SunRay Protocol Documentation

© Paul Evans, 2003

pe2080cam.ac.uk or nerd@freeuk.com

Version 0.4.1

1 Introduction

Numbers in normal type (e.g 12) are in decimal. numbers in fixed type and
prefixed with 0x (e.g. 0x15) are in hexadecimal.

1.1 Disclaimer

All information contained in this document was obtained by reverse engineering
of packet dumps obtained from SunRay to server communications, and by noting
effects on the SunRay of further communications started from code I have written.
No Sun Microsystems code on either the server or the SunRay was decompiled or
otherwise tampered with, nor any special modifications to the SunRay hardware
were done in order to perform this work.

Further, this information is supplied in good faith but with no warranty of
correctness or applicability for any purpose. Due to the nature of the reverse
engineering performed, the reliability of this information cannot be guaranteed.
I take no responsibility for any effects of applying information contained herein.

The names Sun Microsystems and SunRay are trademarks of the Sun Mi-
crosystems Inc.

2 Overview

The SunRay device has a fairly simple communications protocol, with a slightly
more complex startup routine. The basic outline is that on powerup, it seeks
configuration via DHCP, then authenticates with a server using TCP. Once this
is set up, the server communicates with is via UDP. Each of the three protocols
will be discussed here.

3 DHCP

The SunRay uses standard DHCP with some vendor-specific extensions. The
vendor-specific parameters I have observed in use are:

number | type name description
21 | ip address | authserver | TCP Authentication server IP address
22 | uint 16 authport | TCP Authentication server port number
23 | text version Firmware version string
24 | ip address | logserver | Logging server IP address
25 | uint 8 logkernel | Logging level for kernel messages
26 | uint 8 lognet Logging level for network messages
27 | uint 8 logusb Logging level for USB messages
28 | uint 8 logvid Logging level for video messages
29 | uint 8 logappl Logging level for application messages
31 | ip address | fwserver Unknown; possibly firmware server
32 | uint 32 displayres | Initial display resolution
33 | text netname Unknown

4 TCP

Having obtained the address and port number of the auth server using the DHCP
system described above, the SunRay then attempts to connect to the auth port.
Normally this is port 7009. The format of communications on this port is a
simple ASCII format, starting with an ASCII heading name, followed by a space,
then a number of “name=value” sections, each separated with spaces. The final
section followed by a newline (0x0a) character, rather than a space.

The SunRay begins by sending a fairly long sequence to the server; there
being two items of importance here. The “id” parameter contains the hardware
MAC address of the SunRay, used as a unique identifier, and “tokenSeq” contains
the number 1. I am unsure quite why this number is sent; perhaps it serves to
identify this authentication request in the case that more than one is sent.

The server then responds with a “discInf” reply, setting “access=denied”.

The SunRay then re-requests, including the parameters “pn” to indicate the
UDP port number that will be used, and “state” being either “connected” or
“disconnected”.

The server then replies with “connlnf”, setting “tokenSeq” as the number
saved above, and “access=allowed” until the SunRay sends a “state=connected”
message. When it has done this, the included port number can be used to start
communications by the UDP system.

It is important at this point that the TCP port remains open, or else the
SunRay will reset back to the DHCP stage.

5 UDP

All UDP packets start with a common header:
offset | name | description
0x00 | seqnum | Sequence number
0x02 | flags | Flags
0x04 | atype | AType field
0x06 | bdir BDir field
0x08 data
Note that all multi-byte fields on the SunRay are stored in big endian format.
The seqnum field simply increments by one for each packet sent. The server
and the SunRay maintain their own, independent numbering. It is at present
unclear what happens if either end is supplied with a packet out of sequence.
The sequence numbering starts from 0x0001.

The third field, atype shows how my field naming scheme works. Since I do
not know the official Sun naming scheme for these packet fields, I must construct
my own. Apart from the sequence number and flags fields, all fields from here on
begin with the letters A, B, C, etc... and follow with a description of the sort of
field.

