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About This Book

This book provides information on the kernel programming environment, and about writing system call,
kernel service, and virtual file system kernel extensions. Conceptual information on existing kernel
subsystems is also provided.

This edition supports the release of AIX 5L Version 5.2 with the 5200-03 Recommended Maintenance
package. Any specific references to this maintenance package are indicated as AIX 5.2 with 5200-03.

Who Should Use This Book

This book is intended for system programmers who are knowledgeable in operating system concepts and
kernel programming and want to extend the kernel.

How to Use This Book

This book provides two types of information: (1) an overview of the kernel programming environment and
information a programmer needs to write kernel extensions, and (2) information about existing kernel
subsystems.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.
Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain additional information on kernel extension programming and the existing
kernel subsystems:

» |AIX 5L Version 5.2 Guide to Printers and Printing|

« |Keyboard Technical Reference]

© Copyright IBM Corp. 1997, 2004 vii



« |AIX 5L Version 5.2 System Management Guide: Operating System and Deviced
« [AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1|
« [AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2

Viii  Kernel Extensions and Device Support Programming Concepts



Chapter 1. Kernel Environment

The kernel is dynamically extendable and can be expanded by adding routines that belong to any of the
following functional classes:

+ [System calls

« [Virtual file systems|

« [Kernel Extension and Device Driver Management Kernel Services|
» Device Drivers

The term kernel extension applies to all routines added to the kernel, independent of their purpose. Kernel
extensions can be added at any time by a user with the appropriate privilege.

Kernel extensions run in the same mode as the kernel. That is, when the 64—-bit kernel is used, kernel
extensions run in 64—bit mode. These kernel extensions must be compiled to produce a 64—bit object.

The following kernel-environment programming information is provided to assist you in programming kernel
extensions:

« [“‘Understanding Kernel Extension Symbol Resolution’]
* |“Understanding Execution Environments” on page 5|
* |“Understanding Kernel Threads” on page 6|

* |“Using Kernel Processes” on page 8
* |“Accessing User-Mode Data While in Kernel Mode” on page 12|

+ [“Understanding Locking” on page 13|

+ [“Understanding Exception Handling” on page 14|

+ [“Using Kernel Extensions to Support 64—bit Processes” on page 19

A process executing in user mode can customize the kernel by using thesubroutine, if the
process has appropriate privilege. In this way, a user-mode process can load, unload, initialize, or
terminate kernel routines. Kernel configuration can also be altered by changing tunable system
parameters.

Kernel extensions can also customize the kernel by using kernel services to load, unload, initialize, and
terminate dynamically loaded kernel routines; to create and initialize kernel processes; and to define
interrupt handlers.

Note: Private kernel routines (or kernel services) execute in a privileged protection domain and can affect
the operation and integrity of the whole system. See [‘Kernel Protection Domain” on page 23| for
more information.

Understanding Kernel Extension Symbol Resolution

The following information is provided to assist you in understanding kernel extension symbol resolution:
« [‘Exporting Kernel Services and System Calls” on page 2|

[‘Using Kernel Services” on page 2|

[‘Using System Calls with Kernel Extensions” on page 2|

* |‘Using Private Routines” on pagﬂ

. “‘Understanding Dual-Mode Kernel Extensions” on page 4|

* |“Using Libraries” on page 4|

© Copyright IBM Corp. 1997, 2004 1



Exporting Kernel Services and System Calls

A kernel extension provides additional kernel services and system calls by specifying an export file when it
is link-edited. An export file contains a list of symbols to be added to the kernel name space. In addition,
symbols can be identified as system calls for 32-bit processes, 64-bit processes, or both.

In an export file, symbols are listed one per line. These system calls are available to both 32- and 64-bit
processes. System calls are identified by using one of the syscall32, syscall64 or syscall3264 keywords
after the symbol name. Use syscall32 to make a system call available to 32-bit processes, syscall64 to
make a system call available to 64-bit processes, and syscall3264 to make a system call available to both
32- and 64-bit processes. For more information about export files, see in AIX 5L Version 5.2
Commands Reference, Volume 3.

When a new kernel extension is loaded by the sysconfig or kmod_load subroutine, any symbols
exported by the kernel extension are added to the kernel name space, and are available to all
subsequently loaded kernel extensions. Similarly, system calls exported by a kernel extension are
available to all user programs or shared objects subsequently loaded.

Using Kernel Services

The kernel provides a set of pase kernel services|to be used by kernel extensions. Kernel extensions can
export new kernel services, which can then be used by subsequently loaded kernel extensions. Base
kernel services, which are described in the services documentation, are made available to a kernel
extension by specifying the /usr/lib/kernex.imp import file during the link-edit of the extension.

Note: Link-editing of a kernel extension should always be performed by using the command. Do not
use the compiler to create a kernel extension.

If a kernel extension depends on kernel services provided by other kernel extensions, an additional import
file must be specified when link-editing. An import file lists additional kernel services, with each service
listed on its own line. An import file must contain the line #!/unix before any services are listed. The same
file can be used both as an import file and an export file. The #!/unix line is ignored when a file is used
as an export file. For more information on import files, see in AIX 5L Version 5.2 Commands
Reference, Volume 3.

Using System Calls with Kernel Extensions

A restricted set of system calls can be used by kernel extensions. A|kerne| proces§| can use a larger set of
system calls than a user process in kernel mode. [‘System Calls Available to Kernel Extensions” on page
specifies which system calls can be used by either type of process. User-mode processes in kernel
mode can only use system calls that have all parameters passed by value. Kernel routines running under
user-mode processes cannot directly use a system call having parameters passed by reference.

The second restriction is imposed because, when they access a caller's data, system calls with
parameters passed by reference access storage across a protection domain. The cross-domain memory
services performing these cross-memory operations support kernel processes as if they, too, accessed
storage across a protection domain. However, these services have no way to determine that the caller is in
the same protection domain when the caller is a user-mode process in kernel mode. For more information
on cross-domain memory services, see [‘Cross-Memory Kernel Services” on page 68

Note: System calls must not be used by kernel extensions executing in the interrupt handler
environment.

System calls available to kernel extensions are listed in /usr/lib/kernex.imp, along with other kernel
services.

2 Kernel Extensions and Device Support Programming Concepts



Loading and Unloading Kernel Extensions

Kernel extensions can be loaded and unloaded by calling the sysconfig function from user applications. A
kernel extension can load another kernel extension by using the kmod_load kernel service, and kernel
extensions can be unloaded by using the kmod_unload kernel service.

Loading Kernel Extensions: Normally, kernel extensions that provide new system calls or kernel
services only need to be loaded once. For these kernel extensions, loading should be performed by
specifying SYS_SINGLELOAD when calling the sysconfig function, or LD_SINGLELOAD when calling the
kmod_load function. If the specified kernel extension is already loaded, a second copy is not loaded.
Instead, a reference to the existing kernel extension is returned. The loader uses the specified pathname
to determine whether a kernel extensions is already loaded. If multiple pathnames refer to the same kernel
extension, multiple copies can be loaded into the kernel.

If a kernel extension can support multiple instances of itself (particularly its data), it can be loaded multiple
times, by specifying SYS_KLOAD when calling the sysconfig function, or by not specifying
LD_SINGLELOAD when calling the kmod_load function. Either of these operations loads a new copy of
the kernel extension, even when one or more copies are already loaded. When this operation is used,
currently loaded routines bound to the old copy of the kernel extension continue to use the old copy.
Subsequently loaded routines use the most recently loaded copy of the kernel extension.

Unloading Kernel Extensions: Kernel extensions can be unloaded. For each kernel extension, the
loader maintains a use count and a load count. The use count indicates how many other object files have
referenced some exported symbol provided by the kernel extension. The load count indicates how many
explicit load requests have been made for each kernel extension.

When an explicit unload of a kernel extension is requested, the load count is decremented. If the load
count and the use count are both equal to 0, the kernel extension is unloaded, and the memory used by
the text and data of the kernel extension is freed.

If either the load count or use count is not equal to 0, the kernel extension is not unloaded. As processes
exit or other kernel extensions are unloaded, the use counts for referenced kernel extensions are
decremented. Even if the load and use counts become 0, the kernel extension may not be unloaded
immediately. In this case, the kernel extension’s exported symbols are still available for load-time binding
unless another kernel extension is unloaded or thecommand is executed. At this time, the
loader unloads all modules that have both load and use counts of 0.

Using Private Routines

So far, symbol resolution for kernel extensions has been concerned with importing and exporting symbols
from and to the kernel name space. Exported symbols are global in the kernel, and can be referenced by
any subsequently loaded kernel extension.

Kernel extensions can also consist of several separately link-edited modules. This is particularly useful for
device drivers, where a kernel extension contains the top (pageable) half of the driver and a dependent
module contains the bottom (pinned) half of the driver. Using a dependent module also makes sense when
several kernel extensions use common routines. In both cases, the symbols exported by the dependent
modules are not added to the global kernel name space. Instead, these symbols are only available to the
kernel extension being loaded.

When link-editing a kernel extension that depends on another module, an import file should be specified
listing the symbols exported by the dependent module. Before any symbols are listed, the import file
should contain one of the following lines:

#! path/file

or
#1 path/file(member)

Chapter 1. Kernel Environment 3



Note: This import file can also be used as an export file when building the dependent module.
Dependent modules can be found in an archive file. In this case, the member name must be specified in
the #! line.

While a kernel extension is being loaded, any dependent modules are only loaded a single time. This
allows modules to depend on each other in a complicated way, without causing multiple instances of a
module to be loaded.

Note: The loader uses the pathname of a module to determine whether it has already been loaded.
Another copy of the module can be loaded if different path names are used for the same module.

The symbols exported by dependent modules are not added to the kernel name space. These symbols
can only be used by a kernel extension and its other dependent modules. If another kernel extension is
loaded that uses the same dependent modules, these dependent modules will be loaded a second time.

Understanding Dual-Mode Kernel Extensions

Dual-mode kernel extensions can be used to simplify the loading of kernel extensions that run on both the
32- and 64-bit kernels. A "dual-mode kernel extension” is an archive file that contains both the 32- and
64-bit versions of a kernel extension as members. When the pathname specified in the sysconfig or
kmod_load call is an archive, the loader loads the first archive member whose object mode matches the
kernel's execution mode.

This special treatment of archives only applies to an explicitly loaded kernel extension. If a kernel
extension depends on a member of another archive, the kernel extension must be link-edited with an
import file that specifies the member name.

Using Libraries

The operating system provides the following two libraries that can be used by kernel extensions:
y

y

libcsys Library

The libesys.a library contains a subset of subroutines found in the user-mode libc.a library that can be
used by kernel extensions. When using any of these routines, the header file /usr/include/sys/libcsys.h
should be included to obtain function prototypes, instead of the application header files, such as
lusr/include/string.h or /usr/include/stdio.h. The following routines are included in libcsys.a:

* atoi

* bcmp

* bcopy

* bzero

* memccpy
* memchr
°* memcmp
* memcpy
* memmove
* memset
* ovbcopy
» strcat

» strchr

e strcmp

» strepy

4  Kernel Extensions and Device Support Programming Concepts



» strcspn
» strlen

» strncat
e strncmp
* strncpy
» strpbrk
» strrchr
* strspn
e strstr

» strtok

Note: In addition to these explicit subroutines, some additional functions are defined in libcsys.a. All
kernel extensions should be linked with libesys.a by specifying -lcsys at link-edit time. The
library libc.a is intended for user-level code only. Do not link-edit kernel extensions with the -lc
flag.

libsys Library

The libsys.a library provides the following set of kernel services:
* d_align

* d_roundup

* timeout

* timeoutcf

* untimeout

When using these services, specify the -Isys flag at link-edit time.

User-provided Libraries

To simplify the development of kernel extensions, you can choose to split a kernel extension into
separately loadable modules. These modules can be used when linking kernel extensions in the same way
that they are used when developing user-level applications and shared objects. In particular, a kernel
module can be created as a shared object by linking with the -bM:SRE flag.. The shared object can then
be used as an input file when linking a kernel extension. In addition, shared objects can be put into an
archive file, and the archive file can be listed on the command line when linking a kernel extension. In both
cases, the shared object will be loaded as a dependent module when the kernel extension is loaded.

Understanding Execution Environments

There are two major environments under which a kernel extension can run:
« [Process environment|
+ [Interrupt environment|

A kernel extension runs in the process environment when invoked either by a user process in kernel mode
or by a kernel process. A kernel extension is executing in the interrupt environment when invoked as part
of an finterrupt handler|

A kernel extension can determine in which environment it is called to run by calling the or

kernel service. These services respectively return the process or thread identifier of the
current process or thread , or a value of -1 if called in the interrupt environment. Some kernel services can
be called in both environments, whereas others can only be called in the process environment.

Note: No floating-point functions can be used in the kernel.

Chapter 1. Kernel Environment 5



Process Environment

A routine runs in the process environment when it is called by a user-mode process or by a kernel]
Routines running in the process environment are executed at an interrupt priority of INTBASE
(the least favored priority). A kernel extension running in this environment can cause page faults by
accessing pageable code or data. It can also be replaced by another process of equal or higher process
priority.

A routine running in the process environment can sleep or be interrupted by routines executing in the
interrupt environment. A kernel routine that runs on behalf of a user-mode process can only invoke system
calls that have no parameters passed by reference. A kernel process, however, can use all system calls
listed in the [System Calls Available to Kernel Extensiong| if necessary.

Interrupt Environment

A routine runs in the interrupt environment when called on behalf of an interrupt handler. A kernel routine
executing in this environment cannot request data that has been paged out of memory and therefore
cannot cause page faults by accessing pageable code or data. In addition, the kernel routine has a stack
of limited size, is not subject to replacement by another process, and cannot perform any function that
would cause it to sleep.

A routine in this environment is only interruptible either by interrupts that have priority more favored than
the current priority or by These routines cannot use system calls and can use only kernel
services available in both the process and interrupt environments.

A process in kernel mode can also put jtself into an environment similar to the interrupt environment. This
action, occurring when the interrupt priority is changed to a priority more favored than INTBASE, can be
accomplished by calling the |i_disable| or [disable_lock| kernel service. A kernel-mode process is
sometimes required to do this to serialize access to a resource shared by a routine executing in the
interrupt environment. When this is the case, the process operates under most of the same restrictions as
a routine executing in the interrupt environment. However, the [e_sleep, [e_wait [e_sleepl, let_wait, [lockl|
and [unlockl| process can sleep, wait, and use locking kerel services if the event word or lock word is
pinned.

Routines executed in this environment can adversely affect system real-time performance and are
therefore limited to a specific maximum path length. Guidelines for the maximum path length are
determined by the interrupt priority at which the routines are executed. [Understanding Interrupts| provides
more information.

Understanding Kernel Threads

A thread is an independent flow of control that operates within the same address space as other
independent flows of control within a process.

One process can have multiple threads, with each thread executing different code concurrently, while
sharing data and synchronizing much more easily than cooperating processes. Threads require fewer
system resources than processes, and can start more quickly.

Although threads can be scheduled, they exist in the context of their process. The following list indicates
what is managed at process level and shared among all threads within a process:

* Address space
» System resources, like files or terminals
» Signal list of actions.

The process remains the swappable entity. Only a few resources are managed at thread level, as
indicated in the following list:

6  Kernel Extensions and Device Support Programming Concepts



» State
» Stack
» Signal masks.

Kernel Threads, Kernel Only Threads, and User Threads
There are three kinds of threads:

* Kernel threads

» Kernel-only threads

* User threads.

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the entity handled by the
system scheduler. A kernel thread runs in user mode environment when executing user functions or library
calls; it switches to kernel mode environment when executing system calls.

A kernel-only thread is a kernel thread that executes only in kernel mode environment. Kernel-only threads
are controlled by the kernel mode environment programmer through kernel services.

User mode programs can access user threads through a library (such as the libpthreads.a threads
library). User threads are part of a portable programming model. User threads are mapped to kernel
threads by the threads library, in an implementation dependent manner. The threads library uses a
proprietary interface to handle kernel threads. See Understanding Threads in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs to get detailed information about the user
threads library and their implementation.

All threads discussed in this article are kernel threads; and the information applies only to the kernel mode
environment. Kernel threads cannot be accessed from the user mode environment, except through the
threads library.

Kernel Data Structures

The kernel maintains thread- and process-related information in two types of structures:
* The user structure contains process-related information

* The uthread structure contains thread-related information.

These structures cannot be accessed directly by kernel extensions and device drivers. They are
encapsulated for portability reasons. Many fields that were previously in the user structure are now in the
uthread structure.

Thread Creation, Execution, and Termination

A process is always created with one thread, called the initial thread. The initial thread provides
compatibility with previous single-threaded processes. The initial thread’s stack is the process stack. See
|“Kerne| Process Creation, Execution, and Termination” on page 10| to get more information about kernel
process creation.

Other threads can be created, using a two-step procedure. The |thread_create|kernel service allocates
and initializes a new thread, and sets its state to idle. The |kthread_start| kernel service then starts the

thread, using the specified entry point routine.

A thread is terminated when it executes a return from its entry point, or when it calls the fthread_terminate|
kernel service. Its resources are automatically freed. If it is the last thread in the process, the process
ends.

Chapter 1. Kernel Environment 7



Thread Scheduling

Threads are scheduled using one of the following scheduling policies:

 First-in first-out (FIFO) scheduling policy, with fixed priority. Using the FIFO policy with high favored
priorities might lead to bad system performance.

* Round-robin (RR) scheduling policy, quantum based and with fixed priority.

» Default scheduling policy, a non-quantum based round-robin scheduling with fluctuating priority. Priority
is modified according to the CPU usage of the thread.

Scheduling parameters can be changed using the |thread_setsched kernel service. The process-oriented
system call sets the priority of all the threads within a process. The process-oriented system
call gets the priority of a thread in the process. The scheduling policy and priority of an individual thread
can be retrieved from the ti_policy and ti_pri fields of the thrdsinfo structure returned by the
system call.

Thread Signal Handling

The signal handling concepts are the following:

* A signal mask is associated with each thread.

* The list of actions associated with each signal number is shared among all threads in the process.

 If the signal action specifies termination, stop, or continue, the entire process, thus including all its
threads, is respectively terminated, stopped, or continued.

» Synchronous signals attributable to a particular thread (such as a hardware fault) are delivered to the
thread that caused the signal to be generated.

+ Signals can be directed to a particular thread. If the target thread has blocked the signal from delivery,
the signal remains pending on the thread until the thread unblocks the signal from delivery, or the action
associated with the signal is set to ignore by any thread within the process.

The signal mask of a thread is handled by the [limit_sigs| and [sigsetmask| kernel services. The
kthread_kill| kernel service can be used to direct a signal to a particular thread.

In the kernel environment, when a signal is received, no action is taken (no termination or handler
invocation), even for the SIGKILL signal. A thread in kernel environment, especially kernel-only threads,
must poll for signals so that signals can be delivered. Polling ensures the proper kernel-mode serialization.

For example, SIGKILL will not be delivered to a kernel-only thread that does not poll for signals.
Therefore, SIGKILL is not necessarily an effective means for terminating a kernel-only thread.

Signals whose actions are applied at generation time (rather than delivery time) have the same effect
regardless of whether the target is in kernel or user mode. A kernel-only thread can poll for unmasked
signals that are waiting to be delivered by calling the kernel service. This service returns the
signal number of a pending signal that was not blocked or ignored. The thread then uses the signal
number to determine which action should be taken. The kernel does not automatically call signal handlers
for a thread in kernel mode as it does for user mode.

See [‘Kernel Process Signal and Exception Handling” on page 11| for more information about signal
handling at process level.

Using Kernel Processes

A kernel process is a process that is created in the kernel protection domain and always executes in the
kernel protection domain. Kernel processes can be used in subsystems, by complex device drivers, and by
system calls. They can also be used by interrupt handlers to perform asynchronous processing not
available in the interrupt environment. Kernel processes can also be used as device managers where
asynchronous 1/O and device management is required.
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Introduction to Kernel Processes

A kernel process (kproc) exists only in the kernel protection domain and differs from a user process in the
following ways:

« It is created using the [creatp|and [initp| kernel services.
* It executes only within the kernel protection domain and has all security privileges.

* |t can call a restricted set of system calls and all applicable kernel services. For more information, see
[‘System Calls Available to Kernel Extensions” on page 35,

» It has access to the global kernel address space (including the kernel pinned and pageable heaps),
kernel code, and static data areas.

* It must poll for signals and can choose to ignore any signal delivered, including a kill signal.
* Its text and data areas come from the global kernel heap.
» It cannot use application libraries.

+ It has a process-private region containing only the u-block (user block) structure and possibly the
kernel stack.

» Its parent process is the process that issued the creatp kernel service to create the process.

» It can change its parent process to the init process and can use interrupt disable functions for
serialization.

» It can use locking to serialize process-time access to critical data structures.
* |t can only be a 32—bit process in the 32—bit kernel.
* It can only be a 64-bit process in the 64—bit kernel.

A kernel process controls directly the kernel threads. Because kernel processes are always in the kernel
protection domain, threads within a kernel process are kernel-only threads. For more information on kernel
threads, see [‘Understanding Kernel Threads” on page 6.|

A kernel process inherits the environment of its parent process (the one calling the creatp kernel service
to create it), but with some exceptions. The kernel process will not have a root directory or a current
directory when initialized. All uses of the file system functions must specify absolute path names.

Kernel processes created during phase 1 of system boot must not keep any long-term opens on files until
phase 2 of system boot or run time has been reached. This is because Base Operating System changes
root file systems between phase 1 and phase 2 of system boot. As a result, the system crashes if any files
are open at root file system transition time.

Accessing Data from a Kernel Process

Because kernel processes execute in the more privileged kernel protection domain, a kernel process can
access data that user processes cannot. This applies to all kernel data, of which there are three general
categories:

* The user block data structure

The u-block (or u-area) structure exists for kernel processes and contains roughly the same information
for kernel processes as for user-mode processes. A kernel process must use kernel services to query or
manipulate data from the u-area to maintain modularity and increase portability of code to other
platforms.

» The stack for a kernel process

To ensure binary compatibility with older applications, each kernel process has a stack called the
process stack. This stack is used by the process initial thread.

The location of the stack for a kernel process is implementation-dependent. This stack can be located in
global memory or in the process-private segment of the kernel process. A kernel process must not
assume automatically that its stack is located in global memory.

* Global kernel memory
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A kernel process can also access global kernel memory as well as allocate and de-allocate memory
from the kernel heaps. Because it runs in the kernel protection domain, a kernel process can access
any valid memory location within the global kernel address space. Memory dynamically allocated from
the kernel heaps by the kernel process must be freed by the kernel process before exiting. Unlike
user-mode processes, memory that is dynamically allocated by a kernel process is not freed
automatically upon process exit.

Cross-Memory Services

Kernel processes must be provided with a valid cross-memory descriptor to access address regions
outside the kernel global address space or kernel process address space. For example, if a kernel process
is to access data from a user-mode process, the system call using the process must obtain a
cross-memory descriptor for the user-mode region to be accessed. Calling theor xmattach64
kernel service provides a descriptor that can then be made available to the kernel process.

The kernel process should then call the [xmemin|and xmemout kernel services to access the targeted
cross-memory data area. When the kernel process has completed its operation on the memory area, the
cross-memory descriptor must be detached by using the kernel service.

Kernel Process Creation, Execution, and Termination

A kernel process is created by a kernel-mode routine by calling the kernel service. This service
allocates and initializes a process block for the process and sets the new process state to idle. This new
kernel process does not run until it is initialized by the kernel service, which must be called in the
same process that created the new kernel process (with the creatp service). The creatp kernel service
returns the process identifier for the new kernel process.

The process is created with one kernel-only thread, called the initial thread. See [Understanding Kernel
to get more information about threads.

After the initp kernel service has completed the process initialization, the initial thread is placed on the run
queue. On the first dispatch of the newly initialized kernel process, it begins execution at the entry point
previously supplied to the initp kernel service. The initialization parameters were previously specified in
the call to the initp kernel service.

A kernel process terminates when it executes a return from its main entry routine. A process should never
exit without both freeing all dynamically allocated storage and releasing all locks owned by the kernel
process.

When kernel processes exit, the parent process (the one calling the creatp and initp kernel services to
create the kernel process) receives the SIGCHLD signal, which indicates the end of a child process.
However, it is sometimes undesirable for the parent process to receive the SIGCHLD signal due to ending
a process. In this case, the kproc can call the kernel service to designate the init process as its
parent. The init process cleans up the state of all its child processes that have become zombie processes.
A kernel process can also issue the subroutine call to change its session. Signals and job control
affecting the parent process session do not affect the kernel process.

Kernel Process Preemption

A kernel process is initially created with the same process priority as its parent. It can therefore be
replaced by a more favored kernel or user process. It does not have higher priority just because it is a
kernel process. Kernel processes can use the subroutine to modify their execution priority.

The kernel process can use the locking kernel services to serialize access to critical data structures. This

use of locks does not guarantee that the process will not be replaced, but it does ensure that another
process trying to acquire the lock waits until the kernel process owning the lock has released it.
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Using locks, however, does not provide serialization if a kernel routine can access the critical data while
executing in the interrupt environment. Serialization with interrupt handlers must be handled by using
locking together with interrupt control. The disable_lock and kernel services should be
used to serialize with interrupt handlers.

