
AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

SC23-4125-06

���

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

SC23-4125-06

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices,”

on

page

337.

Seventh

Edition

(May

2004)

A

reader’s

comment

form

is

provided

at

the

back

of

this

publication.

If

the

form

has

been

removed,

address

comments

to

Information

Development,

Department

H6DS-905-6C006,

11501

Burnet

Road,

Austin,

Texas

78758-3493.

To

send

comments

electronically,

use

this

commercial

Internet

address:

aix6kpub@austin.ibm.com.

Any

information

that

you

supply

may

be

used

without

incurring

any

obligation

to

you.

This

edition

applies

to

AIX

5L

Version

5.2

and

to

all

subsequent

releases

of

this

product

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Who

Should

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

How

to

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Highlighting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Case-Sensitivity

in

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

ISO

9000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Related

Publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Chapter

1.

Kernel

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Understanding

Kernel

Extension

Symbol

Resolution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Understanding

Execution

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Understanding

Kernel

Threads

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Using

Kernel

Processes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Accessing

User-Mode

Data

While

in

Kernel

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Understanding

Locking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Understanding

Exception

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Using

Kernel

Extensions

to

Support

64–bit

Processes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

64-bit

Kernel

Extension

Programming

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

32-bit

Kernel

Extension

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Chapter

2.

System

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Differences

Between

a

System

Call

and

a

User

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Understanding

Protection

Domains

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Understanding

System

Call

Execution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Accessing

Kernel

Data

While

in

a

System

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Passing

Parameters

to

System

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Preempting

a

System

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Handling

Signals

While

in

a

System

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Handling

Exceptions

While

in

a

System

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Understanding

Nesting

and

Kernel-Mode

Use

of

System

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Page

Faulting

within

System

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Returning

Error

Information

from

System

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

System

Calls

Available

to

Kernel

Extensions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Chapter

3.

Virtual

File

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Logical

File

System

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Virtual

File

System

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Understanding

Data

Structures

and

Header

Files

for

Virtual

File

Systems

.

.

.

.

.

.

.

.

.

.

.

. 42

Configuring

a

Virtual

File

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Chapter

4.

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Categories

of

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

I/O

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Block

I/O

Buffer

Cache

Kernel

Services:

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Understanding

Interrupts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Understanding

DMA

Transfers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Kernel

Extension

and

Device

Driver

Management

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Locking

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

File

Descriptor

Management

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Logical

File

System

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

©

Copyright

IBM

Corp.

1997,

2004

iii

Programmed

I/O

(PIO)

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Memory

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Understanding

Virtual

Memory

Manager

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Message

Queue

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Network

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Process

and

Exception

Management

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

RAS

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Security

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Timer

and

Time-of-Day

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Using

Fine

Granularity

Timer

Services

and

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Using

Multiprocessor-Safe

Timer

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Virtual

File

System

(VFS)

Kernel

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Chapter

5.

Asynchronous

I/O

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

How

Do

I

Know

if

I

Need

to

Use

AIO?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Functions

of

Asynchronous

I/O

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Asynchronous

I/O

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Subroutines

Affected

by

Asynchronous

I/O

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Changing

Attributes

for

Asynchronous

I/O

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

64-bit

Enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Chapter

6.

Device

Configuration

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Scope

of

Device

Configuration

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Device

Configuration

Subsystem

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

General

Structure

of

the

Device

Configuration

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Device

Configuration

Database

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Basic

Device

Configuration

Procedures

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Device

Configuration

Manager

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Device

Classes,

Subclasses,

and

Types

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Writing

a

Device

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Understanding

Device

Methods

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Understanding

Device

States

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Adding

an

Unsupported

Device

to

the

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Understanding

Device

Dependencies

and

Child

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Accessing

Device

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

Device

Dependent

Structure

(DDS)

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

List

of

Device

Configuration

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

List

of

Device

Configuration

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Chapter

7.

Communications

I/O

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

User-Mode

Interface

to

a

Communications

PDH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Kernel-Mode

Interface

to

a

Communications

PDH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

CDLI

Device

Drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Communications

Physical

Device

Handler

Model

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Status

Blocks

for

Communications

Device

Handlers

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

MPQP

Device

Handler

Interface

Overview

for

the

ARTIC960Hx

PCI

Adapter

.

.

.

.

.

.

.

.

.

. 109

Serial

Optical

Link

Device

Handler

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Configuring

the

Serial

Optical

Link

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Forum-Compliant

ATM

LAN

Emulation

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Fiber

Distributed

Data

Interface

(FDDI)

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

High-Performance

(8fc8)

Token-Ring

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

High-Performance

(8fa2)

Token-Ring

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

PCI

Token-Ring

Device

Drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

iv

Kernel

Extensions

and

Device

Support

Programming

Concepts

Ethernet

Device

Drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Chapter

8.

Graphic

Input

Devices

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

open

and

close

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

read

and

write

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

ioctl

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Input

Ring

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Chapter

9.

Low

Function

Terminal

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Low

Function

Terminal

Interface

Functional

Description

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Components

Affected

by

the

Low

Function

Terminal

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Accented

Characters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Chapter

10.

Logical

Volume

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Direct

Access

Storage

Devices

(DASDs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Physical

Volumes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Understanding

the

Logical

Volume

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Understanding

Logical

Volumes

and

Bad

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Chapter

11.

Printer

Addition

Management

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Printer

Types

Currently

Supported

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Printer

Types

Currently

Unsupported

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Adding

a

New

Printer

Type

to

Your

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Adding

a

Printer

Definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Adding

a

Printer

Formatter

to

the

Printer

Backend

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Understanding

Embedded

References

in

Printer

Attribute

Strings

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Chapter

12.

Small

Computer

System

Interface

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

SCSI

Subsystem

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Understanding

SCSI

Asynchronous

Event

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

SCSI

Error

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

A

Typical

Initiator-Mode

SCSI

Driver

Transaction

Sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Understanding

SCSI

Device

Driver

Internal

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Understanding

the

Execution

of

Initiator

I/O

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

SCSI

Command

Tag

Queuing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Understanding

the

sc_buf

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Other

SCSI

Design

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

SCSI

Target-Mode

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Required

SCSI

Adapter

Device

Driver

ioctl

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

.

.

.

.

.

.

.

.

.

.

.

. 233

Programming

FCP

and

iSCSI

Device

Drivers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

FCP

and

iSCSI

Subsystem

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Understanding

FCP

and

iSCSI

Asynchronous

Event

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

FCP

and

iSCSI

Error

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

FCP

and

iSCSI

Initiator-Mode

Recovery

When

Not

Command

Tag

Queuing

.

.

.

.

.

.

.

.

.

. 258

Initiator-Mode

Recovery

During

Command

Tag

Queuing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

A

Typical

Initiator-Mode

FCP

and

iSCSI

Driver

Transaction

Sequence

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Understanding

FCP

and

iSCSI

Device

Driver

Internal

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Understanding

the

Execution

of

FCP

and

iSCSI

Initiator

I/O

Requests

.

.

.

.

.

.

.

.

.

.

.

. 262

FCP

and

iSCSI

Command

Tag

Queuing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Contents

v

Understanding

the

scsi_buf

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

Other

FCP

and

iSCSI

Design

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Required

FCP

and

iSCSI

Adapter

Device

Driver

ioctl

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

Chapter

14.

Integrated

Device

Electronics

(IDE)

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Responsibilities

of

the

IDE

Adapter

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Responsibilities

of

the

IDE

Device

Driver

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Communication

Between

IDE

Device

Drivers

and

IDE

Adapter

Device

Drivers

.

.

.

.

.

.

.

.

. 277

IDE

Error

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

A

Typical

IDE

Driver

Transaction

Sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

IDE

Device

Driver

Internal

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

Execution

of

I/O

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

ataide_buf

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Other

IDE

Design

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

Required

IDE

Adapter

Driver

ioctl

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Chapter

15.

Serial

Direct

Access

Storage

Device

Subsystem

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

DASD

Device

Block

Level

Description

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Chapter

16.

Debug

Facilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

System

Dump

Facility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

Error

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

Debug

and

Performance

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Memory

Overlay

Detection

System

(MODS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

.

.

.

.

.

.

.

.

.

.

. 323

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Load

Module

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Authentication

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

Identification

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

Support

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

Configuration

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Compound

Load

Modules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

Appendix.

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

vi

Kernel

Extensions

and

Device

Support

Programming

Concepts

About

This

Book

This

book

provides

information

on

the

kernel

programming

environment,

and

about

writing

system

call,

kernel

service,

and

virtual

file

system

kernel

extensions.

Conceptual

information

on

existing

kernel

subsystems

is

also

provided.

This

edition

supports

the

release

of

AIX

5L

Version

5.2

with

the

5200-03

Recommended

Maintenance

package.

Any

specific

references

to

this

maintenance

package

are

indicated

as

AIX

5.2

with

5200-03.

Who

Should

Use

This

Book

This

book

is

intended

for

system

programmers

who

are

knowledgeable

in

operating

system

concepts

and

kernel

programming

and

want

to

extend

the

kernel.

How

to

Use

This

Book

This

book

provides

two

types

of

information:

(1)

an

overview

of

the

kernel

programming

environment

and

information

a

programmer

needs

to

write

kernel

extensions,

and

(2)

information

about

existing

kernel

subsystems.

Highlighting

The

following

highlighting

conventions

are

used

in

this

book:

Bold

Identifies

commands,

subroutines,

keywords,

files,

structures,

directories,

and

other

items

whose

names

are

predefined

by

the

system.

Also

identifies

graphical

objects

such

as

buttons,

labels,

and

icons

that

the

user

selects.

Italics

Identifies

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

user.

Monospace

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code

similar

to

what

you

might

write

as

a

programmer,

messages

from

the

system,

or

information

you

should

actually

type.

Case-Sensitivity

in

AIX

Everything

in

the

AIX

operating

system

is

case-sensitive,

which

means

that

it

distinguishes

between

uppercase

and

lowercase

letters.

For

example,

you

can

use

the

ls

command

to

list

files.

If

you

type

LS,

the

system

responds

that

the

command

is

″not

found.″

Likewise,

FILEA,

FiLea,

and

filea

are

three

distinct

file

names,

even

if

they

reside

in

the

same

directory.

To

avoid

causing

undesirable

actions

to

be

performed,

always

ensure

that

you

use

the

correct

case.

ISO

9000

ISO

9000

registered

quality

systems

were

used

in

the

development

and

manufacturing

of

this

product.

Related

Publications

The

following

books

contain

additional

information

on

kernel

extension

programming

and

the

existing

kernel

subsystems:

v

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing

v

Keyboard

Technical

Reference

©

Copyright

IBM

Corp.

1997,

2004

vii

v

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices

v

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1

v

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2

viii

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

1.

Kernel

Environment

The

kernel

is

dynamically

extendable

and

can

be

expanded

by

adding

routines

that

belong

to

any

of

the

following

functional

classes:

v

System

calls

v

Virtual

file

systems

v

Kernel

Extension

and

Device

Driver

Management

Kernel

Services

v

Device

Drivers

The

term

kernel

extension

applies

to

all

routines

added

to

the

kernel,

independent

of

their

purpose.

Kernel

extensions

can

be

added

at

any

time

by

a

user

with

the

appropriate

privilege.

Kernel

extensions

run

in

the

same

mode

as

the

kernel.

That

is,

when

the

64–bit

kernel

is

used,

kernel

extensions

run

in

64–bit

mode.

These

kernel

extensions

must

be

compiled

to

produce

a

64–bit

object.

The

following

kernel-environment

programming

information

is

provided

to

assist

you

in

programming

kernel

extensions:

v

“Understanding

Kernel

Extension

Symbol

Resolution”

v

“Understanding

Execution

Environments”

on

page

5

v

“Understanding

Kernel

Threads”

on

page

6

v

“Using

Kernel

Processes”

on

page

8

v

“Accessing

User-Mode

Data

While

in

Kernel

Mode”

on

page

12

v

“Understanding

Locking”

on

page

13

v

“Understanding

Exception

Handling”

on

page

14

v

“Using

Kernel

Extensions

to

Support

64–bit

Processes”

on

page

19

A

process

executing

in

user

mode

can

customize

the

kernel

by

using

the

sysconfig

subroutine,

if

the

process

has

appropriate

privilege.

In

this

way,

a

user-mode

process

can

load,

unload,

initialize,

or

terminate

kernel

routines.

Kernel

configuration

can

also

be

altered

by

changing

tunable

system

parameters.

Kernel

extensions

can

also

customize

the

kernel

by

using

kernel

services

to

load,

unload,

initialize,

and

terminate

dynamically

loaded

kernel

routines;

to

create

and

initialize

kernel

processes;

and

to

define

interrupt

handlers.

Note:

Private

kernel

routines

(or

kernel

services)

execute

in

a

privileged

protection

domain

and

can

affect

the

operation

and

integrity

of

the

whole

system.

See

“Kernel

Protection

Domain”

on

page

23

for

more

information.

Understanding

Kernel

Extension

Symbol

Resolution

The

following

information

is

provided

to

assist

you

in

understanding

kernel

extension

symbol

resolution:

v

“Exporting

Kernel

Services

and

System

Calls”

on

page

2

v

“Using

Kernel

Services”

on

page

2

v

“Using

System

Calls

with

Kernel

Extensions”

on

page

2

v

“Using

Private

Routines”

on

page

3

v

“Understanding

Dual-Mode

Kernel

Extensions”

on

page

4

v

“Using

Libraries”

on

page

4

©

Copyright

IBM

Corp.

1997,

2004

1

Exporting

Kernel

Services

and

System

Calls

A

kernel

extension

provides

additional

kernel

services

and

system

calls

by

specifying

an

export

file

when

it

is

link-edited.

An

export

file

contains

a

list

of

symbols

to

be

added

to

the

kernel

name

space.

In

addition,

symbols

can

be

identified

as

system

calls

for

32-bit

processes,

64-bit

processes,

or

both.

In

an

export

file,

symbols

are

listed

one

per

line.

These

system

calls

are

available

to

both

32-

and

64-bit

processes.

System

calls

are

identified

by

using

one

of

the

syscall32,

syscall64

or

syscall3264

keywords

after

the

symbol

name.

Use

syscall32

to

make

a

system

call

available

to

32-bit

processes,

syscall64

to

make

a

system

call

available

to

64-bit

processes,

and

syscall3264

to

make

a

system

call

available

to

both

32-

and

64-bit

processes.

For

more

information

about

export

files,

see

ld

Command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

When

a

new

kernel

extension

is

loaded

by

the

sysconfig

or

kmod_load

subroutine,

any

symbols

exported

by

the

kernel

extension

are

added

to

the

kernel

name

space,

and

are

available

to

all

subsequently

loaded

kernel

extensions.

Similarly,

system

calls

exported

by

a

kernel

extension

are

available

to

all

user

programs

or

shared

objects

subsequently

loaded.

Using

Kernel

Services

The

kernel

provides

a

set

of

base

kernel

services

to

be

used

by

kernel

extensions.

Kernel

extensions

can

export

new

kernel

services,

which

can

then

be

used

by

subsequently

loaded

kernel

extensions.

Base

kernel

services,

which

are

described

in

the

services

documentation,

are

made

available

to

a

kernel

extension

by

specifying

the

/usr/lib/kernex.imp

import

file

during

the

link-edit

of

the

extension.

Note:

Link-editing

of

a

kernel

extension

should

always

be

performed

by

using

the

ld

command.

Do

not

use

the

compiler

to

create

a

kernel

extension.

If

a

kernel

extension

depends

on

kernel

services

provided

by

other

kernel

extensions,

an

additional

import

file

must

be

specified

when

link-editing.

An

import

file

lists

additional

kernel

services,

with

each

service

listed

on

its

own

line.

An

import

file

must

contain

the

line

#!/unix

before

any

services

are

listed.

The

same

file

can

be

used

both

as

an

import

file

and

an

export

file.

The

#!/unix

line

is

ignored

when

a

file

is

used

as

an

export

file.

For

more

information

on

import

files,

see

ld

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

Using

System

Calls

with

Kernel

Extensions

A

restricted

set

of

system

calls

can

be

used

by

kernel

extensions.

A

kernel

process

can

use

a

larger

set

of

system

calls

than

a

user

process

in

kernel

mode.

“System

Calls

Available

to

Kernel

Extensions”

on

page

35

specifies

which

system

calls

can

be

used

by

either

type

of

process.

User-mode

processes

in

kernel

mode

can

only

use

system

calls

that

have

all

parameters

passed

by

value.

Kernel

routines

running

under

user-mode

processes

cannot

directly

use

a

system

call

having

parameters

passed

by

reference.

The

second

restriction

is

imposed

because,

when

they

access

a

caller’s

data,

system

calls

with

parameters

passed

by

reference

access

storage

across

a

protection

domain.

The

cross-domain

memory

services

performing

these

cross-memory

operations

support

kernel

processes

as

if

they,

too,

accessed

storage

across

a

protection

domain.

However,

these

services

have

no

way

to

determine

that

the

caller

is

in

the

same

protection

domain

when

the

caller

is

a

user-mode

process

in

kernel

mode.

For

more

information

on

cross-domain

memory

services,

see

“Cross-Memory

Kernel

Services”

on

page

68.

Note:

System

calls

must

not

be

used

by

kernel

extensions

executing

in

the

interrupt

handler

environment.

System

calls

available

to

kernel

extensions

are

listed

in

/usr/lib/kernex.imp,

along

with

other

kernel

services.

2

Kernel

Extensions

and

Device

Support

Programming

Concepts

Loading

and

Unloading

Kernel

Extensions

Kernel

extensions

can

be

loaded

and

unloaded

by

calling

the

sysconfig

function

from

user

applications.

A

kernel

extension

can

load

another

kernel

extension

by

using

the

kmod_load

kernel

service,

and

kernel

extensions

can

be

unloaded

by

using

the

kmod_unload

kernel

service.

Loading

Kernel

Extensions:

Normally,

kernel

extensions

that

provide

new

system

calls

or

kernel

services

only

need

to

be

loaded

once.

For

these

kernel

extensions,

loading

should

be

performed

by

specifying

SYS_SINGLELOAD

when

calling

the

sysconfig

function,

or

LD_SINGLELOAD

when

calling

the

kmod_load

function.

If

the

specified

kernel

extension

is

already

loaded,

a

second

copy

is

not

loaded.

Instead,

a

reference

to

the

existing

kernel

extension

is

returned.

The

loader

uses

the

specified

pathname

to

determine

whether

a

kernel

extensions

is

already

loaded.

If

multiple

pathnames

refer

to

the

same

kernel

extension,

multiple

copies

can

be

loaded

into

the

kernel.

If

a

kernel

extension

can

support

multiple

instances

of

itself

(particularly

its

data),

it

can

be

loaded

multiple

times,

by

specifying

SYS_KLOAD

when

calling

the

sysconfig

function,

or

by

not

specifying

LD_SINGLELOAD

when

calling

the

kmod_load

function.

Either

of

these

operations

loads

a

new

copy

of

the

kernel

extension,

even

when

one

or

more

copies

are

already

loaded.

When

this

operation

is

used,

currently

loaded

routines

bound

to

the

old

copy

of

the

kernel

extension

continue

to

use

the

old

copy.

Subsequently

loaded

routines

use

the

most

recently

loaded

copy

of

the

kernel

extension.

Unloading

Kernel

Extensions:

Kernel

extensions

can

be

unloaded.

For

each

kernel

extension,

the

loader

maintains

a

use

count

and

a

load

count.

The

use

count

indicates

how

many

other

object

files

have

referenced

some

exported

symbol

provided

by

the

kernel

extension.

The

load

count

indicates

how

many

explicit

load

requests

have

been

made

for

each

kernel

extension.

When

an

explicit

unload

of

a

kernel

extension

is

requested,

the

load

count

is

decremented.

If

the

load

count

and

the

use

count

are

both

equal

to

0,

the

kernel

extension

is

unloaded,

and

the

memory

used

by

the

text

and

data

of

the

kernel

extension

is

freed.

If

either

the

load

count

or

use

count

is

not

equal

to

0,

the

kernel

extension

is

not

unloaded.

As

processes

exit

or

other

kernel

extensions

are

unloaded,

the

use

counts

for

referenced

kernel

extensions

are

decremented.

Even

if

the

load

and

use

counts

become

0,

the

kernel

extension

may

not

be

unloaded

immediately.

In

this

case,

the

kernel

extension’s

exported

symbols

are

still

available

for

load-time

binding

unless

another

kernel

extension

is

unloaded

or

the

slibclean

command

is

executed.

At

this

time,

the

loader

unloads

all

modules

that

have

both

load

and

use

counts

of

0.

Using

Private

Routines

So

far,

symbol

resolution

for

kernel

extensions

has

been

concerned

with

importing

and

exporting

symbols

from

and

to

the

kernel

name

space.

Exported

symbols

are

global

in

the

kernel,

and

can

be

referenced

by

any

subsequently

loaded

kernel

extension.

Kernel

extensions

can

also

consist

of

several

separately

link-edited

modules.

This

is

particularly

useful

for

device

drivers,

where

a

kernel

extension

contains

the

top

(pageable)

half

of

the

driver

and

a

dependent

module

contains

the

bottom

(pinned)

half

of

the

driver.

Using

a

dependent

module

also

makes

sense

when

several

kernel

extensions

use

common

routines.

In

both

cases,

the

symbols

exported

by

the

dependent

modules

are

not

added

to

the

global

kernel

name

space.

Instead,

these

symbols

are

only

available

to

the

kernel

extension

being

loaded.

When

link-editing

a

kernel

extension

that

depends

on

another

module,

an

import

file

should

be

specified

listing

the

symbols

exported

by

the

dependent

module.

Before

any

symbols

are

listed,

the

import

file

should

contain

one

of

the

following

lines:

#!

path/file

or

#!

path/file(member)

Chapter

1.

Kernel

Environment

3

Note:

This

import

file

can

also

be

used

as

an

export

file

when

building

the

dependent

module.
Dependent

modules

can

be

found

in

an

archive

file.

In

this

case,

the

member

name

must

be

specified

in

the

#!

line.

While

a

kernel

extension

is

being

loaded,

any

dependent

modules

are

only

loaded

a

single

time.

This

allows

modules

to

depend

on

each

other

in

a

complicated

way,

without

causing

multiple

instances

of

a

module

to

be

loaded.

Note:

The

loader

uses

the

pathname

of

a

module

to

determine

whether

it

has

already

been

loaded.

Another

copy

of

the

module

can

be

loaded

if

different

path

names

are

used

for

the

same

module.

The

symbols

exported

by

dependent

modules

are

not

added

to

the

kernel

name

space.

These

symbols

can

only

be

used

by

a

kernel

extension

and

its

other

dependent

modules.

If

another

kernel

extension

is

loaded

that

uses

the

same

dependent

modules,

these

dependent

modules

will

be

loaded

a

second

time.

Understanding

Dual-Mode

Kernel

Extensions

Dual-mode

kernel

extensions

can

be

used

to

simplify

the

loading

of

kernel

extensions

that

run

on

both

the

32-

and

64-bit

kernels.

A

″dual-mode

kernel

extension″

is

an

archive

file

that

contains

both

the

32-

and

64-bit

versions

of

a

kernel

extension

as

members.

When

the

pathname

specified

in

the

sysconfig

or

kmod_load

call

is

an

archive,

the

loader

loads

the

first

archive

member

whose

object

mode

matches

the

kernel’s

execution

mode.

This

special

treatment

of

archives

only

applies

to

an

explicitly

loaded

kernel

extension.

If

a

kernel

extension

depends

on

a

member

of

another

archive,

the

kernel

extension

must

be

link-edited

with

an

import

file

that

specifies

the

member

name.

Using

Libraries

The

operating

system

provides

the

following

two

libraries

that

can

be

used

by

kernel

extensions:

v

libcsys.a

v

libsys.a

libcsys

Library

The

libcsys.a

library

contains

a

subset

of

subroutines

found

in

the

user-mode

libc.a

library

that

can

be

used

by

kernel

extensions.

When

using

any

of

these

routines,

the

header

file

/usr/include/sys/libcsys.h

should

be

included

to

obtain

function

prototypes,

instead

of

the

application

header

files,

such

as

/usr/include/string.h

or

/usr/include/stdio.h.

The

following

routines

are

included

in

libcsys.a:

v

atoi

v

bcmp

v

bcopy

v

bzero

v

memccpy

v

memchr

v

memcmp

v

memcpy

v

memmove

v

memset

v

ovbcopy

v

strcat

v

strchr

v

strcmp

v

strcpy

4

Kernel

Extensions

and

Device

Support

Programming

Concepts

v

strcspn

v

strlen

v

strncat

v

strncmp

v

strncpy

v

strpbrk

v

strrchr

v

strspn

v

strstr

v

strtok

Note:

In

addition

to

these

explicit

subroutines,

some

additional

functions

are

defined

in

libcsys.a.

All

kernel

extensions

should

be

linked

with

libcsys.a

by

specifying

-lcsys

at

link-edit

time.

The

library

libc.a

is

intended

for

user-level

code

only.

Do

not

link-edit

kernel

extensions

with

the

-lc

flag.

libsys

Library

The

libsys.a

library

provides

the

following

set

of

kernel

services:

v

d_align

v

d_roundup

v

timeout

v

timeoutcf

v

untimeout

When

using

these

services,

specify

the

-lsys

flag

at

link-edit

time.

User-provided

Libraries

To

simplify

the

development

of

kernel

extensions,

you

can

choose

to

split

a

kernel

extension

into

separately

loadable

modules.

These

modules

can

be

used

when

linking

kernel

extensions

in

the

same

way

that

they

are

used

when

developing

user-level

applications

and

shared

objects.

In

particular,

a

kernel

module

can

be

created

as

a

shared

object

by

linking

with

the

-bM:SRE

flag..

The

shared

object

can

then

be

used

as

an

input

file

when

linking

a

kernel

extension.

In

addition,

shared

objects

can

be

put

into

an

archive

file,

and

the

archive

file

can

be

listed

on

the

command

line

when

linking

a

kernel

extension.

In

both

cases,

the

shared

object

will

be

loaded

as

a

dependent

module

when

the

kernel

extension

is

loaded.

Understanding

Execution

Environments

There

are

two

major

environments

under

which

a

kernel

extension

can

run:

v

Process

environment

v

Interrupt

environment

A

kernel

extension

runs

in

the

process

environment

when

invoked

either

by

a

user

process

in

kernel

mode

or

by

a

kernel

process.

A

kernel

extension

is

executing

in

the

interrupt

environment

when

invoked

as

part

of

an

interrupt

handler.

A

kernel

extension

can

determine

in

which

environment

it

is

called

to

run

by

calling

the

getpid

or

thread_self

kernel

service.

These

services

respectively

return

the

process

or

thread

identifier

of

the

current

process

or

thread

,

or

a

value

of

-1

if

called

in

the

interrupt

environment.

Some

kernel

services

can

be

called

in

both

environments,

whereas

others

can

only

be

called

in

the

process

environment.

Note:

No

floating-point

functions

can

be

used

in

the

kernel.

Chapter

1.

Kernel

Environment

5

Process

Environment

A

routine

runs

in

the

process

environment

when

it

is

called

by

a

user-mode

process

or

by

a

kernel

process.

Routines

running

in

the

process

environment

are

executed

at

an

interrupt

priority

of

INTBASE

(the

least

favored

priority).

A

kernel

extension

running

in

this

environment

can

cause

page

faults

by

accessing

pageable

code

or

data.

It

can

also

be

replaced

by

another

process

of

equal

or

higher

process

priority.

A

routine

running

in

the

process

environment

can

sleep

or

be

interrupted

by

routines

executing

in

the

interrupt

environment.

A

kernel

routine

that

runs

on

behalf

of

a

user-mode

process

can

only

invoke

system

calls

that

have

no

parameters

passed

by

reference.

A

kernel

process,

however,

can

use

all

system

calls

listed

in

the

System

Calls

Available

to

Kernel

Extensions

if

necessary.

Interrupt

Environment

A

routine

runs

in

the

interrupt

environment

when

called

on

behalf

of

an

interrupt

handler.

A

kernel

routine

executing

in

this

environment

cannot

request

data

that

has

been

paged

out

of

memory

and

therefore

cannot

cause

page

faults

by

accessing

pageable

code

or

data.

In

addition,

the

kernel

routine

has

a

stack

of

limited

size,

is

not

subject

to

replacement

by

another

process,

and

cannot

perform

any

function

that

would

cause

it

to

sleep.

A

routine

in

this

environment

is

only

interruptible

either

by

interrupts

that

have

priority

more

favored

than

the

current

priority

or

by

exceptions.

These

routines

cannot

use

system

calls

and

can

use

only

kernel

services

available

in

both

the

process

and

interrupt

environments.

A

process

in

kernel

mode

can

also

put

itself

into

an

environment

similar

to

the

interrupt

environment.

This

action,

occurring

when

the

interrupt

priority

is

changed

to

a

priority

more

favored

than

INTBASE,

can

be

accomplished

by

calling

the

i_disable

or

disable_lock

kernel

service.

A

kernel-mode

process

is

sometimes

required

to

do

this

to

serialize

access

to

a

resource

shared

by

a

routine

executing

in

the

interrupt

environment.

When

this

is

the

case,

the

process

operates

under

most

of

the

same

restrictions

as

a

routine

executing

in

the

interrupt

environment.

However,

the

e_sleep,

e_wait,

e_sleepl,

et_wait,

lockl,

and

unlockl

process

can

sleep,

wait,

and

use

locking

kernel

services

if

the

event

word

or

lock

word

is

pinned.

Routines

executed

in

this

environment

can

adversely

affect

system

real-time

performance

and

are

therefore

limited

to

a

specific

maximum

path

length.

Guidelines

for

the

maximum

path

length

are

determined

by

the

interrupt

priority

at

which

the

routines

are

executed.

Understanding

Interrupts

provides

more

information.

Understanding

Kernel

Threads

A

thread

is

an

independent

flow

of

control

that

operates

within

the

same

address

space

as

other

independent

flows

of

control

within

a

process.

One

process

can

have

multiple

threads,

with

each

thread

executing

different

code

concurrently,

while

sharing

data

and

synchronizing

much

more

easily

than

cooperating

processes.

Threads

require

fewer

system

resources

than

processes,

and

can

start

more

quickly.

Although

threads

can

be

scheduled,

they

exist

in

the

context

of

their

process.

The

following

list

indicates

what

is

managed

at

process

level

and

shared

among

all

threads

within

a

process:

v

Address

space

v

System

resources,

like

files

or

terminals

v

Signal

list

of

actions.

The

process

remains

the

swappable

entity.

Only

a

few

resources

are

managed

at

thread

level,

as

indicated

in

the

following

list:

6

Kernel

Extensions

and

Device

Support

Programming

Concepts

v

State

v

Stack

v

Signal

masks.

Kernel

Threads,

Kernel

Only

Threads,

and

User

Threads

There

are

three

kinds

of

threads:

v

Kernel

threads

v

Kernel-only

threads

v

User

threads.

A

kernel

thread

is

a

kernel

entity,

like

processes

and

interrupt

handlers;

it

is

the

entity

handled

by

the

system

scheduler.

A

kernel

thread

runs

in

user

mode

environment

when

executing

user

functions

or

library

calls;

it

switches

to

kernel

mode

environment

when

executing

system

calls.

A

kernel-only

thread

is

a

kernel

thread

that

executes

only

in

kernel

mode

environment.

Kernel-only

threads

are

controlled

by

the

kernel

mode

environment

programmer

through

kernel

services.

User

mode

programs

can

access

user

threads

through

a

library

(such

as

the

libpthreads.a

threads

library).

User

threads

are

part

of

a

portable

programming

model.

User

threads

are

mapped

to

kernel

threads

by

the

threads

library,

in

an

implementation

dependent

manner.

The

threads

library

uses

a

proprietary

interface

to

handle

kernel

threads.

See

Understanding

Threads

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

to

get

detailed

information

about

the

user

threads

library

and

their

implementation.

All

threads

discussed

in

this

article

are

kernel

threads;

and

the

information

applies

only

to

the

kernel

mode

environment.

Kernel

threads

cannot

be

accessed

from

the

user

mode

environment,

except

through

the

threads

library.

Kernel

Data

Structures

The

kernel

maintains

thread-

and

process-related

information

in

two

types

of

structures:

v

The

user

structure

contains

process-related

information

v

The

uthread

structure

contains

thread-related

information.

These

structures

cannot

be

accessed

directly

by

kernel

extensions

and

device

drivers.

They

are

encapsulated

for

portability

reasons.

Many

fields

that

were

previously

in

the

user

structure

are

now

in

the

uthread

structure.

Thread

Creation,

Execution,

and

Termination

A

process

is

always

created

with

one

thread,

called

the

initial

thread.

The

initial

thread

provides

compatibility

with

previous

single-threaded

processes.

The

initial

thread’s

stack

is

the

process

stack.

See

“Kernel

Process

Creation,

Execution,

and

Termination”

on

page

10

to

get

more

information

about

kernel

process

creation.

Other

threads

can

be

created,

using

a

two-step

procedure.

The

thread_create

kernel

service

allocates

and

initializes

a

new

thread,

and

sets

its

state

to

idle.

The

kthread_start

kernel

service

then

starts

the

thread,

using

the

specified

entry

point

routine.

A

thread

is

terminated

when

it

executes

a

return

from

its

entry

point,

or

when

it

calls

the

thread_terminate

kernel

service.

Its

resources

are

automatically

freed.

If

it

is

the

last

thread

in

the

process,

the

process

ends.

Chapter

1.

Kernel

Environment

7

Thread

Scheduling

Threads

are

scheduled

using

one

of

the

following

scheduling

policies:

v

First-in

first-out

(FIFO)

scheduling

policy,

with

fixed

priority.

Using

the

FIFO

policy

with

high

favored

priorities

might

lead

to

bad

system

performance.

v

Round-robin

(RR)

scheduling

policy,

quantum

based

and

with

fixed

priority.

v

Default

scheduling

policy,

a

non-quantum

based

round-robin

scheduling

with

fluctuating

priority.

Priority

is

modified

according

to

the

CPU

usage

of

the

thread.

Scheduling

parameters

can

be

changed

using

the

thread_setsched

kernel

service.

The

process-oriented

setpri

system

call

sets

the

priority

of

all

the

threads

within

a

process.

The

process-oriented

getpri

system

call

gets

the

priority

of

a

thread

in

the

process.

The

scheduling

policy

and

priority

of

an

individual

thread

can

be

retrieved

from

the

ti_policy

and

ti_pri

fields

of

the

thrdsinfo

structure

returned

by

the

getthrds

system

call.

Thread

Signal

Handling

The

signal

handling

concepts

are

the

following:

v

A

signal

mask

is

associated

with

each

thread.

v

The

list

of

actions

associated

with

each

signal

number

is

shared

among

all

threads

in

the

process.

v

If

the

signal

action

specifies

termination,

stop,

or

continue,

the

entire

process,

thus

including

all

its

threads,

is

respectively

terminated,

stopped,

or

continued.

v

Synchronous

signals

attributable

to

a

particular

thread

(such

as

a

hardware

fault)

are

delivered

to

the

thread

that

caused

the

signal

to

be

generated.

v

Signals

can

be

directed

to

a

particular

thread.

If

the

target

thread

has

blocked

the

signal

from

delivery,

the

signal

remains

pending

on

the

thread

until

the

thread

unblocks

the

signal

from

delivery,

or

the

action

associated

with

the

signal

is

set

to

ignore

by

any

thread

within

the

process.

The

signal

mask

of

a

thread

is

handled

by

the

limit_sigs

and

sigsetmask

kernel

services.

The

kthread_kill

kernel

service

can

be

used

to

direct

a

signal

to

a

particular

thread.

In

the

kernel

environment,

when

a

signal

is

received,

no

action

is

taken

(no

termination

or

handler

invocation),

even

for

the

SIGKILL

signal.

A

thread

in

kernel

environment,

especially

kernel-only

threads,

must

poll

for

signals

so

that

signals

can

be

delivered.

Polling

ensures

the

proper

kernel-mode

serialization.

For

example,

SIGKILL

will

not

be

delivered

to

a

kernel-only

thread

that

does

not

poll

for

signals.

Therefore,

SIGKILL

is

not

necessarily

an

effective

means

for

terminating

a

kernel-only

thread.

Signals

whose

actions

are

applied

at

generation

time

(rather

than

delivery

time)

have

the

same

effect

regardless

of

whether

the

target

is

in

kernel

or

user

mode.

A

kernel-only

thread

can

poll

for

unmasked

signals

that

are

waiting

to

be

delivered

by

calling

the

sig_chk

kernel

service.

This

service

returns

the

signal

number

of

a

pending

signal

that

was

not

blocked

or

ignored.

The

thread

then

uses

the

signal

number

to

determine

which

action

should

be

taken.

The

kernel

does

not

automatically

call

signal

handlers

for

a

thread

in

kernel

mode

as

it

does

for

user

mode.

See

“Kernel

Process

Signal

and

Exception

Handling”

on

page

11

for

more

information

about

signal

handling

at

process

level.

Using

Kernel

Processes

A

kernel

process

is

a

process

that

is

created

in

the

kernel

protection

domain

and

always

executes

in

the

kernel

protection

domain.

Kernel

processes

can

be

used

in

subsystems,

by

complex

device

drivers,

and

by

system

calls.

They

can

also

be

used

by

interrupt

handlers

to

perform

asynchronous

processing

not

available

in

the

interrupt

environment.

Kernel

processes

can

also

be

used

as

device

managers

where

asynchronous

I/O

and

device

management

is

required.

8

Kernel

Extensions

and

Device

Support

Programming

Concepts

Introduction

to

Kernel

Processes

A

kernel

process

(kproc)

exists

only

in

the

kernel

protection

domain

and

differs

from

a

user

process

in

the

following

ways:

v

It

is

created

using

the

creatp

and

initp

kernel

services.

v

It

executes

only

within

the

kernel

protection

domain

and

has

all

security

privileges.

v

It

can

call

a

restricted

set

of

system

calls

and

all

applicable

kernel

services.

For

more

information,

see

“System

Calls

Available

to

Kernel

Extensions”

on

page

35.

v

It

has

access

to

the

global

kernel

address

space

(including

the

kernel

pinned

and

pageable

heaps),

kernel

code,

and

static

data

areas.

v

It

must

poll

for

signals

and

can

choose

to

ignore

any

signal

delivered,

including

a

kill

signal.

v

Its

text

and

data

areas

come

from

the

global

kernel

heap.

v

It

cannot

use

application

libraries.

v

It

has

a

process-private

region

containing

only

the

u-block

(user

block)

structure

and

possibly

the

kernel

stack.

v

Its

parent

process

is

the

process

that

issued

the

creatp

kernel

service

to

create

the

process.

v

It

can

change

its

parent

process

to

the

init

process

and

can

use

interrupt

disable

functions

for

serialization.

v

It

can

use

locking

to

serialize

process-time

access

to

critical

data

structures.

v

It

can

only

be

a

32–bit

process

in

the

32–bit

kernel.

v

It

can

only

be

a

64–bit

process

in

the

64–bit

kernel.

A

kernel

process

controls

directly

the

kernel

threads.

Because

kernel

processes

are

always

in

the

kernel

protection

domain,

threads

within

a

kernel

process

are

kernel-only

threads.

For

more

information

on

kernel

threads,

see

“Understanding

Kernel

Threads”

on

page

6.

A

kernel

process

inherits

the

environment

of

its

parent

process

(the

one

calling

the

creatp

kernel

service

to

create

it),

but

with

some

exceptions.

The

kernel

process

will

not

have

a

root

directory

or

a

current

directory

when

initialized.

All

uses

of

the

file

system

functions

must

specify

absolute

path

names.

Kernel

processes

created

during

phase

1

of

system

boot

must

not

keep

any

long-term

opens

on

files

until

phase

2

of

system

boot

or

run

time

has

been

reached.

This

is

because

Base

Operating

System

changes

root

file

systems

between

phase

1

and

phase

2

of

system

boot.

As

a

result,

the

system

crashes

if

any

files

are

open

at

root

file

system

transition

time.

Accessing

Data

from

a

Kernel

Process

Because

kernel

processes

execute

in

the

more

privileged

kernel

protection

domain,

a

kernel

process

can

access

data

that

user

processes

cannot.

This

applies

to

all

kernel

data,

of

which

there

are

three

general

categories:

v

The

user

block

data

structure

The

u-block

(or

u-area)

structure

exists

for

kernel

processes

and

contains

roughly

the

same

information

for

kernel

processes

as

for

user-mode

processes.

A

kernel

process

must

use

kernel

services

to

query

or

manipulate

data

from

the

u-area

to

maintain

modularity

and

increase

portability

of

code

to

other

platforms.

v

The

stack

for

a

kernel

process

To

ensure

binary

compatibility

with

older

applications,

each

kernel

process

has

a

stack

called

the

process

stack.

This

stack

is

used

by

the

process

initial

thread.

The

location

of

the

stack

for

a

kernel

process

is

implementation-dependent.

This

stack

can

be

located

in

global

memory

or

in

the

process-private

segment

of

the

kernel

process.

A

kernel

process

must

not

assume

automatically

that

its

stack

is

located

in

global

memory.

v

Global

kernel

memory

Chapter

1.

Kernel

Environment

9

A

kernel

process

can

also

access

global

kernel

memory

as

well

as

allocate

and

de-allocate

memory

from

the

kernel

heaps.

Because

it

runs

in

the

kernel

protection

domain,

a

kernel

process

can

access

any

valid

memory

location

within

the

global

kernel

address

space.

Memory

dynamically

allocated

from

the

kernel

heaps

by

the

kernel

process

must

be

freed

by

the

kernel

process

before

exiting.

Unlike

user-mode

processes,

memory

that

is

dynamically

allocated

by

a

kernel

process

is

not

freed

automatically

upon

process

exit.

Cross-Memory

Services

Kernel

processes

must

be

provided

with

a

valid

cross-memory

descriptor

to

access

address

regions

outside

the

kernel

global

address

space

or

kernel

process

address

space.

For

example,

if

a

kernel

process

is

to

access

data

from

a

user-mode

process,

the

system

call

using

the

process

must

obtain

a

cross-memory

descriptor

for

the

user-mode

region

to

be

accessed.

Calling

the

xmattach

or

xmattach64

kernel

service

provides

a

descriptor

that

can

then

be

made

available

to

the

kernel

process.

The

kernel

process

should

then

call

the

xmemin

and

xmemout

kernel

services

to

access

the

targeted

cross-memory

data

area.

When

the

kernel

process

has

completed

its

operation

on

the

memory

area,

the

cross-memory

descriptor

must

be

detached

by

using

the

xmdetach

kernel

service.

Kernel

Process

Creation,

Execution,

and

Termination

A

kernel

process

is

created

by

a

kernel-mode

routine

by

calling

the

creatp

kernel

service.

This

service

allocates

and

initializes

a

process

block

for

the

process

and

sets

the

new

process

state

to

idle.

This

new

kernel

process

does

not

run

until

it

is

initialized

by

the

initp

kernel

service,

which

must

be

called

in

the

same

process

that

created

the

new

kernel

process

(with

the

creatp

service).

The

creatp

kernel

service

returns

the

process

identifier

for

the

new

kernel

process.

The

process

is

created

with

one

kernel-only

thread,

called

the

initial

thread.

See

Understanding

Kernel

Threads

to

get

more

information

about

threads.

After

the

initp

kernel

service

has

completed

the

process

initialization,

the

initial

thread

is

placed

on

the

run

queue.

On

the

first

dispatch

of

the

newly

initialized

kernel

process,

it

begins

execution

at

the

entry

point

previously

supplied

to

the

initp

kernel

service.

The

initialization

parameters

were

previously

specified

in

the

call

to

the

initp

kernel

service.

A

kernel

process

terminates

when

it

executes

a

return

from

its

main

entry

routine.

A

process

should

never

exit

without

both

freeing

all

dynamically

allocated

storage

and

releasing

all

locks

owned

by

the

kernel

process.

When

kernel

processes

exit,

the

parent

process

(the

one

calling

the

creatp

and

initp

kernel

services

to

create

the

kernel

process)

receives

the

SIGCHLD

signal,

which

indicates

the

end

of

a

child

process.

However,

it

is

sometimes

undesirable

for

the

parent

process

to

receive

the

SIGCHLD

signal

due

to

ending

a

process.

In

this

case,

the

kproc

can

call

the

setpinit

kernel

service

to

designate

the

init

process

as

its

parent.

The

init

process

cleans

up

the

state

of

all

its

child

processes

that

have

become

zombie

processes.

A

kernel

process

can

also

issue

the

setsid

subroutine

call

to

change

its

session.

Signals

and

job

control

affecting

the

parent

process

session

do

not

affect

the

kernel

process.

Kernel

Process

Preemption

A

kernel

process

is

initially

created

with

the

same

process

priority

as

its

parent.

It

can

therefore

be

replaced

by

a

more

favored

kernel

or

user

process.

It

does

not

have

higher

priority

just

because

it

is

a

kernel

process.

Kernel

processes

can

use

the

setpri

subroutine

to

modify

their

execution

priority.

The

kernel

process

can

use

the

locking

kernel

services

to

serialize

access

to

critical

data

structures.

This

use

of

locks

does

not

guarantee

that

the

process

will

not

be

replaced,

but

it

does

ensure

that

another

process

trying

to

acquire

the

lock

waits

until

the

kernel

process

owning

the

lock

has

released

it.

10

Kernel

Extensions

and

Device

Support

Programming

Concepts

Using

locks,

however,

does

not

provide

serialization

if

a

kernel

routine

can

access

the

critical

data

while

executing

in

the

interrupt

environment.

Serialization

with

interrupt

handlers

must

be

handled

by

using

locking

together

with

interrupt

control.

The

disable_lock

and

unlock_enable

kernel

services

should

be

used

to

serialize

with

interrupt

handlers.

Kernel

processes

must

ensure

that

their

maximum

path

lengths

adhere

to

the

specifications

for

interrupt

handlers

when

executing

at

an

interrupt

priority

more

favored

than

INTBASE.

This

ensures

that

system

real-time

performance

is

not

degraded.

Kernel

Process

Signal

and

Exception

Handling

Signals

are

delivered

to

exactly

one

thread

within

the

process

which

has

not

blocked

the

signal

from

delivery.

If

all

threads

within

the

target

process

have

blocked

the

signal

from

delivery,

the

signal

remains

pending

on

the

process

until

a

thread

unblocks

the

signal

from

delivery,

or

the

action

associated

with

the

signal

is

set

to

ignore

by

any

thread

within

the

process.

See

“Thread

Signal

Handling”

on

page

8

for

more

information

on

signal

handling

by

threads.

Signals

whose

action

is

applied

at

generation

time

(rather

than

delivery

time)

have

the

same

effect

regardless

of

whether

the

target

is

a

kernel

or

user

process.

A

kernel

process

can

poll

for

unmasked

signals

that

are

waiting

to

be

delivered

by

calling

the

sig_chk

kernel

service.

This

service

returns

the

signal

number

of

a

pending

signal

that

was

not

blocked

or

ignored.

The

kernel

process

then

uses

the

signal

number

to

determine

which

action

should

be

taken.

The

kernel

does

not

automatically

call

signal

handlers

for

a

kernel

process

as

it

does

for

user

processes.

A

kernel

process

should

also

use

the

exception-catching

facilities

(setjmpx,

and

clrjmpx)

available

in

kernel

mode

to

handle

exceptions

that

can

be

caused

during

run

time

of

the

kernel

process.

Exceptions

received

during

the

execution

of

a

kernel

process

are

handled

the

same

as

exceptions

that

occur

in

any

kernel-mode

routine.

Unhandled

exceptions

that

occur

in

kernel

mode

(in

any

user

process

while

in

kernel

mode,

in

an

interrupt

handler,

or

in

a

kernel

process)

result

in

a

system

crash.

To

avoid

crashing

the

system

due

to

unhandled

exceptions,

kernel

routines

should

use

the

setjmpx,

clrjmpx,

and

longjmpx

kernel

services

to

handle

exceptions

that

might

possibly

occur

during

run

time.

See

“Understanding

Exception

Handling”

on

page

14

for

more

details

on

handling

exceptions.

Kernel

Process

Use

of

System

Calls

System

calls

made

by

kernel

processes

do

not

result

in

a

change

of

protection

domain

because

the

kernel

process

is

already

within

the

kernel

protection

domain.

Routines

in

the

kernel

(including

routines

executing

in

a

kernel

process)

are

bound

by

the

loader

to

the

system

call

function

and

not

to

the

system

call

handler.

When

system

calls

use

kernel

services

to

access

user-mode

data,

these

kernel

services

recognize

that

the

system

call

is

running

within

a

kernel

process

instead

of

a

user

process

and

correctly

handle

the

data

accesses.

However,

the

error

information

returned

from

a

kernel

process

system

call

must

be

accessed

differently

than

for

a

user

process.

A

kernel

process

must

use

the

getuerror

kernel

service

to

retrieve

the

system

call

error

information

normally

provided

in

the

errno

global

variable

for

user-mode

processes.

In

addition,

the

kernel

process

can

use

the

setuerror

kernel

service

to

set

the

error

information

to

0

before

calling

the

system

call.

The

return

code

from

the

system

call

is

handled

the

same

for

all

processes.

Kernel

processes

can

use

only

a

restricted

set

of

the

base

system

calls.

“System

Calls

Available

to

Kernel

Extensions”

on

page

35

lists

system

calls

available

to

kernel

processes.

Chapter

1.

Kernel

Environment

11

Accessing

User-Mode

Data

While

in

Kernel

Mode

Kernel

extensions

must

use

a

set

of

kernel

services

to

access

data

that

is

in

the

user-mode

protection

domain.

These

services

ensure

that

the

caller

has

the

authority

to

perform

the

desired

operation

at

the

time

of

data

access

and

also

prevent

system

crashes

in

a

system

call

when

accessing

user-mode

data.

These

services

can

be

called

only

when

running

in

the

process

environment

of

the

process

that

contains

the

user-mode

data.

For

more

information

on

user-mode

protection,

see

“User

Protection

Domain”

on

page

23.

For

more

information

on

the

process

environment,

see

“Process

Environment”

on

page

6.

Data

Transfer

Services

The

following

list

shows

user-mode

data

access

kernel

services

(primitives):

Kernel

Service

Purpose

suword,

suword64

Stores

a

word

of

data

in

user

memory.

fubyte,

fubyte64

Fetches,

or

retrieves,

a

byte

of

data

from

user

memory.

fuword,

fuword64

Fetches,

or

retrieves,

a

word

of

data

from

user

memory.

copyin,

copyin64

Copies

data

between

user

and

kernel

memory.

copyout,

copyout64

Copies

data

between

user

and

kernel

memory.

copyinstr,

copyinstr64

Copies

a

character

string

(including

the

terminating

null

character)

from

user

to

kernel

space.

Additional

kernel

services

allow

data

transfer

between

user

mode

and

kernel

mode

when

a

uio

structure

is

used,

thereby

describing

the

user-mode

data

area

to

be

accessed.

All

addresses

on

the

32–bit

kernel,

with

the

exception

of

addresses

ending

in

″64″,

passed

into

these

services

must

be

remapped.

Following

is

a

list

of

services

that

typically

are

used

between

the

file

system

and

device

drivers

to

perform

device

I/O:

Kernel

Service

Purpose

uiomove

Moves

a

block

of

data

between

kernel

space

and

a

space

defined

by

a

uio

structure.

ureadc

Writes

a

character

to

a

buffer

described

by

a

uio

structure.

uwritec

Retrieves

a

character

from

a

buffer

described

by

a

uio

structure.

The

services

ending

in

“64”

are

not

supported

in

the

64-bit

kernel,

since

all

pointers

are

already

64-bits

wide.

The

services

without

the

“64”

can

be

used

instead.

To

allow

common

source

code

to

be

used,

macros

are

provided

in

the

sys/uio.h

header

file

that

redefine

these

special

services

to

their

general

counterparts

when

compiling

in

64-bit

mode.

Using

Cross-Memory

Kernel

Services

Occasionally,

access

to

user-mode

data

is

required

when

not

in

the

environment

of

the

user-mode

process

that

has

addressability

to

the

data.

Such

cases

occur

when

the

data

is

to

be

accessed

asynchronously.

Examples

of

asynchronous

accessing

include:

v

Direct

memory

access

to

the

user

data

by

I/O

devices

v

Data

access

by

interrupt

handlers

v

Data

access

by

a

kernel

process

In

these

circumstances,

the

kernel

cross-memory

services

are

required

to

provide

the

necessary

access.

The

xmattach

and

xmattach64

kernel

services

allow

a

cross-memory

descriptor

to

be

obtained

for

the

data

area

to

be

accessed.

These

services

must

be

called

in

the

process

environment

of

the

process

containing

the

data

area.

Note:

xmattach64

is

not

supported

on

the

64–bit

kernel.

12

Kernel

Extensions

and

Device

Support

Programming

Concepts

After

a

cross-memory

descriptor

has

been

obtained,

the

xmemin

and

xmemout

kernel

services

can

be

used

to

access

the

data

area

outside

the

process

environment

containing

the

data.

When

access

to

the

data

area

is

no

longer

required,

the

access

must

be

removed

by

calling

the

xmdetach

kernel

service.

Kernel

extensions

should

use

these

services

only

when

absolutely

necessary.

Because

of

the

machine

dependencies

of

cross-memory

operations,

using

them

increases

the

difficulty

of

porting

the

kernel

extension

to

other

machine

platforms.

Understanding

Locking

The

following

information

is

provided

to

assist

you

in

understanding

locking.

Lockl

Locks

The

lockl

locks

(previously

called

conventional

locks)

are

provided

for

compatibility

only

and

should

not

be

used

in

new

code:

simple

or

complex

locks

should

be

used

instead.

These

locks

are

used

to

protect

a

critical

section

of

code

which

accesses

a

resource

such

as

a

data

structure

or

device,

serializing

access

to

the

resource.

Every

thread

which

accesses

the

resource

must

acquire

the

lock

first,

and

release

the

lock

when

finished.

A

conventional

lock

has

two

states:

locked

or

unlocked.

In

the

locked

state,

a

thread

is

currently

executing

code

in

the

critical

section,

and

accessing

the

resource

associated

with

the

conventional

lock.

The

thread

is

considered

to

be

the

owner

of

the

conventional

lock.

No

other

thread

can

lock

the

conventional

lock

(and

therefore

enter

the

critical

section)

until

the

owner

unlocks

it;

any

thread

attempting

to

do

so

must

wait

until

the

lock

is

free.

In

the

unlocked

state,

there

are

no

threads

accessing

the

resource

or

owning

the

conventional

lock.

Lockl

locks

are

recursive

and,

unlike

simple

and

complex

locks,

can

be

awakened

by

a

signal.

Simple

Locks

A

simple

lock

provides

exclusive-write

access

to

a

resource

such

as

a

data

structure

or

device.

Simple

locks

are

not

recursive

and

have

only

two

states:

locked

or

unlocked.

Complex

Locks

A

complex

lock

can

provide

either

shared

or

exclusive

access

to

a

resource

such

as

a

data

structure

or

device.

Complex

locks

are

not

recursive

by

default

(but

can

be

made

recursive)

and

have

three

states:

exclusive-write,

shared-read,

or

unlocked.

If

several

threads

perform

read

operations

on

the

resource,

they

must

first

acquire

the

corresponding

lock

in

shared-read

mode.

Because

no

threads

are

updating

the

resource,

it

is

safe

for

all

to

read

it.

Any

thread

which

writes

to

the

resource

must

first

acquire

the

lock

in

exclusive-write

mode.

This

guarantees

that

no

other

thread

will

read

or

write

the

resource

while

it

is

being

updated.

Types

of

Critical

Sections

There

are

two

types

of

critical

sections

which

must

be

protected

from

concurrent

execution

in

order

to

serialize

access

to

a

resource:

thread-thread

These

critical

sections

must

be

protected

(by

using

the

locking

kernel

services)

from

concurrent

execution

by

multiple

processes

or

threads.

thread-interrupt

These

critical

sections

must

be

protected

(by

using

the

disable_lock

and

unlock_enable

kernel

services)

from

concurrent

execution

by

an

interrupt

handler

and

a

thread

or

process.

Chapter

1.

Kernel

Environment

13

Priority

Promotion

When

a

lower

priority

thread

owns

a

lock

which

a

higher-priority

thread

is

attempting

to

acquire,

the

owner

has

its

priority

promoted

to

that

of

the

most

favored

thread

waiting

for

the

lock.

When

the

owner

releases

the

lock,

its

priority

is

restored

to

its

normal

value.

Priority

promotion

ensures

that

the

lock

owner

can

run

and

release

its

lock,

so

that

higher

priority

processes

or

threads

do

not

remain

blocked

on

the

lock.

Locking

Strategy

in

Kernel

Mode

Attention:

A

kernel

extension

should

not

attempt

to

acquire

the

kernel

lock

if

it

owns

any

other

lock.

Doing

so

can

cause

unpredictable

results

or

system

failure.

A

hierarchy

of

locks

exists.

This

hierarchy

is

imposed

by

software

convention,

but

is

not

enforced

by

the

system.

The

lockl

kernel_lock

variable,

which

is

the

global

kernel

lock,

has

the

the

coarsest

granularity.

Other

types

of

locks

have

finer

granularity.

The

following

list

shows

the

ordering

of

locks

based

on

granularity:

v

The

kernel_lock

global

kernel

lock

Note:

Avoid

using

the

kernel_lock

global

kernel

lock

variable

in

new

code.

It

is

only

included

for

compatibility

purposes.

v

File

system

locks

(private

to

file

systems)

v

Device

driver

locks

(private

to

device

drivers)

v

Private

fine-granularity

locks

Locks

should

generally

be

released

in

the

reverse

order

from

which

they

were

acquired;

all

locks

must

be

released

before

a

kernel

process

or

thread

exits.

Kernel

mode

processes

do

not

receive

any

signals

while

they

hold

any

lock.

Understanding

Exception

Handling

Exception

handling

involves

a

basic

distinction

between

interrupts

and

exceptions:

v

An

interrupt

is

an

asynchronous

event

and

is

not

associated

with

the

instruction

that

is

executing

when

the

interrupt

occurs.

v

An

exception

is

a

synchronous

event

and

is

directly

caused

by

the

instruction

that

is

executing

when

the

exception

occurs.

The

computer

hardware

generally

uses

the

same

mechanism

to

report

both

interrupts

and

exceptions.

The

machine

saves

and

modifies

some

of

the

event’s

state

and

forces

a

branch

to

a

particular

location.

When

decoding

the

reason

for

the

machine

interrupt,

the

interrupt

handler

determines

whether

the

event

is

an

interrupt

or

an

exception,

then

processes

the

event

accordingly.

Exception

Processing

When

an

exception

occurs,

the

current

instruction

stream

cannot

continue.

If

you

ignore

the

exception,

the

results

of

executing

the

instruction

may

become

undefined.

Further

execution

of

the

program

may

cause

unpredictable

results.

The

kernel

provides

a

default

exception-handling

mechanism

by

which

an

instruction

stream

(a

process-

or

interrupt-level

program)

can

specify

what

action

is

to

be

taken

when

an

exception

occurs.

Exceptions

are

handled

differently

depending

on

whether

they

occurred

while

executing

in

kernel

mode

or

user

mode.

Default

Exception-Handling

Mechanism

If

no

exception

handler

is

currently

defined

when

an

exception

occurs,

typically

one

of

two

things

happens:

v

If

the

exception

occurs

while

a

process

is

executing

in

user

mode,

the

process

is

sent

a

signal

relevant

to

the

type

of

exception.

v

If

the

exception

occurs

while

in

kernel

mode,

the

system

halts.

14

Kernel

Extensions

and

Device

Support

Programming

Concepts

Kernel-Mode

Exception

Handling

Exception

handling

in

kernel

mode

extends

the

setjump

and

longjump

subroutines

context-save-and-
restore

mechanism

by

providing

setjmpx

and

longjmpx

kernel

services

to

handle

exceptions.

The

traditional

system

mechanism

is

extended

by

allowing

these

exception

handlers

(or

context-save

checkpoints)

to

be

stacked

on

a

per-process

or

per-interrupt

handler

basis.

This

stacking

mechanism

allows

the

execution

point

and

context

of

a

process

or

interrupt

handler

to

be

restored

to

a

point

in

the

process

or

interrupt

handler,

at

the

point

of

return

from

the

setjmpx

kernel

service.

When

execution

returns

to

this

point,

the

return

code

from

setjmpx

kernel

service

indicates

the

type

of

exception

that

occurred

so

that

the

process

or

interrupt

handler

state

can

be

fully

restored.

Appropriate

retry

or

recovery

operations

are

then

invoked

by

the

software

performing

the

operation.

When

an

exception

occurs,

the

kernel

first-level

exception

handler

gets

control.

The

first-level

exception

handler

determines

what

type

of

exception

has

occurred

and

saves

information

necessary

for

handling

the

specific

type

of

exception.

For

an

I/O

exception,

the

first-level

handler

also

enables

again

the

programmed

I/O

operations.

The

first-level

exception

handler

then

modifies

the

saved

context

of

the

interrupted

process

or

interrupt

handler.

It

does

so

to

execute

the

longjmpx

kernel

service

when

the

first-level

exception

handler

returns

to

the

interrupted

process

or

interrupt

handler.

The

longjmpx

kernel

service

executes

in

the

environment

of

the

code

that

caused

the

exception

and

restores

the

current

context

from

the

topmost

jump

buffer

on

the

stack

of

saved

contexts.

As

a

result,

the

state

of

the

process

or

interrupt

handler

that

caused

the

exception

is

restored

to

the

point

of

the

return

from

the

setjmpx

kernel

service.

(The

return

code,

nevertheless,

indicates

that

an

exception

has

occurred.)

The

process

or

interrupt

handler

software

should

then

check

the

return

code

and

invoke

exception

handling

code

to

restore

fully

the

state

of

the

process

or

interrupt

handler.

Additional

information

about

the

exception

can

be

obtained

by

using

the

getexcept

kernel

service.

User-Defined

Exception

Handling

A

typical

exception

handler

should

do

the

following:

v

Perform

any

necessary

clean-up

such

as

freeing

storage

or

segment

registers

and

releasing

other

resources.

v

If

the

exception

is

recognized

by

the

current

handler

and

can

be

handled

entirely

within

the

routine,

the

handler

should

establish

itself

again

by

calling

the

setjmpx

kernel

service.

This

allows

normal

processing

to

continue.

v

If

the

exception

is

not

recognized

by

the

current

handler,

it

must

be

passed

to

the

previously

stacked

exception

handler.

The

exception

is

passed

by

calling

the

longjmpx

kernel

service,

which

either

calls

the

previous

handler

(if

any)

or

takes

the

system’s

default

exception-handling

mechanism.

v

If

the

exception

is

recognized

by

the

current

handler

but

cannot

be

handled,

it

is

treated

as

though

it

is

unrecognized.

The

longjmpx

kernel

service

is

called,

which

either

passes

the

exception

along

to

the

previous

handler

(if

any)

or

takes

the

system

default

exception-handling

mechanism.

When

a

kernel

routine

that

has

established

an

exception

handler

completes

normally,

it

must

remove

its

exception

handler

from

the

stack

(by

using

the

clrjmpx

kernel

service)

before

returning

to

its

caller.

Note:

When

the

longjmpx

kernel

service

invokes

an

exception

handler,

that

handler’s

entry

is

automatically

removed

from

the

stack.

Implementing

Kernel

Exception

Handlers

The

following

information

is

provided

to

assist

you

in

implementing

kernel

exception

handlers.

Chapter

1.

Kernel

Environment

15

setjmpx,

longjmpx,

and

clrjmpx

Kernel

Services

The

setjmpx

kernel

service

provides

a

way

to

save

the

following

portions

of

the

program

state

at

the

point

of

a

call:

v

Nonvolatile

general

registers

v

Stack

pointer

v

TOC

pointer

v

Interrupt

priority

number

(intpri)

v

Ownership

of

kernel-mode

lock

This

state

can

be

restored

later

by

calling

the

longjmpx

kernel

service,

which

accomplishes

the

following

tasks:

v

Reloads

the

registers

(including

TOC

and

stack

pointers)

v

Enables

or

disables

to

the

correct

interrupt

level

v

Conditionally

acquires

or

releases

the

kernel-mode

lock

v

Forces

a

branch

back

to

the

point

of

original

return

from

the

setjmpx

kernel

service

The

setjmpx

kernel

service

takes

the

address

of

a

jump

buffer

(a

label_t

structure)

as

an

explicit

parameter.

This

structure

can

be

defined

anywhere

including

on

the

stack

(as

an

automatic

variable).

After

noting

the

state

data

in

the

jump

buffer,

the

setjmpx

kernel

service

pushes

the

buffer

onto

the

top

of

a

stack

that

is

maintained

in

the

machine-state

save

structure.

The

longjmpx

kernel

service

is

used

to

return

to

the

point

in

the

code

at

which

the

setjmpx

kernel

service

was

called.

Specifically,

the

longjmpx

kernel

service

returns

to

the

most

recently

created

jump

buffer,

as

indicated

by

the

top

of

the

stack

anchored

in

the

machine-state

save

structure.

The

parameter

to

the

longjmpx

kernel

service

is

an

exception

code

that

is

passed

to

the

resumed

program

as

the

return

code

from

the

setjmp

kernel

service.

The

resumed

program

tests

this

code

to

determine

the

conditions

under

which

the

setjmpx

kernel

service

is

returning.

If

the

setjmpx

kernel

service

has

just

saved

its

jump

buffer,

the

return

code

is

0.

If

an

exception

has

occurred,

the

program

is

entered

by

a

call

to

the

longjmpx

kernel

service,

which

passes

along

a

return

code

that

is

not

equal

to

0.

Note:

Only

the

resources

listed

here

are

saved

by

the

setjmpx

kernel

service

and

restored

by

the

longjmpx

kernel

service.

Other

resources,

in

particular

segment

registers,

are

not

restored.

A

call

to

the

longjmpx

kernel

service,

by

definition,

returns

to

an

earlier

point

in

the

program.

The

program

code

must

free

any

resources

that

are

allocated

between

the

call

to

the

setjmpx

kernel

service

and

the

call

to

the

longjmpx

kernel

service.

If

the

exception

handler

stack

is

empty

when

the

longjmpx

kernel

service

is

issued,

there

is

no

place

to

jump

to

and

the

system

default

exception-handling

mechanism

is

used.

If

the

stack

is

not

empty,

the

context

that

is

defined

by

the

topmost

jump

buffer

is

reloaded

and

resumed.

The

topmost

buffer

is

then

removed

from

the

stack.

The

clrjmpx

kernel

service

removes

the

top

element

from

the

stack

as

placed

there

by

the

setjmpx

kernel

service.

The

caller

to

the

clrjmpx

kernel

service

is

expected

to

know

exactly

which

jump

buffer

is

being

removed.

This

should

have

been

established

earlier

in

the

code

by

a

call

to

the

setjmpx

kernel

service.

Accordingly,

the

address

of

the

buffer

is

required

as

a

parameter

to

the

clrjmpx

kernel

service.

It

can

then

perform

consistency

checking

by

asserting

that

the

address

passed

is

indeed

the

address

of

the

top

stack

element.

Exception

Handler

Environment

The

stacked

exception

handlers

run

in

the

environment

in

which

the

exception

occurs.

That

is,

an

exception

occurring

in

a

process

environment

causes

the

next

dispatch

of

the

process

to

run

the

exception

16

Kernel

Extensions

and

Device

Support

Programming

Concepts

handler

on

the

top

of

the

stack

of

exception

handlers

for

that

process.

An

exception

occurring

in

an

interrupt

handler

causes

the

interrupt

handler

to

return

to

the

context

saved

by

the

last

call

to

the

setjmpx

kernel

service

made

by

the

interrupt

handler.

Note:

An

interrupt

handler

context

is

newly

created

each

time

the

interrupt

handler

is

invoked.

As

a

result,

exception

handlers

for

interrupt

handlers

must

be

registered

(by

calling

the

setjmpx

kernel

service)

each

time

the

interrupt

handler

is

invoked.

Otherwise,

an

exception

detected

during

execution

of

the

interrupt

handler

will

be

handled

by

the

default

handler.

Restrictions

on

Using

the

setjmpx

Kernel

Service

Process

and

interrupt

handler

routines

registering

exception

handlers

with

the

setjmpx

kernel

service

must

not

return

to

their

caller

before

removing

the

saved

jump

buffer

or

buffers

from

the

list

of

jump

buffers.

A

saved

jump

buffer

can

be

removed

by

invoking

the

clrjmpx

kernel

service

in

the

reverse

order

of

the

setjmpx

calls.

The

saved

jump

buffer

must

be

removed

before

return

because

the

routine’s

context

no

longer

exists

once

the

routine

has

returned

to

its

caller.

If,

on

the

other

hand,

an

exception

does

occur

(that

is,

the

return

code

from

setjmpx

kernel

service

is

nonzero),

the

jump

buffer

is

automatically

removed

from

the

list

of

jump

buffers.

In

this

case,

a

call

to

the

clrjmpx

kernel

service

for

the

jump

buffer

must

not

be

performed.

Care

must

also

be

taken

in

defining

variables

that

are

used

after

the

context

save

(the

call

to

the

setjmpx

service),

and

then

again

by

the

exception

handler.

Sensitive

variables

of

this

nature

must

be

restored

to

their

correct

value

by

the

exception

handler

when

an

exception

occurs.

Note:

If

the

last

value

of

the

variable

is

desired

at

exception

time,

the

variable

data

type

must

be

declared

as

″volatile.″

Exception

handling

is

concluded

in

one

of

two

ways.

Either

a

registered

exception

handler

handles

the

exception

and

continues

from

the

saved

context,

or

the

default

exception

handler

is

reached

by

exhausting

the

stack

of

jump

buffers.

Exception

Codes

The

/usr/include/sys/except.h

file

contains

a

list

of

code

numbers

corresponding

to

the

various

types

of

hardware

exceptions.

When

an

exception

handler

is

invoked

(the

return

from

the

setjmpx

kernel

service

is

not

equal

to

0),

it

is

the

responsibility

of

the

handler

to

test

the

code

to

ensure

that

the

exception

is

one

the

routine

can

handle.

If

it

is

not

an

expected

code,

the

exception

handler

must:

v

Release

any

resources

that

would

not

otherwise

be

freed

(buffers,

segment

registers,

storage

acquired

using

the

xmalloc

routines)

v

Call

the

longjmpx

kernel

service,

passing

it

the

exception

code

as

a

parameter

Thus,

when

an

exception

handler

does

not

recognize

the

exception

for

which

it

has

been

invoked,

it

passes

the

exception

on

to

the

next

most

recent

exception

handler.

This

continues

until

an

exception

handler

is

reached

that

recognizes

the

code

and

can

handle

it.

Eventually,

if

no

exception

handler

can

handle

the

exception,

the

stack

is

exhausted

and

the

system

default

action

is

taken.

In

this

manner,

a

component

can

allocate

resources

(after

calling

the

setjmpx

kernel

service

to

establish

an

exception

handler)

and

be

assured

that

the

resources

will

later

be

released.

This

ensures

the

exception

handler

gets

a

chance

to

release

those

resources

regardless

of

what

events

occur

before

the

instruction

stream

(a

process-

or

interrupt-level

code)

is

terminated.

By

coding

the

exception

handler

to

recognize

what

exception

codes

it

can

process

rather

than

encoding

this

knowledge

in

the

stack

entries,

a

powerful

and

simple-to-use

mechanism

is

created.

Each

handler

Chapter

1.

Kernel

Environment

17

need

only

investigate

the

exception

code

that

it

receives

rather

than

just

assuming

that

it

was

invoked

because

a

particular

exception

has

occurred

to

implement

this

scheme.

The

set

of

exception

codes

used

cannot

have

duplicates.

Exceptions

generated

by

hardware

use

one

of

the

codes

in

the

/usr/include/sys/except.h

file.

However,

the

longjmpx

kernel

service

can

be

invoked

by

any

kernel

component,

and

any

integer

can

serve

as

the

exception

code.

A

mechanism

similar

to

the

old-style

setjmp

and

longjmp

kernel

services

can

be

implemented

on

top

of

the

setjmpx/longjmpx

stack

by

using

exception

codes

outside

the

range

of

those

used

for

hardware

exceptions.

To

implement

this

old-style

mechanism,

a

unique

set

of

exception

codes

is

needed.

These

codes

must

not

conflict

with

either

the

pre-assigned

hardware

codes

or

codes

used

by

any

other

component.

A

simple

way

to

get

such

codes

is

to

use

the

addresses

of

unique

objects

as

code

values.

For

example,

a

program

that

establishes

an

exception

handler

might

compare

the

exception

code

to

the

address

of

its

own

entry

point.

Later

on

in

the

calling

sequence,

after

any

number

of

intervening

calls

to

the

setjmpx

kernel

service

by

other

programs,

a

program

can

issue

a

call

to

the

longjmpx

kernel

service

and

pass

the

address

of

the

agreed-on

function

descriptor

as

the

code.

This

code

is

only

recognized

by

a

single

exception

handler.

All

the

intervening

ones

just

clean

up

their

resources

and

pass

the

code

to

the

longjmpx

kernel

service

again.

Addresses

of

functions

are

not

the

only

possibilities

for

unique

code

numbers.

For

example,

addresses

of

external

variables

can

also

be

used.

By

using

unigue,

system-wide

addresses,

the

problem

of

code-space

collision

is

transformed

into

a

problem

of

external-name

collision.

This

problem

is

easier

to

solve,

and

is

routinely

solved

whenever

the

system

is

built.

By

comparison,

pre-assigning

exception

numbers

by

using

#define

statements

in

a

header

file

is

a

much

more

cumbersome

and

error-prone

method.

Hardware

Detection

of

Exceptions

Each

of

the

exception

types

results

in

a

hardware

interrupt.

For

each

such

interrupt,

a

first-level

interrupt

handler

(FLIH)

saves

the

state

of

the

executing

program

and

calls

a

second-level

handler

(SLIH).

The

SLIH

is

passed

a

pointer

to

the

machine-state

save

structure

and

a

code

indicating

the

cause

of

the

interrupt.

When

a

SLIH

determines

that

a

hardware

interrupt

should

actually

be

considered

a

synchronous

exception,

it

sets

up

the

machine-state

save

to

invoke

the

longjmpx

kernel

service,

and

then

returns.

The

FLIH

then

resumes

the

instruction

stream

at

the

entry

to

the

longjmpx

service.

The

longjmpx

service

then

invokes

the

top

exception

handler

on

the

stack

or

takes

the

system

default

action

as

previously

described.

User-Mode

Exception

Handling

Exceptions

that

occur

in

a

user-mode

process

and

are

not

automatically

handled

by

the

kernel

cause

the

user-mode

process

to

be

signaled.

If

the

process

is

in

a

state

in

which

it

cannot

take

the

signal,

it

is

terminated

and

the

information

logged.

Kernel

routines

can

install

user-mode

exception

handlers

that

catch

exceptions

before

they

are

signaled

to

the

user-mode

process.

The

uexadd

and

uexdel

kernel

services

allow

system-wide

user-mode

exception

handlers

to

be

added

and

removed.

The

most

recently

registered

exception

handler

is

the

first

called.

If

it

cannot

handle

the

exception,

the

next

most

recent

handler

on

the

list

is

called,

and

this

second

handler

attempts

to

handle

the

exception.

If

this

attempt

fails,

successive

handlers

are

tried,

until

the

default

handler

is

called,

which

generates

the

signal.

Additional

information

about

the

exception

can

be

obtained

by

using

the

getexcept

kernel

service.

18

Kernel

Extensions

and

Device

Support

Programming

Concepts

Using

Kernel

Extensions

to

Support

64–bit

Processes

Kernel

extensions

in

the

32-bit

kernel

run

in

32-bit

mode,

while

kernel

extensions

in

the

64-bit

kernel

run

in

64-bit

mode.

Kernel

extensions

can

be

programmed

to

support

both

32-

and

64-bit

applications.

A

32-bit

kernel

extension

that

supports

64-bit

processes

can

also

be

loaded

on

a

32-bit

system

(where

64-bit

programs

cannot

run

at

all).

System

calls

can

be

made

available

to

32-

or

64-bit

processes,

selectively.

If

an

application

invokes

a

system

call

that

is

not

exported

to

processes

running

in

the

current

mode,

the

call

will

fail.

A

32-bit

kernel

extension

that

supports

64-bit

applications

on

AIX

4.3

cannot

be

used

to

support

64-bit

applications

on

AIX

5.1

and

beyond,

because

of

a

potential

incompatibility

with

data

types.

Therefore,

one

of

the

following

three

techniques

must

be

used

to

indicate

that

a

32-bit

kernel

extension

can

be

used

with

64-bit

applications:

v

The

module

type

of

the

kernel

extension

module

can

be

set

to

LT,

using

the

ld

command

with

the

-bM:LT

flag

v

If

sysconfig

is

used

to

load

a

kernel

extension,

the

SYS_64L

flag

can

be

logically

ored

with

the

SYS_SINGLELOAD

or

SYS_KLOAD

requires.

v

If

kmod_load

is

used

to

load

a

kernel

extension,

the

LD_64L

flag

can

be

specified

If

none

of

these

techniques

is

used,

a

kernel

extension

will

still

load,

but

64-bit

programs

with

calls

to

one

of

the

exported

system

calls

will

not

execute.

Kernel

extension

support

for

64-bit

applications

has

two

aspects:

The

first

aspect

is

the

use

of

kernel

services

for

working

with

the

64-bit

user

address

space.

The

64-bit

services

for

examining

and

manipulating

the

64-bit

address

space

are

as_att64,

as_det64,

as_geth64,

as_puth64,

as_seth64,

and

as_getsrval64.

The

services

for

copying

data

to

or

from

64-bit

address

spaces

are

copyin64,

copyout64,

copyinstr64,

fubyte64,

fuword64,

subyte64,

and

suword64.

The

service

for

doing

cross-memory

attaches

to

memory

in

a

64-bit

address

space

is

xmattach64.

The

services

for

creating

real

memory

mappings

are

rmmap_create64

and

rmmap_remove64.

The

major

difference

between

all

these

services

and

their

32-bit

counterparts

is

that

they

use

64-bit

user

addresses

rather

than

32-bit

user

addresses.

The

service

for

determining

whether

a

process

(and

its

address

space)

is

32-bit

or

64-bit

is

IS64U.

The

second

aspect

of

supporting

64-bit

applications

on

the

32-bit

kernel

is

taking

64-bit

user

data

pointers

and

using

the

pointers

directly

or

transforming

64-bit

pointers

into

32-bit

pointers

which

can

be

used

in

the

kernel.

If

the

types

of

the

parameters

passed

to

a

system

call

are

all

32

bits

or

smaller

when

compiled

in

64-bit

mode,

no

additional

work

is

required.

However,

if

64-bit

data,

long

or

pointers,

are

passed

to

a

system

call,

the

function

must

reconstruct

the

full

64-bit

values.

When

a

64-bit

process

makes

a

system

call

in

the

32-bit

kernel,

the

system

call

handler

saves

the

high-order

32

bits

of

each

parameter

and

converts

the

parameters

to

32-bit

values.

If

the

full

64-bit

value

is

needed,

the

get64bitparm

service

should

be

called.

This

service

converts

a

32-bit

parameter

and

a

0-based

parameter

number

into

a

64-bit

long

long

value.

These

64-bit

values

can

be

manipulated

directly

by

using

services

such

as

copyin64,

or

mapped

to

a

32-bit

value,

by

calling

as_remap64.

In

this

way,

much

of

the

kernel

does

not

have

to

deal

with

64-bit

addresses.

Services

such

as

copyin

will

correctly

transform

a

32-bit

value

back

into

a

64-bit

value

before

referencing

user

space.

It

is

also

possible

to

obtain

the

64-bit

value

from

a

32-bit

pointer

by

calling

as_unremap64.

Both

as_remap64

and

as_unremap64

are

prototyped

in

/usr/include/sys/remap.h.

Chapter

1.

Kernel

Environment

19

64-bit

Kernel

Extension

Programming

Environment

C

Language

Data

Model

The

64-bit

kernel

uses

the

LP64

(Long

Pointer

64-bit)

C

language

data

model

and

requires

kernel

extensions

to

do

the

same.

The

LP64

data

model

defines

pointers,

long,

and

long

long

types

as

64

bits,

int

as

32

bits,

short

as

16

bits,

and

char

as

8

bits.

In

contrast,

the

32-bit

kernel

uses

the

ILP32

data

model,

which

differs

from

LP64

in

that

long

and

pointer

types

are

32

bits.

In

order

to

port

an

existing

32-bit

kernel

extension

to

the

64-bit

kernel

environment,

source

code

must

be

modified

to

be

type-safe

under

LP64.

This

means

ensuring

that

data

types

are

used

in

a

consistent

fashion.

Source

code

is

incorrect

for

the

64-bit

environment

if

it

assumes

that

pointers,

long,

and

int

are

all

the

same

size.

In

addition,

the

use

of

system-derived

types

must

be

examined

whenever

values

are

passed

from

an

application

to

the

kernel.

For

example,

size_t

is

a

system-derived

type

whose

size

depends

on

the

compilation

mode,

and

key_t

is

a

system-derived

type

that

is

64

bits

in

the

64-bit

kernel

environment,

and

32

bits

otherwise.

In

cases

where

32-bit

and

64-bit

versions

of

a

kernel

extension

are

to

be

generated

from

a

single

source

base,

the

kernel

extension

must

be

made

type-safe

for

both

the

LP64

and

ILP32

data

models.

To

facilitate

this,

the

sys/types.h

and

sys/inttypes.h

header

files

contain

fixed-width

system-derived

types,

constants,

and

macros.

For

example,

the

int8_t,

int16_t,

int32_t,

int64_t

fixed-width

types

are

provided

along

with

constants

that

specify

their

maximum

values.

Kernel

Data

Structures

Several

global,

exported

kernel

data

structures

have

been

changed

in

the

64-bit

kernel,

in

order

to

support

scalability

and

future

functionality.

These

changes

include

larger

structure

sizes

as

a

result

of

being

compiled

under

the

LP64

data

model.

In

porting

a

kernel

extension

to

the

64-bit

kernel

environment,

these

data

structure

changes

must

be

considered.

Function

Prototypes

Function

prototypes

are

more

important

in

the

64-bit

programming

environment

than

the

32-bit

programming

environment,

because

the

default

return

value

of

an

undeclared

function

is

int.

If

a

function

prototype

is

missing

for

a

function

returning

a

pointer,

the

compiler

will

convert

the

returned

value

to

an

int

by

setting

the

high-order

word

to

0,

corrupting

the

value.

In

addition,

function

prototypes

allow

the

compiler

to

do

more

type

checking,

regardless

of

the

compilation

mode.

When

compiled

in

64-bit

mode,

system

header

files

define

full

function

prototypes

for

all

kernel

services

provided

by

the

64-bit

kernel.

By

defining

the

__FULL_PROTO

macro,

function

prototypes

are

provided

in

32-bit

mode

as

well.

It

is

recommended

that

function

prototypes

be

provided

by

including

the

system

header

files,

instead

of

providing

a

prototype

in

a

source

file.

Compiler

Options

To

compile

a

kernel

extension

in

64-bit

mode,

the

-q64

flag

must

be

used.

To

check

for

missing

function

prototypes,

-qinfo=pro

can

be

specified.

To

compile

in

ANSI

mode,

use

the

-qlanglvl=ansi

flag.

When

this

flag

is

used,

additional

error

checking

will

be

performed

by

the

compiler.

To

link-edit

a

kernel

extension,

the

-b64

option

must

be

used

with

the

ld

command.

Note:

Do

not

link

kernel

extensions

using

the

cc

command.

Conditional

Compilation

When

compiling

in

64-bit

mode,

the

compiler

automatically

defines

the

macro

__64BIT__.

Kernel

extensions

should

always

be

compiled

with

the

_KERNEL

macro

defined,

and

if

sys/types.h

is

included,

20

Kernel

Extensions

and

Device

Support

Programming

Concepts

the

macro

__64BIT_KERNEL

will

be

defined

for

kernel

extensions

being

compiled

in

64-bit

mode.

The

__64BIT_KERNEL

macro

can

be

used

to

provide

for

conditional

compilation

when

compiling

kernel

extensions

from

common

source

code.

Kernel

extensions

should

not

be

compiled

with

the

_KERNSYS

macro

defined.

If

this

macro

is

defined,

the

resulting

kernel

extension

will

not

be

supported,

and

binary

compatibility

will

not

be

assured

with

future

releases.

Kernel

Extension

Libraries

The

libcsys.a

and

libsys.a

libraries

are

supported

for

both

32-

and

64-bit

kernel

extensions.

Each

archive

contains

32-

and

64-bit

members.

Function

prototypes

for

all

the

functions

in

libcsys.a

are

found

in

sys/libcsys.h.

Kernel

Execution

Mode

Within

the

64-bit

kernel,

all

kernel

mode

subsystems,

including

kernel

extensions,

run

exclusively

in

64-bit

processor

mode

and

are

capable

of

accessing

data

or

executing

instructions

at

any

location

within

the

kernel’s

64-bit

address

space,

including

those

found

above

the

first

4GBs

of

this

address

space.

This

availability

of

the

full

64-bit

address

space

extends

to

all

kernel

entities,

including

kprocs

and

interrupt

handlers,

and

enables

the

potential

for

software

resource

scalability

through

the

introduction

of

an

enormous

kernel

address

space.

Kernel

Address

Space

The

64-bit

kernel

provides

a

common

user

and

kernel

64-bit

address

space.

This

is

different

from

the

32-bit

kernel

where

separate

32-bit

kernel

and

user

address

spaces

exist.

Kernel

Address

Space

Organization

The

kernel

address

space

has

a

different

organization

under

the

the

64-bit

kernel

than

under

the

32-bit

kernel

and

extends

beyond

the

4

GB

line.

In

addition,

the

organization

of

kernel

space

under

the

64-bit

kernel

can

differ

between

hardware

systems.

To

cope

with

this,

kernel

extensions

must

not

have

any

dependencies

on

the

locations,

relative

or

absolute,

of

the

kernel

text,

kernel

global

data,

kernel

heap

data,

and

kernel

stack

values,

and

must

appropriately

type

variables

used

to

hold

kernel

addresses.

Temporary

Attachment

The

64-bit

kernel

provides

kernel

extensions

with

the

capability

to

temporarily

attach

virtual

memory

segments

to

the

kernel

space

for

the

current

thread

of

kernel

mode

execution.

This

capability

is

also

available

on

the

32-bit

kernel,

and

is

provided

through

the

vm_att

and

vm_det

services.

A

total

of

four

concurrent

temporary

attaches

will

be

supported

under

a

single

thread

of

execution.

Global

Regions

The

64-bit

kernel

provides

kernel

extensions

with

the

capability

to

create

global

regions

within

the

kernel

address

space.

Once

created,

a

region

is

globally

accessible

to

all

kernel

code

until

it

is

destroyed.

Regions

may

be

created

with

unique

characteristics,

for

example,

page

protection,

that

suit

kernel

extension

requirements

and

are

different

from

the

global

virtual

memory

allocated

from

the

kernel_heap.

Global

regions

are

also

useful

for

kernel

extensions

that

in

the

past

have

organized

their

data

around

virtual

memory

segments

and

require

sizes

and

alignments

that

are

inappropriate

for

the

kernel

heap.

Under

the

64-bit

kernel,

this

memory

can

be

provided

through

global

regions

rather

than

separate

virtual

memory

segments,

thus

avoiding

the

complexity

and

performance

cost

of

temporarily

attaching

virtual

memory

segments.

Global

regions

are

created

and

destroyed

with

the

vm_galloc

and

vm_gfree

kernel

services.

Chapter

1.

Kernel

Environment

21

32-bit

Kernel

Extension

Considerations

The

introduction

of

the

scalable

64-bit

ABI

requires

32-bit

kernel

extensions

to

be

modified

in

order

to

be

used

by

64-bit

applications

on

AIX

5.1

and

later.

Existing

AIX

4.3

kernel

extensions

can

still

be

used

without

change

for

32-bit

applications

on

AIX

5.1

and

later.

If

an

AIX

4.3

kernel

extension

exports

64-bit

system

calls,

the

symbols

will

be

marked

as

invalid

for

64-bit

processes,

and

if

a

64-bit

program

requires

these

symbols,

the

program

will

fail

to

execute.

Once

a

kernel

extension

has

been

updated

to

support

the

new

64-bit

ABI,

there

are

two

ways

to

indicate

that

the

kernel

extension

can

be

used

by

64-bit

processes

again.

The

first

way

uses

a

linker

flag

to

mark

the

module

as

a

ported

kernel

extension.

Use

the

bM:LT

linker

flag

to

mark

the

module

in

this

manner.

The

second

way

requires

changing

the

sysconfig

or

kmod_load

call

used

to

load

the

kernel

extension.

When

the

SYS_64L

flag

is

passed

to

sysconfig,

or

the

LD_64L

flag

is

passed

to

kmod_load,

the

specified

kernel

extension

will

be

allowed

to

export

64-bit

system

calls.

Kernel

extensions

in

the

64-bit

kernel

are

always

assumed

to

support

the

64-bit

ABI.

The

module

type,

specified

by

the

-bM

linker

flag,

as

well

as

the

SYS_64L

and

LD_64L

flags

are

always

ignored

when

the

64-bit

kernel

is

running.

32-bit

device

drivers

cannot

be

used

by

64-bit

applications

unless

the

DEV_64L

flag

is

set

in

the

d_opts

field.

The

DEV_64BIT

flag

is

ignored,

and

in

the

64-bit

kernel,

DEV_64L

is

ignored

as

well.

Related

Information

Chapter

15,

“Serial

Direct

Access

Storage

Device

Subsystem,”

on

page

287

“Locking

Kernel

Services”

on

page

62

“Handling

Signals

While

in

a

System

Call”

on

page

32

“System

Calls

Available

to

Kernel

Extensions”

on

page

35

Subroutine

References

The

setpri

subroutine,

sysconfig

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2.

Commands

References

The

ar

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

1.

The

ld

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

Technical

References

The

clrjmpx

kernel

service,

copyin

kernel

service,

copyinstr

kernel

service,

copyout

kernel

service,

creatp

kernel

service,

disable_lock

kernel

service,

e_sleep

kernel

service,

e_sleepl

kernel

service,

e_wait

kernel

service,

et_wait

kernel

service,

fubyte

kernel

service,

fuword

kernel

service,

getexcept

kernel

service,

i_disable

kernel

service,

i_enable

kernel

service,

i_init

kernel

service,

initp

kernel

service,

lockl

kernel

service,

longjmpx

kernel

service,

setjmpx

kernel

service,

setpinit

kernel

service,

sig_chk

kernel

service,

subyte

kernel

service,

suword

kernel

service,

uiomove

kernel

service,

unlockl

kernel

service,

ureadc

kernel

service,

uwritec

kernel

service,

uexadd

kernel

service,

uexdel

kernel

service,

xmalloc

kernel

service,

xmattach

kernel

service,

xmdetach

kernel

service,

xmemin

kernel

service,

xmemout

kernel

service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

The

uio

structure

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

22

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

2.

System

Calls

A

system

call

is

a

routine

that

allows

a

user

application

to

request

actions

that

require

special

privileges.

Adding

system

calls

is

one

of

several

ways

to

extend

the

functions

provided

by

the

kernel.

The

distinction

between

a

system

call

and

an

ordinary

function

call

is

only

important

in

the

kernel

programming

environment.

User-mode

application

programs

are

not

usually

aware

of

this

distinction.

Operating

system

functions

are

made

available

to

the

application

program

in

the

form

of

programming

libraries.

A

set

of

library

functions

found

in

a

library

such

as

libc.a

can

have

functions

that

perform

some

user-mode

processing

and

then

internally

start

a

system

call.

In

other

cases,

the

system

call

can

be

directly

exported

by

the

library

without

any

user-space

code.

For

more

information

on

programming

libraries,

see

“Using

Libraries”

on

page

4.

Operating

system

functions

available

to

application

programs

can

be

split

or

moved

between

user-mode

functions

and

kernel-mode

functions

as

required

for

different

releases

or

machine

platforms.

Such

movement

does

not

affect

the

application

program.

Chapter

1,

“Kernel

Environment,”

on

page

1

provides

more

information

on

how

to

use

system

calls

in

the

kernel

environment.

Differences

Between

a

System

Call

and

a

User

Function

A

system

call

differs

from

a

user

function

in

several

key

ways:

v

A

system

call

has

more

privilege

than

a

normal

subroutine.

A

system

call

runs

with

kernel-mode

privilege

in

the

kernel

protection

domain.

v

System

call

code

and

data

are

located

in

global

kernel

memory.

v

System

call

routines

can

create

and

use

kernel

processes

to

perform

asynchronous

processing.

v

System

calls

cannot

use

shared

libraries

or

any

symbols

not

found

in

the

kernel

protection

domain.

Understanding

Protection

Domains

There

are

two

protection

domains

in

the

operating

system:

the

user

protection

domain

and

the

kernel

mode

protection

domain.

User

Protection

Domain

Application

programs

run

in

the

user

protection

domain,

which

provides:

v

Read

and

write

access

to

the

data

region

of

the

process

v

Read

access

to

the

text

and

shared

text

regions

of

the

process

v

Access

to

shared

data

regions

using

the

shared

memory

functions.

When

a

program

is

running

in

the

user

protection

domain,

the

processor

executes

instructions

in

the

problem

state,

and

the

program

does

not

have

direct

access

to

kernel

data.

Kernel

Protection

Domain

The

code

in

the

kernel

and

kernel

extensions

run

in

the

kernel

protection

domain.

This

code

includes

interrupt

handlers,

kernel

processes,

device

drivers,

system

calls,

and

file

system

code.

The

processor

is

in

the

kernel

protection

domain

when

it

executes

instructions

in

the

privileged

state,

which

provides:

v

Read

and

write

access

to

the

global

kernel

address

space

v

Read

and

write

access

to

the

thread’s

uthread

block

and

u-block,

except

when

an

interrupt

handler

is

running.

©

Copyright

IBM

Corp.

1997,

2004

23

Code

running

in

the

kernel

protection

domain

can

affect

the

execution

environments

of

all

processes

because

it:

v

Can

access

global

system

data

v

Can

use

all

kernel

services

v

Is

exempt

from

all

security

constraints.

Programming

errors

in

the

code

running

in

the

kernel

protection

domain

can

cause

the

operating

system

to

fail.

In

particular,

a

process’s

user

data

cannot

be

accessed

directly,

but

must

be

accessed

using

the

copyin

and

copyout

kernel

services,

or

their

variants.

These

routines

protect

the

kernel

from

improperly

supplied

user

data

addresses.

Application

programs

can

gain

controlled

access

to

kernel

data

by

making

system

calls.

Access

to

functions

that

directly

or

indirectly

invoke

system

calls

is

typically

provided

by

programming

libraries,

providing

access

to

operating

system

functions.

Understanding

System

Call

Execution

When

a

user

program

invokes

a

system

call,

a

system

call

instruction

is

executed,

which

causes

the

processor

to

begin

executing

the

system

call

handler

in

the

kernel

protection

domain.

This

system

call

handler

performs

the

following

actions:

1.

Sets

the

ut_error

field

in

the

uthread

structure

to

0

2.

Switches

to

a

kernel

stack

associated

with

the

calling

thread

3.

Calls

the

function

that

implements

the

requested

system

call.

The

system

loader

maintains

a

table

of

the

functions

that

are

used

for

each

system

call.

The

system

call

runs

within

the

calling

thread,

but

with

more

privilege

because

system

calls

run

in

the

kernel

protection

domain.

After

the

function

implementing

the

system

call

has

performed

the

requested

action,

control

returns

to

the

system

call

handler.

If

the

ut_error

field

in

the

uthread

structure

has

a

non-zero

value,

the

value

is

copied

to

the

application’s

thread-specific

errno

variable.

If

a

signal

is

pending,

signal

processing

take

place,

which

can

result

in

an

application’s

signal

handler

being

invoked.

If

no

signals

are

pending,

the

system

call

handler

restores

the

state

of

the

calling

thread,

which

is

resumed

in

the

user

protection

domain.

For

more

information

on

protection

domains,

see

“Understanding

Protection

Domains”

on

page

23.

Accessing

Kernel

Data

While

in

a

System

Call

A

system

call

can

access

data

that

the

calling

thread

cannot

access

because

system

calls

execute

in

the

kernel

protection

domain.

The

following

are

the

general

categories

of

kernel

data:

v

The

ublock

or

u-block

(user

block

data)

structure:

System

calls

should

use

the

kernel

services

to

read

or

modify

data

traditionally

found

in

the

ublock

or

uthread

structures.

For

example,

the

system

call

handler

uses

the

value

of

the

thread’s

ut_error

field

to

update

the

thread-specific

errno

variable

before

returning

to

user

mode.

This

field

can

be

read

or

set

by

using

the

getuerror

and

setuerror

kernel

services.

The

current

process

ID

can

be

obtained

by

using

the

getpid

kernel

service,

and

the

current

thread

ID

can

be

obtained

by

using

the

thread_self

kernel

service.

v

Global

memory

System

calls

can

also

access

global

memory

such

as

the

kernel

and

kernel

data

regions.

These

regions

contain

the

code

and

static

data

for

the

system

call

as

well

as

the

rest

of

the

kernel.

v

The

stack

for

a

system

call:

A

system

call

routine

runs

on

a

protected

stack

associated

with

a

calling

thread,

which

allows

a

system

call

to

execute

properly

even

when

the

stack

pointer

to

the

calling

thread

is

invalid.

In

addition,

privileged

data

can

be

saved

on

the

stack

without

danger

of

exposing

the

data

to

the

calling

thread.

24

Kernel

Extensions

and

Device

Support

Programming

Concepts

Attention:

Incorrectly

modifying

fields

in

kernel

or

user

block

structures

can

cause

unpredictable

results

or

system

crashes.

Passing

Parameters

to

System

Calls

Parameters

are

passed

to

system

calls

in

the

same

way

that

parameters

are

passed

to

other

functions,

but

some

additional

calling

conventions

and

limitations

apply.

First,

system

calls

cannot

have

floating-point

parameters.

In

fact,

the

operating

system

does

not

preserve

the

contents

of

floating-point

registers

when

a

system

call

is

preempted

by

another

thread,

so

system

calls

cannot

use

any

floating-point

operations.

Second,

a

system

call

in

the

32–bit

kernel

cannot

return

a

long

long

value

to

a

32–bit

application.

In

32–bit

mode,

long

long

values

are

returned

in

a

pair

of

general

purpose

registers,

GPR3

and

GPR4.

Only

GPR3

is

preserved

by

the

system

call

handler

before

it

returns

to

the

application.

A

system

call

in

the

32–bit

kernel

can

return

a

64–bit

value

to

a

64–bit

application,

but

the

saveretval64

kernel

service

must

used.

Third,

since

a

system

call

runs

on

its

own

stack,

the

number

of

arguments

that

can

be

passed

to

a

system

call

is

limited.

The

operating

system

linkage

conventions

specify

that

up

to

eight

general

purpose

registers

are

used

for

parameter

passing.

If

more

parameters

exist

than

will

fit

in

eight

registers,

the

remaining

parameters

are

passed

in

the

stack.

Because

a

system

call

does

not

have

direct

access

to

the

application’s

stack,

all

parameters

for

system

calls

must

fit

in

eight

registers.

Some

parameters

are

passed

in

multiple

registers.

For

example,

32-bit

applications

pass

long

long

parameters

in

two

registers,

and

structures

passed

by

value

can

require

multiple

registers,

depending

on

the

structure

size.

The

writer

of

a

system

call

should

be

familiar

with

the

way

parameters

are

passed

by

the

compiler

and

ensure

that

the

8-register

limit

is

not

exceeded.

For

more

information

on

parameter

calling

conventions,

see

Subroutine

Linkage

Convention

in

Assembler

Language

Reference.

Finally,

because

32-

and

64-bit

applications

are

supported

by

both

the

32-

and

64-bit

kernels,

the

data

model

used

by

the

kernel

does

not

always

match

the

data

model

used

by

the

application.

When

the

data

models

do

not

match,

the

system

call

might

have

to

perform

extra

processing

before

parameters

can

be

used.

Regardless

of

whether

the

32-bit

or

64-bit

kernel

is

running,

the

interface

that

is

provided

by

the

kernel

to

applications

must

be

identical.

This

simplifies

the

development

of

applications

and

libraries,

because

their

behavior

does

not

depend

on

the

mode

of

the

kernel.

On

the

other

hand,

system

calls

might

need

to

know

the

mode

of

the

calling

process.

The

IS64U

macro

can

be

used

to

determine

if

the

caller

of

a

system

call

is

a

64-bit

process.

For

more

information

on

the

IS64U

macro,

see

IS64U

Kernel

Service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

The

ILP32

and

LP64

data

models

differ

in

the

way

that

pointers

and

long

and

long

long

parameters

are

treated

when

used

in

structures

or

passed

as

functional

parameters.

The

following

tables

summarize

the

differences.

Type

Size

Used

as

Parameter

long

32

bits

One

register

pointer

32

bits

One

register

long

long

64

bits

Two

registers

Type

Size

Used

as

Parameter

long

64

bits

One

register

Chapter

2.

System

Calls

25

Type

Size

Used

as

Parameter

pointer

64

bits

One

register

long

long

64

bits

One

register

System

calls

using

these

types

must

take

the

differing

data

models

into

account.

The

treatment

of

these

types

depends

on

whether

they

are

used

as

parameters

or

in

structures

passed

as

parameters

by

value

or

by

reference.

Passing

Scalar

Parameters

to

System

Calls

Scalar

parameters

(pointers

and

integral

values)

are

passed

in

registers.

The

combinations

of

kernel

and

application

modes

are:

v

32–bit

application

support

on

the

64–bit

kernel

v

64–bit

application

support

on

the

64–bit

kernel

v

32–bit

application

support

on

the

32–bit

kernel

v

64–bit

application

support

on

the

32–bit

kernel

32-bit

Application

Support

on

the

64-bit

Kernel

When

a

32-bit

application

makes

a

system

call

to

the

64-bit

kernel,

the

system

call

handler

zeros

the

high-order

word

of

each

parameter

register.

This

allows

64-bit

system

calls

to

use

pointers

and

unsigned

long

parameters

directly.

Signed

and

unsigned

integer

parameters

can

also

be

used

directly

by

64-bit

system

calls.

This

is

because

in

64-bit

mode,

the

compiler

generates

code

that

sign

extends

or

zero

fills

integers

passed

as

parameters.

Similar

processing

is

performed

for

char

and

short

parameters,

so

these

types

do

not

require

any

special

handling

either.

Only

signed

long

and

long

long

parameters

need

additional

processing.

Signed

long

Parameters:

To

convert

a

32-bit

signed

long

parameter

to

a

64-bit

value,

the

32-bit

value

must

be

sign

extended.

The

LONG32TOLONG64

macro

is

provided

for

this

operation.

It

converts

a

32-bit

signed

value

into

a

64-bit

signed

value,

as

shown

in

this

example:

syscall1(long

incr)

{

/*

If

the

caller

is

a

32-bit

process,

convert

*

’incr’

to

a

signed,

64-bit

value.

*/

if

(!IS64U)

incr

=

LONG32TOLONG64(incr);

.

.

.

}

If

a

parameter

can

be

either

a

pointer

or

a

symbolic

constant,

special

handling

is

needed.

For

example,

if

-1

is

passed

as

a

pointer

argument

to

indicate

a

special

case,

comparing

the

pointer

to

-1

will

fail,

as

will

unconditionally

sign-extending

the

parameter

value.

Code

similar

to

the

following

should

be

used:

syscall2(void

*ptr)

{

/*

If

caller

is

a

32-bit

process,

*

check

for

special

parameter

value.

*/

if

(!IS64U

&&

(LONG32TOLONG64(ptr)

==

-1)

ptr

=

(void

*)-1;

if

(ptr

==

(void

*)-1)

special_handling();

else

{

.

26

Kernel

Extensions

and

Device

Support

Programming

Concepts

.

.

}

}

Similar

treatment

is

required

when

an

unsigned

long

parameter

is

interpreted

as

a

signed

value.

long

long

Parameters:

A

32-bit

application

passes

a

long

long

parameter

in

two

registers,

while

a

64-bit

kernel

system

call

uses

a

single

register

for

a

long

long

parameter

value.

The

system

call

function

prototype

cannot

match

the

function

prototype

used

by

the

application.

Instead,

each

long

long

parameter

should

be

replaced

by

a

pair

of

uintptr_t

parameters.

Subsequent

parameters

should

be

replaced

with

uintptr_t

parameters

as

well.

When

the

caller

is

a

32-bit

process,

a

single

64-bit

value

will

be

constructed

from

two

consecutive

parameters.

This

operation

can

be

performed

using

the

INTSTOLLONG

macro.

For

a

64-bit

caller,

a

single

parameter

is

used

directly.

For

example,

suppose

the

application

function

prototype

is:

syscall3(void

*ptr,

long

long

len1,

long

long

len2,

int

size);

The

corresponding

system

call

code

should

be

similar

to:

syscall3(void

*ptr,

uintptr_t

L1,

uintptr_t

L2,

uintptr_t

L3,

uintptr_t

L4,

uintptr_t

L5)

{

long

len1;

long

len2;

int

size;

/*

If

caller

is

a

32-bit

application,

len1

*

and

len2

must

be

constructed

from

pairs

of

*

parameters.

Otherwise,

a

single

parameter

*

can

be

used

for

each

length.

*/

if

(!IS64U)

{

len1

=

INTSTOLLONG(L1,

L2);

len2

=

INTSTOLLONG(L3,

L4);

size

=

(int)L5;

}

else

{

len1

=

(long)L1

len2

=

(long)L2

size

=

(int)L3;

}

.

.

.

}

64-bit

Application

Support

on

the

64-bit

Kernel

For

the

most

part,

system

call

parameters

from

a

64-bit

application

can

be

used

directly

by

64-bit

system

calls.

The

system

call

handler

does

not

modify

the

parameter

registers,

so

the

system

call

sees

the

same

values

that

were

passed

by

the

application.

The

only

exceptions

are

the

pid_t

and

key_t

types,

which

are

32-bit

signed

types

in

64-bit

applications,

but

are

64-bit

signed

types

in

64-bit

system

calls.

Before

these

two

types

can

be

used,

the

32-bit

parameter

values

must

be

sign

extended

using

the

LONG32TOLONG64

macro.

32-bit

Application

Support

on

the

32-bit

Kernel

No

special

parameter

processing

is

required

when

32-bit

applications

call

32-bit

system

calls.

Application

parameters

can

be

used

directly

by

system

calls.

Chapter

2.

System

Calls

27

64-bit

Application

Support

on

the

32-bit

Kernel

When

64-bit

applications

make

system

calls,

64-bit

parameters

are

passed

in

registers.

When

32-bit

system

calls

are

running,

the

high-order

words

of

the

parameter

registers

are

not

visible,

so

64-bit

parameters

cannot

be

obtained

directly.

To

allow

64-bit

parameter

values

to

be

used

by

32-bit

system

calls,

the

system

call

handler

saves

the

high-order

word

of

each

64-bit

parameter

register

in

a

save

area

associated

with

the

current

thread.

If

a

system

call

needs

to

obtain

the

full

64-bit

value,

use

the

get64bitparm

kernel

service.

If

a

64-bit

parameter

is

an

address,

the

system

call

might

not

be

able

to

use

the

address

directly.

Instead,

it

might

be

necessary

to

map

the

64-bit

address

into

a

32-bit

address,

which

can

be

passed

to

various

kernel

services.

Access

to

64-bit

System

Call

Parameter

Values

When

a

32-bit

system

call

function

is

called

by

the

system

call

handler

on

behalf

of

a

64-bit

process,

the

parameter

registers

are

treated

as

32-bit

registers,

and

the

system

call

function

can

only

see

the

low-order

word

of

each

parameter.

For

integer,

char,

or

short

parameters,

the

parameter

can

be

used

directly.

Otherwise,

the

get64bitparm

kernel

service

must

be

called

to

obtain

the

full

64-bit

parameter

value.

This

kernel

service

takes

two

parameters:

the

zero-based

index

of

the

parameter

to

be

obtained,

and

the

value

of

the

parameter

as

seen

by

the

system

call

function.

This

value

is

the

low-order

word

of

the

original

64-bit

parameter,

and

it

will

be

combined

with

the

high-order

word

that

was

saved

by

the

system

call

handler,

allowing

the

original

64-bit

parameter

to

be

returned

as

a

long

long

value.

For

example,

suppose

that

the

first

and

third

parameters

of

a

system

call

are

64-bit

values.

The

full

parameter

values

are

obtained

as

shown:

#include

<sys/types.h>

syscall4(char

*str,

int

fd,

long

count)

{

ptr64

str64;

int64

count64;

if

(IS64U)

{

/*

get

64-bit

address.

*/

str64

=

get64bitparm(str,

0);

/*

get

64-bit

value

*/

count64

=

get64bitparm(count,

2);

}

.

.

.

}

The

get64bitparm

kernel

service

must

not

be

used

when

the

caller

is

a

32-bit

process,

nor

should

it

be

used

when

the

parameter

type

is

an

int

or

smaller.

In

these

cases,

the

system

call

parameter

can

be

used

directly.

For

example,

the

fd

parameter

in

the

previous

example

can

be

used

directly.

Using

64-bit

Address

Parameters

When

a

system

call

parameter

is

a

pointer

passed

from

a

64-bit

application,

the

full

64-bit

address

is

obtained

by

calling

the

get64bitparm

kernel

service.

Thereafter,

consideration

must

be

given

as

to

how

the

address

will

be

used.

A

system

call

can

use

a

64-bit

address

to

access

user-space

memory

by

calling

one

of

the

64-bit

data-movement

kernel

services,

such

as

copyin64,

copyout64,

or

copyinstr64.

Alternatively,

if

the

user

address

is

to

be

passed

to

kernel

services

that

expect

32-bit

addresses,

the

64-bit

address

should

be

mapped

to

a

32-bit

address.

28

Kernel

Extensions

and

Device

Support

Programming

Concepts

Mapping

associates

a

32-bit

value

with

a

64-bit

address.

This

32-bit

value

can

be

passed

to

kernel

services

in

the

32-bit

kernel

that

expect

pointer

parameters.

When

the

32-bit

value

is

passed

to

a

data-movement

kernel

service,

such

as

copyin

or

copyout,

the

original

64-bit

address

will

be

obtained

and

used.

Address

mapping

allows

common

code

to

be

used

for

many

kernel

services.

Only

the

data-movement

routines

need

to

be

aware

of

the

address

mapping.

Consider

a

system

call

that

takes

a

path

name

and

a

buffer

pointer

as

parameters.

This

system

call

will

use

the

path

name

to

obtain

information

about

the

file,

and

use

the

buffer

pointer

to

return

the

information.

Because

pathname

is

passed

to

the

lookupname

kernel

service,

which

takes

a

32-bit

pointer,

the

pathname

parameter

must

be

mapped.

The

buffer

address

can

be

used

directly.

For

example:

int

syscall5

(

char

*pathname,

char

*buffer)

{

ptr64

upathanme;

ptr64

ubuffer;

struct

vnode

*vp;

struct

cred

*crp;

/*

If

64-bit

application,

obtain

64-bit

parameter

*

values

and

map

"pathname".

*/

if

(IS64U)

{

upathname

=

get64bitparm(pathname,

0);

/*

The

as_remap64()

call

modifies

pathname.

*/

as_remap64(upathname,

MAXPATH,

&pathname);

ubuffer

=

get64bitparm(buffer,

1);

}

else

{

/*

For

32-bit

process,

convert

32-bit

address

*

64-bit

address.

*/

ubuffer

=

(ptr64)buffer;

}

crp

=

crref();

rc

=

lookupname(pathname,

USR,

L_SEARCH,

NULL,

&vp,

crp);

getinfo(vp,

&local_buffer);

/*

Copy

information

to

user

space,

*

for

both

32-bit

and

64-bit

applications.

*/

rc

=

copyout64(&local_buffer,

ubuffer,

strlen(local_buffer));

.

.

.

}

The

function

prototype

for

the

get64bitparm

kernel

service

is

found

in

the

sys/remap.h

header

file.

To

allow

common

code

to

be

written,

the

get64bitparm

kernel

service

is

defined

as

a

macro

when

compiling

in

64-bit

mode.

The

macro

simply

returns

the

specified

parameter

value,

as

this

value

is

already

a

full

64-bit

value.

In

some

cases,

a

system

call

or

kernel

service

will

need

to

obtain

the

original

64-bit

address

from

the

32-bit

mapped

address.

The

as_unremap64

kernel

service

is

used

for

this

purpose.

Chapter

2.

System

Calls

29

Returning

64-bit

Values

from

System

Calls

For

some

system

calls,

it

is

necessary

to

return

a

64-bit

value

to

64-bit

applications.

The

64-bit

application

expects

the

64-bit

value

to

be

contained

in

a

single

register.

A

32-bit

system

call,

however,

has

no

way

to

set

the

high-order

word

of

a

64–bit

register.

The

saveretval64

kernel

service

allows

a

32-bit

system

call

to

return

a

64-bit

value

to

a

64-bit

application.

This

kernel

service

takes

a

single

long

long

parameter,

saves

the

low-order

word

(passed

in

GPR4)

in

a

save

area

for

the

current

thread,

and

returns

the

original

parameter.

Depending

on

the

return

type

of

the

system

call

function,

this

value

can

be

returned

to

the

system

call

handler,

or

the

high-order

word

of

the

full

64-bit

return

value

can

be

returned.

After

the

system

call

function

returns

to

the

system

call

handler,

the

original

64-bit

return

value

will

be

reconstructed

in

GPR3,

and

returned

to

the

application.

If

the

saveretval64

kernel

service

is

not

called

by

the

system

call,

the

high-order

word

of

GPR3

is

zeroed

before

returning

to

the

application.

For

example:

void

*

syscall6

(

int

arg)

{

if

(IS64U)

{

ptr64

rc

=

f(arg);

saveretval64(rc);

/*

Save

low-order

word

*/

return

(void

*)(rc

>>

32);

/*

Return

high-order

word

as

*

32-bit

address

*/

}

else

{

return

(void

*)f(arg);

}

}

Passing

Structure

Parameters

to

System

Calls

When

structures

are

passed

to

or

from

system

calls,

whether

by

value

or

by

reference,

the

layout

of

the

structure

in

the

application

might

not

match

the

layout

of

the

same

structure

in

the

system

call.

There

are

two

ways

that

system

calls

can

process

structures

passed

from

or

to

applications:

structure

reshaping

and

dual

implementation.

Structure

Reshaping

Structure

reshaping

allows

system

calls

to

support

both

32-

and

64-bit

applications

using

a

single

system

call

interface

and

using

code

that

is

predominately

common

to

both

application

types.

Structure

reshaping

requires

defining

more

than

one

version

of

a

structure.

One

version

of

the

structure

is

used

internally

by

the

system

call

to

process

the

request.

The

other

version

should

use

size-invariant

types,

so

that

the

layout

of

the

structure

fields

matches

the

application’s

view

of

the

structures.

When

a

structure

is

copied

in

from

user

space,

the

application-view

structure

definition

is

used.

The

structure

is

reshaped

by

copying

each

field

of

the

application’s

structure

to

the

kernel’s

structure,

converting

the

fields

as

required.

A

similar

conversion

is

performed

on

structures

that

are

being

returned

to

the

caller.

Structure

reshaping

is

used

for

structures

whose

size

and

layout

as

seen

by

an

application

differ

from

the

size

and

layout

as

seen

by

the

system

call.

If

the

system

call

uses

a

structure

definition

with

fields

big

enough

for

both

32-

and

64-bit

applications,

the

system

call

can

use

this

structure,

independent

of

the

mode

of

the

caller.

While

reshaping

requires

two

versions

of

a

structure,

only

one

version

is

public

and

visible

to

the

end

user.

This

version

is

the

natural

structure,

which

can

also

be

used

by

the

system

call

if

reshaping

is

not

needed.

The

private

version

should

only

be

defined

in

the

source

file

that

performs

the

reshaping.

The

following

example

demonstrates

the

techniques

for

passing

structures

to

system

calls

that

are

running

in

the

64-bit

kernel

and

how

a

structure

can

be

reshaped:

30

Kernel

Extensions

and

Device

Support

Programming

Concepts

/*

Public

definition

*/

struct

foo

{

int

a;

long

b;

};

/*

Private

definition--matches

32-bit

*

application’s

view

of

the

data

structure.

*/

struct

foo32

{

int

a;

int

b;

}

syscall7(struct

foo

*f)

{

struct

foo

f1;

struct

foo32

f2;

if

(IS64U())

{

copyin(&f1,

f,

sizeof(f1));

}

else

{

copyin(&f2,

f,

sizeof(f2));

f1.a

=

f2.a;

f1.b

=

f2.b;

}

/*

Common

structure

f1

used

from

now

on.

*/

.

.

.

}

Dual

Implementation:

The

dual

implementation

approach

involves

separate

code

paths

for

calls

from

32-bit

applications

and

calls

from

64-bit

applications.

Similar

to

reshaping,

the

system

call

code

defines

a

private

view

of

the

application’s

structure.

With

dual

implementations,

the

function

syscall7

could

be

rewritten

as:

syscall8(struct

foo

*f)

{

struct

foo

f1;

struct

foo32

f2;

if

(IS64U())

{

copyin(&f1,

f,

sizeof(f1));

/*

Code

for

64-bit

process

uses

f1

*/

.

.

.

}

else

{

copyin(&f2,

f,

sizeof(f2));

/*

Code

for

32-bit

process

uses

f2

*/

.

.

.

}

}

Dual

implementation

is

most

appropriate

when

the

structures

are

so

large

that

the

overhead

of

reshaping

would

affect

the

performance

of

the

system

call.

Passing

Structures

by

Value:

When

structures

are

passed

by

value,

the

structure

is

loaded

into

as

many

parameter

registers

as

are

needed.

When

the

data

model

of

an

application

and

the

data

model

of

the

kernel

extension

differ,

the

values

in

the

registers

cannot

be

used

directly.

Instead,

the

registers

must

be

stored

in

a

temporary

variable.

For

example:

Chapter

2.

System

Calls

31

Note:

This

example

builds

upon

the

structure

definitions

defined

in

“Dual

Implementation”

on

page

31.
/*

Application

prototype:

syscall9(struct

foo

f);

*/

syscall9(unsigned

long

a1,

unsigned

long

a1)

{

union

{

struct

foo

f1;

/*

Structure

for

64-bit

caller.

*/

struct

foo32

f2;

/*

Structure

for

32-bit

caller.

*/

unsigned

long

p64[2];

/*

Overlay

for

parameter

registers

*

when

caller

is

64-bit

program

*/

unsigned

int

p32[2];

/*

Overlay

for

parameter

registers

*

when

caller

is

32-bit

program

*/

}

uarg;

if

(IS64U())

{

uarg.p64[0]

=

a1;

uarg.p64[1]

=

a2;

/*

Now

uarg.f1

can

be

used

*/

.

.

.

}

else

{

uarg.p32[0]

=

a1;

uarg.p32[1]

=

a2;

/*

Now

uarg.f2

can

be

used

*/

.

.

.

}

}

Comparisons

to

AIX

4.3

In

AIX

4.3,

the

conventions

for

passing

parameters

from

a

64-bit

application

to

a

system

call

required

user-space

library

code

to

perform

some

of

the

parameter

reshaping

and

address

mapping.

In

AIX

5.1

and

later,

all

parameter

reshaping

and

address

mapping

should

be

performed

by

the

system

call,

eliminating

the

need

for

kernel-specific

library

code.

In

fact,

user-space

address

mapping

is

no

longer

supported.

In

most

cases,

system

calls

can

be

implemented

without

any

application-specific

library

code.

Preempting

a

System

Call

The

kernel

allows

a

thread

to

be

preempted

by

a

more

favored

thread,

even

when

a

system

call

is

executing.

This

capability

provides

better

system

responsiveness

for

large

multi-user

systems.

Because

system

calls

can

be

preempted,

access

to

global

data

must

be

serialized.

Kernel

locking

services,

such

as

simple_lock

and

simple_unlock,

are

frequently

used

to

serialize

access

to

kernel

data.

A

thread

can

be

preempted

even

when

it

owns

a

lock.

If

multiple

locks

are

obtained

by

system

calls,

a

technique

must

be

used

to

prevent

multiple

threads

from

deadlocking.

One

technique

is

to

define

a

lock

hierarchy.

A

system

call

must

never

return

while

holding

a

lock.

For

more

information

on

locking,

see

“Understanding

Locking”

on

page

13.

Handling

Signals

While

in

a

System

Call

Signals

can

be

generated

asynchronously

or

synchronously

with

respect

to

the

thread

that

receives

the

signal.

An

asynchronously

generated

signal

is

one

that

results

from

some

action

external

to

a

thread.

It

is

not

directly

related

to

the

current

instruction

stream

of

that

thread.

Generally

these

are

generated

by

other

threads

or

by

device

drivers.

32

Kernel

Extensions

and

Device

Support

Programming

Concepts

A

synchronously

generated

signal

is

one

that

results

from

the

current

instruction

stream

of

the

thread.

These

signals

cause

interrupts.

Examples

of

such

cases

are

the

execution

of

an

illegal

instruction,

or

an

attempted

data

access

to

nonexistent

address

space.

Delivery

of

Signals

to

a

System

Call

Delivery

of

signals

to

a

thread

only

takes

place

when

a

user

application

is

about

to

be

resumed

in

the

user

protection

domain.

Signals

cannot

be

delivered

to

a

thread

if

the

thread

is

in

the

middle

of

a

system

call.

For

more

information

on

signal

delivery

for

kernel

processes,

see

“Using

Kernel

Processes”

on

page

8.

Asynchronous

Signals

and

Wait

Termination

An

asynchronous

signal

can

alter

the

operation

of

a

system

call

or

kernel

extension

by

terminating

a

long

wait.

Kernel

services

such

as

e_block_thread,

e_sleep_thread,

and

et_wait

are

affected

by

signals.

The

following

options

are

provided

when

a

signal

is

posted

to

a

thread:

v

Return

from

the

kernel

service

with

a

return

code

indicating

that

the

call

was

interrupted

by

a

signal

v

Call

the

longjmpx

kernel

service

to

resume

execution

at

a

previously

saved

context

in

the

event

of

a

signal

v

Ignore

the

signal

using

the

short-wait

option,

allowing

the

kernel

service

to

return

normally.

The

sleep

kernel

service,

provided

for

compatibility,

also

supports

the

PCATCH

and

SWAKEONSIG

options

to

control

the

response

to

a

signal

during

the

sleep

function.

Previously,

the

kernel

automatically

saved

context

on

entry

to

the

system

call

handler.

As

a

result,

any

long

(interruptible)

sleep

not

specifying

the

PCATCH

option

returned

control

to

the

saved

context

when

a

signal

interrupted

the

wait.

The

system

call

handler

then

set

the

errno

global

variable

to

EINTR

and

returned

a

return

code

of

-1

from

the

system

call.

The

kernel,

however,

requires

each

system

call

that

can

directly

or

indirectly

issue

a

sleep

call

without

the

PCATCH

option

to

set

up

a

saved

context

using

the

setjmpx

kernel

service.

This

is

done

to

avoid

overhead

for

system

calls

that

handle

waits

terminated

by

signals.

Using

the

setjmpx

service,

the

system

can

set

up

a

saved

context,

which

sets

the

system

call

return

code

to

a

-1

and

the

ut_error

field

to

EINTR,

if

a

signal

interrupts

a

long

wait

not

specifying

return-from-signal.

It

is

probably

faster

and

more

robust

to

specify

return-from-signal

on

all

long

waits

and

use

the

return

code

to

control

the

system

call

return.

Stacking

Saved

Contexts

for

Nested

setjmpx

Calls

The

kernel

supports

nested

calls

to

the

setjmpx

kernel

service.

It

implements

the

stack

of

saved

contexts

by

maintaining

a

linked

list

of

context

information

anchored

in

the

machine

state

save

area.

This

area

is

in

the

user

block

structure

for

a

process.

Interrupt

handlers

have

special

machine

state

save

areas.

An

initial

context

is

set

up

for

each

process

by

the

initp

kernel

service

for

kernel

processes

and

by

the

fork

subroutine

for

user

processes.

The

process

terminates

if

that

context

is

resumed.

Handling

Exceptions

While

in

a

System

Call

Exceptions

are

interrupts

detected

by

the

processor

as

a

result

of

the

current

instruction

stream.

They

therefore

take

effect

synchronously

with

respect

to

the

current

thread.

The

default

exception

handler

generates

a

signal

if

the

process

is

in

a

state

where

signals

can

be

delivered

immediately.

Otherwise,

the

default

exception

handler

generates

a

system

dump.

Chapter

2.

System

Calls

33

Alternative

Exception

Handling

Using

the

setjmpx

Kernel

Service

For

certain

types

of

exceptions,

a

system

call

can

specify

unique

exception-handler

routines

through

calls

to

the

setjmpx

service.

The

exception

handler

routine

is

saved

as

part

of

the

stacked

saved

context.

Each

exception

handler

is

passed

the

exception

type

as

a

parameter.

The

exception

handler

returns

a

value

that

can

specify

any

of

the

following:

v

The

process

should

resume

with

the

instruction

that

caused

the

exception.

v

The

process

should

return

to

the

saved

context

that

is

on

the

top

of

the

stack

of

contexts.

v

The

exception

handler

did

not

handle

the

exception.

If

the

exception

handler

did

not

handle

the

exception,

then

the

next

exception

handler

in

the

stack

of

contexts

is

called.

If

none

of

the

stacked

exception

handlers

handle

the

exception,

the

kernel

performs

default

exception

handling.

The

setjmpx

and

longjmpx

kernel

services

help

implement

exception

handlers.

Understanding

Nesting

and

Kernel-Mode

Use

of

System

Calls

The

operating

system

supports

nested

system

calls

with

some

restrictions.

System

calls

(and

any

other

kernel-mode

routines

running

under

the

process

environment

of

a

user-mode

process)

can

use

system

calls

that

pass

all

parameters

by

value.

System

calls

and

other

kernel-mode

routines

must

not

start

system

calls

that

have

one

or

more

parameters

passed

by

reference.

Doing

so

can

result

in

a

system

crash.

This

is

because

system

calls

with

reference

parameters

assume

that

the

referenced

data

area

is

in

the

user

protection

domain.

As

a

result,

these

system

calls

must

use

special

kernel

services

to

access

the

data.

However,

these

services

are

unsuccessful

if

the

data

area

they

are

trying

to

access

is

not

in

the

user

protection

domain.

This

restriction

does

not

apply

to

kernel

processes.

User-mode

data

access

services

can

distinguish

between

kernel

processes

and

user-mode

processes

in

kernel

mode.

As

a

result,

these

services

can

access

the

referenced

data

areas

accessed

correctly

when

the

caller

is

a

kernel

process.

Kernel

processes

cannot

call

the

fork

or

exec

system

calls,

among

others.

A

list

of

the

base

operating

system

calls

available

to

system

calls

or

other

routines

in

kernel

mode

is

provided

in

“System

Calls

Available

to

Kernel

Extensions”

on

page

35.

Page

Faulting

within

System

Calls

Attention:

A

page

fault

that

occurs

while

external

interrupts

are

disabled

results

in

a

system

crash.

Therefore,

a

system

call

should

be

programmed

to

ensure

that

its

code,

data,

and

stack

are

pinned

before

it

disables

external

interrupts.

Most

data

accessed

by

system

calls

is

pageable

by

default.

This

includes

the

system

call

code,

static

data,

dynamically

allocated

data,

and

stack.

As

a

result,

a

system

call

can

be

preempted

in

two

ways:

v

By

a

more

favored

process,

or

by

an

equally

favored

process

when

a

time

slice

has

been

exhausted

v

By

losing

control

of

the

processor

when

it

page

faults

In

the

latter

case,

even

less-favored

processes

can

run

while

the

system

call

is

waiting

for

the

paging

I/O

to

complete.

34

Kernel

Extensions

and

Device

Support

Programming

Concepts

Returning

Error

Information

from

System

Calls

Error

information

returned

by

system

calls

differs

from

that

returned

by

kernel

services

that

are

not

system

calls.

System

calls

typically

return

a

special

value,

such

as

-1

or

NULL,

to

indicate

that

an

error

has

occurred.

When

an

error

condition

is

to

be

returned,

the

ut_error

field

should

be

updated

by

the

system

call

before

returning

from

the

system

call

function.

The

ut_error

field

is

written

using

the

setuerror

kernel

service.

Before

actually

calling

the

system

call

function,

the

system

call

handler

sets

the

ut_error

field

to

0.

Upon

return

from

the

system

call

function,

the

system

call

handler

copies

the

value

found

in

ut_error

into

the

thread-specific

errno

variable

if

ut_error

was

nonzero.

After

setting

the

errno

variable,

the

system

call

handler

returns

to

user

mode

with

the

return

code

provided

by

the

system

call

function.

Kernel-mode

callers

of

system

calls

must

be

aware

of

this

return

code

convention

and

use

the

getuerror

kernel

service

to

obtain

the

error

value

when

an

error

indication

is

returned

by

the

system

call.

When

system

calls

are

nested,

the

system

call

function

called

by

the

system

call

handler

can

return

the

error

value

provided

by

the

nested

system

call

function

or

can

replace

this

value

with

a

new

one

by

using

the

setuerror

kernel

service.

System

Calls

Available

to

Kernel

Extensions

The

following

system

calls

are

grouped

according

to

which

subroutines

call

them:

v

System

calls

available

to

all

kernel

extensions

v

System

calls

available

to

kernel

processes

only

Note:

System

calls

are

not

available

to

interrupt

handlers.

System

Calls

Available

to

All

Kernel

Extensions

gethostid

Gets

the

unique

identifier

of

the

current

host.

getpgrp

Gets

the

process

ID,

process

group

ID,

and

parent

process

ID.

getppid

Gets

the

process

ID,

process

group

ID,

and

parent

process

ID.

getpri

Returns

the

scheduling

priority

of

a

process.

getpriority

Gets

or

sets

the

nice

value.

semget

Gets

a

set

of

semaphores.

seteuid

Sets

the

process

user

IDs.

setgid

Sets

the

process

group

IDs.

sethostid

Sets

the

unique

identifier

of

the

current

host.

setpgid

Sets

the

process

group

IDs.

setpgrp

Sets

the

process

group

IDs.

setpri

Sets

a

process

scheduling

priority

to

a

constant

value.

setpriority

Gets

or

sets

the

nice

value.

setreuid

Sets

the

process

user

IDs.

setsid

Creates

a

session

and

sets

the

process

group

ID.

setuid

Sets

the

process

user

IDs.

ulimit

Sets

and

gets

user

limits.

umask

Sets

and

gets

the

value

of

the

file-creation

mask.

System

Calls

Available

to

Kernel

Processes

Only

disclaim

Disclaims

the

content

of

a

memory

address

range.

getdomainname

Gets

the

name

of

the

current

domain.

getgroups

Gets

the

concurrent

group

set

of

the

current

process.

gethostname

Gets

the

name

of

the

local

host.

Chapter

2.

System

Calls

35

getpeername

Gets

the

name

of

the

peer

socket.

getrlimit

Controls

maximum

system

resource

consumption.

getrusage

Displays

information

about

resource

use.

getsockname

Gets

the

socket

name.

getsockopt

Gets

options

on

sockets.

gettimer

Gets

and

sets

the

current

value

for

the

specified

system-wide

timer.

resabs

Manipulates

the

expiration

time

of

interval

timers.

resinc

Manipulates

the

expiration

time

of

interval

timers.

restimer

Gets

and

sets

the

current

value

for

the

specified

system-wide

timer.

semctl

Controls

semaphore

operations.

semop

Performs

semaphore

operations.

setdomainname

Sets

the

name

of

the

current

domain.

setgroups

Sets

the

concurrent

group

set

of

the

current

process.

sethostname

Sets

the

name

of

the

current

host.

setrlimit

Controls

maximum

system

resource

consumption.

settimer

Gets

and

sets

the

current

value

for

the

specified

systemwide

timer.

shmat

Attaches

a

shared

memory

segment

or

a

mapped

file

to

the

current

process.

shmctl

Controls

shared

memory

operations.

shmdt

Detaches

a

shared

memory

segment.

shmget

Gets

shared

memory

segments.

sigaction

Specifies

the

action

to

take

upon

delivery

of

a

signal.

sigprocmask

Sets

the

current

signal

mask.

sigstack

Sets

and

gets

signal

stack

context.

sigsuspend

Atomically

changes

the

set

of

blocked

signals

and

waits

for

a

signal.

sysconfig

Provides

a

service

for

controlling

system/kernel

configuration.

sys_parm

Provides

a

service

for

examining

or

setting

kernel

run-time

tunable

parameters.

times

Displays

information

about

resource

use.

uname

Gets

the

name

of

the

current

system.

unamex

Gets

the

name

of

the

current

system.

usrinfo

Gets

and

sets

user

information

about

the

owner

of

the

current

process.

utimes

Sets

file

access

and

modification

times.

Related

Information

“Handling

Signals

While

in

a

System

Call”

on

page

32

“Understanding

Protection

Domains”

on

page

23

“Understanding

Kernel

Threads”

on

page

6

“Using

Kernel

Processes”

on

page

8

“Using

Libraries”

on

page

4

“Understanding

Locking”

on

page

13

“Locking

Kernel

Services”

on

page

62

“Understanding

Interrupts”

on

page

52

Subroutine

References

The

fork

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

36

Kernel

Extensions

and

Device

Support

Programming

Concepts

Technical

References

The

e_sleep

kernel

service,

e_sleepl

kernel

service,

et_wait

kernel

service,

getuerror

kernel

service,

initp

kernel

service,

lockl

kernel

service,

longjmpx

kernel

service,

setjmpx

kernel

service,

setuerror

kernel

service,

unlockl

kernel

service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Chapter

2.

System

Calls

37

38

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

3.

Virtual

File

Systems

The

virtual

file

system

(VFS)

interface,

also

known

as

the

v-node

interface,

provides

a

bridge

between

the

physical

and

logical

file

systems.

The

information

that

follows

discusses

the

virtual

file

system

interface,

its

data

structures,

and

its

header

files,

and

explains

how

to

configure

a

virtual

file

system.

There

are

two

essential

components

in

the

file

system:

Logical

file

system

Provides

support

for

the

system

call

interface.

Physical

file

system

Manages

permanent

storage

of

data.

The

interface

between

the

physical

and

logical

file

systems

is

the

virtual

file

system

interface.

This

interface

allows

support

for

multiple

concurrent

instances

of

physical

file

systems,

each

of

which

is

called

a

file

system

implementation.

The

file

system

implementation

can

support

storing

the

file

data

in

the

local

node

or

at

a

remote

node.

For

more

information

on

the

virtual

filesystem

interface,

see

“Understanding

the

Virtual

File

System

Interface”

on

page

41.

The

virtual

file

system

interface

is

usually

referred

to

as

the

v-node

interface.

The

v-node

structure

is

the

key

element

in

communication

between

the

virtual

file

system

and

the

layers

that

call

it.

For

more

information

on

v-nodes,

see

“Understanding

Virtual

Nodes

(V-nodes)”

on

page

40.

Both

the

virtual

and

logical

file

systems

exist

across

all

of

this

operating

system

family’s

platforms.

Logical

File

System

Overview

The

logical

file

system

is

the

level

of

the

file

system

at

which

users

can

request

file

operations

by

system

call.

This

level

of

the

file

system

provides

the

kernel

with

a

consistent

view

of

what

might

be

multiple

physical

file

systems

and

multiple

file

system

implementations.

As

far

as

the

logical

file

system

is

concerned,

file

system

types,

whether

local,

remote,

or

strictly

logical,

and

regardless

of

implementation,

are

indistinguishable.

A

consistent

view

of

file

system

implementations

is

made

possible

by

the

virtual

file

system

abstraction.

This

abstraction

specifies

the

set

of

file

system

operations

that

an

implementation

must

include

in

order

to

carry

out

logical

file

system

requests.

Physical

file

systems

can

differ

in

how

they

implement

these

predefined

operations,

but

they

must

present

a

uniform

interface

to

the

logical

file

system.

A

list

of

file

system

operators

can

be

found

at

“Requirements

for

a

File

System

Implementation”

on

page

41.

For

more

information

on

the

virual

file

system,

see

“Virtual

File

System

Overview”

on

page

40.

Each

set

of

predefined

operations

implemented

constitutes

a

virtual

file

system.

As

such,

a

single

physical

file

system

can

appear

to

the

logical

file

system

as

one

or

more

separate

virtual

file

systems.

Virtual

file

system

operations

are

available

at

the

logical

file

system

level

through

the

virtual

file

system

switch.

This

array

contains

one

entry

for

each

virtual

file

system,

with

each

entry

holding

entry

point

addresses

for

separate

operations.

Each

file

system

type

has

a

set

of

entries

in

the

virtual

file

system

switch.

The

logical

file

system

and

the

virtual

file

system

switch

support

other

operating

system

file-system

access

semantics.

This

does

not

mean

that

only

other

operating

system

file

systems

can

be

supported.

It

does

mean,

however,

that

a

file

system

implementation

must

be

designed

to

fit

into

the

logical

file

system

model.

Operations

or

information

requested

from

a

file

system

implementation

need

be

performed

only

to

the

extent

possible.

Logical

file

system

can

also

refer

to

the

tree

of

known

path

names

in

force

while

the

system

is

running.

A

virtual

file

system

that

is

mounted

onto

the

logical

file

system

tree

itself

becomes

part

of

that

tree.

In

fact,

a

©

Copyright

IBM

Corp.

1997,

2004

39

single

virtual

file

system

can

be

mounted

onto

the

logical

file

system

tree

at

multiple

points,

so

that

nodes

in

the

virtual

subtree

have

multiple

names.

Multiple

mount

points

allow

maximum

flexibility

when

constructing

the

logical

file

system

view.

Component

Structure

of

the

Logical

File

System

The

logical

file

system

is

divided

into

the

following

components:

v

System

calls

Implement

services

exported

to

users.

System

calls

that

carry

out

file

system

requests

do

the

following:

–

Map

the

user’s

parameters

to

a

file

system

object.

This

requires

that

the

system

call

component

use

the

v-node

(virtual

node)

component

to

follow

the

object’s

path

name.

In

addition,

the

system

call

must

resolve

a

file

descriptor

or

establish

implicit

(mapped)

references

using

the

open

file

component.

–

Verify

that

a

requested

operation

is

applicable

to

the

type

of

the

specified

object.

–

Dispatch

a

request

to

the

file

system

implementation

to

perform

operations.

v

Logical

file

system

file

routines

Manage

open

file

table

entries

and

per-process

file

descriptors.

An

open

file

table

entry

records

the

authorization

of

a

process’s

access

to

a

file

system

object.

A

user

can

refer

to

an

open

file

table

entry

through

a

file

descriptor

or

by

accessing

the

virtual

memory

to

which

the

file

was

mapped.

The

logical

file

system

routines

are

those

kernel

services,

such

as

fp_ioctl

and

fp_select,

that

begin

with

the

prefix

fp_.

v

v-nodes

Provide

system

calls

with

a

mechanism

for

local

name

resolution.

Local

name

resolution

allows

the

logical

file

system

to

access

multiple

file

system

implementations

through

a

uniform

name

space.

Virtual

File

System

Overview

The

virtual

file

system

is

an

abstraction

of

a

physical

file

system

implementation.

It

provides

a

consistent

interface

to

multiple

file

systems,

both

local

and

remote.

This

consistent

interface

allows

the

user

to

view

the

directory

tree

on

the

running

system

as

a

single

entity

even

when

the

tree

is

made

up

of

a

number

of

diverse

file

system

types.

The

interface

also

allows

the

logical

file

system

code

in

the

kernel

to

operate

without

regard

to

the

type

of

file

system

being

accessed.

For

more

information

on

the

logical

file

system,

see

“Logical

File

System

Overview”

on

page

39.

A

virtual

file

system

can

also

be

viewed

as

a

subset

of

the

logical

file

system

tree,

that

part

belonging

to

a

single

file

system

implementation.

A

virtual

file

system

can

be

physical

(the

instantiation

of

a

physical

file

system),

remote,

or

strictly

logical.

In

the

latter

case,

for

example,

a

virtual

file

system

need

not

actually

be

a

true

file

system

or

entail

any

underlying

physical

storage

device.

A

virtual

file

system

mount

point

grafts

a

virtual

file

system

subtree

onto

the

logical

file

system

tree.

This

mount

point

ties

together

a

mounted-over

v-node

(virtual

node)

and

the

root

of

the

virtual

file

system

subtree.

A

mounted-over,

or

stub,

v-node

points

to

a

virtual

file

system,

and

the

mounted

VFS

points

to

the

v-node

it

is

mounted

over.

Understanding

Virtual

Nodes

(V-nodes)

A

virtual

node

(v-node)

represents

access

to

an

object

within

a

virtual

file

system.

V-nodes

are

used

only

to

translate

a

path

name

into

a

generic

node

(g-node).

For

more

information

on

g-nodes,

see

“Understanding

Generic

I-nodes

(G-nodes)”

on

page

41.

A

v-node

is

either

created

or

used

again

for

every

reference

made

to

a

file

by

path

name.

When

a

user

attempts

to

open

or

create

a

file,

if

the

VFS

containing

the

file

already

has

a

v-node

representing

that

file,

a

use

count

in

the

v-node

is

incremented

and

the

existing

v-node

is

used.

Otherwise,

a

new

v-node

is

created.

40

Kernel

Extensions

and

Device

Support

Programming

Concepts

Every

path

name

known

to

the

logical

file

system

can

be

associated

with,

at

most,

one

file

system

object.

However,

each

file

system

object

can

have

several

names.

Multiple

names

appear

in

the

following

cases:

v

The

object

can

appear

in

multiple

virtual

file

systems.

This

can

happen

if

the

object

(or

an

ancestor)

is

mounted

in

different

virtual

file

systems

using

a

local

file-over-file

or

directory-over-directory

mount.

v

The

object

does

not

have

a

unique

name

within

the

virtual

file

system.

(The

file

system

implementation

can

provide

synonyms.

For

example,

the

use

of

links

causes

files

to

have

more

than

one

name.

However,

opens

of

synonymous

paths

do

not

cause

multiple

v-nodes

to

be

created.)

Understanding

Generic

I-nodes

(G-nodes)

A

generic

i-node

(g-node)

is

the

representation

of

an

object

in

a

file

system

implementation.

There

is

a

one-to-one

correspondence

between

a

g-node

and

an

object

in

a

file

system

implementation.

Each

g-node

represents

an

object

owned

by

the

file

system

implementation.

Each

file

system

implementation

is

responsible

for

allocating

and

destroying

g-nodes.

The

g-node

then

serves

as

the

interface

between

the

logical

file

system

and

the

file

system

implementation.