Here, it describes the type of the following data. Two distinct values have

been observed here:
0x0000 | AType0

0x0001 | ATypel
AType0 packets are only seen during starting up the SunRay. Once the device
has been initialised, all drawing and status messages use ATypel packets. The
format of the ATypeO and ATypel packets are the same. The significance of this
field is, as yet, unclear.
Finally, the btype field takes one of two values:

0x0000 | Server to SunRay

0x07d0 | SunRay to Server
These two directions take different formats. These are explained below.

5.1 Server to SunRay

This type of packet consists of a constant length header, followed by a collection
of varying length ”opcode” sections (some are constant length, some whose length
varies with the data contained therein). The header is laid out as follows:
offset | name | description

0x00 | cdat | Unknown

0x02 | ddat | Unknown

0x04 | edat | Unknown

0x06 | fdat | Observed as always 0x0000

0x08 opcode sections

The data fields are nearly always 0x000f, 0x000a, 0x0010, 0x0000, but this
is not always the case, and it is unclear what any of the fields mean. I have tested
the SunRay with my own server, and it works if I fill all these fields with zero.

After these four standard fields, is a collection of opcode sections. Each section
starts with a standard header, and is followed by data of variable length. The
format of each section’s data is explained below.

At this point, due to UDP packet length restrictions, the maximum length
of the remaining data is 1440 octets. If there is any less data than this then
the packet stands by itself. If it is precisely this long then this packet is part
of a longer chain, and must be joined to the next packet. Note that the packet
following this one will still contain all fields up to fdat. Also note that if the
following packet contains 1440 octets then the packet following that must also be
joined, and so on. Only when a packet of length less than this restriction arrives
can the data can finally be interpreted.
offset | name description

0x00 | gopcode | Opcode
0x01 | hflags | Flags

0x02 | iseq Sequence number
0x04 | x X coordinate
0x06 | y Y coordinate

0x08 | width Width of region
Ox0a | height | Height of region
0x0c opcode data
The opcode’s value can be one of the following:
0xal | Unknown
0xa2 | FillRect
0xa3 | FillRectBitmap
0xa4 | CopyRect
0xab | SetRectBitmap
Oxa6 | SetRect
0xa8 | SetMouseBound
0xa9 | SetMousePointer
Oxaa | SetMousePosition
Oxab | SetKeyLock
Oxac | Unknown
Oxad | Unknown
Oxaf | Pad
0xd1 | Unknown
0xd8 | Unknown
In most cases the x, y, width and height fields refer to the region of the
screen that the operation affects. The exact semantics are mentioned in the
following sections. The x and y fields are referred to as the command point, and

the combination of all four fields are referred to as the command rectangle. The
rectangle extends from (x,y) to (x + width - 1,y + height - 1) inclusive.

The iseq field is a sequence number like that in the main packet header. It
starts at zero, and is incremented before sending each packet (i.e. so the first
sequence number actually seen on the network would be 0x0001). However, it
is not incremented before sending a Oxaf gopcode section. The full reasoning
behind this is explained in the description of the Oxaf opcode.

Unknown (Oxal)

The format of this packet is not known. It is seen only once, on startup. It is
therefore difficult to make any assumptions about the data, but both occurrences
I have seen the data has been 4 octets long. The command rectangle’s definition
was 0x0000, 0x0000, 0x0001, 0x0001.

offset | name description
0x00 | unknown | 4 octets of unknown data
0x04 next opcode

FillRect (0xa2)

This drawing operation fills the command rectangle in a solid colour.
offset | name | description

0x00 | colour | Colour to set rectangle
0x04 next opcode

FillRectBitmap (0xa3)

This drawing operation fills the command rectangle in a colour, given by
bitmap data. This allows masked filling of rectangles and is primarily used for
setting text characters on the screen.

offset | name | description
0x00 | colour | Colour to set rectangle

0x04 | bitmap | Bitmap field

n next opcode
The bitmap data itself is a sequence of 1’s and 0’s. The data for the first
screen line (i.e. of y value given in the header) is given first, starting at the initial
x coordinate and increasing. This data is zero-padded up to the nearest octet
boundary, then the next line is given. This continues for all screen lines. Finally
the bitmap is zero-padded to the nearest 32bit boundary, for aligning the next

opcode.

