
1 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

[MS-RDPBCGR]:

Remote Desktop Protocol:

Basic Connectivity and Graphics Remoting Specification

Intellectual Property Rights Notice for Protocol Documentation

 This protocol documentation is covered by Microsoft copyrights. Regardless of any other terms

that are contained in the terms of use for the Microsoft website that hosts this documentation,
you may make copies of it in order to develop implementations of the protocols, and may
distribute portions of it in your implementations of the protocols or your documentation as

necessary to properly document the implementation. This permission also applies to any
documents that are referenced in the protocol documentation.

 Microsoft does not claim any trade secret rights in this documentation.

 Microsoft has patents that may cover your implementations of the protocols. Neither this notice

nor Microsoft's delivery of the documentation grants any licenses under those or any other
Microsoft patents. If you are interested in obtaining a patent license, please contact
protocol@microsoft.com.

 The names of companies and products contained in this documentation may be covered by
trademarks or similar intellectual property rights. This notice does not grant any licenses under
those rights.

 All other rights are reserved, and this notice does not grant any rights other than specifically
described above, whether by implication, estoppel, or otherwise.

This protocol documentation is intended for use in conjunction with publicly available standard
specifications, network programming art, and Microsoft Windows distributed systems concepts, and

assumes that the reader either is familiar with the aforementioned material or has immediate access
to it.

A protocol specification does not require the use of Microsoft programming tools or programming

environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them.

Revision Summary

Date

Revision

History

Revision

Class Comments

02/22/2007 0.01 MCPP Milestone 3 Initial Availability

06/01/2007 1.0 Major Updated and revised the technical content.

07/03/2007 1.1 Minor Minor technical content changes.

07/20/2007 1.2 Minor Made technical and editorial changes based on

2 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Date

Revision

History

Revision

Class Comments

feedback.

08/10/2007 1.3 Minor Updated content based on feedback.

09/28/2007 1.4 Minor Made technical and editorial changes based on

feedback.

10/23/2007 1.4.1 Editorial Revised and edited the technical content.

11/30/2007 1.5 Minor Made technical and editorial changes based on

feedback.

01/25/2008 2.0 Major Updated and revised the technical content.

3 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Table of Contents

1 Introduction .. 13

1.1 Glossary .. 13
1.2 References ... 13

1.2.1 Normative References .. 13

1.2.2 Informative References ... 14
1.3 Protocol Overview (Synopsis) .. 14

1.3.1 Message Flows .. 15
1.3.1.1 Standard Connection Sequence .. 15

1.3.1.2 Security-Enhanced Connection Sequence ... 19
1.3.1.3 Deactivation-Reactivation Sequence .. 20
1.3.1.4 Disconnection Sequences .. 20

1.3.1.4.1 User-Initiated on Client .. 20
1.3.1.4.2 User-Initiated on Server .. 20
1.3.1.4.3 Administrator-Initiated on Server .. 20

1.3.1.5 Automatic Reconnection .. 20
1.3.2 Server Error Reporting ... 21
1.3.3 Static Virtual Channels ... 21
1.3.4 Data Compression .. 21

1.3.5 Keyboard and Mouse Input .. 21
1.3.6 Basic Server Output ... 22
1.3.7 Controlling Server Graphics Output .. 22

1.4 Relationship to Other Protocols .. 22
1.5 Prerequisites/Preconditions ... 22
1.6 Applicability Statement .. 23

1.7 Versioning and Capability Negotiation ... 23
1.8 Vendor-Extensible Fields .. 24
1.9 Standards Assignments .. 24

2 Messages ... 25

2.1 Transport ... 25

2.2 Message Syntax .. 25
2.2.1 Normal Connection Sequence .. 25

2.2.1.1 Client X.224 Connection Request PDU ... 25
2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ) ... 26

2.2.1.2 Server X.224 Connection Confirm PDU .. 26

2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP) .. 27
2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE) ... 28

2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request 29
2.2.1.3.1 User Data Header (TS_UD_HEADER) ... 30

2.2.1.3.2 Client Core Data (TS_UD_CS_CORE) ... 31
2.2.1.3.3 Client Security Data (TS_UD_CS_SEC) ... 36
2.2.1.3.4 Client Network Data (TS_UD_CS_NET) ... 37

2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF) 38
2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER) ... 39

2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response 40

2.2.1.4.1 User Data Header (TS_UD_HEADER) ... 42
2.2.1.4.2 Server Core Data (TS_UD_SC_CORE) .. 42
2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1) .. 42

2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE) .. 44

2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE) ... 45
2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY) ... 46

2.2.1.4.4 Server Network Data (TS_UD_SC_NET) ... 46

4 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.1.5 Client MCS Erect Domain Request PDU .. 47
2.2.1.6 Client MCS Attach User Request PDU ... 48

2.2.1.7 Server MCS Attach User Confirm PDU .. 48
2.2.1.8 Client MCS Channel Join Request PDU ... 49
2.2.1.9 Client MCS Channel Join Confirm PDU ... 49
2.2.1.10 Client Security Exchange PDU .. 50

2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET) 51

2.2.1.11 Client Info PDU .. 51
2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU) .. 52

2.2.1.11.1.1 Info Packet (TS_INFO_PACKET) ... 52
2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET) 56

2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION) 59

2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME) 61
2.2.1.12 Server License Error PDU - Valid Client .. 63

2.2.1.12.1 Licensing Preamble (LICENSE_PREAMBLE) .. 64
2.2.1.12.2 Licensing Binary Blob (LICENSE_BINARY_BLOB) .. 65

2.2.1.12.3 Licensing Error Message (LICENSE_ERROR_MESSAGE) 66
2.2.1.13 Mandatory Capability Negotiation .. 67

2.2.1.13.1 Server Demand Active PDU .. 67

2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU) 69
2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET) ... 70

2.2.1.13.2 Client Confirm Active PDU .. 72

2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU) 73
2.2.1.14 Client Synchronize PDU ... 74

2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU) 75
2.2.1.15 Client Control PDU - Cooperate ... 76

2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU) .. 77
2.2.1.16 Client Control PDU - Request Control ... 78
2.2.1.17 Client Persistent Key List PDU .. 80

2.2.1.17.1 Persistent Key List PDU Data (TS_BITMAPCACHE_PERSISTENT_LIST_PDU) ... 81
2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY) 83

2.2.1.18 Client Font List PDU .. 84

2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU) .. 86

2.2.1.19 Server Synchronize PDU .. 87
2.2.1.20 Server Control PDU - Cooperate ... 88
2.2.1.21 Server Control PDU - Granted Control ... 90

2.2.1.22 Server Font Map PDU .. 91
2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU) .. 93

2.2.2 Disconnection Sequences .. 94

2.2.2.1 MCS Disconnect Provider Ultimatum PDU ... 94
2.2.2.2 Client Shutdown Request PDU .. 94

2.2.2.2.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU) 96

2.2.2.3 Server Shutdown Request Denied PDU .. 96
2.2.2.3.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU) 98

2.2.3 Deactivation-Reactivation Sequence ... 98
2.2.3.1 Server Deactivate All PDU .. 98

2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU) 100
2.2.4 Auto-Reconnect Sequence ... 100

2.2.4.1 Server Auto-Reconnect Status PDU ... 100

2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU) 102
2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET) 102
2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET) 103

2.2.5 Server Error Reporting ... 104
2.2.5.1 Server Set Error Info PDU .. 104

2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU) 106

5 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.6 Static Virtual Channels ... 110
2.2.6.1 Virtual Channel PDU ... 110

2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER) .. 112
2.2.7 Capability Sets .. 113

2.2.7.1 Mandatory Capability Sets ... 113
2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET) 113

2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET) 116

2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET) 118
2.2.7.1.4 Bitmap Cache Host Support Capability Set

(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET) 123
2.2.7.1.5 Bitmap Cache Capability Set ... 124

2.2.7.1.5.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET) 124

2.2.7.1.5.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2) 125
2.2.7.1.5.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO) 127

2.2.7.1.6 Pointer Capability Set (TS_POINTER_CAPABILITY_SET) 127
2.2.7.1.7 Input Capability Set (TS_INPUT_CAPABILITY_SET) 128

2.2.7.1.8 Brush Capability Set (TS_BRUSH_CAPABILITYSET) 131
2.2.7.1.9 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET) 131

2.2.7.1.9.1 Cache Definition (TS_CACHE_DEFINITION) ... 133

2.2.7.1.10 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET) 133
2.2.7.1.11 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET) 134
2.2.7.1.12 Sound Capability Set (TS_SOUND_CAPABILITYSET) 135

2.2.7.2 Optional Capability Sets .. 135
2.2.7.2.1 Control Capability Set (TS_CONTROL_CAPABILITYSET) 135
2.2.7.2.2 Window Activation Capability Set

(TS_WINDOWACTIVATION_CAPABILITYSET) .. 136

2.2.7.2.3 Share Capability Set (TS_SHARE_CAPABILITYSET) 137
2.2.7.2.4 Font Capability Set (TS_FONT_CAPABILITYSET) .. 137
2.2.7.2.5 Multifragment Update Capability Set

(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET) .. 138
2.2.7.2.6 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET) 138
2.2.7.2.7 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET) 139

2.2.8 Keyboard and Mouse Input .. 140

2.2.8.1 Input PDU Packaging .. 140
2.2.8.1.1 Slow-Path (T.128) Formats .. 140

2.2.8.1.1.1 Share Headers .. 140

2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER) 140
2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER) 141

2.2.8.1.1.2 Security Headers ... 143

2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER) .. 143
2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1) .. 145
2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2) ... 145

2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU) .. 146
2.2.8.1.1.3.1 Slow-Path Input Event (TS_INPUT_EVENT) 147

2.2.8.1.1.3.1.1 Keyboard Event (TS_KEYBOARD_EVENT) 148
2.2.8.1.1.3.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT) 149

2.2.8.1.1.3.1.3 Mouse Event (TS_POINTER_EVENT) .. 149
2.2.8.1.1.3.1.4 Extended Mouse Event (TS_POINTERX_EVENT) 150
2.2.8.1.1.3.1.5 Synchronize Event (TS_SYNC_EVENT) 151

2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU) 152
2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO) 154
2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT) 154

2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT) 155
2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event

(TS_FP_UNICODE_KEYBOARD_EVENT) ... 155

6 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT) 156
2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT) 156

2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT) 157
2.2.8.2 Keyboard Status PDUs .. 157

2.2.8.2.1 Server Set Keyboard Indicators PDU .. 157
2.2.8.2.1.1 Set Keyboard Indicators PDU Data

(TS_SET_KEYBOARD_INDICATORS_PDU) ... 159

2.2.8.2.2 Server Set Keyboard IME Status PDU ... 160
2.2.8.2.2.1 Set Keyboard IME Status PDU Data

(TS_SET_KEYBOARD_IME_STATUS_PDU) ... 161
2.2.9 Basic Output ... 162

2.2.9.1 Output PDU Packaging .. 162

2.2.9.1.1 Slow-Path (T.128) Format .. 162
2.2.9.1.1.1 Share Headers .. 162
2.2.9.1.1.2 Security Headers ... 162
2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU) 162

2.2.9.1.1.3.1 Slow Path Graphics Update (TS_GRAPHICS_UPDATE) 164
2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE_PDU_DATA) 164

2.2.9.1.1.3.1.1.1 RGB Palette Entry (TS_PALETTE_ENTRY) 165

2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP_PDU_DATA) 165
2.2.9.1.1.3.1.2.1 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM) 166
2.2.9.1.1.3.1.2.2 Compressed Data Header (TS_CD_HEADER) 169

2.2.9.1.1.3.1.2.3 Bitmap Data (TS_BITMAP_DATA) 170
2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC_PDU_DATA) 171

2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU) 172
2.2.9.1.1.4.1 Point (TS_POINT16) ... 174

2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE) 174
2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE) 174
2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE) 175

2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE) 176
2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE) 176

2.2.9.1.1.5 Server Play Sound PDU .. 176

2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA) 178

2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU) 178
2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE) .. 180

2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE) 182

2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP) 183
2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE) 183
2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE) .. 184

2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update
(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE) 184

2.2.9.1.2.1.6 Fast-Path System Pointer Default Update

(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE) 185
2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE) . 185
2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE) 186
2.2.9.1.2.1.9 Fast-Path Cached Pointer Update

(TS_FP_CACHEDPOINTERATTRIBUTE) ... 186
2.2.10 Logon Notifications .. 187

2.2.10.1 Server Save Session Info PDU .. 187

2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA) 188
2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO) .. 189
2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2) 190

2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY) .. 192
2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED) 193

2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD) 194

7 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO) 194
2.2.11 Controlling Server Graphics Output .. 195

2.2.11.1 Inclusive Rectangle (TS_RECTANGLE16) .. 195
2.2.11.2 Client Refresh Rect PDU .. 196

2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU) 197
2.2.11.3 Client Suppress Output PDU ... 197

2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU) 198

3 Protocol Details ... 200
3.1 Common Details ... 200

3.1.1 Abstract Data Model ... 200
3.1.2 Timers ... 200
3.1.3 Initialization .. 200

3.1.4 Higher-Layer Triggered Events ... 200
3.1.5 Message Processing Events and Sequencing Rules .. 200

3.1.5.1 Disconnection Sequences .. 200
3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU 200

3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDU 200
3.1.5.2 Static Virtual Channels .. 201

3.1.5.2.1 Sending of Virtual Channel PDU .. 201

3.1.5.2.2 Processing of Virtual Channel PDU ... 201
3.1.6 Timer Events ... 202
3.1.7 Other Local Events ... 202

3.1.8 MPPC-Based Bulk Data Compression ... 202
3.1.8.1 Abstract Data Model ... 202
3.1.8.2 Compressing Data .. 203

3.1.8.2.1 Setting the Compression Flags .. 203

3.1.8.3 Decompressing Data ... 205
3.1.8.4 Compression Types .. 206

3.1.8.4.1 MPPC-8K ... 206

3.1.8.4.1.1 Literal Encoding .. 206
3.1.8.4.1.2 Copy-Tuple Encoding ... 206

3.1.8.4.1.2.1 Copy-Offset Encoding ... 206

3.1.8.4.1.2.2 Length-of-Match Encoding ... 206
3.1.8.4.2 MPPC-64K .. 207

3.1.8.4.2.1 Literal Encoding .. 207
3.1.8.4.2.2 Copy-Tuple Encoding ... 207

3.1.8.4.2.2.1 Copy-Offset Encoding ... 207
3.1.8.4.2.2.2 Length-of-Match Encoding ... 208

3.2 Client Details .. 208

3.2.1 Abstract Data Model ... 208
3.2.1.1 Received Server Data ... 208
3.2.1.2 Static Virtual Channel IDs .. 209

3.2.1.3 I/O Channel ID .. 209
3.2.1.4 User Channel ID ... 209
3.2.1.5 Server Channel ID .. 209
3.2.1.6 Server Capabilities ... 209

3.2.1.7 Share ID ... 209
3.2.1.8 Automatic Reconnection Cookie .. 209
3.2.1.9 Server Licensing Encryption Ability .. 209

3.2.1.10 Pointer Image Cache ... 210
3.2.2 Timers ... 210
3.2.3 Initialization .. 210

3.2.4 Higher-Layer Triggered Events ... 210
3.2.5 Message Processing Events and Sequencing Rules .. 210

8 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.5.1 Constructing a Basic Client-to-Server Slow-Path PDU 210
3.2.5.2 Processing a Basic Server-to-Client Slow-Path PDU ... 211

3.2.5.3 Normal Connection Sequence ... 212
3.2.5.3.1 Sending X.224 Connection Request PDU ... 212
3.2.5.3.2 Processing X.224 Connection Confirm PDU ... 212
3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request 213

3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create

Response ... 215
3.2.5.3.5 Sending MCS Erect Domain Request PDU ... 216

3.2.5.3.6 Sending MCS Attach User Request PDU .. 216
3.2.5.3.7 Processing MCS Attach User Confirm PDU ... 217
3.2.5.3.8 Sending MCS Channel Join Request PDU(s) ... 217

3.2.5.3.9 Processing MCS Channel Join Confirm PDU(s) ... 217
3.2.5.3.10 Sending Security Exchange PDU .. 218
3.2.5.3.11 Sending Client Info PDU ... 219
3.2.5.3.12 Processing License Error PDU - Valid Client ... 219

3.2.5.3.13 Mandatory Capability Negotiation .. 220
3.2.5.3.13.1 Processing Demand Active PDU ... 220
3.2.5.3.13.2 Sending Confirm Active PDU ... 221

3.2.5.3.14 Sending Synchronize PDU .. 221
3.2.5.3.15 Sending Control PDU - Cooperate .. 222
3.2.5.3.16 Sending Control PDU - Request Control .. 222

3.2.5.3.17 Sending Persistent Key List PDU(s) .. 222
3.2.5.3.18 Sending Font List PDU ... 222
3.2.5.3.19 Processing Synchronize PDU ... 222
3.2.5.3.20 Processing Control PDU - Cooperate .. 222

3.2.5.3.21 Processing Control PDU - Granted Control... 223
3.2.5.3.22 Processing Font Map PDU ... 223

3.2.5.4 Disconnection Sequences .. 223

3.2.5.4.1 Sending Shutdown Request PDU ... 223
3.2.5.4.2 Processing Shutdown Request Denied PDU ... 223

3.2.5.5 Deactivation-Reconnection Sequence .. 223

3.2.5.5.1 Processing Deactivate All PDU ... 223

3.2.5.6 Auto-Reconnect Sequence ... 223
3.2.5.6.1 Processing Auto-Reconnect Status PDU .. 223

3.2.5.7 Server Error Reporting .. 224

3.2.5.7.1 Processing Set Error Info PDU ... 224
3.2.5.8 Keyboard and Mouse Input .. 224

3.2.5.8.1 Input Event Notifications .. 224

3.2.5.8.1.1 Sending Slow-Path Input Event PDU ... 224
3.2.5.8.1.2 Sending Fast-Path Input Event PDU ... 224

3.2.5.8.2 Keyboard Status PDUs ... 225

3.2.5.8.2.1 Processing Set Keyboard Indicators PDU ... 225
3.2.5.8.2.2 Processing Set Keyboard IME Status PDU .. 225

3.2.5.9 Basic Output .. 226
3.2.5.9.1 Processing Slow-Path Graphics Update PDU .. 226

3.2.5.9.2 Processing Slow-Path Pointer Update PDU .. 226
3.2.5.9.3 Processing Fast-Path Update PDU .. 227
3.2.5.9.4 Sound ... 228

3.2.5.9.4.1 Processing Play Sound PDU ... 228
3.2.5.9.5 Connection Management .. 228

3.2.5.9.5.1 Processing Save Session Info PDU ... 228

3.2.5.10 Controlling Server Graphics Output ... 229
3.2.5.10.1 Sending Refresh Rect PDU .. 229
3.2.5.10.2 Sending Suppress Output PDU .. 229

9 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.6 Timer Events ... 229
3.2.6.1 Connection Sequence Timeout ... 229

3.2.7 Other Local Events ... 229
3.2.7.1 Disconnection Due to Network Error .. 229

3.3 Server Details ... 229
3.3.1 Abstract Data Model ... 229

3.3.1.1 Received Client Data ... 229

3.3.1.2 User Channel ID ... 229
3.3.1.3 I/O Channel ID .. 230

3.3.1.4 Server Channel ID .. 230
3.3.1.5 Client Licensing Encryption Ability ... 230
3.3.1.6 Client Capabilities ... 230

3.3.1.7 Persistent Bitmap Keys ... 230
3.3.1.8 Pointer Image Cache ... 230

3.3.2 Timers ... 230
3.3.2.1 Auto-Reconnect Cookie Update Timer .. 230

3.3.3 Initialization .. 231
3.3.4 Higher-Layer Triggered Events ... 231
3.3.5 Message Processing Events and Sequencing Rules .. 231

3.3.5.1 Constructing a Basic Server-to-Client Slow-Path PDU 231
3.3.5.2 Processing a Basic Client-to-Server Slow-Path PDU ... 232
3.3.5.3 Normal Connection Sequence ... 233

3.3.5.3.1 Processing X.224 Connection Request PDU ... 233
3.3.5.3.2 Sending X.224 Connection Confirm PDU ... 233
3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request 234
3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response . 236

3.3.5.3.5 Processing MCS Erect Domain Request PDU .. 236
3.3.5.3.6 Processing MCS Attach User Request PDU .. 237
3.3.5.3.7 Sending MCS Attach User Confirm PDU .. 237

3.3.5.3.8 Processing MCS Channel Join Request PDU(s) ... 237
3.3.5.3.9 Sending MCS Channel Join Confirm PDU(s) ... 238
3.3.5.3.10 Processing Security Exchange PDU .. 238

3.3.5.3.11 Processing Client Info PDU ... 239

3.3.5.3.12 Sending License Error PDU - Valid Client .. 240
3.3.5.3.13 Mandatory Capability Negotiation .. 241

3.3.5.3.13.1 Sending Demand Active PDU ... 241

3.3.5.3.13.2 Processing Confirm Active PDU .. 241
3.3.5.3.14 Processing Synchronize PDU ... 242
3.3.5.3.15 Processing Control PDU - Cooperate .. 242

3.3.5.3.16 Processing Control PDU - Request Control .. 242
3.3.5.3.17 Processing Persistent Key List PDU(s) .. 242
3.3.5.3.18 Processing Font List PDU .. 242

3.3.5.3.19 Sending Synchronize PDU .. 242
3.3.5.3.20 Sending Control PDU - Cooperate .. 243
3.3.5.3.21 Sending Control PDU - Granted Control .. 243
3.3.5.3.22 Sending Font Map PDU .. 243

3.3.5.4 Disconnection Sequences .. 243
3.3.5.4.1 Processing Shutdown Request PDU .. 243
3.3.5.4.2 Sending Shutdown Request Denied PDU ... 243

3.3.5.5 Deactivation-Reconnection Sequence .. 243
3.3.5.5.1 Sending Deactivate All PDU .. 243

3.3.5.6 Auto-Reconnect Sequence ... 244

3.3.5.6.1 Sending Auto-Reconnect Status PDU ... 244
3.3.5.7 Server Error Reporting .. 244

3.3.5.7.1 Sending Set Error Info PDU .. 244

10 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.3.5.8 Keyboard and Mouse Input .. 244
3.3.5.8.1 Input Event Notifications .. 244

3.3.5.8.1.1 Processing Slow-Path Input Event PDU ... 244
3.3.5.8.1.2 Processing Fast-Path Input Event PDU .. 244

3.3.5.8.2 Keyboard Status PDUs ... 245
3.3.5.8.2.1 Sending Set Keyboard Indicators PDU .. 245

3.3.5.8.2.2 Sending Set Keyboard IME Status PDU ... 245

3.3.5.9 Basic Output .. 246
3.3.5.9.1 Sending Slow-Path Graphics Update PDU .. 246

3.3.5.9.2 Sending Slow-Path Pointer Update PDU .. 246
3.3.5.9.3 Sending Fast-Path Update PDU ... 246
3.3.5.9.4 Sound ... 247

3.3.5.9.4.1 Sending Play Sound PDU .. 247
3.3.5.9.5 Connection Management .. 248

3.3.5.9.5.1 Sending Save Session Info PDU ... 248
3.3.5.10 Controlling Server Graphics Output ... 248

3.3.5.10.1 Processing Refresh Rect PDU .. 248
3.3.5.10.2 Processing Suppress Output PDU .. 248

3.3.6 Timer Events ... 248

3.3.6.1 Connection Sequence Timeout ... 249
3.3.7 Other Local Events ... 249

4 Protocol Examples ... 250

4.1 Annotated Connection Sequence ... 250
4.1.1 Client X.224 Connection Request PDU ... 250
4.1.2 Server X.224 Connection Confirm PDU .. 250
4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request 251

4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response 256
4.1.5 Client MCS Erect Domain Request PDU .. 260
4.1.6 Client MCS Attach User Request PDU .. 261

4.1.7 Server MCS Attach-User Confirm PDU ... 261
4.1.8 MCS Channel Join Request and Confirm PDUs .. 263
4.1.9 Channel 1007 .. 263

4.1.9.1 Client Join Request PDU for Channel 1007 (User Channel) 263
4.1.9.2 Server Join Confirm PDU for Channel 1007 (User Channel) 264

4.1.10 Channel 1003 .. 265
4.1.10.1 Client Join Request PDU for Channel 1003 (I/O Channel) 265

4.1.10.2 Server Join Confirm PDU for Channel 1003 (I/O Channel) 265
4.1.11 Channel 1004 .. 266

4.1.11.1 Client Join Request PDU for Channel 1004 (rdpdr Channel) 266

4.1.11.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel) 266
4.1.12 Channel 1005 .. 266

4.1.12.1 Client Join Request PDU for Channel 1005 (cliprdr Channel) 266

4.1.12.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel) 266
4.1.13 Channel 1006 .. 267

4.1.13.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel) 267
4.1.13.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel) 267

4.1.14 Client Security Exchange PDU .. 267
4.1.15 Client Info PDU .. 269
4.1.16 Server License Error PDU - Valid Client ... 272

4.1.17 Server Demand Active PDU ... 274
4.1.18 Client Confirm Active PDU ... 281
4.1.19 Client Synchronize PDU .. 290

4.1.20 Client Control PDU - Cooperate .. 291
4.1.21 Client Control PDU - Request Control .. 292

11 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

4.1.22 Client Persistent Key List PDU .. 292
4.1.23 Client Font List PDU ... 296

4.1.24 Server Synchronize PDU ... 297
4.1.25 Server Control PDU - Cooperate ... 297
4.1.26 Server Control PDU - Granted Control ... 298
4.1.27 Server Font Map PDU ... 299

4.2 Annotated User-Initiated (on Client) Disconnection Sequence 300

4.2.1 MCS Disconnect Provider Ultimatum PDU .. 300
4.2.2 Client Shutdown Request PDU ... 301

4.2.3 Server Shutdown Request Denied PDU .. 302
4.3 Annotated Save Session Info PDU .. 302

4.3.1 Logon Info Version 2 .. 302

4.3.2 Plain Notify ... 306
4.3.3 Logon Info Extended .. 309

4.4 Annotated Server-to-Client Virtual Channel PDU .. 312
4.5 Java Code to Encrypt and Decrypt a Sample Client Random ... 313

4.6 Java Code to Sign a Sample Proprietary Certificate Hash ... 317

5 Security ... 323
5.1 Security Considerations for Implementers ... 323

5.2 Index of Security Parameters .. 323
5.3 Standard RDP Security ... 323

5.3.1 Encryption Levels ... 323

5.3.2 Negotiating the Cryptographic Configuration .. 323
5.3.3 Server Certificates ... 324

5.3.3.1 Proprietary Certificates .. 324
5.3.3.1.1 Terminal Services Signing Key .. 325

5.3.3.1.2 Signing a Proprietary Certificate .. 325
5.3.3.1.3 Validating a Proprietary Certificate .. 327

5.3.3.2 X.509 Certificate Chains .. 328

5.3.4 Client and Server Random Values ... 328
5.3.4.1 Encrypting Client Random .. 328
5.3.4.2 Decrypting Client Random ... 329

5.3.5 Session Key Generation .. 329
5.3.5.1 Non-FIPS .. 329
5.3.5.2 FIPS ... 331

5.3.6 Encrypting and Decrypting the I/O Data Stream ... 332

5.3.6.1 Non-FIPS .. 332
5.3.6.1.1 Salted MAC Generation .. 333

5.3.6.2 FIPS ... 333

5.3.7 Session Key Updates .. 334
5.3.7.1 Non-FIPS .. 334
5.3.7.2 FIPS ... 335

5.3.8 Packet Layout in the I/O Data Stream ... 335
5.4 Enhanced RDP Security .. 336

5.4.1 Encryption Levels ... 336
5.4.2 Security-Enhanced Connection Sequence .. 336

5.4.2.1 Negotiation-Based Approach .. 336
5.4.2.2 Direct Approach ... 338
5.4.2.3 Changes to the Security Commencement Phase .. 339

5.4.2.4 Disabling Forced Encryption of Licensing Packets .. 340
5.4.3 Encrypting and Decrypting the I/O Data Stream ... 340
5.4.4 Packet Layout in the I/O Data Stream ... 340

5.4.5 External Security Protocols used by RDP ... 340
5.4.5.1 Transport Layer Security (TLS) 1.0 ... 340

12 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

5.4.5.2 CredSSP ... 341
5.4.5.2.1 User Authorization Failures ... 341

5.5 Automatic Reconnection ... 341

6 Appendix A: Windows Behavior ... 343

7 Index ... 344

13 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

1 Introduction

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification is designed to
facilitate user interaction with a remote computer system by transferring graphics display

information from the remote computer to the user and transporting input from the user to the
remote computer, where it may be injected locally. RDP also provides an extensible transport
mechanism which allows specialized communication to take place between components on the user

computer and components running on the remote computer.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Stock Keeping Unit (SKU)

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[MS-CSSP] Microsoft Corporation, "Credential Security Support Provider (CredSSP) Protocol
Specification", March 2007.

[MS-RDPEA] Microsoft Corporation, "Remote Desktop Protocol: Audio Output Virtual Channel

Extension", September 2007.

[MS-RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)
Acceleration Extensions", June 2007.

[MS-RDPELE] Microsoft Corporation, "Remote Desktop Protocol: Licensing Extension", September
2007.

[MS-RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel

Extension", July 2007.

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2118] Pall, G., "Microsoft Point-To-Point Compression (MPPC) Protocol," RFC 2118, March 1997,

http://www.ietf.org/rfc/rfc2118.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-CSSP%5d.pdf
%5bMS-CSSP%5d.pdf
%5bMS-CSSP%5d.pdf
%5bMS-RDPEA%5d.pdf
%5bMS-RDPEA%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPELE%5d.pdf
%5bMS-RDPERP%5d.pdf
%5bMS-RDPERP%5d.pdf
%5bMS-RDPERP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90317

14 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

[RFC2246] Dierks, T. and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.ietf.org/rfc/rfc2246.txt

[SSL3] Netscape, "SSL 3.0 Specification", http://wp.netscape.com/eng/ssl3/

If you have any trouble finding [SSL3], please check here.

[T123] ITU-T, "Network-Specific Data Protocol Stacks for Multimedia Conferencing",

Recommendation T.123, May 1999, http://www.itu.int/rec/T-REC-T.123/en

Note There is a charge to download the specification.

[T124] ITU-T, "Generic Conference Control", Recommendation T.124, February 1998,
http://www.itu.int/rec/T-REC-T.124/en

Note There is a charge to download the specification.

[T125] ITU-T, "Multipoint Communication Service Protocol Specification", Recommendation T.125,
February 1998, http://www.itu.int/rec/T-REC-T.125-199802-I/en

Note There is a charge to download the specification.

[T128] ITU-T, "Multipoint Application Sharing", Recommendation T.128, February 1998,
http://www.itu.int/rec/T-REC-T.128-199802-I/en

Note There is a charge to download the specification.

[X224] ITU-T, "Information technology - Open Systems Interconnection - Protocol for Providing the
Connection-Mode Transport Service", Recommendation X.224, November 1995,
http://www.itu.int/rec/T-REC-X.224-199511-I/en

Note There is a charge to download the specification.

1.2.2 Informative References

[ERRTRANS] Microsoft Corporation, "How to Translate NTSTATUS Error Codes to Message Strings",
June 2005, http://support.microsoft.com/kb/259693

[MSDN-MUI] Microsoft Corporation, "Locale Identifier Constants and Strings",
http://msdn2.microsoft.com/en-us/library/ms776260.aspx

[MSDN-CP] Microsoft Corporation, "Code Page Identifiers", http://msdn2.microsoft.com/en-
us/library/ms776446.aspx

If you have any trouble finding [MSDN-CP], please check here.

[MSDN-SCHANNEL] Microsoft Corporation, "Creating a Secure Connection Using Schannel",
http://msdn2.microsoft.com/en-us/library/aa374782.aspx

[MSFT-SDLBTS] Microsoft Corporation, "Session Directory and Load Balancing Using Terminal

Server", September 2002,
http://www.microsoft.com/windowsserver2003/techinfo/overview/sessiondirectory.mspx

1.3 Protocol Overview (Synopsis)

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting is designed to facilitate
user interaction with a remote computer system by transferring graphics display information from
the remote computer to the user and transporting input from the user to the remote computer,

http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90534
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=89860
http://go.microsoft.com/fwlink/?LinkId=90048
http://go.microsoft.com/fwlink/?LinkId=89981
http://go.microsoft.com/fwlink/?LinkId=89981
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90121
http://go.microsoft.com/fwlink/?LinkId=90204

15 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

where it may be injected locally. This protocol also provides an extensible transport mechanism
which allows specialized communication to take place between components on the user computer

and components running on the remote computer.

The following subsections present overviews of the protocol operation as well as sequencing
information.

1.3.1 Message Flows

1.3.1.1 Standard Connection Sequence

The goal of the standard connection sequence (Figure 1) is to exchange client and server settings
and to negotiate common settings to use for the duration of the connection so that input, graphics
and other data can be exchanged and processed between client and server.

16 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Figure 1: Remote Desktop Protocol (RDP) connection initialization sequence

The connection sequence can be broken up into seven distinct phases:

1. Connection Initiation: The client initiates the connection by sending the server an X.224
Connection Request PDU (class 0). The server responds with an X.224 Connection Confirm PDU
(class 0).

17 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

From this point, all subsequent data sent between client and server is wrapped in an X.224 Data
Protocol Data Unit (PDU).

2. Basic Settings Exchange: Basic settings are exchanged between the client and server by using
the MCS Connect Initial and MCS Connect Response PDUs. The Connect Initial PDU contains a
GCC Conference Create Request, while the Connect Response PDU contains a GCC Conference
Create Response.

These two Generic Conference Control (GCC) packets contain concatenated blocks of settings
data (such as core data, security data and network data) which are read by client and server.

Figure 2: Basic settings exchange PDUs

18 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Figure 3: MCS connect response PDU

3. Channel Connection: The client sends an MCS Erect Domain Request PDU, followed by an MCS
Attach User Request PDU to attach the primary user identity to the MCS domain. The server
responds with an MCS Attach User Response PDU containing the user channel ID. The client then

proceeds to join the user channel, the input/output (I/O) channel and all of the static virtual
channels (the I/O and static virtual channel IDs are obtained from the data embedded in the GCC
packets) by using multiple MCS Channel Join Request PDUs. The server confirms each channel

with an MCS Channel Join Confirm PDU. (The client only sends a Channel Join Request after it has
received the Channel Join Confirm for the previously sent request.)

From this point, all subsequent data sent from the client to the server is wrapped in an MCS Send
Data Request PDU, while data sent from the server to the client is wrapped in an MCS Send Data

Indication PDU. This is in addition to the data being wrapped by an X.224 Data PDU.

4. RDP Security Commencement: If standard RDP security methods are being employed and
encryption is in force (this is determined by examining the data embedded in the GCC Conference

Create Response packet) then the client sends a Security Exchange PDU containing an encrypted
32-byte random number to the server. This random number is encrypted with the public key of
the server (the server's public key, as well as a 32-byte server-generated random number, are

both obtained from the data embedded in the GCC Conference Create Response packet). The
client and server then utilize the two 32-byte random numbers to generate session keys which
are used to encrypt and validate the integrity of subsequent RDP traffic.

From this point, all subsequent RDP traffic can be encrypted and a security header is included

with the data if encryption is in force (the Client Info and licensing PDUs are an exception in that
they always have a security header). The Security Header follows the X.224 and MCS Headers
and indicates whether the attached data is encrypted. Even if encryption is in force server-to-

client traffic may not always be encrypted, while client-to-server traffic will always be encrypted
by Microsoft RDP implementations (encryption of licensing PDUs is optional, however).

19 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

5. Secure Settings Exchange: Secure client data (such as the username, password and auto-
reconnect cookie) is sent to the server using the Client Info PDU.

6. Licensing: The goal of the licensing exchange is to transfer a license from the server to the client.
The client should store this license and on subsequent connections send the license to the server
for validation. However, in some situations the client may not be issued a license to store. In
effect, the packets exchanged during this phase of the protocol depend on the licensing

mechanisms employed by the server. Within the context of this document we will assume that

the client will not be issued a license to store. For details regarding more advanced licensing
scenarios that take place during the Licensing Phase, see [MS-RDPELE].

7. Capabilities Negotiation: The server sends the set of capabilities it supports to the client in a
Demand Active PDU. The client responds with its capabilities by sending a Confirm Active PDU.

8. Connection Finalization: The client and server send PDUs to finalize the connection details. The

client-to-server and server-to-client PDUs exchanged during this phase may be sent concurrently
as long as the sequencing in either direction is maintained (there are no cross-dependencies
between any of the client-to-server and server-to-client PDUs). After the client receives the Font
Map PDU it can start sending mouse and keyboard input to the server, and upon receipt of the

Font List PDU the server can start sending graphics output to the client.

Besides input and graphics data, other data that can be exchanged between client and server after
the connection has been finalized includes connection management information and virtual channel

messages (exchanged between client-side plug-ins and server-side applications).

1.3.1.2 Security-Enhanced Connection Sequence

The standard connection sequence does not provide any mechanisms which ensure that the identity
of the server is authenticated, and as a result it is vulnerable to man-in-the-middle attacks (these
attacks can compromise the confidentiality of the data sent between client and server).

The goal of the security-enhanced connection sequence is to provide an extensible mechanism

within RDP so that well-known and proven security protocols (such as Secure Socket Layer (SSL) or
Kerberos) can be used to provide server authentication and to wrap RDP traffic. There are two

variations of the security-enhanced connection sequence. The negotiation-based approach aims to

provide backward-compatibility with previous RDP implementations, while the Direct Approach
favors more rigorous security over interoperability.

Negotiation-Based Approach: The client advertises the security packages which it supports (by

appending a negotiation request structure to the X.224 Connection Request PDU) and the server
selects the package to use (by appending a negotiation response structure to the X.224 Connection
Confirm PDU). After the client receives the X.224 Connection Confirm PDU the negotiated security
package is executed and used to secure all subsequent RDP traffic.

Direct Approach: Instead of negotiating a security package, the client and server immediately
execute a pre-determined security protocol (for example, the CredSSP Protocol) prior to any RDP
traffic being exchanged on the wire. This approach results in all RDP traffic being secured using the

hard-coded security package. However, it also has the disadvantage of not working with servers that
only utilize the standard connection sequence, as those servers expect an X.224 Connection Request
PDU as the first packet.

For more details about Enhanced RDP Security, see section 5.4.

%5bMS-RDPELE%5d.pdf
%5bMS-CSSP%5d.pdf

20 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

1.3.1.3 Deactivation-Reactivation Sequence

After the connection sequence has run to completion, the server may determine that the client
needs to be connected to a waiting, disconnected session. To accomplish this task the server signals
the client with a Deactivate All PDU. A Deactivate All PDU implies that the connection will be dropped
or that a capability renegotiation will occur. If a capability renegotiation needs to be performed then

the server will re-execute the connection sequence, starting with the Demand Active PDU (the
Capability Negotiation and Connection Finalization phases as described in section 1.3.1.1) but

excluding the Persistent Key List PDU.

1.3.1.4 Disconnection Sequences

1.3.1.4.1 User-Initiated on Client

The user can initiate a client-side disconnect by closing the RDP client application. To implement this
type of disconnection the client sends the server a Shutdown Request PDU. The server will deny this
request and send the client a Shutdown Request Denied PDU. At this point the client behavior is

implementation-dependent. The Microsoft RDP client displays a dialog box specifying that the
session will be disconnected. If the user chooses to disconnect, the client sends the server an MCS
Disconnect Provider Ultimatum PDU (with the reason code set to "user requested") and closes the

connection.

1.3.1.4.2 User-Initiated on Server

The user can initiate a server-side disconnect by ending the remote session (or application) running

on the server. To implement this type of disconnection, the server first sends the client a Deactivate
All PDU to indicate that the share is being disabled. This PDU is followed by an MCS Disconnect
Provider Ultimatum PDU (with the reason code set to "user requested"). At this point the server

closes the connection.

1.3.1.4.3 Administrator-Initiated on Server

The administrator of a server can force a user to be logged off from their session or disconnect

sessions outside of the user's control. To implement this type of disconnection, the server first sends
the client a Deactivate All PDU to indicate that the share is being disabled. This PDU is followed by
an MCS Disconnect Provider Ultimatum PDU (with the reason code set to "provider initiated"). At

this point the server closes the connection.

1.3.1.5 Automatic Reconnection

The automatic reconnection feature allows a client to reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server.

After a successful log on, the server sends the client an "auto-reconnect cookie" in the Save Session
Info PDU. This cookie is bound to the current user's session and is stored by the client. In the case

of a disconnection due to a network error, the client can try to automatically reconnect to the
server. If it can connect, it sends a cryptographically modified version of the cookie to the server in
the Client Info PDU (the Secure Settings Exchange phase of the connection sequence, as specified in

section 1.3.1.1). The server uses the modified cookie to confirm that the client requesting auto-
reconnection is the last client that was connected to the session. If this check passes, then the client
is automatically connected to the desired session upon completion of the connection sequence.

The auto-reconnect cookie associated with a given session is flushed and regenerated whenever a
client connects to the session or the session is reset. This ensures that if a different client connects
to the session, then any previous clients that were connected can no longer use the auto-reconnect

21 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

mechanism to connect. Furthermore, the server invalidates and updates the cookie at hourly
intervals, sending the new cookie to the client in the Save Session Info PDU.

1.3.2 Server Error Reporting

A server can send detailed error codes to a client by using the Set Error Info PDU (the client must
indicate during the Basic Settings Exchange phase of the connection sequence, as specified in

section 1.3.1.1, that it supports this PDU). This PDU can be sent when a phase in the connection
sequence fails or when the client is about to be disconnected. These error codes allow the client to
give much clearer failure explanations to the user.

1.3.3 Static Virtual Channels

Static virtual channels allow lossless communication between client and server components over the

main RDP data connection. Virtual channel data is application-specific and opaque to RDP. A
maximum of 30 static virtual channels can be created at connection time.

The list of desired virtual channels is requested and confirmed during the Basic Settings Exchange
phase of the connection sequence (as specified in section 1.3.1.1) and the endpoints are joined

during the Channel Connection phase (as specified in section 1.3.1.1). Once joined, the client and
server endpoints should be prevented from exchanging data until the connection sequence has
completed.

Static virtual channel data must be broken up into chunks of up to 1600 bytes in size before being
transmitted (this size does not include RDP headers). Each virtual channel acts as an independent
data stream. The client and server examine the data received on each virtual channel and route the

data stream to the appropriate endpoint for further processing. A particular client or server
implementation can decide whether to pass on individual chunks of data as they are received, or to
assemble the separate chunks of data into a complete block before passing it on to the endpoint.

1.3.4 Data Compression

RDP uses a bulk compressor to compress virtual channel data and some data in PDUs sent from

server to client. Capability advertising for various versions of the bulk compressor occurs in the

Client Info PDU (the Secure Settings Exchange phase of the connection sequence, as specified in
section 1.3.1.1).

One version of the bulk compressor is based directly on the Microsoft Point-To-Point Compression
(MPPC) Protocol and uses an 8 KB history buffer. A more advanced version of the compressor is

derived from the same MPPC Protocol, but uses a 64 KB history buffer and modified Huffman-style
encoding rules.

Besides employing bulk compression for generic data, RDP also uses variations of run length

encoding (RLE) rules to implement compression of bitmap data sent from server to client. All clients
should be able to decompress compressed bitmap data—this capability is not negotiable.

1.3.5 Keyboard and Mouse Input

The client sends mouse and keyboard input PDUs in two flavors: Slow-Path and Fast-Path. Slow-
Path is similar to T.128 input formats for input PDUs, with some modifications for RDP input
requirements. Fast-Path was introduced to take advantage of the fact that in RDP there are no

extended Multipoint Communication Services (MCS) topologies, just one top-level node and one
leaf-node per socket. Fast-Path also uses reduced or removed headers and alternate bytestream-
orientated encoding formats to reduce bandwidth and CPU cycles for encode and decode.

http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90316

22 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Client-to-server Input Event PDUs convey keyboard and mouse data to the server so that it can
inject input as needed. The client can also periodically synchronize the state of the toggle keys (that

is, NUM LOCK and CAPS LOCK) using the Synchronize Event PDU. This is necessary when the client
loses input focus and then later gets the focus back (possibly with new toggle key states). In a
similar vein, the server can also force an update of the local keyboard toggle keys or the local Input
Method Editor (IME) being used to ensure that synchronization with the remote session is

maintained.

1.3.6 Basic Server Output

In a similar style to input-related PDUs (as specified in section 1.3.5), server output-related PDUs
come in two flavors: Slow-Path and Fast-Path. Fast-Path output uses reduced or removed headers
to save bandwidth and reduce encoding and decoding latency by reducing the required CPU cycles.

Slow-Path output is similar to T.128 output and is not optimized in any way.

The most fundamental output that a server can send to a connected client is bitmap images of the
remote session using the Update Bitmap PDU. This allows the client to render the working space and
enables a user to interact with the session running on the server. The global palette information for

a session is sent to the client in the Update Palette PDU.

The client can choose to render the mouse cursor locally (if it is not included in the graphics'
updates sent by the server). In this case the server should send updates of the current cursor image

to ensure that it can be drawn with the correct shape (the Pointer Update PDUs should be used to
accomplish this task). Furthermore, if the mouse is programmatically moved in the remote session
the server should inform the client of the new position using the Pointer Position PDU.

Other basic output which a server sends to a connected client includes the Play Sound PDU, which
instructs a client to play rudimentary sounds (by specifying a frequency and its duration) and
Connection Management PDUs, as specified in section 2.2.10.

1.3.7 Controlling Server Graphics Output

A client connected to a server and displaying graphics data may need to request that the server

resend the graphics data for a collection of rectangular regions of the session screen area, or stop

sending graphics data for a period of time (perhaps when the client is minimized). These two tasks
are accomplished by having the client send the Refresh Rect PDU and Suppress Output PDUs
respectively.

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification is based on
the ITU (International Telecommunication Union) T.120 series of protocols. The T.120 standard is

composed of a suite of communication and application-layer protocols that enable developers to
create compatible products and services for real-time, multipoint data connections and conferencing.

1.5 Prerequisites/Preconditions

This protocol assumes that the system already has an IP address and is thus able to communicate
on the network. It also assumes that the initiator (or "client") has already obtained the IP address of
the server, that the server has registered a port, and that the server is actively listening for client

connections on that port.<1>

All multiple-byte fields within a message are assumed to contain data in little-endian byte ordering,
unless otherwise specified.

23 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

1.6 Applicability Statement

This protocol is applicable in scenarios where interactions with a remote session or remote
application are required. In this context, the graphical user interface of a session or application
running on a remote machine is transmitted to the client machine. The client, in turn, sends
keyboard and mouse input to be processed by the server allowing the client to interact with the

remote session or application.

In scenarios in which more specialized communication between client and server components is
needed, Virtual Channels (see section 1.3.3) provide an extensible transport mechanism. Examples

of more specialized communication include redirection of client-side devices (for example, printers,
drives, smart card readers, or Plug and Play devices) and synchronization of client-side and remote
session clipboards.

1.7 Versioning and Capability Negotiation

Capability negotiation for RDP is essentially the same as for T.128. The server advertises its
capabilities in a Demand Active PDU sent to the client, and the client advertises its capabilities in the

follow-up Confirm Active PDU (see the Capability Negotiation phase in section 1.3.1.1). Capability
sets are packaged in a combined capability set structure. This structure contains a count of the
number of capability sets, followed by the contents of the individual capability sets.

Figure 4: Combined Capability Set Structure

Information exchanged in the capability sets includes data such as supported PDUs and drawing

orders, desktop dimensions and allowed color depths, input device support, cache structures and
feature support. When the capability sets are received, the client and server should each perform a
"merge" operation between their capabilities and the peer capabilities so that all RDP traffic on the

wire is consistent with negotiated expectations and can be processed by each party.

Early capability information (in the form of a bitmask) is advertised by the client as part of the data
which it sends to the server during the Basic Settings Exchange phase. This information is intended

for capabilities that need to be advertised prior to the actual Capability Negotiation phase. For
example, support for the Set Error Info PDU needs to be established before the Licensing phase of
the connection sequence, which occurs before to the Capability Negotiation phase (see section
1.3.1.1). This is necessary because the server needs to be aware of how errors can be

communicated back to the client.

The client and server data exchanged during the Basic Settings Exchange phase in the connection
sequence (see section 1.3.1.1) includes an RDP version number (consisting of a major and minor

field). However, this version information does not accurately reflect the version of RDP being used
(for example, RDP 4.0 clients advertise a minor version field of "1", while all later client versions
advertise the same value of "4").

The build number of the client is also available as part of the data the client sends to the server
during the Basic Settings Exchange phase. However, this value is implementation dependent and is
not necessarily consistent across the spectrum of RDP clients manufactured by different vendors.

24 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

1.8 Vendor-Extensible Fields

This protocol contains no vendor-extensible fields.

1.9 Standards Assignments

This protocol makes no standards assignments.

25 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2 Messages

The following sections specify how Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting messages are transported and message syntax.

2.1 Transport

The Remote Desktop Protocol: Basic Connectivity and Graphics Remoting packets are encapsulated

in TCP. The TCP packets MUST be encapsulated in version 4 of the IP protocol.

There is no officially assigned TCP port for the Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting Specification, but protocol servers listen by default on TCP port 3389 for client
requests.

2.2 Message Syntax

2.2.1 Normal Connection Sequence

2.2.1.1 Client X.224 Connection Request PDU

The X.224 Connection Request PDU is a Standard RDP Connection Sequence PDU sent from client to

server during the Connection Initiation phase (see section 1.3.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Crq

... routingToken (variable)

...

rdpNegData (optional)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Crq (7 bytes): An X.224 Class 0 Connection Request TPDU, as specified in [X224] section

13.3.

routingToken (variable): Optional and variable-length routing token bytes used for load
balancing terminated by a carriage-return (CR) and line-feed (LF) ANSI sequence. For more
information, see [MSFT-SDLBTS]. The length of the routing token and CR+LF sequence is

included in the X.224 Connection Request Length Indicator field.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90204

26 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

rdpNegData (8 bytes): An optional RDP Negotiation Request (section 2.2.1.1.1) structure. The
length of this negotiation structure is included in the X.224 Connection Request Length

Indicator field.

2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ)

The RDP Negotiation Request structure is used by a client to advertise the security protocols which it

supports.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags length

requestedProtocols

type (1 byte): An 8-bit unsigned integer. Negotiation packet type. This field MUST be set to
0x01 (TYPE_RDP_NEG_REQ) to indicate that the packet is a Negotiation Request.

flags (1 byte): An 8-bit unsigned integer. Negotiation packet flags. There are currently no
defined flags so the field MUST be set to 0x00.

length (2 bytes): A 16-bit unsigned integer. Indicates the packet size. This field MUST be set

to 0x0008 (8 bytes).

requestedProtocols (4 bytes): A 32-bit unsigned integer. Flags indicating the supported
security protocols.

Flag Meaning

PROTOCOL_RDP_FLAG

0x00000000

Legacy RDP encryption

PROTOCOL_SSL_FLAG

0x00000001

TLS 1.0 (section 5.4.5.1)

PROTOCOL_HYBRID_FLAG

0x00000002

CredSSP (section 5.4.5.2). If this flag is set, then the

PROTOCOL_SSL_FLAG (0x00000001) SHOULD also be set, as TLS

(section 5.4.5.1) is a subset of CredSSP.

2.2.1.2 Server X.224 Connection Confirm PDU

The X.224 Connection Confirm PDU is a Standard RDP Connection Sequence PDU sent from server
to client during the Connection Initiation phase (see section 1.3.1.1). It is sent as a response to the

X.224 Connection Request PDU (section 2.2.1.1).

27 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Ccf

... rdpNegData (optional)

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Ccf (7 bytes): An X.224 Class 0 Connection Confirm TPDU, as specified in [X224] section

13.4.

rdpNegData (8 bytes): Optional RDP Negotiation Response (section 2.2.1.2.1) structure or an
optional RDP Negotiation Failure (section 2.2.1.2.2) structure. The length of the negotiation
structure is included in the X.224 Connection Confirm Length Indicator field.

2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)

The RDP Negotiation Response structure is used by a server to inform the client of the security

protocol which it has selected to use for the connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags length

selectedProtocol

type (1 byte): An 8-bit unsigned integer. Negotiation packet type. This field MUST be set to
0x02 (TYPE_RDP_NEG_RSP) to indicate that the packet is a Negotiation Response.

flags (1 byte): An 8-bit unsigned integer. Negotiation packet flags. There are currently no
defined flags so the field MUST be set to 0x00.

length (2 bytes): A 16-bit unsigned integer. Indicates the packet size. This field MUST be set
to 0x0008 (8 bytes)

selectedProtocol (4 bytes): A 32-bit unsigned integer. Field indicating the selected security
protocol.

Value Meaning

PROTOCOL_RDP Legacy RDP encryption

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

28 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

0x00000000

PROTOCOL_SSL

0x00000001

TLS 1.0 (section 5.4.5.1)

PROTOCOL_HYBRID

0x00000002

CredSSP (section 5.4.5.2)

2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)

The RDP Negotiation Failure structure is used by a server to inform the client of a failure that has

occurred while preparing security for the connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags length

failureCode

type (1 byte): An 8-bit unsigned integer. Negotiation packet type. This field MUST be set to
0x03 (TYPE_RDP_NEG_FAILURE) to indicate that the packet is a Negotiation Failure.

flags (1 byte): An 8-bit unsigned integer. Negotiation packet flags. There are currently no

defined flags so the field MUST be set to 0x00.

length (2 bytes): A 16-bit unsigned integer. Indicates the packet size. This field MUST be set
to 0x0008 (8 bytes).

failureCode (4 bytes): A 32-bit unsigned integer. Field containing the failure code.

Value Meaning

SSL_REQUIRED_BY_SERVER

0x00000001

The server requires that the client support Enhanced RDP

Security (section 5.4) with either TLS 1.0 (section 5.4.5.1) or

CredSSP (section 5.4.5.2). If only CredSSP was requested then

the server only supports TLS.

SSL_NOT_ALLOWED_BY_SERVER

0x00000002

The server is configured to only use RDP Standard Security

(section 5.3) and does not support any External Security

Protocols (section 5.4.5).

SSL_CERT_NOT_ON_SERVER

0x00000003

The server does not possess a valid server authentication

certificate and cannot initialize the External Security Protocol

Provider (see section 5.4.5).

INCONSISTENT_FLAGS

0x00000004

The list of requested security protocols is not consistent with

the current security protocol in effect. This error is only possible

when the Direct Approach (see sections 5.4.2.2 and 1.3.1.2) is

used and an External Security Protocol (section 5.4.5) is

already being used.

HYBRID_REQUIRED_BY_SERVER The server requires that the client support Enhanced RDP

29 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

0x00000005 Security (section 5.4) with CredSSP (section 5.4.5.2).

2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request

The MCS Connect Initial PDU is a Standard RDP Connection Sequence PDU sent from client to server

during the Basic Settings Exchange phase (see Section 1.3.1.1). It is sent after receiving the X.224
Connection Confirm PDU. The MCS Connect Initial PDU encapsulates a GCC Conference Create

Request, which encapsulates concatenated blocks of settings data. A basic high-level overview of the
nested structure for the Client MCS Connect Initial PDU is illustrated in Figure 2. Note that the order
of the settings data blocks is allowed to vary from that shown in Figure 2 and the message syntax

layout which follows. This is possible because each data block is identified by a User Data Header
structure (see section 2.2.1.3.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCi (variable)

...

gccCCrq (variable)

...

clientCoreData

...

...

...

...

...

...

...

(clientCoreData cont'd for 46 rows)

30 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

clientSecurityData

...

...

clientNetworkData (variable)

...

clientClusterData (optional)

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCi (variable): Variable-length BER-encoded MCS Connect Initial PDU (using definite-length
encoding) as described in [T125] (the ASN.1 structure definition is detailed in [T125] section

7, part 2). The userData field of the MCS Connect Initial PDU contains the GCC Conference
Create Request data. The maximum allowed size of this user data is 1024 bytes, which implies
that the combined size of the gccCCrq, clientCoreData, clientSecurity,
clientNetworkData and clientClusterData fields must be less than 1024 bytes.

gccCCrq (variable): Variable-length PER-encoded GCC Conference Create Request as described

in [T124] (the ASN.1 structure definition is detailed in [T124] section 8.7) appended as user
data to the MCS Connect Initial PDU (using the format described in [T124] sections 9.5 and

9.6). The userData field of the GCC Conference Create Request contains concatenated client
data blocks.

clientCoreData (216 bytes): Client Core Data (section 2.2.1.3.2) structure.

clientSecurityData (12 bytes): Client Security Data (section 2.2.1.3.3) structure.

clientNetworkData (variable): Optional and variable length Client Network Data (section
2.2.1.3.4) structure.

clientClusterData (12 bytes): Optional Client Cluster Data (section 2.2.1.3.5) structure.

2.2.1.3.1 User Data Header (TS_UD_HEADER)

The TS_UD_HEADER precedes all data blocks in the client and server GCC user data.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542

31 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type length

type (2 bytes): A 16-bit unsigned integer. The type of the data block that this header precedes.

Value Meaning

CS_CORE

0xC001

The data block that follows contains Client Core Data (section 2.2.1.3.2).

CS_SECURITY

0xC002

The data block that follows contains Client Security Data (section 2.2.1.3.3).

CS_NET

0xC003

The data block that follows contains Client Network Data (section 2.2.1.3.4).

CS_CLUSTER

0xC004

The data block that follows contains Client Cluster Data (section 2.2.1.3.5).

SC_CORE

0x0C01

The data block that follows contains Server Core Data (section 2.2.1.4.2).

SC_SECURITY

0x0C02

The data block that follows contains Server Security Data (section 2.2.1.4.3).

SC_NET

0x0C03

The data block that follows contains Server Network Data (section 2.2.1.4.4).

length (2 bytes): A 16-bit unsigned integer. The size in bytes of the data block, including this

header.

2.2.1.3.2 Client Core Data (TS_UD_CS_CORE)

The TS_UD_CS_CORE data block contains core client connection-related information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

version

desktopWidth desktopHeight

colorDepth SASSequence

keyboardLayout

32 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

clientBuild

clientName

...

...

...

...

...

...

...

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName

...

...

...

...

...

...

...

(imeFileName cont'd for 8 rows)

33 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

postBeta2ColorDepth clientProductId

serialNumber (optional)

highColorDepth (optional) supportedColorDepths (optional)

earlyCapabilityFlags (optional) clientDigProductId (optional)

...

...

...

...

...

...

...

(clientDigProductId (optional) cont'd for 8 rows)

... pad2octets (optional)

serverSelectedProtocol (optional)

header (4 bytes): GCC user data block header, as specified in section 2.2.1.3.1. The User Data

Header type field MUST be set to CS_CORE (0xC001).

version (4 bytes): A 32-bit unsigned integer. Client version number for the Remote Desktop
Protocol (RDP). The major version number is stored in the high 2 bytes, while the minor

version number is stored in the low 2 bytes.

Value Meaning

0x00080001 RDP 4.0 clients

0x00080004 RDP 5.0, 5.1, 5.2 and 6.0 clients

desktopWidth (2 bytes): A 16-bit unsigned integer. The requested desktop width in pixels (up
to a maximum value of 4096 pixels).

desktopHeight (2 bytes): A 16-bit unsigned integer. The requested desktop height in pixels
(up to a maximum value of 2048 pixels).

34 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

colorDepth (2 bytes): A 16-bit unsigned integer. The requested color depth. This field MUST
be set to RNS_UD_COLOR_8BPP (0xCA01) for historical reasons.

SASSequence (2 bytes): A 16-bit unsigned integer. Secure access sequence. This field
SHOULD be set to RNS_UD_SAS_DEL (0xAA03).

keyboardLayout (4 bytes): A 32-bit unsigned integer. Keyboard layout (active input locale
identifier). For a list of possible input locales, see [MSDN-MUI].

clientBuild (4 bytes): A 32-bit unsigned integer. Build number of the client.

clientName (32 bytes): Name of the client computer. This field contains up to 15 Unicode
characters plus a null terminator.

keyboardType (4 bytes): A 32-bit unsigned integer. Keyboard type.

Value Meaning

1 IBM PC/XT or compatible (83-key) keyboard

2 Olivetti "ICO" (102-key) keyboard

3 IBM PC/AT (84-key) and similar keyboards

4 IBM enhanced (101- or 102-key) keyboard

5 Nokia 1050 and similar keyboards

6 Nokia 9140 and similar keyboards

7 Japanese keyboard

keyboardSubType (4 bytes): A 32-bit unsigned integer. The keyboard subtype (an original

equipment manufacturer-dependent value).

keyboardFunctionKey (4 bytes): A 32-bit unsigned integer. The number of function keys on
the keyboard.

imeFileName (64 bytes): A 64-byte field. The Input Method Editor (IME) file name associated
with the input locale. This field contains up to 31 Unicode characters plus a null terminator.

postBeta2ColorDepth (2 bytes): A 16-bit unsigned integer. The requested color depth
examined by RDP 4.0 and 5.0 version servers.

Value Meaning

RNS_UD_COLOR_4BPP

0xCA00

4 bits-per-pixel

RNS_UD_COLOR_8BPP

0xCA01

8 bits-per-pixel

RNS_UD_COLOR_16BPP_555

0xCA02

15-bit 555 red, green, blue (RGB) mask (5 bits for red, 5 bits for

green, and 5 bits for blue)

RNS_UD_COLOR_16BPP_565

0xCA03

16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for

blue)

http://go.microsoft.com/fwlink/?LinkId=90048

35 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

RNS_UD_COLOR_24BPP

0xCA04

24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for

blue)

If the highColorDepth field is being used and the required color depth is greater than or
equal to 8 bits-per-pixel, then this field MUST be set to RNS_UD_COLOR_8BPP (0xCA01).

clientProductId (2 bytes): A 16-bit unsigned integer. The client product ID. This field SHOULD
be initialized to 1.

serialNumber (4 bytes): A 32-bit unsigned integer. Serial number. This field SHOULD be
initialized to 0. If this field is not present, then none of the subsequent fields MUST be present.

highColorDepth (2 bytes): A 16-bit unsigned integer. The requested color depth examined by
RDP 5.1, 5.2, and 6.0 servers.

Value Meaning

4 4 bits-per-pixel

8 8 bits-per-pixel

15 15-bit 555 red, green, blue (RGB) mask (5 bits for red, 5 bits for green, and 5 bits for

blue)

16 16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for blue)

24 24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)

If this field is present, then all of the preceding fields MUST also be present. If this field is not

present, then none of the subsequent fields MUST be present.

supportedColorDepths (2 bytes): A 16-bit unsigned integer. Specifies the high color depths

that the client is capable of supporting (examined by RDP 5.1 and later servers).

Flag Meaning

RNS_UD_24BPP_SUPPORT

0x0001

24-bit RGB mask (8 bits for red, 8 bits for green, and 8 bits for blue)

RNS_UD_16BPP_SUPPORT

0x0002

16-bit 565 RGB mask (5 bits for red, 6 bits for green, and 5 bits for

blue)

RNS_UD_15BPP_SUPPORT

0x0004

15-bit 555 red, green, blue (RGB) mask (5 bits for red, 5 bits for

green, and 5 bits for blue)

RNS_UD_32BPP_SUPPORT

0x0008

 32-bit RGB mask (8 bits for the alpha channel, 8 bits for red, 8 bits

for green, and 8 bits for blue)

If this field is present, then all of the preceding fields MUST also be present. If this field is not

present, then none of the subsequent fields MUST be present.

earlyCapabilityFlags (2 bytes): A 16-bit unsigned integer. It specifies capabilities early in the
connection sequence.

36 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

RNS_UD_CS_SUPPORT_ERRINFO_PDU

0x0001

Client can support the Set Error Info PDU (section

2.2.5.1) from the server.

 RNS_UD_CS_WANT_32BPP_SESSION

0x0002

 Indicates that the client is requesting a session color

depth of 32 bits-per-pixel. This flag is necessary as

the highColorDepth field does not support a value

of 32. If this flag is set, the highColorDepth field

SHOULD be set to 24 to provide an acceptable

fallback for the scenario where the server does not

support 32 bpp color.

RNS_UD_CS_STRONG_ASYMMETRIC_KEYS

0x0008

 Indicates that the client supports asymmetric keys

larger than 512-bits for use with the Server

Certificate (see Section 2.2.1.4.3.1) sent in the

Server Security Data block (see section 2.2.1.4.3).

If this field is present, then all of the preceding fields MUST also be present. If this field is not
present, then none of the subsequent fields MUST be present.

clientDigProductId (64 bytes): Contains a value which uniquely identifies the client. If this
field is present, then all of the preceding fields MUST also be present. If this field is not
present, then none of the subsequent fields MUST be present.

pad2octets (2 bytes): A 16-bit unsigned integer. Padding to align the

serverSelectedProtocol field on the correct byte boundary. If this field is present, then all of
the preceding fields MUST also be present. If this field is not present, then none of the
subsequent fields MUST be present.

serverSelectedProtocol (4 bytes): A 32-bit unsigned integer. It contains the value returned
by the server in the selectedProtocol field of the RDP Negotiation Response (section
2.2.1.2.1) structure. In the event that an RDP Negotiation Response structure was not sent,

this field MUST be initialized to PROTOCOL_RDP (0). If this field is present, then all of the

preceding fields MUST also be present.

2.2.1.3.3 Client Security Data (TS_UD_CS_SEC)

The TS_UD_CS_SEC data block contains security-related information used to advertise client
cryptographic support. This information is only relevant when Standard RDP Security (section 5.3) is
in effect, as opposed to Enhanced RDP Security (section 5.4)). See section 3 (in particular, section

5.3.2) for a detailed discussion of how this information is used.

37 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

encryptionMethods

extEncryptionMethods

header (4 bytes): GCC user data block header as described in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to CS_SECURITY (0xC002).

encryptionMethods (4 bytes): A 32-bit unsigned integer. Cryptographic methods supported
by the client and used in conjunction with Standard RDP Security (see section 5.3.2).

Value Meaning

40BIT_ENCRYPTION_FLAG

0x00000001

40-bit session keys should be used to encrypt data (with RC4) and

generate message authentication codes (MAC).

128BIT_ENCRYPTION_FLAG

0x00000002

128-bit session keys should be used to encrypt data (with RC4) and

generate MACs.

56BIT_ENCRYPTION_FLAG

0x00000008

56-bit session keys should be used to encrypt data (with RC4) and

generate MACs.

FIPS_ENCRYPTION_FLAG

0x00000010

All encryption and message authentication code generation routines

should be FIPS 140-1 compliant.

extEncryptionMethods (4 bytes): A 32-bit unsigned integer. This field is used exclusively for
the French locale. In French locale clients, encryptionMethods MUST be set to 0 and

extEncryptionMethods MUST be set to the value to which encryptionMethods would have
been set. For non-French locale clients, this field MUST be set to 0.

2.2.1.3.4 Client Network Data (TS_UD_CS_NET)

The TS_UD_CS_NET packet contains a list of requested virtual channels.

38 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

channelCount

channelDefArray (variable)

...

header (4 bytes): A 32-bit unsigned integer. GCC user data block header, as specified in User
Data Header (section 2.2.1.3.1). The User Data Header type field MUST be set to CS_NET

(0xC003).

channelCount (4 bytes): A 32-bit unsigned integer. The number of requested static virtual
channels (the maximum allowed is 30).

channelDefArray (variable): A variable length array containing the information for requested

static virtual channels encapsulated in CHANNEL_DEF (section 2.2.1.3.4.1) structures. The
number of CHANNEL_DEF structures which follows is given by the channelCount field.

2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)

The CHANNEL_DEF packet contains information for a particular static virtual channel.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

name

...

options

name (8 bytes): An 8-byte array containing a unique 7-character ANSI channel name and a

null terminator.

options (4 bytes): A 32-bit unsigned integer. Channel option flags.

Flag Meaning

INITIALIZED

0x80000000

Absence of this flag indicates that this channel is a placeholder

and that the server should not actually set it up.

ENCRYPT_RDP

0x40000000

Channel data should be encrypted in the same way as RDP

input and output data.

ENCRYPT_SC Server-to-client data should be encrypted. This flag is ignored if

39 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

0x20000000 ENCRYPT_RDP is set.

ENCRYPT_CS

0x10000000

Client-to-server data should be encrypted. This flag is ignored if

ENCRYPT_RDP is set.

PRI_HIGH

0x08000000

Channel data should be sent with high MCS priority.

PRI_MED

0x04000000

Channel data should be sent with medium MCS priority.

PRI_LOW

0x02000000

Channel data should be sent with low MCS priority.

COMPRESS_RDP

0x00800000

Virtual channel data should be compressed if RDP data is being

compressed.

COMPRESS

0x00400000

Virtual channel data should be compressed, regardless of RDP

compression.

SHOW_PROTOCOL

0x00200000

Server virtual channel add-ins should be shown the full virtual

channel packet header on receipt of data. If this option is not

set, the server add-ins receive only the data stream without

headers.

REMOTE_CONTROL_PERSISTENT

0x00100000

Channel is persistent across remote control transactions.

2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER)

The TS_UD_CS_CLUSTER data block is sent by the client to the server either to advertise that it can
support the Server Redirection PDU (see [MS_RDPEGDI] section 2.2.3.1) or to request a connection
to a given session identifier.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

Flags

RedirectedSessionID

header (4 bytes): GCC user data block header, as specified in User Data Header (section

2.2.1.3.1). The User Data Header type field MUST be set to CS_CLUSTER (0xC004).

Flags (4 bytes): A 32-bit unsigned integer. Cluster information flags.

Flag Meaning

REDIRECTION_SUPPORTED

0x00000001

The client can receive server session redirection packets.

If this flag is set, the

%5bMS-RDPEGDI%5d.pdf

40 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

ServerSessionRedirectionVersionMask will contain the

server session redirection version that the client

supports.

ServerSessionRedirectionVersionMask

0x0000003C

The server session redirection version that the client

supports. See the discussion which follows this table for

more information.

REDIRECTED_SESSIONID_FIELD_VALID

0x00000002

The RedirectedSessionID field contains a valid session

identifier to which the client wants to connect.

REDIRECTED_SMARTCARD

0x00000040

The client logged on with a smart card.

The ServerSessionRedirectionVersionMask is a 4-bit enumerated value containing the server

session redirection version supported by the client. Only one version can be supported; the
version values cannot be combined. Possible version values are:

Value Meaning

REDIRECTION_VERSION3

0x08

If REDIRECTION_SUPPORTED is set, server session redirection version

3 is supported by the client.

REDIRECTION_VERSION4

0x0C

If REDIRECTION_SUPPORTED is set, server session redirection version

4 is supported by the client.

RedirectedSessionID (4 bytes): A 32-bit unsigned integer. If the
REDIRECTED_SESSIONID_FIELD_VALID flag is set in the Flags field, then the
RedirectedSessionID field contains a valid session identifier to which the client wants to

connect.

2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response

The MCS Connect Response PDU is a Standard RDP Connection Sequence PDU sent from server to
client during the Basic Settings Exchange phase (see section 1.3.1.1). It is sent as a response to the
MCS Connect Initial PDU. The MCS Connect Response PDU encapsulates a GCC Conference Create

Response, which encapsulates concatenated blocks of settings data. A basic high-level overview of
the nested structure for the Server MCS Connect Response PDU is illustrated in Figure 2. Note that
the order of the settings data blocks is allowed to vary from that shown in Figure 2 and the message
syntax layout that follows. This is possible because each data block is identified by a User Data

Header structure (see section 2.2.1.4.1).

41 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCrsp (variable)

...

gccCCrsp (variable)

...

serverCoreData

...

...

serverSecurityData (variable)

...

serverNetworkData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCrsp (variable): Variable-length BER-encoded MCS Connect Response PDU (using definite-
length encoding) as specified in [T125] (the ASN.1 structure definition is given in [T125]
section 7, part 2). The userData field of the MCS Connect Response PDU contains the GCC
Conference Create Response data.

gccCCrsp (variable): Variable-length PER-encoded GCC Conference Create Request PDU as
described in [T124] (the ASN.1 structure definition is specified in [T124] section 8.7)
appended as user data to the MCS Connect Initial PDU (using the format specified in [T124]

sections 9.5 and 9.6). The userData field of the GCC Conference Create Response contains
concatenated server data blocks.

serverCoreData (12 bytes): Server Core Data (section 2.2.1.4.2) structure.

serverSecurityData (variable): Variable-length Server Security Data (section 2.2.1.4.3)
structure.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542

42 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

serverNetworkData (variable): Variable-length Server Network Data (section 2.2.1.4.4)
structure.

2.2.1.4.1 User Data Header (TS_UD_HEADER)

See section 2.2.1.3.1 for a description of the User Data Header.

2.2.1.4.2 Server Core Data (TS_UD_SC_CORE)

The TS_UD_SC_CORE data block contains core server connection-related information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

version

clientRequestedProtocols (optional)

header (4 bytes): GCC user data block header, as specified in User Data Header (section

2.2.1.3.1). The User Data Header type field MUST be set to SC_CORE (0x0C01).

version (4 bytes): A 32-bit unsigned integer. The server version number for the Remote
Desktop Protocol (RDP). The major version number is stored in the high 2 bytes, while the

minor version number is stored in the low 2 bytes.

Value Meaning

0x00080001 RDP 4.0 clients

0x00080004 RDP 5.0, 5.1, 5.2 and 6.0 clients

clientRequestedProtocols (4 bytes): A 32-bit unsigned integer. Contains the flags sent by
the client in the requestedProtocols field of the RDP Negotiation Request (section 2.2.1.1.1)

structure. In the event that an RDP Negotiation Request structure was not sent, this field
MUST be initialized to PROTOCOL_RDP (0).

2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1)

The TS_UD_SC_SEC1 data block returns negotiated security-related information to the client. See
section 3 (in particular section 5.3.2) for a detailed discussion of how this information is used.

43 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

encryptionMethod

encryptionLevel

serverRandomLen

serverCertLen

serverRandom (variable)

...

serverCertificate (variable)

...

header (4 bytes): GCC user data block header, as specified in User Data Header (section
2.2.1.3.1). The User Data Header type field MUST be set to SC_SECURITY (0x0C02).

encryptionMethod (4 bytes): A 32-bit unsigned integer. The selected cryptographic method to
use for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST
be set to ENCRYPTION_METHOD_NONE (0).

Value Meaning

ENCRYPTION_METHOD_NONE

0x00000000

No encryption and message authentication codes will be used.

ENCRYPTION_METHOD_40BIT

0x00000001

40-bit session keys will be used to encrypt data (with RC4) and

generate message authentication codes (MAC).

ENCRYPTION_METHOD_128BIT

0x00000002

128-bit session keys will be used to encrypt data (with RC4) and

generate MACs.

ENCRYPTION_METHOD_56BIT

0x00000008

56-bit session keys will be used to encrypt data (with RC4) and

generate MACs.

ENCRYPTION_METHOD_FIPS

0x00000010

All encryption and message authentication code generation

routines will be FIPS 140-1 compliant.

encryptionLevel (4 bytes): A 32-bit unsigned integer. It describes the encryption behavior to
use for the session. When Enhanced RDP Security (section 5.4) is being used, this field MUST

be set to ENCRYPTION_LEVEL_NONE (0).

44 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Name Value

ENCRYPTION_LEVEL_NONE 0x00000000

ENCRYPTION_LEVEL_LOW 0x00000001

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE 0x00000002

ENCRYPTION_LEVEL_HIGH 0x00000003

ENCRYPTION_LEVEL_FIPS 0x00000004

See section 5.3.1 for a description of each of the low, client-compatible, high and FIPS

encryption levels.

serverRandomLen (4 bytes): A 32-bit unsigned integer. The size in bytes of the
serverRandom field. This field MUST be set to 32 bytes.

serverCertLen (4 bytes): A 32-bit unsigned integer. The size in bytes of the
serverCertificate field.

serverRandom (variable): The variable-length server random value used to derive session
keys (see sections 5.3.4 and 5.3.5). The length in bytes is given by the serverRandomLen

field.

serverCertificate (variable): The variable-length certificate containing the server's public key
information. The length in bytes is given by the serverCertLen field.

2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE)

The SERVER_CERTIFICATE structure describes the generic server certificate structure to which all
server certificates present in the Server Security Data (section 2.2.1.4.3) conform.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVersion

certData (variable)

...

dwVersion (4 bytes): 32-bit unsigned integer. The certificate version.

Value Meaning

CERT_CHAIN_VERSION_1

0x00000001

The certificate contained in the certData field is a Server Proprietary

Certificate (see section 2.2.1.4.3.1.1).

CERT_CHAIN_VERSION_2

0x00000002

The certificate contained in the certData field is an X.509 Certificate

(see section 5.3.3.2).

45 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

certData (variable): Certificate data. The format of this certificate data is determined by the
dwVersion field.

2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)

The PROPRIETARYSERVERCERTIFICATE structure describes a signed certificate containing the
server's public key and conforming to the structure of a Server Certificate (section 2.2.1.4.3.1). For

a detailed description of Proprietary Certificates, see section 5.3.3.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVersion

dwSigAlgId

dwKeyAlgId

wPublicKeyBlobType wPublicKeyBlobLen

PublicKeyBlob (variable)

...

wSignatureBlobType wSignatureBlobLen

SignatureBlob (variable)

...

dwVersion (4 bytes): A 32-bit unsigned integer. The certificate version number. This field
MUST be set to CERT_CHAIN_VERSION_1 (0x00000001).

dwSigAlgId (4 bytes): A 32-bit unsigned integer. The signature algorithm identifier. This field
MUST be set to SIGNATURE_ALG_RSA (0x00000001).

dwKeyAlgId (4 bytes): A 32-bit unsigned integer. The key algorithm identifier. This field MUST

be set to KEY_EXCHANGE_ALG_RSA (0x00000001).

wPublicKeyBlobType (2 bytes): A 16-bit unsigned integer. The type of data in the
PublicKeyBlob field. This field MUST be set to BB_RSA_KEY_BLOB (0x0006).

wPublicKeyBlobLen (2 bytes): A 16-bit unsigned integer. The size in bytes of the

PublicKeyBlob field.

PublicKeyBlob (variable): Variable-length server public key bytes, formatted using the RSA
Public Key (section 2.2.1.4.3.1.1.1) structure. The length in bytes is given by the

wPublicKeyBlobLen field.

46 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

wSignatureBlobType (2 bytes): A 16-bit unsigned integer. The type of data in the
SignatureKeyBlob field. This field is set to BB_RSA_SIGNATURE_BLOB (0x0008)

wSignatureBlobLen (2 bytes): A 16-bit unsigned integer. The size in bytes of the
SignatureKeyBlob field.

SignatureBlob (variable): Variable-length signature of the certificate created with the
Terminal Services Signing Key (see sections 5.3.3.1.1 and 5.3.3.1.2). The length in bytes is

given by the wSignatureBlobLen field.

2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)

The structure used to describe a public key in a proprietary certificate.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

magic

keylen

bitlen

datalen

pubExp

modulus (variable)

...

magic (4 bytes): A 32-bit unsigned integer. The sentinel value. This field MUST be set to
0x31415352 ("RSA1" in ANSI when the bytes are arranged in little-endian order).

keylen (4 bytes): A 32-bit unsigned integer. The size in bytes of the public key modulus.

bitlen (4 bytes): A 32-bit unsigned integer. The number of bits in the public key modulus.

datalen (4 bytes): A 32-bit unsigned integer. The maximum number of bytes that can be
encoded using the public key.

pubExp (4 bytes): A 32-bit unsigned integer. The public exponent of the public key.

modulus (variable): Variable-length modulus of the public key. The length in bytes is given by
the keylen field.

2.2.1.4.4 Server Network Data (TS_UD_SC_NET)

The TS_UD_SC_NET data block is a reply to the static virtual channel list presented in the Client

Network Data (section 2.2.1.3.4) structure.

47 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

MCSChannelId channelCount

channelIdArray (variable)

...

Pad (optional)

header (4 bytes): A GCC user data block header, as specified in section User Data Header
(section 2.2.1.3.1). The User Data Header type field MUST be set to SC_NET (0x0C03).

MCSChannelId (2 bytes): 16-bit unsigned integer. The MCS channel identifier which the client
should join to receive display data and send client input (I/O channel).

channelCount (2 bytes): 16-bit unsigned integer. The number of 16-bit unsigned integer MCS
channel IDs in the channelIdArray field.

channelIdArray (variable): Variable-length array of unsigned short MCS channel IDs which
have been allocated (the number is given by the channelCount field). Each MCS channel ID
corresponds in position to the channels requested in the Client Network Data structure. A

channel value of 0 indicates that the channel was not allocated.

Pad (2 bytes): 16-bit unsigned integer. Optional padding. Values in this field are ignored. The
size in bytes of the Server Network Data structure MUST be a multiple of 4. If the

channelCount field contains an odd value, then the size of the channelIdArray (and by

implication the entire Server Network Data structure) will not be a multiple of 4. In this
scenario, the Pad field MUST be present and it is used to add an additional 2 bytes to the size
of the Server Network Data structure. If the channelCount field contains an even value, then

the Pad field is not required and MUST not be present.

2.2.1.5 Client MCS Erect Domain Request PDU

The MCS Erect Domain Request PDU is a Standard RDP Connection Sequence PDU sent from client
to server during the Channel Connection phase (see section 1.3.1.1). It is sent after receiving the
MCS Connect Response PDU (section 2.2.1.4).