Calls

to

the

file

system

implementation

serve

as

requests

to

perform

an

operation

on

a

specific

g-node.

A

g-node

is

needed,

in

addition

to

the

file

system

i-node,

because

some

file

system

implementations

may

not

include

the

concept

of

an

i-node.

Thus

the

g-node

structure

substitutes

for

whatever

structure

the

file

system

implementation

may

have

used

to

uniquely

identify

a

file

system

object.

The

logical

file

system

relies

on

the

file

system

implementation

to

provide

valid

data

for

the

following

fields

in

the

g-node:

gn_type

Identifies

the

type

of

object

represented

by

the

g-node.

gn_ops

Identifies

the

set

of

operations

that

can

be

performed

on

the

object.

Understanding

the

Virtual

File

System

Interface

Operations

that

can

be

performed

upon

a

virtual

file

system

and

its

underlying

objects

are

divided

into

two

categories.

Operations

upon

a

file

system

implementation

as

a

whole

(not

requiring

the

existence

of

an

underlying

file

system

object)

are

called

vfs

operations.

Operations

upon

the

underlying

file

system

objects

are

called

v-node

(virtual

node)

operations.

Before

writing

specific

virtual

file

system

operations,

it

is

important

to

note

the

requirements

for

a

file

system

implementation.

Requirements

for

a

File

System

Implementation

File

system

implementations

differ

in

how

they

implement

the

predefined

operations.

However,

the

logical

file

system

expects

that

a

file

system

implementation

meets

the

following

criteria:

v

All

vfs

and

v-node

operations

must

supply

a

return

value:

–

A

return

value

of

0

indicates

the

operation

was

successful.

–

A

nonzero

return

value

is

interpreted

as

a

valid

error

number

(taken

from

the

/usr/include/sys/errno.h

file)

and

returned

through

the

system

call

interface

to

the

application

program.

v

All

vfs

operations

must

exist

for

each

file

system

type,

but

can

return

an

error

upon

startup.

The

following

are

the

necessary

vfs

operations:

–

vfs_cntl

–

vfs_mount

–

vfs_root

–

vfs_statfs

–

vfs_sync

–

vfs_unmount

–

vfs_vget

Chapter

3.

Virtual

File

Systems

41

–

vfs_quotactl

For

a

complete

list

of

file

system

operations,

see

List

of

Virtual

File

System

Operations

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Important

Data

Structures

for

a

File

System

Implementation

There

are

two

important

data

structures

used

to

represent

information

about

a

virtual

file

system,

the

vfs

structure

and

the

v-node.

Each

virtual

file

system

has

a

vfs

structure

in

memory

that

describes

its

type,

attributes,

and

position

in

the

file

tree

hierarchy.

Each

file

object

within

that

virtual

file

system

can

be

represented

by

a

v-node.

The

vfs

structure

contains

the

following

fields:

vfs_flag

Contains

the

state

flags:

VFS_DEVMOUNT

Indicates

whether

the

virtual

file

system

has

a

physical

mount

structure

underlying

it.

VFS_READONLY

Indicates

whether

the

virtual

file

system

is

mounted

read-only.

vfs_type

Identifies

the

type

of

file

system

implementation.

Possible

values

for

this

field

are

described

in

the

/usr/include/sys/vmount.h

file.

vfs_ops

Points

to

the

set

of

operations

for

the

specified

file

system

type.

vfs_mntdover

Points

to

the

mounted-over

v-node.

vfs_data

Points

to

the

file

system

implementation

data.

The

interpretation

of

this

field

is

left

to

the

discretion

of

the

file

system

implementation.

For

example,

the

field

could

be

used

to

point

to

data

in

the

kernel

extension

segment

or

as

an

offset

to

another

segment.

vfs_mdata

Records

the

user

arguments

to

the

mount

call

that

created

this

virtual

file

system.

This

field

has

a

time

stamp.

The

user

arguments

are

retained

to

implement

the

mntctl

call,

which

replaces

the

/etc/mnttab

table.

Understanding

Data

Structures

and

Header

Files

for

Virtual

File

Systems

These

are

the

data

structures

used

in

implementing

virtual

file

systems:

v

The

vfs

structure

contains

information

about

a

virtual

file

system

as

a

single

entity.

v

The

vnode

structure

contains

information

about

a

file

system

object

in

a

virtual

file

system.

There

can

be

multiple

v-nodes

for

a

single

file

system

object.

v

The

gnode

structure

contains

information

about

a

file

system

object

in

a

physical

file

system.

There

is

only

a

single

g-node

for

a

given

file

system

object.

v

The

gfs

structure

contains

information

about

a

file

system

implementation.

This

is

distinct

from

the

vfs

structure,

which

contains

information

about

an

instance

of

a

virtual

file

system.

The

header

files

contain

the

structure

definitions

for

the

key

components

of

the

virtual

file

system

abstraction.

Understanding

the

contents

of

these

files

and

the

relationships

between

them

is

essential

to

an

understanding

of

virtual

file

systems.

The

following

are

the

necessary

header

files:

v

sys/vfs.h

v

sys/gfs.h

v

sys/vnode.h

v

sys/vmount.h

42

Kernel

Extensions

and

Device

Support

Programming

Concepts

Configuring

a

Virtual

File

System

The

kernel

maintains

a

table

of

active

file

system

types.

A

file

system

implementation

must

be

registered

with

the

kernel

before

a

request

to

mount

a

virtual

file

system

(VFS)

of

that

type

can

be

honored.

Two

kernel

services,

gfsadd

and

gfsdel,

are

supplied

for

adding

a

file

system

type

to

the

gfs

file

system

table.

These

are

the

steps

that

must

be

followed

to

get

a

file

system

configured.

1.

A

user-level

routine

must

call

the

sysconfig

subroutine

requesting

that

the

code

for

the

virtual

file

system

be

loaded.

2.

The

user-level

routine

must

then

request,

again

by

calling

the

sysconfig

subroutine,

that

the

virtual

file

system

be

configured.

The

name

of

a

VFS-specific

configuration

routine

must

be

specified.

3.

The

virtual

file

system-specific

configuration

routine

calls

the

gfsadd

kernel

service

to

have

the

new

file

system

added

to

the

gfs

table.

The

gfs

table

that

the

configuration

routine

passes

to

the

gfsadd

kernel

service

contains

a

pointer

to

an

initialization

routine.

This

routine

is

then

called

to

do

any

further

virtual

file

system-specific

initialization.

4.

The

file

system

is

now

operational.

Related

Information

“Logical

File

System

Kernel

Services”

on

page

65

“Understanding

Data

Structures

and

Header

Files

for

Virtual

File

Systems”

on

page

42

“Configuring

a

Virtual

File

System”

“Understanding

Protection

Domains”

on

page

23

List

of

Virtual

File

System

Operations

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Subroutine

References

The

mntctl

subroutine,

mount

subroutine,

sysconfig

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

Files

References

The

vmount.h

file

in

AIX

5L

Version

5.2

Files

Reference.

Technical

References

The

gfsadd

kernel

service,

gfsdel

kernel

service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Chapter

3.

Virtual

File

Systems

43

44

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

4.

Kernel

Services

Kernel

services

are

routines

that

provide

the

runtime

kernel

environment

to

programs

executing

in

kernel

mode.

Kernel

extensions

call

kernel

services,

which

resemble

library

routines.

In

contrast,

application

programs

call

library

routines.

Callers

of

kernel

services

execute

in

kernel

mode.

They

therefore

share

with

the

kernel

the

responsibility

for

ensuring

that

system

integrity

is

not

compromised.

For

a

list

of

system

calls

that

kernel

extensions

are

allowed

to

use,

see

“System

Calls

Available

to

Kernel

Extensions”

on

page

35.

Categories

of

Kernel

Services

Following

are

the

categories

of

kernel

services:

v

“I/O

Kernel

Services”

v

“Kernel

Extension

and

Device

Driver

Management

Services”

on

page

60

v

“Locking

Kernel

Services”

on

page

62

v

“Logical

File

System

Kernel

Services”

on

page

65

v

“Memory

Kernel

Services”

on

page

66

v

“Message

Queue

Kernel

Services”

on

page

73

v

“Network

Kernel

Services”

on

page

73

v

“Process

and

Exception

Management

Kernel

Services”

on

page

76

v

“RAS

Kernel

Services”

on

page

78

v

“Security

Kernel

Services”

on

page

79

v

“Timer

and

Time-of-Day

Kernel

Services”

on

page

79

v

“Virtual

File

System

(VFS)

Kernel

Services”

on

page

81

I/O

Kernel

Services

The

I/O

kernel

services

fall

into

the

following

categories:

v

“Block

I/O

Kernel

Services”

v

“Buffer

Cache

Kernel

Services”

on

page

46

v

“Character

I/O

Kernel

Services”

on

page

46

v

“Interrupt

Management

Kernel

Services”

on

page

46

v

“Memory

Buffer

(mbuf)

Kernel

Services”

on

page

47

v

“DMA

Management

Kernel

Services”

on

page

47

v

“Enhanced

I/O

Error

Handling

(EEH)

Kernel

Services”

on

page

48

Block

I/O

Kernel

Services

The

Block

I/O

kernel

services

are:

iodone

Performs

block

I/O

completion

processing.

iowait

Waits

for

block

I/O

completion.

uphysio

Performs

character

I/O

for

a

block

device

using

a

uio

structure.

©

Copyright

IBM

Corp.

1997,

2004

45

Buffer

Cache

Kernel

Services

For

information

on

how

to

manage

the

buffer

cache

with

the

Buffer

Cache

kernel

services,

see

“Block

I/O

Buffer

Cache

Kernel

Services:

Overview”

on

page

51.

The

Buffer

Cache

kernel

services

are:

bawrite

Writes

the

specified

buffer’s

data

without

waiting

for

I/O

to

complete.

bdwrite

Releases

the

specified

buffer

after

marking

it

for

delayed

write.

bflush

Flushes

all

write-behind

blocks

on

the

specified

device

from

the

buffer

cache.

binval

Invalidates

all

of

the

specified

device’s

blocks

in

the

buffer

cache.

blkflush

Flushes

the

specified

block

if

it

is

in

the

buffer

cache.

bread

Reads

the

specified

block’s

data

into

a

buffer.

breada

Reads

in

the

specified

block

and

then

starts

I/O

on

the

read-ahead

block.

brelse

Frees

the

specified

buffer.

bwrite

Writes

the

specified

buffer’s

data.

clrbuf

Sets

the

memory

for

the

specified

buffer

structure’s

buffer

to

all

zeros.

getblk

Assigns

a

buffer

to

the

specified

block.

geteblk

Allocates

a

free

buffer.

geterror

Determines

the

completion

status

of

the

buffer.

purblk

Purges

the

specified

block

from

the

buffer

cache.

Character

I/O

Kernel

Services

The

Character

I/O

kernel

services

are:

getc

Retrieves

a

character

from

a

character

list.

getcb

Removes

the

first

buffer

from

a

character

list

and

returns

the

address

of

the

removed

buffer.

getcbp

Retrieves

multiple

characters

from

a

character

buffer

and

places

them

at

a

designated

address.

getcf

Retrieves

a

free

character

buffer.

getcx

Returns

the

character

at

the

end

of

a

designated

list.

pincf

Manages

the

list

of

free

character

buffers.

putc

Places

a

character

at

the

end

of

a

character

list.

putcb

Places

a

character

buffer

at

the

end

of

a

character

list.

putcbp

Places

several

characters

at

the

end

of

a

character

list.

putcf

Frees

a

specified

buffer.

putcfl

Frees

the

specified

list

of

buffers.

putcx

Places

a

character

on

a

character

list.

waitcfree

Checks

the

availability

of

a

free

character

buffer.

Interrupt

Management

Kernel

Services

The

operating

system

provides

the

following

set

of

kernel

services

for

managing

interrupts.

See

Understanding

Interrupts

for

a

description

of

these

services:

i_clear

Removes

an

interrupt

handler

from

the

system.

i_reset

Resets

a

bus

interrupt

level.

i_sched

Schedules

off-level

processing.

i_mask

Disables

an

interrupt

level.

i_unmask

Enables

an

interrupt

level.

i_disable

Disables

all

of

the

interrupt

levels

at

a

particular

interrupt

priority

and

all

interrupt

levels

at

a

less-favored

interrupt

priority.

i_enable

Enables

all

of

the

interrupt

levels

at

a

particular

interrupt

priority

and

all

interrupt

levels

at

a

more-favored

interrupt

priority.

46

Kernel

Extensions

and

Device

Support

Programming

Concepts

Memory

Buffer

(mbuf)

Kernel

Services

The

Memory

Buffer

(mbuf)

kernel

services

provide

functions

to

obtain,

release,

and

manipulate

memory

buffers,

or

mbufs.

These

mbuf

services

provide

the

means

to

easily

work

with

the

mbuf

data

structure,

which

is

defined

in

the

/usr/include/sys/mbuf.h

file.

Data

can

be

stored

directly

in

an

mbuf’s

data

portion

or

in

an

attached

external

cluster.

Mbufs

can

also

be

chained

together

by

using

the

m_next

field

in

the

mbuf

structure.

This

is

particularly

useful

for

communications

protocols

that

need

to

add

and

remove

protocol

headers.

The

Memory

Buffer

(mbuf)

kernel

services

are:

m_adj

Adjusts

the

size

of

an

mbuf

chain.

m_clattach

Allocates

an

mbuf

structure

and

attaches

an

external

cluster.

m_cat

Appends

one

mbuf

chain

to

the

end

of

another.

m_clgetm

Allocates

and

attaches

an

external

buffer.

m_collapse

Guarantees

that

an

mbuf

chain

contains

no

more

than

a

given

number

of

mbuf

structures.

m_copydata

Copies

data

from

an

mbuf

chain

to

a

specified

buffer.

m_copym

Creates

a

copy

of

all

or

part

of

a

list

of

mbuf

structures.

m_dereg

Deregisters

expected

mbuf

structure

usage.

m_free

Frees

an

mbuf

structure

and

any

associated

external

storage

area.

m_freem

Frees

an

entire

mbuf

chain.

m_get

Allocates

a

memory

buffer

from

the

mbuf

pool.

m_getclr

Allocates

and

zeros

a

memory

buffer

from

the

mbuf

pool.

m_getclustm

Allocates

an

mbuf

structure

from

the

mbuf

buffer

pool

and

attaches

a

cluster

of

the

specified

size.

m_gethdr

Allocates

a

header

memory

buffer

from

the

mbuf

pool.

m_pullup

Adjusts

an

mbuf

chain

so

that

a

given

number

of

bytes

is

in

contiguous

memory

in

the

data

area

of

the

head

mbuf

structure.

m_reg

Registers

expected

mbuf

usage.

In

addition

to

the

mbuf

kernel

services,

the

following

macros

are

available

for

use

with

mbufs:

m_clget

Allocates

a

page-sized

mbuf

structure

cluster.

m_copy

Creates

a

copy

of

all

or

part

of

a

list

of

mbuf

structures.

m_getclust

Allocates

an

mbuf

structure

from

the

mbuf

buffer

pool

and

attaches

a

page-sized

cluster.

M_HASCL

Determines

if

an

mbuf

structure

has

an

attached

cluster.

DTOM

Converts

an

address

anywhere

within

an

mbuf

structure

to

the

head

of

that

mbuf

structure.

MTOCL

Converts

a

pointer

to

an

mbuf

structure

to

a

pointer

to

the

head

of

an

attached

cluster.

MTOD

Converts

a

pointer

to

an

mbuf

structure

to

a

pointer

to

the

data

stored

in

that

mbuf

structure.

M_XMEMD

Returns

the

address

of

an

mbuf

cross-memory

descriptor.

DMA

Management

Kernel

Services

The

operating

system

kernel

provides

several

services

for

managing

direct

memory

access

(DMA)

channels

and

performing

DMA

operations.

Understanding

DMA

Transfers

provides

additional

kernel

services

information.

The

services

provided

are:

d_align

Provides

needed

information

to

align

a

buffer

with

a

processor

cache

line.

d_cflush

Flushes

the

processor

and

I/O

controller

(IOCC)

data

caches

when

using

the

long

term

DMA_WRITE_ONLY

mapping

of

DMA

buffers

approach

to

the

bus

device

DMA.

d_map_clear

Deallocates

resources

previously

allocated

on

a

d_map_init

call.

d_map_disable

Disables

DMA

for

the

specified

handle.

d_map_enable

Enables

DMA

for

the

specified

handle.

d_map_init

Allocates

and

initializes

resources

for

performing

DMA

with

PCI

and

ISA

devices.

Chapter

4.

Kernel

Services

47

d_map_list

Performs

platform-specific

DMA

mapping

for

a

list

of

virtual

addresses.

d_map_page

Performs

platform-specific

DMA

mapping

for

a

single

page.

d_map_slave

Accepts

a

list

of

virtual

addresses

and

sizes

and

sets

up

the

slave

DMA

controller.

d_roundup

Rounds

the

value

length

up

to

a

given

number

of

cache

lines.

d_unmap_list

Deallocates

resources

previously

allocated

on

a

d_map_list

call.

d_unmap_page

Deallocates

resources

previously

allocated

on

a

d_map_page

call.

d_unmap_slave

Deallocates

resources

previously

allocated

on

a

d_map_slave

call.

Enhanced

I/O

Error

Handling

(EEH)

Kernel

Services

Enhanced

I/O

Error

Handling

(EEH)

kernel

services

is

an

error

recovery

strategy

for

errors

that

occur

during

I/O

operations

on

a

PCI

or

on

a

PCI-X

bus.

Bridges,

PCI-to-PCI

or

PCIX-to-PCIX,

that

allow

each

slot

to

be

on

its

own

bus

provide

a

form

of

electrical

and

logical

isolation

of

slots.

These

bridges

are

called

the

terminal

bridges.

Without

terminal

bridges,

EEH

kernel

services

would

not

be

possible.

The

types

of

adapters

supported

in

the

slot

created

by

a

terminal

bridge

are:

v

Single-function

adapter

with

or

without

a

PCI-to-PCI

(or

PCIX-to-PCIX)

bridge

on

the

adapter.

v

Multifunction

adapter

without

a

PCI-to-PCI

(or

PCIX-to-PCIX)

bridge

on

the

adapter

v

Multifunction

adapter

with

a

PCI-to-PCI

(or

PCIX-to-PCIX)

bridge

on

the

adapter.

The

device

drivers

for

all

these

types

of

adapters

use

the

same

EEH

kernel

services

to

drive

the

error

recovery

except

for

the

registration

service.

A

single-function

adapter

calls

the

eeh_init()

registration

service

function.

A

multifunction

adapter

calls

the

eeh_init_multifunc()

registration

service

function.

Although

the

same

services

are

used

by

the

single

and

multifunction

adapter

drivers,

the

error

recovery

models

are

different.

Also,

a

bridged-adapter,

a

multifunction

adapter

on

which

a

PCI-to-PCI

or

a

PCIX-to-PCIX

bridge

resides,

requires

an

extra

step

in

error

recovery

compared

to

a

non-bridged

adapter.

The

error

recovery

is

performed

by

resetting

the

PCI

bus

between

the

terminal

bridge

and

the

adapter

under

it.

This

action

is

same

as

resetting

the

slot

in

error.

The

basic

steps

in

error

detection

and

recovery

are

as

follows:

v

An

adapter

driver

suspects

an

error

on

the

card

when

it

receives

some

invalid

values

from

one

or

more

locations

in

its

I/O

or

memory

spaces.

v

The

driver

then

confirms

the

existence

of

the

error

by

calling

EEH

kernel

services.

After

the

error

state

is

confirmed,

the

slot

is

declared

frozen.

v

After

the

slot

is

frozen,

all

further

activities

to

the

card

are

suspended

until

the

error

is

recovered.

For

example,

interrupts

are

masked,

and

new

read/write

requests

are

blocked

or

failed.

v

The

driver

attempts

to

recover

the

slot

by

toggling

the

reset

line.

After

three

attempts

to

recover,

the

driver

declares

the

slot

unusable

(or

dead).

If

the

slot

is

reset

successfully,

normal

operations

resume.

The

key

difference

in

the

single-function

and

multifunction

models

is

that

in

the

multifunction

model,

there

is

a

need

for

coordination

among

different

driver

instances

controlling

the

same

physical

device

on

a

single

slot.

Therefore,

the

drivers

follow

a

state

machine.

The

EEH

kernel

services

are

implemented

such

that

they

present

an

EEH

recovery

state

machine

to

the

device

drivers.

A

lot

of

details

are

hidden

from

the

device

drivers

for

simplicity.

Because

the

multifunction

model

is

more

flexible

and

extensible,

it

is

recommended

for

the

new

device

drivers.

In

the

single-function

model,

the

device

drivers

are

responsible

for

driving

their

own

error

recovery.

In

other

words,

they

are

responsible

for

implementing

their

own

state

machine.

Every

time

EEH

recovery

is

extended

in

some

way

at

the

hardware

or

firmware

level,

there

is

probably

a

code

and

testing

impact

on

the

single-function

implementations.

An

adapter

that

is

single-function

can

still

use

the

multifunction

model.

In

that

case,

all

the

messages

from

the

EEH

kernel

services

are

sent

to

just

one

driver

instance.

48

Kernel

Extensions

and

Device

Support

Programming

Concepts

Multifunction

Programming

Model

For

the

multifunction

programming

model,

EEH

kernel

services

presents

the

following

state

machine

to

the

drivers:

1.

A

slot

starts

out

in

the

NORMAL

state.

2.

When

an

EEH

event

happens,

the

driver

might

receive

all

F’s

from

reading

a

register.

The

driver

must

call

eeh_read_slot_state()

to

confirm

the

event.

3.

If

eeh_read_slot_state()

finds

the

slot

to

be

frozen,

it

broadcasts

an

EEH_DD_SUSPEND

message

to

all

registered

drivers,

and

the

slot

state

moves

to

SUSPEND.

The

kernel

messages

like

this

one

are

broadcast

by

invoking

the

Callback

Routine

sequentially.

The

messages

are

broadcast

at

INTIODONE

priority.

4.

When

the

drivers

receive

the

EEH_DD_SUSPEND

message,

they

can

do

one

of

the

following:

a.

Gather

some

debug

data

from

the

adapter

and

proceed

to

reset

the

slot.

Gathering

the

debug

data

is

really

an

optional

step

in

the

recovery

process,

where

a

driver

can

choose

to

read

certain

registers

on

the

adapter

in

an

attempt

to

understand

what

caused

the

EEH

event

in

the

first

place.

To

gather

the

debug

data,

the

drivers

must

enable

PIO

and/or

DMA

to

the

adapter.

PIO

and

DMA

are

frozen

when

an

EEH

event

occurs.

To

enable

PIO

and/or

DMA:

1)

The

drivers

must

call

eeh_enable_pio()

and/or

eeh_enable_dma(),

respectively.

When

either

one

is

called,

EEH_DD_DEBUG

message

is

sent

to

the

drivers

indicating

that

PIO/DMA

are

enabled,

and

the

slot

state

moves

to

DEBUG.

2)

The

drivers

then

gather

the

data.

eeh_enable_pio()

can

be

called

multiple

times.

Each

time

it

is

called,

another

EEH_DD_DEBUG

message

is

broadcast.

3)

When

the

drivers

receive

EEH_DD_SUSPEND

or

EEH_DD_DEBUG

messages,

they

call

eeh_slot_error()

to

create

an

AIX

error

log

entry

with

hardware

debug

data.

4)

EEH

kernel

services

picks

a

master

which

must

call

eeh_reset_slot()

to

reset

the

slot.

Only

one

driver

calls

reset

because

it

is

not

necessary

to

reset

the

slot

multiple

times.

b.

Proceed

directly

to

reset

the

slot.

5.

The

master’s

callback

routine

is

called

to

ensure

that

all

other

callback

routines

have

finished

their

work.

The

master’s

callback

routine

is

called

with

EEH_MASTER

flag.

6.

The

reset

line

on

the

PCI

bus

is

toggled

with

100

ms

delay

between

activate

and

deactivate

to

reset

the

slot.

The

delay

is

hidden

from

the

device

drivers

and

is

enforced

by

the

eeh_reset_slot()

kernel

service

internally.

The

slot

internally

moves

through

the

ACTIVATE

and

the

DEACTIVATE

states.

7.

For

the

bridged-adapters,

at

the

end

of

a

successful

reset,

EEH

kernel

services

configures

the

bridge

using

eeh_configure_bridge()

service.

Kernel

services

also

enforces

a

certain

amount

of

delay

between

the

deactivation

of

the

reset

line

and

the

configuration

of

bridge.

The

device

drivers

do

not

need

to

call

eeh_configure_bridge()

directly.

8.

If

everything

goes

well,

the

EEH_DD_RESUME

message

is

sent

to

the

drivers

indicating

that

the

slot

recovery

is

complete.

9.

At

this

point,

most

drivers

would

have

to

reinitialize

their

adapters

before

starting

normal

operations

again.

Note:

This

is

the

usual

recovery

sequence.

If

any

of

the

services

fail,

the

EEH_DD_DEAD

message

is

broadcast

asking

the

drivers

to

mark

their

adapters

unavailable

(for

example,

the

drivers

might

have

to

perform

some

cleanup

work

and

mark

their

internal

states

appropriately).

The

master

driver

must

call

eeh_slot_error()

to

create

an

AIX

error

log

and

mark

the

adapter

permanently

unavailable.

There

are

two

special

scenarios

that

a

driver

developer

needs

to

be

aware

of:

Chapter

4.

Kernel

Services

49

1.

If

a

driver

receives

either

an

EEH_DD_SUSPEND

or

an

EEH_DD_DEAD

message,

it

can

return

an

EEH_BUSY

return

code

from

its

callback

routine

instead

of

an

EEH_SUCC

return

code.

If

EEH

kernel

services

receives

an

EEH_BUSY

message,

EEH

kernel

services

waits

for

some

time

and

then

calls

the

same

driver

again.

This

process

continues

until

EEH

kernel

services

receive

a

different

return

code.

This

process

is

repeated

because

some

drivers

need

more

time

to

cleanup

before

recovery

can

continue.

Cleanup

would

include

such

activities

like

killing

a

kproc

or

notifying

a

user

level

app.

2.

If

eeh_enable_dma()

and

eeh_enable_pio()

cannot

succeed

due

to

the

platform

state

restrictions,

the

service

returns

an

EEH_FAIL

return

code

followed

by

an

EEH_DD_DEAD

message

unless

you

take

action.

To

avoid

receiving

an

EEH_FAIL

return

code,

the

driver

must

supply

an

EEH_ENABLE_NO_SUPPORT_RC

flag

when

eeh_init_multifunc()

kernel

services

is

initiated.

If

an

EEH_ENABLE_NO_SUPPORT_RC

flag

is

supplied,

eeh_enable_pio()

and

eeh_enable_dma()

return

the

EEH_NO_SUPPORT

return

code

that

indicates

to

the

drivers

that

they

cannot

collect

debug

data

but

can

continue

with

the

next

step

in

recovery.

For

more

information,

see

eeh_read_slot_state.

The

EEH

kernel

services

that

you

can

use

are

listed

in

the

following

table:

Note:

eeh_init()

and

eeh_init_multifunc()

are

the

only

exported

kernel

services.

All

other

kernel

services

are

called

using

function

pointers

in

the

eeh_handle

kernel

service.

Kernel

Service

Single

Function

Multi-

Function

Process

Environment

Interrupt

Environment

eeh_init

Y

N

Y

N

eeh_init_multifunc

N

Y

Y

N

eeh_clear

Y

Y

Y

N

eeh_read_slot_state

Y

Y

Y

Y

eeh_enable_pio

Y

Y

Y

Y

eeh_enable_dma

Y

Y

Y

Y

eeh_enable_slot

Y

N

Y

Y

eeh_disable_slot

Y

N

Y

Y

eeh_reset_slot

Y

Y

Y

Y

eeh_slot_error

Y

Y

Y

Y

eeh_broadcast

N

Y

Y

Y

Callback

Routine

The(*callback_ptr)()

function

prototype

is

defined

as:

long

eeh_callback(

unsigned

long

long

cmd,

/*

EEH

messages

*/

void

*arg,

/*

Pointer

to

dd

defined

argument

*/

unsigned

long

flag)

/*

DD

defined

flag

*/

1.

cmd

–

contains

a

kernel

and

driver

message

2.

arg

–

is

a

cookie

to

a

target

device

driver

that

is

usually

a

pointer

to

the

adpater

structure

3.

flag

argument

can

be

either

just

EEH_MASTER

or

EEH_MASTER

ORed

with

EEH_DD_PIO_ENABLED.

EEH_MASTER

indicates

that

the

target

device

driver

is

the

EEH_MASTER.

EEH_DD_PIO_ENABLED

is

only

set

with

the

EEH_DD_DEBUG

message

to

indicate

that

the

PIO

is

enabled.

When

eeh_init_multifunc()

is

called,

the

callback

routines

are

registered.

When

eeh_clear()

is

called

the

callback

routines

are

unregistered.

The

callback

routines

are

necessary

for

EEH

kernel

services

recovery.

They

coordinate

multi-function

driver

instances.

For

more

information

on

how

this

coordination

is

done,

see

“Enhanced

I/O

Error

Handling

(EEH)

Kernel

Services”

on

page

48.

50

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

multi-function

drivers

are

expected

to

handle

the

following

EEH

kernel

services

messages:

v

EEH_DD_SUSPEND

Notifies

all

the

device

drivers

on

a

slot

that

an

EEH

kernel

services

event

occurred.

The

slot

is

either

frozen

or

temporarily

unavailable.

Because

an

EEH

kernel

services

event

occurred,

the

device

drivers

suspend

operations.

Then,

the

EEH_MASTER

driver

either

enables

PIO/DMA

or

resets

the

slot.

v

EEH_DD_DEBUG

Notifies

all

drivers

on

a

slot

that

they

can

now

gather

debug

data

from

the

devices.

The

device

drivers

log

errors

by

calling

the

eeh_slot_error()

function

and

passing

in

the

gathered

debug

data.

This

message

is

sent

when

the

EEH_MASTER

calls

the

eeh_enable_pio()

function.

On

the

callback

routine,

the

flag

argument

is

set

to

EEH_DD_PIO_ENABLED.

v

EEH_DD_DEAD

Notifies

all

drivers

on

a

slot

that

the

slot

reached

an

unrecoverable

state

and

the

slot

is

no

longer

usable.

This

message

is

sent

anytime

EEH

kernel

services

fail

because

of

hardware

or

firmware

problems.

This

message

is

also

broadcast

when

a

driver

calls

the

eeh_slot_error()

function

with

the

flag

set

to

EEH_RESET_PERM.

The

device

drivers

usually

perform

necessary

cleanup

and

mark

the

adapter

as

permanently

unavailable.

v

EEH_DD_RESUME

Notifies

all

drivers

on

a

slot

that

the

EEH

kernel

services

event

was

recovered

successfully

and

that

the

callback

routines

can

now

resume

normal

operation.

This

message

is

sent

at

the

end

of

a

successful

toggle

of

reset

line

and

optional

bridge

(For

example,

the

bridge

on

the

adapter)

configuration.

The

device

drivers

must

usually

re-initialize

their

adapters

before

normal

operation

can

begin

again.

The

device

drivers

define

their

own

messages

based

on

the

contents

of

the

sys/eeh.h

file.

The

eeh_callback()

functions

are

scheduled

to

start

sequentially

at

INTIODONE

priority.

They

are

not

started

in

any

specific

order.

For

more

information,

see

eeh_broadcast.

Block

I/O

Buffer

Cache

Kernel

Services:

Overview

The

Block

I/O

Buffer

Cache

services

are

provided

to

support

user

access

to

device

drivers

through

block

I/O

special

files.

This

access

is

required

by

the

operating

system

file

system

for

mounts

and

other

limited

activity,

as

well

as

for

compatibility

services

required

when

other

file

systems

are

installed

on

these

kinds

of

systems.

These

services

are

not

used

by

the

operating

system’s

JFS

(journal

file

system),

NFS

(Network

File

System),

or

CDRFS

(CD-ROM

file

system)

when

processing

standard

file

I/O

data.

Instead

they

use

the

virtual

memory

manager

and

pager

to

manage

the

system’s

memory

pages

as

a

buffer

cache.

For

compatibility

support

of

other

file

systems

and

block

special

file

support,

the

buffer

cache

services

serve

two

important

purposes:

v

They

ensure

that

multiple

processes

accessing

the

same

block

of

the

same

device

in

multiprogrammed

fashion

maintain

a

consistent

view

of

the

data

in

the

block.

v

They

increase

the

efficiency

of

the

system

by

keeping

in-memory

copies

of

blocks

that

are

frequently

accessed.

The

Buffer

Cache

services

use

the

buf

structure

or

buffer

header

as

their

main

data-tracking

mechanism.

Each

buffer

header

contains

a

pair

of

pointers

that

maintains

a

doubly-linked

list

of

buffers

associated

with

a

particular

block

device.

An

additional

pair

of

pointers

maintain

a

doubly-linked

list

of

blocks

available

for

use

again

on

another

operation.

Buffers

that

have

I/O

in

progress

or

that

are

busy

for

other

purposes

do

not

appear

in

this

available

list.

Kernel

buffers

are

discussed

in

more

detail

in

Introduction

to

Kernel

Buffers

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Chapter

4.

Kernel

Services

51

See

“Block

I/O

Kernel

Services”

on

page

45

for

a

list

of

these

services.

Managing

the

Buffer

Cache

Fourteen

kernel

services

provide

management

of

this

block

I/O

buffer

cache

mechanism.

The

getblk

kernel

service

allocates

a

buffer

header

and

a

free

buffer

from

the

buffer

pool.

Given

a

device

and

block

number,

the

getblk

and

bread

kernel

services

both

return

a

pointer

to

a

buffer

header

for

the

block.

But

the

bread

service

is

guaranteed

to

return

a

buffer

actually

containing

a

current

data

for

the

block.

In

contrast,

the

getblk

service

returns

a

buffer

that

contains

the

data

in

the

block

only

if

it

is

already

in

memory.

In

either

case,

the

buffer

and

the

corresponding

device

block

are

made

busy.

Other

processes

attempting

to

access

the

buffer

must

wait

until

it

becomes

free.

The

getblk

service

is

used

when:

v

A

block

is

about

to

be

rewritten

totally.

v

Its

previous

contents

are

not

useful.

v

No

other

processes

should

be

allowed

to

access

it

until

the

new

data

has

been

placed

into

it.

The

breada

kernel

service

is

used

to

perform

read-ahead

I/O

and

is

similar

to

the

bread

service

except

that

an

additional

parameter

specifies

the

number

of

the

block

on

the

same

device

to

be

read

asynchronously

after

the

requested

block

is

available.

The

brelse

kernel

service

makes

the

specified

buffer

available

again

to

other

processes.

Using

the

Buffer

Cache

write

Services

There

are

three

slightly

different

write

routines.

All

of

them

take

a

buffer

pointer

as

a

parameter

and

all

logically

release

the

buffer

by

placing

it

on

the

free

list.

The

bwrite

service

puts

the

buffer

on

the

appropriate

device

queue

by

calling

the

device’s

strategy

routine.

The

bwrite

service

then

waits

for

I/O

completion

and

sets

the

caller’s

error

flag,

if

required.

This

service

is

used

when

the

caller

wants

to

be

sure

that

I/O

takes

place

synchronously,

so

that

any

errors

can

be

handled

immediately.

The

bawrite

service

is

an

asynchronous

version

of

the

bwrite

service

and

does

not

wait

for

I/O

completion.

This

service

is

normally

used

when

the

overlap

of

processing

and

device

I/O

activity

is

desired.

The

bdwrite

service

does

not

start

any

I/O

operations,

but

marks

the

buffer

as

a

delayed

write

and

releases

it

to

the

free

list.

Later,

when

the

buffer

is

obtained

from

the

free

list

and

found

to

contain

data

from

some

other

block,

the

data

is

written

out

to

the

correct

device

before

the

buffer

is

used.

The

bdwrite

service

is

used

when

it

is

undetermined

if

the

write

is

needed

immediately.

For

example,

the

bdwrite

service

is

called

when

the

last

byte

of

the

write

operation

associated

with

a

block

special

file

falls

short

of

the

end

of

a

block.

The

bdwrite

service

is

called

on

the

assumption

that

another

write

will

soon

occur

that

will

use

the

same

block

again.

On

the

other

hand,

as

the

end

of

a

block

is

passed,

the

bawrite

service

is

called,

because

it

is

assumed

the

block

will

not

be

accessed

again

soon.

Therefore,

the

I/O

processing

can

be

started

as

soon

as

possible.

Note

that

the

getblk

and

bread

services

dedicated

the

specified

block

to

the

caller

while

making

other

processes

wait,

whereas

the

brelse,

bwrite,

bawrite,

or

bdwrite

services

must

eventually

be

called

to

free

the

block

for

use

by

other

processes.

Understanding

Interrupts

Each

hardware

interrupt

has

an

interrupt

level

and

an

interrupt

priority.

The

interrupt

level

defines

the

source

of

the

interrupt.

There

are

basically

two

types

of

interrupt

levels:

system

and

bus.

The

system

bus

interrupts

are

generated

from

the

Micro

Channel

bus

and

system

I/O.

Examples

of

system

interrupts

are

the

timer

and

serial

link

interrupts.

52

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

interrupt

level

of

a

system

interrupt

is

defined

in

the

sys/intr.h

file.

The

interrupt

level

of

a

bus

interrupt

is

one

of

the

resources

managed

by

the

bus

configuration

methods.

Interrupt

Priorities

The

interrupt

priority

defines

which

of

a

set

of

pending

interrupts

is

serviced

first.

INTMAX

is

the

most

favored

interrupt

priority

and

INTBASE

is

the

least

favored

interrupt

priority.

The

interrupt

priorities

for

bus

interrupts

range

from

INTCLASS0

to

INTCLASS3.

The

rest

of

the

interrupt

priorities

are

reserved

for

the

base

kernel.

Interrupts

that

cannot

be

serviced

within

the

time

limits

specified

for

bus

interrupts

qualify

as

off-level

interrupts.

A

device’s

interrupt

priority

is

selected

based

on

two

criteria:

its

maximum

interrupt

latency

requirements

and

the

device

driver’s

interrupt

execution

time.

The

interrupt

latency

requirement

is

the

maximum

time

within

which

an

interrupt

must

be

serviced.

(If

it

is

not

serviced

in

this

time,

some

event

is

lost

or

performance

is

degraded

seriously.)

The

interrupt

execution

time

is

the

number

of

machine

cycles

required

by

the

device

driver

to

service

the

interrupt.

Interrupts

with

a

short

interrupt

latency

time

must

have

a

short

interrupt

service

time.

The

general

rule

for

interrupt

service

times

is

based

on

the

following

interrupt

priority

table:

Priority

Service

Time

(machine

cycles)

INTCLASS0

200

cycles

INTCLASS1

400

cycles

INTCLASS2

600

cycles

INTCLASS3

800

cycles

The

valid

interrupt

priorities

are

defined

in

the

/usr/include/sys/intr.h

file.

See

“Interrupt

Management

Kernel

Services”

on

page

46

for

a

list

of

these

services.

Understanding

DMA

Transfers

AIX

DMA

support

deals

with

the

issues

of

DMA

(Direct

Memory

Access)

by

I/O

devices

to

and

from

system

memory.

The

programming

framework

supports

common

I/O

buses

such

as

PCI

and

ISA,

and

is

easily

extensible

to

additional

bus

types.

The

framework

supports

64-bit

addressability,

and

also

allows

for

mappings

from

32-bit

devices

to

64-bit

addresses

to

be

hidden

from

the

devices

and

their

drivers.

DMA

Programming

Model

This

is

the

basic

DMA

programming

model.

It

is

completely

independent

of:

v

System

hardware

v

LPAR

mode

or

non-LPAR

mode

v

32-bit

bus/devices

or

64-bit

bus/devices

v

32-bit

kernel

or

64-bit

kernel

A

device

driver

allocates

and

initializes

DMA-related

resources

with

the

d_map_init

service

and

frees

the

resources

with

the

d_map_clear

service.

Each

time

a

DMA

mapping

needs

to

be

established,

the

driver

calls

d_map_page

or

d_map_list

service.

d_map_page

and

d_map_list

map

DMA

buffers

in

the

bus

memory.

In

other

words,

given

a

set

of

DMA

buffer

addresses,

a

corresponding

set

of

bus

addresses

is

returned

to

the

driver.

The

driver

programs

its

device

with

the

bus

addresses

and

sets

it

up

to

start

the

DMA.

When

the

DMA

is

complete:

v

The

device

generates

an

interrupt

that

is

handled

by

the

driver.

v

If

no

more

DMA

will

be

done

to

the

buffers,

the

driver

unmaps

the

DMA

buffers

with

d_unmap_page

or

d_unmap_list

services.

Chapter

4.

Kernel

Services

53

Data

Structures

d_map_init

returns

a

d_handle_t

to

the

caller

upon

a

successful

completion.

Only

d_map_init

is

an

exported

kernel

service.

All

other

DMA

kernel

services

are

called

through

the

function

pointers

in

d_handle_t

(see

sys/dma.h).

d_handle

{

uint

id;

/*

identifier

for

this

device

*/

uint

flags;

/*

device

capabilities

*/

#ifdef

__64BIT_KERNEL

/*

pointer

to

d_map_page

routine

*/

int

(*d_map_page)(d_handle_t,int,caddr_t,

ulong

*,

struct

xmem

*);

/*

pointer

to

d_unmap_page

routine

*/

void

(*d_unmap_page)(d_handle_t,

ulong

*);

/*

pointer

to

d_map_list

routine

*/

int

(*d_map_list)(d_handle_t,

int,

int,

dio_t,

dio_t);

/*

pointer

to

d_unmap_list

routine

*/

void

(*d_unmap_list)(d_handle_t,

dio_t);

/*

pointer

to

d_map_slave

routine

*/

int

(*d_map_slave)(d_handle_t,

int,

int,

dio_t,

uint);

/*

pointer

to

d_unmap_slave

routine

*/

int

(*d_unmap_slave)(d_handle_t);

/*

pointer

to

d_map_disable

routine

*/

int

(*d_map_disable)(d_handle_t);

/*

pointer

to

d_map_enable

routine

*/

int

(*d_map_enable)(d_handle_t);

/*

pointer

to

d_map_clear

routine

*/

void

(*d_map_clear)(d_handle_t);

/*

pointer

to

d_sync_mem

routine

*/

int

(*d_sync_mem)(d_handle_t,

dio_t);

#else

int

(*d_map_page)();

/*

pointer

to

d_map_page

routine

*/

void

(*d_unmap_page)();

/*

pointer

to

d_unmap_page

routine

*/

int

(*d_map_list)();

/*

pointer

to

d_map_list

routine

*/

void

(*d_unmap_list)();

/*

pointer

to

d_unmap_list

routine

*/

int

(*d_map_slave)();

/*

pointer

to

d_map_slave

routine

*/

int

(*d_unmap_slave)();

/*

pointer

to

d_unmap_slave

routine

*/

int

(*d_map_disable)();

/*

pointer

to

d_map_disable

routine

*/

int

(*d_map_enable)();

/*

pointer

to

d_map_enable

routine

*/

void

(*d_map_clear)();

/*

pointer

to

d_map_clear

routine

*/

int

(*d_sync_mem)();

/*

pointer

to

d_sync_mem

routine

*/

#endif

int

bid;

/*

bus

id

passed

to

d_map_init

*/

void

*bus_sys_xlate_ptr;

/*

pointer

to

dma

bus

to

system

translation

information

*/

uint

reserved1;

/*

padding

*/

uint

reserved2;

/*

padding

*/

uint

reserved3;

/*

padding

*/

};

The

following

are

the

dio

and

d_iovec

structures

used

to

define

the

scatter/gather

lists

used

by

the

d_map_list,

d_unmap_list,

and

d_map_slave

services

(see

sys/dma.h).

struct

dio

{

int32long64_t

total_iovecs;

/*

total

available

iovec

entries

*/

int32long64_t

used_iovecs;

/*

number

of

used

iovecs

*/

int32long64_t

bytes_done;

/*

count

of

bytes

processed

*/

int32long64_t

resid_iov;

/*

number

of

iovec

that

couldn’t

be

*/

/*

fully

mapped

due

to

NORES,DIOFULL*/

/*

vec

=&dvec

[resid_iov]

*/

struct

d_iovec

*dvec;

/*

pointer

to

list

of

d_iovecs

*/

};

struct

d_iovec

{

caddr_t

iov_base;

/*

base

memory

address

*/

54

Kernel

Extensions

and

Device

Support

Programming

Concepts

int32long64_t

iov_len;

/*

length

of

transfer

for

this

area

*/

struct

xmem

*xmp;

/*

cross

memory

pointer

for

this

address*/

};

The

following

are

the

dio_64

and

d_iovec_64

structures

used

to

define

the

scatter

and

gather

lists

used

by

the

d_map_list

and

d_unmap_list

services

when

the

DMA_ENABLE_64

flag

is

set

on

the

d_map_init

call.

These

are

not

used

under

the

64-bit

Kernel

and

Kernel

Extension

environment

because

the

dio

and

d_iovec

data

structures

are

naturally

64-bit

capable

in

that

environment.

(For

more

information,

see

sys/dma.).

struct

dio_64

{

int

total_iovecs;

/*

total

available

iovec

entries

*/

int

used_iovecs;

/*

number

of

used

iovecs

*/

int

bytes_done;

/*

count

of

bytes

processed

*/

int

resid_iov;

/*

number

of

iovec

that

couldn’t

be

*/

/*

fully

mapped

due

to

NORES,DIOFULL*/

/*

vec

=

&dvec

[resid_iov]

*/

struct

d_iovec_64

*dvec;

/*

pointer

to

list

of

d_iovecs

*/

};

struct

d_iovec_64

{

unsigned

long

long

iov_base;

/*

base

memory

address

*/

int

iov_len;

/*

length

of

transfer

for

this

area

*/

struct

xmem

*xmp;

/*

cross

memory

pointer

for

this

address*/

}

The

following

macros

are

provided

in

sys/dma.h

for

device

drivers

in

order

to

call

the

DMA

kernel

services

cleanly:

#define

D_MAP_INIT(bid,

flags,

bus_flags,

channel)

\

d_map_init(bid,

flags,

bus_flags,

channel)

#define

D_MAP_CLEAR(handle)

(handle->d_map_clear)(handle)

#define

D_MAP_PAGE(handle,

flags,

baddr,

busaddr,

xmp)

\

(handle->d_map_page)(handle,flags,

baddr,

busaddr,

xmp)

#define

D_UNMAP_PAGE(handle,

bus_addr)

\

if

(handle->d_unmap_page

!=

NULL)

(handle->d_unmap_page)(handle,

bus_addr)

#define

D_MAP_LIST(handle,

flags,

minxfer,

virt_list,

bus_list)

\

(handle->d_map_list)(handle,

flags,

minxfer,

virt_list,bus_list)

#define

D_UNMAP_LIST(handle,

bus_list)

\

if

(handle->d_unmap_list

!=

NULL)(handle->d_unmap_list)(handle,

bus_list)

#define

D_MAP_SLAVE(handle,

flags,

minxfer,

vlist,

chan_flags)

\

(handle->d_map_slave)(handle,

flags,

minxfer,

vlist,

chan_flags)

#define

D_UNMAP_SLAVE(handle)

\

(handle->d_unmap_slave

!=

NULL)

?

\

(handle->d_unmap_slave)(handle)

:

DMA_SUCC

#define

D_MAP_DISABLE(handle)

(handle->d_map_disable)(handle)

#define

D_MAP_ENABLE(handle)

(handle->d_map_enable)(handle)

#define

D_SYNC_MEM(handle,

bus_list)

\

(handle->d_sync_mem

!=

NULL)

?

\

(handle->d_sync_mem)(handle,

bus_list)

:

DMA_SUCC

Chapter

4.

Kernel

Services

55

d_map

Return

Code

Map

The

following

table

describes

the

possible

return

codes

and

requirements

for

the

d_map

interfaces

that

map

memory

for

DMA:

Return

Codes

d_map_page

d_map_list

d_map_slave

DMA_SUCC

Page

mapped

successfully,

busaddr

contains

the

mapped

bus

address.

d_unmap_page

must

be

called

to

free

any

resources

associated

with

the

mapping

List

mapped

successfully.

bus_list

describes

list

of

mapped

bus

addresses.

d_unmap_list

must

be

called

to

free

any

resources

associated

with

the

mapping

List

mapped

successfully.

Slave

DMA

Controller

initialized

for

the

desired

transfer.

d_unmap_slave

must

be

called

to

free

any

resources

associated

with

the

mapping

DMA_NORES

Not

enough

resources

to

map

the

page.

No

mapping

is

performed

d_unmap_page

must

not

be

called

Not

enough

resources

to

map

the

entire

list.

A

partial

mapping

is

possible.

d_unmap_list

must

be

called

to

free

any

resources

associated

with

the

mapping

Not

enough

resources

to

map

the

entire

list.

A

partial

mapping

is

possible.

d_unmap_slave

must

be

called

to

free

any

resources

associated

with

the

mapping

DMA_NOACC

No

access

to

the

page.

No

mapping

is

performed.

d_unmap_page

must

not

be

called.

No

access

to

a

page

in

the

list.

No

mapping

is

performed.

d_unmap_list

must

not

be

called.

No

access

to

a

page

in

the

list.

No

mapping

is

performed.

d_unmap_slave

must

not

be

called.

DMA_DIOFULL

Does

not

apply

bus_list

is

exhausted.

Successful

partial

mapping

as

indicated.

d_unmap_list

must

be

called

when

finished

with

the

partial

mapping

Does

not

apply

DMA_BAD_MODE

Does

not

apply

Does

not

apply

Requested

channel

mode(s)

are

not

supported

Using

dio

A

device

driver

can

use

the

dio

structure

in

many

ways.

It

can

be

used

to:

v

Pass

a

list

of

virtual

addresses

and

lengths

of

buffers

to

the

d_map_list

and

d_map_slave

services

v

Receive

the

resulting

list

of

bus

addresses

(d_map_list

only)

for

use

by

the

device

in

the

data

transfer.

Note:

The

driver

does

not

need

a

dio

bus

list

for

calls

to

d_map_slave

because

the

address

generation

for

slaves

is

hidden.

Typically,

a

device

driver

provides

a

dio

structure

that

contains

only

one

virtual

buffer

and

one

length

in

the

list.

If

the

virtual

buffer

length

spans

many

pages,

the

bus

address

list

contains

multiple

entries

that

reflect

the

physical

locations

of

the

virtually

contiguous

buffer.

The

driver

can

provide

multiple

virtual

buffers

in

the

virtual

list.

This

allows

the

driver

to

place

many

buffer

requests

in

one

I/O

operation.

The

device

driver

is

responsible

for

allocating

the

storage

for

all

the

dio

lists

it

needs.

For

more

information,

see

the

DIO_INIT

and

DIO_FREE

macros

in

the

sys/dma.h

header

file.The

driver

must

have

at

least

two

dio

structures.

One

is

needed

for

passing

in

the

virtual

list.

Another

is

needed

to

accept

the

resulting

bus

list.

The

driver

can

have

many

dio

lists

if

it

plans

to

have

multiple

outstanding

I/O

commands

to

its

device.

The

length

of

each

list

is

dependent

on

the

use

of

the

device

and

driver.

The

virtual

list

needs

as

many

elements

as

the

device

could

place

in

one

operation

at

the

same

time.

A

formula

for

estimating

how

many

elements

the

bus

address

list

needs

is

the

sum

of

each

of

the

virtual

buffers

lengths

divided

by

page

size

plus

2.

Or,

sum

[i=0

to

n]

((vlist[i].length

/

PSIZE)

+

2).

56

Kernel

Extensions

and

Device

Support

Programming

Concepts

This

formula

handles

a

worst

case

situation.

For

a

contiguous

virtual

buffer

that

spans

multiple

pages,

each

physical

page

is

discontiguous,

and

neither

the

starting

or

ending

address

are

page-aligned.

If

the

d_map_list

service

runs

out

of

space

while

filling

in

the

dio

bus

list,

a

DMA_DIOFULL

error

is

returned

to

the

device

driver

and

the

bytes_done

field

of

the

dio

virtual

list

is

set

to

the

number

of

bytes

successfully

mapped

in

the

bus

list.

This

byte

count

is

guaranteed

to

be

a

multiple

of

the

minxfer

field

provided

to

the

d_map_list

or

d_map_slave

services.

Also,

the

resid_iov

field

of

the

virtual

list

is

set

to

the

index

of

the

first

d_iovec

entry

that

represents

the

remainder

of

iovecs

that

could

not

be

mapped.

The

device

driver

can:

v

Initiate

a

partial

transfer

on

its

device

and

leave

the

remainder

on

its

device

queue

If

the

driver

chooses

not

to

initiate

the

partial

transfer,

it

must

still

make

a

call

to

d_unmap_list

to

undo

the

partial

mapping.

v

Make

another

call

to

the

d_map_list

with

new

dio

lists

for

the

remainder

and

setup

its

device

for

the

full

transfer

that

was

originally

intended.

If

d_map_list

or

d_map_slave

encounter

an

access

violation

on

a

page

within

the

virtual

list,

then

a

DMA_NOACC

error

is

returned

to

the

device

driver

and

the

bytes_done

field

of

the

dio

virtual

list

is

set

to

the

number

of

bytes

that

preceded

the

faulting

iovec.

In

this

case,

the

resid_iov

field

is

set

to

the

index

of

the

d_iovec

entry

that

encountered

the

violation.

From

this

information,

the

driver

can

determine

which

virtual

buffer

contained

the

faulting

page

and

fail

that

request

back

to

the

originator.

Note:

If

the

DMA_NOACC

error

is

returned,

the

bytes_done

count

is

not

guaranteed

to

be

a

multiple

of

the

minxfer

field

provided

to

the

d_map_list

or

d_map_slave

services,

and

no

partial

mapping

is

done.

For

slaves,

setup

of

the

address

generation

hardware

is

not

done.

For

masters,

the

bus

list

is

undefined.

If

the

driver

desires

a

partial

transfer,

it

must

make

another

call

to

the

mapping

service

with

the

dio

list

adjusted

to

not

include

the

faulting

buffer.

If

either

the

d_map_list

or

d_map_slave

services

run

out

of

resources

while

mapping

a

transfer,

a

DMA_NORES

error

is

returned

to

the

device

driver.

In

this

case,

the

bytes_done

field

of

the

dio

virtual

list

is

set

to

the

number

of

bytes

that

were

successfully

mapped

in

the

bus

list.

This

byte

count

is

guaranteed

to

be

a

multiple

of

the

minxfer

field

provided

to

the

d_map_list

or

d_map_slave

services.

Also,

the

resid_iov

field

of

the

virtual

list

is

set

to

the

index

of

the

first

d_iovec

of

the

remaining

iovecs

that

could

not

be

mapped.

The

device

driver

can:

v

Initiate

a

partial

transfer

on

its

device

and

leave

the

remainder

on

its

device

queue

If

the

driver

chooses

not

to

initiate

the

partial

transfer,

it

still

must

make

a

call

to

d_unmap_list

or

d_unmap_slave

(for

slaves)

to

undo

the

partial

mapping.

v

Choose

to

leave

the

entire

request

on

its

device

queue

and

wait

for

resources

to

free

up

(for

example,

after

a

device

interrupt

from

a

previous

operation).

Note:

If

the

DMA_ENABLE_64

flag

was

indicated

on

the

d_map_init

call,

the

programming

model

is

the

same

with

one

exception.

The

dio_64

and

d_iovec_64

structures

are

used

in

addition

to

64-bit

address

fields

on

d_map_page

and

d_unmap_page

calls.

Fields

of

dio

The

only

field

of

the

bus

list

that

a

device

driver

modifies

is

the

total_iovecs

field

to

indicate

how

many

elements

are

available

in

the

list.

The

device

driver

never

changes

any

of

the

other

fields

in

the

bus

list.

The

device

driver

uses

the

bus

list

to

set

up

its

device

for

the

transfer.

The

bus

list

is

provided

to

the

d_unmap_list

service

to

unmap

the

transfer.

The

d_map_list

service

sets

the

used_iovecs

field

to

indicate

how

many

elements

it

filled

out.

The

device

driver

sets

up

all

of

the

fields

in

the

virtual

list

except

for

the

bytes_done

and

resid_iov

fields.

These

fields

are

set

by

the

mapping

service.

Chapter

4.

Kernel

Services

57

Using

DMA_CONTIGUOUS

The

DMA_CONTIGUOUS

flag

in

d_map_init

is

the

preferred

way

for

the

drivers

to

ask

for

contiguous

bus

addresses.

The

other

way

is

the

old

model

of

drivers

explicitly

using

rmalloc()

to

guarantee

contiguous

allocation

during

boot.

However,

with

the

advent

of

PCI

Hot

Plug

devices,

the

rmalloc

reservation

does

not

add

a

device

after

boot.

If

a

PowerPC

driver

determines

the

device

was

dynamically

added,

the

driver

can

use

the

DMA_CONTIGUOUS

flag

to

ensure

that

a

contiguous

list

of

bus

addresses

is

generated

because

no

prior

resources

were

reserved

with

rmalloc.

Using

DMA_NO_ZERO_ADDR

DMA_NO_ZERO_ADDR

is

supplied

on

d_map_init

in

order

to

prevent

d_map_page

and

d_map_list

from

giving

out

bus

address

zero

to

this

d_handle.

Because

many

off-the-shelf

PCI

devices

are

not

tested

for

bus

address

of

zero,

such

devices

might

not

work.

Striking

out

bus

address

0

causes

a

driver’s

mappable

memory

to

shrink

by

one

I/O

page

(4KB).

On

some

systems,

using

the

flag

would

cause

d_map_init

to

fail

even

if

there

is

not

an

error

condition.

In

such

a

case,

the

driver

should

call

d_map_init

without

the

flag

and

then

check

the

bus

address

to

see

whether

zero

falls

in

its

range

of

addresses.

The

driver

can

do

this

by

mapping

all

of

its

range

and

checking

for

address

0.

Such

a

check

should

be

done

at

the

driver

initialization

time.

If

bus

address

0

is

assigned

to

the

driver,

it

can

leave

it

mapped

for

the

life

of

the

driver

and

unmap

all

other

addresses.

This

guarantees

that

address

0

will

not

be

assigned

to

it

again.

Sample

pseudo-code

for

the

PCI

drivers

dd_initialization:

determine

bus

type

for

device

from

configuration

information

determine

64

vs.

32-bit

capabilities

from

configuration

information

call

"handle

=

D_MAP_INIT(bid,

DMA_MASTER|flags,

bus_flags,

channel)"

if

handle

==

DMA_FAIL

could

not

configure

dd_start_io:

if

single

page

or

less

transfer

call

"result

=

D_MAP_PAGE(handle,

baddr,busaddr,

xmem)"

if

result

==

DMA_NORES

no

resources,

leave

request

on

device

queue

else

if

result

==

DMA_NOACC

no

access

to

page,

fail

request

else

program

device

for

transfer

using

busaddr

else

create

dio

list

of

virtual

addresses

involved

in

transfer

call

"result

=

D_MAP_LIST(handle,

flags,

minxfer,

list,

blist)"

if

result

==

DMA_NORES

not

enough

resource,

either

initiate

partial

transfer

and

leave

remainder

on

queue

or

leave

entire

request

on

the

queue

and

call

d_unmap_list

to

unmap

the

partial

transfer.

else

if

result

==

DMA_NOACC

use

bytes_done

to

pinpoint

failing

buffer

and

fail

corresponding

request

adjust

virtual

list

and

call

d_map_list

again

else

if

result

==

DMA_DIOFULL

ran

out

of

space

in

blist.

either

initiate

partial

transfer

and

leave

remainder

on

queue

or

leave

entire

request

on

the

queue

and

call

d_unmap_list

to

unmap

the

partial

transfer.

else

program

device

for

scatter/gather

transfer

using

blist

dd_finish_io:

if

single

page

or

less

transfer

58

Kernel

Extensions

and

Device

Support

Programming

Concepts

call

"D_UNMAP_PAGE(handle,

busaddr)"

else

call

"D_UNMAP_LIST(handle,

blist)"

dd_unconfigure:

call

"D_MAP_CLEAR(handle)"

Sample

Pseudo-code

for

the

ISA

Slave

drivers

dd_initialization:

determine

bus

type

for

device

from

configuration

information

call

"handle

=

D_MAP_INIT(bid,

DMA_SLAVE,

bus_flags,

channel)"

if

handle

==

DMA_FAIL

could

not

configure

else

call

"D_MAP_ENABLE(handle)"

(if

necessary)

dd_start_io:

create

dio

list

of

virtual

addresses

involved

in

transfer

call

"result

=

D_MAP_SLAVE(handle,

flags,

minxfer,

vlist,

chan_flags)"

if

result

==

DMA_NORES

not

enough

resource,

either

initiate

partial

transfer

and

leave

remainder

on

queue

or

leave

entire

request

on

the

queue

and

call

d_unmap_slave

to

unmap

the

partial

transfer.

else

if

result

==

DMA_NOACC

use

bytes_done

to

pinpoint

failing

buffer

and

fail

corresponding

request

adjust

virtual

list

and

call

d_map_slave

again

else

program

device

to

initiate

transfer

dd_finish_io:

call

"error

=

D_UNMAP_SLAVE(handle)"

if

error

log

retry,

or

fail

dd_unconfigure:

call

"D_MAP_DISABLE(handle)"

(if

necessary)

call

"D_MAP_CLEAR(handle)"

Page

Protection

Checking

and

Enforcement

Page

protection

checking

is

performed

by

the

d_map_page,

d_map_list,

and

d_map_slave

services

for

each

page

of

a

requested

transfer.

If

the

intended

direction

of

a

transfer

is

from

the

device

to

the

memory,

the

page

access

permissions

must

allow

writing

to

the

page.

If

the

intended

direction

of

a

transfer

is

from

the

memory

to

the

device,

the

page

access

permissions

only

needs

to

allow

reading

from

the

page.In

the

case

of

a

protection

violation,

a

DMA_NOACC

return

code

is

returned

from

the

services

in

the

form

of

an

error

code

and

no

mapping

for

the

DMA

transfer

is

performed.

The

DMA_BYPASS

flag

allows

a

device

driver

to

bypass

the

access

checking

functionality

of

these

services.

This

should

only

be

used

for

global

system

buffers

such

as

mbufs

or

other

command,

control,

and

status

buffers

used

by

a

device

driver.

Also,

the

DMA

buffers

must

be

pinned

before

the

DMA

transfer

begins

and

can

only

be

unpinned

after

the

DMA

transfer

is

complete.

Chapter

4.

Kernel

Services

59

A

comparison

of

PCI

and

ISA

devices

The

ISA

bus

has

the

following

unique

concepts

that

do

not

apply

to

the

PCI

bus:

v

Enabling

and

disabling

a

DMA

channel

applies

only

to

the

ISA

bus

and

devices.

Therefore,

d_map_enable

and

d_map_disable

services

cannot

be

used

by

PCI

device

drivers.

v

Master

and

slave

devices

are

not

applicable

to

the

PCI

bus.

On

a

PCI

bus,

every

device

acts

as

master.

Starting

with

AIX

5.2,

only

ISA

slave

devices

are

supported

(ISA

masters

are

not

supported).

For

such

ISA

slave

devices,

the

PCI-to-ISA

bridge

acts

as

the

PCI

master

and

initiates

DMA

on

behalf

of

the

ISA

slave

devices.

Because

the

PCI

devices

are

always

master,

d_map_slave

and

d_unmap_slave

services

cannot

be

used

by

PCI

device

drivers.

By

the

same

token,

the

DMA_SLAVE

flag

cannot

be

supplied

on

d_map_init

by

a

PCI

device

driver.

If

DMA_SLAVE

is

used

by

a

PCI

driver,

d_map_init()

returns

DMA_FAIL.

d_align

and

d_roundup

The

d_align

service

(provided

in

libsys.a)

returns

the

alignment

value

required

for

starting

a

buffer

on

a

processor

cache

line

boundary.

The

d_roundup

service

(also

provided

in

libsys.a)

can

be

used

to

round

the

desired

DMA

buffer

length

up

to

a

value

that

is

an

integer

number

of

cache

lines.

These

two

services

allow

buffers

to

be

used

for

DMA

to

be

aligned

on

a

cache

line

boundary

and

allocated

in

whole

multiples

of

the

cache

line

size

so

that

the

buffer

is

not

split

across

processor

cache

lines.

This

reduces

the

possibility

of

consistency

problems

because

of

DMA

and

also

minimizes

the

number

of

cache

lines

that

must

be

flushed

or

invalidated

when

used

for

DMA.

For

example,

these

services

can

be

used

to

provide

alignment

as

follows:

align

=

d_align();

buffer_length

=

d_roundup(required_length);

buf_ptr

=

xmalloc(buffer_length,

align,

kernel_heap);

Kernel

Extension

and

Device

Driver

Management

Services

The

kernel

provides

a

set

of

program

and

device

driver

management

services.

These

services

include

kernel

extension

loading

and

unloading

services

and

device

driver

binding

services.

Services

that

allow

kernel

extensions

to

be

notified

of

base

kernel

configuration

changes,

user-mode

exceptions,

and

process

state

changes

are

also

provided.

The

following

information

is

provided

to

assist

you

in

in

learning

more

about

kernel

services:

v

“Kernel

Extension

Loading

and

Unloading

Services”

v

“Other

Kernel

Extension

and

Device

Driver

Management

Services”

v

“List

of

Kernel

Extension

and

Device

Driver

Management

Kernel

Services”

on

page

61

Kernel

Extension

Loading

and

Unloading

Services

The

kmod_load,

kmod_unload,

and

kmod_entrypt

services

provide

kernel

extension

loading,

unloading,

and

query

services.

User-mode

programs

and

kernel

processes

can

use

the

sysconfig

subroutine

to

invoke

the

kmod_load

and

kmod_unload

services.

The

kmod_entrypt

service

returns

a

pointer

to

a

kernel

extension’s

entry

point.

The

kmod_load,

kmod_unload

services

can

be

used

to

dynamically

alter

the

set

of

routines

loaded

into

the

kernel

based

on

system

configuration

and

application

demand.

Subsystems

and

device

drivers

can

use

these

services

to

load

large,

seldom-used

routines

on

demand.

Other

Kernel

Extension

and

Device

Driver

Management

Services

The

device

driver

binding

services

are

devswadd,

devswdel,

devswchg,

and

devswqry.

The

devswadd,

devswdel,

and

devswchg

services

are

used

to

add,

remove,

or

modify

device

driver

entries

in

the

dynamically-managed

device

switch

table.

The

devswqry

service

is

used

to

obtain

information

about

a

particular

device

switch

table

entry.

60

Kernel

Extensions

and

Device

Support

Programming

Concepts

Some

kernel

extensions

might

be

sensitive

to

the

settings

of

base

kernel

runtime

configurable

parameters

that

are

found

in

the

var

structure

defined

in

the

/usr/include/sys/var.h

file.

These

parameters

can

be

set

automatically

during

system

boot

or

at

runtime

by

a

privileged

user.

Kernel

extensions

can

register

or

unregister

a

configuration

notification

routine

with

the

cfgnadd

and

cfgndel

kernel

services.

Each

time

the

sysconfig

subroutine

is

used

to

change

base

kernel

tunable

parameters

found

in

the

var

structure,

each

registered

configuration

notification

routine

is

called.

The

prochadd

and

prochdel

kernel

services

allow

kernel

extensions

to

be

notified

when

any

process

in

the

system

has

a

state

transition,

such

as

being

created,

exiting,

or

being

swapped

in

or

swapped

out.

The

uexadd

and

uexdel

kernel

services

give

kernel

extensions

the

capability

to

intercept

user-mode

exceptions.

A

user-mode

exception

handler

can

use

this

capability

to

dynamically

reassign

access

to

single-use

resources

or

to

clean

up

after

some

particular

user-mode

error.

The

associated

uexblock

and

uexclear

services

can

be

used

by

these

handlers

to

block

and

resume

process

execution

when

handling

these

exceptions.

The

pio_assist

and

getexcept

kernel

services

are

used

by

device

drivers

to

obtain

detailed

information

about

exceptions

that

occur

during

I/O

bus

access.

The

getexcept

service

can

also

be

used

by

any

exception

handler

requiring

more

information

about

an

exception

that

has

occurred.

The

selreg

kernel

service

is

used

by

file

select

operations

to

register

unsatisfied

asynchronous

poll

or

select

event

requests

with

the

kernel.

The

selnotify

kernel

service

provides

the

same

functionality

as

the

selwakeup

service

found

on

other

operating

systems.

The

iostadd

and

iostdel

services

are

used

by

tty

and

disk

device

drivers

to

register

device

activity

reporting

structures

to

be

used

by

the

iostat

and

vmstat

commands.

The

getuerror

and

setuerror

services

allow

kernel

extensions

to

read

or

set

the

ut_error

field

for

the

current

thread.

This

field

can

be

used

to

pass

an

error

code

from

a

system

call

function

to

an

application

program,

because

kernel

extensions

do

not

have

direct

access

to

the

application’s

errno

variable.

List

of

Kernel

Extension

and

Device

Driver

Management

Kernel

Services

The

Kernel

Program

and

Device

Driver

Management

kernel

services

are:

cfgnadd

Registers

a

notification

routine

to

be

called

when

system-configurable

variables

are

changed.

cfgndel

Removes

a

notification

routine

for

receiving

broadcasts

of

changes

to

system

configurable

variables.

devdump

Calls

a

device

driver

dump-to-device

routine.

devstrat

Calls

a

block

device

driver’s

strategy

routine.

devswadd

Adds

a

device

entry

to

the

device

switch

table.

devswchg

Alters

a

device

switch

entry

point

in

the

device

switch

table.

devswdel

Deletes

a

device

driver

entry

from

the

device

switch

table.

devswqry

Checks

the

status

of

a

device

switch

entry

in

the

device

switch

table.

getexcept

Allows

kernel

exception

handlers

to

retrieve

additional

exception

information.

getuerror

Allows

kernel

extensions

to

read

the

ut_error

field

for

the

current

thread.

iostadd

Registers

an

I/O

statistics

structure

used

for

updating

I/O

statistics

reported

by

the

iostat

subroutine.

iostdel

Removes

the

registration

of

an

I/O

statistics

structure

used

for

maintaining

I/O

statistics

on

a

particular

device.

kmod_entrypt

Returns

a

function

pointer

to

a

kernel

module’s

entry

point.

kmod_load

Loads

an

object

file

into

the

kernel

or

queries

for

an

object

file

already

loaded.

kmod_unload

Unloads

a

kernel

object

file.

pio_assist

Provides

a

standardized

programmed

I/O

exception

handling

mechanism

for

all

routines

performing

programmed

I/O.

prochadd

Adds

a

system

wide

process

state-change

notification

routine.

Chapter

4.

Kernel

Services

61

prochdel

Deletes

a

process

state

change

notification

routine.

selreg

Registers

an

asynchronous

poll

or

select

request

with

the

kernel.

selnotify

Wakes

up

processes

waiting

in

a

poll

or

select

subroutine

or

the

fp_poll

kernel

service.

setuerror

Allows

kernel

extensions

to

set

the

ut_error

field

for

the

current

thread.

uexadd

Adds

a

system

wide

exception

handler

for

catching

user-mode

process

exceptions.

uexblock

Makes

the

currently

active

kernel

thread

not

runnable

when

called

from

a

user-mode

exception

handler.

uexclear

Makes

a

kernel

thread

blocked

by

the

uexblock

service

runnable

again.

uexdel

Deletes

a

previously

added

system-wide

user-mode

exception

handler.

Locking

Kernel

Services

The

following

information

is

provided

to

assist

you

in

understanding

the

locking

kernel

services:

v

Lock

Allocation

and

Other

Services

v

Simple

Locks

v

Complex

Locks

v

Lockl

Locks

v

Atomic

Operations

Lock

Allocation

and

Other

Services

The

following

lock

allocation

services

allocate

and

free

internal

operating

system

memory

for

simple

and

complex

locks,

or

check

if

the

caller

owns

a

lock:

lock_alloc

Allocates

system

memory

for

a

simple

or

complex

lock.

lock_free

Frees

the

system

memory

of

a

simple

or

complex

lock.

lock_mine

Checks

whether

a

simple

or

complex

lock

is

owned

by

the

caller.

Simple

Locks

Simple

locks

are

exclusive-write,

non-recursive

locks

that

protect

thread-thread

or

thread-interrupt

critical

sections.

Simple

locks

are

preemptable,

meaning

that

a

kernel

thread

can

be

preempted

by

another,

higher

priority

kernel

thread

while

it

holds

a

simple

lock.

The

simple

lock

kernel

services

are:

simple_lock_init

Initializes

a

simple

lock.

simple_lock,

simple_lock_try

Locks

a

simple

lock.

simple_unlock

Unlocks

a

simple

lock.

On

a

multiprocessor

system,

simple

locks

that

protect

thread-interrupt

critical

sections

must

be

used

in

conjunction

with

interrupt

control

in

order

to

serialize

execution

both

within

the

executing

processor

and

between

different

processors.

On

a

uniprocessor

system

interrupt

control

is

sufficient;

there

is

no

need

to

use

locks.

The

following

kernel

services

provide

appropriate

locking

calls

for

the

system

on

which

they

are

executed:

disable_lock

Raises

the

interrupt

priority,

and

locks

a

simple

lock

if

necessary.

unlock_enable

Unlocks

a

simple

lock

if

necessary,

and

restores

the

interrupt

priority.

Using

the

disable_lock

and

unlock_enable

kernel

services

to

protect

thread-interrupt

critical

sections

(instead

of

calling

the

underlying

interrupt

control

and

locking

kernel

services

directly)

ensures

that

multiprocessor-safe

code

does

not

make

unnecessary

locking

calls

on

uniprocessor

systems.

Simple

locks

are

spin

locks;

a

kernel

thread

that

attempts

to

acquire

a

simple

lock

may

spin

(busy-wait:

repeatedly

execute

instructions

which

do

nothing)

if

the

lock

is

not

free.

The

table

shows

the

behavior

of

62

Kernel

Extensions

and

Device

Support

Programming

Concepts

kernel

threads

and

interrupt

handlers

that

attempt

to

acquire

a

busy

simple

lock.

Caller

Owner

is

Running

Owner

is

Sleeping

Thread

(with

interrupts

enabled)

Caller

spins

initially;

it

sleeps

if

the

maximum

spin

threshold

is

crossed.

Caller

sleeps

immediately.

Interrupt

handler

or

thread

(with

interrupts

disabled)

Caller

spins

until

lock

is

acquired.

Caller

spins

until

lock

is

freed

(must

not

happen).

Note:

On

uniprocessor

systems,

the

maximum

spin

threshold

is

set

to

one,

meaning

that

that

a

kernel

thread

will

never

spin

waiting

for

a

lock.

A

simple

lock

that

protects

a

thread-interrupt

critical

section

must

never

be

held

across

a

sleep,

otherwise

the

interrupt

could

spin

for

the

duration

of

the

sleep,

as

shown

in

the

table.

This

means

that

such

a

routine

must

not

call

any

external

services

that

might

result

in

a

sleep.

In

general,

using

any

kernel

service

which

is

callable

from

process

level

may

result

in

a

sleep,

as

can

accessing

unpinned

data.

These

restrictions

do

not

apply

to

simple

locks

that

protect

thread-thread

critical

sections.

The

lock

word

of

a

simple

lock

must

be

located

in

pinned

memory

if

simple

locking

services

are

called

with

interrupts

disabled.

Complex

Locks

Complex

locks

are

read-write

locks

that

protect

thread-thread

critical

sections.

Complex

locks

are

preemptable,

meaning

that

a

kernel

thread

can

be

preempted

by

another,

higher

priority

kernel

thread

while

it

holds

a

complex

lock.

The

complex

lock

kernel

services

are:

lock_init

Initializes

a

complex

lock.

lock_islocked

Tests

whether

a

complex

lock

is

locked.

lock_done

Unlocks

a

complex

lock.

lock_read,

lock_try_read

Locks

a

complex

lock

in

shared-read

mode.

lock_read_to_write,

lock_try_read_to_write

Upgrades

a

complex

lock

from

shared-read

mode

to

exclusive-write

mode.

lock_write,

lock_try_write

Locks

a

complex

lock

in

exclusive-write

mode.

lock_write_to_read

Downgrades

a

complex

lock

from

exclusive-write

mode

to

shared-read

mode.

lock_set_recursive

Prepares

a

complex

lock

for

recursive

use.

lock_clear_recursive

Prevents

a

complex

lock

from

being

acquired

recursively.

By

default,

complex

locks

are

not

recursive

(they

cannot

be

acquired

in

exclusive-write

mode

multiple

times

by

a

single

thread).

A

complex

lock

can

become

recursive

through

the

lock_set_recursive

kernel

service.

A

recursive

complex

lock

is

not

freed

until

lock_done

is

called

once

for

each

time

that

the

lock

was

locked.

Complex

locks

are

not

spin

locks;

a

kernel

thread

that

attempts

to

acquire

a

complex

lock

may

spin

briefly

(busy-wait:

repeatedly

execute

instructions

which

do

nothing)

if

the

lock

is

not

free.

The

table

shows

the

behavior

of

kernel

threads

that

attempt

to

acquire

a

busy

complex

lock:

Current

Lock

Mode

Owner

is

Running

and

no

Other

Thread

is

Asleep

on

This

Lock

Owner

is

Sleeping

Exclusive-write

Caller

spins

initially,

but

sleeps

if

the

maximum

spin

threshold

is

crossed,

or

if

the

owner

later

sleeps.

Caller

sleeps

immediately.

Shared-read

being

acquired

for

exclusive-write

Caller

sleeps

immediately.

Chapter

4.

Kernel

Services

63

Current

Lock

Mode

Owner

is

Running

and

no

Other

Thread

is

Asleep

on

This

Lock

Owner

is

Sleeping

Shared-read

being

acquired

for

shared-read

Lock

granted

immediately

Note:

1.

On

uniprocessor

systems,

the

maximum

spin

threshold

is

set

to

one,

meaning

that

a

kernel

thread

will

never

spin

waiting

for

a

lock.

2.

The

concept

of

a

single

owner

does

not

apply

to

a

lock

held

in

shared-read

mode.

Lockl

Locks

Note:

Lockl

locks

(previously

called

conventional

locks)

are

only

provided

to

ensure

compatibility

with

existing

code.

New

code

should

use

simple

or

complex

locks.

Lockl

locks

are

exclusive-access

and

recursive

locks.

The

lockl

lock

kernel

services

are:

lockl

Locks

a

conventional

lock.

unlockl

Unlocks

a

conventional

lock.

A

thread

which

tries

to

acquire

a

busy

lockl

lock

sleeps

immediately.

The

lock

word

of

a

lockl

lock

must

be

located

in

pinned

memory

if

the

lockl

service

is

called

with

interrupts

disabled.

Atomic

Operations

Atomic

operations

are

sequences

of

instructions

that

guarantee

atomic

accesses

and

updates

of

shared

single

word

variables.

This

means

that

atomic

operations

cannot

protect

accesses

to

complex

data

structures

in

the

way

that

locks

can,

but

they

provide

a

very

efficient

way

of

serializing

access

to

a

single

word.

The

atomic

operation

kernel

services

are:

fetch_and_add

Increments

a

single

word

variable

atomically.

fetch_and_and,

fetch_and_or

Manipulates

bits

in

a

single

word

variable

atomically.

compare_and_swap

Conditionally

updates

or

returns

a

single

word

variable

atomically.

Single

word

variables

accessed

by

atomic

operations

must

be

aligned

on

a

full

word

boundary,

and

must

be

located

in

pinned

memory

if

atomic

operation

kernel

services

are

called

with

interrupts

disabled.

File

Descriptor

Management

Services

The

File

Descriptor

Management

services

are

supplied

by

the

logical

file

system

for

creating,

using,

and

maintaining

file

descriptors.

These

services

allow

for

the

implementation

of

system

calls

that

use

a

file

descriptor

as

a

parameter,

create

a

file

descriptor,

or

return

file

descriptors

to

calling

applications.

The

following

are

the

File

Descriptor

Management

services:

ufdcreate

Allocates

and

initializes

a

file

descriptor.

ufdhold

Increments

the

reference

count

on

a

file

descriptor.

ufdrele

Decrements

the

reference

count

on

a

file

descriptor.

64

Kernel

Extensions

and

Device

Support

Programming

Concepts

ufdgetf

Gets

a

file

structure

pointer

from

a

held

file

descriptor.

getufdflags

Gets

the

flags

from

a

file

descriptor.

setufdflags

Sets

flags

in

a

file

descriptor.

Logical

File

System

Kernel

Services

The

Logical

File

System

services

(also

known

as

the

fp_services)

allow

processes

running

in

kernel

mode

to

open

and

manipulate

files

in

the

same

way

that

user-mode

processes

do.

Data

access

limitations

make

it

unreasonable

to

accomplish

these

tasks

with

system

calls,

so

a

subset

of

the

file

system

calls

has

been

provided

with

an

alternate

kernel-only

interface.

The

Logical

File

System

services

are

one

component

of

the

logical

file

system,

which

provides

the

functions

required

to

map

system

call

requests

to

virtual

file

system

requests.

The

logical

file

system

is

responsible

for

resolution

of

file

names

and

file

descriptors.

It

tracks

all

open

files

in

the

system

using

the

file

table.

The

Logical

File

System

services

are

lower

level

entry

points

into

the

system

call

support

within

the

logical

file

system.

Routines

in

the

kernel

that

must

access

data

stored

in

files

or

that

must

set

up

paths

to

devices

are

the

primary

users

of

these

services.

This

occurs

most

commonly

in

device

drivers,

where

a

lower

level

device

driver

must

be

accessed

or

where

the

device

requires

microcode

to

be

downloaded.

Use

of

the

Logical

File

System

services

is

not,

however,

restricted

to

these

cases.

A

process

can

use

the

Logical

File

System

services

to

establish

access

to

a

file

or

device

by

calling:

v

The

fp_open

service

with

a

path

name

to

the

file

or

device

it

must

access.

v

The

fp_opendev

service

with

the

device

number

of

a

device

it

must

access.

v

The

fp_getf

service

with

a

file

descriptor

for

the

file

or

device.

If

the

process

wants

to

retain

access

past

the

duration

of

the

system

call,

it

must

then

call

the

fp_hold

service

to

acquire

a

private

file

pointer.

These

three

services

return

a

file

pointer

that

is

needed

to

call

the

other

Logical

File

System

services.

The

other

services

provide

the

functions

that

are

provided

by

the

corresponding

system

calls.

Other

Considerations

The

Logical

File

System

services

are

available

only

in

the

process

environment.

In

addition,

calling

the

fp_open

service

at

certain

times

can

cause

a

deadlock.

The

lookup

on

the

file

name

must

acquire

file

system

locks.

If

the

process

is

already

holding

any

lock

on

a

component

of

the

path,

the

process

will

be

deadlocked.

Therefore,

do

not

use

the

fp_open

service

when

the

process

is

already

executing

an

operation

that

holds

file

system

locks

on

the

requested

path.

The

operations

most

likely

to

cause

this

condition

are

those

that

create

files.

List

of

Logical

File

System

Kernel

Services

These

are

the

Logical

File

System

kernel

services:

fp_access

Checks

for

access

permission

to

an

open

file.

fp_close

Closes

a

file.

fp_fstat

Gets

the

attributes

of

an

open

file.

fp_getdevno

Gets

the

device

number

or

channel

number

for

a

device.

fp_getf

Retrieves

a

pointer

to

a

file

structure.

fp_hold

Increments

the

open

count

for

a

specified

file

pointer.

fp_ioctl

Issues

a

control

command

to

an

open

device

or

file.

fp_lseek

Changes

the

current

offset

in

an

open

file.

fp_llseek

Changes

the

current

offset

in

an

open

file.

Used

to

access

offsets

beyond

2GB.

fp_open

Opens

special

and

regular

files

or

directories.

Chapter

4.

Kernel

Services

65

fp_opendev

Opens

a

device

special

file.

fp_poll

Checks

the

I/O

status

of

multiple

file

pointers,

file

descriptors,

and

message

queues.

fp_read

Performs

a

read

on

an

open

file

with

arguments

passed.

fp_readv

Performs

a

read

operation

on

an

open

file

with

arguments

passed

in

iovec

elements.

fp_rwuio

Performs

read

or

write

on

an

open

file

with

arguments

passed

in

a

uio

structure.

fp_select

Provides

for

cascaded,

or

redirected,

support

of

the

select

or

poll

request.

fp_write

Performs

a

write

operation

on

an

open

file

with

arguments

passed.

fp_writev

Performs

a

write

operation

on

an

open

file

with

arguments

passed

in

iovec

elements.

fp_fsync

Writes

changes

for

a

specified

range

of

a

file

to

permanent

storage.

Programmed

I/O

(PIO)

Kernel

Services

The

following

is

a

list

of

PIO

kernel

services:

io_map

Attaches

to

an

I/O

mapping

io_map_clear

Removes

an

I/O

mapping

segment

io_map_init

Creates

and

initializes

an

I/O

mapping

segment

io_unmap

Detaches

from

an

I/O

mapping

These

kernel

services

are

defined

in

the

adspace.h

and

ioacc.h

header

files.

For

a

list

of

PIO

macros,

see

Programmed

I/O

Services

in

Understanding

the

Diagnostic

Subsystem

for

AIX.

Memory

Kernel

Services

The

Memory

kernel

services

provide

kernel

extensions

with

the

ability

to:

v

Dynamically

allocate

and

free

memory

v

Pin

and

unpin

code

and

data

v

Access

user

memory

and

transfer

data

between

user

and

kernel

memory

v

Create,

reference,

and

change

virtual

memory

objects

The

following

information

is

provided

to

assist

you

in

learning

more

about

memory

kernel

services:

v

Memory

Management

Kernel

Services

v

Memory

Pinning

Kernel

Services

v

User

Memory

Access

Kernel

Services

v

Virtual

Memory

Management

Kernel

Services

v

Cross-Memory

Kernel

Services

Memory

Management

Kernel

Services

The

Memory

Management

services

are:

init_heap

Initializes

a

new

heap

to

be

used

with

kernel

memory

management

services.

xmalloc

Allocates

memory.

xmfree

Frees

allocated

memory.

66

Kernel

Extensions

and

Device

Support

Programming

Concepts

Memory

Pinning

Kernel

Services

The

Memory

Pinning

services

are:

ltpin

Pins

the

address

range

in

the

system

(kernel)

space

and

frees

the

page

space

for

the

associated

pages.

ltunpin

Unpins

the

address

range

in

system

(kernel)

address

space

and

reallocates

paging

space

for

the

specified

region.

pin

Pins

the

address

range

in

the

system

(kernel)

space.

pincode

Pins

the

code

and

data

associated

with

a

loaded

object

module.

pinu

Pins

the

specified

address

range

in

user

or

system

memory.

unpin

Unpins

the

address

range

in

system

(kernel)

address

space.

unpincode

Unpins

the

code

and

data

associated

with

a

loaded

object

module.

unpinu

Unpins

the

specified

address

range

in

user

or

system

memory.

xmempin

Pins

the

specified

address

range

in

user

or

system

memory,

given

a

valid

cross-memory

descriptor.

xmemunpin

Unpins

the

specified

address

range

in

user

or

system

memory,

given

a

valid

cross-memory

descriptor.

Note:

pinu

and

unpinu

are

only

available

on

the

32–bit

kernel.

Because

of

this

limitation,

it

is

recommended

that

xmempin

and

xmemunpin

be

used

in

place

of

pinu

and

unpinu.

User-Memory-Access

Kernel

Services

In

a

system

call

or

kernel

extension

running

under

a

user

process,

data

in

the

user

process

can

be

moved

in

or

out

of

the

kernel

using

the

copyin

and

copyout

services.

The

uiomove

service

is

used

for

scatter

and

gather

operations.

If

user

data

is

to

be

referenced

asynchronously,

such

as

from

an

interrupt

handler

or

a

kernel

process,

the

cross

memory

services

must

be

used.

The

User-Memory-Access

kernel

services

are:

copyin,

copyin64

Copies

data

between

user

and

kernel

memory.

copyinstr,

copyinstr64

Copies

a

character

string

(including

the

terminating

null

character)

from

user

to

kernel

space.

copyout,

copyout64

Copies

data

between

user

and

kernel

memory.

fubyte,

fubyte64

Fetches,

or

retrieves,

a

byte

of

data

from

user

memory.

fuword,

fuword64

Fetches,

or

retrieves,

a

word

of

data

from

user

memory.

subyte,

subyte64

Stores

a

byte

of

data

in

user

memory.

suword,

suword64

Stores

a

word

of

data

in

user

memory.

uiomove

Moves

a

block

of

data

between

kernel

space

and

a

space

defined

by

a

uio

structure.

ureadc

Writes

a

character

to

a

buffer

described

by

a

uio

structure.

uwritec

Retrieves

a

character

from

a

buffer

described

by

a

uio

structure.

Note:

The

copyin64,

copyout64,

copyinstr64,

fubyte64,

fuword64,

subyte64,

and

suword64

kernel

services

are

defined

as

macros

when

compiling

kernel

extensions

on

the

64–bit

kernel.

The

macros

invoke

the

corresponding

kernel

services

without

the

″64″

suffix.

Virtual

Memory

Management

Kernel

Services

These

services

are

described

in

more

detail

in

“Understanding

Virtual

Memory

Manager

Interfaces”

on

page

69.

The

Virtual

Memory

Management

services

are:

as_att,

as_att64

Selects,

allocates,

and

maps

a

specified

region

in

the

current

user

address

space.

as_det,

as_det64

Unmaps

and

deallocates

a

region

in

the

specified

address

space

that

was

mapped

with

the

as_att

or

as_att64

kernel

service.

as_geth,

as_geth64

Obtains

a

handle

to

the

virtual

memory

object

for

the

specified

address

given

in

the

specified

address

space.

The

virtual

memory

object

is

protected.

Chapter

4.

Kernel

Services

67

as_getsrval,

as_getsrval64

Obtains

a

handle

to

the

virtual

memory

object

for

the

specified

address

given

in

the

specified

address

space.

as_puth

as_puth64

Indicates

that

no

more

references

will

be

made

to

a

virtual

memory

object

that

was

obtained

using

the

as_geth

or

as_geth64

kernel

service.

as_seth,

as_seth64

Maps

a

specified

region

in

the

specified

address

space

for

the

specified

virtual

memory

object.

getadsp

Obtains

a

pointer

to

the

current

process’s

address

space

structure

for

use

with

the

as_att

and

as_det

kernel

services.

io_att

Selects,

allocates,

and

maps

a

region

in

the

current

address

space

for

I/O

access.

io_det

Unmaps

and

deallocates

the

region

in

the

current

address

space

at

the

given

address.

vm_att

Maps

a

specified

virtual

memory

object

to

a

region

in

the

current

address

space.

vm_cflush

Flushes

the

processor’s

cache

for

a

specified

address

range.

vm_det

Unmaps

and

deallocates

the

region

in

the

current

address

space

that

contains

a

given

address.

vm_galloc

Allocates

a

region

of

global

memory

in

the

64-bit

kernel.

vm_gfree

Frees

a

region

of

global

memory

in

the

kernel

previously

allocated

with

the

vm_galloc

kernel

service.

vm_handle

Constructs

a

virtual

memory

handle

for

mapping

a

virtual

memory

object

with

specified

access

level.

vm_makep

Makes

a

page

in

client

storage.

vm_mount

Adds

a

file

system

to

the

paging

device

table.

vm_move

Moves

data

between

a

virtual

memory

object

and

a

buffer

specified

in

the

uio

structure.

vm_protectp

Sets

the

page

protection

key

for

a

page

range.

vm_qmodify

Determines

whether

a

mapped

file

has

been

changed.

vm_release

Releases

virtual

memory

resources

for

the

specified

address

range.

vm_releasep

Releases

virtual

memory

resources

for

the

specified

page

range.

vm_uiomove

Moves

data

between

a

virtual

memory

object

and

a

buffer

specified

in

the

uio

structure.

vm_umount

Removes

a

file

system

from

the

paging

device

table.

vm_vmid

Converts

a

virtual

memory

handle

to

a

virtual

memory

object

(id).

vm_write

Initiates

page-out

for

a

page

range

in

the

address

space.

vm_writep

Initiates

page-out

for

a

page

range

in

a

virtual

memory

object.

vms_create

Creates

a

virtual

memory

object

of

the

type

and

size

and

limits

specified.

vms_delete

Deletes

a

virtual

memory

object.

vms_iowait

Waits

for

the

completion

of

all

page-out

operations

for

pages

in

the

virtual

memory

object.

Note:

as_att,

as_det,

as_geth,

as_getsrval,

as_seth,

getadsp,

lo_att

and

lo_det

are

supported

only

on

the

32–bit

kernel.

Cross-Memory

Kernel

Services

The

cross-memory

services

allow

data

to

be

moved

between

the

kernel

and

an

address

space

other

than

the

current

process

address

space.

A

data

area

within

one

region

of

an

address

space

is

attached

by

calling

the

xmattach

or

xmattach64

service.

As

a

result,

the

virtual

memory

object

cannot

be

deleted

while

data

is

being

moved

in

or

out

of

pages

belonging

to

it.

A

cross-memory

descriptor

is

filled

out

by

the

xmattach

or

xmattach64

service.

The

attach

operation

must

be

done

while

under

a

process.

When

the

data

movement

is

completed,

the

xmdetach

service

can

be

called.

The

detach

operation

can

be

done

from

an

interrupt

handler.

The

xmemin

service

can

be

used

to

transfer

data

from

an

address

space

to

kernel

space.

The

xmemout

service

can

be

used

to

transfer

data

from

kernel

space

to

an

address

space.

These

routines

may

be

called

from

interrupt

handler

level

routines

if

the

referenced

buffers

are

in

memory.

68

Kernel

Extensions

and

Device

Support

Programming

Concepts

Cross-memory

services

provide

the

xmemdma

or

xmemdma64

service

to

prepare

a

page

for

DMA

processing.

The

xmemdma

or

xmemdma64

service

returns

the

real

address

of

the

page

for

use

in

preparing

DMA

address

lists.

When

the

DMA

transfer

is

completed,

the

xmemdma

or

xmemdma64

service

must

be

called

again

to

unhide

the

page.

The

xmemdma64

service

is

identical

to

xmemdma,

except

that

xmemdma64

returns

a

64-bit

real

address.

The

xmemdma64

service

can

be

called

from

the

process

or

interrupt

environments.

It

is

also

present

on

32-bit

platform

to

allow

a

single

device

driver

or

kernel

extension

binary

to

work

on

32-bit

or

64-bit

platforms

with

no

change

and

no

run-time

checks.

Data

movement

by

DMA

or

an

interrupt

handler

requires

that

the

pages

remain

in

memory.

This

is

ensured

by

pinning

the

data

areas

using

the

xmempin

service.

This

can

only

be

done

under

a

process,

because

the

memory

pinning

services

page-fault

on

pages

not

present

in

memory.

The

xmemunpin

service

unpins

pinned

pages.

This

can

be

done

by

an

interrupt

handler

if

the

data

area

is

the

global

kernel

address

space.

It

must

be

done

under

the

process

if

the

data

area

is

in

user

process

space.

The

Cross-Memory

services

are:

xmattach,

xmattach64

Attaches

to

a

user

buffer

for

cross-memory

operations.

xmdetach

Detaches

from

a

user

buffer

used

for

cross-memory

operations.

xmemin

Performs

a

cross-memory

move

by

copying

data

from

the

specified

address

space

to

kernel

global

memory.

xmemout

Performs

a

cross-memory

move

by

copying

data

from

kernel

global

memory

to

a

specified

address

space.

xmemdma

Prepares

a

page

for

DMA

I/O

or

processes

a

page

after

DMA

I/O

is

complete.

xmemdma64

Prepares

a

page

for

DMA

I/O

or

processes

a

page

after

DMA

I/O

is

complete.

Returns

64-bit

real

address.

Note:

xmattach,

xmattach64

and

xmemdma

are

supported

only

on

the

32–bit

kernel.

xmemdma64

is

supported

on

both

the

32–

and

64–bit

kernels.

Understanding

Virtual

Memory

Manager

Interfaces

The

virtual

memory

manager

supports

functions

that

allow

a

wide

range

of

kernel

extension

data

operations.

The

following

aspects

of

the

virtual

memory

manager

interface

are

discussed:

v

Virtual

Memory

Objects

v

Addressing

Data

v

Moving

Data

to

or

from

a

Virtual

Memory

Object

v

Data

Flushing

v

Discarding

Data

v

Protecting

Data

v

Executable

Data

v

Installing

Pager

Backends

v

Referenced

Routines

Virtual

Memory

Objects

A

virtual

memory

object

is

an

abstraction

for

the

contiguous

data

that

can

be

mapped

into

a

region

of

an

address

space.

As

a

data

object,

it

is

independent

of

any

address

space.

The

data

it

represents

can

be

in

memory

or

on

an

external

storage

device.

The

data

represented

by

the

virtual

memory

object

can

be

Chapter

4.

Kernel

Services

69

shared

by

mapping

the

virtual

memory

object

into

each

address

space

sharing

the

access,

with

the

access

capability

of

each

mapping

represented

in

that

address

space

map.

File

systems

use

virtual

memory

objects

so

that

the

files

can

be

referenced

using

a

mapped

file

access

method.

The

mapped

file

access

method

represents

the

data

through

a

virtual

memory

object,

and

allows

the

virtual

memory

manager

to

handle

page

faults

on

the

mapped

file.

When

a

page

fault

occurs,

the

virtual

memory

manager

calls

the

services

supplied

by

the

service

provider

(such

as

a

virtual

file

system)

to

get

and

put

pages.

A

data

provider

(such

as

a

file

system)

maintains

any

data

structures

necessary

to

map

between

the

virtual

memory

object

offset

and

external

storage

addressing.

The

data

provider

creates

a

virtual

memory

object

when

it

has

a

request

for

access

to

the

data.

It

deletes

the

virtual

memory

object

when

it

has

no

more

clients

referencing

the

data

in

the

virtual

memory

object.

The

vms_create

service

is

called

to

create

virtual

memory

objects.

The

vms_delete

service

is

called

to

delete

virtual

memory

objects.

Addressing

Data

Data

in

a

virtual

memory

object

is

made

addressable

in

user

or

kernel

processes

through

the

shmat

subroutine.

A

kernel

extension

uses

the

vm_att

kernel

service

to

select

and

allocate

a

region

in

the

current

(per-process

kernel)

address

space.

The

per-process

kernel

address

space

initially

sees

only

global

kernel

memory

and

the

per-process

kernel

data.

The

vm_att

service

allows

kernel

extensions

to

allocate

additional

regions.

However,

this

augmented

per-process

kernel

address

space

does

not

persist

across

system

calls.

The

additional

regions

must

be

re-allocated

with

each

entry

into

the

kernel

protection

domain.

The

vm_att

service

takes

as

an

argument

a

virtual

memory

handle

representing

the

virtual

memory

object

and

the

access

capability

to

be

used.

The

vm_handle

service

constructs

the

virtual

memory

handles.

When

the

kernel

extension

has

finished

processing

the

data

mapped

into

the

current

address

space,

it

should

call

the

vm_det

service

to

deallocate

the

region

and

remove

access.

Moving

Data

to

or

from

a

Virtual

Memory

Object

A

data

provider

(such

as

a

file

system)

can

call

the

vm_makep

service

to

cause

a

memory

page

to

be

instantiated.

This

permits

a

page

of

data

to

be

moved

into

a

virtual

memory

object

page

without

causing

the

virtual

memory

manager

to

page

in

the

previous

data

contents

from

an

external

source.

This

is

an

operation

on

the

virtual

memory

object,

not

an

address

space

range.

The

vm_move

and

vm_uiomove

kernel

services

move

data

between

a

virtual

memory

object

and

a

buffer

specified

in

a

uio

structure.

This

allows

data

providers

(such

as

a

file

system)

to

move

data

to

or

from

a

specified

buffer

to

a

designated

offset

in

a

virtual

memory

object.

This

service

is

similar

to

uiomove

service,

but

the

trusted

buffer

is

replaced

by

the

virtual

memory

object,

which

need

not

be

currently

addressable.

Data

Flushing

A

kernel

extension

can

initiate

the

writing

of

a

data

area

to

external

storage

with

the

vm_write

kernel

service,

if

it

has

addressability

to

the

data

area.

The

vm_writep

kernel

service

can

be

used

if

the

virtual

memory

object

is

not

currently

addressable.

If

the

kernel

extension

needs

to

ensure

that

the

data

is

moved

successfully,

it

can

wait

on

the

I/O

completion

by

calling

the

vms_iowait

service,

giving

the

virtual

memory

object

as

an

argument.

70

Kernel

Extensions

and

Device

Support

Programming

Concepts

Discarding

Data

The

pages

specified

by

a

data

range

can

be

released

from

the

underlying

virtual

memory

object

by

calling

the

vm_release

service.

The

virtual

memory

manager

deallocates

any

associated

paging

space

slots.

A

subsequent

reference

to

data

in

the

range

results

in

a

page

fault.

A

virtual

memory

data

provider

can

release

a

specified

range

of

pages

in

a

virtual

memory

object

by

calling

the

vm_releasep

service.

The

virtual

memory

object

need

not

be

addressable

for

this

call.

Protecting

Data

The

vm_protectp

service

can

change

the

storage

protect

keys

in

a

page

range

in

one

client

storage

virtual

memory

object.

This

only

acts

on

the

resident

pages.

The

pages

are

referred

to

through

the

virtual

memory

object.

They

do

not

need

to

be

addressable

in

the

current

address

space.

A

client

file

system

data

provider

uses

this

protection

to

detect

stores

of

in-memory

data,

so

that

mapped

files

can

be

extended

by

storing

into

them

beyond

their

current

end

of

file.

Executable

Data

If

the

data

moved

is

to

become

executable,

any

data

remaining

in

processor

cache

must

be

guaranteed

to

be

moved

from

cache

to

memory.

This

is

because

the

retrieval

of

the

instruction

does

not

need

to

use

the

data

cache.

The

vm_cflush

service

performs

this

operation.

Installing

Pager

Backends

The

kernel

extension

data

providers

must

provide

appropriate

routines

to

be

called

by

the

virtual

memory

manager.

These

routines

move

a

page-sized

block

of

data

into

or

out

of

a

specified

page.

These

services

are

also

referred

to

as

pager

backends.

For

a

local

device,

the

device

strategy

routine

is

required.

A

call

to

the

vm_mount

service

is

used

to

identify

the

device

(through

a

dev_t

value)

to

the

virtual

memory

manager.

For

a

remote

data

provider,

the

routine

required

is

a

strategy

routine,

which

is

specified

in

the

vm_mount

service.

These

strategy

routines

must

run

as

interrupt-level

routines.

They

must

not

page

fault,

and

they

cannot

sleep

waiting

for

locks.

When

access

to

a

remote

data

provider

or

a

local

device

is

removed,

the

vm_umount

service

must

be

called

to

remove

the

device

entry

from

the

virtual

memory

manager’s

paging

device

table.

Referenced

Routines

The

virtual

memory

manager

exports

these

routines

exported

to

kernel

extensions:

Services

That

Manipulate

Virtual

Memory

Objects

vm_att

Selects

and

allocates

a

region

in

the

current

address

space

for

the

specified

virtual

memory

object.

vms_create

Creates

virtual

memory

object

of

the

specified

type

and

size

limits.

vms_delete

Deletes

a

virtual

memory

object.

vm_det

Unmaps

and

deallocates

the

region

at

a

specified

address

in

the

current

address

space.

vm_handle

Constructs

a

virtual

memory

handle

for

mapping

a

virtual

memory

object

with

a

specified

access

level.

vms_iowait

Waits

for

the

completion

of

all

page-out

operations

in

the

virtual

memory

object.

vm_makep

Makes

a

page

in

client

storage.

vm_move

Moves

data

between

the

virtual

memory

object

and

buffer

specified

in

the

uio

structure.

vm_protectp

Sets

the

page

protection

key

for

a

page

range.

Chapter

4.

Kernel

Services

71

Services

That

Manipulate

Virtual

Memory

Objects

vm_releasep

Releases

page

frames

and

paging

space

slots

for

pages

in

the

specified

range.

vm_uiomove

Moves

data

between

the

virtual

memory

object

and

buffer

specified

in

the

uio

structure.

vm_vmid

Converts

a

virtual

memory

handle

to

a

virtual

memory

object

(id).

vm_writep

Initiates

page-out

for

a

page

range

in

a

virtual

memory

object.

The

following

services

support

address

space

operations:

as_att

Selects,

allocates,

and

maps

a

region

in

the

specified

address

space

for

the

specified

virtual

memory

object.

as_det

Unmaps

and

deallocates

a

region

in

the

specified

address

space

that

was

mapped

with

the

as_att

kernel

service.

as_geth

Obtains

a

handle

to

the

virtual

memory

object

for

the

specified

address

given

in

the

specified

address

space.

The

virtual

memory

object

is

protected.

as_getsrval

Obtains

a

handle

to

the

virtual

memory

object

for

the

specified

address

given

in

the

specified

address

space.

as_puth

Indicates

that

no

more

references

will

be

made

to

a

virtual

memory

object

that

was

obtained

using

the

as_geth

kernel

service.

as_seth

Maps

a

specified

region

in

the

specified

address

space

for

the

specified

virtual

memory

object.

getadsp

Obtains

a

pointer

to

the

current

process’s

address

space

structure

for

use

with

the

as_att

and

as_det

kernel

services.

vm_cflush

Flushes

cache

lines

for

a

specified

address

range.

vm_release

Releases

page

frames

and

paging

space

slots

for

the

specified

address

range.

vm_write

Initiates

page-out

for

an

address

range.

Note:

as_att,

as_det,

as_geth,

as_getsrval,

as_seth

and

getadsp

are

supported

only

on

the

32–bit

kernel.

The

following

Memory-Pinning

kernel

services

also

support

address

space

operations.

They

are

the

pin,

pinu,

unpin,

and

unpinu

services.

Services

That

Support

Cross-Memory

Operations

Cross

Memory

Services

are

listed

in

″Memory

Kernel

Services″.

Services

that

Support

the

Installation

of

Pager

Backends

vm_mount

Allocates

an

entry

in

the

paging

device

table.

vm_umount

Removes

a

file

system

from

the

paging

device

table.

Services

that

Support

64-bit

Processes

on

the

32-bit

Kernel

as_att64

Allocates

and

maps

a

specified

region

in

the

current

user

address

space.

as_det64

Unmaps

and

deallocates

a

region

in

the

current

user

address

space

that

was

mapped

with

the

as_att64

kernel

service.

as_geth64

Obtains

a

handle

to

the

virtual

memory

object

for

the

specified

address.

as_puth64

Indicates

that

no

more

references

will

be

made

to

a

virtual

memory

object

using

the

as_geth64

kernel

service.

as_seth64

Maps

a

specified

region

for

the

specified

virtual

memory

object.

as_getsrval64

Obtains

a

handle

to

the

virtual

memory

object

for

the

specified

address.

IS64U

Determines

if

the

current

user

address

space

is

64-bit

or

not.

72

Kernel

Extensions

and

Device

Support

Programming

Concepts

Services

that

Support

64-bit

Processes

The

following

services

are

supported

only

on

the

32–bit

kernel:

as_remap64

Maps

a

64-bit

address

to

a

32-bit

address

that

can

be

used

by

the

32–bit

kernel.

as_unremap64

Returns

the

original

64-bit

original

address

associated

with

a

32-bit

mapped

address.

rmmap_create64

Defines

an

effective

address

to

real

address

translation

region

for

either

64-bit

or

32-bit

effective

addresses.

rmmap_remove64

Destroys

an

effective

address

to

real

address

translation

region.

xmattach64

Attaches

to

a

user

buffer

for

cross-memory

operations.

copyin64

Copies

data

between

user

and

kernel

memory.

copyout64

Copies

data

between

user

and

kernel

memory.

copyinstr64

Copies

data

between

user

and

kernel

memory.

fubyte64

Retrieves

a

byte

of

data

from

user

memory.

fuword64

Retrieves

a

word

of

data

from

user

memory.

subyte64

Stores

a

byte

of

data

in

user

memory.

suword64

Stores

a

word

of

data

in

user

memory.

Message

Queue

Kernel

Services

The

Message

Queue

kernel

services

provide

the

same

message

queue

functions

to

a

kernel

extension

as

the

msgctl,

msgget,

msgsnd,

and

msgxrcv

subroutines

make

available

to

a

program

executing

in

user

mode.

Parameters

have

been

added

for

moving

returned

information

to

an

explicit

parameter

to

free

the

return

codes

for

error

code

usage.

Instead

of

the

error

information

available

in

the

errno

global

variable

(as

in

user

mode),

the

Message

Queue

services

use

the

service’s

return

code.

The

error

values

are

the

same,

except

that

a

memory

fault

error

(EFAULT)

cannot

occur

because

message

buffer

pointers

in

the

kernel

address

space

are

assumed

to

be

valid.

The

Message

Queue

services

can

be

called

only

from

the

process

environment

because

they

prevent

the

caller

from

specifying

kernel

buffers.

These

services

can

be

used

as

an

Interprocess

Communication

mechanism

to

other

kernel

processes

or

user-mode

processes.

See

Kernel

Extension

and

Device

Driver

Management

Services

for

more

information

on

the

functions

that

these

services

provide.

There

are

four

Message

Queue

services

available

from

the

kernel:

kmsgctl

Provides

message-queue

control

operations.

kmsgget

Obtains

a

message-queue

identifier.

kmsgrcv

Reads

a

message

from

a

message

queue.

kmsgsnd

Sends

a

message

using

a

previously

defined

message

queue.

Network

Kernel

Services

The

Network

kernel

services

are

divided

into:

v

Address

Family

Domain

and

Network

Interface

Device

Driver

services

v

Routing

and

Interface

services

v

Loopback

services

v

Protocol

services

v

Communications

Device

Handler

Interface

services

Chapter

4.

Kernel

Services

73

Address

Family

Domain

and

Network

Interface

Device

Driver

Kernel

Services

The

Address

Family

Domain

and

Network

Interface

Device

Driver

services

enable

address

family

domains

(Protocols)

and

network

interface

drivers

to

add

and

remove

themselves

from

network

switch

tables.

The

if_attach

service

and

if_detach

services

add

and

remove

network

interfaces

from

the

Network

Interface

List.

Protocols

search

this

list

to

determine

an

appropriate

interface

on

which

to

transmit

a

packet.

Protocols

use

the

add_input_type

and

del_input_type

services

to

notify

network

interface

drivers

that

the

protocol

is

available

to

handle

packets

of

a

certain

type.

The

Network

Interface

Driver

uses

the

find_input_type

service

to

distribute

packets

to

a

protocol.

The

add_netisr

and

del_netisr

services

add

and

delete

network

software

interrupt

handlers.

Address

families

add

and

delete

themselves

from

the

Address

Family

Domain

switch

table

by

using

the

add_domain_af

and

del_domain_af

services.

The

Address

Family

Domain

switch

table

is

a

list

of

all

available

protocols

that

can

be

used

in

the

socket

subroutine.

The

Address

Family

Domain

and

Network

Interface

Device

Driver

services

are:

add_domain_af

Adds

an

address

family

to

the

Address

Family

domain

switch

table.

add_input_type

Adds

a

new

input

type

to

the

Network

Input

table.

add_netisr

Adds

a

network

software

interrupt

service

to

the

Network

Interrupt

table.

del_domain_af

Deletes

an

address

family

from

the

Address

Family

domain

switch

table.

del_input_type

Deletes

an

input

type

from

the

Network

Input

table.

del_netisr

Deletes

a

network

software

interrupt

service

routine

from

the

Network

Interrupt

table.

find_input_type

Finds

the

given

packet

type

in

the

Network

Input

Interface

switch

table

and

distributes

the

input

packet

according

to

the

table

entry

for

that

type.

if_attach

Adds

a

network

interface

to

the

network

interface

list.

if_detach

Deletes

a

network

interface

from

the

network

interface

list.

ifunit

Returns

a

pointer

to

the

ifnet

structure

of

the

requested

interface.

schednetisr

Schedules

or

invokes

a

network

software

interrupt

service

routine.

Routing

and

Interface

Address

Kernel

Services

The

Routing

and

Interface

Address

services

provide

protocols

with

a

means

of

establishing,

accessing,

and

removing

routes

to

remote

hosts

or

gateways.

Routes

bind

destinations

to

a

particular

network

interface.

The

interface

address

services

accept

a

destination

address

or

network

and

return

an

associated

interface

address.

Protocols

use

these

services

to

determine

if

an

address

is

on

a

directly

connected

network.

The

Routing

and

Interface

Address

services

are:

ifa_ifwithaddr

Locates

an

interface

based

on

a

complete

address.

ifa_ifwithdstaddr

Locates

the

point-to-point

interface

with

a

given

destination

address.

ifa_ifwithnet

Locates

an

interface

on

a

specific

network.

if_down

Marks

an

interface

as

down.

if_nostat

Zeroes

statistical

elements

of

the

interface

array

in

preparation

for

an

attach

operation.

rtalloc

Allocates

a

route.

rtfree

Frees

the

routing

table

entry

rtinit

Sets

up

a

routing

table

entry,

typically

for

a

network

interface.

rtredirect

Forces

a

routing

table

entry

with

the

specified

destination

to

go

through

the

given

gateway.

74

Kernel

Extensions

and

Device

Support

Programming

Concepts

rtrequest

Carries

out

a

request

to

change

the

routing

table.

Loopback

Kernel

Services

The

Loopback

services

enable

networking

code

to

be

exercised

without

actually

transmitting

packets

on

a

network.

This

is

a

useful

tool

for

developing

new

protocols

without

introducing

network

variables.

Loopback

services

can

also

be

used

to

send

packets

to

local

addresses

without

using

hardware

loopback.

The

Loopback

services

are:

loifp

Returns

the

address

of

the

software

loopback

interface

structure.

looutput

Sends

data

through

a

software

loopback

interface.

Protocol

Kernel

Services

Protocol

kernel

services

provide

a

means

of

finding

a

particular

address

family

as

well

as

a

raw

protocol

handler.

The

raw

protocol

handler

basically

passes

raw

packets

up

through

sockets

so

that

a

protocol

can

be

implemented

in

user

space.

The

Protocol

kernel

services

are:

pfctlinput

Starts

the

ctlinput

function

for

each

configured

protocol.

pffindproto

Returns

the

address

of

a

protocol

switch

table

entry.

raw_input

Builds

a

raw_header

structure

for

a

packet

and

sends

both

to

the

raw

protocol

handler.

raw_usrreq

Implements

user

requests

for

raw

protocols.

Communications

Device

Handler

Interface

Kernel

Services

The

Communications

Device

Handler

Interface

services

provide

a

standard

interface

between

network

interface

drivers

and

communications

device

handlers.

The

net_attach

and

net_detach

services

open

and

close

the

device

handler.

Once

the

device

handler

has

been

opened,

the

net_xmit

service

can

be

used

to

transmit

packets.

Asynchronous

start

done

notifications

are

recorded

by

the

net_start_done

service.

The

net_error

service

handles

error

conditions.

The

Communications

Device

Handler

Interface

services

are:

add_netopt

This

macro

adds

a

network

option

structure

to

the

list

of

network

options.

del_netopt

This

macro

deletes

a

network

option

structure

from

the

list

of

network

options.

net_attach

Opens

a

communications

I/O

device

handler.

net_detach

Closes

a

communications

I/O

device

handler.

net_error

Handles

errors

for

communication

network

interface

drivers.

net_sleep

Sleeps

on

the

specified

wait

channel.

net_start

Starts

network

IDs

on

a

communications

I/O

device

handler.

net_start_done

Starts

the

done

notification

handler

for

communications

I/O

device

handlers.

net_wakeup

Wakes

up

all

sleepers

waiting

on

the

specified

wait

channel.

net_xmit

Transmits

data

using

a

communications

I/O

device

handler.

net_xmit_trace

Traces

transmit

packets.

This

kernel

service

was

added

for

those

network

interfaces

that

do

not

use

the

net_xmit

kernel

service

to

trace

transmit

packets.

Chapter

4.

Kernel

Services

75

Process

and

Exception

Management

Kernel

Services

The

process

and

exception

management

kernel

services

provided

by

the

base

kernel

provide

the

capability

to:

v

Create

kernel

processes

v

Register

exception

handlers

v

Provide

process

serialization

v

Generate

and

handle

signals

v

Support

event

waiting

and

notification

Creating

Kernel

Processes

Kernel

extensions

use

the

creatp

and

initp

kernel

services

to

create

and

initialize

a

kernel

process.

The

setpinit

kernel

service

allow

a

kernel

process

to

change

its

parent

process

from

the

one

that

created

it

to

the

init

process,

so

that

the

creating

process

does

not

receive

the

death-of-child

process

signal

upon

kernel

process

termination.

“Using

Kernel

Processes”

on

page

8

provides

additional

information

concerning

use

of

these

services.

Creating

Kernel

Threads

Kernel

extensions

use

the

thread_create

and

kthread_start

services

to

create

and

initialize

kernel-only

threads.

For

more

information

about

threads,

see

“Understanding

Kernel

Threads”

on

page

6.

The

thread_setsched

service

is

used

to

control

the

scheduling

parameters,

priority

and

scheduling

policy,

of

a

thread.

Kernel

Structures

Encapsulation

The

getpid

kernel

service

is

used

by

a

kernel

extension

in

either

the

process

or

interrupt

environment

to

determine

the

current

execution

environment

and

obtain

the

process

ID

of

the

current

process

if

in

the

process

environment.

The

rusage_incr

service

provides

an

access

to

the

rusage

structure.

The

thread-specific

uthread

structure

is

also

encapsulated.

The

getuerror

and

setuerror

kernel

services

should

be

used

to

access

the

ut_error

field.

The

thread_self

kernel

service

should

be

used

to

get

the

current

thread’s

ID.

Registering

Exception

Handlers

The

setjmpx,

clrjmpx,

and

longjmpx

kernel

services

allow

a

kernel

extension

to

register

an

exception

handler

by:

v

Saving

the

exception

handler’s

context

with

the

setjmpx

kernel

service

v

Removing

its

saved

context

with

the

clrjmpx

kernel

service

if

no

exception

occurred

v

Starting

the

next

registered

exception

handler

with

the

longjmpx

kernel

service

if

it

was

unable

to

handle

the

exception

For

more

information

concerning

use

of

these

services,

see

“Handling

Exceptions

While

in

a

System

Call”

on

page

33.

Signal

Management

Signals

can

be

posted

either

to

a

kernel

process

or

to

a

kernel

thread.

The

pidsig

service

posts

a

signal

to

a

specified

kernel

process;

the

kthread_kill

service

posts

a

signal

to

a

specified

kernel

thread.

A

thread

uses

the

sig_chk

service

to

poll

for

signals

delivered

to

the

kernel

process

or

thread

in

the

kernel

mode.

For

more

information

about

signal

management,

see

“Kernel

Process

Signal

and

Exception

Handling”

on

page

11.

76

Kernel

Extensions

and

Device

Support

Programming

Concepts

Events

Management

The

event

notification

services

provide

support

for

two

types

of

interprocess

communications:

Primitive

Allows

only

one

process

thread

waiting

on

the

event.

Shared

Allows

multiple

processes

threads

waiting

on

the

event.

The

et_wait

and

et_post

kernel

services

support

single

waiter

event

notification

by

using

mutually

agreed

upon

event

control

bits

for

the

kernel

thread

being

posted.

There

are

a

limited

number

of

control

bits

available

for

use

by

kernel

extensions.

If

the

kernel_lock

is

owned

by

the

caller

of

the

et_wait

service,

it

is

released

and

acquired

again

upon

wakeup.

The

following

kernel

services

support

a

shared

event

notification

mechanism

that

allows

for

multiple

threads

to

be

waiting

on

the

shared

event.

e_assert_wait

e_wakeup

e_block_thread

e_wakeup_one

e_clear_wait

e_wakeup_w_result

e_sleep_thread

e_wakeup_w_sig

These

services

support

an

unlimited

number

of

shared

events

(by

using

caller-supplied

event

words).

The

following

list

indicates

methods

to

wait

for

an

event

to

occur:

v

Calling

e_assert_wait

and

e_block_thread

successively;

the

first

call

puts

the

thread

on

the

event

queue,

the

second

blocks

the

thread.

Between

the

two

calls,

the

thread

can

do

any

job,

like

releasing

several

locks.

If

only

one

lock,

or

no

lock

at

all,

needs

to

be

released,

one

of

the

two

other

methods

should

be

preferred.

v

Calling

e_sleep_thread;

this

service

releases

a

simple

or

a

complex

lock,

and

blocks

the

thread.

The

lock

can

be

automatically

reacquired

at

wakeup.

The

e_clear_wait

service

can

be

used

by

a

thread

or

an

interrupt

handler

to

wake

up

a

specified

thread,

or

by

a

thread

that

called

e_assert_wait

to

remove

itself

from

the

event

queue

without

blocking

when

calling

e_block_thread.

The

other

wakeup

services

are

event-based.

The

e_wakeup

and

e_wakeup_w_result

services

wake

up

every

thread

sleeping

on

an

event

queue;

whereas

the

e_wakeup_one

service

wakes

up

only

the

most

favored

thread.

The

e_wakeup_w_sig

service

posts

a

signal

to

every

thread

sleeping

on

an

event

queue,

waking

up

all

the

threads

whose

sleep

is

interruptible.

The

e_sleep

and

e_sleepl

kernel

services

are

provided

for

code

that

was

written

for

previous

releases

of

the

operating

system.

Threads

that

have

called

one

of

these

services

are

woken

up

by

the

e_wakeup,

e_wakeup_one,

e_wakeup_w_result,

e_wakeup_w_sig,

or

e_clear_wait

kernel

services.

If

the

caller

of

the

e_sleep

service

owns

the

kernel

lock,

it

is

released

before

waiting

and

is

acquired

again

upon

wakeup.

The

e_sleepl

service

provides

the

same

function

as

the

e_sleep

service

except

that

a

caller-specified

lock

is

released

and

acquired

again

instead

of

the

kernel_lock.

List

of

Process,

Thread,

and

Exception

Management

Kernel

Services

The

Process,

Thread,

and

Exception

Management

kernel

services

are

listed

below.

clrjmpx

Removes

a

saved

context

by

popping

the

most

recently

saved

jump

buffer

from

the

list

of

saved

contexts.

creatp

Creates

a

new

kernel

process.

e_assert_wait

Asserts

that

the

calling

kernel

thread

is

going

to

sleep.

e_block_thread

Blocks

the

calling

kernel

thread.

e_clear_wait

Clears

the

wait

condition

for

a

kernel

thread.

e_sleep,

e_sleep_thread,

or

e_sleepl

Forces

the

calling

kernel

thread

to

wait

for

the

occurrence

of

a

shared

event.

Chapter

4.

Kernel

Services

77

e_sleep_thread

Forces

the

calling

kernel

thread

to

wait

the

occurrence

of

a

shared

event.

e_wakeup,

e_wakeup_one,

or

e_wakeup_w_result

Notifies

kernel

threads

waiting

on

a

shared

event

of

the

event’s

occurrence.

e_wakeup_w_sig

Posts

a

signal

to

sleeping

kernel

threads.

et_post

Notifies

a

kernel

thread

of

the

occurrence

of

one

or

more

events.

et_wait

Forces

the

calling

kernel

thread

to

wait

for

the

occurrence

of

an

event.

getpid

Gets

the

process

ID

of

the

current

process.

getppidx

Gets

the

parent

process

ID

of

the

specified

process.

initp

Changes

the

state

of

a

kernel

process

from

idle

to

ready.

kthread_kill

Posts

a

signal

to

a

specified

kernel-only

thread.

kthread_start

Starts

a

previously

created

kernel-only

thread.

limit_sigs

Changes

the

signal

mask

for

the

calling

kernel

thread.

longjmpx

Allows

exception

handling

by

causing

execution

to

resume

at

the

most

recently

saved

context.

NLuprintf

Submits

a

request

to

print

an

internationalized

message

to

the

controlling

terminal

of

a

process.

pgsignal

Sends

a

signal

to

all

of

the

processes

in

a

process

group.

pidsig

Sends

a

signal

to

a

process.

rusage_incr

Increments

a

field

of

the

rusage

structure.

setjmpx

Allows

saving

the

current

execution

state

or

context.

setpinit

Sets

the

parent

of

the

current

kernel

process

to

the

init

process.

sig_chk

Provides

the

calling

kernel

thread

with

the

ability

to

poll

for

receipt

of

signals.

sigsetmask

Changes

the

signal

mask

for

the

calling

kernel

thread.

sleep

Forces

the

calling

kernel

thread

to

wait

on

a

specified

channel.

thread_create

Creates

a

new

kernel-only

thread

in

the

calling

process.

thread_self

Returns

the

caller’s

kernel

thread

ID.

thread_setsched

Sets

kernel

thread

scheduling

parameters.

thread_terminate

Terminates

the

calling

kernel

thread.

ue_proc_check

Determines

if

a

process

is

critical

to

the

system.

uprintf

Submits

a

request

to

print

a

message

to

the

controlling

terminal

of

a

process.

RAS

Kernel

Services

The

Reliability,

Availability,

and

Serviceability

(RAS)

kernel

services

are

used

to

record

the

occurrence

of

hardware

or

software

failures

and

to

capture

data

about

these

failures.

The

recorded

information

can

be

examined

using

the

errpt

or

trcrpt

commands.

The

panic

kernel

service

is

called

when

a

catastrophic

failure

occurs

and

the

system

can

no

longer

operate.

The

panic

service

performs

a

system

dump.

The

system

dump

captures

data

areas

that

are

registered

in

the

Master

Dump

Table.

The

kernel

and

kernel

extensions

use

the

dmp_ctl

kernel

service

to

add

and

delete

entries

in

the

Master

Dump

Table,

and

record

dump

routine

failures.

The

errsave

and

errlast

kernel

service

is

called

to

record

an

entry

in

the

system

error

log

when

a

hardware

or

software

failure

is

detected.

The

trcgenk

and

trcgenkt

kernel

services

are

used

along

with

the

trchook

subroutine

to

record

selected

system

events

in

the

event-tracing

facility.

78

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

register_HA_handler

and

unregister_HA_handler

kernel

services

are

used

to

register

high

availability

event

handlers

for

kernel

extensions

that

need

to

be

aware

of

events

such

as

processor

deallocation.

Security

Kernel

Services

The

Security

kernel

services

provide

methods

for

controlling

the

auditing

system

and

for

determining

the

access

rights

to

objects

for

the

invoking

process.

The

following

services

are

security

kernel

services:

suser

Determines

the

privilege

state

of

a

process.

audit_svcstart

Initiates

an

audit

record

for

a

system

call.

audit_svcbcopy

Appends

event

information

to

the

current

audit

event

buffer.

audit_svcfinis

Writes

an

audit

record

for

a

kernel

service.

crcopy

Creates

a

copy

of

a

security

credentials

structure.

crdup

Creates

a

copy

of

the

current

security

credentials

structure.

credential

macros

Provide

a

means

for

accessing

the

user

and

group

identifier

fields

within

a

credentials

structure.

crexport

Copies

an

internal

format

credentials

structure

to

an

external

format

credentials

structure.

crfree

Frees

a

security

credentials

structure.

crget

Allocates

a

new,

uninitialized

security

credentials

structure.

crhold

Increments

the

reference

count

of

a

security

credentials

structure.

crref

Increments

the

reference

count

of

the

current

security

credentials

structure.

crset

Replaces

the

current

security

credentials

structure.

kcred_getcap

Copies

a

capability

vector

from

a

credentials

structure.

kcred_getgroups

Copies

the

concurrent

group

set

from

a

credentials

structure.

kcred_getpag

Copies

a

process

authentication

group

(PAG)

ID

from

a

credentials

structure.

kcred_getpagid

Returns

the

process

authentication

group

(PAG)

identifier

for

a

PAG

name.

kcred_getpagname

Retrieves

the

name

of

a

process

authentication

group

(PAG).

kcred_getpriv

Copies

a

privilege

vector

from

a

credentials

structure.

kcred_setcap

Copies

a

capabilities

set

into

a

credentials

structure.

kcred_setgroups

Copies

a

concurrent

group

set

into

a

credentials

structure.

kcred_setpag

Copies

a

process

authentication

group

ID

into

a

credentials

structure.

kcred_setpagname

Copies

a

process

authentication

group

ID

into

a

credentials

structure.

kcred_setpriv

Copies

a

privilege

vector

into

a

credentials

structure.

Timer

and

Time-of-Day

Kernel

Services

The

Timer

and

Time-of-Day

kernel

services

provide

kernel

extensions

with

the

ability

to

be

notified

when

a

period

of

time

has

passed.

The

tstart

service

supports

a

very

fine

granularity

of

time.

The

timeout

service

is

built

on

the

tstart

service

and

is

provided

for

compatibility

with

earlier

versions

of

the

operating

system.

The

w_start

service

provides

a

timer

with

less

granularity,

but

much

cheaper

path-length

overhead

when

starting

a

timer.

The

Timer

and

Time-of-Day

kernel

services

are

divided

into

the

following

categories:

v

Time-of-Day

services

v

Fine

Granularity

Timer

services

v

Timer

services

for

compatibility

v

Watchdog

Timer

services

Chapter

4.

Kernel

Services

79

Time-Of-Day

Kernel

Services

The

Time-Of-Day

kernel

services

are:

curtime

Reads

the

current

time

into

a

time

structure.

kgettickd

Retrieves

the

current

status

of

the

systemwide

time-of-day

timer-adjustment

values.

ksettimer

Sets

the

systemwide

time-of-day

timer.

ksettickd

Sets

the

current

status

of

the

systemwide

timer-adjustment

values.

Fine

Granularity

Timer

Kernel

Services

The

Fine

Granularity

Timer

kernel

services

are:

delay

Suspends

the

calling

process

for

the

specified

number

of

timer

ticks.

talloc

Allocates

a

timer

request

block

before

starting

a

timer

request.

tfree

Deallocates

a

timer

request

block.

tstart

Submits

a

timer

request.

tstop

Cancels

a

pending

timer

request.

For

more

information

about

using

the

Fine

Granularity

Timer

services,

see

“Using

Fine

Granularity

Timer

Services

and

Structures.”

Timer

Kernel

Services

for

Compatibility

The

following

Timer

kernel

services

are

provided

for

compatibility:

timeout

Schedules

a

function

to

be

called

after

a

specified

interval.

timeoutcf

Allocates

or

deallocates

callout

table

entries

for

use

with

the

timeout

kernel

service.

untimeout

Cancels

a

pending

timer

request.

Watchdog

Timer

Kernel

Services

The

Watchdog

timer

kernel

services

are:

w_clear

Removes

a

watchdog

timer

from

the

list

of

watchdog

timers

known

to

the

kernel.

w_init

Registers

a

watchdog

timer

with

the

kernel.

w_start

Starts

a

watchdog

timer.

w_stop

Stops

a

watchdog

timer.

Using

Fine

Granularity

Timer

Services

and

Structures

The

tstart,

tfree,

talloc,

and

tstop

services

provide

fine-resolution

timing

functions.

These

timer

services

should

be

used

when

the

following

conditions

are

required:

v

Timing

requests

for

less

than

one

second

v

Critical

timing

v

Absolute

timing

The

Watchdog

timer

services

can

be

used

for

noncritical

times

having

a

one-second

resolution.

The

timeout

service

can

be

used

for

noncritical

times

having

a

clock-tick

resolution.

Timer

Services

Data

Structures

The

trb

(timer

request)

structure

is

found

in

the

/sys/timer.h

file.

The

itimerstruc_t

structure

contains

the

second/nanosecond

structure

for

time

operations

and

is

found

in

the

sys/time.h

file.

80

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

itimerstruc_t

t.it

value

substructure

should

be

used

to

store

time

information

for

both

absolute

and

incremental

timers.

The

T_ABSOLUTE

absolute

request

flag

is

defined

in

the

sys/timer.h

file.

It

should

be

ORed

into

the

t->flag

field

if

an

absolute

timer

request

is

desired.

The

T_LOWRES

flag

causes

the

system

to

round

the

t->timeout

value

to

the

next

timer

timeout.

It

should

be

ORed

into

the

t->flags

field.

The

timeout

is

always

rounded

to

a

larger

value.

Because

the

system

maintains

10ms

interval

timer,

T_LOWRES

will

never

cause

more

than

10ms

to

be

added

to

a

timeout.

The

advantage

of

using

T_LOWRES

is

that

it

prevents

an

extra

interrupt

from

being

generated.

The

t->timeout

and

t->flags

fields

must

be

set

or

reset

before

each

call

to

the

tstart

kernel

service.

Coding

the

Timer

Function

The

t->func

timer

function

should

be

declared

as

follows:

void

func

(t)

struct

trb

*t;

The

argument

to

the

func

completion

handler

routine

is

the

address

of

the

trb

structure,

not

the

contents

of

the

t_union

field.

The

t->func

timer

function

is

called

on

an

interrupt

level.

Therefore,

code

for

this

routine

must

follow

conventions

for

interrupt

handlers.

Using

Multiprocessor-Safe

Timer

Services

On

a

multiprocessor

system,

timer

request

blocks

and

watchdog

timer

structures

could

be

accessed

simultaneously

by

several

processors.

The

kernel

services

shown

below

potentially

alter

critical

information

in

these

blocks

and

structures,

and

therefore

check

whether

it

is

safe

to

perform

the

requested

service

before

proceeding:

tstop

Cancels

a

pending

timer

request.

w_clear

Removes

a

watchdog

timer

from

the

list

of

watchdog

timers

known

to

the

kernel.

w_init

Registers

a

watchdog

timer

with

the

kernel.

If

the

requested

service

cannot

be

performed,

the

kernel

service

returns

an

error

value.

In

order

to

be

multiprocessor

safe,

the

caller

must

check

the

value

returned

by

these

kernel

services.

If

the

service

was

not

successful,

the

caller

must

take

an

appropriate

action,

for

example,

retrying

in

a

loop.

If

the

caller

holds

a

device

driver

lock,

it

should

release

and

then

reacquire

the

lock

within

this

loop

in

order

to

avoid

deadlock.

Drivers

which

were

written

for

uniprocessor

systems

do

not

check

the

return

values

of

these

kernel

services

and

are

not

multiprocessor-safe.

Such

drivers

can

still

run

as

funnelled

device

drivers.

Virtual

File

System

(VFS)

Kernel

Services

The

Virtual

File

System

(VFS)

kernel

services

are

provided

as

fundamental

building

blocks

for

use

when

writing

a

virtual

file

system.

These

services

present

a

standard

interface

for

such

functions

as

configuring

file

systems,

creating

and

freeing

v-nodes,

and

looking

up

path

names.

Most

functions

involved

in

the

writing

of

a

file

system

are

specific

to

that

file

system

type.

But

a

limited

number

of

functions

must

be

performed

in

a

consistent

manner

across

the

various

file

system

types

to

enable

the

logical

file

system

to

operate

independently

of

the

file

system

type.

Chapter

4.

Kernel

Services

81

The

VFS

kernel

services

are:

common_reclock

Implements

a

generic

interface

to

the

record

locking

functions.

fidtovp

Maps

a

file

system

structure

to

a

file

ID.

gfsadd

Adds

a

file

system

type

to

the

gfs

table.

gfsdel

Removes

a

file

system

type

from

the

gfs

table.

vfs_hold

Holds

a

vfs

structure

and

increments

the

structure’s

use

count.

vfs_unhold

Releases

a

vfs

structure

and

decrements

the

structure’s

use

count.

vfsrele

Releases

all

resources

associated

with

a

virtual

file

system.

vfs_search

Searches

the

vfs

list.

vn_free

Frees

a

v-node

previously

allocated

by

the

vn_get

kernel

service.

vn_get

Allocates

a

virtual

node

and

associates

it

with

the

designated

virtual

file

system.

lookupvp

Retrieves

the

v-node

that

corresponds

to

the

named

path.

Related

Information

Chapter

1,

“Kernel

Environment,”

on

page

1

“Block

I/O

Buffer

Cache

Kernel

Services:

Overview”

on

page

51

Understanding

the

Virtual

File

System

Interface

Communications

Physical

Device

Handler

Model

Overview

Understanding

File

Descriptors

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Subroutine

References

The

msgctl

subroutine,

msgget

subroutine,

msgsnd

subroutine,

msgxrcv

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

The

trchook

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2.

Commands

References

The

iostat

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

The

vmstat

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

6.

Technical

References

The

talloc

kernel

service,

tfree

kernel

service,

tstart

kernel

service,

tstop

kernel

service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

82

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

5.

Asynchronous

I/O

Subsystem

Synchronous

I/O

occurs

while

you

wait.

Applications

processing

cannot

continue

until

the

I/O

operation

is

complete.

In

contrast,

asynchronous

I/O

operations

run

in

the

background

and

do

not

block

user

applications.

This

improves

performance,

because

I/O

operations

and

applications

processing

can

run

simultaneously.

Using

asynchronous

I/O

will

usually

improve

your

I/O

throughput,

especially

when

you

are

storing

data

in

raw

logical

volumes

(as

opposed

to

Journaled

file

systems).

The

actual

performance,

however,

depends

on

how

many

server

processes

are

running

that

will

handle

the

I/O

requests.

Many

applications,

such

as

databases

and

file

servers,

take

advantage

of

the

ability

to

overlap

processing

and

I/O.

These

asynchronous

I/O

operations

use

various

kinds

of

devices

and

files.

Additionally,

multiple

asynchronous

I/O

operations

can

run

at

the

same

time

on

one

or

more

devices

or

files.

Each

asynchronous

I/O

request

has

a

corresponding

control

block

in

the

application’s

address

space.

When

an

asynchronous

I/O

request

is

made,

a

handle

is

established

in

the

control

block.

This

handle

is

used

to

retrieve

the

status

and

the

return

values

of

the

request.

Applications

use

the

aio_read

and

aio_write

subroutines

to

perform

the

I/O.

Control

returns

to

the

application

from

the

subroutine,

as

soon

as

the

request

has

been

queued.

The

application

can

then

continue

processing

while

the

disk

operation

is

being

performed.

A

kernel

process

(kproc),

called

a

server,

is

in

charge

of

each

request

from

the

time

it

is

taken

off

the

queue

until

it

completes.

The

number

of

servers

limits

the

number

of

disk

I/O

operations

that

can

be

in

progress

in

the

system

simultaneously.

The

default

values

are

minservers=1

and

maxservers=10.

In

systems

that

seldom

run

applications

that

use

asynchronous

I/O,

this

is

usually

adequate.

For

environments

with

many

disk

drives

and

key

applications

that

use

asynchronous

I/O,

the

default

is

far

too

low.

The

result

of

a

deficiency

of

servers

is

that

disk

I/O

seems

much

slower

than

it

should

be.

Not

only

do

requests

spend

inordinate

lengths

of

time

in

the

queue,

but

the

low

ratio

of

servers

to

disk

drives

means

that

the

seek-optimization

algorithms

have

too

few

requests

to

work

with

for

each

drive.

Note:

Asynchronous

I/O

will

not

work

if

the

control

block

or

buffer

is

created

using

mmap

(mapping

segments).

In

AIX

5.2

there

are

two

Asynchronous

I/O

Subsystems.

The

original

AIX

AIO,

now

called

LEGACY

AIO,

has

the

same

function

names

as

the

posix

compliant

POSIX

AIO.

The

major

differences

between

the

two

involve

different

parameter

passing.

Both

subsytems

are

defined

in

the

/usr/include/sys/aio.h

file.

The

_AIO_AIX_SOURCE

macro

is

used

to

distinguish

between

the

two

versions.

Note:

The

_AIO_AIX_SOURCE

macro

used

in

the

/usr/include/sys/aio.h

file

must

be

defined

when

using

this

file

to

compile

an

aio

application

with

the

LEGACY

AIO

function

definitions.

The

default

compile

using

the

aio.h

file

is

for

an

application

with

the

new

POSIX

AIO

definitions.

To

use

the

LEGACY

AIO

function

defintions

do

the

following

in

the

source

file:

#define

_AIO_AIX_SOURCE

#include

<sys/aio.h>

or

when

compiling

on

the

command

line,

type

the

following:

xlc

...

-D_AIO_AIX_SOURCE

...

classic_aio_program.c

©

Copyright

IBM

Corp.

1997,

2004

83

For

each

aio

function

there

is

a

legacy

and

a

posix

definition.

LEGACY

AIO

has

an

additional

aio_nwait

function,

which

although

not

a

part

of

posix

definitions

has

been

included

in

POSIX

AIO

to

help

those

who

want

to

port

from

LEGACY

to

POSIX

definitions.

POSIX

AIO

has

an

additional

aio_fsync

function,

which

is

not

included

in

LEGACY

AIO.

For

a

list

of

these

functions,

see

“Asynchronous

I/O

Subroutines”

on

page

87.

How

Do

I

Know

if

I

Need

to

Use

AIO?

Using

the

vmstat

command

with

an

interval

and

count

value,

you

can

determine

if

the

CPU

is

idle

waiting

for

disk

I/O.

The

wa

column

details

the

percentage

of

time

the

CPU

was

idle

with

pending

local

disk

I/O.

If

there

is

at

least

one

outstanding

I/O

to

a

local

disk

when

the

wait

process

is

running,

the

time

is

classified

as

waiting

for

I/O.

Unless

asynchronous

I/O

is

being

used

by

the

process,

an

I/O

request

to

disk

causes

the

calling

process

to

block

(or

sleep)

until

the

request

has

been

completed.

Once

a

process’s

I/O

request

completes,

it

is

placed

on

the

run

queue.

A

wa

value

consistently

over

25

percent

may

indicate

that

the

disk

subsystem

is

not

balanced

properly,

or

it

may

be

the

result

of

a

disk-intensive

workload.

Note:

AIO

will

not

relieve

an

overly

busy

disk

drive.

Using

the

iostat

command

with

an

interval

and

count

value,

you

can

determine

if

any

disks

are

overly

busy.

Monitor

the

%tm_act

column

for

each

disk

drive

on

the

system.

On

some

systems,

a

%tm_act

of

35.0

or

higher

for

one

disk

can

cause

noticeably

slower

performance.

The

relief

for

this

case

could

be

to

move

data

from

more

busy

to

less

busy

disks,

but

simply

having

AIO

will

not

relieve

an

overly

busy

disk

problem.

SMP

Systems

For

SMP

systems,

the

us,

sy,

id

and

wa

columns

are

only

averages

over

all

processors.

But

keep

in

mind

that

the

I/O

wait

statistic

per

processor

is

not

really

a

processor-specific

statistic;

it

is

a

global

statistic.

An

I/O

wait

is

distinguished

from

idle

time

only

by

the

state

of

a

pending

I/O.

If

there

is

any

pending

disk

I/O,

and

the

processor

is

not

busy,

then

it

is

an

I/O

wait

time.