Kernel processes must ensure that their maximum path lengths adhere to the specifications for interrupt
handlers when executing at an interrupt priority more favored than INTBASE. This ensures that system
real-time performance is not degraded.

Kernel Process Signal and Exception Handling

Signals are delivered to exactly one thread within the process which has not blocked the signal from
delivery. If all threads within the target process have blocked the signal from delivery, the signal remains
pending on the process until a thread unblocks the signal from delivery, or the action associated with the
signal is set to ignore by any thread within the process. See [‘Thread Signal Handling” on page 8|for more
information on signal handling by threads.

Signals whose action is applied at generation time (rather than delivery time) have the same effect
regardless of whether the target is a kernel or user process. A kernel process can poll for unmasked
signals that are waiting to be delivered by calling the kernel service. This service returns the
signal number of a pending signal that was not blocked or ignored. The kernel process then uses the
signal number to determine which action should be taken. The kernel does not automatically call signal
handlers for a kernel process as it does for user processes.

A kernel process should also use the exception-catching facilities (setjimpx], and [clrjmpx) available in
kernel mode to handle exceptions that can be caused during run time of the kernel process. Exceptions
received during the execution of a kernel process are handled the same as exceptions that occur in any
kernel-mode routine.

Unhandled exceptions that occur in kernel mode (in any user process while in kernel mode, in an interrupt
handler, or in a kernel process) result in a system crash. To avoid crashing the system due to unhandled
exceptions, kernel routines should use the setjmpx, clrjmpx, and|longjmpx| kernel services to handle
exceptions that might possibly occur during run time. See [‘Understanding Exception Handling” on page 14|
for more details on handling exceptions.

Kernel Process Use of System Calls

System calls made by kernel processes do not result in a change of protection domain because the kernel
process is already within the kernel protection domain. Routines in the kernel (including routines executing
in a kernel process) are bound by the loader to the system call function and not to the system call handler.
When system calls use kernel services to access user-mode data, these kernel services recognize that the
system call is running within a kernel process instead of a user process and correctly handle the data
accesses.

than for a user process. A kernel process must use the |getuerror|kernel service to retrieve the system call
error information normally provided in the errno global variable for user-mode processes. In addition, the
kernel process can use the kernel service to set the error information to 0 before calling the
system call. The return code from the system call is handled the same for all processes.

However, the error information returned from a kernel process sistem call must be accessed differently

Kernel processes can use only a restricted set of the base system calls. ['System Calls Available to Kernell
[Extensions” on page 35| lists system calls available to kernel processes.
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Accessing User-Mode Data While in Kernel Mode

Kernel extensions must use a set of kernel services to access data that is in the user-mode protection
domain. These services ensure that the caller has the authority to perform the desired operation at the
time of data access and also prevent system crashes in a system call when accessing user-mode data.
These services can be called only when running in the process environment of the process that contains

the user-mode data. For more information on user-mode protection, see[‘User Protection Domain” on page|
For more information on the process environment, see|‘Process Environment” on page 6.

Data Transfer Services

The following list shows user-mode data access kernel services (primitives):

Kernel Service Purpose
suword| suword64 Stores a word of data in user memory.
fubyte| fubyte64 Fetches, or retrieves, a byte of data from user memory.
fuword| fuword64 Fetches, or retrieves, a word of data from user memory.

in|] copyin64 Copies data between user and kernel memory.

ut] copyout64 Copies data between user and kernel memory.
instr, copyinstr64 Copies a character string (including the terminating null character) from
user to kernel space.

Additional kernel services allow data transfer between user mode and kernel mode when a@ structure is
used, thereby describing the user-mode data area to be accessed. All addresses on the 32-bit kernel, with
the exception of addresses ending in "64", passed into these services must be remapped. Following is a
list of services that typically are used between the file system and device drivers to perform device I/O:

Kernel Service Purpose

Moves a block of data between kernel space and a space defined by a uio structure.
Writes a character to a buffer described by a uio structure.

Retrieves a character from a buffer described by a uio structure.

The services ending in “64” are not supported in the 64-bit kernel, since all pointers are already 64-bits
wide. The services without the “64” can be used instead. To allow common source code to be used,
macros are provided in the sys/uio.h header file that redefine these special services to their general
counterparts when compiling in 64-bit mode.

Using Cross-Memory Kernel Services

Occasionally, access to user-mode data is required when not in the environment of the user-mode process
that has addressability to the data. Such cases occur when the data is to be accessed asynchronously.
Examples of asynchronous accessing include:

» Direct memory access to the user data by I/O devices

» Data access by interrupt handlers

» Data access by a kernel process

In these circumstances, the kernel cross-memory services are required to provide the necessary access.
The and xmattach64 kernel services allow a cross-memory descriptor to be obtained for the
data area to be accessed. These services must be called in the process environment of the process
containing the data area.

Note: xmattach64 is not supported on the 64—bit kernel.
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After a cross-memory descriptor has been obtained, the [xmemin|and [xmemout] kernel services can be
used to access the data area outside the process environment containing the data. When access to the
data area is no longer required, the access must be removed by calling the [xmdetach| kernel service.
Kernel extensions should use these services only when absolutely necessary. Because of the machine
dependencies of cross-memory operations, using them increases the difficulty of porting the kernel
extension to other machine platforms.

Understanding Locking

The following information is provided to assist you in understanding locking.

Lockl Locks

The lockl locks (previously called conventional locks) are provided for compatibility only and should not be
used in new code: simple or complex locks should be used instead. These locks are used to protect a
critical section of code which accesses a resource such as a data structure or device, serializing access to
the resource. Every thread which accesses the resource must acquire the lock first, and release the lock
when finished.

A conventional lock has two states: locked or unlocked. In the locked state, a thread is currently executing
code in the critical section, and accessing the resource associated with the conventional lock. The thread
is considered to be the owner of the conventional lock. No other thread can lock the conventional lock
(and therefore enter the critical section) until the owner unlocks it; any thread attempting to do so must
wait until the lock is free. In the unlocked state, there are no threads accessing the resource or owning the
conventional lock.

Lockl locks are recursive and, unlike simple and complex locks, can be awakened by a signal.

Simple Locks

A simple lock provides exclusive-write access to a resource such as a data structure or device. Simple
locks are not recursive and have only two states: locked or unlocked.

Complex Locks

A complex lock can provide either shared or exclusive access to a resource such as a data structure or
device. Complex locks are not recursive by default (but can be made recursive) and have three states:
exclusive-write, shared-read, or unlocked.

If several threads perform read operations on the resource, they must first acquire the corresponding lock
in shared-read mode. Because no threads are updating the resource, it is safe for all to read it. Any thread
which writes to the resource must first acquire the lock in exclusive-write mode. This guarantees that no
other thread will read or write the resource while it is being updated.

Types of Critical Sections

There are two types of critical sections which must be protected from concurrent execution in order to
serialize access to a resource:

thread-thread These critical sections must be protected (by using the [locking kernel services) from
concurrent execution by multiple processes or threads.
thread-interrupt These critical sections must be protected (by using the|disable_lock| and

unlock_enable| kernel services) from concurrent execution by an interrupt handler

and a thread or process.
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Priority Promotion

When a lower priority thread owns a lock which a higher-priority thread is attempting to acquire, the owner
has its priority promoted to that of the most favored thread waiting for the lock. When the owner releases
the lock, its priority is restored to its normal value. Priority promotion ensures that the lock owner can run
and release its lock, so that higher priority processes or threads do not remain blocked on the lock.

Locking Strategy in Kernel Mode

Attention: A kernel extension should not attempt to acquire the kernel lock if it owns any other lock.
Doing so can cause unpredictable results or system failure.

A hierarchy of locks exists. This hierarchy is imposed by software convention, but is not enforced by the
system. The lockl kernel_lock variable, which is the global kernel lock, has the the coarsest granularity.
Other types of locks have finer granularity. The following list shows the ordering of locks based on
granularity:

* The kernel_lock global kernel lock

Note: Avoid using the kernel_lock global kernel lock variable in new code. It is only included for
compatibility purposes.

» File system locks (private to file systems)
» Device driver locks (private to device drivers)
» Private fine-granularity locks

Locks should generally be released in the reverse order from which they were acquired; all locks must be
released before a kernel process or thread exits. Kernel mode processes do not receive any signals while
they hold any lock.

Understanding Exception Handling

Exception handling involves a basic distinction between interrupts and exceptions:

* An interrupt is an asynchronous event and is not associated with the instruction that is executing when
the interrupt occurs.

* An exception is a synchronous event and is directly caused by the instruction that is executing when the
exception occurs.

The computer hardware generally uses the same mechanism to report both interrupts and exceptions. The
machine saves and modifies some of the event’s state and forces a branch to a particular location. When
decoding the reason for the machine interrupt, the interrupt handler determines whether the event is an
interrupt or an exception, then processes the event accordingly.

Exception Processing

When an exception occurs, the current instruction stream cannot continue. If you ignore the exception, the
results of executing the instruction may become undefined. Further execution of the program may cause
unpredictable results. The kernel provides a default exception-handling mechanism by which an instruction
stream (a process- or interrupt-level program) can specify what action is to be taken when an exception
occurs. Exceptions are handled differently depending on whether they occurred while executing in
Imode] or |user mode]

Default Exception-Handling Mechanism
If no exception handler is currently defined when an exception occurs, typically one of two things happens:

 If the exception occurs while a process is executing in user mode, the process is sent a signal relevant
to the type of exception.

 |If the exception occurs while in kernel mode, the system halts.
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Kernel-Mode Exception Handling

Exception handling in kernel mode extends the setjump and longjump subroutines context-save-and-
restore mechanism by providing |setjmpx| and |Iongjmp)_<| kernel services to handle exceptions. The
traditional system mechanism is extended by allowing these exception handlers (or context-save
checkpoints) to be stacked on a per-process or per-interrupt handler basis.

This stacking mechanism allows the execution point and context of a process or interrupt handler to be
restored to a point in the process or interrupt handler, at the point of return from the setjmpx kernel
service. When execution returns to this point, the return code from setjmpx kernel service indicates the
type of exception that occurred so that the process or interrupt handler state can be fully restored.
Appropriate retry or recovery operations are then invoked by the software performing the operation.

When an exception occurs, the kernel first-level exception handler gets control. The first-level exception
handler determines what type of exception has occurred and saves information necessary for handling the
specific type of exception. For an 1/0 exception, the first-level handler also enables again the programmed
I/O operations.

The first-level exception handler then modifies the saved context of the interrupted process or interrupt
handler. It does so to execute the longjmpx kernel service when the first-level exception handler returns
to the interrupted process or interrupt handler.

The longjmpx kernel service executes in the environment of the code that caused the exception and
restores the current context from the topmost jump buffer on the stack of saved contexts. As a result, the
state of the process or interrupt handler that caused the exception is restored to the point of the return
from the setjmpx kernel service. (The return code, nevertheless, indicates that an exception has
occurred.)

The process or interrupt handler software should then check the return code and invoke exception
handling code to restore fully the state of the process or interrupt handler. Additional information about the
exception can be obtained by using the kernel service.

User-Defined Exception Handling
A typical exception handler should do the following:

» Perform any necessary clean-up such as freeing storage or segment registers and releasing other
resources.

 If the exception is recognized by the current handler and can be handled entirely within the routine, the
handler should establish itself again by calling the kernel service. This allows normal
processing to continue.

* If the exception is not recognized by the current handler, it must be passed to the previously stacked
exception handler. The exception is passed by calling the |Iongjmpx‘kernel service, which either calls
the previous handler (if any) or takes the system’s default exception-handling mechanism.

 |If the exception is recognized by the current handler but cannot be handled, it is treated as though it is

unrecognized. The longjmpx kernel service is called, which either passes the exception along to the
previous handler (if any) or takes the system default exception-handling mechanism.

When a kernel routine that has established an exception handler completes normally, it must remove its
exception handler from the stack (by using the kernel service) before returning to its caller.

Note: When the longjmpx kernel service invokes an exception handler, that handler’s entry is
automatically removed from the stack.

Implementing Kernel Exception Handlers
The following information is provided to assist you in implementing kernel exception handlers.
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setjmpx, longjmpx, and clrjmpx Kernel Services
The setjmpx kernel service provides a way to save the following portions of the program state at the point
of a call:

* Nonvolatile general registers

» Stack pointer

* TOC pointer

* Interrupt priority number (intpri)
* Ownership of kernel-mode lock

This state can be restored later by calling the longjmpx kernel service, which accomplishes the following
tasks:

* Reloads the registers (including TOC and stack pointers)

» Enables or disables to the correct interrupt level

» Conditionally acquires or releases the kernel-mode lock

» Forces a branch back to the point of original return from the setjmpx kernel service

The setjmpx kernel service takes the address of a jump buffer (a label_t structure) as an explicit
parameter. This structure can be defined anywhere including on the stack (as an automatic variable). After
noting the state data in the jump buffer, the setjmpx kernel service pushes the buffer onto the top of a
stack that is maintained in the machine-state save structure.

The [longjmpx] kernel service is used to return to the point in the code at which the [setjmpx kernel service
was called. Specifically, the longjmpx kernel service returns to the most recently created jump buffer, as
indicated by the top of the stack anchored in the machine-state save structure.

The parameter to the longjmpx kernel service is an exception code that is passed to the resumed
program as the return code from the setjmp kernel service. The resumed program tests this code to
determine the conditions under which the setjmpx kernel service is returning. If the setjmpx kernel
service has just saved its jump buffer, the return code is 0. If an exception has occurred, the program is
entered by a call to the longjmpx kernel service, which passes along a return code that is not equal to O.

Note: Only the resources listed here are saved by the setjmpx kernel service and restored by the
longjmpx kernel service. Other resources, in particular segment registers, are not restored. A call
to the longjmpx kernel service, by definition, returns to an earlier point in the program. The
program code must free any resources that are allocated between the call to the setjmpx kernel
service and the call to the longjmpx kernel service.

If the exception handler stack is empty when the longjmpx kernel service is issued, there is no place to
jump to and the system default exception-handling mechanism is used. If the stack is not empty, the
context that is defined by the topmost jump buffer is reloaded and resumed. The topmost buffer is then
removed from the stack.

The kernel service removes the top element from the stack as placed there by the setjmpx kernel
service. The caller to the clrjmpx kernel service is expected to know exactly which jump buffer is being
removed. This should have been established earlier in the code by a call to the setjmpx kernel service.
Accordingly, the address of the buffer is required as a parameter to the clrjmpx kernel service. It can then
perform consistency checking by asserting that the address passed is indeed the address of the top stack
element.

Exception Handler Environment
The stacked exception handlers run in the environment in which the exception occurs. That is, an
exception occurring in a process environment causes the next dispatch of the process to run the exception
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handler on the top of the stack of exception handlers for that process. An exception occurring in an
interrupt handler causes the interrupt handler to return to the context saved by the last call to the setjmpx
kernel service made by the interrupt handler.

Note: An interrupt handler context is newly created each time the interrupt handler is invoked. As a result,
exception handlers for interrupt handlers must be registered (by calling the setjmpx kernel service)
each time the interrupt handler is invoked. Otherwise, an exception detected during execution of the
interrupt handler will be handled by the default handler.

Restrictions on Using the setjmpx Kernel Service

Process and interrupt handler routines registering exception handlers with the kernel service must
not return to their caller before removing the saved jump buffer or buffers from the list of jump buffers. A
saved jump buffer can be removed by invoking the kernel service in the reverse order of the
setjmpx calls. The saved jump buffer must be removed before return because the routine’s context no
longer exists once the routine has returned to its caller.

If, on the other hand, an exception does occur (that is, the return code from setjmpx kernel service is
nonzero), the jump buffer is automatically removed from the list of jump buffers. In this case, a call to the
clrjmpx kernel service for the jump buffer must not be performed.

Care must also be taken in defining variables that are used after the context save (the call to the setjmpx
service), and then again by the exception handler. Sensitive variables of this nature must be restored to
their correct value by the exception handler when an exception occurs.

Note: If the last value of the variable is desired at exception time, the variable data type must be
declared as "volatile.”

Exception handling is concluded in one of two ways. Either a registered exception handler handles the
exception and continues from the saved context, or the default exception handler is reached by exhausting
the stack of jump buffers.

Exception Codes

The /usr/include/sys/except.h file contains a list of code numbers corresponding to the various types of
hardware exceptions. When an exception handler is invoked (the return from the setjmpx kernel service is
not equal to 0), it is the responsibility of the handler to test the code to ensure that the exception is one
the routine can handle. If it is not an expected code, the exception handler must:

* Release any resources that would not otherwise be freed (buffers, segment registers, storage acquired
using the routines)

» Call the longjmpx kernel service, passing it the exception code as a parameter

Thus, when an exception handler does not recognize the exception for which it has been invoked, it
passes the exception on to the next most recent exception handler. This continues until an exception
handler is reached that recognizes the code and can handle it. Eventually, if no exception handler can
handle the exception, the stack is exhausted and the system default action is taken.

In this manner, a component can allocate resources (after calling the setjmpx kernel service to establish
an exception handler) and be assured that the resources will later be released. This ensures the exception
handler gets a chance to release those resources regardless of what events occur before the instruction
stream (a process- or interrupt-level code) is terminated.

By coding the exception handler to recognize what exception codes it can process rather than encoding
this knowledge in the stack entries, a powerful and simple-to-use mechanism is created. Each handler
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need only investigate the exception code that it receives rather than just assuming that it was invoked
because a particular exception has occurred to implement this scheme. The set of exception codes used
cannot have duplicates.

Exceptions generated by hardware use one of the codes in the /usr/include/sys/except.h file. However,
the longjmpx kernel service can be invoked by any kernel component, and any integer can serve as the
exception code. A mechanism similar to the old-style setjmp and longjmp kernel services can be
implemented on top of the setjmpx/longjmpx stack by using exception codes outside the range of those
used for hardware exceptions.

To implement this old-style mechanism, a unique set of exception codes is needed. These codes must not
conflict with either the pre-assigned hardware codes or codes used by any other component. A simple way
to get such codes is to use the addresses of unique objects as code values.

For example, a program that establishes an exception handler might compare the exception code to the
address of its own entry point. Later on in the calling sequence, after any number of intervening calls to
the kernel service by other programs, a program can issue a call to the kernel service
and pass the address of the agreed-on function descriptor as the code. This code is only recognized by a
single exception handler. All the intervening ones just clean up their resources and pass the code to the
longjmpx kernel service again.

Addresses of functions are not the only possibilities for unique code numbers. For example, addresses of
external variables can also be used. By using unigue, system-wide addresses, the problem of code-space
collision is transformed into a problem of external-name collision. This problem is easier to solve, and is
routinely solved whenever the system is built. By comparison, pre-assigning exception numbers by using
#define statements in a header file is a much more cumbersome and error-prone method.

Hardware Detection of Exceptions

Each of the exception types results in a hardware interrupt. For each such interrupt, a first-level interrupt
handler (FLIH) saves the state of the executing program and calls a second-level handler (SLIH). The
SLIH is passed a pointer to the machine-state save structure and a code indicating the cause of the
interrupt.

When a SLIH determines that a hardware interrupt should actually be considered a synchronous
exception, it sets up the machine-state save to invoke the longjmpx kernel service, and then returns. The
FLIH then resumes the instruction stream at the entry to the longjmpx service.

The longjmpx service then invokes the top exception handler on the stack or takes the system default
action as previously described.

User-Mode Exception Handling

Exceptions that occur in a user-mode process and are not automatically handled by the kernel cause the
user-mode process to be signaled. If the process is in a state in which it cannot take the signal, it is
terminated and the information logged. Kernel routines can install user-mode exception handlers that catch
exceptions before they are signaled to the user-mode process.

The luexadd| and juexdel| kernel services allow system-wide user-mode exception handlers to be added
and removed.

The most recently registered exception handler is the first called. If it cannot handle the exception, the next
most recent handler on the list is called, and this second handler attempts to handle the exception. If this
attempt fails, successive handlers are tried, until the default handler is called, which generates the signal.

Additional information about the exception can be obtained by using the |getexcept kernel service.
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Using Kernel Extensions to Support 64-bit Processes

Kernel extensions in the 32-bit kernel run in 32-bit mode, while kernel extensions in the 64-bit kernel run in
64-bit mode. Kernel extensions can be programmed to support both 32- and 64-bit applications. A 32-bit
kernel extension that supports 64-bit processes can also be loaded on a 32-bit system (where 64-bit
programs cannot run at all).

System calls can be made available to 32- or 64-bit processes, selectively. If an application invokes a
system call that is not exported to processes running in the current mode, the call will fail.

A 32-bit kernel extension that supports 64-bit applications on AIX 4.3 cannot be used to support 64-bit
applications on AIX 5.1 and beyond, because of a potential incompatibility with data types. Therefore, one
of the following three techniques must be used to indicate that a 32-bit kernel extension can be used with
64-bit applications:

» The module type of the kernel extension module can be set to LT, using the Id command with the
-bM:LT flag

+ If sysconfig is used to load a kernel extension, the SYS_64L flag can be logically ored with the
SYS_SINGLELOAD or SYS_KLOAD requires.

» If kmod_load is used to load a kernel extension, the LD_64L flag can be specified

If none of these techniques is used, a kernel extension will still load, but 64-bit programs with calls to one
of the exported system calls will not execute.

Kernel extension support for 64-bit applications has two aspects:

The first aspect is the use of kernel services for working with the 64-bit user address space. The 64-bit
services for examining and manipulating the 64-bit address space are as_att64, as_det64, as_geth64,
as_puth64, as_seth64, and as_getsrval64. The services for copying data to or from 64-bit address
spaces are copyin64, copyout64, copyinstr64, fubyte64, fuword64, subyte64, and suword64. The
service for doing cross-memory attaches to memory in a 64-bit address space is xmattach64. The
services for creating real memory mappings are rmmap_create64 and rmmap_remove64. The major
difference between all these services and their 32-bit counterparts is that they use 64-bit user addresses
rather than 32-bit user addresses.

The service for determining whether a process (and its address space) is 32-bit or 64-bit is 1S64U.

The second aspect of supporting 64-bit applications on the 32-bit kernel is taking 64-bit user data pointers
and using the pointers directly or transforming 64-bit pointers into 32-bit pointers which can be used in the
kernel. If the types of the parameters passed to a system call are all 32 bits or smaller when compiled in
64-bit mode, no additional work is required. However, if 64-bit data, long or pointers, are passed to a
system call, the function must reconstruct the full 64-bit values.

When a 64-bit process makes a system call in the 32-bit kernel, the system call handler saves the
high-order 32 bits of each parameter and converts the parameters to 32-bit values. If the full 64-bit value is
needed, the get64bitparm service should be called. This service converts a 32-bit parameter and a
0-based parameter number into a 64-bit long long value.

These 64-bit values can be manipulated directly by using services such as copyin64, or mapped to a
32-bit value, by calling as_remap64. In this way, much of the kernel does not have to deal with 64-bit
addresses. Services such as copyin will correctly transform a 32-bit value back into a 64-bit value before
referencing user space.

It is also possible to obtain the 64-bit value from a 32-bit pointer by calling as_unremap64. Both
as_remap64 and as_unremap64 are prototyped in /usr/include/sys/remap.h.
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64-bit Kernel Extension Programming Environment

C Language Data Model

The 64-bit kernel uses the LP64 (Long Pointer 64-bit) C language data model and requires kernel
extensions to do the same. The LP64 data model defines pointers, long, and long long types as 64 bits,
int as 32 bits, short as 16 bits, and char as 8 bits. In contrast, the 32-bit kernel uses the ILP32 data
model, which differs from LP64 in that long and pointer types are 32 bits.

In order to port an existing 32-bit kernel extension to the 64-bit kernel environment, source code must be
modified to be type-safe under LP64. This means ensuring that data types are used in a consistent
fashion. Source code is incorrect for the 64-bit environment if it assumes that pointers, long, and int are
all the same size.

In addition, the use of system-derived types must be examined whenever values are passed from an
application to the kernel. For example, size_t is a system-derived type whose size depends on the
compilation mode, and key_t is a system-derived type that is 64 bits in the 64-bit kernel environment, and
32 bits otherwise.

In cases where 32-bit and 64-bit versions of a kernel extension are to be generated from a single source
base, the kernel extension must be made type-safe for both the LP64 and ILP32 data models. To facilitate
this, the sys/types.h and sys/inttypes.h header files contain fixed-width system-derived types, constants,
and macros. For example, the int8_t, int16_t, int32_t, int64_t fixed-width types are provided along with
constants that specify their maximum values.

Kernel Data Structures

Several global, exported kernel data structures have been changed in the 64-bit kernel, in order to support
scalability and future functionality. These changes include larger structure sizes as a result of being
compiled under the LP64 data model. In porting a kernel extension to the 64-bit kernel environment, these
data structure changes must be considered.

Function Prototypes

Function prototypes are more important in the 64-bit programming environment than the 32-bit
programming environment, because the default return value of an undeclared function is int. If a function
prototype is missing for a function returning a pointer, the compiler will convert the returned value to an int
by setting the high-order word to 0, corrupting the value. In addition, function prototypes allow the compiler
to do more type checking, regardless of the compilation mode.