This means that, given a function roundup(n,a) which returns the value of

n rounded up to the nearest multiple a, the length of the bitmap field is
roundup ((roundup(width, 8) / 8) * height, 4)

octets.

CopyRect (0xa4)
This drawing operation copies part of the screen into the command rectangle.
The command and “source” rectangle can overlap; the copy operation will be
done to ensure the copy is correct. There is no limit on the size of the copy
operation - the whole screen can be copied; for example, to implement whole-
screen scrolling.
offset | name | description
0x00 | xsrc | X coordinate of source
0x02 | ysrc | Y coordinate of source
0x04 next opcode

SetRectBitmap (0xa5)

This drawing operation sets the command rectangle of the screen to two
colours, given by bitmap data. This allows filling rectangles primarily used for
text characters on the screen, or other monotone screen graphics.

offset | name description
0x00 | colour0O | Colour to set rectangle for 0 bits
0x04 | colourl | Colour to set rectangle for 1 bits
0x08 | bitmap | Bitmap field
n next opcode
The rectangle and bitmap data are in similar format as above. The difference
between this opcode and FillRectBitmap is that here, two colours are specified
and are drawn depending in the bit in the bitmap, whereas for FillRectBitmap,
the screen is left unmodified for the 0 bits.

SetRect (0xa6)

This drawing operation sets the command rectangle to arbitrary colour data
as specified in the data.

offset | name description
0x00 | colours | Colours to set rectangle
n next opcode

The colour data is specified as a long list of 3 octet colour values, in the same
order as for the bitmaps above (data for the first row first, starting at the initial
coordinate).

SetMouseBound (0xa8)

This operation sets the boundary of the mouse cursor’s allowed movement.

offset | name | description
0x00 | xbound | Low X coordinate of bounds
0x02 | ybound | Low Y coordinate of bounds
0x04 | wbound | Width of bounds
0x06 | hbound | Height of bounds
0x08 next opcode
The four parameters above define the mouse bound rectangle.
I have observed an odd function of the command rectangle in this command.
The starting position does not seem to be significant, though the size of it does. If
the size is set smaller than the screen resolution, drawing operations get clipped
to this size, and if the mouse falls outside then it disappears permanently from
the screen (i.e. does not reappear when moved back again).

SetMouseCursor (0xa9)

This operation sets the shape and colour of the mouse pointer. It does not
directly affect the screen’s framebuffer display. The command point gives the
coordinates inside the bitmap of the mouse cursor’s hotpoint, and the size of the
command rectangle gives the size of the cursor.

offset | name description
0x00 | colourf | Colour to set foreground
0x04 | colourg | Colour to set background
0x08 | bitmapc | Colour bitmap field
nl | bitmapm | Mask bitmap field
n2 next opcode
Note that two fields of bitmap data are present here; so the formula quoted
above for the length of bitmap fields will need to be applied twice. The colour
and mask bitmaps are of similar format to those above, and work together as
follows:

mask | colour | description
0 X transparent
1 0 background
1 1 foreground

SetMousePosition (Oxaa)

This operation sets the mouse cursor position, and is normally used only
during startup. The command point gives the required cursor position, the size
of the command rectangle is set to zero.

offset | name description
0x00 | padding | 4 octets of zero-padding
0x04 next opcode

SetKeyLock (Oxab)

Here the command rectangle does not give any useful data, and so is set to

all zero.
offset | name | description

0x00 | 11lock | Keyboard lock value
0x02 | mdat | The value 0x0000
0x04 next opcode
The 1lock field is an inclusive OR of the required LEDs on the keyboard.
mask | lock
0x0001 | Number lock
0x0002 | Caps lock
Having been unable to activate either Scroll lock or Compose, I am unable to
say what values these would be, but I suspect 0x0004 and 0x0008 would possibly
be the correct values.
Alternatively, these bitmasks could be part of USB’s Keyboard HID values,
as the only two known cases (above) match the USB specifications.