48 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsEDrq

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsEDrq (5 bytes): PER-encoded MCS Erect Domain Request PDU, as specified in [T125] (the
ASN.1 structure definition is given in [T125] section 7, part 3).

2.2.1.6 Client MCS Attach User Request PDU

The MCS Attach User Request PDU is a Standard RDP Connection Sequence PDU sent from client to
server during the Channel Connection phase (see section 1.3.1.1) to request a user channel ID. It is
sent after transmitting the MCS Erect Domain Request PDU (section 2.2.1.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsAUrq

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsAUrq (1 byte): PER-encoded MCS Attach User Request PDU, as specified in [T125] (the

ASN.1 structure definition is given in [T125] section 7, part 5).

2.2.1.7 Server MCS Attach User Confirm PDU

The MCS Attach User Confirm PDU is a Standard RDP Connection Sequence PDU sent from server to

client during the Channel Connection phase (see section 1.3.1.1). It is sent as a response to the
MCS Attach User Request PDU (section 2.2.1.6).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

49 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsAUcf

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in section [X224] 13.7.

mcsAUcf (4 bytes): PER-encoded MCS Attach User Confirm PDU, as specified in [T125] (the
ASN.1 structure definition is given in [T125] section 7, part 5).

2.2.1.8 Client MCS Channel Join Request PDU

The MCS Channel Join Request PDU is a Standard RDP Connection Sequence PDU sent from client to
server during the Channel Connection phase (see section 1.3.1.1). It is sent after receiving the MCS
Attach User Confirm PDU (section 2.2.1.7). The client uses the MCS Channel Join Request PDU to

join the user channel obtained from the Attach User Confirm PDU, the I/O channel and all of the
static virtual channels obtained from the Server Network Data (section 2.2.1.4.4) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCJrq

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCJrq (5 bytes): PER-encoded MCS Channel Join Request PDU as specified in [T125] (the
ASN.1 structure definition is given in [T125] section 7, part 6).

2.2.1.9 Client MCS Channel Join Confirm PDU

 The MCS Channel Join Confirm PDU is a Standard RDP Connection Sequence PDU sent from server
to client during the Channel Connection phase (see section 1.3.1.1). It is sent as a response to the

MCS Channel Join Request PDU (section 2.2.1.8).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

50 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsCJcf

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsCJcf (8 bytes): PER-encoded MCS Channel Join Confirm PDU, as specified in [T125] (the
ASN.1 structure definition is given in [T125] section 7, part 6).

2.2.1.10 Client Security Exchange PDU

 The Security Exchange PDU is a Standard RDP Connection Sequence PDU sent from client to server
during the RDP Security Commencement phase (see section 1.3.1.1). It MAY be sent after receiving
all requested MCS Channel Join Confirm PDUs (section 2.2.1.9).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityExchangePduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable-length PER-encoded MCS Send Data Request PDU, as specified

in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Request PDU contains the Security Exchange PDU data.

securityExchangePduData (variable): The actual contents of the Security Exchange PDU, as
specified in section 2.2.1.10.1.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

51 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET)

 The TS_SECURITY_PACKET structure contains the encrypted client random value which is used
together with the server random (see section 2.2.1.4.3) to derive session keys to secure the
connection (see sections 5.3.4 and 5.3.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

basicSecurityHeader

length

encryptedClientRandom (variable)

...

basicSecurityHeader (4 bytes): TS_SECURITY_HEADER (4 bytes). The basic security header,

as specified in section 2.2.8.1.1.2.1. The flags field of the security header MUST contain the
SEC_EXCHANGE_PKT flag (0x0001).

length (4 bytes): 32-bit unsigned integer. The size in bytes of the buffer containing the

encrypted client random value, not including the header length.

encryptedClientRandom (variable): The client random value encrypted with the public key of
the server (see section 5.3.4).

2.2.1.11 Client Info PDU

 The Client Info PDU is a Standard RDP Connection Sequence PDU sent from client to server during

the Secure Settings Exchange phase (see section 1.3.1.1). It is sent after transmitting a Security

Exchange PDU (section 2.2.1.10) or, if the Security Exchange PDU was not sent, it is transmitted
after receiving all requested MCS Channel Join Confirm PDUs (section 2.2.1.9).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

clientInfoPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

http://go.microsoft.com/fwlink/?LinkId=90541

52 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in

[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Request PDU contains the Client Info PDU data.

clientInfoPduData (variable): The actual contents of the Client Info PDU, as specified in
section 2.2.1.11.1.

2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)

The CLIENT_INFO_PDU structure serves as a wrapper for a Security Header (section 2.2.8.1.1.2)

and the actual client information contained in a TS_INFO_PACKET (section 2.2.1.11.1.1) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

securityHeader (variable)

...

infoPacket (variable)

...

securityHeader (variable): The security header. This field will contain one of the following
headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_NONE (0).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

The flags field of the security header MUST contain the SEC_INFO_PKT flag (see section
2.2.8.1.1.2.1).

infoPacket (variable): Client information, as specified in TS_INFO_PACKET.

2.2.1.11.1.1 Info Packet (TS_INFO_PACKET)

 The TS_INFO_PACKET structure contains extra information not passed to the server during the
Basic Settings Exchange phase (see section 1.3.1.1) of the Standard RDP Connection Sequence,

primarily to ensure that it gets encrypted (as auto-logon password data and other sensitive
information is passed here).

http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

53 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CodePage

flags

cbDomain cbUserName

cbPassword cbAlternateShell

cbWorkingDir Domain (variable)

...

UserName (variable)

...

Password (variable)

...

AlternateShell (variable)

...

WorkingDir (variable)

...

extraInfo (variable)

...

CodePage (4 bytes): A 32-bit unsigned integer. This field contains the ANSI codepage
descriptor being used by the client (for a list of code pages, see [MSDN-CP]). However, if the

Info Packet is in Unicode (the INFO_UNICODE flag is set), then the CodePage field is
overridden to contain the active input locale identifier in the low word (for a list of possible
input locales, see [MSDN-MUI]).

flags (4 bytes): A 32-bit unsigned integer. Option flags.

http://go.microsoft.com/fwlink/?LinkId=89981
http://go.microsoft.com/fwlink/?LinkId=90048

54 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

INFO_MOUSE

0x00000001

Indicates that the client machine has a mouse attached.

INFO_DISABLECTRLALTDEL

0x00000002

Indicates that the CTRL+ALT+DEL (or the equivalent) secure

access keyboard sequence is not required at the logon

prompt.

INFO_AUTOLOGON

0x00000008

The client requests auto logon using the included user name,

password and domain.

INFO_UNICODE

0x00000010

Indicates that the character set for strings in the Info Packet

is Unicode. If this flag is absent, the character set is ANSI.

The presence of this flag affects the meaning of the

CodePage field in the Info Packet structure.

INFO_MAXIMIZESHELL

0x00000020

Specifies whether the alternate shell (specified in the

AlternateShell field of the Info Packet structure) should be

started in a maximized state.

INFO_LOGONNOTIFY

0x00000040

Indicates that the client wants to be informed of the user

name and domain used to log on to the server, as well as the

ID of the session to which the user connected. The Save

Session Info PDU (section 2.2.10.1) is sent from the server to

notify the client of this information using a Logon Info Version

1 (section 2.2.10.1.1.1) or Logon Info Version 2 (section

2.2.10.1.1.2) structure.

INFO_COMPRESSION

0x00000080

Indicates that the CompressionTypeMask is valid and

contains the highest compression package type supported by

the client.

CompressionTypeMask

0x00001E00

Indicates the highest compression package type supported.

See the discussion which follows this table for more

information.

INFO_ENABLEWINDOWSKEY

0x00000100

Indicates that the client uses the Windows key on Windows-

compatible keyboards.

INFO_REMOTECONSOLEAUDIO

0x00002000

Requests that any audio played in a remote session be played

on the remote computer (see [MS-RDPEA]).

INFO_FORCE_ENCRYPTED_CS_PDU

0x00004000

Indicates that the client will only send encrypted packets to

the server if encryption is in force. Setting this flag prevents

the server from processing unencrypted packets in man-in-

the-middle attack scenarios. This flag is only understood by

RDP 5.2 and later servers.

INFO_RAIL

0x00008000

Indicates that the remote connection being established is for

the purpose of launching remote programs (see Section [MS-

RDPERP]). This flag is only understood by RDP 6.0 and later

servers.

INFO_LOGONERRORS

0x00010000

Indicates a request for logon error notifications using the

Save Session Info PDU (section 2.2.10.1). This flag is only

understood by RDP 6.0 and later servers.

INFO_MOUSE_HAS_WHEEL

0x00020000

Indicates that the mouse which is connected to the client

machine has a scroll wheel. This flag is only understood by

%5bMS-RDPEA%5d.pdf
%5bMS-RDPERP%5d.pdf
%5bMS-RDPERP%5d.pdf

55 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

RDP 6.0 and later servers.

INFO_PASSWORD_IS_SC_PIN

0x00040000

Indicates that the Password field in the Info Packet contains

a smart card personal identification number (PIN). This flag is

only understood by RDP 6.0 and later servers.

INFO_NOAUDIOPLAYBACK

0x00080000

Indicates that no audio redirection or playback (see [MS-

RDPEA]) should take place. This flag is only understood by

RDP 6.0 and later servers.

 INFO_USING_SAVED_CREDS

 0x00100000

 Any user credentials sent on the wire during the RDP

Connection Sequence (see Sections 1.3.1.1 and 1.3.1.2)

have been retrieved from a credential store and were not

obtained directly from the user.

The CompressionTypeMask is a four-bit enumerated value containing the highest compression
package support available on the client. The packages codes are:

Value Meaning

PACKET_COMPR_TYPE_8K

0

MPPC 8K compression (see MPPC-8K (section 3.1.8.4.1))

PACKET_COMPR_TYPE_64K

1

MPPC 64K compression (see MPPC-64K (section 3.1.8.4.2))

PACKET_COMPR_TYPE_RDP6

2

RDP 6.0 bulk compression (see [MS-RDPEGDI] section 3.1.8).

Support for package n implies support for all lesser compression packages 0...(n - 1).

cbDomain (2 bytes): A 16-bit unsigned integer. The size in bytes of the character data in the

Domain field. This size excludes the length of the mandatory null terminator.

cbUserName (2 bytes): A 16-bit unsigned integer. The size in bytes of the character data in
the UserName field. This size excludes the length of the mandatory null terminator.

cbPassword (2 bytes): A 16-bit unsigned integer. The size in bytes of the character data in

the Password field. This size excludes the length of the mandatory null terminator.

cbAlternateShell (2 bytes): A 16-bit unsigned integer. The size in bytes of the character data
in the AlternateShell field. This size excludes the length of the mandatory null terminator.

cbWorkingDir (2 bytes): A 16-bit unsigned integer. The size in bytes of the character data in
the WorkingDir field. This size excludes the length of the mandatory null terminator.

Domain (variable): Variable length logon domain of the user (the length in bytes is given by

the cbDomain field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is 52
bytes (including the mandatory null terminator). RDP 5.1 and later allow a maximum length of
512 bytes (including the mandatory null terminator). The field must contain at least a null
terminator character in ANSI or Unicode format (depending on the presence of the

INFO_UNICODE flag).

UserName (variable): Variable length logon user name of the user (the length in bytes is
given by the cbUserName field). The maximum length allowed by RDP 4.0 and RDP 5.0

%5bMS-RDPEGDI%5d.pdf

56 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

servers is 44 bytes (including the mandatory null terminator). RDP 5.1 and later allow a
maximum length of 512 bytes (including the mandatory null terminator). The field must

contain at least a null terminator character in ANSI or Unicode format (depending on the
presence of the INFO_UNICODE flag).

Password (variable): Variable length logon password of the user (the length in bytes is given
by the cbPassword field). The maximum length allowed by RDP 4.0 and RDP 5.0 servers is

32 bytes (including the mandatory null terminator). RDP 5.1 and later allow a maximum

length of 512 bytes (including the mandatory null terminator). The field must contain at least
a null terminator character in ANSI or Unicode format (depending on the presence of the

INFO_UNICODE flag).

AlternateShell (variable): Variable length path to the executable file of an alternate shell, e.g.
"c:\dir\prog.exe" (the length in bytes is given by the cbAlternateShell field). The maximum

allowed length is 512 bytes (including the mandatory null terminator). This field MUST only be
initialized if the client is requesting a shell other than the default. The field must contain at
least a null terminator character in ANSI or Unicode format (depending on the presence of the
INFO_UNICODE flag).

WorkingDir (variable): Variable length directory that contains the executable file specified in
the AlternateShell field or any related files (the length in bytes is given by the
cbWorkingDir field). The maximum allowed length is 512 bytes (including the mandatory null

terminator). This field MAY be initialized if the client is requesting a shell other than the
default. The field must contain at least a null terminator character in ANSI or Unicode format
(depending on the presence of the INFO_UNICODE flag).

extraInfo (variable): Optional and variable length extended information added in RDP 5.0, as
specified in section 2.2.1.11.1.1.1.

2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET)

 The TS_EXTENDED_INFO_PACKET structure contains user information specific to RDP 5.0 and later.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

clientAddressFamily cbClientAddress

clientAddress (variable)

...

cbClientDir clientDir (variable)

...

clientTimeZone

...

57 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

...

...

...

...

...

...

(clientTimeZone cont'd for 35 rows)

clientSessionId

performanceFlags

cbAutoReconnectLen autoReconnectCookie (optional)

...

...

...

...

...

...

... reserved1 (optional)

reserved2 (optional)

clientAddressFamily (2 bytes): A 16-bit unsigned integer. The numeric socket descriptor for

the client address type. RDP only uses TCP/IP, so this field MUST be set to AF_INET (0x0002).

cbClientAddress (2 bytes): A 16-bit unsigned integer. The size in bytes of the character data
in the clientAddress field. This size includes the length of the mandatory null terminator.

58 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

clientAddress (variable): Variable length textual representation of the client IP address. The
maximum allowed length (including the mandatory null terminator) is 64 bytes for versions of

RDP prior to 6.0, and 80 bytes for RDP 6.0 and later.

cbClientDir (2 bytes): A 16-bit unsigned integer. The size in bytes of the character data in the
clientDir field. This size includes the length of the mandatory null terminator.

clientDir (variable): Variable length directory that contains the folder path on the client

machine from which the client software is being run. The maximum allowed length is 512
bytes (including the mandatory null terminator).

clientTimeZone (172 bytes): A TS_TIME_ZONE_INFORMATION (section 2.2.1.11.1.1.1.1)

structure that contains time zone information for a client. This packet is ignored by RDP 5.1
servers and earlier, but is used by RDP 5.2 and later servers.

clientSessionId (4 bytes): A 32-bit unsigned integer. This field was added in RDP 5.1 and is

currently ignored by the server. It SHOULD be set to 0.

performanceFlags (4 bytes): A 32-bit unsigned integer. It specifies a list of server desktop
shell features to disable in the remote session for improving bandwidth performance. Used by
RDP 5.1 and later servers.

Flag Meaning

PERF_DISABLE_WALLPAPER

0x00000001

Disable desktop wallpaper.

PERF_DISABLE_FULLWINDOWDRAG

0x00000002

Disable full-window drag (only the window outline is

displayed when the window is moved).

PERF_DISABLE_MENUANIMATIONS

0x00000004

Disable menu animations.

PERF_DISABLE_THEMING

0x00000008

Disable user interface themes.

PERF_RESERVED1

0x00000010

Reserved for future use.

PERF_DISABLE_CURSOR_SHADOW

0x00000020

Disable mouse cursor shadows.

PERF_DISABLE_CURSORSETTINGS

0x00000040

Disable cursor blinking.

PERF_ENABLE_FONT_SMOOTHING

0x00000080

Enable font smoothing.

PERF_ENABLE_DESKTOP_COMPOSITION

0x00000100

Enable Desktop Composition.

PERF_RESERVED2

0x80000000

Reserved for future use.

cbAutoReconnectLen (2 bytes): A 16-bit unsigned integer. The size in bytes of the cookie
specified by the autoReconnectCookie field. This field is only read by RDP 5.2 and later
servers.

59 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

autoReconnectCookie (28 bytes): Buffer containing an ARC_CS_PRIVATE_PACKET (section
2.2.4.3) structure. This buffer is a unique cookie that allows a disconnected client to

seamlessly reconnect to a previously established session (see section 5.5 for more details).
The autoReconnectCookie field is only read by RDP 5.2 and later servers.

reserved1 (2 bytes): This field is reserved for future use and has no affect on RDP wire traffic.
If this field is present, the reserved2 field MUST be present.

reserved2 (2 bytes): This field is reserved for future use and has no affect on RDP wire traffic.
This field MUST be present if the reserved1 field is present.

2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION)

 The TS_TIME_ZONE_INFORMATION structure contains client time zone information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Bias

StandardName

...

...

...

...

...

...

...

(StandardName cont'd for 8 rows)

StandardDate

...

...

...

60 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

StandardBias

DaylightName

...

...

...

...

...

...

...

(DaylightName cont'd for 8 rows)

DaylightDate

...

...

...

DaylightBias

Bias (4 bytes): A 32-bit unsigned integer. Current bias for local time translation on the client,

in minutes. The bias is the difference, in minutes, between Coordinated Universal Time (UTC)
and local time. All translations between UTC and local time are based on the following
formula:

UTC = local time + bias

StandardName (64 bytes): A description for standard time on the client. For example, this
field could contain the string "Pacific Standard Time" to indicate Pacific Standard Time. An
array of 32 Unicode characters.

StandardDate (16 bytes): A TS_SYSTEMTIME (section 2.2.1.11.1.1.1.1.1) structure that
contains the date and local time when the transition from daylight saving time to standard
time occurs on the client. If this field is specified, the DaylightDate field is also specified.

61 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

StandardBias (4 bytes): A 32-bit unsigned integer. Bias value to be used during local time
translations that occur during standard time. This field should be ignored if a value is not

supplied in the StandardDate field. This value is added to the value of the Bias field to form
the bias used during standard time. In most time zones, the value of this field is 0.

DaylightName (64 bytes): A description for daylight time on the client. For example, this field
could contain "Pacific Daylight Time" to indicate Pacific Daylight Time. An array of 32 Unicode

characters.

DaylightDate (16 bytes): A TS_SYSTEMTIME that contains a date and local time when the
transition from standard time to daylight saving time occurs on the client. If this field is

specified, the StandardDate field is also specified.

DaylightBias (4 bytes): A 32-bit unsigned integer. Bias value to be used during local time
translations that occur during daylight saving time. This field should be ignored if a value for

the DaylightDate field is not supplied. This value is added to the value of the Bias field to
form the bias used during daylight saving time. In most time zones, the value of this field is
60.

2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)

 The TS_SYSTEMTIME structure contains a date and local time when the transition occurs between
daylight saving time to standard time occurs or standard time to daylight saving time.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wYear wMonth

wDayOfWeek wDay

wHour wMinute

wSecond wMilliseconds

wYear (2 bytes): A 16-bit unsigned integer. The year when transition occurs (1601 to 30827).

wMonth (2 bytes): A 16-bit unsigned integer. The month when transition occurs.

Value Meaning

1 January

2 February

3 March

4 April

5 May

6 June

62 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

7 July

8 August

9 September

10 October

11 November

12 December

wDayOfWeek (2 bytes): A 16-bit unsigned integer. The day of the week when transition

occurs.

Value Meaning

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

wDay (2 bytes): A 16-bit unsigned integer. The occurrence of wDayOfWeek within the month

when the transition takes place.

Value Meaning

1 First occurrence of wDayOfWeek

2 Second occurrence of wDayOfWeek

3 Third occurrence of wDayOfWeek

4 Fourth occurrence of wDayOfWeek

5 Last occurrence of wDayOfWeek

wHour (2 bytes): A 16-bit unsigned integer. The hour when transition occurs (0 to 23).

wMinute (2 bytes): A 16-bit unsigned integer. The minute when transition occurs (0 to 59).

wSecond (2 bytes): A 16-bit unsigned integer. The second when transition occurs (0 to 59).

wMilliseconds (2 bytes): A 16-bit unsigned integer. The millisecond when transition occurs (0
to 999).

63 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.1.12 Server License Error PDU - Valid Client

 The License Error (Valid Client) PDU is a Standard RDP Connection Sequence PDU sent from server
to client during the Licensing phase (see section 1.3.1.1). This licensing PDU indicates that the
server will not issue the client a license to store and that the Licensing Phase has ended
successfully. This is one possible message that may be sent during the Licensing Phase (see [MS-

RDPELE] for a detailed discussion of the Remote Desktop Protocol: Licensing Extension).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

preamble

validClientMessage (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Demand Active

PDU (section 2.2.1.13.1) data.

securityHeader (variable): Security header. This field will contain one of the following
headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_NONE (0) or
ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the

server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3) and the embedded flags field contains the SEC_ENCRYPT
(0x0008) flag.

%5bMS-RDPELE%5d.pdf
%5bMS-RDPELE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

64 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4) and the embedded

flags field contains the SEC_ENCRYPT (0x0008) flag.

 If the Encryption Level is set to ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2),
ENCRYPTION_LEVEL_HIGH (3) or ENCRYPTION_LEVEL_FIPS (4) and the flags field of the
security header does not contain the SEC_ENCRYPT (0x0008) flag (the licensing PDU is not

encrypted), then the field MUST contain a Basic Security Header. This MUST be the case if

SEC_LICENSE_ENCRYPT_SC (0x0200) flag was not set on the Security Exchange PDU (section
2.2.1.10).

 The flags field of the security header MUST contain the SEC_LICENSE_PKT (0x0080) flag
(see Basic (TS_SECURITY_HEADER)).

preamble (4 bytes): Licensing Preamble (section 2.2.1.12.1) structure containing header

information. The bMsgType field of the preamble structure should be set to ERROR_ALERT
(0xFF).

validClientMessage (variable): A Licensing Error Message (section 2.2.1.12.3) structure. The
dwErrorCode field of the error message structure MUST be set to STATUS_VALID_CLIENT

(0x00000007) and the dwStateTransition field MUST be set to ST_NO_TRANSITION
(0x00000002). The bbErrorInfo field MUST contain an empty binary BLOB of type
BB_ERROR_BLOB (0x0004).

2.2.1.12.1 Licensing Preamble (LICENSE_PREAMBLE)

 The LICENSE_PREAMBLE structure precedes every licensing packet sent on the wire.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bMsgType bVersion wMsgSize

bMsgType (1 byte): An 8-bit unsigned integer. A type of the licensing packet. For more details
about the different licensing packets, see [MS-RDPELE].

Sent by server:

Value Meaning

LICENSE_REQUEST

0x01

Indicates a License Request PDU (see [MS-RDPELE]).

PLATFORM_CHALLENGE

0x02

Indicates a Platform Challenge PDU (see [MS-RDPELE]).

NEW_LICENSE

0x03

Indicates a New License PDU (see [MS-RDPELE]).

UPGRADE_LICENSE

0x04

Indicates an Upgrade License PDU (see [MS-RDPELE]).

Sent by client:

%5bMS-RDPELE%5d.pdf

65 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

LICENSE_INFO

0x12

Indicates a License Info PDU (see [MS-RDPELE]).

NEW_LICENSE_REQUEST

0x13

Indicates a New License Request PDU (see [MS-RDPELE]).

PLATFORM_CHALLENGE_RESPONSE

0x15

Indicates a Platform Challenge Response PDU (see [MS-

RDPELE]).

Sent by either client or server:

Value Meaning

ERROR_ALERT

0xFF

Indicates a Licensing Error Message PDU (section 2.2.1.12.3).

bVersion (1 byte): An 8-bit unsigned integer. The license protocol version.

Value Meaning

PREAMBLE_VERSION_2_0

0x02

RDP 4.0

PREAMBLE_VERSION_3_0

0x03

RDP 5.0 and later

wMsgSize (1 byte): An 8-bit unsigned integer. The size in bytes of the licensing packet
(including the size of the preamble).

2.2.1.12.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)

The LICENSE_BINARY_BLOB structure is used to encapsulate arbitrary length binary licensing data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wBlobType wBlobLen

blobData (variable)

...

wBlobType (2 bytes): A 16-bit unsigned integer. The data type of the binary information. If
wBlobLen is set to 0, then the contents of this field SHOULD be ignored.

Value Meaning

BB_DATA_BLOB

0x0001

Used by License Info PDU and Platform Challenge Response

PDU (see [MS-RDPELE]).

%5bMS-RDPELE%5d.pdf

66 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

BB_RANDOM_BLOB

0x0002

Used by License Info PDU and New License Request PDU (see

[MS-RDPELE]).

BB_CERTIFICATE_BLOB

0x0003

Used by License Request PDU (see [MS-RDPELE]).

BB_ERROR_BLOB

0x0004

Used by License Error PDU (section 2.2.1.12).

BB_ENCRYPTED_DATA_BLOB

0x0009

Used by Platform Challenge Response PDU and Server

Upgrade License PDU (see [MS-RDPELE]).

BB_KEY_EXCHG_ALG_BLOB

0x000D

Used by License Request PDU (see [MS-RDPELE]).

BB_SCOPE_BLOB

0x000E

Used by License Request PDU ([MS-RDPELE]).

BB_CLIENT_USER_NAME_BLOB

0x000F

Used by New License Request PDU (see [MS-RDPELE]).

BB_CLIENT_MACHINE_NAME_BLOB

0x0010

Used by New License Request PDU (see [MS-RDPELE]).

wBlobLen (2 bytes): A 16-bit unsigned integer. The size in bytes of the binary information in
the blobData field. If wBlobLen is set to 0, then the blobData field is not included in the
Licensing Binary BLOB structure and the contents of the wBlobType field SHOULD be ignored.

blobData (variable): Variable-length binary data. The size of this data in bytes is given by the
wBlobLen field. If wBlobLen is set to 0, then this field is not included in the
LICENSE_BINARY_BLOB structure.

2.2.1.12.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)

 The LICENSE_ERROR_MESSAGE structure is used to indicate that an error occurred during the
licensing protocol. Alternatively, it is also used to notify the peer of important status information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwErrorCode

dwStateTransition

bbErrorInfo (variable)

...

dwErrorCode (4 bytes): A 32-bit unsigned integer. The error or status code.

Sent by client:

67 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Name Value

ERR_INVALID_SERVER_CERTIFICATE 0x00000001

ERR_NO_LICENSE 0x00000002

Sent by server:

Name Value

ERR_INVALID_SCOPE 0x00000004

ERR_NO_LICENSE_SERVER 0x00000006

STATUS_VALID_CLIENT 0x00000007

ERR_INVALID_CLIENT 0x00000008

ERR_INVALID_PRODUCTID 0x0000000B

ERR_INVALID_MESSAGE_LEN 0x0000000C

Sent by client and server:

Name Value

ERR_INVALID_MAC 0x00000003

dwStateTransition (4 bytes): A 32-bit unsigned integer. The licensing state to transition into
upon receipt of this message. For more details about how this field is used, see [MS-RDPELE].

Name Value

ST_TOTAL_ABORT 0x00000001

ST_NO_TRANSITION 0x00000002

ST_RESET_PHASE_TO_START 0x00000003

ST_RESEND_LAST_MESSAGE 0x00000004

bbErrorInfo (variable): A LICENSE_BINARY_BLOB (section 2.2.1.12.2) structure which MUST
contain a BLOB of type BB_ERROR_BLOB (0x0004) that includes information relevant to the
error code specified in dwErrorCode.

2.2.1.13 Mandatory Capability Negotiation

2.2.1.13.1 Server Demand Active PDU

 The Demand Active PDU is a Standard RDP Connection Sequence PDU sent from server to client
during the Capabilities Negotiation phase (see section 1.3.1.1). It is sent upon successful completion
of the Licensing phase (see section 1.3.1.1) of the connection sequence.

%5bMS-RDPELE%5d.pdf

68 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

demandActivePduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Demand Active
PDU (section 2.2.1.13.1) data.

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0) then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

 If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

demandActivePduData (variable): The actual contents of the Demand Active PDU, as
specified in section 2.2.1.13.1.1.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

69 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU)

 The TS_DEMAND_ACTIVE_PDU structure is a standard T.128 Demand Active PDU (see [T128]
section 8.4.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareId

... lengthSourceDescriptor

lengthCombinedCapabilities sourceDescriptor (variable)

...

numberCapabilities pad2Octets

capabilitySets (variable)

...

sessionId

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing

information about the packet. The type subfield of the pduType field of the Share Control

Header MUST be set to PDUTYPE_DEMANDACTIVEPDU (1).

shareId (4 bytes): A 32-bit unsigned integer. The share identifier for the packet (see [T128]
section 8.4.2 for more information regarding share IDs).

lengthSourceDescriptor (2 bytes): A 16-bit unsigned integer. The size in bytes of the
sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit unsigned integer. The combined size in

bytes of the numberCapabilities, pad2Octets and capabilitySets fields.

sourceDescriptor (variable): The source descriptor. The contents of this field SHOULD be set
to { 0x52, 0x44, 0x50, 0x00 }, which is the ANSI representation of the null-terminated string
"RDP" in hexadecimal.

numberCapabilities (2 bytes): A 16-bit unsigned integer. The number of capability sets
included in the Demand Active_PDU.

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

70 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

capabilitySets (variable): An array of TS_CAPS_SET (section 2.2.1.13.1.1.1) structures.
Collection of capability sets, each conforming to the TS_CAPS_SET structure. The number of

capability sets is specified by the numberCapabilities field.

sessionId (4 bytes): A 32-bit unsigned integer. The session identifier. This field is ignored by
the client and SHOULD be set to 0x00000000.

2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET)

 The TS_CAPS_SET structure is used to describe the type and size of a capability set exchanged
between clients and servers. All capability sets conform to this basic structure (see section 2.2.7).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

capabilityData (variable)

...

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type identifier of the capability
set.

Value Meaning

CAPSTYPE_GENERAL

1

General Capability Set (section 2.2.7.1.1).

CAPSTYPE_BITMAP

2

Bitmap Capability Set (section 2.2.7.1.2).

CAPSTYPE_ORDER

3

Order Capability Set (section 2.2.7.1.3).

CAPSTYPE_BITMAPCACHE

4

Revision 1 Bitmap Cache Capability Set (section

2.2.7.1.5.1).

CAPSTYPE_CONTROL

5

Control Capability Set (section 2.2.7.2.1).

CAPSTYPE_ACTIVATION

7

Window Activation Capability Set (section 2.2.7.2.2).

CAPSTYPE_POINTER

8

Pointer Capability Set (section 2.2.7.1.6).

CAPSTYPE_SHARE

9

Share Capability Set (section 2.2.7.2.3).

CAPSTYPE_COLORCACHE

10

Color Table Cache Capability Set (see [MS-RDPEGDI]

section 2.2.1.1).

CAPSTYPE_SOUND Sound Capability Set (section 2.2.7.1.12).

%5bMS-RDPEGDI%5d.pdf

71 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

12

CAPSTYPE_INPUT

13

Input Capability Set (section 2.2.7.1.7).

CAPSTYPE_FONT

14

Font Capability Set (section 2.2.7.2.4).

CAPSTYPE_BRUSH

15

Brush Capability Set (section 2.2.7.1.8).

CAPSTYPE_GLYPHCACHE

16

Glyph Cache Capability Set (section 2.2.7.1.9).

CAPSTYPE_OFFSCREENCACHE

17

Offscreen Bitmap Cache Capability Set (section

2.2.7.1.10).

CAPSTYPE_BITMAPCACHE_HOSTSUPPORT

18

Bitmap Cache Host Support Capability Set (section

2.2.7.1.4).

CAPSTYPE_BITMAPCACHE_REV2

19

Revision 2 Bitmap Cache Capability Set (section

2.2.7.1.5.2).

CAPSTYPE_VIRTUALCHANNEL

20

Virtual Channel Capability Set (section 2.2.7.1.11).

CAPSTYPE_DRAWNINEGRIDCACHE

21

DrawNineGrid Cache Capability Set (see [MS-

RDPEGDI] section 2.2.1.2).

CAPSTYPE_DRAWGDIPLUS

22

Draw GDI+ Cache Capability Set (see [MS-RDPEGDI]

section 2.2.1.3).

CAPSTYPE_RAIL

23

Remote Programs Capability Set (see [MS-RDPERP]).

CAPSTYPE_WINDOW

24

Window List Capability Set (see [MS-RDPERP]).

 CAPSETTYPE_COMPDESK

25

 Desktop Composition Extension Capability Set (see

2.2.7.2.7).

 CAPSETTYPE_MULTIFRAGMENTUPDATE

26

 Multifragment Update Capability Set (see section

2.2.7.2.5).

 CAPSETTYPE_LARGE_POINTER

27

 Large Pointer Capability Set (see section 2.2.7.2.6).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability

data, including the size of the capabilitySetType and lengthCapability fields.

capabilityData (variable): Capability set data which conforms to the structure of the type
given by the capabilitySetType field.

%5bMS-RDPERP%5d.pdf

72 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.1.13.2 Client Confirm Active PDU

 The Confirm Active PDU is a Standard RDP Connection Sequence PDU sent from client to server
during the Capabilities Negotiation phase (see section 1.3.1.1). It is sent as a response to the
Demand Active PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

confirmActivePduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in

[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

field of the MCS Send Data Request PDU contains a Security Header and the Confirm Active
PDU (section 2.2.1.13.2) data.

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and

the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following
headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the

server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

The flags field of the security header SHOULD contain the SEC_RESET_SEQNO and
SEC_IGNORE_SEQNO flags (see section 2.2.8.1.1.2.1).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

73 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

confirmActivePduData (variable): The actual contents of the Confirm Active PDU, as specified
in section 2.2.1.13.2.1.

2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU)

 The TS_CONFIRM_ACTIVE_PDU structure is a standard T.128 Confirm Active PDU (see [T128]
section 8.4.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareId

... originatorId

lengthSourceDescriptor lengthCombinedCapabilities

sourceDescriptor (variable)

...

numberCapabilities pad2Octets

capabilitySets (variable)

...

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing
information about the packet.

The type subfield of the pduType field of the Share Control Header MUST be set to

PDUTYPE_CONFIRMACTIVEPDU (3).

shareId (4 bytes): A 32-bit unsigned integer. The share identifier for the packet (see [T128]
section 8.4.2 for more information regarding share IDs).

originatorId (2 bytes): A 16-bit unsigned integer. The identifier of the packet originator. This
field MUST be set to the server channel ID (in Microsoft RDP server implementations, this
value is always 0x03EA).

lengthSourceDescriptor (2 bytes): A 16-bit unsigned integer. The size in bytes of the

sourceDescriptor field.

lengthCombinedCapabilities (2 bytes): A 16-bit unsigned integer. The combined size in
bytes of the numberCapabilities, pad2Octets and capabilitySets fields.

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

74 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

sourceDescriptor (variable): Source descriptor. The Microsoft RDP client sets the contents of
this field to { 0x4D, 0x53, 0x54, 0x53, 0x43, 0x00 }, which is the ANSI representation of the

null-terminated string "MSTSC" in hexadecimal.

numberCapabilities (2 bytes): A 16-bit unsigned integer. Number of capability sets included
in the Confirm Active PDU.

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

capabilitySets (variable): An array of TS_CAPS_SET (section 2.2.1.13.1.1.1) structures.
Collection of capability sets, each conforming to the TS_CAPS_SET structure. The number of
capability sets is specified by the numberCapabilities field.

2.2.1.14 Client Synchronize PDU

 The Client Synchronize PDU is a Standard RDP Connection Sequence PDU sent from client to server

during the Connection Finalization phase (see section 1.3.1.1). It is sent after transmitting the
Confirm Active PDU.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

synchronizePduData

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

75 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in
[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

field of the MCS Send Data Request PDU contains a Security Header and the Client
Synchronize PDU (section 2.2.1.14.1) data.

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the

server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

The flags field of the security header SHOULD contain the SEC_IGNORE_SEQNO flag (see
section 2.2.8.1.1.2.1).

synchronizePduData (22 bytes): The actual contents of the Synchronize PDU, as specified in

section 2.2.1.14.1.

2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)

 The TS_SYNCHRONIZE_PDU structure is a standard T.128 Synchronize PDU (see [T128] section
8.6.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... messageType

targetUser

shareDataHeader (18 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing
information about the packet. The type subfield of the pduType field of the Share Control

Header MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_SYNCHRONIZE (31).

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90544

76 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

messageType (2 bytes): A 16-bit unsigned integer. The message type. This field MUST be set
to SYNCMSGTYPE_SYNC (1).

targetUser (2 bytes): A 16-bit unsigned integer. The MCS channel ID of the target user.

2.2.1.15 Client Control PDU - Cooperate

 The Client Control PDU (Cooperate) is a Standard RDP Connection Sequence PDU sent from client to

server during the Connection Finalization phase (see section 1.3.1.1). It is sent after transmitting
the Client Synchronize PDU (section 2.2.1.14).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

controlPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU as described in section 13.7 of [X224].

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in
[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

field of the MCS Send Data Request PDU contains a Security Header and the Control PDU
(section 2.2.1.15.1) data.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

77 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0) then this field will contain one of the following
headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

controlPduData (26 bytes): The actual contents of the Control PDU, as specified in section
2.2.1.15.1. The grantId and controlId fields of the Control PDU Data MUST both be set to
zero, while the action field MUST be set to CTRLACTION_COOPERATE (0x0004).

2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU)

 The TS_CONTROL_PDU structure is a standard T.128 Synchronize PDU (see [T128] section 8.12).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... action

grantId controlId

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing

information about the packet. The type subfield of the pduType field of the Share Control
Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of
the Share Data Header MUST be set to PDUTYPE2_CONTROL (20).

action (2 bytes): A 16-bit unsigned integer. The action code.

http://go.microsoft.com/fwlink/?LinkId=90544

78 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

CTRLACTION_REQUEST_CONTROL

0x0001

Request control

CTRLACTION_GRANTED_CONTROL

0x0002

Granted control

CTRLACTION_DETACH

0x0003

Detach

CTRLACTION_COOPERATE

0x0004

Cooperate

grantId (2 bytes): A 16-bit unsigned integer. The grant identifier.

controlId (4 bytes): A 32-bit unsigned integer. The control identifier.

2.2.1.16 Client Control PDU - Request Control

 The Client Control PDU (Request Control) is a Standard RDP Connection Sequence PDU sent from
client to server during the Connection Finalization phase (see section 1.3.1.1). It is sent after

transmitting the Client Control PDU (Cooperate) (section 2.2.1.15).

79 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

controlPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU as described in section 13.7 of [X224].

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in
[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Request PDU contains a Security Header and the Control PDU Data
(section 2.2.1.15.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

80 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

controlPduData (26 bytes): The actual contents of the Control PDU, as specified in section
2.2.1.15.1. The grantId and controlId fields of the Control PDU Data MUST both be set to
zero, while the action field MUST be set to CTRLACTION_REQUEST_CONTROL (0x0001).

2.2.1.17 Client Persistent Key List PDU

 The Persistent Key List PDU is a Standard RDP Connection Sequence PDU sent from client to server

during the Connection Finalization phase (see section 1.3.1.1). This PDU MAY be sent after
transmitting the Client Control PDU (Request Control) (section 2.2.1.16). It MUST NOT be sent to a
server which does not advertise support for the Bitmap Host Cache Support Capability Set (section

2.2.7.1.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

persistentKeyListPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in

[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Request PDU contains a Security Header and the Control PDU Data
(section 2.2.1.15.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

81 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

persistentKeyListPduData (variable): The actual contents of the Persistent Key List PDU, as

specified in section 2.2.1.17.1.

2.2.1.17.1 Persistent Key List PDU Data

(TS_BITMAPCACHE_PERSISTENT_LIST_PDU)

 The TS_BITMAPCACHE_PERSISTENT_LIST_PDU structure contains a list of cached bitmap keys

saved from Cache Bitmap (Revision 2) Orders (see [MS-RDPEGDI] section 2.2.2.3.1.2.3) which were
sent in previous sessions. By including a key in the Persistent Key List PDU Data the client indicates
to the server that it has a local copy of the bitmap associated with the key, which implies that the
server does not need to retransmit the bitmap to the client (for more details about the Persistent

Bitmap Cache, see [MS-RDPEGDI] section 3.1.1.1.1). The bitmap keys can be sent in more than one
Persistent Key List PDU, with each PDU being marked using flags in the bBitMask field.

%5bMS-RDPEGDI%5d.pdf

82 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... numEntriesCache0

numEntriesCache1 numEntriesCache2

numEntriesCache3 numEntriesCache4

totalEntriesCache0 totalEntriesCache1

totalEntriesCache2 totalEntriesCache3

totalEntriesCache4 bBitMask Pad2

Pad3 entries (variable)

...

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing
information about the packet. The type subfield of the pduType field of the Share Control

Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of
the Share Data Header MUST be set to PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST (43).

numEntriesCache0 (2 bytes): A 16-bit unsigned integer. The number of entries for bitmap
cache 0 in the current Persistent Key List PDU.

numEntriesCache1 (2 bytes): A 16-bit unsigned integer. The number of entries for bitmap
cache 1 in the current Persistent Key List PDU.

numEntriesCache2 (2 bytes): A 16-bit unsigned integer. The number of entries for bitmap

cache 2 in the current Persistent Key List PDU.

numEntriesCache3 (2 bytes): A 16-bit unsigned integer. The number of entries for bitmap
cache 3 in the current Persistent Key List PDU.

numEntriesCache4 (2 bytes): A 16-bit unsigned integer. The number of entries for bitmap
cache 4 in the current Persistent Key List PDU.

83 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

totalEntriesCache0 (2 bytes): A 16-bit unsigned integer. The total number of entries for
bitmap cache 0 expected across the entire sequence of Persistent Key List PDUs. This value

will remain unchanged across the sequence.

totalEntriesCache1 (2 bytes): A 16-bit unsigned integer. The total number of entries for
bitmap cache 1 expected across the entire sequence of Persistent Key List PDUs. This value
will remain unchanged across the sequence.

totalEntriesCache2 (2 bytes): A 16-bit unsigned integer. The total number of entries for
bitmap cache 2 expected across the entire sequence of Persistent Key List PDUs. This value
will remain unchanged across the sequence.

totalEntriesCache3 (2 bytes): A 16-bit unsigned integer. The total number of entries for
bitmap cache 3 expected across the entire sequence of Persistent Key List PDUs. This value
will remain unchanged across the sequence.

totalEntriesCache4 (2 bytes): The total number of entries for bitmap cache 4 expected across
the entire sequence of Persistent Key List PDUs. This value will remain unchanged across the
sequence.

bBitMask (1 byte): An 8-bit unsigned integer. The sequencing flag.

Value Meaning

PERSIST_FIRST_PDU

0x01

Indicates that the PDU is the first in a sequence of Persistent Key List PDUs.

PERSIST_LAST_PDU

0x02

Indicates that the PDU is the last in a sequence of Persistent Key List PDUs.

If neither PERSIST_FIRST_PDU (0x01) nor PERSIST_LAST_PDU (0x02) are set, then the

current PDU is an intermediate packet in a sequence of Persistent Key List PDUs.

Pad2 (1 byte): An 8-bit unsigned integer. Padding. Values in this field are ignored.

Pad3 (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

entries (variable): An array of TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY structures which
describe 64-bit bitmap keys. The keys MUST be arranged in order from low cache number to
high cache number. For instance, if a PDU contains one key for cache 0 and two keys for

cache 1, then numEntriesCache0 will be set to 1, numEntriesCache1 will be set to 2, and
numEntriesCache2, numEntriesCache3 and numEntriesCache4 will all be set to zero.
The keys will be arranged in the following order: (Cache 0, Key 1), (Cache 1, Key 1), (Cache
1, Key 2).

2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)

 The TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY structure contains a 64-bit bitmap key to be sent

back to the server.

84 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Key1

Key2

Key1 (4 bytes): Low 32 bits of the 64-bit persistent bitmap cache key.

Key2 (4 bytes): A 32-bit unsigned integer. High 32 bits of the 64-bit persistent bitmap cache

key.

2.2.1.18 Client Font List PDU

 The Font List PDU is a Standard RDP Connection Sequence PDU sent from client to server during

the Connection Finalization phase (see section 1.3.1.1). It is sent after transmitting a Persistent Key
List PDU (section 2.2.1.17) or, if the Persistent Key List PDU was not sent, it is sent after
transmitting the Client Control PDU (Request Control) (section 2.2.1.16).

85 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

fontListPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in
[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Request PDU contains a Security Header and the Font List PDU
Data (section 2.2.1.18.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

86 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

fontListPduData (26 bytes): The actual contents of the Font List PDU, as specified in section
2.2.1.18.1.

2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU)

 The TS_FONT_LIST_PDU structure contains information that is sent to the server for legacy
reasons.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... numberFonts

totalNumFonts listFlags

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing
information about the packet. The type subfield of the pduType field of the Share Control
Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of

the Share Data Header MUST be set to PDUTYPE2_FONTLIST (39).

numberFonts (2 bytes): A 16-bit unsigned integer. The number of fonts. This field SHOULD be
set to 0.

totalNumFonts (2 bytes): A 16-bit unsigned integer. The total number of fonts. This field

SHOULD be set to 0.

listFlags (2 bytes): A 16-bit unsigned integer. The sequence flags. This field SHOULD be set to
0x0003, which is the logical OR'ed value of FONTLIST_FIRST (0x0001) and FONTLIST_LAST

(0x0002).

entrySize (2 bytes): A 16-bit unsigned integer. The entry size. This field SHOULD be set to
0x0032 (50 bytes).

87 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.1.19 Server Synchronize PDU

 The Server Synchronize PDU is a Standard RDP Connection Sequence PDU sent from server to
client during the Connection Finalization phase (see section 1.3.1.1). It is sent after receiving the
Confirm Active PDU (section 2.2.1.13.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

synchronizePduData

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in section 7, part 7 of [T125]). The

userData field of the MCS Send Data Indication PDU contains a Security Header and the
Synchronize PDU Data (section 2.2.1.14.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and

the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following
headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

88 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)

or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the

server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

synchronizePduData (22 bytes): The actual contents of the Synchronize PDU as described in

section 2.2.1.14.1.

2.2.1.20 Server Control PDU - Cooperate

 The Server Control PDU (Cooperate) is a Standard RDP Connection Sequence PDU sent from server
to client during the Connection Finalization phase (see section 1.3.1.1). It is sent after transmitting
the Server Synchronize PDU (section 2.2.1.19).

89 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

controlPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Control PDU
Data (section 2.2.1.15.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

90 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

controlPduData (26 bytes): The actual contents of the Control PDU as described in section

2.2.1.15.1. The grantId and controlId fields of the Control PDU Data MUST both be set to
zero, while the action field MUST be set to CTRLACTION_COOPERATE (0x0004).

2.2.1.21 Server Control PDU - Granted Control

 The Server Control PDU (Granted Control) is a Standard RDP Connection Sequence PDU sent from
server to client during the Connection Finalization phase (see section 1.3.1.1). It is sent after

transmitting the Server Control PDU (Cooperate) (section 2.2.1.20).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

controlPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

91 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

field of the MCS Send Data Indication PDU contains a Security Header and the Control PDU
Data (section 2.2.1.15.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)

or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

 If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the

server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

controlPduData (26 bytes): The actual contents of the Control PDU as described in section

2.2.1.15.1. The action field MUST be set to CTRLACTION_GRANTED_CONTROL (0x0002). The
grantId field MUST be set to the user channel ID (see sections 2.2.1.6 and 2.2.1.7), while the
controlId field MUST be set to the server channel ID (in Microsoft RDP server

implementations this value is always 0x03EA).

2.2.1.22 Server Font Map PDU

 The Font Map PDU is a Standard RDP Connection Sequence PDU sent from server to client during

the Connection Finalization phase (see section 1.3.1.1). It is sent after transmitting the Server

Control PDU (Granted Control) (section 2.2.1.21). This PDU is the last in the connection sequence
and signals to the client that it can start sending input PDUs (see section 1.3.5) to the server.

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

92 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

fontMapPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in[X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Font Map PDU
Data (section 2.2.1.22.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

93 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

fontMapPduData (26 bytes): The actual contents of the Font Map PDU, as specified in section

2.2.1.22.1.

2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU)

 The TS_FONT_MAP_PDU structure contains information that is sent to the server for legacy
reasons.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... numberEntries

totalNumEntries mapFlags

entrySize

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2). The type subfield of

the pduType field of the Share Control Header (section 2.2.8.1.1.1.1) MUST be set to
PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST be set to
PDUTYPE2_FONTMAP (40).

numberEntries (2 bytes): A 16-bit unsigned integer. The number of fonts. This field SHOULD

be set to 0.

totalNumEntries (2 bytes): A 16-bit unsigned integer. The total number of fonts. This field
SHOULD be set to 0.

mapFlags (2 bytes): A 16-bit unsigned integer. The sequence flags. This field SHOULD be set
to 0x0003, which is the logical OR'ed value of FONTMAP_FIRST (0x0001) and FONTMAP_LAST
(0x0002).

entrySize (2 bytes): A 16-bit unsigned integer. The entry size. This field SHOULD be set to
0x0004 (4 bytes).

94 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.2 Disconnection Sequences

2.2.2.1 MCS Disconnect Provider Ultimatum PDU

 The MCS Disconnect Provider Ultimatum PDU is an MCS PDU sent as part of the disconnection
sequences, as specified in section 1.3.1.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsDPum

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsDPum (8 bytes): PER-encoded MCS Disconnect Provider Ultimatum PDU, as specified in

[T125] (the ASN.1 structure definition is given in [T125] section 7, part 4).

2.2.2.2 Client Shutdown Request PDU

 The Shutdown Request PDU is sent by the client as part of the disconnection sequences specified in

section 1.3.1.4; specifically as part of the User-Initiated on Client disconnect sequence (see section
1.3.1.4.1).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

95 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

shutdownRequestPduData

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in
[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Request PDU contains a Security Header and the Shutdown
Request PDU Data (section 2.2.2.2.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the

server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

96 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

shutdownRequestPduData (18 bytes): The actual contents of the Shutdown Request PDU, as
specified in section 2.2.2.2.1.

2.2.2.2.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)

 The TS_SHUTDOWN_REQ_PDU structure contains the contents of the Shutdown Request PDU,
which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet.
The type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1)
MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST

be set to PDUTYPE2_SHUTDOWN_REQUEST (36).

2.2.2.3 Server Shutdown Request Denied PDU

 The Shutdown Request Denied PDU is sent by the server as part of the disconnection sequences

specified in section 1.3.1.4; specifically as part of the "User-Initiated on Client" disconnect sequence
(see section 1.3.1.4.1).

97 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

shutdownRequestDeniedPduData

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Shutdown
Request Denied PDU (section 2.2.2.3.1) data.

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

98 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by
the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

shutdownRequestDeniedPduData (18 bytes): The actual contents of the Shutdown Request
Denied PDU, as specified in section 2.2.2.3.1.

2.2.2.3.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU)

The TS_SHUTDOWN_DENIED_PDU structure contains the contents of the Shutdown Request Denied
PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with no PDU body.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet.
The type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1)
MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST

be set to PDUTYPE2_SHUTDOWN_DENIED (37).

2.2.3 Deactivation-Reactivation Sequence

2.2.3.1 Server Deactivate All PDU

 The Deactivate All PDU is sent from server to client to indicate that the connection will be dropped
or that a capability renegotiation using a Deactivation-Reactivation Sequence (see section 1.3.1.3)

will occur.

99 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

deactivateAllPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Deactivate All
PDU data (section 2.2.3.1.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (section 5.4)) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

deactivateAllPduData (variable): The actual contents of the Deactivate All PDU, as specified
in section 2.2.3.1.1.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

100 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)

The TS_DEACTIVATE_ALL_PDU structure is a standard T.128 Deactivate All PDU (see [T128] section
8.4.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareId

... lengthSourceDescriptor

sourceDescriptor (variable)

...

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing
information about the packet.

The type subfield of the pduType field of the Share Control Header MUST be set to
TS_PDUTYPE_DEACTIVATEALLPDU (6).

shareId (4 bytes): A 32-bit unsigned integer. The share identifier for the packet (see [T128]

section 8.4.2 for more information regarding share IDs).

lengthSourceDescriptor (2 bytes): A 16-bit unsigned integer. The size in bytes of the
sourceDescriptor field.

sourceDescriptor (variable): Variable number of bytes. The source descriptor. This field
SHOULD be set to 0x00.

2.2.4 Auto-Reconnect Sequence

2.2.4.1 Server Auto-Reconnect Status PDU

 The Auto-Reconnect Status PDU contains error information after a failed auto-reconnection attempt

has taken place.

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

101 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

arcStatusPduData

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Auto-Reconnect
Status PDU data (section 2.2.4.1.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

102 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

arcStatusPduData (22 bytes): The actual contents of the Auto-Reconnect Status PDU, as
specified in section 2.2.4.1.1.

2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)

 The TS_AUTORECONNECT_STATUS_PDU structure contains the contents of the Auto-Reconnect
Status PDU, which is a Share Data Header (section 2.2.8.1.1.1.2) with a status field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... arcStatus

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet.
The type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1)

MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST

be set to PDUTYPE2_ARC_STATUS_PDU (50).

arcStatus (4 bytes): A 32-bit unsigned integer. Error code describing the reason for the auto-
reconnect failure. Microsoft RDP servers populate this field with an NTSTATUS error code (see
[ERRTRANS] for information on translating NTSTATUS error codes to usable text strings)

which describes the issue which triggered the error.

2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET)

 The ARC_SC_PRIVATE_PACKET structure contains server-supplied information used to seamlessly
re-establish a client session connection after network interruption. It is sent as part of the Save
Session Info PDU logon information (see section 2.2.10.1.1.4).

http://go.microsoft.com/fwlink/?LinkId=89860

103 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbLen

Version

LogonId

ArcRandomBits

...

...

...

cbLen (4 bytes): A 32-bit unsigned integer. The length in bytes of the Server Auto-Reconnect
packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit unsigned integer. The value representing the auto-reconnect
version.

Value Meaning

AUTO_RECONNECT_VERSION_1

0x00000001

Version 1 of auto-reconnect.

LogonId (4 bytes): A 32-bit unsigned integer. The session identifier for reconnection.

ArcRandomBits (16 bytes): Byte buffer containing a 16-byte random number generated as a

key for secure session reconnection (see section 5.5).

2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)

 The ARC_CS_PRIVATE_PACKET structure contains the client response cookie used to seamlessly re-
establish a client session connection after network interruption. It is sent as part of the extended
information of the Client Info PDU (section 2.2.1.11.1.1.1).

104 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbLen

Version

LogonId

SecurityVerifier

...

...

...

cbLen (4 bytes): A 32-bit unsigned integer. The length in bytes of the Client Auto-Reconnect
Packet. This field MUST be set to 0x0000001C (28 bytes).

Version (4 bytes): A 32-bit unsigned integer. The value representing the auto-reconnect
version.

Value Meaning

AUTO_RECONNECT_VERSION_1

0x00000001

Version 1 of auto-reconnect.

LogonId (4 bytes): A 32-bit unsigned integer. The session identifier for reconnection.

SecurityVerifier (16 bytes): Byte buffer containing a 16-byte verifier value derived using

cryptographic methods (as specified in section 5.5) from the ArcRandomBits field of the
Server Auto-Reconnect packet.

2.2.5 Server Error Reporting

2.2.5.1 Server Set Error Info PDU

 The Set Error Info PDU is sent by the server when there is a connection or disconnection failure.
This PDU is only sent to clients which have indicated that they are capable of handling error
reporting using the RNS_UD_CS_SUPPORT_ERRINFO_PDU flag in the Client Core Data (section
2.2.1.3.2).

105 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

errorInfoPduData

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Set Error Info
PDU Data (section 2.2.5.1.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

106 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

errorInfoPduData (22 bytes): The actual contents of the Set Error Info PDU, as specified in
section 2.2.5.1.1.

2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)

The TS_SET_ERROR_INFO_PDU structure contains the contents of the Set Error Info PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) with an error value field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... errorInfo

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet.
The type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1)

MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST

be set to PDUTYPE2_SET_ERROR_INFO_PDU (47).

errorInfo (4 bytes): A 32-bit unsigned integer. Error code.

Protocol-independent codes:

Name Value

ERRINFO_NOERROR 0x00000000

ERRINFO_RPC_INITIATED_DISCONNECT 0x00000001

ERRINFO_RPC_INITIATED_LOGOFF 0x00000002

ERRINFO_IDLE_TIMEOUT 0x00000003

ERRINFO_LOGON_TIMEOUT 0x00000004

ERRINFO_DISCONNECTED_BY_OTHERCONNECTION 0x00000005

ERRINFO_OUT_OF_MEMORY 0x00000006

107 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Name Value

ERRINFO_SERVER_DENIED_CONNECTION 0x00000007

ERRINFO_SERVER_DENIED_CONNECTION_FIPS 0x00000008

ERRINFO_SERVER_INSUFFICIENT_PRIVILEGES 0x00000009

 ERRINFO_SERVER_FRESH_CREDENTIALS_REQUIRED 0x0000000A

Protocol-independent licensing codes:

Name Value

ERRINFO_LICENSE_INTERNAL 0x00000100

ERRINFO_LICENSE_NO_LICENSE_SERVER 0x00000101

ERRINFO_LICENSE_NO_LICENSE 0x00000102

ERRINFO_LICENSE_BAD_CLIENT_MSG 0x00000103

ERRINFO_LICENSE_HWID_DOESNT_MATCH_LICENSE 0x00000104

ERRINFO_LICENSE_BAD_CLIENT_LICENSE 0x00000105

ERRINFO_LICENSE_CANT_FINISH_PROTOCOL 0x00000106

ERRINFO_LICENSE_CLIENT_ENDED_PROTOCOL 0x00000107

ERRINFO_LICENSE_BAD_CLIENT_ENCRYPTION 0x00000108

ERRINFO_LICENSE_CANT_UPGRADE_LICENSE 0x00000109

ERRINFO_LICENSE_NO_REMOTE_CONNECTIONS 0x0000010A

Reserved codes:

Name Value

ERRINFO_SALEM_INVALIDHELPSESSION 0x0000200

ERRINFO_RDPENC_INVALID_CREDENTIALS 0x0000300

TS_ERRINFO_RDPENC_INTERNALERROR 0x0000301

RDP specific codes:

Name Value

ERRINFO_UNKNOWNPDUTYPE2 0x000010C9

ERRINFO_UNKNOWNPDUTYPE 0x000010CA

ERRINFO_DATAPDUSEQUENCE 0x000010CB

ERRINFO_UNKNOWNFLOWPDU 0x000010CC

108 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Name Value

ERRINFO_CONTROLPDUSEQUENCE 0x000010CD

ERRINFO_INVALIDCONTROLPDUACTION 0x000010CE

ERRINFO_INVALIDINPUTPDUTYPE 0x000010CF

ERRINFO_INVALIDINPUTPDUMOUSE 0x000010D0

ERRINFO_INVALIDREFRESHRECTPDU 0x000010D1

ERRINFO_CREATEUSERDATAFAILED 0x000010D2

ERRINFO_CONNECTFAILED 0x000010D3

ERRINFO_CONFIRMACTIVEWRONGSHAREID 0x000010D4

ERRINFO_CONFIRMACTIVEWRONGORIGINATOR 0x000010D5

ERRINFO_PERSISTENTKEYPDUBADLENGTH 0x000010DA

ERRINFO_PERSISTENTKEYPDUILLEGALFIRST 0x000010DB

ERRINFO_PERSISTENTKEYPDUTOOMANYTOTALKEYS 0x000010DC

ERRINFO_PERSISTENTKEYPDUTOOMANYCACHEKEYS 0x000010DD

ERRINFO_INPUTPDUBADLENGTH 0x000010DE

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH 0x000010DF

ERRINFO_SECURITYDATATOOSHORT 0x000010E0

ERRINFO_VCHANNELDATATOOSHORT 0x000010E1

ERRINFO_SHAREDATATOOSHORT 0x000010E2

ERRINFO_BADSUPRESSOUTPUTPDU 0x000010E3

ERRINFO_CONFIRMACTIVEPDUTOOSHORT 0x000010E5

ERRINFO_FLOWPDUTOOSHORT 0x000010E6

ERRINFO_CAPABILITYSETTOOSMALL 0x000010E7

ERRINFO_CAPABILITYSETTOOLARGE 0x000010E8

ERRINFO_NOCURSORCACHE 0x000010E9

ERRINFO_BADCAPABILITIES 0x000010EA

ERRINFO_BADUSERDATA 0x000010EB

ERRINFO_VIRTUALCHANNELDECOMPRESSIONERR 0x000010EC

ERRINFO_INVALIDVCCOMPRESSIONTYPE 0x000010ED

ERRINFO_INVALIDCHANNELID 0x000010EF

109 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Name Value

ERRINFO_VCHANNELSTOOMANY 0x000010F0

ERRINFO_BADSERVERCERTIFICATEDATA 0x000010F2

ERRINFO_REMOTEAPPSNOTENABLED 0x000010F3

ERRINFO_CACHECAPNOTSET 0x000010F4

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH2 0x000010F5

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH3 0x000010F6

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH4 0x000010F7

ERRINFO_BITMAPCACHEERRORPDUBADLENGTH5 0x000010F8

ERRINFO_BADUSERDATA2 0x000010FE

ERRINFO_BADUSERDATA3 0x000010FF

ERRINFO_BADUSERDATA4 0x00001100

ERRINFO_BADUSERDATA5 0x00001101

ERRINFO_BADUSERDATA6 0x00001102

ERRINFO_BADUSERDATA7 0x00001103

ERRINFO_BADUSERDATA8 0x00001104

ERRINFO_BADUSERDATA9 0x00001105

ERRINFO_BADUSERDATA10 0x00001106

ERRINFO_BADUSERDATA11 0x00001107

ERRINFO_BADUSERDATA12 0x00001108

ERRINFO_BADUSERDATA13 0x00001109

ERRINFO_BADUSERDATA14 0x0000110A

ERRINFO_BADUSERDATA15 0x0000110B

ERRINFO_BADUSERDATA16 0x0000110C

ERRINFO_BADUSERDATA17 0x0000110D

ERRINFO_BADUSERDATA18 0x0000110E

ERRINFO_BADUSERDATA19 0x0000110F

ERRINFO_BADUSERDATA20 0x00001110

ERRINFO_SECURITYDATATOOSHORT2 0x00001111

ERRINFO_SECURITYDATATOOSHORT3 0x00001112

110 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Name Value

ERRINFO_SECURITYDATATOOSHORT4 0x00001113

ERRINFO_SECURITYDATATOOSHORT5 0x00001114

ERRINFO_SECURITYDATATOOSHORT6 0x00001115

ERRINFO_SECURITYDATATOOSHORT7 0x00001116

ERRINFO_SECURITYDATATOOSHORT8 0x00001117

ERRINFO_SECURITYDATATOOSHORT9 0x00001118

ERRINFO_SECURITYDATATOOSHORT10 0x00001119

ERRINFO_SECURITYDATATOOSHORT11 0x0000111A

ERRINFO_SECURITYDATATOOSHORT12 0x0000111B

ERRINFO_SECURITYDATATOOSHORT13 0x0000111C

ERRINFO_SECURITYDATATOOSHORT14 0x0000111D

ERRINFO_SECURITYDATATOOSHORT15 0x0000111E

ERRINFO_SECURITYDATATOOSHORT16 0x0000111F

ERRINFO_SECURITYDATATOOSHORT17 0x00001120

ERRINFO_SECURITYDATATOOSHORT18 0x00001121

ERRINFO_SECURITYDATATOOSHORT19 0x00001122

ERRINFO_SECURITYDATATOOSHORT20 0x00001123

ERRINFO_SECURITYDATATOOSHORT21 0x00001124

ERRINFO_SECURITYDATATOOSHORT22 0x00001125

ERRINFO_SECURITYDATATOOSHORT23 0x00001126

ERRINFO_UPDATESESSIONKEYFAILED 0x00001191

ERRINFO_DECRYPTFAILED 0x00001192

ERRINFO_ENCRYPTFAILED 0x00001193

ERRINFO_ENCPKGMISMATCH 0x00001194

ERRINFO_DECRYPTFAILED2 0x00001195

2.2.6 Static Virtual Channels

2.2.6.1 Virtual Channel PDU

The Virtual Channel PDU is sent from client to server or from server to client and is used to

transport data between static virtual channel end-points.

111 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsPdu (variable)

...

securityHeader (variable)

...

channelPduHeader

...

virtualChannelData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsPdu (variable): If the PDU is being sent from client to server, this field MUST contain a
variable length PER-encoded MCS Send Data Request PDU, as specified in [T125] (the ASN.1

structure definition is given in [T125] section 7, part 7). The userData field of the MCS Send
Data Request PDU contains a Security Header and the static virtual channel data.

If the PDU is being sent from server to client, this field MUST contain a variable length PER-
encoded MCS Send Data Indication PDU, as specified in [T125] (the ASN.1 structure definition
is given in [T125] section 7, part 7). The userData field of the MCS Send Data Indication PDU

contains a Security Header and the static virtual channel data.

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the security headers
described in Non-FIPS (TS_SECURITY_HEADER1) (section 2.2.8.1.1.2.2).

If the PDU is being sent from client to server:

 The securityHeader field will contain a Non-FIPS Security Header if the Encryption Level

selected by the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

If the PDU is being sent from server to client:

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

112 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 The securityHeader field will contain a Basic Security Header (section 2.2.8.1.1.2.1) if
the Encryption Level selected by the server (see sections 5.3.2 and 2.2.1.4.3) is

ENCRYPTION_LEVEL_LOW (1).

 The securityHeader field will contain a Non-FIPS Security Header if the Encryption Level
selected by the server (see sections 5.3.2 and 2.2.1.4.3) is
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

If the Encryption Level selected by the server (see sections 5.3.2 and 2.2.1.4.3) is
ENCRYPTION_LEVEL_FIPS (4) the securityHeader field will contain a FIPS Security Header
(section 2.2.8.1.1.2.3).

If Enhanced RDP Security (section 5.4) is in effect or the Encryption Method selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

channelPduHeader (8 bytes): Virtual Channel PDU Header (section 2.2.6.1.1) structure which
contains control flags and describes the size of the opaque channel data.

virtualChannelData (variable): Variable length data to be processed by the static virtual
channel protocol handler. This field MUST NOT be larger than CHANNEL_CHUNK_LENGTH

(1600) bytes in size.

2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)

The CHANNEL_PDU_HEADER MUST precede all opaque static virtual channel traffic chunks
transmitted via RDP between client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length

flags

length (4 bytes): A 32-bit unsigned integer. The total length in bytes of the uncompressed

channel data, excluding this header. The data can span over multiple frames and the
individual chunks will need to be reassembled in that case (see section 1.3.3).

flags (4 bytes): A 32-bit unsigned integer. The channel control flags.

Value Meaning

CHANNEL_FLAG_FIRST

0x00000001

Indicates that the chunk is the first in a sequence.

CHANNEL_FLAG_LAST

0x00000002

Indicates that the chunk is the last in a sequence.

CHANNEL_FLAG_SHOW_PROTOCOL

0x00000010

The Channel PDU Header MUST be visible to the application

endpoint (see section 2.2.1.3.4.1).

CHANNEL_FLAG_SUSPEND

0x00000020

All virtual channel traffic MUST be suspended.

113 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

CHANNEL_FLAG_RESUME

0x00000040

All virtual channel traffic MUST be resumed.

CHANNEL_PACKET_COMPRESSED

0x00200000

The virtual channel data is compressed. This value

corresponds to MPPC bit A (see [RFC2118] Common Details

section).

CHANNEL_PACKET_AT_FRONT

0x00400000

The decompressed packet MUST be placed at the beginning

of the history buffer. This value corresponds to MPPC bit B

(see [RFC2118] Common Details section).

CHANNEL_PACKET_FLUSHED

0x00800000

The history buffer MUST be reinitialized. This value

corresponds to MPPC bit C (see [RFC2118] Common Details

section).

CompressionTypeMask

0x000F0000

Indicates the compression package which was used to

compress the data. See the discussion which follows this

table for a list of compression packages.

If neither the CHANNEL_FLAG_FIRST (0x00000001) or the CHANNEL_FLAG_LAST

(0x00000002) flag is present, the chunk is from the middle of a sequence.

Possible compression packages codes are:

Value Meaning

PACKET_COMPR_TYPE_8K

0

MPPC-8K compression (see section 3.1.8.4.1).

PACKET_COMPR_TYPE_64K

1

MPPC 64K compression (see section 3.1.8.4.2).

PACKET_COMPR_TYPE_RDP6

2

RDP 6.0 bulk compression (see [MS-RDPEGDI] section 3.1.8).

Instructions detailing how to compress a data stream are listed in section 3.1.8.2, while
decompression of a data stream is described in section 3.1.8.3.

2.2.7 Capability Sets

2.2.7.1 Mandatory Capability Sets

2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)

 The TS_GENERAL_CAPABILITYSET structure is used to advertise general characteristics and is
based on the capability set specified in [T128] section 8.2.3. This capability is sent by both client
and server.

http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90316
%5bMS-RDPEGDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90544

114 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

osMajorType osMinorType

protocolVersion pad2octetsA

generalCompressionTypes extraFlags

updateCapabilityFlag remoteUnshareFlag

generalCompressionLevel refreshRectSupport suppressOutputSupport

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_GENERAL (1).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

osMajorType (2 bytes): A 16-bit unsigned integer. The type of platform.

Value Meaning

OSMAJORTYPE_UNSPECIFIED

0x0000

Unspecified platform

OSMAJORTYPE_WINDOWS

0x0001

Windows platform

OSMAJORTYPE_OS2

0x0002

OS/2 platform

OSMAJORTYPE_MACINTOSH

0x0003

Macintosh platform

OSMAJORTYPE_UNIX

0x0004

UNIX platform

osMinorType (2 bytes): A 16-bit unsigned integer. The version of the platform specified in the
osMajorType field.

Value Meaning

OSMINORTYPE_UNSPECIFIED

0x0000

Unspecified version

OSMINORTYPE_WINDOWS_31X

0x0001

Windows 3.1x

115 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

TS_OSMINORTYPE_WINDOWS_95

0x0002

Windows 95

TS_OSMINORTYPE_WINDOWS_NT

0x0003

Windows NT

TS_OSMINORTYPE_OS2_V21

0x0004

OS/2 2.1

TS_OSMINORTYPE_POWER_PC

0x0005

PowerPC

TS_OSMINORTYPE_MACINTOSH

0x0006

Macintosh

TS_OSMINORTYPE_NATIVE_XSERVER

0x0007

Native X Server

TS_OSMINORTYPE_PSEUDO_XSERVER

0x0008

Pseudo X Server

protocolVersion (2 bytes): A 16-bit unsigned integer. The protocol version. This field MUST be
set to TS_CAPS_PROTOCOLVERSION (0x0200).

pad2octetsA (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

generalCompressionTypes (2 bytes): A 16-bit unsigned integer. General compression types.
This field MUST be set to 0.

extraFlags (2 bytes): A 16-bit unsigned integer. General capability information.

Remote Desktop Protocol (RDP) 5.0 and later supports the following flags:

Flag Meaning

FASTPATH_OUTPUT_SUPPORTED

0x0001

Advertiser supports fast-path output.

NO_BITMAP_COMPRESSION_HDR

0x0400

The 8-byte Compressed Data Header (section

2.2.9.1.1.3.1.2.2) MUST NOT be used in conjunction with

compressed bitmap data.

RDP 5.1 and later supports the following additional flags:

Flag Meaning

SHADOW_COMPRESSION_LEVEL

0x0002

Advertiser supports shadow compression.

When this flag is set, the participating shadow client can

support data compression during shadowing, provided that the

compression level matches among the shadow clients. RDP 5.0

has no data compression for shadowing.

LONG_CREDENTIALS_SUPPORTED

0x0004

Advertiser (client or server) supports long-length credentials

for the user name, password, or domain name.

116 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

RDP 5.2 and later supports the following additional flags:

Flag Meaning

AUTORECONNECT_SUPPORTED

0x0008

Advertiser supports session auto-reconnection.

This flag allows a disconnected client to seamlessly reconnect to

its original session without the user resupplying logon credentials.

ENC_SALTED_CHECKSUM

0x0010

Advertiser supports salted message authentication code (MAC)

generation (see section 5.3.6.1.1).

updateCapabilityFlag (2 bytes): A 16-bit unsigned integer. Support for update capability. This
field MUST be set to 0.

remoteUnshareFlag (2 bytes): A 16-bit unsigned integer. Support for remote unsharing. This

field MUST be set to 0.

generalCompressionLevel (2 bytes): A 16-bit unsigned integer. General compression level.
This field MUST be set to 0.

refreshRectSupport (1 byte): An 8-bit unsigned integer. Server-only flag that indicates

whether the Refresh Rect PDU (section 2.2.11.2) is supported.

Value Meaning

FALSE

0x00

Server does not support Refresh Rect PDU.

TRUE

0x01

Server supports Refresh Rect PDU.

suppressOutputSupport (1 byte): An 8-bit unsigned integer. Server-only flag that indicates
whether the Suppress Output PDU (section 2.2.11.3) is supported.

Value Meaning

FALSE

0x00

Server does not support Suppress Output PDU.

TRUE

0x01

Server supports Suppress Output PDU.

2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET)

 The TS_BITMAP_CAPABILITYSET structure is used to advertise bitmap-orientated characteristics
and is based on the capability set specified in [T128] section 8.2.4. This capability is sent by both
client and server.

http://go.microsoft.com/fwlink/?LinkId=90544

117 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

preferredBitsPerPixel receive1BitPerPixel

receive4BitsPerPixel receive8BitsPerPixel

desktopWidth desktopHeight

pad2octets desktopResizeFlag

bitmapCompressionFlag highColorFlags drawingFlags

multipleRectangleSupport pad2octetsB

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_BITMAP (2).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

preferredBitsPerPixel (2 bytes): A 16-bit unsigned integer. Preferred bits-per-pixel (bpp) for
the session. In RDP 4.0 and 5.0, this field MUST be set to 8 (even for a 16-color session). In

RDP 5.1 and later, this field MUST be set to the desktop color depth that the client requested
in the Client Core Data (section 2.2.1.3.2).

receive1BitPerPixel (2 bytes): A 16-bit unsigned integer. Indicates whether the client can

receive 1 bit-per-pixel. This field is ignored during capability negotiation and SHOULD be set to
TRUE (0x0001).

receive4BitsPerPixel (2 bytes): A 16-bit unsigned integer. Indicates whether the client can

receive 4 bit-per-pixel. This field is ignored during capability negotiation and SHOULD be set to
TRUE (0x0001).

receive8BitsPerPixel (2 bytes): A 16-bit unsigned integer. Indicates whether the client can
receive 8 bit-per-pixel. This field is ignored during capability negotiation and SHOULD be set to

TRUE (0x0001).

desktopWidth (2 bytes): A 16-bit unsigned integer. The width of the client desktop. This field
MAY be set to the desktop width that the client requested in the Client Core Data (see section

2.2.1.3.2).

desktopHeight (2 bytes): A 16-bit unsigned integer. The height of the client desktop. This
field MAY be set to the desktop height that the client requested in the Client Core Data.

pad2octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

desktopResizeFlag (2 bytes): A 16-bit unsigned integer. Indicates whether desktop resizing is
supported.

118 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

FALSE

0x0000

 Desktop resizing is not supported.

TRUE

0x0001

Desktop resizing is supported.

If a desktop resize occurs, the server will deactivate the session (see section 1.3.1.3), and on
session reactivation will specify the new desktop size in the desktopWidth and
desktopHeight fields in the Bitmap Capability Set, along with a value of TRUE for the

desktopResizeFlag field. The client should check these sizes and, if different from the
previous desktop size, resize any windows to support this size.

bitmapCompressionFlag (2 bytes): A 16-bit unsigned integer. Indicates whether the client
supports bitmap compression. RDP requires bitmap compression and hence this field MUST be

set to TRUE (0x0001). If it is not set to TRUE, the server MUST NOT continue with the
connection.

highColorFlags (1 byte): An 8-bit unsigned integer. Client support for 16 bits-per-pixel color

modes. This field is ignored during capability negotiation and SHOULD be set to 0.

drawingFlags (1 byte): An 8-bit unsigned integer. Padding. Values in this field are ignored.

Flag Meaning

DRAW_ALLOW_DYNAMIC_COLOR_FIDELITY

0x02

Indicates support for lossy compression of 32 bpp

bitmaps by reducing color-fidelity on a per-pixel

basis.

DRAW_ALLOW_SKIP_ALPHA

0x08

Indicates that the client supports the removal of the

alpha-channel when compressing 32 bpp bitmaps. In

this case the alpha is assumed to be 0xFF, that is,

the bitmap is opaque.

DRAW_ALLOW_COLOR_SUBSAMPLING

0x04

Indicates support for chroma subsampling when

compressing 32 bpp bitmaps.

Compression of 32 bpp bitmaps is specified in [MS-RDPEGDI] section 3.1.9.

multipleRectangleSupport (2 bytes): A 16-bit unsigned integer. Indicates whether the client
supports the use of multiple bitmap rectangles. RDP requires the use of multiple bitmap
rectangles and hence this field MUST be set to TRUE (0x0001). If it is not set to TRUE, the

server MUST NOT continue with the connection.

pad2octetsB (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET)

 The TS_ORDER_CAPABILITYSET structure advertises support for primary drawing order-related
capabilities and is based on the capability set specified in [T128] section 8.2.5 (for more information

about primary drawing orders, see [MS-RDPEGDI] section 2.2.2.3.1.1). This capability is sent by
both client and server.

%5bMS-RDPEGDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPEGDI%5d.pdf

119 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

terminalDescriptor

...

...

...

pad4octetsA

desktopSaveXGranularity desktopSaveYGranularity

pad2octetsA maximumOrderLevel

numberFonts orderFlags

orderSupport

...

...

...

...

...

...

...

textFlags pad2octetsB

pad4octetsB

120 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

desktopSaveSize

pad2octetsC pad2octetsD

textANSICodePage pad2octetsE

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This

field MUST be set to CAPSTYPE_ORDER (3).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

terminalDescriptor (16 bytes): A 16 element array of 8-bit unsigned integers. Terminal
descriptor. This field is ignored during capability negotiation and SHOULD be set to all zeros.

pad4octetsA (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

desktopSaveXGranularity (2 bytes): A 16-bit unsigned integer. X granularity used in

conjunction with the SaveBitmap Primary Drawing Order (see [MS-RDPEGDI] section
2.2.2.3.1.1.2.12). This value is ignored during capability negotiation and assumed to be 1.

desktopSaveYGranularity (2 bytes): A 16-bit unsigned integer. Y granularity used in

conjuction with the SaveBitmap Primary Drawing Order (see [MS-RDPEGDI] section
2.2.2.3.1.1.2.12). This value is ignored during capability negotiation and assumed to be 20.

pad2octetsA (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

maximumOrderLevel (2 bytes): A 16-bit unsigned integer. Maximum order level. This value is
ignored during capability negotiation and SHOULD be set to ORD_LEVEL_1_ORDERS (1).

numberFonts (2 bytes): A 16-bit unsigned integer. Number of fonts. This value is ignored
during capability negotiation and SHOULD be set to 0.

orderFlags (2 bytes): A 16-bit unsigned integer. A 16-bit unsigned integer. Support for
drawing order options.

Value Meaning

NEGOTIATEORDERSUPPORT

0x0002

Indicates support for negotiating drawing orders in the

orderSupport field. This flag MUST be set in the orderFlags

field.

ZEROBOUNDSDELTASSUPPORT

0x0008

Indicates support for the order encoding flag for zero bounds

delta coordinates (see [MS-RDPEGDI] section 2.2.2.3.1.1.2). This

flag MUST be set in the orderFlags field.

COLORINDEXSUPPORT

0x0020

Indicates support for sending color indices (not RGB values) in

orders.

SOLIDPATTERNBRUSHONLY

0x0040

Indicates that this party can receive only solid and pattern

brushes.

121 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

orderSupport (32 bytes): An array of 32 bytes indicating server or client support for various
primary drawing orders. The indices of this array are the negotiation indices for the primary

orders specified in [MS-RDPEGDI] section 2.2.2.3.1.1.

Negotiation Index Primary Drawing Order

 TS_NEG_DSTBLT_INDEX

0x00

DstBlt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.1).

 TS_NEG_PATBLT_INDEX

0x01

PatBlt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.3).

 TS_NEG_SCRBLT_INDEX

0x02

ScrBlt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.7).

 TS_NEG_MEMBLT_INDEX

0x03

MemBlt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.9).

 TS_NEG_MEM3BLT_INDEX

0x04

Mem3Blt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.10).

 Unused Index

0x05

Not applicable

 Unused Index

0x06

Not applicable

 TS_NEG_DRAWNINEGRID_INDEX

0x07

DrawNineGrid Primary Drawing Order (see [MS-

RDPEGDI] section 2.2.2.3.1.1.2.21).

 TS_NEG_LINETO_INDEX

0x08

LineTo Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.11).

TS_NEG_MULTI_DRAWNINEGRID_INDEX

0x09

MultiDrawNineGrid Primary Drawing Order (see [MS-

RDPEGDI] section 2.2.2.3.1.1.2.22).

 TS_NEG_OPAQUERECT_INDEX

0x0A

OpaqueRect Primary Drawing Order (see [MS-

RDPEGDI] section 2.2.2.3.1.1.2.5).

