

acute

CD

latin

capital

letter

I

with

circumflex

CE

latin

capital

letter

I

with

diaeresis

CF

latin

capital

letter

S

with

caron

D0

latin

capital

letter

N

with

tilde

D1

latin

capital

letter

O

with

grave

D2

latin

capital

letter

O

with

acute

D3

latin

capital

letter

O

with

circumflex

D4

latin

capital

letter

O

with

tilde

D5

latin

capital

letter

O

with

diaeresis

D6

multiplication

sign

D7

latin

capital

letter

O

with

stroke

D8

Appendix

B.

Character

Maps

203

Table

11.

IBM–922

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

capital

letter

U

with

grave

D9

latin

capital

letter

U

with

acute

DA

latin

capital

letter

U

with

circuflex

DB

latin

capital

letter

U

with

diaeresis

DC

latin

capital

letter

Y

with

acute

DD

latin

capital

letter

Z

with

caron

DE

latin

small

letter

sharp

S

DF

latin

small

letter

A

with

grave

E0

latin

small

letter

A

with

acute

E1

latin

small

letter

A

with

circumflex

E2

latin

small

letter

A

with

tilde

E3

latin

small

letter

A

with

diaeresis

E4

latin

small

letter

A

with

ring

above

E5

latin

small

letter

AE

E6

latin

small

letter

C

with

cedilla

E7

latin

small

letter

E

with

grave

E8

latin

small

letter

E

with

acute

E9

latin

small

letter

E

with

circumflex

EA

latin

small

letter

E

with

diaeresis

EB

latin

small

letter

I

with

grave

EC

latin

small

letter

I

with

acute

ED

latin

small

letter

I

with

curcumflex

EE

latin

small

letter

I

with

diaeresis

EF

latin

small

letter

S

with

caron

F0

latin

small

letter

N

with

tilde

F1

latin

small

letter

O

with

grave

F2

latin

small

letter

O

with

acute

F3

latin

small

letter

O

with

circumflex

F4

latin

small

letter

O

with

tilde

F5

latin

small

letter

O

with

diaeresis

F6

division

sign

F7

latin

small

letter

O

with

stroke

F8

latin

small

letter

U

with

grave

F9

latin

small

letter

U

with

acute

FA

latin

small

letter

U

with

circumflex

FB

latin

small

letter

U

with

diaeresis

FC

latin

small

letter

Y

with

acute

FD

latin

small

letter

Z

with

caron

FE

latin

small

letter

Y

with

diaeresis

FF

204

National

Language

Support

Guide

and

Reference

IBM-1046

Table

12.

IBM–1046

Code

set

Symbolic

Name

Hex

Value

arabic

letter

alef

with

hamza

below

final

form

80

multiplication

sign

81

division

sign

82

arabic

letter

seen

first

part

of

final

form

83

arabic

letter

sheen

first

part

of

final

form

84

arabic

letter

sad

first

part

of

final

form

85

arabic

letter

dadfirst

part

of

final

form

86

arabic

tatweel

with

fathatan

above

87

full

block

89

box

drawings

light

vertical

8A

box

drawings

light

horizontal

8B

box

drawings

light

down

and

left

8C

box

drawings

light

down

and

right

8D

box

drawings

light

up

and

right

8E

box

drawings

light

up

and

left

8F

arabic

damma

medial

form

90

arabic

kasra

medial

form

91

arabic

shadda

medial

form

92

arabic

sukun

medial

form

93

arabic

fatha

medial

form

94

arabic

letter

yeh

with

hamza

above

final

form

95

arabic

letter

alef

maksura

final

form

96

arabic

letter

yeh

initial

form

97

arabic

letter

yeh

final

form

98

arabic

letter

ghain

final

form

99

arabic

letter

ghain

initial

form

9A

arabic

letter

ghain

medial

form

9B

arabic

ligature

lam

with

alef

with

madda

above

final

form

9C

arabic

ligature

lam

with

alef

with

hamza

above

final

form

9D

arabic

ligature

lam

with

alef

with

hamza

below

final

form

9E

arabic

ligature

lam

with

alef

final

form

9f

no-break

space

A0

arabic

letter

alef

with

madda

above

after

lam

A1

arabic

letter

alef

with

hamza

above

after

lam

A2

arabic

letter

alef

with

hamza

below

after

lam

A3

currency

sign

A4

arabic

letter

alef

after

lam

A5

arabic

letter

yeh

with

hamza

above

initial

form

A6

Appendix

B.

Character

Maps

205

Table

12.

IBM–1046

Code

set

(continued)

Symbolic

Name

Hex

Value

arabic

letter

beh

with

initial

form

A7

arabic

letter

teh

with

initial

form

A8

arabic

letter

theh

with

initial

form

A9

arabic

letter

jeem

with

initial

form

AA

arabic

letter

hah

with

initial

form

AB

arabic

comma

AC

soft

hyphen

AD

arabic

letter

khan

initial

form

AE

arabic

letter

seen

initial

form

AF

arabic-indic

digit

zero

B0

arabic-indic

digit

one

B1

arabic-indic

digit

two

B2

arabic-indic

digit

three

B3

arabic-indic

digit

four

B4

arabic-indic

digit

five

B5

arabic-indic

digit

six

B6

arabic-indic

digit

seven

B7

arabic-indic

digit

eight

B8

arabic-indic

digit

nine

B9

arabic

letter

sheen

initial

form

BA

arabic

semicolon

BB

arabic

letter

sad

initial

form

BC

arabic

letter

dad

initial

form

BD

arabic

letter

ain

initial

form

BE

arabic

question

mark

BF

arabic

letter

ain

initial

form

C0

arabic

letter

hamza

C1

arabic

letter

alef

with

madda

above

C2

arabic

letter

alef

with

hamza

above

C3

arabic

letter

waw

with

hamza

above

C4

arabic

letter

alef

with

hamza

below

C5

arabic

letter

yeh

with

hamza

above

C6

arabic

letter

alef

C7

arabic

letter

beh

C8

arabic

letter

teh

marbuta

C9

arabic

letter

teh

CA

arabic

letter

theh

CB

arabic

letter

jeem

CC

arabic

letter

hah

CD

arabic

letter

khah

CE

206

National

Language

Support

Guide

and

Reference

Table

12.

IBM–1046

Code

set

(continued)

Symbolic

Name

Hex

Value

arabic

letter

dal

CF

arabic

letter

thal

D0

arabic

letter

reh

D1

arabic

letter

zain

D2

arabic

letter

seen

D3

arabic

letter

sheen

D4

arabic

letter

sad

D5

arabic

letter

dad

D6

arabic

letter

tah

D7

arabic

letter

zah

D8

arabic

letter

ain

D9

arabic

letter

ghain

DA

arabic

letter

ain

medial

form

DB

arabic

letter

alef

with

madda

above

final

form

DC

arabic

letter

alef

with

hamza

above

final

form

DD

arabic

letter

alef

with

final

form

DE

arabic

letter

feh

initial

form

DF

arabic

tatweel

E0

arabic

letter

feh

E1

arabic

letter

qaf

E2

arabic

letter

kaf

E3

arabic

letter

lam

E4

arabic

letter

meem

E5

arabic

letter

noon

E6

arabic

letter

heh

E7

arabic

letter

waw

E8

arabic

letter

alef

maksura

E9

arabic

letter

yeh

EA

arabic

fathatan

EB

arabic

dammatan

EC

arabic

kasratan

ED

arabic

fatha

EE

arabic

damma

EF

arabic

kasra

F0

arabic

shadda

F1

arabic

sukun

F2

arabic

letter

qar

initial

form

F3

arabic

letter

kaf

initial

form

F4

arabic

letter

lam

initial

form

F5

arabic

kasseh

F6

Appendix

B.

Character

Maps

207

Table

12.

IBM–1046

Code

set

(continued)

Symbolic

Name

Hex

Value

arabic

ligature

lam

with

alef

with

madda

above

isolated

form

F7

arabic

ligature

lam

with

alef

with

hamza

above

isolated

form

F8

arabic

ligature

lam

with

alef

with

madda

below

isolated

form

F9

arabic

ligature

lam

with

alef

isolated

form

FA

arabic

letter

meem

initial

form

FB

arabic

letter

noon

initial

form

FC

arabic

letter

heh

initial

form

FD

arabic

letter

heh

final

form

FE

euro

sign

FF

IBM-1124

Table

13.