When compiled in 64-bit mode, system header files define full function prototypes for all kernel services
provided by the 64-bit kernel. By defining the __ FULL_PROTO macro, function prototypes are provided in
32-bit mode as well. It is recommended that function prototypes be provided by including the system
header files, instead of providing a prototype in a source file.

Compiler Options

To compile a kernel extension in 64-bit mode, the -q64 flag must be used. To check for missing function
prototypes, -qinfo=pro can be specified. To compile in ANSI mode, use the -glanglvi=ansi flag. When this
flag is used, additional error checking will be performed by the compiler. To link-edit a kernel extension, the
-b64 option must be used with the Id command.

Note: Do not link kernel extensions using the cc command.

Conditional Compilation

When compiling in 64-bit mode, the compiler automatically defines the macro _ 64BIT__. Kernel
extensions should always be compiled with the _ KERNEL macro defined, and if sys/types.h is included,
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the macro __64BIT_KERNEL will be defined for kernel extensions being compiled in 64-bit mode. The
__64BIT_KERNEL macro can be used to provide for conditional compilation when compiling kernel
extensions from common source code.

Kernel extensions should not be compiled with the _ KERNSYS macro defined. If this macro is defined, the
resulting kernel extension will not be supported, and binary compatibility will not be assured with future
releases.

Kernel Extension Libraries

The libcsys.a and libsys.a libraries are supported for both 32- and 64-bit kernel extensions. Each archive
contains 32- and 64-bit members. Function prototypes for all the functions in libcsys.a are found in
sys/libcsys.h.

Kernel Execution Mode

Within the 64-bit kernel, all kernel mode subsystems, including kernel extensions, run exclusively in 64-bit
processor mode and are capable of accessing data or executing instructions at any location within the
kernel's 64-bit address space, including those found above the first 4GBs of this address space. This
availability of the full 64-bit address space extends to all kernel entities, including kprocs and interrupt
handlers, and enables the potential for software resource scalability through the introduction of an
enormous kernel address space.

Kernel Address Space

The 64-bit kernel provides a common user and kernel 64-bit address space. This is different from the
32-bit kernel where separate 32-bit kernel and user address spaces exist.

Kernel Address Space Organization

The kernel address space has a different organization under the the 64-bit kernel than under the 32-bit
kernel and extends beyond the 4 GB line. In addition, the organization of kernel space under the 64-bit
kernel can differ between hardware systems. To cope with this, kernel extensions must not have any
dependencies on the locations, relative or absolute, of the kernel text, kernel global data, kernel heap
data, and kernel stack values, and must appropriately type variables used to hold kernel addresses.

Temporary Attachment

The 64-bit kernel provides kernel extensions with the capability to temporarily attach virtual memory
segments to the kernel space for the current thread of kernel mode execution. This capability is also
available on the 32-bit kernel, and is provided through the vm_att and vm_det services.

A total of four concurrent temporary attaches will be supported under a single thread of execution.

Global Regions

The 64-bit kernel provides kernel extensions with the capability to create global regions within the kernel
address space. Once created, a region is globally accessible to all kernel code until it is destroyed.
Regions may be created with unique characteristics, for example, page protection, that suit kernel
extension requirements and are different from the global virtual memory allocated from the kernel_heap.

Global regions are also useful for kernel extensions that in the past have organized their data around
virtual memory segments and require sizes and alignments that are inappropriate for the kernel heap.
Under the 64-bit kernel, this memory can be provided through global regions rather than separate virtual
memory segments, thus avoiding the complexity and performance cost of temporarily attaching virtual
memory segments.

Global regions are created and destroyed with the vm_galloc and vm_gfree kernel services.
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32-bit Kernel Extension Considerations

The introduction of the scalable 64-bit ABI requires 32-bit kernel extensions to be modified in order to be
used by 64-bit applications on AIX 5.1 and later. Existing AIX 4.3 kernel extensions can still be used
without change for 32-bit applications on AlIX 5.1 and later. If an AIX 4.3 kernel extension exports 64-bit
system calls, the symbols will be marked as invalid for 64-bit processes, and if a 64-bit program requires
these symbols, the program will fail to execute.

Once a kernel extension has been updated to support the new 64-bit ABI, there are two ways to indicate
that the kernel extension can be used by 64-bit processes again. The first way uses a linker flag to mark
the module as a ported kernel extension. Use the bM:LT linker flag to mark the module in this manner.
The second way requires changing the sysconfig or kmod_load call used to load the kernel extension.
When the SYS_64L flag is passed to sysconfig, or the LD_64L flag is passed to kmod_load, the
specified kernel extension will be allowed to export 64-bit system calls.

Kernel extensions in the 64-bit kernel are always assumed to support the 64-bit ABI. The module type,
specified by the -bM linker flag, as well as the SYS_64L and LD_64L flags are always ignored when the
64-bit kernel is running.

32-bit device drivers cannot be used by 64-bit applications unless the DEV_64L flag is set in the d_opts
field. The DEV_64BIT flag is ignored, and in the 64-bit kernel, DEV_64L is ignored as well.

Related Information
[Chapter 15, “Serial Direct Access Storage Device Subsystem,” on page 287|

[‘Locking Kernel Services” on page 62|

[‘Handling Signals While in a System Call” on page 32

[‘System Calls Available to Kernel Extensions” on page 35|

Subroutine References

The [setpri] subroutine, subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 2.

Commands References
Thecommand in AIX 5L Version 5.2 Commands Reference, Volume 1.

The command in AIX 5L Version 5.2 Commands Reference, Volume 3.

Technical References

creatp| kernel service, [disable_lock| kernel service, le_sleep| kernel service kernel service

e_wait kernel service, let_wait[kernel service fuwordkemel service, [getexcepf]
kernel service, |i_disable]kernel service, kernel service, |i_init kernel service, [initp| kernel service,

flocki] kernel service, [longimpx kernel service, [setimpx] kernel service, [setpinit| kernel service, [sig_ch
kernel service, [subyte| kernel service, [suword| kernel service, luiomove|kernel service, lunlockl[ kernel
service, ureadc| kernel service, kernel service, luexadd| kernel service, juexdel| kernel service,

xmalloc|kernel service, p kernel service, [xmdetach kernel service, ernel service,

xmemou!] kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The@ structure in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.
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Chapter 2. System Calls

A system call is a routine that allows a user application to request actions that require special privileges.
Adding system calls is one of several ways to extend the functions provided by the kernel.

The distinction between a system call and an ordinary function call is only important in the kernel
programming environment. User-mode application programs are not usually aware of this distinction.

Operating system functions are made available to the application program in the form of programming
libraries. A set of library functions found in a library such as libc.a can have functions that perform some
user-mode processing and then internally start a system call. In other cases, the system call can be
directly exported by the library without any user-space code. For more information on programming
libraries, see [‘Using Libraries” on page 4/

Operating system functions available to application programs can be split or moved between user-mode
functions and kernel-mode functions as required for different releases or machine platforms. Such
movement does not affect the application program. |Chapter 1, “Kernel Environment,” on page 1| provides
more information on how to use system calls in the kernel environment.

Differences Between a System Call and a User Function

A system call differs from a user function in several key ways:

» A system call has more privilege than a normal subroutine. A system call runs with kernel-mode
privilege in the kernel protection domain.

» System call code and data are located in global kernel memory.
» System call routines can create and use kernel processes to perform asynchronous processing.
» System calls cannot use shared libraries or any symbols not found in the kernel protection domain.

Understanding Protection Domains

There are two protection domains in the operating system: the user protection domain and the kernel
mode protection domain.

User Protection Domain

Application programs run in the user protection domain, which provides:
* Read and write access to the data region of the process

* Read access to the text and shared text regions of the process

» Access to shared data regions using the shared memory functions.

When a program is running in the user protection domain, the processor executes instructions in the
problem state, and the program does not have direct access to kernel data.

Kernel Protection Domain

The code in the kernel and kernel extensions run in the kernel protection domain. This code includes
interrupt handlers, kernel processes, device drivers, system calls, and file system code. The processor is
in the kernel protection domain when it executes instructions in the privileged state, which provides:

* Read and write access to the global kernel address space

* Read and write access to the thread’s uthread block and u-block, except when an interrupt handler is
running.
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Code running in the kernel protection domain can affect the execution environments of all processes
because it:

* Can access global system data
» Can use all kernel services
* |s exempt from all security constraints.

Programming errors in the code running in the kernel protection domain can cause the operating system to
fail. In particular, a process’s user data cannot be accessed directly, but must be accessed using the
copyin and copyout kernel services, or their variants. These routines protect the kernel from improperly
supplied user data addresses.

Application programs can gain controlled access to kernel data by making system calls. Access to
functions that directly or indirectly invoke system calls is typically provided by programming libraries,
providing access to operating system functions.

Understanding System Call Execution

When a user program invokes a system call, a system call instruction is executed, which causes the
processor to begin executing the system call handler in the kernel protection domain. This system call
handler performs the following actions:

1. Sets the ut_error field in the uthread structure to 0
2. Switches to a kernel stack associated with the calling thread
3. Calls the function that implements the requested system call.

The system loader maintains a table of the functions that are used for each system call.

The system call runs within the calling thread, but with more privilege because system calls run in the
kernel protection domain. After the function implementing the system call has performed the requested
action, control returns to the system call handler. If the ut_error field in the uthread structure has a
non-zero value, the value is copied to the application’s thread-specific errno variable. If a signal is
pending, signal processing take place, which can result in an application’s signal handler being invoked. If
no signals are pending, the system call handler restores the state of the calling thread, which is resumed
in the user protection domain. For more information on protection domains, see|“‘Understanding Protection|
[Domains” on page 23.|

Accessing Kernel Data While in a System Call

A system call can access data that the calling thread cannot access because system calls execute in the
kernel protection domain. The following are the general categories of kernel data:

* The ublock or u-block (user block data) structure:

System calls should use the kernel services to read or modify data traditionally found in the ublock or
uthread structures. For example, the system call handler uses the value of the thread’s ut_error field
to update the thread-specific errno variable before returning to user mode. This field can be read or set
by using the |getuerrori and [setuerror kernel services. The current process ID can be obtained by using
the |getpid| kernel service, and the current thread ID can be obtained by using the kernel
service.

* Global memory

System calls can also access global memory such as the kernel and kernel data regions. These regions
contain the code and static data for the system call as well as the rest of the kernel.

* The stack for a system call:

A system call routine runs on a protected stack associated with a calling thread, which allows a system
call to execute properly even when the stack pointer to the calling thread is invalid. In addition,
privileged data can be saved on the stack without danger of exposing the data to the calling thread.
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Attention: Incorrectly modifying fields in kernel or user block structures can cause unpredictable results
or system crashes.

Passing Parameters to System Calls

Parameters are passed to system calls in the same way that parameters are passed to other functions,
but some additional calling conventions and limitations apply.

First, system calls cannot have floating-point parameters. In fact, the operating system does not preserve
the contents of floating-point registers when a system call is preempted by another thread, so system calls
cannot use any floating-point operations.

Second, a system call in the 32-bit kernel cannot return a long long value to a 32-bit application. In
32-bit mode, long long values are returned in a pair of general purpose registers, GPR3 and GPR4. Only
GPRS3 is preserved by the system call handler before it returns to the application. A system call in the
32-bit kernel can return a 64—bit value to a 64—bit application, but the kernel service must
used.

Third, since a system call runs on its own stack, the number of arguments that can be passed to a system
call is limited. The operating system linkage conventions specify that up to eight general purpose registers
are used for parameter passing. If more parameters exist than will fit in eight registers, the remaining
parameters are passed in the stack. Because a system call does not have direct access to the
application’s stack, all parameters for system calls must fit in eight registers.

Some parameters are passed in multiple registers. For example, 32-bit applications pass long long
parameters in two registers, and structures passed by value can require multiple registers, depending on
the structure size. The writer of a system call should be familiar with the way parameters are passed by
the compiler and ensure that the 8-register limit is not exceeded. For more information on parameter
calling conventions, see [Subroutine Linkage Convention|in Assembler Language Reference.

Finally, because 32- and 64-bit applications are supported by both the 32- and 64-bit kernels, the data
model used by the kernel does not always match the data model used by the application. When the data
models do not match, the system call might have to perform extra processing before parameters can be
used.

Regardless of whether the 32-bit or 64-bit kernel is running, the interface that is provided by the kernel to
applications must be identical. This simplifies the development of applications and libraries, because their
behavior does not depend on the mode of the kernel. On the other hand, system calls might need to know
the mode of the calling process. The macro can be used to determine if the caller of a system call
is a 64-bit process. For more information on the 1S64U macro, see[IS64U Kernel Service|in AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The ILP32 and LP64 data models differ in the way that pointers and long and long long parameters are
treated when used in structures or passed as functional parameters. The following tables summarize the
differences.

Type Size Used as Parameter
long 32 bits One register
pointer 32 bits One register
long long 64 bits Two registers
Type Size Used as Parameter
long 64 bits One register
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Type Size Used as Parameter

pointer 64 bits One register

long long 64 bits One register

System calls using these types must take the differing data models into account. The treatment of these
types depends on whether they are used as parameters or in structures passed as parameters by value or
by reference.

Passing Scalar Parameters to System Calls

Scalar parameters (pointers and integral values) are passed in registers. The combinations of kernel and
application modes are:

» |32—bit application support on the 64—bit kernel
» |64—bit application support on the 64—bit kernel
* |32—bit application support on the 32—bit kernel
[64—bit application support on the 32—bit kernel|

32-bit Application Support on the 64-bit Kernel

When a 32-bit application makes a system call to the 64-bit kernel, the system call handler zeros the
high-order word of each parameter register. This allows 64-bit system calls to use pointers and unsigned
long parameters directly. Signed and unsigned integer parameters can also be used directly by 64-bit
system calls. This is because in 64-bit mode, the compiler generates code that sign extends or zero fills
integers passed as parameters. Similar processing is performed for char and short parameters, so these
types do not require any special handling either. Only signed long and long long parameters need
additional processing.

Signed long Parameters: To convert a 32-bit signed long parameter to a 64-bit value, the 32-bit value
must be sign extended. The LONG32TOLONG64 macro is provided for this operation. It converts a 32-bit
signed value into a 64-bit signed value, as shown in this example:

syscalll(long incr)

/* If the caller is a 32-bit process, convert
* 'incr' to a signed, 64-bit value.
*/
if (11S64U)
incr = LONG32TOLONG64(incr);

}

If a parameter can be either a pointer or a symbolic constant, special handling is needed. For example, if
-1 is passed as a pointer argument to indicate a special case, comparing the pointer to -1 will fail, as will
unconditionally sign-extending the parameter value. Code similar to the following should be used:
syscall2(void =ptr)
{

/* If caller is a 32-bit process,

* check for special parameter value.

*/

if (11S64U && (LONG32TOLONG64(ptr) == -1)

ptr = (void *)-1;

if (ptr == (void *)-1)

special_handling();
else {
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}
Similar treatment is required when an unsigned long parameter is interpreted as a signed value.

long long Parameters: A 32-bit application passes a long long parameter in two registers, while a
64-bit kernel system call uses a single register for a long long parameter value.

The system call function prototype cannot match the function prototype used by the application. Instead,
each long long parameter should be replaced by a pair of uintptr_t parameters. Subsequent parameters
should be replaced with uintptr_t parameters as well. When the caller is a 32-bit process, a single 64-bit
value will be constructed from two consecutive parameters. This operation can be performed using the
INTSTOLLONG macro. For a 64-bit caller, a single parameter is used directly.

For example, suppose the application function prototype is:
syscall3(void #ptr, long Tong lenl, Tong long len2, int size);

The corresponding system call code should be similar to:

syscall3(void *ptr, uintptr_t L1,
uintptr_t L2, uintptr_t L3,
uintptr_t L4, uintptr_t L5)

long Tenl;
long len2;
int size;

/* If caller is a 32-bit application, Tenl
and Ten2 must be constructed from pairs of
* parameters. Otherwise, a single parameter
* can be used for each length.

*

/

*

if (11S64U) {

lenl = INTSTOLLONG(L1, L2);
len2 = INTSTOLLONG(L3, L4);
size = (int)L5;

}

else {
lenl = (Tong)Ll
len2 = (long)L2
size = (int)L3;

}

64-bit Application Support on the 64-bit Kernel

For the most part, system call parameters from a 64-bit application can be used directly by 64-bit system
calls. The system call handler does not modify the parameter registers, so the system call sees the same
values that were passed by the application. The only exceptions are the pid_t and key_t types, which are
32-bit signed types in 64-bit applications, but are 64-bit signed types in 64-bit system calls. Before these
two types can be used, the 32-bit parameter values must be sign extended using the LONG32TOLONG64
macro.

32-bit Application Support on the 32-bit Kernel

No special parameter processing is required when 32-bit applications call 32-bit system calls. Application
parameters can be used directly by system calls.
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64-bit Application Support on the 32-bit Kernel

When 64-bit applications make system calls, 64-bit parameters are passed in registers. When 32-bit
system calls are running, the high-order words of the parameter registers are not visible, so 64-bit
parameters cannot be obtained directly. To allow 64-bit parameter values to be used by 32-bit system
calls, the system call handler saves the high-order word of each 64-bit parameter register in a save area
associated with the current thread. If a system call needs to obtain the full 64-bit value, use the

get64bitparm| kernel service.

If a 64-bit parameter is an address, the system call might not be able to use the address directly. Instead,
it might be necessary to map the 64-bit address into a 32-bit address, which can be passed to various
kernel services.

Access to 64-bit System Call Parameter Values

When a 32-bit system call function is called by the system call handler on behalf of a 64-bit process, the
parameter registers are treated as 32-bit registers, and the system call function can only see the low-order
word of each parameter. For integer, char, or short parameters, the parameter can be used directly.
Otherwise, the get64bitparm kernel service must be called to obtain the full 64-bit parameter value. This
kernel service takes two parameters: the zero-based index of the parameter to be obtained, and the value
of the parameter as seen by the system call function. This value is the low-order word of the original 64-bit
parameter, and it will be combined with the high-order word that was saved by the system call handler,
allowing the original 64-bit parameter to be returned as a long long value.

For example, suppose that the first and third parameters of a system call are 64-bit values. The full
parameter values are obtained as shown:
#include <sys/types.h>

syscall4(char *str, int fd, long count)

{
ptr6ed strb64d;
int64 countb64;

if (IS64U)

{
/* get 64-bit address. */
str64 = get64bitparm(str, 0);

/* get 64-bit value */
count64 = getb4bitparm(count, 2);

}

The get64bitparm kernel service must not be used when the caller is a 32-bit process, nor should it be
used when the parameter type is an int or smaller. In these cases, the system call parameter can be used
directly. For example, the fd parameter in the previous example can be used directly.

Using 64-bit Address Parameters

When a system call parameter is a pointer passed from a 64-bit application, the full 64-bit address is
obtained by calling the get64bitparm kernel service. Thereafter, consideration must be given as to how
the address will be used.

A system call can use a 64-bit address to access user-space memory by calling one of the 64-bit
data-movement kernel services, such as copyin64, copyout64, or copyinstr64. Alternatively, if the user
address is to be passed to kernel services that expect 32-bit addresses, the 64-bit address should be
mapped to a 32-bit address.
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Mapping associates a 32-bit value with a 64-bit address. This 32-bit value can be passed to kernel
services in the 32-bit kernel that expect pointer parameters. When the 32-bit value is passed to a
data-movement kernel service, such as copyin or copyout, the original 64-bit address will be obtained
and used. Address mapping allows common code to be used for many kernel services. Only the
data-movement routines need to be aware of the address mapping.

Consider a system call that takes a path name and a buffer pointer as parameters. This system call will
use the path name to obtain information about the file, and use the buffer pointer to return the information.
Because pathname is passed to the lookupname kernel service, which takes a 32-bit pointer, the
pathname parameter must be mapped. The buffer address can be used directly. For example:

int syscalls (

char *pathname,
char xbuffer)

ptr64 upathanme;
ptré4 ubuffer;

struct vnode *vp;
struct cred *crp;

/* If 64-bit application, obtain 64-bit parameter
* values and map "pathname".

*/

if (IS64U)

{
upathname = get64bitparm(pathname, 0);
/* The as_remap64() call modifies pathname. */
as_remap64 (upathname, MAXPATH, &pathname);
ubuffer = get64bitparm(buffer, 1);

}

else

/* For 32-bit process, convert 32-bit address
* 64-bit address.
*/
ubuffer = (ptr64)buffer;
}

crp = crref();
rc = lookupname(pathname, USR, L SEARCH, NULL, &vp, crp);
getinfo(vp, &local buffer);

/* Copy information to user space,

* for both 32-bit and 64-bit applications.

*/

rc = copyout64(&local_buffer, ubuffer,
strlen(local_buffer));

}

The function prototype for the get64bitparm kernel service is found in the sys/remap.h header file. To
allow common code to be written, the get64bitparm kernel service is defined as a macro when compiling
in 64-bit mode. The macro simply returns the specified parameter value, as this value is already a full
64-bit value.

In some cases, a system call or kernel service will need to obtain the original 64-bit address from the
32-bit mapped address. The as_unremap64 kernel service is used for this purpose.
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Returning 64-bit Values from System Calls

For some system calls, it is necessary to return a 64-bit value to 64-bit applications. The 64-bit application
expects the 64-bit value to be contained in a single register. A 32-bit system call, however, has no way to
set the high-order word of a 64—bit register.

The saveretval64 kernel service allows a 32-bit system call to return a 64-bit value to a 64-bit application.
This kernel service takes a single long long parameter, saves the low-order word (passed in GPR4) in a
save area for the current thread, and returns the original parameter. Depending on the return type of the
system call function, this value can be returned to the system call handler, or the high-order word of the
full 64-bit return value can be returned.

After the system call function returns to the system call handler, the original 64-bit return value will be
reconstructed in GPR3, and returned to the application. If the saveretval64 kernel service is not called by
the system call, the high-order word of GPRS3 is zeroed before returning to the application. For example:

void * syscall6 (

int arg)
{
if (1S64U) {
ptr64 rc = f(arg);
saveretval64(rc); /* Save low-order word */

return (void *)(rc >> 32); /* Return high-order word as
* 32-bit address */
}

else {
return (void *)f(arg);
}

}

Passing Structure Parameters to System Calls

When structures are passed to or from system calls, whether by value or by reference, the layout of the
structure in the application might not match the layout of the same structure in the system call. There are
two ways that system calls can process structures passed from or to applications: structure reshaping and
dual implementation.

Structure Reshaping
Structure reshaping allows system calls to support both 32- and 64-bit applications using a single system
call interface and using code that is predominately common to both application types.

Structure reshaping requires defining more than one version of a structure. One version of the structure is
used internally by the system call to process the request. The other version should use size-invariant
types, so that the layout of the structure fields matches the application’s view of the structures. When a
structure is copied in from user space, the application-view structure definition is used. The structure is
reshaped by copying each field of the application’s structure to the kernel’s structure, converting the fields
as required. A similar conversion is performed on structures that are being returned to the caller.

Structure reshaping is used for structures whose size and layout as seen by an application differ from the
size and layout as seen by the system call. If the system call uses a structure definition with fields big
enough for both 32- and 64-bit applications, the system call can use this structure, independent of the
mode of the caller.

While reshaping requires two versions of a structure, only one version is public and visible to the end user.
This version is the natural structure, which can also be used by the system call if reshaping is not needed.
The private version should only be defined in the source file that performs the reshaping. The following
example demonstrates the techniques for passing structures to system calls that are running in the 64-bit
kernel and how a structure can be reshaped:
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/* Public definition */
struct foo {

int a;

long b;
}s

/* Private definition--matches 32-bit
* application's view of the data structure. =/
struct foo32 {
int a;
int b;
1

syscall7(struct foo *f)

struct foo fl;
struct foo32 f2;

if (1S64U()) {
copyin(&fl, f, sizeof(fl));

else {
copyin(&f2, f, sizeof(f2));
fl.a = f2.a;
fl.b = f2.b;

}

/* Common structure f1 used from now on. =/

}

Dual Implementation: The dual implementation approach involves separate code paths for calls from
32-bit applications and calls from 64-bit applications. Similar to reshaping, the system call code defines a
private view of the application’s structure. With dual implementations, the function syscall7 could be
rewritten as:

syscall8(struct foo *f)

struct foo fl;
struct foo32 f2;

if (1S64U()) {
copyin(&fl, f, sizeof(f1l));
/* Code for 64-bit process uses fl */

}

else {
copyin(&f2, f, sizeof(f2));
/* Code for 32-bit process uses f2 */

}

Dual implementation is most appropriate when the structures are so large that the overhead of reshaping
would affect the performance of the system call.