 TS_NEG_SAVEBITMAP_INDEX

0x0B

SaveBitmap Primary Drawing Order (see [MS-

RDPEGDI] section 2.2.2.3.1.1.2.12).

 Unused Index

0x0C

Not applicable

 Unused Index

0x0D

Not applicable

 Unused Index

0x0E

Not applicable

 TS_NEG_MULTIDSTBLT_INDEX

0x0F

MultiDstBlt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.2).

122 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Negotiation Index Primary Drawing Order

 TS_NEG_MULTIPATBLT_INDEX

0x10

MultiPatBlt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.11.2.2).

 TS_NEG_MULTISCRBLT_INDEX

0x11

MultiScrBlt Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.8).

 TS_NEG_MULTIOPAQUERECT_INDEX

0x12

MultiOpaqueRect Primary Drawing Order (see [MS-

RDPEGDI] section 2.2.2.3.1.1.2.6).

 TS_NEG_FAST_INDEX_INDEX

0x13

FastIndex Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.14).

 TS_NEG_POLYGON_SC_INDEX

0x14

PolygonSC Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.16).

 TS_NEG_POLYGON_CB_INDEX

0x15

PolygonCB Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.17).

 TS_NEG_POLYLINE_INDEX

0x16

Polyline Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.18).

 Unused Index

0x17

Not applicable

 TS_NEG_FAST_GLYPH_INDEX

0x18

FastGlyph Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.15).

 TS_NEG_ELLIPSE_SC_INDEX

0x19

EllipseSC Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.19).

 TS_NEG_ELLIPSE_CB_INDEX

0x1A

EllipseDB Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.20).

 TS_NEG_INDEX_INDEX

0x1B

GlyphIndex Primary Drawing Order (see [MS-RDPEGDI]

section 2.2.2.3.1.1.2.13).

 Unused Index

0x1C

Not applicable

 Unused Index

0x1D

Not applicable

 Unused Index

0x1E

Not applicable

 Unused Index

0x1F

Not applicable

If an order is supported, the byte at the given index contains the value 0x01. Any order not
supported by the client causes the server to spend more time and bandwidth using

workarounds, such as other primary orders or simply sending screen bitmap data in a Bitmap

123 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Update (see sections 2.2.9.1.1.3.1.2 and 2.2.9.1.2.1.2). If no primary drawing orders are
supported, this array can be initialized to all zeros.

textFlags (2 bytes): A 16-bit unsigned integer. Support for text options. This value is ignored
during capability negotiation and SHOULD be set to 0.

pad2octetsB (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

pad4octetsB (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

desktopSaveSize (4 bytes): A 32-bit unsigned integer. The maximum usable size of bitmap
space for bitmap packing in the SaveBitmap Primary Drawing Order (see [MS-RDPEGDI]
section 2.2.2.3.1.1.2.12). This field is ignored by the client and assumed to be 230400 bytes

(480 * 480).

pad2octetsC (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

pad2octetsD (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

textANSICodePage (2 bytes): A 16-bit unsigned integer. ANSI codepage descriptor being
used by the client (for a list of code pages, see [MSDN-CP]). This field is ignored by the client
and SHOULD be set to 0 by the server.

pad2octetsE (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.7.1.4 Bitmap Cache Host Support Capability Set
(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET)

 The TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET structure is used to advertise support for
persistent bitmap caching (see [MS-RDPEGDI] section 3.1.1.1.1). This capability set is only sent

from server to client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

cacheVersion pad1 pad2

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_BITMAPCACHE_HOSTSUPPORT (18).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability

data, including the size of the capabilitySetType and lengthCapability fields.

cacheVersion (1 byte): An 8-bit unsigned integer. Cache version. This field MUST be set to
TS_BITMAPCACHE_REV2 (0x01), which implies at a Revision 2 Bitmap Cache (see [MS-

RDPEGDI] section 3.1.1.1.1).

pad1 (1 byte): An 8-bit unsigned integer. Padding. Values in this field are ignored.

pad2 (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

http://go.microsoft.com/fwlink/?LinkId=89981
%5bMS-RDPEGDI%5d.pdf

124 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.7.1.5 Bitmap Cache Capability Set

2.2.7.1.5.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET)

 The TS_BITMAPCACHE_CAPABILITYSET structure is used to advertise support for Revision 1 Bitmap
Caches (see [MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

pad1

pad2

pad3

pad4

pad5

pad6

Cache1Entries Cache1MaximumCellSize

Cache2Entries Cache2MaximumCellSize

Cache3Entries Cache3MaximumCellSize

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_BITMAPCACHE (4).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability

data, including the size of the capabilitySetType and lengthCapability fields.

pad1 (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

pad2 (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

pad3 (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

pad4 (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

pad5 (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

pad6 (4 bytes): A 32-bit unsigned integer. Padding. Values in this field are ignored.

%5bMS-RDPEGDI%5d.pdf

125 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Cache1Entries (2 bytes): A 16-bit unsigned integer. The number of entries in Bitmap Cache 1
(maximum allowed value is 600 entries).

Cache1MaximumCellSize (2 bytes): A 16-bit unsigned integer. The maximum cell size in
Bitmap Cache 1. This field SHOULD be set to 256, corresponding to the number of pixels in a
16 x 16 bitmap.

Cache2Entries (2 bytes): A 16-bit unsigned integer. The number of entries in Bitmap Cache 2

(maximum allowed value is 600 entries).

Cache2MaximumCellSize (2 bytes): A 16-bit unsigned integer. The maximum cell size in
Bitmap Cache 2. This field SHOULD be set to 1024, corresponding to the number of pixels in a

32 x 32 bitmap.

Cache3Entries (2 bytes): A 16-bit unsigned integer. The number of entries in Bitmap Cache 3
(maximum allowed value is 65535 entries).

Cache3MaximumCellSize (2 bytes): A 16-bit unsigned integer. The maximum cell size in
Bitmap Cache 3. This field SHOULD be set to 4096, corresponding to the number of pixels in a
64 x 64 bitmap.

2.2.7.1.5.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)

 The TS_BITMAPCACHE_CAPABILITYSET_REV2 structure is used to advertise support for Revision 2
Bitmap Caches (see [MS-RDPEGDI] section 3.1.1.1.1). This capability is only sent from client to

server.

%5bMS-RDPEGDI%5d.pdf

126 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

CacheFlags pad2 NumCellCaches

CellCacheInfo

...

...

...

...

Pad3

...

...

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_BITMAPCACHE_REV2 (19).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

CacheFlags (2 bytes): A 16-bit unsigned integer. Properties which apply to all the bitmap
caches.

Value Meaning

PERSISTENT_KEYS_EXPECTED_FLAG

0x0001

Indicates that the client will send a Persistent Key List PDU

during the Connection Finalization phase of the Standard

RDP Connection Sequence (see section 1.3.1.1).

ALLOW_CACHE_WAITING_LIST_FLAG

0x0002

Indicates that the client supports a cache waiting list. If a

waiting list is supported, new bitmaps are cached on the

second hit rather than the first (bitmaps must be sent

twice before they are cached).

pad2 (1 byte): An 8-bit unsigned integer. Padding. Values in this field are ignored.

NumCellCaches (1 byte): An 8-bit unsigned integer. Number of bitmap caches (with a
maximum allowed value of 5). This field SHOULD be set to 3. Note that the bitmap cache cell
sizes are not specified; they are assumed to be 256, 1024, and 4096 pixels, in order.

127 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

CellCacheInfo (20 bytes): An array of 5 TS_BITMAPCACHE_CELL_CACHE_INFO structures.
Contains information about each of the different caches. The number of valid elements in the

array is given by the NumCellCaches field.

Pad3 (12 bytes): Padding. An array of 8-bit unsigned integers. Values in this field are ignored.

2.2.7.1.5.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)

 The TS_BITMAPCACHE_CELL_CACHE_INFO structure contains information about a bitmap cache on
the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumEntries k

NumEntries (31 bits): A 31-bit unsigned integer. Indicates the number of entries in the cache.

k (1 bit): A 1-bit flag. Indicates whether the client expects to receive a 64-bit bitmap key in the
Cache Bitmap (Revision 2) Secondary Drawing Order (see [MS-RDPEGDI] section
2.2.2.3.1.2.3) for this cache. If this bit is set, 64-bit keys MUST be sent.

2.2.7.1.6 Pointer Capability Set (TS_POINTER_CAPABILITY_SET)

 The TS_POINTER_CAPABILITYSET structure advertises pointer cache sizes and flags, and is based
on the capability set specified in [T128] section 8.2.11. This capability is sent by both client and

server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

colorPointerFlag colorPointerCacheSize

pointerCacheSize

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_POINTER (8).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

colorPointerFlag (2 bytes): A 16-bit unsigned integer. Indicates support for a color pointer.

Value Meaning

FALSE

0x0000

Monochrome mouse cursors are supported.

TRUE Color mouse cursors are supported.

%5bMS-RDPEGDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90544

128 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

0x0001

colorPointerCacheSize (2 bytes): A 16-bit unsigned integer. The number of available slots in

the 24 bits-per-pixel color pointer cache used to store data received in the Color Pointer
Update (section 2.2.9.1.1.4.4).

pointerCacheSize (2 bytes): A 16-bit unsigned integer. The number of available slots in the

pointer cache used to store pointer data of arbitrary bit depth received in the New Pointer
Update (section 2.2.9.1.1.4.5).

If the Pointer Capability Set sent from the client does not include this field, the server will not
use the New Pointer Update.

2.2.7.1.7 Input Capability Set (TS_INPUT_CAPABILITY_SET)

 The TS_INPUT_CAPABILITYSET structure is used to advertise support for input formats and devices.

This capability is sent by both client and server.

129 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

inputFlags pad2octetsA

keyboardLayout

keyboardType

keyboardSubType

keyboardFunctionKey

imeFileName

...

...

...

...

...

...

...

(imeFileName cont'd for 8 rows)

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_INPUT (13).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

inputFlags (2 bytes): A 16-bit unsigned integer. Input support flags.

Flag Meaning

INPUT_FLAG_SCANCODES Indicates support for using scancodes in the Keyboard Event

130 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

0x0001 notifications (see sections 2.2.8.1.1.3.1.1 and 2.2.8.1.2.2.2).

INPUT_FLAG_MOUSEX

0x0004

Indicates support for Extended Mouse Event notifications (see

sections 2.2.8.1.2.2.4 and 2.2.8.1.1.3.1.4).

INPUT_FLAG_FASTPATH_INPUT

0x0008

Advertised by RDP 5.0 and 5.1 servers. RDP 5.2 and later

servers advertise the INPUT_FLAG_FASTPATH_INPUT2 flag to

indicate support for fast-path input.

INPUT_FLAG_UNICODE

0x0010

Indicates support for Unicode Keyboard Event notifications (see

sections 2.2.8.1.1.3.1.2 and 2.2.8.1.2.2.2).

INPUT_FLAG_FASTPATH_INPUT2

0x0020

Advertised by RDP 5.2 and later servers. Clients that do not

support this flag (such as RDP 5.0 and 5.1 clients) will not be

able to use fast-path input when connecting to RDP 5.2 and

later servers.

The INPUT_FLAG_SCANCODES flag MUST be set by the client as RDP keyboard input is
restricted to keyboard scancodes (unlike the code-point or virtual codes supported in section

[T128]). The server MUST drop a client which does not advertise this flag.

pad2octetsA (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

keyboardLayout (4 bytes): A 32-bit unsigned integer. Keyboard layout (active input locale
identifier). For a list of possible input locales refer to [MSDN-MUI]. This value is only specified

in the client Input Capability Set and should correspond with that sent in the Client Core Data
(section 2.2.1.3.2).

keyboardType (4 bytes): A 32-bit unsigned integer. Keyboard type.

Value Meaning

1 IBM PC/XT or compatible (83-key) keyboard

2 Olivetti "ICO" (102-key) keyboard

3 IBM PC/AT (84-key) or similar keyboard

4 IBM enhanced (101- or 102-key) keyboard

5 Nokia 1050 and similar keyboards

6 Nokia 9140 and similar keyboards

7 Japanese keyboard

This value is only specified in the client Input Capability Set and should correspond with that
sent in the Client Core Data.

keyboardSubType (4 bytes): A 32-bit unsigned integer. Keyboard subtype (an original
equipment manufacturer-dependent value). This value is only specified in the client Input
Capability Set and should correspond with that sent in the Client Core Data.

keyboardFunctionKey (4 bytes): A 32-bit unsigned integer. Number of function keys on the
keyboard. This value is only specified in the client Input Capability Set and should correspond
with that sent in the Client Core Data.

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90048

131 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

imeFileName (64 bytes): A 64-byte field. Input Method Editor (IME) file name associated with
the input locale. This field contains up to 31 Unicode characters plus a null terminator and is

only specified in the client Input Capability Set (its contents should correspond with that sent
in the Client Core Data).

2.2.7.1.8 Brush Capability Set (TS_BRUSH_CAPABILITYSET)

 The TS_BRUSH_CAPABILITYSET advertises client brush support. This capability is only sent from
client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

brushSupportLevel

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This

field MUST be set to CAPSTYPE_BRUSH (15).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

brushSupportLevel (4 bytes): A 32-bit unsigned integer. The maximum brush level supported
by the client.

Value Meaning

BRUSH_DEFAULT

0x00000000

Support for solid-color and monochrome pattern brushes with no caching.

This is an RDP 4.0 implementation.

BRUSH_COLOR_8x8

0x00000001

Ability to handle color brushes (4 or 8 bit in RDP 5.0, RDP 5.1 adds 16 and

24 bit) and caching. Brushes are limited to 8-by-8 pixels.

BRUSH_COLOR_FULL

0x00000002

Ability to handle color brushes (4 or 8 bit in RDP 5.0, RDP 5.1 adds 16 and

24 bit) and caching. Brushes can have arbitrary dimensions.

2.2.7.1.9 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET)

 The TS_GLYPHCACHE_CAPABILITYSET structure advertises the glyph support level and associated
cache sizes. This capability is only sent from client to server.

132 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

GlyphCache

...

...

...

...

...

...

...

(GlyphCache cont'd for 2 rows)

FragCache

GlyphSupportLevel pad2octets

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_GLYPHCACHE (16).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

GlyphCache (40 bytes): An array of 10 TS_CACHE_DEFINITION structures. Glyph cache data,
up to 10 elements. The maximum number of entries allowed in a cache is 254, and the largest

allowed maximum size of an element is 2048 bytes.

FragCache (4 bytes): Fragment cache data. The maximum number of entries allowed in the
cache is 256, and the largest allowed maximum size of an element is 256 bytes.

GlyphSupportLevel (2 bytes): A 16-bit unsigned integer. The level of glyph support.

Value Meaning

GLYPH_SUPPORT_NONE

0

The client does not support glyph caching. All text output will be sent

to the client as expensive Bitmap Updates (see sections

2.2.9.1.1.3.1.2 and 2.2.9.1.2.1.2).

133 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

GLYPH_SUPPORT_PARTIAL

1

Indicates support for Revision 1 Cache Glyph Secondary Drawing

Orders (see [MS-RDPEGDI] section 2.2.2.3.1.2.5).

GLYPH_SUPPORT_FULL

2

Indicates support for Revision 1 Cache Glyph Secondary Drawing

Orders (see [MS-RDPEGDI] section 2.2.2.3.1.2.5).

GLYPH_SUPPORT_ENCODE

3

Indicates support for Revision 2 Cache Glyph Secondary Drawing

Orders (see [MS-RDPEGDI] section 2.2.2.3.1.2.6).

pad2octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.7.1.9.1 Cache Definition (TS_CACHE_DEFINITION)

 The TS_CACHE_DEFINITION structure specifies details about a particular cache in the Glyph
Capability Set (section 2.2.7.1.9) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CacheEntries CacheMaximumCellSize

CacheEntries (2 bytes): A 16-bit unsigned integer. The number of entries in the cache.

CacheMaximumCellSize (2 bytes): A 16-bit unsigned integer. The maximum size in bytes of
an entry in the cache.

2.2.7.1.10 Offscreen Bitmap Cache Capability Set
(TS_OFFSCREEN_CAPABILITYSET)

 The TS_OFFSCREEN_CAPABILITYSET structure is used to advertise support for offscreen bitmap

caching (see [MS-RDPEGDI] section 3.1.1.1.5). This capability is only sent from client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

offscreenSupportLevel

offscreenCacheSize offscreenCacheEntries

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This

field MUST be set to CAPSTYPE_OFFSCREENCACHE (17).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

offscreenSupportLevel (4 bytes): A 32-bit unsigned integer.

%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf

134 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Offscreen bitmap cache support level.

Value Meaning

FALSE

0x00000000

Offscreen bitmap cache is not supported.

TRUE

0x00000001

Offscreen bitmap cache is supported.

offscreenCacheSize (2 bytes): A 16-bit unsigned integer. The maximum size in kilobytes (KB)
of the offscreen bitmap cache (largest allowed value is 7680 KB).

offscreenCacheEntries (2 bytes): A 16-bit unsigned integer. The maximum number of cache
entries (largest allowed value is 500 entries)

2.2.7.1.11 Virtual Channel Capability Set

(TS_VIRTUALCHANNEL_CAPABILITYSET)

 The TS_VIRTUALCHANNEL_CAPABILITYSET structure is used to advertise virtual channel support

characteristics. This capability is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

flags

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_VIRTUALCHANNEL (20).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability

data, including the size of the capabilitySetType and lengthCapability fields.

flags (4 bytes): A 32-bit unsigned integer.

Virtual channel compression flags.

Value Meaning

VCCAPS_NO_COMPR

0x00000000

Virtual channel compression is not supported.

VCCAPS_COMPR_SC

0x00000001

Virtual channel compression is supported for server-to-client traffic. The

highest compression level supported by the client is advertised in the

Client Info PDU (section 2.2.1.11).

VCCAPS_COMPR_CS_8K

0x00000002

Virtual channel compression is supported for client-to-server traffic. The

compression level is implicitly limited to MPPC-8K for scalability reasons.

If the client-to-server Virtual Channel Capability Set does not contain the VCCAPS_COMPR_SC
flag, the server will not compress any server-to-client virtual channel traffic. Similarly, if the

135 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

server-to-client Virtual Channel Capability Set does not contain the VCCAPS_COMPR_CS_8K
flag, the client will not compress any client-to-server virtual channel traffic.

2.2.7.1.12 Sound Capability Set (TS_SOUND_CAPABILITYSET)

 The TS_SOUND_CAPABILITYSET structure advertises the ability to play a "beep" sound. This
capability is only sent from client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

soundFlags pad2octetsA

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_SOUND (12).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability

data, including the size of the capabilitySetType and lengthCapability fields.

soundFlags (2 bytes): A 16-bit unsigned integer. Support for sound options.

Flag Meaning

SOUND_BEEPS_FLAG

0x0001

Playing a beep sound is supported.

If the client advertises support for beeps, it must support the Server Play Sound PDU (section

2.2.9.1.1.5).

pad2octetsA (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.7.2 Optional Capability Sets

2.2.7.2.1 Control Capability Set (TS_CONTROL_CAPABILITYSET)

 The TS_CONTROL_CAPABILITYSET structure is used by the client to advertise control capabilities

and is fully described in [T128] section 8.2.10. This capability is only sent from client to server and
the server ignores its contents.

http://go.microsoft.com/fwlink/?LinkId=90544

136 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

controlFlags remoteDetachFlag

controlInterest detachInterest

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_CONTROL (5).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

controlFlags (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to 0.

remoteDetachFlag (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to FALSE

(0x0000).

controlInterest (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to
CONTROLPRIORITY_NEVER (0x0002).

detachInterest (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to
CONTROLPRIORITY_NEVER (0x0002).

2.2.7.2.2 Window Activation Capability Set

(TS_WINDOWACTIVATION_CAPABILITYSET)

 The TS_WINDOWACTIVATION_CAPABILITYSET structure is used by the client to advertise window

activation characteristics capabilities and is fully specified in [T128] section 8.2.9. This capability is

only sent from client to server and the server ignores its contents.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

helpKeyFlag helpKeyIndexFlag

helpExtendedKeyFlag windowManagerKeyFlag

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This

field MUST be set to CAPSTYPE_ACTIVATION (7).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

helpKeyFlag (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to FALSE
(0x0000).

http://go.microsoft.com/fwlink/?LinkId=90544

137 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

helpKeyIndexFlag (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to FALSE
(0x0000).

helpExtendedKeyFlag (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to
FALSE (0x0000).

windowManagerKeyFlag (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to
FALSE (0x0000).

2.2.7.2.3 Share Capability Set (TS_SHARE_CAPABILITYSET)

 The TS_SHARE_CAPABILITYSET structure is used to advertise the channel ID of the sender and is

fully specified in [T128] section 8.2.12. This capability is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

nodeId pad2octets

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_SHARE (9).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

nodeId (2 bytes): A 16-bit unsigned integer. This field SHOULD be set to 0 by the client and to
the server channel ID by the server (in Microsoft RDP server implementations, this value is

always 0x03EA).

pad2octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.7.2.4 Font Capability Set (TS_FONT_CAPABILITYSET)

 The TS_FONT_CAPABILITYSET structure is used to advertise font support options. This capability is
sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

fontSupportFlags pad2octets

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of the capability set. This
field MUST be set to CAPSTYPE_FONT (14).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

http://go.microsoft.com/fwlink/?LinkId=90544

138 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

fontSupportFlags (2 bytes): A 16-bit unsigned integer. The font support options. This field
SHOULD be set to FONTSUPPORT_FONTLIST (0x0001).

pad2octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.7.2.5 Multifragment Update Capability Set
(TS_MULTIFRAGMENTUPDATE_CAPABILITYSET)

The TS_MULTIFRAGMENTUPDATE_CAPABILITYSET structure is used to specify capabilities related to
the fragmentation and reassembly of Fast-Path Updates (see section 2.2.9.1.2.1). This capability is

sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

MaxRequestSize

capabilitySetType (2 bytes): A 16-bit unsigned integer. Type of the capability set. This field
MUST be set to CAPSETTYPE_MULTIFRAGMENTUPDATE (26).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data, including the size of the capabilitySetType and lengthCapability fields.

MaxRequestSize (4 bytes): A 32-bit unsigned integer. The size of the buffer that MUST be
used to reassemble the fragments of a Fast-Path Update (see section 2.2.9.1.2.1). The size of

this buffer places a cap on the size of the largest Fast-Path Update that can be fragmented
(there MUST always be enough buffer space to hold all of the related Fast-Path Update
fragments for reassembly).

2.2.7.2.6 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)

The TS_LARGE_POINTER_CAPABILITYSET structure is used to specify capabilities related to large
mouse pointer shape support. This capability is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

largePointerSupportFlags

capabilitySetType (2 bytes): A 16-bit unsigned integer. Type of the capability set. This field
MUST be set to CAPSETTYPE_LARGE_POINTER (27).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability

data, including the size of the capabilitySetType and lengthCapability fields.

largePointerSupportFlags (2 bytes): Support for large pointer shapes.

139 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

 LARGE_POINTER_FLAG_96x96

0x00000001

 96 pixel by 96 pixel mouse pointer shapes are supported.

Mouse pointer shapes are used by the following pointer updates:

 Color Pointer Update (see section 2.2.9.1.1.4.4)

 New Pointer Update (see section 2.2.9.1.1.4.5)

 Fast-Path Color Pointer Update (see section 2.2.9.1.2.1.7)

 Fast-Path New Pointer Update (see section 2.2.9.1.2.1.8)

The pointer shape data is contained within the Color Pointer Update structure (see section

2.2.9.1.1.4.4) encapsulated by each of these updates.

2.2.7.2.7 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET)

The TS_COMPDESK_CAPABILITYSET structure is used to support desktop composition. This
capability is sent by both client and server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capabilitySetType lengthCapability

CompDeskSupportLevel

capabilitySetType (2 bytes): A 16-bit unsigned integer. The type of capability set. This field

MUST be set to 0x0019 (CAPSETTYPE_COMPDESK).

lengthCapability (2 bytes): A 16-bit unsigned integer. The length in bytes of the capability
data.

CompDeskSupportLevel (2 bytes): A 16-bit unsigned integer. The desktop composition

support level.

Value Meaning

COMPDESK_NOT_SUPPORTED

0x0000

The client is not capable of supporting desktop composition

services.

COMPDESK_SUPPORTED

0x0001

The client is capable of supporting desktop composition services.

140 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.8 Keyboard and Mouse Input

2.2.8.1 Input PDU Packaging

2.2.8.1.1 Slow-Path (T.128) Formats

2.2.8.1.1.1 Share Headers

2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)

 The TS_SHARECONTROLHEADER header is a T.128 legacy mode header (see [T128] section 8.3)
present in slow-path I/O packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

totalLength pduType

pduSource

totalLength (2 bytes): A 16-bit unsigned integer. The total length of the packet in bytes (the

length includes the size of the Share Control Header).

pduType (2 bytes): A 16-bit unsigned integer. It contains the PDU type and protocol version
information. The format of the pduType word is described by the following bitmask diagram:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type versionLow versionHigh

type (4 bits): Least significant 4 bits of the least significant byte

Value Meaning

PDUTYPE_DEMANDACTIVEPDU

1

Demand Active PDU (section 2.2.1.13.1)

PDUTYPE_CONFIRMACTIVEPDU

3

Confirm Active PDU (section 2.2.1.13.2)

PDUTYPE_DEACTIVATEALLPDU

6

Deactivate All PDU (section 2.2.3.1)

PDUTYPE_DATAPDU

7

Data PDU (actual type is revealed by the pduType2 field

in the Share Data Header (section 2.2.8.1.1.1.2)

structure).

PDUTYPE_SERVER_REDIR_PKT

10

Enhanced Security Server Redirection PDU (see [MS-

RDPEGDI] section 2.2.3.3.1).

http://go.microsoft.com/fwlink/?LinkId=90544
%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf

141 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

versionLow (4 bits): Most significant 4 bits of the least significant byte.

This field MUST be set to TS_PROTOCOL_VERSION (0x1).

versionHigh (1 byte): Most significant byte. This field MUST be set to 0x00.

pduSource (2 bytes): A 16-bit unsigned integer. The channel ID which is the transmission
source of the PDU.

2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)

 The TS_SHAREDATAHEADER header is a T.128 legacy mode header (see [T128] section 8.3)
present in slow-path I/O packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareControlHeader

... shareId

... pad1 streamId

uncompressedLength pduType2 compressedType

compressedLength

shareControlHeader (6 bytes): Share Control Header (section 2.2.8.1.1.1.1) containing
information about the packet.

shareId (4 bytes): A 32-bit unsigned integer. Share identifier for the packet (see [T128]

section 8.4.2 for more information about share IDs).

pad1 (1 byte): An 8-bit unsigned integer. Padding. Values in this field are ignored.

streamId (1 byte): An 8-bit unsigned integer. The stream identifier for the packet.

Value Meaning

STREAM_UNDEFINED

0x00

Undefined stream priority. This value might be used in the Server

Synchronize PDU (see section 2.2.1.19) due to a server-side RDP bug. It

MUST not be used in conjunction with any other PDUs.

STREAM_LOW

0x01

Low-priority stream.

STREAM_MED

0x02

Medium-priority stream.

STREAM_HI

0x04

High-priority stream.

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

142 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

uncompressedLength (2 bytes): A 16-bit unsigned integer. The uncompressed length of the
packet in bytes.

pduType2 (1 byte): An 8-bit unsigned integer. The type of data PDU.

Value Meaning

PDUTYPE2_UPDATE

2

Update PDU (section 2.2.9.1.1.3)

PDUTYPE2_CONTROL

20

Control PDU (section 2.2.1.15.1)

PDUTYPE2_POINTER

27

Pointer Update PDU (section 2.2.9.1.1.4)

PDUTYPE2_INPUT

28

Input PDU (section 2.2.8.1.1.3)

PDUTYPE2_SYNCHRONIZE

31

Synchronize PDU (section 2.2.1.14.1)

PDUTYPE2_REFRESH_RECT

33

Refresh Rect PDU (section 2.2.11.2.1)

PDUTYPE2_PLAY_SOUND

34

Play Sound PDU (section 2.2.9.1.1.5.1)

PDUTYPE2_SUPPRESS_OUTPUT

35

Suppress Output PDU (section 2.2.11.3.1)

PDUTYPE2_SHUTDOWN_REQUEST

36

Shutdown Request PDU (section 2.2.2.2.1)

PDUTYPE2_SHUTDOWN_DENIED

37

Shutdown Request Denied PDU (section 2.2.2.3.1)

PDUTYPE2_SAVE_SESSION_INFO

38

Save Session Info PDU (section 2.2.10.1.1)

PDUTYPE2_FONTLIST

39

Font List PDU (section 2.2.1.18.1)

PDUTYPE2_FONTMAP

40

Font Map PDU (section 2.2.1.22.1)

PDUTYPE2_SET_KEYBOARD_INDICATORS

41

Set Keyboard Indicators PDU (section 2.2.8.2.1.1)

PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST

43

Persistent Key List PDU (section 2.2.1.17.1)

PDUTYPE2_BITMAPCACHE_ERROR_PDU

44

Bitmap Cache Error PDU (see [MS-RDPEGDI]

section 2.2.2.4.1).

PDUTYPE2_SET_KEYBOARD_IME_STATUS

45

Set Keyboard IME Status PDU (section 2.2.8.2.2.1)

PDUTYPE2_OFFSCRCACHE_ERROR_PDU

46

Offscreen Bitmap Cache Error PDU (see [MS-

RDPEGDI] section 2.2.2.4.2).

%5bMS-RDPEGDI%5d.pdf

143 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

PDUTYPE2_SET_ERROR_INFO_PDU

47

Set Error Info PDU (section 2.2.5.1.1)

PDUTYPE2_DRAWNINEGRID_ERROR_PDU

48

DrawNineGrid Cache Error PDU (see [MS-RDPEGDI]

section 2.2.2.4.3).

PDUTYPE2_DRAWGDIPLUS_ERROR_PDU

49

GDI+ Error PDU (see [MS-RDPEGDI] section

2.2.2.4.4).

PDUTYPE2_ARC_STATUS_PDU

50

Auto-Reconnect Status PDU (section 2.2.4.1.1)

compressedType (1 byte): An 8-bit unsigned integer. The compression type and flags
specifying the data following the Share Data Header (section 2.2.8.1.1.1.2).

Flag Meaning

CompressionTypeMask

0x0F

Indicates the package which was used for compression. See the table

which follows for a list of compression packages.

PACKET_COMPRESSED

0x20

The payload data is compressed. This value corresponds to MPPC bit C

(see [RFC2118] section 3.1).

PACKET_AT_FRONT

0x40

The decompressed packet MUST be placed at the beginning of the history

buffer. This value corresponds to MPPC bit B (see [RFC2118] section 3.1).

PACKET_FLUSHED

0x80

The history buffer MUST be reinitialized. This value corresponds to MPPC

bit A (see [RFC2118] section 3.1).

Possible compression package values:

Value Meaning

PACKET_COMPR_TYPE_8K

0

MPPC-8K compression (see section 3.1.8.4.1)

PACKET_COMPR_TYPE_64K

1

MPPC-64K compression (see section 3.1.8.4.2)

PACKET_COMPR_TYPE_RDP6

2

RDP 6.0 bulk compression (see [MS-RDPEGDI] section 3.1.8).

Instructions specifying how to compress a data stream are listed in section 3.1.8.2, while

decompression of a data stream is described in section 3.1.8.3.

compressedLength (2 bytes): A 16-bit unsigned integer. The compressed length of the packet
in bytes.

2.2.8.1.1.2 Security Headers

2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER)

 The TS_SECURITY_HEADER structure is attached to server-to-client traffic when the Encryption
Level selected by the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90316

144 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags flagsHi

flags (2 bytes): A 16-bit unsigned integer. The information flags describing properties of the

attached data.

Flag Meaning

SEC_EXCHANGE_PKT

0x0001

Indicates that the packet is a Security Exchange PDU (section

2.2.1.10). This packet type is sent from client to server only. The

client only sends this packet if it will be encrypting further

communication and standard RDP security methods are in effect.

SEC_ENCRYPT

0x0008

Indicates that encryption is being used for the packet.

SEC_RESET_SEQNO

0x0010

This flag is set for legacy reasons when the packet is a Confirm

Active PDU (section 2.2.1.13.2). Otherwise this flag is never used.

SEC_IGNORE_SEQNO

0x0020

This flag is set for legacy reasons when the packet is a Confirm

Active PDU or a Client Synchronize PDU (section 2.2.1.14).

Otherwise this flag is never used.

SEC_INFO_PKT

0x0040

Indicates that the packet is a Client Info PDU (section 2.2.1.11). This

packet type is sent from client to server only. If standard RDP

security methods and encryption are in effect, then this packet MUST

also be encrypted.

SEC_LICENSE_PKT

0x0080

Indicates that the packet is a Licensing PDU (section 2.2.1.12).

SEC_LICENSE_ENCRYPT_CS

0x0200

Indicates to the client that the server is capable of processing

encrypted licensing packets. It is sent by the server together with

any licensing PDUs it may send (see section 2.2.1.12).

SEC_LICENSE_ENCRYPT_SC

0x0200

Indicates to the server that the client is capable of processing

encrypted licensing packets. It is sent by the client together with the

SEC_EXCHANGE_PKT flag when sending a Security Exchange PDU

(section 2.2.1.10).

SEC_REDIRECTION_PKT

0x0400

Indicates that the packet is a Standard Security Server Redirection

PDU (see [MS-RDPEGDI] section 2.2.3.2.1). The presence of this flag

implies that the PDU is encrypted, that is, the SEC_ENCRYPT

(0x0008) flag MUST be considered to be set.

SEC_SECURE_CHECKSUM

0x0800

Indicates that the message authentication code (MAC) for the PDU

was generated using the "salted MAC generation" technique (see

section 5.3.6.1.1). If this flag is not present, then the standard

technique was used (see Non-FIPS (section 2.2.8.1.1.2.2) and FIPS

(section 2.2.8.1.1.2.3)).

SEC_FLAGSHI_VALID

0x8000

Indicates that the flagsHi field contains valid data. If this flag is not

set, then the contents of the flagsHi field should be ignored.

%5bMS-RDPEGDI%5d.pdf

145 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

flagsHi (2 bytes): A 16-bit unsigned integer. This field is reserved for future RDP needs. It is
currently unused and all values are ignored. This field will contain valid data only if the

SEC_FLAGSHI_VALID bit (0x8000) is set in the flags field. If this bit is not set, the flagsHi
field is uninitialized and can contain any 16-bit unsigned integer value.

2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1)

 The TS_SECURITY_HEADER1 structure is attached to all client-to-server traffic when the Encryption
Level selected by the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3). It is attached to

all server-to-client traffic when the Encryption Level is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE
(2) or ENCRYPTION_LEVEL_HIGH (3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

basicSecurityHeader

dataSignature

...

basicSecurityHeader (4 bytes): Basic Security Header, as specified in section 2.2.8.1.1.2.1.

dataSignature (8 bytes): The message authentication code (MAC) generated over the packet,
using one of the techniques described in Non-FIPS.

2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2)

 The TS_SECURITY_HEADER2 structure is attached to all traffic when the Encryption Level selected

by the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

basicSecurityHeader

length version padlen

dataSignature

...

basicSecurityHeader (4 bytes): Basic Security Header, as specified in section 2.2.8.1.1.2.1.

length (2 bytes): A 16-bit unsigned integer. The length of the FIPS security header. This field
MUST be set to 0x0010 (16 bytes) for legacy reasons.

146 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

version (1 byte): An 8-bit unsigned integer. The version of the FIPS header. This field SHOULD
be set to TSFIPS_VERSION1 (0x01).

padlen (1 byte): An 8-bit unsigned integer. The number of padding bytes of padding appended
to the end of the packet prior to encryption to make sure that the data to be encrypted is a
multiple of the 3DES block size (that is, a multiple of 8 as the block size is 64 bits).

dataSignature (8 bytes): The message authentication code (MAC) generated over the packet,

using the techniques specified in section 2.2.8.1.1.2.3.

2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU)

 The slow-path Input Event PDU is used to transmit input events from client to server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

shareDataHeader

...

...

...

... numberEvents

pad2Octets slowPathInputEvents (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in
[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

147 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

field of the MCS Send Data Request PDU contains a Security Header and the Shutdown
Request PDU Data (section 2.2.2.2.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following
headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

 If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by

the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing
information about the packet. The type subfield of the pduType field of the Share Control

Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of
the Share Data Header MUST be set to PDUTYPE2_INPUT (28).

numberEvents (2 bytes): A 16-bit unsigned integer. The number of slow-path input events

packed together in the slowPathInputEvents field.

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

slowPathInputEvents (variable): A collection of slow-path input events to be processed by

the server. The number of events present in this array is given by the numberEvents field.

2.2.8.1.1.3.1 Slow-Path Input Event (TS_INPUT_EVENT)

 The TS_INPUT_EVENT structure is used to wrap event-specific information for all slow-path input

events.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventTime

messageType slowPathInputData (variable)

...

eventTime (4 bytes): A 32-bit unsigned integer. The 32-bit timestamp for the input event.
This value is ignored by the server.

messageType (2 bytes): A 16-bit unsigned integer. The input event type.

148 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

INPUT_EVENT_SYNC

0x0000

Indicates a Synchronize Event (section 2.2.8.1.1.3.1.5).

INPUT_EVENT_SCANCODE

0x0004

Indicates a Keyboard Event (section 2.2.8.1.1.3.1.1).

INPUT_EVENT_UNICODE

0x0005

Indicates a Unicode Keyboard Event (section 2.2.8.1.1.3.1.2).

INPUT_EVENT_MOUSE

0x8001

Indicates a Mouse Event (section 2.2.8.1.1.3.1.3).

INPUT_EVENT_MOUSEX

0x8002

Indicates an Extended Mouse Event (section 2.2.8.1.1.3.1.4).

slowPathInputData (variable): TS_KEYBOARD_EVENT, TS_UNICODE_KEYBOARD_EVENT,
TS_POINTER_EVENT, TS_POINTERX_EVENT or TS_SYNC_EVENT. The actual contents of the
slow-path input event (see sections 2.2.8.1.1.3.1.1 through 2.2.8.1.1.3.1.5).

2.2.8.1.1.3.1.1 Keyboard Event (TS_KEYBOARD_EVENT)

 The TS_KEYBOARD_EVENT structure is a standard T.128 Keyboard Event (see [T128] section
8.18.2). RDP keyboard input is restricted to keyboard scancodes, unlike the code-point or virtual

codes supported in T.128 (a scancode is an eight-bit value specifying a key location on the
keyboard). The server accepts a scancode value and translates it into the correct character
depending on the language locale and keyboard layout used in the session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

keyboardFlags keyCode

pad2Octets

keyboardFlags (2 bytes): A 16-bit unsigned integer. The flags describing the keyboard event.

Flag Meaning

KBDFLAGS_EXTENDED

0x0100

The keystroke message contains an extended scancode. For enhanced

101 and 102-key keyboards, extended keys include the right ALT and

right CTRL keys on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN and ARROW keys in the clusters to

the left of the numeric keypad; and the Divide ("/") and ENTER keys in

the numeric keypad.

KBDFLAGS_DOWN

0x4000

Indicates that the key was down prior to this event.

KBDFLAGS_RELEASE

0x8000

The absence of this flag indicates a key-down event, while its presence

indicates a key-release event.

http://go.microsoft.com/fwlink/?LinkId=90544

149 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

keyCode (2 bytes): A 16-bit unsigned integer. The scancode of the key which triggered the
event.

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.8.1.1.3.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)

 The TS_UNICODE_KEYBOARD_EVENT structure is used to transmit a Unicode input code, as

opposed to a keyboard scancode. Support for the Unicode Keyboard Event is advertised in the Input
Capability Set (section 2.2.7.1.7).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pad2OctetsA unicodeCode

pad2OctetsB

pad2OctetsA (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

pad2OctetsB (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

2.2.8.1.1.3.1.3 Mouse Event (TS_POINTER_EVENT)

 The TS_POINTER_EVENT structure is a standard T.128 Keyboard Event (see [T128] section 8.18.1).
RDP adds flags to deal with wheel mice and extended mouse buttons.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pointerFlags xPos

yPos

pointerFlags (2 bytes): A 16-bit unsigned integer. The flags describing the pointer event.

Mouse wheel event:

Flag Meaning

PTRFLAGS_WHEEL

0x0200

The event is a mouse wheel rotation. The only valid flags in a

wheel rotation event are PTRFLAGS_WHEEL_NEGATIVE and the

WheelRotationMask; all other pointer flags are ignored.

PTRFLAGS_WHEEL_NEGATIVE

0x0100

The PTRFLAGS_ROTATION_MASK value is negative and must be

sign-extended before injection at the server.

WheelRotationMask

0x01FF

The bit field describing the number of rotation units the mouse

wheel was rotated. The value is negative if the

http://go.microsoft.com/fwlink/?LinkId=90544

150 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

PTRFLAGS_WHEEL_NEGATIVE flag is set.

Mouse movement event:

Flag Meaning

PTRFLAGS_MOVE

0x0800

Indicates that the mouse position should be updated to the location specified by

the xPos and yPos fields.

Mouse button events:

Flag Meaning

PTRFLAGS_DOWN

0x8000

Indicates that a click event has occurred at the position specified by the

xPos and yPos fields. The button flags indicate which button has been

clicked and at least one of these flags MUST be set.

PTRFLAGS_BUTTON1

0x1000

Mouse button 1 (left button) was clicked or released. If the

PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it was

released.

PTRFLAGS_BUTTON2

0x2000

Mouse button 2 (right button) was clicked or released. If the

PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it was

released.

PTRFLAGS_BUTTON3

0x4000

Mouse button 3 (middle button or wheel) was clicked or released. If the

PTRFLAGS_DOWN flag is set, then the button was clicked, otherwise it was

released.

xPos (2 bytes): A 16-bit unsigned integer. The x coordinate of the pointer relative to the top-
left corner of the server's virtual desktop.

yPos (2 bytes): A 16-bit unsigned integer. The y coordinate of the pointer relative to the top-
left corner of the server's virtual desktop.

2.2.8.1.1.3.1.4 Extended Mouse Event (TS_POINTERX_EVENT)

 The TS_POINTERX_EVENT structure has the same format as the TS_POINTER_EVENT (section

2.2.8.1.1.3.1.3). The fields and possible field values are all the same, except for the pointerFlags
field. Support for the Extended Mouse Event is advertised in the Input Capability Set (section
2.2.7.1.7).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pointerFlags xPos

yPos

pointerFlags (2 bytes): A 16-bit unsigned integer. The flags describing the extended mouse
event.

151 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

PTRXFLAGS_DOWN

0x8000

Indicates that a click event has occurred at the position specified by the

xPos and yPos fields. The button flags indicate which button has been

clicked and at least one of these flags MUST be set.

PTRXFLAGS_BUTTON1

0x0001

Extended mouse button 1 was clicked or released. If the

PTRXFLAGS_DOWN flag is set, then the button was clicked, otherwise it

was released.

PTRXFLAGS_BUTTON2

0x0002

Extended mouse button 2 was clicked or released. If the

PTRXFLAGS_DOWN flag is set, then the button was clicked, otherwise it

was released.

xPos (2 bytes): A 16-bit unsigned integer. X coordinate of the pointer.

yPos (2 bytes): A 16-bit unsigned integer. Y coordinate of the pointer.

2.2.8.1.1.3.1.5 Synchronize Event (TS_SYNC_EVENT)

 The TS_SYNC_EVENT structure is a standard T.128 Input Synchronize Event (see [T128] section

8.18.6). In RDP this event is used to synchronize the values of the toggle keys (that is, Caps Lock)
and to reset the server key state to all keys up. This event is typically sent when the client needs to
update the server with new settings. In current Microsoft RDP clients this is done whenever the

client window loses focus in the client operating system, and then gets focus back with possibly new
toggle and shift key values. The sync is then followed immediately with key-down events for
whatever keyboard and mouse keys may be down.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pad2Octets toggleFlags

...

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

toggleFlags (4 bytes): A 32-bit unsigned integer.

Flags indicating the "on" status of the keyboard toggle keys.

Flag Meaning

TS_SYNC_SCROLL_LOCK

0x00000001

Indicates that the Scroll Lock indicator light SHOULD be on.

TS_SYNC_NUM_LOCK

0x00000002

Indicates that the Num Lock indicator light SHOULD be on.

TS_SYNC_CAPS_LOCK

0x00000004

Indicates that the Caps Lock indicator light SHOULD be on.

TS_SYNC_KANA_LOCK

0x00000008

Indicates that the Kana Lock indicator light SHOULD be on.

http://go.microsoft.com/fwlink/?LinkId=90544

152 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)

 Fast-path revises client input packets from the first byte with the goal of improving bandwidth. The
TPKT (see [T123]), X.224 (see [X224]) and MCS SDrq (see [T125]) headers are replaced, the
Security Header (section 2.2.8.1.1.2) is collapsed into the fast-path input header, and the Share
Data Header (section 2.2.8.1.1.1.2) is replaced by a new fast-path format. The contents of the input

notification events (see section 2.2.8.1.1.3.1) are also changed to reduce their size, particularly by
removing or reducing headers. Support for fast-path input is advertised in the Input Capability Set

(section 2.2.7.1.7).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

fpInputHeader length1 length2 (optional) fipsInformation (optional)

... dataSignature (optional)

...

... numberEvents (optional)

fpInputEvents (variable)

...

fpInputHeader (1 byte): An 8-bit unsigned integer. One-byte bit-packed header. This byte
coincides with the first byte of the TPKT Header (see [T123] section 8), which is always 0x03.
Three pieces of information are collapsed into this byte:

1. Encryption data

2. Number of events in the fast-path input PDU

3. Action code

The format of the fpInputHeader byte is described by the following bitmask diagram:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

actionCode numberEvents encryptionFlags

actionCode (2 bits): A 2-bit code indicating whether the PDU is in fast-path or slow-path
format.

Value Meaning

FASTPATH_INPUT_ACTION_FASTPATH

00

Indicates the PDU is a fast-path input PDU.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541

153 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

FASTPATH_INPUT_ACTION_X224

11

Indicates the presence of a TPKT Header initial

version byte, which implies that the PDU is a slow-

path input PDU (in this case the full value of the

initial byte MUST be 0x03).

numberEvents (4 bits): Collapses the number of fast-path input events packed together

in the fpInputEvents field into 4 bits if the number of events is in the range 1 to 15. If
the number of input events is greater than 15, then the numberEvents bit field in the
fast-path header byte should be set to zero, and the numberEvents optional field

inserted after the dataSignature field. This allows up to 255 input events in one PDU.

encryptionFlags (2 bits): A 2-bit field containing the flags that describe the
cryptographic parameters of the PDU.

Flag Meaning

FASTPATH_INPUT_SECURE_CHECKSUM

01

Indicates that the MAC signature for the PDU was

generated using the "salted MAC generation"

technique (see section 5.3.6.1.1). If this bit is not

set, then the standard technique was used (see

sections Non-FIPS (section 2.2.8.1.1.2.2) and FIPS

(section 2.2.8.1.1.2.3)).

FASTPATH_INPUT_ENCRYPTED

10

Indicates that the PDU contains an 8-byte

message authentication code (MAC) signature

after the optional length2 field (that is, the

dataSignature field is present) and the contents

of the PDU are encrypted using the negotiated

encryption package (see sections 5.3.2 and 5.3.6).

length1 (1 byte): An 8-bit unsigned integer. If the most significant bit of the length1 field is

not set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains

the overall PDU length (the length2 field is not present in this case). However, if the most
significant bit of the length1 field is set, then the overall PDU length is given by the low 7 bits

of the length1 field concatenated with the 8 bits of the length2 field, in big-endian order (the
length2 field contains the low-order bits).

length2 (1 byte): An 8-bit unsigned integer. If the most significant bit of the length1 field is

not set, then the length2 field is not present. If the most significant bit of the length1 field is
set, then the overall PDU length is given by the low 7 bits of the length1 field concatenated
with the 8 bits of the length2 field, in big-endian order (the length2 field contains the low-
order bits).

fipsInformation (4 bytes): Optional FIPS header information, present when the Encryption
Level selected by the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS
(4). The fast-path FIPS information structure is specified in section 2.2.8.1.2.1.

dataSignature (8 bytes): The message authentication code (MAC) generated over the packet
using one of the techniques described in Non-FIPS (the
FASTPATH_INPUT_SECURE_CHECKSUM flag, which is set in the fpInputHeader field, describes

the method used to generate the signature). This field is present if the
FASTPATH_INPUT_ENCRYPTED flag is set in the fpInputHeader field.

154 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

numberEvents (1 byte): An 8-bit unsigned integer. The number of fast-path input events
packed together in the fpInputEvents field (up to 255). This field is present if the

numberEvents bit field in the fast-path header byte is zero.

fpInputEvents (variable): A collection of Fast-Path Input Event (section 2.2.8.1.2.2)
structures to be processed by the server. The number of events present in this array is given
by the numberEvents bit field in the fast-path header byte, or by the numberEvents field in

the Fast-Path Input Event PDU (if it is present).

2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)

 The TS_FP_FIPS_INFO structure contains fast-path information for inclusion in a fast-path header.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length version padlen

length (2 bytes): A 16-bit unsigned integer. The length of the FIPS Security Header (section
2.2.8.1.1.2.3). This field MUST be set to 0x0010 (16 bytes).

version (1 byte): An 8-bit unsigned integer. The version of the FIPS Header. This field SHOULD
be set to TSFIPS_VERSION1 (0x01).

padlen (1 byte): An 8-bit unsigned integer. The number of padding bytes of padding appended
to the end of the packet prior to encryption to make sure that the data to be encrypted is a

multiple of the 3DES block size (that is, a multiple of 8 as the block size is 64 bits).

2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT)

 The TS_FP_INPUT_EVENT structure is used to describe the type and encapsulate the data for a
fast-path input event sent from client to server. All fast-path input events conform to this basic

structure (see sections 2.2.8.1.2.2.1 to 2.2.8.1.2.2.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader eventData (variable)

...

eventHeader (1 byte): An 8-bit unsigned integer. One byte bit-packed event header. Two
pieces of information are collapsed into this byte:

1. Fast-path input event type

2. Flags specific to the input event

The eventHeader field is structured as follows:

155 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventFlags eventCode

eventFlags (5 bits): 5 bits. The flags specific to the input event.

eventCode (3 bits): 3 bits. The type code of the input event.

Value Meaning

FASTPATH_INPUT_EVENT_SCANCODE

000

Indicates a Fast-Path Keyboard Event (section

2.2.8.1.2.2.1).

FASTPATH_INPUT_EVENT_MOUSE

001

Indicates a Fast-Path Mouse Event (section

2.2.8.1.2.2.3).

FASTPATH_INPUT_EVENT_MOUSEX

010

Indicates a Fast-Path Extended Mouse Event

(section 2.2.8.1.2.2.4).

FASTPATH_INPUT_EVENT_SYNC

011

Indicates a Fast-Path Synchronize Event (section

2.2.8.1.2.2.5).

FASTPATH_INPUT_EVENT_UNICODE

100

Indicates a Fast-Path Unicode Keyboard Event

(section 2.2.8.1.2.2.2).

eventData (variable): Optional and variable length data specific to the input event.

2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT)

 The TS_FP_KEYBOARD_EVENT structure is the fast-path variant of the TS_KEYBOARD_EVENT.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader keyCode

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the

eventHeader byte field described in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in
size) MUST be set to FASTPATH_INPUT_EVENT_SCANCODE (0). The flags which can populate
the keyboardFlags field (specified in section 2.2.8.1.2.2) are pushed into the eventFlags

bitfield (5 bits in size).

keyCode (1 byte): An 8-bit unsigned integer. The scancode of the key which triggered the
event.

2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event
(TS_FP_UNICODE_KEYBOARD_EVENT)

 The TS_FP_UNICODE_KEYBOARD_EVENT structure is the fast-path variant of the
TS_UNICODE_KEYBOARD_EVENT (section 2.2.8.1.1.3.1.2) structure. Support for the Unicode
Keyboard Event is advertised in the Input Capability Set (section 2.2.7.1.7).

156 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader unicodeCode

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the

eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in

size) MUST be set to FASTPATH_INPUT_EVENT_UNICODE (4). The eventFlags bitfield (5 bits
in size) MUST be zeroed out.

unicodeCode (2 bytes): A 16-bit unsigned integer. The Unicode character input code.

2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)

 The TS_FP_POINTER_EVENT structure is the fast-path variant of the TS_POINTER_EVENT (section
2.2.8.1.1.3.1.3) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader pointerFlags xPos

... yPos

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in
size) MUST be set to FASTPATH_INPUT_EVENT_MOUSE (1). The eventFlags bitfield (5 bits in

size) MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit unsigned integer. The flags describing the pointer event. The
possible flags are identical to those found in the pointerFlags field of the
TS_POINTER_EVENT structure.

xPos (2 bytes): A 16-bit unsigned integer. The x coordinate of the pointer.

yPos (2 bytes): A 16-bit unsigned integer. The y coordinate of the pointer.

2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT)

 The TS_FP_POINTERX_EVENT structure is the fast-path variant of the TS_POINTERX_EVENT
(section 2.2.8.1.1.3.1.4) structure. Support for the Extended Mouse Event is advertised in the Input

Capability Set (section 2.2.7.1.7).

157 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader pointerFlags xPos

... yPos

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in

size) MUST be set to FASTPATH_INPUT_EVENT_MOUSEX (2). The eventFlags bitfield (5 bits
in size) MUST be zeroed out.

pointerFlags (2 bytes): A 16-bit unsigned integer. The flags describing the pointer event. The
possible flags are identical to those found in the pointerFlags field of the

TS_POINTERX_EVENT structure.

xPos (2 bytes): A 16-bit unsigned integer. The x coordinate of the pointer.

yPos (2 bytes): A 16-bit unsigned integer. The y coordinate of the pointer.

2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT)

 The TS_FP_SYNC_EVENT structure is the fast-path variant of the TS_SYNC_EVENT structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

eventHeader

eventHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the

eventHeader byte field, specified in section 2.2.8.1.2.2. The eventCode bitfield (3 bits in
size) MUST be set to FASTPATH_INPUT_EVENT_SYNC (3). The flags which can populate the
toggleFlags field (specified in section 2.2.8.1.1.3.1.5) are pushed into the eventFlags

bitfield (5 bits in size).

2.2.8.2 Keyboard Status PDUs

2.2.8.2.1 Server Set Keyboard Indicators PDU

 The Set Keyboard Indicators PDU is sent by the server to synchronize the state of the keyboard
toggle keys (Scroll Lock, Num Lock, and so on). It is similar in operation to the Client Synchronize

Input Event Notification (see sections 2.2.8.1.1.3.1.5 and 2.2.8.1.2.2.5), but flows in the opposite
direction.

158 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

setKeyBdIndicatorsPduData

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Set Keyboard
Indicators PDU (section 2.2.8.2.1.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

159 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by
the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

setKeyBdIndicatorsPduData (22 bytes): The actual contents of the Set Keyboard Indicators
PDU, as specified in section 2.2.8.2.1.1.

2.2.8.2.1.1 Set Keyboard Indicators PDU Data

(TS_SET_KEYBOARD_INDICATORS_PDU)

 The TS_SET_KEYBOARD_INDICATORS_PDU structure contains the actual contents of the Set
Keyboard Indicators PDU (section 2.2.8.2.1). The contents of the LedFlags field is identical to the
flags used in the Client Synchronize Input Event Notification (see section 2.2.8.1.1.3.1.5).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... UnitId

LedFlags

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing
information about the packet. The type subfield of the pduType field of the Share Control
Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of
the Share Data Header MUST be set to PDUTYPE2_SET_KEYBOARD_INDICATORS (41).

UnitId (2 bytes): A 16-bit unsigned integer. Hardware related value. This field SHOULD be
ignored by the client and as a consequence SHOULD be set to 0 by the server.

LedFlags (2 bytes): A 16-bit unsigned integer. The flags indicating the "on" status of the

keyboard toggle keys.

Flag Meaning

TS_SYNC_SCROLL_LOCK

0x0001

Indicates that the Scroll Lock indicator light SHOULD be on.

TS_SYNC_NUM_LOCK

0x0002

Indicates that the Num Lock indicator light SHOULD be on.

TS_SYNC_CAPS_LOCK

0x0004

Indicates that the Caps Lock indicator light SHOULD be on.

160 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Flag Meaning

TS_SYNC_KANA_LOCK

0x0008

Indicates that the Kana Lock indicator light SHOULD be on.

2.2.8.2.2 Server Set Keyboard IME Status PDU

The Set Keyboard IME Status PDU PDU is sent by the server when the user session employs input
method editors (IMEs) and is used to set the IME state. This PDU is accepted and ignored by non-
IME aware clients.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

setKeyBdImeStatusPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

field of the MCS Send Data Indication PDU contains a Security Header and the Set Keyboard
IME Status PDU data (see section 2.2.8.2.2.1).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

161 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following
headers:

 Basic Security Header (see section 2.2.8.1.1.2.1) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (see section 2.2.8.1.1.2.2) if the Encryption Level selected by
the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE
(2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (see section 2.2.8.1.1.2.3) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by

the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

setKeyBdImeStatusPduData (28 bytes): The actual contents of the Set Keyboard IME Status
PDU, as specified in section 2.2.8.2.2.1.

2.2.8.2.2.1 Set Keyboard IME Status PDU Data
(TS_SET_KEYBOARD_IME_STATUS_PDU)

 The TS_SET_KEYBOARD_IME_STATUS_PDU structure contains the actual contents of the Set
Keyboard IME Status PDU (section 2.2.8.2.2). On RDP 5.0 and later clients the latter two fields are

used as input parameters to a Fujitsu Oyayubi specific IME control function of East Asia IME clients.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... UnitId

ImeOpen

ImeConvMode

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing
information about the packet. The type subfield of the pduType field of the Share Control
Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of

the Share Data Header MUST be set to PDUTYPE2_SET_KEYBOARD_IME_STATUS (45).

162 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

UnitId (2 bytes): A 16-bit unsigned integer. The unit identifier for which the IME message is
intended. This field SHOULD be ignored by the client and as a consequence SHOULD be set to

0 by the server.

ImeOpen (4 bytes): A 32-bit unsigned integer. Indicates the open or close state of the IME.

ImeConvMode (4 bytes): A 32-bit unsigned integer. Indicates the IME conversion status.

2.2.9 Basic Output

2.2.9.1 Output PDU Packaging

2.2.9.1.1 Slow-Path (T.128) Format

2.2.9.1.1.1 Share Headers

The Share Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.1.

2.2.9.1.1.2 Security Headers

The Security Headers used in conjunction with slow-path output PDUs are the same as those used in
conjunction with slow-path input PDUs. These headers are described in section 2.2.8.1.1.2.

2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)

 The slow-path Graphics Update PDU is used to transmit graphics updates from server to client.

163 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

shareDataHeader

...

...

...

... slowPathGraphicsUpdate (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Shutdown
Request PDU Data (section 2.2.2.2.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

164 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by
the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing
information about the packet. The type subfield of the pduType field of the Share Control
Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of

the Share Data Header MUST be set to PDUTYPE2_UPDATE (2).

slowPathGraphicsUpdate (variable): Slow-path graphics update to be processed by the client
(see section 2.2.9.1.1.3.1).

2.2.9.1.1.3.1 Slow Path Graphics Update (TS_GRAPHICS_UPDATE)

 The TS_GRAPHICS_UPDATE structure is used to describe the type and encapsulate the data for a

slow-path graphics update sent from server to client. All slow-path graphic updates conform to this
basic structure (see sections 0 to 2.2.9.1.1.3.1.3).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateType updateData (variable)

...

updateType (2 bytes): A 16-bit unsigned integer. Type of the graphics update.

Value Meaning

UPDATETYPE_ORDERS

0x0000

Indicates an Orders Update (see [MS-RDPEGDI] section 2.2.2.2).

UPDATETYPE_BITMAP

0x0001

Indicates a Bitmap Graphics Update (see section 2.2.9.1.1.3.1.2).

UPDATETYPE_PALETTE

0x0002

Indicates a Palette Update (see section 2.2.9.1.1.3.1.1).

UPDATETYPE_SYNCHRONIZE

0x0003

Indicates a Synchronize Update (see section 2.2.9.1.1.3.1.3).

updateData (variable): Variable length data specific to the graphics update.

2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE_PDU_DATA)

 The TS_UPDATE_PALETTE_PDU_DATA structure contains global palette information that covers the

entire session's palette (see [T128] section 8.18.6).

%5bMS-RDPEGDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90544

165 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateType pad2Octets

numberColors

paletteData (variable)

...

updateType (2 bytes): A 16-bit unsigned integer. The graphics update type. This field MUST
be set to UPDATETYPE_PALETTE (0x0002).

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

numberColors (4 bytes): A 32-bit unsigned integer. The number of RGB triplets in the
paletteData field. This field MUST be set to NUM_8BPP_PAL_ENTRIES (256).

paletteData (variable): Array of TS_PALETTE_ENTRY structures. Array of palette entries in

RGB triplet format (see section 2.2.9.1.1.3.1.1.1) packed on byte boundaries. The number of
triplet entries is given by the numberColors field - there must be NUM_8BPP_PAL_ENTRIES
(256) entries.

2.2.9.1.1.3.1.1.1 RGB Palette Entry (TS_PALETTE_ENTRY)

 The TS_PALETTE_ENTRY structure is used to express the red, green and blue components

necessary to reproduce a color in the additive RGB space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

red green blue

red (1 byte): An 8-bit unsigned integer. The red RGB color component.

green (1 byte): An 8-bit unsigned integer. The green RGB color component.

blue (1 byte): An 8-bit unsigned integer. The blue RGB color component.

2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP_PDU_DATA)

 The TS_UPDATE_BITMAP_PDU_DATA structure contains one or more rectangular clippings taken

from the server-side screen frame buffer (see [T128] section 8.17).

http://go.microsoft.com/fwlink/?LinkId=90544

166 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateType numberRectangles

rectangles (variable)

...

updateType (2 bytes): A 16-bit unsigned integer. The graphics update type. This field MUST
be set to UPDATETYPE_BITMAP (0x0001).

numberRectangles (2 bytes): A 16-bit unsigned integer. The number of screen rectangles
present in the rectangles field.

rectangles (variable): Variable length array of TS_BITMAP_DATA (section 2.2.9.1.1.3.1.2.3)
structures, each of which contains a rectangular clipping taken from the server-side screen

frame buffer. The number of screen clippings in the array is specified by the
numberRectangles field.

2.2.9.1.1.3.1.2.1 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)

The RLE_BITMAP_STREAM structure contains a stream of bitmap data compressed using Interleaved
Run-Length Encoding (RLE). Compressed bitmap data MUST follow a Compressed Data Header

(section 2.2.9.1.1.3.1.2.2) structure unless exclusion of this header has been negotiated in the
General Capability Set (section 2.2.7.1.1).

A compressed bitmap is sent as a series of compression codes and color codes that instruct the
decoder how to assemble the bitmap. A particular bitmap may have many valid compressed

representations. A compression code consists of a code identifier, followed by an optional length
field, followed by optional associated data (that is dependent on the compression code). Some codes

instruct the decoder to refer to the previous row of bitmap data and because of this fact, the first

row sometimes requires special cases for decoding.

The compression codes fill a full single byte of address space. The high order bits are used to
identify the code type. The low order bits encode the length of the associated run. There are two

forms of order:

 Regular orders with a 3-bit code field and a 5-bit length field.

 Lite orders with a 4-bit code field and a 4-bit length field.

A value of 0 in the 4 or 5-bit length field indicates an extended length (a MEGA run), where the

following byte contains the length of the data. For MEGA runs the encoded length is the length of the
run minus the maximum length of the non-MEGA form (unless otherwise specified).

The codespace also contains special case variants of the two main forms:

 The MEGA_MEGA form indicates an extended length, where the following two bytes contain the
length of the data. In the MEGA_MEGA form the length encoded is the plain 16-bit length.

167 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 A set of codes at the high end of the codespace is used to encode commonly occurring short
sequences. These sequences are single byte FGBG encodings and single bytes of BLACK or

WHITE.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

rleCompressedBitmapStream (variable)

...

rleCompressedBitmapStream (variable): An array of compression codes describing
compressed structures in the bitmap.

3-Bit Codes (Regular

Orders) Meaning

MEGA_BG_RUN

000

A run where each byte matches the uncompressed byte from the

previous line. The length of the run in bytes is 32 plus the value

contained in the next byte between 0 and 255.

BG_RUN

000

Represents a background run of the specified length. The background

color is black by default.

MEGA_FG_RUN

001

A run where each byte is the XOR of the uncompressed byte from the

previous line with the foreground color. The length of the run in bytes

is 32 plus the value contained in the next byte between 0 and 255.

FG_RUN

001

Represents a continuous foreground run of the specified length. The

foreground color is white by default.

MEGA_FG_BG_IMAGE

010

Represents a binary image containing only the current foreground and

background colors. The length field is the actual number of pixels.

XOR is performed.

FG_BG_IMAGE

010

Represents a binary image containing only the current foreground and

background colors. The length of a short run is encoded as (length /

8). XOR is performed.

MEGA_COLOR_RUN

011

A single-color run. The length of the run in bytes is 32 plus the value

contained in the next byte between 0 and 255. The color is specified in

the following byte.

COLOR_RUN

011

A single-color run. The length of the run in bytes is the other 5 bits of

the byte. The color is specified in the following byte.

MEGA_COLOR_IMAGE

100

An uncompressed run. The length of the run in bytes is 32 plus the

value contained in the next byte between 0 and 255. The data is

specified in the following bytes as one pixel per byte.

COLOR_IMAGE

100

Represents a color image of the specified length. No XOR is performed.

This data is uncompressed.

NOT_USED_RESERVED

101

Not used.

168 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

4-Bit Codes (Lite

Orders) Meaning

SET_FG_MEGA_FG_RUN

1100

A run where each byte is the XOR of the uncompressed byte from the

previous line with a new foreground color. The length of the run in bytes

is 16 plus the value contained in the next byte between 0 and 255. The

new foreground color is specified in the following byte.

SET_FG_FG_RUN

1100

Represents a continuous foreground run of the specified length. The

foreground color is white by default, and is changed by this code.

SET_FG_MEGA_FG_BG

1101

A run where each byte is either the matching uncompressed byte from

the previous line or the XOR of that byte with the foreground color. The

length of the run in bytes is 8 multiplied by the value of the other 4 bits

of the byte, between 0 and 15. The new foreground color is specified in

the next byte. The data is specified in the following bytes.

SET_FG_FG_BG

1101

A run where each byte is either the matching uncompressed byte from

the previous line or the XOR of that byte with the foreground color. The

length of the run in bytes is 8 multiplied by the value of the other 4 bits

of the byte, between 0 and 15. The new foreground color is specified in

the next byte. The data is specified in the following bytes.

MEGA_DITHERED_RUN

1110

An alternating run of two colors. The length of the run in bytes is 16

plus the value contained in the next byte, between 0 and 255. The

colors are specified in the following two bytes using one byte each.

DITHERED_RUN

1110

Represents a run of alternating colors of the specified colors and length,

where the length is in pixel pairs. The colors are specified in the

following two bytes using one byte each. No XOR is performed.

8-Bit Codes Meaning

MEGA_MEGA_BG_RUN

11110000

A run where each byte matches the uncompressed byte from the

previous line. The length of the run in bytes is specified in the next

two bytes between 1 and 65,536.

MEGA_MEGA_FG_RUN

11110001

A run where each byte is the XOR of the uncompressed byte from the

previous line with the foreground color. The length of the run in bytes

is specified in the next two bytes between 1 and 65,536. If this code

occurs on the first line the foreground color alone should be used.

MEGA_MEGA_FGBG

11110010

A long run where each byte is either the uncompressed byte from the

previous line or the XOR of that byte with the foreground color. The

length of the run in bytes is specified in the next two bytes between 1

and 65,536. The data is specified in the following bytes.

MEGA_MEGA_COLOR_RUN

11110011

A long single-color run of pixels. The length of the run in bytes is

specified in the next two bytes between 1 and 65,536. The color is

specified in the following byte.

MEGA_MEGA_CLR_IMG

11110100

A long uncompressed run of pixels. The length of the run in bytes is

specified in the next two bytes between 1 and 65,536. The data is

specified in the following bytes as one pixel per byte.

169 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

8-Bit Codes Meaning

NOT_USED_RESERVED

11110101

Not used.

MEGA_MEGA_SET_FG_RUN

11110110

A long run where each byte is the XOR of the uncompressed byte

from the previous line with a new foreground color. The length of the

run in bytes is specified in the next two bytes between 1 and 65,536.

The new foreground color is specified in the following byte.

MEGA_MEGA_SET_FGBG

11110111

A long run where each byte is either the uncompressed byte from the

previous line or the XOR of that byte with a new foreground color.

The length of the run in bytes is specified in the next two bytes

between 1 and 65,536. The new foreground color is specified in the

byte after the length. The data is specified in the following bytes.

MEGA_MEGA_DITHER

11111000

A long alternating run of two colors. The length of the run in bytes is

specified in the next two bytes between 1 and 65,536. The colors are

specified in the following two bytes as one byte each.

SPECIAL_FGBG_CODE_1

11111001

This code should be treated as an FG_BG_IMAGE run with predefined

parameters. This is always 8 pixels in length and has a data pattern

of FGBG code 0x03 = binary: 11000000.

SPECIAL_FGBG_CODE_2

11111010

This code should be treated as an FG_BG_IMAGE run with predefined

parameters. This is always 8 pixels in length and has a data pattern

of FGBG code 0x05 = binary: 10100000.

SPECIAL_FGBG_CODE_3

11111011

This code should be treated as an FG_BG_IMAGE run with predefined

parameters. This is always 8 pixels in length and has a data pattern

of FGBG code 0x07 = binary: 11100000.

SPECIAL_FGBG_CODE_4

11111100

This code should be treated as an FG_BG_IMAGE run with predefined

parameters. This is always 8 pixels in length and has a data pattern

of FGBG code 0x0F = binary: 11110000.

WHITE

11111110

A single white pixel.

BLACK

11111101

A single black pixel.

START_LOSSY

11111111

Informs the decoder that lossy mode has been established and any of

the following color runs will need pixel doubling performed. RLE

decoding will remain in this mode until the end of this block.

2.2.9.1.1.3.1.2.2 Compressed Data Header (TS_CD_HEADER)

The TS_CD_HEADER structure is used to describe compressed bitmap data.

170 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbCompFirstRowSize cbCompMainBodySize

cbScanWidth cbUncompressedSize

cbCompFirstRowSize (2 bytes): A 16-bit unsigned integer. The field MUST be set to 0x0000.

cbCompMainBodySize (2 bytes): A 16-bit unsigned integer. The size in bytes of the

compressed bitmap data (which follows this header).

cbScanWidth (2 bytes): A 16-bit unsigned integer. The width of the bitmap (which follows this
header) in pixels (this value MUST be divisible by 4).

cbUncompressedSize (2 bytes): A 16-bit unsigned integer. The size in bytes of the bitmap

data (which follows this header) after it has been decompressed.

2.2.9.1.1.3.1.2.3 Bitmap Data (TS_BITMAP_DATA)

The TS_BITMAP_DATA structure wraps the bitmap data bytestream for a screen area rectangle
containing a clipping taken from the server-side screen frame buffer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

destLeft destTop

destRight destBottom

width height

bitsPerPixel Flags

bitmapLength bitmapComprHdr (optional)

...

... bitmapDataStream (variable)

...

destLeft (2 bytes): A 16-bit unsigned integer. Left bound of the rectangle.

destTop (2 bytes): A 16-bit unsigned integer. Top bound of the rectangle.

destRight (2 bytes): A 16-bit unsigned integer. Right bound of the rectangle.

171 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

destBottom (2 bytes): A 16-bit unsigned integer. Bottom bound of the rectangle.

width (2 bytes): A 16-bit unsigned integer. The width of the rectangle.

height (2 bytes): A 16-bit unsigned integer. The height of the rectangle.

bitsPerPixel (2 bytes): A 16-bit unsigned integer. The color depth of the rectangle data in
bits-per-pixel.

Flags (2 bytes): A 16-bit unsigned integer. The flags describing the format of the bitmap data

in the bitmapDataStream field.

Flags Meaning

BITMAP_COMPRESSION

0x0001

Indicates that the bitmap data is compressed. This implies that

the bitmapComprHdr field is present if the

NO_BITMAP_COMPRESSION_HDR (0x0400) flag is not set.

NO_BITMAP_COMPRESSION_HDR

0x0400

Indicates that the bitmapComprHdr field is not present

(removed for bandwidth efficiency to save 8 bytes).

bitmapLength (2 bytes): A 16-bit unsigned integer. The size in bytes of the data in the

bitmapComprHdr and bitmapDataStream fields.

bitmapComprHdr (8 bytes): Optional Compressed Data Header structure (see Compressed
Data Header (TS_CD_HEADER) (section 2.2.9.1.1.3.1.2.2)) specifying the bitmap data in the

bitmapDataStream. This field MUST be present if the BITMAP_COMPRESSION (0x0001) flag
is present in the Flags field, but the NO_BITMAP_COMPRESSION_HDR (0x0400) flag is not.

bitmapDataStream (variable): A variable-sized array of bytes. Uncompressed bitmap data

represents a bitmap as a bottom-up, left-to-right series of pixels. Each pixel is a whole
number of bytes. Each row contains a multiple of four bytes (including up to three bytes of
padding, as necessary). Compressed bitmaps not in 32 bits-per-pixel format are compressed
using Interleaved Run-Length Encoding (RLE) and encapsulated in an (see section

2.2.9.1.1.3.1.2.1) while compressed bitmap data at a color depth of 32 bits-per-pixel is
compressed using RDP 6.0 Bitmap Compression and stored inside an RDP 6.0 Bitmap
Compressed Stream structure (see section 2.2.9.1.1.3.1.2.1).

2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC_PDU_DATA)

 The TS_UPDATE_SYNC_PDU_DATA structure is an artifact of the T.128 protocol (see [T128] section
8.6.2) and is ignored by current Microsoft RDP client implementations.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateType pad2Octets

updateType (2 bytes): A 16-bit unsigned integer. Graphics update type. This field MUST be set
to UPDATETYPE_SYNCHRONIZE (0x0003).

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

http://go.microsoft.com/fwlink/?LinkId=90544

172 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU)

The Pointer Update PDU is sent from server to client and is used to convey pointer information,
including pointers' bitmap images, use of system or hidden pointers, use of cached cursors and
position updates.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

shareDataHeader

...

...

...

... messageType

pad2Octets pointerAttributeData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

field of the MCS Send Data Indication PDU contains a Security Header and the Pointer Update
PDU data.

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and

the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following
headers:

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

173 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by
the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

shareDataHeader (18 bytes): Share Data Header (section 2.2.8.1.1.1.2) containing
information about the packet. The type subfield of the pduType field of the Share Control

Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of
the Share Data Header MUST be set to PDUTYPE2_POINTER (27).

messageType (2 bytes): A 16-bit unsigned integer. Type of pointer update.

Value Meaning

TS_PTRMSGTYPE_SYSTEM

0x0001

Indicates a System Pointer Update (section 2.2.9.1.1.4.3).

TS_PTRMSGTYPE_POSITION

0x0003

Indicates a Pointer Position Update (section 2.2.9.1.1.4.2).

TS_PTRMSGTYPE_COLOR

0x0006

Indicates a Color Pointer Update (section 2.2.9.1.1.4.4).

TS_PTRMSGTYPE_CACHED

0x0007

Indicates a Cached Pointer Update (section 2.2.9.1.1.4.6).

TS_PTRMSGTYPE_POINTER

0x0008

Indicates a New Pointer Update (section 2.2.9.1.1.4.5).

T.128 Monochrome Pointer updates (see [T128] section 8.14.2) are not used in RDP and are
not planned for a future version. Monochrome pointers are translated into 24 bits-per-pixel

cursors using the Color Pointer Update (section 2.2.9.1.1.4.4) when the New Pointer Update
(section 2.2.9.1.1.4.5) is not supported, or sent as 1 bit-per-pixel using the New Pointer
Update.

pad2Octets (2 bytes): A 16-bit unsigned integer. Padding. Values in this field are ignored.

pointerAttributeData (variable): TS_POINTERPOSATTRIBUTE (4 bytes),
TS_SYSTEMPOINTERATTRIBUTE (4 bytes), TS_COLORPOINTERATTRIBUTE (variable number of

bytes), TS_POINTERATTRIBUTE (variable number of bytes) or
TS_CACHEDPOINTERATTRIBUTE (2 bytes):

The actual contents of the slow-path pointer update (see sections 2.2.9.1.1.4.2 to
2.2.9.1.1.4.6).

http://go.microsoft.com/fwlink/?LinkId=90544

174 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.9.1.1.4.1 Point (TS_POINT16)

 The TS_POINT16 structure specifies a point relative to the top-left corner of the server's virtual
desktop.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

xPos yPos

 xPos (2 bytes): A 16-bit unsigned integer. The X coordinate relative to the top-left corner
of the server's virtual desktop.

 yPos (2 bytes): A 16-bit unsigned integer. The Y coordinate relative to the top-left corner of
the server's virtual desktop.

2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE)

The TS_POINTERPOSATTRIBUTE structure is used to indicate that the client pointer should be
moved to the specified position relative to the top-left corner of the server's virtual desktop (see

[T128] section 8.14.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

position

 position (4 bytes): Point (section 2.2.9.1.1.4.1) structure containing the new X and Y
coordinates of the pointer.

2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE)

The TS_SYSTEMPOINTERATTRIBUTE structure is used to hide the pointer or to set its shape to that
of the operating system default (see [T128] section 8.14.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

systemPointerType

 systemPointerType (4 bytes): A 32-bit unsigned integer. The type of system pointer.

Value Meaning

SYSPTR_NULL

0x00000000

The hidden pointer.

SYSPTR_DEFAULT

0x00007F00

The default system pointer.

http://go.microsoft.com/fwlink/?LinkId=90544
http://go.microsoft.com/fwlink/?LinkId=90544

175 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)

The TS_COLORPOINTERATTRIBUTE structure represents a regular T.128 24 bits-per-pixel color
pointer, as specified in [T128] section 8.14.3. This pointer update is used for both monochrome and
color pointers in RDP.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cacheIndex hotSpot

... width

height lengthAndMask

lengthXorMask xorMaskData (variable)

...

andMaskData (variable)

...

 cacheIndex (2 bytes): A 16-bit unsigned integer. The zero-based cache entry in the pointer

cache in which to store the pointer image. The number of cache entries is negotiated using the
Pointer Capability Set (section 2.2.7.1.6).

 hotSpot (4 bytes): Point (section 2.2.9.1.1.4.1) structure containing the X and Y

coordinates of the pointer hotspot.

 width (2 bytes): A 16-bit unsigned integer. The width of the pointer in pixels (the
maximum allowed pointer width is 32 pixels).

 height (2 bytes): A 16-bit unsigned integer. The height of the pointer in pixels (the
maximum allowed pointer height is 32 pixels).

 lengthAndMask (2 bytes): A 16-bit unsigned integer. The size in bytes of the
andMaskData field.

 lengthXorMask (2 bytes): A 16-bit unsigned integer. The size in bytes of the
xorMaskData field.

 xorMaskData (variable): Variable number of bytes: Contains the 24 bits-per-pixel bottom-

up XOR mask scan-line data. The XOR mask is padded to a 2-byte boundary for each encoded
scan-line. For example, if a 3x3 pixel cursor is being sent, then each scan-line will consume 10
bytes (3 pixels per scan-line multiplied by 3 bytes per pixel, rounded up to the next even

number of bytes).

 andMaskData (variable): Variable number of bytes: Contains the 1 bit-per-pixel bottom-up
AND mask scan-line data. The AND mask is padded to a 2-byte boundary for each encoded
scan-line. For example, if a 7x7 pixel cursor is being sent, then each scan-line will consume 2

http://go.microsoft.com/fwlink/?LinkId=90544

176 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

bytes (7 pixels per scan-line multiplied by 1 bit per pixel, rounded up to the next even number
of bytes).

2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)

 The TS_POINTERATTRIBUTE structure is used to send pointer data at an arbitrary color depth.
Support for the New Pointer Update is advertised in the Pointer Capability Set (section 2.2.7.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

xorBpp colorPtrAttr (variable)

...

 xorBpp (2 bytes): A 16-bit unsigned integer. The color depth in bits-per-pixel of the XOR
mask contained in the colorPtrAttr field.

 colorPtrAttr (variable): Encapsulated Color Pointer Update (section 2.2.9.1.1.4.4)

structure which contains information about the pointer. The Color Pointer Update fields are all
used, as specified in section 2.2.9.1.1.4.4; however, the XOR mask data alignment packing is
slightly different. For monochrome (1 bit-per-pixel) pointers the XOR data is always padded to

a 4-byte boundary per scan line, while color pointer XOR data is still packed on a 2-byte
boundary. Color XOR data is presented in the color depth described in the xorBpp field (for 8
bits-per-pixel, each byte contains one palette index; for 4 bits-per-pixel there are two palette
indices per byte).

2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)

 The TS_CACHEDPOINTERATTRIBUTE structure is used to instruct the client to change the current

pointer shape to one already present in the pointer cache.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cacheIndex

 cacheIndex (2 bytes): A 16-bit unsigned integer. A zero-based cache entry containing the
cache index of the cached pointer to which the client's pointer should be changed. The pointer

data should have already been cached using either the Color Pointer Update (section
2.2.9.1.1.4.4) or New Pointer Update (section 2.2.9.1.1.4.5).