IBM–1124

Code

set

Symbolic

Name

Hex

Value

no-break

space

A0

cyrillic

capital

letter

io

A1

cyrillic

capital

letter

dje

A2

cyrillic

capital

letter

ghe

with

upturn

A3

cyrillic

capital

letter

ukrainian

ie

A4

cyrillic

capital

letter

dze

A5

cyrillic

capital

letter

byelorussian-ukranian

i

A6

cyrillic

capital

letter

yi

A7

cyrillic

capital

letter

je

A8

cyrillic

capital

letter

lje

A9

cyrillic

capital

letter

nje

AA

cyrillic

capital

letter

tshe

AB

cyrillic

capital

letter

kje

AC

soft

hyphen

AD

cyrillic

capital

letter

short

U

AE

cyrillic

capital

letter

dzhe

AF

cyrillic

capital

letter

A

B0

cyrillic

capital

letter

be

B1

cyrillic

capital

letter

ve

B2

cyrillic

capital

letter

ghe

B3

cyrillic

capital

letter

de

B4

cyrillic

capital

letter

ie

B5

cyrillic

capital

letter

zhe

B6

cyrillic

capital

letter

ze

B7

cyrillic

capital

letter

I

B8

cyrillic

capital

letter

short

I

B9

208

National

Language

Support

Guide

and

Reference

Table

13.

IBM–1124

Code

set

(continued)

Symbolic

Name

Hex

Value

cyrillic

capital

letter

ka

BA

cyrillic

capital

letter

el

BB

cyrillic

capital

letter

em

BC

cyrillic

capital

letter

en

BD

cyrillic

capital

letter

O

BE

cyrillic

capital

letter

pe

BF

cyrillic

capital

letter

er

C0

cyrillic

capital

letter

es

C1

cyrillic

capital

letter

te

C2

cyrillic

capital

letter

U

C3

cyrillic

capital

letter

ef

C4

cyrillic

capital

letter

ha

C5

cyrillic

capital

letter

tse

C6

cyrillic

capital

letter

che

C7

cyrillic

capital

letter

sha

C8

cyrillic

capital

letter

shcha

C9

cyrillic

capital

letter

hard

sign

CA

cyrillic

capital

letter

yeru

CB

cyrillic

capital

letter

soft

sign

CC

cyrillic

capital

letter

E

CD

cyrillic

capital

letter

yu

CE

cyrillic

capital

letter

ya

CF

cyrillic

small

letter

A

D0

cyrillic

small

letter

be

D1

cyrillic

small

letter

ve

D2

cyrillic

small

letter

ghe

D3

cyrillic

small

letter

de

D4

cyrillic

small

letter

ie

D5

cyrillic

small

letter

zhe

D6

cyrillic

small

letter

ze

D7

cyrillic

small

letter

I

D8

cyrillic

small

letter

short

I

D9

cyrillic

small

letter

ka

DA

cyrillic

small

letter

el

DB

cyrillic

small

letter

em

DC

cyrillic

small

letter

en

DD

cyrillic

small

letter

O

DE

cyrillic

small

letter

pe

DF

cyrillic

small

letter

er

E0

cyrillic

small

letter

es

E1

Appendix

B.

Character

Maps

209

Table

13.

IBM–1124

Code

set

(continued)

Symbolic

Name

Hex

Value

cyrillic

small

letter

te

E2

cyrillic

small

letter

u

E3

cyrillic

small

letter

ef

E4

cyrillic

small

letter

ha

E5

cyrillic

small

letter

tse

E6

cyrillic

small

letter

che

E7

cyrillic

small

letter

sha

E8

cyrillic

small

letter

shcha

E9

cyrillic

small

letter

hard

sign

EA

cyrillic

small

letter

yeru

EB

cyrillic

small

letter

soft

sign

EC

cyrillic

small

letter

E

ED

cyrillic

small

letter

yu

EE

cyrillic

small

letter

ya

EF

numero

sign

F0

cyrillic

small

letter

io

F1

cyrillic

small

letter

dje

F2

cyrillic

small

letter

ghe

with

upturn

F3

cyrillic

small

letter

ukrainian

ie

F4

cyrillic

small

letter

dze

F5

cyrillic

small

letter

byelorussian-ukrainian

F6

cyrillic

small

letter

yi

F7

cyrillic

small

letter

je

F8

cyrillic

small

letter

lje

F9

cyrillic

small

letter

nje

FA

cyrillic

small

letter

tshe

FB

cyrillic

small

letter

kje

FC

section

sign

FD

cyrillic

small

letter

short

u

FE

cyrillic

small

letter

dzhe

FF

IBM-1129

Table

14.

IBM–1129

Code

set

Symbolic

Name

Hex

Value

no-break

space

A0

inverted

exclamation

mark

A1

cent

sign

A2

pound

sign

A3

euro

sign

A4

210

National

Language

Support

Guide

and

Reference

Table

14.

IBM–1129

Code

set

(continued)

Symbolic

Name

Hex

Value

yen

sign

A5

broken

bar

A6

section

sign

A7

latin

small

ligature

OE

A8

copyright

sign

A9

feminine

ordinal

indicator

AA

left

pointing

double

angle

quotation

mark

AB

not

sign

AC

soft

hyphen

AD

registered

sign

AE

macron

AF

degree

sign

B0

plus-minus

sign

B1

superscript

two

B2

superscript

three

B3

latin

capital

Y

with

diaeresis

B4

micro

sign

B5

pilcrow

sign

B6

middle

dot

B7

latin

capital

ligature

OE

B8

superscript

one

B9

masculine

ordinal

indicator

BA

right

pointing

double

angle

quotation

mark

BB

vulgar

fraction

one

quarter

BC

vulgar

fraction

one

half

BD

vulgar

fraction

three

quarters

BE

inverted

question

mark

BF

latin

capital

letter

A

with

grave

C0

latin

capital

letter

A

with

acute

C1

latin

capital

letter

A

with

circumflex

C2

latin

capital

letter

A

with

breve

C3

latin

capital

letter

A

with

diaeresis

C4

latin

capital

letter

A

with

ring

above

C5

latin

capital

letter

AE

C6

latin

capital

letter

C

with

cedilla

C7

latin

capital

letter

E

with

grave

C8

latin

capital

letter

E

with

acute

C9

latin

capital

letter

E

with

circumflex

CA

latin

capital

letter

E

with

diaeresis

CB

combining

grave

accent

CC

Appendix

B.

Character

Maps

211

Table

14.

IBM–1129

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

capital

letter

I

with

acute

CD

latin

capital

letter

I

with

circumflex

CE

latin

capital

letter

I

with

diaeresis

CF

latin

capital

letter

D

with

stroke

D0

latin

capital

letter

N

with

tilde

D1

combining

hook

above

D2

latin

capital

letter

O

with

acute

D3

latin

capital

letter

O

with

circumflex

D4

latin

capital

letter

O

with

horn

D5

latin

capital

letter

O

with

diaeresis

D6

multiplication

sign

D7

latin

capital

letter

O

with

stroke

D8

latin

capital

letter

U

with

grave

D9

latin

capital

letter

U

with

acute

DA

latin

capital

letter

U

with

circuflex

DB

latin

capital

letter

U

with

diaeresis

DC

latin

capital

letter

U

with

horn

DD

combining

tilde

DE

latin

small

letter

sharp

S

DF

latin

small

letter

A

with

grave

E0

latin

small

letter

A

with

acute

E1

latin

small

letter

A

with

circumflex

E2

latin

small

letter

A

with

breve

E3

latin

small

letter

A

with

diaeresis

E4

latin

small

letter

A

with

ring

above

E5

latin

small

letter

AE

E6

latin

small

letter

C

with

cedilla

E7

latin

small

letter

E

with

grave

E8

latin

small

letter

E

with

acute

E9

latin

small

letter

E

with

circumflex

EA

latin

small

letter

E

with

diaeresis

EB

combining

acute

accent

EC

latin

small

letter

I

with

acute

ED

latin

small

letter

I

with

circumflex

EE

latin

small

letter

I

with

diaeresis

EF

latin

small

letter

D

with

stroke

F0

latin

small

letter

N

with

tilde

F1

combining

dot

below

F2

latin

small

letter

O

with

acute

F3

latin

small

letter

O

with

circumflex

F4

212

National

Language

Support

Guide

and

Reference

Table

14.