Disk

I/O

is

not

tracked

by

processors,

so

when

there

is

any

I/O

wait,

all

processors

get

charged

(assuming

they

are

all

equally

idle).

How

Many

AIO

Servers

Am

I

Currently

Using?

To

determine

you

how

many

Posix

AIO

Servers

(aios)

are

currently

running,

type

the

following

on

the

command

line:

pstat

-a

|

grep

posix_aioserver

|

wc

-l

Note:

You

must

run

this

command

as

the

root

user.

To

determine

you

how

many

Legacy

AIO

Servers

(aios)

are

currently

running,

type

the

following

on

the

command

line:

pstat

-a

|

egrep

’

aioserver’

|

wc

-l

Note:

You

must

run

this

command

as

the

root

user.

If

the

disk

drives

that

are

being

accessed

asynchronously

are

using

either

the

Journaled

File

System

(JFS)

or

the

Enhanced

Journaled

File

System

(JFS2),

all

I/O

will

be

routed

through

the

aios

kprocs.

If

the

disk

drives

that

are

being

accessed

asynchronously

are

using

a

form

of

raw

logical

volume

management,

then

the

disk

I/O

is

not

routed

through

the

aios

kprocs.

In

that

case

the

number

of

servers

running

is

not

relevant.

However,

if

you

want

to

confirm

that

an

application

that

uses

raw

logic

volumes

is

taking

advantage

of

AIO,

you

can

disable

the

fast

path

option

via

SMIT.

When

this

option

is

disabled,

even

raw

I/O

will

be

forced

through

the

aios

kprocs.

At

that

point,

the

pstat

command

listed

in

preceding

discussion

will

work.

84

Kernel

Extensions

and

Device

Support

Programming

Concepts

You

would

not

want

to

run

the

system

with

this

option

disabled

for

any

length

of

time.

This

is

simply

a

suggestion

to

confirm

that

the

application

is

working

with

AIO

and

raw

logical

volumes.

At

releases

earlier

than

AIX

4.3,

the

fast

path

is

enabled

by

default

and

cannot

be

disabled.

How

Many

AIO

Servers

Do

I

Need?

Here

are

some

suggested

rules

of

thumb

for

determining

what

value

to

set

maximum

number

of

servers

to:

1.

The

first

rule

of

thumb

suggests

that

you

limit

the

maximum

number

of

servers

to

a

number

equal

to

ten

times

the

number

of

disks

that

are

to

be

used

concurrently,

but

not

more

than

80.

The

minimum

number

of

servers

should

be

set

to

half

of

this

maximum

number.

2.

Another

rule

of

thumb

is

to

set

the

maximum

number

of

servers

to

80

and

leave

the

minimum

number

of

servers

set

to

the

default

of

1

and

reboot.

Monitor

the

number

of

additional

servers

started

throughout

the

course

of

normal

workload.

After

a

24-hour

period

of

normal

activity,

set

the

maximum

number

of

servers

to

the

number

of

currently

running

aios

+

10,

and

set

the

minimum

number

of

servers

to

the

number

of

currently

running

aios

-

10.

In

some

environments

you

may

see

more

than

80

aios

KPROCs

running.

If

so,

consider

the

third

rule

of

thumb.

3.

A

third

suggestion

is

to

take

statistics

using

vmstat

-s

before

any

high

I/O

activity

begins,

and

again

at

the

end.

Check

the

field

iodone.

From

this

you

can

determine

how

many

physical

I/Os

are

being

handled

in

a

given

wall

clock

period.

Then

increase

the

maximum

number

of

servers

and

see

if

you

can

get

more

iodones

in

the

same

time

period.

Prerequisites

To

make

use

of

asynchronous

I/O

the

following

fileset

must

be

installed:

bos.rte.aio

To

determine

if

this

fileset

is

installed,

use:

lslpp

-l

bos.rte.aio

You

must

also

make

the

aio0

or

posix_aio0

device

available

using

SMIT.

smit

chgaio

smit

chgposixaio

STATE

to

be

configured

at

system

restart

available

or

smit

aio

smit

posixaio

Configure

aio

now

Functions

of

Asynchronous

I/O

Functions

provided

by

the

asynchronous

I/O

facilities

are:

v

Large

File-Enabled

Asynchronous

I/O

v

Nonblocking

I/O

v

Notification

of

I/O

completion

v

Cancellation

of

I/O

requests

Large

File-Enabled

Asynchronous

I/O

The

fundamental

data

structure

associated

with

all

asynchronous

I/O

operations

is

struct

aiocb.

Within

this

structure

is

the

aio_offset

field

which

is

used

to

specify

the

offset

for

an

I/O

operation.

Chapter

5.

Asynchronous

I/O

Subsystem

85

Due

to

the

signed

32-bit

definition

of

aio_offset,

the

default

asynchronous

I/O

interfaces

are

limited

to

an

offset

of

2G

minus

1.

To

overcome

this

limitation,

a

new

aio

control

block

with

a

signed

64-bit

offset

field

and

a

new

set

of

asynchronous

I/O

interfaces

has

been

defined.

These

64–bit

definitions

end

with

″64″.

The

large

offset-enabled

asynchronous

I/O

interfaces

are

available

under

the

_LARGE_FILES

compilation

environment

and

under

the

_LARGE_FILE_API

programming

environment.

For

further

information,

see

Writing

Programs

That

Access

Large

Files

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Under

the

_LARGE_FILES

compilation

environment,

asynchronous

I/O

applications

written

to

the

default

interfaces

see

the

following

redefinitions:

Item

Redefined

To

Be

Header

File

struct

aiocb

struct

aiocb64

sys/aio.h

aio_read()

aio_read64()

sys/aio.h

aio_write()

aio_write64()

sys/aio.h

aio_cancel()

aio_cancel64()

sys/aio.h

aio_suspend()

aio_suspend64()

sys/aio.h

aio_listio()

aio_listio64()

sys/aio.h

aio_return()

aio_return64()

sys/aio.h

aio_error()

aio_error64()

sys/aio.h

For

information

on

using

the

_LARGE_FILES

environment,

see

Porting

Applications

to

the

Large

File

Environment

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

In

the

_LARGE_FILE_API

environment,

the

64-bit

API

interfaces

are

visible.

This

environment

requires

recoding

of

applications

to

the

new

64-bit

API

name.

For

further

information

on

using

the

_LARGE_FILE_API

environment,

see

Using

the

64-Bit

File

System

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

Nonblocking

I/O

After

issuing

an

I/O

request,

the

user

application

can

proceed

without

being

blocked

while

the

I/O

operation

is

in

progress.

The

I/O

operation

occurs

while

the

application

is

running.

Specifically,

when

the

application

issues

an

I/O

request,

the

request

is

queued.

The

application

can

then

resume

running

before

the

I/O

operation

is

initiated.

To

manage

asynchronous

I/O,

each

asynchronous

I/O

request

has

a

corresponding

control

block

in

the

application’s

address

space.

This

control

block

contains

the

control

and

status

information

for

the

request.

It

can

be

used

again

when

the

I/O

operation

is

completed.

Notification

of

I/O

Completion

After

issuing

an

asynchronous

I/O

request,

the

user

application

can

determine

when

and

how

the

I/O

operation

is

completed.

This

information

is

provided

in

three

ways:

v

The

application

can

poll

the

status

of

the

I/O

operation.

v

The

system

can

asynchronously

notify

the

application

when

the

I/O

operation

is

done.

v

The

application

can

block

until

the

I/O

operation

is

complete.

Polling

the

Status

of

the

I/O

Operation

The

application

can

periodically

poll

the

status

of

the

I/O

operation.

The

status

of

each

I/O

operation

is

provided

in

the

application’s

address

space

in

the

control

block

associated

with

each

request.

Portable

86

Kernel

Extensions

and

Device

Support

Programming

Concepts

applications

can

retrieve

the

status

by

using

the

aio_error

subroutine.The

aio_suspend

subroutine

suspends

the

calling

process

until

one

or

more

asynchronous

I/O

requests

are

completed.

Asynchronously

Notifying

the

Application

When

the

I/O

Operation

Completes

Asynchronously

notifying

the

I/O

completion

is

done

by

signals.

Specifically,

an

application

may

request

that

a

SIGIO

signal

be

delivered

when

the

I/O

operation

is

complete.

To

do

this,

the

application

sets

a

flag

in

the

control

block

at

the

time

it

issues

the

I/O

request.

If

several

requests

have

been

issued,

the

application

can

poll

the

status

of

the

requests

to

determine

which

have

actually

completed.

Blocking

the

Application

until

the

I/O

Operation

Is

Complete

The

third

way

to

determine

whether

an

I/O

operation

is

complete

is

to

let

the

calling

process

become

blocked

and

wait

until

at

least

one

of

the

I/O

requests

it

is

waiting

for

is

complete.

This

is

similar

to

synchronous

style

I/O.

It

is

useful

for

applications

that,

after

performing

some

processing,

need

to

wait

for

I/O

completion

before

proceeding.

Cancellation

of

I/O

Requests

I/O

requests

can

be

canceled

if

they

are

cancelable.

Cancellation

is

not

guaranteed

and

may

succeed

or

not

depending

upon

the

state

of

the

individual

request.

If

a

request

is

in

the

queue

and

the

I/O

operations

have

not

yet

started,

the

request

is

cancellable.

Typically,

a

request

is

no

longer

cancelable

when

the

actual

I/O

operation

has

begun.

Asynchronous

I/O

Subroutines

Note:

The

64-bit

APIs

are

as

follows:

The

following

subroutines

are

provided

for

performing

asynchronous

I/O:

Subroutine

Purpose

aio_cancel

or

aio_cancel64

Cancels

one

or

more

outstanding

asynchronous

I/O

requests.

aio_error

or

aio_error64

Retrieves

the

error

status

of

an

asynchronous

I/O

request.

aio_fsync

Synchronizes

asynchronous

files.

lio_listio

or

lio_listio64

Initiates

a

list

of

asynchronous

I/O

requests

with

a

single

call.

aio_nwait

Suspends

the

calling

process

until

n

asynchronous

I/O

requests

are

completed.

aio_read

or

aio_read64

Reads

asynchronously

from

a

file.

aio_return

or

aio_return64

Retrieves

the

return

status

of

an

asynchronous

I/O

request.

aio_suspend

or

aio_suspend64

Suspends

the

calling

process

until

one

or

more

asynchronous

I/O

requests

is

completed.

aio_write

or

aio_write64

Writes

asynchronously

to

a

file.

Order

and

Priority

of

Asynchronous

I/O

Calls

An

application

may

issue

several

asynchronous

I/O

requests

on

the

same

file

or

device.

However,

because

the

I/O

operations

are

performed

asynchronously,

the

order

in

which

they

are

handled

may

not

be

the

order

in

which

the

I/O

calls

were

made.

The

application

must

enforce

ordering

of

its

own

I/O

requests

if

ordering

is

required.

Priority

among

the

I/O

requests

is

not

currently

implemented.

The

aio_reqprio

field

in

the

control

block

is

currently

ignored.

For

files

that

support

seek

operations,

seeking

is

allowed

as

part

of

the

asynchronous

read

or

write

operations.

The

whence

and

offset

fields

are

provided

in

the

control

block

of

the

request

to

set

the

seek

parameters.

The

seek

pointer

is

updated

when

the

asynchronous

read

or

write

call

returns.

Chapter

5.

Asynchronous

I/O

Subsystem

87

Subroutines

Affected

by

Asynchronous

I/O

The

following

existing

subroutines

are

affected

by

asynchronous

I/O:

v

The

close

subroutine

v

The

exit

subroutine

v

The

exec

subroutine

v

The

fork

subroutine

If

the

application

closes

a

file,

or

calls

the

_exit

or

exec

subroutines

while

it

has

some

outstanding

I/O

requests,

the

requests

are

canceled.

If

they

cannot

be

canceled,

the

application

is

blocked

until

the

requests

have

completed.

When

a

process

calls

the

fork

subroutine,

its

asynchronous

I/O

is

not

inherited

by

the

child

process.

One

fundamental

limitation

in

asynchronous

I/O

is

page

hiding.

When

an

unbuffered

(raw)

asynchronous

I/O

is

issued,

the

page

that

contains

the

user

buffer

is

hidden

during

the

actual

I/O

operation.

This

ensures

cache

consistency.

However,

the

application

may

access

the

memory

locations

that

fall

within

the

same

page

as

the

user

buffer.

This

may

cause

the

application

to

block

as

a

result

of

a

page

fault.

To

alleviate

this,

allocate

page

aligned

buffers

and

do

not

touch

the

buffers

until

the

I/O

request

using

it

has

completed.

Changing

Attributes

for

Asynchronous

I/O

You

can

change

attributes

relating

to

asynchronous

I/O

using

the

chdev

command

or

SMIT.

Likewise,

you

can

use

SMIT

to

configure

and

remove

(unconfigure)

asynchronous

I/O.

(Alternatively,

you

can

use

the

mkdev

and

rmdev

commands

to

configure

and

remove

asynchronous

I/O).

To

start

SMIT

at

the

main

menu

for

asynchronous

I/O,

enter

smit

aio

or

smit

posixaio.

MINIMUM

number

of

servers

Indicates

the

minimum

number

of

kernel

processes

dedicated

to

asynchronous

I/O

processing.

Because

each

kernel

process

uses

memory,

this

number

should

not

be

large

when

the

amount

of

asynchronous

I/O

expected

is

small.

MAXIMUM

number

of

servers

per

cpu

Indicates

the

maximum

number

of

kernel

processes

per

cpu

that

are

dedicated

to

asynchronous

I/O

processing.

This

number

when

multiplied

by

the

number

of

cpus

indicates

the

limit

on

I/O

requests

in

progress

at

one

time,

and

represents

the

limit

for

possible

I/O

concurrency.

Maximum

number

of

REQUESTS

Indicates

the

maximum

number

of

asynchronous

I/O

requests

that

can

be

outstanding

at

one

time.

This

includes

requests

that

are

in

progress

as

well

as

those

that

are

waiting

to

be

started.

The

maximum

number

of

asynchronous

I/O

requests

cannot

be

less

than

the

value

of

AIO_MAX,

as

defined

in

the

/usr/include/sys/limits.h

file,

but

it

can

be

greater.

It

would

be

appropriate

for

a

system

with

a

high

volume

of

asynchronous

I/O

to

have

a

maximum

number

of

asynchronous

I/O

requests

larger

than

AIO_MAX.

Server

PRIORITY

Indicates

the

priority

level

of

kernel

processes

dedicated

to

asynchronous

I/O.

The

lower

the

priority

number

is,

the

more

favored

the

process

is

in

scheduling.

Concurrency

is

enhanced

by

making

this

number

slightly

less

than

the

value

of

PUSER,

the

priority

of

a

normal

user

process.

It

cannot

be

made

lower

than

the

values

of

PRI_SCHED.

Because

the

default

priority

is

(40+nice),

these

daemons

will

be

slightly

favored

with

this

value

of

(39+nice).

If

you

want

to

favor

them

more,

make

changes

slowly.

A

very

low

priority

can

interfere

with

the

system

process

that

require

low

priority.

88

Kernel

Extensions

and

Device

Support

Programming

Concepts

Attention:

Raising

the

server

PRIORITY

(decreasing

this

numeric

value)

is

not

recommended

because

system

hangs

or

crashes

could

occur

if

the

priority

of

the

AIO

servers

is

favored

too

much.

There

is

little

to

be

gained

by

making

big

priority

changes.

PUSER

and

PRI_SCHED

are

defined

in

the

/usr/include/sys/pri.h

file.

STATE

to

be

configured

at

system

restart

Indicates

the

state

to

which

asynchronous

I/O

is

to

be

configured

during

system

initialization.

The

possible

values

are:

v

defined,

which

indicates

that

the

asynchronous

I/O

will

be

left

in

the

defined

state

and

not

available

for

use

v

available,

which

indicates

that

asynchronous

I/O

will

be

configured

and

available

for

use

STATE

of

FastPath

The

AIO

Fastpath

is

used

only

on

character

devices

(raw

logical

volumes)

and

sends

I/O

requests

directly

to

the

underlying

device.

The

file

system

path

used

on

block

devices

uses

the

aio

kprocs

to

send

requests

through

file

system

routines

provided

to

kernel

extensions.

Disabling

this

option

forces

all

I/O

activity

through

the

aios

kprocs,

including

I/O

activity

that

involves

raw

logical

volumes.

In

AIX

4.3

and

earlier,

the

fast

path

is

enabled

by

default

and

cannot

be

disabled.

64-bit

Enhancements

Asynchronous

I/O

(AIO)

has

been

enhanced

to

support

64-bit

enabled

applications.

On

64-bit

platforms,

both

32-bit

and

64-bit

AIO

can

occur

simultaneously.

The

struct

aiocb,

the

fundamental

data

structure

associated

with

all

asynchronous

I/O

operation,

has

changed.

The

element

of

this

struct,

aio_return,

is

now

defined

as

ssize_t.

Previously,

it

was

defined

as

an

int.

AIO

supports

large

files

by

default.

An

application

compiled

in

64-bit

mode

can

do

AIO

to

a

large

file

without

any

additional

#define

or

special

opening

of

those

files.

Related

Information

Subroutine

References

The

aio_cancel

or

aio_cancel64

subroutine,

aio_error

or

aio_error64

subroutine,

aio_read

or

aio_read64

subroutine,

aio_return

or

aio_return64

subroutine,

aio_suspend

or

aio_suspend64

subroutine,

aio_write

or

aio_write64

subroutine,

lio_listio

or

lio_listio64

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

Commands

References

The

chdev

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

1.

The

mkdev

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

The

rmdev

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

4.

Chapter

5.

Asynchronous

I/O

Subsystem

89

90

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

6.

Device

Configuration

Subsystem

Devices

are

usually

pieces

of

equipment

that

attach

to

a

computer.

Devices

include

printers,

adapters,

and

disk

drives.

Additionally,

devices

are

special

files

that

can

handle

device-related

tasks.

System

users

cannot

operate

devices

until

device

configuration

occurs.

To

configure

devices,

the

Device

Configuration

Subsystem

is

available.

Read

about

general

configuration

characteristics

and

procedures

in:

v

“Scope

of

Device

Configuration

Support”

v

“Device

Configuration

Subsystem

Overview”

v

“General

Structure

of

the

Device

Configuration

Subsystem”

on

page

92

Scope

of

Device

Configuration

Support

The

term

device

has

a

wider

range

of

meaning

in

this

operating

system

than

in

traditional

operating

systems.

Traditionally,

devices

refers

to

hardware

components

such

as

disk

drives,

tape

drives,

printers,

and

keyboards.

Pseudo-devices,

such

as

the

console,

error

special

file,

and

null

special

file,

are

also

included

in

this

category.

However,

in

this

operating

system,

all

of

these

devices

are

referred

to

as

kernel

devices,

which

have

device

drivers

and

are

known

to

the

system

by

major

and

minor

numbers.

Also,

in

this

operating

system,

hardware

components

such

as

buses,

adapters,

and

enclosures

(including

racks,

drawers,

and

expansion

boxes)

are

considered

devices.

Device

Configuration

Subsystem

Overview

Devices

are

organized

hierarchically

within

the

system.

This

organization

requires

lower-level

device

dependence

on

upper-level

devices

in

child-parent

relationships.

The

system

device

(sys0)

is

the

highest-level

device

in

the

system

node,

which

consists

of

all

physical

devices

in

the

system.

Each

device

is

classified

into

functional

classes,

functional

subclasses

and

device

types

(for

example,

printer

class,

parallel

subclass,

4201

Proprinter

type).

These

classifications

are

maintained

in

the

device

configuration

databases

with

all

other

device

information.

The

Device

Configuration

Subsystem

consists

of:

High-level

Commands

Maintain

(add,

delete,

view,

change)

configured

devices

within

the

system.

These

commands

manage

all

of

the

configuration

functions

and

are

performed

by

invoking

the

appropriate

device

methods

for

the

device

being

configured.

These

commands

call

device

methods

and

low-level

commands.

The

system

uses

the

high-level

Configuration

Manager

(cfgmgr)

command

used

to

invoke

automatic

device

configurations

through

system

boot

phases

and

the

user

can

invoke

the

command

during

system

run

time.

Configuration

rules

govern

the

cfgmgr

command.

Device

Methods

Define,

configure,

change,

unconfigure,

and

undefine

devices.

The

device

methods

are

used

to

identify

or

change

the

device

states

(operational

modes).

Database

Maintains

data

through

the

ODM

(Object

Data

Manager)

by

object

classes.

Predefined

Device

Objects

contain

configuration

data

for

all

devices

that

can

possibly

be

used

by

the

system.

Customized

Device

Objects

contain

data

for

device

instances

that

are

actually

in

use

by

the

system.

©

Copyright

IBM

Corp.

1997,

2004

91

General

Structure

of

the

Device

Configuration

Subsystem

The

Device

Configuration

Subsystem

can

be

viewed

from

the

following

different

levels:

v

High-level

perspective

v

Device

method

level

v

Low-level

perspective

Data

that

is

used

by

the

three

levels

is

maintained

in

the

Configuration

database.

The

database

is

managed

as

object

classes

by

the

Object

Data

Manager

(ODM).

All

information

relevant

to

support

the

device

configuration

process

is

stored

in

the

configuration

database.

The

system

cannot

use

any

device

unless

it

is

configured.

The

database

has

two

components:

the

Predefined

database

and

the

Customized

database.

The

Predefined

database

contains

configuration

data

for

all

devices

that

could

possibly

be

supported

by

the

system.

The

Customized

database

contains

configuration

data

for

the

devices

actually

defined

or

configured

in

that

particular

system.

The

Configuration

manager

(cfgmgr

command)

performs

the

configuration

of

a

system’s

devices

automatically

when

the

system

is

booted.

This

high-level

program

can

also

be

invoked

through

the

system

keyboard

to

perform

automatic

device

configuration.

The

configuration

manager

command

configures

devices

as

specified

by

Configuration

rules.

High-Level

Perspective

From

a

high-level,

user-oriented

perspective,

device

configuration

comprises

the

following

basic

tasks:

v

Adding

a

device

to

the

system

v

Deleting

a

device

from

the

system

v

Changing

the

attributes

of

a

device

v

Showing

information

about

a

device

From

a

high-level,

system-oriented

perspective,

device

configuration

provides

the

basic

task

of

automatic

device

configuration:

running

the

configuration

manager

program.

A

set

of

high-level

commands

accomplish

all

of

these

tasks

during

run

time:

chdev,

mkdev,

lsattr,

lsconn,

lsdev,

lsparent,

rmdev,

and

cfgmgr.

High-level

commands

can

invoke

device

methods

and

low-level

commands.

Device

Method

Level

Beneath

the

high-level

commands

(including

the

cfgmgr

Configuration

Manager

program)

is

a

set

of

functions

called

device

methods.

These

methods

perform

well-defined

configuration

steps,

including

these

five

functions:

v

Defining

a

device

in

the

configuration

database

v

Configuring

a

device

to

make

it

available

v

Changing

a

device

to

make

a

change

in

its

characteristics

v

Unconfiguring

a

device

to

make

it

unavailable

v

Undefining

a

device

from

the

configuration

database

“Understanding

Device

States”

on

page

97

discusses

possible

device

states

and

how

the

various

methods

affect

device

state

changes.

92

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

high-level

device

commands

(including

cfgmgr)

can

use

the

device

methods.

These

methods

insulate

high-level

configuration

programs

from

kernel-specific,

hardware-specific,

and

device-specific

configuration

steps.

Device

methods

can

invoke

low-level

commands.

Low-Level

Perspective

Beneath

the

device

methods

is

a

set

of

low-level

library

routines

that

can

be

directly

called

by

device

methods

as

well

as

by

high-level

configuration

programs.

Device

Configuration

Database

Overview

The

Configuration

database

is

an

object-oriented

database.

The

Object

Data

Manager

(ODM)

provides

facilities

for

accessing

and

manipulating

it

through

object

classes.

The

following

databases

are

used

in

the

configuration

process:

Predefined

database

Contains

information

about

all

possible

types

of

devices

that

can

be

defined

for

the

system.

Customized

database

Describes

all

devices

currently

defined

for

use

in

the

system.

Items

are

referred

to

as

device

instances.

ODM

Device

Configuration

Object

Classes

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2

provides

access

to

the

object

classes

that

make

up

the

Predefined

and

Customized

databases.

Devices

must

be

defined

in

the

database

for

the

system

to

make

use

of

them.

For

a

device

to

be

in

the

Defined

state,

the

Configuration

database

must

contain

a

complete

description

of

it.

This

information

includes

items

such

as

the

device

driver

name,

the

device

major

and

minor

numbers,

the

device

method

names,

the

device

attributes,

connection

information,

and

location

information.

Basic

Device

Configuration

Procedures

Overview

At

system

boot

time,

cfgmgr)

is

automatically

invoked

to

configure

all

devices

detected

as

well

as

any

device

whose

device

information

is

stored

in

the

Configuration

database.

At

run

time,

you

can

configure

a

specific

device

by

directly

invoking

(or

indirectly

invoking

through

a

usability

interface

layer)

high-level

device

commands.

High-level

device

commands

invoke

methods

and

allow

the

user

to

add,

delete,

show,

and

change

devices

and

their

associated

attributes.

When

a

specific

device

is

defined

through

its

define

method,

the

information

from

the

Predefined

database

for

that

type

of

device

is

used

to

create

the

information

describing

the

specific

device

instance.

This

specific

device

instance

information

is

then

stored

in

the

Customized

database.

For

more

information

on

define

methods,

see

Writing

a

Define

Method

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

The

process

of

configuring

a

device

is

often

highly

device-specific.

The

configure

method

for

a

kernel

device

must:

v

Load

the

device’s

driver

into

the

kernel.

v

Pass

the

device

dependent

structure

(DDS)

describing

the

device

instance

to

the

driver.

For

more

information

on

DDS,

see

“Device

Dependent

Structure

(DDS)

Overview”

on

page

101.

v

Create

a

special

file

for

the

device

in

the

/dev

directory.

For

more

information,

see

Special

Files

in

AIX

5L

Version

5.2

Files

Reference.

Chapter

6.

Device

Configuration

Subsystem

93

For

more

information

on

configure

methods,

see

Writing

a

Configure

Method

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

Of

course,

many

devices

do

not

have

device

drivers.

For

this

type

of

device

the

configured

state

is

not

as

meaningful.

However,

it

still

has

a

Configure

method

that

simply

marks

the

device

as

configured

or

performs

more

complex

operations

to

determine

if

there

are

any

devices

attached

to

it.

The

configuration

process

requires

that

a

device

be

defined

or

configured

before

a

device

attached

to

it

can

be

defined

or

configured.

At

system

boot

time,

the

Configuration

Manager

first

configures

the

system

device.

The

remaining

devices

are

configured

by

traversing

down

the

parent-child

connections

layer

by

layer.

The

Configuration

Manager

then

configures

any

pseudo-devices

that

need

to

be

configured.

Device

Configuration

Manager

Overview

The

Configuration

Manager

is

a

rule-driven

program

that

automatically

configures

devices

in

the

system

during

system

boot

and

run

time.

When

the

Configuration

Manager

is

invoked,

it

reads

rules

from

the

Configuration

Rules

object

class

and

performs

the

indicated

actions.

For

more

information

on

Configuration

Rules,

see

Configuration

Rules

(Config_Rules)

Object

Class

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

Devices

in

the

system

are

organized

in

clusters

of

tree

structures

known

as

nodes.

Each

tree

is

a

logical

subsystem

by

itself.

For

example,

the

system

node

consists

of

all

the

physical

devices

in

the

system.

The

top

of

the

node

is

the

system

device.

Below

the

bus

and

connected

to

it

are

the

adapters.

The

bottom

of

the

hierarchy

contains

devices

to

which

no

other

devices

are

connected.

Most

pseudo-devices,

including

low

-function

terminal

(LFT)

and

pseudo-terminal

(pty)

devices,

are

organized

as

separate

tree

structures

or

nodes.

Devices

Graph

See

“Understanding

Device

Dependencies

and

Child

Devices”

on

page

99

for

more

information.

Configuration

Rules

Each

rule

in

the

Configuration

Rules

(Config_Rules)

object

class

specifies

a

program

name

that

the

Configuration

Manager

must

execute.

These

programs

are

typically

the

configuration

programs

for

the

devices

at

the

top

of

the

nodes.

When

these

programs

are

invoked,

the

names

of

the

next

lower-level

devices

that

need

to

be

configured

are

returned.

The

Configuration

Manager

configures

the

next

lower-level

devices

by

invoking

the

configuration

methods

for

those

devices.

In

turn,

those

configuration

methods

return

a

list

of

to-be-configured

device

names.

The

process

is

repeated

until

no

more

device

names

are

returned.

As

a

result,

all

devices

in

the

same

node

are

configured

in

transverse

order.

The

following

are

different

types

of

rules:

v

Phase

1

v

Phase

2

v

Service

The

system

boot

process

is

divided

into

two

phases.

In

each

phase,

the

Configuration

Manager

is

invoked.

During

phase

1,

the

Configuration

Manager

is

called

with

a

-f

flag,

which

specifies

that

phase

=

1

rules

are

to

be

executed.

This

results

in

the

configuration

of

base

devices

into

the

system,

so

that

the

root

file

system

can

be

used.

During

phase

2,

the

Configuration

Manager

is

called

with

a

-s

flag,

which

specifies

that

phase

=

2

rules

are

to

be

executed.

This

results

in

the

configuration

of

the

rest

of

the

devices

into

the

system.

For

more

information

on

the

booting

process,

see

Understanding

System

Boot

Processing

in

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices.

94

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

Configuration

Manager

invokes

the

programs

in

the

order

specified

by

the

sequence

value

in

the

rule.

In

general,

the

lower

the

sequence

number

within

a

given

phase,

the

higher

the

priority.

Thus,

a

rule

with

a

2

sequence

number

is

executed

before

a

rule

with

a

sequence

number

of

5.

An

exception

is

made

for

0

sequence

numbers,

which

indicate

a

don’t-care

condition.

Any

rule

with

a

sequence

number

of

0

is

executed

last.

The

Configuration

Rules

(Config_Rules)

object

class

provides

an

example

of

this

process.

If

device

names

are

returned

from

the

program

invoked,

the

Configuration

Manager

finishes

traversing

the

node

tree

before

it

invokes

the

next

program.

Note

that

some

program

names

might

not

be

associated

with

any

devices,

but

they

must

be

included

to

configure

the

system.

Invoking

the

Configuration

Manager

During

system

boot

time,

the

Configuration

Manager

is

run

in

two

phases.

In

phase

1,

it

configures

the

base

devices

needed

to

successfully

start

the

system.

These

devices

include

the

root

volume

group,

which

permits

the

configuration

database

to

be

read

in

from

the

root

file

system.

In

phase

2,

the

Configuration

Manager

configures

the

remaining

devices

using

the

configuration

database

from

the

root

file

system.

During

this

phase,

different

rules

are

used,

depending

on

whether

the

system

was

booted

in

normal

mode

or

in

service

mode.

If

the

system

is

booted

in

service

mode,

the

rules

for

service

mode

are

used.

Otherwise,

the

phase

2

rules

are

used.

The

Configuration

Manager

can

also

be

invoked

during

run

time

to

configure

all

the

detectable

devices

that

might

have

been

turned

off

at

system

boot

or

added

after

the

system

boot.

In

this

case,

the

Configuration

Manager

uses

the

phase

2

rules.

Device

Classes,

Subclasses,

and

Types

Overview

To

manage

the

wide

variety

of

devices

it

supports

more

easily,

the

operating

system

classifies

them

hierarchically.

One

advantage

of

this

arrangement

is

that

device

methods

and

high-level

commands

can

operate

against

a

whole

set

of

similar

devices.

Devices

are

categorized

into

the

following

main

groups:

v

Functional

classes

v

Functional

subclasses

v

Device

types

Devices

are

organized

into

a

set

of

functional

classes

at

the

highest

level.

From

a

user’s

point

of

view,

all

devices

belonging

to

the

same

class

perform

the

same

functions.

For

example,

all

printer

devices

basically

perform

the

same

function

of

generating

printed

output.

However,

devices

within

a

class

can

have

different

interfaces.

A

class

can

therefore

be

partitioned

into

a

set

of

functional

subclasses

in

which

devices

belonging

to

the

same

subclass

have

similar

interfaces.

For

example,

serial

printers

and

parallel

printers

form

two

subclasses

of

printer

devices.

Finally,

a

device

subclass

is

a

collection

of

device

types.

All

devices

belonging

to

the

same

device

type

share

the

same

manufacturer’s

model

name

and

number.

For

example,

3812-2

(model

2

Pageprinter)

and

4201

(Proprinter

II)

printers

represent

two

types

of

printers.

Devices

of

the

same

device

type

can

be

managed

by

different

drivers

if

the

type

belongs

to

more

than

one

subclass.

For

example,

the

4201

printer

belongs

to

both

the

serial

interface

and

parallel

interface

subclasses

of

the

printer

class,

although

there

are

different

drivers

for

the

two

interfaces.

However,

a

device

of

a

particular

class,

subclass,

and

type

can

be

managed

by

only

one

device

driver.

Devices

in

the

system

are

organized

in

clusters

of

tree

structures

known

as

nodes.

For

example,

the

system

node

consists

of

all

the

physical

devices

in

the

system.

At

the

top

of

the

node

is

the

system

Chapter

6.

Device

Configuration

Subsystem

95

device.

Below

the

bus

and

connected

to

it

are

the

adapters.

The

bottom

of

the

hierarchy

contains

the

devices

to

which

no

other

devices

are

connected.

Most

pseudo-devices,

including

LFT

and

PTY,

are

organized

as

separate

nodes.

Writing

a

Device

Method

Device

methods

are

programs

associated

with

a

device

that

perform

basic

device

configuration

operations.

These

operations

consist

of

defining,

undefining,

configuring,

unconfiguring,

and

reconfiguring

a

device.

Some

devices

also

use

optional

start

and

stop

operations.

The

following

are

the

basic

device

methods:

Define

Creates

a

device

instance

in

the

Customized

database.

Configure

Configures

a

device

instance

already

represented

in

the

Customized

database.

This

method

is

responsible

for

making

a

device

available

for

use

in

the

system.

Change

Reconfigures

a

device

by

allowing

device

characteristics

or

attributes

to

be

changed.

Unconfigure

Makes

a

configured

device

unavailable

for

use

in

the

system.

The

device

instance

remains

in

the

Customized

database

but

must

be

reconfigured

before

it

can

be

used.

Undefine

Deletes

a

device

instance

from

the

Customized

database.

Invoking

Methods

One

device

method

can

invoke

another

device

method.

For

instance,

a

Configure

method

for

a

device

may

need

to

invoke

the

Define

method

for

child

devices.

The

Change

method

can

invoke

the

Unconfigure

and

Configure

methods.

To

ensure

proper

operation,

a

method

that

invokes

another

method

must

always

use

the

odm_run_method

subroutine.

Example

Methods

See

the

/usr/samples

directory

for

example

device

method

source

code.

These

source

code

excerpts

are

provided

for

example

purposes

only.

The

examples

do

not

function

as

written.

Understanding

Device

Methods

Interfaces

Device

methods

are

not

executed

directly

from

the

command

line.

They

are

only

invoked

by

the

Configuration

Manager

at

boot

time

or

by

the

cfgmgr,

mkdev,

chdev,

and

rmdev

configuration

commands

at

run

time.

As

a

result,

any

device

method

you

write

should

meet

well-defined

interfaces.

The

parameters

that

are

passed

into

the

methods

as

well

as

the

exit

codes

returned

must

both

satisfy

the

requirements

for

each

type

of

method.

Additionally,

some

methods

must

write

information

to

the

stdout

and

stderr

files.

These

interfaces

are

defined

for

each

of

the

device

methods

in

the

individual

articles

on

writing

each

method.

To

better

understand

how

these

interfaces

work,

one

needs

to

understand,

at

least

superficially,

the

flow

of

operations

through

the

Configuration

Manager

and

the

run-time

configuration

commands.

Configuration

Manager

The

Configuration

Manager

begins

by

invoking

a

Node

Configuration

program

listed

in

one

of

the

rules

in

the

Configuration

Rules

(Config_Rules)

object

class.

A

node

is

a

group

of

devices

organized

into

a

tree

structure

representing

the

various

interconnections

of

the

devices.

The

Node

Configuration

program

is

responsible

for

starting

the

configuration

process

for

a

node.

It

does

this

by

querying

the

Customized

database

to

see

if

the

device

at

the

top

of

the

node

is

represented

in

the

database.

If

so,

the

program

writes

the

logical

name

of

the

device

to

the

stdout

file

and

then

returns

to

the

Configuration

Manager.

96

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

Configuration

Manager

intercepts

the

Node

Configuration

program’s

stdout

file

to

obtain

the

name

of

the

device

that

was

written.

It

then

invokes

the

Configure

method

for

that

device.

The

device’s

Configure

method

performs

the

steps

necessary

to

make

the

device

available.

If

the

device

is

not

an

intermediate

one,

the

Configure

method

simply

returns

to

the

Configuration

Manager.

However,

if

the

device

is

an

intermediate

device

that

has

child

devices,

the

Configure

method

must

determine

whether

any

of

the

child

devices

need

to

be

configured.

If

so,

the

Configure

method

writes

the

names

of

all

the

child

devices

to

be

configured

to

the

stdout

file

and

then

returns

to

the

Configuration

Manager.

The

Configuration

Manager

intercepts

the

Configure

method’s

stdout

file

to

retrieve

the

names

of

the

children.

It

then

invokes,

one

at

a

time,

the

Configure

methods

for

each

child

device.

Each

of

these

Configure

methods

operates

as

described

for

the

parent

device.

For

example,

it

might

simply

exit

when

complete,

or

write

to

its

stdout

file

a

list

of

additional

device

names

to

be

configured

and

then

exit.

The

Configuration

Manager

will

continue

to

intercept

the

device

names

written

to

the

stdout

file

and

to

invoke

the

Configure

methods

for

those

devices

until

the

Configure

methods

for

all

the

devices

have

been

run

and

no

more

names

are

written

to

the

stdout

file.

Run-Time

Configuration

Commands

User

configuration

commands

invoke

device

methods

during

run

time.

mkdev

The

mkdev

command

is

invoked

to

define

or

configure,

or

define

and

configure,

devices

at

run

time.

If

just

defining

a

device,

the

mkdev

command

invokes

the

Define

method

for

the

device.

The

Define

method

creates

the

customized

device

instance

in

the

Customized

Devices

(CuDv)

object

class

and

writes

the

name

assigned

to

the

device

to

the

stdout

file.

The

mkdev

command

intercepts

the

device

name

written

to

the

stdout

file

by

the

Define

method

to

learn

the

name

of

the

device.

If

user-specified

attributes

are

supplied

with

the

-a

flag,

the

mkdev

command

then

invokes

the

Change

method

for

the

device.

If

defining

and

configuring

a

device,

the

mkdev

command

invokes

the

Define

method,

gets

the

name

written

to

the

stdout

file

with

the

Define

method,

invokes

the

Change

method

for

the

device

if

user-specified

attributes

were

supplied,

and

finally

invokes

the

device’s

Configure

method.

If

only

configuring

a

device,

the

device

must

already

exist

in

the

CuDv

object

class

and

its

name

must

be

specified

to

the

mkdev

command.

In

this

case,

the

mkdev

command

simply

invokes

the

Configure

method

for

the

device.

chdev

The

chdev

command

is

used

to

change

the

characteristics,

or

attributes,

of

a

device.

The

device

must

already

exist

in

the

CuDv

object

class,

and

the

name

of

the

device

must

be

supplied

to

the

chdev

command.

The

chdev

command

simply

invokes

the

Change

method

for

the

device.

rmdev

The

rmdev

command

can

be

used

to

undefine

or

unconfigure,

or

unconfigure

and

undefine,

a

device.

In

all

cases,

the

device

must

already

exist

in

the

CuDv

object

class

and

the

name

of

the

device

must

be

supplied

to

the

rmdev

command.

The

rmdev

command

then

invokes

the

Undefine

method,

the

Unconfigure

method,

or

the

Unconfigure

method

followed

by

the

Undefine

method,

depending

on

the

function

requested

by

the

user.

cfgmgr

The

cfgmgr

command

can

be

used

to

configure

all

detectable

devices

that

did

not

get

configured

at

boot

time.

This

might

occur

if

the

devices

had

been

powered

off

at

boot

time.

The

cfgmgr

command

is

the

Configuration

Manager

and

operates

in

the

same

way

at

run

time

as

it

does

at

boot

time.

The

boot

time

operation

is

described

in

Device

Configuration

Manager

Overview

.

Understanding

Device

States

Device

methods

are

responsible

for

changing

the

state

of

a

device

in

the

system.

A

device

can

be

in

one

of

four

states

as

represented

by

the

Device

Status

Flag

descriptor

in

the

device’s

object

in

the

Customized

Devices

(CuDv)

object

class.

Defined

Represented

in

the

Customized

database,

but

neither

configured

nor

available

for

use

in

the

system.

Available

Configured

and

available

for

use.

Undefined

Not

represented

in

the

Customized

database.

Chapter

6.

Device

Configuration

Subsystem

97

Stopped

Configured,

but

not

available

for

use

by

applications.

(Optional

state)

Note:

Start

and

stop

methods

are

only

supported

on

the

inet0

device.

The

Define

method

is

responsible

for

creating

a

device

instance

in

the

Customized

database

and

setting

the

state

to

Defined.

The

Configure

method

performs

all

operations

necessary

to

make

the

device

usable

and

then

sets

the

state

to

Available.

The

Change

method

usually

does

not

change

the

state

of

the

device.

If

the

device

is

in

the

Defined

state,

the

Change

method

applies

all

changes

to

the

database

and

leaves

the

device

defined.

If

the

device

is

in

the

Available

state,

the

Change

method

attempts

to

apply

the

changes

to

both

the

database

and

the

actual

device,

while

leaving

the

device

available.

However,

if

an

error

occurs

when

applying

the

changes

to

the

actual

device,

the

Change

method

might

need

to

unconfigure

the

device,

thus

changing

the

state

to

Defined.

Any

Unconfigure

method

you

write

must

perform

the

operations

necessary

to

make

a

device

unusable.

Basically,

this

method

undoes

the

operations

performed

by

the

Configure

method

and

sets

the

device

state

to

Defined.

Finally,

the

Undefine

method

actually

deletes

all

information

for

a

device

instance

from

the

Customized

database,

thus

reverting

the

instance

to

the

Undefined

state.

The

Stopped

state

is

an

optional

state

that

some

devices

require.

A

device

that

supports

this

state

needs

Start

and

Stop

methods.

The

Stop

method

changes

the

state

from

Available

to

Stopped.

The

Start

method

changes

it

from

Stopped

back

to

Available.

Note:

Start

and

stop

methods

are

only

supported

on

the

inet0

device.

Adding

an

Unsupported

Device

to

the

System

The

operating

system

provides

support

for

a

wide

variety

of

devices.

However,

some

devices

are

not

currently

supported.

You

can

add

a

currently

unsupported

device

only

if

you

also

add

the

necessary

software

to

support

it.

To

add

a

currently

unsupported

device

to

your

system,

you

might

need

to:

v

Modify

the

Predefined

database

v

Add

appropriate

device

methods

v

Add

a

device

driver

v

Use

installp

procedures

Modifying

the

Predefined

Database

To

add

a

currently

unsupported

device

to

your

system,

you

must

modify

the

Predefined

database.

To

do

this,

you

must

add

information

about

your

device

to

three

predefined

object

classes:

v

Predefined

Devices

(PdDv)

object

class

v

Predefined

Attribute

(PdAt)

object

class

v

Predefined

Connection

(PdCn)

object

class

To

describe

the

device,

you

must

add

one

object

to

the

PdDv

object

class

to

indicate

the

class,

subclass,

and

device

type.

You

must

also

add

one

object

to

the

PdAt

object

class

for

each

device

attribute,

such

as

interrupt

level

or

block

size.

Finally,

you

must

add

objects

to

the

PdCn

object

class

if

the

device

is

an

intermediate

device.

If

the

device

is

an

intermediate

device,

you

must

add

an

object

for

each

different

connection

location

on

the

intermediate

device.

You

can

use

the

odmadd

Object

Data

Manager

(ODM)

command

from

the

command

line

or

in

a

shell

script

to

populate

the

necessary

Predefined

object

classes

from

stanza

files.

98

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

Predefined

database

is

populated

with

devices

that

are

present

at

the

time

of

installation.

For

some

supported

devices,

such

as

serial

and

parallel

printers

and

SCSI

disks,

the

database

also

contains

generic

device

objects.

These

generic

device

objects

can

be

used

to

configure

other

similar

devices

that

are

not

explicitly

supported

in

the

Predefined

database.

If

new

devices

are

added

after

installation,

additional

device

support

might

need

to

be

installed.

For

example,

if

you

have

a

serial

printer

that

closely

resembles

a

printer

supported

by

the

system,

and

the

system’s

device

driver

for

serial

printers

works

on

your

printer,

you

can

add

the

device

driver

as

a

printer

of

type

osp

(other

serial

printer).

If

these

generic

devices

successfully

add

your

device,

you

do

not

need

to

provide

additional

system

software.

Adding

Device

Methods

You

must

add

device

methods

when

adding

system

support

for

a

new

device.

Primary

methods

needed

to

support

a

device

are:

v

Define

v

Configure

v

Change

v

Undefine

v

Unconfigure

When

adding

a

device

that

closely

resembles

devices

already

supported,

you

might

be

able

to

use

one

of

the

methods

of

the

already

supported

device.

For

example,

if

you

are

adding

a

new

type

of

SCSI

disk

whose

interfaces

are

identical

to

supported

SCSI

disks,

the

existing

methods

for

SCSI

disks

may

work.

If

so,

all

you

need

to

do

is

populate

the

Predefined

database

with

information

describing

the

new

SCSI

disk,

which

will

be

similar

to

information

describing

a

supported

SCSI

disk.

If

you

need

instructions

on

how

to

write

a

device

method,

see

Writing

a

Device

Method

.

Adding

a

Device

Driver

If

you

add

a

new

device,

you

will

probably

need

to

add

a

device

driver.

However,

if

you

are

adding

a

new

device

that

closely

resembles

an

already

supported

device,

you

might

be

able

to

use

the

existing

device

driver.

For

example,

when

you

are

adding

a

new

type

of

SCSI

disk

whose

interfaces

are

identical

to

supported

SCSI

disks,

the

existing

SCSI

disk

device

driver

might

work.

Using

installp

Procedures

The

installp

procedures

provide

a

method

for

adding

the

software

and

Predefined

information

needed

to

support

your

new

device.

You

might

need

to

write

shell

scripts

to

perform

tasks

such

as

populating

the

Predefined

database.

Understanding

Device

Dependencies

and

Child

Devices

The

dependencies

that

one

device

has

on

another

can

be

represented

in

the

configuration

database

in

two

ways.

One

way

usually

represents

physical

connections

such

as

a

keyboard

device

connected

to

a

particular

keyboard

adapter.

The

keyboard

device

has

a

dependency

on

the

keyboard

adapter

in

that

it

cannot

be

configured

until

after

the

adapter

is

configured.

This

relationship

is

usually

referred

to

as

a

parent-child

relationship,

with

the

adapter

as

parent

and

the

keyboard

device

as

child.

These

relationships

are

represented

with

the

Parent

Device

Logical

Name

and

Location

Where

Device

Is

Connected

descriptors

in

the

Customized

Devices

(CuDv)

object

class.

The

second

method

represents

a

logical

connection.

A

device

method

can

add

an

object

identifying

both

a

dependent

device

and

the

device

upon

which

it

depends

to

the

Customized

Dependency

(CuDep)

object

class.

The

dependent

device

is

considered

to

have

a

dependency,

and

the

depended-upon

device

is

Chapter

6.

Device

Configuration

Subsystem

99

considered

to

be

a

dependency.

CuDep

objects

are

usually

added

to

the

database

to

represent

a

situation

in

which

one

device

requires

access

to

another

device.

For

example,

the

lft0

device

depends

upon

a

particular

keyboard

or

display

device.

These

two

types

of

dependencies

differ

significantly.

The

configuration

process

uses

parent-child

dependencies

at

boot

time

to

configure

all

devices

that

make

up

a

node.

The

CuDep

dependency

is

usually

only

used

by

a

device’s

Configure

method

to

record

the

names

of

the

devices

on

which

it

depends.

For

device

methods,

the

parent-child

relationship

is

the

more

important.

Parent-child

relationships

affect

device-method

activities

in

these

ways:

v

A

parent

device

cannot

be

unconfigured

if

it

has

a

configured

child.

v

A

parent

device

cannot

be

undefined

if

it

has

a

defined

or

configured

child.

v

A

child

device

cannot

be

defined

if

the

parent

is

not

defined

or

configured.

v

A

child

device

cannot

be

configured

if

the

parent

is

not

configured.

v

A

parent

device’s

configuration

cannot

be

changed

if

it

has

a

configured

child.

This

guarantees

that

the

information

about

the

parent

that

the

child’s

device

driver

might

be

using

remains

valid.

However,

when

a

device

is

listed

as

a

dependency

of

another

device

in

the

CuDep

object

class,

the

only

effect

is

to

prevent

the

depended-upon

device

from

being

undefined.

The

name

of

the

dependency

is

important

to

the

dependent

device.

If

the

depended-upon

device

were

allowed

to

be

undefined,

a

third

device

could

be

defined

and

assigned

the

same

name.

Writers

of

Unconfigure

and

Change

methods

for

a

depended-upon

device

should

not

worry

about

whether

the

device

is

listed

as

a

dependency.

If

the

depended-upon

device

is

actually

open

by

the

other

device,

the

Unconfigure

and

Change

operations

will

fail

because

their

device

is

busy.

But

if

the

depended-upon

device

is

not

currently

open,

the

Unconfigure

or

Change

operations

can

be

performed

without

affecting

the

dependent

device.

The

possible

parent-child

connections

are

defined

in

the

Predefined

Connection

(PdCn)

object

class.

Each

predefined

device

type

that

can

be

a

parent

device

is

represented

in

this

object

class.

There

is

an

object

for

each

connection

location

(such

as

slots

or

ports)

describing

the

subclass

of

devices

that

can

be

connected

at

that

location.

The

subclass

is

used

to

identify

each

device

because

it

indicates

the

devices’

connection

type

(for

example,

SCSI

or

rs232).

There

is

no

corresponding

predefined

object

class

describing

the

possible

CuDep

dependencies.

A

device

method

can

be

written

so

that

it

already

knows

what

the

dependencies

are.

If

predefined

data

is

required,

it

can

be

added

as

predefined

attributes

for

the

dependent

device

in

the

Predefined

Attribute

(PdAt)

object

class.

Accessing

Device

Attributes

The

predefined

device

attributes

for

each

type

of

predefined

device

are

stored

in

the

Predefined

Attribute

(PdAt)

object

class.

The

objects

in

the

PdAt

object

class

identify

the

default

values

as

well

as

other

possible

values

for

each

attribute.

The

Customized

Attribute

(CuAt)

object

class

contains

only

attributes

for

customized

device

instances

that

have

been

changed

from

their

default

values.

When

a

customized

device

instance

is

created

by

a

Define

method,

its

attributes

assume

the

default

values.

As

a

result,

no

objects

are

added

to

the

CuAt

object

class

for

the

device.

If

an

attribute

for

the

device

is

changed

from

the

default

value

by

the

Change

method,

an

object

to

describe

the

attribute’s

current

value

is

added

to

the

CuAt

object

class

for

the

attribute.

If

the

attribute

is

subsequently

changed

back

to

the

default

value,

the

Change

method

deletes

the

CuAt

object

for

the

attribute.

Any

device

methods

that

need

the

current

attribute

values

for

a

device

must

access

both

the

PdAt

and

CuAt

object

classes.

If

an

attribute

appears

in

the

CuAt

object

class,

then

the

associated

object

identifies

the

current

value.

Otherwise,

the

default

value

from

the

PdAt

attribute

object

identifies

the

current

value.

100

Kernel

Extensions

and

Device

Support

Programming

Concepts

Modifying

an

Attribute

Value

When

modifying

an

attribute

value,

methods

you

write

must

obtain

the

objects

for

that

attribute

from

both

the

PdAt

and

CuAt

object

classes.

Any

method

you

write

must

be

able

to

handle

the

following

four

scenarios:

v

If

the

new

value

differs

from

the

default

value

and

no

object

currently

exists

in

the

CuAt

object

class,

any

method

you

write

must

add

an

object

into

the

CuAt

object

class

to

identify

the

new

value.

v

If

the

new

value

differs

from

the

default

value

and

an

object

already

exists

in

the

CuAt

object

class,

any

method

you

write

must

update

the

CuAt

object

with

the

new

value.

v

If

the

new

value

is

the

same

as

the

default

value

and

an

object

exists

in

the

CuAt

object

class,

any

method

you

write

must

delete

the

CuAt

object

for

the

attribute.

v

If

the

new

value

is

the

same

as

the

default

value

and

no

object

exists

in

the

CuAt

object

class,

any

method

you

write

does

not

need

to

do

anything.

Your

methods

can

use

the

getattr

and

putattr

subroutines

to

get

and

modify

attributes.

The

getattr

subroutine

checks

both

the

PdAt

and

CuAt

object

classes

before

returning

an

attribute

to

you.

It

always

returns

the

information

in

the

form

of

a

CuAt

object

even

if

returning

the

default

value

from

the

PdAt

object

class.

Use

the

putattr

subroutine

to

modify

these

attributes.

Device

Dependent

Structure

(DDS)

Overview

A

device

dependent

structure

(DDS)

contains

information

that

describes

a

device

instance

to

the

device

driver.

It

typically

contains

information

about

device-dependent

attributes

as

well

as

other

information

the

driver

needs

to

communicate

with

the

device.

In

many

cases,

information

about

a

device’s

parent

is

included.

(For

instance,

a

driver

needs

information

about

the

adapter

and

the

bus

the

adapter

is

plugged

into

to

communicate

with

a

device

connected

to

an

adapter.)

A

device’s

DDS

is

built

each

time

the

device

is

configured.

The

Configure

method

can

fill

in

the

DDS

with

fixed

values,

computed

values,

and

information

from

the

Configuration

database.

Most

of

the

information

from

the

Configuration

database

usually

comes

from

the

attributes

for

the

device

in

the

Customized

Attribute

(CuAt)

object

class,

but

can

come

from

any

of

the

object

classes.

Information

from

the

database

for

the

device’s

parent

device

or

parent’s

parent

device

can

also

be

included.

The

DDS

is

passed

to

the

device

driver

with

the

SYS_CFGDD

flag

of

the

sysconfig

subroutine,

which

calls

the

device

driver’s

ddconfig

subroutine

with

the

CFG_INIT

command.

How

the

Change

Method

Updates

the

DDS

The

Change

method

is

invoked

when

changing

the

configuration

of

a

device.

The

Change

method

must

ensure

consistency

between

the

Configuration

database

and

the

view

that

any

device

driver

might

have

of

the

device.

This

is

accomplished

by:

1.

Not

allowing

the

configuration

to

be

changed

if

the

device

has

configured

children;

that

is,

children

in

either

the

Available

or

Stopped

states.

This

ensures

that

a

DDS

built

using

information

in

the

database

about

a

parent

device

remains

valid

because

the

parent

cannot

be

changed.

2.

If

a

device

has

a

device

driver

and

the

device

is

in

either

the

Available

or

Stopped

state,

the

Change

method

must

communicate

to

the

device

driver

any

changes

that

would

affect

the

DDS.

This

can

be

accomplished

with

ioctl

operations,

if

the

device

driver

provides

the

support

to

do

so.

It

can

also

be

accomplished

by

taking

the

following

steps:

a.

Terminating

the

device

instance

by

calling

the

sysconfig

subroutine

with

the

SYS_CFGDD

operation.

This

operation

calls

the

device

driver’s

ddconfig

subroutine

with

the

CFG_TERM

command.

b.

Rebuilding

the

DDS

using

the

changed

information.

Chapter

6.

Device

Configuration

Subsystem

101

c.

Passing

the

new

DDS

to

the

device

driver

by

calling

the

sysconfig

subroutine

SYS_CFGDD

operation.

This

operation

then

calls

the

ddconfig

subroutine

with

the

CFG_INIT

command.

Many

Change

methods

simply

invoke

the

device’s

Unconfigure

method,

apply

changes

to

the

database,

and

then

invoke

the

device’s

Configure

method.

This

process

ensures

the

two

stipulated

conditions

since

the

Unconfigure

method,

and

thus

the

change,

will

fail,

if

the

device

has

Available

or

Stopped

children.

Also,

if

the

device

has

a

device

driver,

its

Unconfigure

method

terminates

the

device

instance.

Its

Configure

method

also

rebuilds

the

DDS

and

passes

it

to

the

driver.

Guidelines

for

DDS

Structure

There

is

no

single

defined

DDS

format.

Writers

of

device

drivers

and

device

methods

must

agree

upon

a

particular

device’s

DDS

format.

When

obtaining

information

about

a

parent

device,

you

might

want

to

group

that

information

together

in

the

DDS.

When

building

a

DDS

for

a

device

connected

to

an

adapter

card,

you

will

typically

need

the

following

adapter

information:

slot

number

Obtained

from

the

connwhere

descriptor

of

the

adapter’s

Customized

Device

(CuDv)

object.

bus

resources

Obtained

from

attributes

for

the

adapter

in

the

Customized

Attribute

(CuAt)

or

Predefined

Attribute

(PdAt)

object

classes.

These

include

attributes

for

bus

interrupt

levels,

interrupt

priorities,

bus

memory

addresses,

bus

I/O

addresses,

and

DMA

arbitration

levels.

The

following

attribute

must

be

obtained

for

the

adapter’s

parent

bus

device:

bus_id

Identifies

the

I/O

bus.

This

field

is

needed

by

the

device

driver

to

access

the

I/O

bus.

Note:

The

getattr

device

configuration

subroutine

should

be

used

whenever

attributes

are

obtained

from

the

Configuration

database.

This

subroutine

returns

the

Customized

attribute

value

if

the

attribute

is

represented

in

the

Customized

Attribute

object

class.

Otherwise,

it

returns

the

default

value

from

the

Predefined

Attribute

object

class.

Finally,

a

DDS

generally

includes

the

device’s

logical

name.

This

is

used

by

the

device

driver

to

identify

the

device

when

logging

an

error

for

the

device.

Example

of

DDS

The

following

example

provides

a

guide

for

using

DDS

format.

/*

Device

DDS

*/

struct

device_dds

{

/*

Bus

information

*/

ulong

bus_id;

/*

I/O

bus

id

*/

ushort

us_type;

/*

Bus

type,

i.e.

BUS_MICRO_CHANNEL*/

/*

Adapter

information

*/

int

slot_num;

/*

Slot

number

*/

ulong

io_addr_base;

/*

Base

bus

i/o

address

*/

int

bus_intr_lvl;

/*

bus

interrupt

level

*/

int

intr_priority;

/*

System

interrupt

priority

*/

int

dma_lvl;

/*

DMA

arbitration

level

*/

/*

Device

specific

information

*/

int

block_size;

/*

Size

of

block

in

bytes

*/

int

abc_attr;

/*

The

abc

attribute

*/

int

xyz_attr;

/*

The

xyz

attribute

*/

char

resource_name[16];

/*

Device

logical

name

*/

};

102

Kernel

Extensions

and

Device

Support

Programming

Concepts

List

of

Device

Configuration

Commands

The

high-level

device

configuration

commands

are:

chdev

Changes

a

device’s

characteristics.

lsdev

Displays

devices

in

the

system

and

their

characteristics.

mkdev

Adds

a

device

to

the

system.

rmdev

Removes

a

device

from

the

system.

lsattr

Displays

attribute

characteristics

and

possible

values

of

attributes

for

devices

in

the

system.

lsconn

Displays

the

connections

a

given

device,

or

kind

of

device,

can

accept.

lsparent

Displays

the

possible

parent

devices

that

accept

a

specified

connection

type

or

device.

cfgmgr

Configures

devices

by

running

the

programs

specified

in

the

Configuration

Rules

(Config_Rules)

object

class.

Associated

commands

are:

bootlist

Alters

the

list

of

boot

devices

seen

by

ROS

when

the

machine

boots.

lscfg

Displays

diagnostic

information

about

a

device.

restbase

Reads

the

base

customized

information

from

the

boot

image

and

restores

it

into

the

Device

Configuration

database

used

during

system

boot

phase

1.

savebase

Saves

information

about

base

customized

devices

in

the

Device

Configuration

Database

onto

the

boot

device.

List

of

Device

Configuration

Subroutines

Following

are

the

preexisting

conditions

for

using

the

device

configuration

library

subroutines:

v

The

caller

has

initialized

the

Object

Data

Manager

(ODM)

before

invoking

any

of

these

library

subroutines.

This

is

done

using

the

initialize_odm

subroutine.

Similarly,

the

caller

must

terminate

the

ODM

(using

the

terminate_odm

subroutine)

after

these

library

subroutines

have

completed.

v

Because

all

of

these

library

subroutines

(except

the

attrval,

getattr,

and

putattr

subroutines)

access

the

Customized

Device

Driver

(CuDvDr)

object

class,

this

class

must

be

exclusively

locked

and

unlocked

at

the

proper

times.

The

application

does

this

by

using

the

odm_lock

and

odm_unlock

subroutines.

In

addition,

those

library

subroutines

that

access

the

CuDvDr

object

class

exclusively

lock

this

class

with

their

own

internal

locks.

Following

are

the

device

configuration

library

subroutines:

attrval

Verifies

that

attributes

are

within

range.

genmajor

Generates

the

next

available

major

number

for

a

device

driver

instance.

genminor

Generates

the

smallest

unused

minor

number,

a

requested

minor

number

for

a

device

if

it

is

available,

or

a

set

of

unused

minor

numbers.

genseq

Generates

a

unique

sequence

number

for

creating

a

device’s

logical

name.

getattr

Returns

attribute

objects

from

either

the

Predefined

Attribute

(PdAt)

or

Customized

Attribute

(CuAt)

object

class,

or

both.

getminor

Gets

from

the

CuDvDr

object

class

the

minor

numbers

for

a

given

major

number.

loadext

Loads

or

unloads

and

binds

or

unbinds

device

drivers

to

or

from

the

kernel.

putattr

Updates

attribute

information

in

the

CuAt

object

class

or

creates

a

new

object

for

the

attribute

information.

reldevno

Releases

the

minor

number

or

major

number,

or

both,

for

a

device

instance.

relmajor

Releases

the

major

number

associated

with

a

specific

device

driver

instance.

Chapter

6.

Device

Configuration

Subsystem

103

Related

Information

Understanding

System

Boot

Processing

in

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices

Special

Files

in

AIX

5L

Version

5.2

Files

Reference

Initial

Printer

Configuration

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing

Machine

Device

Driver,

Loading

a

Device

Driver

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

Writing

a

Define

Method,

Writing

a

Configure

Method,

Writing

a

Change

Method,

Writing

an

Unconfigure

Method,

Writing

an

Undefine

Method,

Writing

Optional

Start

and

Stop

Methods,

How

Device

Methods

Return

Errors,

Device

Methods

for

Adapter

Cards:

Guidelines

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2

Configuration

Rules

(Config_Rules)

Object

Class,

Customized

Dependency

(CuDep)

Object

Class,

Customized

Devices

(CuDv)

Object

Class,

Predefined

Attribute

(PdAt)

Object

Class,

Predefined

Connection

(PdCn)

Object

Class,

Adapter-Specific

Considerations

For

the

Predefined

Devices

(PdDv)

Object

Class,

Adapter-Specific

Considerations

For

the

Predefined

Attributes

(PdAt)

Object

Class,

Predefined

Devices

Object

Class,

ODM

Device

Configuration

Object

Classes

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

Subroutine

References

The

getattr

subroutineioctl

subroutine,

odm_run_method

subroutine,

putattr

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

The

sysconfig

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2.

Commands

References

The

cfgmgr

command,

chdev

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

1.

The

mkdev

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

The

rmdev

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

4.

Technical

References

The

SYS_CFGDD

sysconfig

operation

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

The

ddconfig

device

driver

entry

point

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

104

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

7.

Communications

I/O

Subsystem

The

Communication

I/O

Subsystem

design

introduces

a

more

efficient,

streamlined

approach

to

attaching

data

link

control

(DLC)

processes

to

communication

and

LAN

adapters.

The

Communication

I/O

Subsystem

consists

of

one

or

more

physical

device

handlers

(PDHs)

that

control

various

communication

adapters.

The

interface

to

the

physical

device

handlers

can

support

any

number

of

processes,

the

limit

being

device-dependent.

Note:

A

PDH,

as

used

for

the

Communications

I/O,

provides

both

the

device

head

role

for

interfacing

to

users,

and

the

device

handler

role

for

performing

I/O

to

the

device.

A

communications

PDH

is

a

special

type

of

multiplexed

character

device

driver.

Information

common

to

all

communications

device

handlers

is

discussed

here.

Additionally,

individual

communications

PDHs

have

their

own

adapter-specific

sets

of

information.

Refer

to

the

following

to

learn

more

about

the

adapter

types:

v

Serial

Optical

Link

Device

Handler

Overview

Each

adapter

type

requires

a

device

driver.

Each

PDH

can

support

one

or

more

adapters

of

the

same

type.

There

are

two

interfaces

a

user

can

use

to

access

a

PDH.

One

is

from

a

user-mode

process

(application

space),

and

the

other

is

from

a

kernel-mode

process

(within

the

kernel).

User-Mode

Interface

to

a

Communications

PDH

The

user-mode

process

uses

system

calls

(open,

close,

select,

poll,

ioctl,

read,

write)

to

interface

to

the

PDH

to

send

or

receive

data.

The

poll

or

select

subroutine

notifies

a

user-mode

process

of

available

receive

data,

available

transmit,

and

status

and

exception

conditions.

Kernel-Mode

Interface

to

a

Communications

PDH

The

kernel-mode

interface

to

a

communications

PDH

differs

from

the

interface

supported

for

a

user-mode

process

in

the

following

ways:

v

Kernel

services

are

used

instead

of

system

calls.

This

means

that,

for

example,

the

fp_open

kernel

service

is

used

instead

of

the

open

subroutine.

The

same

holds

true

for

the

fp_close,

fp_ioctl,

and

fp_write

kernel

services.

v

The

ddread

entry

point,

ddselect

entry

point,

and

CIO_GET_STAT

(Get

Status)

ddioctl

operation

are

not

supported

in

kernel

mode.

Instead,

kernel-mode

processes

specify

at

open

time

the

addresses

of

their

own

procedures

for

handling

receive

data

available,

transmit

available

and

status

or

exception

conditions.

The

PDH

directly

calls

the

appropriate

procedure,

whenever

that

condition

arises.

These

kernel

procedures

must

execute

and

return

quickly

since

they

are

executing

within

the

priority

of

the

PDH.

v

The

ddwrite

operation

for

a

kernel-mode

process

differs

from

a

user-mode

process

in

that

there

are

two

ways

to

issue

a

ddwrite

operation

to

transmit

data:

–

Transmit

each

buffer

of

data

with

the

fp_write

kernel

service.

–

Use

the

fast

write

operation,

which

allows

the

user

to

directly

call

the

ddwrite

operation

(no

context

switching)

for

each

buffer

of

data

to

be

transmitted.

This

operation

helps

increase

the

performance

of

transmitted

data.

A

fp_ioctl

(CIO_GET_FASTWRT)

kernel

service

call

obtains

the

functional

address

of

the

write

function.

This

address

is

used

on

all

subsequent

write

function

calls.

Support

of

the

fast

write

operation

is

optional

for

each

device.

©

Copyright

IBM

Corp.

1997,

2004

105

CDLI

Device

Drivers

Some

device

drivers

have

a

different

design

and

use

the

services

known

as

Common

Data

Link

Interface

(CDLI).

The

following

device

drivers

use

CDLI:

v

Forum-Compliant

ATM

LAN

Emulation

Device

Driver

v

Fiber

Distributed

Data

Interface

(FDDI)

Device

Driver

v

High-Performance

(8fc8)

Token-Ring

Device

Driver

v

High-Performance

(8fa2)

Token-Ring

Device

Driver

v

Ethernet

Device

Drivers

Communications

Physical

Device

Handler

Model

Overview

A

physical

device

handler

(PDH)

must

provide

eight

common

entry

points.

An

individual

PDH

names

its

entry

points

by

placing

a

unique

identifier

in

front

of

the

supported

command

type.The

following

are

the

required

eight

communications

PDH

entry

points:

ddconfig

Performs

configuration

functions

for

a

device

handler.

Supported

the

same

way

that

the

common

ddconfig

entry

point

is.

ddmpx

Allocates

or

deallocates

a

channel

for

a

multiplexed

device

handler.

Supported

the

same

way

as

the

common

ddmpx

device

handler

entry

point.

ddopen

Performs

data

structure

allocation

and

initialization

for

a

communications

PDH.

Supported

the

same

way

as

the

common

ddopen

entry

point.

Time-consuming

tasks,

such

as

port

initialization

and

connection

establishment,

are

deferred

until

the

(CIO_START)

ddioctl

call

is

issued.

A

PDH

can

support

multiple

users

of

a

single

port.

ddclose

Frees

up

system

resources

used

by

the

specified

communications

device

until

they

are

needed

again.

Supported

the

same

way

as

the

common

ddclose

entry

point.

ddwrite

Queues

a

message

for

transmission

or

blocks

until

the

message

can

be

queued.

The

ddwrite

entry

point

can

attempt

to

queue

a

transmit

request

(nonblocking)

or

wait

for

it

to

be

queued

(blocking),

depending

on

the

setting

of

the

DNDELAY

flag.

The

caller

has

the

additional

option

of

requesting

an

asynchronous

acknowledgment

when

the

transmission

actually

completes.

ddread

Returns

a

message

of

data

to

a

user-mode

process.

Supports

blocking

or

nonblocking

reads

depending

on

the

setting

of

the

DNDELAY

flag.

A

blocking

read

request

does

not

return

to

the

caller

until

data

is

available.

A

nonblocking

read

returns

with

a

message

of

data

if

it

is

immediately

available.

Otherwise,

it

returns

a

length

of

0

(zero).

ddselect

Checks

to

see

if

a

specified

event

or

events

has

occurred

on

the

device

for

a

user-mode

process.

Supported

the

same

way

as

the

common

ddselect

entry

point.

ddioctl

Performs

the

special

I/O

operations

requested

in

an

ioctl

subroutine.

Supported

the

same

way

as

the

common

ddioctl

entry

point.

In

addition,

a

communications

PDH

must

support

the

following

four

options:

v

CIO_START

v

CIO_HALT

v

CIO_QUERY

v

CIO_GET_STAT

Individual

PDHs

can

add

additional

commands.

Hardware

initialization

and

other

time-consuming

activities,

such

as

call

establishment,

are

performed

during

the

CIO_START

operation.

Use

of

mbuf

Structures

in

the

Communications

PDH

PDHs

use

mbuf

structures

to

buffer

send

and

receive

data.

These

structures

allow

the

PDH

to

gather

data

when

transmitting

frames

and

scatter

for

receive

operations.

The

mbuf

structures

are

internal

to

the

kernel

and

are

used

only

by

kernel-mode

processes

and

PDHs.

PDHs

and

kernel-mode

processes

require

a

set

of

utilities

for

obtaining

and

returning

mbuf

structures

from

a

buffer

pool.

106

Kernel

Extensions

and

Device

Support

Programming

Concepts

Kernel-mode

processes

use

the

Berkeley

mbuf

scheme

for

transmit

and

receive

buffers.

The

structure

for

an

mbuf

is

defined

in

the

/usr/include/sys/mbuf.h

file.

Common

Communications

Status

and

Exception

Codes

In

general,

communication

device

handlers

return

codes

from

a

group

of

common

exception

codes.

However,

device

handlers

for

specific

communication

devices

can

return

device-specific

exception

codes.

Common

exception

codes

are

defined

in

the

/usr/include/sys/comio.h

file

and

include

the

following:

CIO_OK

Indicates

that

the

operation

was

successful.

CIO_BUF_OVFLW

Indicates

that

the

data

was

lost

due

to

buffer

overflow.

CIO_HARD_FAIL

Indicates

that

a

hardware

failure

was

detected.

CIO_NOMBUF

Indicates

that

the

operation

was

unable

to

allocate

mbuf

structures.

CIO_TIMEOUT

Indicates

that

a

time-out

error

occurred.

CIO_TX_FULL

Indicates

that

the

transmit

queue

is

full.

CIO_NET_RCVRY_ENTER

Enters

network

recovery.

CIO_NET_RCVRY_EXIT

Indicates

the

device

handler

is

exiting

network

recovery.

CIO_NET_RCVRY_MODE

Indicates

the

device

handler

is

in

Recovery

mode.

CIO_INV_CMD

Indicates

that

an

invalid

command

was

issued.

CIO_BAD_MICROCODE

Indicates

that

the

microcode

download

failed.

CIO_NOT_DIAG_MODE

Indicates

that

the

command

could

not

be

accepted

because

the

adapter

is

not

open

in

Diagnostic

mode.

CIO_BAD_RANGE

Indicates

that

the

parameter

values

have

failed

a

range

check.

CIO_NOT_STARTED

Indicates

that

the

command

could

not

be

accepted

because

the

device

has

not

yet

been

started

by

the

first

call

to

CIO_START

operation.

CIO_LOST_DATA

Indicates

that

the

receive

packet

was

lost.

CIO_LOST_STATUS

Indicates

that

a

status

block

was

lost.

CIO_NETID_INV

Indicates

that

the

network

ID

was

not

valid.

CIO_NETID_DUP

Indicates

that

the

network

ID

was

a

duplicate

of

an

existing

ID

already

in

use

on

the

network.

CIO_NETID_FULL

Indicates

that

the

network

ID

table

is

full.

Status

Blocks

for

Communications

Device

Handlers

Overview

Status

blocks

are

used

to

communicate

status

and

exception

information.

User-mode

processes

receive

a

status

block

whenever

they

request

a

CIO_GET_STAT

operation.

A

user-mode

process

can

wait

for

the

next

available

status

block

by

issuing

a

ddselect

entry

point

with

the

specified

POLLPRI

event.

A

kernel-mode

process

receives

a

status

block

through

the

stat_fn

procedure.

This

procedure

is

specified

when

the

device

is

opened

with

the

ddopen

entry

point.

Status

blocks

contain

a

code

field

and

possible

options.

The

code

field

indicates

the

type

of

status

block

code

(for

example,

CIO_START_DONE).

A

status

block’s

options

depend

on

the

block

code.

The

C

structure

of

a

status

block

is

defined

in

the

/usr/include/sys/comio.h

file.

The

following

are

the

common

status

codes:

v

CIO_START_DONE

v

CIO_HALT_DONE

v

CIO_TX_DONE

v

CIO_NULL_BLK

v

CIO_LOST_STATUS

v

CIO_ASYNC_STATUS

Chapter

7.

Communications

I/O

Subsystem

107

Additional

device-dependent

status

block

codes

may

be

defined.

CIO_START_DONE

This

block

is

provided

by

the

device

handler

when

the

CIO_START

operation

completes:

option[0]

The

CIO_OK

or

CIO_HARD_FAIL

status/exception

code

from

the

common

or

device-dependent

list.

option[1]

The

low-order

two

bytes

are

filled

in

with

the

netid

field.

This

field

is

passed

when

the

CIO_START

operation

is

invoked.

option[2]

Device-dependent.

option[3]

Device-dependent.

CIO_HALT_DONE

This

block

is

provided

by

the

device

handler

when

the

CIO_HALT

operation

completes:

option[0]

The

CIO_OK

status/exception

code

from

the

common

or

device-dependent

list.

option[1]

The

low-order

two

bytes

are

filled

in

with

the

netid

field.

This

field

is

passed

when

the

CIO_START

operation

is

invoked.

option[2]

Device-dependent.

option[3]

Device-dependent.

CIO_TX_DONE

The

following

block

is

provided

when

the

physical

device

handler

(PDH)

is

finished

with

a

transmit

request

for

which

acknowledgment

was

requested:

option[0]

The

CIO_OK

or

CIO_TIMEOUT

status/exception

code

from

the

common

or

device-dependent

list.

option[1]

The

write_id

field

specified

in

the

write_extension

structure

passed

in

the

ext

parameter

to

the

ddwrite

entry

point.

option[2]

For

a

kernel-mode

process,

indicates

the

mbuf

pointer

for

the

transmitted

frame.

option[3]

Device-dependent.

CIO_NULL_BLK

This

block

is

returned

whenever

a

status

block

is

requested

but

there

are

none

available:

option[0]

Not

used

option[1]

Not

used

option[2]

Not

used

option[3]

Not

used

CIO_LOST_STATUS

This

block

is

returned

once

after

one

or

more

status

blocks

is

lost

due

to

status

queue

overflow.

The

CIO_LOST_STATUS

block

provides

the

following:

option[0]

Not

used

option[1]

Not

used

option[2]

Not

used

option[3]

Not

used

108

Kernel

Extensions

and

Device

Support

Programming

Concepts

CIO_ASYNC_STATUS

This

status

block

is

used

to

return

status

and

exception

codes

that

occur

unexpectedly:

option[0]

The

CIO_HARD_FAIL

or

CIO_LOST_DATA

status/exception

code

from

the

common

or

device-dependent

list

option[1]

Device-dependent

option[2]

Device-dependent

option[3]

Device-dependent

MPQP

Device

Handler

Interface

Overview

for

the

ARTIC960Hx

PCI

Adapter

The

ARTIC960Hx

PCI

Adapter

(PCI

MPQP)

device

handler

is

a

component

of

the

communication

I/O

subsystem.

The

PCI

MPQP

device

handler

interface

is

made

up

of

the

following

eight

entry

points:

tsclose

Resets

the

PCI

MPQP

device

to

a

known

state

and

returns

system

resources

back

to

the

system

on

the

last

close

for

that

adapter.

The

port

no

longer

transmits

or

receives

data.

tsconfig

Provides

functions

for

initializing

and

terminating

the

PCI

MPQP

device

handler

and

adapter.

tsioctl

Provides

the

following

functions

for

controlling

the

PCI

MPQP

device:

CIO_START

Initiates

a

session

with

the

PCI

MPQP

device

handler.

CIO_HALT

Ends

a

session

with

the

PCI

MPQP

device

handler.

CIO_QUERY

Reads

the

counter

values

accumulated

by

the

PCI

MPQP

device

handler.

CIO_GET_STAT

Gets

the

status

of

the

current

PCI

MPQP

adapter

and

device

handler.

MP_CHG_PARMS

Permits

the

data

link

control

(DLC)

to

change

certain

profile

parameters

after

the

PCI

MPQP

device

has

been

started.

tsopen

Opens

a

channel

on

the

PCI

MPQP

device

for

transmitting

and

receiving

data.

tsmpx

Provides

allocation

and

deallocation

of

a

channel.

tsread

Provides

the

means

for

receiving

data

to

the

PCI

MPQP

device.

tsselect

Provides

the

means

for

determining

which

specified

events

have

occurred

on

the

PCI

MPQP

device.

tswrite

Provides

the

means

for

transmitting

data

to

the

PCI

MPQP

device.

Binary

Synchronous

Communication

(BSC)

with

the

PCI

MPQP

Adapter

The

PCI

MPQP

adapter

software

performs

low-level

BSC

frame-type

determination

to

facilitate

character

parsing

at

the

kernel-mode

process

level.

Frames

received

without

errors

are

parsed.

A

message

type

is

returned

in

the

status

field

of

the

extension

block

along

with

a

pointer

to

the

receive

buffer.

The

message

type

indicates

the

type

of

frame

that

was

received.

For

control

frames

that

only

contain

control

characters,

the

message

type

is

returned

and

no

data

is

transferred

from

the

board.

For

example,

if

an

ACK0

was

received,

the

message

type

MP_ACK0

is

returned

in

the

status

field

of

the

extension

block.

In

addition,

a

NULL

pointer

for

the

receive

buffer

is

returned.

If

an

error

occurs,

the

error

status

is

logged

by

the

device

driver.

Unlogged

buffer

overrun

errors

are

an

exception.

Note:

In

BSC

communications,

the

caller

receives

either

a

message

type

or

an

error

status.

Chapter

7.

Communications

I/O

Subsystem

109

Read

operations

must

be

performed

using

the

readx

subroutine

because

the

read_extension

structure

is

needed

to

return

BSC

function

results.

BSC

Message

Types

Detected

by

the

PCI

MPQP

Adapter

BSC

message

types

are

defined

in

the

/usr/include/sys/mpqp.h

file.

The

PCI

MPQP

adapter

can

detect

the

following

message

types:

MP_ACK0

MP_DISC

MP_STX_ETX

MP_ACK1

MP_SOH_ITB

MP_STX_ENQ

MP_WACK

MP_SOH_ETB

MP_DATA_ACK0

MP_NAK

MP_SOH_ETX

MP_DATA_ACK1

MP_ENQ

MP_SOH_ENQ

MP_DATA_NAK

MP_EOT

MP_STX_ITB

MP_DATA_ENQ

MP_RVI

MP_STX_ETB

Receive

Errors

Logged

by

the

PCI

MPQP

Adapter

The

PCI

MPQP

adapter

detects

many

types

of

receive

errors.

As

errors

occur

they

are

logged

and

the

appropriate

statistical

counter

is

incremented.

The

kernel-mode

process

is

not

notified

of

the

error.

The

following

are

the

possible

BSC

receive

errors

logged

by

the

PCI

MPQP

adapter:

v

Receive

overrun

v

A

cyclical

redundancy

check

(CRC)

or

longitudinal

redundancy

check

(LRC)

framing

error

v

Parity

error

v

Clear

to

Send

(CTS)

timeout

v

Data

synchronization

lost

v

ID

field

greater

than

15

bytes

(BSC)

v

Invalid

pad

at

end

of

frame

(BSC)

v

Unexpected

or

invalid

data

(BSC)

If

status

and

data

information

are

available,

but

no

extension

block

is

provided,

the

read

operation

returns

the

data,

but

not

the

status

information.

Note:

Errors,

such

as

buffer

overflow

errors,

can

occur

during

the

read

data

operation.

In

these

cases,

the

return

value

is

the

byte

count.

Therefore,

status

should

be

checked

even

if

no

errno

global

value

is

returned.

Description

of

the

PCI

MPQP

Card

The

PCI

MPQP

card

is

a

4-port

multiprotocol

adapter

that

supports

BSC

and

SDLC

on

the

EIA232-D,

X.21,

and

V.35

physical

interfaces.

When

using

the

X.21

physical

interface,

X.21

centralized

multipoint

operation

on

a

leased-circuit

public

data

network

is

not

supported.

Serial

Optical

Link

Device

Handler

Overview

The

serial

optical

link

(SOL)

device

handler

is

a

component

of

the

communication

I/O

subsystem.

The

device

handler

can

support

one

to

four

serial

optical

ports.

An

optical

port

consists

of

two

separate

pieces.

The

serial

link

adapter

is

on

the

system

planar

and

is

packaged

with

two

to

four

adapters

in

a

single

chip.

The

serial

optical

channel

converter

plugs

into

a

slot

on

the

system

planar

and

provides

two

separate

optical

ports.

110

Kernel

Extensions

and

Device

Support

Programming

Concepts

Special

Files

There

are

two

separate

interfaces

to

the

serial

optical

link

device

handler.

The

special

file

/dev/ops0

provides

access

to

the

optical

port

subsystem.

An

application

that

opens

this

special

file

has

access

to

all

the

ports,

but

it

does

not

need

to

be

aware

of

the

number

of

ports

available.

Each

write

operation

includes

a

destination

processor

ID.

The

device

handler

sends

the

data

out

the

correct

port

to

reach

that

processor.

In

case

of

a

link

failure,

the

device

handler

uses

any

link

that

is

available.

The

/dev/op0,

/dev/op1,

...,

/dev/opn

special

files

provide

a

diagnostic

interface

to

the

serial

link

adapters

and

the

serial

optical

channel

converters.

Each

special

file

corresponds

to

a

single

optical

port

that

can

only

be

opened

in

Diagnostic

mode.

A

diagnostic

open

allows

the

diagnostic

ioctls

to

be

used,

but

normal

reads

and

writes

are

not

allowed.

A

port

that

is

open

in

this

manner

cannot

be

opened

with

the

/dev/ops0

special

file.

In

addition,

if

the

port

has

already

been

opened

with

the

/dev/ops0

special

file,

attempting

to

open

a

/dev/opx

special

file

will

fail

unless

a

forced

diagnostic

open

is

used.

Entry

Points

The

SOL

device

handler

interface

consists

of

the

following

entry

points:

sol_close

Resets

the

device

to

a

known

state

and

frees

system

resources.

sol_config

Provides

functions

to

initialize

and

terminate

the

device

handler,

and

query

the

vital

product

data

(VPD).

sol_fastwrt

Provides

the

means

for

kernel-mode

users

to

transmit

data

to

the

SOL

device

driver.

sol_ioctl

Provides

various

functions

for

controlling

the

device.

The

valid

sol_ioctl

operations

are:

CIO_GET_FASTWRT

Gets

attributes

needed

for

the

sol_fastwrt

entry

point.

CIO_GET_STAT

Gets

the

device

status.

CIO_HALT

Halts

the

device.

CIO_QUERY

Queries

device

statistics.

CIO_START

Starts

the

device.

IOCINFO

Provides

I/O

character

information.

SOL_CHECK_PRID

Checks

whether

a

processor

ID

is

connected.

SOL_GET_PRIDS

Gets

connected

processor

IDs.

sol_mpx

Provides

allocation

and

deallocation

of

a

channel.

sol_open

Initializes

the

device

handler

and

allocates

the

required

system

resources.

sol_read

Provides

the

means

for

receiving

data.

sol_select

Determines

if

a

specified

event

has

occurred

on

the

device.

sol_write

Provides

the

means

for

transmitting

data.

Configuring

the

Serial

Optical

Link

Device

Driver

When

configuring

the

serial

optical

link

(SOL)

device

driver,

consider

the

physical

and

logical

devices,

and

changeable

attributes

of

the

SOL

subsystem.

Chapter

7.

Communications

I/O

Subsystem

111

Physical

and

Logical

Devices

The

SOL

subsystem

consists

of

several

physical

and

logical

devices

in

the

ODM

configuration

database:

Device

Description

slc

(serial

link

chip)

There

are

two

serial

link

adapters

in

each

COMBO

chip.

The

slc

device

is

automatically

detected

and

configured

by

the

system.

otp

(optic

two-port

card)

Also

known

as

the

serial

optical

channel

converter

(SOCC).

There

is

one

SOCC

possible

for

each

slc.

The

otp

device

is

automatically

detected

and

configured

by

the

system.

op

(optic

port)

There

are

two

optic

ports

per

otp.

The

op

device

is

automatically

detected

and

configured

by

the

system.

ops

(optic

port

subsystem)

This

is

a

logical

device.

There

is

only

one

created

at

any

time.

The

ops

device

requires

some

additional

configuration

initially,

and

is

then

automatically

configured

from

that

point

on.

The

/dev/ops0

special

file

is

created

when

the

ops

device

is

configured.

The

ops

device

cannot

be

configured

when

the

processor

ID

is

set

to

-1.

Changeable

Attributes

of

the

Serial

Optical

Link

Subsystem

The

system

administrator

can

change

the

following

attributes

of

the

serial

optical

link

subsystem:

Note:

If

your

system

uses

serial

optical

link

to

make

a

direct,

point-to-point

connection

to

another

system

or

systems,

special

conditions

apply.

You

must

start

interfaces

on

two

systems

at

approximately

the

same

time,

or

a

method

error

occurs.

If

you

wish

to

connect

to

at

least

one

machine

on

which

the

interface

has

already

been

started,

this

is

not

necessary.

Processor

ID

This

is

the

address

by

which

other

machines

connected

by

means

of

the

optical

link

address

this

machine.

The

processor

ID

can

be

any

value

in

the

range

of

1

to

254.

To

avoid

a

conflict

on

the

network,

this

value

is

initially

set

to

-1,

which

is

not

valid,

and

the

ops

device

cannot

be

configured.

Note:

If

you

are

using

TCP/IP

over

the

serial

optical

link,

the

processor

ID

must

be

the

same

as

the

low-order

octet

of

the

IP

address.

It

is

not

possible

to

successfully

configure

TCP/IP

if

the

processor

ID

does

not

match.

Receive

Queue

Size

This

is

the

maximum

number

of

packets

that

is

queued

for

a

user-mode

caller.

The

default

value

is

30

packets.

Any

integer

in

the

range

from

30

to

150

is

valid.

Status

Queue

Size

This

is

the

maximum

number

of

status

blocks

that

will

be

queued

for

a

user-mode

caller.

The

default

value

is

10.

Any

integer

in

the

range

from

3

to

20

is

valid.

The

standard

SMIT

interface

is

available

for

setting

these

attributes,

listing

the

serial

optical

channel

converters,

handling

the

initial

configuration

of

the

ops

device,

generating

a

trace

report,

generating

an

error

report,

and

configuring

TCP/IP.

Forum-Compliant

ATM

LAN

Emulation

Device

Driver

The

Forum-Compliant

ATM

LAN

Emulation

(LANE)

device

driver

allows

communications

applications

and

access

methods

that

would

normally

operate

over

local

area

network

(LAN)

attachments

to

operate

over

high-speed

ATM

networks.

This

ATM

LANE

function

supports

LAN

Emulation

Client

(LEC)

as

specified

in

The

ATM

Forum

Technical

Committee

LAN

Emulation

Over

ATM

Version

1.0,

as

well

as

MPOA

Client

(MPC)

via

a

subset

of

ATM

Forum

LAN

Emulation

Over

ATM

Version

2

-

LUNI

Specification,

and

ATM

Forum

Multi-Protocol

Over

ATM

Version

1.0.

The

ATM

LANE

device

driver

emulates

the

operation

of

Standard

Ethernet,

IEEE

802.3

Ethernet,

and

IEEE

802.5

Token

Ring

LANs.

It

encapsulates

each

LAN

packet

and

transfers

its

LAN

data

over

an

ATM

network

at

up

to

OC12

speeds

(622

megabits

per

second).

This

data

can

also

be

bridged

transparently

to

a

traditional

LAN

with

ATM/LAN

bridges

such

as

the

IBM

2216.

112

Kernel

Extensions

and

Device

Support

Programming

Concepts

Each

LEC

participates

in

an

emulated

LAN

containing

additional

functions

such

as:

v

A

LAN

Emulation

Configuration

Server

(LECS)

that

provides

automated

configuration

of

the

LEC’s

operational

attributes.

v

A

LAN

Emulation

Server

(LES)

that

provides

address

resolution

v

A

Broadcast

and

Unknown

Server

(BUS)

that

distributes

packets

sent

to

a

broadcast

address

or

packets

sent

without

knowing

the

ATM

address

of

the

remote

station

(for

example,

whenever

an

ARP

response

has

not

been

received

yet).

There

is

always

at

least

one

ATM

switch

and

a

possibility

of

additional

switches,

bridges,

or

concentrators.

ATM

supports

UNI3.0,

UNI3.1,

and

UNI4.0

signalling.

In

support

of

Ethernet

jumbo

frames,

LE

Clients

can

be

configured

with

maximum

frame

size

values

greater

than

1516

bytes.

Supported

forum

values

are:

1516,

4544,

9234,

and

18190.

Incoming

Add

Party

requests

are

supported

for

the

Control

Distribute

and

Multicast

Forward

Virtual

Circuits

(VCs).

This

allows

multiple

LE

clients

to

be

open

concurrently

on

the

same

ELAN

without

additional

hardware.

LANE

and

MPOA

are

both

enabled

for

IPV4

TCP

checksum

offload.

Transmit

offload

is

automatically

enabled

when

it

is

supported

by

the

adapter.

Receive

offload

is

configured

by

using

the

rx_checksum

attribute.

The

NDD_CHECKSUM_OFFLOAD

device

driver

flag

is

set

to

indicate

general

offload

capability

and

also

indicates

that

transmit

offload

is

operational.

Transmit

offload

of

IP-fragmented

TCP

packets

is

not

supported.

Transmit

packets

that

MPOA

needs

to

fragment

are

offloaded

in

the

MPOA

software,

instead

of

in

the

adapter.

UDP

offloading

is

also

not

supported.

The

ATM

LANE

device

driver

is

a

dynamically

loadable

device

driver.

Each

LE

Client

or

MPOA

Client

is

configurable

by

the

operator,

and

the

LANE

driver

is

loaded

into

the

system

as

part

of

that

configuration

process.

If

an

LE

Client

or

MPOA

Client

has

already

been

configured,

the

LANE

driver

is

automatically

reloaded

at

reboot

time

as

part

of

the

system

configuration

process.

The

interface

to

the

ATM

LANE

device

driver

is

through

kernel

services

known

as

Network

Services.

Interfacing

to

the

ATM

LANE

device

driver

is

achieved

by

calling

the

device

driver’s

entry

points

for

opening

the

device,

closing

the

device,

transmitting

data,

and

issuing

device

control

commands,

just

as

you

would

interface

to

any

of

the

Common

Data

Link

Interface

(CDLI)

LAN

device

drivers.

The

ATM

LANE

device

driver

interfaces

with

all

hardware-level

ATM

device

drivers

that

support

CDLI,

ATM

Call

Management,

and

ATM

Signaling.

Adding

ATM

LANE

Clients

At

least

one

ATM

LAN

Emulation

client

must

be

added

to

the

system

to

communicate

over

an

ATM

network

using

the

ATM

Forum

LANE

protocol.

A

user

with

root

authority

can

add

Ethernet

or

Token-Ring

clients

using

the

smit

atmle_panel

fast

path.

Entries

are

required

for

the

Local

LE

Client’s

LAN

MAC

Address

field

and

possibly

the

LES

ATM

Address

or

LECS

ATM

Address

fields,

depending

on

the

support

provided

at

the

server.

If

the

server

accepts

the

well-known

ATM

address

for

LECS,

the

value

of

the

Automatic

Configuration

via

LECS

field

can

be

set

to

Yes,

and

the

LES

and

LECS

ATM

Address

fields

can

be

left

blank.

If

the

server

does

not

support

the

well-known

ATM

address

for

LECS,

an

ATM

address

must

be

entered

for

either

LES

(manual

configuration)

or

LECS

(automatic

configuration).

All

other

configuration

attribute

values

are

optional.

If

used,

you

can

accept

the

defaults

for

ease-of-use.

Chapter

7.

Communications

I/O

Subsystem

113

Configuration

help

text

is

also

available

within

the

SMIT

LE

Client

add

and

change

menus.

Configuration

Parameters

for

the

ATM

LANE

Device

Driver

The

ATM

LANE

device

driver

supports

the

following

configuration

parameters

for

each

LE

Client:

addl_drvr

Specifies

the

CDLI

demultiplexer

being

used

by

the

LE

Client.

The

value

set

by

the

ATM

LANE

device

driver

is

/usr/lib/methods/cfgdmxtok

for

Token

Ring

emulation

and

/usr/lib/methods/cfgdmxeth

for

Ethernet.

This

is

not

an

operator-configurable

attribute.

addl_stat

Specifies

the

routine

being

used

by

the

LE

client

to

generate

device-specific

statistics

for

the

entstat

and

tokstat

commands.

The

values

set

by

the

ATM

LANE

device

driver

are:

v

/usr/sbin/atmle_ent_stat

v

/usr/sbin/atmle_tok_stat

The

addl_stat

attribute

is

not

operator-configurable.

arp_aging_time

Specifies

the

maximum

timeout

period

(in

seconds)

that

the

LE

Client

will

maintain

an

LE_ARP

cache

entry

without

verification

(ATM

Forum

LE

Client

parameter

C17).

The

default

value

is

300

seconds.

arp_cache_size

Specifies

the

maximum

number

of

LE_ARP

cache

entries

that

will

be

held

by

the

LE

Client

before

removing

the

least

recently

used

entry.

The

default

value

is

32

entries.

arp_response_timeout

Specifies

the

maximum

timeout

period

(in

seconds)

for

LE_ARP

request/response

exchanges

(ATM

Forum

LE

Client

parameter

C20).

The

default

value

is

1

second.

atm_device

Specifies

the

logical

name

of

the

physical

ATM

device

driver

that

this

LE

Client

is

to

operate

with,

as

specified

in

the

CuDv

database

(for

example,

atm0,

atm1,

atm2,

...).

The

default

is

atm0.

auto_cfg

Specifies

whether

the

LE

Client

is

to

be

automatically

configured.

Select

Yes

if

the

LAN

Emulation

Configuration

Server

(LECS)

will

be

used

by

the

LE

Client

to

obtain

the

ATM

address

of

the

LE

ARP

Server,

as

well

as

any

additional

configuration

parameters

provided

by

the

LECS.

The

default

value

is

No

(manual

configuration).

The

attribute

values

are:

Yes

auto

configuration

No

manual

configuration

Note:

Configuration

parameters

provided

by

LECS

override

configuration

values

provided

by

the

operator.

debug_trace

Specifies

whether

this

LE

Client

should

keep

a

real

time

debug

log

within

the

kernel

and

allow

full

system

trace

capability.

Select

Yes

to

enable

full

tracing

capability

for

this

LE

Client.

Select

No

for

optimal

performance

when

minimal

tracing

is

desired.

The

default

is

Yes

(full

tracing

capability).

114

Kernel

Extensions

and

Device

Support

Programming

Concepts

elan_name

Specifies

the

name

of

the

Emulated

LAN

this

LE

Client

wishes

to

join

(ATM

Forum

LE

Client

parameter

C5).

This

is

an

SNMPv2

DisplayString

of

1-32

characters,

or

may

be

left

blank

(unused).

See

RFC1213

for

a

definition

of

an

SNMPv2

DisplayString.

Note:

1.

Any

operator

configured

elan_name

should

match

exactly

what

is

expected

at

the

LECS/LES

server

when

attempting

to

join

an

ELAN.

Some

servers

can

alias

the

ELAN

name

and

allow

the

operator

to

specify

a

logical

name

that

correlates

to

the

actual

name.

Other

servers

might

require

the

exact

name

to

be

specified.

Previous

versions

of

LANE

would

accept

any

elan_name

from

the

server,

even

when

configured

differently

by

the

operator.

However,

with

multiple

LECS/LES

now

possible,

it

is

desirable

that

only

the

ELAN

identified

by

the

network

administrator

is

joined.

Use

the

force_elan_name

attribute

below

to

insure

that

the

name

you

have

specified

will

by

the

only

ELAN

joined.

If

no

elan_name

attribute

is

configured

at

the

LEC,

or

the

force_elan_name

attribute

is

disabled,

the

server

can

stipulate

whatever

elan_name

is

available.

Failure

to

use

an

ELAN

name

that

is

identical

to

the

server’s

when

specifying

the

elan_name

and

force_elan_name

attributes

will

cause

the

LEC

to

fail

the

join

process,

with

entstat/tokstat

status

indicating

Driver

Flag

Limbo.

2.

Blanks

may

be

inserted

within

an

elan_name

by

typing

a

tilde

(~)

character

whenever

a

blank

character

is

desired.

This

allows

a

network

administrator

to

specify

an

ELAN

name

with

imbedded

blanks

as

in

the

default

of

some

servers.

Any

tilde

(~)

character

that

occupies

the

first

character

position

of

the

elan_name

remains

unchanged

(that

is,

the

resulting

name

may

start

with

a

tilde

(~)

but

all

remaining

tilde

characters

are

converted

to

blanks).

failsafe_time

Specifies

the

maximum

timeout

period

(in

seconds)

that

the

LE

Client

will

attempt

to

recover

from

a

network

outage.

A

value

of

zero

indicates

that

you

should

continue

recovery

attempts

unless

a

nonrecoverable

error

is

encountered.

The

default

value

is

0

(unlimited).

flush_timeout

Specifies

the

maximum

timeout

period

(in

seconds)

for

FLUSH

request/response

exchanges

(ATM

Forum

LE

Client

parameter

C21).

The

default

value

is

4

seconds.

force_elan_name

Specifies

that

the

Emulated

LAN

Name

returned

from

the

LECS

or

LES

servers

must

exactly

match

the

name

entered

in

the

elan_name

attribute

above.

Select

Yes

if

the

elan_name

field

must

match

the

server

configuration

and

join

parameters.

This

allows

a

specific

ELAN

to

be

joined

when

multiple

LECS

and

LES

servers

are

available

on

the

network.

The

default

value

is

No,

which

allows

the

server

to

specify

the

ELAN

Name.

fwd_delay_time

Specifies

the

maximum

timeout

period

(in

seconds)

that

the

LE

Client

will

maintain

an

entry

for

a

non-local

MAC

address

in

its

LE_ARP

cache

without

verification,

when

the

Topology

Change

flag

is

True

(ATM

Forum

LE

Client

parameter

C18).

The

default

value

is

15

seconds.

fwd_dsc_timeout

Specifies

the

timeout

period

(in

seconds)

that

can

elapse

without

an

active

Multicast

Forward

VCC

from

the

BUS.

(ATM

Forum

LE

Client

parameter

C33).

If

the

timer

expires

without

an

active

Multicast

Forward

VCC,

the

LE

Client

attempts

recovery

by

re-establishing

its

Multicast

Send

VCC

to

the

BUS.

The

default

value

is

60

seconds.

init_ctl_time

Specifies

the

initial

control

timeout

period

(in

seconds)

for

most

request/response

control

frame

interactions

(ATM

Forum

LE

Client

parameter

C7i).

This

timeout

is

increased

by

its

initial

value

after

each

timeout

expiration

without

a

response,

but

does

not

exceed

the

value

specified

by

the

Maximum

Control

Timeout

attribute

(max_ctl_time).

The

default

value

is

5

seconds.

lan_type

Identifies

the

type

of

local

area

network

being

emulated

(ATM

Forum

LE

Client

parameter

C2).

Both

Ethernet/IEEE

802.3

and

Token

Ring

LANs

can

be

emulated

using

ATM

Forum

LANE.

The

attribute

values

are:

v

Ethernet/IEEE802.3

v

TokenRing

Chapter

7.

Communications

I/O

Subsystem

115

lecs_atm_addr

If

you

are

doing

auto

configuration

using

the

LE

Configuration

Server

(LECS),

this

field

specifies

the

ATM

address

of

LECS.

It

can

remain

blank

if

the

address

of

LECS

is

not

known

and

the

LECS

is

connected

by

way

of

PVC

(VPI=0,

VCI=17)

or

the

well-known

address,

or

is

registered

by

way

of

ILMI.

If

the

20-byte

address

of

the

LECS

is

known,

it

must

be

entered

as

hexadecimal

numbers

using

a

period

(.)

as

the

delimiter

between

bytes.

Leading

zeros

of

each

byte

may

be

omitted,

for

example:

47.0.79.0.0.0.0.0.0.0.0.0.0.0.0.a0.3.0.0.1

(the

LECS

well-known

address)

les_atm_addr

If

you

are

doing

manual

configuration

(without

the

aid

of

an

LECS),

this

field

specifies

the

ATM

address

of

the

LE

ARP

Server

(LES)

(ATM

Forum

LE

Client

parameter

C9).

This

20-byte

address

must

be

entered

as

hexadecimal

numbers

using

a

period

(.)

as

the

delimiter

between

bytes.

Leading

zeros

of

each

byte

may

be

omitted,

for

example:

39.11.ff.22.99.99.99.0.0.0.0.1.49.10.0.5a.68.0.a.1

local_lan_addrs

Specifies

the

local

unicast

LAN

MAC

address

that

will

be

represented

by

this

LE

Client

and

registered

with

the

LE

Server

(ATM

Forum

LE

Client

parameter

C6).

This

6-byte

address

must

be

entered

as

hexadecimal

numbers

using

a

period

(.)

as

the

delimiter

between

bytes.

Leading

zeros

of

each

byte

may

be

omitted.

Ethernet

Example:

2.60.8C.2C.D2.DC

Token

Ring

Example:

10.0.5A.4F.4B.C4

max_arp_retries

Specifies

the

maximum

number

of

times

an

LE_ARP

request

can

be

retried

(ATM

Forum

LE

Client

parameter

C13).

The

default

value

is

1.

max_config_retries

Specifies

the

number

of

times

a

configuration

control

frame

such

as

LE_JOIN_REQUEST

should

be

retried.

Duration

(in

seconds)

between

retries

is

derived

from

the

init_ctl_time

and

max_ctl_time

attributes.

The

default

is

1.

max_ctl_time

Specifies

the

maximum

timeout

period

(in

seconds)

for

most

request

and

response

control

frame

interactions

(ATM

Forum

LE

Client

parameter

C7).

The

default

value

is

30

seconds.

max_frame_size

Specifies

the

maximum

AAL-5

send

data-unit

size

of

data

frames

for

this

LE

Client.

In

general,

this

value

should

coincide

with

the

LAN

type

and

speed

as

follows:

Unspecified

for

auto

LECS

configuration

1516

bytes

for

Ethernet

and

IEEE

802.3

networks

4544

bytes

for

4

Mbps

Token

Rings

or

Ethernet

jumbo

frames

9234

bytes

for

16

Mbps

Token

Rings

or

Ethernet

jumbo

frames

18190

bytes

for

16

Mbps

Token

Rings

or

Ethernet

jumbo

frames

max_queued_frames

Specifies

the

maximum

number

of

outbound

packets

that

will

be

held

for

transmission

per

LE_ARP

cache

entry.

This

queueing

occurs

when

the

Maximum

Unknown

Frame

Count

(max_unknown_fct)

has

been

reached,

or

when

flushing

previously

transmitted

packets

while

switching

to

a

new

virtual

channel.

The

default

value

is

60

packets.

max_rdy_retries

Specifies

the

maximum

number

of

READY_QUERY

packets

sent

in

response

to

an

incoming

call

that

has

not

yet

received

data

or

a

READY_IND

packet.

The

default

value

is

2

retries.

max_unknown_fct

Specifies

the

maximum

number

of

frames

for

a

given

unicast

LAN

MAC

address

that

may

be

sent

to

the

Broadcast

and

Unknown

Server

(BUS)

within

time

period

Maximum

Unknown

Frame

Time

(max_unknown_ftm)

(ATM

Forum

LE

Client

parameter

C10).

The

default

value

is

1.

116

Kernel

Extensions

and

Device

Support

Programming

Concepts

max_unknown_ftm

Specifies

the

maximum

timeout

period

(in

seconds)

that

a

given

unicast

LAN

address

may

be

sent

to

the

Broadcast

and

Unknown

Server

(BUS).

The

LE

Client

will

send

no

more

than

Maximum

Unknown

Frame

Count

(max_unknown_fct)

packets

to

a

given

unicast

LAN

destination

within

this

timeout

period

(ATM

Forum

LE

Client

parameter

C11).

The

default

value

is

1

second.

mpoa_enabled

Specifies

whether

Forum

MPOA

and

LANE-2

functions

should

be

enabled

for

this

LE

Client.

Select

Yes

if

MPOA

will

be

operational

on

the

LE

Client.

Select

No

when

traditional

LANE-1

functionality

is

required.

The

default

is

No

(LANE-1).

mpoa_primary

Specifies

whether

this

LE

Client

is

to

be

the

primary

configurator

for

MPOA

via

LAN

Emulation

Configuration

Server

(LECS).

Select

Yes

if

this

LE

Client

will

be

obtaining

configuration

information

from

the

LECS

for

the

MPOA

Client.

This

attribute

is

only

meaningful

if

running

auto

config

with

an

LECS,

and

indicates

that

the

MPOA

configuration

TLVs

from

this

LEC

will

be

made

available

to

the

MPC.

Only

one

LE

Client

can

be

active

as

the

MPOA

primary

configurator.

The

default

is

No.

path_sw_delay

Specifies

the

maximum

timeout

period

(in

seconds)

that

frames

sent

on

any

path

in

the

network

will

take

to

be

delivered

(ATM

Forum

LE

Client

parameter

C22).

The

default

value

is

6

seconds.

peak_rate

Specifies

the

forward

and

backward

peak

bit

rate

in

K-bits

per

second

that

will

be

used

by

this

LE

Client

to

set

up

virtual

channels.

Specify

a

value

that

is

compatible

with

the

lowest

speed

remote

device

with

which

you

expect

this

LE

Client

to

be

communicating.

Higher

values

might

cause

congestion

in

the

network.

A

value

of

zero

allows

the

LE

Client

to

adjust

its

peak_rate

to

the

actual

speed

of

the

adapter.

If

the

adapter

does

not

provide

its

maximum

peak

rate

value,

the

LE

Client

will

default

peak_rate

to

25600.

Any

non-zero

value

specified

will

be

accepted

and

used

by

the

LE

Client

up

to

the

maximum

value

allowed

by

the

adapter.

The

default

value

is

0,

which

uses

the

adapter’s

maximum

peak

rate.

ready_timeout

Specifies

the

maximum

timeout

period

(in

seconds)

in

which

data

or

a

READY_IND

message

is

expected

from

a

calling

party

(ATM

Forum

LE

Client

parameter

C28).

The

default

value

is

4

seconds.

ring_speed

Specifies

the

Token

Ring

speed

as

viewed

by

the

ifnet

layer.

The

value

set

by

the

ATM

LANE

device

driver

is

16

Mbps

for

Token

Ring

emulation

and

ignored

for

Ethernet.

This

is

not

an

operator-configurable

attribute.

rx_checksum

Specifies

whether

this

LE

Client

should

offload

TCP

receive

checksums

to

the

ATM

hardware.

Select

Yes

if

TCP

checksums

should

be

handled

in

hardware.

Select

No

if

TCP

checksums

should

be

handled

in

software.

The

default

is

Yes

(enable

hardware

receive

checksum).

Note:

The

ATM

adapter

must

also

have

receive

checksum

enabled

to

be

functional.

soft_restart

Specifies

whether

active

data

virtual

circuits

(VCs)

are

to

be

maintained

during

connection

loss

of

ELAN

services

such

as

the

LE

ARP

Server

(LES)

or

Broadcast

and

Unknown

Server

(BUS).

Normal

ATM

Forum

operation

forces

a

disconnect

of

data

VCs

when

LES/BUS

connections

are

lost.

This

option

to

maintain

active

data

VCs

might

be

advantageous

when

server

backup

capabilities

are

available.

The

default

value

is

No.

vcc_activity_timeout

Specifies

the

maximum

timeout

period

(in

seconds)

for

inactive

Data

Direct

Virtual

Channel

Connections

(VCCs).

Any

switched

Data

Direct

VCC

that

does

not

transmit

or

receive

data

frames

in

this

timeout

period

is

terminated

(ATM

Forum

LE

Client

parameter

C12).

The

default

value

is

1200

seconds

(20

minutes).

Device

Driver

Configuration

and

Unconfiguration

The

atmle_config

entry

point

performs

configuration

functions

for

the

ATM

LANE

device

driver.

Device

Driver

Open

The

atmle_open

function

is

called

to

open

the

specified

network

device.

The

LANE

device

driver

does

an

asynchronous

open.

It

starts

the

process

of

attaching

the

device

to

the

network,

sets

the

NDD_UP

flag

in

the

ndd_flags

field,

and

returns

0.

The

network

attachment

will

continue

in

the

background

where

it

is

driven

by

network

activity

and

system

timers.

Chapter

7.

Communications

I/O

Subsystem

117

Note:

The

Network

Services

ns_alloc

routine

that

calls

this

open

routine

causes

the

open

to

be

synchronous.

It

waits

until

the

NDD_RUNNING

or

the

NDD_LIMBO

flag

is

set

in

the

ndd_flags

field

or

15

seconds

have

passed.

If

the

connection

is

successful,

the

NDD_RUNNING

flag

will

be

set

in

the

ndd_flags

field,

and

an

NDD_CONNECTED

status

block

will

be

sent.

The

ns_alloc

routine

will

return

at

this

time.

If

the

device

connection

fails,

the

NDD_LIMBO

flag

will

be

set

in

the

ndd_flags

field,

and

an

NDD_LIMBO_ENTRY

status

block

will

be

sent.

If

the

device

is

eventually

connected,

the

NDD_LIMBO

flag

will

be

disabled,

and

the

NDD_RUNNING

flag

will

be

set

in

the

ndd_flags

field.

Both

NDD_CONNECTED

and

NDD_LIMBO_EXIT

status

blocks

will

be

sent.

Device

Driver

Close

The

atmle_close

function

is

called

by

the

Network

Services

ns_free

routine

to

close

the

specified

network

device.

This

function

resets

the

device

to

a

known

state

and

frees

system

resources

associated

with

the

device.

The

device

will

not

be

detached

from

the

network

until

the

device’s

transmit

queue

is

allowed

to

drain.

Data

Transmission

The

atmle_output

function

transmits

data

using

the

network

device.

If

the

destination

address

in

the

packet

is

a

broadcast

address,

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

should

be

set

prior

to

entering

this

routine.

A

broadcast

address

is

defined

as

FF.FF.FF.FF.FF.FF

(hex)

for

both

Ethernet

and

Token

Ring

and

C0.00.FF.FF.FF.FF

(hex)

for

Token

Ring.

If

the

destination

address

in

the

packet

is

a

multicast

or

group

address,

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

should

be

set

prior

to

entering

this

routine.

A

multicast

or

group

address

is

defined

as

any

nonindividual

address

other

than

a

broadcast

address.

The

device

driver

will

keep

statistics

based

on

the

M_BCAST

and

M_MCAST

flags.

Token

Ring

LANE

emulates

a

duplex

device.

If

a

Token

Ring

packet

is

transmitted

with

a

destination

address

that

matches

the

LAN

MAC

address

of

the

local

LE

Client,

the

packet

is

received.

This

is

also

True

for

Token

Ring

packets

transmitted

to

a

broadcast

address,

enabled

functional

address,

or

an

enabled

group

address.

Ethernet

LANE,

on

the

other

hand,

emulates

a

simplex

device

and

does

not

receive

its

own

broadcast

or

multicast

transmit

packets.

Data

Reception

When

the

LANE

device

driver

receives

a

valid

packet

from

a

network

ATM

device

driver,

the

LANE

device

driver

calls

the

nd_receive

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_receive

function

is

part

of

a

CDLI

network

demuxer.

The

packet

is

passed

to

the

nd_receive

function

in

mbufs.

The

LANE

device

driver

passes

one

packet

to

the

nd_receive

function

at

a

time.

The

device

driver

sets

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

is

received

that

has

an

all-stations

broadcast

destination

address.

This

address

value

is

defined

as

FF.FF.FF.FF.FF.FF

(hex)

for

both

Token

Ring

and

Ethernet

and

is

defined

as

C0.00.FF.FF.FF.FF

(hex)

for

Token

Ring.

The

device

driver

sets

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

is

received

that

has

a

nonindividual

address

that

is

different

than

an

all-stations

broadcast

address.

118

Kernel

Extensions

and

Device

Support

Programming

Concepts

Any

packets

received

from

the

network

are

discarded

if

they

do

not

fit

the

currently

emulated

LAN

protocol

and

frame

format

are

discarded.

Asynchronous

Status

When

a

status

event

occurs

on

the

device,

the

LANE

device

driver

builds

the

appropriate

status

block

and

calls

the

nd_status

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_status

function

is

part

of

a

CDLI

network

demuxer.

The

following

status

blocks

are

defined

for

the

LANE

device

driver:

Hard

Failure

When

an

error

occurs

within

the

internal

operation

of

the

ATM

LANE

device

driver,

it

is

considered

unrecoverable.

If

the

device

was

operational

at

the

time

of

the

error,

the

NDD_LIMBO

and

NDD_RUNNING

flags

are

disabled,

and

the

NDD_DEAD

flag

is

set

in

the

ndd_flags

field,

and

a

hard

failure

status

block

is

generated.

code

Set

to

NDD_HARD_FAIL

option[0]

Set

to

NDD_UCODE_FAIL

Enter

Network

Recovery

Mode

When

the

device

driver

detects

an

error

that

requires

initiating

recovery

logic

to

make

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver:

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

NDD_UCODE_FAIL

Note:

While

the

device

driver

is

in

this

recovery

logic,

the

network

connections

might

not

be

fully

functional.

The

device

driver

will

notify

users

when

the

device

is

fully

functional

by

way

of

an

NDD_LIMBO_EXIT

asynchronous

status

block.

When

a

general

error

occurs

during

operation

of

the

device,

this

status

block

is

generated.

Exit

Network

Recovery

Mode

When

the

device

driver

has

successfully

completed

recovery

logic

from

the

error

that

made

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver.

This

status

block

means

the

device

is

now

fully

functional.

code

Set

to

NDD_LIMBO_EXIT

option[0]

The

option

field

is

not

used.

Device

Control

Operations

The

atmle_ctl

function

is

used

to

provide

device

control

functions.

ATMLE_MIB_GET

This

control

requests

the

LANE

device

driver’s

current

ATM

LAN

Emulation

MIB

statistics.

The

user

should

pass

in

the

address

of

an

atmle_mibs_t

structure

as

defined

in

usr/include/sys/atmle_mibs.h.

The

driver

will

return

EINVAL

if

the

buffer

area

is

smaller

than

the

required

structure.

The

ndd_flags

field

can

be

checked

to

determine

the

current

state

of

the

LANE

device.

ATMLE_MIB_QUERY

This

control

requests

the

LANE

device

driver’s

ATM

LAN

Emulation

MIB

support

structure.

Chapter

7.

Communications

I/O

Subsystem

119

The

user

should

pass

in

the

address

of

an

atmle_mibs_t

structure

as

defined

in

usr/include/sys/atmle_mibs.h.

The

driver

will

return

EINVAL

if

the

buffer

area

is

smaller

than

the

required

structure.

The

device

driver

does

not

support

any

variables

for

read_write

or

write

only.

If

the

syntax

of

a

member

of

the

structure

is

some

integer

type,

the

level

of

support

flag

will

be

stored

in

the

whole

field,

regardless

of

the

size

of

the

field.

For

those

fields

defined

as

character

arrays,

the

value

will

be

returned

only

in

the

first

byte

in

the

field.

NDD_CLEAR_STATS

This

control

requests

all

the

statistics

counters

kept

by

the

LANE

device

driver

to

be

zeroed.

NDD_DISABLE_ADDRESS

This

command

disables

the

receipt

of

packets

destined

for

a

multicast/group

address;

and

for

Token

Ring,

it

disables

the

receipt

of

packets

destined

for

a

functional

address.

For

Token

Ring,

the

functional

address

indicator

(bit

0,

the

most

significant

bit

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(the

bit

is

a

0)

or

a

group

address

(the

bit

is

a

1).

In

all

cases,

the

length

field

value

is

required

to

be

6.

Any

other

value

will

cause

the

LANE

device

driver

to

return

EINVAL.

Functional

Address:

The

reference

counts

are

decremented

for

those

bits

in

the

functional

address

that

are

enabled

(set

to

1).

If

the

reference

count

for

a

bit

goes

to

zero,

the

bit

will

be

disabled

in

the

functional

address

mask

for

this

LE

Client.

If

no

functional

addresses

are

active

after

receipt

of

this

command,

the

TOK_RECEIVE_FUNC

flag

in

the

ndd_flags

field

is

reset.

If

no

functional

or

multicast/group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

Multicast/Group

Address:

If

a

multicast/group

address

that

is

currently

enabled

is

specified,

receipt

of

packets

destined

for

that

group

address

is

disabled.

If

an

address

is

specified

that

is

not

currently

enabled,

EINVAL

is

returned.

If

no

functional

or

multicast/group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

Additionally

for

Token

Ring,

if

no

multicast/group

address

is

active

after

receipt

of

this

command,

the

TOK_RECEIVE_GROUP

flag

in

the

ndd_flags

field

is

reset.

NDD_DISABLE_MULTICAST

The

NDD_DISABLE_MULTICAST

command

disables

the

receipt

of

all

packets

with

unregistered

multicast

addresses,

and

only

receives

those

packets

whose

multicast

addresses

were

registered

using

the

NDD_ENABLE_ADDRESS

command.

The

arg

and

length

parameters

are

not

used.

The

NDD_MULTICAST

flag

in

the

ndd_flags

field

is

reset

only

after

the

reference

count

for

multicast

addresses

has

reached

zero.

NDD_ENABLE_ADDRESS

The

NDD_ENABLE_ADDRESS

command

enables

the

receipt

of

packets

destined

for

a

multicast/group

address;

and

additionally

for

Token

Ring,

it

enables

the

receipt

of

packets

destined

for

a

functional

address.

For

Ethernet,

the

address

is

entered

in

canonical

format,

which

is

left-to-right

byte

order

with

the

I/G

(Individual/Group)

indicator

as

the

least

significant

bit

of

the

first

byte.

For

Token

Ring,

the

address

format

is

entered

in

noncanonical

format,

which

is

left-to-right

bit

and

byte

order

and

has

a

functional

address

indicator.

The

functional

address

indicator

(the

most

significant

bit

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(the

bit

value

is

0)

or

a

group

address

(the

bit

value

is

1).

In

all

cases,

the

length

field

value

is

required

to

be

6.

Any

other

length

value

will

cause

the

LANE

device

driver

to

return

EINVAL.

120

Kernel

Extensions

and

Device

Support

Programming

Concepts

Functional

Address:

The

Token-Ring

network

architecture

provides

bit-specific

functional

addresses

for

widely

used

functions,

such

as

Ring

Parameter

Server

or

Configuration

Report

Server.

Ring

stations

use

functional

address

masks

to

identify

these

functions.

The

specified

address

is

OR’ED

with

the

currently

specified

functional

addresses,

and

the

resultant

address

is

set

as

the

functional

address

for

the

device.

Functional

addresses

are

encoded

in

a

bit-significant

format,

thereby

allowing

multiple

individual

groups

to

be

designated

by

a

single

address.

For

example,

if

function

G

is

assigned

a

functional

address

of

C0.00.00.08.00.00

(hex),

and

function

M

is

assigned

a

functional

address

of

C0.00.00.00.00.40

(hex),

then

ring

station

Y,

whose

node

contains

function

G

and

M,

would

have

a

mask

of

C0.00.00.08.00.40

(hex).

Ring

station

Y

would

receive

packets

addressed

to

either

function

G

or

M

or

to

an

address

like

C0.00.00.08.00.48

(hex)

because

that

address

contains

bits

specified

in

the

mask.

Note:

The

LANE

device

driver

forces

the

first

2

bytes

of

the

functional

address

to

be

C0.00

(hex).

In

addition,

bits

6

and

7

of

byte

5

of

the

functional

address

are

forced

to

0.

The

NDD_ALTADDRS

and

TOK_RECEIVE_FUNC

flags

in

the

ndd_flags

field

are

set.

Because

functional

addresses

are

encoded

in

a

bit-significant

format,

reference

counts

are

kept

on

each

of

the

31

least

significant

bits

of

the

address.

Reference

counts

are

not

kept

on

the

17

most

significant

bits

(the

C0.00

(hex)

of

the

functional

address

and

the

functional

address

indicator

bit).

Multicast/Group

Address:

A

multicast/group

address

table

is

used

by

the

LANE

device

driver

to

store

address

filters

for

incoming

multicast/group

packets.

If

the

LANE

device

driver

is

unable

to

allocate

kernel

memory

when

attempting

to

add

a

multicast/group

address

to

the

table,

the

address

is

not

added

and

ENOMEM

is

returned.

If

the

LANE

device

driver

is

successful

in

adding

a

multicast/group

address,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

set.

Additionally

for

Token

Ring,

the

TOK_RECEIVE_GROUP

flag

is

set,

and

the

first

2

bytes

of

the

group

address

are

forced

to

be

C0.00

(hex).

NDD_ENABLE_MULTICAST

The

NDD_ENABLE_MULTICAST

command

enables

the

receipt

of

packets

with

any

multicast

(or

group)

address.

The

arg

and

length

parameters

are

not

used.

The

NDD_MULTICAST

flag

in

the

ndd_flags

field

is

set.

NDD_DEBUG_TRACE

This

control

requests

a

LANE

or

MPOA

driver

to

toggle

the

current

state

of

its

debug_trace

configuration

flag.

This

control

is

available

to

the

operator

through

the

LANE

Ethernet

entstat

-t

or

LANE

Token

Ring

tokstat

-t

commands,

or

through

the

MPOA

mpcstat

-t

command.

The

current

state

of

the

debug_trace

configuration

flag

is

displayed

in

the

output

of

each

command

as

follows:

v

For

the

entstat

and

tokstat

commands,

NDD_DEBUG_TRACE

is

enabled

only

if

you

see

Driver

Flags:

Debug.

v

For

the

mpcstat

command,

you

will

see

Debug

Trace:

Enabled.

NDD_GET_ALL_STATS

This

control

requests

all

current

LANE

statistics,

based

on

both

the

generic

LAN

statistics

and

the

ATM

LANE

protocol

in

progress.

For

Ethernet,

pass

in

the

address

of

an

ent_ndd_stats_t

structure

as

defined

in

the

file

/usr/include/sys/cdli_entuser.h.

For

Token

Ring,

pass

in

the

address

of

a

tok_ndd_stats_t

structure

as

defined

in

the

file

/usr/include/sys/cdli_tokuser.h.

Chapter

7.

Communications

I/O

Subsystem

121

The

driver

will

return

EINVAL

if

the

buffer

area

is

smaller

than

the

required

structure.

The

ndd_flags

field

can

be

checked

to

determine

the

current

state

of

the

LANE

device.

NDD_GET_STATS

This

control

requests

the

current

generic

LAN

statistics

based

on

the

LAN

protocol

being

emulated.

For

Ethernet,

pass

in

the

address

of

an

ent_ndd_stats_t

structure

as

defined

in

the

file

/usr/include/sys/cdli_entuser.h.

For

Token

Ring,

pass

in

the

address

of

a

tok_ndd_stats_t

structure

as

defined

in

file

/usr/include/sys/cdli_tokuser.h.

The

ndd_flags

field

can

be

checked

to

determine

the

current

state

of

the

LANE

device.

NDD_MIB_ADDR

This

control

requests

the

current

receive

addresses

that

are

enabled

on

the

LANE

device

driver.

The

following

address

types

are

returned,

up

to

the

amount

of

memory

specified

to

accept

the

address

list:

v

Local

LAN

MAC

Address

v

Broadcast

Address

FF.FF.FF.FF.FF.FF

(hex)

v

Broadcast

Address

C0.00.FF.FF.FF.FF

(hex)

v

(returned

for

Token

Ring

only)

v

Functional

Address

Mask

v

(returned

for

Token

Ring

only,

and

only

if

at

least

one

functional

address

has

been

enabled)

v

Multicast/Group

Address

1

through

n

v

(returned

only

if

at

least

one

multicast/group

address

has

been

enabled)

Each

address

is

6-bytes

in

length.

NDD_MIB_GET

This

control

requests

the

current

MIB

statistics

based

on

whether

the

LAN

being

emulated

is

Ethernet

or

Token

Ring.

If

Ethernet,

pass

in

the

address

of

an

ethernet_all_mib_t

structure

as

defined

in

the

file

/usr/include/sys/ethernet_mibs.h.

If

Token

Ring,

pass

in

the

address

of

a

token_ring_all_mib_t

structure

as

defined

in

the

file

/usr/include/sys/tokenring_mibs.h.

The

driver

will

return

EINVAL

if

the

buffer

area

is

smaller

than

the

required

structure.

The

ndd_flags

field

can

be

checked

to

determine

the

current

state

of

the

LANE

device.

NDD_MIB_QUERY

This

control

requests

LANE

device

driver’s

MIB

support

structure

based

on

whether

the

LAN

being

emulated

is

Ethernet

or

Token

Ring.

If

Ethernet,

pass

in

the

address

of

an

ethernet_all_mib_t

structure

as

defined

in

the

file

/usr/include/sys/ethernet_mibs.h.

If

Token

Ring,

pass

in

the

address

of

a

token_ring_all_mib_t

structure

as

defined

in

the

file

/usr/include/sys/tokenring_mibs.h.

The

driver

will

return

EINVAL

if

the

buffer

area

is

smaller

than

the

required

structure.

122

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

device

driver

does

not

support

any

variables

for

read_write

or

write

only.

If

the

syntax

of

a

member

of

the

structure

is

some

integer

type,

the

level

of

support

flag

will

be

stored

in

the

whole

field,

regardless

of

the

size

of

the

field.

For

those

fields

which

are

defined

as

character

arrays,

the

value

will

be

returned

only

in

the

first

byte

in

the

field.

Tracing

and

Error

Logging

in

the

ATM

LANE

Device

Driver

The

LANE

device

driver

has

two

trace

points:

v

3A1

-

Normal

Code

Paths

v

3A2

-

Error

Conditions

Tracing

can

be

enabled

through

SMIT

or

with

the

trace

command.

trace

-a

-j

3a1,3a2

Tracing

can

be

disabled

through

SMIT

or

with

the

trcstop

command.

Once

trace

is

stopped,

the

results

can

be

formatted

into

readable

text

with

the

trcrpt

command.

trcrpt

>

/tmp/trc.out

LANE

error

log

templates:

ERRID_ATMLE_MEM_ERR

An

error

occurred

while

attempting

to

allocate

memory

or

pin

the

code.

This

error

log

entry

accompanies

return

code

ENOMEM

on

an

open

or

control

operation.

ERRID_ATMLE_LOST_SW

The

LANE

device

driver

lost

contact

with

the

ATM

switch.

The

device

driver

will

enter

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error

and

will

be

temporarily

unavailable

during

the

recovery

procedure.

This

generally

occurs

when

the

cable

is

unplugged

from

the

switch

or

ATM

adapter.

ERRID_ATMLE_REGAIN_SW

Contact

with

the

ATM

switch

has

been

re-established

(for

example,

the

cable

has

been

plugged

back

in).

ERRID_ATMLE_NET_FAIL

The

device

driver

has

gone

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

a

network

error

and

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_ATMLE_RCVRY_CMPLETE

The

network

error

that

caused

the

LANE

device

driver

to

go

into

error

recovery

mode

has

been

corrected.

Adding

an

ATM

MPOA

Client

A

Multi-Protocol

Over

ATM

(MPOA)

Client

(MPC)

can

be

added

to

the

system

to

allow

ATM

LANE

packets

that

would

normally

be

routed

through

various

LANE

IP

Subnets

or

Logical

IP

Subnets

(LISs)

within

an

ATM

network,

to

be

sent

and

received

over

shortcut

paths

that

do

not

contain

routers.

MPOA

can

provide

significant

savings

on

end-to-end

throughput

performance

for

large

data

transfers,

and

can

free

up

resources

in

routers

that

might

otherwise

be

used

up

handling

packets

that

could

have

bypassed

routers

altogether.

Only

one

MPOA

Client

is

established

per

node.

This

MPC

can

support

multiple

ATM

ports,

containing

LE

Clients/Servers

and

MPOA

Servers.

The

key

requirement

being,

that

for

this

MPC

to

create

shortcut

paths,

each

remote

target

node

must

also

support

MPOA

Client,

and

must

be

directly

accessible

via

the

matrix

of

switches

representing

the

ATM

network.

A

user

with

root

authority

can

add

this

MPOA

Client

using

the

smit

mpoa_panel

fast

path,

or

click

Devices

—>

Communication

—>

ATM

Adapter

—>

Services

—>

Multi-Protocol

Over

ATM

(MPOA).

Chapter

7.

Communications

I/O

Subsystem

123

No

configuration

entries

are

required

for

the

MPOA

Client.

Ease-of-use

default

values

are

provided

for

each

of

the

attributes

derived

from

ATM

Forum

recommendations.

Configuration

help

text

is

also

available

within

MPOA

Client

SMIT

to

aid

in

making

any

modifications

to

attribute

default

values.

Configuration

Parameters

for

ATM

MPOA

Client

The

ATM

LANE

device

driver

supports

the

following

configuration

parameters

for

the

MPOA

Client:

auto_cfg

Auto

Configuration

with

LEC/LECS.

Specifies

whether

the

MPOA

Client

is

to

be

automatically

configured

via

LANE

Configuration

Server

(LECS).

Select

Yes

if

a

primary

LE

Client

will

be

used

to

obtain

the

MPOA

configuration

attributes,

which

will

override

any

manual

or

default

values.

The

default

value

is

No

(manual

configuration).

The

attribute

values

are:

Yes

-

auto

configuration

No

-

manual

configuration

debug_trace

Specifies

whether

this

MPOA

Client

should

keep

a

real

time

debug

log

within

the

kernel

and

allow

full

system

trace

capability.

Select

Yes

to

enable

full

tracing

capabilities

for

this

MPOA

Client.

Select

No

for

optimal

performance

when

minimal

tracing

is

desired.

The

default

is

Yes

(full

tracing

capability).

fragment

Enables

MPOA

fragmentation

and

specifies

whether

fragmentation

should

be

performed

on

packets

that

exceed

the

MTU

returned

in

the

MPOA

Resolution

Reply.

Select

Yes

to

have

outgoing

packets

fragmented

as

needed.

Select

No

to

avoid

having

outgoing

packets

fragmented.

Selecting

No

causes

outgoing

packets

to

be

sent

down

the

LANE

path

when

fragmentation

must

be

performed.

Incoming

packets

will

always

be

fragmented

as

needed

even

if

No

has

been

selected.

The

default

value

is

Yes.

hold_down_time

Failed

resolution

request

retry

Hold

Down

Time

(in

seconds).

Specifies

the

length

of

time

to

wait

before

reinitiating

a

failed

address

resolution

attempt.

This

value

is

normally

set

to

a

value

greater

than

retry_time_max.

This

attribute

correlates

to

ATM

Forum

MPC

Configuration

parameter

MPC-p6.

The

default

value

is

160

seconds.

init_retry_time

Initial

Request

Retry

Time

(in

seconds).

Specifies

the

length

of

time

to

wait

before

sending

the

first

retry

of

a

request

that

does

not

receive

a

response.

This

attribute

correlates

to

ATM

Forum

MPC

Configuration

parameter

MPC-p4.

The

default

value

is

5

seconds.

retry_time_max

Maximum

Request

Retry

Time

(in

seconds).

Specifies

the

maximum

length

of

time

to

wait

when

retrying

requests

that

have

not

received

a

response.

Each

retry

duration

after

the

initial

retry

are

doubled

(2x)

until

the

retry

duration

reaches

this

Maximum

Request

Retry

Time.

All

subsequent

retries

will

wait

this

maximum

value.

This

attribute

correlates

to

ATM

Forum

MPC

Configuration

parameter

MPC-p5.

The

default

value

is

40

seconds.

sc_setup_count

Shortcut

Setup

Frame

Count.

This

attribute

is

used

in

conjunction

with

sc_setup_time

to

determine

when

to

establish

a

shortcut

path.

Once

the

MPC

has

forwarded

at

least

sc_setup_count

packets

to

the

same

target

within

a

period

of

sc_setup_time,

the

MPC

attempts

to

create

a

shortcut

VCC.

This

attribute

correlates

to

ATM

Forum

MPC

Configuration

parameter

MPC-p1.

The

default

value

is

10

packets.

sc_setup_time

Shortcut

Setup

Frame

Time

(in

seconds).

This

attribute

is

used

in

conjunction

with

sc_setup_count

above

to

determine

when

to

establish

a

shortcut

path.

Once

the

MPC

has

forwarded

at

least

sc_setup_count

packets

to

the

same

target

within

a

period

of

sc_setup_time,

the

MPC

attempts

to

create

a

shortcut

VCC.

This

attribute

correlates

to

ATM

Forum

MPC

Configuration

parameter

MPC-p2.

The

default

value

is

1

second.

vcc_inact_time

VCC

Inactivity

Timeout

value

(in

minutes).

Specifies

the

maximum

length

of

time

to

keep

a

shortcut

VCC

enabled

when

there

is

no

send

or

receive

activity

on

that

VCC.

The

default

value

is

20

minutes.

124

Kernel

Extensions

and

Device

Support

Programming

Concepts

Tracing

and

Error

Logging

in

the

ATM

MPOA

Client

The

ATM

MPOA

Client

has

two

trace

points:

v

3A3

-

Normal

Code

Paths

v

3A4

-

Error

Conditions

Tracing

can

be

enabled

through

SMIT

or

with

the

trace

command.

trace

-a

-j

3a3,3a4

Tracing

can

be

disabled

through

SMIT

or

with

the

trcstop

command.

Once

trace

is

stopped,

the

results

can

be

formatted

into

readable

text

with

the

trcrpt

command.

trcrpt

>

/tmp/trc.out

MPOA

Client

error

log

templates

Each

of

the

MPOA

Client

error

log

templates

are

prefixed

with

ERRID_MPOA.

An

example

of

an

MPOA

error

entry

is

as

follows:

ERRID_MPOA_MEM_ERR

An

error

occurred

while

attempting

to

allocate

kernel

memory.

Getting

Client

Status

Three

commands

are

available

to

obtain

status

information

related

to

ATM

LANE

clients.

v

The

entstat

command

and

tokstat

command

are

used

to

obtain

general

ethernet

or

tokenring

device

status.

v

The

lecstat

command

is

used

to

obtain

more

specific

information

about

a

LANE

client.

v

The

mpcstat

command

is

used

to

obtain

MPOA

client

status

information.

For

more

information

see,

entstat

Command,

lecstat

Command,

mpcstat

Command,

and

tokstat

Command

in

AIX

5L

Version

5.2

Commands

Reference.

Fiber

Distributed

Data

Interface

(FDDI)

Device

Driver

Note:

The

information

in

this

section

is

specific

to

AIX

5.1

and

earlier.

The

FDDI

device

driver

is

a

dynamically

loadable

device

driver.

The

device

driver

is

automatically

loaded

into

the

system

at

device

configuration

time

as

part

of

the

configuration

process.

The

interface

to

the

device

is

through

the

kernel

services

known

as

Network

Services.

Interfacing

to

the

device

driver

is

achieved

by

calling

the

device

driver’s

entry

points

for

opening

the

device,

closing

the

device,

transmitting

data,

doing

a

remote

dump,

and

issuing

device

control

commands.

The

FDDI

device

driver

supports

the

SMT

7.2

standard.

Configuration

Parameters

for

FDDI

Device

Driver

Software

Transmit

Queue

The

driver

provides

a

software

transmit

queue

to

supplement

the

hardware

queue.

The

queue

is

configurable

and

contains

between

3

and

250

mbufs.

The

default

is

30

mbufs.

Alternate

Address

The

driver

supports

specifying

a

configurable

alternate

address

to

be

used

instead

of

the

address

burned

in

on

the

card.

This

address

must

have

the

local

bit

set.

Addresses

between

0x400000000000

and

0x7FFFFFFFFFFF

are

supported.

The

default

is

0x400000000000.

Chapter

7.

Communications

I/O

Subsystem

125

Enable

Alternate

Address

The

driver

supports

enabling

the

alternate

address

set

with

the

Alternate

Address

parameter.

Values

are

YES

and

NO,

with

NO

as

the

default.

PMF

Password

The

driver

provides

the

ability

to

configure

a

PMF

password.

The

password

default

is

0,

meaning

no

password.

Max

T-Req

The

driver

enables

the

user

to

configure

the

card’s

maximum

T-Req.

TVX

Lower

Bound

The

driver

enables

the

user

to

configure

the

card’s

TVX

Lower

Bound.

User

Data

The

driver

enables

the

user

to

set

the

user

data

field

on

the

adapter.

This

data

can

be

any

string

up

to

32

bytes

of

data.

The

default

is

a

zero

length

string.

FDDI

Device

Driver

Configuration

and

Unconfiguration

The

fddi_config

entry

point

performs

configuration

functions

for

the

FDDI

device

driver.

Device

Driver

Open

The

fddi_open

function

is

called

to

open

the

specified

network

device.

The

device

is

initialized.

When

the

resources

have

been

successfully

allocated,

the

device

is

attached

to

the

network.

If

the

station

is

not

connected

to

another

running

station,

the

device

driver

opens,

but

is

unable

to

transmit

Logical

Link

Control

(LLC)

packets.

When

in

this

mode,

the

device

driver

sets

the

CFDDI_NDD_LLC_DOWN

flag

(defined

in

/usr/include/sys/cdli_fddiuser.h).

When

the

adapter

is

able

to

make

a

connection

with

at

least

one

other

station

this

flag

is

cleared

and

LLC

packets

can

be

transmitted.

Device

Driver

Close

The

fddi_close

function

is

called

to

close

the

specified

network

device.

This

function

resets

the

device

to

a

known

state

and

frees

system

resources

used

by

the

device.

The

device

is

not

detached

from

the

network

until

the

device’s

transmit

queue

is

allowed

to

drain.

Data

Transmission

The

fddi_output

function

transmits

data

using

the

network

device.

The

FDDI

device

driver

supports

up

to

three

mbuf’s

for

each

packet.

It

cannot

gather

from

more

than

three

locations

to

a

packet.

The

FDDI

device

driver

does

not

accept

user-memory

mbufs.

It

uses

bcopy

on

small

frames

which

does

not

work

on

user

memory.

The

driver

supports

up

to

the

entire

mtu

in

a

single

mbuf.

The

driver

requires

that

the

entire

mac

header

be

in

a

single

mbuf.

The

driver

will

not

accept

chained

frames

of

different

types.

The

user

should

not

send

Logical

Link

Control

(LLC)

and

station

management

(SMT)

frames

in

the

same

call

to

output.

The

user

needs

to

fill

the

frame

out

completely

before

calling

the

output

routine.

The

mac

header

for

a

FDDI

packet

is

defined

by

the

cfddi_hdr_t

structure

defined

in

/usr/include/sys/cdli_fddiuser.h.

The

first

126

Kernel

Extensions

and

Device

Support

Programming

Concepts

byte

of

a

packet

is

used

as

a

flag

for

routing

the

packet

on

the

adapter.

For

most

driver

users

the

value

of

the

packet

should

be

set

to

FDDI_TX_NORM.

The

possible

flags

are:

CFDDI_TX_NORM

Transmits

the

frame

onto

the

ring.

This

is

the

normal

flag

value.

CFDDI_TX_LOOPBACK

Moves

the

frame

from

the

adapter’s

transmit

queue

to

its

receive

queue

as

if

it

were

received

from

the

media.

The

frame

is

not

transmitted

onto

the

media.

CFDDI_TX_PROC_ONLY

Processes

the

status

information

frame

(SIF)

or

parameter

management

frame

(PMF)

request

frame

and

sends

a

SIF

or

PMF

response

to

the

host.

The

frame

is

not

transmitted

onto

the

media.

This

flag

is

not

valid

for

LLC

packets.

CFDDI_TX_PROC_XMIT

Processes

the

SIF

or

PMF

request

frames

and

sends

a

SIF

or

PMF

response

to

the

host.

The

frame

is

also

transmitted

onto

the

media.

This

flag

is

not

valid

for

LLC

packets.

Data

Reception

When

the

FDDI

device

driver

receives

a

valid

packet

from

the

network

device,

the

FDDI

device

driver

calls

the

nd_receive

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_receive

function

is

part

of

a

CDLI

network

demuxer.

The

packet

is

passed

to

the

nd_receive

function

in

mbufs.