2.2.9.1.1.5 Server Play Sound PDU

The Play Sound PDU instructs the client to play a "beep" sound.

177 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

playSoundPduData

...

...

...

...

...

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Indication PDU contains a Security Header and the Play Sound PDU
Data (section 2.2.9.1.1.5.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

178 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by
the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

playSoundPduData (26 bytes): The actual contents of the Play Sound PDU, as specified in

section 2.2.9.1.1.5.1.

2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA)

The TS_PLAY_SOUND_PDU_DATA structure contains the contents of the Play Sound PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) and two fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... duration

... frequency

...

shareDataHeader (18 bytes): Share Data Header containing information about the packet.

The type subfield of the pduType field of the Share Control Header (section 2.2.8.1.1.1.1)
MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data Header MUST
be set to PDUTYPE2_PLAY_SOUND (34).

duration (4 bytes): A 32-bit unsigned integer. Duration of the beep the client should play.

frequency (4 bytes): A 32-bit unsigned integer. Frequency of the beep the client should play.

2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)

Fast-path revises server output packets from the first byte with the goal of improving bandwidth.
The TPKT (see [T123]), X.224 (see [X224]) and MCS SDin (see [T125]) headers are replaced, the
Security Header (section 2.2.8.1.1.2) is collapsed into the fast-path output header, and the Share

Data Header (section 2.2.8.1.1.1.2) is replaced by a new fast-path format. The contents of the
graphics and pointer updates (see sections 2.2.9.1.1.3 and 2.2.9.1.1.4) are also changed to reduce
their size, particularly by removing or reducing headers. Support for fast-path output is advertised
in the General Capability Set (section 2.2.7.1.1).

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

179 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

fpOutputHeader length1 length2 (optional) fipsInformation (optional)

... dataSignature (optional)

...

... fpOutputUpdates

(variable)

...

fpOutputHeader (1 byte): An 8-bit unsigned integer. One-byte bit-packed header. This byte
coincides with the first byte of the TPKT Header (see [T123] section 8), which is always 0x03.
Two pieces of information are collapsed into this byte:

1. Encryption data

2. Action code

The format of the fpOutputHeader byte is described by the following bitmask diagram:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

actionCode reserved encryptionFlags

actionCode (2 bits): 2 bits: Code indicating whether the PDU is in fast-path or slow-path

format.

Value Meaning

FASTPATH_OUTPUT_ACTION_FASTPATH

0x0 (binary: 00)

Indicates that the PDU is a fast-path output PDU.

FASTPATH_OUTPUT_ACTION_X224

0x3 (binary: 11)

Indicates the presence of a TPKT Header (see

[T123] section 8) initial version byte, which

implies that the PDU is a slow-path output PDU (in

this case the full value of the initial byte MUST be

0x03).

reserved (4 bits): 4 bits: unused bits reserved for future use. This bitfield MUST be set to
0.

 encryptionFlags (2 bits): 2 bits: flags describing cryptographic parameters of the

PDU.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90541

180 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

FASTPATH_OUTPUT_SECURE_CHECKSUM

0x1 (binary: 01)

Indicates that the MAC signature for the PDU

was generated using the "salted MAC

generation" technique (see section 5.3.6.1.1). If

this bit is not set, then the standard technique

was used (see Non-FIPS (section 2.2.8.1.1.2.2)

and FIPS (section 2.2.8.1.1.2.3)).

FASTPATH_OUTPUT_ENCRYPTED

0x2 (binary: 10)

Indicates that the PDU contains an 8-byte

message authentication code (MAC) signature

after the optional length2 field (that is, the

dataSignature field is present) and the

contents of the PDU are encrypted using the

negotiated encryption package (see sections

5.3.2 and 5.3.6).

length1 (1 byte): An 8-bit unsigned integer. If the most significant bit of the length1 field is
not set, then the size of the PDU is in the range 1 to 127 bytes and the length1 field contains
the overall PDU length (the length2 field is not present in this case). However, if the most

significant bit of the length1 field is set, then the overall PDU length is given by the low 7 bits
of the length1 field concatenated with the 8 bits of the length2 field, in big-endian order (the
length2 field contains the low-order bits).

length2 (1 byte): An 8-bit unsigned integer. If the most significant bit of the length1 field is

not set, then the length2 field is not present. If the most significant bit of the length1 field is
set, then the overall PDU length is given by the low 7 bits of the length1 field concatenated
with the 8 bits of the length2 field, in big-endian order (the length2 field contains the low-

order bits).

fipsInformation (4 bytes): Optional FIPS header information, present when the Encryption
Level selected by the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS

(4). The fast-path FIPS information structure is specified in section 2.2.8.1.2.1.

 dataSignature (8 bytes): 8 bytes. Message authentication code (MAC) generated over the
packet using one of the techniques specified in Non-FIPS (the
FASTPATH_INPUT_SECURE_CHECKSUM flag, which is set in the fpInputHeader field, describes

the method used to generate the signature). This field is present if the
FASTPATH_INPUT_ENCRYPTED flag is set in the fpInputHeader field.

fpOutputUpdates (variable): An array of TS_FP_UPDATE structures (variable number of

bytes) containing a collection of fast-path updates to be processed by the client.

2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)

The TS_FP_UPDATE structure is used to describe and encapsulate the data for a fast-path update
sent from server to client. All fast-path updates conform to this basic structure (see sections
2.2.9.1.2.1.1 to 2.2.9.1.2.1.9).

181 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

updateData (variable)

...

updateHeader (1 byte): An 8-bit unsigned integer. The TS_FP_UPDATE structure begins with a
one- byte bit-packed update header field. Two pieces of information are collapsed into this
byte:

1. Fast-path update type

2. Compression usage indication

The format of the updateHeader byte is described by the following bitmask diagram:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateCode reserved compression

updateCode (4 bits): 4 bits: Type code of the update.

Value Meaning

FASTPATH_UPDATETYPE_ORDERS

0x0 (binary: 0000)

Indicates a Fast-Path Orders Update (see [MS-

RDPEGDI] section 2.2.2.3).

FASTPATH_UPDATETYPE_BITMAP

0x1 (binary: 0001)

Indicates a Fast-Path Bitmap Update (see section

2.2.9.1.2.1.2).

FASTPATH_UPDATETYPE_PALETTE

0x2 (binary: 0010)

Indicates a Fast-Path Palette Update (see section

2.2.9.1.2.1.1).

FASTPATH_UPDATETYPE_SYNCHRONIZE

0x3 (binary: 0011)

Indicates a Fast-Path Synchronize Update (see

section 2.2.9.1.2.1.3).

FASTPATH_UPDATETYPE_PTR_NULL

0x5 (binary: 0101)

Indicates a Fast-Path System Pointer Hidden

Update (see section 2.2.9.1.2.1.5).

FASTPATH_UPDATETYPE_PTR_DEFAULT

0x6 (binary: 0110)

Indicates a Fast-Path System Pointer Default

Update (see section 2.2.9.1.2.1.6).

FASTPATH_UPDATETYPE_PTR_POSITION

0x8 (binary: 1000)

Indicates a Fast-Path Pointer Position Update (see

section 2.2.9.1.2.1.4).

FASTPATH_UPDATETYPE_COLOR

0x9 (binary: 1001)

Indicates a Fast-Path Color Pointer Update (see

section 2.2.9.1.2.1.7).

%5bMS-RDPEGDI%5d.pdf
%5bMS-RDPEGDI%5d.pdf

182 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

FASTPATH_UPDATETYPE_CACHED

0xA (binary: 1010)

Indicates a Fast-Path Cached Pointer Update (see

section 2.2.9.1.2.1.9).

FASTPATH_UPDATETYPE_POINTER

0xB (binary: 1011)

Indicates a Fast-Path New Pointer Update (see

section 2.2.9.1.2.1.8).

reserved (2 bits): 2 bits. Unused bits reserved for future use. This bitfield MUST be set
to 0.

compression (2 bits): 2 bits. Compression usage indication flags.

Value Meaning

FASTPATH_OUTPUT_COMPRESSION_USED

0x2 (binary: 10)

Indicates that the compressionFlags field is

present.

compressionFlags (1 byte): An 8-bit unsigned integer. Optional compression flags. The flags
used in this field are exactly the same as the MPPC flags used in the compressedType field in
the Share Data Header (section 2.2.8.1.1.1.2) and have the same meaning.

size (2 bytes): A 16-bit unsigned integer. The size in bytes of the data in the updateData

field.

updateData (variable): Optional and variable length data specific to the update.

2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)

The TS_FP_UPDATE_PALETTE structure is the fast-path variant of the
TS_UPDATE_PALETTE_PDU_DATA (section 2.2.9.1.1.3.1.1) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

paletteUpdateData (variable)

...

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
updateHeader byte field, specified in the Fast-Path Update (section 2.2.9.1.2.1) structure.

The updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PALETTE
(2).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as

well as the possible values) is the same as the compressionFlags field specified in the Fast-
Path Update structure.

size (2 bytes): A 16-bit unsigned integer. The format of this field (as well as the possible

values) is the same as the size field specified in the Fast-Path Update structure.

183 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

paletteUpdateData (variable): Variable length palette data. Both slow and fast-path utilize
the same data format, a Palette Update structure to represent this information.

2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP)

The TS_FP_UPDATE_BITMAP structure is the fast-path variant of the
TS_UPDATE_BITMAP_PDU_DATA (section 2.2.9.1.1.3.1.2) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

bitmapUpdateData (variable)

...

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the

updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure.
The updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_BITMAP (1).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as

well as the possible values) is the same as the compressionFlags field specified in the Fast-
Path Update structure.

size (2 bytes): A 16-bit unsigned integer. The format of this field (as well as the possible

values) is the same as the size field specified in the Fast-Path Update structure.

bitmapUpdateData (variable): Variable length bitmap data. Both slow and fast-path utilize
the same data format, a Bitmap Update structure to represent this information.

2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)

The TS_FP_UPDATE_SYNCHRONIZE structure is the fast-path variant of the
TS_UPDATE_SYNCHRONIZE_PDU_DATA (section 2.2.9.1.1.3.1.3) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the

updateHeader byte field described in the Fast-Path Update (section 2.2.9.1.2.1). The
updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_SYNCHRONIZE
(3).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as

well as the possible values) is the same as the compressionFlags field described in the Fast-
Path Update structure.

184 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

size (2 bytes): A 16-bit unsigned integer. This field MUST be set to 0.

2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)

The TS_FP_POINTERPOSATTRIBUTE structure is the fast-path variant of the
TS_POINTERPOSATTRIBUTE structure (see section 2.2.9.1.1.4.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

pointerPositionUpdateData

updateHeader (1 byte): The format of this field is the same as the updateHeader byte field
specified in the Fast-Path Update (section 2.2.9.1.2.1) structure. The updateCode bitfield (4

bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_POSITION (8).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as
well as the possible values) is the same as the compressionFlags field specified in the Fast-

Path Update structure.

size (2 bytes): A 16-bit unsigned integer. The format of this field (as well as the possible
values) is the same as the size field specified in the Fast-Path Update structure.

pointerPositionUpdateData (4 bytes): TS_POINTERPOSATTRIBUTE structure (4 bytes):
Pointer coordinates. Both slow and fast-path utilize the same data format, a Pointer Position
Update structure to represent this information.

2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update

(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)

The TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE structure is the fast-path variant of the
TS_SYSTEMPOINTERATTRIBUTE (section 2.2.9.1.1.4.3) structure which contains the SYSPTR_NULL
(0x00000000) flag.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure.

The updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_PTR_NULL
(5).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as

well as the possible values) is the same as the compressionFlags field specified in the Fast-
Path Update structure.

185 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

size (2 bytes): A 16-bit unsigned integer. This field MUST be set to 0.

2.2.9.1.2.1.6 Fast-Path System Pointer Default Update

(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)

The TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE structure is the fast-path variant of the

TS_SYSTEMPOINTERATTRIBUTE (section 2.2.9.1.1.4.3) structure which contains the

SYSPTR_DEFAULT (0x00007F00) flag.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure.

The updateCode bitfield (4 bits in size) MUST be set to
FASTPATH_UPDATETYPE_PTR_DEFAULT (6).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as
well as the possible values) is the same as the compressionFlags field specified in the Fast-

Path Update structure.

size (2 bytes): A 16-bit unsigned integer. This field MUST be set to 0.

2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)

The TS_FP_COLORPOINTERATTRIBUTE structure is the fast-path variant of the
TS_COLORPOINTERATTRIBUTE (section 2.2.9.1.1.4.4) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

colorPointerUpdateData (variable)

...

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the
updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure.

The updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_COLOR (9).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as
well as the possible values) is the same as the compressionFlags field specified in the Fast-

Path Update structure.

size (2 bytes): A 16-bit unsigned integer. The format of this field (as well as the possible
values) is the same as the size field specified in the Fast-Path Update structure.

186 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

colorPointerUpdateData (variable): Color pointer data. Both slow and fast-path utilize the
same data format, a Color Pointer Update structure to represent this information.

2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)

The TS_FP_POINTERATTRIBUTE structure is the fast-path variant of the TS_POINTERATTRIBUTE
(section 2.2.9.1.1.4.5) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

newPointerUpdateData (variable)

...

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the

updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure.
The updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_POINTER
(11).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as
well as the possible values) is the same as the compressionFlags field specified in the Fast-
Path Update structure.

size (2 bytes): A 16-bit unsigned integer. The format of this field (as well as the possible
values) is the same as the size field specified in the Fast-Path Update structure.

newPointerUpdateData (variable): Color pointer data at arbitrary color depth. Both slow and

fast-path utilize the same data format, a New Pointer Update structure to represent this

information.

2.2.9.1.2.1.9 Fast-Path Cached Pointer Update

(TS_FP_CACHEDPOINTERATTRIBUTE)

 The TS_FP_CACHEDPOINTERATTRIBUTE structure is the fast-path variant of the
TS_CACHEDPOINTERATTRIBUTE (section 2.2.9.1.1.4.6) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateHeader compressionFlags

(optional)

size

cachedPointerUpdateData

updateHeader (1 byte): An 8-bit unsigned integer. The format of this field is the same as the

updateHeader byte field specified in the Fast-Path Update (section 2.2.9.1.2.1) structure.

187 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The updateCode bitfield (4 bits in size) MUST be set to FASTPATH_UPDATETYPE_CACHED
(10).

compressionFlags (1 byte): An 8-bit unsigned integer. The format of this optional field (as
well as the possible values) is the same as the compressionFlags field specified in the Fast-
Path Update structure.

size (2 bytes): A 16-bit unsigned integer. The format of this field (as well as the possible

values) is the same as the size field specified in the Fast-Path Update structure.

cachedPointerUpdateData (2 bytes): Cached pointer data. Both slow and fast-path utilize
the same data format (a Cached Pointer Update structure) to represent this information.

2.2.10 Logon Notifications

2.2.10.1 Server Save Session Info PDU

The Save Session Info PDU is used by the server to transmit session and user logon information
back to the client after the user has logged on.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDin (variable)

...

securityHeader (variable)

...

saveSessionInfoPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDin (variable): Variable length PER-encoded MCS Send Data Indication PDU, as specified
in [T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData

field of the MCS Send Data Indication PDU contains a Security Header and the Save Session
Info PDU Data (section 2.2.10.1.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and

the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following
headers:

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

188 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 Basic Security Header (section 2.2.8.1.1.2.1) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1).

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2)
or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server

(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by
the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this

header is not included in the PDU.

saveSessionInfoPduData (variable): The actual contents of the Save Session Info PDU, as
specified in section 2.2.10.1.1.

2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA)

 The TS_SAVE_SESSION_INFO_PDU_DATA structure is a wrapper around different classes of user
logon information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... infoType

... infoData (variable)

...

shareDataHeader (18 bytes): TS_SHAREDATAHEADER structure (18 bytes): Share Data
Header containing information about the packet. The type subfield of the pduType field of the
Share Control Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The

pduType2 field of the Share Data Header MUST be set to PDUTYPE2_SAVE_SESSION_INFO
(38).

infoType (4 bytes): A 32-bit unsigned integer. The type of logon information.

Value Meaning

INFOTYPE_LOGON This is a notification that the user has logged on. The

189 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

0x00000000 infoData field which follows contains a Logon Info Version 1

(section 2.2.10.1.1.1) structure.

INFOTYPE_LOGON_LONG

0x00000001

This is a notification that the user has logged on. The

infoData field which follows contains a Logon Info Version 2

(section 2.2.10.1.1.2) structure. This type was added in RDP

5.1 and SHOULD be used if the

LONG_CREDENTIALS_SUPPORTED (0x00000004) flag is set in

the General Capability Set (section 2.2.7.1.1).

INFOTYPE_LOGON_PLAINNOTIFY

0x00000002

This is a notification that the user has logged on. The

infoData field which follows contains a Plain Notify structure

which contains 576 bytes of padding (see Section

2.2.10.1.1.3). This type was added in RDP 5.1.

INFOTYPE_LOGON_EXTENDED_INF

0x00000003

The infoData field which follows contains a Logon Info

Extended (section 2.2.10.1.1.4) structure. This type was

added in RDP 5.2.

infoData (variable): TS_LOGON_INFO, TS_LOGON_INFO_VERSION_2 or
TS_LOGON_INFO_EXTENDED: Variable length logon information structure. The type of data
which follows depends on the value of the infoType field.

2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)

TS_LOGON_INFO is a fixed-length structure which contains logon information intended for the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbDomain

Domain

...

...

...

...

...

...

...

190 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

(Domain cont'd for 5 rows)

cbUserName

UserName

...

...

...

...

...

...

...

(UserName cont'd for 120 rows)

SessionId

 cbDomain (4 bytes): A 32-bit unsigned integer. The size of the Unicode character data

(including the mandatory null terminator), in bytes, present in the fixed-length Domain field.

 Domain (52 bytes): An array of 26 Unicode characters: Null-terminated Unicode string
containing the name of the domain to which the user is logged on. The length of the character

data in bytes is given by the cbDomain field.

 cbUserName (4 bytes): A 32-bit unsigned integer. Size of the Unicode character data
(including the mandatory null terminator), in bytes, present in the fixed-length UserName
field.

 UserName (512 bytes): An array of 256 Unicode characters: Null-terminated Unicode string
containing the username which was used to log on. The length of the character data in bytes
is given by the cbUserName field.

 SessionId (4 bytes): A 32-bit unsigned integer. Optional session ID of the session according
to the server. Sent by RDP 5.0 and later servers.

2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)

TS_LOGON_INFO_VERSION_2 is a variable length structure which contains logon information
intended for the client.

191 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Size

... SessionId

... cbDomain

... cbUserName

... Pad

...

...

...

...

...

...

...

(Pad cont'd for 132 rows)

Domain (variable)

...

UserName (variable)

...

 Version (2 bytes): A 16-bit unsigned integer. The logon version.

Value Meaning

SAVE_SESSION_PDU_VERSION_ONE

0x0001

Version 1

192 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 Size (4 bytes): A 32-bit unsigned integer. The total size in bytes of this structure, excluding
the Domain and UserName variable length fields.

 SessionId (4 bytes): A 32-bit unsigned integer. The session ID of the session according to
the server.

 cbDomain (4 bytes): A 32-bit unsigned integer. Size, in bytes, of the Domain field
(including the mandatory null terminator).

 cbUserName (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the UserName
field (including the mandatory null terminator).

 Pad (558 bytes): 558 bytes. Padding. Values in this field are ignored.

 Domain (variable): Variable length null-terminated Unicode string containing the name of
the domain to which the user is logged on. The size of this field in bytes is given by the
cbDomain field.

 UserName (variable): Variable length null-terminated Unicode string containing the user
name which was used to log on. The size of this field in bytes is given by the cbUserName
field.

2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY)

The TS_PLAIN_NOTIFY is a fixed-length structure which contains 576 bytes of padding.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad

...

...

...

...

...

...

...

(Pad cont'd for 136 rows)

Pad (576 bytes): 576 bytes. Padding. Values in this field are ignored.

193 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length FieldsPresent

... LogonFields (variable)

...

Pad

...

...

...

...

...

...

...

(Pad cont'd for 134 rows)

...

 Length (2 bytes): A 16-bit unsigned integer. The total size in bytes of this structure,
including the variable LogonFields field.

 FieldsPresent (4 bytes): A 32-bit unsigned integer. The flags indicating which fields are
present in the LogonFields field.

Value Meaning

LOGON_EX_AUTORECONNECTCOOKIE

0x00000001

An auto-reconnect cookie field is present. The

LogonFields field of the associated Logon Info (section

2.2.10.1.1.4.1) structure MUST contain a Server Auto-

Reconnect (section 2.2.4.2) structure.

LOGON_EX_LOGONERRORS

0x00000002

A logon error field is present. The LogonFields field of the

associated Logon Info MUST contain a Logon Errors Info

194 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Value Meaning

(section 2.2.10.1.1.4.1.1) structure.

 LogonFields (variable): Extended logon information fields encapsulated in Logon Info Field

structures. The presence of an information field is indicated by the flags within the
FieldsPresent field of the Logon Info Extended structure. The ordering of the fields is implicit

and is as follows:

1. Auto-reconnect cookie data

2. Logon notification data

If a field is not present, the next field which is present is read.

Pad (570 bytes): 570 bytes. Padding. Values in this field are ignored.

2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD)

The TS_LOGON_INFO_FIELD is used to encapsulate extended logon information field data of

variable length.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbFieldData

FieldData (variable)

...

 cbFieldData (4 bytes): A 32-bit unsigned integer. The size in bytes of the variable length
data in the FieldData field.

 FieldData (variable): Variable length data conforming to the structure for the type given in

the FieldsPresent field of the Logon Info Extended (section 2.2.10.1.1.4) structure.

2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO)

The TS_LOGON_ERRORS_INFO structure contains information which describes a logon error
notification.

195 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ErrorNotificationType

ErrorNotificationData

 ErrorNotificationType (4 bytes): A 32-bit unsigned integer. The type code of the
notification.

Value Meaning

LOGON_FAILED_BAD_PASSWORD

0x00000000

The logon process failed. The logon credentials which were

supplied are invalid.

LOGON_FAILED_UPDATE_PASSWORD

0x00000001

The logon process failed. The user cannot continue with the

logon process until the password is changed.

LOGON_FAILED_OTHER

0x00000002

The logon process failed. The reason for the failure can be

deduced from the ErrorNotificationData field.

LOGON_WARNING

0x00000003

The user received a warning during the logon process. The

reason for the warning can be deduced from the

ErrorNotificationData field.

ErrorNotificationData (4 bytes): A 32-bit unsigned integer. Error code describing the reason

for the notification. Microsoft RDP servers populate this field with an NTSTATUS error code
(see [ERRTRANS] for information on translating NTSTATUS error codes to usable text strings)
which describes the issue which triggered the error.

2.2.11 Controlling Server Graphics Output

2.2.11.1 Inclusive Rectangle (TS_RECTANGLE16)

The TS_RECTANGLE16 structure describes a rectangle expressed in inclusive coordinates (the right
and bottom coordinates are included in the rectangle bounds).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

left top

right bottom

 left (2 bytes): A 16-bit unsigned integer. The leftmost bound of the rectangle.

 top (2 bytes): A 16-bit unsigned integer. The upper bound of the rectangle.

 right (2 bytes): A 16-bit unsigned integer. The rightmost bound of the rectangle.

 bottom (2 bytes): A 16-bit unsigned integer. The lower bound of the rectangle.

http://go.microsoft.com/fwlink/?LinkId=89860

196 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.11.2 Client Refresh Rect PDU

The Refresh Rect PDU allows the client to request that the server redraw one or more rectangles of
the session screen area. The client can use it to repaint sections of the client window that were
obscured by other windowed applications. Server support for this PDU is indicated in the General
Capability Set (section 2.2.7.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

refreshRectPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in

[T125] (the ASN.1 structure definition is given [T125] in section 7, part 7). The userData
field of the MCS Send Data Request PDU contains a Security Header and the Refresh Rect PDU
data (section 2.2.11.2.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater
than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following
headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),
ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by

the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

refreshRectPduData (variable): TS_REFRESH_RECT_PDU (variable number of bytes): The
actual contents of the Refresh Rect PDU, as specified in section 2.2.11.2.1.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

197 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU)

The TS_REFRESH_RECT_PDU structure contains the contents of the Refresh Rect PDU, which is a
Share Data Header (section 2.2.8.1.1.1.2) and two fields.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... numberOfAreas pad3Octects

... areasToRefresh (variable)

...

 shareDataHeader (18 bytes): A Share Data Header containing information about the
packet. The type subfield of the pduType field of the Share Control Header (section

2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of the Share Data
Header MUST be set to PDUTYPE2_REFRESH_RECT (33).

 numberOfAreas (1 byte): An 8-bit unsigned integer. The number of Inclusive Rectangle

(section 2.2.11.1) structures in the areasToRefresh field.

 pad3Octects (3 bytes): A 3 element array of 8-bit unsigned integer values. Padding. Values
in this field are ignored.

 areasToRefresh (variable): An array of TS_RECTANGLE16 structures (variable number of
bytes). Array of screen area Inclusive Rectangles to redraw. The number of rectangles is given
by the numberOfAreas field.

2.2.11.3 Client Suppress Output PDU

The Suppress Output PDU is sent by the client to toggle all display updates from the server. This
packet does not end the session or socket connection. Typically, a client sends this packet when its

window is either minimized or restored.

198 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tpktHeader

x224Data mcsSDrq (variable)

...

securityHeader (variable)

...

suppressOutputPduData (variable)

...

tpktHeader (4 bytes): A TPKT Header, as specified in [T123] section 8.

x224Data (3 bytes): An X.224 Class 0 Data TPDU, as specified in [X224] section 13.7.

mcsSDrq (variable): Variable length PER-encoded MCS Send Data Request PDU, as specified in
[T125] (the ASN.1 structure definition is given in [T125] section 7, part 7). The userData
field of the MCS Send Data Request PDU contains a Security Header and the Client Suppress
Output PDU Data (section 2.2.11.3.1).

securityHeader (variable): Optional security header. If Standard RDP Security is in effect and
the Encryption Method selected by the server (see sections 5.3.2 and 2.2.1.4.3) is greater

than ENCRYPTION_METHOD_NONE (0), then this field will contain one of the following

headers:

 Non-FIPS Security Header (section 2.2.8.1.1.2.2) if the Encryption Level selected by the
server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_LOW (1),

ENCRYPTION_LEVEL_CLIENT_COMPATIBLE (2) or ENCRYPTION_LEVEL_HIGH (3).

 FIPS Security Header (section 2.2.8.1.1.2.3) if the Encryption Level selected by the server
(see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_LEVEL_FIPS (4).

If Enhanced RDP Security (see section 5.4) is in effect or the Encryption Method selected by

the server (see sections 5.3.2 and 2.2.1.4.3) is ENCRYPTION_METHOD_NONE (0), then this
header is not included in the PDU.

suppressOutputPduData (variable): TS_SUPPRESS_OUTPUT_PDU (variable number of

bytes):

The actual contents of the Suppress Output PDU, as specified in section 2.2.11.3.1.

2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU)

The TS_SUPPRESS_OUTPUT_PDU structure contains the contents of the Suppress Output PDU,
which is a Share Data Header (section 2.2.8.1.1.1.2) and two fields.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

199 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shareDataHeader

...

...

...

... supressOutput pad3Octects

... desktopRect

...

...

shareDataHeader (18 bytes): AShare Data Header containing information about the packet
(see section 2.2.8.1.1.1.2). The type subfield of the pduType field of the Share Control

Header (section 2.2.8.1.1.1.1) MUST be set to PDUTYPE_DATAPDU (7). The pduType2 field of
the Share Data Header MUST be set to PDUTYPE2_SUPPRESS_OUTPUT (35).

supressOutput (1 byte): An 8-bit unsigned integer. If set to zero, all screen updates from the
server are turned off. Any value greater than zero will restore display updates from the server.

pad3Octects (3 bytes): A 3 element array of 8-bit unsigned integer values. Padding. Values in
this field are ignored.

desktopRect (8 bytes): An Inclusive Rectangle (section 2.2.11.1) which contains the

coordinates of the virtual desktop if the suppressOutput field is greater than zero. If the
suppressOutput field is set to zero, this field is not included in the PDU.

200 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3 Protocol Details

The following sections specify details of the Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting Specification, including abstract data models and message processing rules.

3.1 Common Details

3.1.1 Abstract Data Model

No common abstract data model is specified.

3.1.2 Timers

No common timers are used.

3.1.3 Initialization

No common initialization steps are specified.

3.1.4 Higher-Layer Triggered Events

No common higher-layer triggered events are used.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Disconnection Sequences

3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU

The structure and fields of the MCS Disconnect Provider Ultimatum PDU are specified in section

2.2.2.1.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as
specified in [X224].

The MCS Disconnect Provider Ultimatum PDU (embedded within the mcsDPum field) is specified in
detail in [T125]. Only the rn- provider-initiated (1) or rn-user-requested (3) reason codes SHOULD
be used in the reason field.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol (section 5.4.5)

MUST be used to encrypt the entire PDU and generate a verification digest (possibly by using some
sort of MAC signature) before the PDU is transmitted over the wire.

3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDU

The structure and fields of the MCS Disconnect Provider Ultimatum PDU are specified in section
2.2.2.1.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used

to decrypt and verify the integrity of the entire PDU (possibly by using some sort of MAC signature)
prior to any processing taking place.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

201 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the

connection SHOULD be dropped.

The MCS Disconnect Provider Ultimatum PDU (embedded within the mcsDPum field) is specified in
detail in [T125].

3.1.5.2 Static Virtual Channels

3.1.5.2.1 Sending of Virtual Channel PDU

The Virtual Channel PDU is transmitted by both the client and the server. Its structure and fields are
specified in Virtual Channel PDU (section 2.2.6.1).

If the client is sending the virtual channel data, Construction of a Basic Client-to-Server Slow-Path

PDU (section 3.2.5.1) describes how to construct the PDU. Construction of a Basic Server-to-Client
Slow-Path PDU (section 3.3.5.1) describes how to construct the PDU if the server is sending the
virtual channel data. In both of these referenced descriptions, the instructions regarding the Share
Data Header (TS_SHAREDATAHEADER) (section 2.2.8.1.1.1.2) MUST be ignored since it is not

present in the PDU.

The mcsPdu field encapsulates either an MCS Send Data Request PDU or an MCS Send Data
Indication PDU (see [T125]). In either case, the embedded channelId field MUST contain the

server-assigned virtual channel ID – the static virtual channels are requested by name in the Client
Network Data (see section 2.2.1.3.4), and the server-assigned IDs for each of those channels are
enumerated in the Server Network Data (see section 2.2.1.4.4).

The usage of compression for virtual channel traffic is negotiated in the Virtual Channel Capability
Set (see section 2.2.7.1.11), while the highest compression level supported by the client is
advertised in the Client Info PDU (see section 3.2.5.3.11). If compression of the opaque virtual
channel traffic has been negotiated, the sending entity SHOULD compress the data before it is

encrypted.

If compression is to be applied to client-to-server traffic, MPCC-8K MUST be used (for scalability

reasons), while the compression type to apply to server-to-client traffic MUST be the highest type

advertised by the client and supported by the server. Furthermore, server-to-client virtual channel
traffic MUST always be compressed with the same history buffer used to compress any other server-
to-client RDP traffic (see Abstract Data Model (section 3.1.8.1)).

The resultant virtual channel data sent on the wire (contained in the virtualChannelData field)
MUST be smaller than 1600 bytes in length. If the data is chunked, the Channel PDU Header
(section 2.2.6.1.1) flags MUST be updated appropriately.

3.1.5.2.2 Processing of Virtual Channel PDU

The Virtual Channel PDU is received by both the client and the server. Its structure and fields are
specified in 2.2.6.1.

If the client has received the virtual channel data, 3.3.5.2 describes how to process the PDU. 3.3.5.2
describes how to process the PDU if the server has received the virtual channel data. In both of
these referenced descriptions, the instructions regarding the Share Data Header
(TS_SHAREDATAHEADER) (section 2.2.8.1.1.1.2) MUST be ignored since it is not present in the

PDU.

The mcsPdu field encapsulates either an MCS Send Data Request PDU or an MCS Send Data
Indication PDU (see [T125]). In either case, the embedded channelId field MUST contain the

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90543

202 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

server-assigned virtual channel ID. This ID is used to route the virtualChannel payload to the
appropriate virtual channel endpoint after decryption of the PDU and any necessary decompression

of the payload has been conducted.

The received virtual channel data can span multiple Virtual Channel PDUs as the data MUST be
chunked into 1600 byte blocks by the sender. Individual implementations can decide whether to
pass on individual chunks as they are received or to assemble the separate chunks of data into a

complete block before passing it on to the appropriate virtual channel endpoint.

3.1.6 Timer Events

No common timer events are used.

3.1.7 Other Local Events

No additional events are used.

3.1.8 MPPC-Based Bulk Data Compression

RDP uses a modified form of the Microsoft Point-to-Point Compression (MPPC) protocol to perform

bulk compression of the PDU contents. This protocol is described in [RFC2118]. There are two forms
of compression used at the server and client:

1. The original MPPC protocol, with an 8K history buffer (MPPC-8K).

2. A modified version of MPPC which uses a 64K history buffer and implements rearranged Huffman
style encoding for the bitstream formats (MPPC-64K).

Both the server and client may operate as the sender of compressed data. Server-to-client
compression can be used for Fast-Path output data (see Fast-Path Update (TS_FP_UPDATE) (section

2.2.9.1.2.1)), Slow-Path output data (see Slow-Path (T.128) Format (section 2.2.9.1.1)) or virtual
channel data (see Virtual Channel PDU (section 2.2.6.1)). Client-to-server compression can currently
only be used for virtual channel data (see Virtual Channel PDU (section 2.2.6.1)).

The client advertises the maximum compression type it supports in the Client Info PDU see Client
Security Exchange PDU (section 2.2.1.10). In response the server selects a compression type within
the range advertised by the client. This compression type is then used when performing all

subsequent server-to-client and client-to-server bulk compression.

The compression type usage is indicated on a per-PDU basis by compression flags which are set in
the header flags associated with each PDU. Besides being used to indicate the compression type, the
compression flags are also used to communicate compression state changes which are required to

maintain state synchronization. The header used to transmit the compression flags will depend on
the type of data payload, such as Fast-Path output data see Fast-Path Update (TS_FP_UPDATE)
(section 2.2.9.1.2.1), virtual channel data (see Virtual Channel PDU (section 2.2.6.1)) or Slow-Path

data see Slow-Path (T.128) Format (section 2.2.9.1.1).

3.1.8.1 Abstract Data Model

The shared state necessary to support the transmission and reception of compressed data between
a client and server requires a history buffer and a current offset into the history buffer
(HistoryOffset). The size of the history buffer depends on the compression type being used (8 KB
for MPPC-8K and 64 KB for MPPC-64K). The history buffer and HistoryOffset MUST both start

initialized to zero.

http://go.microsoft.com/fwlink/?LinkId=90316

203 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

While compressing data, the sender endpoint inserts the uncompressed data at the position in the
history buffer given by the HistoryOffset. After insertion, the HistoryOffset is advanced by the

amount of data added. If the data does not fit into the history buffer (the sum of the HistoryOffset
and the size of the uncompressed data exceeds the size of the history buffer), the HistoryOffset
MUST be reset to the start of the history buffer (offset 0).

As the receiver endpoint decompresses the data, it inserts the decompressed data at the position in

the history buffer given by its local copy HistoryOffset. If a reset occurs, the sender endpoint

MUST notify the target receiver so it can reset its local state. In this way, the sender and receiver
endpoints maintain an exact replica of the history buffer and HistoryOffset.

3.1.8.2 Compressing Data

The uncompressed data is first inserted into the local history buffer at the position indicated by

HistoryOffset by the sender. The compressor then runs through the length of newly added
uncompressed data to be sent and produces as output a sequence of literals (bytes to be sent
uncompressed) or copy-tuples which consists of a <copy-offset, length-of-match> pair.

The copy-offset component of the copy-tuple is an index into HistoryBuffer (counting backwards

from the current byte being compressed in the history buffer towards the start of the buffer) where
there is a match to the data to be sent. The length-of-match component is the length of that match
in bytes. If the resulting data is not smaller than the original bytes (that is, expansion instead of

compression results), then this results in a flush and the data is sent uncompressed so as never to
send more data than the original uncompressed bytes.

In this way the compressor aims to reduce the size of data that needs to be transmitted. For

example, consider the following string:

0 1 2 3 4

012345678901234567890123456789012345678901234567890

for whom the bell tolls, the bell tolls for thee.

The compressor would produce:

for whom the bell tolls,<16,15> <40,4><19,3>e.

The <16,15> tuple is the compression of '.the.bell.tolls' and <40,4> is 'for.', <19,3> gives 'the'.
(The '.' values indicate space characters.)

The literal and copy-tuples are then encoded using the MPPC encoding scheme for the 8K and 64K

variants see MPPC-8K (section 3.1.8.4.1) and MPPC-64K (section 3.1.8.4.2) respectively.

3.1.8.2.1 Setting the Compression Flags

The sender MUST always specify the compression flags associated with a compressed payload.
These flags MUST be set in the header field appropriate to the type of data payload, such as Fast-
Path output data (see Fast-Path Update (TS_FP_UPDATE) (section 2.2.9.1.2.1), virtual channel data
(see Virtual Channel PDU (section 2.2.6.1), or Slow-Path data (see Slow-Path (T.128) Format

(section 2.2.9.1.1).

The compression flags are produced by performing a logical OR operation of the compression type
with one or more of the following flags.

204 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Compression flag Meaning

PACKET_FLUSHED

0x80

Used to indicate that the history buffer MUST be reinitialized. This value

corresponds to MPPC bit A (see [RFC2118] section 3.1). This flag MUST be set

without setting any other flags except the compression type.

This flag MUST be set if the compression would generate an expansion of the

data and indicates to the decompressor that it should reset its history buffer,

HistoryOffset value and restart on reception of the next batch of compressed

bytes. If this condition occurs, the data MUST be sent in uncompressed form.

PACKET_AT_FRONT

0x40

Used to indicate that the decompressed data MUST be placed at the beginning of

the local history buffer. This value corresponds to MPPC bit B (see section 3.1 in

[RFC2118]. This flag MUST be set in conjunction with the PACKET_COMPRESSED

(0x80) flag.

There are two conditions on the "compressor-side" that generate this scenario:

(1) this is the first packet to be compressed and (2) the data to be compressed

will not fit at the end of the history buffer but instead needs to be placed at the

start of the history buffer.

PACKET_COMPRESSED

0x20

Used to indicate that the data is compressed. This value corresponds to MPPC bit

C (see [RFC2118] section 3.1). This flag MUST be set when compression of the

data was successful.

The flowchart in Figure 4 illustrates the general operation of the compressor and the production of

the various compression flags.

http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90316

205 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Figure 5: Operation of the bulk compressor

3.1.8.3 Decompressing Data

An endpoint which receives compressed data MUST decompress the data and store the resultant

data at the end of the history buffer. The order of actions depends on the compression flags
associated with the compressed data.

206 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Compression flag Meaning

PACKET_FLUSHED

0x80

If this flag is set, the decompressor MUST reset its state, by clearing the history

buffer and resetting the HistoryOffset to 0.

PACKET_AT_FRONT

0x40

If this flag is set, the decompressor MUST start decompressing to the start of the

history buffer, by resetting the HistoryOffset to 0. Otherwise, the decompressor

MUST append the decompressed data to the end of the history buffer.

PACKET_COMPRESSED

0x20

If this flag is set, the decompressor MUST decompress the data, appending the

decompressed data to the history buffer and advancing the HistoryOffset by the

size of the resulting decompressed data.

3.1.8.4 Compression Types

3.1.8.4.1 MPPC-8K

3.1.8.4.1.1 Literal Encoding

Literals are bytes sent uncompressed. If the value of a literal is below 0x80, it is not encoded in any

special manner. If the literal has a value greater than 0x7F it is sent as the bits 10 followed by the
lower 7 bits of the literal. For example, 0x56 is transmitted as the binary value 01010110, while
0xE7 is transmitted as the binary value 101100111.

3.1.8.4.1.2 Copy-Tuple Encoding

Copy-tuples consist of a <copy-offset> and <length-of-match> pair; see Compressing Data (section
3.1.8.2) for more details.

3.1.8.4.1.2.1 Copy-Offset Encoding

Encoding of the copy-offset value is performed according to the following table:

Copy-Offset range Encoding (binary header + copy-offset bits)

0...63 1111 + lower 6 bits of copy-offset

64...319 1110 + lower 8 bits of (copy-offset – 64)

320...8191 110 + lower 13 bits of (copy-offset – 320)

For example:

 A copy-offset value of 3 is encoded as the binary value 1111 000011.

 A copy-offset value of 128 is encoded as the binary value 1110 01000000

 A copy-offset value of 1024 is encoded as the binary value 110 0001011000000.

A copy-offset value MUST be followed by a length-of-match value.

3.1.8.4.1.2.2 Length-of-Match Encoding

Encoding of the length-of-match (L-o-M) value is performed according to the following table.

207 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

L-o-M range Encoding (binary header + L-o-M bits)

3 0

4...7 10 + 2 lower bits of (L-o-M - 4)

8...15 110 + 3 lower bits of (L-o-M – 8)

16...31 1110 + 4 lower bits of (L-o-M – 16)

32...63 11110 + 5 lower bits of (L-o-M – 32)

64...127 111110 + 6 lower bits of (L-o-M – 64)

128...255 1111110 + 7 lower bits of (L-o-M – 128)

256...511 11111110 + 8 lower bits of (L-o-M – 256)

512...1023 111111110 + 9 lower bits of (L-o-M – 512)

1024...2047 1111111110 + 10 lower bits of (L-o-M – 1024)

2048...4095 11111111110 + 11 lower bits of (L-o-M – 2048)

4096...8191 111111111110 + 12 lower bits of (L-o-M – 4096)

3.1.8.4.2 MPPC-64K

The rules for MPPC-64K are very similar to those of MPPC-8K (see MPPC-8K (section 3.1.8.4.1).
MPPC-64K has a history buffer size of 64 KB, thus both endpoints MUST maintain a 64 K window.

3.1.8.4.2.1 Literal Encoding

Literals are bytes sent uncompressed. If the value of a literal is below 0x80, it is not encoded in any
special manner. If the literal has a value greater than 0x7F it is sent as the bits 10 followed by the

lower 7 bits of the literal. For example, 0x56 is transmitted as the binary value 01010110, while
0xE7 is transmitted as the binary value 101100111.

3.1.8.4.2.2 Copy-Tuple Encoding

Copy-tuples consist of a <copy-offset> and <length-of-match> pair; see Compressing Data (section
3.1.8.2) for more details.

3.1.8.4.2.2.1 Copy-Offset Encoding

Encoding of the copy-offset value is performed according to the following table.

Copy-offset range Encoding (binary header + copy-offset bits)

0...63 11111 + lower 6 bits of offset

64...319 11110 + lower 8 bits of (offset – 64)

320...2367 1110 + lower 11 bits of (offset – 320)

2368+ 110 + lower 16 bits of (offset – 2368)

208 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

A copy-offset value MUST be followed by a length-of-match value.

3.1.8.4.2.2.2 Length-of-Match Encoding

Encoding of the length-of-match (L-o-M) value is performed according to the following table.

L-o-M range Encoding (binary header + L-o-M bits)

3 0

4..7 10 + 2 lower bits of (L-o-M – 4)

8..15 110 + 3 lower bits of (L-o-M – 8)

16..31 1110 + 4 lower bits of (L-o-M – 16)

32..63 11110 + 5 lower bits of (L-o-M – 32)

64..127 111110 + 6 lower bits of (L-o-M – 64)

128..255 1111110 + 7 lower bits of (L-o-M – 128)

256..511 11111110 + 8 lower bits of (L-o-M – 256)

512..1023 111111110 + 9 lower bits of (L-o-M – 512)

1024..2047 1111111110 + 10 lower bits of (L-o-M – 1024)

2048..4095 11111111110 + 11 lower bits of (L-o-M – 2048)

4096..8191 111111111110 + 12 lower bits of (L-o-M – 4096)

8192..16383 1111111111110 + 13 lower bits of (L-o-M – 8192

)

16384..32767 11111111111110 + 14 lower bits of (L-o-M – 16384)

32768..65535 111111111111110 + 15 lower bits of (L-o-M – 32768)

3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This document does not mandate that implementations adhere to this model as
long as their external behavior is consistent with that described in this document.

Note The conceptual data below can be implemented using a variety of techniques. An

implementation is at liberty to implement such data in any way it pleases.

3.2.1.1 Received Server Data

The Received Server Data store contains data received from the server during execution of the
Remote Desktop Protocol. This store is initialized when processing the MCS Connect Response PDU
with GCC Conference Create Response (see sections 2.2.1.4 and 3.2.5.3.4).

209 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.1.2 Static Virtual Channel IDs

The Static Virtual Channel IDs store contains the MCS channel identifiers of the static virtual
channels. This data store is initialized when processing the Server Network Data (see sections
2.2.1.4.4 and 3.2.5.3.4).

3.2.1.3 I/O Channel ID

The I/O Channel ID store contains the MCS channel identifier of the I/O channel. This data store is
initialized when processing the Server Network Data (see sections 2.2.1.4.4 and 3.2.5.3.4).

3.2.1.4 User Channel ID

The User Channel ID store contains the MCS channel identifier of the user channel. This data store is
initialized when processing the MCS Attach User Confirm PDU (see sections 2.2.1.7 and 3.2.5.3.7).

3.2.1.5 Server Channel ID

The Server Channel ID store contains the MCS channel identifier of the server channel. This data

store is initialized when processing the Demand Active PDU, see sections 2.2.1.13.1.1 and
3.2.5.3.13.1.

3.2.1.6 Server Capabilities

The Server Capabilities store contains capability sets (see Versioning and Capability Negotiation
(section 1.7) and 0) received from the server in the Demand Active PDU (see Server Demand Active
PDU (section 2.2.1.13.1) and Processing of Demand Active PDU (section 3.2.5.3.13.1)). The client

MUST ensure that it does not violate any of the server capabilities when sending data to the server—
for example, if the server does not support Fast-Path input (see section Input Capability Set
(TS_INPUT_CAPABILITY_SET)), the client MUST only send Slow-Path input PDUs. In effect, the

client MUST ensure that all of the RDP traffic which it sends on the wire is consistent with the
expectations of the server as described by the data held in the Server Capabilities Store.

3.2.1.7 Share ID

The Share ID store holds the share identifier selected by the server (see [T128] section 8.4.2 for
more information regarding share IDs). This data store is initialized when processing the Demand
Active PDU (see Server Demand Active PDU (section 2.2.1.13.1) and Processing of Demand Active

PDU (section 3.2.5.3.13.1)) and is used to initialize the shareId field of the Share Data Header
when sending basic client-to-server Slow-Path PDUs (Construction of a Basic Client-to-Server Slow-
Path PDU (section 3.2.5.1)).

3.2.1.8 Automatic Reconnection Cookie

The Automatic Reconnection Cookie store contains a cookie received from the server which may be
used to seamlessly auto-reconnect if the connection is broken due to short-term network failure (see

Automatic Reconnection (section 5.5)). The cookie is received in a Save Session Info PDU (see
Server Save Session Info PDU (section 2.2.10.1) and Processing of Save Session Info PDU (section
3.2.5.9.5.1).

3.2.1.9 Server Licensing Encryption Ability

The Server Licensing Encryption Ability store determines whether the server has the ability to handle
encrypted licensing packets when using Standard RDP Security mechanisms (see the discussion of

http://go.microsoft.com/fwlink/?LinkId=90544

210 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

the SEC_LICENSE_ENCRYPT_CS flag in Basic (TS_SECURITY_HEADER) (section 2.2.8.1.1.2.1)). This
fact is communicated to the client by setting the SEC_LICENSE_ENCRYPT_CS (0x0200) flag in all

licensing PDUs sent from the server.

3.2.1.10 Pointer Image Cache

The Pointer Image Cache contain a collection of pointer images saved from Color Pointer Updates

(see sections Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE) (section
2.2.9.1.2.1.7), Processing of Slow-Path Pointer Update PDU (section 3.2.5.9.2) and Processing of
Fast-Path Update PDU (section 3.2.5.9.3)) and New Pointer Updates (see sections Fast-Path New

Pointer Update (TS_FP_POINTERATTRIBUTE), Processing of Slow-Path Pointer Update PDU (section
3.2.5.9.2) and Processing of Fast-Path Update PDU (section 3.2.5.9.3)). The images stored in the
cache are used to set the shape of the pointer when processing a Cached Pointer Update (see

sections Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE) (section 2.2.9.1.1.4.6),
Processing of Slow-Path Pointer Update PDU (section 3.2.5.9.2) and Processing of Fast-Path Update
PDU (section 3.2.5.9.3)). The size and color depth (either variable or fixed at 24 bits-per-pixel) of
the cache is negotiated in the Pointer Capability Set (see Pointer Capability Set

(TS_POINTER_CAPABILITY_SET) (section 2.2.7.1.6)).

3.2.2 Timers

No client timers are used.

3.2.3 Initialization

No client initialization steps are specified.

3.2.4 Higher-Layer Triggered Events

No client higher-layer triggered events are used.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Constructing a Basic Client-to-Server Slow-Path PDU

The majority of client-to-server Slow-Path PDUs have the same basic structure (see sections 5.3.8
and 5.4.4):

 tpktHeader: TPKT Header (see [T123] section 8)

 x224Data: X.224 Data TPDU (see [X224] section 13.7)

 mcsSDrq: MCS Send Data Request PDU (see [T125] section 7, Part 7)

 securityHeader: Optional Security Header (see section 2.2.8.1.1.2)

 shareDataHeader: Share Data Header (see section 2.2.8.1.1.1.2)

 Actual PDU Contents (see section 2.2 describing the PDU structure and fields)

The PDUs conforming to this basic structure MAY be constructed using the same techniques.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as

specified in [X224].

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

211 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The mcsSDrq field is initialized as specified in [T125]. The embedded initiator field MUST be set to
the MCS user channel ID (held in the User Channel ID store specified in section 3.2.1.4) and the

embedded channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID
store described in section 3.2.1.3). The embedded userData field contains the remaining fields of
the PDU.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used

to encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC

signature) before the PDU is transmitted over the wire. Also, in this scenario, the securityHeader
field MUST NOT be present.

If Standard RDP Security mechanisms (see section 5.3) are in effect, the PDU data following the
optional securityHeader field may be encrypted and signed (depending on the values of the
Encryption Level and Encryption Method selected by the server as part of the negotiation specified in

section 5.3.2), using the methods and techniques specified in 5.3.6. The format of the
securityHeader field is selected (as specified in section 2.2), and the fields populated with
appropriate security data. If the data MUST be encrypted, the embedded flags field of the
securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The shareDataHeader field contains a Share Data Header structure as described in Share Data
Header (TS_SHAREDATAHEADER) (section 2.2.8.1.1.1.2). The pduSource of the embedded Share
Control Header MUST be set to the MCS user channel ID (held in the User Channel ID (section

3.2.1.4) store). If the contents of the PDU are to be compressed (this MUST be done before any
MAC signature is constructed and encryption methods applied), the embedded compressedType
field of the shareDataHeader MUST be initialized as specified in Share Data Header

(TS_SHAREDATAHEADER) (section 2.2.8.1.1.1.2). The remaining Share Data Header and Share
Control Header fields MUST be populated as specified in Share Control Header
(TS_SHARECONTROLHEADER) (section 2.2.8.1.1.1.1), Share Data Header
(TS_SHAREDATAHEADER) (section 2.2.8.1.1.1.2) and, section 2.2.

The remaining fields are populated as specified in the section 2.2.

3.2.5.2 Processing a Basic Server-to-Client Slow-Path PDU

The majority of server-to-client Slow-Path PDUs have the same basic structure (see sections 5.3.8
and 5.4.4):

 tpktHeader: TPKT Header (see [T123] section 8)

 x224Data: X.224 Data TPDU (see [X224] section 13.7)

 mcsSDin: MCS Send Data Indication PDU (see [T125] section 7, part 7)

 securityHeader: Optional Security Header (see section 2.2.8.1.1.2)

 shareDataHeader: Share Data Header (see Share Data Header (TS_SHAREDATAHEADER)

(section 2.2.8.1.1.1.2))

 Actual PDU Contents (see section 2.2 describing the PDU structure and fields)

The PDUs conforming to this basic structure MAY be processed using the same techniques.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)
being used to secure the connection MUST be used to decrypt and verify the integrity of the entire
PDU (possibly by using some sort of MAC signature) prior to any processing taking place.

http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

212 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The embedded length fields within the tpktHeader (see [T123]), x224Data (see [X224]), and
mcsSDin (see [T125]) fields MUST be examined for consistency with the received data. If there is

any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDin is used to route the PDU to the appropriate
target channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security

Header structure present in this field, are explained in the section specifying the PDU structure and
fields (see section 2.2). If the securityHeader field is present, the embedded flags field MUST be
examined for the presence of the SEC_ENCRYPT (0x0008) flag (see Basic

(TS_SECURITY_HEADER) (section 2.2.8.1.1.2.1)), and, if it is present, the data following the
securityHeader field MUST be verified and decrypted using the methods and techniques specified
in section 5.3.6. If the MAC signature is incorrect, or the data cannot be decrypted correctly, the

connection SHOULD be dropped. If Enhanced RDP Security is in effect, and the SEC_ENCRYPT
(0x0008) flag is present, the connection SHOULD be dropped, as double-encryption is not used
within RDP in the presence of an External Security Protocol (section 5.4.5) provider.

3.2.5.3 Normal Connection Sequence

3.2.5.3.1 Sending X.224 Connection Request PDU

The structure and fields of the X.224 Connection Request PDU are specified in section 2.2.1.1.

The tpktHeader field is initialized as specified in [T123], while the x224Crq field is initialized as
specified in [X224] (the Destination reference and Source reference fields are both set to zero, and

the Class and options field is set to zero). Parameter fields MUST NOT be specified in the variable
part of the Connection Request PDU. This implies that the default maximum size of an X.224 Data
PDU payload (65528 bytes) is used, since the maximum TPDU size and preferred maximum TPDU
size are not present.

The routingToken field is optional. The client may have obtained a routing token from an external
source (via a scriptable API), or it may have received a token embedded within the Server

Redirection PDU (see[MS-RDPEGDI] section 2.2.3). If the client does not have a routing token, it

MAY construct one. In the absence of a routing token, the Microsoft RDP client sends the username
(truncated to nine characters) in the following format:

Cookie: mstshash=username

The optional rdpNegData field contains an RDP Negotiation Request structure, as specified in
section 2.2.1.1.1. The requestedProtocols field is initialized with flags describing the security
protocols which the client supports (see section 5.4 for more details on Enhanced RDP Security).

3.2.5.3.2 Processing X.224 Connection Confirm PDU

The structure and fields of the X.224 Connection Confirm PDU are specified in section 2.2.1.2.

The embedded length fields within the tpktHeader (see [T123]) and x224Ccf (see [X224]) fields

MUST be examined for consistency with the received data. If there is any discrepancy, the
connection SHOULD be dropped. The Destination reference, Source reference and Class and options
fields within the x224Ccf field MAY be ignored.

If the rdpNegData field is not present, it is assumed that the server does not support Enhanced

RDP Security (section 5.4) and the protocol selected by the server is implicitly assumed to be
PROTOCOL_RDP (0x00000000). If the rdpNegData is present, then it MUST contain either a

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
%5bMS-RDPEGDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

213 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

RDP Negotiation Response structure or RDP Negotiation Failure structure. If any other structure is
present, the connection SHOULD be dropped.

If an RDP Negotiation Failure structure is present, the failure code is extracted from the
failureCode field and the connection SHOULD be dropped (see section 2.2.1.2.2 for a list of failure
codes). If an RDP Negotiation Response structure is present, the selectedProtocol field is parsed to
extract the selected protocol identifier (see section 2.2.1.2.1 for a list of identifiers).

If an External Security Protocol (section 5.4.5) will be used for the duration of the connection, the
client MUST execute the selected protocol at this stage by calling into the relevant External Security
Protocol (section 5.4.5) provider. Once the External Security Protocol (section 5.4.5) handshake has

run to completion, the client MUST continue with the connection sequence by sending the MCS
Connect Initial PDU to the server over the newly established secure channel (see section 3.2.5.3.3).

If Standard RDP security mechanisms (see section 5.3) are to be used, that is, the protocol selected

by the server is PROTOCOL_RDP (0x00000000), then the client MUST continue with the connection
sequence by sending the MCS Connect Initial PDU with GCC Conference Create Request to the
server (see section 2.2.1.3).

3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request

The structure and fields of the MCS Connect Initial PDU with GCC Conference Create Request are
specified in section 2.2.1.3. A basic high-level overview of the nested structure for the MCS Connect

Initial PDU is illustrated in Figure 2.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as
specified in [X224].

The MCS Connect Initial PDU (embedded within the mcsCi field) is specified in detail in [T125]. The
client SHOULD initialize the fields of the MCS Connect Initial PDU as follows:

Connect initial field Value

calledDomainSelector 0x01

callingDomainSelector 0x01

upwardFlag TRUE

targetParameters See table which follows.

minimumParameters See table which follows.

maximumParameters See table which follows.

userData GCC Conference Create Request

The targetParameters, minimumParameters, and maximumParameters domain parameter structures

SHOULD be initialized as follows:

Domain parameter targetParameters minimumParameters maximumParameters

maxChannelIds 34 1 65535

maxUserIds 2 1 65535

maxTokenIds 0 1 65535

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

214 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Domain parameter targetParameters minimumParameters maximumParameters

numPriorities 1 1 1

minThroughput 0 0 0

maxHeight 1 1 1

maxMCSPDUsize 65535 1056 65535

protocolVersion 2 2 2

The userData field of the MCS Connect Initial PDU contains the GCC Conference Create Request

(embedded within the gccCCrq field). The GCC Conference Create Request is specified in detail in
[T124] and appended as user data to the MCS Connect Initial PDU using the format specified in
[T124] sections 9.5 and 9.6. The client SHOULD initialize the fields of the GCC Conference Create

Request (section 3.3.5.3.3) as follows:

Conference create request field Value

conferenceName "1"

convenerPassword Optional field, not used.

password Optional field, not used.

lockedConference FALSE

listedConference FALSE

conductibleConference FALSE

terminationMethod automatic (0)

conductorPrivileges Optional field, not used.

conductedPrivileges Optional field, not used.

nonConductedPrivileges Optional field, not used.

conferenceDescription Optional field, not used.

callerIdentifier Optional field, not used.

userData Basic client settings data blocks

The userData field of the GCC Conference Create Request (section 3.3.5.3.3) MUST be initialized
with basic client settings data blocks (see sections 2.2.1.3.2 through to 2.2.1.3.5). The client-to-

server H.221 key which MUST be embedded at the start of the userData field (see [T124] section
8.7 for a description of the structure of user data) is the ANSI text "Duca".

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)

MUST be used to encrypt the entire PDU and generate a verification digest (possibly by using some
sort of MAC signature) before the PDU is transmitted over the wire.

http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542

215 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create

Response

The structure and fields of the MCS Connect Response PDU with GCC Conference Create Response
are specified in section 2.2.1.4. A basic high-level overview of the nested structure for the MCS

Connect Response PDU is illustrated in Figure 2.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used

to decrypt and verify the integrity of the entire PDU (possibly by using some sort of MAC signature)

prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the

connection SHOULD be dropped.

The MCS Connect Response PDU (embedded within the mcsCrsp field) is specified in [T125]. The
client ignores the calledConnectId and domainParameters fields of this PDU. If the result field is
set to rt-successful (0) the client MUST send the MCS Erect Domain Request PDU to the server (see

section 3.3.5.3.5). If the result field is set to any other value, the client SHOULD drop the
connection.

The mcsCrsp field of the MCS Connect Response PDU contains the GCC Conference Create

Response data (embedded within the gccCCrsp field). The GCC Conference Create Response is
described in detail in [T124] and appended as user data to the MCS Connect Response PDU using
the format specified in [T124] sections 9.5 and 9.6. Microsoft RDP Servers incorrectly hard-code the

length of the MCS Connect Response PDU user data as 0x2A (42) bytes —the client SHOULD ignore
this incorrect length and MUST NOT generate an error.

The client ignores all of the GCC Conference Create Response fields, except for the userData field.
The userData field of the GCC Conference Create Response MUST contain basic server settings data

blocks (see sections 2.2.1.4.2 through 2.2.1.4.4). The client MUST check that the server-to-client
H.221 key embedded at the start of the x224Data field (see [T124] section 8.7) for a description of
the structure of user data) is the ANSI text "McDn". If this is not the case, the connection SHOULD

be dropped.

All of the encoded lengths within the MCS Connect Response PDU and the GCC Conference Create
Response (except for those already noted) MUST also be examined for consistency with the received

data. If there is any discrepancy, the connection SHOULD be dropped.

Once the mcsCrsp and gccCCrsp fields have been successfully parsed the client examines the basic
server settings data blocks and stores the received data in the Received Server Data store (see
section 3.3.1.1). However, before the data is stored the Basic Server Settings Data Blocks are

checked for validity.

The clientRequestedProtocols field in the Server Core Data (see section 2.2.1.4.2) is examined to
ensure that it contains the same flags that the client sent to the server in the RDP Negotiation

Response (see section 3.2.5.3.1). If this is not the case, the client SHOULD drop the connection. In
the event that this optional field is not present, the value PROTOCOL_RDP (0) MUST be assumed.

Select settings in the Server Security Data (see section 2.2.1.4.3) are validated using the following

rules:

Server security

data field Validation rule

encryptionMethod If this field does not contain a valid Encryption Method identifier, the client

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542

216 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Server security

data field Validation rule

SHOULD drop the connection. If the client does not support the selected

Encryption Method it SHOULD disconnect, as further communication with the

server will not be possible.

encryptionLevel If this field does not contain a valid Encryption Level identifier, the client SHOULD

drop the connection.

serverRandomLen If this field does not contain a value of 32, the client SHOULD drop the connection.

serverCertificate If this field does not contain a valid certificate, the client SHOULD drop the

connection. Proprietary certificates (see sections 3.2.5.3.1 and 5.3.3.1) can be

tested for validity using the techniques specified in section 5.3.3.1.3.

The channelCount and channelIdArray fields in the Server Network Data (section 2.2.1.4.4)

MUST be examined for consistency to ensure that the packet contains enough data to extract the
specified number of channel IDs. If there is not enough data, the client SHOULD drop the
connection. The MCS channel IDs returned in the channelIdArray should be saved in the Static

Virtual Channel IDs store (see section 3.2.1.2), while the MCSChannelId field should be saved in
the I/O Channel ID store (see section 3.2.1.3). These IDs will be used by the client when sending
MCS Channel Join Request PDUs (see sections 2.2.1.8 and 3.2.5.3.8).

Once the basic server settings data blocks have been processed successfully, the client MUST send

the MCS Attach User Request PDU (see section 3.2.5.3.6) to the server.

3.2.5.3.5 Sending MCS Erect Domain Request PDU

The structure and fields of the MCS Erect Domain Request PDU are specified in section 2.2.1.5.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as
specified in [X224].

The MCS Erect Domain Request PDU (embedded within the mcsEDrq field) is described in detail in

[T125]. The client SHOULD initialize the both subHeight and subinterval fields of the MCS Erect
Domain Request PDU to 0x01.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)

MUST be used to encrypt the entire PDU and generate a verification digest (possibly by using some
sort of MAC signature) before the PDU is transmitted over the wire.

3.2.5.3.6 Sending MCS Attach User Request PDU

The structure and fields of the MCS Attach User Request PDU are specified in section 2.2.1.6.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as
specified in [X224].

The MCS Attach User Request PDU (embedded within the mcsAUrq field) is described in detail in
[T125].

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)

MUST be used to encrypt the entire PDU and generate a verification digest (possibly by using some
sort of MAC signature) before the PDU is transmitted over the wire.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

217 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.5.3.7 Processing MCS Attach User Confirm PDU

The structure and fields of the MCS Attach User Confirm PDU are specified in section 2.2.1.7.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)
MUST be used to decrypt and verify the integrity of the entire PDU (possibly by using some sort of
MAC signature) prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the
connection SHOULD be dropped.

The MCS Attach User Confirm PDU (section 2.2.1.7) (embedded within the mcsAUcf field) is
described in detail in [T125]. If the result field is not set to rt-successful (0), the client SHOULD
drop the connection. If the result field is set to rt-successful (0) but the initiator is not present, the

client SHOULD drop the connection. If the initiator is present, the client stores the value in the User
Channel ID (section 3.2.1.4) store.

Once the user channel ID has been extracted, the client MUST send an MCS Channel Join Request
PDU for the user channel (see section 2.2.1.7).

3.2.5.3.8 Sending MCS Channel Join Request PDU(s)

The structure and fields of the MCS Channel Join Request PDU are specified in section 2.2.1.8.

Multiple MCS Channel Join Request PDUs are sent to join the following channels:

1. User Channel (the MCS channel ID is stored in the User Channel ID (section 3.2.1.4) store).

2. I/O channel (the MCS channel ID is stored in the I/O Channel ID (section 3.2.1.3) store).

3. Static Virtual Channels (the MCS channel IDs are stored in the Static Virtual Channel IDs store).

The MCS Channel Join Request PDUs (section 2.2.1.8) are sent sequentially. The first PDU is sent
after receiving the MCS Attach User Confirm PDU (see section 2.2.1.7) and subsequent PDUs are

sent after receiving of the MCS Channel Join Confirm PDU (see section 2.2.1.9) for the previous

request. Sending of the MCS Channel Join Request PDUs (section 2.2.1.8) MUST continue until all
channels have been successfully joined.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as

specified in [X224].

The MCS Channel Join Request PDU (embedded within the mcsCJrq field) is described in detail in
[T125]. The initiator field is initialized with the User Channel ID (section 3.2.1.4) obtained during

the processing of the MCS Attach User Confirm PDU (see section 2.2.1.7) and stored in the User
Channel ID (section 3.2.1.4) store. The channelId field is initialized with the MCS channel ID of the
channel that is being joined.

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)

MUST be used to encrypt the entire PDU and generate a verification digest (possibly by using some
sort of MAC signature) before the PDU is transmitted over the wire.

3.2.5.3.9 Processing MCS Channel Join Confirm PDU(s)

The structure and fields of the MCS Channel Join Confirm PDU are specified in section 2.2.1.9.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

218 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol (section 5.4.5)
MUST be used to decrypt and verify the integrity of the entire PDU (possibly by using some sort of

MAC signature) prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the
connection SHOULD be dropped.

The MCS Channel Join Confirm PDU (section 2.2.1.9) (embedded within the mcsCJcf field) is
specified in detail in [T125]. If the optional channelId field is not present, the client SHOULD drop
the connection. Furthermore, if the result field is not set to rt-successful (0), the client SHOULD

also drop the connection. The initiator and requested fields MAY be ignored, however, the
channelId field MUST be examined. If the value of the channelId field does not correspond with
the value of the channelId field sent in the previous MCS Channel Join Request PDU the connection

SHOULD be dropped.

Once the client has successfully processed the MCS Channel Join Confirm PDU (section 2.2.1.9), it
MUST send a new MCS Channel Join Request PDU to the server containing the ID of the next
channel which has not yet been joined. If all channels have been joined, the client MUST proceed to

send one of the following PDUs:

 The Security Exchange PDU (section 2.2.1.10) if Standard RDP Security (section 5.3) is in effect
and the Encryption Level (section 5.3.1) and Encryption Method returned from the server in the

Server Core Data (see sections 2.2.1.4.2 and 3.2.5.3.4) are both greater than zero.

 The Client Info PDU (section 2.2.1.11) if the Encryption Level (section 5.3.1) and Encryption
Method returned from the server are both zero.

3.2.5.3.10 Sending Security Exchange PDU

The structure and fields of the Security Exchange PDU are specified in section 2.2.1.10.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as

detailed in [X224].

The mcsSDrq field is initialized as specified in [T125]. The embedded initiator field MUST be set to
the MCS user channel ID (held in the User Channel ID (section 3.2.1.4) store and the embedded

channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID store). The
embedded userData field contains the remaining fields of the Security Exchange PDU (section
2.2.1.10).

The embedded flags field of the basicSecurityHeader MUST contain the SEC_EXCHANGE_PKT
(0x0001) flag (specified in section 2.2.8.1.1.2.1) to indicate the PDU type. If the client can handle
encrypted licensing packets from the server and Standard RDP Security mechanisms (see sections
5.3 and 5.4) are being used, then the SEC_LICENSE_ENCRYPT_SC (0x0200) flag SHOULD also be

included in the flags subfield of the basicSecurityHeader field.

A 32-byte random number MUST be generated and then encrypted using the public key of the
server and the techniques specified in section 5.3.4.1. The public key of the server is embedded in

server's certificate which is held in the serverCertificate field of the Server Security Data (section
2.2.1.4.3) sent in the MCS Connect Response PDU with GCC Conference Response (see section
3.2.5.3.4). Once the 32-byte random number has been successfully encrypted, it MUST be copied

into the encryptedClientRandom field. The size of the encryptedClientRandom field MUST be
derived as specified in section 5.3.4.1. After the encrypted client random has been copied into the
encryptedClientRandom buffer, 8 bytes of padding (which MUST be zeroed out) will remain.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

219 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Once the client has sent the Security Exchange PDU (section 2.2.1.10)it MUST generate the session
keys which will be used to encrypt, decrypt and sign data sent on the wire. The 32-byte client

random and server random (transmitted in the Server Security Data (section 2.2.1.4.3)) are used to
accomplish this task by employing the techniques specified in section 5.3.5. On successful
generation of the session keys, the client MUST send the Client Info PDU to the server (see section
2.2.1.11).

If Enhanced RDP Security (see section 5.4) is in effect, the Security Exchange PDU MUST not be

sent.

3.2.5.3.11 Sending Client Info PDU

The structure and fields of the Client Info PDU are specified in section 2.2.1.11.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as

specified in [X224].

The mcsSDrq field is initialized as specified in [T125]—the embedded initiator field MUST be set to
the MCS user channel ID (held in the User Channel ID (section 3.2.1.4) store) and the embedded
channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID (section

3.2.1.3)). The embedded userData field contains the remaining fields of the Client Info PDU
(section 2.2.1.11).

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol (section 5.4.5)

MUST be used to encrypt the entire PDU and generate a verification digest (possibly by using some
sort of MAC signature). The securityHeader field MUST be present, however it will contain a Basic
Security Header structure (see section 2.2.8.1.1.2.1).

If Standard RDP Security mechanisms (see section 5.3) are in effect, the PDU data following the
securityHeader field may be encrypted and signed (depending on the values of the Encryption
Level (section 5.3.1) and Encryption Method selected by the server as part of the negotiation
specified in section 5.3.2) using the methods and techniques described in 5.3.6. The format of the

securityHeader field is selected as described in the section detailing the PDU structure and fields
(see section 2.2) and the fields populated with appropriate security data. If the data MUST be

encrypted, the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT

(0x0008) flag.

The embedded flags field of the securityHeader field (which is always present) MUST contain the
SEC_INFO_PKT (0x0040) flag (specified in section 2.2.8.1.1.2.1) to indicate the PDU type.

If the client is in the process of attempting an automatic reconnection operation using a cookie
stored in the Automatic Reconnection Cookie store, then it MUST populate the
autoReconnectCookie field of the Extended Info Structure (see section 2.2.1.11.1.1.1) with the
contents of the cookie. The remainder of the PDU MUST be populated with client settings according

to the structure and type definition in section 2.2.1.11.1.1.

3.2.5.3.12 Processing License Error PDU - Valid Client

The structure and fields of the License Error (Valid Client) PDU are specified in section 2.2.1.12.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol (section 5.4.5)
MUST be used to decrypt and verify the integrity of the entire PDU (possibly by using some sort of

MAC signature) prior to any processing taking place.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

220 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The embedded length fields within the tpktHeader (see [T123]), x224Data (see [X224]), and
mcsSDin (see [T125]) fields MUST be examined for consistency with the received data. If there is

any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDin is used to route the PDU to the appropriate
target channel.

The securityHeader field MUST always be present and it MUST contain at least a Basic Security

Header structure (see section 2.2.8.1.1.2.1). The embedded flags field of the securityHeader
MUST contain the SEC_LICENSE_PKT (0x0080) flag (specified in section 2.2.8.1.1.2.1). If this flag is
not present then the packet cannot be handled as a Licensing PDU.

If the SEC_LICENSE_ENCRYPT_CS (0x0200) flag is present, then the server is able to accept
encrypted licensing packets when using Standard RDP Security (see section 5.3) mechanisms. This
fact is stored in the Server Licensing Encryption Ability (section 3.2.1.9) store.

If the SEC_ENCRYPT (0x0008) flag is present, then the data following the securityHeader field is
encrypted and it MUST be verified and decrypted using the methods and techniques described in
section 5.3.6. If the MAC signature is incorrect or the data cannot be decrypted correctly, the
connection SHOULD be dropped. If Enhanced RDP Security is in effect and the SEC_ENCRYPT

(0x0008) flag is present the connection SHOULD be dropped, as double-encryption is not used
within RDP in the presence of an External Security Protocol (section 5.4.5) provider.

The remaining PDU fields MUST be interpreted and processed according to the description in section

2.2.1.12. If the bMsgType field is not set to ERROR_ALERT (0xFF) then the message is not a
License Error PDU (section 2.2.1.12) and the client MAY drop the connection. However, if the client
is able to process licensing PDUs, as specified in [MS-RDPELE], it MUST determine if the message is

another type of licensing PDU enumerated in [MS-RDPELE] and then if so process it accordingly. If
the PDU is a License Error PDU, the client MUST examine the remaining fields and ensure that they
conform to the structure and values listed in 2.2.1.12. If this is not the case, the client SHOULD
drop the connection.

3.2.5.3.13 Mandatory Capability Negotiation

3.2.5.3.13.1 Processing Demand Active PDU

The structure and fields of the Demand Active PDU are specified in section 2.2.1.13.1.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol (section 5.4.5)

being used to secure the connection MUST be used to decrypt and verify the integrity of the entire
PDU (possibly by using some sort of MAC signature) prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]), x224Data (see [X224]), and
mcsSDin (see [T125]) fields MUST be examined for consistency with the received data. If there is

any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDin is used to route the PDU to the appropriate
target channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in section 2.2.1.13.1. If the securityHeader
field is present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT

(0x0008) flag (see section 2.2.8.1.1.2.1), and if it is present the data following the securityHeader
field MUST be verified and decrypted using the methods and techniques described in section 5.3.6.
If the MAC signature is incorrect or the data cannot be decrypted correctly, the connection SHOULD
be dropped. If Enhanced RDP Security is in effect and the SEC_ENCRYPT (0x0008) flag is present

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

221 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

the connection SHOULD be dropped, as double-encryption is not used within RDP in the presence of
an External Security Protocol (section 5.4.5) provider.

The shareControlHeader field (which contains a Share Control Header as specified in section
2.2.8.1.1.1.1) MUST be examined to ensure that the PDU type (present in the pduType field) has
the value PDUTYPE_DEMANDACTIVEPDU (1). The server MCS channel ID (present in the pduSource
field) MUST be stored in the Server Channel ID store. The value of the totalLength field MUST also

be examined for consistency with the received data. If there is any discrepancy, the connection

SHOULD be dropped.

The remaining PDU fields and capability data MUST be interpreted and processed according to

sections 2.2.1.13.1.1 and 2.2.7. The capabilities received from the server MUST be stored in the
Server Capabilities store and MUST be used to determine what subset of RDP to send to the server.
The contents of the shareId field MUST be stored in the Share ID store.

After successfully processing the Demand Active PDU, the client MUST send the Confirm Active PDU
(section 2.2.1.13.2) to the server.

3.2.5.3.13.2 Sending Confirm Active PDU

The structure and fields of the Confirm Active PDU are specified in section 2.2.1.13.2.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as
specified in [X224].

The mcsSDrq field is initialized as described in [T125]—the embedded initiator field MUST be set to
the MCS user channel ID (held in the User Channel ID store described in section 3.3.1.5) and the
embedded channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID

store described in section 3.3.1.4). The embedded userData field contains the remaining fields of
the Confirm Active PDU.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC

signature) before the PDU is transmitted over the wire. Also, in this scenario the securityHeader field

MUST NOT be present.

If Standard RDP Security mechanisms (see section 5.3) are in effect, the PDU data following the

optional securityHeader field may be encrypted and signed (depending on the values of the
Encryption Level (section 5.3.1) and Encryption Method selected by the server as part of the
negotiation specified in section 5.3.2) using the methods and techniques described in 5.3.6. The

format of the securityHeader field is selected as specified in section 2.2.1.13.2 and the fields
populated with appropriate security data. If the data MUST be encrypted, the embedded flags field
of the securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The remaining fields are populated as described in section 2.2.1.13.2.1, with the concatenated

capability set data being inserted into the capabilitySets field.

After sending the Confirm Active PDU (section 2.2.1.13.2), the client MUST send the Synchronize
PDU (see section 2.2.1.14) to the server.

3.2.5.3.14 Sending Synchronize PDU

The structure and fields of the Synchronize PDU are specified in section 2.2.1.14 and the techniques

specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The targetUser
field SHOULD be set to the MCS server channel ID (held in the Server Channel ID store). The
contents of this PDU are not compressed.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

222 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

After sending the Synchronize PDU, the client MUST send the Control (Cooperate) PDU (see section
3.2.5.3.15) to the server.

3.2.5.3.15 Sending Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are specified in section 2.2.1.15 and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The

grantId and controlId fields SHOULD be set to zero. The contents of this PDU are not compressed.

After sending the Control (Cooperate) PDU (section 2.2.1.15), the client MUST send the Control
(Request Control) PDU (see section 3.2.5.3.16) to the server.

3.2.5.3.16 Sending Control PDU - Request Control

The structure and fields of the Control (Request Control) PDU are specified in section 2.2.1.16, and

the techniques described in section 3.2.5.1 demonstrate how to initialize the contents of the PDU.
The grantId and controlId fields SHOULD be set to zero. The contents of this PDU are not
compressed.

After sending the Control (Request Control) PDU (see section 2.2.1.16), the client MUST send the

Persistent Key List PDU (see section 2.2.1.17.1) to the server if the server supports Revision 2
Bitmap Caching (see Bitmap Cache Host Support Capability Set
(TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET) (section 2.2.7.1.4) and [MS-RDPEGDI] section

3.1.1.1.1). If the server does not support Revision 2 Bitmap Caching, the client MUST proceed to
send the Font List PDU (see section Sending of Font List PDU (section 3.2.5.3.18)).

3.2.5.3.17 Sending Persistent Key List PDU(s)

The structure and fields of the Persistent Key List PDU are specified in section 2.2.1.17, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU are not compressed.

After sending the Persistent Key List PDU, the client MUST send the Font List PDU (see section

3.2.5.3.18) to the server.

3.2.5.3.18 Sending Font List PDU

The structure and fields of the Font List PDU are specified in section 2.2.1.18 and the techniques
specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The contents of
this PDU are not compressed.

3.2.5.3.19 Processing Synchronize PDU

The structure and fields of the Synchronize PDU are specified in section 2.2.1.19 and the techniques

specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The contents of
the targetUser field MAY be ignored.

3.2.5.3.20 Processing Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are specified in section 2.2.1.20, and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlId and grantId fields MAY be ignored.

%5bMS-RDPEGDI%5d.pdf

223 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.5.3.21 Processing Control PDU - Granted Control

The structure and fields of the Control (Granted Control) PDU are specified in section 2.2.1.21, and
the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The
contents of the controlId and grantId fields MAY be ignored.

3.2.5.3.22 Processing Font Map PDU

The structure and fields of the Font Map PDU are specified in section 2.2.1.22, and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU. The contents of

the numberEntries, totalNumEntries, mapFlags and entrySize fields MAY be ignored.

Once the client has successfully processed this PDU, it MAY start to send input PDUs (see section
1.3.5) to the server (see section 2.2.8).

3.2.5.4 Disconnection Sequences

3.2.5.4.1 Sending Shutdown Request PDU

The structure and fields of the Shutdown Request PDU are specified in section 2.2.2.2, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU are not compressed.

3.2.5.4.2 Processing Shutdown Request Denied PDU

The structure and fields of the Shutdown Request Denied PDU are specified in section 2.2.2.3 and
the techniques described in Processing of a Basic Server-to-Client Slow-Path PDU (see section

3.2.5.2) demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client behavior is implementation dependent. If the client
still wants to disconnect, it SHOULD send an MCS Disconnect Provider Ultimatum PDU (see section

3.1.5.1.1) to the server and drop the connection.

3.2.5.5 Deactivation-Reconnection Sequence

3.2.5.5.1 Processing Deactivate All PDU

The structure and fields of the Deactivate All PDU are specified in section 2.2.3.1 and the techniques
specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client MUST disable its graphics and input protocol handlers
and prepare either for a capability renegotiation using a Deactivation-Reactivation Sequence (see
section 1.3.1.3) or a disconnection.

3.2.5.6 Auto-Reconnect Sequence

3.2.5.6.1 Processing Auto-Reconnect Status PDU

The structure and fields of the Auto-Reconnect Status PDU are specified in section 2.2.4.1 and the
techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client MAY continue with the connection (and prompt the
user to manually enter their credentials for the reconnection attempt), or it MAY simply drop the

connection (forcing the user to restart the client and reconnect manually). In either case, the auto-
reconnect cookie (see section 5.5) MUST no longer be used.