IBM–1129

Code

set

(continued)

Symbolic

Name

Hex

Value

latin

small

letter

O

with

horn

F5

latin

small

letter

O

with

diaeresis

F6

division

sign

F7

latin

small

letter

O

with

stroke

F8

latin

small

letter

U

with

grave

F9

latin

small

letter

U

with

acute

FA

latin

small

letter

U

with

circumflex

FB

latin

small

letter

U

with

diaeresis

FC

latin

small

letter

U

with

horn

FD

dong

sign

FE

latin

small

letter

Y

with

diaeresis

FF

TIS-620

Table

15.

TIS–620

Code

set

Symbolic

Name

Hex

Value

thai

character

ko

kai

A1

thai

character

kho

khai

A2

thai

character

kho

khuat

A3

thai

character

kho

khwai

A4

thai

character

kho

khon

A5

thai

character

kho

rakhang

A6

thai

character

ngo

ngu

A7

thai

character

cho

chan

A8

thai

character

cho

ching

A9

thai

character

cho

chang

AA

thai

character

so

so

AB

thai

character

cho

choe

AC

thai

character

yo

ying

AD

thai

character

do

chada

AE

thai

character

to

patak

AF

thai

character

tho

than

B0

thai

character

tho

nangmontho

B1

thai

character

tho

phuthao

B2

thai

character

no

nen

B3

thai

character

do

dek

B4

thai

character

to

tao

B5

thai

character

tho

thung

B6

thai

character

tho

thahan

B7

thai

character

tho

thong

B8

Appendix

B.

Character

Maps

213

Table

15.

TIS–620

Code

set

(continued)

Symbolic

Name

Hex

Value

thai

character

no

nu

B9

thai

character

bo

baimai

BA

thai

character

po

pla

BB

thai

character

pho

phung

BC

thai

character

fo

fa

BD

thai

character

pho

phan

BE

thai

character

fo

fan

BF

thai

character

pho

samphao

C0

thai

character

mo

ma

C1

thai

character

yo

yak

C2

thai

character

ro

rua

C3

thai

character

ru

C4

thai

character

lo

ling

C5

thai

character

lu

C6

thai

character

wo

waen

C7

thai

character

so

sala

C8

thai

character

so

rusi

C9

thai

character

so

sua

CA

thai

character

ho

hip

CB

thai

character

lo

chula

CC

thai

character

o

ang

CD

thai

character

ho

nokhuk

CE

thai

character

paiyannoi

CF

thai

character

sara

a

D0

thai

character

mai

han-akat

D1

thai

character

sara

aa

D2

thai

character

sara

am

D3

thai

character

sara

i

D4

thai

character

sara

ii

D5

thai

character

sara

ue

D6

thai

character

sara

uee

D7

thai

character

sara

u

D8

thai

character

uu

D9

thai

character

phinthu

DA

thai

currency

symbol

baht

DF

thai

character

sara

e

E0

thai

character

sara

ae

E1

thai

character

sara

O

E2

thai

character

sara

ai

maimuan

E3

thai

character

sara

ai

maimalai

E4

214

National

Language

Support

Guide

and

Reference

Table

15.

TIS–620

Code

set

(continued)

Symbolic

Name

Hex

Value

thai

character

lakkhangyao

E5

thai

character

maiyamok

E6

thai

character

maitaikhu

E7

thai

character

mai

ek

E8

thai

character

mai

tho

E9

thai

character

mai

tri

EA

thai

character

mai

chattawa

EB

thai

character

thanthakhat

EC

thai

character

nikhahit

ED

thai

character

yamakkan

EE

thai

character

fongman

EF

thai

digit

zero

F0

thai

digit

one

F1

thai

digit

two

F2

thai

digit

three

F3

thai

digit

four

F4

thai

digit

five

F5

thai

digit

six

F6

thai

digit

seven

F7

thai

digit

eight

F8

thai

digit

nine

F9

that

character

angkhankhu

FA

thai

character

khomut

FB

Appendix

B.

Character

Maps

215

216

National

Language

Support

Guide

and

Reference

Appendix

C.

NLS

Sample

Program

This

appendix

contains

a

sample

program

fragment,

foo.c,

which

illustrates

internationalization

through

code

set

independent

programming.

Message

Source

File

for

foo

A

sample

message

source

file

for

the

foo

utility

is

given

here.

Note

we

defined

only

one

set

and

three

messages

in

this

catalog

for

illustration

purposes

only.

A

typical

catalog

contains

several

such

messages.

The

following

is

the

message

source

file

for

foo,

foo.msg.

$quote

"

$set

MS_FOO

CANTOPEN

"foo:

cannot

open

%s\n"

BYTECNT

"number

of

bytes:

%d\n"

CHARCNT

"number

of

characters:

%d

Creation

of

Message

Header

File

for

foo

To

generate

the

run-time

catalog,

use

the

runcat

command

as

follows:

runcat

foo

foo.msg

This

generates

the

foo_msg.h

header

file,

as

shown

in

the

following

section.

Note

that

the

set

mnemonic

is

MS_FOO

and

the

message

mnemonics

are

CANTOPEN,

BYTECNT,

and

CHARCNT.

These

mnemonics

are

used

in

the

programs

in

this

appendix.

/*

**

The

header

file:

foo_msg.h

is

as

follows:

*/

#ifndef

_H_FOO_MSG

#define

_H_FOO_MSG

#include

<limits.h>

#include

<nl_types.h>

#define

MF_FOO

"foo.cat"

/*

The

following

was

generated

from

wc.msg.

*/

/*

definitions

for

set

MS_FOO

*/

#define

MS_FOO

1

#define

CANTOPEN

1

#define

BYTECNT

2

#define

CHARCNT

3

#endif

Single

Source,

Single

Path

Code-set

Independent

Version

The

term

single

source

single

path

refers

to

one

path

in

a

single

application

to

be

used

to

process

both

single-byte

and

multibyte

code

sets.

The

single

source

single

path

method

eliminates

all

ifdefs

for

internationalization.

All

characters

are

handled

the

same

way,

whether

they

are

members

of

single-byte

or

multibyte

code

sets.

Single

source

single

path

is

desirable,

but

it

can

degrade

performance.

Thus,

it

is

not

recommended

for

all

programs.

There

may

be

some

programs

that

do

not

suffer

any

performance

degradation

when

they

are

fully

internationalized;

in

those

cases,

use

the

single

source

single

path

method.

©

Copyright

IBM

Corp.

2002

217

The

following

fully

internationalized

version

of

the

foo

utility

supports

all

code

sets

through

single

source

single

path,

code-set

independent

programming:

/*

*

COMPONENT_NAME:

*

*

FUNCTIONS:

foo

*

*

The

following

code

shows

how

to

count

the

number

of

bytes

and

*

the

number

of

characters

in

a

text

file.

*

*

This

example

is

for

illustration

purposes

only.

Performance

*

improvements

may

still

be

possible.

*

*/

#include

<stdio.h>

#include

<ctype.h>

#include

<locale.h>

#include

<stdlib.h>

#include

"foo_msg.h"

#define

MSGSTR(Num,Str)

catgets(catd,MS_FOO,Num,Str)

/*

*

NAME:

foo

*

*

FUNCTION:

Counts

the

number

of

characters

in

a

file.

*

*/

main(argc,argv)

int

argc;

char

**argv;

{

int

bytesread,

/*

number

of

bytes

read

*/

bytesprocessed;

int

leftover;

int

i;

int

mbcnt;

/*

number

of

bytes

in

a

character

*/

int

f;

/*

File

descriptor

*/

int

mb_cur_max;

int

bytect;

/*

name

changed

from

charct...

*/

int

charct;

/*

for

real

character

count

*/

char

*curp,

*cure;

/*

current

and

end

pointers

into

**

buffer

*/

char

buf[BUFSIZ+1];

nl_catd

catd;

wchar_t

wc;

/*

Obtain

the

current

locale

*/

(void)

setlocale(LC_ALL,"");

/*

after

setting

the

locale,

open

the

message

catalog

*/

catd

=

catopen(MF_FOO,NL_CAT_LOCALE);

/*

Parse

the

arguments

if

any

*/

/*

**

Obtain

the

maximum

number

of

bytes

in

a

character

in

the

**

current

locale.