Reliability,

Availability,

and

Serviceability

for

FDDI

Device

Driver

The

FDDI

device

driver

has

three

trace

points.

The

IDs

are

defined

in

the

/usr/include/sys/cdli_fddiuser.h

file.

For

FDDI

the

type

of

data

in

an

error

log

is

the

same

for

every

error

log.

Only

the

specifics

and

the

title

of

the

error

log

change.

Information

that

follows

includes

an

example

of

an

error

log

and

a

list

of

error

log

entries.

Example

FDDI

Error

Log

Detail

Data

FILE

NAME

line:

332

file:

fddiintr_b.c

POS

REGISTERS

F48E

D317

3CC7

0008

SOURCE

ADDRESS

4000

0000

0000

ATTACHMENT

CLASS

0000

0001

MICRO

CHANNEL

AND

PIO

EXCEPTION

CODES

0000

0000

0000

0000

0000

0000

FDDI

LINK

STATISTICS

0080

0000

04A0

0000

0000

0000

0001

0000

0000

0000

0001

0008

0008

0005

0005

0012

0003

0002

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

SELF

TESTS

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

DEVICE

DRIVER

INTERNAL

STATE

0fdd

0fdd

0000

0000

0000

0000

0000

0000

Chapter

7.

Communications

I/O

Subsystem

127

Error

Log

Entries

The

FDDI

device

driver

returns

the

following

are

the

error

log

entries:

ERRID_CFDDI_RMV_ADAP

This

error

indicates

that

the

adapter

has

received

a

disconnect

command

from

a

remote

station.

The

FDDI

device

driver

will

initiate

shutdown

of

the

device.

The

device

is

no

longer

functional

due

to

this

error.

User

intervention

is

required

to

bring

the

device

back

online.

If

there

is

no

local

LAN

administrator,

user

action

is

required

to

make

the

device

available.

For

the

device

to

be

brought

back

online,

the

device

needs

to

be

reset.

This

can

be

accomplished

by

having

all

users

of

the

FDDI

device

driver

close

the

device.

When

all

users

have

closed

the

device

and

the

device

is

reset,

the

device

can

be

brought

back

online.

ERRID_CFDDI_ADAP_CHECK

This

error

indicates

that

an

FDDI

adapter

check

has

occurred.

If

the

device

was

connected

to

the

network

when

this

error

occurred,

the

FDDI

device

goes

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

to

bring

the

device

back

online.

ERRID_CFDDI_DWNLD

Indicates

that

the

microcode

download

to

the

FDDI

adapter

has

failed.

If

this

error

occurs

during

the

configuration

of

the

device,

the

configuration

of

the

device

fails.

User

intervention

is

required

to

make

the

device

available.

ERRID_CFDDI_RCVRY_ENTER

Indicates

that

the

FDDI

device

driver

has

entered

Network

Recovery

Mode

in

an

attempt

to

recover

from

an

error.

The

error

which

caused

the

device

to

enter

this

mode,

is

error

logged

before

this

error

log

entry.

The

device

is

not

fully

functional

until

the

device

has

left

this

mode.

User

intervention

is

not

required

to

bring

the

device

back

online.

ERRID_CFDDI_RCVRY_EXIT

Indicates

that

the

FDDI

device

driver

has

successfully

recovered

from

the

error

which

caused

the

device

to

go

into

Network

Recovery

Mode.The

device

in

now

fully

functional.

ERRID_CFDDI_RCVRY_TERM

Indicates

that

the

FDDI

device

driver

was

unable

to

recover

from

the

error

which

caused

the

device

to

go

into

Network

Recovery

Mode

and

has

terminated

recovery

logic.

The

termination

of

recovery

logic

might

be

due

to

an

irrecoverable

error

being

detected

or

the

device

being

closed.

If

termination

is

due

to

an

irrecoverable

error,

that

error

will

be

error

logged

before

this

error

log

entry.

User

intervention

is

required

to

bring

the

device

back

online.

ERRID_CFDDI_MC_ERR

Indicates

that

the

FDDI

device

driver

has

detected

a

Micro

Channel

error.

The

device

driver

initiates

recovery

logic

in

an

attempt

to

recover

from

the

error.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CFDDI_TX_ERR

Indicates

that

the

FDDI

device

driver

has

detected

a

transmission

error.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_CFDDI_PIO

Indicates

the

FDDI

device

driver

has

detected

a

program

IO

error.

The

device

driver

initiates

recovery

logic

in

an

attempt

to

recover

from

the

error.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CFDDI_DOWN

Indicates

that

the

FDDI

device

has

been

shutdown

due

to

an

irrecoverable

error.

The

FDDI

device

is

no

longer

functional

due

to

the

error.

The

irrecoverable

error

which

caused

the

device

to

be

shutdown

is

error

logged

before

this

error

log

entry.

User

intervention

is

required

to

bring

the

device

back

online.

128

Kernel

Extensions

and

Device

Support

Programming

Concepts

ERRID_CFDDI_SELF_TEST

Indicates

that

the

FDDI

adapter

has

received

a

run

self-test

command

from

a

remote

station.

The

device

is

unavailable

while

the

adapter’s

self-tests

are

being

run.

If

the

tests

are

successful,

the

FDDI

device

driver

initiates

logic

to

reconnect

the

device

to

the

network.

Otherwise,

the

device

will

be

shutdown.

ERRID_CFDDI_SELFT_ERR

Indicates

that

an

error

occurred

during

the

FDDI

self-tests.

User

intervention

is

required

to

bring

the

device

back

online.

ERRID_CFDDI_PATH_ERR

Indicates

that

an

error

occurred

during

the

FDDI

adapter’s

path

tests.

The

FDDI

device

driver

will

initiate

recovery

logic

in

an

attempt

to

recover

from

the

error.

The

FDDI

device

will

temporarily

be

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

to

bring

the

device

back

online.

ERRID_CFDDI_PORT

Indicates

that

a

port

on

the

FDDI

device

is

in

a

stuck

condition.

User

intervention

is

not

required

for

this

error.

This

error

typically

occurs

when

a

cable

is

not

correctly

connected.

ERRID_CFDDI_BYPASS

Indicates

that

the

optical

bypass

switch

is

in

a

stuck

condition.

User

intervention

is

not

required

for

this

error.

ERRID_CFDDI_CMD_FAIL

Indicates

that

a

command

to

the

adapter

has

failed.

High-Performance

(8fc8)

Token-Ring

Device

Driver

Note:

The

information

in

this

section

is

specific

to

AIX

5.1

and

earlier.

The

8fc8

Token-Ring

device

driver

is

a

dynamically

loadable

device

driver.

The

device

driver

automatically

loads

into

the

system

at

device

configuration

time

as

part

of

the

configuration

process.

The

interface

to

the

device

is

through

the

kernel

services

known

as

Network

Services.

Interfacing

to

the

device

driver

is

achieved

by

calling

the

device

driver’s

entry

points

for

opening

the

device,

closing

the

device,

transmitting

data,

doing

a

remote

dump,

and

issuing

device

control

commands.

The

Token-Ring

device

driver

interfaces

with

the

Token-Ring

High-Performance

Network

Adapter

(8fc8).

It

provides

a

Micro

Channel-based

connection

to

a

Token-Ring

network.

The

adapter

is

IEEE

802.5

compatible

and

supports

both

4

and

16

megabit

per

second

networks.

The

adapter

supports

only

a

Shielded

Twisted-Pair

(STP)

Token-Ring

connection.

Configuration

Parameters

for

Token-Ring

Device

Driver

Ring

Speed

The

device

driver

will

support

a

user

configurable

parameter

that

indicates

if

the

Token-Ring

is

to

be

run

at

4

or

16

megabits

per

second.

Software

Transmit

Queue

The

device

driver

will

support

a

user

configurable

transmit

queue,

that

can

be

set

to

store

between

32

and

160

transmit

request

pointers.

Each

transmit

request

pointer

corresponds

to

a

transmit

request,

which

might

be

for

several

buffers

of

data.

Attention

MAC

frames

The

device

driver

will

support

a

user

configurable

parameter

that

indicates

if

attention

MAC

frames

should

be

received.

Chapter

7.

Communications

I/O

Subsystem

129

Beacon

MAC

frames

The

device

driver

will

support

a

user

configurable

parameter

that

indicates

if

beacon

MAC

frames

should

be

received.

Network

Address

The

driver

supports

the

use

of

the

device’s

hardware

address

as

the

network

address

or

an

alternate

network

address

configured

through

software.

When

an

alternate

address

is

used,

any

valid

individual

address

can

be

used.

The

most

significant

bit

of

the

address

must

be

set

to

zero

(definition

of

an

individual

address).

Device

Driver

Configuration

and

Unconfiguration

The

tok_config

entry

point

performs

configuration

functions

Token-Ring

device

driver.

Device

Driver

Open

The

tok_open

function

is

called

to

open

the

specified

network

device.

The

Token

Ring

device

driver

does

an

asynchronous

open.

It

starts

the

process

of

attaching

the

device

to

the

network,

sets

the

NDD_UP

flag

in

the

ndd_flags

field,

and

returns

0.

The

network

attachment

will

continue

in

the

background

where

it

is

driven

by

device

activity

and

system

timers.

Note:

The

Network

Services

ns_alloc

routine

that

calls

this

open

routine

causes

the

open

to

be

synchronous.

It

waits

until

the

NDD_RUNNING

flag

is

set

in

the

ndd_flags

field

or

60

seconds

have

passed.

If

the

connection

is

successful,

the

NDD_RUNNING

flag

will

be

set

in

the

ndd_flags

field

and

a

NDD_CONNECTED

status

block

will

be

sent.

The

ns_alloc

routine

will

return

at

this

time.

If

the

device

connection

fails,

the

NDD_LIMBO

flag

will

be

set

in

the

ndd_flags

field

and

a

NDD_LIMBO_ENTRY

status

block

will

be

sent.

If

the

device

is

eventually

connected,

the

NDD_LIMBO

flag

will

be

turned

off

and

the

NDD_RUNNING

flag

will

be

set

in

the

ndd_flags

field.

Both

NDD_CONNECTED

and

NDD_LIMBO_EXIT

status

blocks

will

be

set.

Device

Driver

Close

The

tok_close

function

is

called

to

close

the

specified

network

device.

This

function

resets

the

device

to

a

known

state

and

frees

system

resources

associated

with

the

device.

The

device

will

not

be

detached

from

the

network

until

the

device’s

transmit

queue

is

allowed

to

drain.

Data

Transmission

The

tok_output

function

transmits

data

using

the

network

device.

The

device

driver

does

not

support

mbufs

from

user

memory

(which

have

the

M_EXT

flag

set).

If

the

destination

address

in

the

packet

is

a

broadcast

address,

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

should

be

set

prior

to

entering

this

routine.

A

broadcast

address

is

defined

as

0xFFFF

FFFF

FFFF

or

0xC000

FFFF

FFFF.

If

the

destination

address

in

the

packet

is

a

multicast

address

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

should

be

set

prior

to

entering

this

routine.

A

multicast

address

is

defined

as

a

non-individual

address

other

than

a

broadcast

address.

The

device

driver

will

keep

statistics

based

upon

the

M_BCAST

and

M_MCAST

flags.

130

Kernel

Extensions

and

Device

Support

Programming

Concepts

If

a

packet

is

transmitted

with

a

destination

address

that

matches

the

adapter’s

address,

the

packet

will

be

received.

This

is

true

for

the

adapter’s

physical

address,

broadcast

addresses

(0xC000

FFFF

FFFF

or

0xFFFF

FFFF

FFFF),

enabled

functional

addresses,

or

an

enabled

group

address.

Data

Reception

When

the

Token-Ring

device

driver

receives

a

valid

packet

from

the

network

device,

the

Token-Ring

device

driver

calls

the

nd_receive

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_receive

function

is

part

of

a

CDLI

network

demuxer.

The

packet

is

passed

to

the

nd_receive

function

in

mbufs.

The

Token-Ring

device

driver

passes

one

packet

to

the

nd_receive

function

at

a

time.

The

device

driver

sets

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

is

received

that

has

an

all-stations

broadcast

address.

This

address

is

defined

as

0xFFFF

FFFF

FFFF

or

0xC000

FFFF

FFFF.

The

device

driver

sets

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

is

received

that

has

a

non-individual

address

that

is

different

than

the

all-stations

broadcast

address.

The

adapter

does

not

pass

invalid

packets

to

the

device

driver.

Asynchronous

Status

When

a

status

event

occurs

on

the

device,

the

Token-Ring

device

driver

builds

the

appropriate

status

block

and

calls

the

nd_status

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_status

function

is

part

of

a

CDLI

network

demuxer.

The

following

status

blocks

are

defined

for

the

Token-Ring

device

driver.

Hard

Failure

When

a

hard

failure

has

occurred

on

the

Token-Ring

device,

the

following

status

blocks

can

be

returned

by

the

Token-Ring

device

driver.

One

of

these

status

blocks

indicates

that

a

fatal

error

occurred.

NDD_PIO_FAIL:

When

a

PIO

error

occurs,

it

is

retried

3

times.

If

the

error

still

occurs,

it

is

considered

unrecoverable

and

this

status

block

is

generated.

code

Set

to

NDD_HARD_FAIL

option[0]

Set

to

NDD_PIO_FAIL

option[]

The

remainder

of

the

status

block

may

be

used

to

return

additional

status

information.

TOK_RECOVERY_THRESH:

When

most

network

errors

occur,

they

are

retried.

Some

errors

are

retried

with

no

limit

and

others

have

a

recovery

threshold.

Errors

that

have

a

recovery

threshold

and

fail

all

the

retries

specified

by

the

recovery

threshold

are

considered

unrecoverable

and

generate

the

following

status

block:

code

Set

to

NDD_HARD_FAIL

option[0]

Set

to

TOK_RECOVERY_THRESH

option[1]

The

specific

error

that

occurred.

Possible

values

are:

v

TOK_DUP_ADDR

-

duplicate

node

address

v

TOK_PERM_HW_ERR

-

the

device

has

an

unrecoverable

hardware

error

v

TOK_RING_SPEED

-

ring

beaconing

on

physical

insertion

to

the

ring

v

TOK_RMV_ADAP

-

remove

ring

station

MAC

frame

received

Chapter

7.

Communications

I/O

Subsystem

131

Enter

Network

Recovery

Mode

When

the

device

driver

has

detected

an

error

that

requires

initiating

recovery

logic

that

will

make

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver:

Note:

While

the

device

driver

is

in

this

recovery

logic,

the

device

might

not

be

fully

functional.

The

device

driver

will

notify

users

when

the

device

is

fully

functional

by

way

of

an

NDD_LIMBO_EXIT

asynchronous

status

block.

NDD_ADAP_CHECK:

When

an

adapter

check

has

occurred,

this

status

block

is

generated.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

NDD_ADAP_CHECK

option[1]

The

adapter

check

interrupt

information

is

stored

in

the

2

high-order

bytes.

The

adapter

also

returns

three

two-byte

parameters.

Parameter

0

is

stored

in

the

2

low-order

bytes.

option[2]

Parameter

1

is

stored

in

the

2

high-order

bytes.

Parameter

2

is

stored

in

the

2

low-order

bytes.

NDD_AUTO_RMV:

When

an

internal

hardware

error

following

the

beacon

automatic-removal

process

has

been

detected,

this

status

block

is

generated.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

NDD_AUTO_RMV

NDD_BUS_ERR:

The

device

has

detected

a

I/O

channel

error.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

NDD_BUS_ERR

option[1]

Set

to

error

information

from

the

device.

NDD_CMD_FAIL:

The

device

has

detected

an

error

in

a

command

the

device

driver

issued

to

it.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

NDD_CMD_FAIL

option[1]

Set

to

error

information

from

the

device.

NDD_TX_ERROR:

The

device

has

detected

an

error

in

a

packet

given

to

the

device.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

NDD_TX_ERROR

option[1]

Set

to

error

information

from

the

device.

NDD_TX_TIMEOUT:

The

device

has

detected

an

error

in

a

packet

given

to

the

device.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

NDD_TX_TIMEOUT

TOK_ADAP_INIT:

When

the

initialization

of

the

device

fails,

this

status

block

is

generated.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

TOK_ADAP_INIT

option[1]

Set

to

error

information

from

the

device.

132

Kernel

Extensions

and

Device

Support

Programming

Concepts

TOK_ADAP_OPEN:

When

a

general

error

occurs

during

open

of

the

device,

this

status

block

is

generated.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

TOK_ADAP_OPEN

option[1]

Set

to

the

device

open

error

code

from

the

device.

TOK_DMA_FAIL:

A

d_complete

has

failed.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

TOK_DMA_FAIL

TOK_RING_SPEED:

When

an

error

code

of

0x27

(physical

insertion,

ring

beaconing)

occurs

during

open

of

the

device,

this

status

block

is

generated.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

TOK_RING_SPEED

TOK_RMV_ADAP:

The

device

has

received

a

remove

ring

station

MAC

frame

indicating

that

a

network

management

function

had

directed

this

device

to

get

off

the

ring.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

TOK_RMV_ADAP

TOK_WIRE_FAULT:

When

an

error

code

of

0x11

(lobe

media

test,

function

failure)

occurs

during

open

of

the

device,

this

status

block

is

generated.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

TOK_WIRE_FAULT

Exit

Network

Recovery

Mode

When

the

device

driver

has

successfully

completed

recovery

logic

from

the

error

that

made

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver.

This

status

block

means

the

device

is

now

fully

functional.

code

Set

to

NDD_LIMBO_EXIT

option[]

The

option

fields

are

not

used.

Network

Device

Driver

Status

When

the

device

driver

has

status

or

event

information

to

report,

the

following

status

block

is

returned

by

the

device

driver:

Ring

Beaconing:

When

the

Token-Ring

device

has

detected

a

beaconing

condition

(or

the

ring

has

recovered

from

one),

the

following

status

block

is

generated

by

the

Token-Ring

device

driver:

code

Set

to

NDD_STATUS

option[0]

Set

to

TOK_BEACONING

option[1]

Set

to

the

ring

status

received

from

the

device.

Device

Connected

When

the

device

is

successfully

connected

to

the

network

the

following

status

block

is

returned

by

the

device

driver:

Chapter

7.

Communications

I/O

Subsystem

133

code

Set

to

NDD_CONNECTED

option[]

The

option

fields

are

not

used.

Device

Control

Operations

The

tok_ctl

function

is

used

to

provide

device

control

functions.

NDD_GET_STATS

The

user

should

pass

in

the

tok_ndd_stats_t

structure

as

defined

in

usr/include/sys/cdli_tokuser.h.

The

driver

will

fail

a

call

with

a

buffer

smaller

than

the

structure.

The

statistics

that

are

returned

contain

statistics

obtained

from

the

device.

If

the

device

is

inoperable,

the

statistics

that

are

returned

will

not

contain

the

current

device

statistics.

The

copy

of

the

ndd_flags

field

can

be

checked

to

determine

the

state

of

the

device.

NDD_MIB_QUERY

The

arg

parameter

specifies

the

address

of

the

token_ring_all_mib_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/tokenring_mibs.h

file.

The

device

driver

does

not

support

any

variables

for

read_write

or

write

only.

If

the

syntax

of

a

member

of

the

structure

is

some

integer

type,

the

level

of

support

flag

will

be

stored

in

the

whole

field,

regardless

of

the

size

of

the

field.

For

those

fields

defined

as

character

arrays,

the

value

will

be

returned

only

in

the

first

byte

in

the

field.

NDD_MIB_GET

The

arg

parameter

specifies

the

address

of

the

token_ring_all_mib_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/tokenring_mibs.h

file.

If

the

device

is

inoperable,

the

upstream

field

of

the

Dot5Entry_t

structure

will

be

zero

instead

of

containing

the

nearest

active

upstream

neighbor

(NAUN).

Also

the

statistics

that

are

returned

contain

statistics

obtained

from

the

device.

If

the

device

is

inoperable,

the

statistics

that

are

returned

will

not

contain

the

current

device

statistics.

The

copy

of

the

ndd_flags

field

can

be

checked

to

determine

the

state

of

the

device.

NDD_ENABLE_ADDRESS

This

command

enables

the

receipt

of

packets

with

a

functional

or

a

group

address.

The

functional

address

indicator

(bit

0

″the

MSB″

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(the

bit

is

a

0)

or

a

group

address

(the

bit

is

a

1).

The

length

field

is

not

used

because

the

address

must

be

6

bytes

in

length.

Functional

Address:

The

specified

address

is

ORed

with

the

currently

specified

functional

addresses

and

the

resultant

address

is

set

as

the

functional

address

for

the

device.

Functional

addresses

are

encoded

in

a

bit-significant

format,

thereby

allowing

multiple

individual

groups

to

be

designated

by

a

single

address.

The

Token-Ring

network

architecture

provides

bit-specific

functional

addresses

for

widely-used

functions,

such

as

configuration

report

server.

Ring

stations

use

functional

address

masks

to

identify

these

functions.

For

example,

if

function

G

is

assigned

a

functional

address

of

0xC000

0008

0000,

and

function

M

is

assigned

a

function

address

of

0xC000

0000

0040,

then

ring

station

Y,

whose

node

contains

function

G

and

M,

would

have

a

mask

of

0xC000

0008

0040.

Ring

station

Y

would

receive

packets

addressed

to

either

function

G

or

M

or

to

an

address

like

0xC000

0008

0048

because

that

address

contains

bits

specified

in

the

mask.

Note:

The

device

forces

the

first

2

bytes

of

the

functional

address

to

be

0xC000.

In

addition,

bits

6

and

7

of

byte

5

of

the

functional

address

are

forced

to

a

0

by

the

device.

134

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

NDD_ALTADDRS

and

TOK_RECEIVE_FUNC

flags

in

the

ndd_flags

field

are

set.

Because

functional

addresses

are

encoded

in

a

bit-significant

format,

reference

counts

are

kept

on

each

of

the

31

least

significant

bits

of

the

address.

Reference

counts

are

not

kept

on

the

17

most

significant

bits

(the

0xC000

of

the

functional

address

and

the

functional

address

indicator

bit).

Group

Address:

If

no

group

address

is

currently

enabled,

the

specified

address

is

set

as

the

group

address

for

the

device.

The

group

address

will

not

be

set

and

EINVAL

will

be

returned

if

a

group

address

is

currently

enabled.

The

device

forces

the

first

2

bytes

of

the

group

address

to

be

0xC000.

The

NDD_ALTADDRS

and

TOK_RECEIVE_GROUP

flags

in

the

ndd_flags

field

are

set.

NDD_DISABLE_ADDRESS

This

command

disables

the

receipt

of

packets

with

a

functional

or

a

group

address.

The

functional

address

indicator

(bit

0

″the

MSB″

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(the

bit

is

a

0)

or

a

group

address

(the

bit

is

a

1).

The

length

field

is

not

used

because

the

address

must

be

6

bytes

in

length.

Functional

Address:

The

reference

counts

are

decremented

for

those

bits

in

the

functional

address

that

are

a

one

(on).

If

the

reference

count

for

a

bit

goes

to

zero,

the

bit

will

be

″turned

off″

in

the

functional

address

for

the

device.

If

no

functional

addresses

are

active

after

receipt

of

this

command,

the

TOK_RECEIVE_FUNC

flag

in

the

ndd_flags

field

is

reset.

If

no

functional

or

group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

Group

Address:

If

the

group

address

that

is

currently

enabled

is

specified,

receipt

of

packets

with

a

group

address

is

disabled.

If

a

different

address

is

specified,

EINVAL

will

be

returned.

If

no

group

address

is

active

after

receipt

of

this

command,

the

TOK_RECEIVE_GROUP

flag

in

the

ndd_flags

field

is

reset.

If

no

functional

or

group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

NDD_MIB_ADDR

The

following

addresses

are

returned:

v

Device

Physical

Address

(or

alternate

address

specified

by

user)

v

Broadcast

Address

0xFFFF

FFFF

FFFF

v

Broadcast

Address

0xC000

FFFF

FFFF

v

Functional

Address

(only

if

a

user

specified

a

functional

address)

v

Group

Address

(only

if

a

user

specified

a

group

address)

NDD_CLEAR_STATS

The

counters

kept

by

the

device

will

be

zeroed.

NDD_GET_ALL_STATS

The

arg

parameter

specifies

the

address

of

the

mon_all_stats_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/cdli_tokuser.h

file.

The

statistics

that

are

returned

contain

statistics

obtained

from

the

device.

If

the

device

is

inoperable,

the

statistics

that

are

returned

will

not

contain

the

current

device

statistics.

The

copy

of

the

ndd_flags

field

can

be

checked

to

determine

the

state

of

the

device.

Chapter

7.

Communications

I/O

Subsystem

135

Trace

Points

and

Error

Log

Templates

for

8fc8

Token-Ring

Device

Driver

The

Token-Ring

device

driver

has

three

trace

points.

The

IDs

are

defined

in

the

usr/include/sys/cdli_tokuser.h

file.

The

Token-Ring

error

log

templates

are:

ERRID_CTOK_ADAP_CHECK

The

microcode

on

the

device

performs

a

series

of

diagnostic

checks

when

the

device

is

idle.

These

checks

can

find

errors

and

they

are

reported

as

adapter

checks.

If

the

device

was

connected

to

the

network

when

this

error

occurred,

the

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CTOK_ADAP_OPEN

The

device

driver

was

enable

to

open

the

device.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CTOK_AUTO_RMV

An

internal

hardware

error

following

the

beacon

automatic

removal

process

has

been

detected.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CONFIG

The

ring

speed

(or

ring

data

rate)

is

probably

wrong.

Contact

the

network

administrator

to

determine

the

speed

of

the

ring.

The

device

driver

will

only

retry

twice

at

2

minute

intervals

after

this

error

log

entry

has

been

generated.

ERRID_CTOK_DEVICE_ERR

The

device

detected

an

I/O

channel

error

or

an

error

in

a

command

the

device

driver

issued,

an

error

occurred

during

a

PIO

operation,

or

the

device

has

detected

an

error

in

a

packet

given

to

the

device.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CTOK_DOWNLOAD

The

download

of

the

microcode

to

the

device

failed.

User

intervention

is

required

to

make

the

device

available.

ERRID_CTOK_DUP_ADDR

The

device

has

detected

that

another

station

on

the

ring

has

a

device

address

that

is

the

same

as

the

device

address

being

tested.

Contact

network

administrator

to

determine

why.

ERRID_CTOK_MEM_ERR

An

error

occurred

while

allocating

memory

or

timer

control

block

structures.

ERRID_CTOK_PERM_HW

The

device

driver

could

not

reset

the

card.

For

example,

did

not

receive

status

from

the

adapter

within

the

retry

period.

ERRID_CTOK_RCVRY_EXIT

The

error

that

caused

the

device

driver

to

go

into

error

recovery

mode

has

been

corrected.

ERRID_CTOK_RMV_ADAP

The

device

has

received

a

remove

ring

station

MAC

frame

indicating

that

a

network

management

function

has

directed

this

device

to

get

off

the

ring.

Contact

network

administrator

to

determine

why.

136

Kernel

Extensions

and

Device

Support

Programming

Concepts

ERRID_CTOK_WIRE_FAULT

There

is

probably

a

loose

(or

bad)

cable

between

the

device

and

the

MAU.

There

is

some

chance

that

it

might

be

a

bad

device.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

required

for

this

error.

High-Performance

(8fa2)

Token-Ring

Device

Driver

Note:

The

information

in

this

section

is

specific

to

AIX

5.1

and

earlier.

The

8fa2

Token-Ring

device

driver

is

a

dynamically

loadable

device

driver.

The

device

driver

is

automatically

loaded

into

the

system

at

device

configuration

time

as

part

of

the

configuration

process.

The

interface

to

the

device

is

through

the

kernel

services

known

as

Network

Services.

Interfacing

to

the

device

driver

is

achieved

by

calling

the

device

driver’s

entry

points

for

opening

the

device,

closing

the

device,

transmitting

data,

doing

a

remote

dump,

and

issuing

device

control

commands.

The

Token-Ring

device

driver

interfaces

with

the

Token-Ring

High-Performance

Network

Adapter

(8fa2).

It

provides

a

Micro

Channel-based

connection

to

a

Token-Ring

network.

The

adapter

is

IEEE

802.5

compatible

and

supports

both

4

and

16

megabit

per

second

networks.

The

adapter

supports

only

a

RJ-45

connection.

Configuration

Parameters

for

8fa2

Token-Ring

Device

Driver

The

following

lists

the

configuration

parameters

necessary

to

use

the

device

driver.

Ring

Speed

Indicates

the

Token-Ring

speed.

The

speed

is

set

at

4

or

16

megabits

per

second

or

autosense.

4

Specifies

that

the

device

driver

will

open

the

adapter

with

4

Mbits.

It

will

return

an

error

if

ring

speed

does

not

match

the

network

speed.

16

Specifies

that

the

device

driver

will

open

the

adapter

with

16

Mbits.

It

will

return

an

error

if

ring

speed

does

not

match

the

network

speed.

autosense

Specifies

that

the

adapter

will

open

with

the

speed

used

determined

as

follows:

v

If

it

is

an

open

on

an

existing

network,

the

speed

will

be

the

ring

speed

of

the

network.

v

If

it

is

an

open

on

a

new

network:

v

If

the

adapter

is

a

new

adapter,

16

Mbits

is

used.

v

If

the

adapter

had

successfully

opened,

the

ring

speed

will

be

the

ring

speed

of

the

last

successful

open.

Software

Transmit

Queue

Specifies

a

transmit

request

pointer

that

can

be

set

to

store

between

32

and

2048

transmit

request

pointers.

Each

transmit

request

pointer

corresponds

to

a

transmit

request

which

might

be

for

several

buffers

of

data.

Attention

MAC

frames

Indicates

if

attention

MAC

frames

should

be

received.

Beacon

MAC

frames

Indicates

if

beacon

MAC

frames

should

be

received.

Priority

Data

Transmission

Specifies

a

request

priority

transmission

of

the

data

packets.

Chapter

7.

Communications

I/O

Subsystem

137

Network

Address

Specifies

the

use

of

the

device’s

hardware

address

as

the

network

address

or

an

alternate

network

address

configured

through

software.

When

an

alternate

address

is

used,

any

valid

Individual

Address

can

be

used.

The

most

significant

bit

of

the

address

must

be

set

to

zero

(definition

of

an

Individual

Address).

Device

Driver

Configuration

and

Unconfiguration

The

tok_config

entry

point

performs

configuration

functions

Token-Ring

device

driver.

Device

Driver

Open

The

tok_open

function

is

called

to

open

the

specified

network

device.

The

Token

Ring

device

driver

does

a

synchronous

open.

The

device

will

be

initialized

at

this

time.

When

the

resources

have

been

successfully

allocated,

the

device

will

start

the

process

of

attaching

the

device

to

the

network.

If

the

connection

is

successful,

the

NDD_RUNNING

flag

will

be

set

in

the

ndd_flags

field

and

a

NDD_CONNECTED

status

block

will

be

sent.

If

the

device

connection

fails,

the

NDD_LIMBO

flag

will

be

set

in

the

ndd_flags

field

and

a

NDD_LIMBO_ENTRY

status

block

will

be

sent.

If

the

device

is

eventually

connected,

the

NDD_LIMBO

flag

will

be

turned

off

and

the

NDD_RUNNING

flag

will

be

set

in

the

ndd_flags

field.

Both

NDD_CONNECTED

and

NDD_LIMBO_EXIT

status

blocks

will

be

set.

Device

Driver

Close

The

tok_close

function

is

called

to

close

the

specified

network

device.

This

function

resets

the

device

to

a

known

state

and

frees

system

resources

associated

with

the

device.

The

device

will

not

be

detached

from

the

network

until

the

device’s

transmit

queue

is

allowed

to

drain.

Data

Transmission

The

tok_output

function

transmits

data

using

the

network

device.

The

device

driver

does

not

support

mbufs

from

user

memory

(which

have

the

M_EXT

flag

set).

If

the

destination

address

in

the

packet

is

a

broadcast

address

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

should

be

set

prior

to

entering

this

routine.

A

broadcast

address

is

defined

as

0xFFFF

FFFF

FFFF

or

0xC000

FFFF

FFFF.

If

the

destination

address

in

the

packet

is

a

multicast

address

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

should

be

set

prior

to

entering

this

routine.

A

multicast

address

is

defined

as

a

non-individual

address

other

than

a

broadcast

address.

The

device

driver

will

keep

statistics

based

upon

the

M_BCAST

and

M_MCAST

flags.

If

a

packet

is

transmitted

with

a

destination

address

which

matches

the

adapter’s

address,

the

packet

will

be

received.

This

is

true

for

the

adapter’s

physical

address,

broadcast

addresses

(0xC000

FFFF

FFFF

or

0xFFFF

FFFF

FFFF),

enabled

functional

addresses,

or

an

enabled

group

address.

Data

Reception

When

the

Token-Ring

device

driver

receives

a

valid

packet

from

the

network

device,

the

Token-Ring

device

driver

calls

the

nd_receive

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_receive

function

is

part

of

a

CDLI

network

demuxer.

The

packet

is

passed

to

the

nd_receive

function

in

mbufs.

138

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

Token-Ring

device

driver

will

pass

only

one

packet

to

the

nd_receive

function

at

a

time.

The

device

driver

will

set

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

is

received

which

has

an

all

stations

broadcast

address.

This

address

is

defined

as

0xFFFF

FFFF

FFFF

or

0xC000

FFFF

FFFF.

The

device

driver

will

set

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

is

received

which

has

a

non-individual

address

which

is

different

than

the

all-stations

broadcast

address.

The

adapter

will

not

pass

invalid

packets

to

the

device

driver.

Asynchronous

Status

When

a

status

event

occurs

on

the

device,

the

Token-Ring

device

driver

builds

the

appropriate

status

block

and

calls

the

nd_status

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_status

function

is

part

of

a

CDLI

network

demuxer.

The

following

status

blocks

are

defined

for

the

Token-Ring

device

driver.

Hard

Failure

When

a

hard

failure

has

occurred

on

the

Token-Ring

device,

the

following

status

blocks

can

be

returned

by

the

Token-Ring

device

driver.

One

of

these

status

blocks

indicates

that

a

fatal

error

occured.

NDD_PIO_FAIL

Indicates

that

when

a

PIO

error

occurs,

it

is

retried

3

times.

If

the

error

persists,

it

is

considered

unrecoverable

and

the

following

status

block

is

generated:

code

Set

to

NDD_HARD_FAIL

option[0]

Set

to

NDD_PIO_FAIL

option[]

The

remainder

of

the

status

block

is

used

to

return

additional

status

information.

NDD_HARD_FAIL

Indicates

that

when

a

transmit

error

occurs

it

is

retried.

If

the

error

is

unrecoverable,

the

following

status

block

is

generated:

code

Set

to

NDD_HARD_FAIL

option[0]

Set

to

NDD_HARD_FAIL

option[]

The

remainder

of

the

status

block

is

used

to

return

additional

status

information.

NDD_ADAP_CHECK

Indicates

that

when

an

adapter

check

has

occurred,

the

following

status

block

is

generated:

code

Set

to

NDD_ADAP_CHECK

option[]

The

remainder

of

the

status

block

is

used

to

return

additional

status

information.

NDD_DUP_ADDR

Indicates

that

the

device

detected

a

duplicated

address

in

the

network

and

the

following

status

block

is

generated:

code

Set

to

NDD_DUP_ADDR

option[]

The

remainder

of

the

status

block

is

used

to

return

additional

status

information.

NDD_CMD_FAIL

Indicates

that

the

device

detected

an

error

in

a

command

that

the

device

driver

issued.

The

following

status

block

is

generated:

code

Set

to

NDD_CMD_FAIL

Chapter

7.

Communications

I/O

Subsystem

139

option[0]

Set

to

the

command

code

option[]

Set

to

error

information

from

the

command.

TOK_RING_SPEED

Indicates

that

when

a

ring

speed

error

occurs

while

the

device

is

being

open,

the

following

status

block

is

generated:

code

Set

to

NDD_LIMBO_ENTER

option[]

Set

to

error

information.

Enter

Network

Recovery

Mode

Indicates

that

when

the

device

driver

has

detected

an

error

which

requires

initiating

recovery

logic

that

will

make

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver.

Note:

While

the

device

driver

is

in

this

recovery

logic,

the

device

might

not

be

fully

functional.

The

device

driver

will

notify

users

when

the

device

is

fully

functional

by

way

of

an

NDD_LIMBO_EXIT

asynchronous

status

block.

code

Set

to

NDD_LIMBO_ENTER

option[0]

Set

to

one

of

the

following:

v

NDD_CMD_FAIL

v

TOK_WIRE_FAULT

v

NDD_BUS_ERROR

v

NDD_ADAP_CHECK

v

NDD_TX_TIMEOUT

v

TOK_BEACONING

option[]

The

remainder

of

the

status

block

is

used

to

return

additional

status

information

by

the

device

driver.

Exit

Network

Recovery

Mode

Indicates

that

when

the

device

driver

has

successfully

completed

recovery

logic

from

the

error

that

made

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver.

This

status

block

indicates

the

device

is

now

fully

functional.

code

Set

to

NDD_LIMBO_EXIT

option[]

N/A

Device

Connected

Indicates

that

when

the

device

is

successfully

connected

to

the

network

the

following

status

block

is

returned

by

the

device

driver:

code

Set

to

NDD_CONNECTED

option[]

N/A

Device

Control

Operations

The

tok_ctl

function

is

used

to

provide

device

control

functions.

NDD_GET_STATS

The

user

should

pass

in

the

tok_ndd_stats_t

structure

as

defined

in

<sys/cdli_tokuser.h>.

The

driver

will

fail

a

call

with

a

buffer

smaller

than

the

structure.

The

structure

must

be

in

a

kernel

heap

so

that

the

device

driver

can

copy

the

statistics

into

it;

and

it

must

be

pinned.

140

Kernel

Extensions

and

Device

Support

Programming

Concepts

NDD_PROMISCUOUS_ON

Setting

promiscuous

mode

will

not

cause

non-LLC

frames

to

be

received

by

the

driver

unless

the

user

also

enables

those

filters

(Attention

MAC

frames,

Beacon

MAC

frames).

The

driver

will

maintain

a

counter

of

requests.

NDD_PROMISCUOUS_OFF

This

command

will

release

a

request

from

a

user

to

PROMISCUOUS_ON;

it

will

not

exit

the

mode

on

the

adapter

if

more

requests

are

outstanding.

NDD_MIB_QUERY

The

arg

parameter

specifies

the

address

of

the

token_ring_all_mib_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/tokenring_mibs.h

file.

The

device

driver

does

not

support

any

variables

for

read_write

or

write

only.

If

the

syntax

of

a

member

of

the

structure

is

some

integer

type,

the

level

of

support

flag

will

be

stored

in

the

whole

field,

regardless

of

the

size

of

the

field.

For

those

fields

which

are

defined

as

character

arrays,

the

value

will

be

returned

only

in

the

first

byte

in

the

field.

NDD_MIB_GET

The

arg

parameter

specifies

the

address

of

the

token_ring_all_mib_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/tokenring_mibs.h

file.

NDD_ENABLE_ADDRESS

This

command

enables

the

receipt

of

packets

with

a

functional

or

a

group

address.

The

functional

address

indicator

(bit

0

″the

MSB″

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(the

bit

is

a

0)

or

a

group

address

(the

bit

is

a

1).

The

length

field

is

not

used

because

the

address

must

be

6

bytes

in

length.

Functional

Address

The

specified

address

is

ORed

with

the

currently

specified

functional

addresses

and

the

resultant

address

is

set

as

the

functional

address

for

the

device.

Functional

addresses

are

encoded

in

a

bit-significant

format,

thereby

allowing

multiple

individual

groups

to

be

designated

by

a

single

address.

The

Token-Ring

network

architecture

provides

bit-specific

functional

addresses

for

widely

used

functions,

such

as

configuration

report

server.

Ring

stations

use

functional

address

masks

to

identify

these

functions.

For

example,

if

function

G

is

assigned

a

functional

address

of

0xC000

0008

0000,

and

function

M

is

assigned

a

function

address

of

0xC000

0000

0040,

then

ring

station

Y,

whose

node

contains

function

G

and

M,

would

have

a

mask

of

0xC000

0008

0040.

Ring

station

Y

would

receive

packets

addressed

to

either

function

G

or

M

or

to

an

address

like

0xC000

0008

0048

because

that

address

contains

bits

specified

in

the

mask.

The

NDD_ALTADDRS

and

TOK_RECEIVE_FUNC

flags

in

the

ndd_flags

field

are

set.

Because

functional

addresses

are

encoded

in

a

bit-significant

format,

reference

counts

are

kept

on

each

of

the

31

least

significant

bits

of

the

address.

Group

Address

The

device

support

256

general

group

addresses.

The

promiscuous

mode

will

be

turned

on

when

the

group

addresses

needed

to

be

set

are

more

than

256.

The

device

driver

will

maintain

a

reference

count

on

this

operation.

The

NDD_ALTADDRS

and

TOK_RECEIVE_GROUP

flags

in

the

ndd_flags

field

are

set.

NDD_DISABLE_ADDRESS

This

command

disables

the

receipt

of

packets

with

a

functional

or

a

group

address.

The

functional

address

indicator

(bit

0

″the

MSB″

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(the

bit

is

a

0)

or

a

group

address

(the

bit

is

a

1).

The

length

field

is

not

used

because

the

address

must

be

6

bytes

in

length.

Chapter

7.

Communications

I/O

Subsystem

141

Functional

Address

The

reference

counts

are

decremented

for

those

bits

in

the

functional

address

that

are

one

(meaning

on).

If

the

reference

count

for

a

bit

goes

to

zero,

the

bit

will

be

″turned

off″

in

the

functional

address

for

the

device.

If

no

functional

addresses

are

active

after

receipt

of

this

command,

the

TOK_RECEIVE_FUNC

flag

in

the

ndd_flags

field

is

reset.

If

no

functional

or

group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

Group

Address

If

the

number

of

group

address

enabled

is

less

than

256,

the

driver

sends

a

command

to

the

device

to

disable

the

receipt

of

the

packets

with

the

specified

group

address.

Otherwise,

the

driver

just

deletes

the

group

address

from

the

group

address

table.

If

there

are

less

than

256

group

addresses

enabled

after

the

receipt

of

this

command,

the

promiscuous

mode

is

turned

off.

If

no

group

address

is

active

after

receipt

of

this

command,

the

TOK_RECEIVE_GROUP

flag

in

the

ndd_flags

field

is

reset.

If

no

functional

or

group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

NDD_PRIORITY_ADDRESS

The

driver

returns

the

address

of

the

device

driver’s

priority

transmit

routine.

NDD_MIB_ADDR

The

driver

will

return

at

least

three

addresses:

device

physical

address

(or

alternate

address

specified

by

user)

and

two

broadcast

addresses

(0xFFFF

FFFF

FFFF

and

0xC000

FFFF

FFFF).

Additional

addresses

specified

by

the

user,

such

as

functional

address

and

group

addresses,

might

also

be

returned.

NDD_CLEAR_STATS

The

counters

kept

by

the

device

are

zeroed.

NDD_GET_ALL_STATS

The

arg

parameter

specifies

the

address

of

the

mon_all_stats_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/cdli_tokuser.h

file.

The

statistics

returned

include

statistics

obtained

from

the

device.

If

the

device

is

inoperable,

the

statistics

returned

do

not

contain

the

current

device

statistics.

The

copy

of

the

ndd_flags

field

can

be

checked

to

determine

the

state

of

the

device.

Trace

Points

and

Error

Log

Templates

for

8fa2

Token-Ring

Device

Driver

The

Token-Ring

device

driver

has

four

trace

points.

The

IDs

are

defined

in

the

/usr/include/sys/cdli_tokuser.h

file.

The

Token-Ring

error

log

templates

are

:

ERRID_MPS_ADAP_CHECK

The

microcode

on

the

device

performs

a

series

of

diagnostic

checks

when

the

device

is

idle.

These

checks

can

find

errors

and

they

are

reported

as

adapter

checks.

If

the

device

was

connected

to

the

network

when

this

error

occurred,

the

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_MPS_ADAP_OPEN

The

device

driver

was

enable

to

open

the

device.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

142

Kernel

Extensions

and

Device

Support

Programming

Concepts

ERRID_MPS_AUTO_RMV

An

internal

hardware

error

following

the

beacon

automatic

removal

process

has

been

detected.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_MPS_RING_SPEED

The

ring

speed

(or

ring

data

rate)

is

probably

wrong.

Contact

the

network

administrator

to

determine

the

speed

of

the

ring.

The

device

driver

only

retries

twice

at

2

minute

intervals

when

this

error

log

entry

is

generated.

ERRID_MPS_DMAFAIL

The

device

detected

a

DMA

error

in

a

TX

or

RX

operation.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_MPS_BUS_ERR

The

device

detected

a

Micro

Channel

bus

error.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_MPS_DUP_ADDR

The

device

has

detected

that

another

station

on

the

ring

has

a

device

address

which

is

the

same

as

the

device

address

being

tested.

Contact

the

network

administrator

to

determine

why.

ERRID_MPS_MEM_ERR

An

error

occurred

while

allocating

memory

or

timer

control

block

structures.

ERRID_MPS_PERM_HW

The

device

driver

could

not

reset

the

card.

For

example,

it

did

not

receive

status

from

the

adapter

within

the

retry

period.

ERRID_MPS_RCVRY_EXIT

The

error

that

caused

the

device

driver

to

go

into

error

recovery

mode

has

been

corrected.

ERRID_MPS_RMV_ADAP

The

device

has

received

a

remove

ring

station

MAC

frame

indicating

that

a

network

management

function

has

directed

this

device

to

get

off

the

ring.

Contact

the

network

administrator

to

determine

why.

ERRID_MPS_WIRE_FAULT

There

is

probably

a

loose

(or

bad)

cable

between

the

device

and

the

MAU.

There

is

some

chance

that

it

might

be

a

bad

device.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

required

for

this

error.

ERRID_MPS_RX_ERR

The

device

detected

a

receive

error.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_MPS_TX_TIMEOUT

The

transmit

watchdog

timer

expired

before

transmitting

a

frame

is

complete.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_MPS_CTL_ERR

The

IOCTL

watchdog

timer

expired

before

the

device

driver

received

a

response

from

the

device.

The

device

driver

goes

into

Network

Recovery

Mode

to

try

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

Chapter

7.

Communications

I/O

Subsystem

143

PCI

Token-Ring

Device

Drivers

The

following

Token-Ring

device

drivers

are

dynamically

loadable.

The

device

driver

is

automatically

loaded

into

the

system

at

device

configuration

time

as

part

of

the

configuration

process.

v

PCI

Token-Ring

High

PerformanceDevice

Driver

(14101800)

v

PCI

Token-Ring

Device

Driver

(14103e00)

The

interface

to

the

device

is

through

the

kernel

services

known

as

Network

Services.

Interfacing

to

the

device

driver

is

achieved

by

calling

the

device

driver’s

entry

points

to

perform

the

following

actions:

v

Opening

the

device

v

Closing

the

device

v

Transmitting

data

v

Performing

a

remote

dump

v

Issuing

device

control

commands

The

PCI

Token-Ring

High

Performance

Device

Driver

(14101800)

interfaces

with

the

PCI

Token-Ring

High-Performance

Network

Adapter

(14101800).

The

adapter

is

IEEE

802.5

compatible

and

supports

both

4

and

16

Mbps

networks.

The

adapter

supports

only

an

RJ-45

connection.

The

PCI

Token-Ring

Device

Driver

(14103e00)

interfaces

with

the

PCI

Token-Ring

Network

Adapter

(14103e00).

The

adapter

is

IEEE

802.5

compatible

and

supports

both

4

and

16

Mbps

networks.

The

adapter

supports

both

an

RJ-45

and

a

9

Pin

connection.

Configuration

Parameters

The

following

configuration

parameter

is

supported

by

all

PCI

Token-Ring

Device

Drivers:

Ring

Speed

The

device

driver

supports

a

user-configurable

parameter

that

indicates

if

the

token-ring

is

to

run

at

4

or

16

Mbps.

The

device

driver

supports

a

user-configurable

parameter

that

selects

the

ring

speed

of

the

adapter.

There

are

three

options

for

the

ring

speed:

4,

16,

or

autosense.

1.

If

4

is

selected,

the

device

driver

opens

the

adapter

with

4

Mbits.

It

returns

an

error

if

the

ring

speed

does

not

match

the

network

speed.

2.

If

16

is

selected,

the

device

driver

opens

the

adapter

with

16

Mbits.

It

returns

an

error

if

the

ring

speed

does

not

match

the

network

speed.

3.

If

autosense

is

selected,

the

adapter

guarantees

a

successful

open,

and

the

speed

used

to

open

is

dependent

on

the

following:

v

If

the

adapter

is

opened

on

an

existing

network

the

speed

is

determined

by

the

ring

speed

of

the

network.

v

If

the

device

is

opened

on

a

new

network

and

the

adapter

is

new,

16

Mbits

is

used.

Or,

if

the

adapter

opened

successfully,

the

ring

speed

is

determined

by

the

speed

of

the

last

successful

open.

Software

Transmit

Queue

The

device

driver

supports

a

user-configurable

transmit

queue

that

can

be

set

to

store

between

32

and

2048

transmit

request

pointers.

Each

transmit

request

pointer

corresponds

to

a

transmit

request

that

might

be

for

several

buffers

of

data.

Receive

Queue

The

device

driver

supports

a

user-configurable

receive

queue

that

can

be

set

to

store

between

32

and

160

receive

buffers.

These

buffers

are

mbuf

clusters

into

which

the

device

writes

the

received

data.

144

Kernel

Extensions

and

Device

Support

Programming

Concepts

Full

Duplex

Indicates

whether

the

adapter

is

operating

in

full-duplex

or

half-duplex

mode.

If

this

field

is

set

to

yes,

the

device

driver

programs

the

adapter

to

be

in

full-duplex

mode.

The

default

value

is

half-duplex.

Attention

MAC

Frames

The

device

driver

supports

a

user-configurable

parameter

that

indicates

if

attention

MAC

frames

should

be

received.

Beacon

MAC

Frames

The

device

driver

supports

a

user-configurable

parameter

that

indicates

if

beacon

MAC

frames

should

be

received.

Network

Address

The

driver

supports

the

use

of

the

device’s

hardware

address

as

the

network

address

or

an

alternate

network

address

configured

through

software.

When

an

alternate

address

is

used,

any

valid

individual

address

can

be

used.

The

most

significant

bit

of

the

address

must

be

set

to

zero.

In

addition,

the

following

configuration

parameters

are

supported

by

the

PCI

Token-Ring

High

Performance

Device

Driver

(14101800):

Priority

Data

Transmission

The

device

driver

supports

a

user

option

to

request

priority

transmission

of

the

data

packets.

Software

Priority

Transmit

Queue

The

device

driver

supports

a

user-configurable

priority

transmit

queue

that

can

be

set

to

store

between

32

and

160

transmit

request

pointers.

Each

transmit

request

pointer

corresponds

to

a

transmit

request

that

might

be

for

several

buffers

of

data.

Device

Driver

Configuration

and

Unconfiguration

The

configuration

entry

points

of

the

device

drivers

conform

to

the

guidelines

for

kernel

object

file

entry

points.

These

configuration

entry

points

are

as

follows:

v

tok_config

for

the

PCI

Token-Ring

High

Performance

Device

Driver

(14101800).

v

cs_config

for

the

PCI

Token-Ring

Device

Driver

(14103e00).

Device

Driver

Open

The

Token-Ring

device

driver

performs

a

synchronous

open.

The

device

is

initialized

at

this

time.

When

the

resources

are

successfully

allocated,

the

device

starts

the

process

of

attaching

the

device

to

the

network.

If

the

connection

is

successful,

the

NDD_RUNNING

flag

is

set

in

the

ndd_flags

field,

and

an

NDD_CONNECTED

status

block

is

sent.

If

the

device

connection

fails,

the

NDD_LIMBO

flag

is

set

in

the

ndd_flags

field,

and

an

NDD_LIMBO_ENTRY

status

block

is

sent.

If

the

device

is

eventually

connected,

the

NDD_LIMBO

flag

is

turned

off,

and

the

NDD_RUNNING

flag

is

set

in

the

ndd_flags

field.

Both

NDD_CONNECTED

and

NDD_LIMBO_EXIT

status

blocks

are

set.

The

entry

points

are

as

follows:

v

tok_open

for

the

PCI

Token-Ring

High

Performance

Device

Driver

(14101800).

v

cs_open

for

the

PCI

Token-Ring

Device

Driver

(14103e00).

Chapter

7.

Communications

I/O

Subsystem

145

Device

Driver

Close

This

function

resets

the

device

to

a

known

state

and

frees

system

resources

associated

with

the

device.

The

device

is

not

detached

from

the

network

until

the

device’s

transmit

queue

is

allowed

to

drain.

The

close

entry

points

are

as

follows:

v

tok_close

for

the

PCI

Token-Ring

High

Performance

Device

Driver

(14101800).

v

cs_close

for

the

PCI

Token-Ring

Device

Driver

(14103e00).

Data

Transmission

The

device

drivers

do

not

support

mbuf

structures

from

user

memory

that

have

the

M_EXT

flag

set.

If

the

destination

address

in

the

packet

is

a

broadcast

address,

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

must

be

set

prior

to

entering

this

routine.

A

broadcast

address

is

defined

as

0xFFFF

FFFF

FFFF

or

0xC000

FFFF

FFFF.

If

the

destination

address

in

the

packet

is

a

multicast

address,

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

must

be

set

prior

to

entering

this

routine.

A

multicast

address

is

defined

as

a

non-individual

address

other

than

a

broadcast

address.

The

device

driver

keeps

statistics

based

on

the

M_BCAST

and

M_MCAST

flags.

If

a

packet

is

transmitted

with

a

destination

address

that

matches

the

adapter’s

address,

the

packet

is

received.

This

is

true

for

the

adapter’s

physical

address,

broadcast

addresses

(0xC000

FFFF

FFFF

or

0xFFFF

FFFF

FFFF),

enabled

functional

addresses,

or

an

enabled

group

address.

The

output

entry

points

are

as

follows:

v

tok_output

for

the

PCI

Token-Ring

High

Performance

Device

Driver

(14101800).

v

cs_close

for

the

PCI

Token-Ring

Device

Driver

(14103e00).

Data

Reception

When

the

Token-Ring

device

driver

receives

a

valid

packet

from

the

network

device,

the

Token-Ring

device

driver

calls

the

nd_receive()

function

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_receive()

function

is

part

of

a

CDLI

network

demuxer.

The

packet

is

passed

to

the

nd_receive()

function

in

the

mbuf

structures.

The

Token-Ring

device

driver

passes

only

one

packet

to

the

nd_receive()

function

at

a

time.

The

device

driver

sets

the

M_BCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

that

has

an

all-stations

broadcast

address

is

received.

This

address

is

defined

as

0xFFFF

FFFF

FFFF

or

0xC000

FFFF

FFFF.

The

device

driver

sets

the

M_MCAST

flag

in

the

p_mbuf->m_flags

field

when

a

packet

is

received

that

has

a

non-individual

address

that

is

different

from

the

all-stations

broadcast

address.

The

adapter

does

not

pass

invalid

packets

to

the

device

driver.

Asynchronous

Status

When

a

status

event

occurs

on

the

device,

the

Token-Ring

device

driver

builds

the

appropriate

status

block

and

calls

the

nd_status()

function

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_status()

function

is

part

of

a

CDLI

network

demuxer.

The

following

status

blocks

are

defined

for

the

Token-Ring

device

driver.

146

Kernel

Extensions

and

Device

Support

Programming

Concepts

Hard

Failure

When

a

hard

failure

occurs

on

the

Token-Ring

device,

the

following

status

blocks

are

returned

by

the

Token-Ring

device

driver.

One

of

these

status

blocks

indicates

that

a

fatal

error

has

occurred.

NDD_HARD_FAIL

When

a

transmit

error

occurs,

it

tries

to

recover.

If

the

error

is

unrecoverable,

this

status

block

is

generated.

code

Set

to

NDD_HARD_FAIL.

option[0]

Set

to

NDD_HARD_FAIL.

option[

]

The

remainder

of

the

status

block

can

be

used

to

return

additional

status

information.

Enter

Network

Recovery

Mode

When

the

device

driver

detects

an

error

that

requires

initiating

recovery

logic

to

make

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver.

Note:

While

the

device

driver

is

in

this

recovery

logic,

the

device

might

not

be

fully

functional.

The

device

driver

notifies

users

when

the

device

is

fully

functional

by

way

of

an

NDD_LIMBO_EXIT

asynchronous

status

block:

code

Set

to

NDD_LIMBO_ENTER.

option[0]

Set

to

one

of

the

following:

v

NDD_CMD_FAIL

v

NDD_ADAP_CHECK

v

NDD_TX_ERR

v

NDD_TX_TIMEOUT

v

NDD_AUTO_RMV

v

TOK_ADAP_OPEN

v

TOK_ADAP_INIT

v

TOK_DMA_FAIL

v

TOK_RING_SPEED

v

TOK_RMV_ADAP

v

TOK_WIRE_FAULT

option[

]

The

remainder

of

the

status

block

can

be

used

to

return

additional

status

information

by

the

device

driver.

Exit

Network

Recovery

Mode

When

the

device

driver

has

successfully

completed

recovery

logic

from

the

error

that

made

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver:

code

Set

to

NDD_LIMBO_EXIT.

option[

]

The

option

fields

are

not

used.

The

device

is

now

fully

functional.

Device

Control

Operations

The

ndd_ctl

entry

point

is

used

to

provide

device

control

functions.

NDD_GET_STATS

The

user

should

pass

in

the

tok_ndd_stats_t

structure

as

defined

in

the

sys/cdli_tokuser.h

file.

The

driver

fails

a

call

with

a

buffer

smaller

than

the

structure.

Chapter

7.

Communications

I/O

Subsystem

147

The

structure

must

be

in

kernel

heap

so

that

the

device

driver

can

copy

the

statistics

into

it.

Also,

it

must

be

pinned.

NDD_PROMISCUOUS_ON

Setting

promiscuous

mode

will

not

cause

non-LLC

frames

to

be

received

by

the

driver

unless

the

user

also

enables

those

filters

(Attention

MAC

frames,

Beacon

MAC

frames).

The

driver

maintains

a

counter

of

requests.

NDD_PROMISCUOUS_OFF

This

command

releases

a

request

from

a

user

to

PROMISCUOUS_ON;

it

will

not

exit

the

mode

on

the

adapter

if

more

requests

are

outstanding.

NDD_MIB_QUERY

The

arg

parameter

specifies

the

address

of

the

token_ring_all_mib_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/tokenring_mibs.h

file.

The

device

driver

does

not

support

any

variables

for

read_write

or

write

only.

If

the

syntax

of

a

member

of

the

structure

is

an

integer

type,

the

level

of

support

flag

is

stored

in

the

whole

field,

regardless

of

the

size

of

the

field.

For

those

fields

that

are

defined

as

character

arrays,

the

value

is

returned

only

in

the

first

byte

in

the

field.

NDD_MIB_GET

The

arg

parameter

specifies

the

address

of

the

token_ring_all_mib_t

structure.

This

structure

is

defined

in

the

/usr/include/sys/tokenring_mibs.h

file.

NDD_ENABLE_ADDRESS

This

command

enables

the

receipt

of

packets

with

a

functional

or

a

group

address.

The

functional

address

indicator

(bit

0

″the

MSB″

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(bit

0)

or

a

group

address

(bit

1).

The

length

field

is

not

used

because

the

address

must

be

6

bytes

in

length.

functional

address

The

specified

address

is

ORed

with

the

currently

specified

functional

addresses,

and

the

resultant

address

is

set

as

the

functional

address

for

the

device.

Functional

addresses

are

encoded

in

a

bit-significant

format,

thereby

allowing

multiple

individual

groups

to

be

designated

by

a

single

address.

The

Token-Ring

network

architecture

provides

bit-specific

functional

addresses

for

widely

used

functions,

such

as

configuration

report

server.

Ring

stations

use

functional

address

″masks″

to

identify

these

functions.

For

example,

if

function

G

is

assigned

a

functional

address

of

0xC000

0008

0000,

and

function

M

is

assigned

a

function

address

of

0xC000

0000

0040,

then

ring

station

Y,

whose

node

contains

function

G

and

M,

would

have

a

mask

of

0xC000

0008

0040.

Ring

station

Y

would

receive

packets

addressed

to

either

function

G

or

M

or

to

an

address,

such

as

0xC000

0008

0048,

because

that

address

contains

bits

specified

in

the

″mask.″

The

NDD_ALTADDRS

and

TOK_RECEIVE_FUNC

flags

in

the

ndd_flags

field

are

set.

Because

functional

addresses

are

encoded

in

a

bit-significant

format,

reference

counts

are

kept

on

each

of

the

31

least

significant

bits

of

the

address.

group

address

The

device

supports

256

general

group

addresses.

The

promiscuous

mode

is

turned

on

when

the

group

addresses

to

be

set

is

more

than

256.

The

device

driver

maintains

a

reference

count

on

this

operation.

The

device

supports

256

general

group

addresses.

The

promiscuous

mode

is

turned

on

when

the

group

address

needed

to

be

set

are

more

than

256.

The

device

driver

will

maintain

a

reference

count

on

this

operation.

The

NDD_ALTADDRS

and

TOK_RECEIVE_GROUP

flags

in

the

ndd_flags

field

are

set.

148

Kernel

Extensions

and

Device

Support

Programming

Concepts

NDD_DISABLE_ADDRESS

This

command

disables

the

receipt

of

packets

with

a

functional

or

a

group

address.

The

functional

address

indicator

(bit

0

″the

MSB″

of

byte

2)

indicates

whether

the

address

is

a

functional

address

(bit

0)

or

a

group

address

(bit

1).

The

length

field

is

not

used

because

the

address

must

be

6

bytes

in

length.

functional

address

The

reference

counts

are

decremented

for

those

bits

in

the

functional

address

that

are

1

(on).

If

the

reference

count

for

a

bit

goes

to

0,

the

bit

is

″turned

off″

in

the

functional

address

for

the

device.

If

no

functional

addresses

are

active

after

receipt

of

this

command,

the

TOK_RECEIVE_FUNC

flag

in

the

ndd_flags

field

is

reset.

If

no

functional

or

group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

group

address

If

group

address

enable

is

less

than

256,

the

driver

sends

a

command

to

the

device

to

disable

the

receipt

of

the

packets

with

the

specified

group

address.

Otherwise,

the

group

address

is

deleted

from

the

group

address

table.

If

there

are

less

than

256

group

addresses

enabled

after

the

receipt

of

this

command,

the

promiscuous

mode

is

turned

off.

If

no

group

address

is

active

after

receipt

of

this

command,

the

TOK_RECEIVE_GROUP

flag

in

the

ndd_flags

field

is

reset.

If

no

functional

or

group

addresses

are

active

after

receipt

of

this

command,

the

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset.

NDD_PRIORITY_ADDRESS

The

driver

returns

the

address

of

the

device

driver’s

priority

transmit

routine.

NDD_MIB_ADDR

The

driver

returns

at

least

three

addresses

that

are

device

physical

addresses

(or

alternate

addresses

specified

by

the

user),

two

broadcast

addresses

(0xFFFFFFFFFFFF

and

0xC000

FFFF

FFFF),

and

any

additional

addresses

specified

by

the

user,

such

as

functional

addresses

and

group

addresses.

NDD_CLEAR_STATS

The

counters

kept

by

the

device

are

zeroed.

NDD_GET_ALL_STATS

Used

to

gather

all

statistics

for

the

specified

device.

The

arg

parameter

specifies

the

address

of

the

statistics

structure

for

this

particular

device

type.

The

folowing

structures

are

available:

v

The

sky_all_stats_t

structure

is

available

for

the

PCI

Token-Ring

High

Performance

Device

Driver

(14101800),

and

is

defined

in

the

device-specific

/usr/include/sys/cdli_tokuser.h

include

file.

v

The

cs_all_stats_t

structure

is

available

for

the

PCI

Token-Ring

Device

Driver

(14103e00),

and

is

defined

in

the

device-specific

/usr/include/sys/cdli_tokuser.cstok.h

include

file.

The

statistics

that

are

returned

contain

information

obtained

from

the

device.

If

the

device

is

inoperable,

the

statistics

returned

are

not

the

current

device

statistics.

The

copy

of

the

ndd_flags

field

can

be

checked

to

determine

the

state

of

the

device.

Reliability,

Availability,

and

Serviceability

(RAS)

Trace

For

LAN

device

drivers,

trace

points

enable

error

monitoring

as

well

as

tracking

packets

as

they

move

through

the

driver.

The

drivers

issue

trace

points

for

some

or

all

of

the

following

conditions:

v

Beginning

and

ending

of

main

functions

in

the

main

path

v

Error

conditions

Chapter

7.

Communications

I/O

Subsystem

149

v

Beginning

and

ending

of

each

function

that

is

tracking

buffers

outside

of

the

main

path

v

Debugging

purposes

(These

trace

points

are

only

enabled

when

the

driver

is

compiled

with

the

-DDEBUG

option

turned,

therefore,

the

driver

can

contain

as

many

of

these

trace

points

as

needed.)

Following

is

a

list

of

trace

hooks

and

location

of

definition

files

for

the

existing

ethernet

device

drivers.

The

PCI

Token-Ring

High

Performance

Device

Driver

(14101800):

Definition

File:

/sys/cdli_tokuser.h

Trace

Hook

IDs

v

Transmit

2A7

v

Receive

2A8

v

Error

2A9

v

Other

2AA

The

PCI

Token-Ring

(14103e00)

Device

Driver:

Definition

File:

/sys/cdli_tokuser.cstok.h

Trace

Hook

IDs

v

Transmit

2DA

v

Receive

2DB

v

General

2DC

Error

Logging

PCI

Token-Ring

High

Performance

Device

Driver

(14101800):

The

error

IDs

for

the

PCI

Token-Ring

High

Performance

Device

Driver

(14101800)

are

as

follows:

ERRID_STOK_ADAP_CHECK

The

microcode

on

the

device

performs

a

series

of

diagnostic

checks

when

the

device

is

idle.

These

checks

can

find

errors,

and

they

are

reported

as

adapter

checks.

If

the

device

is

connected

to

the

network

when

this

error

occurs,

the

device

driver

goes

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_STOK_ADAP_OPEN

Enables

the

device

driver

to

open

the

device.

The

device

driver

goes

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_STOK_AUTO_RMV

An

internal

hardware

error

following

the

beacon

automatic

removal

process

was

detected.

The

device

driver

goes

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_STOK_RING_SPEED

The

ring

speed

(or

ring

data

rate)

is

probably

wrong.

Contact

the

network

administrator

to

determine

the

speed

of

the

ring.

The

device

driver

only

retries

twice

at

2-minute

intervals

after

this

error

log

entry

is

generated.

ERRID_STOK_DMAFAIL

The

device

detected

a

DMA

error

in

a

TX

or

RX

operation.

The

device

driver

goes

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_STOK_BUS_ERR

The

device

detected

a

Micro

Channel

bus

error.

The

device

driver

goes

into

Network

Recovery

150

Kernel

Extensions

and

Device

Support

Programming

Concepts

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

Note:

Micro

Channel

is

only

supported

on

AIX

5.1

and

earlier.

ERRID_STOK_DUP_ADDR

The

device

detected

that

another

station

on

the

ring

has

a

device

address

that

is

the

same

as

the

device

address

being

tested.

Contact

the

network

administrator

to

determine

why.

ERRID_STOK_MEM_ERR

An

error

occurred

while

allocating

memory

or

timer

control

block

structures.

ERRID_STOK_RCVRY_EXIT

The

error

that

caused

the

device

driver

to

go

into

error

recovery

mode

was

corrected.

ERRID_STOK_RMV_ADAP

The

device

received

a

remove

ring

station

MAC

frame

indicating

that

a

network

management

function

directed

this

device

to

get

off

the

ring.

Contact

the

network

administrator

to

determine

why.

ERRID_STOK_WIRE_FAULT

There

is

a

loose

(or

bad)

cable

between

the

device

and

the

MAU.

There

is

a

chance

that

it

might

be

a

bad

device.

The

device

driver

goes

into

Network

Recover

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_STOK_TX_TIMEOUT

The

transmit

watchdog

timer

expired

before

transmitting

a

frame.

The

device

driver

goes

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_STOK_CTL_ERR

The

ioctl

watchdog

timer

expired

before

the

device

driver

received

a

response

from

the

device.

The

device

driver

goes

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

PCI

Token-Ring

Device

Driver

(14103e00):

The

error

IDs

for

the

PCI

Token-Ring

Device

Driver

(14103e00)

are

as

follows:

ERRID_CSTOK_ADAP_CHECK

The

microcode

on

the

device

performs

a

series

of

diagnostic

checks

when

the

device

is

idle

on

initialization.

These

checks

find

errors

and

they

are

reported

as

adapter

checks.

If

the

device

was

connected

to

the

network

when

this

error

occurred,

the

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

After

this

error

log

entry

has

been

generated,

the

device

driver

will

retry

3

times

with

no

delay

between

retries.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_ADAP_OPEN

The

device

driver

was

unable

to

open

the

device.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

The

device

driver

will

retry

indefinitely

with

a

30

second

delay

between

retries

to

recover.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_AUTO_RMV

An

internal

hardware

error

following

the

beacon

automatic

removal

process

has

been

detected.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

the

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

Chapter

7.

Communications

I/O

Subsystem

151

ERRID_CSTOK_RING_SPEED

The

ring

speed

or

ring

data

rate

is

probably

wrong.

Contact

the

network

administrator

to

determine

the

speed

of

the

ring.

The

device

driver

will

only

retry

twice

at

2

minute

intervals

after

this

error

log

entry

has

been

generated.

ERRID_CSTOK_DMAFAIL

The

device

detected

a

DMA

error

in

a

TX

or

RX

operation.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_BUS_ERR

The

device

detected

a

PCI

bus

error.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_DUP_ADDR

The

device

has

detected

that

another

station

on

the

ring

has

a

device

address

which

is

the

same

as

the

device

address

being

tested.

Contact

network

administrator

to

determine

why.

ERRID_CSTOK_MEM_ERR

An

error

occurred

while

allocating

memory

or

timer

control

block

structures.

This

usually

implies

the

sytem

has

run

out

of

available

memory.

User

intervention

is

required.

ERRID_CSTOK_RCVRY_ENTER

An

error

has

occurred

which

caused

the

device

driver

to

go

into

network

recovery.

ERRID_CSTOK_RCVRY_EXIT

The

error

which

caused

the

device

driver

to

go

into

Network

Recovery

Mode

has

been

corrected.

ERRID_CSTOK_RMV_ADAP

The

device

has

received

a

remove

ring

station

MAC

frame

indicating

that

a

network

management

function

has

directed

this

device

to

get

off

the

ring.

The

device

driver

will

only

twice

with

6

minute

delay

between

retries

after

this

error

log

entry

has

been

generated.

Contact

network

administrator

to

determine

why.

ERRID_CSTOK_WIRE_FAULT

There

is

probably

a

loose

(

or

bad

)

cable

between

the

device

and

the

MAU.

There

is

some

chance

that

it

might

be

a

bad

device.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_RX_ERR

The

device

has

detected

a

receive

error.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_TX_ERR

The

device

has

detected

a

transmit

error.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_TX_TMOUT

The

transmit

watchdog

timer

has

expired

before

the

transmit

of

a

frame

has

completed.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_CMD_TMOUT

The

ioctl

watchdog

timer

has

expired

before

the

device

driver

received

a

response

from

the

device.

The

device

driver

will

go

into

Network

Recovery

Mode

in

an

attempt

to

recover

from

this

152

Kernel

Extensions

and

Device

Support

Programming

Concepts

error.

The

device

is

temporarily

unavailable

during

the

recovery

procedure.

User

intervention

is

not

required

for

this

error

unless

the

problem

persists.

ERRID_CSTOK_PIO_ERR

The

driver

has

encountered

a

PIO

operation

error.

The

device

driver

will

attempt

to

retry

the

operation

3

times

before

it

will

fail

the

command

and

return

in

the

DEAD

state

to

the

user.

User

intervention

is

required.

ERRID_CSTOK_PERM_HW

The

microcode

on

the

device

performs

a

series

of

diagnostic

checks

on

initialization.

These

checks

can

find

errors

and

they

are

reported

as

adapter

checks.

If

the

error

occurs

4

times

during

adapter

initialization

this

error

log

will

be

generated

and

the

device

considered

inoperable.

User

intervention

is

required.

ERRID_CSTOK_ASB_ERR

The

adapter

has

indicated

that

the

processing

of

a

TokenRing

mac

command

failed.

ERRID_CSTOK_AUTO_FAIL

The

ring

speed

of

the

adapter

is

set

to

autosense,

and

open

has

failed

because

this

adapter

is

the

only

one

on

the

ring.

User

intervention

is

required.

ERRID_CSTOK_EISR

If

the

adapter

detects

a

PCI

Master

or

Target

Abort,

the

Error

Interrupt

Status

Register

(EISR)

will

be

set.

ERRID_CSTOK_CMD_ERR

Adapter

failed

command

due

to

a

transient

error

and

goes

into

limbo

one

time,

if

that

fails

the

adapter

goes

into

the

dead

state.

ERRID_CSTOK_EEH_ENTER

The

adapter

encountered

a

Bus

I/O

Error,

and

is

attempting

to

recover

by

using

the

EEH

recovery

process.

ERRID_CSTOK_EEH_EXIT

The

adapter

sucessfully

recovered

from

the

I/O

Error

by

using

the

EEH

recovery

process.

ERRID_CSTOK_EEH_HW_ERR

The

adapter

could

not

recover

from

the

EEH

error.

The

EEH

error

was

the

result

of

an

adapter

error,

and

not

a

bus

error

(logged

by

the

kernel).

Ethernet

Device

Drivers

The

following

Ethernet

device

drivers

are

dynamically

loadable.

The

device

drivers

are

automatically

loaded

into

the

system

at

device

configuration

time

as

part

of

the

configuration

process.

v

PCI

Ethernet

Adapter

Device

Driver

(22100020)

v

10/100Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

v

10/100Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

v

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

v

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802)

v

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902)

v

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

(14108802)

v

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

(14108902)

The

following

information

is

provided

about

each

of

the

ethernet

device

drivers:

v

Configuration

Parameters

v

Interface

Entry

Points

v

Asynchronous

Status

Chapter

7.

Communications

I/O

Subsystem

153

v

Device

Control

Operations

v

Trace

v

Error

Logging

For

each

Ethernet

device,

the

interface

to

the

device

driver

is

achieved

by

calling

the

entry

points

for

opening,

closing,

transmitting

data,

and

issuing

device

control

commands.

There

are

a

number

of

Ethernet

device

drivers

in

use.

All

drivers

provide

PCI-based

connections

to

an

Ethernet

network,

and

support

both

Standard

and

IEEE

802.3

Ethernet

Protocols.

The

PCI

Ethernet

Adapter

Device

Driver

(22100020)

supports

the

PCI

Ethernet

BNC/RJ-45

Adapter

(feature

2985)

and

the

PCI

Ethernet

BNC/AUI

Adapter

(feature

2987),

as

well

as

the

integrated

ethernet

port

on

certain

systems.

The

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

supports

the

10/100

Mbps

Ethernet

PCI

Adapter

(feature

2968)

and

the

Four

Port

10/100

Mbps

Ethernet

PCI

Adapter

(features

4951

and

4961),

as

well

as

the

integrated

ethernet

port

on

certain

systems.

The

10/100

Mpbs

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

the

10/100

Mbps

Ethernet

PCI

Adapter

II

(feature

4962),

as

well

as

the

integrated

ethernet

port

on

certain

systems.

The

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

supports

the

Gigabit

Ethernet-SX

PCI

Adapter

(feature

2969)

and

the

10/100/1000

Base-T

Ethernet

Adapter

(feature

2975).

The

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802)

supports

the

Gigabit

Ethernet-SX

PCI-X

Adapter

(feature

5700).

The

10/100/1000

Base-TX

Ethernet

PCI-X

Adapter

Device

Driver

(14106902)

supports

the

10/100/1000

Base-TX

Ethernet

PCI-X

Adapter

(feature

5701).

The

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802)

supports

the

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

(feature

5707).

The

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

Device

Driver

(14108902)

supports

the

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

(feature

5706).

Configuration

Parameters

The

following

configuration

parameter

is

supported

by

all

Ethernet

device

drivers:

Alternate

Ethernet

Addresses

The

device

drivers

support

the

device’s

hardware

address

as

the

network

address

or

an

alternate

network

address

configured

through

software.

When

an

alternate

address

is

used,

any

valid

Individual

Address

can

be

used.

The

least

significant

bit

of

an

Individual

Address

must

be

set

to

zero.

A

multicast

address

can

not

be

defined

as

a

network

address.

Two

configuration

parameters

are

provided

to

provide

the

alternate

Ethernet

address

and

enable

the

alternate

address.

PCI

Ethernet

Device

Driver

(22100020)

The

PCI

Ethernet

Device

Driver

(22100020)

supports

the

following

additional

configuration

parameters:

Full

Duplex

Indicates

whether

the

adapter

is

operating

in

full-duplex

or

half-duplex

mode.

If

this

field

is

set

to

yes,

the

device

driver

programs

the

adapter

to

be

in

full-duplex

mode.

Hardware

Transmit

Queue

Specifies

the

actual

queue

size

the

adapter

uses

to

transmit

packets.

Each

element

corresponds

to

an

Ethernet

packet.

It

is

configurable

at

16,

32,

64,

1

28,

and

256

elements.

154

Kernel

Extensions

and

Device

Support

Programming

Concepts

Hardware

Receive

Queue

Specifies

the

actual

queue

size

the

adapter

uses

to

receive

packets.

Each

element

corresponds

to

an

Ethernet

packet.

It

is

configurable

at

16,

32,

64,

128,

and

256

elements.

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

The

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

supports

the

following

additional

configuration

parameters:

Software

Transmit

Queue

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

device

driver.

Valid

values

range

from

16

through

16384.

Hardware

Receive

Queue

The

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

supports

a

user-configurable

receive

queue

for

the

adapter.

This

is

the

actual

queue

the

adapter

uses

to

receive

packets.

Each

element

corresponds

to

an

Ethernet

packet.

It

is

configurable

at

16,

32,

64,

128,

and

256

elements.

Receive

Buffer

Pool

The

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

implements

a

private

pool

of

receive

memory

buffers

in

order

to

enhance

driver

performance.

The

number

of

private

receive

buffers

reserved

by

the

driver

is

configurable

from

16

to

2048

elements.

Media

Speed

The

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

supports

a

user-configurable

media

speed

for

the

adapter.

The

media

speed

attribute

indicates

the

speed

at

which

the

adapter

will

attempt

to

operate.

The

available

speeds

are

10

Mbps

half-duplex,

10

Mbps

full-duplex,

100

Mbps

half-duplex,

100

Mbps

full-duplex

and

auto-negotiation,

with

a

default

of

auto-negotiation.

Select

auto-negotiate

when

the

adapter

should

use

auto-negotiation

across

the

network

to

determine

the

speed.

When

the

network

will

not

support

auto-negotiation,

select

the

specific

speed.

Note:

If

auto-negotiation

is

selected,

the

remote

link

device

must

also

be

set

to

auto-negotiate

or

the

link

might

not

function

properly.

Inter

Packet

Gap

The

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

supports

a

user-configurable

inter

packet

gap

for

the

adapter.

The

inter

packet

gap

attribute

controls

the

aggressiveness

of

the

adapter

on

the

network.

A

small

number

will

increase

the

aggressiveness

of

the

adapter,

but

a

large

number

will

decrease

the

aggressiveness

(and

increase

the

fairness)

of

the

adapter.

A

small

number

(more

aggressive)

could

cause

the

adapter

to

capture

the

network

by

forcing

other

less

aggressive

nodes

to

defer.

A

larger

number

(less

aggressive)

might

cause

the

adapter

to

defer

more

often

than

normal.

If

the

statistics

for

other

nodes

on

the

network

show

a

large

number

of

collisions

and

deferrals,

then

try

increasing

this

number.

The

default

is

96,

which

results

in

IPG

of

9.6

micro

seconds

for

10

Mbps

and

0.96

microseconds

for

100

Mbps

media

speed.

Each

unit

of

bit

rate

introduces

an

IPG

of

100

nsec

at

10

Mbps,

and

10

nsec

at

100

Mbps

media

speed.

Link

Polling

Timer

The

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

implements

a

polling

function

(Enable

Link

Polling)

that

periodically

queries

the

adapter

to

determine

whether

the

ethernet

link

is

up

or

down.

The

Enable

Link

Polling

attribute

is

disabled

by

default.

If

this

function

is

enabled,

the

link

polling

timer

value

indicates

how

often

the

driver

should

poll

the

adapter

for

link

status.

This

value

can

range

from

100

to

1000

milliseconds.

If

the

adapter’s

link

goes

down,

the

device

driver

will

disable

its

NDD_RUNNING

flag.

When

the

device

driver

finds

that

the

link

has

come

back

up,

it

will

enable

this

NDD_RUNNING

flag.

In

order

for

this

to

work

successfully,

protocol

layer

implementations,

such

as

Etherchannel,

need

notification

if

the

link

has

gone

down.

Enable

the

Enable

Link

Polling

attribute

to

obtain

this

notification.

Because

of

the

additional

PIO

calls

that

the

device

driver

makes,

enabling

this

attribute

can

decrease

the

performance

of

this

adapter.

Chapter

7.

Communications

I/O

Subsystem

155

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

the

following

additional

configuration

parameters:

Software

Transmit

Queue

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

device

driver.

Valid

values

range

from

512

through

16384.

Hardware

Transmit

Queue

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

a

user-configurable

transmit

queue

for

the

adapter.

This

is

the

actual

queue

the

adapter

uses

to

transmit

packets.

Each

element

corresponds

to

an

Ethernet

packet.

It

is

configurable

from

100

to

1024

elements.

Hardware

Receive

Queue

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

a

user-configurable

receive

queue

for

the

adapter.

This

is

the

actual

queue

the

adapter

uses

to

receive

packets.

Each

element

corresponds

to

an

Ethernet

packet.

It

is

configurable

from

100

to

1024

elements.

Receive

Buffer

Pool

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

implements

a

private

pool

of

receive

memory

buffers

in

order

to

enhance

driver

performance.

The

number

of

private

receive

buffers

reserved

by

the

driver

is

configurable

from

512

to

2048

elements.

Media

Speed

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

a

user-configurable

media

speed

for

the

adapter.

The

media

speed

attribute

indicates

the

speed

at

which

the

adapter

will

attempt

to

operate.

The

available

speeds

are

10

Mbps

half-duplex,

10

Mbps

full-duplex,

100

Mbps

half-duplex,

100

Mbps

full-duplex

and

auto-negotiation,

with

a

default

of

auto-negotiation.

Select

auto-negotiate

when

the

adapter

should

use

auto-negotiation

across

the

network

to

determine

the

speed.

When

the

network

will

not

support

auto-negotiation,

select

the

specific

speed.

Note:

If

auto-negotiation

is

selected,

the

remote

link

device

must

also

be

set

to

auto-negotiate

or

the

link

might

not

function

properly.

Link

Polling

Timer

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

implements

a

polling

function

which

periodically

queries

the

adapter

to

determine

whether

the

ethernet

link

is

up

or

down.

If

this

function

is

enabled,

the

link

polling

timer

value

indicates

how

often

the

driver

should

poll

the

adapter

for

link

status.

This

value

can

range

from

100

to

1000

milliseconds.

Checksum

Offload

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

the

capability

of

the

adapter

to

calculate

TCP

checksums

in

hardware.

If

this

capability

is

enabled,

the

TCP

checksum

calculation

will

be

performed

on

the

adapter

instead

of

the

host,

which

may

increase

system

performance.

Allowed

values

are

yes

and

no.

Transmit

TCP

Resegmentation

Offload

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

the

capability

of

the

adapter

to

perform

resegmentation

of

transmitted

TCP

segments

in

hardware.

This

capability

enables

the

host

to

use

TCP

segments

that

are

larger

than

the

actual

MTU

size

of

the

ethernet

link,

which

may

increase

system

performance.

Allowed

values

are

yes

and

no.

IPsec

Offload

The

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

supports

the

capability

of

the

adapter

to

perform

IPsec

cryptographic

algorithms

for

data

encryption

and

authentication

in

hardware.

This

capability

enables

the

host

to

offload

CPU-intensive

cryptographic

processing

to

the

adapter,

which

may

increase

system

performance.

Allowed

values

are

yes

and

no.

156

Kernel

Extensions

and

Device

Support

Programming

Concepts

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

Software

Transmit

Queue

Size

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

device

driver.

Valid

values

range

from

512

through

16384.

Transmit

Jumbo

Frames

Setting

this

attribute

to

the

yes

value

indicates

that

frames

up

to

9018

bytes

in

length

may

be

transmitted

on

this

adapter.

If

you

specify

the

no

value,

the

maximum

size

of

frames

transmitted

is

1518

bytes.

Frames

up

to

9018

bytes

in

length

can

always

be

received

on

this

adapter.

Enable

Hardware

Checksum

Offload

Setting

this

attribute

to

the

yes

value

indicates

that

the

adapter

calculates

the

checksum

for

transmitted

and

received

TCP

frames.

If

you

specify

the

no

value,

the

checksum

will

be

calculated

by

the

appropriate

software.

Note:

The

mbuf

describing

a

frame

to

be

transmitted

contains

a

flag

that

says

if

the

adapter

should

calculate

the

checksum

for

the

frame.

Media

Speed

The

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

supports

a

user-configurable

media

speed

only

for

the

IBM

10/100/1000

Base-T

Ethernet

PCI

adapter

(feature

2975).

For

the

Gigabit

Ethernet-SX

PCI

Adapter

(feature

2969),

the

only

allowed

choice

is

auto-negotiation.

The

media

speed

attribute

indicates

the

speed

at

which

the

adapter

will

attempt

to

operate.

The

available

speeds

are

10

Mbps

half-duplex,

10

Mbps

full-duplex,

100

Mbps

half-duplex,

100

Mbps

full-duplex

and

auto-negotiation,

with

a

default

of

auto-negotiation.

Select

auto-negotiate

when

the

adapter

should

use

auto-negotiation

across

the

network

to

determine

the

speed.

When

the

network

will

not

support

auto-negotiation,

select

the

specific

speed.

Note:

The

auto-negotiation

setting

must

be

selected

in

order

for

the

adapter

to

run

at

1000

Mbit/s.

Enable

Hardware

Transmit

TCP

Resegmentation

Setting

this

attribute

to

yes

indicates

that

the

adapter

should

perform

TCP

resegmentation

on

transmitted

TCP

segments.

This

capability

allows

TCP/IP

to

send

larger

datagrams

to

the

adapter

which

can

increase

performance.

If

no

is

specified,

TCP

resegmentation

will

not

be

performed.

Note:

The

default

values

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

configuration

parameters

were

chosen

for

optimal

performance,

and

should

not

be

changed

unless

IBM

recommends

a

change.

The

following

configuration

parameters

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

are

not

accessible

using

the

SMIT

interface,

and

can

only

by

modified

using

the

chdev

command

line

interface:

stat_ticks

The

number

of

microseconds

that

the

adapter

waits

before

updating

the

adapter

statistics

(through

a

DMA

write)

and

generating

an

interrupt

to

the

host.

Valid

values

range

from

1000-1000000.

The

default

value

is

1000000.

receive_ticks

The

number

of

microseconds

that

the

adapter

waits

before

updating

the

receive

return

ring

producer

index

(through

a

DMA

write)

and

generating

an

interrupt

to

the

host.

Valid

values

range

from

0-1000,

the

default

value

is

50.

receive_bds

The

number

of

receive

buffers

that

the

adapter

transfers

to

host

memory

before

updating

the

receive

return

ring

producer

index

(through

a

DMA

write)

and

generating

an

interrupt

to

the

host.

Valid

values

range

from

0-128.

The

default

value

is

6.

Chapter

7.

Communications

I/O

Subsystem

157

tx_done_ticks

The

number

of

microseconds

that

the

adapter

waits

before

updating

the

send

consumer

index

(through

a

DMA

write)

and

generating

an

interrupt

to

the

host.

Valid

values

range

from

0-1000000.

The

default

value

is

1000000.

tx_done_count

The

number

of

transmit

buffers

that

the

adapter

transfers

from

host

memory

before

updating

the

send

consumer

index

(through

a

DMA

write)

and

generating

an

interrupt

to

the

host.

Valid

values

range

from

0-128.

The

default

value

is

64.

receive_proc

When

this

number

of

receive

buffer

descriptors

is

processed

by

the

device

driver

(or

all

packets

are

received),

the

device

driver

returns

this

number

of

receive

buffer

descriptors

to

the

adapter

through

an

MMIO

write.

Valid

values

range

from

1-64.

The

default

value

is

16.

rxdesc_count

When

this

number

of

receive

buffer

descriptors

is

processed

by

the

device

driver

(or

all

packets

were

received),

the

device

driver

exits

the

rx_handler()

routine

and

continues

processing

other

adapter

events

—such

as

transmit

completions

and

adapter

status

changes.

Valid

values

range

from

1-1000000.

The

default

value

is

1000.

slih_hog

The

number

of

adapter

events

(such

as

receive

completions,

transmit

completions

and

adapter

status

changes)

processed

by

the

device

driver

per

interrupt.

Valid

values

range

from

1-1000000.

The

default

value

is

10.

copy_bytes

When

the

number

of

data

bytes

in

a

transmit

mbuf

exceeds

this

value,

the

device

driver

maps

the

mbuf

data

area

into

DMA

memory

and

updates

the

transmit

descriptor

such

that

it

points

to

this

DMA

memory

area.

When

the

number

of

data

bytes

in

a

transmit

mbuf

does

not

exceed

this

value,

the

data

is

copied

from

the

mbuf

into

a

preallocated

transmit

buffer

which

is

already

mapped

into

DMA

memory.

The

device

driver

also

attempts

to

coalesce

transmit

data

in

an

mbuf

chain

into

a

single

preallocated

transmit

buffer,

until

the

total

transmit

data

size

exceeds

that

of

the

preallocated

buffer

(2048

bytes).

Valid

values

range

from

64-2048.

The

default

value

is

2048.

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802)

The

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802)

supports

the

following

additional

configuration

parameters:

Transmit

descriptor

queue

size

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

adapter.

Valid

values

range

from

128

to

1024.

Receive

descriptor

queue

size

Indicates

the

maximum

number

of

received

ethernet

packets

the

adapter

can

hold

in

its

buffer.

Valid

values

range

from

128

to

1024.

Software

Transmit

Queue

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

device

driver.

Valid

values

range

from

512

through

16384.

Media

Speed

The

media

speed

attribute

indicates

the

speed

at

which

the

adapter

will

attempt

to

operate.

The

available

speeds

are

1000

Mbps

full-duplex

and

auto-negotiation.

The

default

is

auto-negotiation.

Select

auto-negotiate

when

the

adapter

should

use

auto-negotiation

across

the

network

to

determine

the

duplexity.

When

the

network

will

not

support

auto-negotiation,

select

1000

Mbps

full-duplex.

Transmit

TCP

Resegmentation

Offload

Supports

the

capability

of

the

adapter

to

perform

resegmentation

of

transmitted

TCP

segments

in

158

Kernel

Extensions

and

Device

Support

Programming

Concepts

hardware.

This

capability

enables

the

host

to

use

TCP

segments

that

are

larger

than

the

actual

MTU

size

of

the

ethernet

link,

which

may

increase

system

performance.

Allowed

values

are

yes

and

no.

Enable

Hardware

Checksum

Offload

Setting

this

attribute

to

the

yes

value

indicates

that

the

adapter

calculates

the

checksum

for

transmitted

and

received

TCP

frames.

If

you

specify

the

no

value,

the

checksum

will

be

calculated

by

the

appropriate

software.

Note:

The

mbuf

structure

that

describes

a

transmitted

frame

contains

a

flag

that

indicates

whether

the

adapter

should

calculate

the

checksum

for

the

frame.

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902)

The

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902)

supports

the

following

additional

configuration

parameters:

Transmit

descriptor

queue

size

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

adapter.

Valid

values

range

from

128

to

1024.

Receive

descriptor

queue

size

Indicates

the

maximum

number

of

received

ethernet

packets

the

adapter

can

buffer.

Valid

values

range

from

128

to

1024.

Software

Transmit

Queue

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

device

driver.

Valid

values

range

from

512

through

16384.

Media

Speed

The

media

speed

attribute

indicates

the

speed

at

which

the

adapter

will

attempt

to

operate.

The

available

speeds

are

10

Mbps

half-duplex,

10

Mbps

full-duplex,

100

Mbps

half-duplex,

100

Mbps

full-duplex

and

auto-negotiation,

with

a

default

of

auto-negotiation.

Select

auto-negotiate

when

the

adapter

should

use

auto-negotiation

across

the

network

to

determine

the

speed.

When

the

network

will

not

support

auto-negotiation,

select

the

specific

speed.

Note:

1000

MBps

half

and

full

duplex

are

not

valid

values.

As

per

the

IEEE

802.3z

specification,

gigabit

speeds

of

any

duplexity

must

be

auto-negotiated

for

copper

(TX)

based

adapters.

Please

select

auto-negotiation

if

these

speeds

are

desired.

Transmit

TCP

Resegmentation

Offload

Supports

the

capability

of

the

adapter

to

perform

resegmentation

of

transmitted

TCP

segments

in

hardware.

This

capability

enables

the

host

to

use

TCP

segments

that

are

larger

than

the

actual

MTU

size

of

the

ethernet

link,

which

may

increase

system

performance.

Allowed

values

are

yes

and

no.

Enable

Hardware

Checksum

Offload

Setting

this

attribute

to

the

yes

value

indicates

that

the

adapter

calculates

the

checksum

for

transmitted

and

received

TCP

frames.

If

you

specify

the

no

value,

the

checksum

will

be

calculated

by

the

appropriate

software.

Note:

The

mbuf

describing

a

frame

to

be

transmitted

contains

a

flag

that

says

if

the

adapter

should

calculate

the

checksum

for

the

frame.

Gigabit

Backward

Compatibility

Older

gigabit

TX

equipment

may

not

be

able

to

communicate

to

this

adapter.

Some

manufacturers

produced

hardware

implementing

the

IEEE

802.3z

auto-negotiation

algorithm

incorrectly.

As

such,

this

option

should

be

enabled

if

the

adapter

is

unable

to

communicate

with

your

older

gigabit

equipment.

Chapter

7.

Communications

I/O

Subsystem

159

Note:

Enabling

this

option

forces

the

adapter

to

implement

the

IEEE

802.3z

incorrectly.

As

such,

if

it

is

enabled,

it

will

not

be

able

to

communicate

to

newer

equipment.

Only

enable

this

if

you

are

having

trouble

obtaining

a

link

with

auto-negotiation,

but

can

force

a

link

at

a

slower

speed

(i.e.

100

full-duplex).

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802)

The

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802)

supports

the

following

additional

configuration

parameters:

Transmit

descriptor

queue

size

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

adapter.

Valid

values

range

from

128

to

1024.

Receive

descriptor

queue

size

Indicates

the

maximum

number

of

received

ethernet

packets

the

adapter

can

hold

in

its

buffer.

Valid

values

range

from

128

to

1024.

Software

Transmit

Queue

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

device

driver.

Valid

values

range

from

512

through

16384.

Media

Speed

The

media

speed

attribute

indicates

the

speed

at

which

the

adapter

attempts

to

operate.

The

available

speeds

are

1000

Mbps

full-duplex

and

auto-negotiation.

The

default

is

auto-negotiation.

Select

auto-negotiate

when

the

adapter

should

use

auto-negotiation

across

the

network

to

determine

the

duplexity.

When

the

network

does

not

support

auto-negotiation,

select

1000

Mbps

full-duplex.

Transmit

TCP

Resegmentation

Offload

Supports

the

capability

of

the

adapter

to

perform

resegmentation

of

transmitted

TCP

segments

in

hardware.

This

capability

enables

the

host

to

use

TCP

segments

that

are

larger

than

the

actual

MTU

size

of

the

ethernet

link,

which

can

increase

system

performance.

Allowed

values

are

yes

and

no.

Enable

Hardware

Checksum

Offload

Setting

this

attribute

to

the

yes

value

indicates

that

the

adapter

calculates

the

checksum

for

transmitted

and

received

TCP

frames.

If

you

specify

the

no

value,

the

checksum

is

calculated

by

the

appropriate

software.

Note:

The

mbuf

structure

that

describes

a

transmitted

frame

contains

a

flag

that

indicates

whether

the

adapter

should

calculate

the

checksum

for

the

frame.

Failover

Mode

(failover)

This

attribute

indicates

the

desired

failover

configuration

for

the

port.

Allowed

values

are

primary,

backup,

and

disable.

primary

indicates

the

port

is

to

act

as

the

primary

port

in

a

failover

configuration

for

a

2-Port

Gigabit

adapter.

backup

indicates

the

port

is

to

act

as

the

backup

port

in

a

failover

configuration

for

a

2-Port

Gigabit

adapter.

disable

indicates

the

port

is

not

a

member

of

a

failover

configuration.

The

default

value

for

failover

is

disable.

This

attribute

can

be

changed

using

SMIT.

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

(14108902)

The

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

Device

Driver

(14108902)

supports

the

following

additional

configuration

parameters:

Transmit

descriptor

queue

size

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

adapter.

Valid

values

range

from

128

to

1024.

Receive

descriptor

queue

size

Indicates

the

maximum

number

of

received

ethernet

packets

the

adapter

can

hold

in

its

buffer.

Valid

values

range

from

128

to

1024.

160

Kernel

Extensions

and

Device

Support

Programming

Concepts

Software

Transmit

Queue

Indicates

the

number

of

transmit

requests

that

can

be

queued

for

transmission

by

the

device

driver.

Valid

values

range

from

512

through

16384.

Media

Speed

The

media

speed

attribute

indicates

the

speed

at

which

the

adapter

attempts

to

operate.

The

available

speeds

are

10

Mbps

half-duplex,

10

Mbps

full-duplex,

100

Mbps

half-duplex,

100

Mbps

full-duplex

and

auto-negotiation.

The

default

is

auto-negotiation.

Select

auto-negotiate

when

the

adapter

should

use

auto-negotiation

across

the

network

to

determine

the

speed.

When

the

network

does

not

support

auto-negotiation,

select

the

specific

speed.

Note:

1000

Mbps

half-duplex

and

full-duplex

are

not

valid

values.

The

IEEE

802.3z

specification

dictates

that

the

gigabit

speeds

of

any

duplexity

must

be

auto-negotiated

for

copper

(TX)-based

adapters.

Select

auto-negotiation

if

these

speeds

are

desired.

Transmit

TCP

Resegmentation

Offload

Supports

the

capability

of

the

adapter

to

perform

resegmentation

of

transmitted

TCP

segments

in

hardware.

This

capability

enables

the

host

to

use

TCP

segments

that

are

larger

than

the

actual

MTU

size

of

the

ethernet

link,

which

can

increase

system

performance.

Allowed

values

are

yes

and

no.

Enable

Hardware

Checksum

Offload

Setting

this

attribute

to

the

yes

value

indicates

that

the

adapter

calculates

the

checksum

for

transmitted

and

received

TCP

frames.

If

you

specify

the

no

value,

the

checksum

will

be

calculated

by

the

appropriate

software.

Note:

The

mbuf

structure

that

describes

a

transmitted

frame

contains

a

flag

that

indicates

whether

the

adapter

should

calculate

the

checksum

for

the

frame.

Gigabit

Backward

Compatibility

Older

gigabit

TX

equipment

might

not

be

able

to

communicate

with

this

adapter.

If

the

adapter

is

unable

to

communicate

with

your

older

gigabit

equipment,

enabling

this

option

forces

the

adapter

to

implement

the

IEEE

802.3z

incorrectly.

As

such,

this

option

should

be

enabled

if

the

adapter

is

unable

to

communicate

with

your

older

gigabit

equipment.

Note:

Enabling

this

option

forces

the

adapter

to

implement

the

IEEE

802.3z

incorrectly.

If

this

option

is

enabled,

the

adapter

will

not

be

able

to

communicate

with

newer

equipment.

Enable

this

option

only

if

you

cannot

obtain

a

link

using

auto-negotiation,

but

can

force

a

link

at

a

slower

speed

(for

example,

100

full-duplex).

Failover

Mode

(failover)

This

attribute

indicates

the

desired

failover

configuration

for

the

port.

Allowed

values

are

primary,

backup,

and

disable.

primary

indicates

the

port

is

to

act

as

the

primary

port

in

a

failover

configuration

for

a

2-Port

Gigabit

adapter.

backup

indicates

the

port

is

to

act

as

the

backup

port

in

a

failover

configuration

for

a

2-Port

Gigabit

adapter.

disable

indicates

the

port

is

not

a

member

of

a

failover

configuration.

The

default

value

for

failover

is

disable.

This

attribute

can

be

changed

using

SMIT.

Interface

Entry

Points

Device

Driver

Configuration

and

Unconfiguration

The

configuration

entry

points

of

the

device

drivers

conform

to

the

guidelines

for

kernel

object

file

entry

points.

These

configuration

entry

points

are

as

follows:

v

kent_config

for

the

PCI

Ethernet

Device

Driver

(22100020)

v

phxent_config

for

the

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

v

scent_config

for

the

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

v

gxent_config

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

Chapter

7.

Communications

I/O

Subsystem

161

v

goent_config

for

the

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802),

the

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

the

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802),

and

the

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

Device

Driver(14108902)

Device

Driver

Open

The

open

entry

point

for

the

device

drivers

perform

a

synchronous

open

of

the

specified

network

device.

The

device

driver

issues

commands

to

start

the

initialization

of

the

device.

The

state

of

the

device

now

is

OPEN_PENDING.

The

device

driver

invokes

the

open

process

for

the

device.

The

open

process

involves

a

sequence

of

events

that

are

necessary

to

initialize

and

configure

the

device.

The

device

driver

will

do

the

sequence

of

events

in

an

orderly

fashion

to

make

sure

that

one

step

is

finished

executing

on

the

adapter

before

the

next

step

is

continued.

Any

error

during

these

sequence

of

events

will

make

the

open

fail.

The

device

driver

requires

about

2

seconds

to

open

the

device.

When

the

whole

sequence

of

events

is

done,

the

device

driver

verifies

the

open

status

and

then

returns

to

the

caller

of

the

open

with

a

return

code

to

indicate

open

success

or

open

failure.

After

the

device

has

been

successfully

configured

and

connected

to

the

network,

the

device

driver

sets

the

device

state

to

OPENED,

the

NDD_RUNNING

flag

in

the

NDD

flags

field

is

turned

on.

In

the

case

of

unsuccessful

open,

both

the

NDD_UP

and

NDD_RUNNING

flags

in

the

NDD

flags

field

will

be

off

and

a

non-zero

error

code

will

be

returned

to

the

caller.

The

open

entry

points

are

as

follows:

v

kent_open

for

the

PCI

Ethernet

Device

Driver

(22100020)

v

phxent_open

for

the

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

v

scent_open

for

the

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

v

gxent_open

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

v

goent_open

for

the

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802),

the

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

the

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802),

and

the

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

Device

Driver(14108902)

Device

Driver

Close

The

close

entry

point

for

the

device

drivers

is

called

to

close

the

specified

network

device.

This

function

resets

the

device

to

a

known

state

and

frees

system

resources

associated

with

the

device.

The

device

will

not

be

detached

from

the

network

until

the

device’s

transmit

queue

is

allowed

to

drain.

That

is,

the

close

entry

point

will

not

return

until

all

packets

have

been

transmitted

or

timed

out.

If

the

device

is

inoperable

at

the

time

of

the

close,

the

device’s

transmit

queue

does

not

have

to

be

allowed

to

drain.

At

the

beginning

of

the

close

entry

point,

the

device

state

will

be

set

to

be

CLOSE_PENDING.

The

NDD_RUNNING

flag

in

the

ndd_flags

will

be

turned

off.

After

the

outstanding

transmit

queue

is

all

done,

the

device

driver

will

start

a

sequence

of

operations

to

deactivate

the

adapter

and

to

free

up

resources.

Before

the

close

entry

point

returns

to

the

caller,

the

device

state

is

set

to

CLOSED.

The

close

entry

points

are

as

follows:

v

kent_close

for

the

PCI

Ethernet

Device

Driver

(22100020)

v

phxent_close

for

the

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

v

scent_close

for

the

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

v

gxent_close

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

162

Kernel

Extensions

and

Device

Support

Programming

Concepts

v

goent_close

for

the

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802),

the

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

the

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802),

and

the

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

Device

Driver(14108902)

Data

Transmission

The

output

entry

point

transmits

data

using

the

specified

network

device.

The

data

to

be

transmitted

is

passed

into

the

device

driver

by

way

of

mbuf

structures.

The

first

mbuf

structure

in

the

chain

must

be

of

M_PKTHDR

format.

Multiple

mbuf

structures

may

be

used

to

hold

the

frame.

Link

the

mbuf

structures

using

the

m_next

field

of

the

mbuf

structure.

Multiple

packet

transmits

are

allowed

with

the

mbufs

being

chained

using

the

m_nextpkt

field

of

the

mbuf

structure.

The

m_pkthdr.len

field

must

be

set

to

the

total

length

of

the

packet.

The

device

driver

does

not

support

mbufs

from

user

memory

(which

have

the

M_EXT

flag

set).

On

successful

transmit

requests,

the

device

driver

is

responsible

for

freeing

all

the

mbufs

associated

with

the

transmit

request.

If

the

device

driver

returns

an

error,

the

caller

is

responsible

for

the

mbufs.

If

any

of

the

chained

packets

can

be

transmitted,

the

transmit

is

considered

successful

and

the

device

driver

is

responsible

for

all

of

the

mbufs

in

the

chain.

If

the

destination

address

in

the

packet

is

a

broadcast

address

the

M_BCAST

flag

in

the

m_flags

field

should

be

set

prior

to

entering

this

routine.

A

broadcast

address

is

defined

as

0xFFFF

FFFF

FFFF.

If

the

destination

address

in

the

packet

is

a

multicast

address

the

M_MCAST

flag

in

the

m_flags

field

should

be

set

prior

to

entering

this

routine.

A

multicast

address

is

defined

as

a

non-individual

address

other

than

a

broadcast

address.

The

device

driver

will

keep

statistics

based

upon

the

M_BCAST

and

M_MCAST

flags.

For

packets

that

are

shorter

than

the

Ethernet

minimum

MTU

size

(60

bytes),

the

device

driver

will

pad

them

by

adjusting

the

transmit

length

to

the

adapter

so

they

can

be

transmitted

as

valid

Ethernet

packets.

Users

will

not

be

notified

by

the

device

driver

about

the

status

of

the

transmission.

Various

statistics

about

data

transmission

are

kept

by

the

driver

in

the

ndd

structure.

These

statistics

will

be

part

of

the

data

returned

by

the

NDD_GET_STATS

control

operation.

The

output

entry

points

are

as

follows:

v

kent_output

for

the

PCI

Ethernet

Device

Driver

(22100020)

v

phxent_output

for

the

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

v

scent_output

for

the

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

v

gxent_output

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

v

goent_output

for

the

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802),

the

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

the

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802),

and

the

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

Device

Driver(14108902)

Data

Reception

When

the

Ethernet

device

drivers

receive

a

valid

packet

from

the

network

device,

the

device

drivers

call

the

nd_receive

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_receive

function

is

part

of

a

CDLI

network

demultiplexer.

The

packet

is

passed

to

the

nd_receive

function

in

the

form

of

a

mbuf.

The

Ethernet

device

drivers

can

pass

multiple

packets

to

the

nd_receive

function

by

chaining

the

packets

together

using

the

m_nextpkt

field

of

the

mbuf

structure.

The

m_pkthdr.len

field

must

be

set

to

the

total

length

of

the

packet.

If

the

source

address

in

the

packet

is

a

broadcast

address

the

M_BCAST

flag

in

the

m_flags

field

should

be

set.

If

the

source

address

in

the

packet

is

a

multicast

address

the

M_MCAST

flag

in

the

m_flags

field

should

be

set.

Chapter

7.

Communications

I/O

Subsystem

163

When

the

device

driver

initially

configures

the

device

to

discard

all

invalid

frames.

A

frame

is

considered

to

be

invalid

for

the

following

reasons:

v

The

packet

is

too

short.

v

The

packet

is

too

long.

v

The

packet

contains

a

CRC

error.

v

The

packet

contains

an

alignment

error.

If

the

asynchronous

status

for

receiving

invalid

frames

has

been

issued

to

the

device

driver,

the

device

driver

will

configure

the

device

to

receive

bad

packets

as

well

as

good

packets.

Whenever

a

bad

packet

is

received

by

the

driver,

an

asynchronous

status

block

NDD_BAD_PKTS

is

created

and

delivered

to

the

appropriate

user.

The

user

must

copy

the

contents

of

the

mbuf

to

another

memory

area.

The

user

must

not

modify

the

contents

of

the

mbuf

or

free

the

mbuf.

The

device

driver

has

the

responsibility

of

releasing

the

mbuf

upon

returning

from

nd_status.

Various

statistics

about

data

reception

on

the

device

will

be

kept

by

the

driver

in

the

ndd

structure.

These

statistics

will

be

part

of

the

data

returned

by

the

NDD_GET_STATS

and

NDD_GET_ALL_STATS

control

operations.

There

is

no

specified

entry

point

for

this

function.

The

device

informs

the

device

driver

of

a

received

packet

via

an

interrupt.

Upon

determining

that

the

interrupt

was

the

result

of

a

packet

reception,

the

device

driver’s

interrupt

handler

invoke

the

rx_handler

completion

routine

to

perform

the

tasks

mentioned

above.

Asynchronous

Status

When

a

status

event

occurs

on

the

device,

the

Ethernet

device

drivers

build

the

appropriate

status

block

and

call

the

nd_status

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

nd_status

function

is

part

of

a

CDLI

network

demuxer.

The

following

status

blocks

are

defined

for

the

Ethernet

device

drivers.

Note:

The

PCI

Ethernet

Device

Driver

(22100020)

only

supports

the

Bad

Packets

status

block.

The

following

device

driver

do

not

support

asynchronous

status:

v

10/100

Mbit

Ethernet

PCI

Adapter

Device

Driver

(23100020)

v

10/100

Mbit

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

v

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver(14100401)

v

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802)

v

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902)

v

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

(14108802)

v

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

(14108902)

Hard

Failure

When

a

hard

failure

has

occurred

on

the

Ethernet

device,

the

following

status

blocks

can

be

returned

by

the

Ethernet

device

driver.

These

status

blocks

indicates

that

a

fatal

error

occurred.

code

Set

to

NDD_HARD_FAIL.

option[0]

Set

to

one

of

the

reason

codes

defined

in

<sys/ndd.h>

and

<sys/cdli_entuser.h>.

Enter

Network

Recovery

Mode

When

the

device

driver

has

detected

an

error

that

requires

initiating

recovery

logic

that

will

make

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver.

code

Set

to

NDD_LIMBO_ENTER.

164

Kernel

Extensions

and

Device

Support

Programming

Concepts

option[0]

Set

to

one

of

the

reason

codes

defined

in

<sys/ndd.h>

and

<sys/cdli_entuser.h>.

Note:

While

the

device

driver

is

in

this

recovery

logic,

the

device

might

not

be

fully

functional.

The

device

driver

will

notify

users

when

the

device

is

fully

functional

by

way

of

an

NDD_LIMBO_EXIT

asynchronous

status

block.

Exit

Network

Recovery

Mode

When

the

device

driver

has

successfully

completed

recovery

logic

from

the

error

that

made

the

device

temporarily

unavailable,

the

following

status

block

is

returned

by

the

device

driver.

code

Set

to

NDD_LIMBO_EXIT.

option[]

The

option

fields

are

not

used.

Note:

The

device

is

now

fully

functional.

Network

Device

Driver

Status

When

the

device

driver

has

status

or

event

information

to

report,

the

following

status

block

is

returned

by

the

device

driver.

code

Set

to

NDD_STATUS.

option[0]

Might

be

any

of

the

common

or

interface

type

specific

reason

codes.

option[]

The

remainder

of

the

status

block

can

be

used

to

return

additional

status

information

by

the

device

driver.

Bad

Packets

When

the

a

bad

packet

has

been

received

by

a

device

driver

(and

a

user

has

requested

bad

packets),

the

following

status

block

is

returned

by

the

device

driver.

code

Set

to

NDD_BAD_PKTS.

option[0]

Specifies

the

error

status

of

the

packet.

These

error

numbers

are

defined

in

<sys/cdli_entuser.h>.

option[1]

Pointer

to

the

mbuf

containing

the

bad

packet.

option[]

The

remainder

of

the

status

block

can

be

used

to

return

additional

status

information

by

the

device

driver.

Note:

The

user

will

not

own

the

mbuf

containing

the

bad

packet.

The

user

must

copy

the

mbuf

(and

the

status

block

information

if

desired).

The

device

driver

will

free

the

mbuf

upon

return

from

the

nd_status

function.

Device

Connected

When

the

device

is

successfully

connected

to

the

network

the

following

status

block

is

returned

by

the

device

driver.

code

Set

to

NDD_CONNECTED.

option[]

The

option

fields

are

not

used.

Note:

Integrated

Ethernet

only.

Chapter

7.

Communications

I/O

Subsystem

165

Device

Control

Operations

The

ndd_ctl

entry

point

is

used

to

provide

device

control

functions.

NDD_GET_STATS

Device

Control

Operation

The

NDD_GET_STATS

command

returns

statistics

concerning

the

network

device.

General

statistics

are

maintained

by

the

device

driver

in

the

ndd_genstats

field

in

the

ndd_t

structure.

The

ndd_specstats

field

in

the

ndd_t

structure

is

a

pointer

to

media-specific

and

device-specific

statistics

maintained

by

the

device

driver.

Both

sets

of

statistics

are

directly

readable

at

any

time

by

those

users

of

the

device

that

can

access

them.

This

command

provides

a

way

for

any

of

the

users

of

the

device

to

access

the

general

and

media-specific

statistics.

The

arg

and

length

parameters

specify

the

address

and

length

in

bytes

of

the

area

where

the

statistics

are

to

be

written.

The

length

specified

must

be

the

exact

length

of

the

general

and

media-specific

statistics.

Note:

The

ndd_speclen

field

in

the

ndd_t

structure

plus

the

length

of

the

ndd_genstats_t

structure

is

the

required

length.

The

device-specific

statistics

might

change

with

each

new

release

of

the

operating

system,

but

the

general

and

media-specific

statistics

are

not

expected

to

change.

The

user

should

pass

in

the

ent_ndd_stats_t

structure

as

defined

in

sys/cdli_entuser.h.

The

driver

fails

a

call

with

a

buffer

smaller

than

the

structure.

The

statistics

that

are

returned

contain

statistics

obtained

from

the

device.

If

the

device

is

inoperable,

the

statistics

that

are

returned

will

not

contain

the

current

device

statistics.

The

copy

of

the

ndd_flags

field

can

be

checked

to

determine

the

state

of

the

device.

NDD_MIB_QUERY

Device

Control

Operation

The

NDD_MIB_QUERY

operation

is

used

to

determine

which

device-specific

MIBs

are

supported

on

the

network

device.

The

arg

and

length

parameters

specify

the

address

and

length

in

bytes

of

a

device-specific

MIB

structure.

The

device

driver

will

fill

every

member

of

that

structure

with

a

flag

indicating

the

level

of

support

for

that

member.

The

individual

MIB

variables

that

are

not

supported

on

the

network

device

will

be

set

to

MIB_NOT_SUPPORTED.

The

individual

MIB

variables

that

can

only

be

read

on

the

network

device

will

be

set

to

MIB_READ_ONLY.

The

individual

MIB

variables

that

can

be

read

and

set

on

the

network

device

will

be

set

to

MIB_READ_WRITE.

The

individual

MIB

variables

that

can

only

be

set

(not

read)

on

the

network

device

will

be

set

to

MIB_WRITE_ONLY.

These

flags

are

defined

in

the

/usr/include/sys/ndd.h

file.

The

arg

parameter

specifies

the

address

of

the

ethernet_all_mib

structure.

This

structure

is

defined

in

the

/usr/include/sys/ethernet_mibs.h

file.

NDD_MIB_GET

Device

Control

Operation

The

NDD_MIB_GET

operation

is

used

to

get

all

MIBs

on

the

specified

network

device.

The

arg

and

length

parameters

specify

the

address

and

length

in

bytes

of

the

device

specific

MIB

structure.

The

device

driver

will

set

any

unsupported

variables

to

zero

(nulls

for

strings).

If

the

device

supports

the

RFC

1229

receive

address

object,

the

corresponding

variable

is

set

to

the

number

of

receive

addresses

currently

active.

The

arg

parameter

specifies

the

address

of

the

ethernet_all_mib

structure.

This

structure

is

defined

in

the

/usr/include/sys/ethernet_mibs.h

file.

NDD_ENABLE_ADDRESS

Device

Control

Operation

The

NDD_ENABLE_ADDRESS

command

enables

the

receipt

of

packets

with

an

alternate

(for

example,

multicast)

address.

The

arg

and

length

parameters

specify

the

address

and

length

in

bytes

of

the

alternate

address

to

be

enabled.

The

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

set.

166

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

device

driver

verifies

that

if

the

address

is

a

valid

multicast

address.

If

the

address

is

not

a

valid

multicast

address,

the

operation

will

fail

with

an

EINVAL

error.

If

the

address

is

valid,

the

driver

will

add

it

to

its

multicast

table

and

enable

the

multicast

filter

on

the

adapter.

The

driver

will

keep

a

reference

count

for

each

individual

address.

Whenever

a

duplicate

address

is

registered,

the

driver

simply

increments

the

reference

count

of

that

address

in

its

multicast

table,

no

update

of

the

adapter’s

filter

is

needed.

There

is

a

hardware

limitation

on

the

number

of

multicast

addresses

in

the

filter.

NDD_DISABLE_ADDRESS

Device

Control

Operation

The

NDD_DISABLE_ADDRESS

command

disables

the

receiving

packets

with

a

specified

alternate

(for

example,

multicast)

address.

The

arg

and

length

parameters

specify

the

address

and

length

in

bytes

of

the

alternate

address

to

be

disabled.

The

NDD_ALTADDRS

flag

in

the

ndd_flags

field

is

reset

if

this

is

the

last

alternate

address.

The

device

driver

verifies

that

if

the

address

is

a

valid

multicast

address.

If

the

address

is

not

a

valid

multicast

address,

the

operation

will

fail

with

an

EINVAL

error.

The

device

driver

makes

sure

that

the

multicast

address

can

be

found

in

its

multicast

table.

Whenever

a

match

is

found,

the

driver

will

decrement

the

reference

count

of

that

individual

address

in

its

multicast

table.

If

the

reference

count

becomes

0,

the

driver

will

delete

the

address

from

the

table

and

update

the

multicast

filter

on

the

adapter.

NDD_MIB_ADDR

Device

Control

Operation

The

NDD_MIB_ADDR

operation

is

used

to

get

all

the

addresses

for

which

the

specified

device

will

accept

packets

or

frames.

The

arg

parameter

specifies

the

address

of

the

ndd_mib_addr_t

structure.

The

length

parameter

specifies

the

length

of

the

structure

with

the

appropriate

number

of

ndd_mib_addr_t.mib_addr

elements.

This

structure

is

defined

in

the

/usr/include/sys/ndd.h

file.

If

the

length

is

less

than

the

length

of

the

ndd_mib_addr_t

structure,

the

device

driver

returns

EINVAL.

If

the

structure

is

not

large

enough

to

hold

all

the

addresses,

the

addresses

that

fit

will

still

be

placed

in

the

structure.

The

ndd_mib_addr_t.count

field

is

set

to

the

number

of

addresses

returned

and

E2BIG

is

returned.

One

of

the

following

address

types

is

returned:

v

Device

physical

address

(or

alternate

address

specified

by

user)

v

Broadcast

addresses

v

Multicast

addresses

NDD_CLEAR_STATS

Device

Control

Operation

The

counters

kept

by

the

device

will

be

zeroed.

NDD_GET_ALL_STATS

Device

Control

Operation

The

NDD_GET_ALL_STATS

operation

is

used

to

gather

all

the

statistics

for

the

specified

device.

The

arg

parameter

specifies

the

address

of

the

statistics

structure

for

the

particular

device

type.

The

following

structures

are

available:

v

The

kent_all_stats_t

structure

is

available

for

the

PCI

Ethernet

Adapter

Device

Driver

(22100020),

and

is

defined

in

the

cdli_entuser.h

include

file.

v

The

phxent_all_stats_t

structure

is

available

for

the

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020),

and

is

defined

in

the

device-specific

cdli_entuser.phxent.h

include

file.

v

The

scent_all_stats_t

structure

is

available

for

the

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01),

and

is

defined

in

the

device-specific

cdli_entuser.scent.h

include

file.

v

The

gxent_all_stats_t

structure

is

available

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401),

and

is

defined

in

the

device-specific

cdli_entuser.gxent.h

include

file.

v

The

goent_all_stats_t

structure

is

available

for

the

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802)

and

the

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

and

is

defined

in

the

device-specific

cdli_entuser.goent.h

include

file.

Chapter

7.

Communications

I/O

Subsystem

167

The

statistics

that

are

returned

contain

statistics

obtained

from

the

device.

If

the

device

is

inoperable,

the

statistics

that

are

returned

will

not

contain

the

current

device

statistics.

The

copy

of

the

ndd_flags

field

can

be

checked

to

determine

the

state

of

the

device.

NDD_ENABLE_MULTICAST

Device

Control

Operation

The

NDD_ENABLE_MULTICAST

command

enables

the

receipt

of

packets

with

any

multicast

(or

group)

address.

The

arg

and

length

parameters

are

not

used.

The

NDD_MULTICAST

flag

in

the

ndd_flags

field

is

set.

NDD_DISABLE_MULTICAST

Device

Control

Operation

The

NDD_DISABLE_MULTICAST

command

disables

the

receipt

of

all

packets

with

multicast

addresses

and

only

receives

those

packets

whose

multicast

addresses

were

specified

using

the

NDD_ENABLE_ADDRESS

command.

The

arg

and

length

parameters

are

not

used.

The

NDD_MULTICAST

flag

in

the

ndd_flags

field

is

reset

only

after

the

reference

count

for

multicast

addresses

has

reached

zero.

NDD_PROMISCUOUS_ON

Device

Control

Operation

The

NDD_PROMISCUOUS_ON

command

turns

on

promiscuous

mode.

The

arg

and

length

parameters

are

not

used.

When

the

device

driver

is

running

in

promiscuous

mode,

all

network

traffic

is

passed

to

the

network

demultiplexer.

When

the

Ethernet

device

driver

receives

a

valid

packet

from

the

network

device,

the

Ethernet

device

driver

calls

the

nd_receive

function

that

is

specified

in

the

ndd_t

structure

of

the

network

device.

The

NDD_PROMISC

flag

in

the

ndd_flags

field

is

set.

Promiscuous

mode

is

considered

to

be

valid

packets

only.

See

the

NDD_ADD_STATUS

command

for

information

about

how

to

request

support

for

bad

packets.

The

device

driver

will

maintain

a

reference

count

on

this

operation.

The

device

driver

increments

the

reference

count

for

each

operation.

When

this

reference

count

is

equal

to

one,

the

device

driver

issues

commands

to

enable

the

promiscuous

mode.

If

the

reference

count

is

greater

than

one,

the

device

driver

does

not

issue

any

commands

to

enable

the

promiscuous

mode.

NDD_PROMISCUOUS_OFF

Device

Control

Operation

The

NDD_PROMISCUOUS_OFF

command

terminates

promiscuous

mode.

The

arg

and

length

parameters

are

not

used.

The

NDD_PROMISC

flag

in

the

ndd_flags

field

is

reset.

The

device

driver

will

maintain

a

reference

count

on

this

operation.

The

device

driver

decrements

the

reference

count

for

each

operation.

When

the

reference

count

is

not

equal

to

zero,

the

device

driver

does

not

issue

commands

to

disable

the

promiscuous

mode.

Once

the

reference

count

for

this

operation

is

equal

to

zero,

the

device

driver

issues

commands

to

disable

the

promiscuous

mode.

NDD_DUMP_ADDR

Device

Control

Operation

The

NDD_DUMP_ADDR

command

returns

the

address

of

the

device

driver’s

remote

dump

routine.

The

arg

parameter

specifies

the

address

where

the

dump

routine’s

address

is

to

be

written.

The

length

parameter

is

not

used.

NDD_DISABLE_ADAPTER

Device

Control

Operation

Note:

This

device

control

operation

is

not

supported

on

the

PCI

Ethernet

Adapter

Device

Driver

(22100020).

The

NDD_DISABLE_ADAPTER

operation

is

used

by

etherchannel

to

disable

the

adapter

so

that

it

cannot

transmit

or

receive

data.

During

this

operation

the

NDD_RUNNING

and

NDD_LIMBO

flags

are

cleared

and

the

adapter

is

reset.

The

arg

and

len

parameters

are

not

used.

168

Kernel

Extensions

and

Device

Support

Programming

Concepts

NDD_ENABLE_ADAPTER

Device

Control

Operation

Note:

This

device

control

operation

is

not

supported

on

the

PCI

Ethernet

Adapter

Device

Driver

(22100020).

The

NDD_ENABLE_ADAPTER

operation

is

used

by

etherchannel

to

return

the

adapter

to

a

running

state

so

it

can

transmit

and

receive

data.

During

this

operation

the

adapter

is

started

and

the

NDD_RUNNING

flag

is

set.

The

arg

and

len

parameters

are

not

used.

NDD_SET_LINK_STATUS

Device

Control

Operation

Note:

This

device

control

operation

is

not

supported

on

the

PCI

Ethernet

Adapter

Device

Driver

(22100020).

The

NDD_SET_LINK_STATUS

operation

is

used

by

etherchannel

to

pass

the

driver

a

function

pointer

and

argument

that

will

subsequently

be

called

by

the

driver

whenever

the

link

status

changes.

The

arg

parameter

contains

a

pointer

to

a

ndd_sls_t

structure,

and

the

len

parameter

contains

the

length

of

the

ndd_sls_t

structure.

NDD_SET_MAC_ADDR

Device

Control

Operation

Note:

This

device

control

operation

is

not

supported

on

the

PCI

Ethernet

Adapter

Device

Driver

(22100020).

The

NDD_SET_NAC_ADDR

operation

is

used

by

etherchannel

to

set

the

adapters

MAC

address

at

runtime.

The

MAC

address

set

by

this

ioctl

is

valid

until

another

NDD_SET_MAC_ADDR

call

is

made

with

a

new

address

or

when

the

adapter

is

closed.

If

the

adapter

is

closed,

the

previously-configured

MAC

address.

The

MAC

address

configured

with

the

ioctl

supersedes

any

alternate

address

that

might

have

been

configured.

The

arg

argument

is

char

[6],

representing

the

MAC

address

that

is

configured

on

the

adapter.

The

len

argument

is

6.

Trace

For

LAN

device

drivers,

trace

points

enable

error

monitoring

as

well

as

tracking

packets

as

they

move

through

the

driver.

The

drivers

issue

trace

points

for

some

or

all

of

the

following

conditions:

v

Beginning

and

ending

of

main

functions

in

the

main

path

v

Error

conditions

v

Beginning

and

ending

of

each

function

that

is

tracking

buffers

outside

of

the

main

path

v

Debugging

purposes

(These

trace

points

are

only

enabled

when

the

driver

is

compiled

with

-DDEBUG

turned

on,

and

therefore

the

driver

can

contain

as

many

of

these

trace

points

as

desired.)

The

existing

Ethernet

device

drivers

each

have

either

three

or

four

trace

points.

The

Trace

Hook

IDs

the

PCI

Ethernet

Adapter

Device

Driver

(22100020)

is

defined

in

the

sys/cdli_entuser.h

file.

Other

drivers

have

defined

local

cdli_entuser.driver.h

files

with

the

Trace

Hook

definitions.

For

more

information,

see

“Debug

and

Performance

Tracing”

on

page

301.

Following

is

a

list

of

trace

hooks

(and

location

of

definition

file)

for

the

existing

Ethernet

device

drivers.

PCI

Ethernet

Adapter

Device

Driver

(22100020)

Definition

file:

cdli_entuser.h

Trace

Hook

IDs:

Transmit

-2A4

Chapter

7.

Communications

I/O

Subsystem

169

Receive

-2A5

Other

-2A6

10/100

Mbps

Ethernet

PCI

Adpater

Device

Driver

(23100020)

Definition

file:

cdli_entuser.phxent.h

Trace

Hook

IDs:

Transmit

-2E6

Receive

-2E7

Other

-2E8

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

Definition

file:

cdli_entuser.scent.h

Trace

Hook

IDs:

Transmit

-470

Receive

-471

Other

-472

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

Definition

file:

cdli_entuser.gxent.h

Trace

Hook

IDs:

Transmit

-2EA

Receive

-2EB

Other

-2EC

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802),

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

(14108802),

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

(14108902)

Definition

file:

cdli_entuser.goent.h

Trace

Hook

IDs:

Transmit

-473

Receive

-474

Other

-475

The

device

driver

also

has

the

following

trace

points

to

support

the

netpmon

program:

WQUE

An

output

packet

has

been

queued

for

transmission.

WEND

The

output

of

a

packet

is

complete.

RDAT

An

input

packet

has

been

received

by

the

device

driver.

RNOT

An

input

packet

has

been

given

to

the

demuxer.

REND

The

demultiplexer

has

returned.

Error

Logging

For

error

logging

information,

see

“Error

Logging”

on

page

296.

170

Kernel

Extensions

and

Device

Support

Programming

Concepts

PCI

Ethernet

Adapter

Device

Driver

(22100020)

The

Error

IDs

for

the

PCI

Ethernet

Adapter

Device

Driver

(22100020)

are

as

follows:

ERRID_KENT_ADAP_ERR

Indicates

that

the

adapter

is

not

responding

to

initialization

commands.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_KENT_RCVRY

Indicates

that

the

device

driver

detected

a

temporary

adapter

error

requiring

that

it

enter

network

recovery

mode.

It

has

reset

the

adapter

in

an

attempt

to

fix

the

problem.

ERRID_KENT_TX_ERR

Indicates

the

the

device

driver

has

detected

a

transmission

error.

User

intervention

is

not

required

unless

the

problem

persists.

ERRID_KENT_PIO

Indicates

that

the

device

driver

has

detected

a

program

IO

error.

The

device

driver

was

unable

to

fix

the

problem.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_KENT_DOWN

Indicates

that

the

device

driver

has

shut

down

the

adapter

due

to

an

unrecoverable

error.

The

adapter

is

no

longer

functional

due

to

the

error.

The

error

that

caused

the

device

to

shut

down

is

error

logged

immediately

before

this

error

log

entry.

User

intervention

is

necessary

to

fix

the

problem.

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

The

Error

IDs

for

the

10/100

Mbps

Ethernet

PCI

Adapter

Device

Driver

(23100020)

are

as

follows:

ERRID_PHXENT_ADAP_ERR

Indicates

that

the

adapter

is

not

responding

to

initialization

commands.

User-intervention

is

necessary

to

fix

the

problem.

ERRID_PHXENT_ERR_RCVRY

Indicates

that

the

device

driver

detected

a

temporary

adapter

error

requiring

that

it

enter

network

recovery

mode.

It

has

reset

the

adapter

in

an

attempt

to

fix

the

problem.

ERRID_PHXENT_TX_ERR

Indicates

that

the

device

driver

has

detected

a

transmission

error.

User-intervention

is

not

required

unless

the

problem

persists.

ERRID_PHXENT_PIO

Indicates

that

the

device

driver

has

detected

a

program

IO

error.

The

device

driver

was

unable

to

fix

the

problem.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_PHXENT_DOWN

Indicates

that

the

device

driver

has

shutdown

the

adapter

due

to

an

unrecoverable

error.

The

adapter

is

no

longer

functional

due

to

the

error.

The

error

that

caused

the

device

shutdown

is

error

logged

immediately

before

this

error

log

entry.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_PHXENT_EEPROM_ERR

Indicates

that

the

device

driver

is

in

a

defined

state

due

to

an

invalid

or

bad

EEPROM.

The

device

driver

will

not

become

available.

Hardware

support

should

be

contacted.

ERRID_PHXENT_EEPROM2_ERR

Indicates

that

the

device

driver

is

in

a

defined

state

due

to

an

invalid

or

bad

EEPROM.

The

device

driver

will

not

become

available.

Hardware

support

should

be

contacted.

ERRID_PHXENT_CLOSE_ERR

Indicates

that

an

application

is

holding

a

private

receive

mbuf

owned

by

the

device

driver

during

a

close

operation.

User

intervention

is

not

required.

ERRID_PHXENT_LINK_ERR

Indicates

that

the

link

between

the

adapter

and

the

network

switch

is

down.

The

device

driver

will

Chapter

7.

Communications

I/O

Subsystem

171

attempt

to

reestablish

the

connection

once

the

physical

link

is

reestablished.

When

the

link

is

again

established,

the

device

driver

will

log

ERRID_PHXENT_ERR_RCVRY.

User

intervention

is

necessary

to

fix

the

problem.

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

The

Error

IDs

for

the

Gigabit

Ethernet-SX

PCI

Adapter

Device

Driver

(14100401)

are

as

follows:

ERRID_GXENT_ADAP_ERR

Indicates

that

the

adapter

failed

initialization

commands.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GXENT_CMD_ERR

Indicates

that

the

device

driver

has

detected

an

error

while

issuing

commands

to

the

adapter.

The

device

driver

will

enter

an

adapter

recovery

mode

where

it

will

attempt

to

recover

from

the

error.

If

the

device

driver

is

successful,

it

will

log

ERRID_GXENT_RCVRY_EXIT.

User

intervention

is

not

necessary

for

this

error

unless

the

problem

persists.

ERRID_GXENT_DOWNLOAD_ERR

Indicates

that

an

error

occurred

while

downloading

firmware

to

the

adapter.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GXENT_EEPROM_ERR

Indicates

that

an

error

occurred

while

reading

the

adapter

EEPROM.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GXENT_LINK_DOWN

Indicates

that

the

link

between

the

adapter

and

the

network

switch

is

down.

The

device

driver

will

attempt

to

reestablish

the

connection

once

the

physical

link

is

reestablished.

When

the

link

is

again

established,

the

device

driver

will

log

ERRID_GXENT_RCVRY_EXIT.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GXENT_RCVRY_EXIT

Indicates

that

a

temporary

error

(link

down,

command

error,

or

transmission

error)

has

been

corrected.

ERRID_GXENT_TX_ERR

Indicates

that

the

device

driver

has

detected

a

transmission

error.

The

device

driver

will

enter

an

adapter

recovery

mode

in

an

attempt

to

recover

from

the

error.

If

the

device

driver

is

successful,

it

will

log

ERRID_GXENT_RCVRY_EXIT.

User

intervention

is

not

necessary

for

this

error

unless

the

problem

persists.

ERRID_GXENT_EEH_SERVICE_ERR

Indicates

that

the

device

driver

has

detected

a

error

during

an

attempt

to

recover

from

a

PCI

bus

error.

User

intervention

is

necessary

to

fix

the

problem.

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

The

Error

IDs

for

the

10/100

Mbps

Ethernet

PCI

Adapter

II

Device

Driver

(1410ff01)

are

as

follows:

ERRID_SCENT_ADAP_ERR

Indicates

that

the

adapter

failed

initialization

commands.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_SCENT_PIO_ERR

Indicates

that

the

device

driver

has

detected

a

program

IO

error.

The

device

driver

was

unable

to

fix

the

problem.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_SCENT_EEPROM_ERR

Indicates

that

an

error

occurred

while

reading

the

adapter

EEPROM.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_SCENT_LINK_DOWN

Indicates

that

the

link

between

the

adapter

and

the

network

switch

is

down.

The

device

driver

will

172

Kernel

Extensions

and

Device

Support

Programming

Concepts

attempt

to

reestablish

the

connection

once

the

physical

link

is

reestablished.

When

the

link

is

again

established,

the

device

driver

will

log

ERRID_SCENT_RCVRY_EXIT.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_SCENT_RCVRY_EXIT

Indicates

that

a

temporary

error

(link

down,

command

error,

or

transmission

error)

has

been

corrected.

ERRID_SCENT_TX_ERR

Indicates

that

the

device

driver

has

detected

a

transmission

error.

The

device

driver

will

enter

an

adapter

recovery

mode

in

an

attempt

to

recover

from

the

error.

If

the

device

driver

is

successful,

it

will

log

ERRID_SCENT_RCVRY_EXIT.

User

intervention

is

not

necessary

for

this

error

unless

the

problem

persists.

ERRID_SCENT_EEH_SERVICE_ERR

Indicates

that

the

device

driver

has

detected

a

error

during

an

attempt

to

recover

from

a

PCI

bus

error.

User

intervention

is

necessary

to

fix

the

problem.

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802),

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

(14108802),

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

(14108902)

The

Error

IDs

for

the

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14106802),

the

10/100/1000

Base-T

Ethernet

PCI-X

Adapter

Device

Driver

(14106902),

the

2-Port

Gigabit

Ethernet-SX

PCI-X

Adapter

Device

Driver

(14108802),

and

the

2-Port

10/100/1000

Base-TX

PCI-X

Adapter

Device

Driver

(14108902)

are

as

follows:

ERRID_GOENT_ADAP_ERR

Indicates

that

the

adapter

failed

initialization

commands.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GOENT_PIO_ERR

Indicates

that

the

device

driver

has

detected

a

program

I/O

error.

The

device

driver

was

unable

to

fix

the

problem.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GOENT_EEPROM_ERR

Indicates

that

an

error

occurred

while

reading

the

adapter

EEPROM.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GOENT_LINK_DOWN

Indicates

that

the

link

between

the

adapter

and

the

network

switch

is

down.

The

device

driver

will

attempt

to

reestablish

the

connection

once

the

physical

link

is

reestablished.

When

the

link

is

again

established,

the

device

driver

will

log

ERRID_GOENT_RCVRY_EXIT.

User

intervention

is

necessary

to

fix

the

problem.

ERRID_GOENT_RCVRY_EXIT

Indicates

that

a

temporary

error

(link

down,

command

error,

or

transmission

error)

has

been

corrected.

ERRID_GOENT_TX_ERR

Indicates

that

the

device

driver

has

detected

a

transmission

error.

The

device

driver

will

enter

an

adapter

recovery

mode

in

an

attempt

to

recover

from

the

error.

If

the

device

driver

is

successful,

it

will

log

ERRID_GOENT_RCVRY_EXIT.

User

intervention

is

not

necessary

for

this

error

unless

the

problem

persists.

ERRID_GOENT_EEH_SERVICE_ERR

Indicates

that

the

device

driver

has

detected

a

error

during

an

attempt

to

recover

from

a

PCI

bus

error.

User

intervention

is

necessary

to

fix

the

problem.

Chapter

7.

Communications

I/O

Subsystem

173

Related

Information

“Common

Communications

Status

and

Exception

Codes”

on

page

107.

“Logical

File

System

Kernel

Services”

on

page

65.

System

Management

Interface

Tool

(SMIT):

Overview

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

Error

Logging

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Status

Blocks

for

the

Serial

Optical

Link

Device

Driver,

Sense

Data

for

the

Serial

Optical

Link

Device

Driver

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

Subroutine

References

The

readx

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2.

Commands

References

The

entstat

Command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

1.

The

lecstat

Command,

mpcstat

Command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

The

tokstat

Command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

Technical

References

The

ddwrite

entry

point,

ddselect

entry

point

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

The

CIO_GET_STAT

operation,

CIO_HALT

operation,

CIO_START

operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

The

mpconfig

Multiprotocol

(MPQP)

Device

Handler

Entry

Point,

mpwrite

Multiprotocol

(MPQP)

Device

Handler

Entry

Point,

mpread

Multiprotocol

(MPQP)

Device

Handler

Entry

Point,

mpmpx

Multiprotocol

(MPQP)

Device

Handler

Entry

Point

,

mpopen

Multiprotocol

(MPQP)

Device

Handler

Entry

Point,

mpselect

Multiprotocol

(MPQP)

Device

Handler

Entry

Point,

mpclose

Multiprotocol

(MPQP)

Device

Handler

Entry

Point,

mpioctl

Multiprotocol

(MPQP)

Device

Handler

Entry

Point

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

174

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

8.

Graphic

Input

Devices

Subsystem

The

graphic

input

devices

subsystem

includes

the

keyboard/sound,

mouse,

tablet,

dials,

and

lighted

programmable-function

keys

(LPFK)

devices.

These

devices

provide

operator

input

primarily

to

graphic

applications.

However,

the

keyboard

can

provide

system

input

by

means

of

the

console.

The

program

interface

to

the

input

device

drivers

is

described

in

the

inputdd.h

header

file.

This

header

file

is

available

as

part

of

the

bos.adt.graphics

fileset.

open

and

close

Subroutines

An

open

subroutine

call

is

used

to

create

a

channel

between

the

caller

and

a

graphic

input

device

driver.

The

keyboard

supports

two

such

channels.

The

most

recently

created

channel

is

considered

the

active

channel.

All

other

graphic

input

device

drivers

support

only

one

channel.

The

open

subroutine

call

is

processed

normally,

except

that

the

OFLAG

and

MODE

parameters

are

ignored.

The

keyboard

provides

support

for

the

fp_open

subroutine

call;

however,

only

one

kernel

mode

channel

can

be

open

at

any

given

time.

The

fp_open

subroutine

call

returns

EACCES

for

all

other

graphic

input

devices.

The

close

subroutine

is

used

to

remove

a

channel

created

by

the

open

subroutine

call.

read

and

write

Subroutines

The

graphic

input

device

drivers

do

not

support

read

or

write

operations.

A

read

or

write

to

a

graphic

input

device

special

file

behaves

as

if

a

read

or

write

was

made

to

/dev/null.

ioctl

Subroutines

The

ioctl

operations

provide

run-time

services.

The

special

files

support

the

following

ioctl

operations:

v

Keyboard

v

Mouse

v

Tablet

v

GIO

(Graphics

I/O)

Adapter

v

Dials

v

LPFK

Keyboard

IOCINFO

Returns

the

devinfo

structure.

KSQUERYID

Queries

the

keyboard

device

identifier.

KSQUERYSV

Queries

the

keyboard

service

vector.

KSREGRING

Registers

the

input

ring.

KSRFLUSH

Flushes

the

input

ring.

KSLED

Sets

and

resets

the

keyboard

LEDs.

KSCFGCLICK

Configures

the

clicker.

KSVOLUME

Sets

the

alarm

volume.

KSALARM

Sounds

the

alarm.

KSTRATE

Sets

the

repeat

rate.

KSTDELAY

Sets

the

delay

before

repeat.

KSKAP

Enables

and

disables

the

keep-alive

poll.