Unknown (Oxac)
The format of this opcode is not known, other than it is of constant length.
The command rectangle is all zero.
offset | name | description
0x00 | 1dat | Unknown data
0x04 | mdat | Unknown data
0x08 next opcode
I have observed that all occurrences of this packet contain an all-zero com-
mand rectangle, 1dat as constant 1, and mdat as a small odd number (1, 3, 5, 7
or 9). Sometimes the packet occurs multiple times

Unknown (Oxad)
The format of this opcode is not known, other than how to calculate its length.
The size of the command rectangle does not seem to directly relate to the size of

the data.
offset | name | description

0x00 | len Hint to length of variable data
0x02 | dat Data of unknown format
n next opcode
The length of the dat field is given by (len & Oxfffc) + 2.

Pad (Oxaf)

The contents of this command are observed always constant. The command
rectangle fields are (respectively) 0x0000, 0x0001, Oxffff and Oxffff, and the
remaining data as below:

offset | name | description
0x00 | ndat | 4 octets of 0xff
0x04 next opcode
This packet serves as marker for the current iseq value. The value associated
with this packet is the value that the server last sent; but the value itself is
not incremented. The SunRay can then confirm if it has received all previous
commands, and it not; it can issue a NACK reply (see below).

Unknown (0xd1)

This packet type is only seen once; on startup. While the purpose of this
packet is not known, the contents are observed always constant. The command
rectangle fields are all zero, and there is no other data.

offset | name ‘ description
0x00 next opcode
This packet is seen only once, during startup, and it occurs on its own. l.e.
it is the only opcode type within the UDP packet. Before this packet, all packets
from the server are of the AType0 variety. Afterwards, they are ATypel. I
suspect this packet therefore signifies that the startup routines are complete, and
that the SunRay should now enter normal operation.

Unknown (0xd8)
This packet is seen occasionally while the sunray is running. After the server
sends this packet, the SunRay and server perform some additional communication
using a new UDP port number at the server end, then communication continues
as normal via this new port. I suspect this is because the server may need the
UDP port for other operations, so renegotiates the port.
offset | name ‘ description
0x00 next opcode

5.2 SunRay to Server

The messages from the SunRay to the server follow a similar scheme to that
above; a constant sized header then a string of opcode sections.
offset | name | description
0x00 | cdat | Unknown
0x02 | ddat | Unknown
0x04 | edat | Observed as always 0x0000
0x06 | fdat | Observed as always 0x0000
0x08 opcode sections
I am unsure of what cdat and ddat are for, but their value doesn’t seem to
change over small times. I.e. it stays at one value for a while, and changes to
a different value after a few seconds. The values do not seem significant to any
part of the data contained within the opcode section.

As before, a sequence of opcode sections follow this header. Unlike as above,
there is no packet joining mechanism, as the replies from the SunRay tend to be
much shorter. Note also that, whereas the server’s messages need at least one
opcode field, SunRay’s replies quite often contain no additional opcodes; therefore
the packet ends after the header.

All the opcodes start with the following opcode header:

offset | name description
0x00 | gopcode | Opcode
0x01 | hdat Unknown
0x03 | idat Unknown
0x04 opcode data

The gopcode field plays a similar role to that in the server’s packets, but
unlike in the server’s packets, there appears to be no sequence number field.
Neither hdat nor idat seem to follow any particular pattern; their value does
not seem to relate to the data in the packet.

The following gopcodes have been observed.
0xc1l | Keyboard
0xc2 | Mouse
0xc4 | NACK
0xc5 | Unknown
0xc6 | Unknown
0xc7 | Unknown

Keyboard (0xc1)

This packet indicates a change of state on the keyboard (a key has been
pressed or released).

offset | name | description

0x00 | jdat Constant 0x0021

0x02 | kshift | Shift value

0x04 | 1keys | Keyboard scan codes

0x0a | mdat Constant 0x00

0x0c next opcode
The keyboard scan codes are taken from the USB keyboard HID specifications.
For example, the 26 letters of the Roman alphabet are assigned the scan codes
0x04 to Ox1d in alphabetical order. lkeys is an 6-element array of scancodes.
The array is filled from the bottom first, new keys are added at the top, when
a key is released it is removed from the list and the remaining keys are moved
down. Therefore, the array always contains some scan codes (or possibly none),
followed by 0x00 padding.