*/

mb_cur_max

=

MB_CUR_MAX;

i

=

1;

218

National

Language

Support

Guide

and

Reference

/*

Open

the

specified

file

and

issue

error

messages

if

any

*/

f

=

open(argv[i],0);

if(f<0){

fprintf(stderr,MSGSTR(CANTOPEN,

/*MSG*/

"foo:

cannot

open

%s\n"),

argv[i]);

/*MSG*/

exit(2);

}

/*

Initialize

the

variables

for

the

count

*/

bytect

=

0;

charct

=

0;

/*

Start

count

of

bytes

and

characters

*/

leftover

=

0;

for(;;)

{

bytesread

=

read(f,buf+leftover,

BUFSIZ-leftover);

/*

issue

any

error

messages

here,

if

needed

*/

if(bytesread

<=

0)

break;

buf[leftover+bytesread]

=

’\0’;

/*

Protect

partial

reads

*/

bytect

+=

bytesread;

curp=buf;

cure

=

buf

+

bytesread+leftover;

leftover=0;

/*

No

more

leftover

*/

for(;

curp<cure

;){

/*

Convert

to

wide

character

*/

mbcnt=

mbtowc(&wc,

curp,

mb_cur_max);

if(mbcnt

<=

0){

mbcnt

=

1;

}else

if

(cure

-

curp

>=mb_cur_max){

wc

=

*curp;

mbcnt

=1;

}else{

/*

Needs

more

data

*/

leftover=

cure

-

curp;

strcpy(buf,

curp,

leftover);

break;

}

curp

+=mbcnt;

charct++;

}

}

/*

print

number

of

chars

and

bytes

*/

fprintf(stderr,MSGSTR(BYTECNT,

"number

of

bytes:%d\n"),

bytect);

fprintf(stderr,MSGSTR(CHARCNT,

"number

of

characters:%d\n"),

charct);

close(f);

exit(0);

Single

Source,

Dual-Path

Version

Optimized

for

Single-Byte

Code

Sets

The

term

single

source

dual

path

refers

to

two

paths

in

a

single

application

where

one

of

the

paths

is

chosen

at

run

time

depending

on

the

current

locale

setting,

which

indicates

whether

the

code

set

in

use

is

single-byte

or

multibyte.

Appendix

C.

NLS

Sample

Program

219

If

a

program

can

retain

its

performance

and

not

increase

its

executable

file

size

too

much,

the

single

source

dual

path

method

is

the

preferred

choice.

You

should

evaluate

the

increase

in

the

executable

file

size

on

a

per

command

or

utility

basis.

In

the

single

byte

dual-path

method,

the

MB_CUR_MAX

macro

specifies

the

maximum

number

of

bytes

in

a

multibyte

character

in

the

current

locale.

This

should

be

used

to

determine

at

run

time

whether

the

processing

path

to

be

chosen

is

the

single-byte

or

the

multibyte

path.

Use

a

boolean

flag

to

indicate

the

path

to

be

chosen,

for

example:

int

mbcodeset

;

/*

After

setlocale(LC_ALL,"")

is

done,

determine

the

path

to

**

be

chosen.

*/

if(MB_CUR_MAX

==

1)

mbcodeset

=

0;

else

mbcodeset

=

1;

This

way,

the

current

code

set

is

checked

to

see

if

it

is

a

multibyte

code

set

and

if

so,

the

flag

mbcodeset

is

set

appropriately.

Testing

this

flag

has

less

performance

impact

than

testing

the

MB_CUR_MAX

macro

several

times.

if(mbcodeset){

/*

Multibyte

code

sets

(also

supports

single-byte

**

code

sets

)

*/

/*

Use

multibyte

or

wide

character

processing

functions

*/

}else{

/*

single-byte

code

sets

*/

/*

Process

accordingly

*/

}

The

preceeding

approach

is

appropriate

if

internationalization

affects

a

small

proportion

of

a

module.

Excessive

tests

for

providing

dual

paths

may

degrade

performance.

Provide

the

test

at

a

level

that

precludes

frequent

testing

for

this

case.

The

following

version

of

the

foo

utility

produces

one

object,

yet

at

run

time,

the

appropriate

path

is

chosen

based

on

the

code

set

to

optimize

performance

for

that

code

set.

Note

that

we

distinguish

between

single-byte

and

multibyte

code

sets

only.

/*

*

COMPONENT_NAME:

*

*

FUNCTIONS:

foo

*

*

The

following

code

shows

how

to

count

the

number

of

bytes

and

*

the

number

of

characters

in

a

text

file.

*

*

This

example

is

for

illustration

purposes

only.

Performance

*

improvements

may

still

be

possible.

*

*/

#include

<stdio.h>

#include

<ctype.h>

#include

<locale.h>

#include

<stdlib.h>

#include

"foo_msg.h"

#define

MSGSTR(Num,Str)

catgets(catd,MS_FOO,Num,Str)

/*

*

NAME:

foo

*

*

FUNCTION:

Counts

the

number

of

characters

in

a

file.

220

National

Language

Support

Guide

and

Reference

*

*/

main(argc,argv)

int

argc;

char

**argv;

{

int

bytesread,

/*

number

of

bytes

read

*/

bytesprocessed;

int

leftover;

int

i;

int

mbcnt;

/*

number

of

bytes

in

a

character

*/

int

f;

/*

File

descriptor

*/

int

mb_cur_max;

int

bytect;

/*

name

changed

from

charct...

*/

int

charct;

/*

for

real

character

count

*/

char

*curp,

*cure;

/*

current

and

end

pointers

into

buffer

*/

char

buf[BUFSIZ+1];

nl_catd

catd;

wchar_t

wc;

/*

flag

to

indicate

if

current

code

set

is

a

**

multibyte

code

set

*/

int

multibytecodeset;

/*

Obtain

the

current

locale

*/

(void)

setlocale(LC_ALL,"");

/*

after

setting

the

locale,

open

the

message

catalog

*/

catd

=

catopen(MF_FOO,NL_CAT_LOCALE);

/*

Parse

the

arguments

if

any

*/

/*

**

Obtain

the

maximum

number

of

bytes

in

a

character

in

the

**

current

locale.

*/

mb_cur_max

=

MB_CUR_MAX;

if(mb_cur_max

>1)

multibytecodeset

=

1;

else

multibytecodeset

=

0;

i

=

1;

/*

Open

the

specified

file

and

issue

error

messages

if

any

*/

f

=

open(argv[i],0);

if(f<0){

fprintf(stderr,MSGSTR(CANTOPEN,

/*MSG*/

"foo:

cannot

open

%s\n"),

argv[i]);

/*MSG*/

exit(2);

}

/*

Initialize

the

variables

for

the

count

*/

bytect

=

0;

charct

=

0;

/*

Start

count

of

bytes

and

characters

*/

leftover

=

0;

if(multibytecodeset){

Appendix

C.

NLS

Sample

Program

221

/*

Full

internationalzation

*/

/*

Handles

supported

multibyte

code

sets

*/

for(;;)

{

bytesread

=

read(f,buf+leftover,

BUFSIZ-leftover);

/*

issue

any

error

messages

here,

if

needed

*/

if(bytesread

<=

0)

break;

buf[leftover+bytesread]

=

’\0’;

/*

Protect

partial

reads

*/

bytect

+=

bytesread;

curp=buf;

cure

=

buf

+

bytesread+leftover;

leftover=0;

/*

No

more

leftover

*/

for(;

curp<cure

;){

/*

Convert

to

wide

character

*/

mbcnt=

mbtowc(&wc,

curp,

mb_cur_max);

if(mbcnt

<=

0){

mbcnt

=

1;

}else

if

(cure

-

curp

>=mb_cur_max){

wc

=

*curp;

mbcnt

=1;

}else{

/*

Needs

more

data

*/

leftover=

cure

-

curp;

strcpy(buf,

curp,

leftover);

break;

}

curp

+=mbcnt;

charct++;

}

}

}else

{

/*

Code

specific

to

single-byte

code

sets

that

**

avoids

conversion

to

widechars

and

thus

optimizes

**

performance

for

single-byte

code

sets.

*/

for(;;)

{

bytesread

=

read(f,buf,

BUFSIZ);

/*

issue

any

error

messages

here,

if

needed

*/

if(bytesread

<=

0)

break;

bytect

+=

bytesread;

charct

+=

bytesread;

}

}

/*

print

number

of

chars

and

bytes

*/

fprintf(stderr,MSGSTR(BYTECNT,

"number

of

bytes:%d\n"),

bytect);

fprintf(stderr,MSGSTR(CHARCNT,

"number

of

characters:%d\n"),

charct);

close(f);

exit(0);

222

National

Language

Support

Guide

and

Reference

Appendix

D.