KSKAPACK

Acknowledges

the

keep-alive

poll.

KSDIAGMODE

Enables

and

disables

the

diagnostics

mode.

©

Copyright

IBM

Corp.

1997,

2004

175

Note:

1.

A

nonactive

channel

processes

only

IOCINFO,

KSQUERYID,

KSQUERYSV,

KSREGRING,

KSRFLUSH,

KSKAP,

and

KSKAPACK.

All

other

ioctl

subroutine

calls

are

ignored

without

error.

2.

The

KSLED,

KSCFGCLICK,

KSVOLUME,

KSALARM,

KSTRATE,

and

KSTDELAY

ioctl

subroutine

calls

return

an

EBUSY

error

in

the

errno

global

variable

when

the

keyboard

is

in

diagnostics

mode.

3.

The

KSQUERYSV

ioctl

subroutine

call

is

only

available

when

the

channel

is

open

from

kernel

mode

(with

the

fp_open

kernel

service).

4.

The

KSKAP,

KSKAPACK,

KSDIAGMODE

ioctl

subroutine

calls

are

only

available

when

the

channel

is

open

from

user

mode.

Mouse

IOCINFO

Returns

the

devinfo

structure.

MQUERYID

Queries

the

mouse

device

identifier.

MREGRING

Registers

the

input

ring.

MRFLUSH

Flushes

the

input

ring.

MTHRESHOLD

Sets

the

mouse

reporting

threshold.

MRESOLUTION

Sets

the

mouse

resolution.

MSCALE

Sets

the

mouse

scale.

MSAMPLERATE

Sets

the

mouse

sample

rate.

Tablet

IOCINFO

Returns

the

devinfo

structure.

TABQUERYID

Queries

the

tablet

device

identifier.

TABREGRING

Registers

the

input

ring.

TABFLUSH

Flushes

the

input

ring.

TABCONVERSION

Sets

the

tablet

conversion

mode.

TABRESOLUTION

Sets

the

tablet

resolution.

TABORIGIN

Sets

the

tablet

origin.

TABSAMPLERATE

Sets

the

tablet

sample

rate.

TABDEADZONE

Sets

the

tablet

dead

zones.

GIO

(Graphics

I/O)

Adapter

IOCINFO

Returns

the

devinfo

structure.

GIOQUERYID

Returns

the

ID

of

the

attached

devices.

Dials

IOCINFO

Returns

the

devinfo

structure.

DIALREGRING

Registers

the

input

ring.

DIALRFLUSH

Flushes

the

input

ring.

DIALSETGRAND

Sets

the

dial

granularity.

LPFK

IOCINFO

Returns

the

devinfo

structure.

LPFKREGRING

Registers

the

input

ring.

LPFKRFLUSH

Flushes

the

input

ring.

176

Kernel

Extensions

and

Device

Support

Programming

Concepts

LPFKLIGHT

Sets

and

resets

the

key

lights.

Input

Ring

Data

is

obtained

from

graphic

input

devices

by

way

of

a

circular

First-In

First-Out

(FIFO)

queue

or

input

ring,

rather

than

with

a

read

subroutine

call.

The

memory

address

of

the

input

ring

is

registered

with

an

ioctl

(or

fp_ioctl)

subroutine

call.

The

program

that

registers

the

input

ring

is

the

owner

of

the

ring

and

is

responsible

for

allocating,

initializing,

and

freeing

the

storage

associated

with

the

ring.

The

same

input

ring

can

be

shared

by

multiple

devices.

The

input

ring

consists

of

the

input

ring

header

followed

by

the

reporting

area.

The

input

ring

header

contains

the

reporting

area

size,

the

head

pointer,

the

tail

pointer,

the

overflow

flag,

and

the

notification

type

flag.

Before

registering

an

input

ring,

the

ring

owner

must

ensure

that

the

head

and

tail

pointers

contain

the

starting

address

of

the

reporting

area.

The

overflow

flag

must

also

be

cleared

and

the

size

field

set

equal

to

the

number

of

bytes

in

the

reporting

area.

After

the

input

ring

has

been

registered,

the

owner

can

modify

only

the

head

pointer

and

the

notification

type

flag.

Data

stored

on

the

input

ring

is

structured

as

one

or

more

event

reports.

Event

reports

are

placed

at

the

tail

of

the

ring

by

the

graphic

input

device

drivers.

Previously

queued

event

reports

are

taken

from

the

head

of

the

input

ring

by

the

owner

of

the

ring.

The

input

ring

is

empty

when

the

head

and

tail

locations

are

the

same.

An

overflow

condition

exists

if

placement

of

an

event

on

the

input

ring

would

overwrite

data

that

has

not

been

processed.

Following

an

overflow,

new

event

reports

are

not

placed

on

the

input

ring

until

the

input

ring

is

flushed

via

an

ioctl

subroutine

or

service

vector

call.

The

owner

of

the

input

ring

is

notified

when

an

event

is

available

for

processing

via

a

SIGMSG

signal

or

via

callback

if

the

channel

was

created

by

an

fp_open

subroutine

call.

The

notification

type

flag

in

the

input

ring

header

specifies

whether

the

owner

should

be

notified

each

tine

an

event

is

placed

on

the

ring

or

only

when

an

event

is

placed

on

an

empty

ring.

Management

of

Multiple

Keyboard

Input

Rings

When

multiple

keyboard

channels

are

opened,

keyboard

events

are

placed

on

the

input

ring

associated

with

the

most

recently

opened

channel.

When

this

channel

is

closed,

the

alternate

channel

is

activated

and

keyboard

events

are

placed

on

the

input

ring

associated

with

that

channel.

Event

Report

Formats

Each

event

report

consists

of

an

identifier

followed

by

the

report

size

in

bytes,

a

time

stamp

(system

time

in

milliseconds),

and

one

or

more

bytes

of

device-dependent

data.

The

value

of

the

identifier

is

specified

when

the

input

ring

is

registered.

The

program

requesting

the

input-ring

registration

is

responsible

for

identifier

uniqueness

within

the

input-ring

scope.

Note:

Event

report

structures

are

placed

on

the

input-ring

without

spacing.

Data

wraps

from

the

end

to

the

beginning

of

the

reporting

area.

A

report

can

be

split

on

any

byte

boundary

into

two

non-contiguous

sections.

The

event

reports

are

as

follows:

Keyboard

ID

Specifies

the

report

identifier.

Length

Specifies

the

report

length.

Time

stamp

Specifies

the

system

time

(in

milliseconds).

Key

position

code

Specifies

the

key

position

code.

Key

scan

code

Specifies

the

key

scan

code.

Status

flags

Specifies

the

status

flags.

Chapter

8.

Graphic

Input

Devices

Subsystem

177

Tablet

ID

Specifies

the

report

identifier.

Length

Specifies

the

report

length.

Time

stamp

Specifies

the

system

time

(in

milliseconds).

Absolute

X

Specifies

the

absolute

X

coordinate.

Absolute

Y

Specifies

the

absolute

Y

coordinate.

LPFK

ID

Specifies

the

report

identifier.

Length

Specifies

the

report

length.

Time

stamp

Specifies

the

system

time

(in

milliseconds).

Number

of

key

pressed

Specifies

the

number

of

the

key

pressed.

Dials

ID

Specifies

the

report

identifier.

Length

Specifies

the

report

length.

Time

stamp

Specifies

the

system

time

(in

milliseconds).

Number

of

dial

changed

Specifies

the

number

of

the

dial

changed.

Delta

change

Specifies

delta

dial

rotation.

Mouse

(Standard

Format)

ID

Specifies

the

report

identifier.

Length

Specifies

the

report

length.

Time

stamp

Specifies

the

system

time

(in

milliseconds).

Delta

X

Specifies

the

delta

mouse

motion

along

the

X

axis.

Delta

Y

Specifies

the

delta

mouse

motion

along

the

Y

axis.

Button

status

Specifies

the

button

status.

Mouse

(Extended

Format)

ID

Specifies

the

report

identifier.

Length

Specifies

the

report

length.

Time

stamp

Specifies

the

system

time

(in

milliseconds).

Format

Specifies

the

format

of

additional

fields.

Format

1:

v

Status:

Specifies

the

extended

button

status

v

Delta

Wheel:

Specifies

the

delta

wheel

movement

Format

2:

v

Button

Status:

Specifies

the

button

status.

v

Delta

X:

Specifies

the

delta

mouse

motion

along

the

X

axis.

v

Delta

Y:

Specifies

the

delta

mouse

motion

along

the

Y

axis.

v

Delta

Wheel:

Specifies

the

delta

wheel

movement

178

Kernel

Extensions

and

Device

Support

Programming

Concepts

Keyboard

Service

Vector

The

keyboard

service

vector

provides

a

limited

set

of

keyboard-related

and

sound-related

services

for

kernel

extensions.

The

following

services

are

available:

v

Sound

alarm

v

Enable

and

disable

secure

attention

key

(SAK)

v

Flush

input

queue

The

address

of

the

service

vector

is

obtained

with

the

fp_ioctl

subroutine

call

during

a

non-critical

period.

The

kernel

extension

can

later

invoke

the

service

using

an

indirect

call

as

follows:

(*ServiceVector[ServiceNumber])

(dev_t

DeviceNumber,

caddr_t

Arg);

where:

v

The

service

vector

is

a

pointer

to

the

service

vector

obtained

by

the

KSQUERYSV

fp_loctl

subroutine

call.

v

The

ServiceNumber

parameter

is

defined

in

the

inputdd.h

file.

v

The

DeviceNumber

parameter

specifies

the

major

and

minor

numbers

of

the

keyboard.

v

The

Arg

parameter

points

to

a

ksalarm

structure

for

alarm

requests

and

a

uint

variable

for

SAK

enable

and

disable

requests.

The

Arg

parameter

is

NULL

for

flush

queue

requests.

If

successful,

the

function

returns

a

value

of

0

is

returned.

Otherwise,

the

function

returns

an

error

number

defined

in

the

errno.h

file.

Flush-queue

and

enable/disable-SAK

requests

are

always

processed,

but

alarm

requests

are

ignored

if

the

kernel

extension’s

channel

is

inactive.

The

following

example

uses

the

service

vector

to

sound

the

alarm:

/*

pinned

data

structures

*/

/*

This

example

assumes

that

pinning

is

done

elsewhere.

*/

int

(**ksvtbl)

();

struct

ksalarm

alarm;

dev_t

devno;

/*

get

address

of

service

vector

*/

/*

This

should

be

done

in

a

noncritical

section

*/

if

(fp_ioctl(fp,

KSQUERYSV,

&ksvtbl,

0))

{

/*

error

recovery

*/

}

.

.

.

/*

critical

section

*/

/*

sound

alarm

for

1

second

using

service

vector

*/

alarm.duration

=

128;

alarm.frequency

=

100;

if

((*ksvtbl[KSVALARM])

(devno,

&alarm))

{

/*

error

recovery

*/

}

Special

Keyboard

Sequences

Special

keyboard

sequences

are

provided

for

the

Secure

Attention

Key

(SAK)

and

the

Keep

Alive

Poll

(KAP).

Secure

Attention

Key

The

user

requests

a

secure

shell

by

keying

a

secure

attention.

The

keyboard

driver

interprets

the

key

sequence

CTRL

x

r

as

the

SAK.

An

indirect

call

using

the

keyboard

service

vector

enables

and

disables

the

detection

of

this

key

sequence.

If

detection

of

the

SAK

is

enabled,

a

SAK

causes

the

SAK

callback

to

Chapter

8.

Graphic

Input

Devices

Subsystem

179

be

invoked.

The

SAK

callback

is

invoked

even

if

the

input

ring

is

inactive

due

to

a

user

process

issuing

an

open

to

the

keyboard

special

file.

The

SAK

callback

runs

within

the

interrupt

environment.

Keep

Alive

Poll

The

keyboard

device

driver

supports

a

special

key

sequence

that

kills

the

process

that

owns

the

keyboard.

This

sequence

must

first

be

defined

with

a

KSKAP

ioctl

operation.

After

this

sequence

is

defined,

the

keyboard

device

driver

sends

a

SIGKAP

signal

to

the

process

that

owns

the

keyboard

when

the

special

sequence

is

entered

on

the

keyboard.

The

process

that

owns

the

keyboard

must

acknowledge

the

KSKAP

signal

with

a

KSKAPACK

ioctl

within

30

seconds

or

the

keyboard

driver

will

terminate

the

process

with

a

SIGKILL

signal.

The

KAP

is

enabled

on

a

per-channel

basis

and

is

unavailable

if

the

channel

is

owned

by

a

kernel

extension.

180

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

9.

Low

Function

Terminal

Subsystem

This

chapter

discusses

the

following

topics:

v

Low

Function

Terminal

Interface

Functional

Description

v

Components

Affected

by

the

Low

Function

Terminal

Interface

v

Accented

Characters

The

low

function

terminal

(lft)

interface

is

a

pseudo-device

driver

that

interfaces

with

device

drivers

for

the

system

keyboard

and

display

adapters.

The

lft

interface

adheres

to

all

standard

requirements

for

pseudo-device

drivers

and

has

all

the

entry

points

and

configuration

code

as

required

by

the

device

driver

architecture.

This

section

gives

a

high-level

description

of

the

various

configuration

methods

and

entry

points

provided

by

the

lft

interface.

All

the

device

drivers

controlled

by

the

lft

interface

are

also

used

by

AIXwindows.

Consequently,

along

with

the

functions

required

for

the

tty

sybsystem

interface,

the

lft

interface

provides

the

functions

required

by

AIXwindows

interfaces

with

display

device

driver

adapters.

Low

Function

Terminal

Interface

Functional

Description

This

section

covers

the

lft

interface

functional

description:

v

Configuration

v

Terminal

Emulation

v

IOCTLS

Needed

for

AIXwindows

Support

v

Low

Function

Terminal

to

System

Keyboard

Interface

v

Low

Function

Terminal

to

Display

Device

Driver

Interface

v

Low

Function

Terminal

Device

Driver

Entry

Points

Configuration

The

lft

interface

uses

the

common

define,

undefine,

and

unconfiguration

methods

standard

for

most

devices.

Note:

The

lft

interface

does

not

support

any

change

method

for

dynamically

changing

the

lft

configuration.

Instead,

use

the

-P

flag

with

the

chdev

command.

The

changes

become

effective

the

next

time

the

lft

interface

is

configured.

The

configuration

process

for

the

lft

opens

all

display

device

drivers.

To

define

the

default

display

and

console,

select

the

default

display

and

console

during

the

console

configuration

process.

If

a

graphics

display

is

chosen

as

the

system

console,

it

automatically

becomes

the

default

display.

The

lft

interface

displays

text

on

the

default

display.

The

configuration

process

for

the

lft

interface

queries

the

ODM

database

for

the

available

fonts

and

software

keyboard

map

for

the

current

session.

Terminal

Emulation

The

lft

interface

is

a

stream-based

tty

subsystem.

The

lft

interface

provides

VT100

(or

IBM

3151)

terminal

emulation

for

the

standard

part

of

the

ANSI

3.64

data

stream.

All

line

discipline

handling

is

performed

in

the

layers

above

the

lft

interface.

The

lft

interface

does

not

support

virtual

terminals.

The

lft

interface

supports

multiple

fonts

to

handle

the

different

screen

sizes

and

resolutions

necessary

in

providing

a

25x80

character

display

on

various

display

adapters.

©

Copyright

IBM

Corp.

1997,

2004

181

Note:

Applications

requiring

hft

extensions

need

to

use

aixterm.

IOCTLS

Needed

for

AIXwindows

Support

AIXwindows

and

the

lft

interface

share

the

system

keyboard

and

display

device

drivers.

To

prevent

screen

and

keyboard

inconsistencies,

a

set

of

ioctl

coordinates

usage

between

AIXwindows

and

the

lft

interface.

On

a

system

with

multiple

displays,

the

lft

interface

can

still

use

the

default

display

as

long

as

AIXwindows

is

using

another

display.

Note:

The

lft

interface

provides

ioctl

support

to

set

and

change

the

default

display.

Low

Function

Terminal

to

System

Keyboard

Interface

The

lft

interface

with

the

system

keyboard

uses

an

input

ring

mechanism.

The

details

of

the

keyboard

driver

ioctls,

as

well

as

the

format

and

description

of

this

input

ring,

are

provided

in

Chapter

8,

“Graphic

Input

Devices

Subsystem,”

on

page

175.

The

keyboard

device

driver

passes

raw

keystrokes

to

the

lft

interface.

These

keystrokes

are

converted

to

the

appropriate

code

point

using

keyboard

tables.

The

use

of

keyboard-language-dependent

keyboard

tables

ensures

that

the

lft

interface

provides

National

Language

Support.

Low

Function

Terminal

to

Display

Device

Driver

Interface

The

lft

uses

a

device

independent

interface

known

as

the

virtual

display

driver

(vdd)

interface.

Because

the

lft

interface

has

no

virtual

terminal

or

monitor

mode

support,

some

of

the

vdd

entry

points

are

not

used

by

the

lft.

The

display

drivers

might

enqueue

font

request

through

the

font

process

started

during

lft

initialization.

The

font

process

pins

and

unpins

the

requested

fonts

for

DMA

to

the

display

adapter.

Low

Function

Terminal

Device

Driver

Entry

Points

The

lft

interface

supports

the

open,

close,

read,

write,

ioctl,

and

configuration

entry

points.

Components

Affected

by

the

Low

Function

Terminal

Interface

The

lft

interface

impacts

the

following

components:

v

Configuration

User

Commands

v

Keyboard

Device

Driver

(Information

about

this

is

contained

in

Graphic

Input

Device

Driver

Programming

Interface.)

v

Display

Device

Driver

v

Rendering

Context

Manager

Configuration

User

Commands

The

lft

interface

is

a

pseudo-device

driver.

Consequently,

the

system

configuration

process

does

not

detect

the

lft

interface

as

it

does

an

adapter.

The

system

provides

for

pseudo-device

drivers

to

be

started

through

Config_Rules.

To

start

the

lft

interface,

use

the

startlft

program.

Supported

commands

include:

v

lsfont

v

mkfont

v

chfont

v

lskbd

v

chkbd

v

lsdisp

(see

note)

v

chdisp

(see

note)

182

Kernel

Extensions

and

Device

Support

Programming

Concepts

Note:

1.

lsdisp

outputs

the

logical

device

name

instead

of

the

instance

number.

2.

chdisp

uses

the

ioctl

interface

to

the

lft

to

set

the

requested

display.

Display

Device

Driver

Beginning

with

AIX

4.1,

a

display

device

driver

is

required

for

each

supported

display

adapter.

The

display

device

drivers

provide

all

the

standard

interfaces

(such

as

config,

initialize,

terminate,

and

so

forth)

required

in

any

AIX

4.1

(or

later)

device

drivers.

The

only

device

switch

table

entries

supported

are

open,

close,

config,

and

ioctl.

All

other

device

switch

table

entries

are

set

to

nodev.

In

addition,

the

display

device

drivers

provide

a

set

of

ioctls

for

use

by

AIXwindows

and

diagnostics

to

perform

device

specific

functions

such

as

get

bus

access,

bus

memory

address,

DMA

operations,

and

so

forth.

Rendering

Context

Manager

The

Rendering

Context

Manager

(RCM)

is

a

loadable

module.

Note:

Previously,

the

high

functional

terminal

interface

provided

AIXwindows

with

the

gsc_handle.

This

handle

is

used

in

all

of

the

aixgsc

system

calls.

The

RCM

provides

this

service

for

the

lft

interface.

To

ensure

that

lft

can

recover

the

display

in

case

AIXwindows

should

terminate

abnormally,

AIXwindows

issues

the

ioctl

to

RCM

after

opening

the

pseudo-device.

RCM

passes

on

the

ioctl

to

the

lft.

This

way,

the

close

function

in

RCM

is

invoked

(Because

AIXwindows

is

the

only

application

that

has

opened

RCM),

and

RCM

notifies

the

lft

interface

to

start

reusing

the

display.

To

support

this

communication,

the

RCM

provides

the

required

ioctl

support.

The

RCM

to

lft

Interface

Initialization

1.

RCM

performs

the

open

/dev/lft.

2.

Upon

receiving

a

list

of

displays

from

X,

RCM

passes

the

information

to

the

lft

through

an

ioctl.

3.

RCM

resets

the

adapter.

If

AIXwindows

Terminates

Abnormally

1.

RCM

receives

notification

from

X

about

the

displays

it

was

using.

2.

RCM

resets

the

adapter.

3.

RCM

passes

the

information

to

the

lft

by

way

of

an

ioctl.

AIXwindows

to

lft

Initialization

The

AIXwindows

to

lft

initialization

includes

the

following:

1.

AIXwindows

opens

/dev/rcm.

2.

AIXwindows

gets

the

gsc_handle

from

RCM

via

an

ioctl.

3.

AIXwindows

becomes

a

graphics

process

aixgsc

(MAKE_GP,

...)

4.

AIXwindows,

through

an

ioctl,

informs

RCM

about

the

displays

it

wishes

to

use.

5.

AIXwindows

opens

all

of

the

input

devices

it

needs

and

passes

the

same

input

ring

to

each

of

them.

Upon

Normal

Termination

1.

X

issues

a

close

to

all

of

the

input

devices

it

opened.

2.

X

informs

RCM,

through

an

ioctl,

about

the

displays

it

was

using.

Diagnostics

Diagnostics

and

other

applications

that

require

access

to

the

graphics

adapter

use

the

AIXwindows

to

lft

interface.

Chapter

9.

Low

Function

Terminal

Subsystem

183

Accented

Characters

Here

are

the

valid

sets

of

characters

for

each

of

the

diacritics

that

the

Low

Function

Terminal

(LFT)

subsystem

uses

to

validate

the

two-key

nonspacing

character

sequence.

List

of

Diacritics

Supported

by

the

HFT

LFT

Subsystem

There

are

seven

diacritic

characters

for

which

sets

of

characters

are

provided:

v

Acute

v

Grave

v

Circumflex

v

Umlaut

v

Tilde

v

Overcircle

v

Cedilla

Valid

Sets

of

Characters

(Categorized

by

Diacritics)

The

following

are

acute

function

code

values:

Acute

Function

Code

Value

Acute

accent

0xef

Apostrophe

(acute)

0x27

e

Acute

small

0x82

e

Acute

capital

0x90

a

Acute

small

0xa0

i

Acute

small

0xa1

o

Acute

small

0xa2

u

Acute

small

0xa3

a

Acute

capital

0xb5

i

Acute

capital

0xd6

y

Acute

small

0xec

y

Acute

capital

0xed

o

Acute

capital

0xe0

u

Acute

capital

0xe9

The

following

are

grave

function

code

values:

Grave

Function

Code

Value

Grave

accent

0x60

a

Grave

small

0x85

e

Grave

small

0x8a

i

Grave

small

0x8d

o

Grave

small

0x95

u

Grave

small

0x97

a

Grave

capital

0xb7

e

Grave

capital

0xd4

i

Grave

capital

0xde

o

Grave

capital

0xe3

u

Grave

capital

0xeb

The

following

are

circumflex

function

code

values:

Circumflex

Function

Code

Value

184

Kernel

Extensions

and

Device

Support

Programming

Concepts

^

Circumflex

accent

0x5e

a

Circumflex

small

0x83

e

Circumflex

small

0x88

i

Circumflex

small

0x8c

o

Circumflex

small

0x93

u

Circumflex

small

0x96

a

Circumflex

capital

0xb6

e

Circumflex

capital

0xd2

i

Circumflex

capital

0xd7

o

Circumflex

capital

0xe2

u

Circumflex

capital

0xea

The

following

are

umlaut

function

code

values:

Umlaut

Function

Code

Value

Umlaut

accent

0xf9

u

Umlaut

small

0x81

a

Umlaut

small

0x84

e

Umlaut

small

0x89

i

Umlaut

small

0x8b

a

Umlaut

capital

0x8e

O

Umlaut

capital

0x99

u

Umlaut

capital

0x9a

e

Umlaut

capital

0xd3

i

Umlaut

capital

0xd8

The

following

are

tilde

function

code

values:

Tilde

Function

Code

Value

Tilde

accent

0x7e

n

Tilde

small

0xa4

n

Tilde

capital

0xa5

a

Tilde

small

0xc6

a

Tilde

capital

0xc7

o

Tilde

small

0xe4

o

Tilde

capital

0xe5

Overcircle

Function

Code

Value

Overcircle

accent

0x7d

a

Overcircle

small

0x86

a

Overcircle

capital

0x8f

Cedilla

Function

Code

Value

Cedilla

accent

0xf7

c

Cedilla

capital

0x80

c

Cedilla

small

0x87

Related

Information

National

Language

Support

Overview,

Setting

National

Language

Support

for

Devices,

Locales

in

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices

Keyboard

Overview

in

Keyboard

Technical

Reference

Chapter

9.

Low

Function

Terminal

Subsystem

185

Understanding

the

Japanese

Input

Method

(JIM),

Understanding

the

Korean

Input

Method

(KIM),

Understanding

the

Traditional

Chinese

Input

Method

(TIM)

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Commands

References

The

iconv

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

186

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

10.

Logical

Volume

Subsystem

A

logical

volume

subsystem

provides

flexible

access

and

control

for

complex

physical

storage

systems.

The

following

topics

describe

how

the

logical

volume

device

driver

(LVDD)

interacts

with

physical

volumes:

v

“Direct

Access

Storage

Devices

(DASDs)”

v

“Physical

Volumes”

v

“Understanding

the

Logical

Volume

Device

Driver”

on

page

190

v

“Understanding

Logical

Volumes

and

Bad

Blocks”

on

page

193

Direct

Access

Storage

Devices

(DASDs)

Direct

access

storage

devices

(DASDs)

are

fixed

or

removable

storage

devices.

Typically,

these

devices

are

hard

disks.

A

fixed

storage

device

is

any

storage

device

defined

during

system

configuration

to

be

an

integral

part

of

the

system

DASD.

The

operating

system

detects

an

error

if

a

fixed

storage

device

is

not

available

at

some

time

during

normal

operation.

A

removable

storage

device

is

any

storage

device

defined

by

the

person

who

administers

your

system

during

system

configuration

to

be

an

optional

part

of

the

system

DASD.

The

removable

storage

device

can

be

removed

from

the

system

at

any

time

during

normal

operation.

As

long

as

the

device

is

logically

unmounted

first,

the

operating

system

does

not

detect

an

error.

The

following

types

of

devices

are

not

considered

DASD

and

are

not

supported

by

the

logical

volume

manager

(LVM):

v

Diskettes

v

CD-ROM

(compact

disk

read-only

memory)

v

DVD-ROM

(DVD

read-only

memory)

v

WORM

(write-once

read-many)

For

a

description

of

the

block

level,

see

“DASD

Device

Block

Level

Description”

on

page

287.

Physical

Volumes

A

logical

volume

is

a

portion

of

a

physical

volume

viewed

by

the

system

as

a

volume.

Logical

records

are

records

defined

in

terms

of

the

information

they

contain

rather

than

physical

attributes.

A

physical

volume

is

a

DASD

structured

for

requests

at

the

physical

level,

that

is,

the

level

at

which

a

processing

unit

can

request

device-independent

operations

on

a

physical

block

address

basis.

A

physical

volume

is

composed

of

the

following:

v

A

device-dependent

reserved

area

v

A

variable

number

of

physical

blocks

that

serve

as

DASD

descriptors

v

An

integral

number

of

partitions,

each

containing

a

fixed

number

of

physical

blocks

When

performing

I/O

at

a

physical

level,

no

bad-block

relocation

is

supported.

Bad

blocks

are

not

hidden

at

this

level

as

they

are

at

the

logical

level.

Typical

operations

at

the

physical

level

are

read-physical-block

and

write-physical-block.

For

more

information

on

bad

blocks,

see

“Understanding

Logical

Volumes

and

Bad

Blocks”

on

page

193.

The

following

are

terms

used

when

discussing

DASD

volumes:

block

A

contiguous,

512-byte

region

of

a

physical

volume

that

corresponds

in

size

to

a

DASD

sector

©

Copyright

IBM

Corp.

1997,

2004

187

partition

A

set

of

blocks

(with

sequential

cylinder,

head,

and

sector

numbers)

contained

within

a

single

physical

volume

The

number

of

blocks

in

a

partition,

as

well

as

the

number

of

partitions

in

a

given

physical

volume,

are

fixed

when

the

physical

volume

is

installed

in

a

volume

group.

Every

physical

volume

in

a

volume

group

has

exactly

the

same

partition

size.

There

is

no

restriction

on

the

types

of

DASDs

(for

example,

Small

Computer

Systems

Interface

(SCSI),

Enhanced

Small

Device

Interface

(ESDI),

or

Intelligent

Peripheral

Interface

(IPI))

that

can

be

placed

in

a

given

volume

group.

Note:

A

given

physical

volume

must

be

assigned

to

a

volume

group

before

that

physical

volume

can

be

used

by

the

LVM.

Physical

Volume

Implementation

Limitations

When

composing

a

physical

volume

from

a

DASD,

the

following

implementation

restrictions

apply

to

DASD

characteristics:

v

1

to

32

physical

volumes

per

volume

group

v

1

to

128

physical

volumes

in

a

big

volume

group

v

The

partition

size

is

restricted

to

2**n

bytes,

for

20

<=

n

<=

30

v

The

physical

block

size

is

restricted

to

512

bytes

Physical

Volume

Layout

A

physical

volume

consists

of

a

logically

contiguous

string

of

physical

sectors.

Sectors

are

numbered

0

through

the

last

physical

sector

number

(LPSN)

on

the

physical

volume.

The

total

number

of

physical

sectors

on

a

physical

volume

is

LPSN

+

1.

The

actual

physical

location

and

physical

order

of

the

sectors

are

transparent

to

the

sector

numbering

scheme.

Note:

Sector

numbering

applies

to

user-accessible

data

sectors

only.

Spare

sectors

and

Customer-Engineer

(CE)

sectors

are

not

included.

CE

sectors

are

reserved

for

use

by

diagnostic

test

routines

or

microcode.

Reserved

Sectors

on

a

Physical

Volume

A

physical

volume

reserves

the

first

128

sectors

to

store

various

types

of

DASD

configuration

and

operation

information.

The

/usr/include/sys/hd_psn.h

file

describes

the

information

stored

on

the

reserved

sectors.

The

locations

of

the

items

in

the

reserved

area

are

expressed

as

physical

sector

numbers

in

this

file,

and

the

lengths

of

those

items

are

in

number

of

sectors.

The

128-sector

reserved

area

of

a

physical

volume

includes

a

boot

record,

the

bad-block

directory,

the

LVM

record,

and

the

mirror

write

consistency

(MWC)

record.

The

boot

record

consists

of

one

sector

containing

information

that

allows

the

read-only

system

(ROS)

to

boot

the

system.

A

description

of

the

boot

record

can

be

found

in

the

/usr/include/sys/bootrecord.h

file.

The

boot

record

also

contains

the

pv_id

field.

This

field

is

a

64-bit

number

uniquely

identifying

a

physical

volume.

This

identifier

might

be

assigned

by

the

manufacturer

of

the

physical

volume.

However,

if

a

physical

volume

is

part

of

a

volume

group,

the

pv_id

field

will

be

assigned

by

the

LVM.

The

bad-block

directory

records

the

blocks

on

the

physical

volume

that

have

been

diagnosed

as

unusable.

The

structure

of

the

bad-block

directory

and

its

entries

can

be

found

in

the

/usr/include/sys/bbdir.h

file.

The

LVM

record

consists

of

one

sector

and

contains

information

used

by

the

LVM

when

the

physical

volume

is

a

member

of

the

volume

group.

The

LVM

record

is

described

in

the

/usr/include/lvmrec.h

file.

188

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

MWC

record

consists

of

one

sector.

It

identifies

which

logical

partitions

might

be

inconsistent

if

the

system

is

not

shut

down

properly.

When

the

volume

group

is

varied

back

online

for

use,

this

information

is

used

to

make

logical

partitions

consistent

again.

Sectors

Reserved

for

the

Logical

Volume

Manager

(LVM)

If

a

physical

volume

is

part

of

a

volume

group,

the

physical

volume

is

used

by

the

LVM

and

contains

two

additional

reserved

areas.

One

area

contains

the

volume

group

descriptor

area/volume

group

status

area

and

follows

the

first

128

reserved

sectors.

The

other

area

is

at

the

end

of

the

physical

volume

reserved

as

a

relocation

pool

for

bad

blocks

that

must

be

software-relocated.

Both

of

these

areas

are

described

by

the

LVM

record.

The

space

between

these

last

two

reserved

areas

is

divided

into

equal-sized

partitions.

The

volume

group

descriptor

area

(VGDA)

is

divided

into

the

following:

v

The

volume

group

header.

This

header

contains

general

information

about

the

volume

group

and

a

time

stamp

used

to

verify

the

consistency

of

the

VGDA.

v

A

list

of

logical

volume

entries.

The

logical

volume

entries

describe

the

states

and

policies

of

logical

volumes.

This

list

defines

the

maximum

number

of

logical

volumes

allowed

in

the

volume

group.

The

maximum

is

specified

when

a

volume

group

is

created.

v

A

list

of

physical

volume

entries.

The

size

of

the

physical

volume

list

is

variable

because

the

number

of

entries

in

the

partition

map

can

vary

for

each

physical

volume.

For

example,

a

200

MB

physical

volume

with

a

partition

size

of

1

MB

has

200

partition

map

entries.

v

A

name

list.

This

list

contains

the

special

file

names

of

each

logical

volume

in

the

volume

group.

v

A

volume

group

trailer.

This

trailer

contains

an

ending

time

stamp

for

the

volume

group

descriptor

area.

When

a

volume

group

is

varied

online,

a

majority

(also

called

a

quorum)

of

VGDAs

must

be

present

to

perform

recovery

operations

unless

you

have

specified

the

force

flag.

(The

vary-on

operation,

performed

by

using

the

varyonvg

command,

makes

a

volume

group

available

to

the

system.)

See

Logical

Volume

Storage

Overview

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices

for

introductory

information

about

the

vary-on

process

and

quorums.

Attention:

Use

of

the

force

flag

can

result

in

data

inconsistency.

A

volume

group

with

only

one

physical

volume

must

contain

two

copies

of

the

physical

volume

group

descriptor

area.

For

any

volume

group

containing

more

than

one

physical

volume,

there

are

at

least

three

on-disk

copies

of

the

volume

group

descriptor

area.

The

default

placement

of

these

areas

on

the

physical

volume

is

as

follows:

v

For

the

first

physical

volume

installed

in

a

volume

group,

two

copies

of

the

volume

group

descriptor

area

are

placed

on

the

physical

volume.

v

For

the

second

physical

volume

installed

in

a

volume

group,

one

copy

of

the

volume

group

descriptor

area

is

placed

on

the

physical

volume.

v

For

the

third

physical

volume

installed

in

a

volume

group,

one

copy

of

the

volume

group

descriptor

area

is

placed

on

the

physical

volume.

The

second

copy

is

removed

from

the

first

volume.

v

For

additional

physical

volumes

installed

in

a

volume

group,

one

copy

of

the

volume

group

descriptor

area

is

placed

on

the

physical

volume.

When

a

vary-on

operation

is

performed,

a

majority

of

copies

of

the

volume

group

descriptor

area

must

be

able

to

come

online

before

the

vary-on

operation

is

considered

successful.

A

quorum

ensures

that

at

least

one

copy

of

the

volume

group

descriptor

areas

available

to

perform

recovery

was

also

one

of

the

volume

group

descriptor

areas

that

were

online

during

the

previous

vary-off

operation.

If

not,

the

consistency

of

the

volume

group

descriptor

area

cannot

be

ensured.

The

volume

group

status

area

(VGSA)

contains

the

status

of

all

physical

volumes

in

the

volume

group.

This

status

is

limited

to

active

or

missing.

The

VGSA

also

contains

the

state

of

all

allocated

physical

Chapter

10.

Logical

Volume

Subsystem

189

partitions

(PP)

on

all

physical

volumes

in

the

volume

group.

This

state

is

limited

to

active

or

stale.

A

PP

with

a

stale

state

is

not

used

to

satisfy

a

read

request

and

is

not

updated

on

a

write

request.

A

PP

changes

from

stale

to

active

after

a

successful

resynchronization

of

the

logical

partition

(LP)

that

has

multiple

copies,

or

mirrors,

and

is

no

longer

consistent

with

its

peers

in

the

LP.

This

inconsistency

can

be

caused

by

a

write

error

or

by

not

having

a

physical

volume

available

when

the

LP

is

written

to

or

updated.

A

PP

changes

from

stale

to

active

after

a

successful

resynchronization

of

the

LP.

A

resynchronization

operation

issues

resynchronization

requests

starting

at

the

beginning

of

the

LP

and

proceeding

sequentially

through

its

end.

The

LVDD

reads

from

an

active

partition

in

the

LP

and

then

writes

that

data

to

any

stale

partition

in

the

LP.

When

the

entire

LP

has

been

traversed,

the

partition

state

is

changed

from

stale

to

active.

Normal

I/O

can

occur

concurrently

in

an

LP

that

is

being

resynchronized.

Note:

If

a

write

error

occurs

in

a

stale

partition

while

a

resynchronization

is

in

progress,

that

partition

remains

stale.

If

all

stale

partitions

in

an

LP

encounter

write

errors,

the

resynchronization

operation

is

ended

for

this

LP

and

must

be

restarted

from

the

beginning.

The

vary-on

operation

uses

the

information

in

the

VGSA

to

initialize

the

LVDD

data

structures

when

the

volume

group

is

brought

online.

Understanding

the

Logical

Volume

Device

Driver

The

Logical

Volume

Device

Driver

(LVDD)

is

a

pseudo-device

driver

that

operates

on

logical

volumes

through

the

/dev/lvn

special

file.

Like

the

physical

disk

device

driver,

this

pseudo-device

driver

provides

character

and

block

entry

points

with

compatible

arguments.

Each

volume

group

has

an

entry

in

the

kernel

device

switch

table.

Each

entry

contains

entry

points

for

the

device

driver

and

a

pointer

to

the

volume

group

data

structure.

The

logical

volumes

of

a

volume

group

are

distinguished

by

their

minor

numbers.

Attention:

Each

logical

volume

has

a

control

block

located

in

the

first

512

bytes.

Data

begins

in

the

second

512-byte

block.

Care

must

be

taken

when

reading

and

writing

directly

to

the

logical

volume,

such

as

when

using

applications

that

write

to

raw

logical

volumes,

because

the

control

block

is

not

protected

from

such

writes.

If

the

control

block

is

overwritten,

commands

that

use

the

control

block

will

use

default

information

instead.

Character

I/O

requests

are

performed

by

issuing

a

read

or

write

request

on

a

/dev/rlvn

character

special

file

for

a

logical

volume.

The

read

or

write

is

processed

by

the

file

system

SVC

handler,

which

calls

the

LVDD

ddread

or

ddwrite

entry

point.

The

ddread

or

ddwrite

entry

point

transforms

the

character

request

into

a

block

request.

This

is

done

by

building

a

buffer

for

the

request

and

calling

the

LVDD

ddstrategy

entry

point.

Block

I/O

requests

are

performed

by

issuing

a

read

or

write

on

a

block

special

file

/dev/lvn

for

a

logical

volume.

These

requests

go

through

the

SVC

handler

to

the

bread

or

bwrite

block

I/O

kernel

services.

These

services

build

buffers

for

the

request

and

call

the

LVDD

ddstrategy

entry

point.

The

LVDD

ddstrategy

entry

point

then

translates

the

logical

address

to

a

physical

address

(handling

bad

block

relocation

and

mirroring)

and

calls

the

appropriate

physical

disk

device

driver.

On

completion

of

the

I/O,

the

physical

disk

device

driver

calls

the

iodone

kernel

service

on

the

device

interrupt

level.

This

service

then

calls

the

LVDD

I/O

completion-handling

routine.

Once

this

is

completed,

the

LVDD

calls

the

iodone

service

again

to

notify

the

requester

that

the

I/O

is

completed.

The

LVDD

is

logically

split

into

top

and

bottom

halves.

The

top

half

contains

the

ddopen,

ddclose,

ddread,

ddwrite,

ddioctl,

and

ddconfig

entry

points.

The

bottom

half

contains

the

ddstrategy

entry

point,

190

Kernel

Extensions

and

Device

Support

Programming

Concepts

which

contains

block

read

and

write

code.

This

is

done

to

isolate

the

code

that

must

run

fully

pinned

and

has

no

access

to

user

process

context.

The

bottom

half

of

the

device

driver

runs

on

interrupt

levels

and

is

not

permitted

to

page

fault.

The

top

half

runs

in

the

context

of

a

process

address

space

and

can

page

fault.

Data

Structures

The

interface

to

the

ddstrategy

entry

point

is

one

or

more

logical

buf

structures

in

a

list.

The

logical

buf

structure

is

defined

in

the

/usr/include/sys/buf.h

file

and

contains

all

needed

information

about

an

I/O

request,

including

a

pointer

to

the

data

buffer.

The

ddstrategy

entry

point

associates

one

or

more

(if

mirrored)

physical

buf

structures

(or

pbufs)

with

each

logical

buf

structure

and

passes

them

to

the

appropriate

physical

device

driver.

The

pbuf

structure

is

a

standard

buf

structure

with

some

additional

fields.

The

LVDD

uses

these

fields

to

track

the

status

of

the

physical

requests

that

correspond

to

each

logical

I/O

request.

A

pool

of

pinned

pbuf

structures

is

allocated

and

managed

by

the

LVDD.

There

is

one

device

switch

entry

for

each

volume

group

defined

on

the

system.

Each

volume

group

entry

contains

a

pointer

to

the

volume

group

data

structure

describing

it.

Top

Half

of

LVDD

The

top

half

of

the

LVDD

contains

the

code

that

runs

in

the

context

of

a

process

address

space

and

can

page

fault.

It

contains

the

following

entry

points:

ddopen

Called

by

the

file

system

when

a

logical

volume

is

mounted,

to

open

the

logical

volume

specified.

ddclose

Called

by

the

file

system

when

a

logical

volume

is

unmounted,

to

close

the

logical

volume

specified.

ddconfig

Initializes

data

structures

for

the

LVDD.

ddread

Called

by

the

read

subroutine

to

translate

character

I/O

requests

to

block

I/O

requests.

This

entry

point

verifies

that

the

request

is

on

a

512-byte

boundary

and

is

a

multiple

of

512

bytes

in

length.

Most

of

the

time

a

request

will

be

sent

down

as

a

single

request

to

the

LVDD

ddstrategy

entry

point

which

handles

logical

block

I/O

requests.

However,

the

ddread

routine

might

divide

very

large

requests

into

multiple

requests

that

are

passed

to

the

LVDD

ddstrategy

entry

point.

If

the

ext

parameter

is

set

(called

by

the

readx

subroutine),

the

ddread

entry

point

passes

this

parameter

to

the

LVDD

ddstrategy

routine

in

the

b_options

field

of

the

buffer

header.

ddwrite

Called

by

the

write

subroutine

to

translate

character

I/O

requests

to

block

I/O

requests.

The

LVDD

ddwrite

routine

performs

the

same

processing

for

a

write

request

as

the

LVDD

ddread

routine

does

for

read

requests.

ddioctl

Supports

the

following

operations:

CACLNUP

Causes

the

mirror

write

consistency

(MWC)

cache

to

be

written

to

all

physical

volumes

(PVs)

in

a

volume

group.

IOCINFO,

XLATE

Return

LVM

configuration

information

and

PP

status

information.

LV_INFO

Provides

information

about

a

logical

volume.

PBUFCNT

Increases

the

number

of

physical

buffer

headers

(pbufs)

in

the

LVM

pbuf

pool.

Bottom

Half

of

the

LVDD

The

bottom

half

of

the

device

driver

supports

the

ddstrategy

entry

point.

This

entry

point

processes

all

logical

block

requests

and

performs

the

following

functions:

v

Validates

I/O

requests.

Chapter

10.

Logical

Volume

Subsystem

191

v

Checks

requests

for

conflicts

(such

as

overlapping

block

ranges)

with

requests

currently

in

progress.

v

Translates

logical

addresses

to

physical

addresses.

v

Handles

mirroring

and

bad-block

relocation.

The

bottom

half

of

the

LVDD

runs

on

interrupt

levels

and,

as

a

result,

is

not

permitted

to

page

fault.

The

bottom

half

of

the

LVDD

is

divided

into

the

following

three

layers:

v

Strategy

layer

v

Scheduler

layer

v

Physical

layer

Each

logical

I/O

request

passes

down

through

the

bottom

three

layers

before

reaching

the

physical

disk

device

driver.

Once

the

I/O

is

complete,

the

request

returns

back

up

through

the

layers

to

handle

the

I/O

completion

processing

at

each

layer.

Finally,

control

returns

to

the

original

requestor.

Strategy

Layer

The

strategy

layer

deals

only

with

logical

requests.

The

ddstrategy

entry

point

is

called

with

one

or

more

logical

buf

structures.

A

list

of

buf

structures

for

requests

that

are

not

blocked

are

passed

to

the

second

layer,

the

scheduler.

Scheduler

Layer

The

scheduler

layer

schedules

physical

requests

for

logical

operations

and

handles

mirroring

and

the

MWC

cache.

For

each

logical

request

the

scheduler

layer

schedules

one

or

more

physical

requests.

These

requests

involve

translating

logical

addresses

to

physical

addresses,

handling

mirroring,

and

calling

the

LVDD

physical

layer

with

a

list

of

physical

requests.

When

a

physical

I/O

operation

is

complete

for

one

phase

or

mirror

of

a

logical

request,

the

scheduler

initiates

the

next

phase

(if

there

is

one).

If

no

more

I/O

operations

are

required

for

the

request,

the

scheduler

calls

the

strategy

termination

routine.

This

routine

notifies

the

originator

that

the

request

has

been

completed.

The

scheduler

also

handles

the

MWC

cache

for

the

volume

group.

If

a

logical

volume

is

using

mirror

write

consistency,

then

requests

for

this

logical

volume

are

held

within

the

scheduling

layer

until

the

MWC

cache

blocks

can

be

updated

on

the

target

physical

volumes.

When

the

MWC

cache

blocks

have

been

updated,

the

request

proceeds

with

the

physical

data

write

operations.

When

MWC

is

being

used,

system

performance

can

be

adversely

affected.

This

is

caused

by

the

overhead

of

logging

or

journalling

that

a

write

request

is

active

in

one

or

more

logical

track

groups

(LTGs)

(128K,

256K,

512K

or

1024K).

This

overhead

is

for

mirrored

writes

only.

It

is

necessary

to

guarantee

data

consistency

between

mirrors

particularly

if

the

system

crashes

before

the

write

to

all

mirrors

has

been

completed.

Mirror

write

consistency

can

be

turned

off

for

an

entire

logical

volume.

It

can

also

be

inhibited

on

a

request

basis

by

turning

on

the

NO_MWC

flag

as

defined

in

the

/usr/include/sys/lvdd.h

file.

Physical

Layer

The

physical

layer

of

the

LVDD

handles

startup

and

termination

of

the

physical

request.

The

physical

layer

calls

a

physical

disk

device

driver’s

ddstrategy

entry

point

with

a

list

of

buf

structures

linked

together.

In

turn,

the

physical

layer

is

called

by

the

iodone

kernel

service

when

each

physical

request

is

completed.

This

layer

also

performs

bad-block

relocation

and

detection/correction

of

bad

blocks,

when

necessary.

These

details

are

hidden

from

the

other

two

layers.

192

Kernel

Extensions

and

Device

Support

Programming

Concepts

Interface

to

Physical

Disk

Device

Drivers

Physical

disk

device

drivers

adhere

to

the

following

criteria

if

they

are

to

be

accessed

by

the

LVDD:

v

Disk

block

size

must

be

512

bytes.

v

The

physical

disk

device

driver

needs

to

accept

a

list

of

requests

defined

by

buf

structures,

which

are

linked

together

by

the

av_forw

field

in

each

buf

structure.

v

For

unrecoverable

media

errors,

physical

disk

device

drivers

need

to

set

the

following:

–

The

B_ERROR

flag

must

be

set

to

on

(defined

in

the

/usr/include/sys/buf.h

file)

in

the

b_flags

field.

–

The

b_error

field

must

be

set

to

E_MEDIA

(defined

in

the

/usr/include/sys/errno.h

file).

–

The

b_resid

field

must

be

set

to

the

number

of

bytes

in

the

request

that

were

not

read

or

written

successfully.

The

b_resid

field

is

used

to

determine

the

block

in

error.

Note:

For

write

requests,

the

LVDD

attempts

to

hardware-relocate

the

bad

block.

If

this

is

unsuccessful,

then

the

block

is

software-relocated.

For

read

requests,

the

information

is

recorded

and

the

block

is

relocated

on

the

next

write

request

to

that

block.

v

For

a

successful

request

that

generated

an

excessive

number

of

retries,

the

device

driver

can

return

good

data.

To

indicate

this

situation

it

must

set

the

following:

–

The

b_error

field

is

set

to

ESOFT;

this

is

defined

in

the

/usr/include/sys/errno.h

file.

–

The

b_flags

field

has

the

B_ERROR

flag

set

to

on.

–

The

b_resid

field

is

set

to

a

count

indicating

the

first

block

in

the

request

that

had

excessive

retries.

This

block

is

then

relocated.

v

The

physical

disk

device

driver

needs

to

accept

a

request

of

one

block

with

HWRELOC

(defined

in

the

/usr/include/sys/lvdd.h

file)

set

to

on

in

the

b_options

field.

This

indicates

that

the

device

driver

is

to

perform

a

hardware

relocation

on

this

request.

If

the

device

driver

does

not

support

hardware

relocation

the

following

should

be

set:

–

The

b_error

field

is

set

to

EIO;

this

is

defined

in

the

/usr/include/sys/errno.h

file.

–

The

b_flags

field

has

the

B_ERROR

flag

set

on.

–

The

b_resid

field

is

set

to

a

count

indicating

the

first

block

in

the

request

that

has

excessive

retries.

v

The

physical

disk

device

driver

should

support

the

system

dump

interface

as

defined.

v

The

physical

disk

device

driver

must

support

write

verification

on

an

I/O

request.

Requests

for

write

verification

are

made

by

setting

the

b_options

field

to

WRITEV.

This

value

is

defined

in

the

/usr/include/sys/lvdd.h

file.

Understanding

Logical

Volumes

and

Bad

Blocks

The

physical

layer

of

the

logical

volume

device

driver

(LVDD)

initiates

all

bad-block

processing

and

isolates

all

of

the

decision

making

from

the

physical

disk

device

driver.

This

happens

so

the

physical

disk

device

driver

does

not

need

to

handle

mirroring,

which

is

the

duplication

of

data

transparent

to

the

user.

Relocating

Bad

Blocks

The

physical

layer

of

the

LVDD

checks

each

physical

request

to

see

if

there

are

any

known

software-relocated

bad

blocks

in

the

request.

The

LVDD

determines

if

a

request

contains

known

software-relocated

bad

blocks

by

hashing

the

physical

address.

Then

a

hash

chain

of

the

LVDD

defects

directory

is

searched

to

see

if

any

bad-block

entries

are

in

the

address

range

of

the

request.

If

bad

blocks

exist

in

a

physical

request,

the

request

is

split

into

pieces.

The

first

piece

contains

any

blocks

up

to

the

relocated

block.

The

second

piece

contains

the

relocated

block

(the

relocated

address

is

specified

in

the

bad-block

entry)

of

the

defects

directory.

The

third

piece

contains

any

blocks

after

the

relocated

block

to

the

end

of

the

request

or

to

the

next

relocated

block.

These

separate

pieces

are

processed

sequentially

until

the

entire

request

has

been

satisfied.

Chapter

10.

Logical

Volume

Subsystem

193

Once

the

I/O

for

the

first

of

the

separate

pieces

has

completed,

the

iodone

kernel

service

calls

the

LVDD

physical

layer’s

termination

routine

(specified

in

the

b_done

field

of

the

buf

structure).

The

termination

routine

initiates

I/O

for

the

second

piece

of

the

original

request

(containing

the

relocated

block),

and

then

for

the

third

piece.

When

the

entire

physical

operation

is

completed,

the

appropriate

scheduler’s

policy

routine

(in

the

second

layer

of

the

LVDD)

is

called

to

start

the

next

phase

of

the

logical

operation.

Detecting

and

Correcting

Bad

Blocks

If

a

logical

volume

is

mirrored,

a

newly

detected

bad

block

is

fixed

by

relocating

that

block.

A

good

mirror

is

read

and

then

the

block

is

relocated

using

data

from

the

good

mirror.

With

mirroring,

the

user

does

not

need

to

know

when

bad

blocks

are

found.

However,

the

physical

disk

device

driver

does

log

permanent

I/O

errors

so

the

user

can

determine

the

rate

of

media

surface

errors.

When

a

bad

block

is

detected

during

I/O,

the

physical

disk

device

driver

sets

the

error

fields

in

the

buf

structure

to

indicate

that

there

was

a

media

surface

error.

The

physical

layer

of

the

LVDD

then

initiates

any

bad-block

processing

that

must

be

done.

If

the

operation

was

a

nonmirrored

read,

the

block

is

not

relocated

because

the

data

in

the

relocated

block

is

not

initialized

until

a

write

is

performed

to

the

block.

To

support

this

delayed

relocation,

an

entry

for

the

bad

block

is

put

into

the

LVDD

defects

directory

and

into

the

bad-block

directory

on

disk.

These

entries

contain

no

relocated

block

address

and

the

status

for

the

block

is

set

to

indicate

that

relocation

is

desired.

On

each

I/O

request,

the

physical

layer

checks

whether

there

are

any

bad

blocks

in

the

request.

If

the

request

is

a

write

and

contains

a

block

that

is

in

a

relocation-desired

state,

the

request

is

sent

to

the

physical

disk

device

driver

with

safe

hardware

relocation

requested.

If

the

request

is

a

read,

a

read

of

the

known

defective

block

is

attempted.

If

the

operation

was

a

read

operation

in

a

mirrored

LP,

a

request

to

read

one

of

the

other

mirrors

is

initiated.

If

the

second

read

is

successful,

then

the

read

is

turned

into

a

write

request

and

the

physical

disk

device

driver

is

called

with

safe

hardware

relocation

specified

to

fix

the

bad

mirror.

If

the

hardware

relocation

fails

or

the

device

does

not

support

safe

hardware

relocation,

the

physical

layer

of

the

LVDD

attempts

software

relocation.

At

the

end

of

each

volume

is

a

reserved

area

used

by

the

LVDD

as

a

pool

of

relocation

blocks.

When

a

bad

block

is

detected

and

the

disk

device

driver

is

unable

to

relocate

the

block,

the

LVDD

picks

the

next

unused

block

in

the

relocation

pool

and

writes

to

this

new

location.

A

new

entry

is

added

to

the

LVDD

defects

directory

in

memory

(and

to

the

bad-block

directory

on

disk)

that

maps

the

bad-block

address

to

the

new

relocation

block

address.

Any

subsequent

I/O

requests

to

the

bad-block

address

are

routed

to

the

relocation

address.

Attention:

Formatting

a

fixed

disk

deletes

any

data

on

the

disk.

Format

a

fixed

disk

only

when

absolutely

necessary

and

preferably

after

backing

up

all

data

on

the

dis

If

you

need

to

format

a

fixed

disk

completely

(including

reinitializing

any

bad

blocks),

use

the

formatting

function

supplied

by

the

diag

command.

(The

diag

command

typically,

but

not

necessarily,

writes

over

all

data

on

a

fixed

disk.

Refer

to

the

documentation

that

comes

with

the

fixed

disk

to

determine

the

effect

of

formatting

with

the

diag

command.)

Related

Information

Serial

DASD

Subsystem

Device

Driver

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

Subroutine

References

The

readx

subroutine,

write

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2.

194

Kernel

Extensions

and

Device

Support

Programming

Concepts

Files

Reference

The

lvdd

special

file

in

AIX

5L

Version

5.2

Files

Reference.

Technical

References

The

buf

structure

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

The

bread

kernel

service,

bwrite

kernel

service,

iodone

kernel

service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Chapter

10.

Logical

Volume

Subsystem

195

196

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

11.

Printer

Addition

Management

Subsystem

If

you

are

configuring

a

printer

for

your

system,

there

are

basically

two

types

of

printers:

printers

already

supported

by

the

operating

system

and

new

printer

types.

Printer

Support

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing

lists

supported

printers.

Printer

Types

Currently

Supported

To

configure

a

supported

type

of

printer,

you

need

only

to

run

the

mkvirprt

command

to

create

a

customized

printer

file

for

your

printer.

This

customized

printer

file,

which

is

in

the

/var/spool/lpd/pio/@local/custom

directory,

describes

the

specific

parameters

for

your

printer.

For

more

information

see

Configuring

a

Printer

without

Adding

a

Queue

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing.

Printer

Types

Currently

Unsupported

To

configure

a

currently

unsupported

type

of

printer,

you

must

develop

and

add

a

predefined

printer

definition

for

your

printer.

This

new

option

is

then

entered

in

the

list

of

available

choices

when

the

user

selects

a

printer

to

configure

for

the

system.

The

actual

data

used

by

the

printer

subsystem

comes

from

the

Customized

printer

definition

created

by

the

mkvirprt

command.

“Adding

a

New

Printer

Type

to

Your

System”

provides

general

instructions

for

adding

an

undefined

printer.

To

add

an

undefined

printer,

you

modify

an

existing

printer

definition.

Undefined

printers

fall

into

two

categories:

v

Printers

that

closely

emulate

a

supported

printer.

You

can

use

SMIT

or

the

virtual

printer

commands

to

make

the

changes

you

need.

v

Printers

that

do

not

emulate

a

supported

printer

or

that

emulate

several

data

streams.

It

is

simpler

to

make

the

necessary

changes

for

these

printers

by

editing

the

printer

colon

file.

See

Adding

a

Printer

Using

the

Printer

Colon

File

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing.

“Adding

an

Unsupported

Device

to

the

System”

on

page

98

offers

an

overview

of

the

major

steps

required

to

add

an

unsupported

device

of

any

type

to

your

system.

Adding

a

New

Printer

Type

to

Your

System

To

add

an

unsupported

printer

to

your

system,

you

must

add

a

new

Printer

definition

to

the

printer

directories.

For

more

complicated

scenarios,

you

might

also

need

to

add

a

new

printer-specific

formatter

to

the

printer

backend.

Example

of

Print

Formatter

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing

shows

how

the

print

formatter

interacts

with

the

printer

formatter

subroutines.

Additional

Steps

for

Adding

a

New

Printer

Type

However,

if

you

want

the

new

Printer

definition

to

carry

the

name

of

the

new

printer,

you

must

develop

a

new

Predefined

definition

to

carry

the

new

printer

information

besides

adding

a

new

Printer

definition.

Use

the

piopredef

command

to

do

this.

Steps

for

adding

a

new

printer-specific

formatter

to

the

printer

backend

are

discussed

in

Adding

a

Printer

Formatter

to

the

Printer

Backend

.

Example

of

Print

Formatter

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing

shows

how

print

formatters

can

interact

with

the

printer

formatter

subroutines.

Note:

These

instructions

apply

to

the

addition

of

a

new

printer

definition

to

the

system,

not

to

the

addition

of

a

physical

printer

device

itself.

For

information

on

adding

a

new

printer

device,

refer

to

device

©

Copyright

IBM

Corp.

1997,

2004

197

configuration

and

management.

If

your

new

printer

requires

an

interface

other

than

the

parallel

or

serial

interface

provided

by

the

operating

system,

you

must

also

provide

a

new

device

driver.

If

the

printer

being

added

does

not

emulate

a

supported

printer

or

if

it

emulates

several

data

streams,

you

need

to

make

more

changes

to

the

Printer

definition.

It

is

simpler

to

make

the

necessary

changes

for

these

printers

by

editing

the

printer

colon

file.

See

Adding

a

Printer

Using

the

Printer

Colon

File

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing.

Modifying

Printer

Attributes

Edit

the

customized

file

(

/var/spool/lpd/pio/custom

/var/spool/lpd/pio/@local/custom

QueueName:QueueDeviceName),

adding

or

changing

the

printer

attributes

to

match

the

new

printer.

For

example,

assume

that

you

created

a

new

file

based

on

the

existing

4201-3

printer.

The

customized

file

for

the

4201-3

printer

contains

the

following

template

that

the

printer

formatter

uses

to

initialize

the

printer:

%I[ez,em,eA,cv,eC,eO,cp,cc,

.

.

.

The

formatter

fills

in

the

string

as

directed

by

this

template

and

sends

the

resulting

sequence

of

commands

to

the

4201-3

printer.

Specifically,

this

generates

a

string

of

escape

sequences

that

initialize

the

printer

and

set

such

parameters

as

vertical

and

horizontal

spacing

and

page

length.

You

would

construct

a

similar

command

string

to

properly

initialize

the

new

printer

and

put

it

into

4201-emulation

mode.

Although

many

of

the

escape

sequences

might

be

the

same,

at

least

one

will

be

different:

the

escape

sequence

that

is

the

command

to

put

the

printer

into

the

specific

printer-emulation

mode.

Assume

that

you

added

an

ep

attribute

that

specifies

the

string

to

initialize

the

printer

to

4201-3

emulation

mode,

as

follows:

\033\012\013

The

Printer

Initialization

field

will

then

be:

%I[ep,ez,em,eA,cv,eC,eO,cp,cc,

.

.

.

You

must

create

a

virtual

printer

for

each

printer-emulation

mode

you

want

to

use.

See

Real

and

Virtual

Printers

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing.

Adding

a

Printer

Definition

To

add

a

new

printer

to

the

system,

you

must

first

create

a

description

of

the

printer

by

adding

a

new

printer

definition

to

the

printer

definition

directories.

Typically,

to

add

a

new

printer

definition

to

the

database,

you

first

modify

an

existing

printer

definition

and

then

create

a

customized

printer

definition

in

the

Customized

Printer

Directory.

Once

you

have

added

the

new

customized

printer

definition

to

the

directory,

the

mkvirprt

command

uses

it

to

present

the

new

printer

as

a

choice

for

printer

addition

and

selection.

Because

the

new

printer

definition

is

a

customized

printer

definition,

it

appears

in

the

list

of

printers

under

the

name

of

the

original

printer

from

which

it

was

customized.

A

totally

new

printer

must

be

added

as

a

predefined

printer

definition

in

the

/usr/lib/lpd/pio/predef

directory.

If

the

user

chooses

to

work

with

printers

once

this

new

predefined

printer

definition

is

added

to

the

Predefined

Printer

Directory,

the

mkvirprt

command

can

then

list

all

the

printers

in

that

directory.

The

added

printer

appears

on

the

list

of

printers

given

to

the

user

as

if

it

had

been

supported

all

along.

Specific

information

about

this

printer

can

then

be

extended,

added,

modified,

or

deleted,

as

necessary.

Printer

Support

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing

lists

the

supported

printer

types

and

names

of

representative

printers.

198

Kernel

Extensions

and

Device

Support

Programming

Concepts

Adding

a

Printer

Formatter

to

the

Printer

Backend

If

your

new

printer’s

data

stream

differs

significantly

from

one

of

the

numerous

printer

data

streams

currently

handled

by

the

operating

system,

you

must

define

a

new

backend

formatter.

Adding

a

new

formatter

does

not

require

the

addition

of

a

new

backend.

Instead,

all

you

typically

need

are

modifications

to

the

formatter

commands

associated

with

that

printer

under

the

supervision

of

the

existing

printer

backend.

If

a

new

backend

is

required,

see

Printer

Backend

Overview

for

Programming

in

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing.

Understanding

Embedded

References

in

Printer

Attribute

Strings

The

attribute

string

retrieved

by

the

piocmdout,

piogetstr,

and

piogetvals

subroutines

can

contain

embedded

references

to

other

attribute

strings

or

integers.

The

attribute

string

can

also

contain

embedded

logic

that

dynamically

determines

the

content

of

the

constructed

string.

This

allows

the

constructed

string

to

reflect

the

state

of

the

formatter

environment

when

one

of

these

subroutines

is

called.

Embedded

references

and

logic

are

defined

with

escape

sequences

that

are

placed

at

appropriate

locations

in

the

attribute

string.

The

first

character

of

each

escape

sequence

is

always

the

%

character.

This

character

indicates

the

beginning

of

an

escape

sequence.

The

second

character

(and

sometimes

subsequent

characters)

define

the

operation

to

be

performed.

The

remainder

of

the

characters

(if

any)

in

the

escape

sequence

are

operands

to

be

used

in

performing

the

specified

operation.

The

escape

sequences

that

can

be

specified

in

an

attribute

string

are

based

on

the

terminfo

parameterized

string

escape

sequences

for

terminals.

These

escape

sequences

have

been

modified

and

extended

for

printers.

The

attribute

names

that

can

be

referenced

by

attribute

strings

are:

v

The

names

of

all

attribute

variables

(which

can

be

integer

or

string

variables)

defined

to

the

piogetvals

subroutine.

When

references

are

made

to

these

variables,

the

piogetvals-defined

versions

are

the

values

used.

v

All

other

attributes

names

in

the

database.

These

attributes

are

considered

string

constants.

Any

attribute

value

(integer

variable,

string

variable,

or

string

constant)

can

be

referenced

by

any

attribute

string.

Consequently,

it

is

important

that

the

formatter

ensures

that

the

values

for

all

the

integer

variables

and

string

variables

defined

to

the

piogetvals

subroutine

are

kept

current.

The

formatter

must

not

assume

that

the

particular

attribute

string

whose

name

it

specifies

to

the

piogetstr

or

piocmdout

subroutine

does

not

reference

certain

variables.

The

attribute

string

is

retrieved

from

the

database

that

is

external

to

the

formatter.

The

values

in

the

database

represented

by

the

string

can

be

changed

to

reference

additional

variables

without

the

formatter’s

knowledge.

Related

Information

AIX

5L

Version

5.2

Guide

to

Printers

and

Printing

Subroutine

References

The

piocmdout

subroutine,

piogetstr

subroutine,

piogetvals

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

Commands

References

The

mkvirprt

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

3.

The

piopredef

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

4.

Chapter

11.

Printer

Addition

Management

Subsystem

199

200

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

12.

Small

Computer

System

Interface

Subsystem

This

overview

describes

the

interface

between

a

small

computer

system

interface

(SCSI)

device

driver

and

a

SCSI

adapter

device

driver.

It

is

directed

toward

those

wishing

to

design

and

write

a

SCSI

device

driver

that

interfaces

with

an

existing

SCSI

adapter

device

driver.

It

is

also

meant

for

those

wishing

to

design

and

write

a

SCSI

adapter

device

driver

that

interfaces

with

existing

SCSI

device

drivers.

SCSI

Subsystem

Overview

The

main

topics

covered

in

this

overview

are:

v

Responsibilities

of

the

SCSI

Adapter

Device

Driver

v

Responsibilities

of

the

SCSI

Device

Driver

v

Initiator-Mode

Support

v

Target-Mode

Support

This

section

frequently

refers

to

both

a

SCSI

device

driver

and

a

SCSI

adapter

device

driver.

These

two

distinct

device

drivers

work

together

in

a

layered

approach

to

support

attachment

of

a

range

of

SCSI

devices.

The

SCSI

adapter

device

driver

is

the

lower

device

driver

of

the

pair,

and

the

SCSI

device

driver

is

the

upper

device

driver.

Responsibilities

of

the

SCSI

Adapter

Device

Driver

The

SCSI

adapter

device

driver

(the

lower

layer)

is

the

software

interface

to

the

system

hardware.

This

hardware

includes

the

SCSI

bus

hardware

plus

any

other

system

I/O

hardware

required

to

run

an

I/O

request.

The

SCSI

adapter

device

driver

hides

the

details

of

the

I/O

hardware

from

the

SCSI

device

driver.

The

design

of

the

software

interface

allows

a

user

with

limited

knowledge

of

the

system

hardware

to

write

the

upper

device

driver.

The

SCSI

adapter

device

driver

manages

the

SCSI

bus

but

not

the

SCSI

devices.

It

can

send

and

receive

SCSI

commands,

but

it

cannot

interpret

the

contents

of

the

commands.

The

lower

driver

also

provides

recovery

and

logging

for

errors

related

to

the

SCSI

bus

and

system

I/O

hardware.

Management

of

the

device

specifics

is

left

to

the

SCSI

device

driver.

The

interface

of

the

two

drivers

allows

the

upper

driver

to

communicate

with

different

SCSI

bus

adapters

without

requiring

special

code

paths

for

each

adapter.

Responsibilities

of

the

SCSI

Device

Driver

The

SCSI

device

driver

(the

upper

layer)

provides

the

rest

of

the

operating

system

with

the

software

interface

to

a

given

SCSI

device

or

device

class.

The

upper

layer

recognizes

which

SCSI

commands

are

required

to

control

a

particular

SCSI

device

or

device

class.

The

SCSI

device

driver

builds

I/O

requests

containing

device

SCSI

commands

and

sends

them

to

the

SCSI

adapter

device

driver

in

the

sequence

needed

to

operate

the

device

successfully.

The

SCSI

device

driver

cannot

manage

adapter

resources

or

give

the

SCSI

command

to

the

adapter.

Specifics

about

the

adapter

and

system

hardware

are

left

to

the

lower

layer.

The

SCSI

device

driver

also

provides

recovery

and

logging

for

errors

related

to

the

SCSI

device

it

controls.

The

operating

system

provides

several

kernel

services

allowing

the

SCSI

device

driver

to

communicate

with

SCSI

adapter

device

driver

entry

points

without

having

the

actual

name

or

address

of

those

entry

points.

The

description

contained

in

“Logical

File

System

Kernel

Services”

on

page

65

can

provide

more

information.

©

Copyright

IBM

Corp.

1997,

2004

201

Communication

between

SCSI

Devices

When

two

SCSI

devices

communicate,

one

assumes

the

initiator-mode

role,

and

the

other

assumes

the

target-mode

role.

The

initiator-mode

device

generates

the

SCSI

command,

which

requests

an

operation,

and

the

target-mode

device

receives

the

SCSI

command

and

acts.

It

is

possible

for

a

SCSI

device

to

perform

both

roles

simultaneously.

When

writing

a

new

SCSI

adapter

device

driver,

the

writer

must

know

which

mode

or

modes

must

be

supported

to

meet

the

requirements

of

the

SCSI

adapter

and

any

interfaced

SCSI

device

drivers.

When

a

SCSI

adapter

device

driver

is

added

so

that

a

new

SCSI

adapter

works

with

all

existing

SCSI

device

drivers,

both

initiator-mode

and

target-mode

must

be

supported

in

the

SCSI

adapter

device

driver.

Initiator-Mode

Support

The

interface

between

the

SCSI

device

driver

and

the

SCSI

adapter

device

driver

for

initiator-mode

support

(that

is,

the

attached

device

acts

as

a

target)

is

accessed

through

calls

to

the

SCSI

adapter

device

driver

open,

close,

ioctl,

and

strategy

routines.

I/O

requests

are

queued

to

the

SCSI

adapter

device

driver

through

calls

to

its

strategy

entry

point.

Communication

between

the

SCSI

device

driver

and

the

SCSI

adapter

device

driver

for

a

particular

initiator

I/O

request

is

made

through

the

sc_buf

structure,

which

is

passed

to

and

from

the

strategy

routine

in

the

same

way

a

standard

driver

uses

a

struct

buf

structure.

Target-Mode

Support

The

interface

between

the

SCSI

device

driver

and

the

SCSI

adapter

device

driver

for

target-mode

support

(that

is,

the

attached

device

acts

as

an

initiator)

is

accessed

through

calls

to

the

SCSI

adapter

device

driver

open,

close,

and

ioctl

subroutines.

Buffers

that

contain

data

received

from

an

attached

initiator

device

are

passed

from

the

SCSI

adapter

device

driver

to

the

SCSI

device

driver,

and

back

again,

in

tm_buf

structures.

Communication

between

the

SCSI

adapter

device

driver

and

the

SCSI

device

driver

for

a

particular

data

transfer

is

made

by

passing

the

tm_buf

structures

by

pointer

directly

to

routines

whose

entry

points

have

been

previously

registered.

This

registration

occurs

as

part

of

the

sequence

of

commands

the

SCSI

device

driver

executes

using

calls

to

the

SCSI

adapter

device

driver

when

the

device

driver

opens

a

target-mode

device

instance.

Understanding

SCSI

Asynchronous

Event

Handling

Note:

This

operation

is

not

supported

by

all

SCSI

I/O

controllers.

A

SCSI

device

driver

can

register

a

particular

device

instance

for

receiving

asynchronous

event

status

by

calling

the

SCIOEVENT

ioctl

operation

for

the

SCSI-adapter

device

driver.

When

an

event

covered

by

the

SCIOEVENT

ioctl

operation

is

detected

by

the

SCSI

adapter

device

driver,

it

builds

an

sc_event_info

structure

and

passes

a

pointer

to

the

structure

and

to

the

asynchronous

event-handler

routine

entry

point,

which

was

previously

registered.

The

fields

in

the

structure

are

filled

in

by

the

SCSI

adapter

device

driver

as

follows:

id

For

initiator

mode,

this

is

set

to

the

SCSI

ID

of

the

attached

SCSI

target

device.

For

target

mode,

this

is

set

to

the

SCSI

ID

of

the

attached

SCSI

initiator

device.

lun

For

initiator

mode,

this

is

set

to

the

SCSI

LUN

of

the

attached

SCSI

target

device.

For

target

mode,

this

is

set

to

0).

202

Kernel

Extensions

and

Device

Support

Programming

Concepts

mode

Identifies

whether

the

initiator

or

target

mode

device

is

being

reported.

The

following

values

are

possible:

SC_IM_MODE

An

initiator

mode

device

is

being

reported.

SC_TM_MODE

A

target

mode

device

is

being

reported.

events

This

field

is

set

to

indicate

what

event

or

events

are

being

reported.

The

following

values

are

possible,

as

defined

in

the

/usr/include/sys/scsi.h

file:

SC_FATAL_HDW_ERR

A

fatal

adapter

hardware

error

occurred.

SC_ADAP_CMD_FAILED

An

unrecoverable

adapter

command

failure

occurred.

SC_SCSI_RESET_EVENT

A

SCSI

bus

reset

was

detected.

SC_BUFS_EXHAUSTED

In

target-mode,

a

maximum

buffer

usage

event

has

occurred.

adap_devno

This

field

is

set

to

indicate

the

device

major

and

minor

numbers

of

the

adapter

on

which

the

device

is

located.

async_correlator

This

field

is

set

to

the

value

passed

to

the

SCSI

adapter

device

driver

in

the

sc_event_struct

structure.

The

SCSI

device

driver

may

optionally

use

this

field

to

provide

an

efficient

means

of

associating

event

status

with

the

device

instance

it

goes

with.

Alternatively,

the

SCSI

device

driver

uses

the

combination

of

the

id,

lun,

mode,

and

adap_devno

fields

to

identify

the

device

instance.

Note:

Reserved

fields

should

be

set

to

0

by

the

SCSI

adapter

device

driver.

The

information

reported

in

the

sc_event_info.events

field

does

not

queue

to

the

SCSI

device

driver,

but

is

instead

reported

as

one

or

more

flags

as

they

occur.

Because

the

data

does

not

queue,

the

SCSI

adapter

device

driver

writer

can

use

a

single

sc_event_info

structure

and

pass

it

one

at

a

time,

by

pointer,

to

each

asynchronous

event

handler

routine

for

the

appropriate

device

instance.

After

determining

for

which

device

the

events

are

being

reported,

the

SCSI

device

driver

must

copy

the

sc_event_info.events

field

into

local

space

and

must

not

modify

the

contents

of

the

rest

of

the

sc_event_info

structure.

Because

the

event

status

is

optional,

the

SCSI

device

driver

writer

determines

what

action

is

necessary

to

take

upon

receiving

event

status.

The

writer

may

decide

to

save

the

status

and

report

it

back

to

the

calling

application,

or

the

SCSI

device

driver

or

application

level

program

can

take

error

recovery

actions.

Defined

Events

and

Recovery

Actions

The

adapter

fatal

hardware

failure

event

is

intended

to

indicate

that

no

further

commands

to

or

from

this

SCSI

device

are

likely

to

succeed,

because

the

adapter

it

is

attached

to

has

failed.

It

is

recommended

that

the

application

end

the

session

with

the

device.

The

unrecoverable

adapter

command

failure

event

is

not

necessarily

a

fatal

condition,

but

it

can

indicate

that

the

adapter

is

not

functioning

properly.

Possible

actions

by

the

application

program

include:

v

Ending

of

the

session

with

the

device

in

the

near

future

v

Ending

of

the

session

after

multiple

(two

or

more)

such

events

v

Attempting

to

continue

the

session

indefinitely

The

SCSI

Bus

Reset

detection

event

is

mainly

intended

as

information

only,

but

may

be

used

by

the

application

to

perform

further

actions,

if

necessary.

Chapter

12.

Small

Computer

System

Interface

Subsystem

203

The

maximum

buffer

usage

detected

event

applies

only

to

a

given

target-mode

device;

it

will

not

be

reported

for

an

initiator-mode

device.

This

event

indicates

to

the

application

that

this

particular

target-mode

device

instance

has

filled

its

maximum

allotted

buffer

space.

The

application

should

perform

read

system

calls

fast

enough

to

prevent

this

condition.

If

this

event

occurs,

data

is

not

lost,

but

it

is

delayed

to

prevent

further

buffer

usage.

Data

reception

will

be

restored

when

the

application

empties

enough

buffers

to

continue

reasonable

operations.

The

num_bufs

attribute

may

need

to

be

increased

to

help

minimize

this

problem.

Also,

it

is

possible

that

regardless

of

the

number

of

buffers,

the

application

simply

is

not

processing

received

data

fast

enough.

This

may

require

some

fine

tuning

of

the

application’s

data

processing

routines.

Asynchronous

Event-Handling

Routine

The

SCSI-device

driver

asynchronous

event-handling

routine

is

typically

called

directly

from

the

hardware

interrupt-handling

routine

for

the

SCSI

adapter

device

driver.

The

SCSI

device

driver

writer

must

be

aware

of

how

this

affects

the

design

of

the

SCSI

device

driver.

Because

the

event

handling

routine

is

running

on

the

hardware

interrupt

level,

the

SCSI

device

driver

must

be

careful

to

limit

operations

in

that

routine.

Processing

should

be

kept

to

a

minimum.

In

particular,

if

any

error

recovery

actions

are

performed,

it

is

recommended

that

the

event-handling

routine

set

state

or

status

flags

only

and

allow

a

process

level

routine

to

perform

the

actual

operations.

The

SCSI

device

driver

must

be

careful

to

disable

interrupts

at

the

correct

level

in

places

where

the

SCSI

device

driver’s

lower

execution

priority

routines

manipulate

variables

that

are

also

modified

by

the

event-handling

routine.

To

allow

the

SCSI

device

driver

to

disable

at

the

correct

level,

the

SCSI

adapter

device

driver

writer

must

provide

a

configuration

database

attribute

that

defines

the

interrupt

class,

or

priority,

it

runs

on.

This

attribute

must

be

named

intr_priority

so

that

the

SCSI

device

driver

configuration

method

knows

which

attribute

of

the

parent

adapter

to

query.

The

SCSI

device

driver

configuration

method

should

then

pass

this

interrupt

priority

value

to

the

SCSI

device

driver

along

with

other

configuration

data

for

the

device

instance.

The

SCSI

device

driver

writer

must

follow

any

other

general

system

rules

for

writing

a

routine

that

must

execute

in

an

interrupt

environment.

For

example,

the

routine

must

not

attempt

to

sleep

or

wait

on

I/O

operations.

It

can

perform

wakeups

to

allow

the

process

level

to

handle

those

operations.

Because

the

SCSI

device

driver

copies

the

information

from

the

sc_event_info.events

field

on

each

call

to

its

asynchronous

event-handling

routine,

there

is

no

resource

to

free

or

any

information

which

must

be

passed

back

later

to

the

SCSI

adapter

device

driver.

SCSI

Error

Recovery

The

SCSI

error-recovery

process

handles

different

issues

depending

on

whether

the

SCSI

device

is

in

initiator

mode

or

target

mode.

If

the

device

is

in

initiator

mode,

the

error-recovery

process

varies

depending

on

whether

or

not

the

device

is

supporting

command

queuing.

SCSI

Initiator-Mode

Recovery

When

Not

Command

Tag

Queuing

If

an

error

such

as

a

check

condition

or

hardware

failure

occurs,

transactions

queued

within

the

SCSI

adapter

device

driver

are

terminated

abnormally

with

iodone

calls.

The

transaction

active

during

the

error

is

returned

with

the

sc_buf.bufstruct.b_error

field

set

to

EIO.

Other

transactions

in

the

queue

are

returned

with

the

sc_buf.bufstruct.b_error

field

set

to

ENXIO.

The

SCSI

device

driver

should

process

or

recover

the

condition,

rerunning

any

mode

selects

or

device

reservations

to

recover

from

this

condition

properly.

After

this

recovery,

it

should

reschedule

the

transaction

that

had

the

error.

In

many

cases,

the

SCSI

device

driver

only

needs

to

retry

the

unsuccessful

operation.

The

SCSI

adapter

device

driver

should

never

retry

a

SCSI

command

on

error

after

the

command

has

successfully

been

given

to

the

adapter.

The

consequences

for

retrying

a

SCSI

command

at

this

point

range

from

minimal

to

catastrophic,

depending

upon

the

type

of

device.

Commands

for

certain

devices

204

Kernel

Extensions

and

Device

Support

Programming

Concepts

cannot

be

retried

immediately

after

a

failure

(for

example,

tapes

and

other

sequential

access

devices).

If

such

an

error

occurs,

the

failed

command

returns

an

appropriate

error

status

with

an

iodone

call

to

the

SCSI

device

driver

for

error

recovery.

Only

the

SCSI

device

driver

that

originally

issued

the

command

knows

if

the

command

can

be

retried

on

the

device.

The

SCSI

adapter

device

driver

must

only

retry

commands

that

were

never

successfully

transferred

to

the

adapter.

In

this

case,

if

retries

are

successful,

the

sc_buf

status

should

not

reflect

an

error.

However,

the

SCSI

adapter

device

driver

should

perform

error

logging

on

the

retried

condition.

The

first

transaction

passed

to

the

SCSI

adapter

device

driver

during

error

recovery

must

include

a

special

flag.

This

SC_RESUME

flag

in

the

sc_buf.flags

field

must

be

set

to

inform

the

SCSI

adapter

device

driver

that

the

SCSI

device

driver

has

recognized

the

fatal

error

and

is

beginning

recovery

operations.

Any

transactions

passed

to

the

SCSI

adapter

device

driver,

after

the

fatal

error

occurs

and

before

the

SC_RESUME

transaction

is

issued,

should

be

flushed;

that

is,

returned

with

an

error

type

of

ENXIO

through

an

iodone

call.

Note:

If

a

SCSI

device

driver

continues

to

pass

transactions

to

the

SCSI

adapter

device

driver

after

the

SCSI

adapter

device

driver

has

flushed

the

queue,

these

transactions

are

also

flushed

with

an

error

return

of

ENXIO

through

the

iodone

service.

This

gives

the

SCSI

device

driver

a

positive

indication

of

all

transactions

flushed.

If

the

SCSI

device

driver

is

executing

a

gathered

write

operation,

the

error-recovery

information

mentioned

previously

is

still

valid,

but

the

caller

must

restore

the

contents

of

the

sc_buf.resvdw1

field

and

the

uio

struct

that

the

field

pointed

to

before

attempting

the

retry.

The

retry

must

occur

from

the

SCSI

device

driver’s

process

level;

it

cannot

be

performed

from

the

caller’s

iodone

subroutine.

Also,

additional

return

codes

of

EFAULT

and

ENOMEM

are

possible

in

the

sc_buf.bufstruct.b_error

field

for

a

gathered

write

operation.

SCSI

Initiator-Mode

Recovery

During

Command

Tag

Queuing

If

the

SCSI

device

driver

is

queuing

multiple

transactions

to

the

device

and

either

a

check

condition

error

or

a

command

terminated

error

occurs,

the

SCSI

adapter

driver

does

not

clear

all

transactions

in

its

queues

for

the

device.

It

returns

the

failed

transaction

to

the

SCSI

device

driver

with

an

indication

that

the

queue

for

this

device

is

not

cleared

by

setting

the

SC_DID_NOT_CLEAR_Q

flag

in

the

sc_buf.adap_q_status

field.

The

SCSI

adapter

driver

halts

the

queue

for

this

device

awaiting

error

recovery

notification

from

the

SCSI

device

driver.

The

SCSI

device

driver

then

has

three

options

to

recover

from

this

error:

v

Send

one

error

recovery

command

(request

sense)

to

the

device.

v

Clear

the

SCSI

adapter

driver’s

queue

for

this

device.

v

Resume

the

SCSI

adapter

driver’s

queue

for

this

device.

When

the

SCSI

adapter

driver’s

queue

is

halted,

the

SCSI

device

drive

can

get

sense

data

from

a

device

by

setting

the

SC_RESUME

flag

in

the

sc_buf.flags

field

and

the

SC_NO_Q

flag

in

sc_buf.q_tag_msg

field

of

the

request-sense

sc_buf.

This

action

notifies

the

SCSI

adapter

driver

that

this

is

an

error-recovery

transaction

and

should

be

sent

to

the

device

while

the

remainder

of

the

queue

for

the

device

remains

halted.

When

the

request

sense

completes,

the

SCSI

device

driver

needs

to

either

clear

or

resume

the

SCSI

adapter

driver’s

queue

for

this

device.

The

SCSI

device

driver

can

notify

the

SCSI

adapter

driver

to

clear

its

halted

queue

by

sending

a

transaction

with

the

SC_Q_CLR

flag

in

the

sc_buf.flags

field.

This

transaction

must

not

contain

a

SCSI

command

because

it

is

cleared

from

the

SCSI

adapter

driver’s

queue

without

being

sent

to

the

adapter.

However,

this

transaction

must

have

the

SCSI

ID

field

(sc_buf.scsi_command.scsi_id)

and

the

LUN

fields

(sc_buf.scsi_command.scsi_cmd.lun

and

sc_buf.lun)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

If

addressing

LUNs

8

-

31,

the

sc_buf.lun

field

should

be

set

to

the

logical

unit

number

and

the

sc_buf.scsi_command.scsi_cmd.lun

field

should

be

zeroed

out.

See

the

descriptions

of

these

fields

for

further

explanation.

Upon

receiving

an

SC_Q_CLR

transaction,

the

SCSI

adapter

driver

flushes

all

transactions

for

this

device

and

sets

their

sc_buf.bufstruct.b_error

fields

to

ENXIO.

The

SCSI

device

Chapter

12.

Small

Computer

System

Interface

Subsystem

205

driver

must

wait

until

the

sc_buf

with

the

SC_Q_CLR

flag

set

is

returned

before

it

resumes

issuing

transactions.

The

first

transaction

sent

by

the

SCSI

device

driver

after

it

receives

the

returned

SC_Q_CLR

transaction

must

have

the

SC_RESUME

flag

set

in

the

sc_buf.flags

fields.

If

the

SCSI

device

driver

wants

the

SCSI

adapter

driver

to

resume

its

halted

queue,

it

must

send

a

transaction

with

the

SC_Q_RESUME

flag

set

in

the

sc_buf.flags

field.

This

transaction

can

contain

an

actual

SCSI

command,

but

it

is

not

required.

However,

this

transaction

must

have

the

sc_buf.scsi_command.scsi_id,

sc_buf.scsi_command.scsi_cmd.lun,and

the

sc_buf.lun

fields

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number.

See

the

description

of

these

fields

for

further

details.

If

this

is

the

first

transaction

issued

by

the

SCSI

device

driver

after

receiving

the

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

as

well

as

the

SC_Q_RESUME

flag.

Analyzing

Returned

Status

The

following

order

of

precedence

should

be

followed

by

SCSI

device

drivers

when

analyzing

the

returned

status:

1.

If

the

sc_buf.bufstruct.b_flags

field

has

the

B_ERROR

flag

set,

then

an

error

has

occurred

and

the

sc_buf.bufstruct.b_error

field

contains

a

valid

errno

value.

If

the

b_error

field

contains

the

ENXIO

value,

either

the

command

needs

to

be

restarted

or

it

was

canceled

at

the

request

of

the

SCSI

device

driver.

If

the

b_error

field

contains

the

EIO

value,

then

either

one

or

no

flag

is

set

in

the

sc_buf.status_validity

field.

If

a

flag

is

set,

an

error

in

either

the

scsi_status

or

general_card_status

field

is

the

cause.

If

the

status_validity

field

is

0,

then

the

sc_buf.bufstruct.b_resid

field

should

be

examined

to

see

if

the

SCSI

command

issued

was

in

error.

The

b_resid

field

can

have

a

value

without

an

error

having

occurred.

To

decide

whether

an

error

has

occurred,

the

SCSI

device

driver

must

evaluate

this

field

with

regard

to

the

SCSI

command

being

sent

and

the

SCSI

device

being

driven.

If

the

SCSI

device

driver

is

queuing

multiple

transactions

to

the

device

and

if

either

SC_CHECK_CONDITION

or

SC_COMMAND_TERMINATED

is

set

in

scsi_status

,

then

the

value

of

sc_buf.adap_q_status

must

be

analyzed

to

determine

if

the

adapter

driver

has

cleared

its

queue

for

this

device.

If

the

SCSI

adapter

driver

has

not

cleared

its

queue

after

an

error,

then

it

holds

that

queue

in

a

halted

state.

If

sc_buf.adap_q_status

is

set

to

0,

the

SCSI

adapter

driver

has

cleared

its

queue

for

this

device

and

any

transactions

outstanding

are

flushed

back

to

the

SCSI

device

driver

with

an

error

of

ENXIO.

If

the

SC_DID_NOT_CLEAR_Q

flag

is

set

in

the

sc_buf.adap_q_status

field,

the

adapter

driver

has

not

cleared

its

queue

for

this

device.

When

this

condition

occurs,

the

SCSI

adapter

driver

allows

the

SCSI

device

driver

to

send

one

error

recovery

transaction

(request

sense)

that

has

the

field

sc_buf.q_tag_msg

set

to

SC_NO_Q

and

the

field

sc_buf.flags

set

to

SC_RESUME.

The

SCSI

device

driver

can

then

notify

the

SCSI

adapter

driver

to

clear

or

resume

its

queue

for

the

device

by

sending

a

SC_Q

CLR

or

SC_Q_RESUME

transaction.

If

the

SCSI

device

driver

does

not

queue

multiple

transactions

to

the

device

(that

is,

the

SC_NO_Q

is

set

in

sc_buf.q_tag_msg

),

then

the

SCSI

adapter

clears

its

queue

on

error

and

sets

sc_buf.adap_q_status

to

0.

2.

If

the

sc_buf.bufstruct.b_flags

field

does

not

have

the

B_ERROR

flag

set,

then

no

error

is

being

reported.

However,

the

SCSI

device

driver

should

examine

the

b_resid

field

to

check

for

cases

where

less

data

was

transferred

than

expected.

For

some

SCSI

commands,

this

occurrence

might

not

represent

an

error.

The

SCSI

device

driver

must

determine

if

an

error

has

occurred.

If

a

nonzero

b_resid

field

does

represent

an

error

condition,

then

the

device

queue

is

not

halted

by

the

SCSI

adapter

device

driver.

It

is

possible

for

one

or

more

succeeding

queued

commands

to

be

sent

to

the

adapter

(and

possibly

the

device).

Recovering

from

this

situation

is

the

responsibility

of

the

SCSI

device

driver.

3.

In

any

of

the

above

cases,

if

sc_buf.bufstruct.b_flags

field

has

the

B_ERROR

flag

set,

then

the

queue

of

the

device

in

question

has

been

halted.

The

first

sc_buf

structure

sent

to

recover

the

error

(or

continue

operations)

must

have

the

SC_RESUME

bit

set

in

the

sc_buf.flags

field.

206

Kernel

Extensions

and

Device

Support

Programming

Concepts

Target-Mode

Error

Recovery

If

an

error

occurs

during

the

reception

of

send

command

data,

the

SCSI

adapter

device

driver

sets

the

TM_ERROR

flag

in

the

tm_buf.user_flag

field.

The

SCSI

adapter

device

driver

also

sets

the

SC_ADAPTER_ERROR

bit

in

the

tm_buf.status_validity

field

and

sets

a

single

flag

in

the

tm_buf.general_card_status

field

to

indicate

the

error

that

occurred.

In

the

SCSI

subsystem,

an

error

during

a

send

command

does

not

affect

future

target-mode

data

reception.

Future

send

commands

continue

to

be

processed

by

the

SCSI

adapter

device

driver

and

queue

up,

as

necessary,

after

the

data

with

the

error.

The

SCSI

device

driver

continues

processing

the

send

command

data,

satisfying

user

read

requests

as

usual

except

that

the

error

status

is

returned

for

the

appropriate

user

request.

Any

error

recovery

or

synchronization

procedures

the

user

requires

for

a

target-mode

received-data

error

must

be

implemented

in

user-supplied

software.

A

Typical

Initiator-Mode

SCSI

Driver

Transaction

Sequence

A

simplified

sequence

of

events

for

a

transaction

between

a

SCSI

device

driver

and

a

SCSI

adapter

device

driver

follows.

In

this

sequence,

routine

names

preceded

by

a

dd_

are

part

of

the

SCSI

device

driver,

where

as

those

preceded

by

a

sc_

are

part

of

the

SCSI

adapter

device

driver.

1.

The

SCSI

device

driver

receives

a

call

to

its

dd_strategy

routine;

any

required

internal

queuing

occurs

in

this

routine.

The

dd_strategy

entry

point

then

triggers

the

operation

by

calling

the

dd_start

entry

point.

The

dd_start

routine

invokes

the

sc_strategy

entry

point

by

calling

the

devstrategy

kernel

service

with

the

relevant

sc_buf

structure

as

a

parameter.

2.

The

sc_strategy

entry

point

initially

checks

the

sc_buf

structure

for

validity.

These

checks

include

validating

the

devno

field,

matching

the

SCSI

ID/LUN

to

internal

tables

for

configuration

purposes,

and

validating

the

request

size.

3.

Although

the

SCSI

adapter

device

driver

cannot

reorder

transactions,

it

does

perform

queue

chaining.

If

no

other

transactions

are

pending

for

the

requested

device,

the

sc_strategy

routine

immediately

calls

the

sc_start

routine

with

the

new

transaction.

If

there

are

other

transactions

pending,

the

new

transaction

is

added

to

the

tail

of

the

device

chain.

4.

At

each

interrupt,

the

sc_intr

interrupt

handler

verifies

the

current

status.

The

SCSI

adapter

device

driver

fills

in

the

sc_buf

status_validity

field,

updating

the

scsi_status

and

general_card_status

fields

as

required.

5.

The

SCSI

adapter

device

driver

also

fills

in

the

bufstruct.b_resid

field

with

the

number

of

bytes

not

transferred

from

the

request.

If

all

the

data

was

transferred,

the

b_resid

field

is

set

to

a

value

of

0.

When

a

transaction

completes,

the

sc_intr

routine

causes

the

sc_buf

entry

to

be

removed

from

the

device

queue

and

calls

the

iodone

kernel

service,

passing

the

just

dequeued

sc_buf

structure

for

the

device

as

the

parameter.

The

sc_start

routine

is

then

called

again

to

process

the

next

transaction

on

the

device

queue.

The

iodone

kernel

service

calls

the

SCSI

device

driver

dd_iodone

entry

point,

signaling

the

SCSI

device

driver

that

the

particular

transaction

has

completed.

6.

The

SCSI

device

driver

dd_iodone

routine

investigates

the

I/O

completion

codes

in

the

sc_buf

status

entries

and

performs

error

recovery,

if

required.

If

the

operation

completed

correctly,

the

SCSI

device

driver

dequeues

the

original

buffer

structures.

It

calls

the

iodone

kernel

service

with

the

original

buffer

pointers

to

notify

the

originator

of

the

request.

Understanding

SCSI

Device

Driver

Internal

Commands

During

initialization,

error

recovery,

and

open

or

close

operations,

SCSI

device

drivers

initiate

some

transactions

not

directly

related

to

an

operating

system

request.

These

transactions

are

called

internal

commands

and

are

relatively

simple

to

handle.

Chapter

12.

Small

Computer

System

Interface

Subsystem

207

Internal

commands

differ

from

operating

system-initiated

transactions

in

several

ways.

The

primary

difference

is

that

the

SCSI

device

driver

is

required

to

generate

a

struct

buf

that

is

not

related

to

a

specific

request.

Also,

the

actual

SCSI

commands

are

typically

more

control-oriented

than

data

transfer-related.

The

only

special

requirement

for

commands

with

short

data-phase

transfers

(less

than

or

equal

to

256

bytes)

is

that

the

SCSI

device

driver

must

have

pinned

the

memory

being

transferred

into

or

out

of

system

memory

pages.

However,

due

to

system

hardware

considerations,

additional

precautions

must

be

taken

for

data

transfers

into

system

memory

pages

when

the

transfers

are

larger

than

256

bytes.

The

problem

is

that

any

system

memory

area

with

a

DMA

data

operation

in

progress

causes

the

entire

memory

page

that

contains

it

to

become

inaccessible.

As

a

result,

a

SCSI

device

driver

that

initiates

an

internal

command

with

more

than

256

bytes

must

have

preallocated

and

pinned

an

area

of

some

multiple

whose

size

is

the

system

page

size.

The

driver

must

not

place

in

this

area

any

other

data

areas

that

it

may

need

to

access

while

I/O

is

being

performed

into

or

out

of

that

page.

Memory

pages

so

allocated

must

be

avoided

by

the

device

driver

from

the

moment

the

transaction

is

passed

to

the

adapter

device

driver

until

the

device

driver

iodone

routine

is

called

for

the

transaction

(and

for

any

other

transactions

to

those

pages).

Understanding

the

Execution

of

Initiator

I/O

Requests

During

normal

processing,

many

transactions

are

queued

in

the

SCSI

device

driver.

As

the

SCSI

device

driver

processes

these

transactions

and

passes

them

to

the

SCSI

adapter

device

driver,

the

SCSI

device

driver

moves

them

to

the

in-process

queue.

When

the

SCSI

adapter

device

driver

returns

through

the

iodone

service

with

one

of

these

transactions,

the

SCSI

device

driver

either

recovers

any

errors

on

the

transaction

or

returns

using

the

iodone

kernel

service

to

the

calling

level.

The

SCSI

device

driver

can

send

only

one

sc_buf

structure

per

call

to

the

SCSI

adapter

device

driver.

Thus,

the

sc_buf.bufstruct.av_forw

pointer

should

be

null

when

given

to

the

SCSI

adapter

device

driver,

which

indicates

that

this

is

the

only

request.

The

SCSI

device

driver

can

queue

multiple

sc_buf

requests

by

making

multiple

calls

to

the

SCSI

adapter

device

driver

strategy

routine.

Spanned

(Consolidated)

Commands

Some

kernel

operations

might

be

composed

of

sequential

operations

to

a

device.

For

example,

if

consecutive

blocks

are

written

to

disk,

blocks

might

or

might

not

be

in

physically

consecutive

buffer

pool

blocks.

To

enhance

SCSI

bus

performance,

the

SCSI

device

driver

should

consolidate

multiple

queued

requests

when

possible

into

a

single

SCSI

command.

To

allow

the

SCSI

adapter

device

driver

the

ability

to

handle

the

scatter

and

gather

operations

required,

the

sc_buf.bp

should

always

point

to

the

first

buf

structure

entry

for

the

spanned

transaction.

A

null-terminated

list

of

additional

struct

buf

entries

should

be

chained

from

the

first

field

through

the

buf.av_forw

field

to

give

the

SCSI

adapter

device

driver

enough

information

to

perform

the

DMA

scatter

and

gather

operations

required.

This

information

must

include

at

least

the

buffer’s

starting

address,

length,

and

cross-memory

descriptor.

The

spanned

requests

should

always

be

for

requests

in

either

the

read

or

write

direction

but

not

both,

because

the

SCSI

adapter

device

driver

must

be

given

a

single

SCSI

command

to

handle

the

requests.

The

spanned

request

should

always

consist

of

complete

I/O

requests

(including

the

additional

struct

buf

entries).

The

SCSI

device

driver

should

not

attempt

to

use

partial

requests

to

reach

the

maximum

transfer

size.

The

maximum

transfer

size

is

actually

adapter-dependent.

The

IOCINFO

ioctl

operation

can

be

used

to

discover

the

SCSI

adapter

device

driver’s

maximum

allowable

transfer

size.

To

ease

the

design,

implementation,

and

testing

of

components

that

might

need

to

interact

with

multiple

SCSI-adapter

device

208

Kernel

Extensions

and

Device

Support

Programming

Concepts

drivers,

a

required

minimum

size

has

been

established

that

all

SCSI

adapter

device

drivers

must

be

capable

of

supporting.

The

value

of

this

minimum/maximum

transfer

size

is

defined

as

the

following

value

in

the

/usr/include/sys/scsi.h

file:

SC_MAXREQUEST

/*

maximum

transfer

request

for

a

single

*/

/*

SCSI

command

(in

bytes)

*/

If

a

transfer

size

larger

than

the

supported

maximum

is

attempted,

the

SCSI

adapter

device

driver

returns

a

value

of

EINVAL

in

the

sc_buf.bufstruct.b_error

field.

Due

to

system

hardware

requirements,

the

SCSI

device

driver

must

consolidate

only

commands

that

are

memory

page-aligned

at

both

their

starting

and

ending

addresses.

Specifically,

this

applies

to

the

consolidation

of

inner

memory

buffers.

The

ending

address

of

the

first

buffer

and

the

starting

address

of

all

subsequent

buffers

should

be

memory

page-aligned.

However,

the

starting

address

of

the

first

memory

buffer

and

the

ending

address

of

the

last

do

not

need

to

be

aligned

so.

The

purpose

of

consolidating

transactions

is

to

decrease

the

number

of

SCSI

commands

and

bus

phases

required

to

perform

the

required

operation.

The

time

required

to

maintain

the

simple

chain

of

buf

structure

entries

is

significantly

less

than

the

overhead

of

multiple

(even

two)

SCSI

bus

transactions.

Fragmented

Commands

Single

I/O

requests

larger

than

the

maximum

transfer

size

must

be

divided

into

smaller

requests

by

the

SCSI

device

driver.

For

calls

to

a

SCSI

device

driver’s

character

I/O

(read/write)

entry

points,

the

uphysio

kernel

service

can

be

used

to

break

up

these

requests.

For

a

fragmented

command

such

as

this,

the

sc_buf.bp

field

should

be

null

so

that

the

SCSI

adapter

device

driver

uses

only

the

information

in

the

sc_buf

structure

to

prepare

for

the

DMA

operation.

Gathered

Write

Commands

The

gathered

write

commands

facilitate

communication

applications

that

are

required

to

send

header

and

trailer

messages

with

data

buffers.

These

headers

and

trailers

are

typically

the

same

or

similar

for

each

transfer.

Therefore,

there

might

be

a

single

copy

of

these

messages

but

multiple

data

buffers.

The

gathered

write

commands,

accessed

through

the

sc_buf.resvd1

field,

differ

from

the

spanned

commands,

accessed

through

the

sc_buf.bp

field,

in

several

ways:

v

Gathered

write

commands

can

transfer

data

regardless

of

address

alignment,

where

as

spanned

commands

must

be

memory

page-aligned

in

address

and

length,

making

small

transfers

difficult.

v

Gathered

write

commands

can

be

implemented

either

in

software

(which

requires

the

extra

step

of

copying

the

data

to

temporary

buffers)

or

hardware.

Spanned

commands

can

be

implemented

in

system

hardware

due

to

address-alignment

requirements.

As

a

result,

spanned

commands

are

potentially

faster

to

run.

v

Gathered

write

commands

are

not

able

to

handle

read

requests.

Spanned

commands

can

handle

both

read

and

write

requests.

v

Gathered

write

commands

can

be

initiated

only

on

the

process

level,

but

spanned

commands

can

be

initiated

on

either

the

process

or

interrupt

level.

To

execute

a

gathered

write

command,

the

SCSI

device

driver

must:

v

Fill

in

the

resvd1

field

with

a

pointer

to

the

uio

struct

v

Call

the

SCSI

adapter

device

driver

on

the

same

process

level

with

the

sc_buf

structure

in

question

v

Be

attempting

a

write

v

Not

have

put

a

non-null

value

in

the

sc_buf.bp

field

If

any

of

these

conditions

are

not

met,

the

gathered

write

commands

do

not

succeed

and

the

sc_buf.bufstruct.b_error

is

set

to

EINVAL.

Chapter

12.

Small

Computer

System

Interface

Subsystem

209

This

interface

allows

the

SCSI

adapter

device

driver

to

perform

the

gathered

write

commands

in

both

software

or

and

hardware

as

long

as

the

adapter

supports

this

capability.

Because

the

gathered

write

commands

can

be

performed

in

software

(by

using

such

kernel

services

as

uiomove),

the

contents

of

the

resvd1

field

and

the

uio

struct

can

be

altered.

Therefore,

the

caller

must

restore

the

contents

of

both

the

resvd1

field

and

the

uio

struct

before

attempting

a

retry.

Also,

the

retry

must

occur

from

the

process

level;

it

must

not

be

performed

from

the

caller’s

iodone

subroutine.

To

support

SCSI

adapter

device

drivers

that

perform

the

gathered

write

commands

in

software,

additional

return

values

in

the

sc_buf.bufstruct.b_error

field

are

possible

when

gathered

write

commands

are

unsuccessful.

ENOMEM

Error

due

to

lack

of

system

memory

to

perform

copy.

EFAULT

Error

due

to

memory

copy

problem.

Note:

The

gathered

write

command

facility

is

optional

for

both

the

SCSI

device

driver

and

the

SCSI

adapter

device

driver.

Attempting

a

gathered

write

command

to

a

SCSI

adapter

device

driver

that

does

not

support

gathered

write

can

cause

a

system

crash.

Therefore,

any

SCSI

device

driver

must

issue

a

SCIOGTHW

ioctl

operation

to

the

SCSI

adapter

device

driver

before

using

gathered

writes.

A

SCSI

adapter

device

driver

that

supports

gathered

writes

must

support

the

SCIOGTHW

ioctl

as

well.

The

ioctl

returns

a

successful

return

code

if

gathered

writes

are

supported.

If

the

ioctl

fails,

the

SCSI

device

driver

must

not

attempt

a

gathered

write.

Typically,

a

SCSI

device

driver

places

the

SCIOGTHW

call

in

its

open

routine

for

device

instances

that

it

will

send

gathered

writes

to.

SCSI

Command

Tag

Queuing

Note:

This

operation

is

not

supported

by

all

SCSI

I/O

controllers.

SCSI

command

tag

queuing

refers

to

queuing

multiple

commands

to

a

SCSI

device.

Queuing

to

the

SCSI

device

can

improve

performance

because

the

device

itself

determines

the

most

efficient

way

to

order

and

process

commands.

SCSI

devices

that

support

command

tag

queuing

can

be

divided

into

two

classes:

those

that

clear

their

queues

on

error

and

those

that

do

not.

Devices

that

do

not

clear

their

queues

on

error

resume

processing

of

queued

commands

when

the

error

condition

is

cleared

typically

by

receiving

the

next

command.

Devices

that

do

clear

their

queues

flush

all

commands

currently

outstanding.

Command

tag

queueing

requires

the

SCSI

adapter,

the

SCSI

device,

the

SCSI

device

driver,

and

the

SCSI

adapter

driver

to

support

this

capability.

For

a

SCSI

device

driver

to

queue

multiple

commands

to

a

SCSI

device

(that

supports

command

tag

queuing),

it

must

be

able

to

provide

at

least

one

of

the

following

values

in

the

sc_buf.q_tag_msg:

SC_SIMPLE_Q,

SC_HEAD_OF_Q,

or

SC_ORDERED_Q.

The

SCSI

disk

device

driver

and

SCSI

adapter

driver

do

support

this

capability.

This

implementation

provides

some

queuing-specific

changeable

attributes

for

disks

that

can

queue

commands.

With

this

information,

the

disk

device

driver

attempts

to

queue

to

the

disk,

first

by

queuing

commands

to

the

adapter

driver.

The

SCSI

adapter

driver

then

queues

these

commands

to

the

adapter,

providing

that

the

adapter

supports

command

tag

queuing.

If

the

SCSI

adapter

does

not

support

command

tag

queuing,

then

the

SCSI

adapter

driver

sends

only

one

command

at

a

time

to

the

SCSI

adapter

and

so

multiple

commands

are

not

queued

to

the

SCSI

disk.

Understanding

the

sc_buf

Structure

The

sc_buf

structure

is

used

for

communication

between

the

SCSI

device

driver

and

the

SCSI

adapter

device

driver

during

an

initiator

I/O

request.

This

structure

is

passed

to

and

from

the

strategy

routine

in

the

same

way

a

standard

driver

uses

a

struct

buf

structure.

210

Kernel

Extensions

and

Device

Support

Programming

Concepts

Fields

in

the

sc_buf

Structure

The

sc_buf

structure

contains

certain

fields

used

to

pass

a

SCSI

command

and

associated

parameters

to

the

SCSI

adapter

device

driver.

Other

fields

within

this

structure

are

used

to

pass

returned

status

back

to

the

SCSI

device

driver.

The

sc_buf

structure

is

defined

in

the

/usr/include/sys/scsi.h

file.

Fields

in

the

sc_buf

structure

are

used

as

follows:

1.

Reserved

fields

should

be

set

to

a

value

of

0,

except

where

noted.

2.

The

bufstruct

field

contains

a

copy

of

the

standard

buf

buffer

structure

that

documents

the

I/O

request.

Included

in

this

structure,

for

example,

are

the

buffer

address,

byte

count,

and

transfer

direction.

The

b_work

field

in

the

buf

structure

is

reserved

for

use

by

the

SCSI

adapter

device

driver.

The

current

definition

of

the

buf

structure

is

in

the

/usr/include/sys/buf.h

include

file.

3.

The

bp

field

points

to

the

original

buffer

structure

received

by

the

SCSI

Device

Driver

from

the

caller,

if

any.

This

can

be

a

chain

of

entries

in

the

case

of

spanned

transfers

(SCSI

commands

that

transfer

data

from

or

to

more

than

one

system-memory

buffer).

A

null

pointer

indicates

a

nonspanned

transfer.

The

null

value

specifically

tells

the

SCSI

adapter

device

driver

that

all

the

information

needed

to

perform

the

DMA

data

transfer

is

contained

in

the

bufstruct

fields

of

the

sc_buf

structure.

If

the

bp

field

is

set

to

a

non-null

value,

the

sc_buf.resvd1

field

must

have

a

value

of

null,

or

else

the

operation

is

not

allowed.

4.

The

scsi_command

field,

defined

as

a

scsi

structure,

contains,

for

example,

the

SCSI

ID,

SCSI

command

length,

SCSI

command,

and

a

flag

variable:

a.

The

scsi_length

field

is

the

number

of

bytes

in

the

actual

SCSI

command.

This

is

normally

6,

10,

or

12

(decimal).

b.

The

scsi_id

field

is

the

SCSI

physical

unit

ID.

c.

The

scsi_flags

field

contains

the

following

bit

flags:

SC_NODISC

Do

not

allow

the

target

to

disconnect

during

this

command.

SC_ASYNC

Do

not

allow

the

adapter

to

negotiate

for

synchronous

transfer

to

the

SCSI

device.

During

normal

use,

the

SC_NODISC

bit

should

not

be

set.

Setting

this

bit

allows

a

device

executing

commands

to

monopolize

the

SCSI

bus.

Sometimes

it

is

desirable

for

a

particular

device

to

maintain

control

of

the

bus

once

it

has

successfully

arbitrated

for

it;

for

instance,

when

this

is

the

only

device

on

the

SCSI

bus

or

the

only

device

that

will

be

in

use.

For

performance

reasons,

it

might

not

be

desirable

to

go

through

SCSI

selections

again

to

save

SCSI

bus

overhead

on

each

command.

Also

during

normal

use,

the

SC_ASYNC

bit

must

not

be

set.

It

should

be

set

only

in

cases

where

a

previous

command

to

the

device

ended

in

an

unexpected

SCSI

bus

free

condition.

This

condition

is

noted

as

SC_SCSI_BUS_FAULT

in

the

general_card_status

field

of

the

sc_cmd

structure.

Because

other

errors

might

also

result

in

the

SC_SCSI_BUS_FAULT

flag

being

set,

the

SC_ASYNC

bit

should

only

be

set

on

the

last

retry

of

the

failed

command.

d.

The

sc_cmd

structure

contains

the

physical

SCSI

command

block.

The

6

to

12

bytes

of

a

single

SCSI

command

are

stored

in

consecutive

bytes,

with

the

op

code

and

logical

unit

identified

individually.

The

sc_cmd

structure

contains

the

following

fields:

v

The

scsi_op_code

field

specifies

the

standard

SCSI

op

code

for

this

command.

v

The

lun

field

specifies

the

standard

SCSI

logical

unit

for

the

physical

SCSI

device

controller.

Typically,

there

will

be

one

LUN

per

controller

(LUN=0,

for

example)

for

devices

with

imbedded

controllers.

Only

the

upper

3

bits

of

this

field

contain

the

actual

LUN

ID.

If

addressing

LUN’s

0

-

7,

this

lun

field

should

always

be

filled

in

with

the

LUN

value.

When

addressing

LUN’s

8

-

31,

this

lun

field

should

be

set

to

0

and

the

LUN

value

should

be

placed

into

the

sc_buf.lun

field

described

in

this

section.

v

The

scsi_bytes

field

contains

the

remaining

command-unique

bytes

of

the

SCSI

command

block.

The

actual

number

of

bytes

depends

on

the

value

in

the

scsi_op_code

field.

Chapter

12.

Small

Computer

System

Interface

Subsystem

211

v

The

resvd1

field

is

set

to

a

non-null

value

to

indicate

a

request

for

a

gathered

write.

A

gathered

write

means

the

SCSI

command

conducts

a

system-to-device

data

transfer

where

multiple,

noncontiguous

system

buffers

contain

the

write

data.

This

data

is

transferred

in

order

as

a

single

data

transfer

for

the

SCSI

command

in

this

sc_buf

structure.

The

contents

of

the

resvd1

field,

if

non-null,

must

be

a

pointer

to

the

uio

structure

that

is

passed

to

the

SCSI

device

driver.

The

SCSI

adapter

device

driver

treats

the

resvd1

field

as

a

pointer

to

a

uio

structure

that

accesses

the

iovec

structures

containing

pointers

to

the

data.

There

are

no

address-alignment

restrictions

on

the

data

in

the

iovec

structures.

The

only

restriction

is

that

the

total

transfer

length

of

all

the

data

must

not

exceed

the

maximum

transfer

length

for

the

adapter

device

driver.

The

sc_buf.bufstruct.b_un.b_addr

field,

which

normally

contains

the

starting

system-buffer

address,

is

ignored

and

can

be

altered

by

the

SCSI

adapter

device

driver

when

the

sc_buf

is

returned.

The

sc_buf.bufstruct.b_bcount

field

should

be

set

by

the

caller

to

the

total

transfer

length

for

the

data.

5.

The

timeout_value

field

specifies

the

time-out

limit

(in

seconds)

to

be

used

for

completion

of

this

command.

A

time-out

value

of

0

means

no

time-out

is

applied

to

this

I/O

request.

6.

The

status_validity

field

contains

an

output

parameter

that

can

have

one

of

the

following

bit

flags

as

a

value:

SC_SCSI_ERROR

The

scsi_status

field

is

valid.

SC_ADAPTER_ERROR

The

general_card_status

field

is

valid.

7.

The

scsi_status

field

in

the

sc_buf

structure

is

an

output

parameter

that

provides

valid

SCSI

command

completion

status

when

its

status_validity

bit

is

nonzero.

The

sc_buf.bufstruct.b_error

field

should

be

set

to

EIO

anytime

the

scsi_status

field

is

valid.

Typical

status

values

include:

SC_GOOD_STATUS

The

target

successfully

completed

the

command.

SC_CHECK_CONDITION

The

target

is

reporting

an

error,

exception,

or

other

conditions.

SC_BUSY_STATUS

The

target

is

currently

busy

and

cannot

accept

a

command

now.

SC_RESERVATION_CONFLICT

The

target

is

reserved

by

another

initiator

and

cannot

be

accessed.

SC_COMMAND_TERMINATED

The

target

terminated

this

command

after

receiving

a

terminate

I/O

process

message

from

the

SCSI

adapter.

SC_QUEUE_FULL

The

target’s

command

queue

is

full,

so

this

command

is

returned.

8.

The

general_card_status

field

is

an

output

parameter

that

is

valid

when

its

status_validity

bit

is

nonzero.

The

sc_buf.bufstruct.b_error

field

should

be

set

to

EIO

anytime

the

general_card_status

field

is

valid.

This

field

contains

generic

SCSI

adapter

card

status.

It

is

intentionally

general

in

coverage

so

that

it

can

report

error

status

from

any

typical

SCSI

adapter.

If

an

error

is

detected

during

execution

of

a

SCSI

command,

and

the

error

prevented

the

SCSI

command

from

actually

being

sent

to

the

SCSI

bus

by

the

adapter,

then

the

error

should

be

processed

or

recovered,

or

both,

by

the

SCSI

adapter

device

driver.

If

it

is

recovered

successfully

by

the

SCSI

adapter

device

driver,

the

error

is

logged,

as

appropriate,

but

is

not

reflected

in

the

general_card_status

byte.

If

the

error

cannot

be

recovered

by

the

SCSI

adapter

device

driver,

the

appropriate

general_card_status

bit

is

set

and

the

sc_buf

structure

is

returned

to

the

SCSI

device

driver

for

further

processing.

212

Kernel

Extensions

and

Device

Support

Programming

Concepts

If

an

error

is

detected

after

the

command

was

actually

sent

to

the

SCSI

device,

then

it

should

be

processed

or

recovered,

or

both,

by

the

SCSI

device

driver.

For

error

logging,

the

SCSI

adapter

device

driver

logs

SCSI

bus-

and

adapter-related

conditions,

where

as

the

SCSI

device

driver

logs

SCSI

device-related

errors.

In

the

following

description,

a

capital

letter

″A″

after

the

error

name

indicates

that

the

SCSI

adapter

device

driver

handles

error

logging.

A

capital

letter

″H″

indicates

that

the

SCSI

device

driver

handles

error

logging.

Some

of

the

following

error

conditions

indicate

a

SCSI

device

failure.

Others

are

SCSI

bus-

or

adapter-related.

SC_HOST_IO_BUS_ERR

(A)

The

system

I/O

bus

generated

or

detected

an

error

during

a

DMA

or

Programmed

I/O

(PIO)

transfer.

SC_SCSI_BUS_FAULT

(H)

The

SCSI

bus

protocol

or

hardware

was

unsuccessful.

SC_CMD_TIMEOUT

(H)

The

command

timed

out

before

completion.

SC_NO_DEVICE_RESPONSE

(H)

The

target

device

did

not

respond

to

selection

phase.

SC_ADAPTER_HDW_FAILURE

(A)

The

adapter

indicated

an

onboard

hardware

failure.

SC_ADAPTER_SFW_FAILURE

(A)

The

adapter

indicated

microcode

failure.

SC_FUSE_OR_TERMINAL_PWR

(A)

The

adapter

indicated

a

blown

terminator

fuse

or

bad

termination.

SC_SCSI_BUS_RESET

(A)

The

adapter

indicated

the

SCSI

bus

has

been

reset.

9.

When

the

SCSI

device

driver

queues

multiple

transactions

to

a

device,

the

adap_q_status

field

indicates

whether

or

not

the

SCSI

adapter

driver

has

cleared

its

queue

for

this

device

after

an

error

has

occurred.

The

flag

of

SC_DID_NOT

CLEAR_Q

indicates

that

the

SCSI

adapter

driver

has

not

cleared

its

queue

for

this

device

and

that

it

is

in

a

halted

state

(so

none

of

the

pending

queued

transactions

are

sent

to

the

device).

10.

The

lun

field

provides

addressability

of

up

to

32

logical

units

(LUNs).

This

field

specifies

the

standard

SCSI

LUN

for

the

physical

SCSI

device

controller.

If

addressing

LUN’s

0

-

7,

both

this

lun

field

(sc_buf.lun)

and

the

lun

field

located

in

the

scsi_command

structure

(sc_buf.scsi_command.scsi_cmd.lun)

should

be

set

to

the

LUN

value.

If

addressing

LUN’s

8

-

31,

this

lun

field

(sc_buf.lun)

should

be

set

to

the

LUN

value

and

the

lun

field

located

in

the

scsi_command

structure

(sc_buf.scsi_command.scsi_cmd.lun)

should

be

set

to

0.

Logical

Unit

Numbers

(LUNs)

lun

Fields

LUN

0

-

7

LUN

8

-

31

sc_buf.lun

LUN

Value

LUN

Value

sc_buf.scsi_command.scsi_cmd.lun

LUN

Value

0

Note:

LUN

value

is

the

current

value

of

LUN.

11.

The

q_tag_msg

field

indicates

if

the

SCSI

adapter

can

attempt

to

queue

this

transaction

to

the

device.

This

information

causes

the

SCSI

adapter

to

fill

in

the

Queue

Tag

Message

Code

of

the

queue

tag

message

for

a

SCSI

command.

The

following

values

are

valid

for

this

field:

SC_NO_Q

Specifies

that

the

SCSI

adapter

does

not

send

a

queue

tag

message

for

this

command,

and

Chapter

12.

Small

Computer

System

Interface

Subsystem

213

so

the

device

does

not

allow

more

than

one

SCSI

command

on

its

command

queue.

This

value

must

be

used

for

all

commands

sent

to

SCSI

devices

that

do

not

support

command

tag

queuing.

SC_SIMPLE_Q

Specifies

placing

this

command

in

the

device’s

command

queue.

The

device

determines

the

order

that

it

executes

commands

in

its

queue.

The

SCSI-2

specification

calls

this

value

the

″Simple

Queue

Tag

Message.″

SC_HEAD_OF_Q

Specifies

placing

this

command

first

in

the

device’s

command

queue.

This

command

does

not

preempt

an

active

command

at

the

device,

but

it

is

executed

before

all

other

commands

in

the

command

queue.

The

SCSI-2

specification

calls

this

value

the

″Head

of

Queue

Tag

Message.″

SC_ORDERED_Q

Specifies

placing

this

command

in

the

device’s

command

queue.

The

device

processes

these

commands

in

the

order

that

they

are

received.

The

SCSI-2

specification

calls

this

value

the

″Ordered

Queue

Tag

Message.″

Note:

Commands

with

the

value

of

SC_NO_Q

for

the

q_tag_msg

field

(except

for

request

sense

commands)

should

not

be

queued

to

a

device

whose

queue

contains

a

command

with

another

value

for

q_tag_msg.

If

commands

with

the

SC_NO_Q

value

(except

for

request

sense)

are

sent

to

the

device,

then

the

SCSI

device

driver

must

make

sure

that

no

active

commands

are

using

different

values

for

q_tag_msg.

Similarly,

the

SCSI

device

driver

must

also

make

sure

that

a

command

with

a

q_tag_msg

value

of

SC_ORDERED_Q,

SC_HEAD_Q,

or

SC_SIMPLE_Q

is

not

sent

to

a

device

that

has

a

command

with

the

q_tag_msg

field

of

SC_NO_Q.

12.

The

flags

field

contains

bit

flags

sent

from

the

SCSI

device

driver

to

the

SCSI

adapter

device

driver.

The

following

flags

are

defined:

SC_RESUME

When

set,

means

the

SCSI

adapter

device

driver

should

resume

transaction

queuing

for

this

ID/LUN.

Error

recovery

is

complete

after

a

SCIOHALT

operation,

check

condition,

or

severe

SCSI

bus

error.

This

flag

is

used

to

restart

the

SCSI

adapter

device

driver

following

a

reported

error.

SC_DELAY_CMD

When

set,

means

the

SCSI

adapter

device

driver

should

delay

sending

this

command

(following

a

SCSI

reset

or

BDR

to

this

device)

by

at

least

the

number

of

seconds

specified

to

the

SCSI

adapter

device

driver

in

its

configuration

information.

For

SCSI

devices

that

do

not

require

this

function,

this

flag

should

not

be

set.

SC_Q_CLR

When

set,

means

the

SCSI

adapter

driver

should

clear

its

transaction

queue

for

this

ID/LUN.

The

transaction

containing

this

flag

setting

does

not

require

an

actual

SCSI

command

in

the

sc_buf

because

it

is

flushed

back

to

the

SCSI

device

driver

with

the

rest

of

the

transactions

for

this

ID/LUN.

However,

this

transaction

must

have

the

SCSI

ID

field

(sc_buf.scsi_command.scsi_id)

and

the

LUN

fields

(sc_buf.scsi_command.scsi_cmd.lun

and

sc_buf.lun)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

This

flag

is

valid

only

during

error

recovery

of

a

check

condition

or

command

terminated

at

a

command

tag

queuing

device

when

the

SC_DID_NOT_CLR_Q

flag

is

set

in

the

sc_buf.adap_q_status

field.

Note:

When

addressing

LUN’s

8

-

31,

be

sure

to

see

the

description

of

the

sc_buf.lun

field

within

the

sc_buf

structure.

SC_Q_RESUME

When

set,

means

that

the

SCSI

adapter

driver

should

resume

its

halted

transaction

queue

for

this

ID/LUN.

The

transaction

containing

this

flag

setting

does

not

require

an

actual

SCSI

214

Kernel

Extensions

and

Device

Support

Programming

Concepts

command

to

be

sent

to

the

SCSI

adapter

driver.

However,

this

transaction

must

have

the

sc_buf.scsi_command.scsi_id

and

sc_buf.scsi_command.scsi_cmd.lun

fields

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number.

If

the

transaction

containing

this

flag

setting

is

the

first

issued

by

the

SCSI

device

driver

after

it

receives

an

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

also.

Note:

When

addressing

LUN’s

8

-

31,

be

sure

to

see

the

description

of

the

sc_buf.lun

field

within

the

sc_buf

structure.

Other

SCSI

Design

Considerations

The

following

topics

cover

design

considerations

of

SCSI

device

and

adapter

device

drivers:

v

Responsibilities

of

the

SCSI

Device

Driver

v

SCSI

Options

to

the

openx

Subroutine

v

Using

the

SC_FORCED_OPEN

Option

v

Using

the

SC_RETAIN_RESERVATION

Option

v

Using

the

SC_DIAGNOSTIC

Option

v

Using

the

SC_NO_RESERVE

Option

v

Using

the

SC_SINGLE

Option

v

Closing

the

SCSI

Device

v

SCSI

Error

Processing

v

Device

Driver

and

Adapter

Device

Driver

Interfaces

v

Performing

SCSI

Dumps

Responsibilities

of

the

SCSI

Device

Driver

SCSI

device

drivers

are

responsible

for

the

following

actions:

v

Interfacing

with

block

I/O

and

logical-volume

device-driver

code

in

the

operating

system.

v

Translating

I/O

requests

from

the

operating

system

into

SCSI

commands

suitable

for

the

particular

SCSI

device.

These

commands

are

then

given

to

the

SCSI

adapter

device

driver

for

execution.

v

Issuing

any

and

all

SCSI

commands

to

the

attached

device.

The

SCSI

adapter

device

driver

sends

no

SCSI

commands

except

those

it

is

directed

to

send

by

the

calling

SCSI

device

driver.

v

Managing

SCSI

device

reservations

and

releases.

In

the

operating

system,

it

is

assumed

that

other

SCSI

initiators

might

be

active

on

the

SCSI

bus.

Usually,

the

SCSI

device

driver

reserves

the

SCSI

device

at

open

time

and

releases

it

at

close

time

(except

when

told

to

do

otherwise

through

parameters

in

the

SCSI

device

driver

interface).

Once

the

device

is

reserved,

the

SCSI

device

driver

must

be

prepared

to

reserve

the

SCSI

device

again

whenever

a

Unit

Attention

condition

is

reported

through

the

SCSI

request-sense

data.

SCSI

Options

to

the

openx

Subroutine

SCSI

device

drivers

in

the

operating

system

must

support

eight

defined

extended

options

in

their

open

routine

(that

is,

an

openx

subroutine).

Additional

extended

options

to

the

open

are

also

allowed,

but

they

must

not

conflict

with

predefined

open

options.

The

defined

extended

options

are

bit

flags

in

the

ext

open

parameter.

These

options

can

be

specified

singly

or

in

combination

with

each

other.

The

required

ext

options

are

defined

in

the

/usr/include/sys/scsi.h

header

file

and

can

have

one

of

the

following

values:

SC_FORCED_OPEN

Do

not

honor

device

reservation-conflict

status.

SC_RETAIN_RESERVATION

Do

not

release

SCSI

device

on

close.

SC_DIAGNOSTIC

Enter

diagnostic

mode

for

this

device.

SC_NO_RESERVE

Prevents

the

reservation

of

the

device

during

an

openx

subroutine

call

to

that

device.

Allows

multiple

hosts

to

share

a

device.

SC_SINGLE

Places

the

selected

device

in

Exclusive

Access

mode.

Chapter

12.

Small

Computer

System

Interface

Subsystem

215

SC_RESV_05

Reserved

for

future

expansion.

SC_RESV_07

Reserved

for

future

expansion.

SC_RESV_08

Reserved

for

future

expansion.

Using

the

SC_FORCED_OPEN

Option

The

SC_FORCED_OPEN

option

causes

the

SCSI

device

driver

to

call

the

SCSI

adapter

device

driver’s

Bus

Device

Reset

ioctl

(SCIORESET)

operation

on

the

first

open.

This

forces

the

device

to

release

another

initiator’s

reservation.

After

the

SCIORESET

command

is

completed,

other

SCSI

commands

are

sent

as

in

a

normal

open.

If

any

of

the

SCSI

commands

fail

due

to

a

reservation

conflict,

the

open

registers

the

failure

as

an

EBUSY

status.

This

is

also

the

result

if

a

reservation

conflict

occurs

during

a

normal

open.

The

SCSI

device

driver

should

require

the

caller

to

have

appropriate

authority

to

request

the

SC_FORCED_OPEN

option

because

this

request

can

force

a

device

to

drop

a

SCSI

reservation.

If

the

caller

attempts

to

initiate

this

system

call

without

the

proper

authority,

the

SCSI

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

Using

the

SC_RETAIN_RESERVATION

Option

The

SC_RETAIN_RESERVATION

option

causes

the

SCSI

device

driver

not

to

issue

the

SCSI

release

command

during

the

close

of

the

device.

This

guarantees

a

calling

program

control

of

the

device

(using

SCSI

reservation)

through

open

and

close

cycles.

For

shared

devices

(for

example,

disk

or

CD-ROM),

the

SCSI

device

driver

must

OR

together

this

option

for

all

opens

to

a

given

device.

If

any

caller

requests

this

option,

the

close

routine

does

not

issue

the

release

even

if

other

opens

to

the

device

do

not

set

SC_RETAIN_RESERVATION.

The

SCSI

device

driver

should

require

the

caller

to

have

appropriate

authority

to

request

the

SC_RETAIN_RESERVATION

option

because

this

request

can

allow

a

program

to

monopolize

a

device

(for

example,

if

this

is

a

nonshared

device).

If

the

caller

attempts

to

initiate

this

system

call

without

the

proper

authority,

the

SCSI

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

Using

the

SC_DIAGNOSTIC

Option

The

SC_DIAGNOSTIC

option

causes

the

SCSI

device

driver

to

enter

Diagnostic

mode

for

the

given

device.

This

option

directs

the

SCSI

device

driver

to

perform

only

minimal

operations

to

open

a

logical

path

to

the

device.

No

SCSI

commands

should

be

sent

to

the

device

in

the

open

or

close

routine

when

the

device

is

in

Diagnostic

mode.

One

or

more

ioctl

operations

should

be

provided

by

the

SCSI

device

driver

to

allow

the

caller

to

issue

SCSI

commands

to

the

attached

device

for

diagnostic

purposes.

The

SC_DIAGNOSTIC

option

gives

the

caller

an

exclusive

open

to

the

selected

device.

This

option

requires

appropriate

authority

to

run.

If

the

caller

attempts

to

initiate

this

system

call

without

the

proper

authority,

the

SCSI

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

The

SC_DIAGNOSTIC

option

may

be

run

only

if

the

device

is

not

already

opened

for

normal

operation.

If

this

ioctl

operation

is

attempted

when

the

device

is

already

opened,

or

if

an

openx

call

with

the

SC_DIAGNOSTIC

option

is

already

in

progress,

a

return

value

of

-1

should

be

passed,

with

the

errno

global

variable

set

to

a

value

of

EACCES.

Once

successfully

opened

with

the

SC_DIAGNOSTIC

flag,

the

SCSI

device

driver

is

placed

in

Diagnostic

mode

for

the

selected

device.

Using

the

SC_NO_RESERVE

Option

The

SC_NO_RESERVE

option

causes

the

SCSI

device

driver

not

to

issue

the

SCSI

reserve

command

during

the

opening

of

the

device

and

not

to

issue

the

SCSI

release

command

during

the

close

of

the

device.

This

allows

multiple

hosts

to

share

the

device.

The

SCSI

device

driver

should

require

the

caller

to

have

appropriate

authority

to

request

the

SC_NO_RESERVE

option,

because

this

request

allows

other

hosts

to

modify

data

on

the

device.

If

a

caller

does

this

kind

of

request

then

the

caller

must

ensure

data

integrity

between

multiple

hosts.

If

the

caller

attempts

to

initiate

this

system

call

without

the

proper

authority,

the

SCSI

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

216

Kernel

Extensions

and

Device

Support

Programming

Concepts

Using

the

SC_SINGLE

Option

The

SC_SINGLE

option

causes

the

SCSI

device

driver

to

issue

a

normal

open,

but

does

not

allow

another

caller

to

issue

another

open

until

the

first

caller

has

closed

the

device.

This

request

gives

the

caller

an

exclusive

open

to

the

selected

device.

If

this

openx

is

attempted

when

the

device

is

already

open,

a

return

value

of

-1

is

passed,

with

the

errno

global

variable

set

to

a

value

of

EBUSY.

Once

sucessfully

opened,

the

device

is

placed

in

Exclusive

Access

mode.

If

another

caller

tries

to

do

any

type

of

open,

a

return

value

of

-1

is

passed,

with

the

errno

global

variable

set

to

a

value

of

EACCES.

The

remaining

options

for

the

ext

parameter

are

reserved

for

future

requirements.

Implementation

note:

The

following

table

shows

how

the

various

combinations

of

ext

options

should

be

handled

in

the

SCSI

device

driver.

EXT

OPTIONS

openx

ext

option

Device

Driver

Action

none

Open:

normal.

Close:

normal.

diag

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

diag

+

force

Open:

issue

SCIORESET

otherwise,

no

SCSI

commands

issued.

Close:

no

SCSI

commands.

diag

+

force

+

no_reserve

Open:

issue

SCIORESET;

otherwise,

no

SCSI

commands

isssued.

Close:

no

SCSI

commands.

diag

+

force

+

no_reserve

+

single

Open:

issue

SCIORESET;

otherwise,

no

SCSI

commands

isssued.

Close:

no

SCSI

commands.

diag

+

force

+retain

Open:

issue

SCIORESET;

otherwise,

no

SCSI

commands

issued.

Close:

no

SCSI

commands.

diag

+

force

+retain

+

no_reserve

Open:

issue

SCIORESET;

otherwise,

no

SCSI

commands

issued.

Close:

no

SCSI

commands.

diag

+

force

+retain

+

no_reserve

+

single

Open:

issue

SCIORESET;

otherwise,

no

SCSI

commands

issued.

Close:

no

SCSI

commands.

diag

+

force

+retain

+

single

Open:

issue

SCIORESET;

otherwise,

no

SCSI

commands

issued.

Close:

no

SCSI

commands.

diag

+

force

+

single

Open:

issue

SCIORESET;

otherwise,

no

SCSI

commands

issued.

Close:

no

SCSI

commands.

diag+no_reserve

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

diag

+

retain

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

diag

+

retain

+

no_reserve

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

diag

+

retain

+

no_reserve

+

single

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

diag

+

retain

+

single

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

diag

+

single

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

diag

+

single

+

no_reserve

Open:

no

SCSI

commands.

Close:

no

SCSI

commands.

force

Open:

normal,

except

SCIORESET

issued

prior

toany

SCSI

commands.

Close:

normal.

force

+

no_reserve

Open:

normal

except

SCIORESET

issued

prior

to

any

SCSI

commands.

No

RESERVE

command

issued.

Close:

normal

except

no

RELEASE.

force

+

retain

Open:

normal,

except

SCIORESET

issued

prior

to

any

SCSI

commands.

Close:

no

RELEASE.

Chapter

12.

Small

Computer

System

Interface

Subsystem

217

EXT

OPTIONS

openx

ext

option

Device

Driver

Action

force

+

retain

+

no_reserve

Open:

normal

except

SCIORESET

issued

prior

to

any

SCSI

commands.

No

RESERVE

command

issued.

Close:

no

RELEASE.

force

+

retain

+

no_reserve

+

single

Open:

normal

except

SCIORESET

issued

prior

to

any

SCSI

commands.

No

RESERVE

command

issued.

Close:

no

RELEASE.

force

+

retain

+

single

Open:

normal

except

SCIORESET

issued

prior

to

any

SCSI

commands.

Close:

no

RELEASE.

force

+

single

Open:

normal

except

SCIORESETissued

prior

to

any

SCSI

commands.

Close:

normal.

force

+

single

+

no_reserve

Open:

normal

except

SCIORESET

issued

prior

to

any

SCSI

commands.

No

RESERVE

command

issued.

Close:

no

RELEASE.

no_reserve

Open:

no

RESERVE.

Close:

no

RELEASE.

retain

Open:

normal.

Close:

no

RELEASE.

retain

+

no_reserve

Open:

no

RESERVE.

Close:

no

RELEASE.

retain

+

single

Open:

normal.

Close:

no

RELEASE.

retain

+

single

+

no_reserve

Open:

normal

except

no

RESERVE

command

issued.

Close:

no

RELEASE.

single

Open:

normal.

Close:

normal.

single

+

no_reserve

Open:

no

RESERVE.

Close:

no

RELEASE.

Closing

the

SCSI

Device

When

a

SCSI

device

driver

is

preparing

to

close

a

device

through

the

SCSI

adapter

device

driver,

it

must

ensure

that

all

transactions

are

complete.

When

the

SCSI

adapter

device

driver

receives

a

SCIOSTOP

ioctl

operation

and

there

are

pending

I/O

requests,

the

ioctl

operation

does

not

return

until

all

have

completed.

New

requests

received

during

this

time

are

rejected

from

the

adapter

device

driver’s

ddstrategy

routine.

When

the

SCSI

adapter

device

driver

receives

an

SCIOSTOPTGT

ioctl

operation,

it

must

forcibly

free

any

receive

data

buffers

that

have

been

queued

to

the

SCSI

device

driver

for

this

device

and

have

not

been

returned

to

the

SCSI

adapter

device

driver

through

the

buffer

free

routine.

The

SCSI

device

driver

is

responsible

for

making

sure

all

the

receive

data

buffers

are

freed

before

calling

the

SCIOSTOPTGT

ioctl

operation.

However,

the

SCSI

adapter

device

driver

must

check

that

this

is

done,

and,

if

necessary,

forcibly

free

the

buffers.

The

buffers

must

be

freed

because

those

not

freed

result

in

memory

areas

being

permanently

lost

to

the

system

(until

the

next

boot).

To

allow

the

SCSI

adapter

device

driver

to

free

buffers

that

are

sent

to

the

SCSI

device

driver

but

never

returned,

it

must

track

which

tm_bufs

are

currently

queued

to

the

SCSI

device

driver.

Tracking

tm_bufs

requires

the

SCSI

adapter

device

driver

to

violate

the

general

SCSI

rule,

which

states

the

SCSI

adapter

device

driver

should

not

modify

the

tm_bufs

structure

while

it

is

queued

to

the

SCSI

device

driver.

This

exception

to

the

rule

is

necessary

because

it

is

never

acceptable

not

to

free

memory

allocated

from

the

system.

SCSI

Error

Processing

It

is

the

responsibility

of

the

SCSI

device

driver

to

process

SCSI

check

conditions

and

other

returned

errors

properly.

The

SCSI

adapter

device

driver

only

passes

SCSI

commands

without

otherwise

processing

them

and

is

not

responsible

for

device

error

recovery.

218

Kernel

Extensions

and

Device

Support

Programming

Concepts

Device

Driver

and

Adapter

Device

Driver

Interfaces

The

SCSI

device

drivers

can

have

both

character

(raw)

and

block

special

files

in

the

/dev

directory.

The

SCSI

adapter

device

driver

has

only

character

(raw)

special

files

in

the

/dev

directory

and

has

only

the

ddconfig,

ddopen,

ddclose,

dddump,

and

ddioctl

entry

points

available

to

operating

system

programs.

The

ddread

and

ddwrite

entry

points

are

not

implemented.

Internally,

the

devsw

table

has

entry

points

for

the

ddconfig,

ddopen,

ddclose,

dddump,

ddioctl,

and

ddstrategy

routines.

The

SCSI

device

drivers

pass

their

SCSI

commands

to

the

SCSI

adapter

device

driver

by

calling

the

SCSI

adapter

device

driver

ddstrategy

routine.

(This

routine

is

unavailable

to

other

operating

system

programs

due

to

the

lack

of

a

block-device

special

file.)

Access

to

the

SCSI

adapter

device

driver’s

ddconfig,

ddopen,

ddclose,

dddump,

ddioctl,

and

ddstrategy

entry

points

by

the

SCSI

device

drivers

is

performed

through

the

kernel

services

provided.

These

include

such

services

as

fp_opendev,

fp_close,

fp_ioctl,

devdump,

and

devstrategy.

Performing

SCSI

Dumps

A

SCSI

adapter

device

driver

must

have

a

dddump

entry

point

if

it

is

used

to

access

a

system

dump

device.

A

SCSI

device

driver

must

have

a

dddump

entry

point

if

it

drives

a

dump

device.

Examples

of

dump

devices

are

disks

and

tapes.

Note:

SCSI

adapter-device-driver

writers

should

be

aware

that

system

services

providing

interrupt

and

timer

services

are

unavailable

for

use

in

the

dump

routine.

Kernel

DMA

services

are

assumed

to

be

available

for

use

by

the

dump

routine.

The

SCSI

adapter

device

driver

should

be

designed

to

ignore

extra

DUMPINIT

and

DUMPSTART

commands

to

the

dddump

entry

point.

The

DUMPQUERY

option

should

return

a

minimum

transfer

size

of

0

bytes,

and

a

maximum

transfer

size

equal

to

the

maximum

transfer

size

supported

by

the

SCSI

adapter

device

driver.