224 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.5.7 Server Error Reporting

3.2.5.7.1 Processing Set Error Info PDU

The structure and fields of the Set Error Info PDU are specified in section 2.2.5.1, and the
techniques specified in section 3.2.5.2) demonstrate how to process the contents of the PDU. The

Set Error Info PDU is sent as a precursor to a server-side disconnect and informs the client of the

reason for the disconnection which will follow. Once this PDU has been processed, the client MUST
store the error code so that the reason for the server disconnect which will follow can be accurately

reported to the user.

3.2.5.8 Keyboard and Mouse Input

3.2.5.8.1 Input Event Notifications

3.2.5.8.1.1 Sending Slow-Path Input Event PDU

The structure and fields of the Slow-Path Input Event PDU are specified in Slow Path Input Event
(TS_INPUT_EVENT) (section 2.2.8.1.1.3.1), and the techniques specified in section 3.2.5.1
demonstrate how to initialize the contents of the PDU.

The slowPathInputEvents field encapsulates a collection of input events and is populated with the

following input event data:

 Keyboard Event (TS_KEYBOARD_EVENT) (section 2.2.8.1.1.3.1.1)

 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT) (section 2.2.8.1.1.3.1.2)

 Mouse Event (TS_POINTER_EVENT) (section 2.2.8.1.1.3.1.3)

 Extended Mouse Event (TS_POINTERX_EVENT) (section 2.2.8.1.1.3.1.4)

 Synchronize Event (TS_SYNC_EVENT) (section 2.2.8.1.1.3.1.5)

The contents of this PDU are not compressed.

If the client has sent a Synchronize Event (section 2.2.8.1.1.3.1.5), it SHOULD subsequently send
key-down events for whatever keyboard and mouse keys may be down.

3.2.5.8.1.2 Sending Fast-Path Input Event PDU

The Fast-Path Input Event PDU (section 2.2.8.1.2) has the following basic structure (see sections
5.3.8 and 5.4.4):

 fpInputHeader: Fast-Path Input Header (Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)
(section 2.2.8.1.2))

 length1 and length2: Packet Length (Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)

(section 2.2.8.1.2))

 fipsInformation: Optional FIPS Information (Client Fast-Path Input Event PDU
(TS_FP_INPUT_PDU) (section 2.2.8.1.2))

 dataSignature: Optional Data Signature (Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)

(section 2.2.8.1.2))

225 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 numberEvents: Optional Number of Events (Client Fast-Path Input Event PDU
(TS_FP_INPUT_PDU) (section 2.2.8.1.2))

 Actual PDU Contents (collection of Fast-Path input events)

 Keyboard Event (Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT) (section
2.2.8.1.2.2.1))

 Unicode Keyboard Event (Fast-Path Unicode Keyboard Event

(TS_FP_UNICODE_KEYBOARD_EVENT) (section 2.2.8.1.2.2.2))

 Mouse Event (Fast-Path Mouse Event (TS_FP_POINTER_EVENT) (section 2.2.8.1.2.2.3))

 Extended Mouse Event (Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT) (section

2.2.8.1.2.2.4))

 Synchronize Event (Fast-Path Synchronize Event (TS_FP_SYNC_EVENT) (section
2.2.8.1.2.2.5))

The fpInputHeader, length1, length2 and numberEvents fields MUST be initialized as described
in Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU) (section 2.2.8.1.2). Since the PDU is in
Fast-Path format, the embedded actionCode field of the fpInputHeader field MUST be set to
FASTPATH_INPUT_ACTION_FASTPATH (0).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol MUST be used to
encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC
signature) before the PDU is transmitted over the wire. Also, in this scenario the fipsInformation and

dataSignature fields MUST NOT be present.

If Standard RDP Security (section 5.3) mechanisms are in effect, the PDU data following the optional
dataSignature field may be encrypted and signed (depending on the values of the Encryption Level

(section 5.3.1) and Encryption Method selected by the server as part of the negotiation described in
section 5.3.2, using the methods and techniques described in section 5.3.6. If the data MUST be
encrypted, the embedded encryptionFlags field of the fpInputHeader field MUST contain the
FASTPATH_INPUT_ENCRYPTED (2) flag.

The actual PDU contents, which encapsulates a collection of input events, is populated with Fast-
Path event data as described from Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT) (section
2.2.8.1.2.2.1) to Fast-Path Synchronize Event (TS_FP_SYNC_EVENT) (section 2.2.8.1.2.2.5).

3.2.5.8.2 Keyboard Status PDUs

3.2.5.8.2.1 Processing Set Keyboard Indicators PDU

The structure and fields of the Set Keyboard Indicators PDU are specified in section 2.2.8.2.1 and
the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD update the local keyboard indictors.

3.2.5.8.2.2 Processing Set Keyboard IME Status PDU

The structure and fields of the Set Keyboard IME Status PDU are specified in section 2.2.8.2.2, and

the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD update the state of the local Input Method
Editor (IME). Non-IME aware clients MAY ignore this PDU.

226 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.5.9 Basic Output

3.2.5.9.1 Processing Slow-Path Graphics Update PDU

The structure and fields of the Slow-Path Graphics Update PDU are specified in section 2.2.9.1.1.3,
and the techniques specified in section 3.2.5.2 demonstrate how to process the contents of the PDU.

The slowPathGraphicsUpdate field contains a single graphics update structure which can be one

of the following types:

 Orders Update (see [MS-RDPEGDI] section 2.2.2.2)

 Palette Update (see section 2.2.9.1.1.3.1.1)

 Bitmap Update (see section 2.2.9.1.1.3.1.2)

 Synchronize Update (see section 2.2.9.1.1.3.1.3)

If a Slow-Path update structure is received which does not match one of the known types, the client
SHOULD ignore the data in the update.

Once this PDU has been processed, the client MUST carry out any operations necessary to complete
the update. In the case of a Palette Update (section 2.2.9.1.1.3.1.1), the client MUST update the

global palette on all drawing surfaces. Processing of the Bitmap Update requires that the client
render the attached bitmap data on the primary drawing surface as specified by the update
parameters. The Synchronize Update (section 2.2.9.1.1.3.1.3) MAY be ignored by the client.

Processing of the Orders Update (which contains Optimized RDP Drawing Orders) is specified in [MS-
RDPEGDI] section 3.2.5.

3.2.5.9.2 Processing Slow-Path Pointer Update PDU

The structure and fields of the Slow-Path Pointer Update PDU are specified in Server Pointer Update
PDU (TS_POINTER_PDU) (section 2.2.9.1.1.4), and the techniques specified in section 3.2.5.9.2
demonstrate how to process the contents of the PDU.

The messageType field contains an identifier that describes the type of Pointer Update data (see
Server Pointer Update PDU (TS_POINTER_PDU) (section 2.2.9.1.1.4) for a list of possible values)
present in the pointerAttributeData field:

 Pointer Position Update (see Pointer Position Update (TS_POINTERPOSATTRIBUTE) (section
2.2.9.1.1.4.2))

 System Pointer Update (see System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE) (section
2.2.9.1.1.4.3))

 Color Pointer Update (see Color Pointer Update (TS_COLORPOINTERATTRIBUTE) (section
2.2.9.1.1.4.4))

 New Pointer Update (see New Pointer Update (TS_POINTERATTRIBUTE) (section 2.2.9.1.1.4.5))

 Cached Pointer Update (see Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE) (section
2.2.9.1.1.4.6))

If a Slow-Path update structure is received which does not match one of the known types, the client

SHOULD ignore the data in the update.

The contents of this PDU are not compressed.

%5bMS-RDPEGDI%5d.pdf

227 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Once this PDU has been processed, the client MUST carry out any operations necessary to update
the local pointer position (in the case of the Position Update) or change the shape (in the case of the

System, Color, New and Cached Pointer Updates (section 2.2.9.1.1.4.6)). In the case of the Color
and New Pointer Updates the new pointer image MUST also be stored in the Pointer Image Cache
(see Pointer Image Cache (section 3.2.1.10)), in the slot specified by the cacheIndex field.

This necessary step ensures that the client is able to correct process future Cached Pointer Updates

(section 2.2.9.1.1.4.6).

3.2.5.9.3 Processing Fast-Path Update PDU

The Fast-Path Update PDU has the following basic structure (see sections 5.3.8 and 5.4.4):

 fpOutputHeader: Fast-Path Output Header (see Server Fast-Path Update PDU
(TS_FP_UPDATE_PDU) (section 2.2.9.1.2))

 length1 and length2: Packet Length (see Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)
(section 2.2.9.1.2))

 fipsInformation: Optional FIPS Information (see Server Fast-Path Update PDU
(TS_FP_UPDATE_PDU) (section 2.2.9.1.2))

 dataSignature: Optional Data Signature (see Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)
(section 2.2.9.1.2))

 Actual PDU Contents (collection of Fast-Path output updates)

 Orders Update (see [MS-RDPEGDI] section 2.2.2.3)

 Palette Update (see Fast-Path Palette Update (TS_FP_UPDATE_PALETTE) (section
2.2.9.1.2.1.1))

 Bitmap Update (see Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP) (section
2.2.9.1.2.1.2))

 Synchronize Update (see Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)
(section 2.2.9.1.2.1.3))

 Pointer Position Update (see Fast-Path Pointer Position Update (TS_POINTERPOSATTRIBUTE)
(section 2.2.9.1.2.1.4))

 System Pointer Hidden Update (see Fast-Path System Pointer Hidden Update

(TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE) (section 2.2.9.1.2.1.5))

 System Pointer Default Update (see Fast-Path System Pointer Default Update
(TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE) (section 2.2.9.1.2.1.6))

 Color Pointer Update (see Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)
(section 2.2.9.1.2.1.7))

 New Pointer Update (see Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE) (section
2.2.9.1.2.1.8))

 Cached Pointer Update (see Fast-Path Cached Pointer Update (section 2.2.9.1.2.1.9))

If Enhanced RDP Security (section 5.4)) is in effect, the External Security Protocol being used to
secure the connection MUST be used to decrypt and verify the integrity of the entire PDU (possibly

by using some sort of MAC signature) prior to any processing taking place.

%5bMS-RDPEGDI%5d.pdf

228 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The contents of the embedded actionCode field of the fpOutputHeader field MUST be set to
FASTPATH_OUTPUT_ACTION_FASTPATH (0). If it is not set to this value, the PDU is not a Fast-Path

Update PDU and MUST be processed as a Slow-Path PDU (see section 3.2.5.2).

If the embedded encryptionFlags field of the fpOutputHeader field contains the
FASTPATH_OUTPUT_ENCRYPTED (2) flag, then the data following the optional dataSignature field
(which in this case MUST be present) MUST be verified and decrypted using the methods and

techniques described in section 5.3.6. If the MAC signature is incorrect or the data cannot be

decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in effect and
the FASTPATH_OUTPUT_ENCRYPTED (2) flag is present the connection SHOULD be dropped, as

double-encryption is not used within RDP in the presence of an External Security Protocol (section
5.4.5) provider.

The update structures present in the fpOutputUpdates field MUST be interpreted and processed

according to the descriptions detailed from Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)
(section 2.2.9.1.2.1.1) to Fast-Path Cached Pointer Update (section 2.2.9.1.2.1.9). The contents of
each individual update MAY have been compressed by the server. If this is the case, the embedded
compression field of the common updateHeader field will contain the

FASTPATH_OUTPUT_COMPRESSION_USED flag and the optional compressionFlags field will be be
initialized with the compression usage information. Once this PDU has been processed, the client
MUST carry out the operation appropriate to the update type, as specified in the Slow-Path versions

of this PDU (see sections 3.2.5.9.1 and 3.2.5.9.2).

3.2.5.9.4 Sound

3.2.5.9.4.1 Processing Play Sound PDU

The structure and fields of the Play Sound PDU are specified in 2.2.9.1.1.5, and the techniques
specified in 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD play a sound using the frequency and
duration specified by the PDU.

3.2.5.9.5 Connection Management

3.2.5.9.5.1 Processing Save Session Info PDU

The structure and fields of the Save Session Info PDU are specified in 2.2.10.1 and the techniques

specified in 3.2.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the client SHOULD respond to the type of data contained in the
PDU:

1. In the case of a logon notification being present in the PDU, the client MAY carry out some
implementation-dependent action and if wanted, save the new user name and domain (if
received) which were used to log on.

2. In the case of an auto-reconnect cookie being received in the PDU, the client SHOULD save the
cookie in the Automatic Reconnection Cookie (section 3.2.1.8) store for possible use during an
automatic reconnection sequence.

3. In the case of a logon error or warning notification being present in the PDU, the client SHOULD

carry out some implementation-dependent action to respond to the notification.

229 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.2.5.10 Controlling Server Graphics Output

3.2.5.10.1 Sending Refresh Rect PDU

The structure and fields of the Refresh Rect PDU are specified in section 2.2.11.2, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU are not compressed.

3.2.5.10.2 Sending Suppress Output PDU

The structure and fields of the Suppress Output PDU are specified in section 2.2.11.3, and the
techniques specified in section 3.2.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU are not compressed.

3.2.6 Timer Events

No client timer events are used.

3.2.6.1 Connection Sequence Timeout

 If the RDP Connection Sequence (see sections 1.3.1.1 and 1.3.1.2) does not complete within 300
seconds, the client MAY terminate the connection to the server.

3.2.7 Other Local Events

No additional events are used.

3.2.7.1 Disconnection Due to Network Error

If the client detects that a disconnection which has taken place is due to a network error, it MAY
attempt to automatically reconnect to the server using the technique specified in section 5.5.
Automatic reconnection allows the client to reconnect to an existing session (after a short-term

network failure has occurred) without having to resend the user's credentials to the server.

3.3 Server Details

3.3.1 Abstract Data Model

3.3.1.1 Received Client Data

The Received Client Data store contains data received from the client during execution of the
Remote Desktop Protocol (section). This store is initialized when processing the MCS Connect Initial
PDU with GCC Conference Create Request (see sections 2.2.1.3 and 3.3.5.3.3) and Client Info PDU

(see sections 2.2.1.11 and 3.3.5.3.11).

3.3.1.2 User Channel ID

The User Channel ID store contains the MCS channel identifier allocated by the server to identify the
user channel.

230 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.3.1.3 I/O Channel ID

The I/O Channel ID store contains the MCS channel identifier selected by the server to identify the
I/O channel. This ID is communicated to the client in the Server Network Data (see sections
2.2.1.4.4 and 3.2.5.3.4).

3.3.1.4 Server Channel ID

The Server Channel ID store contains the MCS channel identifier of the server channel. In Microsoft
RDP server implementations, this value is always 0x03EA.

3.3.1.5 Client Licensing Encryption Ability

The Client Licensing Encryption Ability store determines whether the client has the ability to handle
encrypted licensing packets when using Standard RDP Security mechanisms (see the discussion of

the SEC_LICENSE_ENCRYPT_SC flag in section 2.2.8.1.1.2.1). This fact is communicated to the
server as part of the Security Exchange PDU (see sections 2.2.1.10 and 3.2.5.3.10).

3.3.1.6 Client Capabilities

The Client Capabilities store contains capability sets (see sections 1.4 and 2.2.6) received from the
client in the Confirm Active PDU (see sections 2.2.1.13.2 and 3.3.5.3.13.2). The server MUST

ensure that it does not violate any of the client capabilities when sending data to the client - for
example, if the client does not support Fast-Path output (see section 2.2.7.1.1), the server MUST
only send Slow-Path output PDUs . In effect, the server MUST ensure that all of the RDP traffic
which it sends on the wire is consistent with the expectations of the client as described by the data

held in the Client Capabilities Store.

3.3.1.7 Persistent Bitmap Keys

The Persistent Bitmap Keys store holds a collection of 64-bit bitmap keys, each of which uniquely
identifies a bitmap image which the was sent to client using a Revision 2 Cache Bitmap (Revision 2)
Secondary Drawing Order (see [MS-RDPEGDI] section 2.2.2.3.1.2.3). When the server sends a

bitmap to the client it can first check the Persistent Bitmap Keys store to determine whether the

client already has the bitmap in a local bitmap cache (for more details about the Persistent Bitmap
Cache, see [MS-RDPEGDI] section 3.1.1.1.1) and hence save on bandwidth.

3.3.1.8 Pointer Image Cache

The Pointer Image Cache contain a collection of pointer images sent to the client in Color Pointer
Updates (see sections 2.2.9.1.2.1.7, 3.3.5.9.2, and 3.3.5.9.3) and New Pointer Updates (see

sections 2.2.9.1.2.1.8, 3.3.5.9.2, and 3.3.5.9.3). The client MUST maintain an identical cache and
keep it in sync with the server cache. When the server needs to instruct the client to update the
pointer shape to one already in the cache it sends the client a Cached Pointer Update (see sections
2.2.9.1.1.4.6, 3.3.5.9.2, and 3.3.5.9.3), hence saving bandwidth which would have been used to

resend the image. The size and color depth (either variable or fixed at 24 bits-per-pixel) of the
cache is negotiated in the Pointer Capability Set (see section 2.2.7.1.6).

3.3.2 Timers

3.3.2.1 Auto-Reconnect Cookie Update Timer

The Auto-Reconnect Cookie Update Timer fires at hourly intervals and triggers the creation of an

Auto-Reconnect cookie (see Section 5.5). This cookie is effectively a 16-byte cryptographically

%5bMS-RDPEGDI%5d.pdf

231 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

secure random number contained within a Server Auto-Reconnect Packet (see section 2.2.4.2) and
is sent to the client using the Save Session Info PDU (see section 2.2.10.1).

3.3.3 Initialization

No server initialization steps are specified.

3.3.4 Higher-Layer Triggered Events

No server higher-layer triggered events are used.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Constructing a Basic Server-to-Client Slow-Path PDU

The majority of server-to-client Slow-Path PDUs have the same basic structure (see sections 5.3.7.2

and 5.4.4):

 tpktHeader: TPKT Header (see [T123] section 8)

 x224Data: X.224 Data TPDU (see [X224] section 13.7)

 mcsSDrq: MCS Send Data Indication PDU (see [ITU T125] section 7, Part 7)

 securityHeader: Optional Security Header (see section 2.2.9.1.1.2)

 shareDataHeader: Share Data Header (see section 2.2.8.1.1.1.2)

 Actual PDU Contents (see section 2.2)

The PDUs conforming to this basic structure MAY be constructed using the same techniques.

The tpktHeader field is initialized as specified in [T123], while the x224Data field is initialized as
specified in [X224].

The mcsSDin field is initialized as specified in [T125]. The embedded initiator field MUST be set to
the MCS server channel ID (held in the Server Channel ID (section 3.2.1.5) store) and the
embedded channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID

(section 3.2.1.3) store). The embedded userData field contains the remaining fields of the PDU.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol (section 5.4.5)
MUST be used to encrypt the entire PDU and generate a verification digest (possibly by using some

sort of MAC signature) before the PDU is transmitted over the wire. Also, in this scenario, the
securityHeader field MUST NOT be present.

If Standard RDP Security mechanisms (see section 5.3) are in effect, the PDU data following the
optional securityHeader field may be encrypted and signed (depending on the values of the

Encryption Level (section 5.3.1) and Encryption Method selected by the server as part of the
negotiation described using the methods and techniques specified in 5.3.6. The format of the
securityHeader field is selected as described in the section detailing the PDU structure and fields

(see section 2.2) and the fields populated with appropriate security data. If the data MUST be
encrypted, the embedded flags field of the securityHeader field MUST contain the SEC_ENCRYPT
(0x0008) flag.

The shareDataHeader field contains a Share Data Header structure as described in section
2.2.8.1.1.1.2. The pduSource of the embedded Share Control Header (section 2.2.8.1.1.1.1) MUST

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

232 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

be set to the MCS server channel ID (held in the Server Channel ID (section 3.2.1.5) store). If the
contents of the PDU are to be compressed (this MUST be done before any MAC signature is

constructed and encryption methods applied), the embedded compressedType field of the
shareDataHeader MUST be initialized as described in section 2.2.8.1.1.1.2. The remaining Share
Data Header and Share Control Header fields MUST be populated as specified in sections
2.2.8.1.1.1.2 and 2.2.8.1.1.1.1 and the section specifying the PDU structure and fields (see section

2.2).

The remaining fields are populated as specified in the section detailing the PDU structure and fields
(see section 2.2).

3.3.5.2 Processing a Basic Client-to-Server Slow-Path PDU

The majority of client-to-server Slow-Path PDUs have the same basic structure (see sections 5.3.8

and 5.3.8):

 tpktHeader: TPKT Header (see [T123] section 8)

 x224Data: X.224 Data TPDU (see [X224] section 13.7)

 mcsSDrq: MCS Send Data Request PDU (see [ITU T125] section 7, part 7)

 securityHeader: Optional Security Header (see section 2.2.8.1.1.2)

 shareDataHeader: Share Data Header (see section 2.2.8.1.1.1.2)

 Actual PDU Contents (see section 2.2)

The PDUs conforming to this basic structure MAY be processed using the same techniques.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol being used to
secure the connection MUST be used to decrypt and verify the integrity of the entire PDU (possibly

by using some sort of MAC signature) prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]), x224Data (see [X224]), and

mcsSDrq (see [T125]) fields MUST be examined for consistency with the received data. If there is
any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security

Header structure present in this field, are explained in the Section specifying the PDU structure and
fields (see 2.2). If the securityHeader field is present, the embedded flags field MUST be examined
for the presence of the SEC_ENCRYPT (0x0008) flag (see section 2.2.8.1.1.2.1), and if it is present

the data following the securityHeader field MUST be verified and decrypted using the methods and
techniques specified in section 5.3.6. If the MAC signature is incorrect or the data cannot be
decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in effect and
the SEC_ENCRYPT (0x0008) flag is present the connection SHOULD be dropped, as double-

encryption is not used within RDP in the presence of an External Security Protocol Provider.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in the Section specifying the PDU structure and

fields (see section 2.2). If the securityHeader field is present, the embedded flags field MUST be
examined for the presence of the SEC_ENCRYPT (0x0008) flag (see section 2.2.8.1.1.2.1), and if it
is present the data following the securityHeader field MUST be verified and decrypted using the

methods and techniques specified in section 5.3.6. If the MAC signature is incorrect or the data

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

233 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

cannot be decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in
effect and the SEC_ENCRYPT (0x0008) flag is present the connection SHOULD be dropped, as

double-encryption is not used within RDP in the presence of an External Security Protocol Provider.

The remaining PDU fields (if any) MUST be interpreted and processed according to the section
specifying the PDU structure and fields (see section 2.2).

3.3.5.3 Normal Connection Sequence

3.3.5.3.1 Processing X.224 Connection Request PDU

The structure and fields of the X.224 Connection Request PDU are specified in section 2.2.1.1.

The embedded length fields within the tpktHeader (see [T123]) and x224Crq (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the

connection SHOULD be dropped. Other triggers for dropping the connection include:

 The length of the X.224 Connection Request PDU is less than 11 bytes.

 The X.224 Connection Request PDU is not Class 0 (see [X224].

The Destination reference, Source reference and Class and options fields within the x224Crq field

are ignored.

If the optional routingToken field exists, it SHOULD be ignored (since the routing token is actually
parsed by external hardware components along the connection path).

If the rdpNegData field is not present, it is assumed that the client does not support Enhanced RDP
Security (see section 5.4) and negotiation data MUST NOT be sent to the client as part of the X.224
Connection Confirm PDU (see 3.3.5.3.2). If the rdpNegData field is present, it is parsed to check

that it contains a valid RDP Negotiation Request structure, as specified in section 2.2.1.1.1. If this is
not the case, the connection SHOULD be dropped. If the structure is valid, the flags describing the
supported security protocols in the requestedProtocols field are saved in the Received Client Data
(section 3.3.1.1) store.

Once the MCS X.224 Connection Request PDU has been processed successfully, the server MUST
send the X.224 Connection Confirm PDU (see 3.3.5.3.2) to the client.

3.3.5.3.2 Sending X.224 Connection Confirm PDU

The structure and fields of the X.224 Connection Confirm PDU are specified in section 2.2.1.2.

The tpktHeader field is initialized as specified in [T123], while the x224Ccf field is initialized as
detailed in [X224] (the Destination reference is set to zero, the Source reference is set to 0x1234,

and the Class and options are set to zero). Parameter fields MUST NOT be specified in the variable
part of the Connection Response PDU.

The rdpNegData field is left empty if the client did not append any negotiation data to the X.224

Connection Request PDU (see 3.3.5.3.1). If the client did append negotiation data to the X.224
Connection Request PDU, the rdpNegData field SHOULD contain an RDP Negotiation Response (see
section 2.2.1.2.1) or RDP Negotiation Failure (see section 2.2.1.2.2) structure.

The RDP Negotiation Response structure is sent if the server supports (and is configured to use) one
of the client-requested security protocols specified in the X.224 Connection Request PDU and saved
in the Received Client Data store. The selectedProtocol field is initialized with the selected protocol

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

234 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

identifier (see section 2.2.1.2.2 for a list of identifiers). If the server decides to use Standard RDP
Security mechanisms, it MUST set the selectedProtocol field to PROTOCOL_RDP (0x00000000).

The RDP Negotiation Failure structure is sent if it is not possible to continue the connection with any
of the client-requested External Security Protocols. The possible failure codes along with a reason for
sending each of them are listed in section 2.2.1.2.2. After sending the RDP Negotiation Failure
Structure the server MAY close the connection.

If an External Security Protocol, such as TLS (see section 5.4.5.1) or CredSSP (see section 5.4.5.2),
will be used for the duration of the connection, the server MUST prepare to execute the selected
protocol by calling into the relevant External Security Protocol Provider after the X.224 Connection

Confirm PDU (with RDP Negotiation Response) has been sent to the client.

3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create

Request

The structure and fields of the MCS Connect Initial PDU with GCC Conference Create Request are
specified in section 2.2.1.3. A basic high-level overview of the nested structure for the MCS Connect

Initial PDU is illustrated in Figure 2.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to decrypt and verify the integrity of the entire PDU (possibly by using some sort of MAC signature)

prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the

connection SHOULD be dropped.

The MCS Connect Initial PDU (embedded within the mcsCi field) is specified in detail in [T125]. The
server ignores the calledDomainSelector, callingDomainSelector and upwardFlag fields of this
PDU.

The domain parameters (contained in the targetParameters, minimumParameters and
maximumParameters fields) received in the MCS Connect Initial PDU are examined and the

resultant parameters determined. The table which follows summarizes the rules employed by the

server when negotiating the domain parameters. If the server is unable to satisfy a Negotiation
Rule, then the connection SHOULD be dropped.

Domain parameter Negotiation rule

maxChannelIds MUST be able to negotiate a value of at least 4.

maxUserIds MUST be able to negotiate a value of at least 3.

maxTokenIds SHOULD use client target value.

numPriorities MUST be able to negotiate a value of 1.

minThroughput SHOULD use client target value.

maxHeight MUST be able to negotiate a value of 1.

maxMCSPDUsize MUST be able to negotiate a value between 123 and 65529.

protocolVersion MUST be able to negotiate a value of 2.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

235 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The userData field of the MCS Connect Initial PDU contains the GCC Conference Create Request
(embedded within the gccCCrq field). The GCC Conference Create Request is described in detail in

[T124] and appended as user data to the MCS Connect Initial PDU using the format specified in
[T124] sections 9.5 and 9.6.

If the size of the GCC Conference Create Request data is larger than 1024 bytes, then the server
MUST send an MCS Connect Response PDU (see [T125]) to the client containing only a result field

set to the value rt-unspecified-failure (14).

If the size of the GCC Conference Create Request data is smaller than 1024 bytes, processing can
continue. The server MAY ignore all of the GCC Conference Create Request fields, except for the

userData field. The userData field of the GCC Conference Create Request MUST contain basic
client settings data blocks (see sections 2.2.1.3.2 through to 2.2.1.3.5). The server MUST check that
the client-to-server H.221 key embedded at the start of the userData field (see [T124] section 8.7

for a description of the structure of user data) is the ANSI text "Duca". If this is not the case, the
connection SHOULD be dropped.

All of the encoded lengths within the MCS Connect-Initial PDU and the GCC Conference Create
Request MUST also be examined for consistency with the received data. If there is any discrepancy,

the connection SHOULD be dropped.

Once the mcsCi and gccCCrq fields have been successfully parsed the server examines the basic
client settings data blocks in the GCC Conference Create Request user data and stores this data in

the Received Client Data (section 3.3.1.1) store. However, before the data is stored, the basic client
settings data blocks are checked for validity.

Select settings in the Client Core Data (see section 2.2.1.3.2) are validated using the following

rules:

Client core data

field Validation rule

desktopWidth If this field contains a width greater than 4096 pixels, a value of exactly 4096

pixels is implicitly assumed.

desktopHeight If this field contains a width greater than 2048 pixels, a value of exactly 2048

pixels is implicitly assumed.

colorDepth If this field does not contain a valid value, the server SHOULD drop the

connection.

postBeta2ColorDepth If this field does not contain a valid value, the server SHOULD drop the

connection.

highColorDepth If this field does not contain a valid color-depth, a value of 8 bits-per-pixel is

implicitly assumed.

serverSelectedProtocol If this field does not contain the same value that the server transmitted to the

client in the RDP Negotiation Response (see 3.3.5.3.2), the server SHOULD drop

the connection. In the event that this optional field is not present, the value

PROTOCOL_RDP (0) MUST be assumed.

The encryptionMethods and extEncryptionMethods fields in the Client Security Data (see

section 2.2.1.3.3) are examined to ensure that they contain at least one valid flag. If no valid flags
are present, the connection SHOULD be dropped.

http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542

236 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If the Client Network Data (see section 2.2.1.3.4) is included in the Settings Data, the server MUST
check that the channelCount field is within bounds. Furthermore, the data supplied in the

channelDefArray MUST be complete. If these two conditions are not met the connection SHOULD
be dropped.

Once the basic client settings data blocks have been processed successfully, the server MUST send
the MCS Connect Response PDU with GCC Conference Create Response (see 3.3.5.3.4) to the client.

3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create
Response

The structure and fields of the MCS Connect Response PDU with GCC Conference Create Response
are described in section 2.2.1.4. A basic high-level overview of the nested structure for the MCS

Connect Initial PDU is illustrated in Figure 2.

The tpktHeader field is initialized as described in [T123], while the x224Data field is initialized as
detailed in [X224].

The MCS Connect Response PDU (embedded within the mcsCrsp field) is described in detail in

[T125]. The fact that the MCS Connect Response PDU will contain a GCC Conference Create
Response as user data implies that processing of the MCS Connect Initial PDU with GCC Conference
Create Request (see 3.3.5.3.3) was successful, and hence the server MUST set the result field of

the MCS Connect Response PDU to rt-successful (0). The calledConnectId field SHOULD be set to
zero, while the domainParameters field MUST be initialized with the parameters which were
derived from processing of the MCS Connect Initial PDU (see 3.3.5.3.3 for a description of the

negotiation rules).

The userData field of the MCS Connect Response PDU contains the GCC Conference Create
Response (embedded within the gccCCrsp field). The GCC Conference Create Response is described
in detail in [T124] and appended as user data to the MCS Connect Response PDU using the format

described in sections 9.5 and 9.6 of [T124]. The server SHOULD initialize the fields of the GCC
Conference Create Response as follows:

Conference Create Response Field Value

nodeID 31219

tag 1 (length of 1 byte)

result success (0)

userData Basic Server Settings Data Blocks

The userData field of the GCC Conference Create Response MUST be initialized with basic server
settings data blocks (see sections 2.2.1.4.2 through to 2.2.1.4.4). The server-to-client H.221 key
which MUST be embedded at the start of the userData field (see section 8.7 of [T124] for a

description of the structure of user data) is the ANSI text "McDn".

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC
signature) before the PDU is transmitted over the wire.

3.3.5.3.5 Processing MCS Erect Domain Request PDU

The structure and fields of the MCS Erect Domain Request PDU are described in section 2.2.1.6.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90542

237 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to decrypt and verify the integrity of the entire PDU (possibly by using some sort of MAC signature)

prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the
connection SHOULD be dropped.

The MCS Erect Domain Request PDU (embedded within the mcsEDrq field) is described in detail in
[T125]. The server MUST ensure sure that the subHeight and subinterval fields are contained
within the PDU. If this is not the case, the connection SHOULD be dropped.

3.3.5.3.6 Processing MCS Attach User Request PDU

The structure and fields of the MCS Attach User Request PDU are described in section 2.2.1.6.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to decrypt and verify the integrity of the entire PDU (possibly by using some sort of MAC signature)
prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields

MUST be examined for consistency with the received data. If there is any discrepancy, the
connection SHOULD be dropped.

The MCS Attach User Request PDU (embedded within the mcsAUrq field) is described in detail in

[T125].

Upon the receiving the MCS Attach User Request PDU the server MUST send the MCS Attach User
Confirm PDU (see 3.3.5.3.7) to the client.

3.3.5.3.7 Sending MCS Attach User Confirm PDU

The structure and fields of the MCS Attach User Confirm PDU are described in section 2.2.1.7.

The tpktHeader field is initialized as described in [T123], while the x224Data field is initialized as

detailed in [X224].

The MCS Connect Response PDU (embedded within the mcsCrsp field) is described in detail in
[T125]. The optional initiator field MUST be present and MUST contain an integer identifier selected

by the server to identify the user channel (this identifier should be stored in the User Channel ID
(section 3.3.1.2) store). If a channel identifier could not be generated the result field MUST be set
to rt-unspecified-failure (14) and the initiator field SHOULD NOT be present. If a channel identifier

could be generated, the result field MUST be set to rt-successful (0).

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC
signature) before the PDU is transmitted over the wire.

3.3.5.3.8 Processing MCS Channel Join Request PDU(s)

The structure and fields of the MCS Channel Join Request PDU are described in section 2.2.1.8.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to decrypt and verify the integrity of the entire PDU (possibly by using some sort of MAC signature)
prior to any processing taking place.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

238 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The embedded length fields within the tpktHeader (see [T123]) and x224Data (see [X224]) fields
MUST be examined for consistency with the received data. If there is any discrepancy, the

connection SHOULD be dropped.

The MCS Channel Join Request PDU (embedded within the mcsCJrq field) is described in detail in
[T125].

Upon the receiving the MCS Channel Join Request PDU the server can carry out any necessary

processing to mark the channel as "joined" and MUST then send the MCS Channel Join Confirm PDU
(see 3.3.5.3.9) to the client to indicate the result of the join operation.

3.3.5.3.9 Sending MCS Channel Join Confirm PDU(s)

The structure and fields of the MCS Channel Join Confirm PDU are described in section 2.2.1.9.

The tpktHeader field is initialized as described in [T123], while the x224Data field is initialized as

detailed in [X224].

The MCS Channel Join Confirm PDU (embedded within the mcsCJcf field) is described in detail in
[T125]. The result field MUST be set to rt-successful (0) if the MCS channel ID in the corresponding
MCS Channel Join Request PDU (see 3.3.5.3.8) was successfully joined. If an error occurred during

the join (for example, too many channels, no such MCS channel ID, memory allocation error, etc.),
the server MUST set the result field to rt-unspecified-failure (14). The remaining fields MUST be
initialized as follows (these fields are essentially copied over from the MCS Channel Join Request

PDU):

Channel Join Confirm

Field Value

initiator The initiator value which was sent in the corresponding MCS Channel Join

Request PDU.

requested The MCS channel ID which was sent in the corresponding MCS Channel Join

Request PDU.

channelId The MCS channel ID which was sent in the corresponding MCS Channel Join

Request PDU.

The optional channelId field MUST be included in the MCS Channel Join Confirm PDU sent to the
client.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC
signature) before the PDU is transmitted over the wire.

3.3.5.3.10 Processing Security Exchange PDU

The structure and fields of the Security Exchange PDU are described in section 2.2.1.10.

The embedded length fields within the tpktHeader (see [T123]), x224Data (see [X224]), and

mcsSDrq (see [T125]) fields MUST be examined for consistency with the received data. If there is
any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate

target channel.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

239 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The embedded flags field of the basicSecurityHeader MUST contain the SEC_EXCHANGE_PKT
(0x0001) flag (described in section 2.2.8.1.1.2.1). If this flag is not present then the packet cannot

be interpreted as a Security Exchange PDU. If the SEC_LICENSE_ENCRYPT_SC (0x0200) flag is
present, then the client is able to accept encrypted licensing packets when using Standard RDP
Security mechanisms. This fact is stored in the Client Licensing Encryption Ability (section 3.3.1.5)
store.

The encrypted client random value is extracted from the encryptedClientRandom field using the

length field to determine the size of the data. If the value of the length field is inconsistent with
the size of the received data, the connection SHOULD be dropped. The encrypted client random

value is then decrypted using the methods and techniques described in section 5.3.4.2.

Once the server has extracted and decrypted the client random it MUST generate the session keys
which will be used to encrypt, decrypt and sign data sent on the wire. The 32-byte client random

and server random (transmitted in the Server Security Data described in section 2.2.1.4.3), are
used to accomplish this task by employing the techniques described in section 5.3.5.

3.3.5.3.11 Processing Client Info PDU

The structure and fields of the Client Info PDU are specified in section 2.2.1.11.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to decrypt and verify the integrity of the entire PDU (possibly by using some sort of MAC signature)

prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]), x224Data (see [X224]), and
mcsSDrq (see [T125]) fields MUST be examined for consistency with the received data. If there is

any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The securityHeader field MUST always be present and it MUST contain at least a Basic Security

Header structure (see section 2.2.8.1.1.2.1). The embedded flags field of the securityHeader MUST

contain the SEC_EXCHANGE_PKT (0x0001) flag (described in section 2.2.8.1.1.2.1). If this flag is
not present then the packet cannot be interpreted as a Security Exchange PDU. If the SEC_ENCRYPT

(0x0008) flag is present, then the data following the securityHeader field is encrypted and it MUST
be verified and decrypted using the methods and techniques specified in section 5.3.6. (If the
Encryption Level selected by the server (see Sections 5.3.2 and 2.2.1.4.3) is

ENCRYPTION_LEVEL_NONE (0) the SEC_ENCRYPT flag could possibly be set by some Microsoft RDP
client versions as a result of a code bug. In this case the Encryption Level setting MUST be
respected and the value of the flag MUST be ignored.) If the MAC signature is incorrect or the data
cannot be decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in

effect and the SEC_ENCRYPT (0x0008) flag is present the connection SHOULD be dropped, as
double-encryption is not used within RDP in the presence of an External Security Protocol Provider.

Before reading the client settings fields, the format of the character data should be determined by

testing for the presence of the INFO_UNICODE (0x00000010) flag (see section 2.2.1.11.1.1). If the
flag is present, all character data MUST be interpreted as Unicode, otherwise it MUST be treated as
ANSI.

All of the received client settings are stored in the Received Client Data (section 3.3.1.1) store.
When store character data the server SHOULD only save the maximum allowed sizes specified in
section 2.2.1.11.1.1. For example, the maximum specified size for the AlternateShell field is 512
bytes. If received data is larger than this size it SHOULD be truncated to 512 bytes in length

(including the mandatory null terminator) when it is stored.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

240 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If there is not enough received data to completely read a variable-length field, the connection
SHOULD be dropped. For example, if the cbAlternateShell field contains a value of 44 bytes, but

only 30 bytes remain to be parsed, the connection SHOULD be dropped.

If an auto-reconnect cookie exists in the autoReconnectCookie field, the server SHOULD store the
cookie and use it to log on the user once the connection sequence completes (for a description of
how automatic reconnection works, see section 5.5). If logon with the cookie fails, the credentials

supplied in the Client Info PDU SHOULD be used, or alternatively the user MAY enter credentials at a

server-side prompt remoted using RDP.

Once the server has successfully processed the Client Info PDU, it can enter the Licensing Phase of

the RDP Connection Sequence (see section 1.3.1.1) and carry out a licensing exchange with the
client.

3.3.5.3.12 Sending License Error PDU - Valid Client

The structure and fields of the License Error (Valid Client) PDU are described in section 2.2.1.12.

The tpktHeader field is initialized as described in [T123], while the x224Data field is initialized as
detailed in [X224].

The mcsSDin field is initialized as described in [T125] - the embedded initiator field MUST be set
to the MCS server channel ID (held in the Server Channel ID (section 3.3.1.4) store) and the
embedded channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID

(section 3.3.1.3) store). The embedded userData field contains the remaining fields of the Valid
Client PDU.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used

to encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC
signature). The securityHeader field MUST be present, however it will contain a Basic Security
Header structure (see section 2.2.8.1.1.2.1).

If Standard RDP Security mechanisms (see section 5.3) are in effect, the PDU data following the

securityHeader field may be encrypted and signed (depending on the values of the Encryption

Level and Encryption Method selected by the server as part of the negotiation described in section
5.3.2 and the contents of the Client Licensing Encryption Ability (section 3.3.1.5) store using the

methods and techniques described in section 5.3.6. The format of the securityHeader field is
selected as described in section 2.2.1.12 and the fields populated with appropriate security data. If
the data MUST be encrypted, the embedded flags field of the securityHeader field MUST contain

the SEC_ENCRYPT (0x0008) flag.

The embedded flags field of the securityHeader field (which is always present) MUST contain the
SEC_LICENSE_PKT (0x0080) flag (described in section 2.2.8.1.1.2.1) to indicate that the message is
a licensing PDU. If the server can handle encrypted licensing packets from the client and Standard

RDP Security mechanisms are being used, then the SEC_LICENSE_ENCRYPT_CS (0x0200) flag
SHOULD also be included in the flags subfield of the securityHeader field.

The remainder of the PDU MUST be populated according to the structure and type definition in

section 2.2.1.12.

After sending the License Error (Valid Client) PDU, the server MUST send the Demand Active PDU
(see section 3.3.5.3.13.1) to the client.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

241 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.3.5.3.13 Mandatory Capability Negotiation

3.3.5.3.13.1 Sending Demand Active PDU

The structure and fields of the Demand Active PDU are described in section 2.2.1.13.1.

The tpktHeader field is initialized as described in [T123], while the x224Data field is initialized as

detailed in [X224].

The mcsSDin field is initialized as described in [T125] - the embedded initiator field MUST be set to
the MCS server channel ID (held in the Server Channel ID (section 3.3.1.4) store) and the

embedded channelId field MUST be set to the MCS I/O channel ID (held in the I/O Channel ID
(section 3.3.1.3) store). The embedded userData field contains the remaining fields of the Demand
Active PDU.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol MUST be used
to encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC
signature) before the PDU is transmitted over the wire. Also, in this scenario the securityHeader
field MUST NOT be present.

If Standard RDP Security mechanisms (see section 5.3) are in effect, the PDU data following the
optional securityHeader field may be encrypted and signed (depending on the values of the
Encryption Level and Encryption Method selected by the server as part of the negotiation described

in section 5.3.2) using the methods and techniques described in 5.3.6. The format of the
securityHeader field is selected as described in section 2.2.1.13.1 and the fields populated with
appropriate security data. If the data MUST be encrypted, the embedded flags field of the

securityHeader field MUST contain the SEC_ENCRYPT (0x0008) flag.

The remaining fields are populated as described in section 2.2.1.13.1.1, with the concatenated
capability set data being inserted into the capabilitySets field.

3.3.5.3.13.2 Processing Confirm Active PDU

The structure and fields of the Confirm Active PDU are described in section 2.2.1.13.2.

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol being used to

secure the connection MUST be used to decrypt and verify the integrity of the entire PDU (possibly
by using some sort of MAC signature) prior to any processing taking place.

The embedded length fields within the tpktHeader (see [T123]), x224Data (see [X224]), and
mcsSDrq (see [T125]) fields MUST be examined for consistency with the received data. If there is

any discrepancy, the connection SHOULD be dropped.

The embedded channelId field within the mcsSDrq is used to route the PDU to the appropriate
target channel.

The conditions mandating the presence of the securityHeader field, as well as the type of Security
Header structure present in this field, are explained in section 2.2.1.13.2. If the securityHeader
field is present, the embedded flags field MUST be examined for the presence of the SEC_ENCRYPT

(0x0008) flag (see section 2.2.8.1.1.2.1), and if it is present the data following the securityHeader
field MUST be verified and decrypted using the methods and techniques described in section 5.3.6.
If the MAC signature is incorrect or the data cannot be decrypted correctly, the connection SHOULD
be dropped. If Enhanced RDP Security is in effect and the SEC_ENCRYPT (0x0008) flag is present

the connection SHOULD be dropped, as double-encryption is not used within RDP in the presence of
an External Security Protocol Provider.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=90543

242 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The shareControlHeader field (which contains a Share Control Header as described in section
2.2.8.1.1.1.1) MUST be examined to ensure that the PDU type (present in the pduType field) has

the value PDUTYPE_CONFIRMACTIVEPDU (3). The value of the totalLength field MUST also be
examined for consistency with the received data. If there is any discrepancy, the connection
SHOULD be dropped.

The remaining PDU fields and capability data MUST be interpreted and processed according to

sections 2.2.1.13.2.1 and 2.2.7. The capabilities received from the client MUST be stored in the

Client Capabilities (section 3.3.1.6) store and MUST be used to determine what subset of RDP to
send to the client.

After successfully processing the Confirm Active PDU, the server MUST send the Synchronize PDU
(see 3.3.5.3.14) to the client.

3.3.5.3.14 Processing Synchronize PDU

The structure and fields of the Synchronize PDU are described in section 2.2.1.14, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. The
contents of the targetUser field MAY be ignored.

3.3.5.3.15 Processing Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are described in section 2.2.1.15, and the

techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

3.3.5.3.16 Processing Control PDU - Request Control

The structure and fields of the Control (Request Control) PDU are described in section 2.2.1.16, and

the techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

3.3.5.3.17 Processing Persistent Key List PDU(s)

The structure and fields of the Persistent Key List PDU are described in section 2.2.1.17, and the

techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU. Note
that multiple Persistent Key List PDUs may be sent in succession - the bBitMask flag indicates the

sequencing.

Once the server has successfully processed the Persistent Key List PDU, it stores the 64-bit bitmap
keys received from the client in the Persistent Bitmap Keys (section 3.3.1.7) store.

3.3.5.3.18 Processing Font List PDU

The structure and fields of the Control (Request Control) PDU are described in section 2.2.1.18, and
the techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

The contents of the numberFonts, totalNumFonts, listFlags, and entrySize fields MAY be
ignored.

3.3.5.3.19 Sending Synchronize PDU

The structure and fields of the Synchronize PDU are described in section 2.2.1.19, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
targetUser field does not need to be initialized and MAY be set to zero. The contents of this PDU are

not compressed.

243 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

After sending the Synchronize PDU, the server MUST send the Control (Cooperate) PDU (section
3.3.5.3.20) to the client.

3.3.5.3.20 Sending Control PDU - Cooperate

The structure and fields of the Control (Cooperate) PDU are described in section 2.2.1.20, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The

grantId and controlId fields SHOULD be set to zero. The contents of this PDU are not compressed.

After sending the Control (Cooperate) PDU, the server MUST send the Control (Granted Control)
PDU (section 3.3.5.3.21) to the client.

3.3.5.3.21 Sending Control PDU - Granted Control

The structure and fields of the Control (Granted Control) PDU are described in section 2.2.1.21, and

the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.
The grantId field SHOULD be set to the MCS user channel ID (held in the User Channel ID (section
3.3.1.2) store), while the controlId field SHOULD be set to the MCS server channel ID (held in the
Server Channel ID (section 3.3.1.4) store). The contents of this PDU are not compressed.

After sending the Control (Granted Control) PDU, the server MUST send the Font Map PDU (section
3.3.5.3.22) to the client.

3.3.5.3.22 Sending Font Map PDU

The structure and fields of the Font Map PDU are described in section 2.2.1.22, and the techniques
described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The contents of
this PDU are not compressed.

3.3.5.4 Disconnection Sequences

3.3.5.4.1 Processing Shutdown Request PDU

The structure and fields of the Shutdown Request PDU are described in section 2.2.2.2, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once the server has successfully processed the Shutdown Request PDU, it MUST send the Shutdown

Request Denied PDU (section 3.3.5.4.2) to the client.

3.3.5.4.2 Sending Shutdown Request Denied PDU

The structure and fields of the Shutdown Request Denied PDU are described in section 2.2.2.3, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.
The contents of this PDU are not compressed.

3.3.5.5 Deactivation-Reconnection Sequence

3.3.5.5.1 Sending Deactivate All PDU

The structure and fields of the Deactivate All PDU are described in section 2.2.3.1, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU are not compressed.

244 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Once the server has successfully transmitted the Deactivate All PDU, it SHOULD send an MCS
Disconnect Provider Ultimatum (section 3.1.5.1.1) and then close the connection, or it SHOULD

initiate capability renegotiation by using a Deactivation-Reactivation Sequence (see section 1.3.1.3).

3.3.5.6 Auto-Reconnect Sequence

3.3.5.6.1 Sending Auto-Reconnect Status PDU

The structure and fields of the Auto-Reconnect Status PDU are described in section 2.2.4.1, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU are not compressed.

3.3.5.7 Server Error Reporting

3.3.5.7.1 Sending Set Error Info PDU

The structure and fields of the Set Error Info PDU are described in section 2.2.5.1, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The

contents of this PDU are not compressed. After the PDU has been sent the server MUST disconnect
the client (since the Set Error Info PDU has been sent, the client will be aware of the reason for the
disconnect).

3.3.5.8 Keyboard and Mouse Input

3.3.5.8.1 Input Event Notifications

3.3.5.8.1.1 Processing Slow-Path Input Event PDU

The structure and fields of the Slow-Path Input Event PDU are described in section 2.2.8.1.1.3, and
the techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

The slowPathInputEvents field encapsulates a collection of input events and is populated with the

following input event data:

 Keyboard Event (section 2.2.8.1.1.3.1.1)

 Unicode Keyboard Event (section 2.2.8.1.1.3.1.2)

 Mouse Event (section 2.2.8.1.1.3.1.3)

 Extended Mouse Event (section 2.2.8.1.1.3.1.4)

 Synchronize Event (section 2.2.8.1.1.3.1.5)

If a Slow-Path input event structure is received that does not match one of the known types, the
server SHOULD drop the connection.

Once this PDU has been processed, the server MUST inject the input event into the remote session.

3.3.5.8.1.2 Processing Fast-Path Input Event PDU

The Fast-Path Input Event PDU has the following basic structure (see sections 5.3.8 and 5.4.4):

 fpInputHeader: Fast-Path Input Header (see section 2.2.8.1.2)

245 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 length1 and length2: Packet Length (see section 2.2.8.1.2)

 fipsInformation: Optional FIPS Information (see section 2.2.8.1.2)

 dataSignature: Optional Data Signature (see section 2.2.8.1.2)

 numberEvents: Optional Number of Events (see section 2.2.8.1.2)

 Actual PDU Contents (collection of input events)

 Keyboard Event (section 2.2.8.1.2.2.1)

 Unicode Keyboard Event (section 2.2.8.1.2.2.2)

 Mouse Event (section 2.2.8.1.2.2.3)

 Extended Mouse Event (section 2.2.8.1.2.2.4)

 Synchronize Event (section 2.2.8.1.2.2.5)

If Enhanced RDP Security (see section 5.4) is in effect, the External Security Protocol being used to
secure the connection MUST be used to decrypt and verify the integrity of the entire PDU (possibly

by using some sort of MAC signature) prior to any processing taking place.

The contents of the embedded actionCode field of the fpInputHeader field MUST be set to
FASTPATH_INPUT_ACTION_FASTPATH (0). If it is not set to this value the PDU is not a Fast-Path
Input Event PDU and MUST be processed as a Slow-Path PDU (see section 3.3.5.2).

If the embedded encryptionFlags field of the fpInputHeader field contains the
FASTPATH_INPUT_ENCRYPTED (2) flag, then the data following the optional dataSignature field
(which in this case MUST be present) MUST be verified and decrypted using the methods and

techniques described in section 5.3.6. If the MAC signature is incorrect or the data cannot be
decrypted correctly, the connection SHOULD be dropped. If Enhanced RDP Security is in effect and
the FASTPATH_INPUT_ENCRYPTED (2) flag is present the connection SHOULD be dropped, as

double-encryption is not used within RDP in the presence of an External Security Protocol Provider.

The numberEvents field details the number of input events present in the fpInputEvents field.
The input events present in this field MUST be interpreted and processed according to the
descriptions detailed from sections 2.2.8.1.2.2.1 through 2.2.8.1.2.2.5. If a Fast-Path input event

structure is received that does not match one of the known types, the server SHOULD drop the
connection.

Once this PDU has been processed, the server MUST inject the input event into the remote session.

3.3.5.8.2 Keyboard Status PDUs

3.3.5.8.2.1 Sending Set Keyboard Indicators PDU

The structure and fields of the Set Keyboard Indicators PDU are described in section 2.2.8.2.1, and
the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.
The contents of this PDU are not compressed.

3.3.5.8.2.2 Sending Set Keyboard IME Status PDU

The structure and fields of the Set Keyboard IME Status PDU are described in section 2.2.8.2.2, and

the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.
The contents of this PDU are not compressed.

246 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.3.5.9 Basic Output

3.3.5.9.1 Sending Slow-Path Graphics Update PDU

The structure and fields of the Slow-Path Graphics Update PDU are described in section 2.2.9.1.1.3,
and the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the

PDU.

The slowPathGraphicsUpdate field contains a single graphics update structure which can be one
of the following types:

 Orders Update (see section 2.2.2.2 in [MS-RDPEGDI])

 Palette Update (section 2.2.9.1.1.3.1.1)

 Bitmap Update (section 2.2.9.1.1.3.1.2)

 Synchronize Update (section 2.2.9.1.1.3.1.3)

The contents of this PDU MAY be compressed by the server before any MAC signature is constructed
and encryption methods applied. The Share Data Header MUST be initialized with the compression
usage information (see section 3.3.5.1).

3.3.5.9.2 Sending Slow-Path Pointer Update PDU

The structure and fields of the Slow-Path Pointer Update PDU are described in section 2.2.9.1.1.4,

and the techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the
PDU.

The messageType field MUST be initialized with the identifier describing the type of the Pointer
Update (see section 2.2.9.1.1.4 for a list of possible values), while the pointerAttributeData field

MUST be initialized with the actual update data contained in one of the following structures:

 Pointer Position Update (section 2.2.9.1.1.4.2)

 System Pointer Update (section 2.2.9.1.1.4.3)

 Color Pointer Update (section 2.2.9.1.1.4.4)

 New Pointer Update (section 2.2.9.1.1.4.5)

 Cached Pointer Update (section 2.2.9.1.1.4.6)

When sending a Color or New Pointer Update, the server MUST save the pointer image in the Pointer
Image Cache (section 3.3.1.8) and intialize the cacheIndex field with the index of the cache entry
which was used.

The contents of this PDU are not compressed.

3.3.5.9.3 Sending Fast-Path Update PDU

The Fast-Path Update PDU has the following basic structure (see sections 5.3.8 and 5.4.4):

 fpOutputHeader: Fast-Path Output Header (see section 2.2.9.1.2)

 length1 and length2: Packet Length (see section 2.2.9.1.2)

%5bMS-RDPEGDI%5d.pdf

247 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 fipsInformation: Optional FIPS Information (see section 2.2.9.1.2)

 dataSignature: Optional Data Signature (see section 2.2.9.1.2)

 Actual PDU Contents (collection of Fast-Path output updates)

 Orders Update (see section 2.2.2.3 in [MS-RDPEGDI])

 Palette Update (section 2.2.9.1.2.1.1)

 Bitmap Update (section 2.2.9.1.2.1.2)

 Synchronize Update (section 2.2.9.1.2.1.3)

 Pointer Position Update (section 2.2.9.1.2.1.4)

 System Pointer Hidden Update (section 2.2.9.1.2.1.5)

 System Pointer Default Update (section 2.2.9.1.2.1.6)

 Color Pointer Update (section 2.2.9.1.2.1.7)

 New Pointer Update (section 2.2.9.1.2.1.8)

 Cached Pointer Update (section 2.2.9.1.2.1.9)

The fpOutputHeader, length1 and length2 fields MUST be initialized as described in section
2.2.9.1.2. Since the PDU is in Fast-Path format, the embedded actionCode field of the
fpOutputHeader field MUST be set to FASTPATH_OUTPUT_ACTION_FASTPATH (0).

If Enhanced RDP Security (section 5.4) is in effect, the External Security Protocol MUST be used to
encrypt the entire PDU and generate a verification digest (possibly by using some sort of MAC
signature) before the PDU is transmitted over the wire. Also, in this scenario the fipsInformation

and dataSignature fields MUST NOT be present.

If Standard RDP Security (section 5.3) mechanisms are in effect, the PDU data following the optional

dataSignature field may be encrypted and signed (depending on the values of the Encryption Level

and Encryption Method selected by the server as part of the negotiation described in section 5.3.2)
using the methods and techniques described in section 5.3.6. If the data MUST be encrypted, the
embedded encryptionFlags field of the fpOutputHeader field MUST contain the
FASTPATH_OUTPUT_ENCRYPTED (2) flag.

The actual PDU contents, which encapsulates a collection of output events, is populated with Fast-
Path update data as described in sections 2.2.9.1.2.1.1 through 2.2.9.1.2.1.9. The contents of each
individual update MAY be compressed by the server before any MAC signature is constructed and

encryption methods applied. If this is the case, the embedded compression field of the common
updateHeader field MUST contain the FASTPATH_OUTPUT_COMPRESSION_USED flag and the
optional compressionFlags field MUST be be initialized with the compression usage information.

3.3.5.9.4 Sound

3.3.5.9.4.1 Sending Play Sound PDU

The structure and fields of the Play Sound PDU are described in section 2.2.9.1.1.5, and the
techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU. The
contents of this PDU are not compressed.

%5bMS-RDPEGDI%5d.pdf

248 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.3.5.9.5 Connection Management

3.3.5.9.5.1 Sending Save Session Info PDU

The structure and fields of the Save Session Info PDU are described in section 2.2.10.1.

The three reasons for sending this PDU are:

1. Notifying the client that the user has logged on (the username and domain which were used, as
well as the ID of the session to which the user connected, may be included in this notification).

2. Transmitting an auto-reconnect cookie to the client (see section 1.3.1.5).

3. Informing the client of an error or warning that occurred while the user was logging on.

The client SHOULD always be notified after the user has logged on. The INFOTYPE_LOGON
(0x00000000), INFOTYPE_LOGON_LONG (0x00000001), or INFOTYPE_LOGON_PLAINNOTIFY

(0x00000002) notification types MUST be used to accomplish this task.

A logon notification of type INFOTYPE_LOGON or INFOTYPE_LOGON_LONG SHOULD<2> be sent if
the INFO_LOGONNOTIFY (0x00000040) flag was set by the client in the Client Info PDU (see
sections 2.2.1.11 and 3.3.5.3.1) or if the username or domain used to log on to the session is

different from what was sent in the Client Info PDU (the original username or domain might have
been invalid, resulting in the user having to re-enter their credentials at a remoted logon prompt).
The LONG_CREDENTIALS_SUPPORTED (0x00000004) flag, in the extraFlags field of the General

Capability Set (section 2.2.7.1.1) received from the client (see section 3.3.5.3.13.2), determines
whether the INFOTYPE_LOGON or INFOTYPE_LOGON_LONG type is used.

A logon notification of type INFOTYPE_LOGON_PLAINNOTIFY SHOULD be sent whenever a

notification of type INFOTYPE_LOGON or INFOTYPE_LOGON_LONG would not be sent.

The techniques described in section 3.3.5.1 demonstrate how to initialize the contents of the PDU.
The contents of this PDU are not compressed.

3.3.5.10 Controlling Server Graphics Output

3.3.5.10.1 Processing Refresh Rect PDU

The structure and fields of the Refresh Rect PDU are described in section 2.2.11.2, and the
techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the server MUST send updated graphics data for the region
specified by the PDU.

3.3.5.10.2 Processing Suppress Output PDU

The structure and fields of the Suppress Output PDU are described in section 2.2.11.3, and the

techniques described in section 3.3.5.2 demonstrate how to process the contents of the PDU.

Once this PDU has been processed, the server MUST stop or resume sending graphics updates,
depending on the value of the suppressOutput field in the PDU.

3.3.6 Timer Events

No server timer events are used.

249 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3.3.6.1 Connection Sequence Timeout

If the RDP Connection Sequence (see Sections 1.3.1.1 and 1.3.1.2) does not complete within 60
seconds, the server MAY terminate the connection to the client.

3.3.7 Other Local Events

No additional events are used.

250 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Remote Desktop Protocol: Basic Connectivity and Graphics Remoting.

4.1 Annotated Connection Sequence

4.1.1 Client X.224 Connection Request PDU

The following is an annotated dump of the Client X.224 Connection Request PDU (section 2.2.1.1).

00000000 03 00 00 2c 27 e0 00 00 00 00 00 43 6f 6f 6b 69 ...,'......Cooki

00000010 65 3a 20 6d 73 74 73 68 61 73 68 3d 65 6c 74 6f e: mstshash=elto

00000020 6e 73 0d 0a 01 00 08 00 00 00 00 00 ns..........

03 -> TPKT Header: version = 3

00 -> TPKT Header: Reserved = 0

00 -> TPKT Header: Packet length - high part

2c -> TPKT Header: Packet length - low part (total = 44 bytes)

27 -> X.224: Length indicator (39 bytes)

e0 -> X.224: Type (high nibble) = 0xe = CR TPDU; credit (low nibble) = 0

00 00 -> X.224: Destination reference = 0

00 00 -> X.224: Source reference = 0

00 -> X.224: Class and options = 0

43 6f 6f 6b 69 65 3a 20 6d 73 74 73 68 61 73 68

3d 65 6c 74 6f 6e 73 -> "Cookie: mstshash=eltons"

0d -> CR (carriage return)

0a -> LF (line feed)

01 -> RDP_NEG_REQ::type (TYPE_RDP_NEG_REQ)

00 -> RDP_NEG_REQ::flags (0)

08 00 -> RDP_NEG_REQ::length (8 bytes)

00 00 00 00 -> RDP_NEG_REQ: Requested protocols (PROTOCOL_RDP)

4.1.2 Server X.224 Connection Confirm PDU

The following is an annotated dump of the Server X.224 Connection Confirm PDU (section 2.2.1.2).

00000000 03 00 00 13 0e d0 00 00 12 34 00 02 00 08 00 014......

00000010 00 00 00 ...

03 -> TPKT Header: TPKT version = 3

00 -> TPKT Header: Reserved = 0

00 -> TPKT Header: Packet length - high part

13 -> TPKT Header: Packet length - low part (total = 19 bytes)

0e -> X.224: Length indicator (14 bytes)

d0 -> X.224: Type (high nibble) = 0xd = CC TPDU; credit (low nibble) = 0

00 00 -> X.224: Destination reference = 0

12 34 -> X.224: Source reference = 0x1234 (bogus value)

00 -> X.224: Class and options = 0

02 -> RDP_NEG_RSP::type (TYPE_RDP_NEG_RSP)

00 -> RDP_NEG_RSP::flags (0)

08 00 -> RDP_NEG_RSP::length (8 bytes)

00 00 00 00 -> RDP_NEG_RSP: Selected protocols (PROTOCOL_RDP)

251 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request

The following is an annotated dump of the Client MCS Connect Initial PDU with GCC Conference
Create Request (section 2.2.1.3).

00000000 03 00 01 a0 02 f0 80 7f 65 82 01 94 04 01 01 04e.......

00000010 01 01 01 01 ff 30 19 02 01 22 02 01 02 02 01 000..."......

00000020 02 01 01 02 01 00 02 01 01 02 02 ff ff 02 01 02

00000030 30 19 02 01 01 02 01 01 02 01 01 02 01 01 02 01 0...............

00000040 00 02 01 01 02 02 04 20 02 01 02 30 1c 02 02 ff0....

00000050 ff 02 02 fc 17 02 02 ff ff 02 01 01 02 01 00 02

00000060 01 01 02 02 ff ff 02 01 02 04 82 01 33 00 05 003...

00000070 14 7c 00 01 81 2a 00 08 00 10 00 01 c0 00 44 75 .|...*........Du

00000080 63 61 81 1c 01 c0 d8 00 04 00 08 00 00 05 00 04 ca..............

00000090 01 ca 03 aa 09 04 00 00 ce 0e 00 00 45 00 4c 00E.L.

000000a0 54 00 4f 00 4e 00 53 00 2d 00 44 00 45 00 56 00 T.O.N.S.-.D.E.V.

000000b0 32 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 2...............

000000c0 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00

000000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000100 00 00 00 00 00 00 00 00 01 ca 01 00 00 00 00 00

00000110 18 00 07 00 01 00 36 00 39 00 37 00 31 00 32 006.9.7.1.2.

00000120 2d 00 37 00 38 00 33 00 2d 00 30 00 33 00 35 00 -.7.8.3.-.0.3.5.

00000130 37 00 39 00 37 00 34 00 2d 00 34 00 32 00 37 00 7.9.7.4.-.4.2.7.

00000140 31 00 34 00 00 00 00 00 00 00 00 00 00 00 00 00 1.4.............

00000150 00 00 00 00 00 00 00 00 01 00 00 00 04 c0 0c 00

00000160 0d 00 00 00 00 00 00 00 02 c0 0c 00 1b 00 00 00

00000170 00 00 00 00 03 c0 2c 00 03 00 00 00 72 64 70 64,.....rdpd

00000180 72 00 00 00 00 00 80 80 63 6c 69 70 72 64 72 00 r.......cliprdr.

00000190 00 00 a0 c0 72 64 70 73 6e 64 00 00 00 00 00 c0rdpsnd......

03 -> TPKT: TPKT version = 3

00 -> TPKT: Reserved = 0

01 -> TPKT: Packet length - high part

a0 -> TPKT: Packet length - low part (total = 416 bytes)

02 -> X.224: Length indicator = 2

f0 -> X.224: Type = 0xf0 = Data TPDU

80 -> X.224: EOT

7f 65 -> BER: Application-Defined Type = APPLICATION 101 =

Connect-Initial

This is the BER encoded multiple octet variant of the ASN.1 type

field. The multiple octet variant is used when the type can be

greater than 30, and is constructed as follows:

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+-----------------+ +-----------------+ +-----------------+

| C C F 1 1 1 1 1 | | 1 T T T T T T T | ... | 0 T T T T T T T |

+-----------------+ +-----------------+ +-----------------+

 1 2 n

In this case, CC = 01 which means the type is APPLICATION defined,

and F = 1 to indicate that the type is constructed (as opposed

to primitive). There is only one octet containing the type value

(the second octet, which has the form 0TTTTTTT), and hence the

type is 0x65 (MCS_TYPE_CONNECTINITIAL).

82 01 94 -> BER: Type Length = 404 bytes

This is the BER encoded definite long variant of the ASN.1 length

field. The long variant layout is constructed as follows:

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+-----------------+ +-----------------+ +-----------------+

252 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

| 1 (0 < n < 127) | | L L L L L L L L | ... | L L L L L L L L |

+-----------------+ +-----------------+ +-----------------+

 1 2 n + 1

Since the most significant bit of the first byte (0x82) is set, the

low seven bits contain the number of length bytes, which means

that the number of length bytes is 2. Hence, 0x01 and 0x94 are

length bytes, which implies that the length is greater than 256

bytes and less than 65536 bytes, specifically 0x194 (404) bytes.

04 01 01 -> Connect-Initial::callingDomainSelector

The first byte (0x04) is the ASN.1 BER encoded OctetString type. The

length of the data is given by the second byte (1 byte), which

is encoded using the BER definite short variant of the ASN.1

length field. The third byte contains the value, which is 0x01.

04 01 01 -> Connect-Initial::calledDomainSelector

01 01 ff -> Connect-Initial::upwardFlag = TRUE

The first byte (0x01) is the ASN.1 BER encoded Boolean type. The

length of the data is given by the second byte (0x01, so the

length is 1 byte). The third byte contains the value, which is

0xff (TRUE).

30 19 -> Connect-Initial::targetParameters (25 bytes)

The first byte (0x30) is the ASN.1 BER encoded SequenceOf type. The

length of the sequence data is given by the second byte (0x19, so

the length is 25 bytes).

02 01 22 -> DomainParameters::maxChannelIds = 34

The first byte (0x02) is the ASN.1 BER encoded Integer type. The

length of the integer is given by the second byte (1 byte), and

the actual value is 34 (0x22).

02 01 02 -> DomainParameters::maxUserIds = 2

02 01 00 -> DomainParameters::maxTokenIds = 0

02 01 01 -> DomainParameters::numPriorities = 1

02 01 00 -> DomainParameters::minThroughput = 0

02 01 01 -> DomainParameters::maxHeight = 1

02 02 ff ff -> DomainParameters::maxMCSPDUsize = 65535

02 01 02 -> DomainParameters::protocolVersion = 2

30 19 -> Connect-Initial::minimumParameters (25 bytes)

02 01 01 -> DomainParameters::maxChannelIds = 1

02 01 01 -> DomainParameters::maxUserIds = 1

02 01 01 -> DomainParameters::maxTokenIds = 1

02 01 01 -> DomainParameters::numPriorities = 1

02 01 00 -> DomainParameters::minThroughput = 0

02 01 01 -> DomainParameters::maxHeight = 1

02 02 04 20 -> DomainParameters::maxMCSPDUsize = 1056

02 01 02 -> DomainParameters::protocolVersion = 2

30 1c -> Connect-Initial::maximumParameters (28 bytes)

0x02 0x02 0xff 0xff -> DomainParameters::maxChannelIds = 65535

0x02 0x02 0xfc 0x17 -> DomainParameters::maxUserIds = 64535

0x02 0x02 0xff 0xff -> DomainParameters::maxTokenIds = 65535

0x02 0x01 0x01 -> DomainParameters::numPriorities = 1

0x02 0x01 0x00 -> DomainParameters::minThroughput = 0

0x02 0x01 0x01 -> DomainParameters::maxHeight = 1

0x02 0x02 0xff 0xff -> DomainParameters::maxMCSPDUsize = 65535

0x02 0x01 0x02 -> DomainParameters::protocolVersion = 2

04 82 01 33 -> Connect-Initial::userData (307 bytes)

The first byte (0x04) is the ASN.1 OctetString type. The length is

encoded using the BER definite long variant format. Hence, since the

253 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

most significant bit of the second byte (0x82) is set, the low seven

bits contain the number of length bytes, which means that the number

of length bytes is 2. Hence, 0x01 and 0x33 are length bytes, which

implies that the length is greater than 256 bytes and less than

65536 bytes, specifically 0x133 (307) bytes.

PER encoded (basic aligned variant) GCC Connection Data (ConnectData):

00 05 00 14 7c 00 01 81 2a 00 08 00 10 00 01 c0

00 44 75 63 61 81 1c

0 - CHOICE: From Key select object (0) of type OBJECT IDENTIFIER

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

05 -> object length = 5 bytes

00 14 7c 00 01 -> object

The first byte gives the first two values in the sextuple (m and n),

as it is encoded as 40m + n. Hence, decoding the remaining data

yields the correct results:

OID = { 0 0 20 124 0 1 } = { itu-t(0) recommendation(0) t(20)

t124(124) version(0) 1 }

Description = Version 1 of ITU-T Recommendation T.124 (February

1998): "Generic Conference Control"

81 2a -> ConnectData::connectPDU length = 298 bytes

Since the most significant bit of the first byte (0x81) is set to 1

and the following bit is set to 0, the length is given by the low

six bits of the first byte and the second byte. Hence we get 0x12a,

which is 298 bytes.

PER encoded (basic aligned variant) GCC Conference Create Request PDU:

00 08 00 10 00 01 c0 00 44 75 63 61 81 1c

0x00:

0 - extension bit (ConnectGCCPDU)

0 - --\

0 - | CHOICE: From ConnectGCCPDU select conferenceCreateRequest

(0) of type ConferenceCreateRequest

0 - --/

0 - extension bit (ConferenceCreateRequest)

0 - ConferenceCreateRequest::convenerPassword present

0 - ConferenceCreateRequest::password present

0 - ConferenceCreateRequest::conductorPrivileges present

0x08:

0 - ConferenceCreateRequest::conductedPrivileges present

0 - ConferenceCreateRequest::nonConductedPrivileges present

0 - ConferenceCreateRequest::conferenceDescription present

0 - ConferenceCreateRequest::callerIdentifier present

1 - ConferenceCreateRequest::userData present

0 - extension bit (ConferenceName)

0 - ConferenceName::text present

0 - padding

0x00:

0 - --\

0 - |

0 - |

0 - | ConferenceName::numeric length = 0 + 1 = 1 character

254 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 - | (minimum for SimpleNumericString is 1)

0 - |

0 - |

0 - --/

0x10:

0 - --\

0 - | ConferenceName::numeric = "1"

0 - |

1 - --/

0 - ConferenceCreateRequest::lockedConference

0 - ConferenceCreateRequest::listedConference

0 - ConferenceCreateRequest::conducibleConference

0 - extension bit (TerminationMethod)

0x00:

0 - TerminationMethod::automatic

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0x01:

0 - --\

0 - |

0 - |

0 - | number of UserData sets = 1

0 - |

0 - |

0 - |

1 - --/

0xc0:

1 - UserData::value present

1 - CHOICE: From Key select h221NonStandard (1) of type

H221NonStandardIdentifier

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0x00:

0 - --\

0 - |

0 - |

0 - | h221NonStandard length = 0 + 4 = 4 octets

0 - | (minimum for H221NonStandardIdentifier is 4)

0 - |

0 - |

0 - --/

44 75 63 61 -> h221NonStandard (client-to-server H.221 key) = "Duca"

81 1c -> UserData::value length = 284 bytes

Since the most significant bit of the first byte (0x81) is set to 1

and the following bit is set to 0, the length is given by the low six

bits of the first byte and the second byte. Hence we get 0x11c, which

is 284 bytes.

01 c0 d8 00 -> TS_UD_HEADER::type = CS_CORE (0xc001), length = 216

255 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

bytes

04 00 08 00 -> TS_UD_CS_CORE::version = 0x0008004

00 05 -> TS_UD_CS_CORE::desktopWidth = 1280

00 04 -> TS_UD_CS_CORE::desktopHeight = 1024

01 ca -> TS_UD_CS_CORE::colorDepth = RNS_UD_COLOR_8BPP (0xca01)

03 aa -> TS_UD_CS_CORE::SASSequence

09 04 00 00 -> TS_UD_CS_CORE::keyboardLayout = 0x409 = 1033 =

English (US)

ce 0e 00 00 -> TS_UD_CS_CORE::clientBuild = 3790

45 00 4c 00 54 00 4f 00 4e 00 53 00 2d 00 44 00

45 00 56 00 32 00 00 00 00 00 00 00 00 00 00 00 ->

TS_UD_CS_CORE::clientName = ELTONS-TEST2

04 00 00 00 -> TS_UD_CS_CORE::keyboardType

00 00 00 00 -> TS_UD_CS_CORE::keyboardSubtype

0c 00 00 00 -> TS_UD_CS_CORE::keyboardFunctionKey

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TS_UD_CS_CORE::imeFileName = ""

01 ca -> TS_UD_CS_CORE::postBeta2ColorDepth = RNS_UD_COLOR_8BPP

(0xca01)

01 00 -> TS_UD_CS_CORE::clientProductId

00 00 00 00 -> TS_UD_CS_CORE::serialNumber

18 00 -> TS_UD_CS_CORE::highColorDepth = 24 bpp

07 00 -> TS_UD_CS_CORE::supportedColorDepths

0x07

= 0x01 | 0x02 | 0x04

= RNS_UD_24BPP_SUPPORT | RNS_UD_16BPP_SUPPORT | RNS_UD_15BPP_SUPPORT

01 00 -> TS_UD_CS_CORE::earlyCapabilityFlags

0x01

= RNS_UD_CS_SUPPORT_ERRINFO_PDU

36 00 39 00 37 00 31 00 32 00 2d 00 37 00 38 00

33 00 2d 00 30 00 33 00 35 00 37 00 39 00 37 00

34 00 2d 00 34 00 32 00 37 00 31 00 34 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TS_UD_CS_CORE::clientDigProductId = "69712-783-0357974-42714"

00 00 -> TS_UD_CS_CORE::pad2octets

00 00 00 00 -> TS_UD_CS_CORE::serverSelectedProtocols

04 c0 0c 00 -> TS_UD_HEADER::type = CS_CLUSTER (0xc004), length = 12

bytes

0d 00 00 00 -> TS_UD_CS_CLUSTER::Flags = 0x0d

0x0d

= 0x03 << 2 | 0x01

= REDIRECTION_VERSION4 << 2 | REDIRECTION_SUPPORTED

00 00 00 00 -> TS_UD_CS_CLUSTER::RedirectedSessionID

02 c0 0c 00 -> TS_UD_HEADER::type = CS_SECURITY (0xc002), length =

12 bytes

1b 00 00 00 -> TS_UD_CS_SEC::encryptionMethods

0x1b

256 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

= 0x01 | 0x02 | 0x08 | 0x10

= 40BIT_ENCRYPTION_FLAG | 128BIT_ENCRYPTION_FLAG |

56BIT_ENCRYPTION_FLAG | FIPS_ENCRYPTION_FLAG

00 00 00 00 -> TS_UD_CS_SEC::extEncryptionMethods

03 c0 2c 00 -> TS_UD_HEADER::type = CS_NET (0xc003), length = 44 bytes

03 00 00 00 -> TS_UD_CS_NET::channelCount = 3

72 64 70 64 72 00 00 00 -> CHANNEL_DEF::name = "rdpdr"

00 00 80 80 -> CHANNEL_DEF::options = 0x80800000

0x80800000

= 0x80000000 | 0x00800000

= INITIALIZED | COMPRESS_RDP

63 6c 69 70 72 64 72 00 -> CHANNEL_DEF::name = "cliprdr"

00 00 a0 c0 -> CHANNEL_DEF::options = 0xc0a00000

0xc0a00000

= 0x80000000 | 0x40000000 | 0x00800000 | 0x00200000

= INITIALIZED | ENCRYPT_RDP | COMPRESS_RDP | SHOW_PROTOCOL

72 64 70 73 6e 64 00 00 -> CHANNEL_DEF::name = "rdpsnd"

00 00 00 c0 -> CHANNEL_DEF::options = 0xc0000000

0xc0000000

= 0x80000000 | 0x40000000

= INITIALIZED | ENCRYPT_RDP

4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response

The following is an annotated dump of the Server MCS Connect Response PDU with GCC Conference
Create Response (section 2.2.1.4).

00000000 03 00 01 51 02 f0 80 7f 66 82 01 45 0a 01 00 02 ...Q....f..E....

00000010 01 00 30 1a 02 01 22 02 01 03 02 01 00 02 01 01 ..0...".........

00000020 02 01 00 02 01 01 02 03 00 ff f8 02 01 02 04 82

00000030 01 1f 00 05 00 14 7c 00 01 2a 14 76 0a 01 01 00|..*.v....

00000040 01 c0 00 4d 63 44 6e 81 08 01 0c 0c 00 04 00 08 ...McDn.........

00000050 00 00 00 00 00 03 0c 10 00 eb 03 03 00 ec 03 ed

00000060 03 ee 03 00 00 02 0c ec 00 02 00 00 00 02 00 00

00000070 00 20 00 00 00 b8 00 00 00 10 11 77 20 30 61 0aw 0a.

00000080 12 e4 34 a1 1e f2 c3 9f 31 7d a4 5f 01 89 34 96 ..4.....1}._..4.

00000090 e0 ff 11 08 69 7f 1a c3 d2 01 00 00 00 01 00 00i...........

000000a0 00 01 00 00 00 06 00 5c 00 52 53 41 31 48 00 00\.RSA1H..

000000b0 00 00 02 00 00 3f 00 00 00 01 00 01 00 cb 81 fe?..........

000000c0 ba 6d 61 c3 55 05 d5 5f 2e 87 f8 71 94 d6 f1 a5 .ma.U.._...q....

000000d0 cb f1 5f 0c 3d f8 70 02 96 c4 fb 9b c8 3c 2d 55 .._.=.p......<-U

000000e0 ae e8 ff 32 75 ea 68 79 e5 a2 01 fd 31 a0 b1 1f ...2u.hy....1...

000000f0 55 a6 1f c1 f6 d1 83 88 63 26 56 12 bc 00 00 00 U.......c&V.....

00000100 00 00 00 00 00 08 00 48 00 e9 e1 d6 28 46 8b 4eH....(F.N

00000110 f5 0a df fd ee 21 99 ac b4 e1 8f 5f 81 57 82 ef!....._.W..

00000120 9d 96 52 63 27 18 29 db b3 4a fd 9a da 42 ad b5 ..Rc'.)..J...B..

00000130 69 21 89 0e 1d c0 4c 1a a8 aa 71 3e 0f 54 b9 9a i!....L...q>.T..

00000140 e4 99 68 3f 6c d6 76 84 61 00 00 00 00 00 00 00 ..h?l.v.a.......

00000150 00 .

03 00 01 51 -> TPKT Header (length = 337 bytes)

02 f0 80 -> X.224 Data TPDU

257 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

7f 66 -> BER: Application-Defined Type = APPLICATION 102 =

Connect-Response

82 01 45 -> BER: Type Length = 325 bytes

0a 01 00 -> Connect-Response::result = rt-successful (0)

The first byte (0x0a) is the ASN.1 BER encoded Enumerated type. The

length of the value is given by the second byte (1 byte), and the

actual value is 0 (rt-successful).