Use

of

the

libcur

Package

Programs

that

use

the

libcur

package

(extension

to

AT&T’s

libcurses

package)

need

to

make

the

following

changes:

1.

Remove

the

assumption

that

the

number

of

bytes

need

to

represent

a

character

in

a

code

set

also

represents

the

display

column

width

of

the

character.

Use

the

wcwidth

subroutine

to

determine

the

number

of

display

columns

needed

by

the

wide

character

code

of

a

character.

2.

NLSCHAR

is

redefined

to

be

wchar_t.

3.

The

win->_y

[y][x]

has

wchar_t

encodings.

4.

Programs

should

not

assume

any

particular

encodings

on

the

wchar_t.

5.

Programs

should

use

the

addstr,

waddstr,

mvaddstr,

and

mvwaddstr

subroutines

rather

than

the

addch

family

of

subroutines.

All

string

arguments

are

in

multibyte

form.

6.

The

addch

and

waddch

subroutines

accept

a

wchar_t

encoding

of

the

character.

Programs

that

use

these

subroutines

should

ensure

that

wchar_t

are

used

in

calling

these

functions.

The

(x,y)

are

incremented

by

the

number

of

columns

occupied

by

the

wchar_t

passed

to

these

subroutines.

7.

The

delch,

wdelch,

mvdelch,

and

mvwdelch

subroutines

support

delete

and

backspace

on

multibyte

characters

depending

on

the

current

position

of

(x,y).

If

the

current

(x,y)

column

position

points

to

either

the

first

or

second

column

of

a

two-column

character,

the

delch

subroutine

deletes

both

columns

and

shifts

the

rest

of

the

line

by

the

number

of

columns

deleted.

8.

The

insch,

winsch,

mvinsch,

and

mvwinsch

subroutines

can

be

used

to

insert

a

wchar_t

encoding

of

a

character

at

the

current

(x,y)

position.

The

line

is

shifted

by

the

number

of

columns

needed

by

the

wchar_t.

9.

The

libcur

package

is

modified

to

support

box

drawing

characters

as

defined

in

the

terminfo

database

and

not

assume

the

graphic

characters

in

the

IBM-850

code

set.

The

libcur

package

supports

drawing

of

primary

and

alternate

box

characters

as

defined

in

the

box_chars_1

and

box_chars_2

entries

in

the

terminfo

database.

To

use

this,

programs

should

be

modified

in

the

following

fashion:

Drawing

Primary

box

characters:

wcolorout(win,

Bxa);

cbox(win);

wcolorend(win);

or,

wcolorout(win,

Bxa);

drawbox(win,

y,x,

height,

width);

wcolorend(win);

Drawing

Alternate

box

characters:

wcolorout(win,

Bya)

cboxalt(win);

wcolorend(win);

or,

wcolorout(win,

Bya);

drawbox(win,

y,

x,

height,

width);

wcolorend(win);

Bxa

and

Bya

refer

to

the

primary

and

alternate

attributes

defined

in

the

terminfo

database.

The

following

macros

are

added

in

the

cur01.h

file:

©

Copyright

IBM

Corp.

2002

223

cboxalt(win)

drawboxalt(win,

y,x,

height,

width)

10.

Programs

that

need

to

support

input

of

multibyte

characters

should

not

set

_extended

to

TRUE

by

a

call

to

extended(TRUE).

When

the

_extended

flag

is

true,

the

wgetch

subroutine

returns

wchar_t

encodings

of

the

character.

With

multibyte

characters,

this

encoding

of

wchar_t

may

conflict

with

predefined

values

for

escape

sequences

or

function

keys.

Avoid

this

conflict

when

using

multibyte

code

sets

by

setting

extended

to

off

(extended(FALSE))

before

input.

(The

default

is

TRUE.)

Programs

that

do

multibyte

character

input

should

do

the

following:

Input

routine:

Example:

int

c,

count;

char

buf[];

extended(FALSE);

/*

obtain

one

byte

at

a

time

*/

count

=0;

while(1){

c

=

wgetch();

/*

get

one

byte

at

a

time

*/

buf[count++]

=

c;

if(count

<=MB_CUR_MAX)

if(mblen(buf,

count)

!=

-1)

break;

/*

character

found*

/

else

/*Error.

No

character

can

be

found

*/

/*

Handle

this

case

appropriately

*/

break;

}

/*

buf

contains

the

input

multibyte

sequence

*/

/*

Now

handle

PF

keys,

or

any

escape

sequence

here

*/

11.

The

inch,

winch,

mvinch,

and

mvwinch

subroutines

return

the

wchar_t

at

the

current

(x,y)

position.

Note

that

in

the

case

of

a

double

column

width

character,

if

the

(x,y)

point

is

at

the

first

column,

the

wchar_t

code

of

the

double

column

width

character

is

returned.

If

the

(x,y)

point

is

at

the

second

column,

WEOF

is

returned.

224

National

Language

Support

Guide

and

Reference

Appendix

E.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

"AS

IS"

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Dept.

LRAS/Bldg.

003

11400

Burnet

Road

Austin,

TX

78758-3498

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

©

Copyright

IBM

Corp.

2002

225

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

AIX

AIX

5L

IBM

Microsoft

and

Windows

are

trademarks

of

the

Microsoft

Corporation

in

the

United

States

and

other

countries.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

the

trademarks

or

service

marks

of

others.

226

National

Language

Support

Guide

and

Reference

Index

Special

characters
_max_disp_width

macro

30

use

of

13

A
ASCII

definition

53

ascii

characters
unique

code-point

range

172

ASCII

characters
list

of

53

ASCII

code

set

53

auxiliary

area

124

B
BIDI

12

bidirectional

data

streams
logical

167

visual

166

Bidirectional

Input

Method

131

features

131

Key

Settings

132

keymap

131

modifiers

132

bidirectional

text

and

character

shaping

165

bidirectionality

(BIDI)

166,

167

definition

12

byte

size

of

characters
determining

13

example

220

C
C

locale

15,

16,

17

definition

8

callbacks

128

auxiliary

129

initializing

131

input

method

126

status

129

text

drawing

129

catclose

subroutine

157

catgets

subroutine

157,

158

catopen

subroutine

157,

158

changing

the

locale
example

16

char

data

type

41

character
definition

2

previous

character

in

a

buffer

25

character

class

properties
description

52

character

conversion

29

character

processing
Japanese

135

character

set

1

character

set

description

(charmap)

source

file

11

character

shaping

12,

167

characters
ASCII

list

of

53

determining

display

width

13

charmap

(character

set

description)

file

11

Chinese
input

method

146

code

set
definition

1

display

width

52,

53

obtaining

current

2

width

52

code

set

independence

12,

51

code

sets

49

ASCII

53

Big5

68

determining

byte

size

of

characters

13

example

220

IBM

PC

69

IBM-921

72

IBM-922

73

IBM-932

74

IBM-1046

50,

76

IBM-1124

50,

77

IBM-1129

50,

78

IBM-1252

50

IBM-856

50,

71

IBM-932

50

IBM-943

50,

74

IBM-eucJP

50

IBM-eucKR

69

IBM-eucTW

68

implementation

strategy

55

ISO

179

GB18030

67

IBM-eucCN

67

IBM-eucJP

66

ISO646-IRV

57

ISO8859-1

57,

58

ISO8859

family

50

ISO8859-1

59

ISO8859-15

50,

65

ISO8859-5

60

ISO8859-6

61

ISO8859-7

62

ISO8859-8

63

ISO8859-9

64

structure
control

characters

55

extended

UNIX

code

(EUC)

66

general

format

55

graphic

characters

56

single-byte

and

multibyte

56

TID-620

79

TIS-620

50

©

Copyright

IBM

Corp.