Calls

to

the

SCSI

adapter

device

driver

DUMPWRITE

option

should

use

the

arg

parameter

as

a

pointer

to

the

sc_buf

structure

to

be

processed.

Using

this

interface,

a

SCSI

write

command

can

be

run

on

a

previously

started

(opened)

target

device.

The

uiop

parameter

is

ignored

by

the

SCSI

adapter

device

driver

during

the

DUMPWRITE

command.

Spanned,

or

consolidated,

commands

are

not

supported

using

the

DUMPWRITE

option.

Gathered

write

commands

are

also

not

supported

using

the

DUMPWRITE

option.

No

queuing

of

sc_buf

structures

is

supported

during

dump

processing

because

the

dump

routine

runs

essentially

as

a

subroutine

call

from

the

caller’s

dump

routine.

Control

is

returned

when

the

entire

sc_buf

structure

has

been

processed.

Attention:

Also,

both

adapter-device-driver

and

device-driver

writers

should

be

aware

that

any

error

occurring

during

the

DUMPWRITE

option

is

considered

unsuccessful.

Therefore,

no

error

recovery

is

employed

during

the

DUMPWRITE.

Return

values

from

the

call

to

the

dddump

routine

indicate

the

specific

nature

of

the

failure.

Successful

completion

of

the

selected

operation

is

indicated

by

a

0

return

value

to

the

subroutine.

Unsuccessful

completion

is

indicated

by

a

return

code

set

to

one

of

the

following

values

for

the

errno

global

variable.

The

various

sc_buf

status

fields,

including

the

b_error

field,

are

not

set

by

the

SCSI

adapter

device

driver

at

completion

of

the

DUMPWRITE

command.

Error

logging

is,

of

necessity,

not

supported

during

the

dump.

v

An

errno

value

of

EINVAL

indicates

that

a

request

that

was

not

valid

passed

to

the

SCSI

adapter

device

driver,

such

as

to

attempt

a

DUMPSTART

command

before

successfully

executing

a

DUMPINIT

command.

v

An

errno

value

of

EIO

indicates

that

the

SCSI

adapter

device

driver

was

unable

to

complete

the

command

due

to

a

lack

of

required

resources

or

an

I/O

error.

v

An

errno

value

of

ETIMEDOUT

indicates

that

the

adapter

did

not

respond

with

completion

status

before

the

passed

command

time-out

value

expired.

Chapter

12.

Small

Computer

System

Interface

Subsystem

219

SCSI

Target-Mode

Overview

Note:

This

operation

is

not

supported

by

all

SCSI

I/O

controllers.

The

SCSI

target-mode

interface

is

intended

to

be

used

with

the

SCSI

initiator-mode

interface

to

provide

the

equivalent

of

a

full-duplex

communications

path

between

processor

type

devices.

Both

communicating

devices

must

support

target-mode

and

initiator-mode.

To

work

with

the

SCSI

subsystem

in

this

manner,

an

attached

device’s

target-mode

and

initiator-mode

interfaces

must

meet

certain

minimum

requirements:

v

The

device’s

target-mode

interface

must

be

capable

of

receiving

and

processing

at

least

the

following

SCSI

commands:

–

send

–

request

sense

–

inquiry

The

data

returned

by

the

inquiry

command

must

set

the

peripheral

device

type

field

to

processor

device.

The

device

should

support

the

vendor

and

product

identification

fields.

Additional

functional

SCSI

requirements,

such

as

SCSI

message

support,

must

be

addressed

by

examining

the

detailed

functional

specification

of

the

SCSI

initiator

that

the

target-mode

device

is

attached

to.

v

The

attached

device’s

initiator

mode

interface

must

be

capable

of

sending

the

following

SCSI

commands:

–

send

–

request

sense

In

addition,

the

inquiry

command

should

be

supported

by

the

attached

initiator

if

it

needs

to

identify

SCSI

target

devices.

Additional

functional

SCSI

requirements,

such

as

SCSI

message

support,

must

be

addressed

by

examining

the

detailed

functional

specification

of

the

SCSI

target

that

the

initiator-mode

device

is

attached

to.

Configuring

and

Using

SCSI

Target

Mode

The

adapter,

acting

as

either

a

target

or

initiator

device,

requires

its

own

SCSI

ID.

This

ID,

as

well

as

the

IDs

of

all

attached

devices

on

this

SCSI

bus,

must

be

unique

and

between

0

and

7,

inclusive.

Because

each

device

on

the

bus

must

be

at

a

unique

ID,

the

user

must

complete

any

installation

and

configuration

of

the

SCSI

devices

required

to

set

the

correct

IDs

before

physically

cabling

the

devices

together.

Failure

to

do

so

will

produce

unpredictable

results.

SCSI

target

mode

in

the

SCSI

subsystem

does

not

attempt

to

implement

any

receive-data

protocol,

with

the

exception

of

actions

taken

to

prevent

an

application

from

excessive

receive-data-buffer

usage.

Any

protocol

required

to

maintain

or

otherwise

manage

the

communications

of

data

must

be

implemented

in

user-supplied

programs.

The

only

delays

in

receiving

data

are

those

inherent

in

the

SCSI

subsystem

and

the

hardware

environment

in

which

it

operates.

The

SCSI

target

mode

is

capable

of

simultaneously

receiving

data

from

all

attached

SCSI

IDs

using

SCSI

send

commands.

In

target-mode,

the

host

adapter

is

assumed

to

act

as

a

single

SCSI

Logical

Unit

Number

(LUN)

at

its

assigned

SCSI

ID.

Therefore,

only

one

logical

connection

is

possible

between

each

attached

SCSI

initiator

on

the

SCSI

Bus

and

the

host

adapter.

The

SCSI

subsystem

is

designed

to

be

fully

capable

of

simultaneously

sending

SCSI

commands

in

initiator-mode

while

receiving

data

in

target-mode.

Managing

Receive-Data

Buffers

In

the

SCSI

subsystem

target-mode

interface,

the

SCSI

adapter

device

driver

is

responsible

for

managing

the

receive-data

buffers

versus

the

SCSI

device

driver

because

the

buffering

is

dependent

upon

how

the

adapter

works.

It

is

not

possible

for

the

SCSI

device

driver

to

run

a

single

approach

that

is

capable

of

making

full

use

of

the

performance

advantages

of

various

adapters’

buffering

schemes.

With

the

SCSI

adapter

device

driver

layer

performing

the

buffer

management,

the

SCSI

device

driver

can

be

interfaced

to

a

variety

of

adapter

types

and

can

potentially

get

the

best

possible

performance

out

of

each

adapter.

This

220

Kernel

Extensions

and

Device

Support

Programming

Concepts

approach

also

allows

multiple

SCSI

target-mode

device

drivers

to

be

run

on

top

of

adapters

that

use

a

shared-pool

buffer

management

scheme.

This

would

not

be

possible

if

the

target-mode

device

drivers

managed

the

buffers.

Understanding

Target-Mode

Data

Pacing

Because

it

is

possible

for

the

attached

initiator

device

to

send

data

faster

than

the

host

operating

system

and

associated

application

can

process

it,

eventually

the

situation

arises

in

which

all

buffers

for

this

device

instance

are

in

use

at

the

same

time.

There

are

two

possible

scenarios:

v

The

previous

send

command

has

been

received

by

the

adapter,

but

there

is

no

space

for

the

next

send

command.

v

The

send

command

is

not

yet

completed,

and

there

is

no

space

for

the

remaining

data.

In

both

cases,

the

combination

of

the

SCSI

adapter

device

driver

and

the

SCSI

adapter

must

be

capable

of

stopping

the

flow

of

data

from

the

initiator

device.

SCSI

Adapter

Device

Driver

The

adapter

can

handle

both

cases

described

previously

by

simply

accepting

the

send

command

(if

newly

received)

and

then

disconnecting

during

the

data

phase.

When

buffer

space

becomes

available,

the

SCSI

adapter

reconnects

and

continues

the

data

transfer.

As

an

alternative,

when

handling

a

newly

received

command,

a

check

condition

can

be

given

back

to

the

initiator

to

indicate

a

lack

of

resources.

The

implementation

of

this

alternative

is

adapter-dependent.

The

technique

of

accepting

the

command

and

then

disconnecting

until

buffer

space

is

available

should

result

in

better

throughput,

as

it

avoids

both

a

request

sense

command

and

the

retry

of

the

send

command.

For

adapters

allowing

a

shared

pool

of

buffers

to

be

used

for

all

attached

initiators’

data

transfers,

an

additional

problem

can

result.

If

any

single

initiator

instance

is

allowed

to

transfer

data

continually,

the

entire

shared

pool

of

buffers

can

fill

up.

These

filled-up

buffers

prevent

other

initiator

instances

from

transferring

data.

To

solve

this

problem,

the

combination

of

the

SCSI

adapter

device

driver

and

the

host

SCSI

adapter

must

stop

the

flow

of

data

from

a

particular

initiator

ID

on

the

bus.

This

could

include

disconnecting

during

the

data

phase

for

a

particular

ID

but

allowing

other

IDs

to

continue

data

transfer.

This

could

begin

when

the

number

of

tm_buf

structures

on

a

target-mode

instance’s

tm_buf

queue

equals

the

number

of

buffers

allocated

for

this

device.

When

a

threshold

percentage

of

the

number

of

buffers

is

processed

and

returned

to

the

SCSI

adapter

device

driver’s

buffer-free

routine,

the

ID

can

be

enabled

again

for

the

continuation

of

data

transfer.

SCSI

Device

Driver

The

SCSI

device

driver

can

optionally

be

informed

by

the

SCSI

adapter

device

driver

whenever

all

buffers

for

this

device

are

in

use.

This

is

known

as

a

maximum-buffer-usage

event.

To

pass

this

information,

the

SCSI

device

driver

must

be

registered

for

notification

of

asynchronous

event

status

from

the

SCSI

adapter

device

driver.

Registration

is

done

by

calling

the

SCSI

adapter

device-driver

ioctl

entry

point

with

the

SCIOEVENT

operation.

If

registering

for

event

notification,

the

SCSI

device

driver

receives

notification

of

all

asynchronous

events,

not

just

the

maximum

buffer

usage

event.

Understanding

the

SCSI

Target

Mode

Device

Driver

Receive

Buffer

Routine

The

SCSI

target-mode

device-driver

receive

buffer

routine

must

be

a

pinned

routine

that

the

SCSI

adapter

device

driver

can

directly

address.

This

routine

is

called

directly

from

the

SCSI

adapter

device

driver

hardware

interrupt

handling

routine.

The

SCSI

device

driver

writer

must

be

aware

of

how

this

routine

affects

the

design

of

the

SCSI

device

driver.

First,

because

the

receive

buffer

routine

is

running

on

the

hardware

interrupt

level,

the

SCSI

device

driver

must

limit

operations

in

order

to

limit

routine

processing

time.

In

particular,

the

data

copy,

which

occurs

because

the

data

is

queued

ahead

of

the

user

read

request,

must

not

occur

in

the

receive

buffer

routine.

Data

copying

in

this

routine

will

adversely

affect

system

response

time.

Data

copy

is

best

performed

in

a

Chapter

12.

Small

Computer

System

Interface

Subsystem

221

process

level

SCSI

device-driver

routine.

This

routine

sleeps,

waiting

for

data,

and

is

awakened

by

the

receive

buffer

routine.

Typically,

this

process

level

routine

is

the

SCSI

device

driver’s

read

routine.

Second,

the

receive

buffer

routine

is

called

at

the

SCSI

adapter

device

driver

hardware

interrupt

level,

so

care

must

be

taken

when

disabling

interrupts.

They

must

be

disabled

to

the

correct

level

in

places

in

the

SCSI

device

driver’s

lower

run

priority

routines,

which

manipulate

variables

also

modified

in

the

receive

buffer

routine.

To

allow

the

SCSI

device

driver

to

disable

to

the

correct

level,

the

SCSI

adapter

device-driver

writer

must

provide

a

configuration

database

attribute,

named

intr_priority,

that

defines

the

interrupt

class,

or

priority,

that

the

adapter

runs

on.

The

SCSI

device-driver

configuration

method

should

pass

this

attribute

to

the

SCSI

device

driver

along

with

other

configuration

data

for

the

device

instance.

Third,

the

SCSI

device-driver

writer

must

follow

any

other

general

system

rules

for

writing

a

routine

that

must

run

in

an

interrupt

environment.

For

example,

the

routine

must

not

attempt

to

sleep

or

wait

on

I/O

operations.

It

can

perform

wake-up

calls

to

allow

the

process

level

to

handle

those

operations.

Duties

of

the

SCSI

device

driver

receive

buffer

routine

include:

v

Matching

the

data

with

the

appropriate

target-mode

instance.

v

Queuing

the

tm_buf

structures

to

the

appropriate

target-mode

instance.

v

Waking

up

the

process-level

routine

for

further

processing

of

the

received

data.

After

the

tm_buf

structure

has

been

passed

to

the

SCSI

device

driver

receive

buffer

routine,

the

SCSI

device

driver

is

considered

to

be

responsible

for

it.

Responsibilities

include

processing

the

data

and

any

error

conditions

and

also

maintaining

the

next

pointer

for

chained

tm_buf

structures.

The

SCSI

device

driver’s

responsibilities

for

the

tm_buf

structures

end

when

it

passes

the

structure

back

to

the

SCSI

adapter

device

driver.

Until

the

tm_buf

structure

is

again

passed

to

the

SCSI

device

driver

receive

buffer

routine,

the

SCSI

adapter

device

driver

is

considered

responsible

for

it.

The

SCSI

adapter

device-driver

writer

must

be

aware

that

during

the

time

the

SCSI

device

driver

is

responsible

for

the

tm_buf

structure,

it

is

still

possible

for

the

SCSI

adapter

device

driver

to

access

the

structure’s

contents.

Access

is

possible

because

only

one

copy

of

the

structure

is

in

memory,

and

only

a

pointer

to

the

structure

is

passed

to

the

SCSI

device

driver.

Note:

Under

no

circumstances

should

the

SCSI

adapter

device

driver

access

the

structure

or

modify

its

contents

while

the

SCSI

device

driver

is

responsible

for

it,

or

the

other

way

around.

It

is

recommended

that

the

SCSI

device-driver

writer

implement

a

threshold

level

to

wake

up

the

process

level

with

available

tm_buf

structures.

This

way,

processing

for

some

of

the

buffers,

including

copying

the

data

to

the

user

buffer,

can

be

overlapped

with

time

spent

waiting

for

more

data.

It

is

also

recommended

the

writer

implement

a

threshold

level

for

these

buffers

to

handle

cases

where

the

send

command

data

length

exceeds

the

aggregate

receive-data

buffer

space.

A

suggested

threshold

level

is

25%

of

the

device’s

total

buffers.

That

is,

when

25%

or

more

of

the

number

of

buffers

allocated

for

this

device

is

queued

and

no

end

to

the

send

command

is

encountered,

the

SCSI

device

driver

receive

buffer

routine

should

wake

the

process

level

to

process

these

buffers.

Understanding

the

tm_buf

Structure

The

tm_buf

structure

is

used

for

communication

between

the

SCSI

device

driver

and

the

SCSI

adapter

device

driver

for

a

target-mode

received-data

buffer.

The

tm_buf

structure

is

passed

by

pointer

directly

to

routines

whose

entry

points

have

been

registered

through

the

SCIOSTARTTGT

ioctl

operation

of

the

SCSI

adapter

device

driver.

The

SCSI

device

driver

is

required

to

call

this

ioctl

operation

when

opening

a

target-mode

device

instance.

Fields

in

the

tm_buf

Structure

The

tm_buf

structure

contains

certain

fields

used

to

pass

a

received

data

buffer

from

the

SCSI

adapter

device

driver

to

the

SCSI

device

driver.

Other

fields

are

used

to

pass

returned

status

back

to

the

SCSI

device

driver.

After

processing

the

data,

the

tm_buf

structure

is

passed

back

from

the

SCSI

device

driver

222

Kernel

Extensions

and

Device

Support

Programming

Concepts

to

the

SCSI

adapter

device

driver

to

allow

the

buffer

to

be

reused.

The

tm_buf

structure

is

defined

in

the

/usr/include/sys/scsi.h

file

and

contains

the

following

fields:

Note:

Reserved

fields

must

not

be

modified

by

the

SCSI

device

driver,

unless

noted

otherwise.

Nonreserved

fields

can

be

modified,

except

where

noted

otherwise.

1.

The

tm_correlator

field

is

an

optional

field

for

the

SCSI

device

driver.

This

field

is

a

copy

of

the

field

with

the

same

name

that

was

passed

by

the

SCSI

device

driver

in

the

SCIOSTARTTGT

ioctl.

The

SCSI

device

driver

should

use

this

field

to

speed

the

search

for

the

target-mode

device

instance

the

tm_buf

structure

is

associated

with.

Alternatively,

the

SCSI

device

driver

can

combine

the

tm_buf.user_id

and

tm_buf.adap_devno

fields

to

find

the

associated

device.

2.

The

adap_devno

field

is

the

device

major

and

minor

numbers

of

the

adapter

instance

on

which

this

target

mode

device

is

defined.

This

field

can

be

used

to

find

the

particular

target-mode

instance

the

tm_buf

structure

is

associated

with.

Note:

The

SCSI

device

driver

must

not

modify

this

field.

3.

The

data_addr

field

is

the

kernel

space

address

where

the

data

begins

for

this

buffer.

4.

The

data_len

field

is

the

length

of

valid

data

in

the

buffer

starting

at

the

tm_buf.data_addr

location

in

memory.

5.

The

user_flag

field

is

a

set

of

bit

flags

that

can

be

set

to

communicate

information

about

this

data

buffer

to

the

SCSI

device

driver.

Except

where

noted,

one

or

more

of

the

following

flags

can

be

set:

TM_HASDATA

Set

to

indicate

a

valid

tm_buf

structure

TM_MORE_DATA

Set

if

more

data

is

coming

(that

is,

more

tm_buf

structures)

for

a

particular

send

command.

This

is

only

possible

for

adapters

that

support

spanning

the

send

command

data

across

multiple

receive

buffers.

This

flag

cannot

be

used

with

the

TM_ERROR

flag.

TM_ERROR

Set

if

any

error

occurred

on

a

particular

send

command.

This

flag

cannot

be

used

with

the

TM_MORE_DATA

flag.

6.

The

user_id

field

is

set

to

the

SCSI

ID

of

the

initiator

that

sent

the

data

to

this

target

mode

instance.

If

more

than

one

adapter

is

used

for

target

mode

in

this

system,

this

ID

might

not

be

unique.

Therefore,

this

field

must

be

used

in

combination

with

the

tm_buf.adap_devno

field

to

find

the

target-mode

instance

this

ID

is

associated

with.

Note:

The

SCSI

device

driver

must

not

modify

this

field.

7.

The

status_validity

field

contains

the

following

bit

flag:

SC_ADAPTER_ERROR

Indicates

the

tm_buf.general_card_status

is

valid.

8.

The

general_card_status

field

is

a

returned

status

field

that

gives

a

broad

indication

of

the

class

of

error

encountered

by

the

adapter.

This

field

is

valid

when

its

status-validity

bit

is

set

in

the

tm_buf.status_validity

field.

The

definition

of

this

field

is

the

same

as

that

found

in

the

sc_buf

structure

definition,

except

the

SC_CMD_TIMEOUT

value

is

not

possible

and

is

never

returned

for

a

target-mode

transfer.

9.

The

next

field

is

a

tm_buf

pointer

that

is

either

null,

meaning

this

is

the

only

or

last

tm_buf

structure,

or

else

contains

a

non-null

pointer

to

the

next

tm_buf

structure.

Understanding

the

Running

of

SCSI

Target-Mode

Requests

The

target-mode

interface

provided

by

the

SCSI

subsystem

is

designed

to

handle

data

reception

from

SCSI

send

commands.

The

host

SCSI

adapter

acts

as

a

secondary

device

that

waits

for

an

attached

initiator

device

to

issue

a

SCSI

send

command.

The

SCSI

send

command

data

is

received

by

buffers

managed

by

the

SCSI

adapter

device

driver.

The

tm_buf

structure

is

used

to

manage

individual

buffers.

Chapter

12.

Small

Computer

System

Interface

Subsystem

223

For

each

buffer

of

data

received

from

an

attached

initiator,

the

SCSI

adapter

device

driver

passes

a

tm_buf

structure

to

the

SCSI

device

driver

for

processing.

Multiple

tm_buf

structures

can

be

linked

together

and

passed

to

the

SCSI

device

driver

at

one

time.

When

the

SCSI

device

driver

has

processed

one

or

more

tm_buf

structures,

it

passes

the

tm_buf

structures

back

to

the

SCSI

adapter

device

driver

so

they

can

be

reused.

Detailed

Running

of

Target-Mode

Requests

When

a

send

command

is

received

by

the

host

SCSI

adapter,

data

is

placed

in

one

or

more

receive-data

buffers.

These

buffers

are

made

available

to

the

adapter

by

the

SCSI

adapter

device

driver.

The

procedure

by

which

the

data

gets

from

the

SCSI

bus

to

the

system-memory

buffer

is

adapter-dependent.

The

SCSI

adapter

device

driver

takes

the

received

data

and

updates

the

information

in

one

or

more

tm_buf

structures

in

order

to

identify

the

data

to

the

SCSI

device

driver.

This

process

includes

filling

the

tm_correlator,

adap_devno,

data_addr,

data_len,

user_flag,

and

user_id

fields.

Error

status

information

is

put

in

the

status_validity

and

general_card_status

fields.

The

next

field

is

set

to

null

to

indicate

this

is

the

only

element,

or

set

to

non-null

to

link

multiple

tm_buf

structures.

If

there

are

multiple

tm_buf

structures,

the

final

tm_buf.next

field

is

set

to

null

to

end

the

chain.

If

there

are

multiple

tm_buf

structures

and

they

are

linked,

they

must

all

be

from

the

same

initiator

SCSI

ID.

The

tm_buf.tm_correlator

field,

in

this

case,

has

the

same

value

as

it

does

in

the

SCIOSTARTTGT

ioctl

operation

to

the

SCSI

adapter

device

driver.

The

SCSI

device

driver

should

use

this

field

to

speed

the

search

for

the

target-mode

instance

designated

by

this

tm_buf

structure.

For

example,

when

using

the

value

of

tm_buf.tm_correlator

as

a

pointer

to

the

device-information

structure

associated

with

this

target-mode

instance.

Each

send

command,

no

matter

how

short

its

data

length,

requires

its

own

tm_buf

structure.

For

host

SCSI

adapters

capable

of

spanning

multiple

receive-data

buffers

with

data

from

a

single

send

command,

the

SCSI

adapter

device

driver

must

set

the

TM_MORE_DATA

flag

in

the

tm_buf.user_flag

fields

of

all

but

the

final

tm_buf

structure

holding

data

for

the

send

command.

The

SCSI

device

driver

must

be

designed

to

support

the

TM_MORE_DATA

flag.

Using

this

flag,

the

target-mode

SCSI

device

driver

can

associate

multiple

buffers

with

the

single

transfer

they

represent.

The

end

of

a

send

command

will

be

the

boundary

used

by

the

SCSI

device

driver

to

satisfy

a

user

read

request.

The

SCSI

adapter

device

driver

is

responsible

for

sending

the

tm_buf

structures

for

a

particular

initiator

SCSI

ID

to

the

SCSI

device

driver

in

the

order

they

were

received.

The

SCSI

device

driver

is

responsible

for

processing

these

tm_buf

structures

in

the

order

they

were

received.

There

is

no

particular

ordering

implied

in

the

processing

of

simultaneous

send

commands

from

different

SCSI

IDs,

as

long

as

the

data

from

an

individual

SCSI

ID’s

send

command

is

processed

in

the

order

it

was

received.

The

pointer

to

the

tm_buf

structure

chain

is

passed

by

the

SCSI

adapter

device

driver

to

the

SCSI

device

driver’s

receive

buffer

routine.

The

address

of

this

routine

is

registered

with

the

SCSI

adapter

device

driver

by

the

SCSI

device

driver

using

the

SCIOSTARTTGT

ioctl.

The

duties

of

the

receive

buffer

routine

include

queuing

the

tm_buf

structures

and

waking

up

a

process-level

routine

(typically

the

SCSI

device

driver’s

read

routine)

to

process

the

received

data.

When

the

process-level

SCSI

device

driver

routine

finishes

processing

one

or

more

tm_buf

structures,

it

passes

them

to

the

SCSI

adapter

device

driver’s

buffer-free

routine.

The

address

of

this

routine

is

registered

with

the

SCSI

device

driver

in

an

output

field

in

the

structure

passed

to

the

SCSI

adapter

device

driver

SCIOSTARTTGT

ioctl

operation.

The

buffer-free

routine

must

be

a

pinned

routine

the

SCSI

device

driver

can

directly

access.

The

buffer-free

routine

is

typically

called

directly

from

the

SCSI

device

driver

buffer-handling

routine.

The

SCSI

device

driver

chains

one

or

more

tm_buf

structures

by

using

the

next

field

(a

null

value

for

the

last

tm_buf

next

field

ends

the

chain).

It

then

passes

a

pointer,

which

points

to

the

head

of

the

chain,

to

the

SCSI

adapter

device

driver

buffer-free

routine.

These

tm_buf

structures

must

all

be

for

the

same

target-mode

instance.

Also,

the

SCSI

device

driver

must

not

modify

the

tm_buf.user_id

or

tm_buf.adap_devno

field.

The

SCSI

adapter

device

driver

takes

the

tm_buf

structures

passed

to

its

buffer-free

routine

and

attempts

to

make

the

described

receive

buffers

available

to

the

adapter

for

future

data

transfers.

Because

it

is

desirable

to

keep

as

many

buffers

as

possible

available

to

the

adapter,

the

SCSI

device

driver

should

pass

224

Kernel

Extensions

and

Device

Support

Programming

Concepts

processed

tm_buf

structures

to

the

SCSI-adapter

device

driver’s

buffer-free

routine

as

quickly

as

possible.

The

writer

of

a

SCSI

device

driver

should

avoid

requiring

the

last

buffer

of

a

send

command

to

be

received

before

processing

buffers,

as

this

could

cause

a

situation

where

all

buffers

are

in

use

and

the

send

command

has

not

completed.

It

is

recommended

that

the

writer

therefore

place

a

threshold

of

25%

on

the

free

buffers.

That

is,

when

25%

or

more

of

the

number

of

buffers

allocated

for

this

device

have

been

processed

and

the

send

command

is

not

completed,

the

SCSI

device

driver

should

free

the

processed

buffers

by

passing

them

to

the

SCSI

adapter

device

driver’s

buffer-free

routine.

Required

SCSI

Adapter

Device

Driver

ioctl

Commands

Various

ioctl

operations

must

be

performed

for

proper

operation

of

the

SCSI

adapter

device

driver.

The

ioctl

operations

described

here

are

the

minimum

set

of

commands

the

SCSI

adapter

device

driver

must

implement

to

support

SCSI

device

drivers.

Other

operations

might

be

required

in

the

SCSI

adapter

device

driver

to

support,

for

example,

system

management

facilities

and

diagnostics.

SCSI

device

driver

writers

also

need

to

understand

these

ioctl

operations.

Every

SCSI

adapter

device

driver

must

support

the

IOCINFO

ioctl

operation.

The

structure

to

be

returned

to

the

caller

is

the

devinfo

structure,

including

the

scsi

union

definition

for

the

SCSI

adapter,

which

can

be

found

in

the

/usr/include/sys/devinfo.h

file.

The

SCSI

device

driver

should

request

the

IOCINFO

ioctl

operation

(probably

during

its

open

routine)

to

get

the

maximum

transfer

size

of

the

adapter.

Note:

The

SCSI

adapter

device

driver

ioctl

operations

can

only

be

called

from

the

process

level.

They

cannot

be

run

from

a

call

on

any

more

favored

priority

levels.

Attempting

to

call

them

from

a

more

favored

priority

level

can

result

in

a

system

crash.

Initiator-Mode

ioctl

Commands

The

following

SCIOSTART

and

SCIOSTOP

operations

must

be

sent

by

the

SCSI

device

driver

(for

the

open

and

close

routines,

respectively)

for

each

device.

They

cause

the

SCSI

adapter

device

driver

to

allocate

and

initialize

internal

resources.

The

SCIOHALT

ioctl

operation

is

used

to

abort

pending

or

running

commands,

usually

after

signal

processing

by

the

SCSI

device

driver.

This

might

be

used

by

a

SCSI

device

driver

to

end

an

operation

instead

of

waiting

for

completion

or

a

time

out.

The

SCIORESET

operation

is

provided

for

clearing

device

hard

errors

and

competing

initiator

reservations

during

open

processing

by

the

SCSI

device

driver.

The

SCIOGTHW

operation

is

supported

by

SCSI

adapter

device

drivers

that

support

gathered

write

commands

to

target

devices.

Except

where

noted

otherwise,

the

arg

parameter

for

each

of

the

ioctl

operations

described

here

must

contain

a

long

integer.

In

this

field,

the

least

significant

byte

is

the

SCSI

LUN

and

the

next

least

significant

byte

is

the

SCSI

ID

value.

(The

upper

two

bytes

are

reserved

and

should

be

set

to

0.)

This

provides

the

information

required

to

allocate

or

deallocate

resources

and

perform

SCSI

bus

operations

for

the

ioctl

operation

requested.

The

following

information

is

provided

on

the

various

ioctl

operations:

SCIOSTART

This

operation

allocates

and

initializes

SCSI

device-dependent

information

local

to

the

SCSI

adapter

device

driver.

Run

this

operation

only

on

the

first

open

of

an

ID/LUN

device.

Subsequent

SCIOSTART

commands

to

the

same

ID/LUN

fail

unless

an

intervening

SCIOSTOP

command

is

issued.

The

following

values

for

the

errno

global

variable

are

supported:

0

Indicates

successful

completion.

EIO

Indicates

lack

of

resources

or

other

error-preventing

device

allocation.

EINVAL

Indicates

that

the

selected

SCSI

ID

and

LUN

are

already

in

use,

or

the

SCSI

ID

matches

the

adapter

ID.

Chapter

12.

Small

Computer

System

Interface

Subsystem

225

ETIMEDOUT

Indicates

that

the

command

did

not

complete.

SCIOSTOP

This

operation

deallocates

resources

local

to

the

SCSI

adapter

device

driver

for

this

SCSI

device.

This

should

be

run

on

the

last

close

of

an

ID/LUN

device.

If

an

SCIOSTART

operation

has

not

been

previously

issued,

this

command

is

unsuccessful.

The

following

values

for

the

errno

global

variable

should

be

supported:

0

Indicates

successful

completion.

EIO

Indicates

error

preventing

device

deallocation.

EINVAL

Indicates

that

the

selected

SCSI

ID

and

LUN

have

not

been

started.

ETIMEDOUT

Indicates

that

the

command

did

not

complete.

SCIOCMD

The

SCIOCMD

operation

provides

the

means

for

issuing

any

SCSI

command

to

the

specified

device

after

the

SCSI

device

has

been

successfully

started

(SCIOSTART).

The

SCSI

adapter

driver

performs

no

error

recovery

other

then

issuing

a

request

sense

for

a

SCSI

check

condition

error.

If

the

caller

allocated

an

autosense

buffer,

then

the

request

sense

data

is

returned

in

that

buffer.

The

SCSI

adapter

driver

will

not

log

any

errors

in

the

system

error

log

for

failures

on

a

SCIOCMD

operation.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOCMD,

&iocmd);

where

adapter

is

a

file

descriptor

and

iocmd

is

an

sc_passthru

structure

as

defined

in

the

/usr/include/sys/scsi.h

header

file.

The

SCSI

ID

and

LUN

should

be

placed

in

the

sc_passthru

parameter

block.

The

SCSI

status

byte

and

the

adapter

status

bytes

are

returned

through

the

sc_passthru

structure.

If

the

SCIOCMD

operation

returns

a

value

of

-1

and

the

errno

global

variable

is

set

to

a

nonzero

value,

the

requested

operation

has

failed.

In

this

case,

the

caller

should

evaluate

the

returned

status

bytes

to

determine

why

the

operation

failed

and

what

recovery

actions

should

be

taken.

If

a

SCIOCMD

operation

fails

because

a

field

in

the

sc_passthru

structure

has

an

invalid

value,

then

the

subroutine

will

return

a

value

of

-1

and

set

the

errno

global

variable

to

EINVAL.

In

addition

the

einval_arg

field

will

be

set

to

the

field

number

(starting

with

1

for

the

version

field)

of

the

field

that

had

an

invalid

value.

A

value

of

0

for

the

einval_arg

field

indicates

no

additional

information

on

the

failure

is

available.

The

devinfo

structure

defines

the

maximum

transfer

size

for

the

command.

If

an

attempt

is

made

to

transfer

more

than

the

maximum,

a

value

of

-1

is

returned

and

the

errno

global

variable

set

to

a

value

of

EINVAL.

Refer

to

the

Small

Computer

System

Interface

(SCSI)

Specification

for

the

applicable

device

to

get

request

sense

information.

Possible

errno

values

are:

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

(three

or

more)

times,

because

another

attempt

might

be

successful.

If

an

EIO

error

occurs

and

the

status_validity

field

is

set

to

SC_SCSI_ERROR,

then

the

scsi_status

field

has

a

valid

value

and

should

be

inspected.

If

the

status_validity

field

is

zero

and

remains

so

on

successive

retries,

then

an

unrecoverable

error

has

occurred

with

the

device.

226

Kernel

Extensions

and

Device

Support

Programming

Concepts

If

the

status_validity

field

is

SC_SCSI_ERROR

and

the

scsi_status

field

contains

a

Check

Condition

status,

then

a

SCSI

request

sense

should

be

issued

using

the

SCIOCMD

ioctl

to

recover

the

the

sense

data.

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

device

is

not

opened

or

the

caller

has

set

a

field

in

the

sc_passthru

structure

to

an

invalid

value.

EACCES

The

adapter

is

in

diagnostics

mode.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out,

which

indicates

the

operation

did

not

complete

before

the

time-out

value

was

exceeded.

Consider

retrying

the

operation.

ENODEV

The

device

is

not

responding.

Note:

This

operation

requires

the

SCIOSTART

operation

to

be

run

first.

If

the

FCP

SCIOCMD

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SC_RET_ID

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

The

version

field

of

the

scsi_passthru

structure

can

be

set

to

the

value

of

SC_VERSION_2

in

/usr/include/sys/scsi.h

or

SCSI_VERSION_2

in

/usrinclude/sys/scsi_buf.h,

and

the

user

can

provide

the

following

fields:

v

variable_cdb_ptr

-

pointer

to

a

buffer

that

contains

the

SCSI

cdb

variable.

v

variable_cdb_length

-

the

length

of

the

variable

cdb

to

which

the

variable_cdb_ptr

points.

When

the

SCIOCMD

ioctl

request

with

the

version

field

set

to

SCSI_VERSION_2

completes

and

the

device

did

not

fully

satisfy

the

request,

the

residual

field

indicates

left

over

data.

If

the

request

completes

successfully,

the

residual

field

indicates

the

device

does

not

have

all

the

requested

data.

If

the

request

did

not

complete

successfully,

check

the

status_validity

to

see

whether

a

valid

SCSI

bus

problem

exists.

If

a

valid

SCSI

bus

problem

exists,

the

residual

field

indicates

the

number

of

bytes

by

which

the

device

failed

to

complete

the

request.

For

more

information,

see

SCIOCMD

SCSI

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

SCIOHALT

This

operation

halts

outstanding

transactions

to

this

ID/LUN

device

and

causes

the

SCSI

adapter

device

driver

to

stop

accepting

transactions

for

this

device.

This

situation

remains

in

effect

until

the

SCSI

device

driver

sends

another

transaction

with

the

SC_RESUME

flag

set

(in

the

sc_buf.flags

field)

for

this

ID/LUN

combination.

The

SCIOHALT

ioctl

operation

causes

the

SCSI

adapter

device

driver

to

fail

the

command

in

progress,

if

any,

as

well

as

all

queued

commands

for

the

device

with

a

return

value

of

ENXIO

in

the

sc_buf.bufstruct.b_error

field.

If

an

SCIOSTART

operation

has

not

been

previously

issued,

this

command

fails.

The

following

values

for

the

errno

global

variable

are

supported:

0

Indicates

successful

completion.

Chapter

12.

Small

Computer

System

Interface

Subsystem

227

EIO

Indicates

an

unrecovered

I/O

error

occurred.

EINVAL

Indicates

that

the

selected

SCSI

ID

and

LUN

have

not

been

started.

ETIMEDOUT

Indicates

that

the

command

did

not

complete.

SCIORESET

This

operation

causes

the

SCSI

adapter

device

driver

to

send

a

SCSI

Bus

Device

Reset

(BDR)

message

to

the

selected

SCSI

ID.

For

this

operation,

the

SCSI

device

driver

should

set

the

LUN

in

the

arg

parameter

to

the

LUN

ID

of

a

LUN

on

this

SCSI

ID,

which

has

been

successfully

started

using

the

SCIOSTART

operation.

The

SCSI

device

driver

should

use

this

command

only

when

directed

to

do

a

forced

open.

This

occurs

in

two

possible

situations:

one,

when

it

is

desirable

to

force

the

device

to

drop

a

SCSI

reservation;

two,

when

the

device

needs

to

be

reset

to

clear

an

error

condition

(for

example,

when

running

diagnostics

on

this

device).

Note:

In

normal

system

operation,

this

command

should

not

be

issued,

as

it

would

force

the

device

to

drop

a

SCSI

reservation

another

initiator

(and,

hence,

another

system)

might

have.

If

an

SCIOSTART

operation

has

not

been

previously

issued,

this

command

is

unsuccessful.

The

following

values

for

the

errno

global

variable

are

supported:

0

Indicates

successful

completion.

EIO

Indicates

an

unrecovered

I/O

error

occurred.

EINVAL

Indicates

that

the

selected

SCSI

ID

and

LUN

have

not

been

started.

ETIMEDOUT

Indicates

that

the

command

did

not

complete.

SCIOGTHW

This

operation

is

only

supported

by

SCSI

adapter

device

drivers

that

support

gathered

write

commands.

The

purpose

of

the

operation

is

to

indicate

support

for

gathered

writes

to

SCSI

device

drivers

that

intend

to

use

this

facility.

If

the

SCSI

adapter

device

driver

does

not

support

gathered

write

commands,

it

must

fail

the

operation.

The

SCSI

device

driver

should

call

this

operation

from

its

open

routine

for

a

particular

device

instance.

If

the

operation

is

unsuccessful,

the

SCSI

device

driver

should

not

attempt

to

run

a

gathered

write

command.

The

arg

parameter

to

the

SCIOGTHW

is

set

to

null

by

the

caller

to

indicate

that

no

input

parameter

is

passed:

The

following

values

for

the

errno

global

variable

are

supported:

0

Indicates

successful

completion

and

in

particular

that

the

adapter

driver

supports

gathered

writes.

EINVAL

Indicates

that

the

SCSI

adapter

device

driver

does

not

support

gathered

writes.

Target-Mode

ioctl

Commands

The

following

SCIOSTARTTGT

and

SCIOSTOPTGT

operations

must

be

sent

by

the

SCSI

device

driver

(for

the

open

and

close

routines,

respectively)

for

each

target-mode

device

instance.

This

causes

the

SCSI

adapter

device

driver

to

allocate

and

initialize

internal

resources,

and,

if

necessary,

prepare

the

hardware

for

operation.

228

Kernel

Extensions

and

Device

Support

Programming

Concepts

Target-mode

support

in

the

SCSI

device

driver

and

SCSI

adapter

device

driver

is

optional.

A

failing

return

code

from

these

commands,

in

the

absence

of

any

programming

error,

indicates

target

mode

is

not

supported.

If

the

SCSI

device

driver

requires

target

mode,

it

must

check

the

return

code

to

verify

the

SCSI

adapter

device

driver

supports

it.

Only

a

kernel

process

or

device

driver

can

call

these

ioctls.

If

attempted

by

a

user

process,

the

ioctl

will

fail,

and

the

errno

global

variable

will

be

set

to

EPERM.

The

following

information

is

provided

on

the

various

target-mode

ioctl

operations:

SCIOSTARTTGT

This

operation

opens

a

logical

path

to

a

SCSI

initiator

device.

It

allocates

and

initializes

SCSI

device-dependent

information

local

to

the

SCSI

adapter

device

driver.

This

is

run

by

the

SCSI

device

driver

in

its

open

routine.

Subsequent

SCIOSTARTTGT

commands

to

the

same

ID

(LUN

is

always

0)

are

unsuccessful

unless

an

intervening

SCIOSTOPTGT

is

issued.

This

command

also

causes

the

SCSI

adapter

device

driver

to

allocate

system

buffer

areas

to

hold

data

received

from

the

initiator,

and

makes

the

adapter

ready

to

receive

data

from

the

selected

initiator.

The

arg

parameter

to

the

SCIOSTARTTGT

should

be

set

to

the

address

of

an

sc_strt_tgt

structure,

which

is

defined

in

the

/usr/include/sys/scsi.h

file.

The

following

parameters

are

supported:

id

The

caller

fills

in

the

SCSI

ID

of

the

attached

SCSI

initiator.

lun

The

caller

sets

the

LUN

to

0,

as

the

initiator

LUN

is

ignored

for

received

data.

buf_size

The

caller

specifies

size

in

bytes

to

be

used

for

each

receive

buffer

allocated

for

this

host

target

instance.

num_bufs

The

caller

specifies

how

many

buffers

to

allocate

for

this

target

instance.

tm_correlator

The

caller

optionally

places

a

value

in

this

field

to

be

passed

back

in

each

tm_buf

for

this

target

instance.

recv_func

The

caller

places

in

this

field

the

address

of

a

pinned

routine

the

SCSI

adapter

device

driver

should

call

to

pass

tm_bufs

received

for

this

target

instance.

free_func

This

is

an

output

parameter

the

SCSI

adapter

device

driver

fills

with

the

address

of

a

pinned

routine

that

the

SCSI

device

driver

calls

to

pass

tm_bufs

after

they

have

been

processed.

The

SCSI

adapter

device

driver

ignores

the

value

passed

as

input.

Note:

All

reserved

fields

should

be

set

to

0

by

the

caller.

The

following

values

for

the

errno

global

variable

are

supported:

0

Indicates

successful

completion.

EINVAL

An

SCIOSTARTTGT

command

has

already

been

issued

to

this

SCSI

ID.

The

passed

SCSI

ID

is

the

same

as

that

of

the

adapter.

The

LUN

ID

field

is

not

set

to

zero.

The

buf_size

is

not

valid.

This

is

an

adapter

dependent

value.

The

Num_bufs

is

not

valid.

This

is

an

adapter

dependent

value.

The

recv_func

value,

which

cannot

be

null,

is

not

valid.

Chapter

12.

Small

Computer

System

Interface

Subsystem

229

EPERM

Indicates

the

caller

is

not

running

in

kernel

mode,

which

is

the

only

mode

allowed

to

run

this

operation.

ENOMEM

Indicates

that

a

memory

allocation

failure

has

occurred.

EIO

Indicates

an

I/O

error

occurred,

preventing

the

device

driver

from

completing

SCIOSTARTTGT

processing.

SCIOSTOPTGT

This

operation

closes

a

logical

path

to

a

SCSI

initiator

device.

It

causes

the

SCSI

adapter

device

driver

to

deallocate

device

dependent

information

areas

allocated

in

response

to

a

SCIOSTARTTGT

operation.

It

also

causes

the

SCSI

adapter

device

driver

to

deallocate

system

buffer

areas

used

to

hold

data

received

from

the

initiator,

and

to

disable

the

host

adapter’s

ability

to

receive

data

from

the

selected

initiator.

The

arg

parameter

to

the

SCIOSTOPTGT

ioctl

should

be

set

to

the

address

of

an

sc_stop_tgt

structure,

which

is

defined

in

the

/usr/include/sys/scsi.h

file.

The

caller

fills

in

the

id

field

with

the

SCSI

ID

of

the

SCSI

initiator,

and

sets

the

lun

field

to

0

as

the

initiator

LUN

is

ignored

for

received

data.

Reserved

fields

should

be

set

to

0

by

the

caller.

The

following

values

for

the

errno

global

variable

should

be

supported:

0

Indicates

successful

completion.

EINVAL

An

SCIOSTARTTGT

command

has

not

been

previously

issued

to

this

SCSI

ID.

EPERM

Indicates

the

caller

is

not

running

in

kernel

mode,

which

is

the

only

mode

allowed

to

run

this

operation.

Target-

and

Initiator-Mode

ioctl

Commands

For

either

target

or

initiator

mode,

the

SCSI

device

driver

can

issue

an

SCIOEVENT

ioctl

operation

to

register

for

receiving

asynchronous

event

status

from

the

SCSI

adapter

device

driver

for

a

particular

device

instance.

This

is

an

optional

call

for

the

SCSI

device

driver,

and

is

optionally

supported

for

the

SCSI

adapter

device

driver.

A

failing

return

code

from

this

command,

in

the

absence

of

any

programming

error,

indicates

it

is

not

supported.

If

the

SCSI

device

driver

requires

this

function,

it

must

check

the

return

code

to

verify

the

SCSI

adapter

device

driver

supports

it.

Only

a

kernel

process

or

device

driver

can

invoke

these

ioctls.

If

attempted

by

a

user

process,

the

ioctl

will

fail,

and

the

errno

global

variable

will

be

set

to

EPERM.

The

event

registration

performed

by

this

ioctl

operation

is

allowed

once

per

device

session.

Only

the

first

SCIOEVENT

ioctl

operation

is

accepted

after

the

device

session

is

opened.

Succeeding

SCIOEVENT

ioctl

operations

will

fail,

and

the

errno

global

variable

will

be

set

to

EINVAL.

The

event

registration

is

canceled

automatically

when

the

device

session

is

closed.

The

arg

parameter

to

the

SCIOEVENT

ioctl

operation

should

be

set

to

the

address

of

an

sc_event_struct

structure,

which

is

defined

in

the

/usr/include/sys/scsi.h

file.

The

following

parameters

are

supported:

id

The

caller

sets

id

to

the

SCSI

ID

of

the

attached

SCSI

target

device

for

initiator-mode.

For

target-mode,

the

caller

sets

the

id

to

the

SCSI

ID

of

the

attached

SCSI

initiator

device.

lun

The

caller

sets

the

lun

field

to

the

SCSI

LUN

of

the

attached

SCSI

target

device

for

initiator-mode.

For

target-mode,

the

caller

sets

the

lun

field

to

0.

230

Kernel

Extensions

and

Device

Support

Programming

Concepts

mode

Identifies

whether

the

initiator-

or

target-mode

device

is

being

registered.

These

values

are

possible:

SC_IM_MODE

This

is

an

initiator

mode

device.

SC_TM_MODE

This

is

a

target

mode

device.

async_correlator

The

caller

places

a

value

in

this

optional

field,

which

is

saved

by

the

SCSI

adapter

device

driver

and

returned

when

an

event

occurs

in

this

field

in

the

sc_event_info

structure.

This

structure

is

defined

in

the

/user/include/sys/scsi.h

file.

async_func

The

caller

fills

in

the

address

of

a

pinned

routine

that

the

SCSI

adapter

device

driver

calls

whenever

asynchronous

event

status

is

available.

The

SCSI

adapter

device

driver

passes

a

pointer

to

a

sc_event_info

structure

to

the

caller’s

async_func

routine.

Note:

All

reserved

fields

should

be

set

to

0

by

the

caller.

The

following

values

for

the

errno

global

variable

are

supported:

0

Indicates

successful

completion.

EINVAL

Either

an

SCIOSTART

or

SCIOSTARTTGT

has

not

been

issued

to

this

device

instance,

or

this

device

is

already

registered

for

async

events.

EPERM

Indicates

the

caller

is

not

running

in

kernel

mode,

which

is

the

only

mode

allowed

to

run

this

operation.

Related

Information

Logical

File

System

Kernel

Services

Technical

References

The

following

reference

articles

can

be

found

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2:

v

scdisk

SCSI

Device

Driver

v

scsidisk

SCSI

Device

Driver

v

SCSI

Adapter

Device

Driver

v

SCIOCMD

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIODIAG

(Diagnostic)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIODNLD

(Download)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOEVENT

(Event)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOGTHW

(Gathered

Write)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOHALT

(HALT)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOINQU

(Inquiry)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOREAD

(Read)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIORESET

(Reset)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOSTART

(Start

SCSI)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOSTARTTGT

(Start

Target)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOSTOP

(Stop

Device)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOSTOPTGT

(Stop

Target)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOSTUNIT

(Start

Unit)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOTRAM

(Diagnostic)

SCSI

Adapter

Device

Driver

ioctl

Operation

v

SCIOTUR

(Test

Unit

Ready)

SCSI

Adapter

Device

Driver

ioctl

Operation

Chapter

12.

Small

Computer

System

Interface

Subsystem

231

232

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

This

overview

describes

the

interface

between

a

Fibre

Channel

Protocol

for

SCSI

(FCP)

and

iSCSI

device

driver

and

an

FCP

and

iSCSI

adapter

device

driver.

The

term

FC

SCSI

is

also

used

to

refer

to

FCP

devices.

It

is

directed

toward

those

wishing

to

design

and

write

a

FCP

device

driver

that

interfaces

with

an

existing

FCP

adapter

device

driver.

It

is

also

meant

for

those

wishing

to

design

and

write

a

FCP

adapter

device

driver

that

interfaces

with

existing

FCP

device

drivers.

Programming

FCP

and

iSCSI

Device

Drivers

The

Fibre

Channel

Protocol

for

SCSI

(FCP)

subsystem

has

two

parts:

v

Device

Driver

v

Adapter

Device

Driver

The

adapter

device

driver

is

designed

to

shield

you

from

having

to

communicate

directly

with

the

system

I/O

hardware.

This

gives

you

the

ability

to

successfully

write

a

device

driver

without

having

a

detailed

knowledge

of

the

system

hardware.

You

can

look

at

the

subsystem

as

a

two-tiered

structure

in

which

the

adapter

device

driver

is

the

bottom

or

supporting

layer.

As

a

programmer,

you

need

only

worry

about

the

upper

layer.

This

chapter

only

discusses

writing

a

device

driver,

because

the

adapter

device

driver

is

already

provided.

The

adapter

device

driver,

or

lower

layer,

is

responsible

only

for

the

communications

to

and

from

the

bus,

and

any

error

logging

and

recovery.

The

upper

layer

is

responsible

for

all

of

the

device-specific

commands.

The

device

driver

should

handle

all

commands

directed

towards

its

specific

device

by

building

the

necessary

sequence

of

I/O

requests

to

the

adapter

device

driver

in

order

to

properly

communicate

with

the

device.

These

I/O

requests

contain

the

commands

that

are

needed

by

the

device.

One

important

aspect

to

note

is

that

the

device

driver

cannot

access

any

of

the

adapter

resources

and

should

never

try

to

pass

the

commands

directly

to

the

adapter,

since

it

has

absolutely

no

knowledge

of

the

meaning

of

those

commands.

FCP

and

iSCSI

Device

Drivers

The

role

of

the

device

driver

is

to

pass

information

between

the

operating

system

and

the

adapter

device

driver

by

accepting

I/O

requests

and

passing

these

requests

to

the

adapter

device

driver.

The

device

driver

should

accept

either

character

or

block

I/O

requests,

build

the

necessary

commands,

and

then

issue

these

commands

to

the

device

through

the

adapter

device

driver.

The

device

driver

should

also

process

the

various

required

reservations

and

releases

needed

for

the

device.

The

device

driver

is

notified

through

the

iodone

kernel

service

once

the

adapter

has

completed

the

processing

of

the

command.

The

device

driver

should

then

notify

its

calling

process

that

the

request

has

completed

processing

through

the

iodone

kernel

service.

FCP

and

iSCSI

Adapter

Device

Driver

Unlike

most

other

device

drivers,

the

adapter

device

driver

does

not

support

the

read

and

write

subroutines.

It

only

supports

the

open,

close,

ioctl,

config,

and

strategy

subroutines.

Included

with

the

open

subroutine

call

is

the

openx

subroutine

that

allows

adapter

diagnostics.

A

device

driver

does

not

need

to

access

the

diagnostic

commands.

Commands

received

from

the

device

driver

through

the

strategy

routine

of

the

adapter

are

processed

from

a

queue.

Once

the

command

has

completed,

the

device

driver

is

notified

through

the

iodone

kernel

service.

©

Copyright

IBM

Corp.

1997,

2004

233

FCP

and

iSCSI

Adapter

and

Device

Interface

The

adapter

device

driver

does

not

contain

the

ddread

and

ddwrite

entry

points,

but

does

contain

the

ddconfig,

ddopen,

ddclose,

dddump,

and

ddioctl

entry

points.

Therefore,

the

adapter

device

driver’s

entry

in

the

kernel

devsw

table

contains

only

those

entries

plus

an

additional

ddstrategy

entry

point.

This

ddstrategy

routine

is

the

path

that

the

device

driver

uses

to

pass

commands

to

the

device

driver.

Access

to

these

entry

points

is

possible

through

the

following

kernel

services:

v

fp_open

v

fp_close

v

devdump

v

fp_ioctl

v

devstrat

The

adapter

is

accessed

by

the

device

driver

through

the

/dev/fscsi#

special

files,

where

#

indicates

ascending

numbers

0,1,

2,

and

so

on.

The

adapter

is

designed

so

that

multiple

devices

on

the

same

adapter

can

be

accessed

at

the

same

time.

The

iSCSI

adapter

is

accessed

by

the

device

driver

through

the

/dev/iscsin

special

files,

where

n

indicates

ascending

numbers

0,

1,

2,

and

so

on.

The

adapter

is

designed

so

that

multiple

devices

on

the

same

adapter

can

be

accessed

at

the

same

time.

For

additional

information

on

spanned

and

gathered

write

commands,

see

“Understanding

the

Execution

of

FCP

and

iSCSI

Initiator

I/O

Requests”

on

page

262.

scsi_buf

Structure

The

I/O

requests

made

from

the

device

driver

to

the

adapter

device

driver

are

completed

through

the

use

of

the

scsi_buf

structure,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

This

structure,

which

is

similar

to

the

buf

structure

in

other

drivers,

is

passed

between

the

two

subsystem

drivers

through

the

strategy

routine.

The

following

is

a

brief

description

of

the

fields

contained

in

the

scsi_buf

structure:

v

Reserved

fields

should

be

set

to

a

value

of

0,

except

where

noted.

v

The

bufstruct

field

contains

a

copy

of

the

standard

buf

buffer

structure

that

documents

the

I/O

request.

Included

in

this

structure,

for

example,

are

the

buffer

address,

byte

count,

and

transfer

direction.

The

b_work

field

in

the

buf

structure

is

reserved

for

use

by

the

adapter

device

driver.

The

current

definition

of

the

buf

structure

is

in

the

/usr/include/sys/buf.h

include

file.

v

The

bp

field

points

to

the

original

buffer

structure

received

by

the

Device

Driver

from

the

caller,

if

any.

This

can

be

a

chain

of

entries

in

the

case

of

spanned

transfers

(commands

that

transfer

data

from

or

to

more

than

one

system-memory

buffer).

A

null

pointer

indicates

a

nonspanned

transfer.

The

null

value

specifically

tells

the

adapter

device

driver

that

all

the

information

needed

to

perform

the

DMA

data

transfer

is

contained

in

the

bufstruct

fields

of

the

scsi_buf

structure.

v

The

scsi_command

field,

defined

as

a

scsi_cmd

structure,

contains,

for

example,

the

SCSI

command

length,

SCSI

command,

and

a

flag

variable:

–

The

scsi_length

field

is

the

number

of

bytes

in

the

actual

SCSI

command.

This

is

normally

6,10,12,

or

16

(decimal).

–

The

FCP_flags

field

contains

the

following

bit

flags:

SC_NODISC

Do

not

allow

the

target

to

disconnect

during

this

command.

SC_ASYNC

Do

not

allow

the

adapter

to

negotiate

for

synchronous

transfer

to

the

device.

During

normal

use,

the

SC_NODISC

bit

should

not

be

set.

Setting

this

bit

allows

a

device

executing

commands

to

monopolize

the

transport

layer.

Sometimes

it

is

desirable

for

a

particular

device

to

maintain

control

of

the

transport

layer

once

it

has

successfully

arbitrated

for

it;

for

instance,

when

this

234

Kernel

Extensions

and

Device

Support

Programming

Concepts

is

the

only

device

on

the

transport

layer

or

the

only

device

that

will

be

in

use.

For

performance

reasons,

it

might

not

be

desirable

to

go

through

selections

again

to

save

transport

layer

overhead

on

each

command.

Also

during

normal

use,

the

SC_ASYNC

bit

must

not

be

set.

It

should

be

set

only

in

cases

where

a

previous

command

to

the

device

ended

in

an

unexpected

transport

free

condition.

This

condition

is

noted

as

SCSI_TRANSPORT_FAULT

in

the

adapter_status

field

of

the

scsi_cmd

structure.

Because

other

errors

might

also

result

in

the

SCSI_TRANSPORT_FAULT

flag

being

set,

the

SC_ASYNC

bit

should

only

be

set

on

the

last

retry

of

the

failed

command.

–

The

scsi_cdb

structure

contains

the

physical

SCSI

command

block.

The

6

to

16

bytes

of

a

single

SCSI

command

are

stored

in

consecutive

bytes,

with

the

op

code

identified

individually.

The

scsi_cdb

structure

contains

the

following

fields:

1.

The

scsi_op_code

field

specifies

the

standard

op

code

for

this

command.

2.

The

scsi_bytes

field

contains

the

remaining

command-unique

bytes

of

the

command

block.

The

actual

number

of

bytes

depends

on

the

value

in

the

scsi_op_code

field.

v

The

timeout_value

field

specifies

the

time-out

limit

(in

seconds)

to

be

used

for

completion

of

this

command.

A

time-out

value

of

0

means

no

time-out

is

applied

to

this

I/O

request.

v

The

status_validity

field

contains

an

output

parameter

that

can

have

one

of

the

following

bit

flags

as

a

value:

SC_SCSI_ERROR

The

scsi_status

field

is

valid.

SC_ADAPTER_ERROR

The

adapter_status

field

is

valid.

v

The

scsi_status

field

in

the

scsi_buf

structure

is

an

output

parameter

that

provides

valid

command

completion

status

when

its

status_validity

bit

is

nonzero.

The

scsi_buf.bufstruct.b_error

field

should

be

set

to

EIO

anytime

the

scsi_status

field

is

valid.

Typical

status

values

include:

SC_GOOD_STATUS

The

target

successfully

completed

the

command.

SC_CHECK_CONDITION

The

target

is

reporting

an

error,

exception,

or

other

conditions.

SC_BUSY_STATUS

The

target

is

currently

transporting

and

cannot

accept

a

command

now.

SC_RESERVATION_CONFLICT

The

target

is

reserved

by

another

initiator

and

cannot

be

accessed.

SC_COMMAND_TERMINATED

The

target

terminated

this

command

after

receiving

a

terminate

I/O

process

message

from

the

adapter.

SC_QUEUE_FULL

The

target’s

command

queue

is

full,

so

this

command

is

returned.

SC_ACA_ACTIVE

The

device

has

an

ACA

(auto

contingent

allegiance)

condition

that

requires

a

Clear

ACA

to

request

to

clear

it.

v

The

adapter_status

field

is

an

output

parameter

that

is

valid

when

its

status_validity

bit

is

nonzero.

The

scsi_buf.bufstruct.b_erro

field

should

be

set

to

EIO

anytime

the

adapter_status

field

is

valid.

This

field

contains

generic

adapter

card

status.

It

is

intentionally

general

in

coverage

so

that

it

can

report

error

status

from

any

typical

adapter.

If

an

error

is

detected

during

execution

of

a

command,

and

the

error

prevented

the

command

from

actually

being

sent

to

the

transport

layer

by

the

adapter,

then

the

error

should

be

processed

or

recovered,

or

both,

by

the

adapter

device

driver.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

235

If

it

is

recovered

successfully

by

the

adapter

device

driver,

the

error

is

logged,

as

appropriate,

but

is

not

reflected

in

the

adapter_status

byte.

If

the

error

cannot

be

recovered

by

the

adapter

device

driver,

the

appropriate

adapter_status

bit

is

set

and

the

scsi_buf

structure

is

returned

to

the

device

driver

for

further

processing.

If

an

error

is

detected

after

the

command

was

actually

sent

to

the

device,

then

it

should

be

processed

or

recovered,

or

both,

by

the

device

driver.

For

error

logging,

the

adapter

device

driver

logs

transport

layer

and

adapter-related

conditions,

andl

the

device

driver

logs

device-related

errors.

In

the

following

description,

a

capital

letter

(A)

after

the

error

name

indicates

that

the

adapter

device

driver

handles

error

logging.

A

capital

letter

(H)

indicates

that

the

device

driver

handles

error

logging.

Some

of

the

following

error

conditions

indicate

a

device

failure.

Others

are

transport

layer

or

adapter-related.

SCSI_HOST_IO_BUS_ERR

(A)

The

system

I/O

transport

layer

generated

or

detected

an

error

during

a

DMA

or

Programmed

I/O

(PIO)

transfer.

SCSI_TRANSPORT_FAULT

(H)

The

transport

protocol

or

hardware

was

unsuccessful.

SCSI_CMD_TIMEOUT

(H)

The

command

timed

out

before

completion.

SCSI_NO_DEVICE_RESPONSE

(H)

The

target

device

did

not

respond

to

selection

phase.

SCSI_ADAPTER_HDW_FAILURE

(A)

The

adapter

indicated

an

onboard

hardware

failure.

SCSI_ADAPTER_SFW_FAILURE

(A)

The

adapter

indicated

microcode

failure.

SCSI_FUSE_OR_TERMINAL_PWR

(A)

The

adapter

indicated

a

blown

terminator

fuse

or

bad

termination.

SCSI_TRANSPORT_RESET

(A)

The

adapter

indicated

the

transport

layer

has

been

reset.

SCSI_WW_NAME_CHANGE

(A)

The

adapter

indicated

the

device

at

this

SCSI

ID

has

a

new

world

wide

name.

SCSI_TRANSPORT_BUSY

(A)

The

adapter

indicated

the

transport

layer

is

busy.

SCSI_TRANSPORT_DEAD

(A)

The

adapter

indicated

the

transport

layer

currently

inoperative

and

is

likely

to

remain

this

way

for

an

extended

time.

v

The

add_status

field

contains

additional

device

status.

For

devices,

this

field

contains

the

Response

code

returned.

v

When

the

FCP

device

driver

queues

multiple

transactions

to

a

device,

the

adap_q_status

field

indicates

whether

or

not

the

FCP

adapter

driver

has

cleared

its

queue

for

this

device

after

an

error

has

occurred.

The

flag

of

SC_DID_NOT

CLEAR_Q

indicates

that

the

adapter

driver

has

not

cleared

its

queue

for

this

device

and

that

it

is

in

a

halted

state

(so

none

of

the

pending

queued

transactions

are

sent

to

the

device).

v

The

q_tag_msg

field

indicates

if

the

adapter

can

attempt

to

queue

this

transaction

to

the

device.

This

information

causes

the

adapter

to

fill

in

the

Queue

Tag

Message

Code

of

the

queue

tag

message

for

a

command.

The

following

values

are

valid

for

this

field:

SC_NO_Q

Specifies

that

the

adapter

does

not

send

a

queue

tag

message

for

this

command,

and

so

the

236

Kernel

Extensions

and

Device

Support

Programming

Concepts

device

does

not

allow

more

than

one

command

on

its

command

queue.

This

value

must

be

used

for

all

commands

sent

to

devices

that

do

not

support

command

tag

queuing.

SC_SIMPLE_Q

Specifies

placing

this

command

in

the

device’s

command

queue.

The

device

determines

the

order

that

it

executes

commands

in

its

queue.

The

SCSI-2

specification

calls

this

value

the

Simple

Queue

Tag

Message.

SC_HEAD_OF_Q

Specifies

placing

this

command

first

in

the

device’s

command

queue.

This

command

does

not

preempt

an

active

command

at

the

device,

but

it

is

executed

before

all

other

commands

in

the

command

queue.

The

SCSI-2

specification

calls

this

value

the

Head

of

Queue

Tag

Message.

SC_ORDERED_Q

Specifies

placing

this

command

in

the

device’s

command

queue.

The

device

processes

these

commands

in

the

order

that

they

are

received.

The

SCSI-2

specification

calls

this

value

the

Ordered

Queue

Tag

Message.

SC_ACA_Q

Specifies

placing

this

command

in

the

device’s

command

queue,

when

the

device

has

an

ACA

(auto

contingent

allegiance)

condition.

The

SCSI-3

Architecture

Model

calls

this

value

the

ACA

task

attribute.

Note:

Commands

with

the

value

of

SC_NO_Q

for

the

q_tag_msg

field

(except

for

request

sense

commands)

should

not

be

queued

to

a

device

whose

queue

contains

a

command

with

another

value

for

q_tag_msg.

If

commands

with

the

SC_NO_Q

value

(except

for

request

sense)

are

sent

to

the

device,

then

the

device

driver

must

make

sure

that

no

active

commands

are

using

different

values

for

q_tag_ms.

Similarly,

the

device

driver

must

also

make

sure

that

a

command

with

a

q_tag_msg

value

of

SC_ORDERED_Q,

SC_HEAD_Q,

or

SC_SIMPLE_Q

is

not

sent

to

a

device

that

has

a

command

with

the

q_tag_msg

field

of

SC_NO_Q.

v

The

flags

field

contains

bit

flags

sent

from

the

device

driver

to

the

adapter

device

driver.

The

following

flags

are

defined:

SC_RESUME

When

set,

means

the

adapter

device

driver

should

resume

transaction

queuing

for

this

ID/LUN.

Error

recovery

is

complete

after

a

SCIOLHALT

operation,

check

condition,

or

severe

transport

error.

This

flag

is

used

to

restart

the

adapter

device

driver

following

a

reported

error.

SC_DELAY_CMD

When

set,

means

the

adapter

device

driver

should

delay

sending

this

command

(following

a

reset

or

BDR

to

this

device)

by

at

least

the

number

of

seconds

specified

to

the

adapter

device

driver

in

its

configuration

information.

For

devices

that

do

not

require

this

function,

this

flag

should

not

be

set.

SC_Q_CLR

When

set,

means

the

adapter

driver

should

clear

its

transaction

queue

for

this

ID/LUN.

The

transaction

containing

this

flag

setting

does

not

require

an

actual

command

in

the

scsi_buf

because

it

is

flushed

back

to

the

device

driver

with

the

rest

of

the

transactions

for

this

ID/LUN.

However,

this

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

LUN.

This

flag

is

valid

only

during

error

recovery

of

a

check

condition

or

command

terminated

at

a

command

tag

queuing

device

when

the

SC_DID_NOT_CLR_Q

flag

is

set

in

the

scsi_buf.adap_q_status

field.

SC_Q_RESUME

When

set,

means

that

the

adapter

driver

should

resume

its

halted

transaction

queue

for

this

ID/LUN.

The

transaction

containing

this

flag

setting

does

not

require

an

actual

command

to

be

sent

to

the

adapter

driver.

However,

this

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

237

logical

unit

number

(LUN).

If

the

transaction

containing

this

flag

setting

is

the

first

issued

by

the

device

driver

after

it

receives

an

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

also.

SC_CLEAR_ACA

When

set,

means

the

SCSI

adapter

driver

should

issue

a

Clear

ACA

task

management

request

for

this

ID/LUN.

This

flag

should

be

used

in

conjunction

with

either

the

SC_Q_CLR

or

SC_Q_RESUME

flags

to

clear

or

resume

the

SCSI

adapter

driver’s

queue

for

this

device.

If

neither

of

these

flags

is

used,

then

this

transaction

is

treated

as

if

the

SC_Q_RESUME

flag

is

also

set.

The

transaction

containing

the

SC_CLEAR_ACA

flag

setting

does

not

require

an

actual

SCSI

command

in

the

sc_buf.

If

this

transaction

contains

a

SCSI

command

then

it

will

be

processed

depending

on

whether

SC_Q_CLR

or

SC_Q_RESUME

is

set.

This

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

LUN.

This

flag

is

valid

only

during

error

recovery

of

a

check

condition

or

command

terminated

at

a

command

tag

queuing.

SC_TARGET_RESET

When

set,

means

the

SCSI

adapter

driver

should

issue

a

Target

Reset

task

management

request

for

this

ID/LUN.

This

flag

should

be

used

in

conjunction

with

ethe

SC_Q_CLR

flag

flag.The

transaction

containing

this

flag

setting

does

allow

an

actual

command

to

be

sent

to

the

adapter

driver.

However,

this

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

filled

in

with

the

device’s

SCSI

ID.

If

the

transaction

containing

this

flag

setting

is

the

first

issued

by

the

device

driver

after

it

receives

an

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

also.

SC_LUN_RESET

When

set,

means

the

SCSI

adapter

driver

should

issue

a

Lun

Reset

task

management

request

for

this

ID/LUN.

This

flag

should

be

used

in

conjunction

with

ethe

SC_Q_CLR

flag

flag.The

transaction

containing

this

flag

setting

does

allow

an

actual

command

to

be

sent

to

the

adapter

driver.

However,

this

transaction

must

have

the

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

If

the

transaction

containing

this

flag

setting

is

the

first

issued

by

the

device

driver

after

it

receives

an

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

also.

v

The

dev_flags

field

contains

additional

values

sent

from

the

FCP

device

driver

to

the

FCP

adapter

device

driver.

This

field

is

not

used

for

iSCSI

device

drivers.

The

following

values

are

defined:

FC_CLASS1

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

1

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

FC_CLASS2

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

2

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

FC_CLASS3

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

3

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

FC_CLASS4

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

4

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

238

Kernel

Extensions

and

Device

Support

Programming

Concepts

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

v

The

add_work

field

is

reserved

for

use

by

the

adapter

device

driver.

v

The

adap_set_flags

field

contains

an

output

parameter

that

can

have

one

of

the

following

bit

flags

as

a

value:

SC_AUTOSENSE_DATA_VALID

Autosense

data

was

placed

in

the

autosense

buffer

referenced

by

the

autosense_buffer_ptr

field.

v

The

autosense_length

field

contains

the

length

in

bytes

of

the

SCSI

device

driver’s

sense

buffer,

which

is

referenced

via

the

autosense_buffer_ptr

field.

For

devices

this

field

must

be

non-zero,

otherwise

the

autosense

data

will

be

lost.

v

The

autosense_buffer_ptr

field

contains

the

address

of

the

SCSI

devices

driver’s

autosense

buffer

for

this

command.

For

devices

this

field

must

be

non-NULL,

otherwise

the

autosense

data

will

be

lost.

v

The

dev_burst_len

field

contains

the

burst

size

if

this

write

operation

in

bytes.

This

should

only

be

set

by

the

device

driver

if

it

has

negotiated

with

the

device

and

it

allows

burst

of

write

data

without

transfer

readys.

For

most

operations,

this

should

be

set

to

0.

v

The

scsi_id

field

contains

the

64-bit

SCSI

ID

for

this

device.

This

field

must

be

set

for

FCP

devices.

v

The

lun_id

field

contains

the

64-bit

lun

ID

for

this

device.

This

field

must

be

set

for

devices.

v

The

kernext_handle

field

contains

the

pointer

returned

from

the

kernext_handle

field

of

the

scsi_sciolst

argument

for

the

SCIOLSTART

ioctl.

Adapter

and

Device

Driver

Intercommunication

In

a

typical

request

to

the

device

driver,

a

call

is

first

made

to

the

device

driver’s

strategy

routine,

which

takes

care

of

any

necessary

queuing.

The

device

driver’s

strategy

routine

then

calls

the

device

driver’s

start

routine,

which

fills

in

the

scsi_buf

structure

and

calls

the

adapter

driver’s

strategy

routine

through

the

devstrat

kernel

service.

The

adapter

driver’s

strategy

routine

validates

all

of

the

information

contained

in

the

scsi_buf

structure

and

also

performs

any

necessary

queuing

of

the

transaction

request.

If

no

queuing

is

necessary,

the

adapter

driver’s

start

subroutine

is

called.

When

an

interrupt

occurs,

adapter

driver

interrupt

routine

fills

in

the

status_validity

field

and

the

appropriate

scsi_status

or

adapter_status

field

of

the

scsi_buf

structure.

The

bufstruct.b_resid

field

is

also

filled

in

with

the

value

of

nontransferred

bytes.

The

adapter

driver’s

interrupt

routine

then

passes

this

newly

filled

in

scsi_buf

structure

to

the

iodone

kernel

service,

which

then

signals

the

device

driver’s

iodone

subroutine.

The

adapter

driver’s

start

routine

is

also

called

from

the

interrupt

routine

to

process

any

additional

transactions

on

the

queue.

The

device

driver’s

iodone

routine

should

then

process

all

of

the

applicable

fields

in

the

queued

scsi_buf

structure

for

any

errors

and

attempt

error

recovery

if

necessary.

The

device

driver

should

then

dequeue

the

scsi_buf

structure

and

then

pass

a

pointer

to

the

structure

back

to

the

iodone

kernel

service

so

that

it

can

notify

the

originator

of

the

request.

FCP

and

iSCSI

Adapter

Device

Driver

Routines

This

section

describes

the

following

routines:

v

config

v

open

v

close

v

openx

v

strategy

v

ioctl

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

239

v

start

v

interrupt

config

Routine

The

config

routine

performs

all

of

the

processing

needed

to

configure,

unconfigure,

and

read

Vital

Product

Data

(VPD)

for

the

adapter.

When

this

routine

is

called

to

configure

an

adapter,

it

performs

the

required

checks

and

building

of

data

structures

needed

to

prepare

the

adapter

for

the

processing

of

requests.

When

asked

to

unconfigure

or

terminate

an

adapter,

this

routine

deallocates

any

structures

defined

for

the

adapter

and

marks

the

adapter

as

unconfigured.

This

routine

can

also

be

called

to

return

the

Vital

Product

Data

for

the

adapter,

which

contains

information

that

is

used

to

identify

the

serial

number,

change

level,

or

part

number

of

the

adapter.

open

Routine

The

open

routine

establishes

a

connection

between

a

special

file

and

a

file

descriptor.

This

file

descriptor

is

the

link

to

the

special

file

that

is

the

access

point

to

a

device

and

is

used

by

all

subsequent

calls

to

perform

I/O

requests

to

the

device.

Interrupts

are

enabled

and

any

data

structures

needed

by

the

adapter

driver

are

also

initialized.

close

Routine

The

close

routine

marks

the

adapter

as

closed

and

disables

all

future

interrupts,

which

causes

the

driver

to

reject

all

future

requests

to

this

adapter.

openx

Routine

The

openx

routine

allows

a

process

with

the

proper

authority

to

open

the

adapter

in

diagnostic

mode.

If

the

adapter

is

already

open

in

either

normal

or

diagnostic

mode,

the

openx

subroutine

has

a

return

value

of

-1.

Improper

authority

results

in

an

errno

value

of

EPERM,

while

an

already

open

error

results

in

an

errno

value

of

EACCES.

If

the

adapter

is

in

diagnostic

mode,

only

the

close

and

ioctl

routines

are

allowed.

All

other

routines

return

a

value

of

-1

and

an

errno

value

of

EACCES.

While

in

diagnostics

mode,

the

adapter

can

run

diagnostics,

run

wrap

tests,

and

download

microcode.

The

openx

routine

is

called

with

an

ext

parameter

that

contains

the

adapter

mode

and

the

SC_DIAGNOSTIC

value,

both

of

which

are

defined

in

the

sys/scsi.h

header

file.

strategy

Routine

The

strategy

routine

is

the

link

between

the

device

driver

and

the

adapter

device

driver

for

all

normal

I/O

requests.

Whenever

the

device

driver

receives

a

call,

it

builds

an

scsi_buf

structure

with

the

correct

parameters

and

then

passes

it

to

this

routine,

which

in

turn

queues

up

the

request

if

necessary.

Each

request

on

the

pending

queue

is

then

processed

by

building

the

necessary

commands

required

to

carry

out

the

request.

When

the

command

has

completed,

the

device

driver

is

notified

through

the

iodone

kernel

service.

ioctl

Routine

The

ioctl

routine

allows

various

diagnostic

and

nondiagnostic

adapter

operations.

Operations

include

the

following:

v

IOCINFO

v

SCIOLSTART

v

SCIOLSTOP

v

SCIOLINQU

v

SCIOLEVENT

v

SCIOLSTUNIT

v

SCIOLTUR

v

SCIOLREAD

v

SCIOLRESET

240

Kernel

Extensions

and

Device

Support

Programming

Concepts

v

SCIOLHALT

v

SCIOLCMD

v

SCIOLCHBA

v

SCIOLPASSTHRUHBA

start

Routine

The

start

routine

is

responsible

for

checking

all

pending

queues

and

issuing

commands

to

the

adapter.

When

a

command

is

issued

to

the

adapter,

the

scsi_buf

is

converted

into

an

adapter

specific

request

needed

for

the

scsi_buf.

At

this

time,

the

bufstruct.b_addr

for

the

scsi_buf

will

be

mapped

for

DMA.

When

the

adapter

specific

request

is

completed,

the

adapter

will

be

notified

of

this

request.

interrupt

Routine

The

interrupt

routine

is

called

whenever

the

adapter

posts

an

interrupt.

When

this

occurs,

the

interrupt

routine

will

find

the

scsi_buf

corresponding

to

this

interrupt.

The

buffer

for

the

scsi_buf

will

be

unmapped

from

DMA.

If

an

error

occurred,

the

status_validity,

scsi_status,

and

adapter_status

fields

will

be

set

accordingly.

The

bufstruct.b_resid

field

will

be

set

with

the

number

of

nontransferred

bytes.

The

interrupt

handler

then

runs

the

iodone

kernel

service

against

the

scsi_buf,

which

will

send

the

scsi_buf

back

to

the

device

driver

which

originated

it.

FCP

and

iSCSI

Adapter

ioctl

Operations

This

section

describes

the

following

ioctl

operations:

v

IOCINFO

for

FCP

Adapters

v

IOCINFO

for

iSCSI

Adapters

v

SCIOLSTART

v

SCIOLSTOP

v

SCIOLEVENT

v

SCIOLINQU

v

SCIOLSTUNIT

v

SCIOLTUR

v

SCIOLREAD

v

SCIOLRESET

v

SCIOLHALT

v

SCIOLCMD

v

SCIOLNMSRV

v

SCIOLQWWN

v

SCIOLPAYLD

v

SCIOLCHBA

v

SCIOLPASSTHRUHBA

IOCINFO

for

FCP

Adapters

This

operation

allows

a

FCP

device

driver

to

obtain

important

information

about

a

FCP

adapter,

including

the

adapter’s

SCSI

ID,

the

maximum

data

transfer

size

in

bytes,

and

the

FC

topology

to

which

the

adapter

is

connected.

By

knowing

the

maximum

data

transfer

size,

a

FCP

device

driver

can

control

several

different

devices

on

several

different

adapters.

This

operation

returns

a

devinfo

structure

as

defined

in

the

sys/devinfo.h

header

file

with

the

device

type

DD_BUS

and

subtype

DS_FCP.

The

following

is

an

example

of

a

call

to

obtain

the

information:

rc

=

fp_ioctl(fp,

IOCINFO,

&infostruct,

NULL);

where

fp

is

a

pointer

to

a

file

structure

and

infostruct

is

a

devinfo

structure.

A

non-zero

rc

value

indicates

an

error.

Note

that

the

devinfo

structure

is

a

union

of

several

structures

and

that

fcp

is

the

structure

that

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

241

applies

to

the

adapter.

For

example,

the

maximum

transfer

size

value

is

contained

in

the

infostruct.un.fcp.max_transfer

variable

and

the

card

ID

is

contained

in

infostruct.un.fcp.scsi_id.

IOCINFO

for

iSCSI

Adapters

This

operation

allows

an

iSCSI

device

driver

to

obtain

important

information

about

an

iSCSI

adapter,

including

the

adapter’s

maximum

data

transfer

size

in

bytes.

By

knowing

the

maximum

data

transfer

size,

an

iSCSI

device

driver

can

control

several

different

devices

on

several

different

adapters.

This

operation

returns

a

devinfo

structure

as

defined

in

the

sys/devinfo.h

header

file

with

the

device

type

DD_BUS

and

subtype

DS_ISCSI.

The

following

is

an

example

of

a

call

to

obtain

the

information:

rc

=

fp_ioctl(fp,

IOCINFO,

&infostruct,

NULL);

where

fp

is

a

pointer

to

a

file

structure

and

infostruct

is

a

devinfo

structure.

A

non-zero

rc

value

indicates

an

error.

Note

that

the

devinfo

structure

is

a

union

of

several

structures

and

that

iscsi

is

the

structure

that

applies

to

the

adapter.

For

example,

the

maximum

transfer

size

value

is

contained

in

the

infostruct.un.iscsi.max_transfer

variable.

SCIOLSTART

This

operation

opens

a

logical

path

to

the

FCP

device

and

causes

the

FCP

adapter

device

driver

to

allocate

and

initialize

all

of

the

data

areas

needed

for

the

FCP

device.

The

SCIOLSTOP

operation

should

be

issued

when

those

data

areas

are

no

longer

needed.

This

operation

should

be

issued

before

any

nondiagnostic

operation

except

for

IOCINFO.

The

following

is

a

typical

call:

rc

=

fp_ioctl(fp,

SCIOLSTART,

&sciolst);

This

operation

opens

a

logical

path

to

the

device

and

causes

the

adapter

device

driver

to

allocate

and

initialize

all

of

the

data

areas

needed

for

the

device.

The

SCIOLSTOP

operation

should

be

issued

when

those

data

areas

are

no

longer

needed.

This

operation

should

be

issued

before

any

nondiagnostic

operation

except

for

IOCINFO.

The

following

is

a

typical

call:

rc

=

fp_ioctl(fp,

SCIOLSTART,

&sciolst);

where

fp

is

a

pointer

to

a

file

structure

and

sciolst

is

a

scsi_sciolst

structure

(defined

in

/usr/include/sys/scsi_buf.h)

that

contains

the

SCSI

and

Logical

Unit

Number

(LUN)

ID

values

of

the

device

to

be

started.

In

addition,

the

scsi_sciolst

structure

can

be

used

to

specify

an

explicit

login

for

this

operation.

For

FCP

adapters,

the

version

field

of

the

scsi_sciolst

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

the

world_wide_name

field

is

set

and

the

version

field

is

set

to

SCSI_VERSION_1,

the

World

Wide

Name

can

be

used

to

address

the

target

instead

of

the

scsi_id

field.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

For

AIX

5.2

through

AIX

5.2.0.9,

if

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

a

World

Wide

Name

or

Node

Name

is

provided

and

it

does

not

match

the

World

Wide

Name

or

Node

Name

that

was

detected

for

the

target,

an

error

log

will

be

generated

and

the

SCIOLSTART

operation

will

fail

with

an

errno

of

ENXIO.

Upon

successfully

return

from

an

SCIOLSTART

operation,

both

the

world_wide_name

field

and

the

node_name

field

are

set

to

the

World

Wide

Name

and

Node

Name

of

this

device.

These

values

are

inspected

to

ensure

that

the

SCIOLSTART

operation

was

delivered

to

the

intended

device.

242

Kernel

Extensions

and

Device

Support

Programming

Concepts

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

For

iSCSI

adapters,

this

version

field

of

the

scsi_sciolst

must

be

set

to

the

value

of

SCSI_VERSION_1

(defined

in

the

/usr/include/sys/scsi_buf.h

file).

In

addition,

iSCSI

adapters

require

the

caller

to

set

the

following

fields:

v

lun_id

of

the

device’s

LUN

ID

v

parms.iscsi.name

to

the

device’s

iSCSI

target

name

v

parms.iscsi.iscsi_ip_addr

to

the

device’s

IP

V4

or

IP

V6

address

v

parms.iscsi.port_num

to

the

devices

TCP

port

number

If

the

iSCSI

SCIOLSTART

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

should

have

the

SCIOL_RET_ID_ALIAS

flag

and

the

scsi_id

field

set

to

a

SCSI

ID

alias

that

can

be

used

for

subsequent

ioctl

calls

to

this

device

other

than

SCIOLSTART.

For

AIX

5.2

with

5200-01

and

later,

if

the

FCP

SCIOLSTART

ioctl

operation

completes

successfully,

and

the

adap_set_flags

field

has

the

SCIOL_DYNTRK_ENABLED

flag

set,

then

Dynamic

Tracking

of

FC

Devices

has

been

enabled

for

this

device.

All

FC

adapter

ioctl

calls

for

AIX

5.2

with

5200-01

and

later,

should

set

the

version

field

to

SCSI_VERSION_1

if

indicated

in

the

ioctl

structure

comments

in

the

header

files.

The

world_wide_name

and

node_name

fields

of

all

SCSI_VERSION_1

ioctl

structures

should

also

be

set.

This

is

especially

important

if

dynamic

tracking

has

been

enabled

on

this

adapter.

Dynamic

tracking

allows

the

FC

adapter

driver

to

recover

from

scsi_id

changes

of

FC

devices

while

devices

are

online.

Because

the

scsi_id

can

change,

use

of

the

world_wide_name

and

node_name

fields

is

necessary

to

ensure

communication

with

the

intended

device.

Failure

to

use

a

SCSI_VERSION_1

ioctl

structure

for

SCIOLSTART

when

dynamic

tracking

is

enabled

can

produce

undesired

results,

and

temporarily

disable

dynamic

tracking

for

a

given

device.

If

a

target

has

at

least

one

lun

activated

by

SCIOLSTART

with

the

version

field

set

to

SCSI_VERSION_1,

then

a

SCSI_VERISON_0

SCIOLSTART

will

fail.

If

this

is

the

first

lun

activated

by

SCIOLSTART

on

this

target

and

the

version

field

is

set

to

SCSI_VERSION_0,

then

an

error

log

of

type

INFO

is

generated

and

dynamic

tracking

is

temporarily

disabled

for

this

target

until

a

corresponding

SCSI_VERSION_0

SCIOLSTOP

is

issued.

The

version

field

for

all

ioctl

structures

should

be

set

consistently.

For

example,

if

an

SCIOLSTART

operation

is

performed

with

the

version

field

set

to

SCSI_VERSION_1,

but

the

SCIOLINQU

or

SCIOLSTOP

ioctl

operations

have

the

version

field

set

to

SCSI_VERSION_0,

then

the

ioctl

call

will

fail

if

dynamic

tracking

is

enabled

because

the

version

fields

do

not

match.

If

the

FCP

SCIOLSTART

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SCIOL_RET_ID_ALIAS

flag

set.

This

field

is

set

only

if

the

world_wide_name

field

was

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

If

the

caller

of

the

iSCSI

or

FCP

SCIOLSTART

is

a

kernel

extension,

then

the

SCIOL_RET_HANDLE

flag

can

be

set

in

the

adap_set_flags

field

along

with

the

kernext_handle

field.

In

this

case

the

kernext_handle

field

can

be

used

for

scsi_buf

structures

issued

to

the

adapter

driver

for

this

device.

A

nonzero

return

value

indicates

an

error

has

occurred

and

all

operations

to

this

SCSI/LUN

pair

should

cease

because

the

device

is

either

already

started

or

failed

the

start

operation.

Possible

errno

values

are:

EIO

The

command

could

not

complete

due

to

a

system

error.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

243

EINVAL

Either

the

Logical

Unit

Number

(LUN)

ID

or

SCSI

ID

is

invalid,

or

the

adapter

is

already

open.

ENOMEM

Indicates

that

system

resources

are

not

available

to

start

this

device.

ETIMEDOUT

Indicates

that

the

command

did

not

complete.

ENODEV

Indicates

that

no

device

responded

to

the

explicit

process

login

at

this

SCSI

ID.

ECONNREFUSED

Indicates

that

the

device

at

this

SCSI

ID

rejected

explicit

process

login.

This

could

be

due

to

the

device

rejecting

the

security

password

or

the

device

does

not

support

FCP.

EACCES

The

adapter

is

not

in

normal

mode.

SCIOLSTOP

This

operation

closes

a

logical

path

to

the

device

and

causes

the

adapter

device

driver

to

deallocate

all

data

areas

that

were

allocated

by

the

SCIOLSTART

operation.

This

operation

should

only

be

issued

after

a

successful

SCIOLSTART

operation

to

a

device.

The

following

is

a

typical

call:

rc

=

fp_ioctl(fp,

SCIOLSTOP,

&sciolst);

where

fp

is

a

pointer

to

a

file

structure

and

sciolst

is

a

scsi_sciolst

structure

(defined

in

/usr/include/sys/scsi_buf.h)

that

contains

the

SCSI

or

iSCSI

device’s

SCSI

ID

alias,

and

Logical

Unit

Number

(LUN)

ID

values

of

the

device

to

be

started.

A

non-zero

return

value

indicates

an

error

has

occurred.

Possible

errno

values

are:

EIO

An

unrecoverable

system

error

has

occurred.

EINVAL

The

adapter

was

not

in

open

mode.

For

FCP

adapters,

the

version

field

of

the

scsi_sciolst

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

For

AIX

5.2

through

AIX

5.2.0.9,

if

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

This

operation

requires

SCIOLSTART

to

be

run

first.

SCIOLEVENT

This

operation

allows

a

device

driver

to

register

a

particular

device

instance

for

receiving

asynchronous

event

status

by

calling

the

SCIOLEVENT

ioctl

operation

for

the

adapter

device

driver.

When

an

event

covered

by

the

SCIOLEVENT

ioctl

operation

is

detected

by

the

adapter

device

driver,

it

builds

an

scsi_event_info

structure

and

passes

a

pointer

to

the

structure

and

to

the

asynchronous

event-handler

routine

entry

point,

which

was

previously

registered.

The

information

reported

in

the

scsi_event_info.events

field

does

not

queue

to

the

device

driver,

but

is

instead

reported

as

one

or

more

flags

as

they

occur.

Because

the

data

does

not

queue,

the

adapter

device

driver

writer

can

use

a

single

scsi_event_info

structure

and

pass

it

one

at

a

time,

by

pointer,

to

each

asynchronous

event

handler

routine

for

the

appropriate

device

instance.

After

determining

for

which

device

the

events

are

being

reported,

the

device

driver

must

copy

the

scsi_event_info.events

field

into

local

space

and

must

not

modify

the

contents

of

the

rest

of

the

scsi_event_info

structure.

244

Kernel

Extensions

and

Device

Support

Programming

Concepts

Because

the

event

status

is

optional,

the

device

driver

writer

determines

what

action

is

necessary

to

take

upon

receiving

event

status.

The

writer

might

decide

to

save

the

status

and

report

it

back

to

the

calling

application,

or

the

device

driver

or

application

level

program

can

take

error

recovery

actions.

This

operation

should

only

be

issued

after

a

successful

SCIOLSTART

operation

to

a

device.

The

following

is

a

typical

call:

rc

=

fp_ioctl(fp,

SCIOLEVENT,

&scevent);

where

fp

is

a

pointer

to

a

file

structure

and

scevent

is

a

scsi_event_struct

structure

(defined

in

/usr/include/sys/scsi_buf.h)

that

contains

the

SCSI

and

Logical

Unit

Number

(LUN)

ID

values

of

the

device

to

be

started.

A

non-zero

return

value

indicates

an

error

has

occurred.

Possible

errno

values

are:

EIO

An

unrecoverable

system

error

has

occurred.

EINVAL

The

adapter

was

not

in

open

mode.

For

FCP

adapters,

the

version

field

of

the

scsi_event_struct

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLEVENT

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SC_RET_ID

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLINQU

This

operation

issues

an

inquiry

command

to

an

device

and

is

used

to

aid

in

device

configuration.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLINQU,

&inquiry_block);

where

adapter

is

a

file

descriptor

and

inquiry_block

is

a

scsi_inquiry

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

FCP

ID

or

iSCSI

device’s

SCSI

ID

alias,

and

LUN

should

be

placed

in

the

scsi_inquiry

parameter

block.

The

SC_ASYNC

flag

should

not

be

set

on

the

first

call

to

this

operation

and

should

only

be

set

if

a

bus

fault

has

occurred.

Possible

errno

values

are:

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

device

is

not

opened.

EACCES

The

adapter

is

in

diagnostics

mode.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

245

ENODEV

The

device

is

not

responding.

Possibly

no

LUNs

exist

on

the

present

FCP

ID.

ENOCONNECT

A

bus

fault

has

occurred

and

the

operation

should

be

retried

with

the

SC_ASYNC

flag

set

in

the

scsi_inquiry

structure.

In

the

case

of

multiple

retries,

this

flag

should

be

set

only

on

the

last

retry.

For

FCP

adapters,

the

version

field

of

the

scsi_inquiry

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

When

the

SCIOLINQU

ioctl

request

with

the

version

field

set

to

SCSI_VERSION_2

completes

and

the

device

did

not

fully

satisfy

the

request,

the

residual

field

indicates

left

over

data.

If

the

request

completes

successfully,

the

residual

field

indicates

the

device

does

not

have

all

the

requested

data.

If

the

request

did

not

complete

successfully,

check

the

status_validity

to

see

whether

a

valid

SCSI

bus

problem

exists.

If

a

valid

SCSI

bus

problem

exists,

the

residual

field

indicates

the

number

of

bytes

by

which

the

device

failed

to

complete

the

request.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLINQU

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SC_RET_ID

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLSTUNIT

This

operation

issues

a

start

unit

command

to

an

device

and

is

used

to

aid

in

device

configuration.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLSTUNIT,

&start_block);

where

adapter

is

a

file

descriptor

and

start_block

is

a

scsi_startunit

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

FCP

ID

or

iSCSI

device’s

SCSI

ID

alias,

and

LUN

should

be

placed

in

the

scsi_startunit

parameter

block.

The

start_flag

field

designates

the

start

option,

which

when

set

to

true,

makes

the

device

available

for

use.

When

this

field

is

set

to

false,

the

device

is

stopped.

The

SC_ASYNC

flag

should

not

be

set

on

the

first

call

to

this

operation

and

should

only

be

set

if

a

bus

fault

has

occurred.

The

immed_flag

field

allows

overlapping

start

operations

to

several

devices

on

the

adapter.

When

this

field

is

set

to

false,

status

is

returned

only

when

the

operation

has

completed.

When

this

field

is

set

to

true,

status

is

returned

as

soon

as

the

device

receives

the

command.

The

SCIOLTUR

operation

can

then

be

issued

to

check

on

completion

of

the

operation

on

a

particular

device.

Note

that

when

the

FCP

or

iSCSI

adapter

is

allowed

to

issue

simultaneous

start

operations,

it

is

important

that

a

delay

of

10

seconds

be

allowed

between

successive

SCIOLSTUNIT

operations

to

devices

sharing

a

common

power

supply

because

damage

to

the

system

or

devices

can

occur

if

this

precaution

is

not

followed.

Possible

errno

values

are:

246

Kernel

Extensions

and

Device

Support

Programming

Concepts

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

device

is

not

opened.

EACCES

The

adapter

is

in

diagnostics

mode.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

ENODEV

The

device

is

not

responding.

Possibly

no

LUNs

exist

on

the

present

FCP

ID.

ENOCONNECT

A

bus

fault

has

occurred.

Try

the

operation

again

with

the

SC_ASYNC

flag

set

in

the

scsi_inquiry

structure.

In

the

case

of

multiple

retries,

this

flag

should

be

set

only

on

the

last

retry.

For

FCP

adapters,

the

version

field

of

the

scsi_startunit

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLSTUNIT

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SC_RET_ID

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLTUR

This

operation

issues

a

Test

Unit

Ready

command

to

an

adapter

and

aids

in

device

configuration.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLTUR,

&ready_struct);

where

adapter

is

a

file

descriptor

and

ready_struct

is

a

scsi_ready

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

FCP

ID

or

iSCSI

device’s

SCSI

ID

alias,

and

LUN

should

be

placed

in

the

scsi_ready

parameter

block.

The

SC_ASYNC

flag

should

not

be

set

on

the

first

call

to

this

operation

and

should

only

be

set

if

a

bus

fault

has

occurred.

The

status

of

the

device

can

be

determined

by

evaluating

the

two

output

fields:

status_validity

and

scsi_status.

Possible

errno

values

are:

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

247

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

(around

three)

times,

because

another

attempt

might

be

successful.

If

an

EIO

error

occurs

and

the

status_validity

field

is

set

to

SC_FCP_ERROR,

then

the

scsi_status

field

has

a

valid

value

and

should

be

inspected.

If

the

status_validit

field

is

zero

and

remains

so

on

successive

retries,

then

an

unrecoverable

error

has

occurred

with

the

device.

If

the

status_validity

field

is

SC_FCP_ERROR

and

the

scsi_status

field

contains

a

Check

Condition

status,

then

the

SCIOLTUR

operation

should

be

retried

after

several

seconds.

If

after

successive

retries,

the

Check

Condition

status

remains,

the

device

should

be

considered

inoperable.

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

device

is

not

opened.

EACCES

The

adapter

is

in

diagnostics

mode.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

ENODEV

The

device

is

not

responding

and

possibly

no

LUNs

exist

on

the

present

target.

ENOCONNECT

A

bus

fault

has

occurred

and

the

operation

should

be

retried

with

the

SC_ASYNC

flag

set

in

the

scsi_inquiry

structure.

In

the

case

of

multiple

retries,

this

flag

should

be

set

only

on

the

last

retry.

For

FCP

adapters,

the

version

field

of

the

scsi_ready

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLTUR

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SC_RET_ID

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLREAD

This

operation

issues

an

read

command

to

an

device

and

is

used

to

aid

in

device

configuration.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLREAD,

&readblk);

where

adapter

is

a

file

descriptor

and

readblk

is

a

scsi_readblk

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

FCP

ID

or

iSCSI

device’s

SCSI

ID

alias,

and

the

LUN

should

be

placed

in

the

scsi_readblk

parameter

block.

The

SC_ASYNC

flag

should

not

be

set

on

the

first

call

to

this

operation

and

should

only

be

set

if

a

bus

fault

has

occurred.

Possible

errno

values

are:

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

248

Kernel

Extensions

and

Device

Support

Programming

Concepts

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

device

is

not

opened.

EACCES

The

adapter

is

in

diagnostics

mode.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

ENODEV

The

device

is

not

responding.

Possibly

no

LUNs

exist

on

the

present

target.

ENOCONNECT

A

bus

fault

has

occurred

and

the

operation

should

be

retried

with

the

SC_ASYNC

flag

set

in

the

scsi_readblk

structure.

In

the

case

of

multiple

retries,

this

flag

should

be

set

only

on

the

last

retry.

For

FCP

adapters,

the

version

field

of

the

scsi_readblk

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

When

the

SCIOLREAD

ioctl

request

with

the

version

field

set

to

SCSI_VERSION_2

completes

and

the

device

did

not

fully

satisfy

the

request,

the

residual

field

indicates

left

over

data.

If

the

request

completes

successfully,

the

residual

field

indicates

the

device

does

not

have

all

the

requested

data.

If

the

request

did

not

complete

successfully,

check

the

status_validity

to

see

whether

a

valid

SCSI

bus

problem

exists.

If

a

valid

SCSI

bus

problem

exists,

the

residual

field

indicates

the

number

of

bytes

by

which

the

device

failed

to

complete

the

request.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLREAD

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SC_RET_ID

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLRESET

If

the

SCIOLRESET_LUN_RESET

flag

is

not

set

in

the

flags

field

of

the

scsi_sciolst,

then

this

operation

causes

a

device

to

release

all

reservations,

clear

all

current

commands,

and

return

to

an

initial

state

by

issuing

a

Target

Reset,

which

resets

all

LUNs

associated

with

the

specified

FCP

ID

or

iSCSI

device’s

SCSI

ID

alias.

If

the

SCIOLRESET_LUN_RESET

flag

is

set

in

the

flags

field

of

the

scsi_sciolst,

then

this

operation

causes

an

FCP

device

to

release

all

reservations,

clear

all

current

commands,

and

return

to

an

initial

state

by

issuing

a

Lun

Reset,

which

resets

just

the

specified

LUN

associated

with

the

specified

FCP

ID

or

iSCSI

device’s

SCSI

ID

alias.

A

reserve

command

should

be

issued

after

the

SCIOLRESET

operation

to

prevent

other

initiators

from

claiming

the

device.

Note

that

because

a

certain

amount

of

time

exists

between

a

reset

and

reserve

command,

it

is

still

possible

for

another

initiator

to

successfully

reserve

a

particular

device.

The

following

is

a

typical

call:

rc

=

fp_ioctl(fp,

SCIOLRESET,

&sciolst);

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

249

where

fp

is

a

pointer

to

a

file

structure

and

sciolst

is

a

scsi_sciolst

structure

(defined

in

/usr/include/sys/scsi_buf.h)

that

contains

the

SCSI

ID

or

iSCSI

device’s

SCSI

ID

alias,

and

Logical

Unit

Number

(LUN)

ID

values

of

the

device

to

be

started.

A

nonzero

return

value

indicates

an

error

has

occurred.

Possible

errno

values

are:

EIO

An

unrecoverable

system

error

has

occurred.

EINVAL

The

device

is

not

opened.

EACCES

The

adapter

is

in

diagnostics

mode.

ETIMEDOUT

The

operation

did

not

complete

before

the

time-out

value

was

exceeded.

For

FCP

adapters,

the

version

field

of

the

scsi_sciolst

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLRESET

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SCIOL_RET_ID_ALIAS

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLHALT

This

operation

stops

the

current

command

of

the

selected

device,

clears

the

command

queue

of

any

pending

commands,

and

brings

the

device

to

a

halted

state.

The

adapter

sends

an

abort

message

to

the

device

and

is

usually

used

by

the

device

driver

to

abort

the

current

operation

instead

of

allowing

it

to

complete

or

time

out.

After

the

SCIOLHALT

operation

is

sent,

the

device

driver

must

set

the

SC_RESUME

flag

in

the

next

scsi_buf

structure

sent

to

the

adapter

device

driver,

or

all

subsequent

scsi_buf

structures

sent

are

ignored.

The

adapter

also

performs

normal

error

recovery

procedures

during

this

command.

The

following

is

a

typical

call:

rc

=

fp_ioctl(fp,

SCIOLHALT,

&sciolst);

where

fp

is

a

pointer

to

a

file

structure

and

sciolst

is

a

scsi_sciolst

structure

(defined

in

/usr/include/sys/scsi_buf.h)

that

contains

the

SCSI

ID

or

iSCSI

device’s

SCSI

ID

alias,

and

Logical

Unit

Number

(LUN)

ID

values

of

the

device

to

be

started.

A

nonzero

return

value

indicates

an

error

has

occurred.

Possible

errno

values

are:

EIO

An

unrecoverable

system

error

has

occurred.

EINVAL

The

device

is

not

opened.

EACCES

The

adapter

is

in

diagnostics

mode.

ETIMEDOUT

The

operation

did

not

complete

before

the

time-out

value

was

exceeded.

250

Kernel

Extensions

and

Device

Support

Programming

Concepts

For

FCP

adapters,

the

version

field

of

the

scsi_sciolst

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLHALT

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SCIOL_RET_ID_ALIAS

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLCMD

After

the

SCSI

device

has

been

successfully

started

using

SCIOLSTART,

the

SCIOLCMD

ioctl

operation

provides

the

means

for

issuing

any

SCSI

command

to

the

specified

device.

The

SCSI

adapter

driver

performs

no

error

recovery

or

logging

on

failures

of

this

ioctl

operation.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLCMD,

&iocmd);

where

adapter

is

a

file

descriptor

and

iocmd

is

a

scsi_iocmd

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

SCSI

ID

or

iSCSI

device’s

SCSI

ID

alias,

and

LUN

ID

should

be

placed

in

the

scsi_iocmd

parameter

block.

The

SCSI

status

byte

and

the

adapter

status

bytes

are

returned

via

the

scsi_iocmd

structure.

If

the

SCIOLCMD

operation

returns

a

value

of

-1

and

theerrno

global

variable

is

set

to

a

nonzero

value,

the

requested

operation

has

failed.

In

this

case,

the

caller

should

evaluate

the

returned

status

bytes

to

determine

why

the

operation

failed

and

what

recovery

actions

should

be

taken.

The

devinfo

structure

defines

the

maximum

transfer

size

for

the

command.

If

an

attempt

is

made

to

transfer

more

than

the

maximum,

a

value

of

-1

is

returned

and

the

errno

global

variable

set

to

a

value

of

EINVAL.

Refer

to

the

Small

Computer

System

Interface

(SCSI)

Specification

for

the

applicable

device

to

get

request

sense

information.

Possible

errno

values

are:

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

(around

three)

times,

because

another

attempt

might

be

successful.

If

an

EIO

error

occurs

and

the

status_validity

field

is

set

to

SC_SCSI_ERROR,

then

the

scsi_status

field

has

a

valid

value

and

should

be

inspected.

If

the

status_validity

field

is

zero

and

remains

so

on

successive

retries

then

an

unrecoverable

error

has

occurred

with

the

device.

If

the

status_validity

field

is

SC_SCSI_ERROR

and

the

scsi_status

field

contains

a

Check

Condition

status,

then

a

SCSI

request

sense

should

be

issued

via

the

SCIOLCMD

ioctl

to

recover

the

the

sense

data.

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

device

is

not

opened.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

251

EACCES

The

adapter

is

in

diagnostics

mode.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

might

be

successful.

ENODEV

The

device

is

not

responding.

ETIMEDOUT

The

operation

did

not

complete

before

the

time-out

value

was

exceeded.

For

FCP

adapters,

the

version

field

of

the

scsi_iocmd

structure

must

be

set

to

the

value

of

SCSI_VERSION_1,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

In

addition,

the

following

fields

can

be

set:

v

world_wide_name

-

The

caller

can

set

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

world_wide_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

v

node_name

-

The

caller

can

set

the

node_name

field

to

the

Node

Name

of

the

attached

target

device.

If

the

world_wide_name

field

and

the

version

field

are

set

to

SCSI_VERSION_1

but

the

node_name

field

is

not

set,

the

scsi_id

will

be

used

for

device

lookup

instead

of

the

world_wide_name.

If

Dynamic

Tracking

of

FC

devices

is

enabled,

the

node_name

field

must

be

set

to

ensure

communication

with

the

device

because

the

scsi_id

field

of

a

device

can

change

after

dynamic

tracking

events.

The

version

field

of

the

scsi_iocmd

structure

can

be

set

to

the

value

of

SCSI_VERSION_2,

and

the

user

can

provide

the

following

fields:

v

variable_cdb_ptr

-

pointer

to

a

buffer

that

contains

the

SCSI

variablecdb.

v

variable_cdb_length

-

the

length

of

the

cdb

variable

to

which

the

variable_cdb_ptr

points.

When

the

SCIOLCMD

ioctl

request

with

the

version

field

set

to

SCSI_VERSION_2

completes

and

the

device

did

not

fully

satisfy

the

request,

the

residual

field

indicates

left

over

data.

If

the

request

completes

successfully,

the

residual

field

indicates

the

device

does

not

have

all

the

requested

data.

If

the

request

did

not

complete

successfully,

check

the

status_validity

to

see

whether

a

valid

SCSI

bus

problem

exists.

If

a

valid

SCSI

bus

problem

exists,

the

residual

field

indicates

the

number

of

bytes

by

which

the

device

failed

to

complete

the

request.

This

operation

requires

SCIOLSTART

to

be

run

first.

If

the

FCP

SCIOLCMD

ioctl

operation

completes

successfully,

then

the

adap_set_flags

field

might

have

the

SC_RET_ID

flag

set.

This

field

is

set

only

if

the

world_wide_name

and

node_

name

fields

were

provided

in

the

ioctl

call

and

the

FC

adapter

driver

detects

that

the

scsi_id

field

of

this

device

has

changed.

The

scsi_id

field

will

contain

the

new

scsi_id

value.

SCIOLNMSRV

Note:

SCIOLNMSRV

is

specific

to

FCP.

This

operation

issues

a

query

name

server

request

to

find

all

SCSI

devices

and

is

used

to

aid

in

SCSI

device

configuration.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLNMSRV,

&nmserv);

where

adapter

is

a

file

descriptor

and

nmserv

is

a

scsi_nmserv

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

caller

of

this

ioctl,

must

allocate

a

buffer

be

referenced

by

the

scsi_id_list

field.

In

addition

the

caller

must

set

the

list_len

field

to

indicate

the

size

of

the

buffer

in

bytes.

252

Kernel

Extensions

and

Device

Support

Programming

Concepts

On

successful

completion,

the

num_ids

field

indicates

the

number

of

SCSI

IDs

returned

in

the

current

list.

If

the

more

ids

were

found

then

could

be

placed

in

the

list,

then

the

adapter

driver

will

update

the

list_len

field

to

indicate

the

length

of

buffer

needed

to

receive

all

SCSI

IDs.

Possible

errno

values

are:

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

times,

because

another

attempt

may

be

successful.

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

physical

configuration

does

not

support

this

request.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

may

be

successful.

ENODEV

The

device

is

not

responding.

Possibly

no

LUNs

exist

on

the

present

target.

SCIOLQWWN

Note:

SCIOLQWWN

is

specific

to

FCP.

This

operation

issues

a

request

to

find

the

SCSI

ID

of

a

device

for

the

specified

world

wide

name.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLQWWN,

&qrywwn);

where

adapter

is

a

file

descriptor

and

qrywwn

is

a

scsi_qry_wwn

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

caller

of

this

ioctl,

must

specify

the

device’s

world

wide

name

in

the

world_wide_name

field.

On

successful

completion,

the

scsi_id

field

will

be

returned

with

the

SCSI

ID

of

the

device

with

this

world

wide

name.

Possible

errno

values

are:

EIO

A

system

error

has

occurred.

Consider

retrying

the

operation

several

times,

because

another

attempt

may

be

successful.

EFAULT

A

user

process

copy

has

failed.

EINVAL

The

physical

configuration

does

not

support

this

request.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

may

be

successful.

ENODEV

The

device

is

not

responding.

Possibly

no

LUNs

exist

on

the

present

FCP

ID.

SCIOLPAYLD

This

operation

provides

the

means

for

issuing

a

transport

payload

to

the

specified

device.

The

SCSI

adapter

driver

performs

no

error

recovery

or

logging

on

failures

of

this

ioctl

operation.

The

following

is

a

typical

call:

rc

=

ioctl(adapter,

SCIOLPAYLD,

&payld);

where

adapter

is

a

file

descriptor

and

payld

is

a

scsi_trans_payld

structure

as

defined

in

the

/usr/include/sys/scsi_buf.h

header

file.

The

SCSI

ID

or

SCSI

ID

alias

should

be

placed

in

the

scsi_trans_payld.

In

addition

the

user

must

allocate

a

payload

buffer

referenced

by

the

payld_bufferfield

and

a

response

buffer

referenced

by

the

response_buffer

field.

The

fields

payld_size

and

response_size

specify

the

size

in

bytes

of

the

payload

buffer

and

response

buffer,

respectively.

In

addition

the

caller

may

also

set

payld_type

(for

FC

this

is

the

FC-4

type),

and

payld_ctl

(for

FC

this

is

the

router

control

field),.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

253

If

the

SCIOLPAYLD

operation

returns

a

value

of

-1

and

the

errno

global

variable

is

set

to

a

nonzero

value,

the

requested

operation

has

failed.

In

this

case,

the

caller

should

evaluate

the

returned

status

bytes

to

determine

why

the

operation

failed

and

what

recovery

actions

should

be

taken.

Possible

errno

values

are:

EIO

A

system

error

has

occurred.

EFAULT

A

user

process

copy

has

failed.

EINVAL

Payload

and

or

response

buffer

are

too

large.

For

FCP

and

iSCSI

the

maximum

size

is

4096

bytes.

ENOMEM

A

memory

request

has

failed.

ETIMEDOUT

The

command

has

timed

out.

Consider

retrying

the

operation

several

times,

because

another

attempt

may

be

successful.

ENODEV

The

device

is

not

responding.

ETIMEDOUT

The

operation

did

not

complete

before

the

time-out

value

was

exceeded.

SCIOLCHBA

When

the

device

has

been

successfully

opened,

the

SCIOLCHBA

operation

provides

the

means

for

issuing

one

or

more

common

HBA

API

commands

to

the

adapter.

The

FC

adapter

driver

will

perform

full

error

recovery

on

failures

of

this

operation.

The

arg

parameter

contains

the

address

of

a

scsi_chba

structure,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

The

cmd

field

in

the

scsi_chba

structure

will

determine

the

common

HBA

API

operation

that

is

performed.

If

the

SCIOLCHBA

operation

fails,

the

subroutine

returns

a

value

of

-1

and

sets

the

errno

global

variable

to

a

nonzero

value.

In

this

case,

the

caller

should

evaluate

the

returned

status

bytes

to

determine

why

the

operation

was

unsuccessful

and

what

recovery

actions

should

be

taken.

If

a

SCIOLCHBA

operation

fails

because

a

field

in

the

scsi_chba

structure

has

an

invalid

value,

the

subroutine

will

return

a

value

of

-1

and

set

the

errno

global

variable

to

EINVAL.

SCIOLPASSTHRUHBA

When

the

device

has

been

successfully

opened,

the

SCIOLPASSTHRUHBA

operation

provides

the

means

for

issuing

passthru

commands

to

the

adapter.

The

FC

adapter

driver

will

perform

full

error

recovery

on

failures

of

this

operation.

The

arg

parameter

contains

the

address

of

a

scsi_passthru_hba

structure,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

The

cmd

field

in

the

scsi_passthru_hba

structure

will

determine

the

type

of

passthru

operation

to

be

performed.

If

the

SCIOPASSTHRUHBA

operation

fails,

the

subroutine

returns

a

value

of

-1

and

sets

the

errno

global

variable

to

a

nonzero

value.

In

this

case,

the

caller

should

evaluate

the

returned

status

bytes

to

determine

why

the

operation

was

unsuccessful

and

what

recovery

actions

should

be

taken.

If

a

SCIOLPASSTHRUHBA

operation

fails

because

a

field

in

the

scsi_passthru_hba

structure

has

an

invalid

value,

the

subroutine

will

return

a

value

of

-1

and

set

the

errno

global

variable

to

EINVAL.

FCP

and

iSCSI

Subsystem

Overview

This

section

frequently

refers

to

both

device

driver

and

adapter

device

driver.

These

two

distinct

device

drivers

work

together

in

a

layered

approach

to

support

attachment

of

a

range

of

devices.

The

adapter

device

driver

is

the

lower

device

driver

of

the

pair,

and

the

device

driver

is

the

upper

device

driver.

254

Kernel

Extensions

and

Device

Support

Programming

Concepts

Responsibilities

of

the

Adapter

Device

Driver

The

adapter

device

driver

is

the

software

interface

to

the

system

hardware.

This

hardware

includes

the

transport

layer

hardware,

plus

any

other

system

I/O

hardware

required

to

run

an

I/O

request.

The

adapter

device

driver

hides

the

details

of

the

I/O

hardware

from

the

device

driver.

The

design

of

the

software

interface

allows

a

user

with

limited

knowledge

of

the

system

hardware

to

write

the

upper

device

driver.

The

adapter

device

driver

manages

the

transport

layer

but

not

the

devices.

It

can

send

and

receive

commands,

but

it

cannot

interpret

the

contents

of

the

command.

The

lower

driver

also

provides

recovery

and

logging

for

errors

related

to

the

transport

layer

and

system

I/O

hardware.

Management

of

the

device

specifics

is

left

to

the

device

driver.

The

interface

of

the

two

drivers

allows

the

upper

driver

to

communicate

with

different

transport

layer

adapters

without

requiring

special

code

paths

for

each

adapter.

Responsibilities

of

the

Device

Driver

The

device

driver

provides

the

rest

of

the

operating

system

with

the

software

interface

to

a

given

device

or

device

class.

The

upper

layer

recognizes

which

commands

are

required

to

control

a

particular

device

or

device

class.

The

device

driver

builds

I/O

requests

containing

device

commands,

and

sends

them

to

the

adapter

device

driver

in

the

sequence

needed

to

operate

the

device

successfully.

The

device

driver

cannot

manage

adapter

resources

or

give

the

command

to

the

adapter.

Specifics

about

the

adapter

and

system

hardware

are

left

to

the

lower

layer.

The

device

driver

also

provides

recovery

and

logging

for

errors

related

to

the

device

that

it

controls.

The

operating

system

provides

several

kernel

services

allowing

the

device

driver

to

communicate

with

adapter

device

driver

entry

points

without

having

the

actual

name

or

address

of

those

entry

points.

See

“Logical

File

System

Kernel

Services”

on

page

65

for

more

information.

Communication

between

Devices

When

two

devices

communicate,

one

assumes

the

initiator-mode

role,

and

the

other

assumes

the

target-mode

role.

The

initiator-mode

device

generates

the

command,

which

requests

an

operation,

and

the

target-mode

device

receives

the

command

and

acts.

It

is

possible

for

a

device

to

perform

both

roles

simultaneously.

When

writing

a

new

adapter

device

driver,

the

writer

must

know

which

mode

or

modes

must

be

supported

to

meet

the

requirements

of

the

adapter

and

any

interfaced

device

drivers.

Initiator-Mode

Support

The

interface

between

the

device

driver

and

the

adapter

device

driver

for

initiator-mode

support

(that

is,

the

attached

device

acts

as

a

target)

is

accessed

through

calls

to

the

adapter

device

driver

open,

close,

ioctl,

and

strategy

subroutines.

I/O

requests

are

queued

to

the

adapter

device

driver

through

calls

to

its

strategy

entry

point.

Communication

between

the

device

driver

and

the

adapter

device

driver

for

a

particular

initiator

I/O

request

is

made

through

the

scsi_buf

structure,

which

is

passed

to

and

from

the

strategy

subroutine

in

the

same

way

a

standard

driver

uses

a

struct

buf

structure.

Understanding

FCP

and

iSCSI

Asynchronous

Event

Handling

Note:

This

operation

is

not

supported

by

all

I/O

controllers.

A

device

driver

can

register

a

particular

device

instance

for

receiving

asynchronous

event

status

by

calling

the

SCIOLEVENT

ioctl

operation

for

the

adapter

device

driver.

When

an

event

covered

by

the

SCIOLEVENT

ioctl

operation

is

detected

by

the

adapter

device

driver,

it

builds

an

scsi_event_info

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

255

structure

and

passes

a

pointer

to

the

structure

and

to

the

asynchronous

event-handler

routine

entry

point,

which

was

previously

registered.

The

fields

in

the

structure

are

filled

in

by

the

adapter

device

driver

as

follows:

scsi_id

For

initiator

mode,

this

is

set

to

the

SCSI

ID

or

SCSI

ID

alias

of

the

attached

target

device.

For

target

mode,

this

is

set

to

the

SCSI

ID

or

SCSI

ID

alias

of

the

attached

initiator

device.

lun_id

For

initiator

mode,

this

is

set

to

the

SCSI

LUN

of

the

attached

target

device.

For

target

mode,

this

is

set

to

0.

mode

Identifies

whether

the

initiator

or

target

mode

device

is

being

reported.

The

following

values

are

possible:

SCSI_IM_MODE

An

initiator

mode

device

is

being

reported.

SCSI_TM_MODE

A

target

mode

device

is

being

reported.

events

This

field

is

set

to

indicate

what

event

or

events

are

being

reported.

The

following

values

are

possible,

as

defined

in

the

/usr/include/sys/scsi.h

file:

SCSI_FATAL_HDW_ERR

A

fatal

adapter

hardware

error

occurred.

SCSI_ADAP_CMD_FAILED

An

unrecoverable

adapter

command

failure

occurred.

SCSI_RESET_EVENT

A

transport

layer

reset

was

detected.

SCSI_BUFS_EXHAUSTED

In

target-mode,

a

maximum

buffer

usage

event

has

occurred.

adap_devno

This

field

is

set

to

indicate

the

device

major

and

minor

numbers

of

the

adapter

on

which

the

device

is

located.

async_correlator

This

field

is

set

to

the

value

passed

to

the

adapter

device

driver

in

the

scsi_event_struct

structure.

The

device

driver

might

optionally

use

this

field

to

provide

an

efficient

means

of

associating

event

status

with

the

device

instance

it

goes

with.

Alternatively,

the

device

driver

would

use

the

combination

of

the

id,

lun,

mode,

and

adap_devno

fields

to

identify

the

device

instance.

The

information

reported

in

the

scsi_event_info.events

field

does

not

queue

to

the

device

driver,

but

is

instead

reported

as

one

or

more

flags

as

they

occur.

Because

the

data

does

not

queue,

the

adapter

device

driver

writer

can

use

a

single

scsi_event_info

structure

and

pass

it

one

at

a

time,

by

pointer,

to

each

asynchronous

event

handler

routine

for

the

appropriate

device

instance.

After

determining

for

which

device

the

events

are

being

reported,

the

device

driver

must

copy

the

scsi_event_info.events

field

into

local

space

and

must

not

modify

the

contents

of

the

rest

of

the

scsi_event_info

structure.

Because

the

event

status

is

optional,

the

device

driver

writer

determines

which

action

is

necessary

to

take

upon

receiving

event

status.

The

writer

might

decide

to

save

the

status

and

report

it

back

to

the

calling

application,

or

the

device

driver

or

application

level

program

can

take

error

recovery

actions.

256

Kernel

Extensions

and

Device

Support

Programming

Concepts

Defined

Events

and

Recovery

Actions

The

adapter

fatal

hardware

failure

event

is

intended

to

indicate

that

no

further

commands

to

or

from

this

device

are

likely

to

succeed,

because

the

adapter

to

which

it

is

attached,

has

failed.

It

is

recommended

that

the

application

end

the

session

with

the

device.

The

unrecoverable

adapter

command

failure

event

is

not

necessarily

a

fatal

condition,

but

it

can

indicate

that

the

adapter

is

not

functioning

properly.

Possible

actions

by

the

application

program

include:

v

Ending

of

the

session

with

the

device

in

the

near

future.

v

Ending

of

the

session

after

multiple

(two

or

more)

such

events.

v

Attempt

to

continue

the

session

indefinitely.

The

SCSI

Reset

detection

event

is

mainly

intended

as

information

only,

but

can

be

used

by

the

application

to

perform

further

actions,

if

necessary.

The

maximum

buffer

usage

detected

event

only

applies

to

a

given

target-mode

device;

it

will

not

be

reported

for

an

initiator-mode

device.

This

event

indicates

to

the

application

that

this

particular

target-mode

device

instance

has

filled

its

maximum

allotted

buffer

space.

The

application

should

perform

read

system

calls

fast

enough

to

prevent

this

condition.

If

this

event

occurs,

data

is

not

lost,

but

it

is

delayed

to

prevent

further

buffer

usage.

Data

reception

will

be

restored

when

the

application

empties

enough

buffers

to

continue

reasonable

operations.

The

num_bufs

attribute

might

need

to

be

increased

to

help

minimize

this

problem.

Also,

it

is

possible

that

regardless

of

the

number

of

buffers,

the

application

simply

is

not

processing

received

data

fast

enough.

This

might

require

some

fine

tuning

of

the

application’s

data

processing

routines.

Asynchronous

Event-Handling

Routine

The

device

driver

asynchronous

event-handling

routine

is

typically

called

directly

from

the

hardware

interrupt-handling

routine

for

the

adapter

device

driver.

The

device

driver

writer

must

be

aware

of

how

this

affects

the

design

of

the

device

driver.

Because

the

event

handling

routine

is

running

on

the

hardware

interrupt

level,

the

device

driver

must

be

careful

to

limit

operations

in

that

routine.

Processing

should

be

kept

to

a

minimum.

In

particular,

if

any

error

recovery

actions

are

performed,

it

is

recommended

that

the

event-handling

routine

set

state

or

status

flags

only

and

allow

a

process

level

routine

to

perform

the

actual

operations.

The

device

driver

must

be

careful

to

disable

interrupts

at

the

correct

level

in

places

where

the

device

driver’s

lower

execution

priority

routines

manipulate

variables

that

are

also

modified

by

the

event-handling

routine.

To

allow

the

device

driver

to

disable

at

the

correct

level,

the

adapter

device

driver

writer

must

provide

a

configuration

database

attribute

that

defines

the

interrupt

class,

or

priority,

it

runs

on.

This

attribute

must

be

named

intr_priority

so

that

the

device

driver

configuration

method

knows

which

attribute

of

the

parent

adapter

to

query.

The

device

driver

configuration

method

should

then

pass

this

interrupt

priority

value

to

the

device

driver

along

with

other

configuration

data

for

the

device

instance.

The

SCSI

device

driver

writer

must

follow

any

other

general

system

rules

for

writing

a

routine

that

must

execute

in

an

interrupt

environment.

For

example,

the

routine

must

not

attempt

to

sleep

or

wait

on

I/O

operations.

It

can

perform

wakeups

to

allow

the

process

level

to

handle

those

operations.

Because

the

device

driver

copies

the

information

from

the

scsi_event_info.events

field

on

each

call

to

its

asynchronous

event-handling

routine,

there

is

no

resource

to

free

and

no

information

that

must

be

passed

back

later

to

the

adapter

device

driver.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

257

FCP

and

iSCSI

Error

Recovery

If

the

device

is

in

initiator

mode,

the

error-recovery

process

varies

depending

on

whether

or

not

the

device

is

supporting

command

queuing.

Also

some

devices

might

support

NACA=1

error

recovery.

Thus,

error

recovery

needs

to

deal

with

the

two

following

concepts.

Autosense

Data

When

a

device

returns

a

check

condition

or

command

terminated

(the

scsi_buf.scsi_status

will

have

the

value

of

SC_CHECK_CONDITION

or

SC_COMMAND_TERMINATED,

respectively),

it

will

also

return

the

request

sense

data.

Note:

Subsequent

commands

to

the

device

will

clear

the

request

sense

data.

If

the

device

driver

has

specified

a

valid

autosense

buffer

(scsi_buf.autosense_length

>

0

and

the

scsi_buf.autosense_buffer_ptr

field

is

not

NULL),

then

the

adapter

device

driver

will

copy

the

returned

autosense

data

into

the

buffer

referenced

by

scsi_buf.autosense_buffer_ptr.

When

this

occurs,

the

adapter

device

driver

will

set

the

SC_AUTOSENSE_DATA_VALID

flag

in

the

scsi_buf.adap_set_flags.

When

the

device

driver

receives

the

SCSI

status

of

check

condition

or

command

terminated

(the

scsi_buf.scsi_status

will

have

the

value

of

SC_CHECK_CONDITION

or

SC_COMMAND_TERMINATED,

respectively),

it

should

then

determine

if

the

SC_AUTOSENSE_DATA_VALID

flag

is

set

in

the

scsi_buf.adap_set_flags.

If

so

then

it

should

process

the

autosense

data

and

not

send

a

SCSI

request

sense

command.

NACA=1

error

recovery

Some

devices

support

setting

the

NACA

(Normal

Auto

Contingent

Allegiance)

bit

to

a

value

of

one

(NACA=1)

in

the

control

byte

of

the

SCSI

command

.

If

a

device

returns

a

check

condition

or

command

terminated

(the

scsi_buf.scsi_status

will

have

the

value

of

SC_CHECK_CONDITION

or

SC_COMMAND_TERMINATED,

respectively)

for

a

command

with

NACA=1

set,

then

the

device

will

require

a

Clear

ACA

task

management

request

to

clear

the

error

condition

on

the

drive.

The

device

driver

can

issue

a

Clear

ACA

task

management

request

by

sending

a

transaction

with

the

SC_CLEAR_ACA

flag

in

the

sc_buf.flags

field.

The

SC_CLEAR_ACA

flag

can

be

used

in

conjunction

with

the

SC_Q_CLR

and

SC_Q_RESUME

flag

in

the

sc_buf.flags

to

clear

or

resume

the

queue

of

transactions

for

this

device,

respectively.

For

more

information,

see

“Initiator-Mode

Recovery

During

Command

Tag

Queuing”

on

page

259.

FCP

and

iSCSI

Initiator-Mode

Recovery

When

Not

Command

Tag

Queuing

If

an

error

such

as

a

check

condition

or

hardware

failure

occurs,

the

transaction

active

during

the

error

is

returned

with

the

scsi_buf.bufstruct.b_error

field

set

to

EIO.

Other

transactions

in

the

queue

might

be

returned

with

the

scsi_buf.bufstruct.b_error

field

set

to

ENXIO.

If

the

adapter

driver

decides

not

to

return

other

outstanding

commands

it

has

queued

to

it,

then

the

failed

transaction

will

be

returned

to

the

device

driver

with

an

indication

that

the

queue

for

this

device

is

not

cleared

by

setting

the

SC_DID_NOT_CLEAR_Q

flag

in

the

scsi_buf.adap_q_status

field.

The

device

driver

should

process

or

recover

the

condition,

rerunning

any

mode

selects

or

device

reservations

to

recover

from

this

condition

properly.

After

this

recovery,

it

should

reschedule

the

transaction

that

had

the

error.

In

many

cases,

the

device

driver

only

needs

to

retry

the

unsuccessful

operation.

The

adapter

device

driver

should

never

retry

a

SCSI

command

on

error

after

the

command

has

successfully

been

given

to

the

adapter.

The

consequences

for

retrying

a

command

at

this

point

range

from

minimal

to

catastrophic,

depending

upon

the

type

of

device.

Commands

for

certain

devices

cannot

be

retried

immediately

after

a

failure

(for

example,

tapes

and

other

sequential

access

devices).

If

such

an

error

occurs,

the

failed

command

returns

an

appropriate

error

status

with

an

iodone

call

to

the

device

258

Kernel

Extensions

and

Device

Support

Programming

Concepts

driver

for

error

recovery.

Only

the

device

driver

that

originally

issued

the

command

knows

if

the

command

can

be

retried

on

the

device.

The

adapter

device

driver

must

only

retry

commands

that

were

never

successfully

transferred

to

the

adapter.

In

this

case,

if

retries

are

successful,

the

scsi_buf

status

should

not

reflect

an

error.

However,

the

adapter

device

driver

should

perform

error

logging

on

the

retried

condition.

The

first

transaction

passed

to

the

adapter

device

driver

during

error

recovery

must

include

a

special

flag.

This

SC_RESUME

flag

in

the

scsi_buf.flags

field

must

be

set

to

inform

the

adapter

device

driver

that

the

device

driver

has

recognized

the

fatal

error

and

is

beginning

recovery

operations.

Any

transactions

passed

to

the

adapter

device

driver,

after

the

fatal

error

occurs

and

before

the

SC_RESUME

transaction

is

issued,

should

be

flushed;

that

is,

returned

with

an

error

type

of

ENXIO

through

an

iodone

call.

Note:

If

a

device

driver

continues

to

pass

transactions

to

the

adapter

device

driver

after

the

adapter

device

driver

has

flushed

the

queue,

these

transactions

are

also

flushed

with

an

error

return

of

ENXIO

through

the

iodone

service.

This

gives

the

device

driver

a

positive

indication

of

all

transactions

flushed.

Initiator-Mode

Recovery

During

Command

Tag

Queuing

If

the

device

driver

is

queuing

multiple

transactions

to

the

device

and

either

a

check

condition

error

or

a

command

terminated

error

occurs,

the

adapter

driver

does

not

clear

all

transactions

in

its

queues

for

the

device.

It

returns

the

failed

transaction

to

the

device

driver

with

an

indication

that

the

queue

for

this

device

is

not

cleared

by

setting

the

SC_DID_NOT_CLEAR_Q

flag

in

the

scsi_buf.adap_q_status

field.

The

adapter

driver

halts

the

queue

for

this

device

awaiting

error

recovery

notification

from

the

device

driver.

The

device

driver

then

has

three

options

to

recover

from

this

error:

v

Send

one

error

recovery

command

(request

sense)

to

the

device.

v

Clear

the

adapter

driver’s

queue

for

this

device.

v

Resume

the

adapter

driver’s

queue

for

this

device.

When

the

adapter

driver’s

queue

is

halted,

the

device

drive

can

get

sense

data

from

a

device

by

setting

the

SC_RESUME

flag

in

the

scsi_buf.flags

field

and

the

SC_NO_Q

flag

in

scsi_buf.q_tag_msg

field

of

the

request-sense

scsi_buf.

This

action

notifies

the

adapter

driver

that

this

is

an

error-recovery

transaction

and

should

be

sent

to

the

device

while

the

remainder

of

the

queue

for

the

device

remains

halted.

When

the

request

sense

completes,

the

device

driver

needs

to

either

clear

or

resume

the

adapter

driver’s

queue

for

this

device.

The

device

driver

can

notify

the

adapter

driver

to

clear

its

halted

queue

by

sending

a

transaction

with

the

SC_Q_CLR

flag

in

the

scsi_buf.flags

field.

This

transaction

must

not

contain

a

command

because

it

is

cleared

from

the

adapter

driver’s

queue

without

being

sent

to

the

adapter.

However,

this

transaction

must

have

the

SCSI

ID

field

(

scsi_buf.scsi_id)

and

the

LUN

field

(

scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN),

respectively.

Upon

receiving

an

SC_Q_CLR

transaction,

the

adapter

driver

flushes

all

transactions

for

this

device

and

sets

their

scsi_buf.bufstruct.b_error

fields

to

ENXIO.

The

device

driver

must

wait

until

the

scsi_buf

with

the

SC_Q_CLR

flag

set

is

returned

before

it

resumes

issuing

transactions.

The

first

transaction

sent

by

the

device

driver

after

it

receives

the

returned

SC_Q_CLR

transaction

must

have

the

SC_RESUME

flag

set

in

the

scsi_buf.flags

fields.

If

the

device

driver

wants

the

adapter

driver

to

resume

its

halted

queue,

it

must

send

a

transaction

with

the

SC_Q_RESUME

flag

set

in

the

scsi_buf.flags

field.

This

transaction

can

contain

an

actual

command,

but

it

is

not

required.

However,

this

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

If

this

is

the

first

transaction

issued

by

the

device

driver

after

receiving

the

error

(indicating

that

the

adapter

driver’s

queue

is

halted),then

the

SC_RESUME

flag

must

be

set

as

well

as

the

SC_Q_RESUME

flag.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

259

Analyzing

Returned

Status

The

following

order

of

precedence

should

be

followed

by

device

drivers

when

analyzing

the

returned

status:

1.

If

the

scsi_buf.bufstruct.b_flags

field

has

the

B_ERROR

flag

set,

then

an

error

has

occurred

and

the

scsi_buf.bufstruct.b_error

field

contains

a

valid

errno

value.

If

the

b_error

field

contains

the

ENXIO

value,

either

the

command

needs

to

be

restarted

or

it

was

canceled

at

the

request

of

the

device

driver.

If

the

b_error

field

contains

the

EIO

value,

then

either

one

or

no

flag

is

set

in

the

scsi_buf.status_validity

field.

If

a

flag

is

set,

an

error

in

either

the

scsi_status

or

adapter_status

field

is

the

cause.

If

the

status_validity

field

is

0,

then

the

scsi_buf.bufstruct.b_resid

field

should

be

examined

to

see

if

the

command

issued

was

in

error.

The

b_resid

field

can

have

a

value

without

an

error

having

occurred.

To

decide

whether

an

error

has

occurred,

the

device

driver

must

evaluate

this

field

with

regard

to

the

command

being

sent

and

the

device

being

driven.

If

the

SC_CHECK_CONDITION

or

SC_COMMAND_TERMINATED

is

set

in

scsi_status,

then

a

device

driver

must

analyze

the

value

of

scsi_buf.adap_set_flags

to

determine

if

autosense

data

was

returned

from

the

device.

If

the

SC_AUTOSENSE_DATA_VALID

flag

is

set

in

the

scsi_buf.adap_set_flags

field

for

a

device,

then

the

device

returned

autosense

data

in

the

buffer

referenced

by

scsi_buf.autosense_buffer_ptr.

In

this

situation

the

device

driver

does

not

need

to

issue

a

SCSI

request

sense

to

determine

the

appropriate

error

recovery

for

the

devices.

If

the

device

driver

is

queuing

multiple

transactions

to

the

device

and

if

either

SC_CHECK_CONDITION

or

SC_COMMAND_TERMINATED

is

set

in

scsi_status,

then

the

value

of

scsi_buf.adap_q_status

must

be

analyzed

to

determine

if

the

adapter

driver

has

cleared

its

queue

for

this

device.

If

the

adapter

driver

has

not

cleared

its

queue

after

an

error,

then

it

holds

that

queue

in

a

halted

state.

If

scsi_buf.adap_q_status

is

set

to

0,

the

adapter

driver

has

cleared

its

queue

for

this

device

and

any

transactions

outstanding

are

flushed

back

to

the

device

driver

with

an

error

of

ENXIO.

If

the

SC_DID_NOT_CLEAR_Q

flag

is

set

in

the

scsi_buf.adap_q_status

field,

the

adapter

driver

has

not

cleared

its

queue

for

this

device.

When

this

condition

occurs,

the

adapter

driver

allows

the

device

driver

to

send

one

error

recovery

transaction

(request

sense)

that

has

the

field

scsi_buf.q_tag_msg

set

to

SC_NO_Q

and

the

field

scsi_buf.flags

set

to

SC_RESUME.

The

device

driver

can

then

notify

the

adapter

driver

to

clear

or

resume

its

queue

for

the

device

by

sending

a

SC_Q_CLR

or

SC_Q_RESUME

transaction.

If

the

device

driver

does

not

queue

multiple

transactions

to

the

device

(that

is,

the

SC_NO_Q

is

set

in

scsi_buf.q_tag_msg

),

then

the

adapter

clears

its

queue

on

error

and

sets

scsi_buf.adap_q_status

to

0.

2.

If

the

scsi_buf.bufstruct.b_flags

field

does

not

have

the

B_ERROR

flag

set,

then

no

error

is

being

reported.

However,

the

device

driver

should

examine

the

b_resid

field

to

check

for

cases

where

less

data

was

transferred

than

expected.

For

some

commands,

this

occurrence

might

not

represent

an

error.

The

device

driver

must

determine

if

an

error

has

occurred.

If

a

nonzero

b_resid

field

does

represent

an

error

condition,

then

the

device

queue

is

not

halted

by

the

adapter

device

driver.

It

is

possible

for

one

or

more

succeeding

queued

commands

to

be

sent

to

the

adapter

(and

possibly

the

device).

Recovering

from

this

situation

is

the

responsibility

of

the

device

driver.

3.

In

any

of

the

above

cases,

if

scsi_buf.bufstruct.b_flags

field

has

the

B_ERROR

flag

set,

then

the

queue

of

the

device

in

question

has

been

halted.

The

first

scsi_buf

structure

sent

to

recover

the

error

(or

continue

operations)

must

have

the

SC_RESUME

bit

set

in

the

scsi_buf.flags

field.

260

Kernel

Extensions

and

Device

Support

Programming

Concepts

A

Typical

Initiator-Mode

FCP

and

iSCSI

Driver

Transaction

Sequence

A

simplified

sequence

of

events

for

a

transaction

between

a

device

driver

and

an

adapter

device

driver

follows.

In

this

sequence,

routine

names

preceded

by

dd_

are

part

of

the

device

driver,

and

those

preceded

byscsi_

are

part

of

the

adapter

device

driver.

1.

The

device

driver

receives

a

call

to

its

dd_strategy

routine;

any

required

internal

queuing

occurs

in

this

routine.

The

dd_strategy

entry

point

then

triggers

the

operation

by

calling

the

dd_start

entry

point.

The

dd_start

routine

invokes

the

scsi_strategy

entry

point

by

calling

the

devstrategy

kernel

service

with

the

relevant

scsi_buf

structure

as

a

parameter.

2.

The

scsi_strategy

entry

point

initially

checks

the

scsi_buf

structure

for

validity.

These

checks

include

validating

the

devno

field,

matching

the

SCSI

ID

or

the

LUN

to

internal

tables

for

configuration

purposes,

and

validating

the

request

size.

3.

Although

the

adapter

device

driver

cannot

reorder

transactions,

it

does

perform

queue

chaining.

If

no

other

transactions

are

pending

for

the

requested

device,

the

scsi_strategy

routine

immediately

calls

the

scsi_start

routine

with

the

new

transaction.

If

there

are

other

transactions

pending,

the

new

transaction

is

added

to

the

tail

of

the

device

chain.

4.

At

each

interrupt,

the

scsi_intr

interrupt

handler

verifies

the

current

status.

The

adapter

device

driver

fills

in

the

scsi_buf

status_validity

field,

updating

the

scsi_status

and

adapter_status

fields

as

required.

The

adapter

device

driver

also

fills

in

the

bufstruct.b_resid

field

with

the

number

of

bytes

not

transferred

from

the

request.

If

all

the

data

was

transferred,

the

b_resid

field

is

set

to

a

value

of

0.

If

the

SCSI

adapter

driver

is

a

adapter

driver

and

autosense

data

is

returned

from

the

device,

then

the

adapter

driver

will

also

fill

in

the

adap_set_flags

and

autosense_buffer_ptr

fields

of

the

scsi_buf

structure.

When

a

transaction

completes,

the

scsi_intr

routine

causes

the

scsi_buf

entry

to

be

removed

from

the

device

queue

and

calls

the

iodone

kernel

service,

passing

the

just

dequeued

scsi_buf

structure

for

the

device

as

the

parameter.

The

scsi_start

routine

is

then

called

again

to

process

the

next

transaction

on

the

device

queue.

The

iodone

kernel

service

calls

the

device

driver

dd_iodone

entry

point,

signaling

the

device

driver

that

the

particular

transaction

has

completed.

5.

The

device

driver

dd_iodone

routine

investigates

the

I/O

completion

codes

in

the

scsi_buf

status

entries

and

performs

error

recovery,

if

required.

If

the

operation

completed

correctly,

the

device

driver

dequeues

the

original

buffer

structures.

It

calls

the

iodone

kernel

service

with

the

original

buffer

pointers

to

notify

the

originator

of

the

request.

Understanding

FCP

and

iSCSI

Device

Driver

Internal

Commands

During

initialization,

error

recovery,

and

open

or

close

operations,

device

drivers

initiate

some

transactions

not

directly

related

to

an

operating

system

request.

These

transactions

are

called

internal

commands

and

are

relatively

simple

to

handle.

Internal

commands

differ

from

operating

system-initiated

transactions

in

several

ways.

The

primary

difference

is

that

the

device

driver

is

required

to

generate

a

struct

buf

that

is

not

related

to

a

specific

request.

Also,

the

actual

commands

are

typically

more

control-oriented

than

data

transfer-related.

The

only

special

requirement

for

commands

with

short

data-phase

transfers

(less

than

or

equal

to

256

bytes)

is

that

the

device

driver

must

have

pinned

the

memory

being

transferred

into

or

out

of

system

memory

pages.

However,

due

to

system

hardware

considerations,

additional

precautions

must

be

taken

for

data

transfers

into

system

memory

pages

when

the

transfers

are

larger

than

256

bytes.

The

problem

is

that

any

system

memory

area

with

a

DMA

data

operation

in

progress

causes

the

entire

memory

page

that

contains

it

to

become

inaccessible.