02 01 00 -> Connect-Response::calledConnectId = 0

30 1a -> Connect-Response::domainParameters (26 bytes)

02 01 22 -> DomainParameters::maxChannelIds = 34

02 01 02 -> DomainParameters::maxUserIds = 3

02 01 00 -> DomainParameters::maximumTokenIds = 0

02 01 01 -> DomainParameters::numPriorities = 1

02 01 00 -> DomainParameters::minThroughput = 0

02 01 01 -> DomainParameters::maxHeight = 1

02 03 00 ff f8 -> DomainParameters::maxMCSPDUsize = 65528

02 01 02 -> DomainParameters::protocolVersion = 2

04 82 01 1f -> Connect-Response::userData (287 bytes)

PER encoded (basic aligned variant) GCC Connection Data (ConnectData):

00 05 00 14 7c 00 01 2a 14 76 0a 01 01 00 01 c0

00 4d 63 44 6e 81 08

00 05 -> Key::object length = 5 bytes

00 14 7c 00 01 -> Key::object = { 0 0 20 124 0 1 }

2a -> ConnectData::connectPDU length = 42 bytes

Note that this length is hard-coded by the server and ignored by the

client.

PER encoded (basic aligned variant) GCC Conference Create Response

PDU:

14 76 0a 01 01 00 01 c0 00 00 4d 63 44 6e 81 08

0x14:

0 - extension bit (ConnectGCCPDU)

0 - --\

0 - | CHOICE: From ConnectGCCPDU select conferenceCreateResponse

(1) of type ConferenceCreateResponse

1 - --/

0 - extension bit (ConferenceCreateResponse)

1 - ConferenceCreateResponse::userData present

0 - padding

0 - padding

0x76:

0 - --\

1 - |

1 - |

1 - |

0 - |

1 - |

1 - |

0 - |

 | ConferenceCreateResponse::nodeID = 0x760a + 1001 = 30218 +

1001 = 31219

0x0a: | (minimum for UserID is 1001)

0 - |

0 - |

0 - |

0 - |

258 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

1 - |

0 - |

1 - |

0 - --/

0x01:

0 - --\

0 - |

0 - |

0 - | ConferenceCreateResponse::tag length = 1 byte

0 - |

0 - |

0 - |

1 - --/

0x01:

0 - --\

0 - |

0 - |

0 - | ConferenceCreateResponse::tag = 1

0 - |

0 - |

0 - |

1 - --/

0x00:

0 - extension bit (Result)

0 - --\

0 - | ConferenceCreateResponse::result = success (0)

0 - --/

0 - padding

0 - padding

0 - padding

0 - padding

0x01:

0 - --\

0 - |

0 - |

0 - | number of UserData sets = 1

0 - |

0 - |

0 - |

1 - --/

0xc0:

1 - UserData::value present

1 - CHOICE: From Key select h221NonStandard (1) of type

H221NonStandardIdentifier

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0x00:

0 - --\

0 - |

0 - |

0 - | h221NonStandard length = 0 + 4 = 4 octets

0 - | (minimum for H221NonStandardIdentifier is 4)

0 - |

0 - |

0 - --/

259 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

4d 63 44 6e -> h221NonStandard (server-to-client H.221 key) = "McDn"

81 08 -> UserData::value length = 264 bytes

01 0c 0c 00 -> TS_UD_HEADER::type = SC_CORE (0x0c01), length = 12

bytes

04 00 08 00 -> TS_UD_SC_CORE::version = 0x0008004

00 00 00 00 -> TS_UD_SC_CORE::clientRequestedProtocols = PROTOCOL_RDP

03 0c 10 00 -> TS_UD_HEADER::type = SC_NET (0x0c03), length = 16 bytes

eb 03 -> TS_UD_SC_NET::MCSChannelID = 0x3eb = 1003 (I/O channel)

03 00 -> TS_UD_SC_NET::channelCount = 3

ec 03 -> channel0 = 0x3ec = 1004 (rdpdr)

ed 03 -> channel1 = 0x3ed = 1005 (cliprdr)

ee 03 -> channel2 = 0x3ee = 1006 (rdpsnd)

00 00 -> padding

02 0c ec 00 -> TS_UD_HEADER::type = SC_SECURITY, length = 236

02 00 00 00 -> TS_UD_SC_SEC1::encryptionMethod =

128BIT_ENCRYPTION_FLAG

02 00 00 00 -> TS_UD_SC_SEC1::encryptionLevel =

TS_ENCRYPTION_LEVEL_CLIENT_COMPATIBLE

20 00 00 00 -> TS_UD_SC_SEC1::serverRandomLen = 32 bytes

b8 00 00 00 -> TS_UD_SC_SEC1::serverCertLen = 184 bytes

10 11 77 20 30 61 0a 12 e4 34 a1 1e f2 c3 9f 31

7d a4 5f 01 89 34 96 e0 ff 11 08 69 7f 1a c3 d2 ->

TS_UD_SC_SEC1::serverRandom

TS_UD_SC_SEC1::serverCertificate:

01 00 00 00 01 00 00 00 01 00 00 00 06 00 5c 00

52 53 41 31 48 00 00 00 00 02 00 00 3f 00 00 00

01 00 01 00 cb 81 fe ba 6d 61 c3 55 05 d5 5f 2e

87 f8 71 94 d6 f1 a5 cb f1 5f 0c 3d f8 70 02 96

c4 fb 9b c8 3c 2d 55 ae e8 ff 32 75 ea 68 79 e5

a2 01 fd 31 a0 b1 1f 55 a6 1f c1 f6 d1 83 88 63

26 56 12 bc 00 00 00 00 00 00 00 00 08 00 48 00

e9 e1 d6 28 46 8b 4e f5 0a df fd ee 21 99 ac b4

e1 8f 5f 81 57 82 ef 9d 96 52 63 27 18 29 db b3

4a fd 9a da 42 ad b5 69 21 89 0e 1d c0 4c 1a a8

aa 71 3e 0f 54 b9 9a e4 99 68 3f 6c d6 76 84 61

00 00 00 00 00 00 00 00

01 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::dwVersion = 1

01 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::dwSigAlgId = MD5RSA (1)

01 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::dwKeyAlgId = RSAKEY (1)

06 00 -> PROPRIETARYSERVERCERTIFICATE::wPublicKeyBlobType =

BB_RSA_KEY_BLOB (6)

5c 00 -> PROPRIETARYSERVERCERTIFICATE::wPublicKeyBlobLen = 92 bytes

PROPRIETARYSERVERCERTIFICATE::PublicKeyBlob:

52 53 41 31 48 00 00 00 00 02 00 00 3f 00 00 00

01 00 01 00 cb 81 fe ba 6d 61 c3 55 05 d5 5f 2e

87 f8 71 94 d6 f1 a5 cb f1 5f 0c 3d f8 70 02 96

c4 fb 9b c8 3c 2d 55 ae e8 ff 32 75 ea 68 79 e5

a2 01 fd 31 a0 b1 1f 55 a6 1f c1 f6 d1 83 88 63

26 56 12 bc 00 00 00 00 00 00 00 00

52 53 41 31 -> RSA_PUBLIC_KEY::magic = "RSA1"

48 00 00 00 -> RSA_PUBLIC_KEY::keylen = 72 bytes

00 02 00 00 -> RSA_PUBLIC_KEY::bitlen = 0x0200 = 512 bits

260 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

3f 00 00 00 -> RSA_PUBLIC_KEY::datalen = 63 bytes

01 00 01 00 -> RSA_PUBLIC_KEY::pubExp = 0x00010001

cb 81 fe ba 6d 61 c3 55 05 d5 5f 2e 87 f8 71 94

d6 f1 a5 cb f1 5f 0c 3d f8 70 02 96 c4 fb 9b c8

3c 2d 55 ae e8 ff 32 75 ea 68 79 e5 a2 01 fd 31

a0 b1 1f 55 a6 1f c1 f6 d1 83 88 63 26 56 12 bc

00 00 00 00 00 00 00 00 -> RSA_PUBLIC_KEY::modulus

08 00 -> PROPRIETARYSERVERCERTIFICATE::wSignatureBlobType =

BB_RSA_SIGNATURE_BLOB (8)

48 00 -> PROPRIETARYSERVERCERTIFICATE::wSignatureBlobLen = 72 bytes

e9 e1 d6 28 46 8b 4e f5 0a df fd ee 21 99 ac b4

e1 8f 5f 81 57 82 ef 9d 96 52 63 27 18 29 db b3

4a fd 9a da 42 ad b5 69 21 89 0e 1d c0 4c 1a a8

aa 71 3e 0f 54 b9 9a e4 99 68 3f 6c d6 76 84 61

00 00 00 00 00 00 00 00 -> PROPRIETARYSERVERCERTIFICATE::SignatureBlob

4.1.5 Client MCS Erect Domain Request PDU

The following is an annotated dump of the Client MCS Erect Domain Request PDU (section 2.2.1.5).

00000000 03 00 00 0c 02 f0 80 04 01 00 01 00

03 00 00 0c -> TPKT Header (length = 12 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) PDU contents:

04 01 00 01 00

0x04:

0 - --\

0 - |

0 - | CHOICE: From DomainMCSPDU select erectDomainRequest (1) of

type ErectDomainRequest

0 - |

0 - |

1 - --/

0 - padding

0 - padding

0x01:

0 - --\

0 - |

0 - |

0 - | ErectDomainRequest::subHeight length = 1 byte

0 - |

0 - |

0 - |

1 - --/

0x00:

0 - --\

0 - |

0 - |

0 - | ErectDomainRequest::subHeight = 0

261 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 - |

0 - |

0 - |

0 - --/

0x01:

0 - --\

0 - |

0 - |

0 - | ErectDomainRequest::subInterval length = 1 byte

0 - |

0 - |

0 - |

1 - --/

0x00:

0 - --\

0 - |

0 - |

0 - | ErectDomainRequest::subInterval = 0

0 - |

0 - |

0 - |

0 - --/

4.1.6 Client MCS Attach User Request PDU

The following is an annotated dump of the Client MCS Attach User Request PDU (section 2.2.1.6).

00000000 03 00 00 08 02 f0 80 28 (

03 00 00 08 -> TPKT Header (length = 8 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) PDU contents:

28

0x28:

0 - --\

0 - |

1 - | CHOICE: From DomainMCSPDU select attachUserRequest (10) of

type AttachUserRequest

0 - |

1 - |

0 - --/

0 - padding

0 - padding

4.1.7 Server MCS Attach-User Confirm PDU

The following is an annotated dump of the Server MCS Attach User Confirm PDU (section 2.2.1.7).

00000000 03 00 00 0b 02 f0 80 2e 00 00 06

262 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

03 00 00 0b -> TPKT Header (length = 11 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) PDU contents:

2e 00 00 06

0x2e:

0 - --\

0 - |

1 - | CHOICE: From DomainMCSPDU select attachUserConfirm (11) of

type AttachUserConfirm

0 - |

1 - |

1 - --/

1 - AttachUserConfirm::initiator present

0 - --\

 |

0x00: | AttachUserConfirm::result = rt-successful (0)

0 - |

0 - |

0 - --/

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0x00:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

 | AttachUserConfirm::initiator = 0x0006 + 1001 = 0x03ef =

1007 (user channel)

0x06: |

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

0 - --/

263 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

4.1.8 MCS Channel Join Request and Confirm PDUs

4.1.9 Channel 1007

4.1.9.1 Client Join Request PDU for Channel 1007 (User Channel)

The following is an annotated dump of the Client MCS Channel Join Request PDU (section 2.2.1.8).

00000000 03 00 00 0c 02 f0 80 38 00 06 03 ef 8....

03 00 00 0c -> TPKT Header (length = 12 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) PDU contents:

38 00 06 03 ef

0x38:

0 - --\

0 - |

1 - | CHOICE: From DomainMCSPDU select channelJoinRequest (14) of

type ChannelJoinRequest

1 - |

1 - |

0 - --/

0 - padding

0 - padding

0x00:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

 | ChannelJoinRequest::initiator = 0x06 + 1001 = 1007 (0x03ef)

0x06: |

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

0 - --/

0x03:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

 | ChannelJoinRequest::channelId = 0x03ef = 1007

264 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0xef: |

1 - |

1 - |

1 - |

0 - |

1 - |

1 - |

1 - |

1 - --/

4.1.9.2 Server Join Confirm PDU for Channel 1007 (User Channel)

The following is an annotated dump of the Client MCS Channel Join Confirm PDU (section 2.2.1.9).

00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ef 03 ef >.......

03 00 00 0f -> TPKT Header (length = 15 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) PDU contents:

3e 00 00 06 03 ef 03 ef

0x3e:

0 - --\

0 - |

1 - | CHOICE: From DomainMCSPDU select channelJoinConfirm (15) of

type ChannelJoinConfirm

1 - |

1 - |

1 - --/

1 - ChannelJoinConfirm::channelId present

0 - --\

 |

0x00: | ChannelJoinConfirm::result = rt-successful (0)

0 - |

0 - |

0 - --/

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0x00:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

 | ChannelJoinConfirm::initiator = 0x06 + 1001 = 1007 (0x03ef)

0x06: |

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

265 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 - --/

0x03:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

 | ChannelJoinConfirm::requested = 0x03ef = 1007

0xef: |

1 - |

1 - |

1 - |

0 - |

1 - |

1 - |

1 - |

1 - --/

0x03:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

 | ChannelJoinConfirm::channelId = 0x03ef = 1007

0xef: |

1 - |

1 - |

1 - |

0 - |

1 - |

1 - |

1 - |

1 - --/

4.1.10 Channel 1003

4.1.10.1 Client Join Request PDU for Channel 1003 (I/O Channel)

The following is an annotated dump of the Client MCS Channel Join Request PDU.

00000000 03 00 00 0c 02 f0 80 38 00 06 03 eb 8....

ChannelJoinRequest::initiator = 6 + 1001 = 1007

ChannelJoinRequest::channelId = 0x03eb = 1003

4.1.10.2 Server Join Confirm PDU for Channel 1003 (I/O Channel)

The following is an annotated dump of the Client MCS Channel Join Confirm PDU (section 2.2.1.9).

266 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 eb 03 eb >.......

ChannelJoinConfirm::result = rt-successful (0)

ChannelJoinConfirm::initiator = 6 + 1001 = 1007

ChannelJoinConfirm::requested = 0x03eb = 1003

ChannelJoinConfirm::channelId = 0x03eb = 1003

4.1.11 Channel 1004

4.1.11.1 Client Join Request PDU for Channel 1004 (rdpdr Channel)

The following is an annotated dump of the Client MCS Channel Join Request PDU (section 2.2.1.8).

00000000 03 00 00 0c 02 f0 80 38 00 06 03 ec 8....

ChannelJoinRequest::initiator = 6 + 1001 = 1007

ChannelJoinRequest::channelId = 0x03ec = 1004

4.1.11.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel)

The following is an annotated dump of the Client MCS Channel Join Confirm PDU (section 2.2.1.9).

00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ec 03 ec >.......

ChannelJoinConfirm::result = rt-successful (0)

ChannelJoinConfirm::initiator = 6 + 1001 = 1007

ChannelJoinConfirm::requested = 0x03ec = 1004

ChannelJoinConfirm::channelId = 0x03ec = 1004

4.1.12 Channel 1005

4.1.12.1 Client Join Request PDU for Channel 1005 (cliprdr Channel)

The following is an annotated dump of the Client MCS Channel Join Request PDU (section 2.2.1.8).

00000000 03 00 00 0c 02 f0 80 38 00 06 03 ed 8....

ChannelJoinRequest::initiator = 6 + 1001 = 1007

ChannelJoinRequest::channelId = 0x03ed = 1005

4.1.12.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel)

The following is an annotated dump of the Client MCS Channel Join Confirm PDU (section 2.2.1.9).

00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ed 03 ed >.......

ChannelJoinConfirm::result = rt-successful (0)

ChannelJoinConfirm::initiator = 6 + 1001 = 1007

ChannelJoinConfirm::requested = 0x03ed = 1005

267 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

ChannelJoinConfirm::channelId = 0x03ed = 1005

4.1.13 Channel 1006

4.1.13.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel)

The following is an annotated dump of the Client MCS Channel Join Request PDU (section 2.2.1.8).

00000000 03 00 00 0c 02 f0 80 38 00 06 03 ee 8....

ChannelJoinRequest::initiator = 6 + 1001 = 1007

ChannelJoinRequest::channelId = 0x03ee = 1006

4.1.13.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel)

The following is an annotated dump of the Client MCS Channel Join Confirm PDU (section 2.2.1.9).

00000000 03 00 00 0f 02 f0 80 3e 00 00 06 03 ee 03 ee >.......

ChannelJoinConfirm::result = rt-successful (0)

ChannelJoinConfirm::initiator = 6 + 1001 = 1007

ChannelJoinConfirm::requested = 0x03ee = 1006

ChannelJoinConfirm::channelId = 0x03ee = 1006

4.1.14 Client Security Exchange PDU

The following is an annotated dump of the Client Security Exchange PDU (section 2.2.1.10).

00000000 03 00 00 5e 02 f0 80 64 00 06 03 eb 70 50 01 02 ...^...d....pP..

00000010 00 00 48 00 00 00 91 ac 0c 8f 64 8c 39 f4 e7 ff ..H.......d.9...

00000020 0a 3b 79 11 5c 13 51 2a cb 72 8f 9d b7 42 2e f7 .;y.\.Q*.r...B..

00000030 08 4c 8e ae 55 99 62 d2 81 81 e4 66 c8 05 ea d4 .L..U.b....f....

00000040 73 06 3f c8 5f af 2a fd fc f1 64 b3 3f 0a 15 1d s.?._.*...d.?...

00000050 db 2c 10 9d 30 11 00 00 00 00 00 00 00 00 .,..0.........

03 00 00 5e -> TPKT Header (length = 94 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) SendDataRequest PDU:

64 00 06 03 eb 70 50

0x64:

0 - --\

1 - |

1 - | CHOICE: From DomainMCSPDU select sendDataRequest (25) of

type SendDataRequest

0 - |

0 - |

1 - --/

0 - padding

0 - padding

0x00:

268 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

 | SendDataRequest::initiator = 0x06 + 1001 = 1007

0x06: |

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

0 - --/

0x03:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

 | SendDataRequest::channelId = 0x03eb = 1003

0xeb: |

1 - |

1 - |

1 - |

0 - |

1 - |

0 - |

1 - |

1 - --/

0x70:

0 - --\ SendDataRequest::dataPriority = 0x01 = high

1 - --/

1 - --\ SendDataRequest::segmentation = 0x03 = (0x02 | 0x01) =

(begin | end)

1 - --/

0 - padding

0 - padding

0 - padding

0 - padding

0x50:

0 - --\

1 - |

0 - |

1 - | SendDataRequest::userData length = 80 bytes

0 - |

0 - |

0 - |

0 - --/

01 02 -> TS_SECURITY_HEADER::flags = 0x0201

0x0201

= 0x0200 | 0x0001

= SEC_LICENSE_ENCRYPT_SC | SEC_EXCHANGE_PKT

269 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00 00 -> TS_SECURITY_HEADER::flagsHi = 0x0000

48 00 00 00 -> TS_SECURITY_PACKET::length = 0x48 = 72 bytes

91 ac 0c 8f 64 8c 39 f4 e7 ff 0a 3b 79 11 5c 13

51 2a cb 72 8f 9d b7 42 2e f7 08 4c 8e ae 55 99

62 d2 81 81 e4 66 c8 05 ea d4 73 06 3f c8 5f af

2a fd fc f1 64 b3 3f 0a 15 1d db 2c 10 9d 30 11 ->

TS_SECURITY_PACKET::encryptedClientRandom

00 00 00 00 00 00 00 00 -> 8-bytes of rear padding (always present)

4.1.15 Client Info PDU

The following is an annotated dump of the Client Info PDU (section 2.2.1.11).

00000000 03 00 01 ab 02 f0 80 64 00 06 03 eb 70 81 9c 48d....p..H

00000010 00 00 00 45 ca 46 fa 5e a7 be bc 74 21 d3 65 e9 ...E.F.^...t!.e.

00000020 ba 76 12 7c 55 4b 9d 84 3b 3e 07 29 20 73 25 7b .v.|UK..;>.) s%{

00000030 e6 9a bb e8 41 8a a0 69 3f 26 9a cd bc a6 03 27A..i?&.....'

00000040 f5 ce bb a8 c2 ff 0f 38 a3 bf 74 81 ac cb c9 088..t.....

00000050 49 0a 43 cf 91 31 36 cd ba 3d 16 4f 11 d7 69 12 I.C..16..=.O..i.

00000060 c8 e9 57 c0 b8 0f c4 72 66 79 bd 86 ba 30 60 76 ..W....rfy...0`v

00000070 b4 cd 52 5e 79 8e 88 95 f0 9a 43 20 d9 96 74 1d ..R^y.....C ..t.

00000080 5c 8a 9a e3 8a 5d d2 55 17 8c f2 66 6b 3f 3d 3a \....].U...fk?=:

00000090 e3 2a d4 ff d5 11 30 30 e2 ff e2 e4 11 0c 7f 6a .*....00.......j

000000a0 1e a3 f4 2f dd 4f 89 8c c0 ca d3 8a 49 d7 00 d9 .../.O......I...

000000b0 09 40 ab 79 1a 72 f9 89 42 af 20 aa 50 c7 cd d0 .@.y.r..B. .P...

000000c0 b8 1e ab d3 eb 10 01 82 68 9f f5 c9 05 fe 20 bbh..... .

000000d0 7c 68 b4 72 cd 37 53 df 43 0a 6d de cb be 5f 80 |h.r.7S.C.m..._.

000000e0 05 1e b8 f3 5d 04 0c c6 66 3b 39 5f 5d a2 da b9]...f;9_]...

000000f0 ea c9 da ba 7c 9d 4e 4a 4f 4a 16 04 ea 4e 23 d3|.NJOJ...N#.

00000100 6d 2c 2b 42 58 19 69 10 23 d4 e1 af 46 34 fc 23 m,+BX.i.#...F4.#

00000110 81 59 54 65 5f 6c 67 57 14 62 57 94 f1 81 86 00 .YTe_lgW.bW.....

00000120 fe 1c 27 f6 76 e2 00 ea c5 f7 b5 e9 b2 ad ef 7f ..'.v...........

00000130 87 8b 8a b0 d3 1e 43 54 4b ab f6 ba 7f 5a b9 e5CTK....Z..

00000140 2d 5f 81 ab 2a 15 c4 97 bc d3 92 9a da be 8a b0 -_..*...........

00000150 fb a4 1a a0 96 26 86 23 10 1b 21 0a 91 05 22 4d&.#..!..."M

00000160 6c 4d 01 4c 84 f3 50 56 4f 3a e4 c0 24 bf 35 f6 lM.L..PVO:..$.5.

00000170 f5 8b 3f 20 55 98 91 05 4d ee 46 95 44 6d 06 33 ..? U...M.F.Dm.3

00000180 42 1f 9f 84 91 e7 c5 9f 04 11 de cf a5 07 5f 27 B............._'

00000190 dd c0 ac b1 a7 98 9d 6d 79 00 70 33 bf 4e 16 23my.p3.N.#

000001a0 57 f5 c7 88 82 d1 c6 a3 b4 0b 29 W.........)

03 00 01 ab -> TPKT Header (length = 427 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 81 9c -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x19c = 412 bytes

48 00 -> TS_SECURITY_HEADER::flags = 0x0048

0x0048

= 0x0040 | 0x0008

= SEC_INFO_PKT | SEC_ENCRYPT

00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

270 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

45 ca 46 fa 5e a7 be bc -> TS_SECURITY_HEADER1::dataSignature

74 21 d3 65 e9 ba 76 12 7c 55 4b 9d 84 3b 3e 07

29 20 73 25 7b e6 9a bb e8 41 8a a0 69 3f 26 9a

cd bc a6 03 27 f5 ce bb a8 c2 ff 0f 38 a3 bf 74

81 ac cb c9 08 49 0a 43 cf 91 31 36 cd ba 3d 16

4f 11 d7 69 12 c8 e9 57 c0 b8 0f c4 72 66 79 bd

86 ba 30 60 76 b4 cd 52 5e 79 8e 88 95 f0 9a 43

20 d9 96 74 1d 5c 8a 9a e3 8a 5d d2 55 17 8c f2

66 6b 3f 3d 3a e3 2a d4 ff d5 11 30 30 e2 ff e2

e4 11 0c 7f 6a 1e a3 f4 2f dd 4f 89 8c c0 ca d3

8a 49 d7 00 d9 09 40 ab 79 1a 72 f9 89 42 af 20

aa 50 c7 cd d0 b8 1e ab d3 eb 10 01 82 68 9f f5

c9 05 fe 20 bb 7c 68 b4 72 cd 37 53 df 43 0a 6d

de cb be 5f 80 05 1e b8 f3 5d 04 0c c6 66 3b 39

5f 5d a2 da b9 ea c9 da ba 7c 9d 4e 4a 4f 4a 16

04 ea 4e 23 d3 6d 2c 2b 42 58 19 69 10 23 d4 e1

af 46 34 fc 23 81 59 54 65 5f 6c 67 57 14 62 57

94 f1 81 86 00 fe 1c 27 f6 76 e2 00 ea c5 f7 b5

e9 b2 ad ef 7f 87 8b 8a b0 d3 1e 43 54 4b ab f6

ba 7f 5a b9 e5 2d 5f 81 ab 2a 15 c4 97 bc d3 92

9a da be 8a b0 fb a4 1a a0 96 26 86 23 10 1b 21

0a 91 05 22 4d 6c 4d 01 4c 84 f3 50 56 4f 3a e4

c0 24 bf 35 f6 f5 8b 3f 20 55 98 91 05 4d ee 46

95 44 6d 06 33 42 1f 9f 84 91 e7 c5 9f 04 11 de

cf a5 07 5f 27 dd c0 ac b1 a7 98 9d 6d 79 00 70

33 bf 4e 16 23 57 f5 c7 88 82 d1 c6 a3 b4 0b 29 -> Encrypted

TS_INFO_PACKET

Decrypted TS_INFO_PACKET:

00000000 09 04 09 04 b3 43 00 00 0a 00 0c 00 00 00 00 00C..........

00000010 00 00 4e 00 54 00 44 00 45 00 56 00 00 00 65 00 ..N.T.D.E.V...e.

00000020 6c 00 74 00 6f 00 6e 00 73 00 00 00 00 00 00 00 l.t.o.n.s.......

00000030 00 00 02 00 1e 00 31 00 35 00 37 00 2e 00 35 001.5.7...5.

00000040 39 00 2e 00 32 00 34 00 32 00 2e 00 31 00 35 00 9...2.4.2...1.5.

00000050 36 00 00 00 84 00 43 00 3a 00 5c 00 64 00 65 00 6.....C.:.\.d.e.

00000060 70 00 6f 00 74 00 73 00 5c 00 77 00 32 00 6b 00 p.o.t.s.\.w.2.k.

00000070 33 00 5f 00 31 00 5c 00 74 00 65 00 72 00 6d 00 3._.1.\.t.e.r.m.

00000080 73 00 72 00 76 00 5c 00 6e 00 65 00 77 00 63 00 s.r.v.\.n.e.w.c.

00000090 6c 00 69 00 65 00 6e 00 74 00 5c 00 6c 00 69 00 l.i.e.n.t.\.l.i.

000000a0 62 00 5c 00 77 00 69 00 6e 00 33 00 32 00 5c 00 b.\.w.i.n.3.2.\.

000000b0 6f 00 62 00 6a 00 5c 00 69 00 33 00 38 00 36 00 o.b.j.\.i.3.8.6.

000000c0 5c 00 6d 00 73 00 74 00 73 00 63 00 61 00 78 00 \.m.s.t.s.c.a.x.

000000d0 2e 00 64 00 6c 00 6c 00 00 00 e0 01 00 00 50 00 ..d.l.l.......P.

000000e0 61 00 63 00 69 00 66 00 69 00 63 00 20 00 53 00 a.c.i.f.i.c. .S.

000000f0 74 00 61 00 6e 00 64 00 61 00 72 00 64 00 20 00 t.a.n.d.a.r.d. .

00000100 54 00 69 00 6d 00 65 00 00 00 00 00 00 00 00 00 T.i.m.e.........

00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000120 0a 00 00 00 05 00 02 00 00 00 00 00 00 00 00 00

00000130 00 00 50 00 61 00 63 00 69 00 66 00 69 00 63 00 ..P.a.c.i.f.i.c.

00000140 20 00 44 00 61 00 79 00 6c 00 69 00 67 00 68 00 .D.a.y.l.i.g.h.

00000150 74 00 20 00 54 00 69 00 6d 00 65 00 00 00 00 00 t. .T.i.m.e.....

00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000170 00 00 00 00 04 00 00 00 01 00 02 00 00 00 00 00

00000180 00 00 c4 ff ff ff 00 00 00 00 01 00 00 00 00 00

09 04 09 04 -> TS_INFO_PACKET::CodePage = 0x04090409

Low word = 0x0409 = 1033 = English (US)

Since the INFO_UNICODE flag is set, this is the active input locale

identifier.

b3 43 00 00 -> TS_INFO_PACKET::flags = 0x000043b3

0x000043b3

= 0x00000001 |

 0x00000002 |

271 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 0x00000010 |

 0x00000020 |

 0x00000080 |

 0x00000100 |

 0x00000200 |

 0x00004000

= INFO_MOUSE |

 INFO_DISABLECTRLALTDEL |

 INFO_UNICODE |

 INFO_MAXIMIZESHELL |

 INFO_COMPRESSION |

 INFO_ENABLEWINDOWSKEY |

 PACKET_COMPR_TYPE_64K << 9 |

 INFO_FORCE_ENCRYPTED_CS_PDU

0a 00 -> TS_INFO_PACKET::cbDomain = 0x0a = 10 bytes (not including

the size of the mandatory NULL terminator)

0c 00 -> TS_INFO_PACKET::cbUserName = 0x0c = 12 bytes (not including

the size of the mandatory NULL terminator)

00 00 -> TS_INFO_PACKET::cbPassword = 0 bytes

00 00 -> TS_INFO_PACKET::cbAlternateShell = 0 bytes

00 00 -> TS_INFO_PACKET::cbWorkingDir = 0 bytes

4e 00 54 00 44 00 45 00 56 00 00 00 -> TS_INFO_PACKET::Domain =

"NTDEV"

65 00 6c 00 74 00 6f 00 6e 00 73 00 00 00 ->

TS_INFO_PACKET::UserName = "eltons"

00 00 -> TS_INFO_PACKET::Password = ""

00 00 -> TS_INFO_PACKET::AlternateShell = ""

00 00 -> TS_INFO_PACKET::WorkingDir = ""

02 00 -> TS_EXTENDED_INFO_PACKET::clientAddressFamily = AF_INET (2)

1e 00 -> TS_EXTENDED_INFO_PACKET::cbClientAddress = 0x1e = 30 bytes

(including the size of the mandatory NULL terminator)

31 00 35 00 37 00 2e 00 35 00 39 00 2e 00 32 00

34 00 32 00 2e 00 31 00 35 00 36 00 00 00 ->

TS_EXTENDED_INFO_PACKET::clientAddress = "157.59.242.156"

84 00 -> TS_EXTENDED_INFO_PACKET::cbClientDir = 0x84 = 132 bytes

(including the size of the mandatory NULL terminator)

43 00 3a 00 5c 00 64 00 65 00 70 00 6f 00 74 00

73 00 5c 00 77 00 32 00 6b 00 33 00 5f 00 31 00

5c 00 74 00 65 00 72 00 6d 00 73 00 72 00 76 00

5c 00 6e 00 65 00 77 00 63 00 6c 00 69 00 65 00

6e 00 74 00 5c 00 6c 00 69 00 62 00 5c 00 77 00

69 00 6e 00 33 00 32 00 5c 00 6f 00 62 00 6a 00

5c 00 69 00 33 00 38 00 36 00 5c 00 6d 00 73 00

74 00 73 00 63 00 61 00 78 00 2e 00 64 00 6c 00

6c 00 00 00 -> TS_EXTENDED_INFO_PACKET::clientDir =

"C:\depots\w2k3_1\termsrv\newclient\lib\win32\obj\i386\mstscax.dll"

e0 01 00 00 -> TIME_ZONE_INFORMATION::Bias = 0x01e0 = 480 mins = 8 hrs

50 00 61 00 63 00 69 00 66 00 69 00 63 00 20 00

53 00 74 00 61 00 6e 00 64 00 61 00 72 00 64 00

20 00 54 00 69 00 6d 00 65 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TIME_ZONE_INFORMATION::StandardName = "Pacific Standard Time"

00 00 -> TIME_ZONE_INFORMATION::StandardDate::wYear = 0

0a 00 -> TIME_ZONE_INFORMATION::StandardDate::wMonth = 0x0a =

October (10)

00 00 -> TIME_ZONE_INFORMATION::StandardDate::wDayOfWeek = Sunday (0)

272 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

05 00 -> TIME_ZONE_INFORMATION::StandardDate::wDay = 5 (last Sunday)

02 00 -> TIME_ZONE_INFORMATION::StandardDate::wHour = 2am

00 00 -> TIME_ZONE_INFORMATION::StandardDate::wMinute = 0

00 00 -> TIME_ZONE_INFORMATION::StandardDate::wSecond = 0

00 00 -> TIME_ZONE_INFORMATION::StandardDate::wMilliseconds = 0

00 00 00 00 -> TIME_ZONE_INFORMATION::StandardBias = 0

50 00 61 00 63 00 69 00 66 00 69 00 63 00 20 00

44 00 61 00 79 00 6c 00 69 00 67 00 68 00 74 00

20 00 54 00 69 00 6d 00 65 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TIME_ZONE_INFORMATION::DaylightName = "Pacific Daylight Time"

00 00 -> TIME_ZONE_INFORMATION::DaylightDate::wYear = 0

04 00 -> TIME_ZONE_INFORMATION::DaylightDate::wMonth = April (4)

00 00 -> TIME_ZONE_INFORMATION::DaylightDate::wDayOfWeek = Sunday (0)

01 00 -> TIME_ZONE_INFORMATION::DaylightDate::wDay = 1 (first Sunday)

02 00 -> TIME_ZONE_INFORMATION::DaylightDate::wHour = 2am

00 00 -> TIME_ZONE_INFORMATION::DaylightDate::wMinute = 0

00 00 -> TIME_ZONE_INFORMATION::DaylightDate::wSecond = 0

00 00 -> TIME_ZONE_INFORMATION::DaylightDate::wMilliseconds = 0

c4 ff ff ff -> TIME_ZONE_INFORMATION::DaylightBias = 0xffffffc4 =

-60 (two's complement)

00 00 00 00 -> TS_EXTENDED_INFO_PACKET::clientSessionId = 0

01 00 00 00 -> TS_EXTENDED_INFO_PACKET::performanceFlags = 0x01 =

TS_PERF_DISABLE_WALLPAPER

00 00 -> TS_EXTENDED_INFO_PACKET::cbAutoReconnectLen = 0

4.1.16 Server License Error PDU - Valid Client

The following is an annotated dump of the Server License Error PDU - Valid Client (section 2.2.1.12).

00000000 03 00 00 2a 02 f0 80 68 00 01 03 eb 70 1c 88 02 ...*...h....p...

00000010 02 03 8d 43 9a ab d5 2a 31 39 62 4d c1 ec 0d 99 ...C...*19bM....

00000020 88 e6 da ab 2c 02 72 4d 49 90 ,.rMI.

03 00 00 2a -> TPKT Header (length = 42 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) SendDataIndication PDU:

68 00 01 03 eb 70 1c

0x68:

0 - --\

1 - |

1 - | CHOICE: From DomainMCSPDU select sendDataIndication (26) of

 type SendDataIndication

0 - |

1 - |

0 - --/

0 - padding

0 - padding

0x00:

0 - --\

0 - |

0 - |

0 - |

0 - |

273 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 - |

0 - |

0 - |

 | SendDataIndication::initiator = 0x01 + 1001 = 1002 (0x03ea)

0x01: |

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

0 - |

1 - --/

0x03:

0 - --\

0 - |

0 - |

0 - |

0 - |

0 - |

1 - |

1 - |

 | SendDataIndication::channelId = 0x03eb = 1003

0xeb: |

1 - |

1 - |

1 - |

0 - |

1 - |

0 - |

1 - |

1 - --/

0x70:

0 - --\ SendDataIndication::dataPriority = 0x01 = high

1 - --/

1 - --\ SendDataIndication::segmentation = 0x03 = (0x02 | 0x01) = (begin | end)

1 - --/

0 - padding

0 - padding

0 - padding

0 - padding

0x1c:

0 - --\

0 - |

0 - |

1 - | SendDataIndication::userData length = 28 bytes

1 - |

1 - |

0 - |

0 - --/

88 02 -> TS_SECURITY_HEADER::flags = 0x0288

0x0288

= 0x0008 | 0x0080 | 0x0200

= SEC_ENCRYPT | SEC_LICENSE_PKT | SEC_LICENSE_ENCRYPT_CS

02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

8d 43 9a ab d5 2a 31 39 -> TS_SECURITY_HEADER1::dataSignature

62 4d c1 ec 0d 99 88 e6 da ab 2c 02 72 4d 49 90 -> Encrypted Licensing Packet

274 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Decrypted Licensing Packet:

00000000 ff 03 10 00 07 00 00 00 02 00 00 00 04 00 00 00

ff -> LICENSE_PREAMBLE::bMsgType = ERROR_ALERT

03 -> LICENSE_PREAMBLE::bVersion = 3 (RDP 5.0 and RDP 5.1)

10 00 -> LICENSE_PREAMBLE::wMsgSize = 0x10 = 16 bytes

07 00 00 00 -> LICENSE_ERROR_MESSAGE::dwErrorCode = STATUS_VALID_CLIENT

02 00 00 00 -> LICENSE_ERROR_MESSAGE::dwStateTransition = ST_NO_TRANSITION

04 00 -> LICENSE_ERROR_MESSAGE::bbErrorInfo::wBlobType = BB_ERROR_BLOB

00 00 -> LICENSE_ERROR_MESSAGE::bbErrorInfo::wBlobLen = 0

4.1.17 Server Demand Active PDU

The following is an annotated dump of the Server Demand Active PDU (section 2.2.1.13.1).

00000000 03 00 01 82 02 f0 80 68 00 01 03 eb 70 81 73 08h....p.s.

00000010 00 02 03 56 02 e1 47 ac 5c 50 d9 72 f9 c3 32 0a ...V..G.\P.r..2.

00000020 c7 23 3f 5f 78 11 de e2 af 6c 9b f3 63 32 6b 18 .#?_x....l..c2k.

00000030 15 1c e5 e2 ff e2 61 f9 1e 99 90 c5 62 9b 8f 2aa.....b..*

00000040 c3 de bb 6f 3e 59 01 62 4f 75 e4 5c be e7 ce 08 ...o>Y.bOu.\....

00000050 44 b1 37 9f c0 27 55 bd e5 eb 7e 63 80 6a bf 8e D.7..'U...~c.j..

00000060 0e 21 f0 c3 70 f8 e9 4f da 72 0f e5 ca 2a f3 b5 .!..p..O.r...*..

00000070 9d d7 05 de 4d 35 49 80 37 2f 8a fb 4b c2 1f f8M5I.7/..K...

00000080 01 4f 2f 1d 73 7b 95 01 52 9d b1 c6 d2 03 61 51 .O/.s{..R.....aQ

00000090 da 3a 17 86 77 36 05 a2 24 63 5c af 65 67 e7 8d .:..w6..$c\.eg..

000000a0 0b a3 71 e1 ec f3 e4 a1 24 ed c8 2a 4f 5d 9f 91 ..q.....$..*O]..

000000b0 89 91 1d 69 c5 f5 48 bb 37 b2 93 e9 35 21 7e 0d ...i..H.7...5!~.

000000c0 09 27 d6 16 d6 91 57 9c 7e f9 d2 a1 c5 26 63 de .'....W.~....&c.

000000d0 78 38 f7 77 08 95 76 e3 68 bc 26 82 18 3c fb f0 x8.w..v.h.&..<..

000000e0 ba 21 02 72 55 27 fa 8c e2 59 ba 86 dd 11 12 ba .!.rU'...Y......

000000f0 7e 87 74 3e c4 7c 57 3d 50 c0 b7 0f 85 a0 7b 1d ~.t>.|W=P.....{.

00000100 86 7a 03 b3 6d ef de 1b 59 5c 4d ea 65 34 f8 bf .z..m...Y\M.e4..

00000110 f3 50 6b 24 b5 30 85 1d e6 30 3b 99 0d 0b 31 b1 .Pk$.0...0;...1.

00000120 45 10 6b af 4a 38 bc 14 9c c5 c7 a7 24 b3 f9 6a E.k.J8......$..j

00000130 3a 87 c7 39 0f 59 b7 d6 3d c4 23 d7 d3 fe c5 f3 :..9.Y..=.#.....

00000140 b6 16 e4 2c c2 c7 27 a7 31 e9 d9 84 b8 19 59 ea ...,..'.1.....Y.

00000150 a7 e1 1c d2 8d a7 00 61 e9 b5 ab 0d 53 fe e2 cca....S...

00000160 1d b8 93 39 c1 d4 e4 40 b3 e4 b8 a6 46 75 11 59 ...9...@....Fu.Y

00000170 c1 cb 60 72 7a 6d a8 1a fe 9d b7 4a 06 60 99 ad ..`rzm.....J.`..

00000180 81 48 .H

03 00 01 82 -> TPKT Header (length = 386 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 81 73 -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x173 = 371 bytes

08 00 -> TS_SECURITY_HEADER::flags = 0x0800 = SEC_ENCRYPT

02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

56 02 e1 47 ac 5c 50 d9 -> TS_SECURITY_HEADER1::dataSignature

72 f9 c3 32 0a c7 23 3f 5f 78 11 de e2 af 6c 9b

f3 63 32 6b 18 15 1c e5 e2 ff e2 61 f9 1e 99 90

c5 62 9b 8f 2a c3 de bb 6f 3e 59 01 62 4f 75 e4

5c be e7 ce 08 44 b1 37 9f c0 27 55 bd e5 eb 7e

275 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

63 80 6a bf 8e 0e 21 f0 c3 70 f8 e9 4f da 72 0f

e5 ca 2a f3 b5 9d d7 05 de 4d 35 49 80 37 2f 8a

fb 4b c2 1f f8 01 4f 2f 1d 73 7b 95 01 52 9d b1

c6 d2 03 61 51 da 3a 17 86 77 36 05 a2 24 63 5c

af 65 67 e7 8d 0b a3 71 e1 ec f3 e4 a1 24 ed c8

2a 4f 5d 9f 91 89 91 1d 69 c5 f5 48 bb 37 b2 93

e9 35 21 7e 0d 09 27 d6 16 d6 91 57 9c 7e f9 d2

a1 c5 26 63 de 78 38 f7 77 08 95 76 e3 68 bc 26

82 18 3c fb f0 ba 21 02 72 55 27 fa 8c e2 59 ba

86 dd 11 12 ba 7e 87 74 3e c4 7c 57 3d 50 c0 b7

0f 85 a0 7b 1d 86 7a 03 b3 6d ef de 1b 59 5c 4d

ea 65 34 f8 bf f3 50 6b 24 b5 30 85 1d e6 30 3b

99 0d 0b 31 b1 45 10 6b af 4a 38 bc 14 9c c5 c7

a7 24 b3 f9 6a 3a 87 c7 39 0f 59 b7 d6 3d c4 23

d7 d3 fe c5 f3 b6 16 e4 2c c2 c7 27 a7 31 e9 d9

84 b8 19 59 ea a7 e1 1c d2 8d a7 00 61 e9 b5 ab

0d 53 fe e2 cc 1d b8 93 39 c1 d4 e4 40 b3 e4 b8

a6 46 75 11 59 c1 cb 60 72 7a 6d a8 1a fe 9d b7

4a 06 60 99 ad 81 48 -> Encrypted TS_DEMAND_ACTIVE_PDU

Decrypted TS_DEMAND_ACTIVE_PDU:

00000000 67 01 11 00 ea 03 ea 03 01 00 04 00 51 01 52 44 g...........Q.RD

00000010 50 00 0d 00 00 00 09 00 08 00 ea 03 dc e2 01 00 P...............

00000020 18 00 01 00 03 00 00 02 00 00 00 00 1d 04 00 00

00000030 00 00 00 00 01 01 14 00 08 00 02 00 00 00 16 00

00000040 28 00 00 00 00 00 70 f6 13 f3 01 00 00 00 01 00 (.....p.........

00000050 00 00 18 00 00 00 9c f6 13 f3 61 a6 82 80 00 00a.....

00000060 00 00 00 50 91 bf 0e 00 04 00 02 00 1c 00 18 00 ...P............

00000070 01 00 01 00 01 00 00 05 00 04 00 00 01 00 01 00

00000080 00 00 01 00 00 00 03 00 58 00 00 00 00 00 00 00X.......

00000090 00 00 00 00 00 00 00 00 00 00 40 42 0f 00 01 00@B....

000000a0 14 00 00 00 01 00 00 00 22 00 01 01 01 01 01 00".......

000000b0 00 01 01 01 01 01 00 00 00 01 01 01 01 01 01 01

000000c0 01 00 01 01 01 01 00 00 00 00 a1 06 00 00 40 42@B

000000d0 0f 00 40 42 0f 00 01 00 00 00 00 00 00 00 0a 00 ..@B............

000000e0 08 00 06 00 00 00 12 00 08 00 01 00 00 00 08 00

000000f0 0a 00 01 00 19 00 19 00 0d 00 58 00 35 00 00 00X.5...

00000100 a1 06 00 00 40 42 0f 00 0c f6 13 f3 93 5a 37 f3@B.......Z7.

00000110 00 90 30 e1 34 1c 38 f3 40 f6 13 f3 04 00 00 00 ..0.4.8.@.......

00000120 4c 54 dc e2 08 50 dc e2 01 00 00 00 08 50 dc e2 LT...P.......P..

00000130 00 00 00 00 38 f6 13 f3 2e 05 38 f3 08 50 dc e28.....8..P..

00000140 2c f6 13 f3 00 00 00 00 08 00 0a 00 01 00 19 00 ,...............

00000150 17 00 08 00 00 00 00 00 18 00 0b 00 00 00 00 00

00000160 00 00 00 00 00 00 00

67 01 -> TS_SHARECONTROLHEADER::totalLength = 0x0167 = 359 bytes

11 00 -> TS_SHARECONTROLHEADER::pduType = 0x0011

0x0011

= 0x0010 | 0x0001

= TS_PROTOCOL_VERSION | PDUTYPE_DEMANDACTIVEPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea (1002)

ea 03 01 00 -> TS_DEMAND_ACTIVE_PDU::shareId

04 00 -> TS_DEMAND_ACTIVE_PDU::lengthSourceDescriptor = 4 bytes

51 01 -> TS_DEMAND_ACTIVE_PDU::lengthCombinedCapabilities = 0x151 = 337 bytes

52 44 50 00 -> TS_DEMAND_ACTIVE_PDU::sourceDescriptor = "RDP"

0d 00 -> TS_DEMAND_ACTIVE_PDU::numberCapabilities = 13

00 00 -> TS_DEMAND_ACTIVE_PDU::pad2octets

Share Capability Set (8 bytes)

09 00 08 00 ea 03 dc e2

276 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

09 00 -> TS_SHARE_CAPABILITYSET::capabilitySetType = CAPSTYPE_SHARE

(9)

08 00 -> TS_SHARE_CAPABILITYSET::lengthCapability = 8 bytes

ea 03 -> TS_SHARE_CAPABILITYSET::nodeID = 0x03ea (1002)

dc e2 -> TS_SHARE_CAPABILITYSET::pad2octets

General Capability Set (24 bytes)

01 00 18 00 01 00 03 00 00 02 00 00 00 00 1d 04

00 00 00 00 00 00 01 01

01 00 -> TS_GENERAL_CAPABILITYSET::capabilitySetType = CAPSTYPE_GENERAL (1)

18 00 -> TS_GENERAL_CAPABILITYSET::lengthCapability = 24 bytes

01 00 -> TS_GENERAL_CAPABILITYSET::osMajorType = TS_OSMAJORTYPE_WINDOWS (1)

03 00 -> TS_GENERAL_CAPABILITYSET::osMinorType = TS_OSMINORTYPE_WINDOWS_NT (3)

00 02 -> TS_GENERAL_CAPABILITYSET::protocolVersion = TS_CAPS_PROTOCOLVERSION (0x0200)

00 00 -> TS_GENERAL_CAPABILITYSET::pad2octetsA

00 00 -> TS_GENERAL_CAPABILITYSET::generalCompressionTypes = 0

1d 04 -> TS_GENERAL_CAPABILITYSET::extraFlags = 0x041d

0x041d

= 0x0400 |

 0x0010 |

 0x0008 |

 0x0004 |

 0x0001

= NO_BITMAP_COMPRESSION_HDR |

 ENC_SALTED_CHECKSUM |

 AUTORECONNECT_SUPPORTED |

 LONG_CREDENTIALS_SUPPORTED |

 FASTPATH_OUTPUT_SUPPORTED

00 00 -> TS_GENERAL_CAPABILITYSET::updateCapabilityFlag = 0

00 00 -> TS_GENERAL_CAPABILITYSET::remoteUnshareFlag = 0

00 00 -> TS_GENERAL_CAPABILITYSET::generalCompressionLevel = 0

01 -> TS_GENERAL_CAPABILITYSET::refreshRectSupport = TRUE

01 -> TS_GENERAL_CAPABILITYSET::suppressOutputSupport = TRUE

Virtual Channel Capability Set (8 bytes)

14 00 08 00 02 00 00 00

14 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::capabilitySetType =

CAPSTYPE_VIRTUALCHANNEL (20)

08 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::lengthCapability = 8 bytes

02 00 00 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::vccaps1 = 0x00000002

= VCCAPS_COMPR_CS_8K

DrawGdiPlus Capability Set (40 bytes)

16 00 28 00 00 00 00 00 70 f6 13 f3 01 00 00 00

01 00 00 00 18 00 00 00 9c f6 13 f3 61 a6 82 80

00 00 00 00 00 50 91 bf

16 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::capabilitySetType =

CAPSTYPE_DRAWGDIPLUS (22)

28 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::lengthCapability = 40 bytes

00 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusSupportLevel

= TS_DRAW_GDIPLUS_DEFAULT (0)

70 f6 13 f3 -> TS_DRAW_GDIPLUS_CAPABILITYSET::GdipVersion

(uninitialized due to bug)

01 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusCacheLevel

= TS_DRAW_GDIPLUS_CACHE_LEVEL_ONE (1)

Since GDI+ is not supported (see drawGdiplusSupportLevel), the

following unitialized cache fields can be ignored.

277 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

01 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipGraphicsCacheEntries

(uninitialized due to bug)

00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectBrushCacheEntries

(uninitialized due to bug)

18 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectPenCacheEntries

(uninitialized due to bug)

00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageCacheEntries

(uninitialized due to bug)

9c f6 ->

TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageAttributesCacheEntries

(uninitialized due to bug)

13 f3 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipGraphicsCacheChunkSize

(uninitialized due to bug)

61 a6 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectBrushCacheChunkSize

(uninitialized due to bug)

82 80 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectPenCacheChunkSize

(uninitialized due to bug)

00 00 ->

TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectImageAttributesCacheChunkSize

(uninitialized due to bug)

00 00 ->

TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheChunkSize

(uninitialized due to bug)

00 50 ->

TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheTotalSize

(uninitialized due to bug)

91 bf ->

TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheMaxSize

(uninitialized due to bug)

Font Capability Set (4 bytes)

0e 00 04 00

0e 00 -> TS_FONT_CAPABILITYSET::capabilitySetType = CAPSTYPE_FONT (14)

04 00 -> TS_FONT_CAPABILITYSET::lengthCapability = 4 bytes

Due to a bug, the TS_FONT_CAPABILITYSET capability set size is

incorrectly set to 4 bytes (it should be 8 bytes). As a result of

this bug, the fontSupportFlags and pad2octets fields are missing.

Bitmap Capability Set (28 bytes)

02 00 1c 00 18 00 01 00 01 00 01 00 00 05 00 04

00 00 01 00 01 00 00 00 01 00 00 00

02 00 -> TS_BITMAP_CAPABILITYSET::capabilitySetType =

CAPSTYPE_BITMAP (2)

1c 00 -> TS_BITMAP_CAPABILITYSET::lengthCapability = 28 bytes

18 00 -> TS_BITMAP_CAPABILITYSET::preferredBitsPerPixel = 24 bpp

01 00 -> TS_BITMAP_CAPABILITYSET::receive1BitPerPixel = TRUE

01 00 -> TS_BITMAP_CAPABILITYSET::receive4BitsPerPixel = TRUE

01 00 -> TS_BITMAP_CAPABILITYSET::receive8BitsPerPixel = TRUE

00 05 -> TS_BITMAP_CAPABILITYSET::desktopWidth = 1280 pixels

00 04 -> TS_BITMAP_CAPABILITYSET::desktopHeight = 1024 pixels

00 00 -> TS_BITMAP_CAPABILITYSET::pad2octets

01 00 -> TS_BITMAP_CAPABILITYSET::desktopResizeFlag = TRUE

01 00 -> TS_BITMAP_CAPABILITYSET::bitmapCompressionFlag = TRUE

00 -> TS_BITMAP_CAPABILITYSET::highColorFlags = 0

00 -> TS_BITMAP_CAPABILITYSET::pad1octet

01 00 -> TS_BITMAP_CAPABILITYSET::multipleRectangleSupport = TRUE

00 00 -> TS_BITMAP_CAPABILITYSET::pad2octetsB

278 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Order Capability Set (88 bytes)

03 00 58 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 40 42 0f 00 01 00 14 00 00 00 01 00

00 00 22 00 01 01 01 01 01 00 00 01 01 01 01 01

00 00 00 01 01 01 01 01 01 01 01 00 01 01 01 01

00 00 00 00 a1 06 00 00 40 42 0f 00 40 42 0f 00

01 00 00 00 00 00 00 00

03 00 -> TS_ORDER_CAPABILITYSET::capabilitySetType =

CAPSTYPE_ORDER (3)

58 00 -> TS_ORDER_CAPABILITYSET::lengthCapability = 88 bytes

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TS_ORDER_CAPABILITYSET::terminalDescriptor = ""

40 42 0f 00 -> TS_ORDER_CAPABILITYSET::pad4octetsA

01 00 -> TS_ORDER_CAPABILITYSET::desktopSaveXGranularity = 1

14 00 -> TS_ORDER_CAPABILITYSET::desktopSaveYGranularity = 20

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsA

01 00 -> TS_ORDER_CAPABILITYSET::maximumOrderLevel =

ORD_LEVEL_1_ORDERS (1)

00 00 -> TS_ORDER_CAPABILITYSET::numberFonts = 0

22 00 -> TS_ORDER_CAPABILITYSET::orderFlags = 0x0022

0x0022

= 0x0020 | 0x0002

= COLORINDEXSUPPORT | NEGOTIATEORDERSUPPORT

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DSTBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_PATBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SCRBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEMBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEM3BLT_INDEX] =

TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ATEXTOUT_INDEX] =

FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_AEXTTEXTOUT_INDEX]

= FALSE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DRAWNINEGRID_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_LINETO_INDEX] = TRUE

01 ->

TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTI_DRAWNINEGRID_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_OPAQUERECT_INDEX] =

TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SAVEBITMAP_INDEX] =

TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WTEXTOUT_INDEX] =

FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEMBLT_R2_INDEX] =

FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEM3BLT_R2_INDEX] =

FALSE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIDSTBLT_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIPATBLT_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTISCRBLT_INDEX]

= TRUE

01 ->

TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIOPAQUERECT_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_INDEX_INDEX]

= TRUE

279 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_SC_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_CB_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYLINE_INDEX] =

TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[23] = 0

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_GLYPH_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_SC_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_CB_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_INDEX_INDEX] = TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WEXTTEXTOUT_INDEX]

= FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WLONGTEXTOUT_INDEX]

= FALSE

00 ->

TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WLONGEXTTEXTOUT_INDEX]

= FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[24] = 0

a1 06 -> TS_ORDER_CAPABILITYSET::textFlags = 0x06a1

0x6a1

= 0x400 |

 0x200 |

 0x080 |

 0x020 |

 0x001

= TS_TEXTFLAGS_ALLOWCELLHEIGHT |

 TS_TEXTFLAGS_USEBASELINESTART |

 TS_TEXTFLAGS_CHECKFONTSIGNATURES |

 TS_TEXTFLAGS_ALLOWDELTAXSIM |

 TS_TEXTFLAGS_CHECKFONTASPECT

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsB

40 42 0f 00 -> TS_ORDER_CAPABILITYSET::pad4octetsB

40 42 0f 00 -> TS_ORDER_CAPABILITYSET::desktopSaveSize = 0xf4240

= 1000000

01 00 -> TS_ORDER_CAPABILITYSET::pad2octetsC

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsD

00 00 -> TS_ORDER_CAPABILITYSET::textANSICodePage

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsE

Color Table Cache Capability Set (8 bytes)

0a 00 08 00 06 00 00 00

0a 00 -> TS_COLORTABLECACHE_CAPABILITYSET::capabilitySetType =

CAPSTYPE_COLORCACHE (10)

08 00 -> TS_COLORTABLECACHE_CAPABILITYSET::lengthCapability = 8 bytes

06 00 -> TS_COLORTABLECACHE_CAPABILITYSET::colorTableCacheSize = 6

00 00 -> TS_COLORTABLECACHE_CAPABILITYSET::pad2octets

Bitmap Cache Host Support Capability Set (8 bytes)

12 00 08 00 01 00 00 00

12 00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::capabilitySetType

= CAPSTYPE_BITMAPCACHE_HOSTSUPPORT (18)

08 00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::lengthCapability

= 8 bytes

01 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::CacheVersion = 1

(corresponds to rev. 2 capabilities)

280 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::Pad1

00 00 -> TS_BITMAPCACHE_CAPABILITYSET_HOSTSUPPORT::Pad2

Pointer Capability Set (10 bytes)

08 00 0a 00 01 00 19 00 19 00

08 00 -> TS_POINTER_CAPABILITYSET::capabilitySetType =

CAPSTYPE_POINTER (8)

0a 00 -> TS_POINTER_CAPABILITYSET::lengthCapability = 10 bytes

01 00 -> TS_POINTER_CAPABILITYSET::colorPointerFlag = TRUE

19 00 -> TS_POINTER_CAPABILITYSET::colorPointerCacheSize = 25

19 00 -> TS_POINTER_CAPABILITYSET::pointerCacheSize = 25

Input Capability Set (88 bytes)

0d 00 58 00 35 00 00 00 a1 06 00 00 40 42 0f 00

0c f6 13 f3 93 5a 37 f3 00 90 30 e1 34 1c 38 f3

40 f6 13 f3 04 00 00 00 4c 54 dc e2 08 50 dc e2

01 00 00 00 08 50 dc e2 00 00 00 00 38 f6 13 f3

2e 05 38 f3 08 50 dc e2 2c f6 13 f3 00 00 00 00

08 00 0a 00 01 00 19 00

0d 00 -> TS_INPUT_CAPABILITYSET::capabilitySetType = CAPSTYPE_INPUT

(13)

58 00 -> TS_INPUT_CAPABILITYSET::lengthCapability = 88 bytes

35 00 -> TS_INPUT_CAPABILITYSET::inputFlags = 0x0035

0x0035

= 0x0020 |

 0x0010 |

 0x0004 |

 0x0001

= INPUT_FLAG_FASTPATH_INPUT2 |

 INPUT_FLAG_VKPACKET |

 INPUT_FLAG_MOUSEX |

 INPUT_FLAG_SCANCODES

00 00 -> TS_INPUT_CAPABILITYSET::pad2octetsA

a1 06 00 00 -> TS_INPUT_CAPABILITYSET::keyboardLayout (uninitialized

due to bug)

40 42 0f 00 -> TS_INPUT_CAPABILITYSET::keyboardType (uninitialized

due to bug)

0c f6 13 f3 -> TS_INPUT_CAPABILITYSET::keyboardSubType (

uninitialized due to bug)

93 5a 37 f3 -> TS_INPUT_CAPABILITYSET::keyboardFunctionKey

(uninitialized due to bug)

00 90 30 e1 34 1c 38 f3 40 f6 13 f3 04 00 00 00

4c 54 dc e2 08 50 dc e2 01 00 00 00 08 50 dc e2

00 00 00 00 38 f6 13 f3 2e 05 38 f3 08 50 dc e2

2c f6 13 f3 00 00 00 00 08 00 0a 00 01 00 19 00 ->

TS_INPUT_CAPABILITYSET::imeFileName (uninitialized due to bug)

RAIL Capability Set (8 bytes)

17 00 08 00 00 00 00 00

17 00 -> TS_RAIL_CAPABILITYSET::capabilitySetType = CAPSTYPE_RAIL (23)

08 00 -> TS_RAIL_CAPABILITYSET::lengthCapability = 8 bytes

00 00 00 00 -> TS_RAIL_CAPABILITYSET::railSupportLevel =

TS_RAIL_LEVEL_DEFAULT (0)

Windowing Capability Set (11 bytes)

18 00 0b 00 00 00 00 00 00 00 00

281 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

18 00 -> TS_WINDOW_CAPABILITYSET::capabilitySetType =

CAPSTYPE_WINDOW (24)

0b 00 -> TS_WINDOW_CAPABILITYSET::lengthCapability = 11 bytes

00 00 00 00 -> TS_WINDOW_CAPABILITYSET::wndSupportLevel =

TS_WINDOW_LEVEL_DEFAULT (0)

00 -> TS_WINDOW_CAPABILITYSET::nIconCaches = 0

00 00 -> TS_WINDOW_CAPABILITYSET::nIconCacheEntries = 0

Remainder of Demand Active PDU:

00 00 00 00 -> TS_DEMAND_ACTIVE_PDU::sessionId = 0

4.1.18 Client Confirm Active PDU

The following is an annotated dump of the Client Confirm Active PDU (section 2.2.1.13.2).

00000000 03 00 02 07 02 f0 80 64 00 06 03 eb 70 81 f8 38d....p..8

00000010 00 00 00 ab 1f 51 e7 93 17 5c 45 04 36 38 41 80Q...\E.68A.

00000020 2f ad d4 d3 48 e9 88 84 05 f4 3f c4 d1 e8 9d 92 /...H.....?.....

00000030 85 ac e6 fd 25 30 6d b5 fe 0e 4b 72 e3 f4 15 9f%0m...Kr....

00000040 2a 01 6e 44 15 d1 b4 1b f6 96 36 40 63 39 6f 73 *.nD......6@c9os

00000050 fc 93 57 b2 a7 f8 df 44 e5 23 5d 2f 57 4a e2 df ..W....D.#]/WJ..

00000060 aa 2d bc 99 4c fd 78 e1 a4 df 57 71 07 1e d4 99 .-..L.x...Wq....

00000070 59 c8 4d ae 4f 00 90 de 56 63 3a 8c cc ca 40 60 Y.M.O...Vc:...@`

00000080 2b ae 74 c5 e2 70 e9 bb 5e 0b c6 e8 82 21 cc a3 +.t..p..^....!..

00000090 e9 61 4c 6e db 76 7a fc a4 cc 57 a5 94 d5 96 5c .aLn.vz...W....\

000000a0 b2 99 1a 2a 84 52 84 97 35 54 6b c9 7d 3e f0 c8 ...*.R..5Tk.}>..

000000b0 3c e4 3d 44 79 76 07 e6 3f 20 1d 66 2c c9 0f d2 <.=Dyv..? .f,...

000000c0 cd 3d bf 25 38 7b cd 10 7c d7 2d da 72 8b db de .=.%8{..|.-.r...

000000d0 b8 97 00 11 14 dd 22 b5 a0 b9 19 7b e5 9d e1 90"....{....

000000e0 72 5f 5a 5a 48 59 a8 67 68 b5 e6 95 70 e9 d3 19 r_ZZHY.gh...p...

000000f0 4f bd d9 1c 09 03 ac fa 6e 4b f5 0a 1e 21 a6 2f O.......nK...!./

00000100 57 c0 70 80 fc a1 0f 12 58 fe 0a 89 ca fc ff cf W.p.....X.......

00000110 37 04 b1 12 fd d2 03 30 b4 c7 fe a1 ad 5e 2b 8d 7......0.....^+.

00000120 21 3d 18 6e 0c b0 18 c4 78 33 06 f0 14 67 7a 7d !=.n....x3...gz}

00000130 09 1c 6e 66 57 00 db be 95 ef bf c2 1a a7 11 5e ..nfW..........^

00000140 d2 d3 36 c8 13 8d 64 ed 0f a3 bf ce c2 6f 8e e4 ..6...d......o..

00000150 11 4f 84 e5 c5 61 68 15 44 c5 5d 53 40 24 35 26 .O...ah.D.]S@$5&

00000160 20 21 a5 cf 11 6a a2 7a 6c 3e 36 d5 93 a1 f9 5e !...j.zl>6....^

00000170 df e6 a5 2c 94 4f 1a 22 9f 7d fd 24 b4 06 7d 70 ...,.O.".}.$..}p

00000180 f0 49 ae 04 54 9d 14 73 48 27 57 e6 38 32 0e 31 .I..T..sH'W.82.1

00000190 c5 aa d5 c9 1c 82 0d ae 18 24 9c 18 90 b4 90 8d$......

000001a0 f1 bd 5f fb 10 c7 0b 01 fb bc 12 56 1d 30 19 c6 .._........V.0..

000001b0 90 a1 06 17 38 ed 0f 3c 62 1e 16 0d 87 b4 90 af8..<b.......

000001c0 ff 08 71 ff e9 25 19 8c d4 eb 7f b4 6a 43 d4 8b ..q..%......jC..

000001d0 05 43 b8 66 59 e2 1d 23 d8 92 14 9b 3c a7 07 40 .C.fY..#....<..@

000001e0 d6 30 7b 58 3e 6e 7f c8 12 15 bc eb 9f 74 8f 9c .0{X>n.......t..

000001f0 b3 8d e2 60 34 a3 3a 8f a0 34 42 b1 18 08 a0 c5 ...`4.:..4B.....

00000200 b5 97 44 ed b5 48 82 ..D..H.

03 00 02 07 -> TPKT Header (length = 519 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 81 f8 -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x1f8 = 504 bytes

282 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

38 00 -> TS_SECURITY_HEADER::flags = 0x0038

0x0038

= 0x0010 | 0x0020 | 0x0008

= SEC_RESET_SEQNO | SEC_IGNORE_SEQNO | SEC_ENCRYPT

00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

ab 1f 51 e7 93 17 5c 45 -> TS_SECURITY_HEADER1::dataSignature

04 36 38 41 80 2f ad d4 d3 48 e9 88 84 05 f4 3f

c4 d1 e8 9d 92 85 ac e6 fd 25 30 6d b5 fe 0e 4b

72 e3 f4 15 9f 2a 01 6e 44 15 d1 b4 1b f6 96 36

40 63 39 6f 73 fc 93 57 b2 a7 f8 df 44 e5 23 5d

2f 57 4a e2 df aa 2d bc 99 4c fd 78 e1 a4 df 57

71 07 1e d4 99 59 c8 4d ae 4f 00 90 de 56 63 3a

8c cc ca 40 60 2b ae 74 c5 e2 70 e9 bb 5e 0b c6

e8 82 21 cc a3 e9 61 4c 6e db 76 7a fc a4 cc 57

a5 94 d5 96 5c b2 99 1a 2a 84 52 84 97 35 54 6b

c9 7d 3e f0 c8 3c e4 3d 44 79 76 07 e6 3f 20 1d

66 2c c9 0f d2 cd 3d bf 25 38 7b cd 10 7c d7 2d

da 72 8b db de b8 97 00 11 14 dd 22 b5 a0 b9 19

7b e5 9d e1 90 72 5f 5a 5a 48 59 a8 67 68 b5 e6

95 70 e9 d3 19 4f bd d9 1c 09 03 ac fa 6e 4b f5

0a 1e 21 a6 2f 57 c0 70 80 fc a1 0f 12 58 fe 0a

89 ca fc ff cf 37 04 b1 12 fd d2 03 30 b4 c7 fe

a1 ad 5e 2b 8d 21 3d 18 6e 0c b0 18 c4 78 33 06

f0 14 67 7a 7d 09 1c 6e 66 57 00 db be 95 ef bf

c2 1a a7 11 5e d2 d3 36 c8 13 8d 64 ed 0f a3 bf

ce c2 6f 8e e4 11 4f 84 e5 c5 61 68 15 44 c5 5d

53 40 24 35 26 20 21 a5 cf 11 6a a2 7a 6c 3e 36

d5 93 a1 f9 5e df e6 a5 2c 94 4f 1a 22 9f 7d fd

24 b4 06 7d 70 f0 49 ae 04 54 9d 14 73 48 27 57

e6 38 32 0e 31 c5 aa d5 c9 1c 82 0d ae 18 24 9c

18 90 b4 90 8d f1 bd 5f fb 10 c7 0b 01 fb bc 12

56 1d 30 19 c6 90 a1 06 17 38 ed 0f 3c 62 1e 16

0d 87 b4 90 af ff 08 71 ff e9 25 19 8c d4 eb 7f

b4 6a 43 d4 8b 05 43 b8 66 59 e2 1d 23 d8 92 14

9b 3c a7 07 40 d6 30 7b 58 3e 6e 7f c8 12 15 bc

eb 9f 74 8f 9c b3 8d e2 60 34 a3 3a 8f a0 34 42

b1 18 08 a0 c5 b5 97 44 ed b5 48 82 ->

Encrypted TS_CONFIRM_ACTIVE_PDU

Decrypted TS_CONFIRM_ACTIVE_PDU:

00000000 ec 01 13 00 ef 03 ea 03 01 00 ea 03 06 00 d6 01

00000010 00 20 73 25 7b e6 12 00 00 00 01 00 18 00 01 00 . s%{...........

00000020 03 00 00 02 00 00 00 00 1d 04 00 00 00 00 00 00

00000030 00 00 02 00 1c 00 18 00 01 00 01 00 01 00 00 05

00000040 00 04 00 00 01 00 01 00 00 00 01 00 00 00 03 00

00000050 58 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 X...............

00000060 00 00 00 00 00 00 01 00 14 00 00 00 01 00 00 00

00000070 2a 00 01 01 01 01 01 00 00 01 01 01 00 01 00 00 *...............

00000080 00 01 01 01 01 01 01 01 01 00 01 01 01 00 00 00

00000090 00 00 a1 06 00 00 00 00 00 00 00 84 03 00 00 00

000000a0 00 00 e4 04 00 00 13 00 28 00 03 00 00 03 78 00(.....x.

000000b0 00 00 78 00 00 00 fb 09 00 80 00 00 00 00 00 00 ..x.............

000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0a 00

000000d0 08 00 06 00 00 00 07 00 0c 00 00 00 00 00 00 00

000000e0 00 00 05 00 0c 00 00 00 00 00 02 00 02 00 08 00

000000f0 0a 00 01 00 14 00 15 00 09 00 08 00 00 00 00 00

00000100 0d 00 58 00 15 00 20 00 09 04 00 00 04 00 00 00 ..X...

00000110 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00

00000120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000150 00 00 00 00 00 00 00 00 0c 00 08 00 01 00 00 00

283 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000160 0e 00 08 00 01 00 00 00 10 00 34 00 fe 00 04 004.....

00000170 fe 00 04 00 fe 00 08 00 fe 00 08 00 fe 00 10 00

00000180 fe 00 20 00 fe 00 40 00 fe 00 80 00 fe 00 00 01@.........

00000190 40 00 00 08 00 01 00 01 03 00 00 00 0f 00 08 00 @...............

000001a0 01 00 00 00 11 00 0c 00 01 00 00 00 00 1e 64 00d.

000001b0 14 00 08 00 01 00 00 00 15 00 0c 00 02 00 00 00

000001c0 00 0a 00 01 16 00 28 00 00 00 00 00 00 00 00 00(.........