Passing Structures by Value: When structures are passed by value, the structure is loaded into as
many parameter registers as are needed. When the data model of an application and the data model of
the kernel extension differ, the values in the registers cannot be used directly. Instead, the registers must
be stored in a temporary variable. For example:
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Note: This example builds upon the structure definitions defined in ['Dual Implementation” on page 31
/* Application prototype: syscall9(struct foo f); x/

syscall9(unsigned long al, unsigned long al)
{
union {
struct foo fl; /* Structure for 64-bit caller. =/
struct foo32 f2; /* Structure for 32-bit caller. =/
unsigned long p64[2]; /* Overlay for parameter registers
* when caller is 64-bit program
*/
unsigned int p32[2]; /* Overlay for parameter registers
* when caller is 32-bit program
*/
} uarg;
if (I1S64U()) {
uarg.p64[0] = al;
uarg.p64[1] = a2;
/* Now uarg.fl can be used */

1
else {
uarg.p32[0] = al;
uarg.p32[1] = a2;
/* Now uarg.f2 can be used */

}

Comparisons to AIX 4.3

In AlX 4.3, the conventions for passing parameters from a 64-bit application to a system call required
user-space library code to perform some of the parameter reshaping and address mapping. In AIX 5.1 and
later, all parameter reshaping and address mapping should be performed by the system call, eliminating
the need for kernel-specific library code. In fact, user-space address mapping is no longer supported. In
most cases, system calls can be implemented without any application-specific library code.

Preempting a System Call

The kernel allows a thread to be preempted by a more favored thread, even when a system call is
executing. This capability provides better system responsiveness for large multi-user systems.

Because system calls can be preempted, access to global data must be serialized. Kernel locking
services, such as [simple_lock|and[simple_unlock, are frequently used to serialize access to kernel data.
A thread can be preempted even when it owns a lock. If multiple locks are obtained by system calls, a
technique must be used to prevent multiple threads from deadlocking. One technique is to define a lock
hierarchy. A system call must never return while holding a lock. For more information on locking, see
[‘Understanding Locking” on page 13/

Handling Signals While in a System Call

Signals can be generated asynchronously or synchronously with respect to the thread that receives the
signal. An asynchronously generated signal is one that results from some action external to a thread. It is
not directly related to the current instruction stream of that thread. Generally these are generated by other
threads or by device drivers.
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A synchronously generated signal is one that results from the current instruction stream of the thread.
These signals cause interrupts. Examples of such cases are the execution of an illegal instruction, or an
attempted data access to nonexistent address space.

Delivery of Signals to a System Call

Delivery of signals to a thread only takes place when a user application is about to be resumed in the user
protection domain. Signals cannot be delivered to a thread if the thread is in the middle of a system call.
For more information on signal delivery for kernel processes, see r‘Using Kernel Processes” on page 8]

Asynchronous Signals and Wait Termination

An asynchronous signal can alter the operation of a system call or kernel extension by terminating a long
wait. Kernel services such ase_block_thread, [e_sleep_thread| and [et_wait|are affected by signals. The
following options are provided when a signal is posted to a thread:

* Return from the kernel service with a return code indicating that the call was interrupted by a signal

« Call the kernel service to resume execution at a previously saved context in the event of a
signal

* Ignore the signal using the short-wait option, allowing the kernel service to return normally.

The sleep kernel service, provided for compatibility, also supports the PCATCH and SWAKEONSIG
options to control the response to a signal during the sleep function.

Previously, the kernel automatically saved context on entry to the system call handler. As a result, any long
(interruptible) sleep not specifying the PCATCH option returned control to the saved context when a signal
interrupted the wait. The system call handler then set the errno global variable to EINTR and returned a
return code of -1 from the system call.

The kernel, however, requires each system call that can directly or indirectly issue a sleep call without the
PCATCH option to set up a saved context using the kernel service. This is done to avoid
overhead for system calls that handle waits terminated by signals. Using the setjmpx service, the system
can set up a saved context, which sets the system call return code to a -1 and the ut_error field to
EINTR, if a signal interrupts a long wait not specifying return-from-signal.

It is probably faster and more robust to specify return-from-signal on all long waits and use the return
code to control the system call return.

Stacking Saved Contexts for Nested setjmpx Calls

The kernel supports nested calls to the kernel service. It implements the stack of saved contexts
by maintaining a linked list of context information anchored in the machine state save area. This area is in
the user block structure for a process. Interrupt handlers have special machine state save areas.

An initial context is set up for each process by the kernel service for kernel processes and by the
subroutine for user processes. The process terminates if that context is resumed.

Handling Exceptions While in a System Call

Exceptions are detected by the processor as a result of the current instruction stream. They
therefore take effect synchronously with respect to the current thread.

The default exception handler generates a signal if the process is in a state where signals can be
delivered immediately. Otherwise, the default exception handler generates a system dump.
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Alternative Exception Handling Using the setjmpx Kernel Service

For certain types of exceptions, a system call can specify unique exception-handler routines through calls
to the service. The exception handler routine is saved as part of the stacked saved context. Each
exception handler is passed the exception type as a parameter.

The exception handler returns a value that can specify any of the following:

» The process should resume with the instruction that caused the exception.

* The process should return to the saved context that is on the top of the stack of contexts.
* The exception handler did not handle the exception.

If the exception handler did not handle the exception, then the next exception handler in the stack of
contexts is called. If none of the stacked exception handlers handle the exception, the kernel performs
default exception handling. The setjmpx and kernel services help implement exception
handlers.

Understanding Nesting and Kernel-Mode Use of System Calls

The operating system supports nested system calls with some restrictions. System calls (and any other
kernel-mode routines running under the process environment of a user-mode process) can use system
calls that pass all parameters by value. System calls and other kernel-mode routines must not start system
calls that have one or more parameters passed by reference. Doing so can result in a system crash. This
is because system calls with reference parameters assume that the referenced data area is in the user
protection domain. As a result, these system calls must use special kernel services to access the data.
However, these services are unsuccessful if the data area they are trying to access is not in the user
protection domain.

This restriction does not apply to kernel processes. User-mode data access services can distinguish
between kernel processes and user-mode processes in kernel mode. As a result, these services can
access the referenced data areas accessed correctly when the caller is a kernel process.

Kernel processes cannot call the or[exed] system calls, among others. A list of the base operating
system calls available to system calls or other routines in kernel mode is provided in [‘System Calls
[Available to Kernel Extensions” on page 35

Page Faulting within System Calls

Attention: A page fault that occurs while external interrupts are disabled results in a system crash.
Therefore, a system call should be programmed to ensure that its code, data, and stack are pinned before
it disables external interrupts.

Most data accessed by system calls is pageable by default. This includes the system call code, static data,
dynamically allocated data, and stack. As a result, a system call can be preempted in two ways:

» By a more favored process, or by an equally favored process when a time slice has been exhausted
» By losing control of the processor when it page faults

In the latter case, even less-favored processes can run while the system call is waiting for the paging 1/0
to complete.
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Returning Error Information from System Calls

Error information returned by system calls differs from that returned by kernel services that are not system
calls. System calls typically return a special value, such as -1 or NULL, to indicate that an error has
occurred. When an error condition is to be returned, the ut_error field should be updated by the system
call before returning from the system call function. The ut_error field is written using thekernel
service.

Before actually calling the system call function, the system call handler sets the ut_error field to 0. Upon
return from the system call function, the system call handler copies the value found in ut_error into the
thread-specific errno variable if ut_error was nonzero. After setting the errno variable, the system call
handler returns to user mode with the return code provided by the system call function.

Kernel-mode callers of system calls must be aware of this return code convention and use the
kernel service to obtain the error value when an error indication is returned by the system call. When
system calls are nested, the system call function called by the system call handler can return the error
value provided by the nested system call function or can replace this value with a new one by using the
setuerror kernel service.

System Calls Available to Kernel Extensions

The following system calls are grouped according to which subroutines call them:
+ [System calls available to all kernel extensions|
+ [System calls available to kernel processes only|

Note: System calls are not available to interrupt handlers.

System Calls Available to All Kernel Extensions

Gets the unique identifier of the current host.

Gets the process ID, process group ID, and parent process ID.
Gets the process ID, process group ID, and parent process ID.
Returns the scheduling priority of a process.

Gets or sets the nice value.

Gets a set of semaphores.

Sets the process user IDs.

Sets the process group IDs.

Sets the unique identifier of the current host.

Sets the process group IDs.

Sets the process group IDs.

Sets a process scheduling priority to a constant value.

Gets or sets the nice value.

Sets the process user IDs.

Creates a session and sets the process group ID.

Sets the process user IDs.

ulimit Sets and gets user limits.
umas Sets and gets the value of the file-creation mask.

System Calls Available to Kernel Processes Only

Disclaims the content of a memory address range.
Gets the name of the current domain.

Gets the concurrent group set of the current process.
Gets the name of the local host.
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Gets the name of the peer socket.

Controls maximum system resource consumption.

Displays information about resource use.

Gets the socket name.

Gets options on sockets.

Gets and sets the current value for the specified system-wide timer.
Manipulates the expiration time of interval timers.

Manipulates the expiration time of interval timers.

Gets and sets the current value for the specified system-wide timer.
Controls semaphore operations.

Performs semaphore operations.

Sets the name of the current domain.

Sets the concurrent group set of the current process.

Sets the name of the current host.

Controls maximum system resource consumption.

Gets and sets the current value for the specified systemwide timer.
Attaches a shared memory segment or a mapped file to the current process.
Controls shared memory operations.

Detaches a shared memory segment.

Gets shared memory segments.

Specifies the action to take upon delivery of a signal.

Sets the current signal mask.

Sets and gets signal stack context.

Atomically changes the set of blocked signals and waits for a signal.
Provides a service for controlling system/kernel configuration.
Provides a service for examining or setting kernel run-time tunable parameters.
Displays information about resource use.

Gets the name of the current system.

Gets the name of the current system.

Gets and sets user information about the owner of the current process.
Sets file access and modification times.

Related Information

[‘Handling Signals While in a System Call” on page 32

[‘Understanding Protection Domains” on page 23|

[‘Understanding Kernel Threads” on page 6|

[‘Using Kernel Processes” on page 8|

[‘Using Libraries” on page 4|

[‘Understanding Locking” on page 13

[Locking Kernel Services” on page 62|

[‘Understanding Interrupts” on page 52|

Subroutine References

The [fork| subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions
Volume 1.
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Technical References

The [e_sleep| kernel service, [e_sleepl| kernel service, [et_wait kernel service, [getuerrod kernel service,
linitp| kernel service, [lockl| kernel service, longjmpx| kernel service, [setimpx| kernel service, [setuerrot]
kernel service, [unlockl|

kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.
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Chapter 3. Virtual File Systems

The virtual file system (VFS) interface, also known as the v-node interface, provides a bridge between the
physical and logical file systems. The information that follows discusses the virtual file system interface, its
data structures, and its header files, and explains how to configure a virtual file system.

There are two essential components in the file system:

Logical file system Provides support for the system call interface.
Physical file system Manages permanent storage of data.

The interface between the physical and logical file systems is the virtual file system interface. This
interface allows support for multiple concurrent instances of physical file systems, each of which is called a
file system implementation. The file system implementation can support storing the file data in the local
node or at a remote node. For more information on the virtual filesystem interface, see ['Understanding the
|Virtual File System Interface” on page 41|

The virtual file system interface is usually referred to as the v-node interface. The v-node structure is the
key element in communication between the virtual file system and the layers that call it. For more
information on v-nodes, see [‘Understanding Virtual Nodes (V-nodes)” on page 40.|

Both the virtual and logical file systems exist across all of this operating system family’s platforms.

Logical File System Overview

The logical file system is the level of the file system at which users can request file operations by system
call. This level of the file system provides the kernel with a consistent view of what might be multiple
physical file systems and multiple file system implementations. As far as the logical file system is
concerned, file system types, whether local, remote, or strictly logical, and regardless of implementation,
are indistinguishable.

A consistent view of file system implementations is made possible by the virtual file system abstraction.
This abstraction specifies the set of file system operations that an implementation must include in order to
carry out logical file system requests. Physical file systems can differ in how they implement these
predefined operations, but they must present a uniform interface to the logical file system. A list of file
system operators can be found at [‘Requirements for a File System Implementation” on page 41 For more
information on the virual file system, see|*Virtual File System Overview” on page 40|

Each set of predefined operations implemented constitutes a virtual file system. As such, a single physical
file system can appear to the logical file system as one or more separate virtual file systems.

Virtual file system operations are available at the logical file system level through the virtual file system
switch. This array contains one entry for each virtual file system, with each entry holding entry point
addresses for separate operations. Each file system type has a set of entries in the virtual file system
switch.

The logical file system and the virtual file system switch support other operating system file-system access
semantics. This does not mean that only other operating system file systems can be supported. It does
mean, however, that a file system implementation must be designed to fit into the logical file system
model. Operations or information requested from a file system implementation need be performed only to
the extent possible.

Logical file system can also refer to the tree of known path names in force while the system is running. A
virtual file system that is mounted onto the logical file system tree itself becomes part of that tree. In fact, a
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single virtual file system can be mounted onto the logical file system tree at multiple points, so that nodes
in the virtual subtree have multiple names. Multiple mount points allow maximum flexibility when
constructing the logical file system view.

Component Structure of the Logical File System
The logical file system is divided into the following components:
» System calls
Implement services exported to users. System calls that carry out file system requests do the following:

— Map the user’s parameters to a file system object. This requires that the system call component use
|the v-node (virtual node) component| to follow the object’s path name. In addition, the system call
must resolve a file descriptor or establish implicit (mapped) references using the open file
component.

— Verify that a requested operation is applicable to the type of the specified object.
— Dispatch a request to the file system implementation to perform operations.
* Logical file system file routines

Manage open file table entries and per-process file descriptors. An open file table entry records the
authorization of a process’s access to a file system object. A user can refer to an open file table ent
through a file descriptor or by accessing the virtual memory to which the file was mapped. The
[file system routines| are those kernel services, such as|fp_ioctl|and [fp_select, that begin with the prefix
fp_.

* v-nodes

Provide system calls with a mechanism for local name resolution. Local name resolution allows the
logical file system to access multiple file system implementations through a uniform name space.

Virtual File System Overview

The virtual file system is an abstraction of a physical file system implementation. It provides a consistent
interface to multiple file systems, both local and remote. This consistent interface allows the user to view
the directory tree on the running system as a single entity even when the tree is made up of a number of
diverse file system types. The interface also allows the logical file system code in the kernel to operate
without regard to the type of file system being accessed. For more information on the logical file system,
see [‘Logical File System Overview” on page 39

A virtual file system can also be viewed as a subset of the logical file system tree, that part belonging to a
single file system implementation. A virtual file system can be physical (the instantiation of a physical file
system), remote, or strictly logical. In the latter case, for example, a virtual file system need not actually be
a true file system or entail any underlying physical storage device.

A virtual file system mount point grafts a virtual file system subtree onto the logical file system tree. This
mount point ties together a mounted-over v-node (virtual node) and the root of the virtual file system
subtree. A mounted-over, or stub, v-node points to a virtual file system, and the mounted VFS points to the
v-node it is mounted over.

Understanding Virtual Nodes (V-nodes)

A virtual node (v-node) represents access to an object within a virtual file system. V-nodes are used only
to translate a path name into a generic node (g-node). For more information on g-nodes, see
|“Understanding Generic I-nodes (G-nodes)” on page 41.|

A v-node is either created or used again for every reference made to a file by path name. When a user
attempts to open or create a file, if the VFS containing the file already has a v-node representing that file,
a use count in the v-node is incremented and the existing v-node is used. Otherwise, a new v-node is
created.
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Every path name known to the logical file system can be associated with, at most, one file system object.

However, each file system object can have several names. Multiple names appear in the following cases:

* The object can appear in multiple virtual file systems. This can happen if the object (or an ancestor) is
mounted in different virtual file systems using a local file-over-file or directory-over-directory mount.

» The object does not have a unique name within the virtual file system. (The file system implementation
can provide synonyms. For example, the use of links causes files to have more than one name.
However, opens of synonymous paths do not cause multiple v-nodes to be created.)

Understanding Generic I-nodes (G-nodes)

A generic i-node (g-node) is the representation of an object in a file system implementation. There is a
one-to-one correspondence between a g-node and an object in a file system implementation. Each g-node
represents an object owned by the file system implementation.

Each file system implementation is responsible for allocating and destroying g-nodes. The g-node then
serves as the interface between the logical file system and the file system implementation. Calls to the file
system implementation serve as requests to perform an operation on a specific g-node.

A g-node is needed, in addition to the file system i-node, because some file system implementations may
not include the concept of an i-node. Thus the g-node structure substitutes for whatever structure the file
system implementation may have used to uniquely identify a file system object.

The logical file system relies on the file system implementation to provide valid data for the following fields
in the g-node:

gn_type Identifies the type of object represented by the g-node.
gn_ops Identifies the set of operations that can be performed on the object.

Understanding the Virtual File System Interface

Operations that can be performed upon a virtual file system and its underlying objects are divided into two
categories. Operations upon a file system implementation as a whole (not requiring the existence of an
underlying file system object) are called vfs operations. Operations upon the underlying file system objects
are called v-node (virtual node) operations. Before writing specific virtual file system operations, it is
important to note the requirements for a file system implementation.

Requirements for a File System Implementation
File system implementations differ in how they implement the predefined operations. However, the logical
file system expects that a file system implementation meets the following criteria:

» All vfs and v-node operations must supply a return value:
— Areturn value of 0 indicates the operation was successful.

— A nonzero return value is interpreted as a valid error number (taken from the
lusr/include/sys/errno.h file) and returned through the system call interface to the application
program.

» All vfs operations must exist for each file system type, but can return an error upon startup. The
following are the necessary vfs operations:

- ‘vfs_cntl|
- ;vfs_moqnt|

— |vfs_root|
~ |vis_statfg
— [vfs_sync
— |vfs_unmount]
-
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— vfs_quotactl

For a complete list of file system operations, see [List of Virtual File System Operations|in AIX 5L Version
5.2 Technical Reference: Kernel and Subsystems Volume 1.

Important Data Structures for a File System Implementation

There are two important data structures used to represent information about a virtual file system, the vfs
structure and the v-node. Each virtual file system has a vfs structure in memory that describes its type,
attributes, and position in the file tree hierarchy. Each file object within that virtual file system can be
represented by a v-node.

The vfs structure contains the following fields:

vfs_flag Contains the state flags:

VFS_DEVMOUNT
Indicates whether the virtual file system has a physical mount structure underlying it.

VFS_READONLY
Indicates whether the virtual file system is mounted read-only.

vfs_type Identifies the type of file system implementation. Possible values for this field are described in
the Jlusr/include/sys/vmount.hfile.

vfs_ops Points to the set of operations for the specified file system type.

vfs_mntdover Points to the mounted-over v-node.

vfs_data Points to the file system implementation data. The interpretation of this field is left to the

discretion of the file system implementation. For example, the field could be used to point to
data in the kernel extension segment or as an offset to another segment.

vfs_mdata Records the user arguments to thecall that created this virtual file system. This field
has a time stamp. The user arguments are retained to implement the caII, which
replaces the /etc/mnttab table.

Understanding Data Structures and Header Files for Virtual File
Systems

These are the data structures used in implementing virtual file systems:
* The structure contains information about a virtual file system as a single entity.

* The structure contains information about a file system object in a virtual file system. There can
be multiple v-nodes for a single file system object.

. Thestructure contains information about a file system object in a physical file system. There is
only a single g-node for a given file system object.

* The gfs structure contains information about a file system implementation. This is distinct from the vfs
structure, which contains information about an instance of a virtual file system.

The header files contain the structure definitions for the key components of the virtual file system
abstraction. Understanding the contents of these files and the relationships between them is essential to
an understanding of virtual file systems. The following are the necessary header files:

» sys/vfs.h

+ sys/gfs.h

* sys/vnode.h
* sys/vmount.h
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Configuring a Virtual File System

The kernel maintains a table of active |fi|e systeﬂ types. A file system implementation must be registered
with the kernel before a request to |mount a|virtual file system| (VFS) of that type can be honored. Two
kernel services, |gfsadd|and |gfsdel, are supplied for adding a file system type to the gfs file system table.

These are the steps that must be followed to get a file system configured.

1. A user-level routine must call the subroutine requesting that the code for the virtual file
system be loaded.

2. The user-level routine must then request, again by calling the sysconfig subroutine, that the virtual file
system be configured. The name of a VFS-specific configuration routine must be specified.

3. The virtual file system-specific configuration routine calls the gfsadd kernel service to have the new file
system added to the gfs table. The gfs table that the configuration routine passes to the gfsadd
kernel service contains a pointer to an initialization routine. This routine is then called to do any further
virtual file system-specific initialization.

4. The file system is now operational.

Related Information

[‘Logical File System Kernel Services” on page 65|

[‘Understanding Data Structures and Header Files for Virtual File Systems” on page 42

[‘Configuring a Virtual File System’]

[‘Understanding Protection Domains” on page 23|

[List of Virtual File System Operationsg in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.

Subroutine References
The subroutine, subroutine, subroutine in AIX 5L Version 5.2 Technical

Reference: Base Operating System and Extensions Volume 1.

Files References
The [vmount.h file in AIX 5L Version 5.2 Files Reference.

Technical References

The |gfsadd| kernel service, kernel service in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.
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Chapter 4. Kernel Services

Kernel services are routines that provide the runtime kernel environment to programs executing in kernel

mode. Kernel extensions call kernel services, which resemble library routines. In contrast, application

programs call library routines.

Callers of kernel services execute in kernel mode. They therefore share with the kernel the responsibility

for ensuring that system integrity is not compromised.

For a list of system calls that kernel extensions are allowed to use, see [‘System Calls Available to Kernel|

[Extensions” on page 35

Categories of Kernel Services

Following are the categories of kernel services:
+ [/O Kernel Services’]

« [“Kernel Extension and Device Driver Management Services” on page 60|

* [‘Locking Kernel Services” on page 62
. “‘Logical File System Kernel Services” on page 65|
* |“‘Memory Kernel Services” on page 66
- [‘Message Queue Kernel Services” on page 73|
* |“Network Kernel Services” on page 73
* [“Process and Exception Management Kernel Services” on page 76|
[‘RAS Kernel Services” on page 78|

[Security Kernel Services” on page 79|

[“Timer and Time-of-Day Kernel Services” on page 79|

[“Virtual File System (VFS) Kernel Services” on page 81|

I/O Kernel Services

The 1/O kernel services fall into the following categories:

+ [‘Block I/0 Kernel Services’

[‘Buffer Cache Kernel Services” on page 46|

[Character I/O Kernel Services” on page 46|

[‘Interrupt Management Kernel Services” on page 46|

[‘Memory Buffer (mbuf) Kernel Services” on page 47

+ [‘DMA Management Kernel Services” on page 47|

[‘Enhanced I/0 Error Handling (EEH) Kernel Services” on page 48

Block I/0 Kernel Services
The Block I/O kernel services are:

© Copyright IBM Corp. 1997, 2004

iodon Performs block 1/0 completion processing.
iowai Waits for block 1/0O completion.
uphysi Performs character I/O for a block device using a uio structure.
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Buffer Cache Kernel Services

For information on how to manage the buffer cache with the Buffer Cache kernel services, see|‘Block I/O
[Buffer Cache Kernel Services: Overview” on page 51, The Buffer Cache kernel services are:

Writes the specified buffer’'s data without waiting for 1/0 to complete.
Releases the specified buffer after marking it for delayed write.

Flushes all write-behind blocks on the specified device from the buffer cache.
Invalidates all of the specified device’s blocks in the buffer cache.
Flushes the specified block if it is in the buffer cache.

Reads the specified block’s data into a buffer.

Reads in the specified block and then starts I/O on the read-ahead block.
Frees the specified buffer.

Writes the specified buffer’s data.

Sets the memory for the specified buffer structure’s buffer to all zeros.
Assigns a buffer to the specified block.

Allocates a free buffer.

Determines the completion status of the buffer.

Purges the specified block from the buffer cache.

Character I/0 Kernel Services
The Character I/O kernel services are:

Retrieves a character from a character list.

Removes the first buffer from a character list and returns the address of the removed buffer.
Retrieves multiple characters from a character buffer and places them at a designated address.
Retrieves a free character buffer.

Returns the character at the end of a designated list.

Manages the list of free character buffers.

Places a character at the end of a character list.

Places a character buffer at the end of a character list.

Places several characters at the end of a character list.

Frees a specified buffer.

Frees the specified list of buffers.

putcx Places a character on a character list.
waitcfree| Checks the availability of a free character buffer.

Interrupt Management Kernel Services

The operating system provides the following set of kernel services for managing interrupts. See
[Understanding Interrupts| for a description of these services:

i_clea Removes an interrupt handler from the system.

i_reset Resets a bus interrupt level.

Schedules off-level processing.

Disables an interrupt level.

Enables an interrupt level.

Disables all of the interrupt levels at a particular interrupt priority and all interrupt levels at a
less-favored interrupt priority.

Enables all of the interrupt levels at a particular interrupt priority and all interrupt levels at a
more-favored interrupt priority.
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Memory Buffer (mbuf) Kernel Services

The Memory Buffer (mbuf) kernel services provide functions to obtain, release, and manipulate memory
buffers, or mbufs. These mbuf services provide the means to easily work with the mbuf data structure,
which is defined in the /usr/include/sys/mbuf.h file. Data can be stored directly in an mbuf’s data portion
or in an attached external cluster. Mbufs can also be chained together by using the m_next field in the
mbuf structure. This is particularly useful for communications protocols that need to add and remove
protocol headers.

The Memory Buffer (mbuf) kernel services are:

Adjusts the size of an mbuf chain.