As

a

result,

a

device

driver

that

initiates

an

internal

command

with

more

than

256

bytes

must

have

preallocated

and

pinned

an

area

of

some

multiple

whose

size

is

the

system

page

size.

The

driver

must

not

place

in

this

area

any

other

data

areas

that

it

may

need

to

access

while

I/O

is

being

performed

into

or

out

of

that

page.

Memory

pages

so

allocated

must

be

avoided

by

the

device

driver

from

the

moment

the

transaction

is

passed

to

the

adapter

device

driver

until

the

device

driver

iodone

routine

is

called

for

the

transaction

(and

for

any

other

transactions

to

those

pages).

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

261

Understanding

the

Execution

of

FCP

and

iSCSI

Initiator

I/O

Requests

During

normal

processing,

many

transactions

are

queued

in

the

device

driver.

As

the

device

driver

processes

these

transactions

and

passes

them

to

the

adapter

device

driver,

the

device

driver

moves

them

to

the

in-process

queue.

When

the

adapter

device

driver

returns

through

the

iodone

service

with

one

of

these

transactions,

the

device

driver

either

recovers

any

errors

on

the

transaction

or

returns

using

the

iodone

kernel

service

to

the

calling

level.

The

device

driver

can

send

only

one

scsi_buf

structure

per

call

to

the

adapter

device

driver.

Thus,

the

scsi_buf.bufstruct.av_forw

pointer

should

be

null

when

given

to

the

adapter

device

driver,

which

indicates

that

this

is

the

only

request.

The

device

driver

can

queue

multiple

scsi_buf

requests

by

making

multiple

calls

to

the

adapter

device

driver

strategy

routine.

Spanned

(Consolidated)

Commands

Some

kernel

operations

may

be

composed

of

sequential

operations

to

a

device.

For

example,

if

consecutive

blocks

are

written

to

disk,

blocks

might

or

might

not

be

in

physically

consecutive

buffer

pool

blocks.

To

enhance

the

transport

layer

performance,

the

device

driver

should

consolidate

multiple

queued

requests

when

possible

into

a

single

command.

To

allow

the

adapter

device

driver

the

ability

to

handle

the

scatter

and

gather

operations

required,

the

scsi_buf.bp

should

always

point

to

the

first

buf

structure

entry

for

the

spanned

transaction.

A

null-terminated

list

of

additional

struct

buf

entries

should

be

chained

from

the

first

field

through

the

buf.av_forw

field

to

give

the

adapter

device

driver

enough

information

to

perform

the

DMA

scatter

and

gather

operations

required.

This

information

must

include

at

least

the

buffer’s

starting

address,

length,

and

cross-memory

descriptor.

The

spanned

requests

should

always

be

for

requests

in

either

the

read

or

write

direction

but

not

both,

since

the

adapter

device

driver

must

be

given

a

single

command

to

handle

the

requests.

The

spanned

request

should

always

consist

of

complete

I/O

requests

(including

the

additional

struct

buf

entries).

The

device

driver

should

not

attempt

to

use

partial

requests

to

reach

the

maximum

transfer

size.

The

maximum

transfer

size

is

actually

adapter-dependent.

The

IOCINFO

ioctl

operation

can

be

used

to

discover

the

adapter

device

driver’s

maximum

allowable

transfer

size.

To

ease

the

design,

implementation,

and

testing

of

components

that

may

need

to

interact

with

multiple

adapter

device

drivers,

a

required

minimum

size

has

been

established

that

all

adapter

device

drivers

must

be

capable

of

supporting.

The

value

of

this

minimum/maximum

transfer

size

is

defined

as

the

following

value

in

the

/usr/include/sys/scsi.h

file:

SC_MAXREQUEST

/*

maximum

transfer

request

for

a

single

*/

/*

FCP

or

iSCSI

command

(in

bytes)

*/

If

a

transfer

size

larger

than

the

supported

maximum

is

attempted,

the

adapter

device

driver

returns

a

value

of

EINVAL

in

the

scsi_buf.bufstruct.b_error

field.

Due

to

system

hardware

requirements,

the

device

driver

must

consolidate

only

commands

that

are

memory

page-aligned

at

both

their

starting

and

ending

addresses.

Specifically,

this

applies

to

the

consolidation

of

inner

memory

buffers.

The

ending

address

of

the

first

buffer

and

the

starting

address

of

all

subsequent

buffers

should

be

memory

page-aligned.

However,

the

starting

address

of

the

first

memory

buffer

and

the

ending

address

of

the

last

do

not

need

to

be

aligned

so.

The

purpose

of

consolidating

transactions

is

to

decrease

the

number

of

commands

and

transport

layer

phases

required

to

perform

the

required

operation.

The

time

required

to

maintain

the

simple

chain

of

buf

structure

entries

is

significantly

less

than

the

overhead

of

multiple

(even

two)

transport

layer

transactions.

262

Kernel

Extensions

and

Device

Support

Programming

Concepts

Fragmented

Commands

Single

I/O

requests

larger

than

the

maximum

transfer

size

must

be

divided

into

smaller

requests

by

the

device

driver.

For

calls

to

a

device

driver’s

character

I/O

(read/write)

entry

points,

the

uphysio

kernel

service

can

be

used

to

break

up

these

requests.

For

a

fragmented

command

such

as

this,

the

scsi_buf.bp

field

should

be

null

so

that

the

adapter

device

driver

uses

only

the

information

in

the

scsi_buf

structure

to

prepare

for

the

DMA

operation.

FCP

and

iSCSI

Command

Tag

Queuing

Note:

This

operation

is

not

supported

by

all

I/O

controllers.

Command

tag

queuing

refers

to

queuing

multiple

commands

to

a

device.

Queuing

to

the

device

can

improve

performance

because

the

device

itself

determines

the

most

efficient

way

to

order

and

process

commands.

Devices

that

support

command

tag

queuing

can

be

divided

into

two

classes:

those

that

clear

their

queues

on

error

and

those

that

do

not.

Devices

that

do

not

clear

their

queues

on

error

resume

processing

of

queued

commands

when

the

error

condition

is

cleared

(either

by

receiving

the

next

command

for

NACA=0

error

recovery

or

by

receiving

a

Clear

ACA

task

management

command

for

NACA=1

error

recovery).

Devices

that

do

clear

their

queues

flush

all

commands

currently

outstanding.

Command

tag

queuing

requires

the

adapter,

the

device,

the

device

driver,

and

the

adapter

driver

to

support

this

capability.

For

a

device

driver

to

queue

multiple

commands

to

a

device

(that

supports

command

tag

queuing),

it

must

be

able

to

provide

at

least

one

of

the

following

values

in

the

scsi_buf.q_tag_msg:

v

SC_SIMPLE_Q

v

SC_HEAD_OF_Q

v

SC_ORDERED_Q

The

disk

device

driver

and

adapter

driver

do

support

this

capability.

This

implementation

provides

some

queuing-specific

changeable

attributes

for

disks

that

can

queue

commands.

With

this

information,

the

disk

device

driver

attempts

to

queue

to

the

disk,

first

by

queuing

commands

to

the

adapter

driver.

The

adapter

driver

then

queues

these

commands

to

the

adapter,

providing

that

the

adapter

supports

command

tag

queuing.

If

the

adapter

does

not

support

command

tag

queuing,

then

the

adapter

driver

sends

only

one

command

at

a

time

to

the

adapter

and

so

multiple

commands

are

not

queued

to

the

disk.

Understanding

the

scsi_buf

Structure

The

scsi_buf

structure

is

used

for

communication

between

the

device

driver

and

the

adapter

device

driver

during

an

initiator

I/O

request.

This

structure

is

passed

to

and

from

the

strategy

routine

in

the

same

way

a

standard

driver

uses

a

struct

buf

structure.

Fields

in

the

scsi_buf

Structure

The

scsi_buf

structure

contains

certain

fields

used

to

pass

a

command

and

associated

parameters

to

the

adapter

device

driver.

Other

fields

within

this

structure

are

used

to

pass

returned

status

back

to

the

device

driver.

The

scsi_buf

structure

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

Fields

in

the

scsi_buf

structure

are

used

as

follows:

v

Reserved

fields

should

be

set

to

a

value

of

0,

except

where

noted.

v

The

bufstruct

field

contains

a

copy

of

the

standard

buf

buffer

structure

that

documents

the

I/O

request.

Included

in

this

structure,

for

example,

are

the

buffer

address,

byte

count,

and

transfer

direction.

The

b_work

field

in

the

buf

structure

is

reserved

for

use

by

the

adapter

device

driver.

The

current

definition

of

the

buf

structure

is

in

the

/usr/include/sys/buf.h

include

file.

v

The

bp

field

points

to

the

original

buffer

structure

received

by

the

device

driver

from

the

caller,

if

any.

This

can

be

a

chain

of

entries

in

the

case

of

spanned

transfers

(commands

that

transfer

data

from

or

to

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

263

more

than

one

system-memory

buffer).

A

null

pointer

indicates

a

nonspanned

transfer.

The

null

value

specifically

tells

the

adapter

device

driver

that

all

the

information

needed

to

perform

the

DMA

data

transfer

is

contained

in

the

bufstruct

fields

of

the

scsi_buf

structure.

v

The

scsi_command

field,

defined

as

a

scsi_cmd

structure,

contains,

for

example,

the

SCSI

command

length,

SCSI

command,

and

a

flag

variable:

–

The

scsi_length

field

is

the

number

of

bytes

in

the

actual

SCSI

command.

This

is

normally

6,

10,

12,

or

16

(decimal).

–

The

FCP_flags

field

contains

the

following

bit

flags:

SC_NODISC

Do

not

allow

the

target

to

disconnect

during

this

command.

SC_ASYNC

Do

not

allow

the

adapter

to

negotiate

for

synchronous

transfer

to

the

device.

During

normal

use,

the

SC_NODISC

bit

should

not

be

set.

Setting

this

bit

allows

a

device

running

commands

to

monopolize

the

transport

layer.

Sometimes

it

is

desirable

for

a

particular

device

to

maintain

control

of

the

transport

layer

once

it

has

successfully

arbitrated

for

it;

for

instance,

when

this

is

the

only

device

on

the

transport

layer

or

the

only

device

that

will

be

in

use.

For

performance

reasons,

it

might

not

be

desirable

to

go

through

selections

again

to

save

transport

layer

overhead

on

each

command.

Also

during

normal

use,

the

SC_ASYNC

bit

must

not

be

set.

It

should

be

set

only

in

cases

where

a

previous

command

to

the

device

ended

in

an

unexpected

transport

free

condition.

This

condition

is

noted

as

SCSI_TRANSPORT_FAULT

in

the

adapter_status

field

of

the

scsi_cmd

structure.

Because

other

errors

might

also

result

in

the

SCSI_TRANSPORT_FAULT

flag

being

set,

the

SC_ASYNC

bit

should

only

be

set

on

the

last

retry

of

the

failed

command.

–

The

scsi_cdb

structure

contains

the

physical

SCSI

command

block.

The

6

to

16

bytes

of

a

single

SCSI

command

are

stored

in

consecutive

bytes,

with

the

op

code

identified

individually.

The

scsi_cdb

structure

contains

the

following

fields:

scsi_op_code

This

field

specifies

the

standard

SCSI

op

code

for

this

command.

scsi_bytes

This

field

contains

the

remaining

command-unique

bytes

of

the

command

block.

The

actual

number

of

bytes

depends

on

the

value

in

the

scsi_op_code

field.

v

The

timeout_value

field

specifies

the

time-out

limit

(in

seconds)

to

be

used

for

completion

of

this

command.

A

time-out

value

of

0

means

no

time-out

is

applied

to

this

I/O

request.

v

The

status_validity

field

contains

an

output

parameter

that

can

have

one

of

the

following

bit

flags

as

a

value:

SC_SCSI_ERROR

The

scsi_status

field

is

valid.

SC_ADAPTER_ERROR

The

adapter_status

field

is

valid.

v

The

scsi_status

field

in

the

scsi_buf

structure

is

an

output

parameter

that

provides

valid

command

completion

status

when

its

status_validity

bit

is

nonzero.

The

scsi_buf.bufstruct.b_error

field

should

be

set

to

EIO

any

time

the

scsi_status

field

is

valid.

Typical

status

values

include:

SC_GOOD_STATUS

The

target

successfully

completed

the

command.

SC_CHECK_CONDITION

The

target

is

reporting

an

error,

exception,

or

other

conditions.

SC_BUSY_STATUS

The

target

is

currently

transporting

and

cannot

accept

a

command

now.

264

Kernel

Extensions

and

Device

Support

Programming

Concepts

SC_RESERVATION_CONFLICT

The

target

is

reserved

by

another

initiator

and

cannot

be

accessed.

SC_COMMAND_TERMINATED

The

target

terminated

this

command

after

receiving

a

terminate

I/O

process

message

from

the

adapter.

SC_QUEUE_FULL

The

target’s

command

queue

is

full,

so

this

command

is

returned.

SC_ACA_ACTIVE

The

device

has

an

ACA

(auto

contingent

allegiance)

condition

that

requires

a

Clear

ACA

to

request

to

clear

it.

v

The

adapter_status

field

is

an

output

parameter

that

is

valid

when

its

status_validity

bit

is

nonzero.

The

scsi_buf.bufstruct.b_error

field

should

be

set

to

EIO

any

time

the

adapter_status

field

is

valid.

This

field

contains

generic

adapter

card

status.

It

is

intentionally

general

in

coverage

so

that

it

can

report

error

status

from

any

typical

adapter.

If

an

error

is

detected

while

an

command

is

running,

and

the

error

prevented

the

command

from

actually

being

sent

to

the

transport

layer

by

the

adapter,

then

the

error

should

be

processed

or

recovered,

or

both,

by

the

adapter

device

driver.

If

it

is

recovered

successfully

by

the

adapter

device

driver,

the

error

is

logged,

as

appropriate,

but

is

not

reflected

in

the

adapter_status

byte.

If

the

error

cannot

be

recovered

by

the

adapter

device

driver,

the

appropriate

adapter_status

bit

is

set

and

the

scsi_buf

structure

is

returned

to

the

device

driver

for

further

processing.

If

an

error

is

detected

after

the

command

was

actually

sent

to

the

device,

then

it

should

be

processed

or

recovered,

or

both,

by

the

device

driver.

For

error

logging,

the

adapter

device

driver

logs

transport

layer

and

adapter-related

conditions,

and

the

device

driver

logs

device-related

errors.

In

the

following

description,

a

capital

letter

(A)

after

the

error

name

indicates

that

the

adapter

device

driver

handles

error

logging.

A

capital

letter

(H)

indicates

that

the

device

driver

handles

error

logging.

Some

of

the

following

error

conditions

indicate

a

device

failure.

Others

are

transport

layer

or

adapter-related.

SCSI_HOST_IO_BUS_ERR

(A)

The

system

I/O

transport

layer

generated

or

detected

an

error

during

a

DMA

or

Programmed

I/O

(PIO)

transfer.

SCSI_TRANSPORT_FAULT

(H)

The

transport

protocol

or

hardware

was

unsuccessful.

SCSI_CMD_TIMEOUT

(H)

The

command

timed

out

before

completion.

SCSI_NO_DEVICE_RESPONSE

(H)

The

target

device

did

not

respond

to

selection

phase.

SCSI_ADAPTER_HDW_FAILURE

(A)

The

adapter

indicated

an

onboard

hardware

failure.

SCSI_ADAPTER_SFW_FAILURE

(A)

The

adapter

indicated

microcode

failure.

SCSI_FUSE_OR_TERMINAL_PWR

(A)

The

adapter

indicated

a

blown

terminator

fuse

or

bad

termination.

SCSI_TRANSPORT_RESET

(A)

The

adapter

indicated

the

transport

layer

has

been

reset.

SCSI_WW_NAME_CHANGE

(A)

The

adapter

indicated

the

device

at

this

SCSI

ID

has

a

new

world

wide

name.

For

AIX

5.2

with

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

265

5200-01

and

later,

if

Dynamic

Tracing

of

FC

Devices

is

enabled,

the

adapter

driver

has

detected

a

change

to

the

scsi_id

field

for

this

device

and

a

scsi_buf

structure

with

the

SC_DEV_RESTART

flag

can

be

sent

to

the

device.

For

more

information,

see

267.

Note:

When

Dynamic

Tracking

of

FC

Devices

is

enabled,

an

adapter

status

of

SCSI_WW_NAME_CHANGE

might

mean

that

the

SCSI

ID

of

a

given

world

wide

name

on

the

fabric

has

changed,

and

not

that

the

world

wide

name

changed.

An

adapter

status

of

SCSI_WW_NAME_CHANGE

should

be

interpreted

more

generally

as

a

situation

where

the

SCSI

ID-to-WWN

mapping

has

changed

when

dynamic

tracking

is

enabled

as

opposed

to

interpreting

this

literally

as

a

world

wide

name

change

for

this

SCSI

ID.

If

dynamic

tracking

is

disabled,

the

FC

adapter

driver

assumes

that

the

SCSI

ID-to-WWN

mapping

cannot

change.

If

a

cable

is

moved

from

remote

target

port

A

to

target

port

B,

and

target

port

B

assumes

the

SCSI

ID

that

previously

belonged

to

target

port

A,

then

from

the

perspective

of

the

driver

with

dynamic

tracking

disabled,

the

world

wide

name

at

this

SCSI

ID

has

changed.

With

dynamic

tracking

enabled,

the

general

error

recovery

logic

in

this

case

is

different.

The

SCSI

ID

is

considered

volatile,

so

devices

are

tracked

by

world

wide

name.

As

such,

all

queries

after

events

such

as

those

described

in

the

above

text,

are

based

on

world

wide

name.

The

situation

described

in

the

previous

paragraph

would

most

likely

result

in

a

SCSI_NO_DEVICE_RESPONSE

status,

since

it

would

be

determined

that

the

world

wide

name

of

port

A

is

no

longer

reachable.

If

a

cable

connected

to

port

A

was

instead

moved

from

one

switch

port

to

another,

the

SCSI

ID

of

port

A

on

the

remote

target

might

change.

The

FC

adapter

driver

will

return

SCSI_WW_NAME_CHANGE

in

this

case,

even

though

the

SCSI

ID

is

what

actually

changed,

and

not

the

world

wide

name.

SCSI_TRANSPORT_BUSY

(A)

The

adapter

indicated

the

transport

layer

is

busy.

SCSI_TRANSPORT_DEAD

(A)

The

adapter

indicated

the

transport

layer

currently

inoperative

and

is

likely

to

remain

this

way

for

an

extended

time.

v

The

add_status

field

contains

additional

device

status.

For

devices,

this

field

contains

the

Response

code

returned.

v

When

the

device

driver

queues

multiple

transactions

to

a

device,

the

adap_q_status

field

indicates

whether

or

not

the

adapter

driver

has

cleared

its

queue

for

this

device

after

an

error

has

occurred.

The

flag

of

SC_DID_NOT

CLEAR_Q

indicates

that

the

adapter

driver

has

not

cleared

its

queue

for

this

device

and

that

it

is

in

a

halted

state

(so

none

of

the

pending

queued

transactions

are

sent

to

the

device).

v

The

q_tag_msg

field

indicates

if

the

adapter

can

attempt

to

queue

this

transaction

to

the

device.

This

information

causes

the

adapter

to

fill

in

the

Queue

Tag

Message

Code

of

the

queue

tag

message

for

a

command.

The

following

values

are

valid

for

this

field:

SC_NO_Q

Specifies

that

the

adapter

does

not

send

a

queue

tag

message

for

this

command,

and

so

the

device

does

not

allow

more

than

one

command

on

its

command

queue.

This

value

must

be

used

for

all

commands

sent

to

devices

that

do

not

support

command

tag

queuing.

SC_SIMPLE_Q

Specifies

placing

this

command

in

the

device’s

command

queue.

The

device

determines

the

order

that

it

executes

commands

in

its

queue.

The

SCSI-2

specification

calls

this

value

the

″Simple

Queue

Tag

Message″.

SC_HEAD_OF_Q

Specifies

placing

this

command

first

in

the

device’s

command

queue.

This

command

does

not

preempt

an

active

command

at

the

device,

but

it

is

run

before

all

other

commands

in

the

command

queue.

The

SCSI-2

specification

calls

this

value

the

″Head

of

Queue

Tag

Message″.

266

Kernel

Extensions

and

Device

Support

Programming

Concepts

SC_ORDERED_Q

Specifies

placing

this

command

in

the

device’s

command

queue.

The

device

processes

these

commands

in

the

order

that

they

are

received.

The

SCSI-2

specification

calls

this

value

the

″Ordered

Queue

Tag

Message″.

SC_ACA_Q

Specifies

placing

this

command

in

the

device’s

command

queue,

when

the

device

has

an

ACA

(Auto

Contingent

Allegiance)

condition.

The

SCSI-3

Architecture

Model

calls

this

value

the

″ACA

task

attribute″.

Note:

Commands

with

the

value

of

SC_NO_Q

for

the

q_tag_msg

field

(except

for

request

sense

commands)

should

not

be

queued

to

a

device

whose

queue

contains

a

command

with

another

value

for

q_tag_msg.

If

commands

with

the

SC_NO_Q

value

(except

for

request

sense)

are

sent

to

the

device,

then

the

device

driver

must

make

sure

that

no

active

commands

are

using

different

values

for

q_tag_msg.

Similarly,

the

device

driver

must

also

make

sure

that

a

command

with

a

q_tag_msg

value

of

SC_ORDERED_Q,

SC_HEAD_Q,

or

SC_SIMPLE_Q

is

not

sent

to

a

device

that

has

a

command

with

the

q_tag_msg

field

of

SC_NO_Q.

v

The

flags

field

contains

bit

flags

sent

from

the

device

driver

to

the

adapter

device

driver.

The

following

flags

are

defined:

SC_CLEAR_ACA

When

set,

means

the

SCSI

adapter

driver

should

issue

a

Clear

ACA

task

management

request

for

this

ID/LUN.

This

flag

should

be

used

in

conjunction

with

either

the

SC_Q_CLR

or

SC_Q_RESUME

flags

to

clear

or

resume

the

SCSI

adapter

driver’s

queue

for

this

device.

If

neither

of

these

flags

is

used,

then

this

transaction

is

treated

as

if

the

SC_Q_RESUME

flag

is

also

set.

The

transaction

containing

the

SC_CLEAR_ACA

flag

setting

does

not

require

an

actual

SCSI

command

in

the

sc_buf.

If

this

transaction

contains

a

SCSI

command

then

it

will

be

processed

depending

on

whether

SC_Q_CLR

or

SC_Q_RESUME

is

set.

This

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

This

flag

is

valid

only

during

error

recovery

of

a

check

condition

or

command

terminated

at

a

command

tag

queuing.

SC_DELAY_CMD

When

set,

means

the

adapter

device

driver

should

delay

sending

this

command

(following

a

reset

or

BDR

to

this

device)

by

at

least

the

number

of

seconds

specified

to

the

adapter

device

driver

in

its

configuration

information.

For

devices

that

do

not

require

this

function,

this

flag

should

not

be

set.

SC_DEV_RESTART

If

a

scsi_buf

request

fails

with

a

status

of

SCSI_WW_NAME_CHANGE,

a

scsi_buf

request

with

the

SC_DEV_RESTART

flag

can

be

sent

if

the

device

driver

is

dynamic

tracking

capable.

For

AIX

5.2

with

5200-01

and

later,

if

Dynamic

Tracking

of

FC

Devices

is

enabled,

a

scsi_buf

request

with

SC_DEV_RESTART

performs

a

handshake,

indicating

that

the

device

driver

acknowledges

the

device

address

change

and

that

the

FC

adapter

driver

can

proceed

with

tracking

operations.

If

the

SC_DEV_RESTART

flag

is

set,

then

the

SC_Q_CLR

flag

must

also

be

set.

In

addition,

no

scsi

command

can

be

included

in

this

scsi_buf

structure.

Failure

to

meet

these

two

criteria

will

result

in

a

failure

with

adapter

status

of

SCSI_ADAPTER_SFW_FAILURE.

After

the

SC_DEV_RESTART

call

completes

successfully,

the

device

driver

performs

device

validation

procedures,

such

as

those

performed

during

an

open

(Test

Unit

Ready,

Inquiry,

Serial

Number

validation,

etc.),

in

order

to

confirm

the

identity

of

the

device

after

the

fabric

event.

If

an

SC_DEV_RESTART

call

fails

with

any

adapter

status,

the

SC_DEV_RESTART

call

can

be

retried

as

deemed

appropriate

by

the

device

driver,

because

a

future

retry

might

succeed.

SC_LUN_RESET

When

set,

means

the

SCSI

adapter

driver

should

issue

a

Lun

Reset

task

management

request

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

267

for

this

ID/LUN.

This

flag

should

be

used

in

conjunction

with

ethe

SC_Q_CLR

flag

flag.The

transaction

containing

this

flag

setting

does

allow

an

actual

command

to

be

sent

to

the

adapter

driver.

However,

this

transaction

must

have

the

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

If

the

transaction

containing

this

flag

setting

is

the

first

issued

by

the

device

driver

after

it

receives

an

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

also.

SC_Q_CLR

When

set,

means

the

adapter

driver

should

clear

its

transaction

queue

for

this

ID/LUN.

The

transaction

containing

this

flag

setting

does

not

require

an

actual

command

in

the

scsi_buf

because

it

is

flushed

back

to

the

device

driver

with

the

rest

of

the

transactions

for

this

ID/LUN.

However,

this

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

This

flag

is

valid

only

during

error

recovery

of

a

check

condition

or

command

ended

at

a

command

tag

queuing

device

when

the

SC_DID_NOT_CLR_Q

flag

is

set

in

the

scsi_buf.adap_q_status

field.

SC_Q_RESUME

When

set,

means

that

the

adapter

driver

should

resume

its

halted

transaction

queue

for

this

ID/LUN.

The

transaction

containing

this

flag

setting

does

not

require

an

actual

command

to

be

sent

to

the

adapter

driver.

However,

this

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

and

the

LUN

field

(scsi_buf.lun_id)

filled

in

with

the

device’s

SCSI

ID

and

logical

unit

number

(LUN).

If

the

transaction

containing

this

flag

setting

is

the

first

issued

by

the

device

driver

after

it

receives

an

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

also.

SC_RESUME

When

set,

means

the

adapter

device

driver

should

resume

transaction

queuing

for

this

ID/LUN.

Error

recovery

is

complete

after

a

SCIOLHALT

operation,

check

condition,

or

severe

transport

error.

This

flag

is

used

to

restart

the

adapter

device

driver

following

a

reported

error.

SC_TARGET_RESET

When

set,

means

the

SCSI

adapter

driver

should

issue

a

Target

Reset

task

management

request

for

this

ID/LUN.

This

flag

should

be

used

in

conjunction

with

ethe

SC_Q_CLR

flag

flag.The

transaction

containing

this

flag

setting

does

allow

an

actual

command

to

be

sent

to

the

adapter

driver.

However,

this

transaction

must

have

the

SCSI

ID

field

(scsi_buf.scsi_id)

filled

in

with

the

device’s

SCSI

ID.

If

the

transaction

containing

this

flag

setting

is

the

first

issued

by

the

device

driver

after

it

receives

an

error

(indicating

that

the

adapter

driver’s

queue

is

halted),

then

the

SC_RESUME

flag

must

be

set

also.

v

The

dev_flags

field

contains

additional

values

sent

from

the

device

driver

to

the

adapter

device

driver.

The

following

values

are

defined:

FC_CLASS1

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

1

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

FC_CLASS2

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

2

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

FC_CLASS3

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

3

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

268

Kernel

Extensions

and

Device

Support

Programming

Concepts

FC_CLASS4

When

set,

this

tells

the

SCSI

adapter

driver

that

it

should

issue

this

request

as

a

Fibre

Channel

Class

4

request.

If

the

SCSI

adapter

driver

does

not

support

this

class,

then

it

will

fail

the

scsi_buf

with

an

error

of

EINVAL.

If

no

Fibre

Channel

Class

is

specified

in

the

scsi_buf

then

the

SCSI

adapter

will

default

to

a

Fibre

Channel

Class.

v

The

add_work

field

is

reserved

for

use

by

the

adapter

device

driver.

v

The

adap_set_flags

field

contains

an

output

parameter

that

can

have

one

of

the

following

bit

flags

as

a

value:

SC_AUTOSENSE_DATA_VALID

Autosense

data

was

placed

in

the

autosense

buffer

referenced

by

the

autosense_buffer_ptr

field.

v

The

autosense_length

field

contains

the

length

in

bytes

of

the

SCSI

device

driver’s

sense

buffer,

which

is

referenced

via

the

autosense_buffer_ptr

field.

For

devices

this

field

must

be

non-zero,

otherwise

the

autosense

data

will

be

lost.

v

The

autosense_buffer_ptr

field

contains

the

address

of

the

SCSI

devices

driver’s

autosense

buffer

for

this

command.

For

devices

this

field

must

be

non-NULL,

otherwise

the

autosense

data

will

be

lost.

v

The

dev_burst_len

field

contains

the

burst

size

if

this

write

operation

in

bytes.

This

should

only

be

set

by

the

device

driver

if

it

h

as

negotiated

with

the

device

and

it

allows

burst

of

write

data

without

transfer

readys.

For

most

operations,

this

should

be

set

to

0.

v

The

scsi_id

field

contains

the

64-bit

SCSI

ID

for

this

device.

This

field

must

be

set

for

devices.

v

The

lun_id

field

contains

the

64-bit

lun

ID

for

this

device.

This

field

must

be

set

for

devices.

v

The

kernext_handle

field

contains

the

pointer

returned

from

the

kernext_handle

field

of

the

scsi_sciolst

argument

for

the

SCIOLSTART

ioctl

operation.

For

AIX

5.2

with

5200-01

and

later,

if

Dynamic

Tracking

of

FC

Devices

is

enabled,

the

kernext_handle

field

must

be

set

for

all

scsi_buf

calls

that

are

sent

to

the

the

adapter

driver.

Failure

to

do

so

results

in

a

failure

with

an

adapter

status

of

SCSI_ADAPTER_SFW_FAILURE.

v

The

version

field

contains

the

version

of

this

scsi_buf

structure.

Beginning

with

AIX

5.2,

this

field

should

be

set

to

a

value

of

SCSI_VERSION_1.

The

version

field

of

the

scsi_buf

structure

should

be

consistent

with

the

version

of

the

scsi_sciolst

argument

used

for

the

SCIOLSTART

ioctl

operation.

Other

FCP

and

iSCSI

Design

Considerations

The

following

topics

cover

design

considerations

of

device

and

adapter

device

drivers:

v

Responsibilities

of

the

Device

Driver

v

Options

to

the

openx

Subroutine

v

Using

the

SC_FORCED_OPEN

Option

v

Using

the

SC_RETAIN_RESERVATION

Option

v

Using

the

SC_DIAGNOSTIC

Option

v

Using

the

SC_NO_RESERVE

Option

v

Using

the

SC_SINGLE

Option

v

Closing

the

Device

v

Error

Processing

v

Length

of

Data

Transfer

for

Commands

v

Device

Driver

and

Adapter

Device

Driver

Interfaces

v

Performing

Dumps

Responsibilities

of

the

Device

Driver

FCP

and

iSCSI

device

drivers

are

responsible

for

the

following

actions:

v

Interfacing

with

block

I/O

and

logical-volume

device-driver

code

in

the

operating

system.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

269

v

Translating

I/O

requests

from

the

operating

system

into

commands

suitable

for

the

particular

device.

These

commands

are

then

given

to

the

adapter

device

driver

for

execution.

v

Issuing

any

and

all

commands

to

the

attached

device.

The

adapter

device

driver

sends

no

commands

except

those

it

is

directed

to

send

by

the

calling

device

driver.

v

Managing

device

reservations

and

releases.

In

the

operating

system,

it

is

assumed

that

other

initiators

might

be

active

on

the

transport

layer.

Usually,

the

device

driver

reserves

the

device

at

open

time

and

releases

it

at

close

time

(except

when

told

to

do

otherwise

through

parameters

in

the

device

driver

interface).

Once

the

device

is

reserved,

the

device

driver

must

be

prepared

to

reserve

the

device

again

whenever

a

Unit

Attention

condition

is

reported

through

the

request-sense

data.

Options

to

the

openx

Subroutine

Device

drivers

must

support

eight

defined

extended

options

in

their

open

routine

(that

is,

an

openx

subroutine).

Additional

extended

options

to

the

open

are

also

allowed,

but

they

must

not

conflict

with

predefined

open

options.

The

defined

extended

options

are

bit

flags

in

the

ext

open

parameter.

These

options

can

be

specified

singly

or

in

combination

with

each

other.

The

required

ext

options

are

defined

in

the

/usr/include/sys/scsi.h

header

file

and

can

have

one

of

the

following

values:

SC_FORCED_OPEN

Do

not

honor

device

reservation-conflict

status.

SC_RETAIN_RESERVATION

Do

not

release

device

on

close.

SC_DIAGNOSTIC

Enter

diagnostic

mode

for

this

device.

SC_NO_RESERVE

Prevents

the

reservation

of

the

device

during

an

openx

subroutine

call

to

that

device.

Allows

multiple

hosts

to

share

a

device.

SC_SINGLE

Places

the

selected

device

in

Exclusive

Access

mode.

SC_RESV_04

Reserved

for

future

expansion.

SC_RESV_05

Reserved

for

future

expansion.

SC_RESV_06

Reserved

for

future

expansion.

SC_RESV_07

Reserved

for

future

expansion.

SC_RESV_08

Reserved

for

future

expansion.

Using

the

SC_FORCED_OPEN

Option

The

SC_FORCED_OPEN

option

causes

the

device

driver

to

call

the

adapter

device

driver’s

transport

Device

Reset

ioctl

(SCIOLRESET)

operation

on

the

first

open.

This

forces

the

device

to

release

another

initiator’s

reservation.

After

the

SCIOLRESET

command

is

completed,

other

commands

are

sent

as

in

a

normal

open.

If

any

of

the

commands

fail

due

to

a

reservation

conflict,

the

open

registers

the

failure

as

an

EBUSY

status.

This

is

also

the

result

if

a

reservation

conflict

occurs

during

a

normal

open.

The

device

driver

should

require

the

caller

to

have

appropriate

authority

to

request

the

SC_FORCED_OPEN

option

because

this

request

can

force

a

device

to

drop

a

reservation.

If

the

caller

attempts

to

initiate

this

system

call

without

the

proper

authority,

the

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

270

Kernel

Extensions

and

Device

Support

Programming

Concepts

Using

the

SC_RETAIN_RESERVATION

Option

The

SC_RETAIN_RESERVATION

option

causes

the

device

driver

not

to

issue

the

release

command

during

the

close

of

the

device.

This

guarantees

a

calling

program

control

of

the

device

(using

reservation)

through

open

and

close

cycles.

For

shared

devices

(for

example,

disk

or

CD-ROM),

the

device

driver

must

OR

together

this

option

for

all

opens

to

a

given

device.

If

any

caller

requests

this

option,

the

close

routine

does

not

issue

the

release

even

if

other

opens

to

the

device

do

not

set

SC_RETAIN_RESERVATION.

The

device

driver

should

require

the

caller

to

have

appropriate

authority

to

request

the

SC_RETAIN_RESERVATION

option

because

this

request

can

allow

a

program

to

monopolize

a

device

(for

example,

if

this

is

a

nonshared

device).

If

the

caller

attempts

to

initiate

this

system

call

without

the

proper

authority,

the

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

Using

the

SC_DIAGNOSTIC

Option

The

SC_DIAGNOSTIC

option

causes

the

device

driver

to

enter

Diagnostic

mode

for

the

given

device.

This

option

directs

the

device

driver

to

perform

only

minimal

operations

to

open

a

logical

path

to

the

device.

No

commands

should

be

sent

to

the

device

in

the

open

or

close

routine

when

the

device

is

in

Diagnostic

mode.

One

or

more

ioctl

operations

should

be

provided

by

the

device

driver

to

allow

the

caller

to

issue

commands

to

the

attached

device

for

diagnostic

purposes.

The

SC_DIAGNOSTIC

option

gives

the

caller

an

exclusive

open

to

the

selected

device.

This

option

requires

appropriate

authority

to

run.

If

the

caller

attempts

to

execute

this

system

call

without

the

proper

authority,

the

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

The

SC_DIAGNOSTIC

option

may

be

executed

only

if

the

device

is

not

already

opened

for

normal

operation.

If

this

ioctl

operation

is

attempted

when

the

device

is

already

opened,

or

if

an

openx

call

with

the

SC_DIAGNOSTIC

option

is

already

in

progress,

a

return

value

of

-1

should

be

passed,

with

the

errno

global

variable

set

to

a

value

of

EACCES.

Once

successfully

opened

with

the

SC_DIAGNOSTIC

flag,

the

device

driver

is

placed

in

Diagnostic

mode

for

the

selected

device.

Using

the

SC_NO_RESERVE

Option

The

SC_NO_RESERVE

option

causes

the

device

driver

not

to

issue

the

reserve

command

during

the

opening

of

the

device

and

not

to

issue

the

release

command

during

the

close

of

the

device.

This

allows

multiple

hosts

to

share

the

device.

The

device

driver

should

require

the

caller

to

have

appropriate

authority

to

request

the

SC_NO_RESERVE

option,

because

this

request

allows

other

hosts

to

modify

data

on

the

device.

If

a

caller

does

this

kind

of

request

then

the

caller

must

ensure

data

integrity

between

multiple

hosts.

If

the

caller

attempts

to

execute

this

system

call

without

the

proper

authority,

the

device

driver

should

return

a

value

of

-1,

with

the

errno

global

variable

set

to

a

value

of

EPERM.

Using

the

SC_SINGLE

Option

The

SC_SINGLE

option

causes

the

device

driver

to

issue

a

normal

open,

but

does

not

allow

another

caller

to

issue

another

open

until

the

first

caller

has

closed

the

device.

This

request

gives

the

caller

an

exclusive

open

to

the

selected

device.

If

this

openx

is

attempted

when

the

device

is

already

open,

a

return

value

of

-1

is

passed,

with

the

errno

global

variable

set

to

a

value

of

EBUSY.

Once

successfully

opened,

the

device

is

placed

in

Exclusive

Access

mode.

If

another

caller

tries

to

do

any

type

of

open,

a

return

value

of

-1

is

passed,

with

the

errno

global

variable

set

to

a

value

of

EACCES.

The

remaining

options

for

the

ext

parameter

are

reserved

for

future

requirements.

The

following

table

shows

how

the

various

combinations

of

ext

options

should

be

handled

in

the

device

driver.

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

271

EXT

OPTIONS

openx

ext

option

Device

Driver

Action

Open

Close

none

normal

normal

diag

no

commands

no

commands

diag

+

force

issue

SCIOLRESET;

otherwise,

no

commands

issued

no

commands

diag

+

force

+

no_reserve

issue

SCIOLRESET;

otherwise,

no

commands

issued

no

commands

diag

+

force

+

no_reserve

+

single

issue

SCIOLRESET;

otherwise,

no

commands

issued.

no

commands

diag

+

force

+

retain

issue

SCIOLRESET;

otherwise,

no

commands

issued

no

commands

diag

+

force

+

retain

+

no_reserve

issue

SCIOLRESET;

otherwise,

no

commands

issued

no

commands

diag

+

force

+

retain

+

no_reserve

+

single

issue

SCIOLRESET;

otherwise,

no

commands

issued

no

commands

diag

+

force

+

retain

+

single

issue

SCIOLRESET;

otherwise,

no

commands

issued

no

commands

diag

+

force

+

single

issue

SCIOLRESET;

otherwise,

no

commands

issued

no

commands

diag

+

no_reserve

no

commands

no

commands

diag

+

retain

no

commands

no

commands

diag

+

retain

+

no_reserve

no

commands

no

commands

diag

+

retain

+

no_reserve

+

single

no

commands

no

commands

diag

+

retain

+

single

no

commands

no

commands

diag

+

single

no

commands

no

commands

diag

+

single

+

no_reserve

no

commands

no

commands

force

normal,

except

SCIOLRESET

issued

prior

to

any

commands.

normal

force

+

no_reserve

normal,

except

SCIOLRESET

issued

prior

to

any

commands.

No

RESERVE

command

issued

normal

except

no

RELEASE

force

+

retain

normal,

except

SCIOLRESET

issued

prior

to

any

commands

no

RELEASE

force

+

retain

+

no_reserve

normal

except

SCIOLRESET

issued

prior

to

any

commands.

No

RESERVE

command

issued.

no

RELEASE

force

+

retain

+

no_reserve

+

single

normal,

except

SCIOLRESET

issued

prior

to

any

commands.

No

RESERVE

command

issued.

no

RELEASE

force

+

retain

+

single

normal,

except

SCIOLRESET

issued

prior

to

any

commands.

no

RELEASE

force

+

single

normal,

except

SCIOLRESET

issued

prior

to

any

commands.

normal

force

+

single

+

no_reserve

normal,

except

SCIOLRESET

issued

prior

to

any

commands.

No

RESERVE

command

issued

no

RELEASE

no_reserve

no

RESERVE

no

RELEASE

272

Kernel

Extensions

and

Device

Support

Programming

Concepts

EXT

OPTIONS

openx

ext

option

Device

Driver

Action

Open

Close

retain

normal

no

RELEASE

retain

+

no_reserve

no

RESERVE

no

RELEASE

retain

+

single

normal

no

RELEASE

retain

+

single

+

no_reserve

normal,

except

no

RESERVE

command

issued

no

RELEASE

single

normal

normal

single

+

no_reserve

no

RESERVE

no

RELEASE

Closing

the

Device

When

a

device

driver

is

preparing

to

close

a

device

through

the

adapter

device

driver,

it

must

ensure

that

all

transactions

are

complete.

When

the

adapter

device

driver

receives

a

SCIOLSTOP

ioctl

operation

and

there

are

pending

I/O

requests,

the

ioctl

operation

does

not

return

until

all

have

completed.

New

requests

received

during

this

time

are

rejected

from

the

adapter

device

driver’s

ddstrategy

routine.

Error

Processing

It

is

the

responsibility

of

the

device

driver

to

process

check

conditions

and

other

returned

errors

properly.

The

adapter

device

driver

only

passes

commands

without

otherwise

processing

them

and

is

not

responsible

for

device

error

recovery.

Length

of

Data

Transfer

for

Commands

Commands

initiated

by

the

device

driver

internally

or

as

subordinates

to

a

transaction

from

above

must

have

data

phase

transfers

of

256

bytes

or

less

to

prevent

DMA/CPU

memory

conflicts.

The

length

indicates

to

the

adapter

device

driver

that

data

phase

transfers

are

to

be

handled

internally

in

its

address

space.

This

is

required

to

prevent

DMA/CPU

memory

conflicts

for

the

device

driver.

The

adapter

device

driver

specifically

interprets

a

byte

count

of

256

or

less

as

an

indication

that

it

can

not

perform

data-phase

DMA

transfers

directly

to

or

from

the

destination

buffer.

The

actual

DMA

transfer

goes

to

a

dummy

buffer

inside

the

adapter

device

driver

and

then

is

block-copied

to

the

destination

buffer.

Internal

device

driver

operations

that

typically

have

small

data-transfer

phases

are

control-type

commands,

such

as

Mode

select,

Mode

sense,

and

Request

sense.

However,

this

discussion

applies

to

any

command

received

by

the

adapter

device

driver

that

has

a

data-phase

size

of

256

bytes

or

less.

Internal

commands

with

data

phases

larger

than

256

bytes

require

the

device

driver

to

allocate

specifically

the

required

memory

on

the

process

level.

The

memory

pages

containing

this

memory

cannot

be

accessed

in

any

way

by

the

CPU

(that

is,

the

device

driver)

from

the

time

the

transaction

is

passed

to

the

adapter

device

driver

until

the

device

driver

receives

the

iodone

call

for

the

transaction.

Device

Driver

and

Adapter

Device

Driver

Interfaces

The

device

drivers

can

have

both

character

(raw)

and

block

special

files

in

the

/dev

directory.

The

adapter

device

driver

has

only

character

(raw)

special

files

in

the

/dev

directory

and

has

only

the

ddconfig,

ddopen,

ddclose,

dddump,

and

ddioctl

entry

points

available

to

operating

system

programs.

The

ddread

and

ddwrite

entry

points

are

not

implemented.

Internally,

the

devsw

table

has

entry

points

for

the

ddconfig,

ddopen,

ddclose,

dddump,

ddioctl,

and

ddstrat

routines.

The

device

drivers

pass

their

commands

to

the

adapter

device

driver

by

calling

the

adapter

device

driver

ddstrat

routine.

(This

routine

is

unavailable

to

other

operating

system

programs

due

to

the

lack

of

a

block-device

special

file.)

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

273

Access

to

the

adapter

device

driver’s

ddconfig,

ddopen,

ddclose,

dddump,

ddioctl,

and

ddstrat

entry

points

by

the

device

drivers

is

performed

through

the

kernel

services

provided.

These

include

such

services

as

fp_opendev,

fp_close,

fp_ioctl,

devdump,

and

devstrat.

Performing

Dumps

A

adapter

device

driver

must

have

a

dddump

entry

point

if

it

is

used

to

access

a

system

dump

device.

A

device

driver

must

have

a

dddump

entry

point

if

it

drives

a

dump

device.

Examples

of

dump

devices

are

disks

and

tapes.

Note:

Adapter-device-driver

writers

should

be

aware

that

system

services

providing

interrupt

and

timer

services

are

unavailable

for

use

in

the

dump

routine.

Kernel

DMA

services

are

assumed

to

be

available

for

use

by

the

dump

routine.

The

adapter

device

driver

should

be

designed

to

ignore

extra

DUMPINIT

and

DUMPSTART

commands

to

the

dddump

entry

point.

The

DUMPQUERY

option

should

return

a

minimum

transfer

size

of

0

bytes,

and

a

maximum

transfer

size

equal

to

the

maximum

transfer

size

supported

by

the

adapter

device

driver.

Calls

to

the

adapter

device

driver

DUMPWRITE

option

should

use

the

arg

parameter

as

a

pointer

to

the

scsi_buf

structure

to

be

processed.

Using

this

interface,

a

write

command

can

be

executed

on

a

previously

started

(opened)

target

device.

The

uiop

parameter

is

ignored

by

the

adapter

device

driver

during

the

DUMPWRITE

command.

Spanned,

or

consolidated,

commands

are

not

supported

using

the

DUMPWRITE

option.

Gathered

write

commands

are

also

not

supported

using

the

DUMPWRITE

option.

No

queuing

of

scsi_buf

structures

is

supported

during

dump

processing

because

the

dump

routine

runs

essentially

as

a

subroutine

call

from

the

caller’s

dump

routine.

Control

is

returned

when

the

entire

scsi_buf

structure

has

been

processed.

Note:

Also,

both

adapter-device-driver

and

device-driver

writers

should

be

aware

that

any

error

occurring

during

the

DUMPWRITE

option

is

considered

unsuccessful.

Therefore,

no

error

recovery

is

employed

during

the

DUMPWRITE.

Return

values

from

the

call

to

the

dddump

routine

indicate

the

specific

nature

of

the

failure.

Successful

completion

of

the

selected

operation

is

indicated

by

a

0

return

value

to

the

subroutine.

Unsuccessful

completion

is

indicated

by

a

return

code

set

to

one

of

the

following

values

for

the

errno

global

variable.

The

various

scsi_buf

status

fields,

including

the

b_error

field,

are

not

set

by

the

adapter

device

driver

at

completion

of

the

DUMPWRITE

command.

Error

logging

is,

of

necessity,

not

supported

during

the

dump.

v

An

errno

value

of

EINVAL

indicates

that

a

request

that

was

not

valid

passed

to

the

adapter

device

driver,

such

as

to

attempt

a

DUMPSTART

command

before

successfully

executing

a

DUMPINIT

command.

v

An

errno

value

of

EIO

indicates

that

the

adapter

device

driver

was

unable

to

complete

the

command

due

to

a

lack

of

required

resources

or

an

I/O

error.

v

An

errno

value

of

ETIMEDOUT

indicates

that

the

adapter

did

not

respond

with

completion

status

before

the

passed

command

time-out

value

expired.

Required

FCP

and

iSCSI

Adapter

Device

Driver

ioctl

Commands

Various

ioctl

operations

must

be

performed

for

proper

operation

of

the

adapter

device

driver.

The

ioctl

operations

described

here

are

the

minimum

set

of

commands

the

adapter

device

driver

must

implement

to

support

device

drivers.

Other

operations

might

be

required

in

the

adapter

device

driver

to

support,

for

example,

system

management

facilities

and

diagnostics.

Device

driver

writers

also

need

to

understand

these

ioctl

operations.

Every

adapter

device

driver

must

support

the

IOCINFO

ioctl

operation.

The

structure

to

be

returned

to

the

caller

is

the

devinfo

structure,

including

the

union

definition

for

the

adapter,

which

can

be

found

in

the

/usr/include/sys/devinfo.h

file.

The

device

driver

should

request

the

IOCINFO

ioctl

operation

(probably

during

its

open

routine)

to

get

the

maximum

transfer

size

of

the

adapter.

274

Kernel

Extensions

and

Device

Support

Programming

Concepts

Note:

The

adapter

device

driver

ioctl

operations

can

only

be

called

from

the

process

level.

They

cannot

be

executed

from

a

call

on

any

more

favored

priority

levels.

Attempting

to

call

them

from

a

more

favored

priority

level

can

result

in

a

system

crash.

Initiator-Mode

ioctl

Commands

The

following

SCIOLSTART

and

SCIOLSTOP

operations

must

be

sent

by

the

device

driver

(for

the

open

and

close

routines,

respectively)

for

each

device.

They

cause

the

adapter

device

driver

to

allocate

and

initialize

internal

resources.

The

SCIOLHALT

ioctl

operation

is

used

to

abort

pending

or

running

commands,

usually

after

signal

processing

by

the

device

driver.

This

might

be

used

by

a

device

driver

to

end

an

operation

instead

of

waiting

for

completion

or

a

time

out.

The

SCIOLRESET

operation

is

provided

for

clearing

device

hard

errors

and

competing

initiator

reservations

during

open

processing

by

the

device

driver.

The

following

information

is

provided

on

the

various

ioctl

operations:

v

SCIOLSTART

v

SCIOLSTOP

v

SCIOLHALT

v

SCIOLRESET

v

SCIOLCMD

v

SCIOLNMSRV

v

SCIOLQWWN

v

SCIOLPAYLD

v

SCIOLCHBA

v

SCIOLPASSTHRUHBA

For

more

information

on

these

ioctl

operations,

see

“FCP

and

iSCSI

Adapter

ioctl

Operations”

on

page

241.

Initiator-Mode

ioctl

Command

used

by

FCP

Device

Drivers

SCIOLEVENT

For

initiator

mode,

the

FCP

device

driver

can

issue

an

SCIOLEVENT

ioctl

operation

to

register

for

receiving

asynchronous

event

status

from

the

FCP

adapter

device

driver

for

a

particular

device

instance.

This

is

an

optional

call

for

the

FCP

device

driver,

and

is

optionally

supported

for

the

FCP

adapter

device

driver.

A

failing

return

code

from

this

command,

in

the

absence

of

any

programming

error,

indicates

it

is

not

supported.

If

the

FCP

device

driver

requires

this

function,

it

must

check

the

return

code

to

verify

the

FCP

adapter

device

driver

supports

it.

Only

a

kernel

process

or

device

driver

can

invoke

these

ioctls.

If

attempted

by

a

user

process,

the

ioctl

will

fail,

and

the

errno

global

variable

will

be

set

to

EPERM.

The

event

registration

performed

by

this

ioctl

operation

is

allowed

once

per

device

session.

Only

the

first

SCIOLEVENT

ioctl

operation

is

accepted

after

the

device

session

is

opened.

Succeeding

SCIOLEVENT

ioctl

operations

will

fail,

and

the

errno

global

variable

will

be

set

to

EINVAL.

The

event

registration

is

canceled

automatically

when

the

device

session

is

closed.

The

arg

parameter

to

the

SCIOLEVENT

ioctl

operation

should

be

set

to

the

address

of

an

scsi_event_struct

structure,

which

is

defined

in

the

/usr/include/sys/scsi_buf.h

file.

The

following

parameters

are

supported:

Chapter

13.

Fibre

Channel

Protocol

for

SCSI

and

iSCSI

Subsystem

275

scsi_id

The

caller

sets

id

to

the

SCSI

ID

or

SCSI

ID

alias

of

the

attached

target

device

for

initiator-mode.

For

target-mode,

the

caller

sets

the

id

to

the

SCSI

ID

or

SCSI

ID

alias

of

the

attached

initiator

device.

lun_id

The

caller

sets

the

lun

field

to

the

LUN

of

the

attached

target

device

for

initiator-mode.

For

target-mode,

the

caller

sets

the

lun

field

to

0.

mode

Identifies

whether

the

initiator-mode

or

target-mode

device

is

being

registered.

These

values

are

possible:

SC_IM_MODE

This

is

an

initiator-mode

device.

SC_TM_MODE

This

is

a

target-mode

device.

async_correlator

The

caller

places

in

this

optional

field

a

value,

which

is

saved

by

the

FCP

adapter

device

driver

and

returned

when

an

event

occurs

in

this

field

in

the

scsi_event_info

structure.

This

structure

is

defined

in

the

/user/include/sys/scsi_buf.h.

async_func

The

caller

fills

in

the

address

of

a

pinned

routine

which

the

FCP

adapter

device

driver

calls

whenever

asynchronous

event

status

is

available.

The

FCP

adapter

device

driver

passes

a

pointer

to

a

scsi_event_info

structure

to

the

caller’s

async_func

routine.

world_wide_name

For

FCP

devices,

the

caller

sets

the

world_wide_name

field

to

the

World

Wide

Name

of

the

attached

target

device

for

initiator-mode.

node_name

For

FCP

devices,

the

caller

sets

the

node_name

field

to

the

Node

Name

of

the

attached

target

device

for

initiator-mode.

Note:

All

reserved

fields

should

be

set

to

0

by

the

caller.

The

following

values

for

the

errno

global

variable

are

supported:

0

Indicates

successful

completion.

EINVAL

An

SCIOLSTART

has

not

been

issued

to

this

device

instance,

or

this

device

is

already

registered

for

async

events.

EPERM

Indicates

the

caller

is

not

running

in

kernel

mode,

which

is

the

only

mode

allowed

to

execute

this

operation.

Related

Information

Logical

File

System

Kernel

Services.

scdisk

FCP

Device

Driver

and

FCP

Adapter

Device

Driver

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

276

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

14.

Integrated

Device

Electronics

(IDE)

Subsystem

This

overview

describes

the

interface

between

an

Integrated

Device

Electronics

(IDE)

device

driver

and

an

IDE

adapter

device

driver.

It

is

directed

toward

those

designing

and

writing

an

IDE

device

driver

that

interfaces

with

an

existing

IDE

adapter

device

driver.

It

is

also

meant

for

those

designing

and

writing

an

IDE

adapter

device

driver

that

interfaces

with

existing

IDE

device

drivers.

The

main

topics

covered

in

this

overview

are:

v

Responsibilities

of

the

IDE

Adapter

Device

Driver

v

Responsibilities

of

the

IDE

Device

Driver

v

Communication

Between

IDE

Device

Drivers

and

IDE

Adapter

Device

Drivers

This

section

frequently

refers

to

both

an

IDE

device

driver

and

an

IDE

adapter

device

driver.

These

two

distinct

device

drivers

work

together

in

a

layered

approach

to

support

attachment

of

a

range

of

IDE

devices.

The

IDE

adapter

device

driver

is

the

lower

device

driver

of

the

pair,

and

the

IDE

device

driver

is

the

upper

device

driver.

Responsibilities

of

the

IDE

Adapter

Device

Driver

The

IDE

adapter

device

driver

is

the

software

interface

to

the

system

hardware.

This

hardware

includes

the

IDE

bus

hardware

plus

any

other

system

I/O

hardware

required

to

run

an

I/O

request.

The

IDE

adapter

device

driver

hides

the

details

of

the

I/O

hardware

from

the

IDE

device

driver.

The

design

of

the

software

interface

allows

a

user

with

limited

knowledge

of

the

system

hardware

to

write

the

upper

device

driver.

The

IDE

adapter

device

driver

manages

the

IDE

bus,

but

not

the

IDE

devices.

It

can

send

and

receive

IDE

commands,

but

it

cannot

interpret

the

contents

of

the

command.

The

lower

driver

also

provides

recovery

and

logging

for

errors

related

to

the

IDE

bus

and

system

I/O

hardware.

Management

of

the

device

specifics

is

left

to

the

IDE

device

driver.

The

interface

of

the

two

drivers

allows

the

upper

driver

to

communicate

with

different

IDE

bus

adapters

without

requiring

special

code

paths

for

each

adapter.

Responsibilities

of

the

IDE

Device

Driver

The

IDE

device

driver

provides

the

rest

of

the

operating

system

with

the

software

interface

to

a

given

IDE

device

or

device

class.

The

upper

layer

recognizes

which

IDE

commands

are

required

to

control

a

particular

IDE

device

or

device

class.

The

IDE

device

driver

builds

I/O

requests

containing

device

IDE

commands

and

sends

them

to

the

IDE

adapter

device

driver

in

the

sequence

needed

to

operate

the

device

successfully.

The

IDE

device

driver

cannot

manage

adapter

resources.

Specifics

about

the

adapter

and

system

hardware

are

left

to

the

lower

layer.

The

IDE

device

driver

also

provides

command

retries

and

logging

for

errors

related

to

the

IDE

device

it

controls.

The

operating

system

provides

several

kernel

services

allowing

the

IDE

device

driver

to

communicate

with

IDE

adapter

device

driver

entry

points

without

having

the

actual

name

or

address

of

those

entry

points.

See

“Logical

File

System

Kernel

Services”

on

page

65

for

more

information.

Communication

Between

IDE

Device

Drivers

and

IDE

Adapter

Device

Drivers

The

interface

between

the

IDE

device

driver

and

the

IDE

adapter

device

driver

is

accessed

through

calls

to

the

IDE

adapter

device

driver

open,

close,

ioctl,

and

strategy

subroutines.

I/O

requests

are

queued

to

the

IDE

adapter

device

driver

through

calls

to

its

strategy

subroutine

entry

point.

©

Copyright

IBM

Corp.

1997,

2004

277

Communication

between

the

IDE

device

driver

and

the

IDE

adapter

device

driver

for

a

particular

I/O

request

uses

the

ataide_buf

structure,

which

is

passed

to

and

from

the

strategy

subroutine

in

the

same

way

a

standard

driver

uses

a

struct

buf

structure.

The

ataide_buf.ata

structure

represents

the

ATA

or

ATAPI

command

that

the

adapter

driver

must

send

to

the

specified

IDE

device.

The

ataide_buf.status_validity

field

in

the

ataide_buf.ata

structure

contains

completion

status

returned

to

the

IDE

device

driver.

IDE

Error

Recovery

If

an

error,

such

as

a

check

condition

or

hardware

failure

occurs,

the

transaction

active

during

the

error

is

returned

with

the

ataide_buf.bufstruct.b_error

field

set

to

EIO.

The

IDE

device

driver

will

process

the

error

by

gathering

hardware

and

software

status.

In

many

cases,

the

IDE

device

driver

only

needs

to

retry

the

unsuccessful

operation.

The

IDE

adapter

driver

should

never

retry

an

IDE

command

on

error

after

the

command

has

successfully

been

given

to

the

adapter.

The

consequences

for

the

adapter

driver

retrying

an

IDE

command

at

this

point

range

from

minimal

to

catastrophic,

depending

upon

the

type

of

device.

Commands

for

certain

devices

cannot

be

retried

immediately

after

a

failure

(for

example,

tapes

and

other

sequential

access

devices).

If

such

an

error

occurs,

the

failed

command

returns

an

appropriate

error

status

with

an

iodone

call

to

the

IDE

device

driver

for

error

recovery.

Only

the

IDE

device

driver

that

originally

issued

the

command

knows

if

the

command

can

be

retried

on

the

device.

The

IDE

adapter

driver

must

only

retry

commands

that

were

never

successfully

transferred

to

the

adapter.

In

this

case,

if

retries

are

successful,

the

ataide_buf

status

should

not

reflect

an

error.

However,

the

IDE

adapter

driver

should

perform

error

logging

on

the

retried

condition.

Analyzing

Returned

Status

The

following

order

of

precedence

should

be

followed

by

IDE

device

drivers

when

analyzing

the

returned

status:

1.

If

the

ataide_buf.bufstruct.b_flags

field

has

the

B_ERROR

flag

set,

then

an

error

has

occurred

and

the

ataide_buf.bufstruct.b_error

field

contains

a

valid

errno

value.

If

the

b_error

field

contains

the

ENXIO

value,

either

the

command

needs

to

be

restarted

or

it

was

canceled

at

the

request

of

the

IDE

device

driver.

If

the

b_error

field

contains

the

EIO

value,

then

either

one

or

no

flag

is

set

in

the

ataide_buf.status_validity

field.

If

a

flag

is

set,

an

error

in

either

the

ata.status

or

ata.errval

field

is

the

cause.

2.

If

the

ataide_buf.bufstruct.b_flags

field

does

not

have

the

B_ERROR

flag

set,

then

no

error

is

being

reported.

However,

the

IDE

device

driver

should

examine

the

b_resid

field

to

check

for

cases

where

less

data

was

transferred

than

expected.

For

some

IDE

commands,

this

occurrence

might

not

represent

an

error.

The

IDE

device

driver

must

determine

if

an

error

has

occurred.

There

is

a

special

case

when

b_resid

will

be

nonzero.

The

DMA

service

routine

might

not

be

able

to

map

all

virtual

to

real

memory

pages

for

a

single

DMA

transfer.

This

might

occur

when

sending

close

to

the

maximum

amount

of

data

that

the

adapter

driver

supports.

In

this

case,

the

adapter

driver

transfers

as

much

of

the

data

that

can

be

mapped

by

the

DMA

service.

The

unmapped

size

is

returned

in

the

b_resid

field,

and

the

status_validity

will

have

the

ATA_IDE_DMA_NORES

bit

set.

The

IDE

device

driver

is

expected

to

send

the

data

represented

by

the

b_resid

field

in

a

separate

request.

If

a

nonzero

b_resid

field

does

represent

an

error

condition,

recovering

is

the

responsibility

of

the

IDE

device

driver.

A

Typical

IDE

Driver

Transaction

Sequence

A

simplified

sequence

of

events

for

a

transaction

between

an

IDE

device

driver

and

an

IDE

adapter

driver

follows.

In

this

sequence,

routine

names

preceded

by

a

dd_

are

part

of

the

IDE

device

driver,

while

those

preceded

by

an

eide_

are

part

of

the

IDE

adapter

driver.

278

Kernel

Extensions

and

Device

Support

Programming

Concepts

1.

The

IDE

device

driver

receives

a

call

to

its

dd_strategy

routine;

any

required

internal

queuing

occurs

in

this

routine.

The

dd_strategy

entry

point

then

triggers

the

operation

by

calling

the

dd_start

entry

point.

The

dd_start

routine

invokes

the

eide_strategy

entry

point

by

calling

the

devstrat

kernel

service

with

the

relevant

ataide_buf

structure

as

a

parameter.

2.

The

eide_strategy

entry

point

initially

checks

the

ataide_buf

structure

for

validity.

These

checks

include

validating

the

devno

field,

matching

the

IDE

device

ID

to

internal

tables

for

configuration

purposes,

and

validating

the

request

size.

3.

The

IDE

adapter

driver

does

not

queue

transactions.

Only

a

single

transaction

is

accepted

per

device

(one

master,

one

slave).

If

no

transaction

is

currently

active,

the

eide_strategy

routine

immediately

calls

the

eide_start

routine

with

the

new

transaction.

If

there

is

a

current

transaction

for

the

same

device,

the

new

transaction

is

returned

with

an

error

indicated

in

the

ataide_buf

structure.

If

there

is

a

current

transaction

for

the

other

device,

the

new

transaction

is

queued

to

the

inactive

device.

4.

At

each

interrupt,

the

eide_intr

interrupt

handler

verifies

the

current

status.

The

IDE

adapter

driver

fills

in

the

ataide_buf

status_validity

field,

updating

the

ata.status

and

ata.errval

fields

as

required.

The

IDE

adapter

driver

also

fills

in

the

bufstruct.b_resid

field

with

the

number

of

bytes

not

transferred

from

the

transaction.

If

all

the

data

was

transferred,

the

b_resid

field

is

set

to

a

value

of

0.

When

a

transaction

completes,

the

eide_intr

routine

causes

the

ataide_buf

entry

to

be

removed

from

the

device

queue

and

calls

the

iodone

kernel

service,

passing

the

just

dequeued

ataide_buf

structure

for

the

device

as

the

parameter.

The

eide_start

routine

is

then

called

again

to

process

the

next

transaction

on

the

device

queue.

The

iodone

kernel

service

calls

the

IDE

device

driver

dd_iodone

entry

point,

signaling

the

IDE

device

driver

that

the

particular

transaction

has

completed.

5.

The

IDE

device

driver

dd_iodone

routine

investigates

the

I/O

completion

codes

in

the

ataide_buf

status

entries

and

performs

error

recovery,

if

required.

If

the

operation

completed

correctly,

the

IDE

device

driver

dequeues

the

original

buffer

structures.

It

calls

the

iodone

kernel

service

with

the

original

buffer

pointers

to

notify

the

originator

of

the

request.

IDE

Device

Driver

Internal

Commands

During

initialization,

error

recovery,

and

open

or

close

operations,

IDE

device

drivers

initiate

some

transactions

not

directly

related

to

an

operating

system

request.

These

transactions

are

called

internal

commands

and

are

relatively

simple

to

handle.

Internal

commands

differ

from

operating

system-initiated

transactions

in

several

ways.

The

primary

difference

is

that

the

IDE

device

driver

is

required

to

generate

a

struct

buf

that

is

not

related

to

a

specific

request.

Also,

the

actual

IDE

commands

are

typically

more

control

oriented

than

data

transfer

related.

The

only

special

requirement

for

commands

is

that

the

IDE

device

driver

must

have

pinned

the

transfer

data

buffers.

However,

due

to

system

hardware

considerations,

additional

precautions

must

be

taken

for

data

transfers

into

system

memory

pages.

The

problem

is

that

any

system

memory

area

with

a

DMA

data

operation

in

progress

causes

the

entire

memory

page

that

contains

it

to

become

inaccessible.

As

a

result,

an

IDE

device

driver

that

initiates

an

internal

command

must

have

preallocated

and

pinned

an

area

of

some

multiple

of

system

page

size.

The

driver

must

not

place

in

this

area

any

other

data

that

it

might

need

to

access

while

I/O

is

being

performed

into

or

out

of

that

page.

Memory

pages

allocated

must

be

avoided

by

the

device

driver

from

the

moment

the

transaction

is

passed

to

the

adapter

driver

until

the

device

driver

iodone

routine

is

called

for

the

transaction.

Execution

of

I/O

Requests

During

normal

processing,

many

transactions

are

queued

in

the

IDE

device

driver.

As

the

IDE

device

driver

processes

these

transactions

and

passes

them

to

the

IDE

adapter

driver,

the

IDE

device

driver

moves

them

to

the

in-process

queue.

When

the

IDE

adapter

device

driver

returns

through

the

iodone

service

with

one

of

these

transactions,

the

IDE

device

driver

either

recovers

any

errors

on

the

transaction

or

returns

using

the

iodone

kernel

service

to

the

calling

level.

Chapter

14.

Integrated

Device

Electronics

(IDE)

Subsystem

279

The

IDE

device

driver

can

send

only

one

ataide_buf

structure

per

call

to

the

IDE

adapter

driver.

Thus,

the

ataide_buf.bufstruct.av_forw

pointer

must

be

null

when

given

to

the

IDE

adapter

driver,

which

indicates

that

this

is

the

only

request.

The

IDE

adapter

driver

does

not

support

queuing

multiple

requests

to

the

same

device.

Spanned

(Consolidated)

Commands

Some

kernel

operations

might

be

composed

of

sequential

operations

to

a

device.

For

example,

if

consecutive

blocks

are

written

to

disk,

blocks

might

or

might

not

be

in

physically

consecutive

buffer

pool

blocks.

To

enhance

IDE

bus

performance,

the

IDE

device

driver

should

consolidate

multiple

queued

requests

when

possible

into

a

single

IDE

command.

To

allow

the

IDE

adapter

driver

the

ability

to

handle

the

scatter

and

gather

operations

required,

the

ataide_buf.bp

should

always

point

to

the

first

buf

structure

entry

for

the

spanned

transaction.

A

null-terminated

list

of

additional

struct

buf

entries

should

be

chained

from

the

first

field

through

the

buf.av_forw

field

to

give

the

IDE

adapter

driver

enough

information

to

perform

the

DMA

scatter

and

gather

operations

required.

This

information

must

include

at

least

the

buffer’s

starting

address,

length,

and

cross-memory

descriptor.

The

spanned

requests

should

always

be

for

requests

in

either

the

read

or

write

direction

but

not

both,

because

the

IDE

adapter

driver

must

be

given

a

single

IDE

command

to

handle

the

requests.

The

spanned

request

should

always

consist

of

complete

I/O

requests

(including

the

additional

struct

buf

entries).

The

IDE

device

driver

should

not

attempt

to

use

partial

requests

to

reach

the

maximum

transfer

size.

The

maximum

transfer

size

is

actually

adapter-dependent.

The

IOCINFO

ioctl

operation

can

be

used

to

discover

the

IDE

adapter

driver’s

maximum

allowable

transfer

size.

If

a

transfer

size

larger

than

the

supported

maximum

is

attempted,

the

IDE

adapter

driver

returns

a

value

of

EINVAL

in

the

ataide_buf.bufstruct.b_error

field.

Due

to

system

hardware

requirements,

the

IDE

device

driver

must

consolidate

only

commands

that

are

memory

page-aligned

at

both

their

starting

and

ending

addresses.

Specifically,

this

applies

to

the

consolidation

of

memory

buffers.

The

ending

address

of

the

first

buffer

and

the

starting

address

of

all

subsequent

buffers

should

be

memory

page-aligned.

However,

the

starting

address

of

the

first

memory

buffer

and

the

ending

address

of

the

last

do

not

need

to

be

aligned.

The

purpose

of

consolidating

transactions

is

to

decrease

the

number

of

IDE

commands

and

bus

phases

required

to

perform

the

required

operation.

The

time

required

to

maintain

the

simple

chain

of

buf

structure

entries

is

significantly

less

than

the

overhead

of

multiple

(even

two)

IDE

bus

transactions.

Fragmented

Commands

Single

I/O

requests

larger

than

the

maximum

transfer

size

must

be

divided

into

smaller

requests

by

the

IDE

device

driver.

For

calls

to

an

IDE

device

driver’s

character

I/O

(read/write)

entry

points,

the

uphysio

kernel

service

can

be

used

to

break

up

these

requests.

For

a

fragmented

command

such

as

this,

the

ataide_buf.bp

field

should

be

NULL

so

that

the

IDE

adapter

driver

uses

only

the

information

in

the

ataide_buf

structure

to

prepare

for

the

DMA

operation.

ataide_buf

Structure

The

ataide_buf

structure

is

used

for

communication

between

the

IDE

device

driver

and

the

IDE

adapter

driver

during

an

initiator

I/O

request.

This

structure

is

passed

to

and

from

the

strategy

routine

in

the

same

way

a

standard

driver

uses

a

struct

buf

structure.

280

Kernel

Extensions

and

Device

Support

Programming

Concepts

Fields

in

the

ataide_buf

Structure

The

ataide_buf

structure

contains

certain

fields

used

to

pass

an

IDE

command

and

associated

parameters

to

the

IDE

adapter

driver.

Other

fields

within

this

structure

are

used

to

pass

returned

status

back

to

the

IDE

device

driver.

The

ataide_buf

structure

is

defined

in

the

/usr/include/sys/ide.h

file.

Fields

in

the

ataide_buf

structure

are

used

as

follows:

1.

Reserved

fields

should

be

set

to

a

value

of

0,

except

where

noted.

2.

The

bufstruct

field

contains

a

copy

of

the

standard

buf

buffer

structure

that

documents

the

I/O

request.

Included

in

this

structure,

for

example,

are

the

buffer

address,

byte

count,

and

transfer

direction.

The

b_work

field

in

the

buf

structure

is

reserved

for

use

by

the

IDE

adapter

driver.

The

current

definition

of

the

buf

structure

is

in

the

/usr/include/sys/buf.h

include

file.

3.

The

bp

field

points

to

the

original

buffer

structure

received

by

the

IDE

device

driver

from

the

caller,

if

any.

This

can

be

a

chain

of

entries

in

the

case

of

spanned

transfers

(IDE

commands

that

transfer

data

from

or

to

more

than

one

system-memory

buffer).

A

null

pointer

indicates

a

nonspanned

transfer.

The

null

value

specifically

tells

the

IDE

adapter

driver

all

the

information

needed

to

perform

the

DMA

data

transfer

is

contained

in

the

bufstruct

fields

of

the

ataide_buf

structure.

If

the

bp

field

is

set

to

a

non-null

value,

the

ataide_buf.sg_ptr

field

must

have

a

value

of

null,

or

else

the

operation

is

not

allowed.

4.

The

ata

field,

defined

as

an

ata_cmd

structure,

contains

the

IDE

command

(ATA

or

ATAPI),

status,

error

indicator,

and

a

flag

variable:

a.

The

flags

field

contains

the

following

bit

flags:

ATA_CHS_MODE

Execute

the

command

in

cylinder

head

sector

mode.

ATA_LBA_MODE

Execute

the

command

in

logical

block

addressing

mode.

ATA_BUS_RESET

Reset

the

ATA

bus,

ignore

the

current

command.

b.

The

command

field

is

the

IDE

ATA

command

opcode.

For

ATAPI

packet

commands,

this

field

must

be

set

to

ATA_ATAPI_PACKET_COMMAND

(0xA0).

c.

The

device

field

is

the

IDE

indicator

for

either

the

master

(0)

or

slave

(1)

IDE

device.

d.

The

sector_cnt_cmd

field

is

the

number

of

sectors

affected

by

the

command.

A

value

of

zero

usually

indicates

256

sectors.

e.

The

startblk

field

is

the

starting

LBA

or

CHS

sector.

f.

The

feature

field

is

the

ATA

feature

register.

g.

The

status

field

is

a

return

parameter

indicating

the

ending

status

for

the

command.

This

field

is

updated

by

the

IDE

adapter

driver

upon

completion

of

a

command.

h.

The

errval

field

is

the

error

type

indicator

when

the

ATA_ERROR

bit

is

set

in

the

status

field.

This

field

has

slightly

different

interpretations

for

ATA

and

ATAPI

commands.

i.

The

sector_cnt_ret

field

is

the

number

of

sectors

not

processed

by

the

device.

j.

The

endblk

field

is

the

completion

LBA

or

CHS

sector.

k.

The

atapi

field

is

defined

as

an

atapi_command

structure,

which

contains

the

IDE

ATAPI

command.

The

12

or

16

bytes

of

a

single

ATAPI

command

are

stored

in

consecutive

bytes,

with

the

opcode

identified

individually.

The

atapi_command

structure

contains

the

following

fields:

l.

The

length

field

is

the

number

of

bytes

in

the

actual

ATAPI

command.

This

is

normally

12

or

16

(decimal).

m.

The

packet.op_code

field

specifies

the

standard

ATAPI

opcode

for

this

command.

n.

The

packet.bytes

field

contains

the

remaining

command-unique

bytes

of

the

ATAPI

command

block.

The

actual

number

of

bytes

depends

on

the

value

in

the

length

field.

Chapter

14.

Integrated

Device

Electronics

(IDE)

Subsystem

281

o.

The

ataide_buf.bufstruct.b_un.b_addr

field

normally

contains

the

starting

system-buffer

address

and

is

ignored

and

can

be

altered

by

the

IDE

adapter

driver

when

the

ataide_buf

is

returned.

The

ataide_buf.bufstruct.b_bcount

field

should

be

set

by

the

caller

to

the

total

transfer

length

for

the

data.

p.

The

timeout_value

field

specifies

the

time-out

limit

(in

seconds)

to

be

used

for

completion

of

this

command.

A

time-out

value

of

0

means

no

time-out

is

applied

to

this

I/O

request.

q.

The

status_validity

field

contains

an

output

parameter

that

can

have

the

following

bit

flags

as

a

value:

ATA_IDE_STATUS

The

ata.status

field

is

valid.

ATA_ERROR_VALID

The

ata.errval

field

contains

a

valid

error

indicator.

ATA_CMD_TIMEOUT

The

IDE

adapter

driver

caused

the

command

to

time

out.

ATA_NO_DEVICE_RESPONSE

The

IDE

device

is

not

ready.

ATA_IDE_DMA_ERROR

The

IDE

adapter

driver

encountered

a

DMA

error.

ATA_IDE_DMA_NORES

The

IDE

adapter

driver

was

not

able

to

transfer

entire

request.

The

bufstruct.b_resid

contains

the

count

not

transferred.

If

an

error

is

detected

while

an

IDE

command

is

being

processed,

and

the

error

prevented

the

IDE

command

from

actually

being

sent

to

the

IDE

bus

by

the

adapter,

then

the

error

should

be

processed

or

recovered,

or

both,

by

the

IDE

adapter

driver.

If

it

is

recovered

successfully

by

the

IDE

adapter

driver,

the

error

is

logged,

as

appropriate,

but

is

not

reflected

in

the

ata.errval

byte.

If

the

error

cannot

be

recovered

by

the

IDE

adapter

driver,

the

appropriate

ata.errval

bit

is

set

and

the

ataide_buf

structure

is

returned

to

the

IDE

device

driver

for

further

processing.

If

an

error

is

detected

after

the

command

was

actually

sent

to

the

IDE

device,

then

the

adapter

driver

will

return

the

command

to

the

device

driver

for

error

processing

and

possible

retries.

For

error

logging,

the

IDE

adapter

driver

logs

IDE

bus-

and

adapter-related

conditions,

where

as

the

IDE

device

driver

logs

IDE

device-related

errors.

In

the

following

description,

a

capital

letter

″A″

after

the

error

name

indicates

that

the

IDE

adapter

driver

handles

error

logging.

A

capital

letter

″H″

indicates

that

the

IDE

device

driver

handles

error

logging.

Some

of

the

following

error

conditions

indicate

an

IDE

device

failure.

Others

are

IDE

bus-

or

adapter-related.

ATA_IDE_DMA_ERROR

(A)

The

system

I/O

bus

generated

or

detected

an

error

during

a

DMA

transfer.

ATA_ERROR_VALID

(H)

The

request

sent

to

the

device

failed.

ATA_CMD_TIMEOUT

(A)

(H)

The

command

timed

out

before

completion.

ATA_NO_DEVICE_RESPONSE

(A)

The

target

device

did

not

respond.

282

Kernel

Extensions

and

Device

Support

Programming

Concepts

ATA_IDE_BUS_RESET

(A)

The

adapter

indicated

the

IDE

bus

reset

failed.

Other

IDE

Design

Considerations

The

following

topics

cover

design

considerations

of

IDE

device

and

adapter

drivers:

v

IDE

Device

Driver

Tasks

v

Closing

the

IDE

Device

v

IDE

Error

Processing

v

Device

Driver

and

adapter

driver

Interfaces

v

Performing

IDE

Dumps

IDE

Device

Driver

Tasks

IDE

device

drivers

are

responsible

for

the

following

actions:

v

Interfacing

with

block

I/O

and

logical

volume

device

driver

code

in

the

operating

system.

v

Translating

I/O

requests

from

the

operating

system

into

IDE

commands

suitable

for

the

particular

IDE

device.

These

commands

are

then

given

to

the

IDE

adapter

driver

for

execution.

v

Issuing

any

and

all

IDE

commands

to

the

attached

device.

The

IDE

adapter

driver

sends

no

IDE

commands

except

those

it

is

directed

to

send

by

the

calling

IDE

device

driver.

Closing

the

IDE

Device

When

an

IDE

device

driver

is

preparing

to

close

a

device

through

the

IDE

adapter

driver,

it

must

ensure

that

all

transactions

are

complete.

When

the

IDE

adapter

driver

receives

an

IDEIOSTOP

ioctl

operation

and

there

are

pending

I/O

requests,

the

ioctl

operation

does

not

return

until

all

have

completed.

New

requests

received

during

this

time

are

rejected

from

the

adapter

driver’s

ddstrategy

routine.

IDE

Error

Processing

It

is

the

responsibility

of

the

IDE

device

driver

to

properly

process

IDE

check

conditions

and

other

returned

device

errors.

The

IDE

adapter

driver

only

passes

IDE

commands

to

the

device

without

otherwise

processing

them

and

is

not

responsible

for

device

error

recovery.

Device

Driver

and

Adapter

Driver

Interfaces

The

IDE

device

drivers

can

have

both

character

(raw)

and

block

special

files

in

the

/dev

directory.

The

IDE

adapter

driver

has

only

character

(raw)

special

files

in

the

/dev

directory

and

has

only

the

ddconfig,

ddopen,

ddclose,

dddump,

and

ddioctl

entry

points

available

to

operating

system

programs.

The

ddread

and

ddwrite

entry

points

are

not

implemented.

Internally,

the

devsw

table

has

entry

points

for

the

ddconfig,

ddopen,

ddclose,

dddump,

ddioctl,

and

ddstrategy

routines.

The

IDE

device

drivers

pass

their

IDE

commands

to

the

IDE

adapter

driver

by

calling

the

IDE

adapter

driver

ddstrategy

routine.

(This

routine

is

unavailable

to

other

operating

system

programs

due

to

the

lack

of

a

block-device

special

file.)

Access

to

the

IDE

adapter

driver’s

ddconfig,

ddopen,

ddclose,

dddump,

ddioctl,

and

ddstrategy

entry

points

by

the

IDE

device

drivers

is

performed

through

the

kernel

services

provided.

These

include

such

kernel

services

as

fp_opendev,

fp_close,

fp_ioctl,

devdump,

and

devstrat.

Performing

IDE

Dumps

An

IDE

adapter

driver

must

have

a

dddump

entry

point

if

it

is

used

to

access

a

system

dump

device.

An

IDE

device

driver

must

have

a

dddump

entry

point

if

it

drives

a

dump

device.

Examples

of

dump

devices

are

disks

and

tapes.

Chapter

14.

Integrated

Device

Electronics

(IDE)

Subsystem

283

Note:

IDE

adapter

driver

writers

should

be

aware

that

system

services

providing

interrupt

and

timer

services

are

unavailable

for

use

while

executing

the

dump

routine.

Kernel

DMA

services

are

assumed

to

be

available

for

use

by

the

dump

routine.

The

IDE

adapter

driver

should

be

designed

to

ignore

extra

DUMPINIT

and

DUMPSTART

commands

to

the

dddump

entry

point

while

processing

the

dump

routine.

The

DUMPQUERY

option

should

return

a

minimum

transfer

size

of

0

bytes,

and

a

maximum

transfer

size

equal

to

the

maximum

transfer

size

supported

by

the

IDE

adapter

driver.

Calls

to

the

IDE

adapter

driver

DUMPWRITE

option

should

use

the

arg

parameter

as

a

pointer

to

the

ataide_buf

structure

to

be

processed.

Using

this

interface,

an

IDE

write

command

can

be

executed

on

a

previously

started

(opened)

target

device.

The

uiop

parameter

is

ignored

by

the

IDE

adapter

driver

during

the

DUMPWRITE

command.

Spanned

or

consolidated

commands

are

not

supported

using

the

DUMPWRITE

option.

Gathered

write

commands

are

also

not

supported

using

the

DUMPWRITE

option.

No

queuing

of

ataide_buf

structures

is

supported

during

dump

processing

because

the

dump

routine

runs

essentially

as

a

subroutine

call

from

the

caller’s

dump

routine.

Control

is

returned

when

the

entire

ataide_buf

structure

has

been

processed.

Note:

No

error

recovery

techniques

are

used

during

the

DUMPWRITE

option

because

any

error

occurring

during

DUMPWRITE

is

a

real

problem

as

the

system

is

already

unstable.

Return

values

from

the

call

to

the

dddump

routine

indicate

the

specific

nature

of

the

failure.

Successful

completion

of

the

selected

operation

is

indicated

by

a

0

return

value

to

the

subroutine.

Unsuccessful

completion

is

indicated

by

a

return

code

set

to

one

of

the

following

values

for

the

errno

global

variable.

The

various

ataide_buf

status

fields,

including

the

b_error

field,

are

not

set

by

the

IDE

adapter

driver

at

completion

of

the

DUMPWRITE

command.

Error

logging

is,

of

necessity,

not

supported

during

the

dump.

v

An

errno

value

of

EINVAL

indicates

that

an

invalid

request

(unknown

command

or

bad

parameter)

was

passed

to

the

IDE

adapter

driver,

such

as

to

attempt

a

DUMPSTART

command

before

successfully

executing

a

DUMPINIT

command.

v

An

errno

value

of

EIO

indicates

that

the

IDE

adapter

driver

was

unable

to

complete

the

command

due

to

a

lack

of

required

resources

or

an

I/O

error.

v

An

errno

value

of

ETIMEDOUT

indicates

that

the

adapter

did

not

respond

to

a

command

that

was

put

in

its

register

before

the

passed

command

time-out

value

expired.

Required

IDE

Adapter

Driver

ioctl

Commands

Various

ioctl

operations

must

be

performed

for

proper

operation

of

the

IDE

adapter

driver.

The

ioctl

operations

described

here

are

the

minimum

set

of

commands

the

IDE

adapter

driver

must

implement

to

support

IDE

device

drivers.

Other

operations

might

be

required

in

the

IDE

adapter

driver

to

support,

for

example,

system

management

facilities.

IDE

device

driver

writers

also

need

to

understand

these

ioctl

operations.

Every

IDE

adapter

driver

must

support

the

IOCINFO

ioctl

operation.

The

structure

to

be

returned

to

the

caller

is

the

devinfo

structure,

including

the

ide

union

definition

for

the

IDE

adapter

found

in

the

/usr/include/sys/devinfo.h

file.

The

IDE

device

driver

should

request

the

IOCINFO

ioctl

operation

(probably

during

its

open

routine)

to

get

the

maximum

transfer

size

of

the

adapter.

Note:

The

IDE

adapter

driver

ioctl

operations

can

only

be

called

from

the

process

level.

They

cannot

be

executed

from

a

call

on

any

more

favored

priority

levels.

Attempting

to

call

them

from

a

more

favored

priority

level

can

result

in

a

system

crash.

284

Kernel

Extensions

and

Device

Support

Programming

Concepts

ioctl

Commands

The

following

IDEIOSTART

and

IDEIOSTOP

operations

must

be

sent

by

the

IDE

device

driver

(for

the

open

and

close

routines,

respectively)

for

each

device.

They

cause

the

IDE

adapter

driver

to

allocate

and

initialize

internal

resources.

The

IDEIORESET

operation

is

provided

for

clearing

device

hard

errors.

Except

where

noted

otherwise,

the

arg

parameter

for

each

of

the

ioctl

operations

described

here

must

contain

a

long

integer.

In

this

field,

the

least

significant

byte

is

the

IDE

device

ID

value.

(The

upper

three

bytes

are

reserved

and

should

be

set

to

0.)

This

provides

the

information

required

to

allocate

or

deallocate

resources

and

perform

IDE

bus

operations

for

the

ioctl

operation

requested.

The

following

information

is

provided

on

the

various

ioctl

operations:

IDEIOSTART

This

operation

allocates

and

initializes

IDE

device-dependent

information

local

to

the

IDE

adapter

driver.

Run

this

operation

only

on

the

first

open

of

a

device.

Subsequent

IDEIOSTART

commands

to

the

same

device

fail

unless

an

intervening

IDEIOSTOP

command

is

issued.

For

more

information,

see

IDEIOSTART

(Start

IDE)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

IDEIOSTOP

This

operation

deallocates

resources

local

to

the

IDE

adapter

driver

for

this

IDE

device.

This

should

be

run

on

the

last

close

of

an

IDE

device.

If

an

IDEIOSTART

operation

has

not

been

previously

issued,

this

command

is

unsuccessful.

For

more

information,

see

IDEIOSTOP

(Stop)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

IDEIORESET

This

operation

causes

the

IDE

adapter

driver

to

send

an

ATAPI

device

reset

to

the

specified

IDE

device

ID.

The

IDE

device

driver

should

use

this

command

only

when

directed

to

do

a

forced

open.

This

occurs

in

for

the

situation

when

the

device

needs

to

be

reset

to

clear

an

error

condition.

Note:

In

normal

system

operation,

this

command

should

not

be

issued,

as

it

would

reset

all

devices

connected

to

the

controller.

If

an

IDEIOSTART

operation

has

not

been

previously

issued,

this

command

is

unsuccessful.

IDEIOINQU

This

operation

allows

the

caller

to

issue

an

IDE

device

inquiry

command

to

a

selected

device.

For

more

information,

see

IDEIOINQU

(Inquiry)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

IDEIOSTUNIT

This

operation

allows

the

caller

to

issue

an

IDE

Start

Unit

command

to

a

selected

IDE

device.

For

the

IDEIOSTUNIT

operation,

the

arg

parameter

operation

is

the

address

of

an

ide_startunit

structure.

This

structure

is

defined

in

the

/usr/include/sys/ide.h

file.

For

more

information,

see

IDEIOSTUNIT

(Start

Unit)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

IDEIOTUR

This

operation

allows

the

caller

to

issue

an

IDE

Test

Unit

Ready

command

to

a

selected

IDE

device.

For

more

information,

see

IDEIOTUR

(Test

Unit

Ready)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Chapter

14.

Integrated

Device

Electronics

(IDE)

Subsystem

285

IDEIOREAD

This

operation

allows

the

caller

to

issue

an

IDE

device

read

command

to

a

selected

device.

For

more

information,

see

IDEIOREAD

(Read)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

IDEIOIDENT

This

operation

allows

the

caller

to

issue

an

IDE

identify

device

command

to

a

selected

device.

For

more

information,

see

IDEIOIDENT

(Identify

Device)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Related

Information

Logical

File

System

Kernel

Services

Technical

References

The

ddconfig,

ddopen,

ddclose,

dddump,

ddioctl,

ddread,

ddstrategy,

ddwrite

entry

points

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

The

fp_opendev,

fp_close,

fp_ioctl,

devdump,

devstrat

kernel

services

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

IDE

Adapter

Device

Driver,

idecdrom

IDE

Device

Driver,

idedisk

IDE

Device

Driver,

IDEIOIDENT

(Identify

Device)

IDE

Adapter

Device

Driver

ioctl

Operation,

IDEIOINQU

(Inquiry)

IDE

Adapter

Device

Driver

ioctl

Operation,

IDEIOREAD

(Read)

IDE

Adapter

Device

Driver

ioctl

Operation,

IDEIOSTART

(Start

IDE)

Adapter

Device

Driver

ioctl

Operation,

IDEIOSTOP

(Stop)

Device

IDE

Adapter

Device

Driver

ioctl

Operation,

IDEIOSTUNIT

(Start

Unit)

IDE

Adapter

Device

Driver

ioctl

Operation,

and

IDEIOTUR

(Test

Unit

Ready)

IDE

Adapter

Device

Driver

ioctl

Operation

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

286

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

15.

Serial

Direct

Access

Storage

Device

Subsystem

With

sequential

access

to

a

storage

device,

such

as

with

tape,

a

system

enters

and

retrieves

data

based

on

the

location

of

the

data,

and

on

a

reference

to

information

previously

accessed.

The

closer

the

physical

location

of

information

on

the

storage

device,

the

quicker

the

information

can

be

processed.

In

contrast,

with

direct

access,

entering

and

retrieving

information

depends

only

on

the

location

of

the

data

and

not

on

a

reference

to

data

previously

accessed.

Because

of

this,

access

time

for

information

on

direct

access

storage

devices

(DASDs)

is

effectively

independent

of

the

location

of

the

data.

Direct

access

storage

devices

(DASDs)

include

both

fixed

and

removable

storage

devices.

Typically,

these

devices

are

hard

disks.

A

fixed

storage

device

is

any

storage

device

defined

during

system

configuration

to

be

an

integral

part

of

the

system

DASD.

If

a

fixed

storage

device

is

not

available

at

some

time

during

normal

operation,

the

operating

system

detects

an

error.

A

removable

storage

device

is

any

storage

device

you

define

during

system

configuration

to

be

an

optional

part

of

the

system

DASD.

Removable

storage

devices

can

be

removed

from

the

system

at

any

time

during

normal

operation.

As

long

as

the

device

is

logically

unmounted

before

you

remove

it,

the

operating

system

does

not

detect

an

error.

The

following

types

of

devices

are

not

considered

DASD

and

are

not

supported

by

the

logical

volume

manager

(LVM):

v

Diskettes

v

CD-ROM

(compact

disk

read-only

memory)

v

DVD-ROM

(DVD

read-only

memory)

v

WORM

(write-once

read-mostly)

DASD

Device

Block

Level

Description

The

DASD

device

block

(or

sector)

level

is

the

level

at

which

a

processing

unit

can

request

low-level

operations

on

a

device

block

address

basis.

Typical

low-level

operations

for

DASD

are

read-sector,

write-sector,

read-track,

write-track,

and

format-track.

By

using

direct

access

storage,

you

can

quickly

retrieve

information

from

random

addresses

as

a

stream

of

one

or

more

blocks.

Many

DASDs

perform

best

when

the

blocks

to

be

retrieved

are

close

in

physical

address

to

each

other.

A

DASD

consists

of

a

set

of

flat,

circular

rotating

platters.

Each

platter

has

one

or

two

sides

on

which

data

is

stored.

Platters

are

read

by

a

set

of

nonrotating,

but

positionable,

read

or

read/write

heads

that

move

together

as

a

unit.

The

following

terms

are

used

when

discussing

DASD

device

block

operations:

sector

An

addressable

subdivision

of

a

track

used

to

record

one

block

of

a

program

or

data.

On

a

DASD,

this

is

a

contiguous,

fixed-size

block.

Every

sector

of

every

DASD

is

exactly

512

bytes.

track

A

circular

path

on

the

surface

of

a

disk

on

which

information

is

recorded

and

from

which

recorded

information

is

read;

a

contiguous

set

of

sectors.

A

track

corresponds

to

the

surface

area

of

a

single

platter

swept

out

by

a

single

head

while

the

head

remains

stationary.

A

DASD

contains

at

least

17

sectors

per

track.

Otherwise,

the

number

of

sectors

per

track

is

not

defined

architecturally

and

is

device-dependent.

A

typical

DASD

track

can

contain

17,

35,

or

75

sectors.

A

DASD

can

contain

1024

tracks.

The

number

of

tracks

per

DASD

is

not

defined

architecturally

and

is

device-dependent.

©

Copyright

IBM

Corp.

1997,

2004

287

head

A

head

is

a

positionable

entity

that

can

read

and

write

data

from

a

given

track

located

on

one

side

of

a

platter.

Usually

a

DASD

has

a

small

set

of

heads

that

move

from

track

to

track

as

a

unit.

There

must

be

at

least

43

heads

on

a

DASD.

Otherwise,

the

number

is

not

defined

architecturally

and

is

device-dependent.

A

typical

DASD

has

8

heads.

cylinder

The

tracks

of

a

DASD

that

can

be

accessed

without

repositioning

the

heads.

If

a

DASD

has

n

number

of

vertically

aligned

heads,

a

cylinder

has

n

number

of

vertically

aligned

tracks.

Related

Information

Programming

in

the

Kernel

Environment

Overview

Understanding

Physical

Volumes

and

the

Logical

Volume

Device

Driver

Special

Files

Overview

in

AIX

5L

Version

5.2

Files

Reference.

Serial

DASD

Subsystem

Device

Driver,

scdisk

SCSI

Device

Driver

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2.

288

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

16.

Debug

Facilities

This

chapter

provides

information

about

the

available

procedures

for

debugging

a

device

driver

that

is

under

development.

The

procedures

discussed

include:

v

Error

logging

records

device-specific

hardware

or

software

abnormalities.

v

The

Debug

and

Performance

Tracing

monitors

entry

and

exit

of

device

drivers

and

selectable

system

events.

v

The

Memory

Overlay

Detection

System

(MODS)

helps

detect

memory

overlay

problems

in

the

kernel,

kernel

extensions,

and

device

drivers.

System

Dump

Facility

Your

system

generates

a

system

dump

when

a

severe

error

occurs.

System

dumps

can

also

be

user-initiated

by

users

with

root

user

authority.

A

system

dump

creates

a

picture

of

your

system’s

memory

contents.

System

administrators

and

programmers

can

generate

a

dump

and

analyze

its

contents

when

debugging

new

applications.

If

your

system

stops

with

an

888

number

flashing

in

the

operator

panel

display,

the

system

has

generated

a

dump

and

saved

it

to

a

dump

device.

To

generate

a

system

dump

see:

v

Configure

a

Dump

Device

v

Start

a

System

Dump

v

Check

the

Status

of

a

System

Dump

v

Copy

a

System

Dump

v

Increase

the

Size

of

a

Dump

Device

In

AIX

Version

4,

some

of

the

error

log

and

dump

commands

are

delivered

in

an

optionally

installable

package

called

bos.sysmgt.serv_aid.

System

dump

commands

included

in

the

bos.sysmgt.serv_aid

include

the

sysdumpstart

command.

See

the

Software

Service

Aids

Package

for

more

information.

Configuring

a

Dump

Device

When

an

unexpected

system

halt

occurs,

the

system

dump

facility

automatically

copies

selected

areas

of

kernel

data

to

the

primary

dump

device.

These

areas

include

kernel

segment

0

as

well

as

other

areas

registered

in

the

Master

Dump

Table

by

kernel

modules

or

kernel

extensions.

An

attempt

is

made

to

dump

to

the

secondary

dump

device

if

it

has

been

defined.

When

you

install

the

operating

system,

the

dump

device

is

automatically

configured

for

you.

By

default,

the

primary

device

is

/dev/hd6,

which

is

a

paging

logical

volume,

and

the

secondary

device

is

/dev/sysdumpnull.

Note:

If

your

system

has

4

GB

or

more

of

memory,

the

default

dump

device

is

/dev/lg_dumplv,

and

is

a

dedicated

dump

device.

If

a

dump

occurs

to

paging

space,

the

system

will

automatically

copy

the

dump

when

the

system

is

rebooted.

By

default,

the

dump

is

copied

to

a

directory

in

the

root

volume

group,

/var/adm/ras.

See

the

sysdumpdev

command

for

details

on

how

to

control

dump

copying.

Note:

Diskless

systems

automatically

configure

a

remote

dump

device.

©

Copyright

IBM

Corp.

1997,

2004

289

If

you

are

using

AIX

4.3.2

or

later,

compressing

your

system

dumps

before

they

are

written

to

the

dump

device

will

reduce

the

size

needed

for

dump

devices.

Refer

to

the

sysdumpdev

command

for

more

details.

Starting

with

AIX

5.1,

the

dumpcheck

facility

will

notify

you

if

your

dump

device

needs

to

be

larger,

or

the

file

system

containing

the

copy

directory

is

too

small.

It

will

also

automatically

turn

compression

on

if

this

will

alleviate

these

conditions.

This

notification

appears

in

the

system

error

log.

If

you

need

to

increase

the

size

of

your

dump

device,

refer

to

the

article

in

this

publication,

“Increasing

the

Size

of

a

Dump

Device”

on

page

295.

For

maximum

effectiveness,

dumpcheck

should

be

run

when

the

system

is

most

heavily

loaded.

At

such

times,

the

system

dump

is

most

likely

to

be

at

its

maximum

size.

Also,

even

with

dumpcheck

watching

the

dump

size,

it

may

still

happen

that

the

dump

won’t

fit

on

the

dump

device

or

in

the

copy

directory

at

the

time

it

happens.

This

could

occur

if

there

is

a

peak

in

system

load

right

at

dump

time.

Including

Device

Driver

Data

To

have

your

device

driver

data

areas

included

in

a

system

dump,

you

must

register

the

data

areas

in

the

master

dump

table.

In

AIX

5.1,

use

the

dmp_ctl

kernel

service

to

add

an

entry

to

the

master

dump

table

or

to

delete

an

entry.

The

syntax

is

as

follows:

#include

<sys/types.h>

#include

<sys/errno.h>

#include

<sys/dump.h>

int

dmp_ctl(op,

data)

int

op;

struct

dmpctl_data

*data;

Before

AIX

5.1,

use

the

dmp_add

kernel

service.

For

more

information,

see

dmp_add

Kernel

Service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Starting

a

System

Dump

Attention:

Do

not

start

a

system

dump

if

the

flashing

888

number

shows

in

your

operator

panel

display.

This

number

indicates

your

system

has

already

created

a

system

dump

and

written

the

information

to

your

primary

dump

device.

If

you

start

your

own

dump

before

copying

the

information

in

your

dump

device,

your

new

dump

will

overwrite

the

existing

information.

For

more

information,

see

“Checking

the

Status

of

a

System

Dump”

on

page

292.

A

user-initiated

dump

is

different

from

a

dump

initiated

by

an

unexpected

system

halt

because

the

user

can

designate

which

dump

device

to

use.

When

the

system

halts

unexpectedly,

a

system

dump

is

initiated

automatically

to

the

primary

dump

device.

You

can

start

a

system

dump

by

using

one

of

the

methods

listed

below.

You

have

access

to

the

sysdumpstart

command

and

can

start

a

dump

using

one

of

these

methods:

v

Using

the

Command

Line

v

Using

SMIT

v

Using

the

Reset

Button

v

Using

Special

Key

Sequences

Using

the

Command

Line

Use

the

following

steps

to

choose

a

dump

device,

initiate

the

system

dump,

and

determine

the

status

of

the

system

dump:

Note:

You

must

have

root

user

authority

to

start

a

dump

by

using

the

sysdumpstart

command.

290

Kernel

Extensions

and

Device

Support

Programming

Concepts

1.

Check

which

dump

device

is

appropriate

for

your

system

(the

primary

or

secondary

device)

by

using

the

following

sysdumpdev

command:

sysdumpdev

-l

This

command

lists

the

current

dump

devices.

You

can

use

the

sysdumpdev

command

to

change

device

assignments.

2.

Start

the

system

dump

by

entering

the

following

sysdumpstart

command:

sysdumpstart

-p

This

command

starts

a

system

dump

on

the

default

primary

dump

device.

You

can

use

the

-s

flag

to

specify

the

secondary

dump

device.

3.

If

a

code

shows

in

the

operator

panel

display,

refer

to

“Checking

the

Status

of

a

System

Dump”

on

page

292.

If

the

operator

panel

display

is

blank,

the

dump

was

not

started.

Try

again

using

the

Reset

button.

Using

SMIT

Use

the

following

SMIT

commands

to

choose

a

dump

device

and

start

the

system

dump:

Note:

You

must

have

root

user

authority

to

start

a

dump

using

SMIT.

SMIT

uses

the

sysdumpstart

command

to

start

a

system

dump.

1.

Check

which

dump

device

is

appropriate

for

your

system

(the

primary

or

secondary

device)

by

using

the

following

SMIT

fast

path

command:

smit

dump

2.

Choose

the

Show

Current

Dump

Devices

option

and

write

the

available

devices

on

notepaper.

3.

Enter

the

following

SMIT

fast

path

command

again:

smit

dump

4.

Choose

either

the

primary

(the

first

example

option)

or

secondary

(the

second

example

option)

dump

device

to

hold

your

dump

information:

Start

a

Dump

to

the

Primary

Dump

Device

OR

Start

a

Dump

to

the

Secondary

Dump

Device

Base

your

decision

on

the

list

of

devices

you

made

in

step

2.

5.

Refer

to

“Checking

the

Status

of

a

System

Dump”

on

page

292

if

a

value

shows

in

the

operator

panel

display.

If

the

operator

panel

display

is

blank,

the

dump

was

not

started.

Try

again

using

the

Reset

button.

Note:

To

start

a

dump

with

the

reset

button

or

a

key

sequence

you

must

have

the

key

switch,

or

mode

switch,

in

the

Service

position,

or

have

set

the

Always

Allow

System

Dump

value

to

true.

To

do

this:

a.

Use

the

following

SMIT

fast

path

command:

smit

dump

b.

Set

the

Always

Allow

System

Dump

value

to

true.

This

is

essential

on

systems

that

do

not

have

a

mode

switch.

Using

the

Reset

Button

Start

a

system

dump

with

the

Reset

button

by

doing

the

following

(this

procedure

works

for

all

system

configurations

and

will

work

in

circumstances

where

other

methods

for

starting

a

dump

will

not):

1.

Turn

your

machine’s

mode

switch

to

the

Service

position,

or

set

Always

Allow

System

Dump

to

true.

2.

Press

the

Reset

button.

Your

system

writes

the

dump

information

to

the

primary

dump

device.

Note:

The

procedure

for

using

the

reset

button

can

vary,

depending

upon

your

hardware

configuration.

Chapter

16.

Debug

Facilities

291

Using

Special

Key

Sequences

Start

a

system

dump

with

special

key

sequences

by

doing

the

following:

1.

Turn

your

machine’s

mode

switch

to

the

Service

position,

or

set

Always

Allow

System

Dump

to

true.

2.

Press

the

Ctrl-Alt

1

key

sequence

to

write

the

dump

information

to

the

primary

dump

device,

or

press

the

Ctrl-Alt

2

key

sequence

to

write

the

dump

information

to

the

secondary

dump

device..

Note:

You

can

start

a

system

dump

by

this

method

only

on

the

native

keyboard.

Checking

the

Status

of

a

System

Dump

When

a

system

dump

is

taking

place,

status

and

completion

codes

are

displayed

in

the

operator

panel

display

on

the

operator

panel.

When

the

dump

is

complete,

a

0cx

status

code

displays

if

the

dump

was

user

initiated,

a

flashing

888

displays

if

the

dump

was

system

initiated.

You

can

check

whether

the

dump

was

successful,

and

if

not,

what

caused

the

dump

to

fail.

If

a

0cx

is

displayed,

see

“Status

Codes”

below.

Note:

If

the

dump

fails

and

upon

reboot

you

see

an

error

log

entry

with

the

label

DSI_PROC

or

ISI_PROC,

and

the

Detailed

Data

area

shows

an

EXVAL

of

000

0005,

this

is

probably

a

paging

space

I/O

error.

If

the

paging

space

(probably/dev/hd6)

is

the

dump

device

or

on

the

same

hard

drive

as

the

dump

device,

your

dump

may

have

failed

due

to

a

problem

with

that

hard

drive.

You

should

run

diagnostics

against

that

disk.

Status

Codes

Find

your

status

code

in

the

following

list,

and

follow

the

instructions:

000

The

kernel

debugger

is

started.

If

there

is

an

ASCII

terminal

attached

to

one

of

the

native

serial

ports,

enter

q

dump

at

the

debugger

prompt

(>)

on

that

terminal

and

then

wait

for

flashing

888s

to

appear

in

the

operator

panel

display.

After

the

flashing

888

appears,

go

to

“Checking

the

Status

of

a

System

Dump.”

0c0

The

dump

completed

successfully.

Go

to

“Copying

a

System

Dump”

on

page

293.

0c1

An

I/O

error

occurred

during

the

dump.

Go

to

“System

Dump

Facility”

on

page

289.

0c2

A

user-requested

dump

is

not

finished.

Wait

at

least

1

minute

for

the

dump

to

complete

and

for

the

operator

panel

display

value

to

change.

If

the

operator

panel

display

value

changes,

find

the

new

value

on

this

list.

If

the

value

does

not

change,

then

the

dump

did

not

complete

due

to

an

unexpected

error.

0c4

The

dump

ran

out

of

space

.

A

partial

dump

was

written

to

the

dump

device,

but

there

is

not

enough

space

on

the

dump

device

to

contain

the

entire

dump.

To

prevent

this

problem

from

occurring

again,

you

must

increase

the

size

of

your

dump

media.

Go

to

“Increase

the

Size

of

a

Dump

Device”

on

page

295.

0c5

The

dump

failed

due

to

an

internal

error.

0c7

A

network

dump

is

in

progress,

and

the

host

is

waiting

for

the

server

to

respond.

The

value

in

the

operator

panel

display

should

alternate

between

0c7

and

0c2

or

0c9.

If

the

value

does

not

change,

then

the

dump

did

not

complete

due

to

an

unexpected

error.

0c8

The

dump

device

has

been

disabled.

The

current

system

configuration

does

not

designate

a

device

for

the

requested

dump.

Enter

the

sysdumpdev

command

to

configure

the

dump

device.

0c9

A

dump

started

by

the

system

did

not

complete.

Wait

at

least

1

minute

for

the

dump

to

complete

and

for

the

operator

panel

display

value

to

change.

If

the

operator

panel

display

value

changes,

find

the

new

value

on

the

list.

If

the

value

does

not

change,

then

the

dump

did

not

complete

due

to

an

unexpected

error.

0cc

An

error

occured

dumping

to

the

primary

device;

the

dump

has

switched

over

to

the

secondary

device.

Wait

at

least

1

minute

for

the

dump

to

complete

and

for

the

three-digit

display

value

to

change.

If

the

three-digit

display

value

changes,

find

the

new

value

on

this

list.

If

the

value

does

not

change,

then

the

dump

did

not

complete

due

to

an

unexpected

error.

c20

The

kernel

debugger

exited

without

a

request

for

a

system

dump.

Enter

the

quit

dump

subcommand.

Read

the

new

three-digit

value

from

the

LED

display.

292

Kernel

Extensions

and

Device

Support

Programming

Concepts

Copying

a

System

Dump

Your

dump

device

holds

the

information

that

a

system

dump

generates,

whether

generated

by

the

system

or

a

user.

You

can

copy

this

information

to

tape

and

deliver

the

material

to

your

service

department

for

analysis.

Note:

If

you

intend

to

use

a

tape

to

send

a

snap

image

to

IBM

for

software

support.

The

tape

must

be

one

of

the

following

formats:

8mm,

2.3

Gb

capacity,

8mm,

5.0

Gb

capacity,

or

4mm,

4.0

Gb

capacity.

Using

other

formats

will

prevent

or

delay

software

support

from

being

able

to

examine

the

contents.

There

are

two

procedures

for

copying

a

system

dump,

depending

on

whether

you’re

using

a

dataless

workstation

or

a

non-dataless

machine:

v

Copying

a

System

Dump

on

a

Dataless

Workstation

v

Copying

a

System

Dump

on

a

Non-Dataless

Machine

Copying

a

System

Dump

on

a

Dataless

Workstation

On

a

dataless

workstation,

the

dump

is

copied

to

the

server

when

the

workstation

is

rebooted

after

the

dump.

The

dump

may

not

be

available

to

the

dataless

machine.

Copy

a

system

dump

on

a

dataless

workstation

by

performing

the

following

tasks:

1.

Reboot

in

Normal

mode

2.

Locate

the

System

Dump

3.

Copy

the

System

Dump

from

the

Server.

Reboot

in

Normal

mode:

To

reboot

in

normal

mode:

1.

Switch

off

the

power

on

your

machine.

2.

Turn

the

mode

switch

to

the

Normal

position.

3.

Switch

on

the

power

on

your

machine.

Locate

the

System

Dump:

To

locate

the

dump:

1.

Log

on

to

the

server

.

2.

Use

the

lsnim

command

to

find

the

dump

object

for

the

workstation.

(For

this

example,

the

workstation’s

object

name

on

the

server

is

worker

.)

lsnim

-l

worker

The

dump

object

appears

on

the

line:

dump

=

dumpobject

3.

Use

the

lsnim

command

again

to

determine

the

path

of

the

object:

lsnim

-l

dumpobject

The

path

name

displayed

is

the

directory

containing

the

dump.

The

dump

usually

has

the

same

name

as

the

object

for

the

dataless

workstation.

Copy

the

System

Dump

from

the

Server:

The

dump

is

copied

like

any

other

file.

To

copy

the

dump

to

tape,

use

the

tar

command:

tar

-c

or,

to

copy

to

a

tape

other

than

/dev/rmt0:

tar

-cftapedevice

To

copy

the

dump

back

from

the

external

media

(such

as

a

tape

drive),

use

the

tar

command.

Enter

the

following

to

copy

the

dump

from

/dev/rmt0:

tar

-x

Chapter

16.

Debug

Facilities

293

To

copy

the

dump

from

any

other

media,

enter:

tar

-xftapedevice

Copying

a

System

Dump

on

a

Non-Dataless

Machine

Copy

a

system

dump

on

a

non-dataless

machine

by

performing

the

following

tasks:

1.

Reboot

Your

Machine

2.

Copy

the

System

Dump

using

one

of

the

following

methods:

v

Copy

a

System

Dump

after

Rebooting

in

Normal

Mode

v

Copy

a

System

Dump

after

Booting

from

Maintenance

Mode

Reboot

Your

Machine:

Reboot

in

Normal

mode

using

the

following

steps:

1.

Switch

off

the

power

on

your

machine.

2.

Turn

the

mode

switch

to

the

Normal

position.

3.

Switch

on

the

power

on

your

machine.

If

your

system

brings

up

the

login

prompt,

go

to

“Copy

a

System

Dump

after

Rebooting

in

Normal

Mode.”

If

your

system

stops

with

a

number

in

the

operator

panel

display

instead

of

bringing

up

the

login

prompt,

reboot

your

machine

from

Maintenance

mode,

then

go

to

“Copy

a

System

Dump

after

Booting

from

Maintenance

Mode.”

Copy

a

System

Dump

after

Rebooting

in

Normal

Mode:

After

rebooting

in

Normal

mode,

copy

a

system

dump

by

doing

the

following:

1.

Log

in

to

your

system

as

root

user.

2.

Copy

the

system

dump

to

tape

using

the

following

snap

command:

/usr/sbin/snap

-gfkD

-o

/dev/rmt#

where

#

(pound

sign)

is

the

number

of

your

available

tape

device

(the

most

common

is

/dev/rmt0

)

.

To

find

the

correct

number,

enter

the

following

lsdev

command,

and

look

for

the

tape

device

listed

as

Available:

lsdev

-C

-c

tape

-H

Note:

If

your

dump

went

to

a

paging

space

logical

volume,

it

has

been

copied

to

a

directory

in

your

root

volume

group,

/var/adm/ras.

See

Configure

a

Dump

Device

and

the

sysdumpdev

command

for

more

details.

These

dumps

are

still

copied

by

the

snap

command.

The

sysdumpdev

-L

command

lists

the

exact

location

of

the

dump.

3.

To

copy

the

dump

back

from

the

external

media

(such

as

a

tape

drive),

use

the

pax

command.

Enter

the

following

to

copy

the

dump

from

/dev/rmt0:

pax

-rf/dev/rmt0

To

copy

the

dump

from

any

other

media,

enter:

tar

-xftapedevice

Copy

a

System

Dump

after

Booting

from

Maintenance

Mode:

Note:

Use

this

procedure

only

if

you

cannot

boot

your

machine

in

Normal

mode.

1.

After

booting

from

Maintenance

mode,

copy

a

system

dump

or

tape

using

the

following

snap

command:

/usr/sbin/snap

-gfkD

-o

/dev/rmt#

2.

To

copy

the

dump

back

from

the

external

media

(such

as

a

tape

drive),

use

the

tar

command.

Enter

the

following

to

copy

the

dump

from

/dev/rmt0:

tar

-x

294

Kernel

Extensions

and

Device

Support

Programming

Concepts

To

copy

the

dump

from

any

other

media,

enter:

tar

-xftapedevice

Increase

the

Size

of

a

Dump

Device

Refer

to

the

following

to

determine

the

appropriate

size

for

your

dump

logical

volume

and

to

increase

the

size

of

either

a

logical

volume

or

a

paging

space

logical

volume.

v

Determining

the

Size

of

a

Dump

Device

v

Determining

the

Type

of

Logical

Volume

v

Increasing

the

Size

of

a

Dump

Device

Determining

the

Size

of

a

Dump

Device

The

size

required

for

a

dump

is

not

a

constant

value

because

the

system

does

not

dump

paging

space;

only

data

that

resides

in

real

memory

can

be

dumped.

Paging

space

logical

volumes

will

generally

hold

the

system

dump.

However,

because

an

incomplete

dump

may

not

be

usable,

follow

the

procedure

below

to

make

sure

that

you

have

enough

dump

space.

When

a

system

dump

occurs,

all

of

the

kernel

segment

that

resides

in

real

memory

is

dumped

(the

kernel

segment

is

segment

0).

Memory

resident

user

data

(such

as

u-blocks)

are

also

dumped.

The

minimum

size

for

the

dump

space

can

best

be

determined

using

the

sysdumpdev

-e

command.

This

gives

an

estimated

dump

size

taking

into

account

the

memory

currently

in

use

by

the

system.

If

dumps

are

being

compressed,

then

the

estimate

shown

is

for

the

compressed

size

of

thedump,

not

the

original

size.

In

general,

compressed

dump

size

estimates

will

be

much

higher

than

the

actual

size.

This

occurs

because

of

the

unpredictability

of

the

compression

algorithm’s

efficiency.

You

should

still

ensure

your

dump

device

is

large

enough

to

hold

the

estimated

size

in

order

to

avoid

losing

dump

data.

For

example,

enter:

sysdumpdev

-e

If

sysdumpdev

-e

returns

the

message,

Estimated

dump

size

in

bytes:

9830400,

then

the

dump

device

should

be

at

least

9830400

bytes

or

12MB

(if

you

are

using

three

4MB

partitions

for

the

disk).

Note:

When

a

client

dumps

to

a

remote

dump

server,

the

dumps

are

stored

as

files

on

the

server.

For

example,

the

/export/dump/kakrafon/dump

file

will

contain

kakrafon’s

dump.

Therefore,

the

file

system

used

for

the

/export/dump/kakrafon

directory

must

be

large

enough

to

hold

the

client

dumps.

Determining

the

Type

of

Logical

Volume

1.

Enter

the

sysdumpdev

command

to

list

the

dump

devices.

The

logical

volume

of

the

primary

dump

device

will

probably

be

/dev/hd6

or

/dev/hd7.

Note:

You

can

also

determine

the

dump

devices

using

SMIT.

Select

the

Show

Current

Dump

Devices

option

from

the

System

Dump

SMIT

menu.

2.

Determine

your

logical

volume

type

by

using

SMIT.

Enter

the

SMIT

fast

path

smit

lvm

or

smitty

lvm.

You

will

go

directly

to

Logical

Volumes.

Select

the

List

all

Logical

Volumes

by

Volume

Group

option.

Find

your

dump

volume

in

the

list

and

note

its

Type

(in

the

second

column).

For

example,

this

might

be

paging

in

the

case

of

hd6

or

sysdump

in

the

case

of

hd7.

Increasing

the

Size

of

a

Dump

Device

If

you

have

confirmed

that

your

dump

device

is

a

paging

space,

refer

to

Changing

or

Removing

a

Paging

Space

in

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices

for

more

information.

Chapter

16.

Debug

Facilities

295

If

you

have

confirmed

that

your

dump

device

type

is

sysdump,

refer

to

the

extendlv

command

for

more

information.

Error

Logging

The

error

facility

records

device-driver

entries

in

the

system

error

log.

These

error

log

entries

record

any

software

or

hardware

failures

that

need

to

be

available

either

for

informational

purposes

or

for

fault

detection

and

corrective

action.

The

device

driver,

using

the

errsave

kernel

service,

adds

error

records

to

the

/dev/error

special

file.

The

errdemon

daemon

picks

up

the

error

record

and

creates

an

error

log

entry.

When

you

access

the

error

log

either

through

SMIT

(System

Management

Interface

Tool)

or

with

the

errpt

command,

the

error

record

is

formatted

according

to

the

error

template

in

the

error

template

repository

and

presented

in

either

a

summary

or

detailed

report.

Before

initiating

the

error

logging

process,

determine

what

services

are

available

to

developers,

and

what

services

are

available

to

the

customer,

service

personnel,

and

defect

personnel.

v

Determine

the

Importance

of

the

Error:

Use

system

resources

for

logging

only

information

that

is

important

or

helpful

to

the

intended

audience.

Work

with

the

hardware

developer,

if

possible,

to

identify

detectable

errors

and

the

information

that

should

be

relayed

concerning

those

errors.

v

Determine

the

Text

of

the

Message:

Use

regular

national

language

support

(NLS)

XPG/4

messages

instead

of

the

codepoints.

For

more

information

about

NLS

messages,

see

Message

Facility

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

v

Determine

the

Correct

Level

of

Thresholding:

Each

software

or

hardware

error

to

be

logged,

can

be

limited

by

thresholding

to

avoid

filling

the

error

log

with

duplicate

information.

Side

effects

of

runaway

error

logging

include

overwriting

existing

error

log

entries

and

unduly

alarming

the

end

user.

The

error

log

is

limited

in

size.

When

its

size

limit

is

reached,

the

log

wraps.

If

a

particular

error

is

repeated

needlessly,

existing

information

is

overwritten,

which

might

cause

inaccurate

diagnostic

analyses.

The

end

user

or

service

person

can

perceive

a

situation

as

more

serious

or

pervasive

than

it

is

if

they

see

hundreds

of

identical

or

nearly

identical

error

entries.

You

are

responsible

for

implementing

the

proper

level

of

thresholding

in

the

device

driver

code.

The

size

of

the

error

is

1

MB.

As

shipped,

it

cleans

up

any

entries

older

than

30

days.

To

ensure

that

your

error

log

entries

are

informative,

noticed,

and

remain

intact,

test

your

driver

thoroughly.

Setting

up

Error

Logging

To

begin

error

logging,

do

the

following:

1.

Select

the

error

text.

2.

Construct

error

record

templates.

3.

Add

error

logging

calls

into

the

device

driver

code.

Step

1:

Selecting

the

Error

Text

Browse

the

contents

of

the

system

message

file.

Either

all

of

the

desired

messages

for

the

new

errors

exist

in

the

message

file,

none

of

the

messages

exist,

or

a

combination

of

errors

exists.

v

If

the

messages

required

already

exist

in

the

system

message

file,

make

a

note

of

the

four-digit

hexadecimal

identification

number,

as

well

as

the

message-set

identification

letter.

For

instance,

an

error

description

might

be:

SET

E

E859

"The

wagon

wheel

is

broken."

v

If

none

of

the

system

error

messages

meet

your

requirements,

and

if

you

are

responsible

for

developing

a

product

for

general

distribution,

you

can

either

contact

your

supplier

to

allocate

new

messages

or

follow

the

procedures

that

your

organization

uses

to

request

new

messages.

If

you

are

creating

an

in-house

product,

use

the

errmsg

command

to

write

suitable

error

messages

and

use

the

errinstall

296

Kernel

Extensions

and

Device

Support

Programming

Concepts

command

to

install

them.

For

more

information,

see

Software

Product

Packaging

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Make

sure

that

you

do

not

overwrite

other

error

messages.

v

You

can

use

a

combination

of

existing

messages

and

new

messages

within

the

same

error

record

template

definition.

Step

2:

Constructing

Error

Record

Templates

Construct

your

error

record

templates,

which

define

the

text

that

displays

in

the

error

report.

Each

error

record

template

has

the

following

general

form:

Error

Record

Template

+LABEL:

Comment

=

Class

=

Log

=

Report

=

Alert

=

Err_Type

=

Err_Desc

=

Probable_Causes

=

User_Causes

=

User_Actions

=

Inst_Causes

=

Inst_Actions

=

Fail_Causes

=

Fail_Actions

=

Detail_Data

=

<data_len>,

<data_id>,

<data_encoding>

Each

field

in

this

stanza

has

well-defined

criteria

for

input

values.

For

more

information,

see

the

errupdate

command.

The

fields

are

as

follows:

Label

Requires

a

unique

label

for

each

entry

to

be

added.

The

label

must

follow

C

language

rules

for

identifiers

and

must

not

exceed

16

characters

in

length.

Comment

Indicates

that

this

is

a

comment

field.

You

must

enclose

the

comment

in

double

quotation

marks,

and

it

cannot

exceed

40

characters.

Class

Requires

class

values

of

H

(hardware),

S

(software),

or

U

(Undetermined).

Log

Requires

values

True

or

False.

If

failure

occurs,

the

errors

are

logged

only

if

this

field

value

is

set

to

True.

When

this

value

is

False

the

Report

and

Alert

fields

are

ignored.

Report

Requires

values

True

or

False.

If

the

logged

error

is

to

be

displayed

using

error

report,

the

value

of

this

field

must

be

True.

Alert

Requires

values

True

or

False.

Set

this

field

to

True

for

errors

that

are

alertable.

For

errors

that

are

not

alertable,

set

this

field

to

False.

Err_Type

Describes

the

severity

of

the

failure

that

occurred.

Possible

values

for

Err_Type

are

as

follows:

INFO

The

error

log

entry

is

informational

and

was

not

the

result

of

an

error.

PEND

A

condition

in

which

the

loss

of

availability

of

a

device

or

component

is

imminent.

PERF

A

condition

in

which

the

performance

of

a

device

or

component

was

degraded

below

an

acceptable

level.

PERM

A

permanent

failure

is

defined

as

a

condition

that

was

not

recoverable.

For

example,

an

operation

was

retried

a

prescribed

number

of

times

without

success.

TEMP

Recovery

from

this

temporary

failure

was

successful,

yet

the

number

of

unsuccessful

recovery

attempts

exceeded

a

predetermined

threshold.

Chapter

16.

Debug

Facilities

297

UNKN

A

condition

in

which

it

is

not

possible

to

assess

the

severity

of

a

failure.

Err_Desc

Describes

the

failure

that

occurred.

Proper

input

for

this

field

is

the

four-digit

hexadecimal

identifier

of

the

error

description

message

to

be

displayed

from

SET

E

in

the

message

file.

Prob_Causes

Describes

one

or

more

probable

causes

for

the

failure

that

occurred.

You

can

specify

a

list

of

up

to

four

Prob_Causes

identifiers

separated

by

commas.

A

Prob_Causes

identifier

displays

a

probable

cause

text

message

from

SET

P

in

the

message

file.

List

probable

causes

in

the

order

of

decreasing

probability.

At

least

one

probable

cause

identifier

is

required.

User_Causes

Specifies

a

condition

that

an

operator

can

resolve

without

contacting

any

service

organization.

You

can

specify

a

list

of

up

to

four

User_Causes

identifiers

separated

by

commas.

A

User_Causes

identifier

displays

a

text

message

from

SET

U

in

the

message

file.

List

user

causes

in

the

order

of

decreasing

probability.

Leave

this

field

blank

if

it

does

not

apply

to

the

failure

that

occurred.

If

this

field

is

blank,

either

the

Inst_Causes

or

the

Fail_Causes

field

must

not

be

blank.

User_Actions

Describes

recommended

actions

for

correcting

a

failure

that

resulted

from

a

user

cause.

You

can

specify

a

list

of

up

to

four

recommended

User_Actions

identifiers

separated

by

commas.

A

recommended

User_Actions

identifier

displays

a

recommended

action

text

message,

SET

R

in

the

message

file.

You

must

leave

this

field

blank

if

the

User_Causes

field

is

blank.

The

order

in

which

the

recommended

actions

are

listed

is

determined

by

the

expense

of

the

action

and

the

probability

that

the

action

corrects

the

failure.

Actions

that

have

little

or

no

cost

and

little

or

no

impact

on

system

operation

should

always

be

listed

first.

When

actions

for

which

the

probability

of

correcting

the

failure

is

equal

or

nearly

equal,

list

the

least

expensive

action

first.

List

remaining

actions

in

order

of

decreasing

probability.

Inst_Causes

Describes

a

condition

that

resulted

from

the

initial

installation

or

setup

of

a

resource.

You

can

specify

a

list

of

up

to

four

Inst_Causes

identifiers

separated

by

commas.

An

Inst_Causes

identifier

displays

a

text

message,

SET

I

in

the

message

file.

List

the

install

causes

in

the

order

of

decreasing

probability.

Leave

this

field

blank

if

it

is

not

applicable

to

the

failure

that

occurred.

If

this

field

is

blank,

either

the

User_Causes

or

the

Failure_Causes

field

must

not

be

blank.

Inst_Actions

Describes

recommended

actions

for

correcting

a

failure

that

resulted

from

an

install

cause.

You

can

specify

a

list

of

up

to

four

recommended

Inst_actions

identifiers

separated

by

commas.

A

recommended

Inst_actions

identifier

identifies

a

recommended

action

text

message,

SET

R

in

the

message

file.

Leave

this

field

blank

if

the

Inst_Causes

field

is

blank.

The

order

in

which

the

recommended

actions

are

listed

is

determined

by

the

expense

of

the

action

and

the

probability

that

the

action

corrects

the

failure.

See

the

User_Actions

field

for

the

list

criteria.

Fail_Causes

Describes

a

condition

that

resulted

from

the

failure

of

a

resource.

You

can

specify

a

list

of

up

to

four

Fail_Causes

identifiers

separated

by

commas.

A

Fail_Causes

identifier

displays

a

failure

cause

text

message,

SET

F

in

the

message

file.

List

the

failure

causes

in

the

order

of

decreasing

probability.

Leave

this

field

blank

if

it

is

not

applicable

to

the

failure

that

occurred.

If

you

leave

this

field

blank,

either

the

User_Causes

or

the

Inst_Causes

field

must

not

be

blank.

Fail_Actions

Describes

recommended

actions

for

correcting

a

failure

that

resulted

from

a

failure

cause.

You

can

specify

a

list

of

up

to

four

recommended

action

identifiers

separated

by

commas.

The

Fail_Actions

identifiers

must

correspond

to

recommended

action

messages

found

in

SET

R

of

the

message

file.

Leave

this

field

blank

if

the

Fail_Causes

field

is

blank.

Refer

to

the

description

of

the

User_Actions

field

for

criteria

in

listing

these

recommended

actions.

298

Kernel

Extensions

and

Device

Support

Programming

Concepts

Detail_Data

Describes

the

detailed

data

that

is

logged

with

the

error

when

the

failure

occurs.

The

Detail_data

field

includes

the

name

of

the

detecting

module,

sense

data,

or

return

codes.

Leave

this

field

blank

if

no

detailed

data

is

logged

with

the

error.

You

can

repeat

the

Detail_Data

field.

The

amount

of

data

logged

with

an

error

must

not

exceed

the

maximum

error

record

length

defined

in

the

sys/err_rec.h

header

file.

Save

failure

data

that

cannot

be

contained

in

an

error

log

entry

elsewhere,

for

example

in

a

file.

The

detailed

data

in

the

error

log

entry

contains

information

that

can

be

used

to

correlate

the

failure

data

to

the

error

log

entry.

Three

values

are

required

for

each

detail

data

entry:

data_len

Indicates

the

number

of

bytes

of

data

to

be

associated

with

the

data_id

value.

The

data_len

value

is

interpreted

as

a

decimal

value.

data_id

Identifies

a

text

message

to

be

printed

in

the

error

report

in

front

of

the

detailed

data.

These

identifiers

refer

to

messages

in

SET

D

of

the

message

file.

data_encoding

Describes

how

the

detailed

data

is

to

be

printed

in

the

error

report.

Valid

values

for

this

field

are:

ALPHA

The

detailed

data

is

a

printable

ASCII

character

string.

DEC

The

detailed

data

is

the

binary

representation

of

an

integer

value,

the

decimal

equivalent

is

to

be

printed.

HEX

The

detailed

data

is

to

be

printed

in

hexadecimal.

Sample

Error

Record

Template

An

example

of

an

error

record

template

is:

+&

MISC_ERR:

Comment

=

"Interrupt:

I/O

bus

timeout

or

channel

check"

Class

=

H

Log

=

TRUE

Report

=

TRUE

Alert

=

FALSE

Err_Type

=

UNKN

Err_Desc

=

E856

Prob_Causes

=

3300,

6300

User_Causes

=

User_Actions

=

Inst_Causes

=

Inst_Actions

=

Fail_Causes

=

3300,

6300

Fail_Actions

=

0000

Detail_Data

=

4,

8119,

HEX

*IOCC

bus

number

Detail_Data

=

4,

811A,

HEX

*Bus

Status

Register

Detail_Data

=

4,

811B,

HEX

*Misc.

Interrupt

Register

Construct

the

error

templates

for

all

new

errors

to

be

added

in

a

file

suitable

for

entry

with

the

errupdate

command.

Run

the

errupdate

command

with

the

-h

flag

and

the

input

file.

The

new

errors

are

now

part

of

the

error

record

template

repository.

A

new

header

file

is

also

created

(file.h)

in

the

same

directory

in

which

the

errupdate

command

was

run.

This

header

file

must

be

included

in

the

device

driver

code

at

compile

time.

Note

that

the

errupdate

command

has

a

built-in

syntax

checker

for

the

new

stanza

that

can

be

called

with

the

-c

flag.

Adding

Error

Logging

Calls

into

the

Code

The

third

step

in

coding

error

logging

is

to

put

the

error

logging

calls

into

the

device

driver

code.

The

errsave

kernel

service

allows

the

kernel

and

kernel

extensions

to

write

to

the

error

log.

Typically,

you

define

a

routine

in

the

device

driver

that

can

be

called

by

other

device

driver

routines

when

a

loggable

Chapter

16.

Debug

Facilities

299

error

is

encountered.

This

function

takes

the

data

passed

to

it,

puts

it

into

the

proper

structure

and

calls

the

errsave

kernel

service.

The

syntax

for

the

errsave

kernel

service

is:

#include

<sys/errids.h>

void

errsave(buf,

cnt)

char

*buf;

unsigned

int

cnt;

where:

buf

Specifies

a

pointer

to

a

buffer

that

contains

an

error

record

as

described

in

the

sys/errids.h

header

file.

cnt

Specifies

a

number

of

bytes

in

the

error

record

contained

in

the

buffer

pointed

to

by

the

buf

parameter.

The

following

sample

code

is

an

example

of

a

device

driver

error

logging

routine.

This

routine

takes

data

passed

to

it

from

some

part

of

the

main

body

of

the

device

driver.

This

code

simply

fills

in

the

structure

with

the

pertinent

information,

then

passes

it

on

using

the

errsave

kernel

service.

void

errsv_ex

(int

err_id,

unsigned

int

port_num,

int

line,

char

*file,

uint

data1,

uint

data2)

{

dderr

log;

char

errbuf[255];

ddex_dds

*p_dds;

p_dds

=

dds_dir[port_num];

log.err.error_id

=

err_id;

if

(port_num

=

BAD_STATE)

{

sprintf(log.err.resource_name,

"%s

:%d",

p_dds->dds_vpd.adpt_name,

data1);

data1

=

0;

}

else

sprintf(log.err.resource_name,"%s",p_dds->dds_vpd.devname);

sprintf(errbuf,

"line:

%d

file:

%s",

line,

file);

strncpy(log.file,

errbuf,

(size_t)sizeof(log.file));

log.data1

=

data1;

log.data2

=

data2;

errsave(&log,

(uint)sizeof(dderr));

/*

run

actual

logging

*/

}

/*

end

errlog_ex

*/

The

data

to

be

passed

to

the

errsave

kernel

service

is

defined

in

the

dderr

structure,

which

is

defined

in

a

local

header

file,

dderr.h.

The

definition

for

dderr

is:

typedef

struct

dderr

{

struct

err_rec0

err;

int

data1;

/*

use

data1

and

data2

to

show

detail

*/

int

data2;

/*

data

in

the

errlog

report.

Define

*/

/*

these

fields

in

the

errlog

template

*/

/*

These

fields

may

not

be

used

in

all

*/

/*

cases.

*/

}

dderr;

The

first

field

of

the

dderr.h

header

file

is

comprised

of

the

err_rec0

structure,

which

is

defined

in

the

sys/err_rec.h

header

file.

This

structure

contains

the

ID

(or

label)

and

a

field

for

the

resource

name.

The

two

data

fields

hold

the

detail

data

for

the

error

log

report.

As

an

alternative,

you

could

simply

list

the

fields

within

the

function.

300

Kernel

Extensions

and

Device

Support

Programming

Concepts

You

can

also

log

a

message

into

the

error

log

from

the

command

line.

To

do

this,

use

the

errlogger

command.

After

you

add

the

templates

using

the

errupdate

command,

compile

the

device

driver

code

along

with

the

new

header

file.

Simulate

the

error

and

verify

that

it

was

written

to

the

error

log

correctly.

Some

details

to

check

for

include:

v

Is

the

error

demon

running?

This

can

be

verified

by

running

the

ps

-ef

command

and

checking

for

/usr/lib/errdemon

as

part

of

the

output.

v

Is

the

error

part

of

the

error

template

repository?

Verify

this

by

running

the

errpt

-at

command.

v

Was

the

new

header

file,

which

was

created

by

the

errupdate

command

and

which

contains

the

error

label

and

unique

error

identification

number,

included

in

the

device

driver

code

when

it

was

compiled?

Debug

and

Performance

Tracing

The

trace

facility

is

useful

for

observing

a

running

device

driver

and

system.

The

trace

facility

captures

a

sequential

flow

of

time-stamped

system

events,

providing

a

fine

level

of

detail

on

system

activity.

Events

are

shown

in

time

sequence

and

in

the

context

of

other

events.

The

trace

facility

is

useful

in

expanding

the

trace

event

information

to

understand

who,

when,

how,

and

even

why

the

event

happened.

Introduction

The

operating

system

is

shipped

with

permanent

trace

event

points.

These

events

provide

general

visibility

to

system

execution.

You

can

extend

the

visibility

into

applications

by

inserting

additional

events

and

providing

formatting

rules.

The

collection

of

trace

data

was

designed

so

that

system

performance

and

flow

would

be

minimally

altered

by

activating

trace.

Because

of

this,

the

facility

is

extremely

useful

as

a

performance

analysis

tool

and

as

a

problem

determination

tool.

The

trace

facility

is

more

flexible

than

traditional

system

monitor

services

that

access

and

present

statistics

maintained

by

the

system.

With

traditional

monitor

services,

data

reduction

(conversion

of

system

events

to

statistics)

is

largely

coupled

to

the

system

instrumentation.

For

example,

the

system

can

maintain

the

minimum,

maximum,

and

average

elapsed

time

observed

for

runs

of

a

task

and

permit

this

information

to

be

extracted.

The

trace

facility

does

not

strongly

couple

data

reduction

to

instrumentation

but

provides

a

stream

of

system

events.

It

is

not

required

to

presuppose

what

statistics

are

needed.

The

statistics

or

data

reduction

are

to

a

large

degree

separated

from

the

instrumentation.

You

can

choose

to

develop

the

minimum,

maximum,

and

average

time

for

task

A

from

the

flow

of

events.

But

it

is

also

possible

to

extract

the

average

time

for

task

A

when

called

by

process

B,

extract

the

average

time

for

task

A

when

conditions

XYZ

are

met,

develop

a

standard

deviation

for

task

A,

or

even

decide

that

some

other

task,

recognized

by

a

stream

of

events,

is

more

meaningful

to

summarize.

This

flexibility

is

invaluable

for

diagnosing

performance

or

functional

problems.

The

trace

facility

generates

large

volumes

of

data.

This

data

cannot

be

captured

for

extended

periods

of

time

without

overflowing

the

storage

device.

This

allows

two

practical

ways

that

the

trace

facility

can

be

used

natively.

First,

the

trace

facility

can

be

triggered

in

multiple

ways

to

capture

small

increments

of

system

activity.

It

is

practical

to

capture

seconds

to

minutes

of

system

activity

in

this

way

for

post-processing.

This

is

sufficient

time

to

characterize

major

application

transactions

or

interesting

sections

of

a

long

task.

Second,

the

trace

facility

can

be

configured

to

direct

the

event

stream

to

standard

output.

This

allows

a

real-time

process

to

connect

to

the

event

stream

and

provide

data

reduction

in

real-time,

thereby

creating

Chapter

16.

Debug

Facilities

301

a

long

term

monitoring

capability.

A

logical

extension

for

specialized

instrumentation

is

to

direct

the

data

stream

to

an

auxiliary

device

that

can

either

store

massive

amounts

of

data

or

provide

dynamic

data

reduction.

You

can

start

the

system

trace

from:

v

The

command

line

v

SMIT

v

Software

The

trace

facility

causes

predefined

events

to

be

written

to

a

trace

log.

The

tracing

action

is

then

stopped.

Tracing

from

a

command

line

is

discussed

in

“Controlling

trace”

on

page

303.

Tracing

from

a

software

application

is

discussed

and

an

example

is

presented

in

“Examples

of

Coding

Events

and

Formatting

Events”

on

page

318.

After

a

trace

is

started

and

stopped,

you

must

format

it

before

viewing

it.

To

format

the

trace

events

that

you

have

defined,

you

must

provide

a

stanza

that

describes

how

the

trace

formatter

is

to

interpret

the

data

that

has

been

collected.

This

is

described

in

“Syntax

for

Stanzas

in

the

trace

Format

File”

on

page

305.

The

trcrpt

command

provides

a

general

purpose

report

facility.

The

report

facility

provides

little

data

reduction,

but

converts

the

raw

binary

event

stream

to

a

readable

ASCII

listing

of

the

event

stream.

Data

can

be

visually

extracted

by

a

reader,

or

tools

can

be

developed

to

further

reduce

the

data.

For

an

event

to

be

traced,

you

must

write

an

event

hook

(sometimes

called

a

trace

hook)

into

the

code

that

you

want

to

trace.

Tracing

can

be

done

on

either

the

system

channel

(channel

0)

or

on

a

generic

channel

(channels

1-7).

All

preshipped

trace

points

are

output

to

the

system

channel.

Usually,

when

you

want

to

show

interaction

with

other

system

routines,

use

the

system

channel.

The

generic

channels

are

provided

so

that

you

can

control

how

much

data

is

written

to

the

trace

log.

Only

your

data

is

written

to

one

of

the

generic

channels.

For

more

information

on

trace

hooks,

see

“Macros

for

Recording

trace

Events”

on

page

303.

Using

the

trace

Facility

The

following

sections

describe

the

use

of

the

trace

facility.

Configuring

and

Starting

trace

Data

Collection

The

trace

command

configures

the

trace

facility

and

starts

data

collection.

You

can

start

trace

from

the

command

line

or

with

a

trcstart

subroutine

call.

The

trcstart

subroutine

is

in

the

librts.a

library.

The

syntax

of

the

trcstart

subroutine

is:

int

trcstart(char

*args)

where

args

is

simply

the

options

list

desired

that

you

would

enter

using

the

trace

command

if

starting

a

system

trace

(channel

0).

If

starting

a

generic

trace,

include

a

-g

option

in

the

args

string.

On

successful

completion,

trcstart

returns

the

channel

ID.

For

generic

tracing

this

channel

ID

can

be

used

to

record

to

the

private

generic

channel.

For

an

example

of

the

trcstart

routine,

see

“Examples

of

Coding

Events

and

Formatting

Events”

on

page

318.

When

compiling

a

program

using

this

subroutine,

you

must

request

the

link

to

the

librts.a

library.

Use

-l

rts

as

a

compile

option.