000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001e0 00 00 00 00 00 00 00 00 00 00 00 00

ec 01 -> TS_SHARECONTROLHEADER::totalLength = 0x01ec = 492 bytes

13 00 -> TS_SHARECONTROLHEADER::pduType = 0x0013

0x0013

= 0x0010 | 0x0003

= TS_PROTOCOL_VERSION | PDUTYPE_CONFIRMACTIVEPDU

ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef (1007)

ea 03 01 00 -> TS_CONFIRM_ACTIVE_PDU::shareID = 0x000103ea

ea 03 -> TS_CONFIRM_ACTIVE_PDU::originatorID = 0x03ea (1002)

06 00 -> TS_CONFIRM_ACTIVE_PDU::lengthSourceDescriptor = 6 bytes

d6 01 -> TS_CONFIRM_ACTIVE_PDU::lengthCombinedCapabilities = 0x1d6 = 470 bytes

00 20 73 25 7b e6 -> TS_CONFIRM_ACTIVE_PDU::sourceDescriptor = ""

(uninitialized due to bug - should be "MSTSC")

12 00 -> TS_CONFIRM_ACTIVE_PDU::numberCapabilities = 18

00 00 -> TS_CONFIRM_ACTIVE_PDU::pad2octets

General Capability Set (24 bytes)

01 00 18 00 01 00 03 00 00 02 00 00 00 00 1d 04

00 00 00 00 00 00 00 00

01 00 -> TS_GENERAL_CAPABILITYSET::capabilitySetType = CAPSTYPE_GENERAL (1)

18 00 -> TS_GENERAL_CAPABILITYSET::lengthCapability = 24 bytes

01 00 -> TS_GENERAL_CAPABILITYSET::osMajorType = TS_OSMAJORTYPE_WINDOWS (1)

03 00 -> TS_GENERAL_CAPABILITYSET::osMinorType = TS_OSMINORTYPE_WINDOWS_NT (3)

00 02 -> TS_GENERAL_CAPABILITYSET::protocolVersion = TS_CAPS_PROTOCOLVERSION (0x0200)

00 00 -> TS_GENERAL_CAPABILITYSET::pad2octetsA

00 00 -> TS_GENERAL_CAPABILITYSET::generalCompressionTypes = 0

1d 04 -> TS_GENERAL_CAPABILITYSET::extraFlags = 0x041d

0x041d

= 0x0400 |

 0x0010 |

 0x0008 |

 0x0004 |

 0x0001

= NO_BITMAP_COMPRESSION_HDR |

 ENC_SALTED_CHECKSUM |

 AUTORECONNECT_SUPPORTED |

 LONG_CREDENTIALS_SUPPORTED |

 FASTPATH_OUTPUT_SUPPORTED

00 00 -> TS_GENERAL_CAPABILITYSET::updateCapabilityFlag = 0

00 00 -> TS_GENERAL_CAPABILITYSET::remoteUnshareFlag = 0

00 00 -> TS_GENERAL_CAPABILITYSET::generalCompressionLevel = 0

00 -> TS_GENERAL_CAPABILITYSET::refreshRectSupport = FALSE

00 -> TS_GENERAL_CAPABILITYSET::suppressOutputSupport = FALSE

Bitmap Capability Set (28 bytes)

02 00 1c 00 18 00 01 00 01 00 01 00 00 05 00 04

00 00 01 00 01 00 00 00 01 00 00 00

284 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

02 00 -> TS_BITMAP_CAPABILITYSET::capabilitySetType = CAPSTYPE_BITMAP (2)

1c 00 -> TS_BITMAP_CAPABILITYSET::lengthCapability = 28 bytes

18 00 -> TS_BITMAP_CAPABILITYSET::preferredBitsPerPixel = 24 bpp

01 00 -> TS_BITMAP_CAPABILITYSET::receive1BitPerPixel = TRUE

01 00 -> TS_BITMAP_CAPABILITYSET::receive4BitsPerPixel = TRUE

01 00 -> TS_BITMAP_CAPABILITYSET::receive8BitsPerPixel = TRUE

00 05 -> TS_BITMAP_CAPABILITYSET::desktopWidth = 1280 pixels

00 04 -> TS_BITMAP_CAPABILITYSET::desktopHeight = 1024 pixels

00 00 -> TS_BITMAP_CAPABILITYSET::pad2octets

01 00 -> TS_BITMAP_CAPABILITYSET::desktopResizeFlag = TRUE

01 00 -> TS_BITMAP_CAPABILITYSET::bitmapCompressionFlag = TRUE

00 -> TS_BITMAP_CAPABILITYSET::highColorFlags = 0

00 -> TS_BITMAP_CAPABILITYSET::pad1octet

01 00 -> TS_BITMAP_CAPABILITYSET::multipleRectangleSupport = TRUE

00 00 -> TS_BITMAP_CAPABILITYSET::pad2octetsB

Order Capability Set (88 bytes)

03 00 58 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 01 00 14 00 00 00 01 00

00 00 2a 00 01 01 01 01 01 00 00 01 01 01 00 01

00 00 00 01 01 01 01 01 01 01 01 00 01 01 01 00

00 00 00 00 a1 06 00 00 00 00 00 00 00 84 03 00

00 00 00 00 e4 04 00 00

03 00 -> TS_ORDER_CAPABILITYSET::capabilitySetType = CAPSTYPE_ORDER (3)

58 00 -> TS_ORDER_CAPABILITYSET::lengthCapability = 88 bytes

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TS_ORDER_CAPABILITYSET::terminalDescriptor = ""

00 00 00 00 -> TS_ORDER_CAPABILITYSET::pad4octetsA

01 00 -> TS_ORDER_CAPABILITYSET::desktopSaveXGranularity = 1

14 00 -> TS_ORDER_CAPABILITYSET::desktopSaveYGranularity = 20

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsA

01 00 -> TS_ORDER_CAPABILITYSET::maximumOrderLevel = ORD_LEVEL_1_ORDERS (1)

00 00 -> TS_ORDER_CAPABILITYSET::numberFonts = 0

2a 00 -> TS_ORDER_CAPABILITYSET::orderFlags = 0x002a

0x002a

= 0x0020 |

 0x0008 |

 0x0002

= COLORINDEXSUPPORT |

 ZEROBOUNDSDELTASSUPPORT |

 NEGOTIATEORDERSUPPORT

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DSTBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_PATBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SCRBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEMBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEM3BLT_INDEX] =

TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ATEXTOUT_INDEX] = FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_AEXTTEXTOUT_INDEX] = FALSE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_DRAWNINEGRID_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_LINETO_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTI_DRAWNINEGRID_INDEX] = TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_OPAQUERECT_INDEX] = FALSE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_SAVEBITMAP_INDEX] = TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WTEXTOUT_INDEX] = FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEMBLT_R2_INDEX] = FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MEM3BLT_R2_INDEX] = FALSE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIDSTBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIPATBLT_INDEX] = TRUE

285 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTISCRBLT_INDEX] = TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_MULTIOPAQUERECT_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_INDEX_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_SC_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYGON_CB_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_POLYLINE_INDEX]

= TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[23] = 0

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_FAST_GLYPH_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_SC_INDEX]

= TRUE

01 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_ELLIPSE_CB_INDEX]

= TRUE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_INDEX_INDEX] = FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WEXTTEXTOUT_INDEX]

= FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WLONGTEXTOUT_INDEX]

= FALSE

00 ->

TS_ORDER_CAPABILITYSET::orderSupport[TS_NEG_WLONGEXTTEXTOUT_INDEX]

= FALSE

00 -> TS_ORDER_CAPABILITYSET::orderSupport[24] = 0

a1 06 -> TS_ORDER_CAPABILITYSET::textFlags = 0x06a1

0x6a1

= 0x400 |

 0x200 |

 0x080 |

 0x020 |

 0x001

= TS_TEXTFLAGS_ALLOWCELLHEIGHT |

 TS_TEXTFLAGS_USEBASELINESTART |

 TS_TEXTFLAGS_CHECKFONTSIGNATURES |

 TS_TEXTFLAGS_ALLOWDELTAXSIM |

 TS_TEXTFLAGS_CHECKFONTASPECT

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsB

00 00 00 00 -> TS_ORDER_CAPABILITYSET::pad4octetsB

00 84 03 00 -> TS_ORDER_CAPABILITYSET::desktopSaveSize = 0x38400 =

230400

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsC

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsD

e4 04 -> TS_ORDER_CAPABILITYSET::textANSICodePage = 0x04e4 = ANSI -

Latin I (1252)

00 00 -> TS_ORDER_CAPABILITYSET::pad2octetsE

Bitmap Cache Rev. 2 Capability Set (40 bytes)

13 00 28 00 03 00 00 03 78 00 00 00 78 00 00 00

fb 09 00 80 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

13 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::capabilitySetType =

CAPSTYPE_BITMAPCACHE_REV2 (19)

28 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::lengthCapability =

40 bytes

03 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::CacheFlags = = 0x0003

0x0003

= 0x0001 | 0x0002

= PERSISTENT_KEYS_EXPECTED_FLAG | ALLOW_CACHE_WAITING_LIST_FLAG

286 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::Pad2

03 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::NumCellCaches = 3

78 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::CellCacheInfo[0] =

0x00000078

TS_BITMAPCACHE_CELL_CACHE_INFO::NumEntries = 0x78 = 120

TS_BITMAPCACHE_CELL_CACHE_INFO::k = FALSE

78 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::CellCacheInfo[1] =

0x00000078

TS_BITMAPCACHE_CELL_CACHE_INFO::NumEntries = 0x78 = 120

TS_BITMAPCACHE_CELL_CACHE_INFO::k = FALSE

fb 09 00 80 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::CellCacheInfo[2] =

0x800009fb

TS_BITMAPCACHE_CELL_CACHE_INFO::NumEntries = 0x9fb = 2555

TS_BITMAPCACHE_CELL_CACHE_INFO::k = TRUE

00 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::CellCacheInfo[3] =

0x00000000

00 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::CellCacheInfo[4] =

0x00000000

00 00 00 00 00 00 00 00 00 00 00 00 -> TS_BITMAPCACHE_CAPABILITYSET_REV2::pad3

Color Table Cache Capability Set (8 bytes)

0a 00 08 00 06 00 00 00

0a 00 -> TS_COLORTABLECACHE_CAPABILITYSET::capabilitySetType =

CAPSTYPE_COLORCACHE (10)

08 00 -> TS_COLORTABLECACHE_CAPABILITYSET::lengthCapability = 8 bytes

06 00 -> TS_COLORTABLECACHE_CAPABILITYSET::colorTableCacheSize = 6

00 00 -> TS_COLORTABLECACHE_CAPABILITYSET::pad2octets = 0

Window Activation Capability Set (12 bytes)

07 00 0c 00 00 00 00 00 00 00 00 00

07 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::capabilitySetType =

CAPSTYPE_ACTIVATION (7)

0c 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::lengthCapability =

12 bytes

00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::helpKeyFlag = 0

00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::helpKeyIndexFlag = 0

00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::helpExtendedKeyFlag = 0

00 00 -> TS_WINDOWACTIVATION_CAPABILITYSET::windowManagerKeyFlag = 0

Control Capability Set (12 bytes)

05 00 0c 00 00 00 00 00 02 00 02 00

05 00 -> TS_CONTROL_CAPABILITYSET::capabilitySetType =

CAPSTYPE_CONTROL (5)

0c 00 -> TS_CONTROL_CAPABILITYSET::lengthCapability = 12 bytes

00 00 -> TS_CONTROL_CAPABILITYSET::controlFlags = 0

00 00 -> TS_CONTROL_CAPABILITYSET::remoteDetachFlag = 0

02 00 -> TS_CONTROL_CAPABILITYSET::controlInterest =

CONTROLPRIORITY_NEVER (2)

02 00 -> TS_CONTROL_CAPABILITYSET::detachInterest =

CONTROLPRIORITY_NEVER (2)

Pointer Capability Set (10 bytes)

08 00 0a 00 01 00 14 00 15 00

287 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

08 00 -> TS_POINTER_CAPABILITYSET::capabilitySetType =

CAPSTYPE_POINTER (8)

0a 00 -> TS_POINTER_CAPABILITYSET::lengthCapability = 10 bytes

01 00 -> TS_POINTER_CAPABILITYSET::colorPointerFlag = TRUE

14 00 -> TS_POINTER_CAPABILITYSET::colorPointerCacheSize = 20

15 00 -> TS_POINTER_CAPABILITYSET::pointerCacheSize = 21

Share Capability Set (8 bytes)

09 00 08 00 00 00 00 00

09 00 -> TS_SHARE_CAPABILITYSET::capabilitySetType =

CAPSTYPE_SHARE (9)

08 00 -> TS_SHARE_CAPABILITYSET::lengthCapability = 8 bytes

00 00 -> TS_SHARE_CAPABILITYSET::nodeID = 0

00 00 -> TS_SHARE_CAPABILITYSET::pad2octets

Input Capability Set (88 bytes)

0d 00 58 00 15 00 20 00 09 04 00 00 04 00 00 00

00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0d 00 -> TS_INPUT_CAPABILITYSET::capabilitySetType =

CAPSTYPE_INPUT (13)

58 00 -> TS_INPUT_CAPABILITYSET::lengthCapability = 88 bytes

0d 00 -> TS_INPUT_CAPABILITYSET::capabilitySetType =

CAPSTYPE_INPUT (13)

58 00 -> TS_INPUT_CAPABILITYSET::lengthCapability = 88 bytes

15 00 -> TS_INPUT_CAPABILITYSET::inputFlags = 0x0015

0x0015

= 0x0010 |

 0x0004 |

 0x0001

= INPUT_FLAG_VKPACKET |

 INPUT_FLAG_MOUSEX |

 INPUT_FLAG_SCANCODES

20 00 -> TS_INPUT_CAPABILITYSET::pad2octetsA

09 04 00 00 -> TS_INPUT_CAPABILITYSET::keyboardLayout = 0x00000409 =

English (United States)

04 00 00 00 -> TS_INPUT_CAPABILITYSET::keyboardType = 4 =

IBM enhanced (101- or 102-key) keyboard

00 00 00 00 -> TS_INPUT_CAPABILITYSET::keyboardSubType = 0

0c 00 00 00 -> TS_INPUT_CAPABILITYSET::keyboardFunctionKey = 0x0c =

12

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TS_INPUT_CAPABILITYSET::imeFileName

Sound Capability Set (8 bytes)

0c 00 08 00 01 00 00 00

0c 00 -> TS_SOUND_CAPABILITYSET::capabilitySetType = CAPSTYPE_SOUND

(12)

08 00 -> TS_SOUND_CAPABILITYSET::lengthCapability = 8 bytes

288 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

01 00 -> TS_SOUND_CAPABILITYSET::soundFlags = 0x0001 =

SOUND_FLAG_BEEPS

00 00 -> TS_SOUND_CAPABILITYSET::pad2octetsA

Font Capability Set (8 bytes)

0e 00 08 00 01 00 00 00

0e 00 -> TS_FONT_CAPABILITYSET::capabilitySetType = CAPSTYPE_FONT (14)

08 00 -> TS_FONT_CAPABILITYSET::lengthCapability = 8 bytes

01 00 -> TS_FONT_CAPABILITYSET::fontSupportFlags = 0x0001 =

FONTSUPPORT_FONTLIST

00 00 -> TS_FONT_CAPABILITYSET::pad2octets

Glyphe Cache Capability Set (52 bytes)

10 00 34 00 fe 00 04 00 fe 00 04 00 fe 00 08 00

fe 00 08 00 fe 00 10 00 fe 00 20 00 fe 00 40 00

fe 00 80 00 fe 00 00 01 40 00 00 08 00 01 00 01

03 00 00 00

10 00 -> TS_GLYPHCACHE_CAPABILITYSET::capabilitySetType =

CAPSTYPE_GLYPHCACHE (16)

34 00 -> TS_GLYPHCACHE_CAPABILITYSET::lengthCapability = 52 bytes

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[0]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

04 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 4

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[1]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

04 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 4

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[2]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

08 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 8

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[3]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

08 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 8

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[4]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

10 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 16

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[5]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

20 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 32

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[6]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

40 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 64

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[7]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

80 00 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 128

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[8]:

fe 00 -> TS_CACHE_DEFINITION::CacheEntries = 254

00 01 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 256

TS_GLYPHCACHE_CAPABILITYSET::GlyphCache[9]:

40 00 -> TS_CACHE_DEFINITION::CacheEntries = 64

00 08 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 256

289 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

TS_GLYPHCACHE_CAPABILITYSET::FragCache:

00 01 -> TS_CACHE_DEFINITION::CacheEntries = 256

00 01 -> TS_CACHE_DEFINITION::CacheMaximumCellSize = 256

03 00 -> TS_GLYPHCACHE_CAPABILITYSET::GlyphSupportLevel =

GLYPH_SUPPORT_ENCODE (3)

00 00 -> TS_GLYPHCACHE_CAPABILITYSET::pad2octets

Brush Capability Set (8 bytes)

0f 00 08 00 01 00 00 00

0f 00 -> TS_BRUSH_CAPABILITYSET::capabilitySetType = CAPSTYPE_BRUSH

(15)

08 00 -> TS_BRUSH_CAPABILITYSET::lengthCapability = 8 bytes

01 00 00 00 -> TS_BRUSH_CAPABILITYSET::brushSupportLevel =

BRUSH_COLOR_8x8 (1)

Offscreen Bitmap Cache Capability Set (12 bytes)

11 00 0c 00 01 00 00 00 00 1e 64 00

11 00 -> TS_OFFSCREEN_CAPABILITYSET::capabilitySetType =

CAPSTYPE_OFFSCREENCACHE (17)

0c 00 -> TS_OFFSCREEN_CAPABILITYSET::lengthCapability = 12 bytes

01 00 00 00 -> TS_OFFSCREEN_CAPABILITYSET::offscreenSupportLevel =

TRUE (1)

00 1e -> TS_OFFSCREEN_CAPABILITYSET::offscreenCacheSize = 7680

64 00 -> TS_OFFSCREEN_CAPABILITYSET::offscreenCacheEntries = 100

Virtual Channel Capability Set (8 bytes)

14 00 08 00 01 00 00 00

14 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::capabilitySetType =

CAPSTYPE_VIRTUALCHANNEL (20)

08 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::lengthCapability = 8 bytes

01 00 00 00 -> TS_VIRTUALCHANNEL_CAPABILITYSET::vccaps1 =

0x00000001 = VCCAPS_COMPR_SC

DrawNineGridCache Capability Set (12 bytes)

15 00 0c 00 02 00 00 00 00 0a 00 01

15 00 -> TS_DRAW_NINEGRID_CAPABILITYSET::capabilitySetType =

CAPSTYPE_DRAWNINEGRIDCACHE (21)

0c 00 -> TS_DRAW_NINEGRID_CAPABILITYSET::lengthCapability = 12 bytes

02 00 00 00 ->

TS_DRAW_NINEGRID_CAPABILITYSET::drawNineGridSupportLevel =

DRAW_NINEGRID_SUPPORTED_REV2 (2)

00 0a -> TS_DRAW_NINEGRID_CAPABILITYSET::drawNineGridCacheSize = 2560

00 01 -> TS_DRAW_NINEGRID_CAPABILITYSET::drawNineGridCacheEntries =

256

DrawGdiPlus Capability Set (40 bytes)

16 00 28 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

16 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::capabilitySetType =

CAPSTYPE_DRAWGDIPLUS (22)

28 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::lengthCapability = 40 bytes

00 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusSupportLevel

= TS_DRAW_GDIPLUS_DEFAULT (0)

290 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::GdipVersion = 0

01 00 00 00 -> TS_DRAW_GDIPLUS_CAPABILITYSET::drawGdiplusCacheLevel

= TS_DRAW_GDIPLUS_CACHE_LEVEL_DEFAULT (0)

00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipGraphicsCacheEntries

00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectBrushCacheEntries

00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectPenCacheEntries

00 00 -> TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageCacheEntries

00 00 ->

TS_GDIPLUS_CACHE_ENTRIES::GdipObjectImageAttributesCacheEntries

00 00 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipGraphicsCacheChunkSize

00 00 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectBrushCacheChunkSize

00 00 -> TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectPenCacheChunkSize

00 00 ->

TS_GDIPLUS_CACHE_CHUNK_SIZE::GdipObjectImageAttributesCacheChunkSize

00 00 ->

TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheChunkSize

00 00 ->

TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheTotalSize

00 00 ->

TS_GDIPLUS_IMAGE_CACHE_PROPERTIES::GdipObjectImageCacheMaxSize

4.1.19 Client Synchronize PDU

The following is an annotated dump of the Client Synchronize PDU (section 2.2.1.14).

00000000 03 00 00 30 02 f0 80 64 00 06 03 eb 70 22 28 00 ...0...d....p"(.

00000010 81 f8 59 ff cb 2f 73 57 2b 42 db 88 2e 23 a9 97 ..Y../sW+B...#..

00000020 c2 b1 f5 74 bc 49 cc 8a d8 fd 60 8a 7a f6 44 75 ...t.I....`.z.Du

03 00 00 30 -> TPKT Header (length = 48 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 22 -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x22 = 34 bytes

28 00 -> TS_SECURITY_HEADER::flags = 0x0028

0x0028

= 0x0020 | 0x0008

= SEC_IGNORE_SEQNO | SEC_ENCRYPT

81 f8 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

59 ff cb 2f 73 57 2b 42 -> TS_SECURITY_HEADER1::dataSignature

db 88 2e 23 a9 97 c2 b1 f5 74 bc 49 cc 8a d8 fd

60 8a 7a f6 44 75 -> Encrypted TS_SYNCHRONIZE_PDU

Decrypted TS_SYNCHRONIZE_PDU:

00000000 16 00 17 00 ef 03 ea 03 01 00 00 01 08 00 1f 00

00000010 00 00 01 00 ea 03

16 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0016 = 22 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

291 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

08 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0008 = 8 bytes

1f -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SYNCHRONIZE (31)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

4.1.20 Client Control PDU - Cooperate

The following is an annotated dump of the Client Control PDU - Cooperate (section 2.2.1.15).

00000000 03 00 00 34 02 f0 80 64 00 06 03 eb 70 26 08 00 ...4...d....p&..

00000010 81 f8 04 03 de f7 91 a3 7c af 3f 7a 62 4e 3b fe|.?zbN;.

00000020 b6 7a 28 bf 0d 4f 31 27 03 b9 4a f1 e6 26 f0 bd .z(..O1'..J..&..

00000030 c5 71 0a 53 .q.S

03 00 00 34 -> TPKT Header (length = 52 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 26 -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x26 = 38 bytes

08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT

81 f8 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

04 03 de f7 91 a3 7c af -> TS_SECURITY_HEADER1::dataSignature

3f 7a 62 4e 3b fe b6 7a 28 bf 0d 4f 31 27 03 b9

4a f1 e6 26 f0 bd c5 71 0a 53 -> Encrypted TS_CONTROL_PDU

Decrypted TS_CONTROL_PDU:

00000000 1a 00 17 00 ef 03 ea 03 01 00 00 01 0c 00 14 00

00000010 00 00 04 00 00 00 00 00 00 00

1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

0c 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x000c = 12 bytes

14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

04 00 -> TS_CONTROL_PDU::action = CTRLACTION_COOPERATE (4)

00 00 -> TS_CONTROL_PDU::grantId = 0

00 00 00 00 -> TS_CONTROL_PDU::controlId = 0

292 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

4.1.21 Client Control PDU - Request Control

The following is an annotated dump of the Client Control PDU - Request Control (section 2.2.1.16).

00000000 03 00 00 34 02 f0 80 64 00 06 03 eb 70 26 08 00 ...4...d....p&..

00000010 81 f8 3b 8b b4 72 56 ff d1 d6 4b 17 1e ae f6 8d ..;..rV...K.....

00000020 dd 75 a0 a3 16 97 29 12 b7 cf 14 c9 11 0b d8 c8 .u....).........

00000030 fa a1 81 3a ...:

03 00 00 34 -> TPKT Header (length = 52 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 26 -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x26 = 38 bytes

08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT

81 f8 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

3b 8b b4 72 56 ff d1 d6 -> TS_SECURITY_HEADER1::dataSignature

4b 17 1e ae f6 8d dd 75 a0 a3 16 97 29 12 b7 cf

14 c9 11 0b d8 c8 fa a1 81 3a -> Encrypted TS_CONTROL_PDU

Decrypted TS_CONTROL_PDU:

00000000 1a 00 17 00 ef 03 ea 03 01 00 00 01 0c 00 14 00

00000010 00 00 01 00 00 00 00 00 00 00

1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

0c 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x000c = 12 bytes

14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

01 00 -> TS_CONTROL_PDU::action = CTRLACTION_REQUEST_CONTROL (1)

00 00 -> TS_CONTROL_PDU::grantId = 0

00 00 00 00 -> TS_CONTROL_PDU::controlId = 0

4.1.22 Client Persistent Key List PDU

The following is an annotated dump of the Client Persistent Key List PDU (section 2.2.1.17).

00000000 03 00 01 0d 02 f0 80 64 00 06 03 eb 70 80 fe 08d....p...

00000010 00 90 16 ce c6 4a 69 d9 d3 49 9e 10 a5 04 0f cfJi..I......

293 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000020 ab 4f 6a 3b da 31 03 4f 29 bd 64 3e 98 46 ec 0a .Oj;.1.O).d>.F..

00000030 1d cd 9c ad 13 58 a3 bd 8b 9d ae f1 e9 9d 43 96X........C.

00000040 53 f5 d0 b7 50 88 f3 81 f1 cb ad 17 55 75 9c 5f S...P.......Uu._

00000050 ef ec a9 35 40 b3 74 06 d1 ae d1 15 9f ed 91 49 ...5@.t........I

00000060 a6 3d 1f c1 31 b1 17 58 da 0e 24 df 1f 87 86 39 .=..1..X..$....9

00000070 d1 46 66 ea 0e 98 d0 4b 5b 7b 01 b9 8a e8 68 32 .Ff....K[{....h2

00000080 80 da b9 58 a6 9f 4f b5 ba 79 04 ae d9 63 c0 6a ...X..O..y...c.j

00000090 a8 81 51 97 25 0b 3f c3 d2 47 fa 0a 7a 22 1f bd ..Q.%.?..G..z"..

000000a0 5f 4e b8 00 ea 32 06 e6 af 15 e4 6f b3 d3 c1 4c _N...2.....o...L

000000b0 cb 0a 8e dd a7 29 07 03 59 c1 c1 08 1b aa 56 3c)..Y.....V<

000000c0 f5 d0 89 e3 cd cf 26 8b 65 59 0a cb 7e 81 b6 33&.eY..~..3

000000d0 bb 4d 9a 13 80 e7 57 2a 0d 1d 11 b4 18 c4 31 2f .M....W*......1/

000000e0 4f 89 77 09 94 2e c3 8e bf fd 6a 39 2b 47 74 0e O.w.......j9+Gt.

000000f0 12 74 ec 45 14 c3 6b 27 d6 b6 93 11 a4 bc 46 de .t.E..k'......F.

00000100 69 4a b4 54 c7 24 24 99 8f 60 b7 21 59 iJ.T.$$..`.!Y

03 00 01 0d -> TPKT Header (length = 269 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 80 fe -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0xfe = 254 bytes

08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT

90 16 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

ce c6 4a 69 d9 d3 49 9e -> TS_SECURITY_HEADER1::dataSignature

10 a5 04 0f cf ab 4f 6a 3b da 31 03 4f 29 bd 64

3e 98 46 ec 0a 1d cd 9c ad 13 58 a3 bd 8b 9d ae

f1 e9 9d 43 96 53 f5 d0 b7 50 88 f3 81 f1 cb ad

17 55 75 9c 5f ef ec a9 35 40 b3 74 06 d1 ae d1

15 9f ed 91 49 a6 3d 1f c1 31 b1 17 58 da 0e 24

df 1f 87 86 39 d1 46 66 ea 0e 98 d0 4b 5b 7b 01

b9 8a e8 68 32 80 da b9 58 a6 9f 4f b5 ba 79 04

ae d9 63 c0 6a a8 81 51 97 25 0b 3f c3 d2 47 fa

0a 7a 22 1f bd 5f 4e b8 00 ea 32 06 e6 af 15 e4

6f b3 d3 c1 4c cb 0a 8e dd a7 29 07 03 59 c1 c1

08 1b aa 56 3c f5 d0 89 e3 cd cf 26 8b 65 59 0a

cb 7e 81 b6 33 bb 4d 9a 13 80 e7 57 2a 0d 1d 11

b4 18 c4 31 2f 4f 89 77 09 94 2e c3 8e bf fd 6a

39 2b 47 74 0e 12 74 ec 45 14 c3 6b 27 d6 b6 93

11 a4 bc 46 de 69 4a b4 54 c7 24 24 99 8f 60 b7

21 59 -> Encrypted TS_BITMAPCACHE_PERSISTENT_LIST

Decrypted TS_BITMAPCACHE_PERSISTENT_LIST:

00000000 f2 00 17 00 ef 03 ea 03 01 00 00 01 00 00 2b 00+.

00000010 00 00 00 00 00 00 19 00 00 00 00 00 00 00 00 00

00000020 19 00 00 00 00 00 03 00 00 00 a3 1e 51 16 48 29Q.H)

00000030 22 78 61 f7 89 9c cd a9 66 a8 44 4e b7 bd b4 6d "xa.....f.DN...m

00000040 9e f6 39 91 64 af bc c3 70 02 9f aa fa fd 6e ba ..9.d...p.....n.

00000050 58 dc 7b af de 06 56 3a c2 ce 68 ba 54 b6 bf 9e X.{...V:..h.T...

00000060 bc d6 d1 22 c0 98 63 e9 41 fe 38 6c 50 35 0e db ..."..c.A.8lP5..

00000070 b3 f5 45 cc 18 2d 30 44 fc 88 e5 c3 5d 23 63 f6 ..E..-0D....]#c.

00000080 cf 53 0a a8 01 b6 10 51 a5 28 70 81 6c 59 19 29 .S.....Q.(p.lY.)

00000090 00 c9 e2 b5 e7 a7 46 04 4e 1b 72 8d 4a dd 81 bbF.N.r.J...

000000a0 14 16 53 6a 4e 3c 48 72 66 c9 6c 77 4b 4a 32 48 ..SjN<Hrf.lwKJ2H

000000b0 2c c6 02 54 56 f2 81 c9 85 56 2c 0a 3d 54 86 9d ,..TV....V,.=T..

000000c0 2b 97 63 0f 0a 36 f8 63 79 3e c9 70 41 4b ec a8 +.c..6.cy>.pAK..

000000d0 7c 7b 79 28 b6 b4 a6 43 24 de cb 9c ff a2 29 3c |{y(...C$.....)<

000000e0 02 56 64 df 80 b0 0d 6e e7 1a 83 c7 54 31 aa 8a .Vd....n....T1..

294 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

000000f0 90 b3 ..

f2 00 -> TS_SHARECONTROLHEADER::totalLength = 0x00f2 = 242 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

00 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0

2b -> TS_SHAREDATAHEADER::pduType2 =

PDUTYPE2_BITMAPCACHE_PERSISTENT_LIST (43)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[0] = 0

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[1] = 0

19 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[2] = 0x19 = 25

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[3] = 0

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::numEntries[4] = 0

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[0] = 0

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[1] = 0

19 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[2] = 0x19 = 25

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[3] = 0

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::totalEntries[4] = 0

03 -> TS_BITMAPCACHE_PERSISTENT_LIST::bBitMask = 0x03

0x03

= 0x01 | 0x02

= PERSIST_FIRST_PDU | PERSIST_LAST_PDU

00 -> TS_BITMAPCACHE_PERSISTENT_LIST::Pad2

00 00 -> TS_BITMAPCACHE_PERSISTENT_LIST::Pad3

TS_BITMAPCACHE_PERSISTENT_LIST::entries:

a3 1e 51 16 -> Cache 2, Key 0, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

48 29 22 78 -> Cache 2, Key 0, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

61 f7 89 9c -> Cache 2, Key 1, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

cd a9 66 a8 -> Cache 2, Key 1, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

44 4e b7 bd -> Cache 2, Key 2, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

b4 6d 9e f6 -> Cache 2, Key 2, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

39 91 64 af -> Cache 2, Key 3, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

bc c3 70 02 -> Cache 2, Key 3, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

9f aa fa fd -> Cache 2, Key 4, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

6e ba 58 dc -> Cache 2, Key 4, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

7b af de 06 -> Cache 2, Key 5, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

56 3a c2 ce -> Cache 2, Key 5, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

68 ba 54 b6 -> Cache 2, Key 6, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

295 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

bf 9e bc d6 -> Cache 2, Key 6, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

d1 22 c0 98 -> Cache 2, Key 7, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

63 e9 41 fe -> Cache 2, Key 7, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

38 6c 50 35 -> Cache 2, Key 8, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

0e db b3 f5 -> Cache 2, Key 8, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

45 cc 18 2d -> Cache 2, Key 9, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

30 44 fc 88 -> Cache 2, Key 9, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

e5 c3 5d 23 -> Cache 2, Key 10, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

63 f6 cf 53 -> Cache 2, Key 10, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

0a a8 01 b6 -> Cache 2, Key 11, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

10 51 a5 28 -> Cache 2, Key 11, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

70 81 6c 59 -> Cache 2, Key 12, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

19 29 00 c9 -> Cache 2, Key 12, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

e2 b5 e7 a7 -> Cache 2, Key 13, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

46 04 4e 1b -> Cache 2, Key 13, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

72 8d 4a dd -> Cache 2, Key 14, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

81 bb 14 16 -> Cache 2, Key 14, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

53 6a 4e 3c -> Cache 2, Key 15, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

48 72 66 c9 -> Cache 2, Key 15, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

6c 77 4b 4a -> Cache 2, Key 16, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

32 48 2c c6 -> Cache 2, Key 16, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

02 54 56 f2 -> Cache 2, Key 17, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

81 c9 85 56 -> Cache 2, Key 17, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

2c 0a 3d 54 -> Cache 2, Key 18, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

86 9d 2b 97 -> Cache 2, Key 18, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

63 0f 0a 36 -> Cache 2, Key 19, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

f8 63 79 3e -> Cache 2, Key 19, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

c9 70 41 4b -> Cache 2, Key 20, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

ec a8 7c 7b -> Cache 2, Key 20, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

79 28 b6 b4 -> Cache 2, Key 21, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

a6 43 24 de -> Cache 2, Key 21, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

cb 9c ff a2 -> Cache 2, Key 22, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

29 3c 02 56 -> Cache 2, Key 22, High 32-bits

296 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

64 df 80 b0 -> Cache 2, Key 23, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

0d 6e e7 1a -> Cache 2, Key 23, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

83 c7 54 31 -> Cache 2, Key 24, Low 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key1)

aa 8a 90 b3 -> Cache 2, Key 24, High 32-bits

(TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY::Key2)

4.1.23 Client Font List PDU

The following is an annotated dump of the Client Font List PDU (section 2.2.1.18).

00000000 03 00 00 34 02 f0 80 64 00 06 03 eb 70 26 08 00 ...4...d....p&..

00000010 80 fe 98 19 5c fb 92 92 f5 97 18 b2 b7 c3 13 dc\...........

00000020 03 fb 64 45 c0 43 6d 91 37 26 fd 8e 71 e6 f2 2a ..dE.Cm.7&..q..*

00000030 1e ae 35 03 ..5.

03 00 00 34 -> TPKT Header (length = 52 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 26 -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x26 = 38 bytes

08 00 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT

80 fe -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

98 19 5c fb 92 92 f5 97 -> TS_SECURITY_HEADER1::dataSignature

18 b2 b7 c3 13 dc 03 fb 64 45 c0 43 6d 91 37 26

fd 8e 71 e6 f2 2a 1e ae 35 03 -> Encrypted TS_FONT_LIST_PDU

Decrypted TS_FONT_LIST_PDU:

00000000 1a 00 17 00 ef 03 ea 03 01 00 00 01 3b da 27 00;.'.

00000010 00 00 00 00 00 00 03 00 32 00 2.

1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

3b da -> TS_SHAREDATAHEADER::uncompressedLength (uninitialized due

to bug)

27 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_FONTLIST (39)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

00 00 -> TS_FONT_LIST_PDU::numberEntries = 0

00 00 -> TS_FONT_LIST_PDU::totalNumEntries = 0

03 00 -> TS_FONT_LIST_PDU::listFlags = 0x0003 = 0x0002 | 0x0001 =

FONTLIST_LAST | FONTLIST_FIRST

297 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

32 00 -> TS_FONT_LIST_PDU::entrySize = 0x0032 = 50 bytes

4.1.24 Server Synchronize PDU

The following is an annotated dump of the Server Synchronize PDU (section 2.2.1.19).

00000000 03 00 00 30 02 f0 80 68 00 01 03 eb 70 22 08 08 ...0...h....p"..

00000010 02 03 f4 4e d1 9e b4 53 b6 e6 d7 be cc c2 2b 18 ...N...S......+.

00000020 a2 cf 5c 9f 59 de c6 02 e2 ff 36 69 b7 ff 0e 27 ..\.Y.....6i...'

03 00 00 30 -> TPKT Header (length = 48 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 22 -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x22 = 34 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

f4 4e d1 9e b4 53 b6 e6 -> TS_SECURITY_HEADER1::dataSignature

d7 be cc c2 2b 18 a2 cf 5c 9f 59 de c6 02 e2 ff

36 69 b7 ff 0e 27 -> Encrypted TS_SYNCHRONIZE_PDU

Decrypted TS_SYNCHRONIZE_PDU:

00000000 16 00 17 00 ea 03 ea 03 01 00 14 00 16 00 1f 00

00000010 00 00 01 00 63 44 cD

16 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0016 = 22 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

14 -> TS_SHAREDATAHEADER::pad1

00 -> TS_SHAREDATAHEADER::streamId = STREAM_UNDEFINED (0)

16 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0016 = 22 bytes

1f -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SYNCHRONIZE (31)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

01 00 -> TS_SYNCHRONIZE_PDU::messageType = SYNCMSGTYPE_SYNC (1)

63 44 -> TS_SYNCHRONIZE_PDU::targetUser (uninitialized due to bug)

4.1.25 Server Control PDU - Cooperate

The following is an annotated dump of the Server Control PDU - Cooperate (section 2.2.1.20).

298 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000000 03 00 00 34 02 f0 80 68 00 01 03 eb 70 26 08 08 ...4...h....p&..

00000010 02 03 1c 2c 1b a6 84 ae 6d 6d 1f ad 25 6d 8b 61 ...,....mm..%m.a

00000020 11 f1 b2 0e 12 e6 e8 6b 43 af b0 4e c8 79 73 46kC..N.ysF

00000030 31 ee 05 f9 1...

03 00 00 34 -> TPKT Header (length = 52 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 26 -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x26 = 38 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

1c 2c 1b a6 84 ae 6d 6d -> TS_SECURITY_HEADER1::dataSignature

1f ad 25 6d 8b 61 11 f1 b2 0e 12 e6 e8 6b 43 af

b0 4e c8 79 73 46 31 ee 05 f9 -> Encrypted TS_CONTROL_PDU

Decrypted TS_CONTROL_PDU:

00000000 1a 00 17 00 ea 03 ea 03 01 00 b5 02 1a 00 14 00

00000010 00 00 04 00 00 00 00 00 00 00

1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

b5 -> TS_SHAREDATAHEADER::pad1

02 -> TS_SHAREDATAHEADER::streamId = STREAM_MED (2)

1a 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x001a = 26 bytes

14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

04 00 -> TS_CONTROL_PDU::action = CTRLACTION_COOPERATE (4)

00 00 -> TS_CONTROL_PDU::grantId = 0

00 00 00 00 -> TS_CONTROL_PDU::controlId = 0

4.1.26 Server Control PDU - Granted Control

The following is an annotated dump of the Server Control PDU - Granted Control.

00000000 03 00 00 34 02 f0 80 68 00 01 03 eb 70 26 08 08 ...4...h....p&..

00000010 02 03 c3 90 ba eb 39 68 dd ed 60 54 ad 97 a5 a59h..`T....

00000020 ec 44 e6 63 45 20 bd c9 66 4e 12 de 01 d3 3c 39 .D.cE ..fN....<9

00000030 09 0c 99 f8

03 00 00 34 -> TPKT Header (length = 52 bytes)

02 f0 80 -> X.224 Data TPDU

299 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

68 00 01 03 eb 70 26 -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x26 = 38 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

c3 90 ba eb 39 68 dd ed -> TS_SECURITY_HEADER1::dataSignature

60 54 ad 97 a5 a5 ec 44 e6 63 45 20 bd c9 66 4e

12 de 01 d3 3c 39 09 0c 99 f8 -> Encrypted TS_CONTROL_PDU

Decrypted TS_CONTROL_PDU:

00000000 1a 00 17 00 ea 03 ea 03 01 00 12 02 1a 00 14 00

00000010 00 00 02 00 ef 03 ea 03 00 00

1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

12 -> TS_SHAREDATAHEADER::pad1

02 -> TS_SHAREDATAHEADER::streamId = STREAM_MED (2)

1a 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x001a = 26 bytes

14 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_CONTROL (20)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

02 00 -> TS_CONTROL_PDU::action = CTRLACTION_GRANTED_CONTROL (2)

ef 03 -> TS_CONTROL_PDU::grantId = 0x03ef = 1007

ea 03 00 00 -> TS_CONTROL_PDU::controlId = 0x03ea = 1002

4.1.27 Server Font Map PDU

The following is an annotated dump of the Server Font Map PDU (section 2.2.1.22).

00000000 03 00 00 34 02 f0 80 68 00 01 03 eb 70 26 08 08 ...4...h....p&..

00000010 02 03 41 e9 b7 a2 62 9e bb d3 a0 be 09 9e d4 de ..A...b.........

00000020 8c 6d b6 79 64 4c bf 9d 21 46 32 7f 3b e4 dc 7f .m.ydL..!F2.;...

00000030 08 39 23 c1 .9#.

03 00 00 34 -> TPKT Header (length = 52 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 26 -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

300 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

userData length = 0x26 = 38 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

41 e9 b7 a2 62 9e bb d3 -> TS_SECURITY_HEADER1::dataSignature

a0 be 09 9e d4 de 8c 6d b6 79 64 4c bf 9d 21 46

32 7f 3b e4 dc 7f 08 39 23 c1 -> Encrypted TS_FONT_MAP_PDU

Decrypted TS_FONT_MAP_PDU:

00000000 1a 00 17 00 ea 03 ea 03 01 00 45 02 1a 00 28 00E...(.

00000010 00 00 00 00 00 00 03 00 04 00

1a 00 -> TS_SHARECONTROLHEADER::totalLength = 0x001a = 26 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 01 00 -> TS_SHAREDATAHEADER::shareID = 0x000103ea

45 -> TS_SHAREDATAHEADER::pad1

02 -> TS_SHAREDATAHEADER::streamId = STREAM_MED (2)

1a 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x001a = 26 bytes

28 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_FONTMAP (40)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

00 00 -> TS_FONT_MAP_PDU_DATA::numberEntries = 0

00 00 -> TS_FONT_MAP_PDU_DATA::totalNumEntries = 0

03 00 -> TS_FONT_MAP_PDU_DATA::mapFlags = 0x0003

0x0003

= 0x0002 | 0x0001

= FONTMAP_LAST | FONTMAP_FIRST

04 00 -> TS_FONT_MAP_PDU_DATA::entrySize = 4 bytes

4.2 Annotated User-Initiated (on Client) Disconnection Sequence

4.2.1 MCS Disconnect Provider Ultimatum PDU

The following is an annotated dump of the MCS Disconnect Provider Ultimatum PDU (section
2.2.2.1).

00000000 03 00 00 09 02 f0 80 21 80 !.

03 00 00 09 -> TPKT Header (length = 9 bytes)

02 f0 80 -> X.224 Data TPDU

PER encoded (basic aligned variant) PDU contents:

21 80

0x21:

0 - --\

301 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0 - |

1 - | CHOICE: From DomainMCSPDU select disconnectProviderUltimatum

(8) of type DisconnectProviderUltimatum

0 - |

0 - |

0 - --/

0 - --\

1 - |

 | DisconnectProviderUltimatum::reason = rn-user-requested (3)

0x80: |

1 - --/

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

0 - padding

4.2.2 Client Shutdown Request PDU

The following is an annotated dump of the Client Shutdown Request PDU (section 2.2.2.2).

00000000 03 00 00 2c 02 f0 80 64 00 06 03 eb 70 1e 08 08 ...,...d....p...

00000010 70 52 ca 3d ba 05 20 60 e6 57 43 2c f1 41 f0 3b pR.=.. `.WC,.A.;

00000020 0c a0 33 ff 04 55 d4 e6 9b 3c 28 f6 ..3..U...<(.

03 00 00 2c -> TPKT Header (length = 44 bytes)

02 f0 80 -> X.224 Data TPDU

64 00 06 03 eb 70 1e -> PER encoded (basic aligned variant)

SendDataRequest

initiator = 1007 (0x03ef)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x1e = 30 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT

70 52 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

ca 3d ba 05 20 60 e6 57 -> TS_SECURITY_HEADER1::dataSignature

43 2c f1 41 f0 3b 0c a0 33 ff 04 55 d4 e6 9b 3c

28 f6 -> Encrypted TS_SHUTDOWN_REQ_PDU

Decrypted TS_SHUTDOWN_REQ_PDU:

12 00 17 00 ef 03 ea 03 02 00 00 01 04 00 24 00

00 00

12 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0012 = 18 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ef 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ef = 1007

ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea

00 -> TS_SHAREDATAHEADER::pad1

302 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

04 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0004 = 4 bytes

24 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SHUTDOWN_REQUEST (36)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

4.2.3 Server Shutdown Request Denied PDU

The following is an annotated dump of the Server Shutdown Request Denied PDU (section 2.2.2.3).

00000000 03 00 00 24 02 f0 80 68 00 01 03 eb 70 1e 08 08 ...$...h....p...

00000010 10 00 31 19 b0 6c e3 cf 5e 0a df b6 5f 69 ce 41 ..1..l..^..._i.A

00000020 e3 23 f1 f6 50 4a 59 2e af e8 80 fb .#..PJY.....

03 00 00 24 -> TPKT Header (length = 36 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 1e -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x1e = 30 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0008 = SEC_ENCRYPT

10 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

31 19 b0 6c e3 cf 5e 0a -> TS_SECURITY_HEADER1::dataSignature

df b6 5f 69 ce 41 e3 23 f1 f6 50 4a 59 2e af e8

80 fb -> Encrypted TS_SHUTDOWN_DENIED_PDU

Decrypted TS_SHUTDOWN_DENIED_PDU:

12 00 17 00 ea 03 ea 03 02 00 a6 02 12 00 25 00

00 00

12 00 -> TS_SHARECONTROLHEADER::totalLength = 0x0012 = 18 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea

a6 -> TS_SHAREDATAHEADER::pad1

02 -> TS_SHAREDATAHEADER::streamId = STREAM_MED (2)

12 00 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0012 = 18 bytes

25 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SHUTDOWN_DENIED (37)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

4.3 Annotated Save Session Info PDU

4.3.1 Logon Info Version 2

The following is an annotated dump of Save Session Info PDU containing a Logon Info Version 2
structure, as specified in Section 2.2.10.1.1.2.

303 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000000 03 00 02 8b 02 f0 80 68 00 01 03 eb 70 82 7c 08h....p.|.

00000010 08 00 00 6e 4b c4 ce 9e 4a 69 c4 0a f9 41 2e 6b ...nK...Ji...A.k

00000020 28 f5 95 7e ca c3 87 37 43 4c da 68 84 12 11 a1 (..~...7CL.h....

00000030 b8 5c 28 b2 78 15 30 98 c2 20 00 36 ef e6 6c 91 .\(.x.0.. .6..l.

00000040 60 d2 c7 51 f7 de 49 c3 0c 3e 5b 51 89 7f a3 b3 `..Q..I..>[Q....

00000050 d6 58 30 50 7b 1b ed 47 b6 8a fe 4f e2 e3 7b 65 .X0P{..G...O..{e

00000060 08 52 ed bf 52 16 8c 8b 42 4e 31 a0 8c 8b 59 f9 .R..R...BN1...Y.

00000070 84 66 58 b4 f8 a0 b6 49 15 01 b4 00 56 bd fe 7e .fX....I....V..~

00000080 dd ea 4a e1 9a 5a 41 dc e0 9b 1d d6 ca 09 54 94 ..J..ZA.......T.

00000090 93 48 04 40 f3 6b 17 9b 81 a2 3d 66 2e c2 00 70 .H.@.k....=f...p

000000a0 8f c5 5e 12 a5 54 98 77 4b 74 22 07 a8 09 5b 4f ..^..T.wKt"...[O

000000b0 d6 04 50 6f 90 88 1f 6d 66 a6 19 31 59 f3 68 74 ..Po...mf..1Y.ht

000000c0 16 25 51 b1 25 97 7b 3b e2 c9 ae 99 0d 8b 61 77 .%Q.%.{;......aw

000000d0 3a c7 1c 2e 20 73 93 c3 c6 2b c2 2a d6 0c b6 9c :... s...+.*....

000000e0 72 b0 2d f1 4b 3d 9c 6c e0 22 2d d3 83 b2 a3 b9 r.-.K=.l."-.....

000000f0 6e 4f ee 0c f4 98 d7 8c 19 65 1a c6 be c4 9b d9 nO.......e......

00000100 b4 3f 30 0d df bf 31 9e 33 50 e2 20 a3 9b 1d e2 .?0...1.3P.

00000110 46 3c b0 dc 07 29 d8 0b ed c3 68 0a 2c d9 3f ff F<...)....h.,.?.

00000120 3b f2 96 be b6 cf cf 8f 36 d2 86 71 be f7 01 31 ;.......6..q...1

00000130 5c 61 e7 83 2e 0e 7b 3c 76 18 69 52 39 6e 94 6d \a....{<v.iR9n.m

00000140 e6 63 00 7f 2e 9f f3 bd 86 43 36 25 d5 1c 77 ed .c.......C6%..w.

00000150 45 c1 7f f8 41 23 1f 25 f8 0a f2 6d 6d ac 98 d5 E...A#.%...mm...

00000160 9e d8 3b e4 63 35 67 54 4e c6 8d 50 30 a4 ee af ..;.c5gTN..P0...

00000170 84 a4 63 80 9e 62 f3 f2 94 8e 2f a3 f9 71 06 99 ..c..b..../..q..

00000180 3f 25 c8 6d 84 57 1a 5c 51 ef 88 9e e6 60 87 13 ?%.m.W.\Q....`..

00000190 d9 dd 5c 16 d1 0a bc 99 ec c9 d0 fe ad 3b f7 a4 ..\..........;..

000001a0 28 7e 41 e5 a1 85 fd ed 92 52 13 7e 1f fa 0d 3f (~A......R.~...?

000001b0 05 13 86 05 b2 1c fb 5f 76 a5 4c 47 da 4b 2b 1a_v.LG.K+.

000001c0 88 7f 5d ae c9 c5 03 08 79 6a 96 96 9f 7a 11 be ..].....yj...z..

000001d0 5a 66 c5 21 f4 a4 bc a0 0f 04 b7 9c 1b 71 9e c4 Zf.!.........q..

000001e0 d7 b3 60 52 33 a1 c6 76 de cf 05 f1 71 dd 4a aa ..`R3..v....q.J.

000001f0 3d d6 db 2e a7 f9 45 95 f6 06 d5 a6 3a 49 d7 73 =.....E.....:I.s

00000200 c5 af 42 c1 f5 6a 86 2b f1 ad 04 4e 1c 7c 00 35 ..B..j.+...N.|.5

00000210 77 12 c1 7e 6a bd 07 e8 61 fa 78 70 d6 d6 10 f1 w..~j...a.xp....

00000220 35 53 d8 47 03 a8 7a 49 57 12 5d 96 3a 6d 1c 86 5S.G..zIW.].:m..

00000230 f6 72 28 c8 5c 87 72 49 3c 0f 9c 07 48 ef 12 5e .r(.\.rI<...H..^

00000240 14 77 38 01 d0 bf 5e 90 e1 9a 89 f2 fa c6 06 02 .w8...^.........

00000250 4d 90 fa fd d7 12 bd e6 7e d6 08 15 82 98 b1 c1 M.......~.......

00000260 84 1b d2 9e 29 41 c0 19 96 16 82 4f 16 ee 5e 86)A.....O..^.

00000270 9a 1c 2d 1f 85 c3 46 65 ed 31 d4 a9 47 e5 e4 64 ..-...Fe.1..G..d

00000280 d9 40 0f 78 4e 47 91 ec d7 39 c6 .@.xNG...9.

03 00 02 8b -> TPKT Header (length = 651 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 82 7c -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x27c = 636 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

6e 4b c4 ce 9e 4a 69 c4 -> TS_SECURITY_HEADER1::dataSignature

0a f9 41 2e 6b 28 f5 95 7e ca c3 87 37 43 4c da

304 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

68 84 12 11 a1 b8 5c 28 b2 78 15 30 98 c2 20 00

36 ef e6 6c 91 60 d2 c7 51 f7 de 49 c3 0c 3e 5b

51 89 7f a3 b3 d6 58 30 50 7b 1b ed 47 b6 8a fe

4f e2 e3 7b 65 08 52 ed bf 52 16 8c 8b 42 4e 31

a0 8c 8b 59 f9 84 66 58 b4 f8 a0 b6 49 15 01 b4

00 56 bd fe 7e dd ea 4a e1 9a 5a 41 dc e0 9b 1d

d6 ca 09 54 94 93 48 04 40 f3 6b 17 9b 81 a2 3d

66 2e c2 00 70 8f c5 5e 12 a5 54 98 77 4b 74 22

07 a8 09 5b 4f d6 04 50 6f 90 88 1f 6d 66 a6 19

31 59 f3 68 74 16 25 51 b1 25 97 7b 3b e2 c9 ae

99 0d 8b 61 77 3a c7 1c 2e 20 73 93 c3 c6 2b c2

2a d6 0c b6 9c 72 b0 2d f1 4b 3d 9c 6c e0 22 2d

d3 83 b2 a3 b9 6e 4f ee 0c f4 98 d7 8c 19 65 1a

c6 be c4 9b d9 b4 3f 30 0d df bf 31 9e 33 50 e2

20 a3 9b 1d e2 46 3c b0 dc 07 29 d8 0b ed c3 68

0a 2c d9 3f ff 3b f2 96 be b6 cf cf 8f 36 d2 86

71 be f7 01 31 5c 61 e7 83 2e 0e 7b 3c 76 18 69

52 39 6e 94 6d e6 63 00 7f 2e 9f f3 bd 86 43 36

25 d5 1c 77 ed 45 c1 7f f8 41 23 1f 25 f8 0a f2

6d 6d ac 98 d5 9e d8 3b e4 63 35 67 54 4e c6 8d

50 30 a4 ee af 84 a4 63 80 9e 62 f3 f2 94 8e 2f

a3 f9 71 06 99 3f 25 c8 6d 84 57 1a 5c 51 ef 88

9e e6 60 87 13 d9 dd 5c 16 d1 0a bc 99 ec c9 d0

fe ad 3b f7 a4 28 7e 41 e5 a1 85 fd ed 92 52 13

7e 1f fa 0d 3f 05 13 86 05 b2 1c fb 5f 76 a5 4c

47 da 4b 2b 1a 88 7f 5d ae c9 c5 03 08 79 6a 96

96 9f 7a 11 be 5a 66 c5 21 f4 a4 bc a0 0f 04 b7

9c 1b 71 9e c4 d7 b3 60 52 33 a1 c6 76 de cf 05

f1 71 dd 4a aa 3d d6 db 2e a7 f9 45 95 f6 06 d5

a6 3a 49 d7 73 c5 af 42 c1 f5 6a 86 2b f1 ad 04

4e 1c 7c 00 35 77 12 c1 7e 6a bd 07 e8 61 fa 78

70 d6 d6 10 f1 35 53 d8 47 03 a8 7a 49 57 12 5d

96 3a 6d 1c 86 f6 72 28 c8 5c 87 72 49 3c 0f 9c

07 48 ef 12 5e 14 77 38 01 d0 bf 5e 90 e1 9a 89

f2 fa c6 06 02 4d 90 fa fd d7 12 bd e6 7e d6 08

15 82 98 b1 c1 84 1b d2 9e 29 41 c0 19 96 16 82

4f 16 ee 5e 86 9a 1c 2d 1f 85 c3 46 65 ed 31 d4

a9 47 e5 e4 64 d9 40 0f 78 4e 47 91 ec d7 39 c6 -> Encrypted

TS_SAVE_SESSION_INFO_PDU_DATA

Decrypted TS_SAVE_SESSION_INFO_PDU_DATA:

00000000 70 02 17 00 ea 03 ea 03 02 00 00 01 70 02 26 00 p...........p.&.

00000010 00 00 01 00 00 00 01 00 12 00 00 00 02 00 00 00

00000020 0c 00 00 00 0e 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

305 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000250 00 00 00 00 00 00 4e 00 54 00 44 00 45 00 56 00N.T.D.E.V.

00000260 00 00 65 00 6c 00 74 00 6f 00 6e 00 73 00 00 00 ..e.l.t.o.n.s...

70 02 -> TS_SHARECONTROLHEADER::totalLength = 0x0270 = 624 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

70 02 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0270 = 624 bytes

26 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SAVE_SESSION_INFO (38)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

01 00 00 00 -> TS_SAVE_SESSION_INFO_PDU_DATA::infoType =

INFOTYPE_LOGON_LONG (1)

01 00 -> TS_LOGON_INFO_VERSION_2::Version

12 00 00 00 -> TS_LOGON_INFO_VERSION_2::Size

02 00 00 00 -> TS_LOGON_INFO_VERSION_2::SessionId

0c 00 00 00 -> TS_LOGON_INFO_VERSION_2::cbDomain

0e 00 00 00 -> TS_LOGON_INFO_VERSION_2::cbUserName

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

306 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TS_LOGON_INFO_VERSION_2::Pad (558 bytes)

4e 00 54 00 44 00 45 00 56 00 00 00 ->

TS_LOGON_INFO_VERSION_2::Domain = ""NTDEV

65 00 6c 00 74 00 6f 00 6e 00 73 00 00 00 ->

TS_LOGON_INFO_VERSION_2::UserName = "username"

4.3.2 Plain Notify

The following is an annotated dump of Save Session Info PDU containing a Plain Notify structure, as

specified in Section 2.2.10.1.1.3.

00000000 03 00 02 71 02 f0 80 68 00 01 03 eb 70 82 62 08 ...q...h....p.b.

00000010 08 02 03 90 94 9a cc a2 38 22 3b 03 6e a4 a2 e38";.n...

00000020 1c 4d 55 aa 56 d3 ca f8 e6 52 99 1e b5 f1 a0 42 .MU.V....R.....B

00000030 4e 89 64 83 54 1f da 89 a7 f5 53 8b 61 bb 73 b5 N.d.T.....S.a.s.

00000040 58 d4 6b bc 28 c2 84 c3 90 b4 45 b5 97 d5 d2 05 X.k.(.....E.....

00000050 bc 66 a4 d4 73 31 7e 0e 4d 42 12 0a 95 88 18 ff .f..s1~.MB......

00000060 f6 87 07 71 38 5b 3e 48 e6 d4 d0 2f c2 80 4c 7f ...q8[>H.../..L.

00000070 7d 88 78 5f ec 06 cf 8d cb 91 d6 d3 7c 56 45 59 }.x_........|VEY

00000080 7c 26 05 ed 14 92 a4 a5 a7 d8 98 1b f0 bf be b0 |&..............

00000090 bf e3 35 e8 38 8a ad 12 ec e1 72 9c 89 0a 1e a5 ..5.8.....r.....

000000a0 dc 19 48 5e 2a 7f 9e d0 11 92 70 cc 01 45 50 d5 ..H^*.....p..EP.

000000b0 1e c7 f9 ff 74 c1 74 45 04 4e 4f 5d 49 ce 41 b3t.tE.NO]I.A.

000000c0 ed 7f 5c 0e bb 37 50 d0 f7 79 e9 d7 c0 55 4a 1c ..\..7P..y...UJ.

000000d0 54 29 84 62 3f c9 68 04 5f b3 51 41 89 2b 36 a6 T).b?.h._.QA.+6.

000000e0 65 0a 4e da 92 61 38 a5 73 16 a5 b4 cd 87 db 84 e.N..a8.s.......

000000f0 10 3e b9 1f ad 3e df 50 37 5b 8e ac cb e9 e5 51 .>...>.P7[.....Q

00000100 90 bf e1 e5 0f 16 f2 70 b9 dc 89 2a 46 53 c1 fap...*FS..

00000110 e2 ef 0a bb ce 16 a1 2a 2d 24 1e 21 fe b9 b6 54*-$.!...T

00000120 2a 6e ff e5 b7 d3 84 52 19 dd 41 eb eb 4b 81 ab *n.....R..A..K..

00000130 20 11 8c 18 19 45 e9 23 00 58 a5 71 94 6c c0 58 E.#.X.q.l.X

00000140 70 9b 1d 75 f6 e4 f7 18 17 f9 8c 1d e9 c1 9b 76 p..u...........v

00000150 21 a3 6e f6 3e 4b 82 54 f2 16 96 21 0e 1c 54 e9 !.n.>K.T...!..T.

00000160 d1 65 18 0f e5 f9 45 bf d7 f9 24 a9 7e 3e 6a 73 .e....E...$.~>js

00000170 23 fc 3c 0a 04 52 c4 ee fa 13 64 21 a1 47 2d 4a #.<..R....d!.G-J

00000180 4f 00 c0 80 8b 9c a6 ec e9 94 57 a4 3d 88 77 e5 O.........W.=.w.

00000190 b6 71 e6 a1 15 a4 c6 02 64 a1 af 34 b9 73 87 e1 .q......d..4.s..

000001a0 22 1b 33 a5 bf bb 7e 96 bc 31 92 f8 4a bc ab f8 ".3...~..1..J...

000001b0 3f 5b 85 1b 23 75 46 45 b7 31 08 45 ca de 1f df ?[..#uFE.1.E....

000001c0 49 3e 37 f1 2e af 16 d2 5c 3e 2e 30 68 36 d1 ae I>7.....\>.0h6..

000001d0 9e 0d bf ff 53 ce 96 f6 6f 31 60 f1 40 e0 6f 0cS...o1`.@.o.

000001e0 a1 b3 b3 6b 04 99 a1 f6 b9 cf 69 21 e4 a2 bc 07 ...k......i!....

000001f0 81 c4 36 dc 9e 99 9d 50 da 62 55 71 f0 5d 3d fd ..6....P.bUq.]=.

00000200 08 73 54 b6 cb 48 dd 5d 54 1a 08 09 ae 9f 98 b0 .sT..H.]T.......

00000210 3b e3 2a a8 e8 61 1f 4f e5 11 d4 4f 8e e0 96 8d ;.*..a.O...O....

00000220 c8 ed d1 9e f2 27 1f c6 79 dc a2 df 52 01 21 be'..y...R.!.

00000230 13 7f c6 55 bb 08 b1 d3 2d de e3 7b 8b 11 95 53 ...U....-..{...S

00000240 af 4b bf 80 e9 5f 54 d4 96 f1 da 35 ee d4 50 e8 .K..._T....5..P.

00000250 28 58 aa 59 86 db f3 e5 44 a3 8b 3c 40 fd f5 b5 (X.Y....D..<@...

307 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000260 9f 1d b8 1c 30 43 52 9f 4b 34 4b c7 59 6b b6 060CR.K4K.Yk..

00000270 e7 .

03 00 02 71 -> TPKT Header (length = 625 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 82 62 -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x262 = 610 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

02 03 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

90 94 9a cc a2 38 22 3b -> TS_SECURITY_HEADER1::dataSignature

03 6e a4 a2 e3 1c 4d 55 aa 56 d3 ca f8 e6 52 99

1e b5 f1 a0 42 4e 89 64 83 54 1f da 89 a7 f5 53

8b 61 bb 73 b5 58 d4 6b bc 28 c2 84 c3 90 b4 45

b5 97 d5 d2 05 bc 66 a4 d4 73 31 7e 0e 4d 42 12

0a 95 88 18 ff f6 87 07 71 38 5b 3e 48 e6 d4 d0

2f c2 80 4c 7f 7d 88 78 5f ec 06 cf 8d cb 91 d6

d3 7c 56 45 59 7c 26 05 ed 14 92 a4 a5 a7 d8 98

1b f0 bf be b0 bf e3 35 e8 38 8a ad 12 ec e1 72

9c 89 0a 1e a5 dc 19 48 5e 2a 7f 9e d0 11 92 70

cc 01 45 50 d5 1e c7 f9 ff 74 c1 74 45 04 4e 4f

5d 49 ce 41 b3 ed 7f 5c 0e bb 37 50 d0 f7 79 e9

d7 c0 55 4a 1c 54 29 84 62 3f c9 68 04 5f b3 51

41 89 2b 36 a6 65 0a 4e da 92 61 38 a5 73 16 a5

b4 cd 87 db 84 10 3e b9 1f ad 3e df 50 37 5b 8e

ac cb e9 e5 51 90 bf e1 e5 0f 16 f2 70 b9 dc 89

2a 46 53 c1 fa e2 ef 0a bb ce 16 a1 2a 2d 24 1e

21 fe b9 b6 54 2a 6e ff e5 b7 d3 84 52 19 dd 41

eb eb 4b 81 ab 20 11 8c 18 19 45 e9 23 00 58 a5

71 94 6c c0 58 70 9b 1d 75 f6 e4 f7 18 17 f9 8c

1d e9 c1 9b 76 21 a3 6e f6 3e 4b 82 54 f2 16 96

21 0e 1c 54 e9 d1 65 18 0f e5 f9 45 bf d7 f9 24

a9 7e 3e 6a 73 23 fc 3c 0a 04 52 c4 ee fa 13 64

21 a1 47 2d 4a 4f 00 c0 80 8b 9c a6 ec e9 94 57

a4 3d 88 77 e5 b6 71 e6 a1 15 a4 c6 02 64 a1 af

34 b9 73 87 e1 22 1b 33 a5 bf bb 7e 96 bc 31 92

f8 4a bc ab f8 3f 5b 85 1b 23 75 46 45 b7 31 08

45 ca de 1f df 49 3e 37 f1 2e af 16 d2 5c 3e 2e

30 68 36 d1 ae 9e 0d bf ff 53 ce 96 f6 6f 31 60

f1 40 e0 6f 0c a1 b3 b3 6b 04 99 a1 f6 b9 cf 69

21 e4 a2 bc 07 81 c4 36 dc 9e 99 9d 50 da 62 55

71 f0 5d 3d fd 08 73 54 b6 cb 48 dd 5d 54 1a 08

09 ae 9f 98 b0 3b e3 2a a8 e8 61 1f 4f e5 11 d4

4f 8e e0 96 8d c8 ed d1 9e f2 27 1f c6 79 dc a2

df 52 01 21 be 13 7f c6 55 bb 08 b1 d3 2d de e3

7b 8b 11 95 53 af 4b bf 80 e9 5f 54 d4 96 f1 da

35 ee d4 50 e8 28 58 aa 59 86 db f3 e5 44 a3 8b

3c 40 fd f5 b5 9f 1d b8 1c 30 43 52 9f 4b 34 4b

c7 59 6b b6 06 e7 -> Encrypted TS_SAVE_SESSION_INFO_PDU_DATA

Decrypted TS_SAVE_SESSION_INFO_PDU_DATA:

00000 56 02 17 00 ea 03 ea 03 02 00 00 01 56 02 26 00 V...........V.&.

308 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00010 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00

00020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00250 00 00 00 00 00 00

56 02 -> TS_SHARECONTROLHEADER::totalLength = 0x0256 = 598 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

56 02 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0256 = 598 bytes

26 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SAVE_SESSION_INFO (38)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

02 00 00 00 -> TS_SAVE_SESSION_INFO_PDU_DATA::infoType =

INFOTYPE_LOGON_PLAINNOTIFY (2)

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

309 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ->

TS_PLAIN_NOTIFY::Pad (576 bytes)

4.3.3 Logon Info Extended

The following is an annotated dump of Save Session Info PDU containing a Logon Info Extended
structure, as specified in Section 2.2.10.1.1.4.

00000000 03 00 02 91 02 f0 80 68 00 01 03 eb 70 82 82 08h....p...

00000010 08 00 00 a6 70 37 7e 91 62 c5 1d c4 a0 a9 67 53p7~.b.....gS

00000020 c0 fa c3 ee 78 9d 89 70 8e 6b e4 0e d9 2f 44 39x..p.k.../D9

00000030 97 20 3d 78 77 9e 53 44 4d 91 f3 71 3e 78 60 7b . =xw.SDM..q>x`{

00000040 6b c6 05 3c 4a f6 2e 92 00 3c 63 81 ce e7 da 37 k..<J....<c....7

00000050 33 07 70 af a3 8c f8 3a a1 cd dd 02 60 8b 85 35 3.p....:....`..5

00000060 57 7b 6e dd 69 84 22 68 11 46 74 e6 ae 17 18 8d W{n.i."h.Ft.....

00000070 df 94 52 6b 82 1e b9 77 73 07 1e 0c 76 d4 83 87 ..Rk...ws...v...

00000080 38 34 4c f5 3e cf 4f 75 d2 53 bf db 3d fb e4 77 84L.>.Ou.S..=..w

00000090 92 c9 fc 43 dc 06 96 c0 ad c7 dc 48 11 83 2a 40 ...C.......H..*@

000000a0 d4 58 3c cd 7e 6e bb d8 a4 f1 a1 6d c5 6e 98 90 .X<.~n.....m.n..

000000b0 e6 0f 73 02 6a f2 d3 05 af ee 01 e2 cb 5d 8c ae ..s.j........]..

000000c0 a4 66 4b c6 36 c4 5e 61 a2 fd c3 cd 2f 8c fb a9 .fK.6.^a..../...

000000d0 34 bb 55 61 92 a8 bf b4 2a aa ff 3a 35 3e 62 4b 4.Ua....*..:5>bK

000000e0 14 bc ae 11 36 c8 f4 14 c2 ce 86 0f 6c d8 36 576.......l.6W

000000f0 d6 d4 4e c4 f4 62 54 86 46 e6 c3 a7 fe 6a b5 53 ..N..bT.F....j.S

00000100 49 8a a6 72 13 fb e5 60 2f 3c 21 4b 76 54 99 e8 I..r...`/<!KvT..

00000110 c1 83 6c 89 e4 2d 57 ad 15 61 f4 06 bf 87 c8 a6 ..l..-W..a......

00000120 69 5a f4 ec 6d de c6 af df f8 82 be 42 d0 21 85 iZ..m.......B.!.

00000130 59 e3 80 9f a6 18 5c 83 3b b5 29 9b c2 f6 ee 13 Y.....\.;.).....

00000140 2e 53 5c ea ee 2f e4 52 93 58 90 e1 2b fb c1 9d .S\../.R.X..+...

00000150 2d 64 95 61 8a 22 36 00 45 ea 56 b5 39 e6 de fe -d.a."6.E.V.9...

00000160 82 dc 67 ec 1d da 2d a3 17 27 22 c2 39 44 2f 04 ..g...-..'".9D/.

00000170 8d 8b ff 84 27 f0 9c 18 2a d2 69 a0 af fd 6a e0'...*.i...j.

00000180 3d ab ce f7 4b 6b 5d 8e bf 49 24 b4 71 ec 70 5e =...Kk]..I$.q.p^

00000190 14 42 cf 0c 8b 45 b6 7d 77 b1 23 0c 87 3b fa f0 .B...E.}w.#..;..

000001a0 44 13 31 b4 16 84 db 03 c7 04 dd 23 b7 5c 95 c7 D.1........#.\..

000001b0 29 50 5d d6 dd 21 39 85 18 1b dd fa 1c a2 0a 66)P]..!9........f

310 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

000001c0 a6 75 e0 e5 e4 f0 0e 20 9d 39 9f 07 eb 2c 7f fc .u..... .9...,..

000001d0 3b f2 88 e0 88 dd 9f 3c 1d b2 36 8b 90 81 b1 63 ;......<..6....c

000001e0 3f 31 40 2b 91 a7 1b f3 59 bf 90 53 68 c2 5a 99 ?1@+....Y..Sh.Z.

000001f0 4d 2e 2d 59 b7 bc f9 ba 05 45 18 2c 3c 16 ae d9 M.-Y.....E.,<...

00000200 0d f1 35 fd 0d 12 51 08 50 18 d2 38 07 52 4c cb ..5...Q.P..8.RL.

00000210 8c 16 b9 5a 57 2a 8e 7c ee d7 82 56 27 a8 f0 1d ...ZW*.|...V'...

00000220 9b e8 be 06 a3 ac c3 b8 61 d6 e3 70 05 5a 14 68a..p.Z.h

00000230 19 4f 78 a5 5a 0d 0a 13 e5 e4 78 04 46 00 cb ba .Ox.Z.....x.F...

00000240 53 b2 10 a4 6c d9 7b 07 34 44 52 fb e8 65 49 57 S...l.{.4DR..eIW

00000250 f9 96 6e 0f 53 30 b7 31 93 15 a1 cb 60 ba 6a c4 ..n.S0.1....`.j.

00000260 dc 29 ac 11 8c 37 91 eb b3 97 b8 51 88 5d 11 f9 .)...7.....Q.]..

00000270 79 8b 3e 38 8e 88 3d 54 0d fa 83 58 2f ef bc 80 y.>8..=T...X/...

00000280 2b 78 8c b8 91 c2 a2 21 36 85 00 ae ef 2e c6 28 +x.....!6......(

00000290 3d =

03 00 02 91 -> TPKT Header (length = 657 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 eb 70 82 82 -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1002 (0x03ea)

channelId = 1003 (0x03eb)

dataPriority = high

segmentation = begin | end

userData length = 0x282 = 642 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

00 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

a6 70 37 7e 91 62 c5 1d -> TS_SECURITY_HEADER1::dataSignature

c4 a0 a9 67 53 c0 fa c3 ee 78 9d 89 70 8e 6b e4

0e d9 2f 44 39 97 20 3d 78 77 9e 53 44 4d 91 f3

71 3e 78 60 7b 6b c6 05 3c 4a f6 2e 92 00 3c 63

81 ce e7 da 37 33 07 70 af a3 8c f8 3a a1 cd dd

02 60 8b 85 35 57 7b 6e dd 69 84 22 68 11 46 74

e6 ae 17 18 8d df 94 52 6b 82 1e b9 77 73 07 1e

0c 76 d4 83 87 38 34 4c f5 3e cf 4f 75 d2 53 bf

db 3d fb e4 77 92 c9 fc 43 dc 06 96 c0 ad c7 dc

48 11 83 2a 40 d4 58 3c cd 7e 6e bb d8 a4 f1 a1

6d c5 6e 98 90 e6 0f 73 02 6a f2 d3 05 af ee 01

e2 cb 5d 8c ae a4 66 4b c6 36 c4 5e 61 a2 fd c3

cd 2f 8c fb a9 34 bb 55 61 92 a8 bf b4 2a aa ff

3a 35 3e 62 4b 14 bc ae 11 36 c8 f4 14 c2 ce 86

0f 6c d8 36 57 d6 d4 4e c4 f4 62 54 86 46 e6 c3

a7 fe 6a b5 53 49 8a a6 72 13 fb e5 60 2f 3c 21

4b 76 54 99 e8 c1 83 6c 89 e4 2d 57 ad 15 61 f4

06 bf 87 c8 a6 69 5a f4 ec 6d de c6 af df f8 82

be 42 d0 21 85 59 e3 80 9f a6 18 5c 83 3b b5 29

9b c2 f6 ee 13 2e 53 5c ea ee 2f e4 52 93 58 90

e1 2b fb c1 9d 2d 64 95 61 8a 22 36 00 45 ea 56

b5 39 e6 de fe 82 dc 67 ec 1d da 2d a3 17 27 22

c2 39 44 2f 04 8d 8b ff 84 27 f0 9c 18 2a d2 69

a0 af fd 6a e0 3d ab ce f7 4b 6b 5d 8e bf 49 24

b4 71 ec 70 5e 14 42 cf 0c 8b 45 b6 7d 77 b1 23

0c 87 3b fa f0 44 13 31 b4 16 84 db 03 c7 04 dd

23 b7 5c 95 c7 29 50 5d d6 dd 21 39 85 18 1b dd

fa 1c a2 0a 66 a6 75 e0 e5 e4 f0 0e 20 9d 39 9f

07 eb 2c 7f fc 3b f2 88 e0 88 dd 9f 3c 1d b2 36

8b 90 81 b1 63 3f 31 40 2b 91 a7 1b f3 59 bf 90

311 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

53 68 c2 5a 99 4d 2e 2d 59 b7 bc f9 ba 05 45 18

2c 3c 16 ae d9 0d f1 35 fd 0d 12 51 08 50 18 d2

38 07 52 4c cb 8c 16 b9 5a 57 2a 8e 7c ee d7 82

56 27 a8 f0 1d 9b e8 be 06 a3 ac c3 b8 61 d6 e3

70 05 5a 14 68 19 4f 78 a5 5a 0d 0a 13 e5 e4 78

04 46 00 cb ba 53 b2 10 a4 6c d9 7b 07 34 44 52

fb e8 65 49 57 f9 96 6e 0f 53 30 b7 31 93 15 a1

cb 60 ba 6a c4 dc 29 ac 11 8c 37 91 eb b3 97 b8

51 88 5d 11 f9 79 8b 3e 38 8e 88 3d 54 0d fa 83

58 2f ef bc 80 2b 78 8c b8 91 c2 a2 21 36 85 00

ae ef 2e c6 28 3d -> Encrypted TS_SAVE_SESSION_INFO_PDU_DATA

Decrypted TS_SAVE_SESSION_INFO_PDU_DATA:

00000 76 02 17 00 ea 03 ea 03 02 00 00 01 76 02 26 00 v...........v.&.

00010 00 00 03 00 00 00 26 00 01 00 00 00 1c 00 00 00&.........

00020 1c 00 00 00 01 00 00 00 02 00 00 00 a8 02 e7 25%

00030 e2 4c 82 b7 52 a5 53 50 34 98 a1 a8 00 00 00 00 .L..R.SP4.......

00040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00250 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00270 00 00 00 00 00 00

76 02 -> TS_SHARECONTROLHEADER::totalLength = 0x0276 = 630 bytes

17 00 -> TS_SHARECONTROLHEADER::pduType = 0x0017

0x0017

= 0x0010 | 0x0007

= TS_PROTOCOL_VERSION | PDUTYPE_DATAPDU

ea 03 -> TS_SHARECONTROLHEADER::pduSource = 0x03ea = 1002

ea 03 02 00 -> TS_SHAREDATAHEADER::shareID = 0x000203ea

00 -> TS_SHAREDATAHEADER::pad1

01 -> TS_SHAREDATAHEADER::streamId = STREAM_LOW (1)

76 02 -> TS_SHAREDATAHEADER::uncompressedLength = 0x0276 = 630 bytes

312 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

26 -> TS_SHAREDATAHEADER::pduType2 = PDUTYPE2_SAVE_SESSION_INFO (38)

00 -> TS_SHAREDATAHEADER::generalCompressedType = 0

00 00 -> TS_SHAREDATAHEADER::generalCompressedLength = 0

03 00 00 00 -> TS_SAVE_SESSION_INFO_PDU_DATA::infoType =

INFOTYPE_LOGON_EXTENDED_INFO (3)

26 00 -> TS_LOGON_INFO_EXTENDED::Length = 0x26 = 38

01 00 00 00 -> TS_LOGON_INFO_EXTENDED::FieldsPresent =

LOGON_EX_AUTORECONNECTCOOKIE (1)

1c 00 00 00 -> TS_LOGON_INFO_FIELD::cbFieldData = 28

1c 00 00 00 -> ARC_SC_PRIVATE_PACKET::cbLen = 28

01 00 00 00 -> ARC_SC_PRIVATE_PACKET::Version

02 00 00 00 -> ARC_SC_PRIVATE_PACKET::LogonId

a8 02 e7 25 e2 4c 82 b7 52 a5 53 50 34 98 a1 a8 ->

ARC_SC_PRIVATE_PACKET::ArcRandomBits

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 ->

TS_LOGON_INFO_EXTENDED::Pad (570 bytes)

4.4 Annotated Server-to-Client Virtual Channel PDU

The following is an annotated dump of the Virtual Channel PDU (section 2.2.6.1).

00000000 03 00 00 2e 02 f0 80 68 00 01 03 ed f0 20 08 08h..... ..

313 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

00000010 01 00 47 bd eb cb 29 51 ae 0a f6 07 33 ce fc a5 ..G...)Q....3...

00000020 f7 09 de 67 4e a3 2a 2c 38 29 ...gN.*,8)

03 00 00 2a -> TPKT Header (length = 42 bytes)

02 f0 80 -> X.224 Data TPDU

68 00 01 03 ed f0 1c -> PER encoded (basic aligned variant)

SendDataIndication

initiator = 1007 (0x03ef)

channelId = 1005 (0x03ed) = "cliprdr"

dataPriority = low

segmentation = begin | end

userData length = 0x1c = 28 bytes

08 08 -> TS_SECURITY_HEADER::flags = 0x0808

0x0808

= 0x0800 | 0x0008

= SEC_SECURE_CHECKSUM | SEC_ENCRYPT

01 00 -> TS_SECURITY_HEADER::flagsHi - ignored as flags field does

not contain SEC_FLAGSHI_VALID (0x8000)

47 bd eb cb 29 51 ae 0a -> TS_SECURITY_HEADER::dataSignature

f6 07 33 ce fc a5 f7 09 de 67 4e a3 2a 2c 38 29 -> Encrypted static

virtual channel data

Decrypted static virtual channel data:

00000000 08 00 00 00 03 00 00 00 03 00 01 00 00 00 00 00

08 00 00 00 -> CHANNEL_PDU_HEADER::length = 8 bytes

03 00 00 00 -> CHANNEL_PDU_HEADER::flags = 0x00000003

0x00000003

= 0x00000002 | 0x00000001

= CHANNEL_FLAG_FIRST | CHANNEL_FLAG_LAST

03 00 01 00 00 00 00 00 -> Channel data to be processed by the

"cliprdr" handler

4.5 Java Code to Encrypt and Decrypt a Sample Client Random

The following Java code illustrates how to encrypt and decrypt with RSA.

import java.math.BigInteger;

public class RdpRsaEncrypt

{

 //

 // Print out the contents of a byte array in hexadecimal.

 //

 private static void PrintBytes(

 byte[] bytes

)

 {

 int cBytes = bytes.length;

 int iByte = 0;

 for (;;) {

 for (int i = 0; i < 8; i++) {

 String hex = Integer.toHexString(bytes[iByte++] & 0xff);

 if (hex.length() == 1) {

 hex = "0" + hex;

314 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 }

 System.out.print("0x" + hex + " ");

 if (iByte >= cBytes) {

 System.out.println();

 return;

 }

 }

 System.out.println();

 }

 }

 //

 // Reverse the order of the values in a byte array.

 //

 public static void ReverseByteArray(

 byte[] array

)

 {

 int i, j;

 byte temp;

 for (i = 0, j = array.length - 1; i < j; i++, j--) {

 temp = array[i];

 array[i] = array[j];

 array[j] = temp;

 }

 }

 //

 // Use RSA to encrypt data.

 //

 public static byte[] RsaEncrypt(

 byte[] modulusBytes,

 byte[] exponentBytes,

 byte[] dataBytes

)

 {

 //

 // Reverse the passed in byte arrays and then use these to

 // create the BigIntegers for the RSA computation.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(exponentBytes);

 ReverseByteArray(dataBytes);

 BigInteger modulus = new BigInteger(

 1,

 modulusBytes

);

 BigInteger exponent = new BigInteger(

 1,

 exponentBytes

);

 BigInteger data = new BigInteger(

 1,

 dataBytes

);

 //

 // Perform RSA encryption:

 // ciphertext = plaintext^exponent % modulus.

 //

 BigInteger cipherText = data.modPow(

 exponent,

315 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 modulus

);

 //

 // Reverse the generated ciphertext.

 //

 byte[] cipherTextBytes = cipherText.toByteArray();

 ReverseByteArray(cipherTextBytes);

 //

 // Undo the reversal of the passed in byte arrays.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(exponentBytes);

 ReverseByteArray(dataBytes);

 return cipherTextBytes;

 }

 //

 // Use RSA to decrypt data.

 //

 public static byte[] RsaDecrypt(

 byte[] modulusBytes,

 byte[] privateExponentBytes,

 byte[] encryptedDataBytes

)

 {

 //

 // Reverse the passed in byte arrays and then use these to

create the

 // BigIntegers for the RSA computation.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(privateExponentBytes);

 ReverseByteArray(encryptedDataBytes);

 BigInteger modulus = new BigInteger(

 1,

 modulusBytes

);

 BigInteger privateExponent = new BigInteger(

 1,

 privateExponentBytes

);

 BigInteger encryptedData = new BigInteger(

 1,

 encryptedDataBytes

);

 //

 // Perform RSA encryption:

 // plaintext = ciphertext^privateExponent % modulus.

 //

 BigInteger decryptedData = encryptedData.modPow(

 privateExponent,

 modulus

);

 //

 // Reverse the generated plaintext.

 //

 byte[] decryptedDataBytes = decryptedData.toByteArray();

 ReverseByteArray(decryptedDataBytes);

316 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 //

 // Undo the reversal of the passed in byte arrays.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(privateExponentBytes);

 ReverseByteArray(encryptedDataBytes);

 return decryptedDataBytes;

 }

 //

 // Main routine.

 //

 public static void main(

 String[] args

)

 {

 //

 // Modulus bytes obtained straight from the wire in the

 // proprietary certificate (in little endian format).

 // This is for a 512-bit key set.

 //

 byte[] modulusBytes =

 {

 (byte) 0x37, (byte) 0xa8, (byte) 0x70, (byte) 0xfe,

 (byte) 0x9a, (byte) 0xb9, (byte) 0xa8, (byte) 0x54,

 (byte) 0xcb, (byte) 0x98, (byte) 0x79, (byte) 0x44,

 (byte) 0x7a, (byte) 0xb9, (byte) 0xeb, (byte) 0x38,

 (byte) 0x06, (byte) 0xea, (byte) 0x26, (byte) 0xa1,

 (byte) 0x47, (byte) 0xea, (byte) 0x19, (byte) 0x70,

 (byte) 0x5d, (byte) 0xf3, (byte) 0x52, (byte) 0x88,

 (byte) 0x70, (byte) 0x21, (byte) 0xb5, (byte) 0x9e,

 (byte) 0x50, (byte) 0xb4, (byte) 0xe1, (byte) 0xf5,

 (byte) 0x1a, (byte) 0xd8, (byte) 0x2d, (byte) 0x51,

 (byte) 0x4d, (byte) 0x1a, (byte) 0xad, (byte) 0x79,

 (byte) 0x7c, (byte) 0x89, (byte) 0x46, (byte) 0xb0,

 (byte) 0xcc, (byte) 0x66, (byte) 0x74, (byte) 0x02,

 (byte) 0xd8, (byte) 0x28, (byte) 0x5d, (byte) 0x9d,

 (byte) 0xd7, (byte) 0xca, (byte) 0xfc, (byte) 0x60,

 (byte) 0x0f, (byte) 0x38, (byte) 0xf9, (byte) 0xb3

 };

 //

 // Exponent bytes (in little endian order) obtained straight

 // from the wire (in the proprietary certificate).

 //

 byte[] exponentBytes =

 {

 (byte) 0x01, (byte) 0x00, (byte) 0x01, (byte) 0x00

 };

 //

 // Private exponent of the private key generated by the

 // server (in little endian format).

 //

 byte[] privateExponentBytes =

 {

 (byte) 0xc1, (byte) 0x07, (byte) 0xe7, (byte) 0xd4,

 (byte) 0xd3, (byte) 0x38, (byte) 0x8d, (byte) 0x36,

 (byte) 0xf5, (byte) 0x9e, (byte) 0x8b, (byte) 0x96,

 (byte) 0x0d, (byte) 0x55, (byte) 0x65, (byte) 0x08,

 (byte) 0x28, (byte) 0x25, (byte) 0xa3, (byte) 0x2e,

 (byte) 0xc7, (byte) 0x68, (byte) 0xd6, (byte) 0x44,

 (byte) 0x85, (byte) 0x2d, (byte) 0x32, (byte) 0xf6,

 (byte) 0x72, (byte) 0xa8, (byte) 0x9b, (byte) 0xba,

317 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 (byte) 0x5e, (byte) 0x82, (byte) 0x82, (byte) 0xf0,

 (byte) 0x5c, (byte) 0x0c, (byte) 0xeb, (byte) 0x6b,

 (byte) 0x12, (byte) 0x6a, (byte) 0xa7, (byte) 0x45,

 (byte) 0x15, (byte) 0xce, (byte) 0x41, (byte) 0xe0,

 (byte) 0x03, (byte) 0xe5, (byte) 0xe6, (byte) 0x6d,

 (byte) 0xdf, (byte) 0xfd, (byte) 0x58, (byte) 0x61,

 (byte) 0x0b, (byte) 0x07, (byte) 0xa4, (byte) 0x7b,

 (byte) 0xb3, (byte) 0xf3, (byte) 0x71, (byte) 0x94

 };

 //

 // Sample 32-byte client random.

 //

 byte[] clientRandomBytes =

 {

 (byte) 0xff, (byte) 0xee, (byte) 0x00, (byte) 0x00,

 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,

 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,

 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,

 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,

 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,

 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,

 (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0xff

 };

 System.out.println("Client random:");

 PrintBytes(clientRandomBytes);

 //

 // Perform encryption.

 //

 byte[] encryptedClientRandomBytes = RsaEncrypt(

 modulusBytes,

 exponentBytes,

 clientRandomBytes

);

 System.out.println("Encrypted client random to send to

server:");

 PrintBytes(encryptedClientRandomBytes);

 //

 // Perform decryption.

 //

 byte[] decryptedClientRandomBytes = RsaDecrypt(

 modulusBytes,

 privateExponentBytes,

 encryptedClientRandomBytes

);

 System.out.println("Decrypted client random:");

 PrintBytes(decryptedClientRandomBytes);

 }

};

4.6 Java Code to Sign a Sample Proprietary Certificate Hash

The following Java code illustrates how to sign a Proprietary Certificate Hash with RSA.

import java.math.BigInteger;

318 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

public class RdpRsaSign

{

 //

 // Print out the contents of a byte array in hexadecimal.

 //

 private static void PrintBytes(

 byte[] bytes

)

 {

 int cBytes = bytes.length;

 int iByte = 0;

 for (;;) {

 for (int i = 0; i < 8; i++) {

 String hex = Integer.toHexString(bytes[iByte++] & 0xff);

 if (hex.length() == 1) {

 hex = "0" + hex;

 }

 System.out.print("0x" + hex + " ");

 if (iByte >= cBytes) {

 System.out.println();

 return;

 }

 }

 System.out.println();

 }

 }

 //

 // Reverse the order of the values in a byte array.