Allocates an mbuf structure and attaches an external cluster.

Appends one mbuf chain to the end of another.

Allocates and attaches an external buffer.

Guarantees that an mbuf chain contains no more than a given number of mbuf structures.
Copies data from an mbuf chain to a specified buffer.

Creates a copy of all or part of a list of mbuf structures.

Deregisters expected mbuf structure usage.

Frees an mbuf structure and any associated external storage area.

Frees an entire mbuf chain.

Allocates a memory buffer from the mbuf pool.

Allocates and zeros a memory buffer from the mbuf pool.

Allocates an mbuf structure from the mbuf buffer pool and attaches a cluster of the specified

size.

m_gethdr_ Allocates a header memory buffer from the mbuf pool.

m_pullup Adjusts an mbuf chain so that a given number of bytes is in contiguous memory in the data
area of the head mbuf structure.

Registers expected mbuf usage.

In addition to the mbuf kernel services, the following macros are available for use with mbufs:

Allocates a page-sized mbuf structure cluster.

Creates a copy of all or part of a list of mbuf structures.

Allocates an mbuf structure from the mbuf buffer pool and attaches a page-sized cluster.
Determines if an mbuf structure has an attached cluster.

Converts an address anywhere within an mbuf structure to the head of that mbuf structure.
Converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.
Converts a pointer to an mbuf structure to a pointer to the data stored in that mbuf structure.
Returns the address of an mbuf cross-memory descriptor.

DMA Management Kernel Services

The operating system kernel provides several services for managing direct memory access (DMA)
channels and performing DMA operations. |Understanding DMA Transfers| provides additional kernel
services information.

The services provided are:

Flushes the processor and I/O controller (IOCC) data caches when using the long term
DMA_WRITE_ONLY mapping of DMA buffers approach to the bus device DMA.
Deallocates resources previously allocated on a d_map_init call.

Disables DMA for the specified handle.

Enables DMA for the specified handle.

Allocates and initializes resources for performing DMA with PCI and ISA devices.

d_align Provides needed information to align a buffer with a processor cache line.
d_cflush|
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Performs platform-specific DMA mapping for a list of virtual addresses.

Performs platform-specific DMA mapping for a single page.

Accepts a list of virtual addresses and sizes and sets up the slave DMA controller.
Rounds the value length up to a given number of cache lines.

Deallocates resources previously allocated on a d_map_list call.

Deallocates resources previously allocated on a d_map_page call.
d_unmap_slav Deallocates resources previously allocated on a d_map_slave call.

Enhanced I/O Error Handling (EEH) Kernel Services

Enhanced 1/O Error Handling (EEH) kernel services is an error recovery strategy for errors that occur
during I/O operations on a PCI or on a PCI-X bus. Bridges, PCl-to-PCI or PCIX-to-PCIX, that allow each
slot to be on its own bus provide a form of electrical and logical isolation of slots. These bridges are called
the terminal bridges. Without terminal bridges, EEH kernel services would not be possible.

The types of adapters supported in the slot created by a terminal bridge are:

» Single-function adapter with or without a PCI-to-PCI (or PCIX-to-PCIX) bridge on the adapter.
» Multifunction adapter without a PCI-to-PCI (or PCIX-to-PCIX) bridge on the adapter

* Multifunction adapter with a PCI-to-PCI (or PCIX-to-PCIX) bridge on the adapter.

The device drivers for all these types of adapters use the same EEH kernel services to drive the error
recovery except for the registration service. A single-function adapter calls the eeh_init() registration
service function. A multifunction adapter calls the eeh_init_multifunc() registration service function.
Although the same services are used by the single and multifunction adapter drivers, the error recovery
models are different. Also, a bridged-adapter, a multifunction adapter on which a PCI-to-PCl or a
PCIX-to-PCIX bridge resides, requires an extra step in error recovery compared to a non-bridged adapter.

The error recovery is performed by resetting the PCI bus between the terminal bridge and the adapter
under it. This action is same as resetting the slot in error. The basic steps in error detection and recovery
are as follows:

» An adapter driver suspects an error on the card when it receives some invalid values from one or more
locations in its I/O or memory spaces.

» The driver then confirms the existence of the error by calling EEH kernel services. After the error state
is confirmed, the slot is declared frozen.

» After the slot is frozen, all further activities to the card are suspended until the error is recovered. For
example, interrupts are masked, and new read/write requests are blocked or failed.

* The driver attempts to recover the slot by toggling the reset line. After three attempts to recover, the
driver declares the slot unusable (or dead). If the slot is reset successfully, normal operations resume.

The key difference in the single-function and multifunction models is that in the multifunction model, there
is a need for coordination among different driver instances controlling the same physical device on a single
slot. Therefore, the drivers follow a state machine. The EEH kernel services are implemented such that
they present an EEH recovery state machine to the device drivers. A lot of details are hidden from the
device drivers for simplicity. Because the multifunction model is more flexible and extensible, it is
recommended for the new device drivers.

In the single-function model, the device drivers are responsible for driving their own error recovery. In other
words, they are responsible for implementing their own state machine. Every time EEH recovery is
extended in some way at the hardware or firmware level, there is probably a code and testing impact on
the single-function implementations. An adapter that is single-function can still use the multifunction model.
In that case, all the messages from the EEH kernel services are sent to just one driver instance.
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Multifunction Programming Model

For the multifunction programming model, EEH kernel services presents the following state machine to the

drivers:

1. A slot starts out in the NORMAL state.

2. When an EEH event happens, the driver might receive all F’'s from reading a register. The driver must
call eeh_read_slot_state() to confirm the event.

3. If eeh_read_slot_state() finds the slot to be frozen, it broadcasts an EEH_DD_SUSPEND message to
all registered drivers, and the slot state moves to SUSPEND. The kernel messages like this one are
broadcast by invoking the Callback Routine sequentially. The messages are broadcast at INTIODONE
priority.

4. When the drivers receive the EEH_DD_SUSPEND message, they can do one of the following:

a. Gather some debug data from the adapter and proceed to reset the slot.
Gathering the debug data is really an optional step in the recovery process, where a driver can
choose to read certain registers on the adapter in an attempt to understand what caused the EEH
event in the first place.

To gather the debug data, the drivers must enable PIO and/or DMA to the adapter. PIO and DMA
are frozen when an EEH event occurs. To enable PIO and/or DMA:

1) The drivers must call eeh_enable_pio() and/or eeh_enable_dma(), respectively.

When either one is called, EEH_DD_DEBUG message is sent to the drivers indicating that
PIO/DMA are enabled, and the slot state moves to DEBUG.

2) The drivers then gather the data.

eeh_enable_pio() can be called multiple times. Each time it is called, another
EEH_DD_DEBUG message is broadcast.

3) When the drivers receive EEH_DD_SUSPEND or EEH_DD_DEBUG messages, they call
eeh_slot_error() to create an AIX error log entry with hardware debug data.
4) EEH kernel services picks a master which must call eeh_reset_slot() to reset the slot. Only one
driver calls reset because it is not necessary to reset the slot multiple times.
b. Proceed directly to reset the slot.
5. The master’s callback routine is called to ensure that all other callback routines have finished their
work.
The master’s callback routine is called with EEH_MASTER flag.

6. The reset line on the PCI bus is toggled with 100 ms delay between activate and deactivate to reset
the slot. The delay is hidden from the device drivers and is enforced by the eeh_reset_slot() kernel
service internally. The slot internally moves through the ACTIVATE and the DEACTIVATE states.

7. For the bridged-adapters, at the end of a successful reset, EEH kernel services configures the bridge
using eeh_configure_bridge() service. Kernel services also enforces a certain amount of delay between
the deactivation of the reset line and the configuration of bridge.

The device drivers do not need to call eeh_configure_bridge() directly.

8. If everything goes well, the EEH_DD_RESUME message is sent to the drivers indicating that the slot
recovery is complete.

9. At this point, most drivers would have to reinitialize their adapters before starting normal operations
again.

Note: This is the usual recovery sequence. If any of the services fail, the EEH_DD_DEAD message is
broadcast asking the drivers to mark their adapters unavailable (for example, the drivers might
have to perform some cleanup work and mark their internal states appropriately). The master
driver must call eeh_slot_error() to create an AlX error log and mark the adapter permanently
unavailable.

There are two special scenarios that a driver developer needs to be aware of:
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If a driver receives either an EEH DD _SUSPEND or an EEH DD _DEAD message, it can return an EEH_BUSY
return code from its callback routine instead of an EEH_SUCC return code. If EEH kernel services
receives an EEH_BUSY message, EEH kernel services waits for some time and then calls the same
driver again. This process continues until EEH kernel services receive a different return code. This
process is repeated because some drivers need more time to cleanup before recovery can continue.
Cleanup would include such activities like killing a kproc or notifying a user level app.

If eeh_enable_dma() and eeh_enable_pio() cannot succeed due to the platform state restrictions, the
service returns an EEH_FAIL return code followed by an EEH_DD_DEAD message unless you take action.
To avoid receiving an EEH_FAIL return code, the driver must supply an
EEH_ENABLE_NO_SUPPORT_RC flag when eeh_init_multifunc() kernel services is initiated. If an
EEH_ENABLE_NO_SUPPORT_RC flag is supplied, eeh_enable_pio() and eeh_enable_dma() return
the EEH_NO_SUPPORT return code that indicates to the drivers that they cannot collect debug data but
can continue with the next step in recovery. For more information, see|eeh_read_slot_state}

N

The EEH kernel services that you can use are listed in the following table:

Note: eeh_init() and eeh_init_multifunc() are the only exported kernel services. All other kernel services
are called using function pointers in the eeh_handle kernel service.
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eeh_broadcast

Callback Routine
The(*callback_ptr)() function prototype is defined as:

Tong eeh_callback(
unsigned long Tong cmd, /* EEH messages */
void =arg, /* Pointer to dd defined argument =/
unsigned long flag) /* DD defined flag */

cmd — contains a kernel and driver message
arg — is a cookie to a target device driver that is usually a pointer to the adpater structure

flag argument can be either just EEH_MASTER or EEH_MASTER ORed with
EEH_DD_PIO_ENABLED.

EEH_MASTER indicates that the target device driver is the EEH_MASTER.

EEH_DD_PIO_ENABLED is only set with the EEH_DD_DEBUG message to indicate that the PIO is
enabled.

W=

When eeh_init_multifunc() is called, the callback routines are registered. When eeh_clear() is called the
callback routines are unregistered. The callback routines are necessary for EEH kernel services recovery.
They coordinate multi-function driver instances. For more information on how this coordination is done, see
[‘Enhanced 1/O Error Handling (EEH) Kernel Services” on page 48]
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The multi-function drivers are expected to handle the following EEH kernel services messages:
* EEH_DD_SUSPEND

Notifies all the device drivers on a slot that an EEH kernel services event occurred. The slot is either
frozen or temporarily unavailable. Because an EEH kernel services event occurred, the device drivers
suspend operations. Then, the EEH_MASTER driver either enables PIO/DMA or resets the slot.

« EEH_DD_DEBUG

Notifies all drivers on a slot that they can now gather debug data from the devices. The device drivers
log errors by calling the eeh_slot_error() function and passing in the gathered debug data. This
message is sent when the EEH_MASTER calls the eeh_enable_pio() function. On the callback routine,
the flag argument is set to EEH_DD_PIO_ENABLED.

* EEH_DD_DEAD

Notifies all drivers on a slot that the slot reached an unrecoverable state and the slot is no longer
usable. This message is sent anytime EEH kernel services fail because of hardware or firmware
problems. This message is also broadcast when a driver calls the eeh_slot_error() function with the
flag set to EEH_RESET_PERM. The device drivers usually perform necessary cleanup and mark the
adapter as permanently unavailable.

* EEH_DD_RESUME

Notifies all drivers on a slot that the EEH kernel services event was recovered successfully and that the
callback routines can now resume normal operation. This message is sent at the end of a successful
toggle of reset line and optional bridge (For example, the bridge on the adapter) configuration. The
device drivers must usually re-initialize their adapters before normal operation can begin again.

The device drivers define their own messages based on the contents of the sys/eeh.h file.
The eeh_callback() functions are scheduled to start sequentially at INTIODONE priority. They are not
started in any specific order. For more information, see [eeh_broadcast

Block 1/0 Buffer Cache Kernel Services: Overview

The Block I/O Buffer Cache services are provided to support user access to device drivers through block
I/0O special files. This access is required by the operating system file system for mounts and other limited
activity, as well as for compatibility services required when other file systems are installed on these kinds
of systems. These services are not used by the operating system’s JFS (journal file system), NFS
(Network File System), or CDRFS (CD-ROM file system) when processing standard file I/O data. Instead
they use the virtual memory manager and pager to manage the system’s memory pages as a buffer
cache.

For compatibility support of other file systems and block special file support, the buffer cache services
serve two important purposes:

» They ensure that multiple processes accessing the same block of the same device in multiprogrammed
fashion maintain a consistent view of the data in the block.

* They increase the efficiency of the system by keeping in-memory copies of blocks that are frequently
accessed.

The Buffer Cache services use the structure or buffer header as their main data-tracking mechanism.
Each buffer header contains a pair of pointers that maintains a doubly-linked list of buffers associated with
a particular block device. An additional pair of pointers maintain a doubly-linked list of blocks available for
use again on another operation. Buffers that have I/O in progress or that are busy for other purposes do
not appear in this available list.

Kernel buffers are discussed in more detail in|Introduction to Kernel Buffers|in AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 1.
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See [‘Block 1/0 Kernel Services” on page 45|for a list of these services.

Managing the Buffer Cache

Fourteen kernel services provide management of this block 1/O buffer cache mechanism. The |[getblk
kernel service allocates a buffer header and a free buffer from the buffer pool. Given a device and block
number, the getblk and kernel services both return a pointer to a buffer header for the block. But
the bread service is guaranteed to return a buffer actually containing a current data for the block. In
contrast, the getblk service returns a buffer that contains the data in the block only if it is already in
memory.

In either case, the buffer and the corresponding device block are made busy. Other processes attempting
to access the buffer must wait until it becomes free. The getblk service is used when:

* Ablock is about to be rewritten totally.
* |ts previous contents are not useful.
* No other processes should be allowed to access it until the new data has been placed into it.

The kernel service is used to perform read-ahead I/O and is similar to the bread service except
that an additional parameter specifies the number of the block on the same device to be read
asynchronously after the requested block is available. The kernel service makes the specified
buffer available again to other processes.

Using the Buffer Cache write Services

There are three slightly different write routines. All of them take a buffer pointer as a parameter and all
logically release the buffer by placing it on the free list. Theservice puts the buffer on the
appropriate device queue by calling the device’s strategy routine. The bwrite service then waits for 1/0
completion and sets the caller’s error flag, if required. This service is used when the caller wants to be
sure that I/O takes place synchronously, so that any errors can be handled immediately.

The [bawrite] service is an asynchronous version of the bwrite service and does not wait for /O
completion. This service is normally used when the overlap of processing and device I/O activity is
desired.

The [bdwrite] service does not start any 1/0 operations, but marks the buffer as a delayed write and
releases it to the free list. Later, when the buffer is obtained from the free list and found to contain data
from some other block, the data is written out to the correct device before the buffer is used. The bdwrite
service is used when it is undetermined if the write is needed immediately.

For example, the bdwrite service is called when the last byte of the write operation associated with a
block special file falls short of the end of a block. The bdwrite service is called on the assumption that
another write will soon occur that will use the same block again. On the other hand, as the end of a block
is passed, the bawrite service is called, because it is assumed the block will not be accessed again soon.
Therefore, the 1/0O processing can be started as soon as possible.

Note that the getblk and bread services dedicated the specified block to the caller while making other
processes wait, whereas the brelse, bwrite, bawrite, or bdwrite services must eventually be called to
free the block for use by other processes.

Understanding Interrupts

Each hardware interrupt has an interrupt level and an interrupt priority. The interrupt level defines the
source of the interrupt. There are basically two types of interrupt levels: system and bus. The system bus
interrupts are generated from the Micro Channel bus and system I/O. Examples of system interrupts are
the timer and serial link interrupts.
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The interrupt level of a system interrupt is defined in the sys/intr.h file. The interrupt level of a bus
interrupt is one of the resources managed by the bus configuration methods.

Interrupt Priorities

The interrupt priority defines which of a set of pending interrupts is serviced first. INTMAX is the most
favored interrupt priority and INTBASE is the least favored interrupt priority. The interrupt priorities for bus
interrupts range from INTCLASSO to INTCLASSS. The rest of the interrupt priorities are reserved for the
base kernel. Interrupts that cannot be serviced within the time limits specified for bus interrupts qualify as
off-level interrupts.

A device’s interrupt priority is selected based on two criteria: its maximum interrupt latency requirements
and the device driver’s interrupt execution time. The interrupt latency requirement is the maximum time
within which an interrupt must be serviced. (If it is not serviced in this time, some event is lost or
performance is degraded seriously.) The interrupt execution time is the number of machine cycles required
by the device driver to service the interrupt. Interrupts with a short interrupt latency time must have a short
interrupt service time.

The general rule for interrupt service times is based on the following interrupt priority table:

Priority Service Time (machine cycles)
INTCLASSO 200 cycles
INTCLASS1 400 cycles
INTCLASS2 600 cycles
INTCLASS3 800 cycles

The valid interrupt priorities are defined in the /usr/include/sys/intr.h file.

See ['Interrupt Management Kernel Services” on page 46| for a list of these services.

Understanding DMA Transfers

AIX DMA support deals with the issues of DMA (Direct Memory Access) by I/O devices to and from system
memory. The programming framework supports common I/O buses such as PCl and ISA, and is easily
extensible to additional bus types. The framework supports 64-bit addressability, and also allows for
mappings from 32-bit devices to 64-bit addresses to be hidden from the devices and their drivers.

DMA Programming Model

This is the basic DMA programming model. It is completely independent of:
» System hardware

* LPAR mode or non-LPAR mode

» 32-bit bus/devices or 64-bit bus/devices

» 32-bit kernel or 64-bit kernel

A device driver allocates and initializes DMA-related resources with the d_map_init service and frees the
resources with the d_map_clear service. Each time a DMA mapping needs to be established, the driver
calls d_map_page or d_map_list service.

d_map_page and d_map_list map DMA buffers in the bus memory. In other words, given a set of DMA
buffer addresses, a corresponding set of bus addresses is returned to the driver. The driver programs its
device with the bus addresses and sets it up to start the DMA. When the DMA is complete:

* The device generates an interrupt that is handled by the driver.

* If no more DMA will be done to the buffers, the driver unmaps the DMA buffers with d_unmap_page or
d_unmap_list services.
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Data Structures

d_map_init returns a d_handle_t to the caller upon a successful completion. Only d_map_init is an
exported kernel service. All other DMA kernel services are called through the function pointers in
d_handle_t (see sys/dma.h).

d_handle {
uint id; /* identifier for this device */
uint flags; /* device capabilities */
#ifdef _ 64BIT_KERNEL
/* pointer to d_map_page routine =*/
int (xd_map_page) (d_handle_t,int,caddr_t, ulong *, struct xmem
*)3
/* pointer to d_unmap_page routine */
void (*d_unmap_page) (d_handle_t, ulong *);
/* pointer to d_map_list routine =/
int (xd_map_list)(d_handle_t, int, int, dio_t, dio_t);
/* pointer to d_unmap_list routine =/
void (*d_unmap_list)(d_handle_t, dio_t);
/* pointer to d_map_slave routine */
int (*d_map_slave)(d_handle_t, int, int, dio_t, uint);
/* pointer to d_unmap_slave routine */
int (*d_unmap_slave) (d_handle_t);
/* pointer to d_map_disable routine =/
int (*d_map_disable) (d_handle_t);
/* pointer to d_map_enable routine */
int (*d_map_enable) (d_handle_t);
/* pointer to d_map_clear routine */
void (*d_map_clear)(d_handle_t);
/* pointer to d_sync_mem routine */
int (*d_sync_mem) (d_handle_t, dio_t);
#else
int (*d_map_page)(); /* pointer to d_map_page routine */
void (*d_unmap_page)(); /* pointer to d_unmap_page routine */
int (*d_map_Tlist)(); /* pointer to d _map_list routine */
void (*d_unmap_list)(); /* pointer to d_unmap_list routine */
int (*d_map_slave)(); /* pointer to d map_slave routine */
int (*d_unmap_slave)(); /* pointer to d_unmap_slave routine */
int (*d_map_disable)(); /* pointer to d_map_disable routine */
int (*d_map_enable)(); /* pointer to d_map_enable routine */
void (*d_map_clear)(); /* pointer to d_map_clear routine x/
int (*d_sync_mem)(); /* pointer to d_sync_mem routine */
#endif
int bid; /* bus id passed to d _map_init */
void *bus_sys_xlate_ptr; /* pointer to dma bus to system
translation information */
uint reservedl; /* padding */
uint reserved2; /* padding */
uint reserved3; /* padding */

}s

The following are the dio and d_iovec structures used to define the scatter/gather lists used by the
d_map_list, d_unmap_list, and d_map_slave services (see sys/dma.h).

struct dio {

int321ong64_t total_iovecs; /* total available iovec entries */

int321ong64_t used_iovecs; /* number of used iovecs */

int327ong64_t bytes_done; /* count of bytes processed */

int321ong64_t resid_iov; /* number of iovec that couldn't be x/
/* fully mapped due to NORES,DIOFULLx/
/* vec =&dvec [resid_iov] */

struct d_iovec *dvec; /* pointer to Tist of d_iovecs */

}s

struct d_iovec {
caddr_t iov_base; /* base memory address */
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int321ong64_t iov_len; /* length of transfer for this area =*/
struct xmem *xmp; /* cross memory pointer for this address*/

}s

The following are the dio_64 and d_iovec_64 structures used to define the scatter and gather lists used by
the d_map_list and d_unmap_list services when the DMA_ENABLE_64 flag is set on the d_map_init
call. These are not used under the 64-bit Kernel and Kernel Extension environment because the dio and
d_iovec data structures are naturally 64-bit capable in that environment. (For more information, see
sys/dma.).

struct dio 64 {
int total_iovecs; /* total available iovec entries */
int used_iovecs; /* number of used iovecs */
int bytes_done; /* count of bytes processed */
int resid_iov; /* number of iovec that couldn't be */
/* fully mapped due to NORES,DIOFULL%*/
/* vec = &dvec [resid_iov] */
struct d_iovec_64 *dvec; /* pointer to Tist of d_iovecs */

}s

struct d_iovec_64 {
unsigned Tong long jov_base; /* base memory address */
int iov_len; /* length of transfer for this area */
struct xmem *xmp; /* cross memory pointer for this address*/

The following macros are provided in sys/dma.h for device drivers in order to call the DMA kernel services
cleanly:

#define D_MAP_INIT(bid, flags, bus_flags, channel) \
d_map_init(bid, flags, bus_flags, channel)

#define D_MAP_CLEAR(handle) (handle->d_map_clear) (handle)

#define D_MAP_PAGE(handle, flags, baddr, busaddr, xmp) \
(handle->d_map_page) (handle,flags, baddr, busaddr, xmp)

#define D_UNMAP_PAGE (handle, bus_addr) \
if (handle->d_unmap_page != NULL) (handle->d_unmap_page) (handle, bus_addr)

#define D_MAP_LIST(handle, flags, minxfer, virt_list, bus_Tist) \
(handle->d_map_1list) (handle, flags, minxfer, virt Tist,bus _Tlist)

#define D_UNMAP_LIST(handle, bus list) \
if (handle->d_unmap_Tlist != NULL) (handle->d_unmap_list) (handle, bus_list)

#define D_MAP_SLAVE(handle, flags, minxfer, vlist, chan_flags) \
(handle->d_map_slave) (handle, flags, minxfer, vlist, chan_flags)

#define D_UNMAP_SLAVE(handle) \
(handle->d_unmap_slave != NULL) ? \
(handle->d_unmap_slave) (handle) : DMA_SUCC
#define D_MAP_DISABLE(handle) (handle->d_map_disable)(handle)
#define D_MAP_ENABLE(handle)  (handle->d _map_enable) (handle)
#define D_SYNC MEM(handle, bus list) \

(handle->d_sync_mem != NULL) ? \
(handle->d_sync_mem) (handle, bus_list) : DMA_SUCC
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d_map Return Code Map

The following table describes the possible return codes and requirements for the d_map interfaces that

map memory for DMA:

Return Codes

d_map_page

d_map_list

d_map_slave

Successful partial mapping
as indicated. d_unmap_list
must be called when
finished with the partial

mapping

DMA_SUCC Page mapped successfully, |List mapped successfully. List mapped successfully.
busaddr contains the bus_list describes list of Slave DMA Controller
mapped bus address. mapped bus addresses. initialized for the desired
d_unmap_page must be d_unmap_list must be transfer. d_unmap_slave
called to free any resources | called to free any resources | must be called to free any
associated with the associated with the resources associated with
mapping mapping the mapping

DMA_NORES Not enough resources to Not enough resources to Not enough resources to
map the page. No mapping | map the entire list. A partial | map the entire list. A partial
is performed mapping is possible. mapping is possible.
d_unmap_page must not |d_unmap_list must be d_unmap_slave must be
be called called to free any resources | called to free any resources

associated with the associated with the
mapping mapping

DMA_NOACC No access to the page. No |No access to a page in the |No access to a page in the
mapping is performed. list. No mapping is list. No mapping is
d_unmap_page must not | performed. d_unmap_list |performed. d_unmap_slave
be called. must not be called. must not be called.