302

Kernel

Extensions

and

Device

Support

Programming

Concepts

Controlling

trace

Basic

controls

for

the

trace

facility

exist

as

trace

subcommands,

standalone

commands,

and

subroutines.

If

you

configure

the

trace

routine

to

run

asynchronously

(the

-a

option),

you

can

control

the

trace

facility

with

the

following

commands:

trcon

Turns

collection

of

trace

data

on.

trcoff

Turns

collection

of

trace

data

off.

trcstop

Stops

collection

of

trace

data

(like

trcoff)

and

terminates

the

trace

routine.

Producing

a

trace

Report

The

trace

report

facility

formats

and

displays

the

collected

event

stream

in

readable

form.

This

report

facility

displays

text

and

data

for

each

event

according

to

rules

provided

in

the

trace

format

file.

The

default

trace

format

file

is

/etc/trcfmt

and

contains

a

stanza

for

each

event

ID.

The

stanza

for

the

event

provides

the

report

facility

with

formatting

rules

for

that

event.

This

technique

allows

you

to

add

your

own

events

to

programs

and

insert

corresponding

event

stanzas

in

the

format

file

to

have

their

new

events

formatted.

This

report

facility

does

not

attempt

to

extract

summary

statistics

(such

as

CPU

utilization

and

disk

utilization)

from

the

event

stream.

This

can

be

done

in

several

other

ways.

To

create

simple

summaries,

consider

using

awk

scripts

to

process

the

output

obtained

from

the

trcrpt

command.

Defining

trace

Events

The

operating

system

is

shipped

with

predefined

trace

hooks

(events).

You

need

only

activate

trace

to

capture

the

flow

of

events

from

the

operating

system.

You

might

want

to

define

trace

events

in

your

code

during

development

for

tuning

purposes.

This

provides

insight

into

how

the

program

is

interacting

with

the

system.

The

following

sections

provide

the

information

that

is

required

to

do

this.

Possible

Forms

of

a

trace

Event

Record

A

trace

event

can

take

several

forms.

An

event

consists

of

the

following:

v

Hookword

v

Data

words

(optional)

v

A

TID,

or

thread

identifier

v

Timestamp

(optional)

An

event

record

should

be

as

short

as

possible.

Many

system

events

use

only

the

hookword

and

timestamp.

There

is

another

event

type

you

should

seldom

use

because

it

is

less

efficient.

It

is

a

long

format

that

allows

you

to

record

a

variable

length

data.

In

this

long

form,

the

16-bit

data

field

of

the

hookword

is

converted

to

a

length

field

that

describes

the

length

of

the

event

record.

Macros

for

Recording

trace

Events

The

following

macros

should

always

be

used

to

generate

trace

data.

Do

not

call

the

tracing

functions

directly.

There

is

a

macro

to

record

each

possible

type

of

event

record.

The

macros

are

defined

in

the

sys/trcmacros.h

header

file.

Most

event

IDs

are

defined

in

the

sys/trchkid.h

header

file.

Include

these

two

header

files

in

any

program

that

is

recording

trace

events.

The

macros

to

record

system

(channel

0)

events

with

a

time

stamp

are:

v

TRCHKL0T

(hw)

v

TRCHKL1T

(hw,D1)

v

TRCHKL2T

(hw,D1,D2)

v

TRCHKL3T

(hw,D1,D2,D3)

Chapter

16.

Debug

Facilities

303

v

TRCHKL4T

(hw,D1,D2,D3,D4)

v

TRCHKL5T

(hw,D1,D2,D3,D4,D5)

Similarly,

to

record

non-time

stamped

system

events

(channel

0),

use

the

following

macros:

v

TRCHKL0

(hw)

v

TRCHKL1

(hw,D1)

v

TRCHKL2

(hw,D1,D2)

v

TRCHKL3

(hw,D1,D2,D3)

v

TRCHKL4

(hw,D1,D2,D3,D4)

v

TRCHKL5

(hw,D1,D2,D3,D4,D5)

There

are

only

two

macros

to

record

events

to

one

of

the

generic

channels

(channels

1-7).

These

are:

v

TRCGEN

(ch,hw,d1,len,buf)

v

TRCGENT

(ch,hw,d1,len,buf)

These

macros

record

a

hookword

(hw),

a

data

word

(d1)

and

a

length

of

data

(len)

specified

in

bytes

from

the

user’s

data

segment

at

the

location

specified

(buf)

to

the

event

stream

specified

by

the

channel

(ch).

Use

of

Event

IDs

(hookids)

Event

IDs

are

12

bits

(or

3-digit

hexadecimal),

for

a

possibility

of

4096

IDs.

Event

IDs

that

are

permanently

left

in

and

shipped

with

code

need

to

be

permanently

assigned.

To

allow

you

to

define

events

in

your

environments

or

during

development,

a

range

of

event

IDs

exist

for

temporary

use.

The

range

of

event

IDs

for

temporary

use

is

hex

010

through

hex

0FF.

No

permanent

(shipped)

events

are

assigned

in

this

range.

You

can

freely

use

this

range

of

IDs

in

your

own

environment.

If

you

do

use

IDs

in

this

range,

do

not

let

the

code

leave

your

environment.

Permanent

events

must

have

event

IDs

assigned

by

the

current

owner

of

the

trace

component.

To

obtain

a

trace

event

id,

send

a

note

with

a

subject

of

help

to

aixras@austin.ibm.com.

You

should

conserve

event

IDs

because

they

are

limited.

Event

IDs

can

be

extended

by

the

data

field.

The

only

reason

to

have

a

unique

ID

is

that

an

ID

is

the

level

at

which

collection

and

report

filtering

is

available

in

the

trace

facility.

An

ID

can

be

collected

or

not

collected

by

the

trace

collection

process

and

reported

or

not

reported

by

the

trace

report

facility.

Whole

applications

can

be

instrumented

using

only

one

event

ID.

The

only

restriction

is

that

the

granularity

on

choosing

visibility

is

to

choose

whether

events

for

that

application

are

visible.

A

new

event

can

be

formatted

by

the

trace

report

facility

(trcrpt

command)

if

you

create

a

stanza

for

the

event

in

the

trace

format

file.

The

trace

format

file

is

an

editable

ASCII

file.

The

syntax

for

a

format

stanzas

is

shown

in

Syntax

for

Stanzas

in

the

trace

Format

File.

All

permanently

assigned

event

IDs

should

have

an

appropriate

stanza

in

the

default

trace

format

file

shipped

with

the

base

operating

system.

Suggested

Locations

and

Data

for

Permanent

Events

The

intent

of

permanent

events

is

to

give

an

adequate

level

of

visibility

to

determine

execution,

and

data

flow

and

have

an

adequate

accounting

for

how

CPU

time

is

being

consumed.

During

code

development,

it

can

be

desirable

to

make

very

detailed

use

of

trace

for

a

component.

For

example,

you

can

choose

to

trace

the

entry

and

exit

of

every

subroutine

in

order

to

understand

and

tune

path

length.

However,

this

would

generally

be

an

excessive

level

of

instrumentation

to

ship

for

a

component.

Consult

a

performance

analyst

for

decisions

regarding

what

events

and

data

to

capture

as

permanent

events

for

a

new

component.

The

following

paragraphs

provide

some

guidelines

for

these

decisions.

Events

should

capture

execution

flow

and

data

flow

between

major

components

or

major

sections

of

a

component.

For

example,

there

are

existing

events

that

capture

the

interface

between

the

virtual

memory

304

Kernel

Extensions

and

Device

Support

Programming

Concepts

manager

and

the

logical

volume

manager.

If

work

is

being

queued,

data

that

identifies

the

queued

item

(a

handle)

should

be

recorded

with

the

event.

When

a

queue

element

is

being

processed,

the

″dequeue″

event

should

provide

this

identifier

as

data

also,

so

that

the

queue

element

being

serviced

is

identified.

Data

or

requests

that

are

identified

by

different

handles

at

different

levels

of

the

system

should

have

events

and

data

that

allow

them

to

be

uniquely

identified

at

any

level.

For

example,

a

read

request

to

the

physical

file

system

is

identified

by

a

file

descriptor

and

a

current

offset

in

the

file.

To

a

virtual

memory

manager,

the

same

request

is

identified

by

a

segment

ID

and

a

virtual

page

address.

At

the

disk

device

driver

level,

this

request

is

identified

as

a

pointer

to

a

structure

that

contains

pertinent

data

for

the

request.

The

file

descriptor

or

segment

information

is

not

available

at

the

device

driver

level.

Events

must

provide

the

necessary

data

to

link

these

identifiers

so

that,

for

example,

when

a

disk

interrupt

occurs

for

incoming

data,

the

identifier

at

that

level

(which

can

simply

be

the

buffer

address

for

where

the

data

is

to

be

copied)

can

be

linked

to

the

original

user

request

for

data

at

some

offset

into

a

file.

Events

should

provide

visibility

to

major

protocol

events

such

as

requests,

responses,

acknowledgements,

errors,

and

retries.

If

a

request

at

some

level

is

fragmented

into

multiple

requests,

a

trace

event

should

indicate

this

and

supply

linkage

data

to

allow

the

multiple

requests

to

be

tracked

from

that

point.

If

multiple

requests

at

some

level

are

coalesced

into

a

single

request,

a

trace

event

should

also

indicate

this

and

provide

appropriate

data

to

track

the

new

request.

Use

events

to

give

visibility

to

resource

consumption.

Whenever

resources

are

claimed,

returned,

created,

or

deleted

an

event

should

record

the

fact.

For

example,

claiming

or

returning

buffers

to

a

buffer

pool

or

growing

or

shrinking

the

number

of

buffers

in

the

pool.

The

following

guidelines

can

help

you

determine

where

and

when

you

should

have

trace

hooks

in

your

code:

v

Tracing

entry

and

exit

points

of

every

function

is

not

necessary.

Provide

only

key

actions

and

data.

v

Show

linkage

between

major

code

blocks

or

processes.

v

If

work

is

queued,

associate

a

name

(handle)

with

it

and

output

it

as

data.

v

If

a

queue

is

being

serviced,

the

trace

event

should

indicate

the

unique

element

being

serviced.

v

If

a

work

request

or

response

is

being

referenced

by

different

handles

as

it

passes

through

different

software

components,

trace

the

transactions

so

the

action

or

receipt

can

be

identified.

v

Place

trace

hooks

so

that

requests,

responses,

errors,

and

retries

can

be

observed.

v

Identify

when

resources

are

claimed,

returned,

created,

or

destroyed.

Also

note

that:

v

A

trace

ID

can

be

used

for

a

group

of

events

by

″switching″

on

one

of

the

data

fields.

This

means

that

a

particular

data

field

can

be

used

to

identify

from

where

the

trace

point

was

called.

The

trace

format

routine

can

be

made

to

format

the

trace

data

for

that

unique

trace

point.

v

The

trace

hook

is

the

level

at

which

a

group

of

events

can

be

enabled

or

disabled.

Note

that

trace

hooks

can

be

grouped

in

SMIT.

For

more

information,

see

“Trace

Event

Groups”

on

page

320.

Syntax

for

Stanzas

in

the

trace

Format

File

The

intent

of

the

trace

format

file

is

to

provide

rules

for

presentation

and

display

of

the

expected

data

for

each

event

ID.

This

allows

new

events

to

be

formatted

without

changing

the

report

facility.

Rules

for

new

events

are

simply

added

to

the

format

file.

The

syntax

of

the

rules

provide

flexibility

in

the

presentation

of

the

data.

A

trace

format

stanza

can

be

as

long

as

required

to

describe

the

rules

for

any

particular

event.

The

stanza

can

be

continued

to

the

next

line

by

terminating

the

present

line

with

a

backslash

(\).

The

fields

are:

Chapter

16.

Debug

Facilities

305

event_id

Each

stanza

begins

with

the

three-digit

hexadecimal

event

ID

that

the

stanza

describes,

followed

by

a

space.

V.R

This

field

describes

the

version

(V)

and

release

(R)

that

the

event

was

first

assigned.

Any

integers

work

for

V

and

R,

and

you

might

want

to

keep

your

own

tracking

mechanism.

L=

The

text

description

of

an

event

can

begin

at

various

indentation

levels.

This

improves

the

readability

of

the

report

output.

The

indentation

levels

correspond

to

the

level

at

which

the

system

is

running.

The

recognized

levels

are:

APPL

Application

level

SVC

Transitioning

system

call

KERN

Kernel

level

INT

Interrupt

event_label

The

event_label

is

an

ASCII

text

string

that

describes

the

overall

use

of

the

event

ID.

This

is

used

by

the

-j

option

of

the

trcrpt

command

to

provide

a

listing

of

events

and

their

first

level

description.

The

event

label

also

appears

in

the

formatted

output

for

the

event

unless

the

event_label

field

starts

with

an

@

character.

\n

The

event

stanza

describes

how

to

parse,

label,

and

present

the

data

contained

in

an

event

record.

You

can

insert

a

\n

(newline)

in

the

event

stanza

to

continue

data

presentation

of

the

data

on

a

new

line.

This

allows

the

presentation

of

the

data

for

an

event

to

be

several

lines

long.

\t

The

\t

(tab)

function

inserts

a

tab

at

the

point

it

is

encountered

in

parsing

the

description.

This

is

similar

to

the

way

the

\n

function

inserts

new

lines.

Spacing

can

also

be

inserted

by

spaces

in

the

data_label

or

match_label

fields.

starttimer(#,#)

The

starttimer

and

endtimer

fields

work

together.

The

(#,#)

field

is

a

unique

identifier

that

associates

a

particular

starttimer

value

with

an

endtimer

that

has

the

same

identifier.

By

convention,

if

possible,

the

identifiers

should

be

the

ID

of

starting

event

and

the

ID

of

the

ending

event.

When

the

report

facility

encounters

a

start

timer

directive

while

parsing

an

event,

it

associates

the

starting

events

time

with

the

unique

identifier.

When

an

end

timer

with

the

same

identifier

is

encountered,

the

report

facility

outputs

the

delta

time

(this

appears

in

brackets)

that

elapsed

between

the

starting

event

and

ending

event.

The

begin

and

end

system

call

events

make

use

of

this

capability.

On

the

return

from

system

call

event,

a

delta

time

is

shown

that

indicates

how

long

the

system

call

took.

endtimer(#,#)

See

the

starttimer

field

in

the

preceding

paragraph.

data_descriptor

The

data_descriptor

field

is

the

fundamental

field

that

describes

how

the

report

facility

consumes,

labels,

and

presents

the

data.

The

various

subfields

of

the

data_descriptor

field

are:

data_label

The

data

label

is

an

ASCII

string

that

can

optionally

precede

the

output

of

data

consumed

by

the

following

format

field.

format

You

can

think

of

the

report

facility

as

having

a

pointer

into

the

data

portion

of

an

event.

This

data

pointer

is

initialized

to

point

to

the

beginning

of

the

event

data

(the

16-bit

data

field

in

the

hookword).

The

format

field

describes

how

much

data

the

report

facility

306

Kernel

Extensions

and

Device

Support

Programming

Concepts

consumes

from

this

point

and

how

the

data

is

considered.

For

example,

a

value

of

Bm.n

tells

the

report

facility

to

consume

m

bytes

and

n

bits

of

data

and

to

consider

it

as

binary

data.

The

possible

format

fields

are

described

in

the

following

section.

If

this

field

is

not

followed

by

a

comma,

the

report

facility

outputs

the

consumed

data

in

the

format

specified.

If

this

field

is

followed

by

a

comma,

it

signifies

that

the

data

is

not

to

be

displayed

but

instead

compared

against

the

following

match_vals

field.

The

data

descriptor

associated

with

the

matching

match_val

field

is

then

applied

to

the

remainder

of

the

data.

match_val

The

match

value

is

data

of

the

same

format

described

by

the

preceding

format

fields.

Several

match

values

typically

follow

a

format

field

that

is

being

matched.

The

successive

match

fields

are

separated

by

commas.

The

last

match

value

is

not

followed

by

a

comma.

Use

the

character

string

*

as

a

pattern-matching

character

to

match

anything.

A

pattern-matching

character

is

frequently

used

as

the

last

element

of

the

match_val

field

to

specify

default

rules

if

the

preceding

match_val

field

did

not

occur.

match_label

The

match

label

is

an

ASCII

string

that

is

output

for

the

corresponding

match.

Each

of

the

possible

format

fields

is

described

in

the

comments

of

the

/etc/trcfmt

file.

The

following

shows

several

possibilities:

Format

field

descriptions

In

most

cases,

the

data

length

part

of

the

specifier

can

also

be

the

letter

″W″

which

indicates

that

the

word

size

of

the

trace

hook

is

to

be

used.

For

example,

XW

will

format

4

or

8

bytes

into

hexadecimal,

depending

upon

whether

the

trace

hook

comes

from

a

32

or

64

bit

environment.

Am.n

This

value

specifies

that

m

bytes

of

data

are

consumed

as

ASCII

text,

and

that

it

is

displayed

in

an

output

field

that

is

n

characters

wide.

The

data

pointer

is

moved

m

bytes.

S1,

S2,

S4

Left

justified

string.

The

length

of

the

field

is

defined

as

1

byte

(S1),

2

bytes

(S2),

or

4

bytes

(S4)

and

so

on.

The

data

pointer

is

moved

accordingly.

SW

indicates

that

the

word

size

for

the

trace

event

is

to

be

used.

Bm.n

Binary

data

of

m

bytes

and

n

bits.

The

data

pointer

is

moved

accordingly.

Xm

Hexadecimal

data

of

m

bytes.

The

data

pointer

is

moved

accordingly.

D2,

D4

Signed

decimal

format.

Data

length

of

2

(D2)

bytes

or

4

(D4)

bytes

is

consumed.

U2,

U4

Unsigned

decimal

format.

Data

length

of

2

or

4

bytes

is

consumed.

F4,

F8

Floating

point

of

4

or

8

bytes.

Gm.n

Positions

the

data

pointer.

It

specifies

that

the

data

pointer

is

positioned

m

bytes

and

n

bits

into

the

data.

Om.n

Skip

or

omit

data.

It

omits

m

bytes

and

n

bits.

Rm

Reverse

the

data

pointer

m

bytes.

Wm

Position

DATA_POINTER

at

word

m.

The

word

size

is

either

4

or

8

bytes,

depending

upon

whether

or

not

this

is

a

32

or

64

bit

format

trace.

This

bares

no

relation

to

the

%W

format

specifier.

Some

macros

are

provided

that

can

be

used

as

format

fields

to

quickly

access

data.

For

example:

$D1,

$D2,

$D3,

$D4,

$D5

These

macros

access

data

words

1

through

5

of

the

event

record

without

moving

the

data

pointer.

The

data

accessed

by

a

macro

is

hexadecimal

by

default.

A

macro

can

be

cast

to

a

different

data

type

(X,

D,

U,

B)

by

using

a

%

character

followed

by

the

new

format

code.

For

example,

the

following

macro

causes

data

word

one

to

be

accessed,

but

to

be

considered

as

2

bytes

and

3

bits

of

binary

data:

$D1%B2.3

Chapter

16.

Debug

Facilities

307

$HD

This

macro

accesses

the

first

16

bits

of

data

contained

in

the

hookword,

in

a

similar

manner

as

the

$D1

through

$D5

macros

access

the

various

data

words.

It

is

also

considered

as

hexadecimal

data,

and

also

can

be

cast.

You

can

define

other

macros

and

use

other

formatting

techniques

in

the

trace

format

file.

This

is

shown

in

the

following

trace

format

file

example.

Example

Trace

Format

File

#

@(#)65

1.142

src/bos/usr/bin/trcrpt/trcfmt,

cmdtrace,

bos43N,

9909A_43N

2/12/99

13:15:34

#

COMPONENT_NAME:

CMDTRACE

system

trace

logging

and

reporting

facility

#

#

FUNCTIONS:

template

file

for

trcrpt

#

#

ORIGINS:

27,

83

#

#

(C)

COPYRIGHT

International

Business

Machines

Corp.

1988,

1993

#

All

Rights

Reserved

#

Licensed

Materials

-

Property

of

IBM

#

#

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

#

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

#

#

LEVEL

1,

5

Years

Bull

Confidential

Information

#

#

I.

General

Information

#

#

The

formats

shown

below

apply

to

the

data

placed

into

the

#

trcrpt

format

buffer.

These

formats

in

general

mirror

the

binary

#

format

of

the

data

in

the

trace

stream.

The

exceptions

are

#

hooks

from

a

32-bit

application

on

a

64-bit

kernel,

and

hooks

from

a

#

64-bit

application

on

a

32-bit

kernel.

These

exceptions

are

noted

#

below

as

appropriate.

#

#

Trace

formatting

templates

should

not

use

the

thread

id

or

time

#

stamp

from

the

buffer.

The

thread

id

should

be

obtained

with

the

#

$TID

macro.

The

time

stamp

is

a

raw

timer

value

used

by

trcrpt

to

#

calculate

the

elapsed

and

delta

times.

These

values

are

either

#

4

or

8

bytes

depending

upon

the

system

the

trace

was

run

on,

not

upon

#

the

environment

from

which

the

hook

was

generated.

#

The

system

environment,

32

or

64

bit,

and

the

hook’s

#

environment,

32

or

64

bit,

are

obtained

from

the

$TRACEENV

and

$HOOKENV

#

macros

discussed

below.

#

#

To

interpret

the

time

stamp,

it

is

necessary

to

get

the

values

from

#

hook

0x00a,

subhook

0x25c,

used

to

convert

it

to

nanoseconds.

#

The

3

data

words

of

interest

are

all

8

bytes

in

length

and

are

in

#

the

generic

buffer,

see

the

template

for

hook

00A.

#

The

first

data

word

gives

the

multiplier,

m,

and

the

second

word

#

is

the

divisor,

d.

These

values

should

be

set

to

1

if

the

#

third

word

doesn’t

contain

a

2.

The

nanosecond

time

is

then

#

calculated

with

nt

=

t

*

m

/

d

where

t

is

the

time

from

the

trace.

#

#

Also,

on

a

64-bit

system,

there

will

be

a

header

on

the

trace

stream.

#

This

header

serves

to

identify

the

stream

as

coming

from

a

#

64-bit

system.

There

is

no

such

header

on

the

data

stream

on

a

#

32-bit

system.

This

data

stream,

on

both

systems,

is

produced

with

#

the

"-o

-"

option

of

the

trace

command.

308

Kernel

Extensions

and

Device

Support

Programming

Concepts

#

This

header

consists

only

of

a

4-byte

magic

number,

0xEFDF1114.

#

#

A.

Binary

format

for

the

32-bit

trace

data

#

TRCHKL0

MMMTDDDDiiiiiiii

#

TRCHKL0T

MMMTDDDDiiiiiiiitttttttt

#

TRCHKL1

MMMTDDDD11111111iiiiiiii

#

TRCHKL1T

MMMTDDDD11111111iiiiiiiitttttttt

#

Note

that

trchkg

covers

TRCHKL2-TRCHKL5.

#

trchkg

MMMTDDDD1111111122222222333333334444444455555555iiiiiiii

#

trchkgt

MMMTDDDD1111111122222222333333334444444455555555

i...

t...

#

trcgent

MMMTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxx

i...

t...

#

#

legend:

#

MMM

=

hook

id

#

T

=

hooktype

#

D

=

hookdata

#

i

=

thread

id,

4

bytes

on

a

32

byte

system

and

8

bytes

on

a

64-bit

#

system.

The

thread

id

starts

on

a

4

or

8

byte

boundary.

#

t

=

timestamp,

4

bytes

on

a

32-bit

system

or

8

on

a

#

64-bit

system.

#

1

=

d1

(see

trchkid.h

for

calling

syntax

for

the

tracehook

routines)

#

2

=

d2,

etc.

#

v

=

trcgen

variable

length

buffer

#

L

=

length

of

variable

length

data

in

bytes.

#

#

The

DATA_POINTER

starts

at

the

third

byte

in

the

event,

ie.,

#

at

the

16

bit

hookdata

DDDD.

#

The

trcgen()

is

an

exception.

The

DATA_POINTER

starts

at

#

the

fifth

byte,

ie.,

at

the

’d1’

parameter

11111111.

#

#

Note

that

a

generic

trace

hook

with

a

hookid

of

0x00b

is

#

produced

for

64-bit

data

traced

from

a

64-bit

app

running

on

#

a

32-bit

kernel.

Since

this

is

produced

on

a

32-bit

system,

the

#

thread

id

and

time

stamp

will

be

4

bytes

in

the

data

stream.

#

#

B.

64-bit

trace

hook

format

#

#

TRCHK64L0

ffffllllhhhhssss

iiiiiiiiiiiiiiii

#

TRCHK64L0T

ffffllllhhhhssss

iiiiiiiiiiiiiiii

tttttttttttttttt

#

TRCHK64L1

ffffllllhhhhssss

1111111111111111

i...

#

...

#

TRCGEN

ffffllllhhhhssss

dddddddddddddddd

"string"

i...

#

TRCGENt

ffffllllhhhhssss

dddddddddddddddd

"string"

i...

t...

#

#

Legend

#

f

-

flags

#

tgbuuuuuuuuuuuuu:

t

-

time

stamped,

g

-

generic

(trcgen),

#

b

-

32-bit

data,

u

-

unused.

#

l

-

length,

number

of

bytes

traced.

#

For

TRCHKL0

llll

=

0,

#

for

TRCHKL5T

llll

=

40,

0x28

(5

8-byte

words)

#

h

-

hook

id

#

s

-

subhook

id

#

1

-

data

word

1,

...

#

d

-

generic

trace

data

word.

#

i

-

thread

id,

8

bytes

on

a

64-bit

system,

4

on

a

32-bit

system.

#

The

thread

id

starts

on

an

8-byte

boundary.

#

t

-

time

stamp,

8

bytes

on

a

64-bit

system,

4

on

a

32-bit

system.

#

#

For

non-generic

entries,

the

data

pointer

starts

at

the

Chapter

16.

Debug

Facilities

309

#

subhook

id,

offset

6.

This

is

compatible

with

the

32-bit

#

hook

format

shown

above.

#

For

generic

(trcgen)

hooks,

the

g

flag

above

is

on.

The

#

length

shows

the

number

of

variable

bytes

traced

and

does

not

include

#

the

data

word.

#

The

data

pointer

starts

at

the

64-bit

data

word.

#

Note

that

the

data

word

is

64

bits

here.

#

#

C.

Trace

environments

#

The

trcrpt,

trace

report,

utility

must

be

able

to

tell

whether

#

the

trace

it’s

formatting

came

from

a

32

or

a

64

bit

system.

#

This

is

accomplished

by

the

log

file

header’s

magic

number.

#

In

addition,

we

need

to

know

whether

32

or

64

bit

data

was

traced.

#

It

is

possible

to

run

a

32-bit

application

on

a

64-bit

kernel,

#

and

a

64-bit

application

on

a

32-bit

kernel.

#

In

the

case

of

a

32-bit

app

on

a

64-bit

kernel,

the

"b"

flag

#

shown

under

item

B

above

is

set

on.

The

trcrpt

program

will

#

then

present

the

data

as

if

it

came

from

a

32-bit

kernel.

#

In

the

second

case,

if

the

reserved

hook

id

00b

is

seen,

the

data

#

traced

by

the

32-bit

kernel

is

made

to

look

as

if

it

came

#

from

a

64-bit

trace.

Thus

the

templates

need

not

be

kernel

aware.

#

#

For

example,

if

a

32-bit

app

uses

#

TRCHKL5T(0x50000005,

1,

2,

3,

4,

5)

#

and

is

running

on

a

64-bit

kernel,

the

data

actually

traced

#

will

look

like:

#

ffffllllhhhhssss

1111111111111111

2222222222222222

3333333333333333

#

a000001450000005

0000000100000002

0000000300000004

0000000500000000

i

t

#

Here,

the

flags

have

the

T

and

B

bits

set

(a000)

which

says

#

the

hook

is

timestamped

and

from

a

32-bit

app.

#

The

length

is

0x14

bytes,

5

4-byte

registers

00000001

through

#

00000005.

#

The

hook

id

is

0x5000.

#

The

subhook

id

is

0x0005.

#

i

and

t

refer

to

the

8-byte

thread

id

and

time

stamp.

#

#

This

would

be

reformatted

as

follows

before

being

processed

#

by

the

corresponding

template:

#

500e0005

00000001

00000002

00000003

00000004

00000005

#

Note

this

is

how

the

data

would

look

if

traced

on

a

32-bit

kernel.

#

Note

also

that

the

data

would

be

followed

by

an

8-byte

thread

id

and

#

time

stamp.

#

#

Similarly,

consider

the

following

hook

traced

by

a

64-bit

app

#

on

a

32-bit

kernel:

#

TRCHKL5T(0x50000005,

1,

2,

3,

4,

5)

#

The

data

traced

would

be:

#

00b8002c

80000028

50000005

0000000000000001

...

0000000000000005

i

t

#

Note

that

this

is

a

generic

trace

entry,

T

=

8.

#

In

the

generic

entry,

we’re

using

the

32-bit

data

word

for

the

flags

#

and

length.

#

The

trcrpt

utility

would

reformat

this

before

processing

by

#

the

template

as

follows:

#

8000002850000005

0000000000000001

...

0000000000000005

i8

t8

#

#

The

thread

id

and

time

stamp

in

the

data

stream

will

be

4

bytes,

#

because

the

hook

came

from

a

32-bit

system.

#

#

If

a

32-bit

app

traces

generic

data

on

a

64-bit

kernel,

the

b

#

bit

will

be

set

on

in

the

data

stream,

and

the

entry

will

be

formatted

310

Kernel

Extensions

and

Device

Support

Programming

Concepts

#

like

it

came

from

a

32-bit

environment,

i.e.

with

a

32-bit

data

word.

#

For

the

case

of

a

64-bit

app

on

a

32-bit

kernel,

generic

trace

#

data

is

handled

in

the

same

manner,

with

the

flags

placed

#

into

the

data

word.

#

For

example,

if

the

app

issues

#

TRCGEN(1,

0x50000005,

1,

6,

"hello")

#

The

32-bit

kernel

trace

will

generate

#

00b00012

40000006

50000005

0000000000000001

"hello"

#

This

will

be

reformatted

by

trcrpt

into

#

4000000650000005

0000000000000001

"hello"

#

with

the

data

pointer

starting

at

the

data

word.

#

#

Note

that

the

string

"hello"

could

have

been

4096

bytes.

Therefore

#

this

generic

entry

must

be

able

to

violate

the

4096

byte

length

#

restriction.

#

#

D.

Indentation

levels

#

The

left

margin

is

set

per

template

using

the

’L=XXXX’

command.

#

The

default

is

L=KERN,

the

second

column.

#

L=APPL

moves

the

left

margin

to

the

first

column.

#

L=SVC

moves

the

left

margin

to

the

second

column.

#

L=KERN

moves

the

left

margin

to

the

third

column.

#

L=INT

moves

the

left

margin

to

the

fourth

column.

#

The

command

if

used

must

go

just

after

the

version

code.

#

#

Example

usage:

#113

1.7

L=INT

"stray

interrupt"

...

\

#

#

E.

Continuation

code

and

delimiters.

#

A

’\’

at

the

end

of

the

line

must

be

used

to

continue

the

template

#

on

the

next

line.

#

Individual

strings

(labels)

can

be

separated

by

one

or

more

blanks

#

or

tabs.

However,

all

whitespace

is

squeezed

down

to

1

blank

on

#

the

report.

Use

’\t’

for

skipping

to

the

next

tabstop,

or

use

#

A0.X

format

(see

below)

for

variable

space.

#

#

#

II.

FORMAT

codes

#

#

A.

Codes

that

manipulate

the

DATA_POINTER

#

Gm.n

#

"Goto"

Set

DATA_POINTER

to

byte.bit

location

m.n

#

#

Om.n

#

"Omit"

Advance

DATA_POINTER

by

m.n

byte.bits

#

#

Rm

#

"Reverse"

Decrement

DATA_POINTER

by

m

bytes.

R0

byte

aligns.

#

#

Wm

#

Position

DATA_POINTER

at

word

m.

The

word

size

is

either

4

or

8

#

bytes,

depending

upon

whether

or

not

this

is

a

32

or

64

bit

format

#

trace.

This

bares

no

relation

to

the

%W

format

specifier.

#

#

B.

Codes

that

cause

data

to

be

output.

#

Am.n

#

Left

justified

ascii.

#

m=length

in

bytes

of

the

binary

data.

#

n=width

of

the

displayed

field.

#

The

data

pointer

is

rounded

up

to

the

next

byte

boundary.

Chapter

16.

Debug

Facilities

311

#

Example

#

DATA_POINTER|

#

V

#

xxxxxhello

world\0xxxxxx

#

#

i.

A8.16

results

in:

|hello

wo

|

#

DATA_POINTER--------|

#

V

#

xxxxxhello

world\0xxxxxx

#

#

ii.

A16.16

results

in:

|hello

world

|

#

DATA_POINTER----------------|

#

V

#

xxxxxhello

world\0xxxxxx

#

#

iii.

A16

results

in:

|hello

world|

#

DATA_POINTER----------------|

#

V

#

xxxxxhello

world\0xxxxxx

#

#

iv.

A0.16

results

in:

|

|

#

DATA_POINTER|

#

V

#

xxxxxhello

world\0xxxxxx

#

#

Sm

(m

=

1,

2,

4,

or

8)

#

Left

justified

ascii

string.

#

The

length

of

the

string

is

in

the

first

m

bytes

of

#

the

data.

This

length

of

the

string

does

not

include

these

bytes.

#

The

data

pointer

is

advanced

by

the

length

value.

#

SW

specifies

the

length

to

be

4

or

8

bytes,

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

#

Example

#

DATA_POINTER|

#

V

#

xxxxxBhello

worldxxxxxx

(B

=

hex

0x0b)

#

#

i.

S1

results

in:

|hello

world|

#

DATA_POINTER-----------|

#

V

#

xxxxBhello

worldxxxxxx

#

#

$reg%S1

#

A

register

with

the

format

code

of

’Sx’

works

"backwards"

from

#

a

register

with

a

different

type.

The

format

is

Sx,

but

the

length

#

of

the

string

comes

from

$reg

instead

of

the

next

n

bytes.

#

#

Bm.n

#

Binary

format.

#

m

=

length

in

bytes

#

n

=

length

in

bits

#

The

length

in

bits

of

the

data

is

m

*

8

+

n.

B2.3

and

B0.19

are

the

same.

#

Unlike

the

other

printing

FORMAT

codes,

the

DATA_POINTER

#

can

be

bit

aligned

and

is

not

rounded

up

to

the

next

byte

boundary.

#

#

Xm

#

Hex

format.

#

m

=

length

in

bytes.

m=0

thru

16

#

X0

is

the

same

as

X1,

except

that

no

trailing

space

is

output

after

#

the

data.

Therefore

X0

can

be

used

with

a

LOOP

to

output

an

312

Kernel

Extensions

and

Device

Support

Programming

Concepts

#

unbroken

string

of

data.

#

The

DATA_POINTER

is

advanced

by

m

(1

if

m

=

0).

#

XW

will

format

either

4

or

8

bytes

of

data

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

The

DATA_POINTER

is

advanced

#

by

4

or

8

bytes.

#

#

Dm

(m

=

2,

4,

or

8)

#

Signed

decimal

format.

#

The

length

of

the

data

is

m

bytes.

#

The

DATA_POINTER

is

advanced

by

m.

#

DW

will

format

either

4

or

8

bytes

of

data

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

The

DATA_POINTER

is

advanced

#

by

4

or

8

bytes.

#

#

Um

(m

=

2,

4,

or

8)

#

Unsigned

decimal

format.

#

The

length

of

the

data

is

m

bytes.

#

The

DATA_POINTER

is

advanced

by

m.

#

UW

will

format

either

4

or

8

bytes

of

data

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

The

DATA_POINTER

is

advanced

#

by

4

or

8

bytes.

#

#

om

(m

=

2,

4,

or

8)

#

Octal

format.

#

The

length

of

the

data

is

m

bytes.

#

The

DATA_POINTER

is

advanced

by

m.

#

ow

will

format

either

4

or

8

bytes

of

data

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

The

DATA_POINTER

is

advanced

#

by

4

or

8

bytes.

#

#

F4

#

Floating

point

format.

(like

%0.4E)

#

The

length

of

the

data

is

4

bytes.

#

The

format

of

the

data

is

that

of

C

type

’float’.

#

The

DATA_POINTER

is

advanced

by

4.

#

#

F8

#

Floating

point

format.

(like

%0.4E)

#

The

length

of

the

data

is

8

bytes.

#

The

format

of

the

data

is

that

of

C

type

’double’.

#

The

DATA_POINTER

is

advanced

by

8.

#

#

HB

#

Number

of

bytes

in

trcgen()

variable

length

buffer.

#

The

DATA_POINTER

is

not

changed.

#

#

HT

#

32-bit

hooks:

#

The

hooktype.

(0

-

E)

#

trcgen

=

0,

trchk

=

1,

trchl

=

2,

trchkg

=

6

#

trcgent

=

8,

trchkt

=

9,

trchlt

=

A,

trchkgt

=

E

#

HT

&

0x07

masks

off

the

timestamp

bit

#

This

is

used

for

allowing

multiple,

different

trchook()

calls

with

#

the

same

template.

#

The

DATA_POINTER

is

not

changed.

#

64-bit

hooks

#

This

is

the

flags

field.

#

0x8000

-

hook

is

time

stamped.

#

0x4000

-

This

is

a

generic

trace.

#

Chapter

16.

Debug

Facilities

313

#

Note

that

if

the

hook

was

reformatted

as

discussed

under

item

#

I.C

above,

HT

is

set

to

reflect

the

flags

in

the

new

format.

#

#

C.

Codes

that

interpret

the

data

in

some

way

before

output.

#

Tm

(m

=

4,

or

8)

#

Output

the

next

m

bytes

as

a

data

and

time

string,

#

in

GMT

timezone

format.

(as

in

ctime(&seconds))

#

The

DATA_POINTER

is

advanced

by

m

bytes.

#

Only

the

low-order

32-bits

of

the

time

are

actually

used.

#

TW

will

format

either

4

or

8

bytes

of

data

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

The

DATA_POINTER

is

advanced

#

by

4

or

8

bytes.

#

#

Em

(m

=

1,

2,

4,

or

8)

#

Output

the

next

m

bytes

as

an

’errno’

value,

replacing

#

the

numeric

code

with

the

corresponding

#define

name

in

#

/usr/include/sys/errno.h

#

The

DATA_POINTER

is

advanced

by

1,

2,

4,

or

8.

#

EW

will

format

either

4

or

8

bytes

of

data

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

The

DATA_POINTER

is

advanced

#

by

4

or

8

bytes.

#

#

Pm

(m

=

4,

or

8)

#

Use

the

next

m

bytes

as

a

process

id

(pid),

and

#

output

the

pathname

of

the

executable

with

that

process

id.

#

Process

ids

and

their

pathnames

are

acquired

by

the

trace

command

#

at

the

start

of

a

trace

and

by

trcrpt

via

a

special

EXEC

tracehook.

#

The

DATA_POINTER

is

advanced

by

4

or

8

bytes.

#

PW

will

format

either

4

or

8

bytes

of

data

depending

upon

whether

#

this

is

a

32

or

64

bit

hook.

#

#

\t

#

Output

a

tab.

\t\t\t

outputs

3

tabs.

Tabs

are

expanded

to

spaces,

#

using

a

fixed

tabstop

separation

of

8.

If

L=0

indentation

is

used,

#

the

first

tabstop

is

at

3.

#

#

\n

#

Output

a

newline.

\n\n\n

outputs

3

newlines.

#

The

newline

is

left-justified

according

to

the

INDENTATION

LEVEL.

#

#

$macro

#

Undefined

macros

have

the

value

of

0.

#

The

DATA_POINTER

is

not

changed.

#

An

optional

format

can

be

used

with

macros:

#

$v1%X8

will

output

the

value

$v1

in

X8

format.

#

$zz%B0.8

will

output

the

value

$v1

in

8

bits

of

binary.

#

Understood

formats

are:

X,

D,

U,

B

and

W.

Others

default

to

X2.

#

#

The

W

format

is

used

to

mask

the

register.

#

Wm.n

masks

off

all

bits

except

bits

m

through

n,

then

shifts

the

#

result

right

m

bits.

For

example,

if

$ZZ

=

0x12345678,

then

#

$zz%W24.27

yields

2.

Note

the

bit

numbering

starts

at

the

right,

#

with

0

being

the

least

significant

bit.

#

#

"string"

’string’

data

type

#

Output

the

characters

inside

the

double

quotes

exactly.

A

string

#

is

treated

as

a

descriptor.

Use

""

as

a

NULL

string.

#

#

`string

format

$macro`

If

a

string

is

backquoted,

it

is

expanded

#

as

a

quoted

string,

except

that

FORMAT

codes

and

$registers

are

314

Kernel

Extensions

and

Device

Support

Programming

Concepts

#

expanded

as

registers.

#

#

III.

SWITCH

statement

#

A

format

code

followed

by

a

comma

is

a

SWITCH

statement.

#

Each

CASE

entry

of

the

SWITCH

statement

consists

of

#

1.

a

’matchvalue’

with

a

type

(usually

numeric)

corresponding

to

#

the

format

code.

#

2.

a

simple

’string’

or

a

new

’descriptor’

bounded

by

braces.

#

A

descriptor

is

a

sequence

of

format

codes,

strings,

switches,

#

and

loops.

#

3.

and

a

comma

delimiter.

#

The

switch

is

terminated

by

a

CASE

entry

without

a

comma

delimiter.

#

The

CASE

entry

selected

is

the

first

entry

whose

matchvalue

#

is

equal

to

the

expansion

of

the

format

code.

#

The

special

matchvalue

’*’

is

a

wildcard

and

matches

anything.

#

The

DATA_POINTER

is

advanced

by

the

format

code.

#

#

#

IV.

LOOP

statement

#

The

syntax

of

a

’loop’

is

#

LOOP

format_code

{

descriptor

}

#

The

descriptor

is

executed

N

times,

where

N

is

the

numeric

value

#

of

the

format

code.

#

The

DATA_POINTER

is

advanced

by

the

format

code

plus

whatever

the

#

descriptor

does.

#

Loops

are

used

to

output

binary

buffers

of

data,

so

descriptor

is

#

usually

simply

X1

or

X0.

Note

that

X0

is

like

X1

but

does

not

#

supply

a

space

separator

’

’

between

each

byte.

#

#

#

V.

macro

assignment

and

expressions

#

’macros’

are

temporary

(for

the

duration

of

that

event)

variables

#

that

work

like

shell

variables.

#

They

are

assigned

a

value

with

the

syntax:

#

{{

$xxx

=

EXPR

}}

#

where

EXPR

is

a

combination

of

format

codes,

macros,

and

constants.

#

Allowed

operators

are

+

-

/

*

#

For

example:

#{{

$dog

=

7

+

6

}}

{{

$cat

=

$dog

*

2

}}

$dog

$cat

#

#

will

output:

#000D

001A

#

#

Macros

are

useful

in

loops

where

the

loop

count

is

not

always

#

just

before

the

data:

#G1.5

{{

$count

=

B0.5

}}

G11

LOOP

$count

{X0}

#

#

Up

to

255

macros

can

be

defined

per

template.

#

#

#

VI.

Special

macros:

#

$HOOKENV

This

is

either

"32"

or

"64"

depending

upon

#

whether

this

is

a

32

or

64

bit

trace

hook.

#

This

can

be

used

to

interpret

the

HT

value.

#

$TRACEENV

This

is

either

"32"

or

"64"

depending

upon

#

whether

this

is

a

32

or

64

bit

trace,

i.e.,

whether

the

#

trace

was

generated

by

a

32

or

64

bit

kernel.

#

Since

hooks

will

be

formatted

according

to

the

environment

#

they

came

from,

$HOOKENV

should

normally

be

used.

Chapter

16.

Debug

Facilities

315

#

$RELLINENO

line

number

for

this

event.

The

first

line

starts

at

1.

#

$D1

-

$D5

dataword

1

through

dataword

5.

No

change

to

datapointer.

#

The

data

word

is

either

4

or

8

bytes.

#

$L1

-

$L5

Long

dataword

1,5(64

bits).

No

change

to

datapointer.

#

$HD

hookdata

(lower

16

bits)

#

For

a

32-bit

generic

hook,

$HD

is

the

length

of

the

#

generic

data

traced.

#

For

32

or

64

bit

generic

hooks,

use

$HL.

#

$HL

Hook

data

length.

This

is

the

length

in

bytes

of

the

hook

#

data.

For

generic

entries

it

is

the

length

of

the

#

variable

length

buffer

and

doesn’t

include

the

data

word.

#

$WORDSIZE

Contains

the

word

size,

4

or

8

bytes,

of

the

current

#

entry,

(i.e.)

$HOOKENV

/

8.

#

$GENERIC

specifies

whether

the

entry

is

a

generic

entry.

The

#

value

is

1

for

a

generic

entry,

and

0

if

not

generic.

#

$GENERIC

is

especially

useful

if

the

hook

can

come

from

#

either

a

32

or

64

bit

environment,

since

the

types

(HT)

#

have

different

formats.

#

$TOTALCPUS

Output

the

number

of

CPUs

in

the

system.

#

$TRACEDCPUS

Output

the

number

of

CPUs

that

were

traced.

#

$REPORTEDCPUS

Output

the

number

of

CPUs

active

in

this

report.

#

This

can

decrease

as

CPUs

stop

tracing

when,

for

example,

#

the

single-buffer

trace,

-f,

was

used

and

the

buffers

for

#

each

CPU

fill

up.

#

$LARGEDATATYPES

This

is

set

to

1

if

the

kernel

is

supporting

large

data

#

types

for

64-bit

applications.

#

$SVC

Output

the

name

of

the

current

SVC

#

$EXECPATH

Output

the

pathname

of

the

executable

for

current

process.

#

$PID

Output

the

current

process

id.

#

$TID

Output

the

current

thread

id.

#

$CPUID

Output

the

current

processor

id.

#

$PRI

Output

the

current

process

priority

#

$ERROR

Output

an

error

message

to

the

report

and

exit

from

the

#

template

after

the

current

descriptor

is

processed.

#

The

error

message

supplies

the

logfile,

logfile

offset

of

the

#

start

of

that

event,

and

the

traceid.

#

$LOGIDX

Current

logfile

offset

into

this

event.

#

$LOGIDX0

Like

$LOGIDX,

but

is

the

start

of

the

event.

#

$LOGFILE

Name

of

the

logfile

being

processed.

#

$TRACEID

Traceid

of

this

event.

#

$DEFAULT

Use

the

DEFAULT

template

008

#

$STOP

End

the

trace

report

right

away

#

$BREAK

End

the

current

trace

event

#

$SKIP

Like

break,

but

don’t

print

anything

out.

#

$DATAPOINTER

The

DATA_POINTER.

It

can

be

set

and

manipulated

#

like

other

user-macros.

#

{{

$DATAPOINTER

=

5

}}

is

equivalent

to

G5

#

#

Note:

For

generic

trace

hooks,

$DATAPOINTER

points

to

the

#

data

word.

This

means

it

is

0x4

for

32-bit

hooks,

and

0x8

for

#

64-bit

hooks.

#

For

non-generic

hooks,

$DATAPOINTER

is

set

to

2

for

32-bit

hooks

#

and

to

6

for

64

bit

trace

hooks.

This

means

it

always

#

points

to

the

subhook

id.

#

#

$BASEPOINTER

Usually

0.

It

is

the

starting

offset

into

an

event.

The

actual

#

offset

is

the

DATA_POINTER

+

BASE_POINTER.

It

is

used

with

#

template

subroutines,

where

the

parts

on

an

event

have

the

#

same

structure,

and

can

be

printed

by

the

same

template,

but

#

might

have

different

starting

points

into

an

event.

316

Kernel

Extensions

and

Device

Support

Programming

Concepts

#

$IPADDR

IP

address

of

this

machine,

4

bytes.

#

$BUFF

Buffer

allocation

scheme

used,

1=kernel

heap,

2=separate

segment.

#

#

VII.

Template

subroutines

#

If

a

macro

name

consists

of

3

hex

digits,

it

is

a

"template

subroutine".

#

The

template

whose

traceid

equals

the

macro

name

is

inserted

in

place

#

of

the

macro.

#

#

The

data

pointer

is

where

it

was

when

the

template

#

substitution

was

encountered.

Any

change

made

to

the

data

pointer

#

by

the

template

subroutine

remains

in

affect

when

the

template

ends.

#

#

Macros

used

within

the

template

subroutine

correspond

to

those

in

the

#

calling

template.

The

first

definition

of

a

macro

in

the

called

template

#

is

the

same

variable

as

the

first

in

the

called.

The

names

are

not

#

related.

#

#

NOTE:

Nesting

of

template

subroutines

is

supported

to

10

levels.

#

#

Example:

#

Output

the

trace

label

ESDI

STRATEGY.

#

The

macro

’$stat’

is

set

to

bytes

2

and

3

of

the

trace

event.

#

Then

call

template

90F

to

interpret

a

buf

header.

The

macro

’$return’

#

corresponds

to

the

macro

’$rv’,

because

they

were

declared

in

the

same

#

order.

A

macro

definition

with

no

’=’

assignment

just

declares

the

name

#

like

a

place

holder.

When

the

template

returns,

the

saved

special

#

status

word

is

output

and

the

returned

minor

device

number.

#

#900

1.0

"ESDI

STRATEGY"

{{

$rv

=

0

}}

{{

$stat

=

X2

}}

\

#

$90F

\n\

#special_esdi_status=$stat

for

minor

device

$rv

#

#90F

1.0

""

G4

{{

$return

}}

\

#

block

number

X4

\n\

#

byte

count

X4

\n\

#

B0.1,

1

B_FLAG0

\

#

B0.1,

1

B_FLAG1

\

#

B0.1,

1

B_FLAG2

\

#

G16

{{

$return

=

X2

}}

#

#

#

Note:

The

$DEFAULT

reserved

macro

is

the

same

as

$008

#

#

VIII.

BITFLAGS

statement

#

The

syntax

of

a

’bitflags’

is

#

BITFLAGS

[format_code|register],

#

flag_value

string

{optional

string

if

false},

or

#

’&’

mask

field_value

string,

#

...

#

#

This

statement

simplifies

expanding

state

flags,

because

it

looks

#

a

lot

like

a

series

of

#defines.

#

The

’&’

mask

is

used

for

interpreting

bit

fields.

#

The

mask

is

anded

to

the

register

and

the

result

is

compared

to

#

the

field_value.

If

a

match,

the

string

is

printed.

#

The

base

is

16

for

flag_values

and

masks.

#

The

DATA_POINTER

is

advanced

if

a

format

code

is

used.

#

Note:

the

default

base

for

BITFLAGS

is

16.

If

the

mask

or

field

value

#

has

a

leading

"o",

the

number

is

octal.

0x

or

0X

makes

the

number

hexadecimal.

Chapter

16.

Debug

Facilities

317

Examples

of

Coding

Events

and

Formatting

Events

There

are

five

basic

steps

involved

in

generating

a

trace

from

your

software

program.

Step

1:

Enable

the

trace:

Enable

and

disable

the

trace

from

your

software

that

has

the

trace

hooks

defined.

The

following

code

shows

the

use

of

trace

events

to

time

the

running

of

a

program

loop.

#include

<sys/trcctl.h>

#include

<sys/trcmacros.h>

#include

<sys/trchkid.h>

char

*ctl_file

=

"/dev/systrctl";

int

ctlfd;

int

i;

main()

{

printf("configuring

trace

collection

\n");

if

(trcstart("-ad")){

perror("trcstart");

exit(1);

}

printf("turning

trace

on

\n");

if(trcon(0)){

perror("TRCON");

exit(1);

}

/*

here

is

the

code

that

is

being

traced

*/

for(i=1;i<11;i++){

TRCHKL1T(HKWD_USER1,i);

/*

sleep(1)

*/

/*

you

can

uncomment

sleep

to

make

the

loop

/*

take

longer.

If

you

do,

you

will

want

to

/*

filter

the

output

or

you

will

be

*/

/*

overwhelmed

with

11

seconds

of

data

*/

}

/*

stop

tracing

code

*/

printf("turning

trace

off\n");

if(trcstop(0)){

perror("TRCOFF");

exit(1);

}

Step

2:

Compile

your

program:

When

you

compile

the

sample

program,

you

need

to

link

to

the

librts.a

library:

cc

-o

sample

sample.c

-l

rts

Step

3:

Run

the

program:

Run

the

program.

In

this

case,

it

can

be

done

with

the

following

command:

./sample

Step

4:

Add

a

stanza

to

the

format

file:

This

provides

the

report

generator

with

the

information

to

correctly

format

your

file.

The

report

facility

does

not

know

how

to

format

the

HKWD_USER1

event,

unless

you

provide

rules

in

the

trace

format

file.

The

following

is

an

example

of

a

stanza

for

the

HKWD_USER1

event.

The

HKWD_USER1

event

is

event

ID

010

hexadecimal.

You

can

verify

this

by

looking

at

the

sys/trchkid.h

header

file.

#

User

event

HKWD_USER1

Formatting

Rules

Stanza

#

An

example

that

will

format

the

event

usage

of

the

sample

program

010

1.0

L=APPL

"USER

EVENT

-

HKWD_USER1"

O2.0

\n\

"The

#

of

loop

iterations

="

U4\n\

"The

elapsed

time

of

the

last

loop

=

"\

endtimer(0x010,0x010)

starttimer(0x010,0x010)

318

Kernel

Extensions

and

Device

Support

Programming

Concepts

Note:

When

entering

the

example

stanza,

do

not

modify

the

master

format

file

/etc/trcfmt.

Instead,

make

a

copy

and

keep

it

in

your

own

directory.

This

allows

you

to

always

have

the

original

trace

format

file

available.

If

you

are

going

to

ship

your

formatting

stanzas,

the

trcupdate

command

is

used

to

add

your

stanzas

to

the

default

trace

format

file.

See

the

trcupdate

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5

for

information

about

how

to

code

the

input

stanzas.

Step

5:

Run

the

format/filter

program:

Filter

the

output

report

to

get

only

your

events.

To

do

this,

run

the

trcrpt

command:

trcrpt

-d

010

-t

mytrcfmt

-O

exec=on

-o

sample.rpt

The

formatted

trace

results

are:

ID

PROC

NAME

I

ELAPSED_SEC

DELTA_MSEC

APPL

SYSCALL

KERNEL

INTERRUPT

010

sample

0.000105984

0.105984

USER

HOOK

1

The

data

field

for

the

user

hook

=

1

010

sample

0.000113920

0.007936

USER

HOOK

1

The

data

field

for

the

user

hook

=

2

[7

usec]

010

sample

0.000119296

0.005376

USER

HOOK

1

The

data

field

for

the

user

hook

=

3

[5

usec]

010

sample

0.000124672

0.005376

USER

HOOK

1

The

data

field

for

the

user

hook

=

4

[5

usec]

010

sample

0.000129792

0.005120

USER

HOOK

1

The

data

field

for

the

user

hook

=

5

[5

usec]

010

sample

0.000135168

0.005376

USER

HOOK

1

The

data

field

for

the

user

hook

=

6

[5

usec]

010

sample

0.000140288

0.005120

USER

HOOK

1

The

data

field

for

the

user

hook

=

7

[5

usec]

010

sample

0.000145408

0.005120

USER

HOOK

1

The

data

field

for

the

user

hook

=

8

[5

usec]

010

sample

0.000151040

0.005632

USER

HOOK

1

The

data

field

for

the

user

hook

=

9

[5

usec]

010

sample

0.000156160

0.005120

USER

HOOK

1

The

data

field

for

the

user

hook

=

10

[5

usec]

Usage

Hints

The

following

sections

provide

some

examples

and

suggestions

for

use

of

the

trace

facility.

Viewing

trace

Data

Including

several

optional

columns

of

data

in

the

trace

output

can

cause

the

output

to

exceed

80

columns.

It

is

best

to

view

the

report

on

an

output

device

that

supports

132

columns.

You

can

also

use

the

-O

2line=on

option

to

produce

a

more

narrow

report.

Bracketing

Data

Collection

Trace

data

accumulates

rapidly.

Bracket

the

data

collection

as

closely

around

the

area

of

interest

as

possible.

One

technique

for

doing

this

is

to

issue

several

commands

on

the

same

command

line.

For

example,

the

command

trace

-a;

cp

/etc/trcfmt

/tmp/junk;

trcstop

captures

the

total

execution

of

the

copy

command.

Note:

This

example

is

more

educational

if

the

source

file

is

not

already

cached

in

system

memory.

The

trcfmt

file

can

be

in

memory

if

you

have

been

modifying

it

or

producing

trace

reports.

In

that

case,

choose

as

the

source

file

some

other

file

that

is

50

to

100

KB

and

has

not

been

touched.

Reading

a

trace

Report

The

trace

facility

displays

system

activity.

It

is

a

useful

learning

tool

to

observe

how

the

system

actually

performs.

The

previous

output

is

an

interesting

example

to

browse.

To

produce

a

report

of

the

copy,

use

the

following:

Chapter

16.

Debug

Facilities

319

trcrpt

-O

"exec=on,pid=on"

>

cp.rpt

In

the

cp.rpt

file

you

can

see

the

following

activities:

v

The

fork,

exec,

and

page

fault

activities

of

the

cp

process.

v

The

opening

of

the

/etc/trcfmt

file

for

reading

and

the

creation

of

the

/tmp/junk

file.

v

The

successive

read

and

write

subroutines

to

accomplish

the

copy.

v

The

cp

process

becoming

blocked

while

waiting

for

I/O

completion,

and

the

wait

process

being

dispatched.

v

How

logical

volume

requests

are

translated

to

physical

volume

requests.

v

The

files

are

mapped

rather

than

buffered

in

traditional

kernel

buffers.

The

read

accesses

cause

page

faults

that

must

be

resolved

by

the

virtual

memory

manager.

v

The

virtual

memory

manager

senses

sequential

access

and

begins

to

prefetch

the

file

pages.

v

The

size

of

the

prefetch

becomes

larger

as

sequential

access

continues.

v

The

writes

are

delayed

until

the

file

is

closed

(unless

you

captured

execution

of

the

sync

daemon

that

periodically

forces

out

modified

pages).

v

The

disk

device

driver

coalesces

multiple

file

requests

into

one

I/O

request

to

the

drive

when

possible.

Effective

Filtering

of

the

trace

Report

The

full

detail

of

the

trace

data

might

not

be

required.

You

can

choose

specific

events

of

interest

to

be

shown.

For

example,

it

is

sometimes

useful

to

find

the

number

of

times

a

certain

event

occurred.

Answer

the

question,

″How

many

opens

occurred

in

the

copy

example?″

First,

find

the

event

ID

for

the

open

subroutine:

trcrpt

-j

|

pg

You

can

see

that

event

ID

15b

is

the

open

event.

Now,

process

the

data

from

the

copy

example

(the

data

is

probably

still

in

the

log

file)

as

follows:

trcrpt

-d

15b

-O

"exec=on"

The

report

is

written

to

standard

output

and

you

can

determine

the

number

of

opens

that

occurred.

If

you

want

to

see

only

the

opens

that

were

performed

by

the

cp

process,

run

the

report

command

again

using:

trcrpt

-d

15b

-p

cp

-O

"exec=on"

This

command

shows

only

the

opens

performed

by

the

cp

process.

Trace

Event

Groups

Combining

multiple

trace

hooks

into

a

trace

event

group

allows

all

hooks

to

be

turned

on

or

off

at

once

when

starting

a

trace.

Trace

event

groups

should

only

be

manipulated

using

either

the

trcevgrp

command,

or

SMIT.

The

trcevgrp

command

allows

groups

to

be

created,

modified,

removed,

and

listed.

Reserved

event

groups

may

not

be

changed

or

removed

by

the

trcevgrp

command.

These

are

generally

groups

used

to

perform

system

support.

A

reserved

event

group

must

be

created

using

the

ODM

facilities.

Such

a

group

will

have

three

attributes

as

shown

below:

SWservAt:

attribute

=

"(name)_trcgrp"

default

=

"

"

value

=

"(list-of-hooks)"

SWservAt:

attribute

=

"(name)_trcgrpdesc"

default

=

"

"

value

=

"description"

320

Kernel

Extensions

and

Device

Support

Programming

Concepts

SWservAt:

attribute

=

"(name)_trcgrptype"

default

=

"

"

value

=

"reserved"

The

hook

IDs

must

be

enclosed

in

double

quotation

marks

(″)

and

separated

by

commas.

Memory

Overlay

Detection

System

(MODS)

Some

of

the

most

difficult

types

of

problems

to

debug

are

what

are

generally

called

″memory

overlays.″

Memory

overlays

include

the

following:

v

Writing

to

memory

that

is

owned

by

another

program

or

routine

v

Writing

past

the

end

(or

before

the

beginning)

of

declared

variables

or

arrays

v

Writing

past

the

end

(or

before

the

beginning)

of

dynamically

allocated

memory

v

Writing

to

or

reading

from

freed

memory

v

Freeing

memory

twice

v

Calling

memory

allocation

routines

with

incorrect

parameters

or

under

incorrect

conditions.

In

the

kernel

environment

(including

the

kernel,

kernel

extensions,

and

device

drivers),

memory

overlay

problems

have

been

especially

difficult

to

debug

because

tools

for

finding

them

have

not

been

available.

Starting

with

AIX

4.2.1,

however,

the

Memory

Overlay

Detection

System

(MODS)

helps

detect

memory

overlay

problems

in

the

kernel,

kernel

extensions,

and

device

drivers.

Note:

This

feature

does

not

detect

problems

in

application

code;

it

only

monitors

kernel

and

kernel

extension

code.

bosdebug

command

The

bosdebug

command

turns

the

MODS

facility

on

and

off.

Only

the

root

user

can

run

the

bosdebug

command.

To

turn

on

the

base

MODS

support,

type:

bosdebug

-M

For

a

description

of

all

the

available

options,

type:

bosdebug

-?

Once

you

have

run

bosdebug

with

the

options

you

want,

run

the

bosboot

-a

command,

then

shut

down

and

reboot

your

system

(using

the

shutdown

-r

command).

If

you

need

to

make

any

changes

to

your

bosdebug

settings,

you

must

run

bosboot

-a

and

shutdown

-r

again.

When

to

use

the

MODS

feature

This

feature

is

useful

in

the

following

circumstances:

v

When

developing

your

own

kernel

extensions

or

device

drivers

and

you

want

to

test

them

thoroughly.

v

When

asked

to

turn

this

feature

on

by

IBM

technical

support

service

to

help

in

further

diagnosing

a

problem

that

you

are

experiencing.

How

MODS

works

The

primary

goal

of

the

MODS

feature

is

to

produce

a

dump

file

that

accurately

identifies

the

problem.

MODS

works

by

turning

on

additional

checking

to

help

detect

the

conditions

listed

above.

When

any

of

these

conditions

is

detected,

your

system

crashes

immediately

and

produces

a

dump

file

that

points

Chapter

16.

Debug

Facilities

321

directly

at

the

offending

code.

(In

previous

versions,

a

system

dump

might

point

to

unrelated

code

that

happened

to

be

running

later

when

the

invalid

situation

was

finally

detected.)

If

your

system

crashes

while

the

MODS

is

turned

on,

then

MODS

has

most

likely

done

its

job.

The

xmalloc

subcommand

provides

details

on

exactly

what

memory

address

(if

any)

was

involved

in

the

situation,

and

displays

mini-tracebacks

for

the

allocation

or

free

records

of

this

memory.

Similarly,

the

netm

command

displays

allocation

and

free

records

for

memory

allocated

using

the

net_malloc

kernel

service

(for

example,

mbufs,

mclusters,

etc.).

You

can

use

these

commands,

as

well

as

standard

crash

techniques,

to

determine

exactly

what

went

wrong.

MODS

limitations

There

are

limitations

to

the

Memory

Overlay

Detection

System.

Although

it

significantly

improves

your

chances,

MODS

cannot

detect

all

memory

overlays.

Also,

turning

MODS

on

has

a

small

negative

impact

on

overall

system

performance

and

causes

somewhat

more

memory

to

be

used

in

the

kernel

and

the

network

memory

heaps.

If

your

system

is

running

at

full

CPU

utilization,

or

if

you

are

already

near

the

maximums

for

kernel

memory

usage,

turning

on

the

MODS

may

cause

performance

degradation

and/or

system

hangs.

Practical

experience

with

the

MODS,

however,

suggests

that

the

great

majority

of

customers

will

be

able

to

use

it

with

minimal

impact

to

their

systems.

MODS

benefits

You

will

see

these

benefits

from

using

the

MODS:

v

You

can

more

easily

test

and

debug

your

own

kernel

extensions

and

devicedrivers.

v

Difficult

problems

that

once

required

multiple

attempts

to

recreate

and

debug

them

will

generally

require

many

fewer

such

attempts.

Related

Information

Software

Product

Packaging

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

Changing

or

Removing

a

Paging

Space

in

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices

Commands

References

The

errinstall

command,

errlogger

command,

errmsg

command,

errupdate

command,

extendlv

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

2.

The

sysdumpdev

command,

sysdumpstart

command,

trace

command,

trcrpt

command

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

Technical

References

errsave

kernel

service

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

322

Kernel

Extensions

and

Device

Support

Programming

Concepts

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

Overview

The

loadable

authentication

module

interface

provides

a

means

for

extending

identification

and

authentication

(I&A)

for

new

technologies.

The

interface

implements

a

set

of

well-defined

functions

for

performing

user

and

group

account

access

and

management.

The

degree

of

integration

with

the

system

administrative

commands

is

limited

by

the

amount

of

functionality

provided

by

the

module.

When

all

of

the

functionality

is

present,

the

administrative

commands

are

able

to

create,

delete,

modify

and

view

user

and

group

accounts.

The

security

library

and

loadable

authentication

module

communicate

through

the

secmethod_table

interface.

The

secmethod_table

structure

contains

a

list

of

subroutine

pointers.

Each

subroutine

pointer

performs

a

well-defined

operation.

These

subroutine

are

used

by

the

security

library

to

perform

the

operations

which

would

have

been

performed

using

the

local

security

database

files.

Load

Module

Interfaces

Each

loadable

module

defines

a

number

of

interface

subroutines.

The

interface

subroutines

which

must

be

present

are

determined

by

how

the

loadable

module

is

to

be

used

by

the

system.

A

loadable

module

may

be

used

to

provide

identification

(account

name

and

attribute

information),

authentication

(password

storage

and

verification)

or

both.

All

modules

may

have

additional

support

interfaces

for

initializing

and

configuring

the

loadable

module,

creating

new

user

and

group

accounts,

and

serializing

access

to

information.

This

table

describes

the

purpose

of

each

interface.

Interfaces

may

not

be

required

if

the

loadable

module

is

not

used

for

the

purpose

of

the

interface.

For

example,

a

loadable

module

which

only

performs

authentication

functions

is

not

required

to

have

interfaces

which

are

only

used

for

identification

operations.

Method

Interface

Types

Name

Type

Required

method_attrlist

Support

No

method_authenticate

Authentication

No

[

3]

method_chpass

Authentication

Yes

method_close

Support

No

method_commit

Support

No

method_delgroup

Support

No

method_deluser

Support

No

method_getentry

Identification

[

1]

No

method_getgracct

Identification

No

method_getgrgid

Identification

Yes

method_getgrnam

Identification

Yes

method_getgrset

Identification

Yes

method_getgrusers

Identification

No

method_getpasswd

Authentication

No

method_getpwnam

Identification

Yes

©

Copyright

IBM

Corp.

1997,

2004

323

Method

Interface

Types

Name

Type

Required

method_getpwuid

Identification

Yes

method_lock

Support

No

method_newgroup

Support

No

method_newuser

Support

No

method_normalize

Authentication

No

method_open

Support

No

method_passwdexpired

Authentication

[

2]

No

method_passwdrestrictions

Authentication

[

2]

No

method_putentry

Identification

[

1]

No

method_putgrent

Identification

No

method_putgrusers

Identification

No

method_putpwent

Identification

No

method_unlock

Support

No

Notes:

1.

Any

module

which

provides

a

method_attrlist()

interface

must

also

provide

this

interface.

2.

Attributes

which

are

related

to

password

expiration

or

restrictions

should

be

reported

by

the

method_attrlist()

interface.

3.

If

this

interface

is

not

provided

the

method_getpasswd()

interface

must

be

provided.

Several

of

the

functions

make

use

of

a

table

parameter

to

select

between

user,

group

and

system

identification

information.

The

table

parameter

has

one

of

the

following

values:

Identification

Table

Names

Value

Description

″user″

The

table

containing

user

account

information,

such

as

user

ID,

full

name,

home

directory

and

login

shell.

″group″

The

table

containing

group

account

information,

such

as

group

ID

and

group

membership

list.

″system″

The

table

containing

system

information,

such

as

user

or

group

account

default

values.

When

a

table

parameter

is

used

by

an

authentification

interface,

″user″

is

the

only

valid

value.

Authentication

Interfaces

Authentication

interfaces

perform

password

validation

and

modification.

The

authentication

interfaces

verify

that

a

user

is

allowed

access

to

the

system.

The

authentication

interfaces

also

maintain

the

authentication

information,

typically

passwords,

which

are

used

to

authorize

user

access.

The

method_authenticate

Interface

int

method_authenticate

(char

*user,

char

*response,

int

**reenter,

char

**message);

324

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

user

parameter

points

to

the

requested

user.

The

response

parameter

points

to

the

user

response

to

the

previous

message

or

password

prompt.

The

reenter

parameter

points

to

a

flag.

It

is

set

to

a

non-zero

value

when

the

contents

of

the

message

parameter

must

be

used

as

a

prompt

and

the

user’s

response

used

as

the

response

parameter

when

this

method

is

re-invoked.

The

initial

value

of

the

reenter

flag

is

zero.

The

message

parameter

points

to

a

character

pointer.

It

is

set

to

a

message

which

is

output

to

the

user

when

an

error

occurs

or

an

additional

prompt

is

required.

method_authenticate

verifies

that

a

named

user

has

the

correct

authentication

information,

typically

a

password,

for

a

user

account.

method_authenticate

is

called

indirectly

as

a

result

of

calling

the

authenticate

subroutine.

The

grammar

given

in

the

SYSTEM

attribute

normally

specifies

the

name

of

the

loadable

authentication

module,

but

it

is

not

required

to

do

so.

method_authenticate

returns

AUTH_SUCCESS

with

a

reenter

value

of

zero

on

success.

On

failure

a

value

of

AUTH_FAILURE,

AUTH_UNAVAIL

or

AUTH_NOTFOUND

is

returned.

The

method_chpass

Interface

int

method_chpass

(char

*user,

char

*oldpassword,

char

*newpassword,

char

**message);

The

user

parameter

points

to

the

requested

user.

The

oldpassword

parameter

points

to

the

user’s

current

password.

The

newpassword

parameter

points

to

the

user’s

new

password.

The

message

parameter

points

to

a

character

pointer.

It

will

be

set

to

a

message

which

is

output

to

the

user.

method_chpass

changes

the

authentication

information

for

a

user

account.

method_chpass

is

called

indirectly

as

a

result

of

calling

the

chpass

subroutine.

The

security

library

will

examine

the

registry

attribute

for

the

user

and

invoke

the

method_chpass

interface

for

the

named

loadable

authentication

module.

method_chpass

returns

zero

for

success

or

-1

for

failure.

On

failure

the

message

parameter

should

be

initialized

with

a

user

message.

The

method_getpasswd

Interface

char

*method_getpasswd

(char

*user);

The

user

parameter

points

to

the

requested

user.

method_getpasswd

provides

the

encrypted

password

string

for

a

user

account.

The

encrypted

password

string

consists

of

two

salt

characters

and

11

encrypted

password

characters.

The

crypt

subroutine

is

used

to

create

this

string

and

encrypt

the

user-supplied

password

for

comparison.

method_getpasswd

is

called

when

method_authenticate

would

have

been

called,

but

is

undefined.

The

result

of

this

call

is

compared

to

the

result

of

a

call

to

the

crypt

subroutine

using

the

response

to

the

password

prompt.

See

the

description

of

the

method_authenticate

interface

for

a

description

of

the

response

parameter.

method_getpasswd

returns

a

pointer

to

an

encrypted

password

on

success.

On

failure

a

NULL

pointer

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

error.

A

value

of

ENOSYS

is

used

when

the

module

cannot

return

an

encrypted

password.

A

value

of

EPERM

is

used

when

the

caller

does

not

have

the

required

permissions

to

retrieve

the

encrypted

password.

A

value

of

ENOENT

is

used

when

the

requested

user

does

not

exist.

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

325

The

method_normalize

Interface

int

method_normalize

(char

*longname,

char

*shortname);

The

longname

parameter

points

to

a

fully-qualified

user

name

for

modules

which

include

domain

or

registry

information

in

a

user

name.

The

shortname

parameter

points

to

the

shortened

name

of

the

user,

without

the

domain

or

registry

information.

method_normalize

determines

the

shortened

user

name

which

corresponds

to

a

fully-qualified

user

name.

The

shortened

user

name

is

used

for

user

account

queries

by

the

security

library.

The

fully-qualified

user

name

is

only

used

to

perform

initial

authentication.

If

the

fully-qualified

user

name

is

successfully

converted

to

a

shortened

user

name,

a

non-zero

value

is

returned.

If

an

error

occurs

a

zero

value

is

returned.

The

method_passwdexpired

Interface

int

method_passwdexpired

(char

*user,

char

**message);

The

user

parameter

points

to

the

requested

user.

The

message

parameter

points

to

a

character

pointer.

It

will

be

set

to

a

message

which

is

output

to

the

user.

method_passwdexpired

determines

if

the

authentication

information

for

a

user

account

is

expired.

This

method

distinguishes

between

conditions

which

allow

the

user

to

change

their

information

and

those

which

require

administrator

intervention.

A

message

is

returned

which

provides

more

information

to

the

user.

method_passwdexpired

is

called

as

a

result

of

calling

the

passwdexpired

subroutine.

method_passwdexpired

returns

0

when

the

password

has

not

expired,

1

when

the

password

is

expired

and

the

user

is

permitted

to

change

their

password

and

2

when

the

password

has

expired

and

the

user

is

not

permitted

to

change

their

password.

A

value

of

-1

is

returned

when

an

error

has

occurred,

such

as

the

user

does

not

exist.

The

method_passwdrestrictions

Interface

int

method_passwdrestrictions

(char

*user,

char

*newpassword,

char

*oldpassword,

char

**message);

The

user

parameter

points

to

the

requested

user.

The

newpassword

parameter

points

to

the

user’s

new

password.

The

oldpassword

parameter

points

to

the

user’s

current

password.

The

message

parameter

points

to

a

character

pointer.

It

will

be

set

to

a

message

which

is

output

to

the

user.

method_passwdrestrictions

determines

if

new

password

meets

the

system

requirements.

This

method

distinguishes

between

conditions

which

allow

the

user

to

change

their

password

by

selecting

a

different

password

and

those

which

prevent

the

user

from

changing

their

password

at

the

present

time.

A

message

is

returned

which

provides

more

information

to

the

user.

method_passwdrestrictions

is

called

as

a

result

of

calling

the

security

library

subroutine

passwdrestrictions.

method_passwdrestrictions

returns

a

value

of

0

when

newpassword

meets

all

of

the

requirements,

1

when

the

password

does

not

meet

one

or

more

requirements

and

2

when

the

password

may

not

be

changed.

A

value

of

-1

is

returned

when

an

error

has

occurred,

such

as

the

user

does

not

exist.

Identification

Interfaces

Identification

interfaces

perform

user

and

group

identity

functions.

The

identification

interfaces

store

and

retrieve

user

and

group

identifiers

and

account

information.

326

Kernel

Extensions

and

Device

Support

Programming

Concepts

The

identification

interfaces

divide

information

into

three

different

categories:

user,

group

and

system.

User

information

consists

of

the

user

name,

user

and

primary

group

identifiers,

home

directory,

login

shell

and

other

attributes

specific

to

each

user

account.

Group

information

consists

of

the

group

identifier,

group

member

list,

and

other

attributes

specific

to

each

group

account.

System

information

consists

of

default

values

for

user

and

group

accounts,

and

other

attributes

about

the

security

state

of

the

current

system.

The

method_getentry

Interface

int

method_getentry

(char

*key,

char

*table,

char

*attributes[],

attrval_t

results[],

int

size);

The

key

parameter

refers

to

an

entry

in

the

named

table.

The

table

parameter

refers

to

one

of

the

three

tables.

The

attributes

parameter

refers

to

an

array

of

pointers

to

attribute

names.

The

results

parameter

refers

to

an

array

of

value

return

data

structures.

Each

value

return

structure

contains

either

the

value

of

the

corresponding

attribute

or

a

flag

indicating

a

cause

of

failure.

The

size

parameter

is

the

number

of

array

elements.

method_getentry

retrieves

user,

group

and

system

attributes.

One

or

more

attributes

may

be

retrieved

for

each

call.

Success

or

failure

is

reported

for

each

attribute.

method_getentry

is

called

as

a

result

of

calling

the

getuserattr,

getgroupattr

and

getconfattr

subroutines.

method_getentry

returns

a

value

of

0

if

the

key

entry

was

found

in

the

named

table.

When

the

entry

does

not

exist

in

the

table,

the

global

variable

errno

must

be

set

to

ENOENT.

If

an

error

in

the

value

of

table

or

size

is

detected,

the

errno

variable

must

be

set

to

EINVAL.

Individual

attribute

values

have

additional

information

about

the

success

or

failure

for

each

attribute.

On

failure

a

value

of

-1

is

returned.

The

method_getgracct

Interface

struct

group

*method_getgracct

(void

*id,

int

type);

The

id

parameter

refers

to

a

group

name

or

GID

value,

depending

upon

the

value

of

the

type

parameter.

The

type

parameters

indicates

whether

the

id

parameter

is

to

be

interpreted

as

a

(char

*)

which

references

the

group

name,

or

(gid_t)

for

the

group.

method_getgracct

retrieves

basic

group

account

information.

The

id

parameter

may

be

a

group

name

or

identifier,

as

indicated

by

the

type

parameter.

The

basic

group

information

is

the

group

name

and

identifier.

The

group

member

list

is

not

returned

by

this

interface.

method_getgracct

may

be

called

as

a

result

of

calling

the

IDtogroup

subroutine.

method_getgracct

returns

a

pointer

to

the

group’s

group

file

entry

on

success.

The

group

file

entry

may

not

include

the

list

of

members.

On

failure

a

NULL

pointer

is

returned.

The

method_getgrgid

Interface

struct

group

*method_getgrgid

(gid_t

gid);

The

gid

parameter

is

the

group

identifier

for

the

requested

group.

method_getgrgid

retrieves

group

account

information

given

the

group

identifier.

The

group

account

information

consists

of

the

group

name,

identifier

and

complete

member

list.

method_getgrgid

is

called

as

a

result

of

calling

the

getgrgid

subroutine.

method_getgrgid

returns

a

pointer

to

the

group’s

group

file

structure

on

success.

On

failure

a

NULL

pointer

is

returned.

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

327

The

method_getgrnam

Interface

struct

group

*method_getgrnam

(char

*group);

The

group

parameter

points

to

the

requested

group.

method_getgrnam

retrieves

group

account

information

given

the

group

name.

The

group

account

information

consists

of

the

group

name,

identifier

and

complete

member

list.

method_getgrnam

is

called

as

a

result

of

calling

the

getgrnam

subroutine.

This

interface

may

also

be

called

if

method_getentry

is

not

defined.

method_getgrnam

returns

a

pointer

to

the

group’s

group

file

structure

on

success.

On

failure

a

NULL

pointer

is

returned.

The

method_getgrset

Interface

char

*method_getgrset

(char

*user);

The

user

parameter

points

to

the

requested

user.

method_getgrset

retrieves

supplemental

group

information

given

a

user

name.

The

supplemental

group

information

consists

of

a

comma

separated

list

of

group

identifiers.

The

named

user

is

a

member

of

each

listed

group.

method_getgrset

is

called

as

a

result

of

calling

the

getgrset

subroutine.

method_getgrset

returns

a

pointer

to

the

user’s

concurrent

group

set

on

success.

On

failure

a

NULL

pointer

is

returned.

The

method_getgrusers

Interface

int

method_getgrusers

(char

*group,

void

*result,

int

type,

int

*size);

The

group

parameter

points

to

the

requested

group.

The

result

parameter

points

to

a

storage

area

which

will

be

filled

with

the

group

members.

The

type

parameters

indicates

whether

the

result

parameter

is

to

be

interpreted

as

a

(char

**)

which

references

a

user

name

array,

or

(uid_t)

array.

The

size

parameter

is

a

pointer

to

the

number

of

users

in

the

named

group.

On

input

it

is

the

size

of

the

result

field.

method_getgrusers

retrieves

group

membership

information

given

a

group

name.

The

return

value

may

be

an

array

of

user

names

or

identifiers.

method_getgrusers

may

be

called

by

the

security

library

to

obtain

the

group

membership

information

for

a

group.

method_getgrusers

returns

0

on

success.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set.

The

value

ENOENT

must

be

used

when

the

requested

group

does

not

exist.

The

value

ENOSPC

must

be

used

when

the

list

of

group

members

does

not

fit

in

the

provided

array.

When

ENOSPC

is

returned

the

size

parameter

is

modified

to

give

the

size

of

the

required

result

array.

The

method_getpwnam

Interface

struct

passwd

*method_getpwnam

(char

*user);

The

user

parameter

points

to

the

requested

user.

328

Kernel

Extensions

and

Device

Support

Programming

Concepts

method_getpwnam

retrieves

user

account

information

given

the

user

name.

The

user

account

information

consists

of

the

user

name,

identifier,

primary

group

identifier,

full

name,

login

directory

and

login

shell.

method_getpwnam

is

called

as

a

result

of

calling

the

getpwnam

subroutine.

This

interface

may

also

be

called

if

method_getentry

is

not

defined.

method_getpwnam

returns

a

pointer

to

the

user’s

password

structure

on

success.

On

failure

a

NULL

pointer

is

returned.

The

method_getpwuid

Interface

struct

passwd

*method_getpwuid

(uid_t

uid);

The

uid

parameter

points

to

the

user

ID

of

the

requested

user.

method_getpwuid

retrieves

user

account

information

given

the

user

identifier.

The

user

account

information

consists

of

the

user

name,

identifier,

primary

group

identifier,

full

name,

login

directory

and

login

shell.

method_getpwuid

is

called

as

a

result

of

calling

the

getpwuid

subroutine.

method_getpwuid

returns

a

pointer

to

the

user’s

password

structure

on

success.

On

failure

a

NULL

pointer

is

returned.

The

method_putentry

Interface

int

method_putentry

(char

*key,

char

*table,

char

*attributes,

attrval_t

values[],

int

size);

The

key

parameter

refers

to

an

entry

in

the

named

table.

The

table

parameter

refers

to

one

of

the

three

tables.

The

attributes

parameter

refers

to

an

array

of

pointers

to

attribute

names.

The

values

parameter

refers

to

an

array

of

value

structures

which

correspond

to

the

attributes.

Each

value

structure

contains

a

flag

indicating

if

the

attribute

was

output.

The

size

parameter

is

the

number

of

array

elements.

method_putentry

stores

user,

group

and

system

attributes.

One

or

more

attributes

may

be

retrieved

for

each

call.

Success

or

failure

is

reported

for

each

attribute.

Values

will

be

saved

until

method_commit

is

invoked.

method_putentry

is

called

as

a

result

of

calling

the

putuserattr,

putgroupattr

and

putconfattr

subroutines.

method_putentry

returns

0

when

the

attributes

have

been

updated.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

updating

information

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

create

the

group.

A

value

of

ENOENT

is

used

when

the

entry

does

not

exist.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

The

method_putgrent

Interface

int

method_putgrent

(struct

group

*entry);

The

entry

parameter

points

to

the

structure

to

be

output.

The

account

name

is

contained

in

the

structure.

method_putgrent

stores

group

account

information

given

a

group

entry.

The

group

account

information

consists

of

the

group

name,

identifier

and

complete

member

list.

Values

will

be

saved

until

method_commit

is

invoked.

method_putgrent

may

be

called

as

a

result

of

calling

the

putgroupattr

subroutine.

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

329

method_putgrent

returns

0

when

the

group

has

been

successfully

updated.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

updating

groups

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

update

the

group.

A

value

of

ENOENT

is

used

when

the

group

does

not

exist.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

The

method_putgrusers

Interface

int

method_putgrusers

(char

*group,

char

*users);

The

group

parameter

points

to

the

requested

group.

The

users

parameter

points

to

a

NUL

character

separated,

double

NUL

character

terminated,

list

of

group

members.

method_putgrusers

stores

group

membership

information

given

a

group

name.

Values

will

be

saved

until

method_commit

is

invoked.

method_putgrusers

may

be

called

as

a

result

of

calling

the

putgroupattr

subroutine.

method_putgrusers

returns

0

when

the

group

has

been

successfully

updated.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

updating

groups

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

update

the

group.

A

value

of

ENOENT

is

used

when

the

group

does

not

exist.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

The

method_putpwent

Interface

int

method_putpwent

(struct

passwd

*entry);

The

entry

parameter

points

to

the

structure

to

be

output.

The

account

name

is

contained

in

the

structure.

method_putpwent

stores

user

account

information

given

a

user

entry.

The

user

account

information

consists

of

the

user

name,

identifier,

primary

group

identifier,

full

name,

login

directory

and

login

shell.

Values

will

be

saved

until

method_commit

is

invoked.

method_putpwent

may

be

called

as

a

result

of

calling

the

putuserattr

subroutine.

method_putpwent

returns

0

when

the

user

has

been

successfully

updated.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

updating

users

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

update

the

user.

A

value

of

ENOENT

is

used

when

the

user

does

not

exist.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

Support

Interfaces

Support

interfaces

perform

functions

such

as

initiating

and

terminating

access

to

the

module,

creating

and

deleting

accounts,

and

serializing

access

to

information.

The

method_attrlist

Interface

attrtab

**method_attrlist

(void);

This

interface

does

not

require

any

parameters.

method_attrlist

provides

a

means

of

defining

additional

attributes

for

a

loadable

module.

Authentication-only

modules

may

use

this

interface

to

override

attributes

which

would

normally

come

from

the

identification

module

half

of

a

compound

load

module.

330

Kernel

Extensions

and

Device

Support

Programming

Concepts

method_attrlist

is

called

when

a

loadable

module

is

first

initialized.

The

return

value

will

be

saved

for

use

by

later

calls

to

various

identification

and

authentication

functions.

The

method_close

Interface

void

method_close

(void

*token);

The

token

parameter

is

the

value

of

the

corresponding

method_open

call.

method_close

indicates

that

access

to

the

loadable

module

has

ended

and

all

system

resources

may

be

freed.

The

loadable

module

must

not

assume

this

interface

will

be

invoked

as

a

process

may

terminate

without

calling

this

interface.

method_close

is

called

when

the

session

count

maintained

by

enduserdb

reaches

zero.

There

are

no

defined

error

return

values.

It

is

expected

that

the

method_close

interface

handle

common

programming

errors,

such

as

being

invoked

with

an

invalid

token,

or

repeatedly

being

invoked

with

the

same

token.

The

method_commit

Interface

int

method_commit

(char

*key,

char

*table);

The

key

parameter

refers

to

an

entry

in

the

named

table.

If

it

is

NULL

it

refers

to

all

entries

in

the

table.

The

table

parameter

refers

to

one

of

the

three

tables.

method_commit

indicates

that

the

specified

pending

modifications

are

to

be

made

permanent.

An

entire

table

or

a

single

entry

within

a

table

may

be

specified.

method_lock

will

be

called

prior

to

calling

method_commit.

method_unlock

will

be

called

after

method_commit

returns.

method_commit

is

called

when

putgroupattr

or

putuserattr

are

invoked

with

a

Type

parameter

of

SEC_COMMIT.

The

value

of

the

Group

or

User

parameter

will

be

passed

directly

to

method_commit.

method_commit

returns

a

value

of

0

for

success.

A

value

of

-1

is

returned

to

indicate

an

error

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

the

load

module

does

not

support

modification

requests

for

any

users.

A

value

of

EROFS

is

used

when

the

module

is

not

currently

opened

for

updates.

A

value

of

EINVAL

is

used

when

the

table

parameter

refers

to

an

invalid

table.

A

value

of

EIO

is

used

when

a

potentially

temporary

input-output

error

has

occurred.

The

method_delgroup

Interface

int

method_delgroup

(char

*group);

The

group

parameter

points

to

the

requested

group.

method_delgroup

removes

a

group

account

and

all

associated

information.

A

call

to

method_commit

is

not

required.

The

group

will

be

removed

immediately.

method_delgroup

is

called

when

putgroupattr

is

invoked

with

a

Type

parameter

of

SEC_DELETE.

The

value

of

the

Group

and

Attribute

parameters

will

be

passed

directly

to

method_delgroup.

method_delgroup

returns

0

when

the

group

has

been

successfully

removed.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

deleting

groups

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

delete

the

group.

A

value

of

ENOENT

is

used

when

the

group

does

not

exist.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

A

value

of

EBUSY

is

used

when

the

group

has

defined

members.

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

331

The

method_deluser

Interface

int

method_deluser

(char

*user);

The

user

parameter

points

to

the

requested

user.

method_delgroup

removes

a

user

account

and

all

associated

information.

A

call

to

method_commit

is

not

required.

The

user

will

be

removed

immediately.

method_deluser

is

called

when

putuserattr

is

invoked

with

a

Type

parameter

of

SEC_DELETE.

The

value

of

the

User

and

Attribute

parameters

will

be

passed

directly

to

method_deluser.

method_deluser

returns

0

when

the

user

has

been

successfully

removed.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

deleting

users

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

delete

the

user.

A

value

of

ENOENT

is

used

when

the

user

does

not

exist.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

The

method_lock

Interface

void

*method_lock

(char

*key,

char

*table,

int

wait);

The

key

parameter

refers

to

an

entry

in

the

named

table.

If

it

is

NULL

it

refers

to

all

entries

in

the

table.

The

table

parameter

refers

to

one

of

the

three

tables.

The

wait

parameter

is

the

number

of

second

to

wait

for

the

lock

to

be

acquired.

If

the

wait

parameter

is

zero

the

call

returns

without

waiting

if

the

entry

cannot

be

locked

immediately.

method_lock

informs

the

loadable

modules

that

access

to

the

underlying

mechanisms

should

be

serialized

for

a

specific

table

or

table

entry.

method_lock

is

called

by

the

security

library

when

serialization

is

required.

The

return

value

will

be

saved

and

used

by

a

later

call

to

method_unlock

when

serialization

is

no

longer

required.

The

method_newgroup

Interface

int

method_newgroup

(char

*group);

The

group

parameter

points

to

the

requested

group.

method_newgroup

creates

a

group

account.

The

basic

group

account

information

must

be

provided

with

calls

to

method_putgrent

or

method_putentry.

The

group

account

information

will

not

be

made

permanent

until

method_commit

is

invoked.

method_newgroup

is

called

when

putgroupattr

is

invoked

with

a

Type

parameter

of

SEC_NEW.

The

value

of

the

Group

parameter

will

be

passed

directly

to

method_newgroup.

method_newgroup

returns

0

when

the

group

has

been

successfully

created.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

creating

group

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

create

the

group.

A

value

of

EEXIST

is

used

when

the

group

already

exists.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

A

value

of

EINVAL

is

used

when

the

group

has

an

invalid

format,

length

or

composition.

The

method_newuser

Interface

int

method_newuser

(char

*user);

The

user

parameter

points

to

the

requested

user.

332

Kernel

Extensions

and

Device

Support

Programming

Concepts

method_newuser

creates

a

user

account.

The

basic

user

account

information

must

be

provided

with

calls

to

method_putpwent

or

method_putentry.

The

user

account

information

will

not

be

made

permanent

until

method_commit

is

invoked.

method_newuser

is

called

when

putuserattr

is

invoked

with

a

Type

parameter

of

SEC_NEW.

The

value

of

the

User

parameter

will

be

passed

directly

to

method_newuser.

method_newuser

returns

0

when

the

user

has

been

successfully

created.

On

failure

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

cause.

A

value

of

ENOSYS

is

used

when

creating

users

is

not

supported

by

the

module.

A

value

of

EPERM

is

used

when

the

invoker

does

not

have

permission

to

create

the

user.

A

value

of

EEXIST

is

used

when

the

user

already

exists.

A

value

of

EROFS

is

used

when

the

module

was

not

opened

for

updates.

A

value

of

EINVAL

is

used

when

the

user

has

an

invalid

format,

length

or

composition.

The

method_open

Interface

void

*method_open

(char

*name,

char

*domain,

int

mode,

char

*options);

The

name

parameter

is

a

pointer

to

the

stanza

name

in

the

configuration

file.

The

domain

parameter

is

the

value

of

the

domain=

attribute

in

the

configuration

file.

The

mode

parameter

is

either

O_RDONLY

or

O_RDWR.

The

options

parameter

is

a

pointer

to

the

options=

attribute

in

the

configuration

file.

method_open

prepares

a

loadable

module

for

use.

The

domain

and

options

attributes

are

passed

to

method_open.

method_open

is

called

by

the

security

library

when

the

loadable

module

is

first

initialized

and

when

setuserdb

is

first

called

after

method_close

has

been

called

due

to

an

earlier

call

to

enduserdb.

The

return

value

will

be

saved

for

a

future

call

to

method_close.

The

method_unlock

Interface

void

method_unlock

(void

*token);

The

token

parameter

is

the

value

of

the

corresponding

method_lock

call.

method_unlock

informs

the

loadable

modules

that

an

earlier

need

for

access

serialization

has

ended.

method_unlock

is

called

by

the

security

library

when

serialization

is

no

longer

required.

The

return

value

from

the

earlier

call

to

method_lock

be

used.

Configuration

Files

The

security

library

uses

the

/usr/lib/security/methods.cfg

file

to

control

which

modules

are

used

by

the

system.

A

stanza

exists

for

each

loadable

module

which

is

to

be

used

by

the

system.

Each

stanza

contains

a

number

of

attributes

used

to

load

and

initialize

the

module.

The

loadable

module

may

use

this

information

to

configure

its

operation

when

the

method_open()

interface

is

invoked

immediately

after

the

module

is

loaded.

The

options

Attribute

The

options

attribute

will

be

passed

to

the

loadable

module

when

it

is

initialized.

This

string

is

a

comma-separated

list

of

Flag

and

Flag=Value

entries.

The

entire

value

of

the

options

attribute

is

passed

to

the

method_open()

subroutine

when

the

module

is

first

initialized.

Five

pre-defined

flags

control

how

the

library

uses

the

loadable

module.

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

333

auth=module

Module

will

be

used

to

perform

authentication

functions

for

the

current

loadable

authentication

module.

Subroutine

entry

points

dealing

with

authentication-related

operations

will

use

method

table

pointers

from

the

named

module

instead

of

the

module

named

in

the

program=

or

program_64=

attribute.

authonly

The

loadable

authentication

module

only

performs

authentication

operations.

Subroutine

entry

points

which

are

not

required

for

authentication

operations,

or

general

support

of

the

loadable

module,

will

be

ignored.

db=module

Module

will

be

used

to

perform

identification

functions

for

the

current

loadable

authentication

module.

Subroutine

entry

points

dealing

with

identification

related

operations

will

use

method

table

pointers

from

the

name

module

instead

of

the

module

named

in

the

program=

or

program_64=

attribute.

dbonly

The

loadable

authentication

module

only

provides

user

and

group

identification

information.

Subroutine

entry

points

which

are

not

required

for

identification

operations,

or

general

support

of

the

loadable

module,

will

be

ignored.

noprompt

The

initial

password

prompt

for

authentication

operations

is

suppressed.

Password

prompts

are

normally

performed

prior

to

a

call

to

method_authenticate().

method_authenticate()

must

be

prepared

to

receive

a

NULL

pointer

for

the

response

parameter

and

set

the

reenter

parameter

to

TRUE

to

indicate

that

the

user

must

be

prompted

with

the

contents

of

the

message

parameter

prior

to

method_authenticate()

being

re-invoked.

See

the

description

of

method_authenticate

for

more

information

on

these

parameters.

Compound

Load

Modules

Compound

load

modules

are

created

with

the

auth=

and

db=

attributes.

The

security

library

is

responsible

for

constructing

a

new

method

table

to

perform

the

compound

function.

Interfaces

are

divided

into

three

categories:

identification,

authentication

and

support.

Identification

interfaces

are

used

when

a

compound

module

is

performing

an

identification

operation,

such

as

the

getpwnam()

subroutine.

Authentication

interfaces

are

used

when

a

compound

module

is

performing

an

authentication

operation,

such

as

the

authenticate()

subroutine.

Support

subroutines

are

used

when

initializing

the

loadable

module,

creating

or

deleting

entries,

and

performing

other

non-data

operations.

The

table

Method

Interface

Types

describes

the

purpose

of

each

interface.

The

table

below

describes

which

support

interfaces

are

called

in

a

compound

module

and

their

order

of

invocation.

Support

Interface

Invocation

Name

Invocation

Order

method_attrlist

Identification,

Authentication

method_close

Identification,

Authentication

method_commit

Identification,

Authentication

method_deluser

Authentication,

Identification

method_lock

Identification,

Authentication

method_newuser

Identification,

Authentication

method_open

Identification,

Authentication

method_unlock

Authentication,

Identification

Related

Information

Identification

and

Authentication

Subroutines

334

Kernel

Extensions

and

Device

Support

Programming

Concepts

/usr/lib/security/methods.cfg

File

Chapter

17.

Loadable

Authentication

Module

Programming

Interface

335

336

Kernel

Extensions

and

Device

Support

Programming

Concepts

Appendix.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

"AS

IS"

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Dept.

LRAS/Bldg.

003

11400

Burnet

Road

Austin,

TX

78758-3498

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

©

Copyright

IBM

Corp.

1997,

2004

337

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

(c)

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

(c)

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

AIX

IBM

PowerPC

RS/6000

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

the

trademarks

or

service

marks

of

others.

338

Kernel

Extensions

and

Device

Support

Programming

Concepts

Index

Numerics
32-bit

22

kernel

extension

22

64-bit
kernel

extension

19,

20

A
accented

characters

184

asynchronous

I/O

subsystem
changing

attributes

in

88

subroutines

87

subroutines

affected

by

88

ataide_buf

structure

(IDE)

280

fields

281

ATM

LAN

Emulation

device

driver

112

close

118

configuration

parameters

114

data

reception

118

data

transmission

118

entry

points

117

open

117

trace

and

error

logging

123

ATM

LANE
clients

adding

113

ATM

MPOA

client
tracing

and

error

logging

125

atmle_ctl

119

ATMLE_MIB_GET

119

ATMLE_MIB_QUERY

119

atomic

operations

64

attributes

100

B
block

(physical

volumes)

187

block

device

drivers
I/O

kernel

services

45

block

I/O

buffer

cache
managing

52

supporting

user

access

to

device

drivers

51

using

write

routines

52

block

I/O

buffer

cache

kernel

services

46

bootlist

command
altering

list

of

boot

devices

103

C
callback

function

50

cfgmgr

command
configuring

devices

97,

103

character

I/O

kernel

services

46

chdev

command
changing

device

characteristics

103

configuring

devices

97

child

devices

99

CIO_ASYNC_STATUS

109

CIO_HALT_DONE

108

CIO_LOST_STATUS

108

CIO_NULL_BLK

108

CIO_START_DONE

108

CIO_TX_DONE

108

clients
ATM

LANE
adding

113

commands
errinstall

296

errlogger

301

errmsg

296

errpt

296,

301

errupdate

297,

299,

301

trcrpt

302,

303

communications

device

handlers
common

entry

points

106

common

status

and

exception

codes

107

common

status

blocks

107

interface

kernel

services

75

kernel-mode

interface

105

mbuf

structures

106

types
Ethernet

153

Fiber

Distributed

Data

Interface

(FDDI)

125

Forum

Compliant

ATM

LAN

Emulation

112

Multiprotocol

(MPQP)

109

PCI

Token-Ring

device

drivers

144

SOL

(serial

optical

link)

110

Token-Ring

(8fa2)

137

Token-Ring

(8fc8)

129

user-mode

interface

105

communications

I/O

subsystem
physical

device

handler

model

106

compiling
when

using

trace

318

complex

locks

63

configuration
low

function

terminal

interface

181

cross-memory

kernel

services

68

D
DASD

subsystem
device

block

level

description

287

device

block

operation
cylinder

288

head

288

sector

287

track

287

data

flushing

70

dataless

workstations,

copying

a

system

dump

on

293

DDS

101

debug

301

debugger

289

©

Copyright

IBM

Corp.

1997,

2004

339

device

attributes
accessing

100

modifying

101

device

configuration

database
configuring

93

customized

database

93

predefined

database

93,

98

device

configuration

manager
configuration

hierarchy

94

configuration

rules

94

device

dependencies

graph

94

device

methods

96

invoking

95

device

configuration

subroutines

103

device

configuration

subsystem

93,

94

adding

unsupported

devices

98

configuration

commands

103

configuration

database

structure

92

configuration

subroutines

103

database

configuration

procedures

93

device

classifications

91

device

dependencies

99

device

method

level

92

device

types

95

high-level

perspective

92

low-level

perspective

93

object

classes

in

95

run-time

configuration

commands

97

scope

of

support

91

writing

device

methods

for

96

Device

control

operations

166

NDD_CLEAR_STATS

167

NDD_DISABLE_ADAPTER

168

NDD_DISABLE_ADDRESS

167

NDD_DISABLE_MULTICAST

168

NDD_DUMP_ADDR

168

NDD_ENABLE_ADAPTER

169

NDD_ENABLE_ADDRESS

166

NDD_ENABLE_MULTICAST

168

NDD_GET_ALL_STATS

167

NDD_GET_STATS

166

NDD_MIB_ADDR

167

NDD_MIB_GET

166

NDD_MIB_QUERY

166

NDD_PROMISCUOUS_OFF

168

NDD_PROMISCUOUS_ON

168

NDD_SET_LINK_STATUS

169

NDD_SET_MAC_ADDR

169

Device

Control

Operations
NDD_CLEAR_STATS

135

NDD_DISABLE_ADDRESS

135

NDD_ENABLE_ADDRESS

134

NDD_GET_ALL_STATS

135

NDD_GET_STATS

134

NDD_MIB_ADDR

135

NDD_MIB_GET

134

NDD_MIB_QUERY

134

device

dependent

structure
format

102

updating
using

the

Change

method

101

device

driver
including

in

a

system

dump

290

device

driver

management

kernel

services

60

device

drivers
adding

99

device

dependent

structure

101

display

183

entry

points

182

interface

182

pseudo
low

function

terminal

182

device

methods
adding

devices

99

Change

method

and

device

dependent

structure

101

changing

device

states

97

Configure

method

and

device

dependent

structure

101

for

changing

the

database

and

not

device

state

98

interfaces

96

interfaces

to
run-time

commands

97

invoking

96

method

types

96

source

code

examples

of

96

writing

96

device

states

97

devices
child

99

dependencies

99

SCSI

201

diacritics

184

diagnostics
low

function

terminal

interface

183

direct

access

storage

device

subsystem

187

diskless

systems
configuring

dump

device

289

dump

device

for

289

display

device

driver

183

interface

183

DMA

management
setting

up

transfers

53

DMA

management

kernel

services

47

dump

289

configuring

dump

devices

289

copying

from

dataless

machines

293

copying

to

other

media

293

starting

290

system

dump

facility

289

dump

device
determining

the

size

of

295

determining

the

type

of

logical

volume

295

increasing

the

size

of

295

dump

devices

289

E
eeh

callback
function

50

340

Kernel

Extensions

and

Device

Support

Programming

Concepts

EEH

error

handling
kernel

services
table

50

encapsulation

76

entry

points
communications

physical

device

handler

106

device

driver

182

IDE

adapter

driver

283

IDE

device

driver

283

logical

volume

device

driver

191

MPQP

device

handler

109

SCSI

adapter

device

driver

219

SCSI

device

driver

219

SOL

device

handler

110

errinstall

command

296

errlogger

command

301

errmsg

command

296

error

conditions
SCSI_ADAPTER_HDW_FAILURE

265

SCSI_ADAPTER_SFW_FAILURE

265

SCSI_CMD_TIMEOUT

265

SCSI_FUSE_OR_TERMINAL_PWR

265

SCSI_HOST_IO_BUS_ERR

265

SCSI_NO_DEVICE_RESPONSE

265

SCSI_TRANSPORT_BUSY

266

SCSI_TRANSPORT_DEAD

266

SCSI_TRANSPORT_FAULT

265

SCSI_TRANSPORT_RESET

265

SCSI_WW_NAME_CHANGE

265

error

logging

296

adding

logging

calls

299

coding

steps

296

determining

the

importance

296

determining

the

text

of

the

error

message

296

error

record

template,

sample

299

error

record

templates

297

thresholding

level

296

error

messages
determining

the

text

of

296

error

record

template

297

sample

of

299

errpt

command

296,

301

errsave

kernel

service

296,

299

errupdate

command

297,

299,

301

Ethernet

device

driver

153

asynchronous

status

164

configuration

parameters

154

device

control

operations

166

entry

points

161

NDD_CLEAR_STATS

167

NDD_DISABLE_ADAPTER

168

NDD_DISABLE_ADDRESS

167

NDD_DISABLE_MULTICAST

168

NDD_DUMP_ADDR

168

NDD_ENABLE_ADAPTER

169

NDD_ENABLE_ADDRESS

166

NDD_ENABLE_MULTICAST

168

NDD_GET_ALL_STATS

167

NDD_GET_STATS

166

NDD_MIB_ADDR

167

NDD_MIB_GET

166

Ethernet

device

driver

(continued)
NDD_MIB_QUERY

166

NDD_PROMISCUOUS_OFF

168

NDD_PROMISCUOUS_ON

168

NDD_SET_LINK_STATUS

169

NDD_SET_MAC_ADDR

169

events
management

of

77

exception

codes
communications

device

handlers

107

exception

handlers
implementing

in

kernel-mode

15,

17,

18

in

user-mode

18

registering

76

exception

handling
interrupts

and

exceptions

14

modes
kernel

15

user

18

processing

exceptions
basic

requirements

15

default

mechanism

14

kernel-mode

15

exception

management

kernel

services

76

execution

environments
interrupt

6

process

6

F
FCP

adapter

device

driver

interfaces

273

asynchronous

event

handling

255,

257

autosense

data

258

closing

the

device

273

command

tag

queuing

263

consolidated

commands

262

data

transfer

for

commands

273

device

driver

interfaces

273

driver

transaction

sequence

261

dumps

274

error

processing

273

error

recovery

258

fragmented

commands

263

initiator

I/O

requests

262

initiator-mode

recovery

258,

259

interfaces

273

internal

commands

261

NACA=1

error

258

openx

subroutine

options

270

recovery

from

failure

257

returned

status

260

SC_CHECK_CONDITION

260

scsi_buf

structure

263

spanned

commands

262

FCP

Adapter

device

driver
initiator-mode

ioctl

commands

275

ioctl

commands,

required

274

FCP

device

driver
responsibilities

269

Index

341

FCP

device

driver

(continued)
SC_DIAGNOSTIC

271

SC_FORCED_OPEN

270

SC_NO_RESERVE

271

SC_RETAIN_RESERVATION

271

SC_SINGLE

271

SCIOLEVENT

275

FDDI

device

driver

125

configuration

parameters

125

entry

points

126

trace

and

error

logging

127

Fiber

Distributed

Data

Interface

device

driver

125

file

descriptor

64

file

systems
logical

file

system

39

virtual

file

system

40

files
/dev/error

296

/dev/systrctl

303

/etc/trcfmt

303,

319

sys/erec.h

299

sys/err_rec.h

300

sys/errids.h

300

sys/trchkid.h

303,

304,

318

sys/trcmacros.h

303

filesystem

39

fine

granularity

timer

services

80

Forum

Compliant

ATM

LAN

Emulation

device

driver

112

function
callback

50

G
g-nodes

41

getattr

subroutine
modifying

attributes

101

graphic

input

device

175

H
hardware

interrupt

kernel

services

46

I
I/O

kernel

services
block

I/O

45

buffer

cache

46

character

I/O

46

DMA

management

47

interrupt

management

46

memory

buffer

(mbuf)

47

IDE

subsystem
adapter

driver
entry

points

283

ioctl

commands

284,

285

performing

dumps

283

consolidated

commands

280

device

communication
initiator-mode

support

277

error

processing

283

IDE

subsystem

(continued)
error

recovery
analyzing

returned

status

278

initiator

mode

278

fragmented

commands

280

IDE

device

driver
design

requirements

283

entry

points

283

internal

commands

279

responsibilities

relative

to

adapter

device

driver

277

IDEIOIDENT

286

IDEIOINQU

285

IDEIOREAD

285

IDEIORESET

285

IDEIOSTART

285

IDEIOSTOP

285

IDEIOSTUNIT

285

IDEIOTUR

285

initiator

I/O

request

execution

279

spanned

commands

280

structures
ataide_buf

structure

280

typical

adapter

transaction

sequence

278

input

device,

subsystem

175

input

ring

mechanism

182

interface
low

function

terminal

subsystem

181

interrupt

execution

environment

6

interrupt

management
defining

levels

52

setting

priorities

53

interrupt

management

kernel

services

52

interrupts
management

services

46

INTSTOLLONG

macro

27

ioctl

commands
SCIOCMD

226

iSCSI
autosense

data

258

command

tag

queuing

263

consolidated

commands

262

error

recovery

258

fragmented

commands

263

initiator

I/O

requests

262

initiator-mode

recovery

258,

259

NACA=1

error

258

openx

subroutine

options

270

returned

status

260

SC_CHECK_CONDITION

260

scsi_buf

structure

263

spanned

commands

262

K
kernel

data
accessing

in

a

system

call

24

kernel

environment

1

base

kernel

services

2

creation

of

kernel

processes

8

exception

handling

14

342

Kernel

Extensions

and

Device

Support

Programming

Concepts

kernel

environment

(continued)
execution

environments
interrupt

6

process

6

libraries
libcsys

4

libsys

5

loading

kernel

extensions

3

private

routines

3

programming
kernel

threads

6

kernel

environment,

runtime

45

kernel

extension

binding
adding

symbols

to

the

/unix

name

space

2

using

existing

libraries

4

kernel

extension

considerations
32-bit

22

kernel

extension

development
64-bit

19

kernel

extension

libraries
libcsys

4

libsys

5

kernel

extension

programming

environment
64-bit

20

kernel

extensions
accessing

user-mode

data
using

cross-memory

services

12

using

data

transfer

services

12

interrupt

priority
service

times

53

loading

3

loading

and

binding

services

60

management

services

61

serializing

access

to

data

structures

13

unloading

3

using

with

system

calls

2

kernel

processes
accessing

data

from

9

comparison

to

user

processes

9

creating

10,

76

executing

10

handling

exceptions

11

handling

signals

11

obtaining

cross-memory

descriptors

10

preempting

10

terminating

10

using

system

calls

11

kernel

protection

domain

8,

9,

23

kernel

services

45

address

family

domain

74

atomic

operations

64

categories
EEH

48

I/O

45,

46,

47

I/O,

enhanced

error

handling

48

memory

67,

68

communications

device

handler

interface

75

complex

locks

63

device

driver

management

60,

61

errsave

296,

299

exception

management

76

kernel

services

(continued)
fine

granularity

80

interface

address

74

loading

3

lock

allocation

62

locking

62

logical

file

system

65

loopback

75

management

60,

61

memory

66

message

queue

73

multiprocessor-safe

timer

service

81

network

74

network

interface

device

driver

74

process

level

locks

64

process

management

76

protocol

75

Reliability

Availability

Serviceability

(RAS)

78

routing

74

security

79

simple

locks

62

time-of-day

79

timer

80

unloading

kernel

extensions

3

virtual

file

system

81

kernel

structures
encapsulation

76

kernel

symbol

resolution
using

private

routines

3

kernel

threads
creating

7,

76

executing

7

terminating

7

L
lft

181

LFT
accented

characters

184

libraries
libcsys

4

libsys

5

locking
conventional

locks

13

kernel-mode

strategy

14

serializing

access

to

a

predefined

data

structure

and

13

locking

kernel

services

62

lockl

locks

64

locks
allocation

62

atomic

operations

64

complex

63

lockl

64

simple

62

logical

file

system

65

component

structure

40

file

routines

40

v-nodes

40

file

system

role

39

Index

343

logical

volume

device

driver
bottom

half

191

data

structures

191

physical

device

driver

interface

193

pseudo-device

driver

role

190

top

half

191

logical

volume

manager
DASD

support

187

logical

volume

subsystem
bad

block

processing

193

logical

volume

device

driver

190

physical

volumes
comparison

with

logical

volumes

187

reserved

sectors

188

LONG32TOLONG64

macro

26

loopback

kernel

services

75

low

function

terminal
configuration

commands

182

functional

description

181

interface

181

components

182

configuration

181

device

driver

entry

points

182

ioctls

182

terminal

emulation

181

to

display

device

drivers

182

to

system

keyboard

182

low

function

terminal

interface
AIXwindows

support

182

low

function

terminal

subsystem

181

accented

characters

supported

184

lsattr

command
displaying

attribute

characteristics

of

devices

103

lscfg

command
displaying

device

diagnostic

information

103

lsconn

command
displaying

device

connections

103

lsdev

command
displaying

device

information

103

lsparent

command
displaying

information

about

parent

devices

103

M
macros

INTSTOLLONG

27

LONG32TOLONG64

26

memory

buffer

(mbuf)

47

management

kernel

services

60

management

services
file

descriptor

64

mbuf

structures
communications

device

handlers

106

memory

buffer

(mbuf)

kernel

services

47

memory

buffer

(mbuf)

macros

47

memory

kernel

services
memory

management

66

memory

pinning

67

user

memory

access

67

message

queue

kernel

services

73

mkdev

command
adding

devices

to

the

system

103

configuring

devices

97

MODS

289,

321

MPQP

device

handlers
binary

synchronous

communication
message

types

109

receive

errors

110

entry

points

109

multiprocessor-safe

timer

services

81

Multiprotocol

device

handlers

109

N
NACA=1

error

258

NDD_ADAP_CHECK

132

NDD_AUTO_RMV

132

NDD_BUS_ERR

132

NDD_CLEAR_STATS

120,

135,

167

NDD_CMD_FAIL

132

NDD_DEBUG_TRACE

121

NDD_DISABLE_ADAPTER

168

NDD_DISABLE_ADDRESS

120,

135,

167

NDD_DISABLE_MULTICAST

120,

168

NDD_DUMP_ADDR

168

NDD_ENABLE_ADAPTER

169

NDD_ENABLE_ADDRESS

120,

134,

166

NDD_ENABLE_MULTICAST

121,

168

NDD_GET_ALL_STATS

121,

135,

167

NDD_GET_STATS

122,

134,

166

NDD_MIB_ADDR

122,

135,

167

NDD_MIB_GET

122,

134,

166

NDD_MIB_QUERY

122,

134,

166

NDD_PIO_FAIL

131

NDD_PROMISCUOUS_OFF

168

NDD_PROMISCUOUS_ON

168

NDD_SET_LINK_STATUS

169

NDD_SET_MAC_ADDR

169

NDD_TX_ERROR

132

NDD_TX_TIMEOUT

132

network

kernel

services
address

family

domain

74

communications

device

handler

interface

75

interface

address

74

loopback

75

network

interface

device

driver

74

protocol

75

routing

74

O
object

data

manager

98

ODM

98

odmadd

command
adding

devices

to

predefined

database

98

openx

subroutine

270

SC_DIAGNOSTIC

270

SC_FORCED_OPEN

270

SC_NO_RESERVE

270

SC_RESV_04

270

SC_RESV_05

270

344

Kernel

Extensions

and

Device

Support

Programming

Concepts

openx

subroutine

(continued)
SC_RESV_06

270

SC_RESV_07

270

SC_RESV_08

270

SC_RETAIN_RESERVATION

270

SC_SINGLE

270

optical

link

device

handlers

110

P
parameters

long

26

long

long

27

scalar

26

signed

long

26

uintptr_t

27

partition

(physical

volumes)

188

PCI

Token-Ring

Device

Driver
trace

and

error

logging

149

PCI

Token-Ring

High

Device

Driver
entry

points

145

PCI

Token-Ring

High

Performance
configuration

parameters

144

performance

tracing

289

physical

volumes
block

187

comparison

with

logical

volumes

187

limitations

188

partition

188

reserved

sectors

188

sector

layout

188

pinning
memory

67

predefined

attributes

object

class
accessing

100

modifying

101

printer

addition

management

subsystem
adding

a

printer

definition

198

adding

a

printer

formatter

199

adding

a

printer

type

197

defining

embedded

references

in

attribute

strings

199

modifying

printer

attributes

198

printer

formatter
defining

embedded

references

199

printers
unsupported

types

197

private

routines

3

process

execution

environment

6

process

management

kernel

services

76

processes
creating

76

protection

domains
kernel

23

understanding

23

user

23

pseudo

device

driver
low

function

terminal

182

putattr

subroutine
modifying

attributes

101

R
RCM

183

referenced

routines
for

memory

pinning

72

to

support

address

space

operations

72

to

support

cross-memory

operations

72

to

support

pager

back

ends

72

Reliability

Availability

Serviceability

(RAS)

kernel

services

78

remote

dump

device

for

diskless

systems

289

rendering

context

manager

182,

183

restbase

command
restoring

customized

information

to

configuration

database

103

rmdev

command
configuring

devices

97

removing

devices

from

the

system

103

routine
callback

50

runtime

kernel

environment

45

S
sample

code
trace

format

file

308

savebase

command
saving

customized

information

to

configuration

database

103

sc_buf

structure

(SCSI)

210

scalar

parameters

26

SCIOCMD

226

SCSI

subsystem
adapter

device

driver
entry

points

219

initiator-mode

ioctl

commands

225

ioctl

operations

222,

225,

226,

227,

228,

229,

230

performing

dumps

219

responsibilities

relative

to

SCSI

device

driver

201

target-mode

ioctl

commands

228

asynchronous

event

handling

202

command

tag

queuing

210

device

communication
initiator-mode

support

202

target-mode

support

202

error

processing

218

error

recovery
initiator

mode

204

target

mode

207

initiator

I/O

request

execution
fragmented

commands

209

gathered

write

commands

209

spanned

or

consolidated

commands

208

initiator-mode

adapter

transaction

sequence

207

SCSI

device

driver
asynchronous

event-handling

routine

204

closing

a

device

218

design

requirements

215

entry

points

219

internal

commands

207

Index

345

SCSI

subsystem

(continued)
SCSI

device

driver

(continued)
responsibilities

relative

to

adapter

device

driver

201

using

openx

subroutine

options

215

structures
sc_buf

structure

210

tm_buf

structure

218,

222

target-mode

interface

220,

221,

223

interaction

with

initiator-mode

interface

220

SCSI_ADAPTER_HDW_FAILURE

265

SCSI_ADAPTER_SFW_FAILURE

265

scsi_buf

structure

263

fields

263

SCSI_CMD_TIMEOUT

265

SCSI_FUSE_OR_TERMINAL_PWR

265

SCSI_HOST_IO_BUS_ERR

265

SCSI_NO_DEVICE_RESPONSE

265

SCSI_TRANSPORT_BUSY

266

SCSI_TRANSPORT_DEAD

266

SCSI_TRANSPORT_FAULT

265

SCSI_TRANSPORT_RESET

265

SCSI_WW_NAME_CHANGE

265

security

kernel

services

79

serial

optical

link

device

handlers

110

signal

management

76

Small

Computer

Systems

Interface

subsystem

201

SOL

device

handlers
changing

device

attributes

112

configuring

physical

and

logical

devices

111

entry

points

110,

111

special

files

interfaces

111

status

and

exception

codes

107

status

blocks
communications

device

handler
CIO_ASYNC_STATUS

109

CIO_HALT_DONE

108

CIO_LOST_STATUS

108

CIO_NULL_BLK

108

CIO_START_DONE

108

CIO_TX_DONE

108

communications

device

handlers

and

107

status

codes
communications

device

handlers

and

107

status

codes,

system

dump

292

storage

187

stream-based

tty

subsystem

181

structures
scsi_buf

263

subroutines
close

175

ioctl

175

open

175

read

175

write

175

subsystem
graphic

input

device

175

low

function

terminal

181

streams-based

tty

181

system

calls
accessing

kernel

data

in

24

system

calls

(continued)
asynchronous

signals

33

error

information

35

exception

handling

33,

34

execution

24

in

kernel

protection

domain

23

in

user

protection

domain

23

nesting

for

kernel-mode

use

34

page

faulting

34

passing

parameters

25

preempting

32

services

for

all

kernel

extensions

35

services

for

kernel

processes

only

35

setjmpx

kernel

service

33

signal

handling

in

32

stacking

saved

contexts

33

using

with

kernel

extensions

2

wait

termination

33

system

dump
checking

status

292

configuring

dump

devices

289

copy

from

server

293

copying

from

dataless

machines

293

copying

on

a

non-dataless

machine

294

copying

to

other

media

293

including

device

driver

data

290

locating

293

reboot

in

normal

mode

293

starting

290

system

dump

facility

289

T
terminal

emulation
low

function

terminal

181

threads
creating

76

time-of-day

kernel

services

79

timer

kernel

services
coding

the

timer

function

81

compatibility

80

determining

the

timer

service

to

use

80

fine

granularity

80

reading

time

into

time

structure

80

watchdog

80

timer

service
multiprocessor-safe

81

tm_buf

structure

(SCSI)

218

TOK_ADAP_INIT

132

TOK_ADAP_OPEN

133

TOK_DMA_FAIL

133

TOK_RECOVERY_THRESH

131

TOK_RING_SPEED

133

TOK_RMV_ADAP

133

TOK_WIRE_FAULT

133

Token-Ring

(8fa2)

device

driver

137

asynchronous

state

139

configuration

parameters

137

data

reception

138

data

transmission

138

device

driver

close

138

346

Kernel

Extensions

and

Device

Support

Programming

Concepts

Token-Ring

(8fa2)

device

driver

(continued)
device

driver

open

138

trace

and

error

logging

142

Token-Ring

(8fc8)

device

129

Token-Ring

(8fc8)

device

driver
configuration

parameters

129

trace

and

error

logging

136

trace
controlling

303

trace

events
defining

303

event

IDs

304

determining

location

of

304

format

file

example

308

format

file

stanzas

305

forms

of

303

macros

303

trace

facility

301

configuring

302

controlling

303

controlling

using

commands

303

defining

events

303

event

IDs

304

events,

forms

of

303

hookids

304

reports

303

starting

302

using

302

trace

report
filtering

320

producing

303

reading

319

tracing

301

configuring

302

starting

302

trcrpt

command

302,

303

U
user

commands
configuration

182

user

protection

domain

23

V
v-nodes

40

virtual

file

system

39

configuring

43

data

structures

42

file

system

role

40

generic

nodes

(g-nodes)

41

header

files

42

interface

requirements

41

mount

points

40

virtual

nodes

(v-nodes)

40

virtual

file

system

kernel

services

81

virtual

memory

management
addressing

data

70

data

flushing

70

discarding

data

71

executable

data

71

virtual

memory

management

(continued)
installing

pager

backends

71

moving

data

70

objects

69

protecting

data

71

referenced

routines
for

manipulating

objects

71

virtual

memory

management

kernel

services

67

virtual

memory

manager

69

vm_uiomove

68,

70,

72

Index

347

348

Kernel

Extensions

and

Device

Support

Programming

Concepts

Readers’

Comments

—

We’d

Like

to

Hear

from

You

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

Publication

No.

SC23-4125-06

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC23-4125-06

SC23-4125-06

���

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Information

Development

Department

H6DS-905-6C006

11501

Burnet

Road

Austin,

TX

78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed

in

U.S.A.

SC23-4125-06

	Contents
	About This Book
	Who Should Use This Book
	How to Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Kernel Environment
	Understanding Kernel Extension Symbol Resolution
	Exporting Kernel Services and System Calls
	Using Kernel Services
	Using System Calls with Kernel Extensions
	Using Private Routines
	Understanding Dual-Mode Kernel Extensions
	Using Libraries

	Understanding Execution Environments
	Process Environment
	Interrupt Environment

	Understanding Kernel Threads
	Kernel Threads, Kernel Only Threads, and User Threads
	Kernel Data Structures
	Thread Creation, Execution, and Termination
	Thread Scheduling
	Thread Signal Handling

	Using Kernel Processes
	Introduction to Kernel Processes
	Accessing Data from a Kernel Process
	Cross-Memory Services
	Kernel Process Creation, Execution, and Termination
	Kernel Process Preemption
	Kernel Process Signal and Exception Handling
	Kernel Process Use of System Calls

	Accessing User-Mode Data While in Kernel Mode
	Data Transfer Services
	Using Cross-Memory Kernel Services

	Understanding Locking
	Lockl Locks
	Simple Locks
	Complex Locks
	Types of Critical Sections
	Priority Promotion
	Locking Strategy in Kernel Mode

	Understanding Exception Handling
	Exception Processing
	Kernel-Mode Exception Handling
	Implementing Kernel Exception Handlers
	User-Mode Exception Handling

	Using Kernel Extensions to Support 64–bit Processes
	64-bit Kernel Extension Programming Environment
	C Language Data Model
	Kernel Data Structures
	Function Prototypes
	Compiler Options
	Conditional Compilation
	Kernel Extension Libraries
	Kernel Execution Mode
	Kernel Address Space

	32-bit Kernel Extension Considerations
	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 2. System Calls
	Differences Between a System Call and a User Function
	Understanding Protection Domains
	User Protection Domain
	Kernel Protection Domain

	Understanding System Call Execution
	Accessing Kernel Data While in a System Call
	Passing Parameters to System Calls
	Passing Scalar Parameters to System Calls
	64-bit Application Support on the 64-bit Kernel
	32-bit Application Support on the 32-bit Kernel
	64-bit Application Support on the 32-bit Kernel
	Returning 64-bit Values from System Calls
	Passing Structure Parameters to System Calls

	Preempting a System Call
	Handling Signals While in a System Call
	Delivery of Signals to a System Call
	Asynchronous Signals and Wait Termination
	Stacking Saved Contexts for Nested setjmpx Calls

	Handling Exceptions While in a System Call
	Alternative Exception Handling Using the setjmpx Kernel Service

	Understanding Nesting and Kernel-Mode Use of System Calls
	Page Faulting within System Calls
	Returning Error Information from System Calls
	System Calls Available to Kernel Extensions
	System Calls Available to All Kernel Extensions
	System Calls Available to Kernel Processes Only

	Related Information
	Subroutine References
	Technical References

	Chapter 3. Virtual File Systems
	Logical File System Overview
	Component Structure of the Logical File System

	Virtual File System Overview
	Understanding Virtual Nodes (V-nodes)
	Understanding Generic I-nodes (G-nodes)
	Understanding the Virtual File System Interface

	Understanding Data Structures and Header Files for Virtual File Systems
	Configuring a Virtual File System
	Related Information
	Subroutine References
	Files References
	Technical References

	Chapter 4. Kernel Services
	Categories of Kernel Services
	I/O Kernel Services
	Block I/O Kernel Services
	Buffer Cache Kernel Services
	Character I/O Kernel Services
	Interrupt Management Kernel Services
	Memory Buffer (mbuf) Kernel Services
	DMA Management Kernel Services
	Enhanced I/O Error Handling (EEH) Kernel Services

	Block I/O Buffer Cache Kernel Services: Overview
	Managing the Buffer Cache
	Using the Buffer Cache write Services

	Understanding Interrupts
	Interrupt Priorities

	Understanding DMA Transfers
	DMA Programming Model
	Data Structures
	d_map Return Code Map
	Using dio
	Fields of dio
	Using DMA_CONTIGUOUS
	Using DMA_NO_ZERO_ADDR
	Sample pseudo-code for the PCI drivers
	Sample Pseudo-code for the ISA Slave drivers
	Page Protection Checking and Enforcement
	A comparison of PCI and ISA devices
	d_align and d_roundup

	Kernel Extension and Device Driver Management Services
	Kernel Extension Loading and Unloading Services
	Other Kernel Extension and Device Driver Management Services
	List of Kernel Extension and Device Driver Management Kernel Services

	Locking Kernel Services
	Lock Allocation and Other Services
	Simple Locks
	Complex Locks
	Lockl Locks
	Atomic Operations

	File Descriptor Management Services
	Logical File System Kernel Services
	Other Considerations
	List of Logical File System Kernel Services

	Programmed I/O (PIO) Kernel Services
	Memory Kernel Services
	Memory Management Kernel Services
	Memory Pinning Kernel Services
	User-Memory-Access Kernel Services
	Virtual Memory Management Kernel Services
	Cross-Memory Kernel Services

	Understanding Virtual Memory Manager Interfaces
	Virtual Memory Objects
	Addressing Data
	Moving Data to or from a Virtual Memory Object
	Data Flushing
	Discarding Data
	Protecting Data
	Executable Data
	Installing Pager Backends
	Referenced Routines
	Services that Support 64-bit Processes on the 32-bit Kernel
	Services that Support 64-bit Processes

	Message Queue Kernel Services
	Network Kernel Services
	Address Family Domain and Network Interface Device Driver Kernel Services
	Routing and Interface Address Kernel Services
	Loopback Kernel Services
	Protocol Kernel Services
	Communications Device Handler Interface Kernel Services

	Process and Exception Management Kernel Services
	Creating Kernel Processes
	Creating Kernel Threads
	Kernel Structures Encapsulation
	Registering Exception Handlers
	Signal Management
	Events Management
	List of Process, Thread, and Exception Management Kernel Services

	RAS Kernel Services
	Security Kernel Services
	Timer and Time-of-Day Kernel Services
	Time-Of-Day Kernel Services
	Fine Granularity Timer Kernel Services
	Timer Kernel Services for Compatibility
	Watchdog Timer Kernel Services

	Using Fine Granularity Timer Services and Structures
	Timer Services Data Structures
	Coding the Timer Function

	Using Multiprocessor-Safe Timer Services
	Virtual File System (VFS) Kernel Services
	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 5. Asynchronous I/O Subsystem
	How Do I Know if I Need to Use AIO?
	SMP Systems
	How Many AIO Servers Am I Currently Using?
	How Many AIO Servers Do I Need?
	Prerequisites

	Functions of Asynchronous I/O
	Large File-Enabled Asynchronous I/O
	Nonblocking I/O
	Notification of I/O Completion
	Cancellation of I/O Requests

	Asynchronous I/O Subroutines
	Order and Priority of Asynchronous I/O Calls

	Subroutines Affected by Asynchronous I/O
	Changing Attributes for Asynchronous I/O
	64-bit Enhancements
	Related Information
	Subroutine References
	Commands References

	Chapter 6. Device Configuration Subsystem
	Scope of Device Configuration Support
	Device Configuration Subsystem Overview
	General Structure of the Device Configuration Subsystem
	High-Level Perspective
	Device Method Level
	Low-Level Perspective

	Device Configuration Database Overview
	Basic Device Configuration Procedures Overview
	Device Configuration Manager Overview
	Devices Graph
	Configuration Rules
	Invoking the Configuration Manager

	Device Classes, Subclasses, and Types Overview
	Writing a Device Method
	Invoking Methods
	Example Methods

	Understanding Device Methods Interfaces
	Configuration Manager
	Run-Time Configuration Commands

	Understanding Device States
	Adding an Unsupported Device to the System
	Modifying the Predefined Database
	Adding Device Methods
	Adding a Device Driver
	Using installp Procedures

	Understanding Device Dependencies and Child Devices
	Accessing Device Attributes
	Modifying an Attribute Value

	Device Dependent Structure (DDS) Overview
	How the Change Method Updates the DDS
	Guidelines for DDS Structure
	Example of DDS

	List of Device Configuration Commands
	List of Device Configuration Subroutines
	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 7. Communications I/O Subsystem
	User-Mode Interface to a Communications PDH
	Kernel-Mode Interface to a Communications PDH
	CDLI Device Drivers
	Communications Physical Device Handler Model Overview
	Use of mbuf Structures in the Communications PDH
	Common Communications Status and Exception Codes

	Status Blocks for Communications Device Handlers Overview
	CIO_START_DONE
	CIO_HALT_DONE
	CIO_TX_DONE
	CIO_NULL_BLK
	CIO_LOST_STATUS
	CIO_ASYNC_STATUS

	MPQP Device Handler Interface Overview for the ARTIC960Hx PCI Adapter
	Binary Synchronous Communication (BSC) with the PCI MPQP Adapter
	Description of the PCI MPQP Card

	Serial Optical Link Device Handler Overview
	Special Files
	Entry Points

	Configuring the Serial Optical Link Device Driver
	Physical and Logical Devices
	Changeable Attributes of the Serial Optical Link Subsystem

	Forum-Compliant ATM LAN Emulation Device Driver
	Adding ATM LANE Clients
	Configuration Parameters for the ATM LANE Device Driver
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Tracing and Error Logging in the ATM LANE Device Driver
	Adding an ATM MPOA Client
	Configuration Parameters for ATM MPOA Client
	Tracing and Error Logging in the ATM MPOA Client
	Getting Client Status

	Fiber Distributed Data Interface (FDDI) Device Driver
	Configuration Parameters for FDDI Device Driver
	FDDI Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Reliability, Availability, and Serviceability for FDDI Device Driver

	High-Performance (8fc8) Token-Ring Device Driver
	Configuration Parameters for Token-Ring Device Driver
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Trace Points and Error Log Templates for 8fc8 Token-Ring Device Driver

	High-Performance (8fa2) Token-Ring Device Driver
	Configuration Parameters for 8fa2 Token-Ring Device Driver
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Trace Points and Error Log Templates for 8fa2 Token-Ring Device Driver

	PCI Token-Ring Device Drivers
	Configuration Parameters
	Device Driver Configuration and Unconfiguration
	Device Driver Open
	Device Driver Close
	Data Transmission
	Data Reception
	Asynchronous Status
	Device Control Operations
	Reliability, Availability, and Serviceability (RAS)

	Ethernet Device Drivers
	Configuration Parameters
	Interface Entry Points
	Asynchronous Status
	Device Control Operations
	Trace
	Error Logging

	Related Information
	Subroutine References
	Commands References
	Technical References

	Chapter 8. Graphic Input Devices Subsystem
	open and close Subroutines
	read and write Subroutines
	ioctl Subroutines
	Keyboard
	Mouse
	Tablet
	GIO (Graphics I/O) Adapter
	Dials
	LPFK

	Input Ring
	Management of Multiple Keyboard Input Rings
	Event Report Formats
	Mouse (Extended Format)
	Keyboard Service Vector
	Special Keyboard Sequences

	Chapter 9. Low Function Terminal Subsystem
	Low Function Terminal Interface Functional Description
	Configuration
	Terminal Emulation
	IOCTLS Needed for AIXwindows Support
	Low Function Terminal to System Keyboard Interface
	Low Function Terminal to Display Device Driver Interface
	Low Function Terminal Device Driver Entry Points

	Components Affected by the Low Function Terminal Interface
	Configuration User Commands
	Display Device Driver
	Rendering Context Manager
	Diagnostics

	Accented Characters
	List of Diacritics Supported by the HFT LFT Subsystem

	Related Information
	Commands References

	Chapter 10. Logical Volume Subsystem
	Direct Access Storage Devices (DASDs)
	Physical Volumes
	Physical Volume Implementation Limitations
	Physical Volume Layout
	Reserved Sectors on a Physical Volume
	Sectors Reserved for the Logical Volume Manager (LVM)

	Understanding the Logical Volume Device Driver
	Data Structures
	Top Half of LVDD
	Bottom Half of the LVDD
	Interface to Physical Disk Device Drivers

	Understanding Logical Volumes and Bad Blocks
	Relocating Bad Blocks
	Detecting and Correcting Bad Blocks

	Related Information
	Subroutine References
	Files Reference
	Technical References

	Chapter 11. Printer Addition Management Subsystem
	Printer Types Currently Supported
	Printer Types Currently Unsupported
	Adding a New Printer Type to Your System
	Additional Steps for Adding a New Printer Type
	Modifying Printer Attributes

	Adding a Printer Definition
	Adding a Printer Formatter to the Printer Backend
	Understanding Embedded References in Printer Attribute Strings
	Related Information
	Subroutine References
	Commands References

	Chapter 12. Small Computer System Interface Subsystem
	SCSI Subsystem Overview
	Responsibilities of the SCSI Adapter Device Driver
	Responsibilities of the SCSI Device Driver
	Communication between SCSI Devices

	Understanding SCSI Asynchronous Event Handling
	Defined Events and Recovery Actions
	Asynchronous Event-Handling Routine

	SCSI Error Recovery
	SCSI Initiator-Mode Recovery When Not Command Tag Queuing
	SCSI Initiator-Mode Recovery During Command Tag Queuing
	Analyzing Returned Status
	Target-Mode Error Recovery

	A Typical Initiator-Mode SCSI Driver Transaction Sequence
	Understanding SCSI Device Driver Internal Commands
	Understanding the Execution of Initiator I/O Requests
	Spanned (Consolidated) Commands
	Fragmented Commands
	Gathered Write Commands

	SCSI Command Tag Queuing
	Understanding the sc_buf Structure
	Fields in the sc_buf Structure

	Other SCSI Design Considerations
	Responsibilities of the SCSI Device Driver
	SCSI Options to the openx Subroutine
	Using the SC_FORCED_OPEN Option
	Using the SC_RETAIN_RESERVATION Option
	Using the SC_DIAGNOSTIC Option
	Using the SC_NO_RESERVE Option
	Using the SC_SINGLE Option
	Closing the SCSI Device
	SCSI Error Processing
	Device Driver and Adapter Device Driver Interfaces
	Performing SCSI Dumps

	SCSI Target-Mode Overview
	Configuring and Using SCSI Target Mode
	Managing Receive-Data Buffers
	Understanding Target-Mode Data Pacing
	Understanding the SCSI Target Mode Device Driver Receive Buffer Routine
	Understanding the tm_buf Structure
	Understanding the Running of SCSI Target-Mode Requests

	Required SCSI Adapter Device Driver ioctl Commands
	Initiator-Mode ioctl Commands
	Target-Mode ioctl Commands
	Target- and Initiator-Mode ioctl Commands

	Related Information
	Technical References

	Chapter 13. Fibre Channel Protocol for SCSI and iSCSI Subsystem
	Programming FCP and iSCSI Device Drivers
	FCP and iSCSI Device Drivers
	FCP and iSCSI Adapter Device Driver
	FCP and iSCSI Adapter and Device Interface
	FCP and iSCSI Adapter Device Driver Routines
	FCP and iSCSI Adapter ioctl Operations

	FCP and iSCSI Subsystem Overview
	Responsibilities of the Adapter Device Driver
	Responsibilities of the Device Driver
	Communication between Devices
	Initiator-Mode Support

	Understanding FCP and iSCSI Asynchronous Event Handling
	Defined Events and Recovery Actions
	Asynchronous Event-Handling Routine

	FCP and iSCSI Error Recovery
	Autosense Data
	NACA=1 error recovery

	FCP and iSCSI Initiator-Mode Recovery When Not Command Tag Queuing
	Initiator-Mode Recovery During Command Tag Queuing
	Analyzing Returned Status

	A Typical Initiator-Mode FCP and iSCSI Driver Transaction Sequence
	Understanding FCP and iSCSI Device Driver Internal Commands
	Understanding the Execution of FCP and iSCSI Initiator I/O Requests
	Spanned (Consolidated) Commands
	Fragmented Commands

	FCP and iSCSI Command Tag Queuing
	Understanding the scsi_buf Structure
	Fields in the scsi_buf Structure

	Other FCP and iSCSI Design Considerations
	Responsibilities of the Device Driver
	Options to the openx Subroutine
	Using the SC_FORCED_OPEN Option
	Using the SC_RETAIN_RESERVATION Option
	Using the SC_DIAGNOSTIC Option
	Using the SC_NO_RESERVE Option
	Using the SC_SINGLE Option
	Closing the Device
	Error Processing
	Length of Data Transfer for Commands
	Device Driver and Adapter Device Driver Interfaces
	Performing Dumps

	Required FCP and iSCSI Adapter Device Driver ioctl Commands
	Initiator-Mode ioctl Commands
	Initiator-Mode ioctl Command used by FCP Device Drivers

	Related Information

	Chapter 14. Integrated Device Electronics (IDE) Subsystem
	Responsibilities of the IDE Adapter Device Driver
	Responsibilities of the IDE Device Driver
	Communication Between IDE Device Drivers and IDE Adapter Device Drivers
	IDE Error Recovery
	Analyzing Returned Status

	A Typical IDE Driver Transaction Sequence
	IDE Device Driver Internal Commands
	Execution of I/O Requests
	Spanned (Consolidated) Commands
	Fragmented Commands

	ataide_buf Structure
	Fields in the ataide_buf Structure

	Other IDE Design Considerations
	IDE Device Driver Tasks
	Closing the IDE Device
	IDE Error Processing
	Device Driver and Adapter Driver Interfaces
	Performing IDE Dumps

	Required IDE Adapter Driver ioctl Commands
	ioctl Commands

	Related Information
	Technical References

	Chapter 15. Serial Direct Access Storage Device Subsystem
	DASD Device Block Level Description
	Related Information

	Chapter 16. Debug Facilities
	System Dump Facility
	Configuring a Dump Device
	Starting a System Dump
	Checking the Status of a System Dump
	Status Codes
	Copying a System Dump
	Increase the Size of a Dump Device

	Error Logging
	Setting up Error Logging

	Debug and Performance Tracing
	Introduction
	Using the trace Facility
	Controlling trace
	Producing a trace Report
	Defining trace Events
	Usage Hints
	Trace Event Groups

	Memory Overlay Detection System (MODS)
	bosdebug command
	When to use the MODS feature
	How MODS works
	MODS limitations
	MODS benefits

	Related Information
	Commands References
	Technical References

	Chapter 17. Loadable Authentication Module Programming Interface
	Overview
	Load Module Interfaces
	Authentication Interfaces
	The method_authenticate Interface
	The method_chpass Interface
	The method_getpasswd Interface
	The method_normalize Interface
	The method_passwdexpired Interface
	The method_passwdrestrictions Interface

	Identification Interfaces
	The method_getentry Interface
	The method_getgracct Interface
	The method_getgrgid Interface
	The method_getgrnam Interface
	The method_getgrset Interface
	The method_getgrusers Interface
	The method_getpwnam Interface
	The method_getpwuid Interface
	The method_putentry Interface
	The method_putgrent Interface
	The method_putgrusers Interface
	The method_putpwent Interface

	Support Interfaces
	The method_attrlist Interface
	The method_close Interface
	The method_commit Interface
	The method_delgroup Interface
	The method_deluser Interface
	The method_lock Interface
	The method_newgroup Interface
	The method_newuser Interface
	The method_open Interface
	The method_unlock Interface

	Configuration Files
	The options Attribute

	Compound Load Modules
	Related Information

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