2002

227

code

sets

(continued)
UCS-2

80

UTF-8

50,

80

code-set

94

collation
definition

52

primary

weight

52

secondary

weight

52

collation

subroutines
multibyte

character
strcoll

32

strxfrm

32

wide

character
understanding

32

wcscoll

32

wcsxfrm

32,

33

collation

weight
definition

52

commands
dspcat

157

dspmsg

157

input

method

125

keycomp

125

comparing
wide

character

string

collation

values
example

32,

33

wide

character

strings
example

34

comparison

subroutines
wide

character
understanding

34

wcscmp

32,

34

wcsncmp

34

conversion

subroutines
wide

character
understanding

35

wcstod

35

wcstol

35

wcstoul

35,

36

conversion

technology
kana-to-kanji

136

converters

83

description

2

list

89

miscellaneous

110

overview

2

overview

for

programming

83

standard

83

subroutines

177

UCS-2

interchange

106

UTF-8

interchange

108

converting
multibyte

string

to

wide

character

string
example

26

multibyte

to

wide

character
example

24

wide

character
to

double

35

to

signed

long

integer

35

to

unsigned

long

integer

36

converting

(continued)
wide

character

string

to

multibyte

character

string
example

28

wide

character

string

to

multibyte

string
example

26

wide

character

to

multibyte
example

25

copy

subroutines
wide

character
understanding

37

wcscat

37

wcscpy

37

wcsncat

37

wcsncpy

37

copying
wide

characters
example

37

ctype.h

file

51

culture-specific

data

processing

163

currency

symbol

21

currency

symbol,

euro

21

cursor

movement
bidirectionality

(BIDI)

167

Cyrillic

Input

Method

132

internal

modifier

133

keymap

132

keysyms

133

modifiers

133

reserved

keysyms

133

D
data

processing
culture-specific

163

data

streams
bidirectionality

(BIDI)