DMA_DIOFULL Does not apply bus_list is exhausted. Does not apply

DMA_BAD_MODE

Does not apply

Does not apply

Requested channel mode(s)
are not supported

Using dio

A device driver can use the dio structure in many ways. It can be used to:
» Pass a list of virtual addresses and lengths of buffers to the d_map_list and d_map_slave services
* Receive the resulting list of bus addresses (d_map_list only) for use by the device in the data transfer.

Note: The driver does not need a dio bus list for calls to d_map_slave because the address

generation for slaves is hidden.

Typically, a device driver provides a dio structure that contains only one virtual buffer and one length in the
list. If the virtual buffer length spans many pages, the bus address list contains multiple entries that reflect
the physical locations of the virtually contiguous buffer. The driver can provide multiple virtual buffers in the
virtual list. This allows the driver to place many buffer requests in one I/O operation.

The device driver is responsible for allocating the storage for all the dio lists it needs. For more
information, see the DIO_INIT and DIO_FREE macros in the sys/dma.h header file.The driver must have
at least two dio structures. One is needed for passing in the virtual list. Another is needed to accept the
resulting bus list. The driver can have many dio lists if it plans to have multiple outstanding I/O commands
to its device. The length of each list is dependent on the use of the device and driver. The virtual list
needs as many elements as the device could place in one operation at the same time. A formula for
estimating how many elements the bus address list needs is the sum of each of the virtual buffers lengths
divided by page size plus 2. Or,

sum [i=0 to n] ((vlist[i].length / PSIZE) + 2).
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This formula handles a worst case situation. For a contiguous virtual buffer that spans multiple pages,
each physical page is discontiguous, and neither the starting or ending address are page-aligned.

If the d_map_list service runs out of space while filling in the dio bus list, a DMA_DIOFULL error is
returned to the device driver and the bytes_done field of the dio virtual list is set to the number of bytes
successfully mapped in the bus list. This byte count is guaranteed to be a multiple of the minxfer field
provided to the d_map_list or d_map_slave services. Also, the resid_iov field of the virtual list is set to
the index of the first d_iovec entry that represents the remainder of iovecs that could not be mapped.

The device driver can:
» Initiate a partial transfer on its device and leave the remainder on its device queue

If the driver chooses not to initiate the partial transfer, it must still make a call to d_unmap_list to undo
the partial mapping.

* Make another call to the d_map_list with new dio lists for the remainder and setup its device for the full
transfer that was originally intended.

If d_map_list or d_map_slave encounter an access violation on a page within the virtual list, then a
DMA_NOACC error is returned to the device driver and the bytes_done field of the dio virtual list is set to
the number of bytes that preceded the faulting iovec. In this case, the resid_iov field is set to the index of
the d_ijovec entry that encountered the violation. From this information, the driver can determine which
virtual buffer contained the faulting page and fail that request back to the originator.

Note: If the DMA_NOACC error is returned, the bytes_done count is not guaranteed to be a multiple of
the minxfer field provided to the d_map_list or d_map_slave services, and no partial mapping is
done. For slaves, setup of the address generation hardware is not done. For masters, the bus list is
undefined. If the driver desires a partial transfer, it must make another call to the mapping service
with the dio list adjusted to not include the faulting buffer.

If either the d_map_list or d_map_slave services run out of resources while mapping a transfer, a
DMA_NORES error is returned to the device driver. In this case, the bytes_done field of the dio virtual list
is set to the number of bytes that were successfully mapped in the bus list. This byte count is guaranteed
to be a multiple of the minxfer field provided to the d_map_list or d_map_slave services. Also, the
resid_iov field of the virtual list is set to the index of the first d_iovec of the remaining iovecs that could not
be mapped. The device driver can:

 |Initiate a partial transfer on its device and leave the remainder on its device queue

If the driver chooses not to initiate the partial transfer, it still must make a call to d_unmap_list or
d_unmap_slave (for slaves) to undo the partial mapping.

» Choose to leave the entire request on its device queue and wait for resources to free up (for example,
after a device interrupt from a previous operation).

Note: If the DMA_ENABLE_64 flag was indicated on the d_map_init call, the programming model is the
same with one exception. The dio_64 and d_iovec_64 structures are used in addition to 64-bit
address fields on d_map_page and d_unmap_page calls.

Fields of dio

The only field of the bus list that a device driver modifies is the fotal_iovecs field to indicate how many
elements are available in the list. The device driver never changes any of the other fields in the bus list.
The device driver uses the bus list to set up its device for the transfer. The bus list is provided to the
d_unmap_list service to unmap the transfer. The d_map_list service sets the used_iovecs field to
indicate how many elements it filled out. The device driver sets up all of the fields in the virtual list except
for the bytes_done and resid_iov fields. These fields are set by the mapping service.
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Using DMA_CONTIGUOUS

The DMA_CONTIGUOUS flag in d_map_init is the preferred way for the drivers to ask for contiguous bus
addresses. The other way is the old model of drivers explicitly using rmalloc() to guarantee contiguous
allocation during boot. However, with the advent of PCI Hot Plug devices, the rmalloc reservation does
not add a device after boot. If a PowerPC driver determines the device was dynamically added, the driver
can use the DMA_CONTIGUOUS flag to ensure that a contiguous list of bus addresses is generated
because no prior resources were reserved with rmalloc.

Using DMA_NO_ZERO_ADDR

DMA_NO_ZERO_ADDR is supplied on d_map_init in order to prevent d_map_page and d_map_list
from giving out bus address zero to this d_handle. Because many off-the-shelf PCI devices are not tested
for bus address of zero, such devices might not work. Striking out bus address 0 causes a driver’s
mappable memory to shrink by one 1/0 page (4KB). On some systems, using the flag would cause
d_map_init to fail even if there is not an error condition. In such a case, the driver should call d_map_init
without the flag and then check the bus address to see whether zero falls in its range of addresses. The
driver can do this by mapping all of its range and checking for address 0. Such a check should be done at
the driver initialization time. If bus address 0 is assigned to the driver, it can leave it mapped for the life of
the driver and unmap all other addresses. This guarantees that address 0 will not be assigned to it again.

Sample pseudo-code for the PCI drivers

dd_initialization:

determine bus type for device from configuration information
determine 64 vs. 32-bit capabilities from configuration information
call "handle = D MAP_INIT(bid, DMA MASTER|flags, bus_flags, channel)"
if handle == DMA_FAIL

could not configure

dd_start_io:

if single page or less transfer
call "result = D_MAP_PAGE(handle, baddr,busaddr, xmem)"
if result == DMA_NORES
no resources, leave request on device queue
else if result == DMA_NOACC
no access to page, fail request
else
program device for transfer using busaddr
else
create dio list of virtual addresses involved in transfer
call "result = D_MAP_LIST(handle, flags, minxfer, 1ist, blist)"
if result == DMA_NORES
not enough resource, either initiate partial transfer
and Teave remainder on queue or leave entire request
on the queue and call d_unmap_list to unmap the
partial transfer.
else if result == DMA_NOACC
use bytes_done to pinpoint failing buffer and
fail corresponding request adjust virtual 1ist and
call d_map_Tlist again
else if result == DMA_DIOFULL
ran out of space in blist. either initiate partial
transfer and leave remainder on queue or Teave entire
request on the queue and call d_unmap_list to
unmap the partial transfer.
else
program device for scatter/gather transfer using blist

dd_finish_io:

if single page or less transfer
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call "D_UNMAP_PAGE(handle, busaddr)"
else
call "D _UNMAP_LIST(handle, blist)"

dd_unconfigure:

call "D_MAP_CLEAR(handle)"

Sample Pseudo-code for the ISA Slave drivers

dd_initialization:

determine bus type for device from configuration information
call "handle = D_MAP_INIT(bid, DMA_SLAVE, bus_flags, channel)"
if handle == DMA_FAIL

could not configure
else

call "D_MAP_ENABLE(handle)" (if necessary)

dd_start_io:

create dio Tist of virtual addresses involved in transfer
call "result = D_MAP_SLAVE(handle, flags, minxfer, vlist,
chan_flags)"
if result == DMA_NORES
not enough resource, either initiate partial transfer
and Teave remainder on queue or leave entire request
on the queue and call d_unmap_slave to unmap the
partial transfer.
else if result == DMA_NOACC
use bytes_done to pinpoint failing buffer and
fail corresponding request
adjust virtual Tist and call d_map_slave again
else
program device to initiate transfer

dd_finish_io:

call "error = D_UNMAP_SLAVE(handle)"
if error

log

retry, or fail

dd_unconfigure:

call "D_MAP_DISABLE(handle)" (if necessary)
call "D_MAP_CLEAR(handle)"

Page Protection Checking and Enforcement

Page protection checking is performed by the d_map_page, d_map_list, and d_map_slave services for
each page of a requested transfer. If the intended direction of a transfer is from the device to the memory,
the page access permissions must allow writing to the page. If the intended direction of a transfer is from
the memory to the device, the page access permissions only needs to allow reading from the page.In the
case of a protection violation, a DMA_NOACC return code is returned from the services in the form of an
error code and no mapping for the DMA transfer is performed.

The DMA_BYPASS flag allows a device driver to bypass the access checking functionality of these
services. This should only be used for global system buffers such as mbufs or other command, control,
and status buffers used by a device driver. Also, the DMA buffers must be pinned before the DMA transfer
begins and can only be unpinned after the DMA transfer is complete.
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A comparison of PCI and ISA devices
The ISA bus has the following unique concepts that do not apply to the PCI bus:

* Enabling and disabling a DMA channel applies only to the ISA bus and devices. Therefore,
d_map_enable and d_map_disable services cannot be used by PCI device drivers.

» Master and slave devices are not applicable to the PCI bus. On a PCI bus, every device acts as master.

Starting with AIX 5.2, only ISA slave devices are supported (ISA masters are not supported). For such ISA
slave devices, the PCI-to-ISA bridge acts as the PCI master and initiates DMA on behalf of the ISA slave
devices. Because the PCI devices are always master, d_map_slave and d_unmap_slave services cannot
be used by PCI device drivers. By the same token, the DMA_SLAVE flag cannot be supplied on
d_map_init by a PCI device driver. If DMA_SLAVE is used by a PCI driver, d_map_init() returns
DMA_FAIL.

d_align and d_roundup

The d_align service (provided in libsys.a) returns the alignment value required for starting a buffer on a
processor cache line boundary. The d_roundup service (also provided in libsys.a) can be used to round
the desired DMA buffer length up to a value that is an integer number of cache lines. These two services
allow buffers to be used for DMA to be aligned on a cache line boundary and allocated in whole multiples
of the cache line size so that the buffer is not split across processor cache lines. This reduces the
possibility of consistency problems because of DMA and also minimizes the number of cache lines that
must be flushed or invalidated when used for DMA. For example, these services can be used to provide
alignment as follows:

align = d_align();

buffer_length = d_roundup(required_length);

buf ptr = xmalloc(buffer_length, align, kernel _heap);

Kernel Extension and Device Driver Management Services

The kernel provides a set of program and device driver management services. These services include
kernel extension loading and unloading services and device driver binding services. Services that allow
kernel extensions to be notified of base kernel configuration changes, user-mode exceptions, and process
state changes are also provided.

The following information is provided to assist you in in learning more about kernel services:
« [‘Kernel Extension Loading and Unloading Services’|

« [“Other Kernel Extension and Device Driver Management Services’|

« [“List of Kernel Extension and Device Driver Management Kernel Services” on page 61|

Kernel Extension Loading and Unloading Services

The [kmod_load| kmod_unload| and kmod_entrypt| services provide kernel extension loading, unloading,
and query services. User-mode programs and kernel processes can use thesubroutine to
invoke the kmod_load and kmod_unload services. The kmod_entrypt service returns a pointer to a
kernel extension’s entry point.

The kmod_load, kmod_unload services can be used to dynamically alter the set of routines loaded into
the kernel based on system configuration and application demand. Subsystems and device drivers can
use these services to load large, seldom-used routines on demand.

Other Kernel Extension and Device Driver Management Services

The device driver binding services are |[devswadd} [devswdel| [devswchg, and |[devswqry| The devswadd,
devswdel, and devswchg services are used to add, remove, or modify device driver entries in the
dynamically-managed device switch table. The devswqry service is used to obtain information about a
particular device switch table entry.
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Some kernel extensions might be sensitive to the settings of base kernel runtime configurable parameters
that are found in the var structure defined in the /usr/include/sys/var.h file. These parameters can be set
automatically during system boot or at runtime by a privileged user. Kernel extensions can register or
unregister a configuration notification routine with the |cfgnadd| and |cfgnde! kernel services. Each time the
sysconfig subroutine is used to change base kernel tunable parameters found in the var structure, each
registered configuration notification routine is called.

The [prochadd|and [prochdel| kernel services allow kernel extensions to be notified when any process in
the system has a state transition, such as being created, exiting, or being swapped in or swapped out.

The |uexadd| and juexdel| kernel services give kernel extensions the capability to intercept user-mode
exceptions. A user-mode exception handler can use this capability to dynamically reassign access to
single-use resources or to clean up after some particular user-mode error. The associatedand
services can be used by these handlers to block and resume process execution when handling
these exceptions.

The |gio_assisg| and |getexcegt| kernel services are used by device drivers to obtain detailed information
about exceptions that occur during I/O bus access. The getexcept service can also be used by any
exception handler requiring more information about an exception that has occurred. The kernel
service is used by file select operations to register unsatisfied asynchronous poll or select event requests
with the kernel. The kernel service provides the same functionality as the selwakeup service
found on other operating systems.

The liostadd| and |iostdell services are used by tty and disk device drivers to register device activity
reporting structures to be used by the [iostat| and vmstat| commands.

The |getuerror| and [setuerror| services allow kernel extensions to read or set the ut_error field for the
current thread. This field can be used to pass an error code from a system call function to an application
program, because kernel extensions do not have direct access to the application’s errno variable.

List of Kernel Extension and Device Driver Management Kernel
Services
The Kernel Program and Device Driver Management kernel services are:

Registers a notification routine to be called when system-configurable variables are changed.
cfgndel Removes a notification routine for receiving broadcasts of changes to system configurable
variables.
devdump| Calls a device driver dump-to-device routine.
devstrat Calls a block device driver’s strategy routine.
devswadd Adds a device entry to the device switch table.
devswchg Alters a device switch entry point in the device switch table.
devswdel Deletes a device driver entry from the device switch table.
Checks the status of a device switch entry in the device switch table.
Allows kernel exception handlers to retrieve additional exception information.

Allows kernel extensions to read the ut_error field for the current thread.

Registers an /O statistics structure used for updating 1/O statistics reported by the iostat
subroutine.

Removes the registration of an 1/O statistics structure used for maintaining I/O statistics on a
particular device.

kmod_entryp Returns a function pointer to a kernel module’s entry point.

kmod_loa Loads an object file into the kernel or queries for an object file already loaded.

kmod_unload Unloads a kernel object file.

Eio_assistl Provides a standardized programmed I/O exception handling mechanism for all routines
performing programmed 1/O.

Adds a system wide process state-change notification routine.
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Deletes a process state change notification routine.

Registers an asynchronous poll or select request with the kernel.

Wakes up processes waiting in a poll or select subroutine or the fp_poll kernel service.
Allows kernel extensions to set the ut_error field for the current thread.

Adds a system wide exception handler for catching user-mode process exceptions.
Makes the currently active kernel thread not runnable when called from a user-mode
exception handler.

uexclea Makes a kernel thread blocked by the uexblock service runnable again.

uexdeli

Deletes a previously added system-wide user-mode exception handler.

Locking Kernel Services

The following information is provided to assist you in understanding the locking kernel services:
« |Lock Allocation and Other Services|

« [Simple Lockg

.

.

+ [Atomic Operations|

Lock Allocation and Other Services

The following lock allocation services allocate and free internal operating system memory for simple and
complex locks, or check if the caller owns a lock:

Allocates system memory for a simple or complex lock.
Frees the system memory of a simple or complex lock.
lock_mine Checks whether a simple or complex lock is owned by the caller.

Simple Locks

Simple locks are exclusive-write, non-recursive locks that protect thread-thread or thread-interrupt critical
sections. Simple locks are preemptable, meaning that a kernel thread can be preempted by another,
higher priority kernel thread while it holds a simple lock. The simple lock kernel services are:

lsimple_lock_init] Initializes a simple lock.
simple_lock|, simple_lock_try Locks a simple lock.
Unlocks a simple lock.

On a multiprocessor system, simple locks that protect thread-interrupt critical sections must be used in
conjunction with interrupt control in order to serialize execution both within the executing processor and
between different processors. On a uniprocessor system interrupt control is sufficient; there is no need to
use locks. The following kernel services provide appropriate locking calls for the system on which they are
executed:

disable_lock Raises the interrupt priority, and locks a simple lock if necessary.
unlock_enabl Unlocks a simple lock if necessary, and restores the interrupt priority.

Using the disable_lock and unlock_enable kernel services to protect thread-interrupt critical sections
(instead of calling the underlying interrupt control and locking kernel services directly) ensures that
multiprocessor-safe code does not make unnecessary locking calls on uniprocessor systems.

Simple locks are spin locks; a kernel thread that attempts to acquire a simple lock may spin (busy-wait:
repeatedly execute instructions which do nothing) if the lock is not free. The table shows the behavior of
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kernel threads and interrupt handlers that attempt to acquire a busy simple lock.

Caller Owner is Running Owner is Sleeping

Thread (with interrupts enabled) Caller spins initially; it sleeps if the Caller sleeps immediately.
maximum spin threshold is crossed.

Interrupt handler or thread (with Caller spins until lock is acquired. Caller spins until lock is freed (must

interrupts disabled) not happen).

Note: On uniprocessor systems, the maximum spin threshold is set to one, meaning that that a kernel
thread will never spin waiting for a lock.

A simple lock that protects a thread-interrupt critical section must never be held across a sleep, otherwise
the interrupt could spin for the duration of the sleep, as shown in the table. This means that such a routine
must not call any external services that might result in a sleep. In general, using any kernel service which
is callable from process level may result in a sleep, as can accessing unpinned data. These restrictions do
not apply to simple locks that protect thread-thread critical sections.

The lock word of a simple lock must be located in pinned memory if simple locking services are called with
interrupts disabled.

Complex Locks

Complex locks are read-write locks that protect thread-thread critical sections. Complex locks are
preemptable, meaning that a kernel thread can be preempted by another, higher priority kernel thread
while it holds a complex lock. The complex lock kernel services are:

Initializes a complex lock.
Tests whether a complex lock is locked.
| Unlocks a complex lock.
lock_read| [lock_try_read| Locks a complex lock in shared-read mode.
lock_read_to_write] lock_try_read_to_write] Upgrades a complex lock from shared-read mode to
exclusive-write mode.
Iock_write[ |Iock_try_write| Locks a complex lock in exclusive-write mode.
lock_write_to_read Downgrades a complex lock from exclusive-write mode to
shared-read mode.
lock_set_recursive| Prepares a complex lock for recursive use.
lock_clear_recursive| Prevents a complex lock from being acquired recursively.

By default, complex locks are not recursive (they cannot be acquired in exclusive-write mode multiple
times by a single thread). A complex lock can become recursive through the lock_set_recursive kernel
service. A recursive complex lock is not freed until lock_done is called once for each time that the lock
was locked.

Complex locks are not spin locks; a kernel thread that attempts to acquire a complex lock may spin briefly
(busy-wait: repeatedly execute instructions which do nothing) if the lock is not free. The table shows the
behavior of kernel threads that attempt to acquire a busy complex lock:

Owner is Running and no Other
Current Lock Mode Thread is Asleep on This Lock Owner is Sleeping

Exclusive-write Caller spins initially, but sleeps if the | Caller sleeps immediately.
maximum spin threshold is crossed,
or if the owner later sleeps.

Shared-read being acquired for Caller sleeps immediately.
exclusive-write
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Owner is Running and no Other
Current Lock Mode Thread is Asleep on This Lock Owner is Sleeping

Shared-read being acquired for Lock granted immediately
shared-read

Note:

1. On uniprocessor systems, the maximum spin threshold is set to one, meaning that a kernel
thread will never spin waiting for a lock.

2. The concept of a single owner does not apply to a lock held in shared-read mode.

Lockl Locks

Note: Lockl locks (previously called conventional locks) are only provided to ensure compatibility with
existing code. New code should use simple or complex locks.

Lockl locks are exclusive-access and recursive locks. The lockl lock kernel services are:

lockl Locks a conventional lock.
unlockil Unlocks a conventional lock.

A thread which tries to acquire a busy lockl lock sleeps immediately.

The lock word of a lockl lock must be located in pinned memory if the lockl service is called with interrupts
disabled.

Atomic Operations

Atomic operations are sequences of instructions that guarantee atomic accesses and updates of shared
single word variables. This means that atomic operations cannot protect accesses to complex data
structures in the way that locks can, but they provide a very efficient way of serializing access to a single
word.

The atomic operation kernel services are:

fetch_and_add Increments a single word variable atomically.

fetch_and_and Manipulates bits in a single word variable atomically.

compare_and_swap Conditionally updates or returns a single word variable
atomically.

Single word variables accessed by atomic operations must be aligned on a full word boundary, and must
be located in pinned memory if atomic operation kernel services are called with interrupts disabled.

File Descriptor Management Services

The File Descriptor Management services are supplied by the logical file system for creating, using, and
maintaining file descriptors. These services allow for the implementation of system calls that use a file
descriptor as a parameter, create a file descriptor, or return file descriptors to calling applications. The
following are the File Descriptor Management services:

Allocates and initializes a file descriptor.
Increments the reference count on a file descriptor.
Decrements the reference count on a file descriptor.
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Gets a file structure pointer from a held file descriptor.
Gets the flags from a file descriptor.
Sets flags in a file descriptor.

Logical File System Kernel Services

The Logical File System services (also known as the fp_services) allow processes running in kernel mode
to open and manipulate files in the same way that user-mode processes do. Data access limitations make
it unreasonable to accomplish these tasks with system calls, so a subset of the file system calls has been
provided with an alternate kernel-only interface.

The Logical File System services are one component of the logical file system, which provides the
functions required to map system call requests to virtual file system requests. The logical file system is
responsible for resolution of file names and file descriptors. It tracks all open files in the system using the
file table. The Logical File System services are lower level entry points into the system call support within
the logical file system.

Routines in the kernel that must access data stored in files or that must set up paths to devices are the
primary users of these services. This occurs most commonly in device drivers, where a lower level device
driver must be accessed or where the device requires microcode to be downloaded. Use of the Logical
File System services is not, however, restricted to these cases.

A process can use the Logical File System services to establish access to a file or device by calling:
. Theservice with a path name to the file or device it must access.
« The [fp_opendev] service with the device number of a device it must access.

« The [fp_getf] service with a file descriptor for the file or device. If the process wants to retain access past
the duration of the system call, it must then call the fp_hold service to acquire a private file pointer.

These three services return a file pointer that is needed to call the other Logical File System services. The
other services provide the functions that are provided by the corresponding system calls.

Other Considerations
The Logical File System services are available only in the [process environment}

In addition, calling the fp_open service at certain times can cause a deadlock. The lookup on the file
name must acquire file system locks. If the process is already holding any lock on a component of the
path, the process will be deadlocked. Therefore, do not use the fp_open service when the process is
already executing an operation that holds file system locks on the requested path. The operations most
likely to cause this condition are those that create files.

List of Logical File System Kernel Services
These are the Logical File System kernel services:

Checks for access permission to an open file.

Closes a file.

Gets the attributes of an open file.

Gets the device number or channel number for a device.

Retrieves a pointer to a file structure.

fp_hold Increments the open count for a specified file pointer.

fp_ioctl Issues a control command to an open device or file.

Changes the current offset in an open file.

Changes the current offset in an open file. Used to access offsets beyond 2GB.
Opens special and regular files or directories.
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Opens a device special file.

Checks the 1/O status of multiple file pointers, file descriptors, and message queues.
Performs a read on an open file with arguments passed.

Performs a read operation on an open file with arguments passed in iovec elements.
Performs read or write on an open file with arguments passed in a uio structure.
Provides for cascaded, or redirected, support of the select or poll request.

Performs a write operation on an open file with arguments passed.

Performs a write operation on an open file with arguments passed in iovec elements.
Writes changes for a specified range of a file to permanent storage.

Programmed I/O (P1O) Kernel Services

The following is a list of PIO kernel services:

||io_map| Attaches to an 1/0 mapping

| Removes an I/O mapping segment
| Creates and initializes an 1/0O mapping segment
| Detaches from an 1/0O mapping

These kernel services are defined in the adspace.h and ioacc.h header files.

For a list of PIO macros, see |Programmed I/O Services|in Understanding the Diagnostic Subsystem for
AlX.