An interesting effect is noticed if more than three keys are held at once. If
this is the case, all 6 entries in the array become 0x01, and remain there until not
more than three keys are depressed. This is clearly an error-type code, signifying

10

that there are too many keys pressed, however I am unsure why it should limit

to three keys, given that there are six spaces in the array.

The shift values are an inclusive OR from the following:

mask | key

0x0001 | Control
0x0002 | Left shift
0x0004 | Alt
0x0008 | Left Sun
0x0010 | Compose
0x0020 | Right shift
0x0040 | Alt Graph
0x0080 | Right Sun
0x0100 | Num lock
0x0200 | Caps lock

Note that the shift values of Num lock and Caps lock refer to the state of the

lock being set (if the LED is on), and not if the key itself is depressed.

Mouse (0xc2)

This opcode specifies the position and state of the mouse.

offset | name description
0x00 | jbuttons | State of the buttons
0x02 | kx X coordinate of pointer
0x04 | 1y Y coordinate of pointer
0x06 | mdat Constant 0x0000
0x08 next opcode

The jbuttons field has a bit set for each of the first three buttons. If the
mouse has more than three buttons they are ignored. This field also has bit 6
(0x0040) set, but I do not know why.

NACK (0xc4)
I have observed this error as a response to incorrect iseq values being sent in
the packet chain. More investigation, using purposely-malformed sequences will

be needed to determine its exact nature.
offset | name | description

0x00 | jdat | Unknown data
0x04 | kmin | Unknown data; suspected sequence number
0x08 | Ilmax | Unknown data; suspected sequence number
0x0c next opcode
I have observed that jdat is always 1 in all the packets I have seen. These
packets concerned incorrect iseq numbers; but perhaps the main packet header
seqnum can also cause error messages. During the malformed sequence; a packet
containing iseq=0x0058 was sent; following this was a packet containing iseq=0x005b.

11

The SunRay responded by sending jdat=0x0001, kmin=0x0059, kmax=0x005a.
This would appear to indicate the missing iseq numbers. This appears to give
the motivation for the behaviour of the iseq value when sending a Oxaf com-
mand.

Unknown (0xc5)

The purpose of this packet is unknown.

offset | name | description
0x00 | jdat | Unknown data
0x04 next opcode

This packet type is only seen during startup; where a collection of seven

similar packets are sent. The first octet of the data is always a valid gopcode

for server-to-SunRay packets. They are always sent in the order 0xa6, 0xa3,

Oxab, Oxa4, Oxa2, Oxa7, Oxad. The remaining three octets are different between

gopcodes, but the same number is always sent at different startups for the same

gopcode. [suspect these are either startup self-test timings, code versions, or

similar.

Unknown (0xc6)

The exact purpose of this packet is unknown, but it contains, in ASCII,
the name of the firmware version, as sent in the DHCP communication during
startup. As above, this packet is only seen during startup, though it does appear
multiple times; almost identically. Only a few octets of data change from repeat
to repeat, but I do not know the significance of what changes.

offset | name description
0x00 | jlen Data length
0x02 | kstrlen | String length
0x03 | 1string | String data
nl | mdat Unknown data
n2 next opcode
The total length of the data in this packet is given in jlen; this length in-
cluding the length of the jlen field itself. Following then is the firmware string,
with the length before it. After this is some other data, whose format is as yet
unknown. It does not appear to be significant.

Unknown (0xc7)

This packet appears to contain three sets of rectangle definitions. It is sent
along with 0xc1 and 0xc2 every time the SunRay sends status information back
to the server.

12

offset | name description
0x00 | x1 X1 coordinate
0x02 | y1 Y1 coordinate
0x04 | widthl | Widthl
0x06 | heightl | Heightl
0x08 | x2 X2 coordinate
0x0a | y2 Y2 coordinate
0x0c | width?2 Width2
0x0e | height2 | Height2
0x10 | x3 X3 coordinate
0x12 | y3 Y3 coordinate
0x14 | width3 Width3
0x16 | height3 | Height3
0x18 next opcode

[am unsure of what these three rectangles mean, because so far I have ob-
served that each one is always (0,0)-(1279,1023). I suspect they may have some-
thing to do with real and virtual screen resolutions.

13