166

data

types
multibyte

subroutines

45

wchar_t

data

type

45

wctype_t

data

type

45

wide

character

subroutines

45

wint_t

data

type

45

devices

3

low-function

terminals

4

printers

4

terminals

4

display

column

width
wide

character

subroutines
understanding

30

wcswidth

31

wcwidth

31

display

width
of

characters

and

strings

13

drawing

alternate

box

characters

223

drawing

primary

box

characters

223

dspcat

command

157

dspmsg

command

157

228

National

Language

Support

Guide

and

Reference

E
environment

variables
LANG

9

LC_ALL

9

LC_COLLATE

9

LC_CTYPE

9

LC_FASTMSG

9

LC_MESSAGES

9

LC_MONETARY

9

LC_NUMERIC

9

LC_TIME

9

LOCPATH

10

NLSPATH

10

overview

9

EQUIV_CLASS_MAX

limit

52

equivalence

class
definition

52

tertiary

52

euro

21

IBM-1252

code

set

50

ISO8859-15

codeset

50,

65

UTF-8

code

set

50

F
fgets

subroutine

41

fgetwc

subroutine

40,

41

fgetwc()
use

of

41

fgetws

subroutine

41

file

code
definition

23,

51

file

name

matching
use

of

fnmatch

subroutine

13

finding
multibyte

character

byte

length
example

25

the

number

of

wide

characters

in

a

wide

character

string
example

39

the

number

of

wide

characters

not

in

a

wide

character

string
example

39

wide

character

display

column

width
example

31

wide

character

string

display

column

width
example

31

fnmatch

subroutine
use

of

13

fread

subroutine

41

G
gencat

command

155,

156

get_wctype

subroutine

29

getc

subroutine

40

getwc

subroutine

40

Greek

Input

Method

133

internal

modifier

134

keymap

134

Greek

Input

Method

(continued)
keysyms

134

modifiers

134

reserved

keysyms

134

H
header

files
multibyte

subroutines

45

wide

character

subroutines

45

I
I/O

subroutines
wide

character
fgetwc

41,

42

fgetws

41,

43

formatted

40

fputwc

41,

43

fputws

41,

44

getc

40

getwc

40

getwchar

41,

42

getws

41

putwc

41

putwchar

41

putws

42

understanding

40

unformatted

40

ungetwc

41,

42

IBM-1046

code

set

50

IBM-1046

codeset

76

IBM-1124

code

set

50

IBM-1124

codeset

77

IBM-1129

code

set

50

IBM-1129

codeset

78

IBM-1252

code

set

50

IBM-856

code

set

50

IBM-856

codeset

71

IBM-921

codeset

72

IBM-922

codeset

73

IBM-932

code

set

50

IBM-943

code

set

50,

74

IBM-eucJP

code

set

50

iconv

interface
writing

converters

with

111

iconvTable

converters
list

of

conversions

performed

by

IconvTable

converter

90

inbound

mapping

128

input

method
areas

124

Bidirectional

131

callbacks

126

Cyrillic

132

Greek

133

initialization

125

introduction

123

Japanese

135

key

event

processing

126

keymaps

126

Index

229

input

method

(continued)
Korean

141

Latvian

142

Lithuanian

142

management

126

naming

conventions

124

overview

123

programming

125

single-byte

144

structures

127

Tradional

Chinese

146

universal

147

input

method

command

125

input

method

subroutines

177

input

methods
callbacks

128

Thai

142

Vietnamese

143

int

data

type

41

interchange

converters
7-bit

98

8-bit

100

compound

text

103

uucode

105

internationalization
code

sets

49

internationalized

regular

expression

subroutines

45

is_wctype

subroutine

29

islower

subroutine

29

ISO8859

family

of

code

sets

50

ISO8859-15

code

set

65

ISO8859-15

codeset

50

ISO8859-2

codeset

59

ISO8859-5

codeset

60

ISO8859-6

codeset

61

ISO8859-7

codeset

62

ISO8859-8

codeset

63

ISO8859-9

code

set

64

isupper

subroutine

29

iswalnum

subroutine

29

iswalpha

subroutine

29

iswcntrl

subroutine

29

iswdigit

subroutine

29

iswgraph

subroutine

29

iswlower

subroutine

29

iswprint

subroutine

29

iswpunct

subroutine

29

iswspace

subroutine

29

iswupper

subroutine

30

iswxdigit

subroutine

30

J
Japanese

Input

Method

135

internal

modifiers

140

keymaps

140

keysyms

140

modifiers

140

reserved

keysyms

140

K
key

maps

4

keyboard

map
changing

default

5

keyboard

mapping

127

Japanese

137

keycomp

125

keymaps

128

Korean

Input

Method

141

L
LANG

9

LANG

environment

variable

32,

158

language

environment
changing

5

Latvian

Input

Method

142

keymaps

142

layout

library

subroutines

176

layout

overview

165

LC_*

categories

16

LC_*

environment

variables

32

LC_ALL

9

LC_ALL

environment

variable

157,

158

LC_COLLATE

9

LC_COLLATE

category

16,

32,

52

LC_CTYPE

9

LC_CTYPE

category

29,

30,

40,

52,

53

LC_FASTMSG

9

LC_MESSAGES

9

LC_MESSAGES

category

17,

158

LC_MESSAGES

environment

variable

3,

157,

158

LC_MONETARY

9

LC_MONETARY

category

21

LC_NUMERIC

9

LC_TIME

9

libcur

223

libiconv

84

Lithuanian
input

method

142

load

system

call

163

local
user

scenarios

7

locale
accessing

information

about

15

bidirectionality
data

streams

166,

167

definition

12

categories

8

changing
example

16

character

shaping

12,

167

default

at

installation

8

definition

7

definition

source

files

11

environment

variables

9

naming

conventions

8

obtaining

currency

symbol
example

18

230

National

Language

Support

Guide

and

Reference

locale

(continued)
obtaining

current

values
example

16

obtaining

LC_MESSAGES

values
example

18

obtaining

LC_MONETARY

values
example

17,

18

obtaining

LC_NUMERIC

values
example

17

obtaining

LC_TIME

values
example

18

overview

7

saving

current

values
example

16

setting

15

setting

LC_*

categories
example

17

understanding

7

locale

definition

source

file

11

locale

subroutines

174

introducing

15

localeconv

15,

17

nl_langinfo

15,

18

rpmatch

16,

18

setlocale

15,

16,

17,

32,

157

locale.h

file

15

localeconv

subroutine

15,

17,

21

locating
first

of

several

wide

characters

in

a

wide

character

string
example

38

first

wide

character

in

a

wide

character

string
example

37

last

wide

character

in

a

wide

character

string
example

38

the

first

wide

character

string

in

a

wide

character

string
example

39

LOCPATH

10

low-function

terminals
fonts

5

M
mapping

inbound

128

outbound

128

MB_CUR_MAX
example

220

use

of

13

MB_LEN_MAX

macro
use

of

13

mblen

subroutine

24,

25

mbstowcs

subroutine

24,

26,

40

mbstowcs()
use

of

41

mbtowc

subroutine

24,

26,

40

message

catalog
creating

155

sizing

156

using

158

message

facility
creating

a

message

catalog

155

displaying

messages

157

overview

151

retrieving

default

messages

158

separating

messages

from

programs

1

setting

the

language

hierarchy

158

sizing

a

message

catalog

156

using

2

using

a

message

catalog

158

Message

Facility

151

message

facility

commands
gencat

155,

156

mkcatdefs

151,

155,

156,

157

runcat

155,

156,

157

message

facility

subroutines

176

catclose

157

catgets

157,

158

catopen

157,

158

message

source

file
$delset

directive

154

$len

directive

154

$quote

directive

152,

153

$set

directive

153,

154,

156

adding

comments

to

151

assigning

message

ID

numbers

153

assigning

message

set

numbers

153

continuing

messages

152

creating

151

defining

message

length

154

example

151

removing

messages

154

special

characters

152

usage

151

messages
concatenating

parts

160

writing

style

in

161

mkcatdefs

command

151,

155,

156,

157

monetary

formatting

subroutines

21

multibyte
list

of

code-set

converters

94

multibyte

character

code

51

definition

51

multibyte

character

string
collation

subroutines
strcoll

32

strxfrm

32

multibyte

character

subroutines

175

multibyte

code

set
support

2

Multibyte

code

set
definition

50

multibyte

function
what

is

12

multibyte

string

to

wide

character

string

conversion
example

26

multibyte

subroutines

23

definition

23

introducing

23

multibyte

to

wide

character

conversion
example

24

Index

231

multibyte

to

wide

character

conversion

subroutines

24

mblen

24,

25

mbstowcs

24,

26,

40

mbtowc

24,

26,

40

understanding

23

N
naming

conventions
locale

8

national

language

support

49

National

Language

Support

(NLS)
changing

language

environment

5

changing

the

default

keyboard

map

5

checklist

169

converters
overview

2

environment

variables

9

iconv

command
using

84

list

of

subroutines

174

locale

7

locale

categories

8

locale

definition

source

files

11

message

facility
using

2

overview

1

subroutines

15

nl_langinfo
for

obtaining

code

set

2

nl_langinfo

subroutine

15,

18

NL_MSGMAX

variable

156

NL_SETMAX

153

NL_SETMAX

variable

156

NL_TEXTMAX

variable

154,

156

NLS

49

see

National

Language

Support

5

nls

commands
dspcat

157

dspmsg

157

NLS

for

devices

3

NLS

sample

program

217

NLSPATH

10

NLSPATH

environment

variable

3

NLSPATH

environmnet

variable

158

O
obtaining

currency

symbol
example

18

current

locale
example

16

LC_MESSAGES

values
example

18

LC_MONETARY

values
example

18

LC_TIME

values
example

18

outbound

mapping

128

P
PC,

ISO,

and

EBCDIC

Code

Set

Converters

90

portable

character

set
definition

53

POSIX

locale

8,

15

pre-edit

area

124

primary

weight
collation

52

printf

subroutine

157

printf

subroutine

family

40

process

code
definition

23

programming

input

method

125

psignal()
use

of

160

R
Radix

character
handling

13

read

subroutine

26,

41

regular

expression

subroutines

178

rpmatch

subroutine

16,

18

rpmatch,

details

19

runcat

command

155,

156,

157

S
saving

current

locale
example

16

scanf

subroutine

family

40

search

subroutines
wide

character
understanding

37

wcschr

37

wcscspn

37,

39

wcspbrk

37,

38

wcsrchr

37,

38

wcsspn

37,

39

wcstok

37,

40

wcswcs

37,

39

secondary

weight
collation

52

setlocale

subroutine

15,

16,

17,

32,

157

setting
LC_*

categories
example

17

Single

Byte

Input

Method
keymaps

145

modifiers

146

reserved

keysyms

145

Single

Source

Dual

Path
definition

219

example

219

Single

Source

Single

Path
definition

217

example

217

Single-byte

code

set
definition

50

232

National

Language

Support

Guide

and

Reference

Single-Byte

Input

Method

144

status

area

124

stddef.h

file

51

stdlib.h

file

30,

51

strcoll

subroutine

32

strerror()
use

of

160

strfmon

subroutine

21

strings
determining

display

width

13

strlen

subroutine

30

strptime

subroutine

20

strxfrm

subroutine

32

subroutines
localeconv

15

multibyte

and

wide

character

23

multibyte

character

175

rpmatch

16

setlocale

15

time

and

monetary

formatting

174

time

formatting

20

wide

character

175

support

code

set

49

sys/limits.h

file

52

T
testing

wide

character

classification
example

30

text
bidirectional

logical

data

stream

example

167

visual

data

stream

example

166

Thai

Input

Method

142

keymaps

143

time

and

monetary

formatting

subroutines

174

time

formatting

subroutines

20

TIS-620

code

set

50

TIS-620

codeset

79

tokenizing
wide

character

string
example

40

tolower

subroutine

29

toupper

subroutine

29

towlower

subroutine

29,

30

towupper

subroutine

29,

30

U
UCS-2

code

set

80

understanding

local

7

unique

code

point

range
character

list

53

exception

13

search

for

13

unique

code-point

range

14,

50,

172

universal

input

method

147

UTF-8

code

set

50,

80

V
Vietnamese

Input

Method

(VNIM)

143

keymap

143

W
wchar_t

definition

51

wchar_t

data

type

12,

28,

41,

45

wchar.h

file

41,

45

wcscat

subroutine

37

wcschr

subroutine

37

wcscmp

subroutine

32,

34

wcscoll

subroutine

32

wcscpy

subroutine

37

wcscspn

subroutine

37,

39

wcsftime

subroutine

20

wcslen

subroutine

24,

28

wcsncat

subroutine

37

wcsncmp

subroutine

34

wcsncpy

subroutine

37

wcspbrk

subroutine

37,

38

wcsrchr

subroutine

37,

38

wcsspn

subroutine

37,

39

wcstod

subroutine

35

wcstok

subroutine

37,

40

wcstol

subroutine

35

wcstombs

subroutine

24,

28,

40

wcstoul

subroutine

35,

36

wcswcs

subroutine

37,

39

wcsxfrm

subroutine

32,

33

wctomb

subroutine

24,

25,

40

wctype_t

data

type

45

wide

character
classification

subroutines
case

conversion

29,

30

generic

28,

29

standard

29,

30

understanding

28

display

column

width

subroutines
understanding

30

wcswidth

31

wcwidth

31

I/O

subroutines
fgetwc

41,

42

fgetws

41

formatted

40

fputwc

41,

43

fputws

41,

44

getc

40

getwc

40

getwchar

41,

42

getws

41

putwc

41

putwchar

41

putws

42

understanding

40

unformatted

40

ungetwc

41,

42

Index

233

wide

character

classification

testing
example

30

wide

character

code
concept

51

definition

23,

51

wide

character

constant
use

of
restrictions

45

wide

character

function
description

of

12

wide

character

string
collation

subroutines
understanding

32

wcscoll

32

wcsxfrm

32,

33

comparison

subroutines
understanding

34

wcscmp

32,

34

wcsncmp

34

conversion

subroutines
understanding

35

wcstod

35

wcstol

35

wcstoul

35,

36

copy

subroutines
understanding

37

wcscat

37

wcscpy

37

wcsncat

37

wcsncpy

37

search

subroutines
understanding

37

wcschr

37

wcscspn

37,

39

wcspbrk

37,

38

wcsrchr

37,

38

wcsspn

37,

39

wcstok

37,

40

wcswcs

37,

39

wide

character

string

to

multibyte

character

string

conversion
example

28

wide

character

string

to

multibyte

string

conversion
example

26

wide

character

subroutines

23,

175

definition

23

introducing

23

wide

character

to

multibyte

conversion
example

25

wide

character

to

multibyte

conversion

subroutines

24

understanding

23

wcslen

24,

28

wcstombs

24,

28,

40

wctomb

24,

25,

40

width

of

characters

and

strings
display

13

wint_t

data

type

12,

28,

41,

45

writing

a

code

set

converter

113

writing

converters

using

the

iconv

interface

111

234

National

Language

Support

Guide

and

Reference

Readers’

Comments

—

We’d

Like

to

Hear

from

You

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference

Publication

No.

SC23-4872-00

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC23-4872-00

SC23-4872-00

���

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Information

Development

Department

H6DS-905-6C006

11501

Burnet

Road

Austin,

TX

78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed

in

U.S.A.