Memory Kernel Services

The Memory kernel services provide kernel extensions with the ability to:

* Dynamically allocate and free memory

* Pin and unpin code and data

» Access user memory and transfer data between user and kernel memory
» Create, reference, and change virtual memory objects

The following information is provided to assist you in learning more about memory kernel services:
« [Memory Management Kernel Services|

+ [Memory Pinning Kernel Services|

« [User Memory Access Kernel Services|

« [Virtual Memory Management Kernel Services|

+ |Cross-Memory Kernel Services|

Memory Management Kernel Services
The Memory Management services are:
Initializes a new heap to be used with kernel memory management services.

Allocates memory.
Frees allocated memory.
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Memory Pinning Kernel Services
The Memory Pinning services are:

Pins the address range in the system (kernel) space and frees the page space for the
associated pages.

Unpins the address range in system (kernel) address space and reallocates paging
space for the specified region.

Pins the address range in the system (kernel) space.

Pins the code and data associated with a loaded object module.

Pins the specified address range in user or system memory.

Unpins the address range in system (kernel) address space.

Unpins the code and data associated with a loaded object module.

Unpins the specified address range in user or system memory.

Pins the specified address range in user or system memory, given a valid
cross-memory descriptor.

Unpins the specified address range in user or system memory, given a valid
cross-memory descriptor.

Note: pinu and unpinu are only available on the 32—-bit kernel. Because of this limitation, it is
recommended that xmempin and xmemunpin be used in place of pinu and unpinu.

User-Memory-Access Kernel Services

In a system call or kernel extension running under a user process, data in the user process can be moved
in or out of the kernel using the [copyin| and [copyou services. The uiomove]service is used for scatter
and gather operations. If user data is to be referenced asynchronously, such as from an interrupt handler
or a kernel process, the cross memory services must be used.

The User-Memory-Access kernel services are:

coE%in! copyin64 Copies data between user and kernel memory.

copyinstr, copyinstr64 Copies a character string (including the terminating null character) from user to kernel
space.

copyout] copyout64 Copies data between user and kernel memory.

fubyte| fubyte64 Fetches, or retrieves, a byte of data from user memory.

fuword| fuword64 Fetches, or retrieves, a word of data from user memory.

subyte] subyte64 Stores a byte of data in user memory.

suword| suword64 Stores a word of data in user memory.

Moves a block of data between kernel space and a space defined by a uio structure.
Writes a character to a buffer described by a uio structure.

Retrieves a character from a buffer described by a uio structure.

Note: The copyin64, copyout64, copyinstr64, fubyte64, fuword64, subyte64, and suword64 kernel
services are defined as macros when compiling kernel extensions on the 64—bit kernel. The macros
invoke the corresponding kernel services without the "64" suffix.

Virtual Memory Management Kernel Services

These services are described in more detail in[“Understanding Virtual Memory Manager Interfaces” on|
page 69| The Virtual Memory Management services are:

as_att] as_att64 Selects, allocates, and maps a specified region in the current user address space.

as_det] as_det64 Unmaps and deallocates a region in the specified address space that was mapped
with the as_att or as_att64 kernel service.

as_geth64 Obtains a handle to the virtual memory object for the specified address given in the

specified address space. The virtual memory object is protected.

Chapter 4. Kernel Services 67



, as_getsrval64 Obtains a handle to the virtual memory object for the specified address given in the
specified address space.

las_puth| as_puth64 Indicates that no more references will be made to a virtual memory object that was
obtained using the as_geth or as_geth64 kernel service.

, as_seth64 Maps a specified region in the specified address space for the specified virtual
memory object.

Obtains a pointer to the current process’s address space structure for use with the
as_att and as_det kernel services.

io_att Selects, allocates, and maps a region in the current address space for I/O access.

io_de Unmaps and deallocates the region in the current address space at the given
address.

Maps a specified virtual memory object to a region in the current address space.
Flushes the processor’s cache for a specified address range.

Unmaps and deallocates the region in the current address space that contains a
given address.

vm_galloc Allocates a region of global memory in the 64-bit kernel.

vm_gfree Frees a region of global memory in the kernel previously allocated with the
vm_galloc kernel service.

Constructs a virtual memory handle for mapping a virtual memory object with
specified access level.

Makes a page in client storage.

Adds a file system to the paging device table.

Moves data between a virtual memory object and a buffer specified in the uio
structure.

Sets the page protection key for a page range.

Determines whether a mapped file has been changed.

Releases virtual memory resources for the specified address range.

Releases virtual memory resources for the specified page range.

Moves data between a virtual memory object and a buffer specified in the uio
structure.

Removes a file system from the paging device table.

Converts a virtual memory handle to a virtual memory object (id).

Initiates page-out for a page range in the address space.

Initiates page-out for a page range in a virtual memory object.

Creates a virtual memory object of the type and size and limits specified.
Deletes a virtual memory object.

Waits for the completion of all page-out operations for pages in the virtual memory
object.

Note: as_att, as_det, as_geth, as_getsrval, as_seth, getadsp, lo_att and lo_det are supported only on
the 32-bit kernel.

Cross-Memory Kernel Services

The cross-memory services allow data to be moved between the kernel and an address space other than
the current process address space. A data area within one region of an address space is attached by
calling the or xmattach64 service. As a result, the virtual memory object cannot be deleted
while data is being moved in or out of pages belonging to it. A cross-memory descriptor is filled out by the
xmattach or xmattach64 service. The attach operation must be done while under a process. When the
data movement is completed, theservice can be called. The detach operation can be done
from an interrupt handler.

The:xmemin| service can be used to transfer data from an address space to kernel space. The
service can be used to transfer data from kernel space to an address space. These routines may be called
from interrupt handler level routines if the referenced buffers are in memory.
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Cross-memory services provide the or xmemdma64 service to prepare a page for DMA
processing. The xmemdma or xmemdma64 service returns the real address of the page for use in
preparing DMA address lists. When the DMA transfer is completed, the xmemdma or xmemdma64
service must be called again to unhide the page.

The xmemdma64 service is identical to xmemdma, except that xmemdma64 returns a 64-bit real
address. The xmemdma64 service can be called from the process or interrupt environments. It is also
present on 32-bit platform to allow a single device driver or kernel extension binary to work on 32-bit or
64-bit platforms with no change and no run-time checks.

Data movement by DMA or an interrupt handler requires that the pages remain in memory. This is ensured
by pinning the data areas using the xmempin service. This can only be done under a process, because
the memory pinning services page-fault on pages not present in memory.

The xmemunpin service unpins pinned pages. This can be done by an interrupt handler if the data area is
the global kernel address space. It must be done under the process if the data area is in user process
space.

The Cross-Memory services are:

xmattach|, |>_(mattach61_l| Attaches to a user buffer for cross-memory operations.

Detaches from a user buffer used for cross-memory operations.

Performs a cross-memory move by copying data from the specified address space to kernel
global memory.

Performs a cross-memory move by copying data from kernel global memory to a specified
address space.

xmemdm%! Prepares a page for DMA I/O or processes a page after DMA I/O is complete.

xmemdma6 Prepares a page for DMA I/O or processes a page after DMA I/O is complete. Returns

64-bit real address.

Note: xmattach, xmattach64 and xmemdma are supported only on the 32-bit kernel. xmemdma64 is
supported on both the 32— and 64—bit kernels.

Understanding Virtual Memory Manager Interfaces

The virtual memory manager supports functions that allow a wide range of kernel extension data
operations.

The following aspects of the virtual memory manager interface are discussed:
« [Virtual Memory Objects|

* |Addressing Data

. :Moving Data to or from a Virtual Memory Object]

. :Data Flushing

. :Discarding Dataj

. ‘Protecting Data
+ |[Executable Data]

» |Installing Pager Backends|
» |Referenced Routines|

Virtual Memory Objects

A virtual memory object is an abstraction for the contiguous data that can be mapped into a region of an
address space. As a data object, it is independent of any address space. The data it represents can be in
memory or on an external storage device. The data represented by the virtual memory object can be
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shared by mapping the virtual memory object into each address space sharing the access, with the access
capability of each mapping represented in that address space map.

File systems use virtual memory objects so that the files can be referenced using a mapped file access
method. The mapped file access method represents the data through a virtual memory object, and allows
the virtual memory manager to handle page faults on the mapped file. When a page fault occurs, the
virtual memory manager calls the services supplied by the service provider (such as a virtual file system)
to get and put pages. A data provider (such as a file system) maintains any data structures necessary to
map between the virtual memory object offset and external storage addressing.

The data provider creates a virtual memory object when it has a request for access to the data. It deletes
the virtual memory object when it has no more clients referencing the data in the virtual memory object.

The [vms_create] service is called to create virtual memory objects. The service is called to

delete virtual memory objects.

Addressing Data

Data in a virtual memory object is made addressable in user or kernel processes through the
subroutine. A kernel extension uses the kernel service to select and allocate a region in the current
(per-process kernel) address space.

The per-process kernel address space initially sees only global kernel memory and the per-process kernel
data. The vm_att service allows kernel extensions to allocate additional regions. However, this augmented
per-process kernel address space does not persist across system calls. The additional regions must be
re-allocated with each entry into the kernel protection domain.

The vm_att service takes as an argument a virtual memory handle representing the virtual memory object
and the access capability to be used. The service constructs the virtual memory handles.

When the kernel extension has finished processing the data mapped into the current address space, it
should call theservice to deallocate the region and remove access.

Moving Data to or from a Virtual Memory Object

A data provider (such as a file system) can call the vm_makep| service to cause a memory page to be
instantiated. This permits a page of data to be moved into a virtual memory object page without causing
the virtual memory manager to page in the previous data contents from an external source. This is an
operation on the virtual memory object, not an address space range.

The|vm_move| and vm_uiomove|kernel services move data between a virtual memory object and a buffer
specified in a uio structure. This allows data providers (such as a file system) to move data to or from a
specified buffer to a designated offset in a virtual memory object. This service is similar to uiomove
service, but the trusted buffer is replaced by the virtual memory object, which need not be currently
addressable.

Data Flushing

A kernel extension can initiate the writing of a data area to external storage with the kernel
service, if it has addressability to the data area. The kernel service can be used if the virtual
memory object is not currently addressable.

If the kernel extension needs to ensure that the data is moved successfully, it can wait on the 1/0
completion by calling the service, giving the virtual memory object as an argument.
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Discarding Data

The pages specified by a data range can be released from the underlying virtual memory object by calling
the service. The virtual memory manager deallocates any associated paging space slots. A
subsequent reference to data in the range results in a page fault.

A virtual memory data provider can release a specified range of pages in a virtual memory object by
calling the service. The virtual memory object need not be addressable for this call.

Protecting Data

The service can change the storage protect keys in a page range in one client storage
virtual memory object. This only acts on the resident pages. The pages are referred to through the virtual
memory object. They do not need to be addressable in the current address space. A client file system data
provider uses this protection to detect stores of in-memory data, so that mapped files can be extended by
storing into them beyond their current end of file.

Executable Data

If the data moved is to become executable, any data remaining in processor cache must be guaranteed to
be moved from cache to memory. This is because the retrieval of the instruction does not need to use the
data cache. The service performs this operation.

Installing Pager Backends

The kernel extension data providers must provide appropriate routines to be called by the virtual memory
manager. These routines move a page-sized block of data into or out of a specified page. These services
are also referred to as pager backends.

For a local device, the device strategy routine is required. A call to the vm_mount service is used to
identify the device (through a dev_t value) to the virtual memory manager.

For a remote data provider, the routine required is a strategy routine, which is specified in the
service. These strategy routines must run as interrupt-level routines. They must not page fault, and they
cannot sleep waiting for locks.

When access to a remote data provider or a local device is removed, the vm_umount service must be
called to remove the device entry from the virtual memory manager’s paging device table.

Referenced Routines
The virtual memory manager exports these routines exported to kernel extensions:

Services That Manipulate Virtual Memory Objects

Selects and allocates a region in the current address
space for the specified virtual memory object.

Creates virtual memory object of the specified type and
size limits.

vms_delete Deletes a virtual memory object.

Unmaps and deallocates the region at a specified address
in the current address space.

Constructs a virtual memory handle for mapping a virtual
memory object with a specified access level.

Waits for the completion of all page-out operations in the
virtual memory object.

vm_make Makes a page in client storage.

vm_mov Moves data between the virtual memory object and buffer
specified in the uio structure.

Sets the page protection key for a page range.

<
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Services That Manipulate Virtual Memory Objects

Releases page frames and paging space slots for pages
in the specified range.

Moves data between the virtual memory object and buffer
specified in the uio structure.

vm_vmid Converts a virtual memory handle to a virtual memory
object (id).

Initiates page-out for a page range in a virtual memory
object.

Selects, allocates, and maps a region in the specified address space for the
specified virtual memory object.

Unmaps and deallocates a region in the specified address space that was mapped
with the as_att kernel service.

Obtains a handle to the virtual memory object for the specified address given in
the specified address space. The virtual memory object is protected.

Obtains a handle to the virtual memory object for the specified address given in
the specified address space.

Indicates that no more references will be made to a virtual memory object that was
obtained using the as_geth kernel service.

Maps a specified region in the specified address space for the specified virtual
memory object.

g P Obtains a pointer to the current process’s address space structure for use with the

as_att and as_det kernel services.

Flushes cache lines for a specified address range.

Releases page frames and paging space slots for the specified address range.
Initiates page-out for an address range.

Note: as_att, as_det, as_geth, as_getsrval, as_seth and getadsp are supported only on the 32-bit
kernel.

The following Memory-Pinning kernel services also support address space operations. They are the@
[pinu} [unpin| and [unpiny services.

Services That Support Cross-Memory Operations
[Cross Memory Services|are listed in "Memory Kernel Services”.

Services that Support the Installation of Pager Backends
vm_moun Allocates an entry in the paging device table.
vm_umount| Removes a file system from the paging device table.

Services that Support 64-bit Processes on the 32-bit Kernel

as_att64 Allocates and maps a specified region in the current user address space.

as_det64 Unmaps and deallocates a region in the current user address space that was mapped with
the as_att64 kernel service.

as_geth64 Obtains a handle to the virtual memory object for the specified address.

as_puth64 Indicates that no more references will be made to a virtual memory object using the
as_geth64 kernel service.

as_seth64 Maps a specified region for the specified virtual memory object.

as_getsrval64 Obtains a handle to the virtual memory object for the specified address.

1IS64U Determines if the current user address space is 64-bit or not.
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Services that Support 64-bit Processes
The following services are supported only on the 32-bit kernel:

as_remap64
as_unremap64

rmmap_create64

rmmap_remove64
xmattach64
copyin64
copyout64
copyinstr64
fubyte64
fuword64
subyte64

suword64

Maps a 64-bit address to a 32-bit address that can be used by the 32—bit kernel.
Returns the original 64-bit original address associated with a 32-bit mapped address.

Defines an effective address to real address translation region for either 64-bit or 32-bit
effective addresses.

Destroys an effective address to real address translation region.
Attaches to a user buffer for cross-memory operations.

Copies data between user and kernel memory.

Copies data between user and kernel memory.

Copies data between user and kernel memory.

Retrieves a byte of data from user memory.

Retrieves a word of data from user memory.

Stores a byte of data in user memory.

Stores a word of data in user memory.

Message Queue Kernel Services

The Message Queue kernel services provide the same message queue functions to a kernel extension as

the|msgct||, |msggetl |msgsnd|, and |msgxrc!| subroutines make available to a program executing in user

mode. Parameters have been added for moving returned information to an explicit parameter to free the
return codes for error code usage. Instead of the error information available in the errno global variable
(as in user mode), the Message Queue services use the service’s return code. The error values are the
same, except that a memory fault error (EFAULT) cannot occur because message buffer pointers in the
kernel address space are assumed to be valid.

The Message Queue services can be called only from the [process environment| because they prevent the
caller from specifying kernel buffers. These services can be used as an Interprocess Communication
mechanism to other kernel processes or user-mode processes. See [Kernel Extension and Device Driver|

[Management Services|for more information on the functions that these services provide.

There are four Message Queue services available from the kernel:

Provides message-queue control operations.

Obtains a message-queue identifier.

Reads a message from a message queue.

Sends a message using a previously defined message queue.

Network Kernel Services

The Network kernel services are divided into:

» |Address Family Domain and Network Interface Device Driver services

» [Routing and Interface services|

« |Loopback services|

[Protocol services|

+ [Communications Device Handler Interface services
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Address Family Domain and Network Interface Device Driver Kernel
Services

The Address Family Domain and Network Interface Device Driver services enable address family domains
(Protocols) and network interface drivers to add and remove themselves from network switch tables.

The service and services add and remove network interfaces from the Network

Interface List. Protocols search this list to determine an appropriate interface on which to transmit a
packet.

Protocols use the [add_input_type| and|del_input_type| services to notify network interface drivers that the
protocol is available to handle packets of a certain type. The Network Interface Driver uses the
Irind_input_type| service to distribute packets to a protocol.

The [add_netisr{ and |[del_netisr services add and delete network software interrupt handlers. Address
families add and delete themselves from the Address Family Domain switch table by using the
ladd_domain_af|and |del_domain_af| services. The Address Family Domain switch table is a list of all
available protocols that can be used in the socket subroutine.

The Address Family Domain and Network Interface Device Driver services are:

add_domain_af Adds an address family to the Address Family domain switch table.
: Adds a new input type to the Network Input table.
Adds a network software interrupt service to the Network Interrupt table.

del_domain_af Deletes an address family from the Address Family domain switch table.
del_input_type| Deletes an input type from the Network Input table.

del_netis Deletes a network software interrupt service routine from the Network Interrupt table.
find_inEut_tiEe| Finds the given packet type in the Network Input Interface switch table and distributes

the input packet according to the table entry for that type.

Adds a network interface to the network interface list.

Deletes a network interface from the network interface list.
Returns a pointer to the ifnet structure of the requested interface.
Schedules or invokes a network software interrupt service routine.

Routing and Interface Address Kernel Services

The Routing and Interface Address services provide protocols with a means of establishing, accessing,
and removing routes to remote hosts or gateways. Routes bind destinations to a particular network
interface.

The interface address services accept a destination address or network and return an associated interface
address. Protocols use these services to determine if an address is on a directly connected network.

The Routing and Interface Address services are:

ifa_ifwithaddﬂ Locates an interface based on a complete address.
ifa_ifwithdstaddr| Locates the point-to-point interface with a given destination address.

Locates an interface on a specific network.

Marks an interface as down.

Zeroes statistical elements of the interface array in preparation for an attach
operation.

Allocates a route.

Frees the routing table entry

Sets up a routing table entry, typically for a network interface.

Forces a routing table entry with the specified destination to go through the given
gateway.
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Carries out a request to change the routing table.

Loopback Kernel Services

The Loopback services enable networking code to be exercised without actually transmitting packets on a
network. This is a useful tool for developing new protocols without introducing network variables. Loopback
services can also be used to send packets to local addresses without using hardware loopback.

The Loopback services are:

loifp) Returns the address of the software loopback interface structure.
looutput Sends data through a software loopback interface.

Protocol Kernel Services

Protocol kernel services provide a means of finding a particular address family as well as a raw protocol
handler. The raw protocol handler basically passes raw packets up through sockets so that a protocol can
be implemented in user space.

The Protocol kernel services are:

Starts the ctlinput function for each configured protocol.

Returns the address of a protocol switch table entry.

Builds a raw_header structure for a packet and sends both to the raw protocol handler.
Implements user requests for raw protocols.

Communications Device Handler Interface Kernel Services

The Communications Device Handler Interface services provide a standard interface between network

interface drivers and [communications device handlers| The |net_attach| and |net_detach|services open and
close the device handler. Once the device handler has been opened, the |net_xmit] service can be used to
transmit packets. Asynchronous start done notifications are recorded by the |net_start_done| service. The
[net_error] service handles error conditions.

The Communications Device Handler Interface services are:

Edd_netopﬂ This macro adds a network option structure to the list of network options.
del_netopt This macro deletes a network option structure from the list of network options.
net_attach Opens a communications 1/O device handler.

Closes a communications I/O device handler.

Handles errors for communication network interface drivers.

Sleeps on the specified wait channel.

Starts network IDs on a communications 1/0O device handler.

Starts the done noatification handler for communications 1/O device handlers.

Wakes up all sleepers waiting on the specified wait channel.

Transmits data using a communications I/O device handler.

Traces transmit packets. This kernel service was added for those network interfaces that
do not use the net_xmit kernel service to trace transmit packets.
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Process and Exception Management Kernel Services

The process and exception management kernel services provided by the base kernel provide the
capability to:

+ Create [kernel processes|

+ Register |exception handlers|

» Provide process serialization

* Generate and handle signals

» Support event waiting and notification

Creating Kernel Processes

Kernel extensions use the [creatp|and finitp| kernel services to create and initialize a [kernel process. The
kernel service allow a kernel process to change its parent process from the one that created it to
the init process, so that the creating process does not receive the death-of-child process signal upon
kernel process termination. [‘Using Kernel Processes” on page 8| provides additional information concerning
use of these services.

Creating Kernel Threads

Kernel extensions use the fthread_create] and [kthread_start services to create and initialize kernel-only
threads. For more information about threads, see [‘Understanding Kernel Threads” on page 6.

The [thread_setsched|service is used to control the scheduling parameters, priority and scheduling policy,
of a thread.

Kernel Structures Encapsulation

The kernel service is used by a kernel extension in either the process or interrupt environment to
determine the current jexecution environment| and obtain the process ID of the current process if in the
process environment. The|rusage_inc|_‘| service provides an access to the rusage structure.

The thread-specific uthread structure is also encapsulated. The |_getuerror| and |setuerror] kernel services
should be used to access the ut_error field. The Ehread_selﬂ kernel service should be used to get the
current thread’s ID.

Registering Exception Handlers

The |setjmpx] [clrjmpx} and [longjmpXx] kernel services allow a kernel extension to register an exception
handler by:

» Saving the exception handler’'s context with the setjmpx kernel service
* Removing its saved context with the clrjmpx kernel service if no exception occurred

+ Starting the next registered exception handler with the longjmpx kernel service if it was unable to
handle the exception

For more information concerning use of these services, see |“Hand|ing Exceptions While in a System CaII’1

Signal Management
Signals can be posted either to a kernel process or to a kernel thread. Theservice posts a signal

to a specified kernel process; the kthread_Kkilll service posts a signal to a specified kernel thread. A thread
uses theservice to poll for signals delivered to the kernel process or thread in the kernel mode.

For more information about signal management, see [‘Kernel Process Signal and Exception Handling” on|
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Events Management
The event notification services provide support for two types of interprocess communications:

Primitive Allows only one process thread waiting on the event.
Shared Allows multiple processes threads waiting on the event.

The |et_wait| and|et_post| kernel services support single waiter event notification by using mutually agreed
upon event control bits for the kernel thread being posted. There are a limited number of control bits
available for use by kernel extensions. If the kernel_lock is owned by the caller of the et_wait service, it
is released and acquired again upon wakeup.

The following kernel services support a shared event notification mechanism that allows for multiple
threads to be waiting on the shared event.

e_assert_wait e_wakeup
e_block_thread e_wakeup_one
e_clear_wait e_wakeup_w_result
e_sleep_thread e_wakeup_w_sig

These services support an unlimited number of shared events (by using caller-supplied event words). The
following list indicates methods to wait for an event to occur:

+ Callingle_assert_wait|and [e_block_thread| successively; the first call puts the thread on the event
queue, the second blocks the thread. Between the two calls, the thread can do any job, like releasing
several locks. If only one lock, or no lock at all, needs to be released, one of the two other methods
should be preferred.

+ Callingle_sleep_thread; this service releases a simple or a complex lock, and blocks the thread. The
lock can be automatically reacquired at wakeup.

TheMservice can be used by a thread or an interrupt handler to wake up a specified thread,
or by a thread that called e_assert_wait to remove itself from the event queue without blocking when
calling e_block_thread. The other wakeup services are event-based. The and
fe_wakeup_w_result|services wake up every thread sleeping on an event queue; whereas the
le_wakeup_one|service wakes up only the most favored thread. The [e_wakeup_w_sig| service posts a
signal to every thread sleeping on an event queue, waking up all the threads whose sleep is interruptible.

The [e_sleep| and |e_sleepl|kernel services are provided for code that was written for previous releases of
the operating system. Threads that have called one of these services are woken up by the e_wakeup,
e_wakeup_one, e_wakeup_w_result, e_wakeup_w_sig, or e_clear_wait kernel services. If the caller of
the e_sleep service owns the kernel lock, it is released before waiting and is acquired again upon
wakeup. The e_sleepl service provides the same function as the e_sleep service except that a
caller-specified lock is released and acquired again instead of the kernel_lock.

List of Process, Thread, and Exception Management Kernel Services
The Process, Thread, and Exception Management kernel services are listed below.

Removes a saved context by popping the most recently
saved jump buffer from the list of saved contexts.
creatp|

Creates a new kernel process.
Asserts that the calling kernel thread is going to sleep.
Blocks the calling kernel thread.
e_clear_wait Clears the wait condition for a kernel thread.
le_sleep|le sleep thread| orle sleepl| Forces the calling kernel thread to wait for the occurrence

of a shared event.
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Forces the calling kernel thread to wait the occurrence of

a shared event.

le_wakeup, e_wakeup_one, or e_wakeup_w_resul{| Notifies kernel threads waiting on a shared event of the
event's occurrence.

e_wakeup_w_sig Posts a signal to sleeping kernel threads.
Notifies a kernel thread of the occurrence of one or more
events.
Forces the calling kernel thread to wait for the occurrence
of an event.

Gets the process ID of the current process.

Gets the parent process ID of the specified process.
Changes the state of a kernel process from idle to ready.
Posts a signal to a specified kernel-only thread.

Starts a previously created kernel-only thread.

Changes the signal mask for the calling kernel thread.
Allows exception handling by causing execution to resume
at the most recently saved context.

Submits a request to print an internationalized message to
the controlling terminal of a process.

Sends a signal to all of the processes in a process group.
Sends a signal to a process.

Increments a field of the rusage structure.

Allows saving the current execution state or context.

setpinit Sets the parent of the current kernel process to the init
process.

Provides the calling kernel thread with the ability to poll for
receipt of signals.

Changes the signal mask for the calling kernel thread.

sleep) Forces the calling kernel thread to wait on a specified
channel.

thread_create| Creates a new kernel-only thread in the calling process.

thread_self Returns the caller’s kernel thread ID.

thread_setsched| Sets kernel thread scheduling parameters.

thread=terminate| Terminates the calling kernel thread.

ue_proc_chec Determines if a process is critical to the system.

uprint Submits a request to print a message to the controlling

terminal of a process.

RAS Kernel Services

The Reliability, Availability, and Serviceability (RAS) kernel services are used to record the occurrence of
hardware or software failures and to capture data about these failures. The recorded information can be
examined using the or commands.

The panic kernel service is called when a catastrophic failure occurs and the system can no longer
operate. The service performs a system dump. The system dump captures data areas that are
registered in the Master Dump Table. The kernel and kernel extensions use the kernel service to
add and delete entries in the Master Dump Table, and record dump routine failures.

The|errsave and errlast| kernel service is called to record an entry in the system error log when a
hardware or software failure is detected.

The [trcgenk and [trcgenkt] kernel services are used along with the subroutine to record selected

system events in the event-tracing facility.
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The [register_HA_handler| and junregister_HA_handler| kernel services are used to register high
availability event handlers for kernel extensions that need to be aware of events such as processor
deallocation.

Security Kernel Services

The Security kernel services provide methods for controlling the auditing system and for determining the
access rights to objects for the invoking process.

The following services are security kernel services:

Determines the privilege state of a process.

Initiates an audit record for a system call.

Appends event information to the current audit event buffer.

Writes an audit record for a kernel service.

Creates a copy of a security credentials structure.

Creates a copy of the current security credentials structure.

Provide a means for accessing the user and group identifier fields within a credentials
structure.

Copies an internal format credentials structure to an external format credentials
structure.

Frees a security credentials structure.

Allocates a new, uninitialized security credentials structure.

Increments the reference count of a security credentials structure.

Increments the reference count of the current security credentials structure.
Replaces the current security credentials structure.

Copies a capability vector from a credentials structure.

Copies the concurrent group set from a credentials structure.

Copies a process authentication group (PAG) ID from a credentials structure.
Returns the process authentication group (PAG) identifier for a PAG name.

kcred_getpagname Retrieves the name of a process authentication group (PAG).
kcred_getEriv| Copies a privilege vector from a credentials structure.

kcred_setca Copies a capabilities set into a credentials structure.
kcred_setgrougs| Copies a concurrent group set into a credentials structure.
kcred_setpa Copies a process authentication group ID into a credentials structure.
kcred_setpagname| Copies a process authentication group ID into a credentials structure.
kcred_setgri% Copies a privilege vector into a credentials structure.

Timer and Time-of-Day Kernel Services

The Timer and Time-of-Day kernel services provide kernel extensions with the ability to be notified when a

period of time has passed. The ftstart] service supports a very fine granularity of time. The service
is built on the tstart service and is provided for compatibility with earlier versions of the operating system.

The service provides a timer with less granularity, but much cheaper path-length overhead when
starting a timer.

The Timer and Time-of-Day kernel services are divided into the following categories:
+ [Time-of-Day services|

« |Fine Granularity Timer services|

* |Timer services for compatibility|

» |Watchdog Timer services]|
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Time-Of-Day Kernel Services
The Time-Of-Day kernel services are:

Reads the current time into a time structure.

Retrieves the current status of the systemwide time-of-day timer-adjustment values.
Sets the systemwide time-of-day timer.

Sets the current status of the systemwide timer-adjustment values.

Fine Granularity Timer Kernel Services

The Fine Granularity Timer kernel services are:

delay| Suspends the calling process for the specified number of timer ticks.
talloc Allocates a timer request block before starting a timer request.

tfreel Deallocates a timer request block.

tstart Submits a timer request.

tstop) Cancels a pending timer request.

For more information about using the Fine Granularity Timer services, see [‘Using Fine Granularity Timer|
[Services and Structures.”|

Timer Kernel Services for Compatibility
The following Timer kernel services are provided for compatibility:
Schedules a function to be called after a specified interval.

Allocates or deallocates callout table entries for use with the timeout kernel service.
Cancels a pending timer request.

Watchdog Timer Kernel Services
The Watchdog timer kernel services are:

w_clear| Removes a watchdog timer from the list of watchdog timers known to the kernel.
W_ini Registers a watchdog timer with the kernel.

w_start] Starts a watchdog timer.

w_stop Stops a watchdog timer.

Using Fine Granularity Timer Services and Structures

The |tstart] [tfree] talloc, and [tstop|services provide fine-resolution timing functions. These timer services
should be used when the following conditions are required:

» Timing requests for less than one second

* Critical timing

* Absolute timing

The Watchdog timer services can be used for noncritical times having a one-second resolution. The
service can be used for noncritical times having a clock-tick resolution.

Timer Services Data Structures

The trb (timer request) structure is found in the /sys/timer.h file. The itimerstruc_t structure contains the
second/nanosecond structure for time operations and is found in the sys/time.h file.
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The itimerstruc_t t.it value substructure should be used to store time information for both absolute and
incremental timers. The T_ABSOLUTE absolute request flag is defined in the sys/timer.h file. It should be
ORed into the t->flag field if an absolute timer request is desired.

The T_LOWRES flag causes the system to round the t->timeout value to the next timer timeout. It should
be ORed into the t->flags field. The timeout is always rounded to a larger value. Because the system
maintains 10ms interval timer, T_LOWRES will never cause more than 10ms to be added to a timeout.
The advantage of using T_LOWRES is that it prevents an extra interrupt from being generated.

The t->timeout and t->flags fields must be set or reset before each call to the tstart kernel service.

Coding the Timer Function
The t->func timer function should be declared as follows:

void func (t)
struct trb *t;

The argument to the func completion handler routine is the address of the trb structure, not the contents
of the t_union field.

The t->func timer function is called on an interrupt level. Therefore, code for this routine must follow
conventions for interrupt handlers.

Using Multiprocessor-Safe Timer Services

On a multiprocessor system, timer request blocks and watchdog timer structures could be accessed
simultaneously by several processors. The kernel services shown below potentially alter critical information
in these blocks and structures, and therefore check whether it is safe to perform the requested service
before proceeding:

Cancels a pending timer request.
Removes a watchdog timer from the list of watchdog timers known to the kernel.
Registers a watchdog timer with the kernel.

If the requested service cannot be performed, the kernel service returns an error value.

In order to be multiprocessor safe, the caller must check the value returned by these kernel services. If the
service was not successful, the caller must take an appropriate action, for example, retrying in a loop. If
the caller holds a device driver lock, it should release and then reacquire the lock within this loop in order
to avoid deadlock.

Drivers which were written for uniprocessor systems do not check the return values of these kernel
services and are not multiprocessor-safe. Such drivers can still run as funnelled device drivers.

Virtual File System (VFS) Kernel Services

The Virtual File System (VFS) kernel services are provided as fundamental building blocks for use when
writing a virtual file system. These services present a standard interface for such functions as configuring
file systems, creating and freeing and looking up path names.

Most functions involved in the writing of a file system are specific to that file system type. But a limited

number of functions must be performed in a consistent manner across the various file system types to
enable the logical file system to operate independently of the file system type.
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The VFS kernel services are:

common_reclock| Implements a generic interface to the record locking functions.
Maps a file system structure to a file ID.

Adds a file system type to the gfs table.

Removes a file system type from the gfs table.

Holds a vfs structure and increments the structure’s use count.
Releases a vfs structure and decrements the structure’s use count.
Releases all resources associated with a virtual file system.
Searches the vfs list.

Frees a v-node previously allocated by the vn_get kernel service.
Allocates a virtual node and associates it with the designated virtual file system.
Retrieves the v-node that corresponds to the named path.

Related Information

[Chapter 1, “Kernel Environment,” on page 1|

[‘Block I/O Buffer Cache Kernel Services: Overview” on page 51|

[Understanding the Virtual File System Interface]

[Communications Physical Device Handler Model Overview|

[Understanding File Descriptors|in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

Subroutine References
Thesubroutine, subroutine, subroutine, subroutine in A/X 5L Version

5.2 Technical Reference: Base Operating System and Extensions Volume 1.

The [trchook] subroutine in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 2.

Commands References
The [iostat] command in AIX 5L Version 5.2 Commands Reference, Volume 3.

The [vmstat|command in AIX 5L Version 5.2 Commands Reference, Volume 6.
Technical References
The kernel service, kernel service, kernel service, kernel service in AIX 5L Version

5.2 Technical Reference: Kernel and Subsystems Volume 1.
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Chapter 5. Asynchronous I/O Subsystem

Synchronous I/0O occurs while you wait. Applications processing cannot continue until the 1/0 operation is
complete.

In contrast, asynchronous I/O operations run in the background and do not block user applications. This
improves performance, because 1/O operations and applications processing can run simultaneously.

Using asynchronous 1/O will usually improve your I/O throughput, especially when you are storing data in
raw logical volumes (as opposed to Journaled file systems). The actual performance, however, depends
on how many server processes are running that will handle the I/O requests.

Many applications, such as databases and file servers, take advantage of the ability to overlap processing
and 1/0O. These asynchronous I/O operations use various kinds of devices and files. Additionally, multiple
asynchronous /O operations can run at the same time on one or more devices or files.

Each asynchronous 1/O request has a corresponding control block in the application’s address space.
When an asynchronous I/O request is made, a handle is established in the control block. This handle is
used to retrieve the status and the return values of the request.

Applications use the aio_read and aio_write subroutines to perform the 1/0. Control returns to the
application from the subroutine, as soon as the request has been queued. The application can then
continue processing while the disk operation is being performed.

A kernel process (kproc), called a server, is in charge of each request from the time it is taken off the
queue until it completes. The number of servers limits the number of disk I/O operations that can be in
progress in the system simultaneously.

The default values are minservers=1 and maxservers=10. In systems that seldom run applications that use
asynchronous 1/O, this is usually adequate. For environments with many disk drives and key applications
that use asynchronous /O, the default is far too low. The result of a deficiency of servers is that disk 1/0
seems much slower than it should be. Not only do requests spend inordinate lengths of time in the queue,
but the low ratio of servers to disk drives means that the seek-optimization algorithms have too few
requests to work with for each drive.

Note: Asynchronous I/O will not work if the control block or buffer is created using mmap (mapping
segments).

In AIX 5.2 there are two Asynchronous I/O Subsystems. The original AIX AlO, now called LEGACY AIO,
has the same function names as the posix compliant POSIX AlO. The major differences between the two
involve different parameter passing. Both subsytems are defined in the /usr/include/sys/aio.h file. The
_AIO_AIX_SOURCE macro is used to distinguish between the two versions.

Note: The _AIO_AIX_SOURCE macro used in the /usr/include/sys/aio.h file must be defined when
using this file to compile an aio application with the LEGACY AIO function definitions. The default
compile using the aio.h file is for an application with the new POSIX AlO definitions. To use the
LEGACY AIO function defintions do the following in the source file:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or when compiling on the command line, type the following:
xIc ... -D_AIO_AIX_SOURCE ... classic_aio_program.c
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For each aio function there is a legacy and a posix definition. LEGACY AIO has an additional [aio_nwait]
function, which although not a part of posix definitions has been included in POSIX AlO to help those who
want to port from LEGACY to POSIX definitions. POSIX AlO has an additional[aio_fsynd function, which
is not included in LEGACY AIO. For a list of these functions, see [‘Asynchronous 1/0 Subroutines” on page|

How Do | Know if | Need to Use AIO?

Using the vmstat command with an interval and count value, you can determine if the CPU is idle waiting
for disk 1/0. The wa column details the percentage of time the CPU was idle with pending local disk I/O.

If there is at least one outstanding I/O to a local disk when the wait process is running, the time is
classified as waiting for I/O. Unless asynchronous 1/O is being used by the process, an 1/O request to disk
causes the calling process to block (or sleep) until the request has been completed. Once a process’s 1/0
request completes, it is placed on the run queue.

A wa value consistently over 25 percent may indicate that the disk subsystem is not balanced properly, or it
may be the result of a disk-intensive workload.

Note: AIO will not relieve an overly busy disk drive. Using the iostat command with an interval and count
value, you can determine if any disks are overly busy. Monitor the %tm_act column for each disk
drive on the system. On some systems, a %tm_act of 35.0 or higher for one disk can cause
noticeably slower performance. The relief for this case could be to move data from more busy to
less busy disks, but simply having AIO will not relieve an overly busy disk problem.

SMP Systems

For SMP systems, the us, sy, id and wa columns are only averages over all processors. But keep in
mind that the I/O wait statistic per processor is not really a processor-specific statistic; it is a global
statistic. An 1/0O wait is distinguished from idle time only by the state of a pending I/O. If there is any
pending disk I/0, and the processor is not busy, then it is an 1/0 wait time. Disk 1/O is not tracked by
processors, so when there is any I/O wait, all processors get charged (assuming they are all equally idle).

How Many AIO Servers Am | Currently Using?

To determine you how many Posix AlO Servers (aios) are currently running, type the following on the
command line:

pstat -a | grep posix_aioserver | wc -1
Note: You must run this command as the root user.

To determine you how many Legacy AIO Servers (aios) are currently running, type the following on the
command line:
pstat -a | egrep

aioserver' | wc -1
Note: You must run this command as the root user.

If the disk drives that are being accessed asynchronously are using either the Journaled File System (JFS)
or the Enhanced Journaled File System (JFS2), all 1/0 will be routed through the aios kprocs.

If the disk drives that are being accessed asynchronously are using a form of raw logical volume
management, then the disk 1/O is not routed through the aios kprocs. In that case the number of servers
running is not relevant.

However, if you want to confirm that an application that uses raw logic volumes is taking advantage of
AIQ, you can disable the fast path option via SMIT. When this option is disabled, even raw 1/O will be
forced through the aios kprocs. At that point, the pstat command listed in preceding discussion will work.
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You would not want to run the system with this option disabled for any length of time. This is simply a
suggestion to confirm that the application is working with AlIO and raw logical volumes.

At releases earlier than AIX 4.3, the fast path is enabled by default and cannot be disabled.

How Many AIO Servers Do | Need?

Here are some suggested rules of thumb for determining what value to set maximum number of servers
to:

1. The first rule of thumb suggests that you limit the maximum number of servers to a number equal to
ten times the number of disks that are to be used concurrently, but not more than 80. The minimum
number of servers should be set to half of this maximum number.

2. Another rule of thumb is to set the maximum number of servers to 80 and leave the minimum number
of servers set to the default of 1 and reboot. Monitor the number of additional servers started
throughout the course of normal workload. After a 24-hour period of normal activity, set the maximum
number of servers to the number of currently running aios + 10, and set the minimum number of
servers to the number of currently running aios - 10.

In some environments you may see more than 80 aios KPROCs running. If so, consider the third rule
of thumb.

3. A third suggestion is to take statistics using vmstat -s before any high I/O activity begins, and again at
the end. Check the field iodone. From this you can determine how many physical I/Os are being
handled in a given wall clock period. Then increase the maximum number of servers and see if you
can get more iodones in the same time period.

Prerequisites
To make use of asynchronous I/O the following fileset must be installed:
bos.rte.aio

To determine if this fileset is installed, use:

1slpp -1 bos.rte.aio

You must also make the aioO or posix_aio0 device available using SMIT.

smit chgaio
smit chgposixaio

STATE to be configured at system restart available

or

smit aio
smit posixaio

Configure aio now

Functions of Asynchronous 1/O

Functions provided by the asynchronous 1/O facilities are:
« |Large File-Enabled Asynchronous /0|

* [Nonblocking I/Q
» [Notification of /0 completion|
+ |Cancellation of 1/0 requests|

Large File-Enabled Asynchronous 1/O

The fundamental data structure associated with all asynchronous 1/O operations is struct aiocb. Within
this structure is the aio_offset field which is used to specify the offset for an I/O operation.
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Due to the signed 32-bit definition of aio_offset, the default asynchronous 1/O interfaces are limited to an
offset of 2G minus 1. To overcome this limitation, a new aio control block with a signed 64-bit offset field
and a new set of asynchronous I/O interfaces has been defined. These 64-bit definitions end with "64".

The large offset-enabled asynchronous I/O interfaces are available under the _LARGE_FILES compilation
environment and under the _LARGE_FILE _API programming environment. For further information, see
|Writing Programs That Access Large Filesl in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

Under the _LARGE_FILES compilation environment, asynchronous I/O applications written to the default
interfaces see the following redefinitions:

Item Redefined To Be Header File
struct aiocb struct aiocb64 sys/aio.h
aio_read() aio_read64() sys/aio.h
aio_write() aio_write64() sys/aio.h
aio_cancel() aio_cancel64() sys/aio.h
aio_suspend() aio_suspend64() sys/aio.h
aio_listio() aio_listio64() sys/aio.h
aio_return() aio_return64() sys/aio.h
aio_error() aio_error64() sys/aio.h

For information on using the _LARGE_FILES environment, see [Porting Applications to the Large File|
in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs

In the _LARGE_FILE_API environment, the 64-bit API interfaces are visible. This environment requires
recoding of applications to the new 64-bit APl name. For further information on using the
_LARGE_FILE_API environment, see |Using the 64-Bit File System Subroutines|in AIX 5L Version 5.2
General Programming Concepts: Writing and Debugging Programs

Nonblocking 1/0

After issuing an I/O request, the user application can proceed without being blocked while the 1/0
operation is in progress. The I/O operation occurs while the application is running. Specifically, when the
application issues an I/O request, the request is queued. The application can then resume running before
the 1/0O operation is initiated.

To manage asynchronous I/O, each asynchronous I/O request has a corresponding control block in the
application’s address space. This control block contains the control and status information for the request.
It can be used again when the I/O operation is completed.

Notification of /0 Completion

After issuing an asynchronous 1/O request, the user application can determine when and how the 1/0
operation is completed. This information is provided in three ways:

* The application canthe status of the I/O operation.
* The system can asynchronously the application when the I/O operation is done.
+ The application can until the 1/O operation is complete.

Polling the Status of the /0 Operation
The application can periodically poll the status of the I/O operation. The status of each 1/0O operation is
provided in the application’s address space in the control block associated with each request. Portable
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applications can retrieve the status by using the aio_error subroutine.The aio_suspend subroutine
suspends the calling process until one or more asynchronous I/O requests are completed.

Asynchronously Notifying the Application When the I/O Operation Completes
Asynchronously notifying the I/O completion is done by signals. Specifically, an application may request
that a SIGIO signal be delivered when the 1/0O operation is complete. To do this, the application sets a flag
in the control block at the time it issues the I/O request. If several requests have been issued, the
application can poll the status of the requests to determine which have actually completed.

Blocking the Application until the I/0 Operation Is Complete

The third way to determine whether an 1/O operation is complete is to let the calling process become
blocked and wait until at least one of the 1/O requests it is waiting for is complete. This is similar to
synchronous style I/O. It is useful for applications that, after performing some processing, need to wait for
I/O completion before proceeding.

Cancellation of I/0 Requests

I/0O requests can be canceled if they are cancelable. Cancellation is not guaranteed and may succeed or
not depending upon the state of the individual request. If a request is in the queue and the I/O operations
have not yet started, the request is cancellable. Typically, a request is no longer cancelable when the
actual I/O operation has begun.

Asynchronous I/0O Subroutines

Note: The 64-bit APIs are as follows:

The following subroutines are provided for performing asynchronous I/O:

Subroutine Purpose

laio_cancel or aio_cancel64] Cancels one or more outstanding asynchronous 1/O requests.

laio_error or aio_error64| Retrieves the error status of an asynchronous 1/O request.

laio_fsync| Synchronizes asynchronous files.

lio_listio or lio_listio64| Initiates a list of asynchronous 1/0 requests with a single call.

@io_nwait| Suspends the calling process until n asynchronous 1/O requests are
completed.

laio_read or aio_read64| Reads asynchronously from a file.

Iiﬁreturn or aio=return64| Retrieves the return status of an asynchronous 1/O request.

io_suspend or aio_suspend64| Suspends the calling process until one or more asynchronous I/O requests is

completed.

laio_write or aio_write64| Writes asynchronously to a file.

Order and Priority of Asynchronous /O Calls

An application may issue several asynchronous I/O requests on the same file or device. However,
because the 1/O operations are performed asynchronously, the order in which they are handled may not be
the order in which the 1/O calls were made. The application must enforce ordering of its own 1/O requests
if ordering is required.

Priority among the 1/O requests is not currently implemented. The aio_reqprio field in the control block is
currently ignored.

For files that support seek operations, seeking is allowed as part of the asynchronous read or write

operations. The whence and offset fields are provided in the control block of the request to set the seek
parameters. The seek pointer is updated when the asynchronous read or write call returns.
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Subroutines Affected by Asynchronous 1/O

The following existing subroutines are affected by asynchronous I/O:
* The|[close]subroutine

* The @ subroutine

* The :Eeél subroutine

* The :for subroutine

If the application closes a file, or calls the _exit or exec subroutines while it has some outstanding I/O
requests, the requests are canceled. If they cannot be canceled, the application is blocked until the
requests have completed. When a process calls the fork subroutine, its asynchronous I/O is not inherited
by the child process.

One fundamental limitation in asynchronous 1/O is page hiding. When an unbuffered (raw) asynchronous
I/O is issued, the page that contains the user buffer is hidden during the actual I/O operation. This ensures
cache consistency. However, the application may access the memory locations that fall within the same
page as the user buffer. This may cause the application to block as a result of a page fault. To alleviate
this, allocate page aligned buffers and do not touch the buffers until the 1/O request using it has
completed.

Changing Attributes for Asynchronous 1/0

You can change attributes relating to asynchronous 1/O using the command or Likewise, you
can use SMIT to configure and remove (unconfigure) asynchronous 1/O. (Alternatively, you can use the
[mkdeV] and rmdev|commands to configure and remove asynchronous I/0). To start SMIT at the main
menu for asynchronous 1/O, enter smit aio or smit posixaio.

MINIMUM number of servers
Indicates the minimum number of kernel processes dedicated to asynchronous I/O processing.
Because each kernel process uses memory, this number should not be large when the amount of
asynchronous 1/O expected is small.

MAXIMUM number of servers per cpu
Indicates the maximum number of kernel processes per cpu that are dedicated to asynchronous
I/O processing. This number when multiplied by the number of cpus indicates the limit on 1/0
requests in progress at one time, and represents the limit for possible 1/0 concurrency.

Maximum number of REQUESTS
Indicates the maximum number of asynchronous 1/O requests that can be outstanding at one time.
This includes requests that are in progress as well as those that are waiting to be started. The
maximum number of asynchronous I/O requests cannot be less than the value of AIO_MAX, as
defined in the /usr/include/sys/limits.h file, but it can be greater. It would be appropriate for a
system with a high volume of asynchronous I/0O to have a maximum number of asynchronous I/O
requests larger than AIO_MAX.

Server PRIORITY
Indicates the priority level of kernel processes dedicated to asynchronous I/O. The lower the
priority number is, the more favored the process is in scheduling. Concurrency is enhanced by
making this number slightly less than the value of PUSER, the priority of a normal user process. It
cannot be made lower than the values of PRI_SCHED.

Because the default priority is (40+nice), these daemons will be slightly favored with this value of
(39+nice). If you want to favor them more, make changes slowly. A very low priority can interfere
with the system process that require low priority.
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Attention: Raising the server PRIORITY (decreasing this numeric value) is not recommended
because system hangs or crashes could occur if the priority of the AlO servers is favored too
much. There is little to be gained by making big priority changes.

PUSER and PRI_SCHED are defined in the /usr/include/sys/pri.h file.

STATE to be configured at system restart
Indicates the state to which asynchronous I/O is to be configured during system initialization. The
possible values are:

» defined, which indicates that the asynchronous I/O will be left in the defined state and not
available for use

* available, which indicates that asynchronous 1/O will be configured and available for use

STATE of FastPath
The AIO Fastpath is used only on character devices (raw logical volumes) and sends I/O requests
directly to the underlying device. The file system path used on block devices uses the aio kprocs
to send requests through file system routines provided to kernel extensions. Disabling this option
forces all 1/0O activity through the aios kprocs, including I/O activity that involves raw logical
volumes. In AIX 4.3 and earlier, the fast path is enabled by default and