SC23-4872-00

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. National Language Support Overview
	Separation of Messages from Programs
	Conversion between Code Sets
	Input Method Support
	Converters Overview
	Using the Message Facility
	Setting National Language Support for Devices
	Terminals (tty Devices)
	Printers
	Low-Function Terminals

	Changing the Language Environment
	Changing the Default Keyboard Map
	Related Information

	Chapter 2. Locales
	Understanding Locale
	Typical User Scenarios
	Locale Naming Conventions
	Installation Default Locale
	The C or POSIX Locale

	Understanding Locale Categories
	Understanding Locale Environment Variables
	Environment Variables Precedence Example

	Understanding the Character Set Description (charmap) Source File
	Understanding the Locale Definition Source File
	Multibyte Subroutines
	Wide Character Subroutines
	Bidirectionality and Character Shaping
	Code Set Independence
	Determining Maximum Number of Bytes in Code Sets
	Determining Character and String Display Widths
	Exceptions to Code Set Knowledge: Unique Code-Point Range

	File Name Matching
	Radix Character Handling
	Programming Model

	Chapter 3. Subroutines for National Language Support
	Locale Subroutines
	Setting the Locale
	Accessing Locale Information
	Examples

	Time Formatting Subroutines
	Examples

	Monetary Formatting Subroutines
	Euro Currency Support
	Examples

	Multibyte and Wide Character Subroutines
	Multibyte Code and Wide Character Code Conversion Subroutines
	Wide Character Classification Subroutines
	Wide Character Display Column Width Subroutines
	Multibyte and Wide Character String Collation Subroutines
	Multibyte and Wide Character String Comparison Subroutines
	Wide Character String Conversion Subroutines
	Wide Character String Copy Subroutines
	Wide Character String Search Subroutines
	Wide Character Input/Output Subroutines
	Working with the Wide Character Constant
	wchar.h Header File

	Internationalized Regular Expression Subroutines
	Examples

	Related Information

	Chapter 4. Code Sets for National Language Support
	Single-Byte and Multibyte Code Sets
	Unique Code-Point Range
	Data Representation
	Multibyte Character Code Data Representation
	Wide Character Code Data Representation

	Character Properties
	Collation-Order Properties
	Code-Set Width
	Code-Set Display Width

	ASCII Characters
	ASCII Characters in the Unique Code-Point Range
	Other ASCII Characters

	Code Set Strategy
	Code Set Structure
	Control Characters
	Graphic Characters
	Single-Byte and Multibyte Code Sets

	ISO Code Sets
	ISO646-IRV
	ISO8859 Family
	Code Set ISO8859-1
	Code Set ISO8859-2
	Code Set ISO8859-5
	Code Set ISO8859-6
	Code Set ISO8859-7
	Code Set ISO8859-8
	Code Set ISO8859-9
	Code Set ISO8859-15
	Extended UNIX Code (EUC) Encoding Scheme
	IBM-eucJP
	IBM-eucCN
	GB18030
	IBM-eucTW
	Big5
	IBM-eucKR

	IBM PC Code Sets
	IBM-856
	IBM-921
	IBM-922
	IBM-943 and IBM-932
	IBM-1046
	IBM-1124
	IBM-1129
	TIS-620

	UCS-2 and UTF-8
	ISO10646 UCS-2 (Unicode)
	UCS-4 and UTF-32
	UTF-8 (UCS Transformation Format)
	UTF-16

	Related Information

	Chapter 5. Converters Overview for Programming
	Standard Converters
	Using the iconv Command
	Understanding libiconv
	Using the iconv_open Subroutine
	Converter Programs versus Tables
	Unicode and Universal Converters
	Universal UCS Converter

	Using Converters
	Code Set Conversion Filter Example
	Naming Converters

	List of Converters
	PC, ISO, and EBCDIC Code Set Converters
	Multibyte Code Set Converters
	Interchange Converters—7-bit
	Interchange Converters—8-bit
	Interchange Converters—Compound Text
	Interchange Converters—uucode
	UCS-2 Interchange Converters
	UTF-8 Interchange Converters
	Miscellaneous Converters

	Writing Converters Using the iconv Interface
	Code Sets and Converters
	Overview of iconv Framework Structures
	Writing a Code Set Converter
	Examples

	Related Information

	Chapter 6. Input Methods
	Input Method Introduction
	Input Method Names
	Input Method Areas
	Input Method Command
	Programming Input Methods
	Initialization
	Input Method Management
	Input Method Keymap Management
	Key Event Processing
	Callbacks
	Input Method Structures

	Working with Keyboard Mapping
	Input Method Keymaps
	Inbound and Outbound Mapping

	Using Callbacks
	Initializing Callbacks

	Bidirectional Input Method
	Keymaps
	Key Settings
	Modifiers

	Cyrillic Input Method (CIM)
	Keymap
	Keysyms
	Modifiers

	Greek Input Method (GIM)
	Keymap
	Keysyms
	Modifiers

	Japanese Input Method (JIM)
	Japanese Character Processing
	Kana-To-Kanji Conversion (KKC) Technology
	Input Modes
	Keyboard Mapping
	Character Size
	Romaji-To-Kana Conversion (RKC)
	Kanji Pre-edit
	Keymaps
	Keysyms
	Modifiers

	Korean Input Method (KIM)
	Latvian Input Method (LVIM)
	Keymap

	Lithuanian Input Method (LTIM)
	Keymap:

	Thai Input Method (THIM)
	Keymap

	Vietnamese Input Method
	Keymap

	Simplified Chinese Input Method (ZIM-UCS)
	Chinese (CJK) Character Processing

	Single-Byte Input Method
	Keymaps
	Reserved Keysyms
	Modifiers

	Traditional Chinese Input Method (TIM)
	TIM Features
	Traditional Chinese Character Processing

	Universal Input Method
	Keymap

	Reserved Keysyms
	Reserved Keysyms for Traditional Chinese
	Reserved Keysyms for Simplified Chinese (ZIM and ZIM-UCS)

	Related Information

	Chapter 7. Message Facility
	Creating a Message Source File
	Usage Considerations
	Adding Comments to the Message Source File
	Continuing Messages on the Next Line
	Including Special Characters in the Message Text
	Defining a Character to Delimit Message Text
	Assigning Message Set Numbers and Message ID Numbers
	Removing Messages from a Catalog
	Length of Message Text
	Content of Message Text
	Examples of Message Source Files

	Creating a Message Catalog
	Catalog Sizing
	Examples

	Displaying Messages outside of an Application Program
	Displaying Messages with an Application Program
	Understanding the NLSPATH Environment Variable
	Retrieving Program-Supplied Default Messages
	Setting the Language Hierarchy

	Example of Retrieving a Message from a Catalog
	Writing Messages
	Describing Command Syntax in Messages
	Writing Style for Messages

	Chapter 8. Culture-Specific Data Handling
	Culture-Specific Tables
	Culture-Specific Algorithms
	Example of Loading a Culture-Specific Module for Arabic Text for an Application
	Header File
	Main Program
	Methods
	Include File

	Layout (Bidirectional Text and Character Shaping) Overview
	Data Streams
	Cursor Movement
	Character Shaping

	Appendix A. National Language Support (NLS) Reference
	National Language Support Checklist
	Program Operation Checklist
	AIXwindows Checklist

	List of National Language Support Subroutines
	List of Locale Subroutines
	List of Time and Monetary Formatting Subroutines
	List of Multibyte Character Subroutines
	List of Wide Character Subroutines
	List of Layout Library Subroutines
	List of Message Facility Subroutines
	List of Converter Subroutines
	List of Input Method Subroutines
	List of Regular Expression Subroutines

	Appendix B. Character Maps
	ISO Code Sets
	ISO8859–1
	ISO8859–2
	ISO8859–5
	ISO8859–6
	ISO8859–7
	ISO8859–8
	ISO8859–9
	ISO8859–15

	IBM Code Sets
	IBM-856
	IBM-921
	IBM-922
	IBM-1046
	IBM-1124
	IBM-1129
	TIS-620

	Appendix C. NLS Sample Program
	Message Source File for foo
	Creation of Message Header File for foo
	Single Source, Single Path Code-set Independent Version
	Single Source, Dual-Path Version Optimized for Single-Byte Code Sets

	Appendix D. Use of the libcur Package
	Appendix E. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