 //

 public static void ReverseByteArray(

 byte[] array

)

 {

 int i, j;

 byte temp;

 for (i = 0, j = array.length - 1; i < j; i++, j--) {

 temp = array[i];

 array[i] = array[j];

 array[j] = temp;

 }

 }

 //

 // Use RSA to encrypt data.

 //

 public static byte[] RsaEncrypt(

 byte[] modulusBytes,

 byte[] exponentBytes,

 byte[] dataBytes

)

 {

 //

 // Reverse the passed in byte arrays and then use these to

 // create the BigIntegers for the RSA computation.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(exponentBytes);

 ReverseByteArray(dataBytes);

 BigInteger modulus = new BigInteger(

 1,

319 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 modulusBytes

);

 BigInteger exponent = new BigInteger(

 1,

 exponentBytes

);

 BigInteger data = new BigInteger(

 1,

 dataBytes

);

 //

 // Perform RSA encryption:

 // ciphertext = plaintext^exponent % modulus.

 //

 BigInteger cipherText = data.modPow(

 exponent,

 modulus

);

 //

 // Reverse the generated ciphertext.

 //

 byte[] cipherTextBytes = cipherText.toByteArray();

 ReverseByteArray(cipherTextBytes);

 //

 // Undo the reversal of the passed in byte arrays.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(exponentBytes);

 ReverseByteArray(dataBytes);

 return cipherTextBytes;

 }

 //

 // Use RSA to decrypt data.

 //

 public static byte[] RsaDecrypt(

 byte[] modulusBytes,

 byte[] privateExponentBytes,

 byte[] encryptedDataBytes

)

 {

 //

 // Reverse the passed in byte arrays and then use these to

create the

 // BigIntegers for the RSA computation.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(privateExponentBytes);

 ReverseByteArray(encryptedDataBytes);

 BigInteger modulus = new BigInteger(

 1,

 modulusBytes

);

 BigInteger privateExponent = new BigInteger(

 1,

 privateExponentBytes

);

 BigInteger encryptedData = new BigInteger(

 1,

 encryptedDataBytes

320 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

);

 //

 // Perform RSA encryption:

 // plaintext = ciphertext^privateExponent % modulus.

 //

 BigInteger decryptedData = encryptedData.modPow(

 privateExponent,

 modulus

);

 //

 // Reverse the generated plaintext.

 //

 byte[] decryptedDataBytes = decryptedData.toByteArray();

 ReverseByteArray(decryptedDataBytes);

 //

 // Undo the reversal of the passed in byte arrays.

 //

 ReverseByteArray(modulusBytes);

 ReverseByteArray(privateExponentBytes);

 ReverseByteArray(encryptedDataBytes);

 return decryptedDataBytes;

 }

 //

 // Main routine.

 //

 public static void main(

 String[] args

)

 {

 //

 // Modulus bytes obtained straight from the wire in the

 // proprietary certificate (in little endian format).

 // This is for a 512-bit key set.

 //

 byte[] modulusBytes =

 {

 (byte) 0x3d, (byte) 0x3a, (byte) 0x5e, (byte) 0xbd,

 (byte) 0x72, (byte) 0x43, (byte) 0x3e, (byte) 0xc9,

 (byte) 0x4d, (byte) 0xbb, (byte) 0xc1, (byte) 0x1e,

 (byte) 0x4a, (byte) 0xba, (byte) 0x5f, (byte) 0xcb,

 (byte) 0x3e, (byte) 0x88, (byte) 0x20, (byte) 0x87,

 (byte) 0xef, (byte) 0xf5, (byte) 0xc1, (byte) 0xe2,

 (byte) 0xd7, (byte) 0xb7, (byte) 0x6b, (byte) 0x9a,

 (byte) 0xf2, (byte) 0x52, (byte) 0x45, (byte) 0x95,

 (byte) 0xce, (byte) 0x63, (byte) 0x65, (byte) 0x6b,

 (byte) 0x58, (byte) 0x3a, (byte) 0xfe, (byte) 0xef,

 (byte) 0x7c, (byte) 0xe7, (byte) 0xbf, (byte) 0xfe,

 (byte) 0x3d, (byte) 0xf6, (byte) 0x5c, (byte) 0x7d,

 (byte) 0x6c, (byte) 0x5e, (byte) 0x06, (byte) 0x09,

 (byte) 0x1a, (byte) 0xf5, (byte) 0x61, (byte) 0xbb,

 (byte) 0x20, (byte) 0x93, (byte) 0x09, (byte) 0x5f,

 (byte) 0x05, (byte) 0x6d, (byte) 0xea, (byte) 0x87,

 };

 //

 // Exponent bytes (in little endian order) obtained straight

 // from the wire (in the proprietary certificate).

 //

 byte[] exponentBytes =

 {

321 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 (byte) 0x5b, (byte) 0x7b, (byte) 0x88, (byte) 0xc0

 };

 //

 // Private exponent of the private key generated by the

 // server (in little endian format).

 //

 byte[] privateExponentBytes =

 {

 (byte) 0x87, (byte) 0xa7, (byte) 0x19, (byte) 0x32,

 (byte) 0xda, (byte) 0x11, (byte) 0x87, (byte) 0x55,

 (byte) 0x58, (byte) 0x00, (byte) 0x16, (byte) 0x16,

 (byte) 0x25, (byte) 0x65, (byte) 0x68, (byte) 0xf8,

 (byte) 0x24, (byte) 0x3e, (byte) 0xe6, (byte) 0xfa,

 (byte) 0xe9, (byte) 0x67, (byte) 0x49, (byte) 0x94,

 (byte) 0xcf, (byte) 0x92, (byte) 0xcc, (byte) 0x33,

 (byte) 0x99, (byte) 0xe8, (byte) 0x08, (byte) 0x60,

 (byte) 0x17, (byte) 0x9a, (byte) 0x12, (byte) 0x9f,

 (byte) 0x24, (byte) 0xdd, (byte) 0xb1, (byte) 0x24,

 (byte) 0x99, (byte) 0xc7, (byte) 0x3a, (byte) 0xb8,

 (byte) 0x0a, (byte) 0x7b, (byte) 0x0d, (byte) 0xdd,

 (byte) 0x35, (byte) 0x07, (byte) 0x79, (byte) 0x17,

 (byte) 0x0b, (byte) 0x51, (byte) 0x9b, (byte) 0xb3,

 (byte) 0xc7, (byte) 0x10, (byte) 0x01, (byte) 0x13,

 (byte) 0xe7, (byte) 0x3f, (byte) 0xf3, (byte) 0x5f

 };

 //

 // Sample hash of a proprietary certificate.

 //

 byte[] hashBytes =

 {

 (byte) 0xf5, (byte) 0xcc, (byte) 0x18, (byte) 0xee,

 (byte) 0x45, (byte) 0xe9, (byte) 0x4d, (byte) 0xa6,

 (byte) 0x79, (byte) 0x02, (byte) 0xca, (byte) 0x76,

 (byte) 0x51, (byte) 0x33, (byte) 0xe1, (byte) 0x7f,

 (byte) 0x00, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0xff, (byte) 0xff,

 (byte) 0xff, (byte) 0xff, (byte) 0x01

 };

 System.out.println("Hash:");

 PrintBytes(hashBytes);

 //

 // Perform decryption (signing).

 //

 byte[] signedHashBytes = RsaDecrypt(

 modulusBytes,

 privateExponentBytes,

 hashBytes

);

 System.out.println("Signed hash bytes:");

 PrintBytes(signedHashBytes);

322 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 //

 // Perform encryption (verification).

 //

 byte[] verifiedHashBytes = RsaEncrypt(

 modulusBytes,

 exponentBytes,

 signedHashBytes

);

 System.out.println("Verified hash bytes:");

 PrintBytes(verifiedHashBytes);

 }

};

323 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

5 Security

The following sections specify security considerations for implementers of the Remote Desktop
Protocol: Basic Connectivity and Graphics Remoting Specification.

5.1 Security Considerations for Implementers

See sections 5.3 through 5.5 for complete details of RDP security considerations.

5.2 Index of Security Parameters

None.

5.3 Standard RDP Security

5.3.1 Encryption Levels

Standard RDP Security supports four levels of encryption: Low, Client Compatible, High and FIPS

Compliant. The required Encryption Level is configured on the server. All Microsoft RDP servers
using Standard RDP Security use one of these four encryption levels and cannot be configured to run
under any other level.

1. Low: All data sent from the client to the server is protected by encryption based on the maximum
key strength supported by the client.

2. Client Compatible: All data sent between the client and the server is protected by encryption

based on the maximum key strength supported by the client.

3. High: All data sent between the client and server is protected by encryption based on the server's
maximum key strength. Clients that do not support this level of encryption cannot connect.

4. FIPS: All data sent between the client and server is protected using Federal Information

Processing Standard 140-1 validated encryption methods. Clients that do not support this level of

encryption cannot connect.

5.3.2 Negotiating the Cryptographic Configuration

Clients advertise their cryptographic support (for use with Standard RDP Security mechanisms) in
the Client Security Data (section 2.2.1.3.3), sent to the server as part of the Basic Settings

Exchange phase of the connection sequence (see section 1.3.1.1). Upon receiving the client data the
server will determine the cryptographic configuration to use for the session based on its configured
Encryption Level and then send this selection to the client in the Server Security Data (section
2.2.1.4.3), as part of the Basic Settings Exchange phase. The client will use this information to

configure its cryptographic modules.

324 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Figure 6: Determining the cryptographic configuration for a session

The Encryption Method and Encryption Level (see section 5.3.1) are closely related. If the
Encryption Level is zero, then the Encryption Method must be zero as well (the converse is also
true). Essentially this means that if no encryption is being used for the session (an Encryption Level

of zero), then there should be no Encryption Method being applied to the data. If the Encryption
Level is greater than zero (encryption is in force for at least client-to-server traffic) then the
Encryption Method should be greater than zero (the converse is also true). Essentially this means

that if encryption is in force for the session, then an Encryption Method must be defined which
specifies how to encrypt the data. Furthermore, if the Encryption Level is set to FIPS, then the
Encryption Method should select only FIPS compatible methods.

If the server determines that no encryption is necessary for the session it can send the client a value

of zero for the selected Encryption Method and Encryption Level. In this scenario the Security
Commencement phase of the connection sequence see section 5.4.2.3 is not executed, with the
result that the client does not send the Security Exchange PDU (section 2.2.1.10). This PDU can be

dropped as the Client Random (see section 5.3.4) is redundant since no security keys need to be
generated. Furthermore, because no security measures are in effect, the Security Header (see
section 5.3.8) will not be included with any data sent on the wire, except for the Client Info (see

section 3.2.5.3.11) and licensing PDUs (see [MS-RDPELE]) which always contain the Security
Header (see section 2.2.9.1.1.2). To protect the confidentiality of user data Microsoft RDP servers

never disable encryption on the wire when running with Standard RDP Security enabled.

5.3.3 Server Certificates

5.3.3.1 Proprietary Certificates

Proprietary Certificates are used exclusively by RDP 4.0 servers and servers which have not received
an X.509 certificate from a Domain or Enterprise License Server. Every server creates a
public/private key pair and then generates and stores a Proprietary Certificate containing the public

key at least once at system start-up time. The certificate is only generated when one does not
already exist.

Client SKUs of the Windows Operating System which support Remote Desktop (such as Windows XP
Professional) and Server SKUs (such as Windows Server 2003) running in Remote Administration

mode never contact a Licensing Server, and as a result only use Proprietary Certificates. RDP 4.0
clients and servers only support Proprietary Certificates.

The server sends the Proprietary Certificate to the client in the Server Security Data (section

2.2.1.4.3) during the Basic Settings Exchange phase of the connection sequence (see section
1.3.1.1). The Proprietary Certificate structure is detailed in section 2.2.1.4.3.1.1.

%5bMS-GLOS%5d.pdf

325 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

5.3.3.1.1 Terminal Services Signing Key

The modulus, private exponent, and public exponent of the 512-bit Terminal Services asymmetric
key used for signing Proprietary Certificates with the RSA algorithm are detailed below:

64-byte Modulus (n):

0x3d, 0x3a, 0x5e, 0xbd, 0x72, 0x43, 0x3e, 0xc9,

0x4d, 0xbb, 0xc1, 0x1e, 0x4a, 0xba, 0x5f, 0xcb,

0x3e, 0x88, 0x20, 0x87, 0xef, 0xf5, 0xc1, 0xe2,

0xd7, 0xb7, 0x6b, 0x9a, 0xf2, 0x52, 0x45, 0x95,

0xce, 0x63, 0x65, 0x6b, 0x58, 0x3a, 0xfe, 0xef,

0x7c, 0xe7, 0xbf, 0xfe, 0x3d, 0xf6, 0x5c, 0x7d,

0x6c, 0x5e, 0x06, 0x09, 0x1a, 0xf5, 0x61, 0xbb,

0x20, 0x93, 0x09, 0x5f, 0x05, 0x6d, 0xea, 0x87

64-byte Private Exponent (d):

0x87, 0xa7, 0x19, 0x32, 0xda, 0x11, 0x87, 0x55,

0x58, 0x00, 0x16, 0x16, 0x25, 0x65, 0x68, 0xf8,

0x24, 0x3e, 0xe6, 0xfa, 0xe9, 0x67, 0x49, 0x94,

0xcf, 0x92, 0xcc, 0x33, 0x99, 0xe8, 0x08, 0x60,

0x17, 0x9a, 0x12, 0x9f, 0x24, 0xdd, 0xb1, 0x24,

0x99, 0xc7, 0x3a, 0xb8, 0x0a, 0x7b, 0x0d, 0xdd,

0x35, 0x07, 0x79, 0x17, 0x0b, 0x51, 0x9b, 0xb3,

0xc7, 0x10, 0x01, 0x13, 0xe7, 0x3f, 0xf3, 0x5f

4-byte Public Exponent (e):

0x5b, 0x7b, 0x88, 0xc0

The enumerated integers are in little-endian byte order. The public key is the pair (e, n), while the
private key is the pair (d, n).

5.3.3.1.2 Signing a Proprietary Certificate

The Proprietary Certificate is signed by using RSA to encrypt the hash of the first six fields with the
Terminal Services private signing key (specified in section 5.3.3.1.1) and then appending the result
to the end of the certificate. Mathematically the signing operation is formulated as follows:

s = m^d mod n

Where,

s = signature;

m = hash of first six fields of certificate

d = private exponent; n = modulus

326 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The structure of the Proprietary Certificate is detailed in section 2.2.1.4.3.1.1. The structure of the
public key embedded in the certificate is described in 2.2.1.4.3.1.1.1. An example of public key

bytes (in little-endian format) follows:

0x52 0x53 0x41 0x31: magic (0x31415352)

0x48 0x00 0x00 0x00: keylen (72 bytes)

0x00 0x02 0x00 0x00: bitlen (512 bits)

0x3f 0x00 0x00 0x00: datalen (63 bytes)

0x01 0x00 0x01 0x00: pubExp (0x00010001)

0xaf 0xfe 0x36 0xf2 0xc5 0xa1 0x44 0x2e

0x47 0xc1 0x31 0xa7 0xdb 0xc6 0x67 0x02

0x64 0x71 0x5c 0x00 0xc9 0xb6 0xb3 0x04

0xd0 0x89 0x9f 0xe7 0x6b 0x24 0xe8 0xe8

0xe5 0x2d 0x0b 0x13 0xa9 0x0c 0x6d 0x4d

0x91 0x5e 0xe8 0xf6 0xb3 0x17 0x17 0xe3

0x9f 0xc5 0x4d 0x4a 0xba 0xfa 0xb9 0x2a

0x1b 0xfb 0x10 0xdd 0x91 0x8c 0x60 0xb7: modulus

A 128-bit MD5 hash over the first six fields of the proprietary certificate (which are all in little-endian
format) appears as follows:

PublicKeyBlob = wBlobType + wBlobLen + PublicKeyBytes

hash = MD5(dwVersion + dwSigAlgID + dwKeyAlgID + PublicKeyBlob)

An array of 63 bytes is then created and initialized as follows:

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0x00 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0x01

The 128-bit MD5 hash is copied into the first sixteen bytes of the array. For example, assume that
the generated hash is:

0xf5 0xcc 0x18 0xee 0x45 0xe9 0x4d 0xa6

0x79 0x02 0xca 0x76 0x51 0x33 0xe1 0x7f

The byte array will appear as follows after copying in the sixteen bytes of the MD5 hash:

0xf5 0xcc 0x18 0xee 0x45 0xe9 0x4d 0xa6

0x79 0x02 0xca 0x76 0x51 0x33 0xe1 0x7f

327 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

0x00 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0x01

The 63-byte array is then treated as an unsigned little-endian integer and signed with the Terminal
Services private key by using RSA. The resultant signature must be in little-endian format before
appending it to the Proprietary Certificate structure. The final structure of the certificate must
conform to the specification in section 2.2.1.4.3.1.1. This means that fields 7 through to 9 will be

the signature blob type, the number of bytes in the signature and the actual signature bytes
respectively. The blob type and number of bytes must be in little-endian format.

5.3.3.1.3 Validating a Proprietary Certificate

Verification of the Proprietary Certificate signature is carried out by decrypting the signature with
the Terminal Services public signing key and then verifying that this result is the same as the MD5
hash of the first six fields of the certificate.

m = s^e mod n

Where,

m = decrypted signature; s = signature

e = public exponent; n = modulus

The structure of the Proprietary Certificate is detailed in section 2.2.1.4.3.1.1. A 128-bit MD5 hash
over the first six fields (which are all little-endian integers of varying lengths) appears as follows:

PublicKeyBlob = wBlobType + wBlobLen + PublicKeyBytes

hash = MD5(dwVersion + dwSigAlgID + dwKeyAlgID + PublicKeyBlob)

Next, the actual signature bytes are treated as an unsigned little-endian integer and decrypted with

the Terminal Services public key by using RSA. The bytes which result from the decryption must be
sorted in little-endian order to form an array of 63 bytes. The 17th byte of the array should be 0x00,
the 18th through to the 62nd byte should be 0xFF, while the 63rd byte should be 0x01. An example
of a successfully decrypted signature is:

0xf5 0xcc 0x18 0xee 0x45 0xe9 0x4d 0xa6

0x79 0x02 0xca 0x76 0x51 0x33 0xe1 0x7f

0x00 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0x01

328 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

The first sixteen bytes of the array are then compared to the hash which was generated over the
Proprietary Certificate and if they match, the signature has been successfully verified.

5.3.3.2 X.509 Certificate Chains

X.509-compliant certificates are issued to servers upon request by Domain or Enterprise License
Servers and are required to issue client licenses (see [MS-RDPELE] for more information on RDP

Licensing). An X.509 Certificate Chain consists of a collection of certificates concatenated together in
root-certificate-first order. This eliminates the need to scan the chain to the end to get the root
certificate for starting chain validation. The last certificate is the certificate of the server; the

second-to-last is the license server's certificate, and so forth. More details on the structure of the
chain and the component certificates are in section of [MS-RDPELE]

Servers send the X.509 Certificate Chain to clients in the Server Security Data (section 2.2.1.4.3)

settings block during the Basic Settings Exchange phase of the connection sequence (see section
1.3.1.1). A server which has not yet been issued an X.509 Certificate Chain will fall back to using a
Proprietary Certificate (section 2.2.1.4.3.1.1). Proprietary Certificates are always used when an RDP
4.0 client connects to a server (the client version can be determined from the Client Core Data

(section 2.2.1.3.2).

5.3.4 Client and Server Random Values

The client and server both generate a 32-byte random value using a cryptographically-safe
pseudorandom number generator.

The server sends the random value which it generated (along with its public key embedded in a

certificate) to the client in the Server Security Data (section 2.2.1.4.3) during the Basic Settings
Exchange phase of the connection sequence (see section 1.3.1.1).

If RDP Standard Security is in effect and encryption is being used, then the client sends its random
value to the server (encrypted with the server's public key) in the Security Exchange PDU (section

2.2.1.10) as part of the RDP Security Commencement phase of the connection sequence (see
section 1.3.1.1).

Figure 7: Client and Server Random Value Exchange

The two random values are used by the client and server to generate session keys to secure the
connection.

5.3.4.1 Encrypting Client Random

The client random is encrypted by the client with the server's public key (obtained from the Server

Security Data (section 2.2.1.4.3)) using RSA. Mathematically the encryption operation is formulated
as follows:

329 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

c = r^e mod n

Where,

c = encrypted client random; r = unencrypted client random

e = public exponent; n = modulus

The client random value should be interpreted as an unsigned little-endian integer value when
performing the encryption. The resultant encrypted client random should be copied into a zeroed out

buffer which is of size:

(bitlen / 8) + 8

For example, if the public key of the server is 512 bits long, then the zeroed out buffer should be 72
bytes. This value can also be obtained from the keylen field in the public key structure (see section
2.2.1.4.3.1.1.1). The buffer is sent to the server in the Security Exchange PDU (section 2.2.1.10).

5.3.4.2 Decrypting Client Random

The server can decrypt the client random as it possesses the private exponent of the public/private

key pair which it generated. Mathematically the decryption operation is formulated as follows:

r = c^d mod n

Where,

r = unencrypted client random; c = encrypted client random;

d = private exponent; n = modulus

The encrypted client random is obtained from the Security Exchange PDU (section 2.2.1.10). The
encrypted client random value should be interpreted as an unsigned little-endian integer value when

performing the decryption operation.

5.3.5 Session Key Generation

RDP uses three symmetric session keys derived from the client and server random values (see

section 5.3.4). Client-to-server traffic is encrypted with one of these keys (known as the client's
encryption key and server's decryption key), server-to-client traffic with another (known as the
server's encryption key and client's decryption key) and the final key is used to generate a message

authentication code (MAC) over the data to help ensure its integrity. The generated keys are 40, 56
or 128 bits in length.

5.3.5.1 Non-FIPS

The client and server random values are used to create a 384-bit Pre-Master Secret by
concatenating the first 192 bits of the Client Random with the first 192 bits of the Server Random.

PreMasterSecret = First192Bits(ClientRandom) + First192Bits(ServerRandom)

330 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

A 384-bit Master Secret is generated using the Pre-Master Secret, the client and server random
values and the MD5 and SHA-1 hash functions.

SaltedHash(S, I) = MD5(S + SHA(I + S + ClientRandom + ServerRandom))

PreMasterHash(I) = SaltedHash(PremasterSecret, I)

MasterSecret = PreMasterHash('A') + PreMasterHash('BB') + PreMasterHash('CCC')

A 384-bit Session Key Blob is generated as follows:

MasterHash(I) = SaltedHash(MasterSecret, I)

SessionKeyBlob = MasterHash('X') + MasterHash('YY') + MasterHash('ZZZ')

From the Session Key Blob the actual session keys which will be used are derived. Both client and
server extract the same key data for generating MAC signatures.

MACKey128 = First128Bits(SessionKeyBlob)

The initial encryption and decryption keys are generated next (these keys are updated at a later

point in the protocol per section 5.3.6.1). The server generates its encryption and decryption keys
as follows:

FinalHash(K) = MD5(K + ClientRandom + ServerRandom)

InitialServerEncryptKey128 = FinalHash(Second128Bits(SessionKeyBlob))

InitialServerDecryptKey128 = FinalHash(Third128Bits(SessionKeyBlob))

The client constructs its initial decryption key with the bytes which the server uses to construct its
initial encryption key. Similarly, the bytes which the server uses to form its initial decryption key,

the client uses to form its initial encryption key.

InitialClientDecryptKey128 = FinalHash(Second128Bits(SessionKeyBlob))

InitialClientEncryptKey128 = FinalHash(Third128Bits(SessionKeyBlob))

This means that the client will use its encryption key to encrypt data and the server will use its
decryption key to decrypt the same data. Similarly, the server will use its encryption key to encrypt
data and the client will use its decryption key to decrypt the same data. In effect, there are two

streams of data (client-to-server and server-to-client) encrypted with different session keys which
are updated at different intervals.

To reduce the entropy of the keys to either 40 or 56 bits, the 128-bit client and server keys are
salted appropriately to produce 64-bit versions with the required strength, as shown in the following

table.

331 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Negotiated Key Length Salt Length Salt Values RC4 Key Length

40 bits 3 bytes 0xD1, 0x26, 0x9E 8 bytes

56 bits 1 byte 0xD1 8 bytes

128 bits 0 bytes N/A 16 bytes

Using the salt values, the 40-bit keys are generated as follows:

MACKey40 = 0xD1269E + Last40Bits(First64Bits(MACKey128))

InitialEncryptKey40 = 0xD1269E + Last40Bits(First64Bits(InitialEncryptKey128))

InitialDecryptKey40 = 0xD1269E + Last40Bits(First64Bits(InitialDecryptKey128))

The 56-bit keys are generated as follows:

MACKey56 = 0xD1269E + Last56Bits(First64Bits(MACKey128))

InitialEncryptKey56 = 0xD1 + Last56Bits(First64Bits(InitialEncryptKey128))

InitialDecryptKey56 = 0xD1 + Last56Bits(First64Bits(InitialDecryptKey128))

After any necessary salting has been applied, the generated encryption and decryption keys are
used to initialize RC-4 substitution tables which can then be used to encrypt and decrypt data.

At the end of this process the client and server will each possess three symmetric keys to use with
the RC4 stream cipher: a MAC key, encryption key and decryption key.

5.3.5.2 FIPS

The client and server random values are used to generate temporary 160-bit initial encryption and
decryption keys by using the SHA-1 hash function. The client generates the following:

ClientEncryptKeyT = SHA(First128Bits(ClientRandom) + First128Bits(ServerRandom))

ClientDecryptKeyT = SHA(Last128Bits(ClientRandom) + Last128Bits(ServerRandom))

The server generates the following:

ServerDecryptKeyT = SHA(First128Bits(ClientRandom) + First128Bits(ServerRandom))

ServerEncryptKeyT= SHA(Last128Bits(ClientRandom) + Last128Bits(ServerRandom))

To expand the keys to 168 bits in length (which is the standard length for a Triple DES key), the
first eight bits of each key are copied to the rear of the key.

ClientEncryptKey = ClientEncryptKeyT + First8Bits(ClientEncryptKeyT)

ClientDecryptKey = ClientDecryptKeyT + First8Bits(ClientDecryptKeyT)

ServerDecryptKey = ServerDecryptKeyT + First8Bits(ServerDecryptKeyT)

ServerEncryptKey= ServerEncryptKeyT + First8Bits(ServerEncryptKeyT)

The shared secret key to be used with SHA-1 to produce an HMAC (see [RFC2104]) is computed by

the client as follows:

http://go.microsoft.com/fwlink/?LinkId=90314

332 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

HMACKey = SHA(ClientEncryptKeyT + ClientDecryptKeyT)

The server performs the same computation with the same data:

HMACKey = SHA(ServerDecryptKeyT + ServerEncryptKeyT)

At the end of this process the client and server will each possess three symmetric keys to use with
the Triple DES block cipher: an HMAC key, encryption key and decryption key.

5.3.6 Encrypting and Decrypting the I/O Data Stream

If the Encryption Level (see section 5.4.1) of the server is greater than zero (all Microsoft RDP
servers enforce this), then encryption will always be in effect. At a minimum, all client-to-server

traffic (except for licensing PDUs which have optional encryption) will be encrypted and a MAC will
be appended to the data to help ensure transmission integrity.

The table which follows summarizes the possible encryption and MAC generation scenarios based on

the Encryption Method and Encryption Level selected by the server (the Encryption Method values
are described in section 2.2.1.4.3, while the Encryption Levels are described in 5.4.1) as part of the
cryptographic negotiation described in section 5.3.2:

Selected

Encryption

Method

Selected

Encryption Level Data Encryption MAC Generation

None (0x00) None (0) None None

40-Bit (0x01)

56-Bit (0x08)

128-Bit (0x02)

Low (1) Client-to-server traffic only

using

RC4

Client-to-server traffic only

using

MD5 and SHA-1

40-Bit (0x01)

56-Bit (0x08)

128-Bit (0x02)

Client Compatible

(2)

High (3)

Client-to-server and

server-to-client traffic using

 RC4

Client-to-server and server-

to-client traffic using

MD5 and SHA-1

FIPS (0x10) FIPS (4) Client-to-server and server-

to-client traffic using

Triple DES

Client-to-server and server-

to-client traffic using

SHA-1

5.3.6.1 Non-FIPS

The client and server follow the same series of steps to encrypt a block of data. First, a MAC value is
generated over the unencrypted data.

Pad1 = 0x36 repeated 40 times to give 320 bits

Pad2 = 0x5C repeated 48 times to give 384 bits

SHAComponent = SHA(MACKeyN + Pad2 + DataLength + Data)

MACSignature = First64Bits(MD5(MACKeyN + Pad1 + SHAComponent))

(MACKeyN is either MACKey40, MACKey56 or MACKey128, depending on the negotiated

333 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 key strength.)

DataLength is the size of the data to encrypt in bytes, expressed as a little-endian 32-bit integer.
Data is the information to be encrypted. The first 8 bytes of the generated MD5 hash are used as an

8-byte MAC value to send on the wire.

Next, the data block is encrypted with RC4 using the current client or server encryption substitution
table. The encrypted data is appended to the 8-byte MAC value in the network packet.

Decryption involves a reverse ordering of the previous steps. First the data is decrypted using the
current RC4 decryption substitution table. Then, a 16-byte MAC value is generated over the
decrypted data, and the first 8 bytes of this MAC are compared to the 8-byte MAC value that was
sent over the wire. If the MAC values do not match, an appropriate error is generated and the

connection is dropped.

5.3.6.1.1 Salted MAC Generation

The MAC value may be generated by salting the data to be hashed with the current encryption
count. For example, assume that 42 packets have already been encrypted. When the next packet is
encrypted the value 42 is added to the SHA component of the MAC signature. The addition of the
encryption count can be expressed as follows:

SHAComponent = SHA(MACKeyN + Pad2 + DataLength + Data + EncryptionCount)

MACSignature = First64Bits(MD5(MACKeyN + Pad1 + SHAComponent))

 EncryptionCount is the cumulative encryption count, indicating how many encryptions have been
carried out. It is expressed as a little-endian 32-bit integer. The descriptions for DataLength, Data,
and MacKeyN are the same as in section 5.3.6.1.

The use of the salted MAC is dictated by capability flags in the General Capability Set (section
2.2.7.1.1), sent by both client and server during the Capability Negotiation phase of the connection

sequence (see section 1.3.1.1). In addition, the presence of a salted MAC is indicated by the

presence of the TS_ENC_SECURE_CHECKSUM flag in the Security Header flags field (see section
5.3.8).

5.3.6.2 FIPS

Prior to performing an encryption or decryption operation, the cryptographic modules used to
implement Triple DES must be configured with the following Initialization Vector:

{0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF}

The 160-bit MAC signature key is used to key the HMAC function (see [RFC2104]), which uses SHA-

1 as the iterative hash function.

MACSignature = First64Bits(HMAC(HMACKey, Data + EncryptionCount))

http://go.microsoft.com/fwlink/?LinkId=90314

334 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

 EncryptionCount is the cumulative encryption count, indicating how many encryptions have been
carried out. It is expressed as a little-endian 32-bit integer. The description for Data is the same as

in section 5.3.6.1.

Encryption of the data and construction of the network packet to transmit is similar to section
5.3.6.1. The main difference is that Triple DES (in CBC mode) is used. Because DES is a block cipher
the data to be encrypted must be padded to be a multiple of the block size (8 bytes). The FIPS

Security Header (see sections 2.2.8.1 and 2.2.9.1) has an extra field to record the number of

padding bytes which were appended to the data prior to encryption to ensure that upon decryption
these bytes are not included as part of the data.

5.3.7 Session Key Updates

During the course of a session, the symmetric encryption and decryption keys may need to be

refreshed.

5.3.7.1 Non-FIPS

The encryption and the decryption keys are updated after 4096 packets have been sent or received.

The input and output streams are considered separate for the purposes of counting packets.
Generating a new session key involves the use of the initial session key, the current session key,
and the RC4 key length from the salt table based on the negotiated key length (Table 1).

The following sequence of steps shows how new client and server encryption keys are generated
(the same steps are used to generate new client and server decryption keys). The following padding
constants are used:

Pad1 = 0x36 repeated 40 times to give 320 bits

Pad2 = 0x5C repeated 48 times to give 384 bits

If the negotiated key strength is 40 or 56-bit, then the first 64 bits of the initial session key and the

current session key will be used.

InitialEncryptKey = First64Bits(InitialEncryptKeyN)

CurrentEncryptKey = First64Bits(CurrentEncryptKeyN)

(InitialEncryptKeyN is either InitialEncryptKey40 or InitialEncryptKey56, depending

 on the negotiated key strength, while CurrentEncryptKeyN is either CurrentEncryptKey40

 or CurrentEncryptKey56, depending on the negotiated key strength.)

If the negotiated key strength is 128-bit, then the full 128 bits of the initial and current key will be

used.

InitialEncryptKey = InitialEncryptKey128

CurrentEncryptKey = CurrentEncryptKey128

The initial and current keys are concatenated and hashed together with padding to form a
temporary session key as follows:

SHAComponent = SHA(InitialEncryptKey + Pad2 + CurrentEncryptKey)

EncryptKey128T = MD5(InitialEncryptKey + Pad1 + SHAComponent)

335 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

If the key strength is 128 bits then the temporary session key (EncryptKey128T) is used to
reinitialize the associated RC4 substitution table and then RC4 is used to encrypt the temporary key

to obtain the new encryption key. Finally, the RC4 substitution table is reinitialized with the new
encryption key which can then be used to encrypt a further 4096 packets.

If 40 or 56-bit keys are being used, then the first 64 bits of the temporary session key
(EncryptKey128T) are used to initialize the associated RC4 substitution table. RC4 is then used to

encrypt these 64 bits and the first few bytes are salted according to the key strength to derive a

new session key (see section 5.3.7.1 for details on how to perform the salting operation). Finally,
the new 40 or 56-bit session key is used to reinitialize the RC4 substitution table.

5.3.7.2 FIPS

No session key updates take place for the duration of a connection if Standard RDP Security is being

used with a FIPS Encryption Level.

5.3.8 Packet Layout in the I/O Data Stream

The usage of Standard RDP Security (see section 5.3) results in a security header being present in

all packets following the Security Exchange PDU (section 2.2.1.10) (when encryption is in force).
Connection sequence PDUs following the RDP Security Commencement phase of the connection
sequence (see section 1.3.1.1) and Slow-Path packets have the same general wire format:

Figure 8: Slow-Path packet layout

The Security Header essentially contains flags and a MAC signature taken over the encrypted data

(see section 5.3.6 for details on the MAC generation). In FIPS scenarios, the header also includes
the number of padding bytes appended to the data.

Fast-Path packets are more compact and formatted differently, but the essential contents of the

Security Header are still present. For non-FIPS scenarios the packet layout is:

Figure 9: Non-FIPS Fast-Path packet layout

And in FIPS Fast-Path scenarios the packet layout is:

Figure 10: FIPS Fast-Path packet layout

If no encryption is in effect the Selected Encryption Method and Encryption Level (see section 5.3.1)
returned to the client is zero) the Security Header will not be included with any data sent on the
wire, except for the Client Info (section 2.2.1.11) and licensing PDUs (for an example of a licensing

PDU see section 2.2.1.12) which always contain the Security Header.

336 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

See sections 2.2.8.1 and 2.2.9.1 for more details on Slow and Fast-Path packet formats and the
structure of the Security Header in both of these scenarios.

5.4 Enhanced RDP Security

When Enhanced RDP Security is used, RDP traffic is no longer protected by using the techniques
described in section 5.3. Instead, all security operations (such as encryption, data integrity checks

and server authentication) are delegated to an External Security Protocol layer. Examples of such
layers are TLS (see [RFC2246]) and CredSSP (see [MS-CSSP]). The benefit of this approach is that
RDP developers no longer need to manually implement protocol security mechanisms, but can

instead rely on well-known and proven security protocol packages (such as the Schannel Security
Package which implements SSL, see [MSDN-SCHANNEL]) to provide end-to-end security.

5.4.1 Encryption Levels

Enhanced RDP Security (see section 5.4) supports a subset of the encryption levels used by
Standard RDP Security (see section 5.3.1). The required Encryption Level is configured on the
server. All Microsoft RDP servers using Enhanced RDP Security use one of these three encryption

levels and cannot be configured to run under any other level.

1. Client Compatible: All data sent between the client and the server is protected using encryption
techniques negotiated through mechanisms defined by the negotiated security protocol.

2. High: All data sent between the client and the server is protected using encryption techniques
which employ at least a 128-bit symmetric key negotiated through mechanisms defined by the
negotiated security protocol. The server enforces the key strength and clients that do not support

128-bit symmetric keys cannot connect.

3. FIPS: All data sent between the client and server is protected by the negotiated security protocol
using the following Federal Information Processing Standard 140-1 validated methods: RSA for
key exchange, Triple DES for bulk encryption and SHA-1 for any hashing operations. Clients that

do not support these methods cannot connect.

When a client connects to a server configured for Enhanced RDP Security, the selected encryption

level returned to the client is not the configured server encryption level, but rather the value

ENCRYPTION_LEVEL_NONE (0). This is due to the fact that the encryption for the session is provided
by an External Security Protocol and the Standard RDP Security Protocol mechanisms are disabled.

5.4.2 Security-Enhanced Connection Sequence

When Enhanced RDP Security (see section 5.4) is being used, the connection sequence is changed
to incorporate the possible use of an External Security Protocol (see section 5.4.5). A brief overview
of the connection sequence changes are described in section 1.3.1.2. The two variations of the

Security-Enhanced Connection Sequence are the Negotiation-Based Approach (see section 5.4.2.1)
and the Direct Approach (see section 5.4.2.2).

5.4.2.1 Negotiation-Based Approach

The client advertises the security protocols which it supports by appending an RDP Negotiation
Request (section 2.2.1.1.1) structure to the X.224 Connection Request PDU (section 2.2.1.1).

Upon receipt of the RDP Negotiation Request, the server examines the client request and selects the

protocol to use. The server indicates its response to the client by appending an RDP Negotiation
Response (section 2.2.1.2.1) structure to the X.224 Connection Confirm PDU (section 2.2.1.2). If
the server does not support any of the protocols requested by the client, or if there was an error

http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-CSSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90121

337 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

setting up the External Cryptographic Protocol Provider, then the server appends an RDP Negotiation
Failure (section 2.2.1.2.2) structure to the X.224 Connection Confirm PDU.

If the client accepts the server's choice of security protocol as indicated in the RDP Negotiation
Response (and assuming that the security protocol is not using Standard RDP Security (see section
5.3) mechanisms) it instantiates the security protocol by calling into an External Cryptographic
Protocol Provider. Once the External Security Protocol handshake has successfully run to completion,

the RDP messages resume, continuing with the MCS Connect Initial PDU. From this point all RDP

traffic is encrypted using the External Security Protocol.

Figure 11: Negotiation-based security-enhanced connection sequence

Since both the RDP Negotiation Request and RDP Negotiation Response are initially exchanged in
the clear, they are re-exchanged in the reverse direction after the External Security Protocol

handshake as part of the Basic Settings Exchange phase of the RDP connection sequence (see
section 1.3.1.1). This step ensures that no tampering has taken place. The client replays the
server's protocol choice in the Client Core Data (section 2.2.1.3.2), while the server replays the

client's requested protocols in the Server Core Data (section 2.2.1.4.2).

338 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

5.4.2.2 Direct Approach

The Negotiation-Based Approach (specified in section 5.4.2.1) aims to have the client and server
agree on a security protocol to use for the connection. The fact that the X.224 messages are
unencrypted helps to ensure backward compatibility with prior versions of RDP servers, as the
packets can always be read. However, the fact that the X.224 PDUs are unencrypted is also a threat,

as an attacker can seek to compromise or take down the server by sending malformed X.224 PDUs.
Hence the goal of the Direct Approach is to ensure that all RDP traffic is protected.

When using the Direct Approach, no negotiation of the security protocol takes place. The client and

server are hard-coded to use a specific security protocol when a connection is initiated. Once the
security protocol handshake has completed successfully, the RDP Connection Sequence begins,
starting with the X.224 messages which form the Connection Initiation phase (see section 1.3.1.1).

From this point all RDP traffic is encrypted using the security protocol.

The RDP Negotiation Request (section 2.2.1.1.1) must still be appended to the X.224 Connection
Request PDU and the requested protocol list must contain the identifier of the hard-coded security
protocol which is being used. If this is not the case, the server will append an RDP Negotiation

Failure to the X.224 Connection Confirm PDU with a failure code of INCONSISTENT_FLAGS (0x04).
Similarly, the server must indicate that the hard-coded security protocol is the selected protocol in
the RDP Negotiation Response which is appended to the X.224 Connection Confirm PDU.

339 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Figure 12: Direct security-enhanced connection sequence

As specified in the Negotiation-Based Approach (see section 5.4.2.1), the client and server must
also confirm the selected protocol and the requested protocols in the Client Core Data (section
2.2.1.3.2) and Server Core Data (section 2.2.1.4.2) respectively.

5.4.2.3 Changes to the Security Commencement Phase

Because Standard RDP Security is not in effect, the Security Commencement phase of the

connection sequence (see section 1.3.1.1) is not executed, with the result that the client does not
send the Security Exchange PDU (section 2.2.1.10). This PDU can be dropped as the Client Random
is redundant in this case because encryption for the connection is provided by the External Security
Protocol and not by the Standard RDP Security mechanisms specified in section 5.3.

340 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

5.4.2.4 Disabling Forced Encryption of Licensing Packets

Encryption of licensing PDUs is optional when Standard RDP Security is being used. However, if an
External Security Protocol is being employed, then the server and client do not need to ever encrypt
any licensing packets as the External Security Protocol will encrypt them. For this reason, the
SEC_LICENSE_ENCRYPT_CS (0x0200) and SEC_LICENSE_ENCRYPT_SC (0x0200) flags (see section

2.2.8.1.1.2.1) do not need to be set in the Security Header which is always attached to licensing
packets.

5.4.3 Encrypting and Decrypting the I/O Data Stream

Encryption and decryption of RDP traffic is only carried out by the External Security Protocol layer.
There is no double-encryption of data which takes place.

5.4.4 Packet Layout in the I/O Data Stream

Because RDP encryption is not used in the presence of an External Security Protocol layer, the
security header data (see section 5.4.4) is not present in any RDP traffic (except for the Client Info

and licensing PDUs). All of the RDP traffic which is encrypted by the External Security Protocol is
wrapped by headers determined by the protocol specification.

For example, if SSL is used as the External Security Protocol, an encrypted RDP Slow-Path packet

would appear as follows:

Figure 13: Encrypted slow-path packet

A Fast-Path packet would appear as follows if SSL is the External Security Protocol:

Figure 14: Encrypted fast-path packet

Notice that in both of these cases, the security header data is missing. See sections 2.2.8.1 and
2.2.9.1 for more details on Slow and Fast-Path packet formats.

5.4.5 External Security Protocols used by RDP

RDP supports two External Security Protocols: TLS 1.0 (see [RFC2246]) and the Credential Security
Support Provider (CredSSP) Protocol (see [MS-CSSP]). Both TLS and CredSSP protocols require

external infrastructure, such as server authentication certificates (TLS and CredSSP) or Key
Distribution Centers (CredSSP), to run successfully. These resources are opaque to RDP and left to
implementers to provide, set up and maintain.

5.4.5.1 Transport Layer Security (TLS) 1.0

TLS 1.0 is represented by the TS_NEG_PROTOCOL_SSL flag in the RDP Negotiation Request (section
2.2.1.1.1) and RDP Negotiation Response (section 2.2.1.2.1) structures. TLS 1.0 is derived from SSL

3.0 (see [SSL3]) and was added to RDP primarily to enable server authentication so as to mitigate
man-in-the-middle attacks on RDP traffic.

http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-CSSP%5d.pdf
%5bMS-CSSP%5d.pdf
%5bMS-CSSP%5d.pdf

341 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

5.4.5.2 CredSSP

CredSSP is represented by the TS_NEG_PROTOCOL_HYBRID flag in the RDP Negotiation Request
(section 2.2.1.1.1) and RDP Negotiation Response (section 2.2.1.2.1) structures. The Credential
Security Support Provider (CredSSP) Protocol is essentially the amalgamation of TLS with Kerberos
and NTLM. Besides enabling server authentication, the Credential Security Support Provider

(CredSSP) Protocol also facilitates user authentication and the transfer of user credentials from
client to server, hence enabling single-sign-on scenarios.

When the Credential Security Support Provider (CredSSP) Protocol begins execution, the TLS

handshake will always be executed. Once a TLS channel has been successfully established (the
identity of the server may have been authenticated in the process), Kerberos or NTLM will be used
within the TLS channel to authenticate the user (and possibly the server as well if Kerberos is being

used). Once Kerberos or NTLM has completed successfully, the user's credentials are sent to the
server. Traffic on the wire remains encrypted with TLS and is wrapped by TLS headers. There is no
double-encryption of traffic as the Kerberos (or NTLM) session is securely bound to the TLS session.

5.4.5.2.1 User Authorization Failures

In Microsoft RDP server implementations, user authorization needs to happen on the server prior to
the establishment of a remote session. If an authorization error happens during the process of

logging a user into a session with credentials obtained from CredSSP (for example, the user is not
part of the "Remote Desktop Users" group), then a Set Error Info PDU (section 2.2.5.1) is sent to
the client with the error code ERRINFO_SERVER_INSUFFICIENT_PRIVILEGES (0x00000009).

5.5 Automatic Reconnection

The automatic reconnection feature allows a client to reconnect to an existing session (after a short-
term network failure has occurred) without having to resend the user's credentials to the server. A

connection which employs automatic reconnection proceeds as follows:

1. The user logs in to a new or existing Terminal Server session. As soon as they have been
authenticated, a Server Auto-Reconnect Packet (section 2.2.4.2) is generated by the server and

sent to the client in the Save Session Info PDU (section 2.2.10.1). The Auto-Reconnect Packet
(also called the auto-reconnect cookie) contains a 16-byte cryptographically secure random
number (called the auto-reconnect random) and the ID of the session to which the user has
connected.

2. The client receives the cookie and stores it in memory, never allowing programmatic access to it.

In the case of a disconnection due to a network error:

3. The client attempts to reconnect to the server by trying to reconnect continuously or for a

predetermined number of times. Once it has connected, the client and server may exchange
large random numbers (the client and server random specified in section 5.3.4) —if Enhanced
RDP Security is in effect, no client random is sent to the server (see section 5.3.2).

4. The client derives a 16-byte security verifier from the random number contained in the auto-
reconnect cookie received in Step 2. This security verifier is wrapped in a Client Auto-Reconnect
Packet (section 2.2.4.3) and sent to the server as part of the extended information (see section
2.2.1.11.1.1.1) of the Client Info PDU (section 2.2.1.11.1).

The auto reconnect random is used to key the HMAC function (see [RFC2104]), which uses MD5
as the iterative hash function. The security verifier is derived by applying the HMAC to the client
random received in Step 3:

%5bMS-CSSP%5d.pdf
%5bMS-CSSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90314

342 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

SecurityVerifier = HMAC(AutoReconnectRandom, ClientRandom)

The one-way HMAC transformation prevents an unauthenticated server from obtaining the
original auto-reconnect random and replaying it for the purpose of connecting to the user's

disconnected session.

When Enhanced RDP Security is in effect the client random value is not generated (see section
5.3.2). In this case, for the purpose of generating the security verifier, the client random is
assumed to be an array of sixteen zero bytes, that is, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

}. This effectively means that the derived security verifier will always have the same value when
carrying out auto-reconnect under the Enhanced RDP Security. Hence, care must be taken to
authenticate the identity of the server to which the client is reconnecting, ensuring that the

identity has not changed in the period between connections.

5. When the server receives the Client Auto-Reconnect Packet, it looks up the auto-reconnect
random for the session and computes the security verifier using the client random (the same

calculation executed by the client). If the security verifier value which the client transmitted
matches the one computed by the server, the client is granted access. At this point, the server
has confirmed that the client requesting auto-reconnection was the last one connected to the
session in question.

6. If the check in Step 5 passes, then the client is automatically reconnected to the desired session;
otherwise the client must obtain the user's credentials to regain access to the remote session.

The auto-reconnect cookie associated with a given session is flushed and regenerated whenever a

client connects to the session or the session is reset. This ensures that if a different client connects
to the session, then any previous clients which were connected can no longer use the auto-
reconnect mechanism to connect. Furthermore, the server invalidates and updates the cookie at

hourly intervals, sending the new cookie to the client in the Save Session Info PDU.

343 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

6 Appendix A: Windows Behavior

The information in this specification is applicable to the following versions of Windows:

 Windows Vista

 Windows Server 2003

 Windows XP

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional behavior

in this specification prescribed using the terms SHOULD or SHOULD NOT implies Windows behavior
in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term
MAY implies that Windows does not follow the prescription.

<1> Section 1.5: By default, the server listens on port 3389. The client, by extension, attempts to

connect on the same port.

<2> Section 3.3.5.9.5.1: RDP 5.0, 5.1 and 5.2 send the non-plain notification if the
INFO_LOGONNOTIFY and INFO_AUTOLOGON flag was set by the client in the Client Info PDU or if

the username or domain used to log on to the session is different from what was sent in the Client
Info PDU.

344 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

7 Index

A

Abstract data model

client (section 3.1.1, section 3.2.1)

MPPC-based bulk data compression

server (section 3.1.1, section 3.3.1)

Administrator-initiated on server disconnection

sequence

Annotated connection sequence example

Annotated disconnection sequence example

Annotated save session info PDU example

Annotated virtual channel PDU example

Applicability

ARC_CS_PRIVATE_PACKET packet

ARC_SC_PRIVATE_PACKET packet

Automatic reconnection (section 1.3.1.5, section 5.5)

Auto-reconnect

B

Basic server output

C

Capability negotiation

Capability sets

CHANNEL_DEF packet

CHANNEL_PDU_HEADER packet

Client

abstract data model (section 3.1.1, section 3.2.1)

higher-layer triggered events (section 3.1.4, section

3.2.4)

initialization (section 3.1.3, section 3.2.3)

message processing (section 3.1.5, section 3.2.5)

MPPC-based bulk data compression

overview (section 3.1, section 3.2)

sequencing rules (section 3.1.5, section 3.2.5)

timer events (section 3.1.6, section 3.2.6)

timers (section 3.1.2, section 3.2.2)

Client Confirm Active PDU packet

Client Control PDU - Cooperate packet

Client Control PDU - Request Control packet

Client Font List PDU packet

Client Info PDU packet

Client MCS Attach User Request PDU packet

Client MCS Channel Join Confirm PDU packet

Client MCS Channel Join Request PDU packet

Client MCS Connect Initial PDU with GCC Conference

Create Request packet

Client MCS Erect Domain Request PDU packet

Client Persistent Key List PDU packet

Client Refresh Rect PDU packet

Client Security Exchange PDU packet

Client Shutdown Request PDU packet

Client Suppress Output PDU packet

Client Synchronize PDU packet

Client X.224 Connection Request PDU packet

CLIENT_INFO_PDU packet

Compression flags

Compression types - MPPC-based bulk data

compression

Connection sequence

deactivation-reactivation

normal

security-enhanced

standard

Connection sequence - security-enhanced

Cryptographic configuration negotiation

D

Data

compressing - MPPC-based bulk data compression

decompressing - MPPC-based bulk data compression

Data compression

Data model - abstract

client (section 3.1.1, section 3.2.1)

MPPC-based bulk data compression

server (section 3.1.1, section 3.3.1)

Deactivation-reactivation

Deactivation-reactivation sequence

Disconnection sequence

administrator-initiated on server

overview (section 1.3.1.4, section 2.2.2)

user-initiated on client

user-initiated on server

Disconnection sequences

E

Encryption levels (section 5.3.1, section 5.4.1)

Enhanced RDP security

Error reporting (section 1.3.2, section 2.2.5)

Examples

annotated connection sequence example

annotated disconnection sequence example

annotated save session info PDU example

annotated virtual channel PDU example

Java code encryption/decryption example

Java code Proprietary Certificate Hash example

overview

External security protocols

F

Fast-Path Cached Pointer Update packet

Fields - vendor-extensible

Flags - setting compression flags

G

Glossary

Graphics output

Graphics output - server

H

Higher-layer triggered events

345 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

client (section 3.1.4, section 3.2.4)

server (section 3.1.4, section 3.3.4)

I

I/O data stream

encrypting and decrypting (section 5.3.6, section

5.4.3)

packet layout (section 5.3.8, section 5.4.4)

Implementers - security considerations

Informative references

Initialization

client (section 3.1.3, section 3.2.3)

server (section 3.1.3, section 3.3.3)

Introduction

J

Java code encryption/decryption example

Java code eProprietary Certificate Hash example

K

Keyboard input (section 1.3.5, section 2.2.8)

L

LICENSE_BINARY_BLOB packet

LICENSE_ERROR_MESSAGE packet

LICENSE_PREAMBLE packet

Logon notification

M

MCS Disconnect Provider Ultimatum PDU packet

Message flow

Message processing

client (section 3.1.5, section 3.2.5)

server (section 3.1.5, section 3.3.5)

Messages

flow

overview

syntax

transport

Mouse input (section 1.3.5, section 2.2.8)

MPPC-64K

MPPC-8K

MPPC-based bulk data compression

abstract data model

compressing data

compression types

decompressing data

overview

N

Normative references

O

Output

Overview (synopsis)

P

Parameters - security

Preconditions

Prerequisites

PROPRIETARYSERVERCERTIFICATE packet

R

Random values

RDP security

enhanced

standard

RDP_NEG_FAILURE packet

RDP_NEG_REQ packet

RDP_NEG_RSP packet

Reconnection

References

informative

normative

overview

Relationship to other protocols

RLE_BITMAP_STREAM packet

RSA_PUBLIC_KEY packet

S

Security

automatic reconnection

enhanced RDP security

external protocols

standard RDP security

Security-enhanced connection sequence

Sequencing rules

client (section 3.1.5, section 3.2.5)

server (section 3.1.5, section 3.3.5)

Server

abstract data model (section 3.1.1, section 3.3.1)

error reporting (section 1.3.2, section 2.2.5)

graphics output (section 1.3.7, section 2.2.11)

higher-layer triggered events (section 3.1.4, section

3.3.4)

initialization (section 3.1.3, section 3.3.3)

message processing (section 3.1.5, section 3.3.5)

MPPC-based bulk data compression

output

overview (section 3.1, section 3.3)

sequencing rules (section 3.1.5, section 3.3.5)

timer events (section 3.1.6, section 3.3.6)

timers (section 3.1.2, section 3.3.2)

Server Auto-Reconnect Status PDU packet

Server certificates

Server Control PDU - Cooperate packet

Server Control PDU - Granted Control packet

Server Deactivate All PDU packet

Server Demand Active PDU packet

Server Font Map PDU packet

Server License Error PDU - Valid Client packet

Server MCS Attach User Confirm PDU packet

346 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

Server MCS Connect Response PDU with GCC

Conference Create Response packet

Server Play Sound PDU packet

Server Save Session Info PDU packet

Server Set Error Info PDU packet

Server Set Keyboard IME Status PDU packet

Server Set Keyboard Indicators PDU packet

Server Shutdown Request Denied PDU packet

Server Synchronize PDU packet

Server X.224 Connection Confirm PDU packet

SERVER_CERTIFICATE packet

Session key

generating

updates

Standard connection sequence

Standard RDP security

Standards assignments

Static virtual channel (section 1.3.3, section 2.2.6)

Static virtual channels

Syntax - message

T

Timer events

client (section 3.1.6, section 3.2.6)

server (section 3.1.6, section 3.3.6)

Timers

client (section 3.1.2, section 3.2.2)

server (section 3.1.2, section 3.3.2)

Transport - message

Triggered events - higher-layer

client (section 3.1.4, section 3.2.4)

server (section 3.1.4, section 3.3.4)

TS_AUTORECONNECT_STATUS_PDU packet

TS_BITMAP_CAPABILITYSET packet

TS_BITMAP_DATA packet

TS_BITMAPCACHE_CAPABILITYSET packet

TS_BITMAPCACHE_CAPABILITYSET_REV2 packet

TS_BITMAPCACHE_CELL_CACHE_INFO packet

TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET

packet

TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY packet

TS_BITMAPCACHE_PERSISTENT_LIST_PDU packet

TS_BRUSH_CAPABILITYSET packet

TS_CACHE_DEFINITION packet

TS_CACHEDPOINTERATTRIBUTE packet

TS_CAPS_SET packet

TS_CD_HEADER packet

TS_COLORPOINTERATTRIBUTE packet

TS_COMPDESK_CAPABILITYSET packet

TS_CONFIRM_ACTIVE_PDU packet

TS_CONTROL_CAPABILITYSET packet

TS_CONTROL_PDU packet

TS_DEACTIVATE_ALL_PDU packet

TS_DEMAND_ACTIVE_PDU packet

TS_EXTENDED_INFO_PACKET packet

TS_FONT_CAPABILITYSET packet

TS_FONT_LIST_PDU packet

TS_FONT_MAP_PDU packet

TS_FP_COLORPOINTERATTRIBUTE packet

TS_FP_FIPS_INFO packet

TS_FP_INPUT_EVENT packet

TS_FP_INPUT_PDU packet

TS_FP_KEYBOARD_EVENT packet

TS_FP_POINTER_EVENT packet

TS_FP_POINTERATTRIBUTE packet

TS_FP_POINTERX_EVENT packet

TS_FP_SYNC_EVENT packet

TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE packet

TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE packet

TS_FP_UNICODE_KEYBOARD_EVENT packet

TS_FP_UPDATE packet

TS_FP_UPDATE_BITMAP packet

TS_FP_UPDATE_PALETTE packet

TS_FP_UPDATE_PDU packet

TS_FP_UPDATE_SYNCHRONIZE packet

TS_GENERAL_CAPABILITYSET packet

TS_GLYPHCACHE_CAPABILITYSET packet

TS_GRAPHICS_PDU packet

TS_GRAPHICS_UPDATE packet

TS_INFO_PACKET packet

TS_INPUT_CAPABILITY_SET packet

TS_INPUT_EVENT packet

TS_INPUT_PDU packet

TS_KEYBOARD_EVENT packet

TS_LARGE_POINTER_CAPABILITYSET packet

TS_LOGON_ERRORS_INFO packet

TS_LOGON_INFO packet

TS_LOGON_INFO_EXTENDED packet

TS_LOGON_INFO_FIELD packet

TS_LOGON_INFO_VERSION_2 packet

TS_MULTIFRAGMENTUPDATE_CAPABILITYSET packet

TS_OFFSCREEN_CAPABILITYSET packet

TS_ORDER_CAPABILITYSET packet

TS_PALETTE_ENTRY packet

TS_PLAIN_NOTIFY packet

TS_PLAY_SOUND_PDU_DATA packet

TS_POINT16 packet

TS_POINTER_CAPABILITYSET packet

TS_POINTER_EVENT packet

TS_POINTER_PDU packet

TS_POINTERATTRIBUTE packet

TS_POINTERPOSATTRIBUTE packet (section

2.2.9.1.1.4.2, section 2.2.9.1.2.1.4)

TS_POINTERX_EVENT packet

TS_RECTANGLE16 packet

TS_REFRESH_RECT_PDU packet

TS_SAVE_SESSION_INFO_PDU_DATA packet

TS_SECURITY_HEADER packet

TS_SECURITY_HEADER1 packet

TS_SECURITY_HEADER2 packet

TS_SECURITY_PACKET packet

TS_SET_ERROR_INFO_PDU packet

TS_SET_KEYBOARD_IME_STATUS_PDU packet

TS_SET_KEYBOARD_INDICATORS_PDU packet

TS_SHARE_CAPABILITYSET packet

TS_SHARECONTROLHEADER packet

TS_SHAREDATAHEADER packet

TS_SHUTDOWN_DENIED_PDU packet

TS_SHUTDOWN_REQ_PDU packet

TS_SOUND_CAPABILITYSET packet

TS_SUPPRESS_OUTPUT_PDU packet

TS_SYNC_EVENT packet

347 / 347

[MS-RDPBCGR] – v20080207

Remote Desktop Protocol: Basic Connectivity and Graphics Remoting Specification

Copyright © 2008 Microsoft Corporation.

Release: Thursday, February 7, 2008

TS_SYNCHRONIZE_PDU packet

TS_SYSTEMPOINTERATTRIBUTE packet

TS_SYSTEMTIME packet

TS_TIME_ZONE_INFORMATION packet

TS_UD_CS_CLUSTER packet

TS_UD_CS_CORE packet

TS_UD_CS_NET packet

TS_UD_CS_SEC packet

TS_UD_HEADER packet

TS_UD_SC_CORE packet

TS_UD_SC_NET packet

TS_UD_SC_SEC1 packet

TS_UNICODE_KEYBOARD_EVENT packet

TS_UPDATE_BITMAP_PDU_DATA packet

TS_UPDATE_PALETTE_PDU_DATA packet

TS_UPDATE_SYNC_PDU_DATA packet

TS_VIRTUALCHANNEL_CAPABILITYSET packet

TS_WINDOWACTIVATION_CAPABILITYSET packet

U

User-initiated on client disconnection sequence

User-initiated on server disconnection sequence

V

Vendor-extensible fields

Versioning

Virtual Channel PDU packet

W

Windows behavior

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.3.1 Message Flows
	1.3.1.1 Standard Connection Sequence
	1.3.1.2 Security-Enhanced Connection Sequence
	1.3.1.3 Deactivation-Reactivation Sequence
	1.3.1.4 Disconnection Sequences
	1.3.1.4.1 User-Initiated on Client
	1.3.1.4.2 User-Initiated on Server
	1.3.1.4.3 Administrator-Initiated on Server

	1.3.1.5 Automatic Reconnection

	1.3.2 Server Error Reporting
	1.3.3 Static Virtual Channels
	1.3.4 Data Compression
	1.3.5 Keyboard and Mouse Input
	1.3.6 Basic Server Output
	1.3.7 Controlling Server Graphics Output

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Normal Connection Sequence
	2.2.1.1 Client X.224 Connection Request PDU
	2.2.1.1.1 RDP Negotiation Request (RDP_NEG_REQ)

	2.2.1.2 Server X.224 Connection Confirm PDU
	2.2.1.2.1 RDP Negotiation Response (RDP_NEG_RSP)
	2.2.1.2.2 RDP Negotiation Failure (RDP_NEG_FAILURE)

	2.2.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request
	2.2.1.3.1 User Data Header (TS_UD_HEADER)
	2.2.1.3.2 Client Core Data (TS_UD_CS_CORE)
	2.2.1.3.3 Client Security Data (TS_UD_CS_SEC)
	2.2.1.3.4 Client Network Data (TS_UD_CS_NET)
	2.2.1.3.4.1 Channel Definition Structure (CHANNEL_DEF)

	2.2.1.3.5 Client Cluster Data (TS_UD_CS_CLUSTER)

	2.2.1.4 Server MCS Connect Response PDU with GCC Conference Create Response
	2.2.1.4.1 User Data Header (TS_UD_HEADER)
	2.2.1.4.2 Server Core Data (TS_UD_SC_CORE)
	2.2.1.4.3 Server Security Data (TS_UD_SC_SEC1)
	2.2.1.4.3.1 Server Certificate (SERVER_CERTIFICATE)
	2.2.1.4.3.1.1 Server Proprietary Certificate (PROPRIETARYSERVERCERTIFICATE)
	2.2.1.4.3.1.1.1 RSA Public Key (RSA_PUBLIC_KEY)

	2.2.1.4.4 Server Network Data (TS_UD_SC_NET)

	2.2.1.5 Client MCS Erect Domain Request PDU
	2.2.1.6 Client MCS Attach User Request PDU
	2.2.1.7 Server MCS Attach User Confirm PDU
	2.2.1.8 Client MCS Channel Join Request PDU
	2.2.1.9 Client MCS Channel Join Confirm PDU
	2.2.1.10 Client Security Exchange PDU
	2.2.1.10.1 Security Exchange PDU Data (TS_SECURITY_PACKET)

	2.2.1.11 Client Info PDU
	2.2.1.11.1 Client Info PDU Data (CLIENT_INFO_PDU)
	2.2.1.11.1.1 Info Packet (TS_INFO_PACKET)
	2.2.1.11.1.1.1 Extended Info Packet (TS_EXTENDED_INFO_PACKET)
	2.2.1.11.1.1.1.1 Time Zone Information (TS_TIME_ZONE_INFORMATION)
	2.2.1.11.1.1.1.1.1 System Time (TS_SYSTEMTIME)

	2.2.1.12 Server License Error PDU - Valid Client
	2.2.1.12.1 Licensing Preamble (LICENSE_PREAMBLE)
	2.2.1.12.2 Licensing Binary Blob (LICENSE_BINARY_BLOB)
	2.2.1.12.3 Licensing Error Message (LICENSE_ERROR_MESSAGE)

	2.2.1.13 Mandatory Capability Negotiation
	2.2.1.13.1 Server Demand Active PDU
	2.2.1.13.1.1 Demand Active PDU Data (TS_DEMAND_ACTIVE_PDU)
	2.2.1.13.1.1.1 Capability Set (TS_CAPS_SET)

	2.2.1.13.2 Client Confirm Active PDU
	2.2.1.13.2.1 Confirm Active PDU Data (TS_CONFIRM_ACTIVE_PDU)

	2.2.1.14 Client Synchronize PDU
	2.2.1.14.1 Synchronize PDU Data (TS_SYNCHRONIZE_PDU)

	2.2.1.15 Client Control PDU - Cooperate
	2.2.1.15.1 Control PDU Data (TS_CONTROL_PDU)

	2.2.1.16 Client Control PDU - Request Control
	2.2.1.17 Client Persistent Key List PDU
	2.2.1.17.1 Persistent Key List PDU Data (TS_BITMAPCACHE_PERSISTENT_LIST_PDU)
	2.2.1.17.1.1 Persistent List Entry (TS_BITMAPCACHE_PERSISTENT_LIST_ENTRY)

	2.2.1.18 Client Font List PDU
	2.2.1.18.1 Font List PDU Data (TS_FONT_LIST_PDU)

	2.2.1.19 Server Synchronize PDU
	2.2.1.20 Server Control PDU - Cooperate
	2.2.1.21 Server Control PDU - Granted Control
	2.2.1.22 Server Font Map PDU
	2.2.1.22.1 Font Map PDU Data (TS_FONT_MAP_PDU)

	2.2.2 Disconnection Sequences
	2.2.2.1 MCS Disconnect Provider Ultimatum PDU
	2.2.2.2 Client Shutdown Request PDU
	2.2.2.2.1 Shutdown Request PDU Data (TS_SHUTDOWN_REQ_PDU)

	2.2.2.3 Server Shutdown Request Denied PDU
	2.2.2.3.1 Shutdown Request Denied PDU Data (TS_SHUTDOWN_DENIED_PDU)

	2.2.3 Deactivation-Reactivation Sequence
	2.2.3.1 Server Deactivate All PDU
	2.2.3.1.1 Deactivate All PDU Data (TS_DEACTIVATE_ALL_PDU)

	2.2.4 Auto-Reconnect Sequence
	2.2.4.1 Server Auto-Reconnect Status PDU
	2.2.4.1.1 Auto-Reconnect Status PDU Data (TS_AUTORECONNECT_STATUS_PDU)

	2.2.4.2 Server Auto-Reconnect Packet (ARC_SC_PRIVATE_PACKET)
	2.2.4.3 Client Auto-Reconnect Packet (ARC_CS_PRIVATE_PACKET)

	2.2.5 Server Error Reporting
	2.2.5.1 Server Set Error Info PDU
	2.2.5.1.1 Set Error Info PDU Data (TS_SET_ERROR_INFO_PDU)

	2.2.6 Static Virtual Channels
	2.2.6.1 Virtual Channel PDU
	2.2.6.1.1 Channel PDU Header (CHANNEL_PDU_HEADER)

	2.2.7 Capability Sets
	2.2.7.1 Mandatory Capability Sets
	2.2.7.1.1 General Capability Set (TS_GENERAL_CAPABILITYSET)
	2.2.7.1.2 Bitmap Capability Set (TS_BITMAP_CAPABILITYSET)
	2.2.7.1.3 Order Capability Set (TS_ORDER_CAPABILITYSET)
	2.2.7.1.4 Bitmap Cache Host Support Capability Set (TS_BITMAPCACHE_HOSTSUPPORT_CAPABILITYSET)
	2.2.7.1.5 Bitmap Cache Capability Set
	2.2.7.1.5.1 Revision 1 (TS_BITMAPCACHE_CAPABILITYSET)
	2.2.7.1.5.2 Revision 2 (TS_BITMAPCACHE_CAPABILITYSET_REV2)
	2.2.7.1.5.2.1 Bitmap Cache Cell Info (TS_BITMAPCACHE_CELL_CACHE_INFO)

	2.2.7.1.6 Pointer Capability Set (TS_POINTER_CAPABILITY_SET)
	2.2.7.1.7 Input Capability Set (TS_INPUT_CAPABILITY_SET)
	2.2.7.1.8 Brush Capability Set (TS_BRUSH_CAPABILITYSET)
	2.2.7.1.9 Glyph Cache Capability Set (TS_GLYPHCACHE_CAPABILITYSET)
	2.2.7.1.9.1 Cache Definition (TS_CACHE_DEFINITION)

	2.2.7.1.10 Offscreen Bitmap Cache Capability Set (TS_OFFSCREEN_CAPABILITYSET)
	2.2.7.1.11 Virtual Channel Capability Set (TS_VIRTUALCHANNEL_CAPABILITYSET)
	2.2.7.1.12 Sound Capability Set (TS_SOUND_CAPABILITYSET)

	2.2.7.2 Optional Capability Sets
	2.2.7.2.1 Control Capability Set (TS_CONTROL_CAPABILITYSET)
	2.2.7.2.2 Window Activation Capability Set (TS_WINDOWACTIVATION_CAPABILITYSET)
	2.2.7.2.3 Share Capability Set (TS_SHARE_CAPABILITYSET)
	2.2.7.2.4 Font Capability Set (TS_FONT_CAPABILITYSET)
	2.2.7.2.5 Multifragment Update Capability Set (TS_MULTIFRAGMENTUPDATE_CAPABILITYSET)
	2.2.7.2.6 Large Pointer Capability Set (TS_LARGE_POINTER_CAPABILITYSET)
	2.2.7.2.7 Desktop Composition Capability Set (TS_COMPDESK_CAPABILITYSET)

	2.2.8 Keyboard and Mouse Input
	2.2.8.1 Input PDU Packaging
	2.2.8.1.1 Slow-Path (T.128) Formats
	2.2.8.1.1.1 Share Headers
	2.2.8.1.1.1.1 Share Control Header (TS_SHARECONTROLHEADER)
	2.2.8.1.1.1.2 Share Data Header (TS_SHAREDATAHEADER)

	2.2.8.1.1.2 Security Headers
	2.2.8.1.1.2.1 Basic (TS_SECURITY_HEADER)
	2.2.8.1.1.2.2 Non-FIPS (TS_SECURITY_HEADER1)
	2.2.8.1.1.2.3 FIPS (TS_SECURITY_HEADER2)

	2.2.8.1.1.3 Client Input Event PDU (TS_INPUT_PDU)
	2.2.8.1.1.3.1 Slow-Path Input Event (TS_INPUT_EVENT)
	2.2.8.1.1.3.1.1 Keyboard Event (TS_KEYBOARD_EVENT)
	2.2.8.1.1.3.1.2 Unicode Keyboard Event (TS_UNICODE_KEYBOARD_EVENT)
	2.2.8.1.1.3.1.3 Mouse Event (TS_POINTER_EVENT)
	2.2.8.1.1.3.1.4 Extended Mouse Event (TS_POINTERX_EVENT)
	2.2.8.1.1.3.1.5 Synchronize Event (TS_SYNC_EVENT)

	2.2.8.1.2 Client Fast-Path Input Event PDU (TS_FP_INPUT_PDU)
	2.2.8.1.2.1 Fast-Path FIPS Information (TS_FP_FIPS_INFO)
	2.2.8.1.2.2 Fast-Path Input Event (TS_FP_INPUT_EVENT)
	2.2.8.1.2.2.1 Fast-Path Keyboard Event (TS_FP_KEYBOARD_EVENT)
	2.2.8.1.2.2.2 Fast-Path Unicode Keyboard Event (TS_FP_UNICODE_KEYBOARD_EVENT)
	2.2.8.1.2.2.3 Fast-Path Mouse Event (TS_FP_POINTER_EVENT)
	2.2.8.1.2.2.4 Fast-Path Extended Mouse Event (TS_FP_POINTERX_EVENT)
	2.2.8.1.2.2.5 Fast-Path Synchronize Event (TS_FP_SYNC_EVENT)

	2.2.8.2 Keyboard Status PDUs
	2.2.8.2.1 Server Set Keyboard Indicators PDU
	2.2.8.2.1.1 Set Keyboard Indicators PDU Data (TS_SET_KEYBOARD_INDICATORS_PDU)

	2.2.8.2.2 Server Set Keyboard IME Status PDU
	2.2.8.2.2.1 Set Keyboard IME Status PDU Data (TS_SET_KEYBOARD_IME_STATUS_PDU)

	2.2.9 Basic Output
	2.2.9.1 Output PDU Packaging
	2.2.9.1.1 Slow-Path (T.128) Format
	2.2.9.1.1.1 Share Headers
	2.2.9.1.1.2 Security Headers
	2.2.9.1.1.3 Server Graphics Update PDU (TS_GRAPHICS_PDU)
	2.2.9.1.1.3.1 Slow Path Graphics Update (TS_GRAPHICS_UPDATE)
	2.2.9.1.1.3.1.1 Palette Update (TS_UPDATE_PALETTE_PDU_DATA)
	2.2.9.1.1.3.1.1.1 RGB Palette Entry (TS_PALETTE_ENTRY)

	2.2.9.1.1.3.1.2 Bitmap Update (TS_UPDATE_BITMAP_PDU_DATA)
	2.2.9.1.1.3.1.2.1 RLE Compressed Bitmap Stream (RLE_BITMAP_STREAM)
	2.2.9.1.1.3.1.2.2 Compressed Data Header (TS_CD_HEADER)
	2.2.9.1.1.3.1.2.3 Bitmap Data (TS_BITMAP_DATA)

	2.2.9.1.1.3.1.3 Synchronize Update (TS_UPDATE_SYNC_PDU_DATA)

	2.2.9.1.1.4 Server Pointer Update PDU (TS_POINTER_PDU)
	2.2.9.1.1.4.1 Point (TS_POINT16)
	2.2.9.1.1.4.2 Pointer Position Update (TS_POINTERPOSATTRIBUTE)
	2.2.9.1.1.4.3 System Pointer Update (TS_SYSTEMPOINTERATTRIBUTE)
	2.2.9.1.1.4.4 Color Pointer Update (TS_COLORPOINTERATTRIBUTE)
	2.2.9.1.1.4.5 New Pointer Update (TS_POINTERATTRIBUTE)
	2.2.9.1.1.4.6 Cached Pointer Update (TS_CACHEDPOINTERATTRIBUTE)

	2.2.9.1.1.5 Server Play Sound PDU
	2.2.9.1.1.5.1 Play Sound PDU Data (TS_PLAY_SOUND_PDU_DATA)

	2.2.9.1.2 Server Fast-Path Update PDU (TS_FP_UPDATE_PDU)
	2.2.9.1.2.1 Fast-Path Update (TS_FP_UPDATE)
	2.2.9.1.2.1.1 Fast-Path Palette Update (TS_FP_UPDATE_PALETTE)
	2.2.9.1.2.1.2 Fast-Path Bitmap Update (TS_FP_UPDATE_BITMAP)
	2.2.9.1.2.1.3 Fast-Path Synchronize Update (TS_FP_UPDATE_SYNCHRONIZE)
	2.2.9.1.2.1.4 Fast-Path Pointer Position Update (TS_FP_POINTERPOSATTRIBUTE)
	2.2.9.1.2.1.5 Fast-Path System Pointer Hidden Update (TS_FP_SYSTEMPOINTERHIDDENATTRIBUTE)
	2.2.9.1.2.1.6 Fast-Path System Pointer Default Update (TS_FP_SYSTEMPOINTERDEFAULTATTRIBUTE)
	2.2.9.1.2.1.7 Fast-Path Color Pointer Update (TS_FP_COLORPOINTERATTRIBUTE)
	2.2.9.1.2.1.8 Fast-Path New Pointer Update (TS_FP_POINTERATTRIBUTE)
	2.2.9.1.2.1.9 Fast-Path Cached Pointer Update (TS_FP_CACHEDPOINTERATTRIBUTE)

	2.2.10 Logon Notifications
	2.2.10.1 Server Save Session Info PDU
	2.2.10.1.1 Save Session Info PDU Data (TS_SAVE_SESSION_INFO_PDU_DATA)
	2.2.10.1.1.1 Logon Info Version 1 (TS_LOGON_INFO)
	2.2.10.1.1.2 Logon Info Version 2 (TS_LOGON_INFO_VERSION_2)
	2.2.10.1.1.3 Plain Notify (TS_PLAIN_NOTIFY)
	2.2.10.1.1.4 Logon Info Extended (TS_LOGON_INFO_EXTENDED)
	2.2.10.1.1.4.1 Logon Info Field (TS_LOGON_INFO_FIELD)
	2.2.10.1.1.4.1.1 Logon Errors Info (TS_LOGON_ERRORS_INFO)

	2.2.11 Controlling Server Graphics Output
	2.2.11.1 Inclusive Rectangle (TS_RECTANGLE16)
	2.2.11.2 Client Refresh Rect PDU
	2.2.11.2.1 Refresh Rect PDU Data (TS_REFRESH_RECT_PDU)

	2.2.11.3 Client Suppress Output PDU
	2.2.11.3.1 Suppress Output PDU Data (TS_SUPPRESS_OUTPUT_PDU)

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Disconnection Sequences
	3.1.5.1.1 Sending of MCS Disconnect Provider Ultimatum PDU
	3.1.5.1.2 Processing of MCS Disconnect Provider Ultimatum PDU

	3.1.5.2 Static Virtual Channels
	3.1.5.2.1 Sending of Virtual Channel PDU
	3.1.5.2.2 Processing of Virtual Channel PDU

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.8 MPPC-Based Bulk Data Compression
	3.1.8.1 Abstract Data Model
	3.1.8.2 Compressing Data
	3.1.8.2.1 Setting the Compression Flags

	3.1.8.3 Decompressing Data
	3.1.8.4 Compression Types
	3.1.8.4.1 MPPC-8K
	3.1.8.4.1.1 Literal Encoding
	3.1.8.4.1.2 Copy-Tuple Encoding
	3.1.8.4.1.2.1 Copy-Offset Encoding
	3.1.8.4.1.2.2 Length-of-Match Encoding

	3.1.8.4.2 MPPC-64K
	3.1.8.4.2.1 Literal Encoding
	3.1.8.4.2.2 Copy-Tuple Encoding
	3.1.8.4.2.2.1 Copy-Offset Encoding
	3.1.8.4.2.2.2 Length-of-Match Encoding

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Received Server Data
	3.2.1.2 Static Virtual Channel IDs
	3.2.1.3 I/O Channel ID
	3.2.1.4 User Channel ID
	3.2.1.5 Server Channel ID
	3.2.1.6 Server Capabilities
	3.2.1.7 Share ID
	3.2.1.8 Automatic Reconnection Cookie
	3.2.1.9 Server Licensing Encryption Ability
	3.2.1.10 Pointer Image Cache

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Constructing a Basic Client-to-Server Slow-Path PDU
	3.2.5.2 Processing a Basic Server-to-Client Slow-Path PDU
	3.2.5.3 Normal Connection Sequence
	3.2.5.3.1 Sending X.224 Connection Request PDU
	3.2.5.3.2 Processing X.224 Connection Confirm PDU
	3.2.5.3.3 Sending MCS Connect Initial PDU with GCC Conference Create Request
	3.2.5.3.4 Processing MCS Connect Response PDU with GCC Conference Create Response
	3.2.5.3.5 Sending MCS Erect Domain Request PDU
	3.2.5.3.6 Sending MCS Attach User Request PDU
	3.2.5.3.7 Processing MCS Attach User Confirm PDU
	3.2.5.3.8 Sending MCS Channel Join Request PDU(s)
	3.2.5.3.9 Processing MCS Channel Join Confirm PDU(s)
	3.2.5.3.10 Sending Security Exchange PDU
	3.2.5.3.11 Sending Client Info PDU
	3.2.5.3.12 Processing License Error PDU - Valid Client
	3.2.5.3.13 Mandatory Capability Negotiation
	3.2.5.3.13.1 Processing Demand Active PDU
	3.2.5.3.13.2 Sending Confirm Active PDU

	3.2.5.3.14 Sending Synchronize PDU
	3.2.5.3.15 Sending Control PDU - Cooperate
	3.2.5.3.16 Sending Control PDU - Request Control
	3.2.5.3.17 Sending Persistent Key List PDU(s)
	3.2.5.3.18 Sending Font List PDU
	3.2.5.3.19 Processing Synchronize PDU
	3.2.5.3.20 Processing Control PDU - Cooperate
	3.2.5.3.21 Processing Control PDU - Granted Control
	3.2.5.3.22 Processing Font Map PDU

	3.2.5.4 Disconnection Sequences
	3.2.5.4.1 Sending Shutdown Request PDU
	3.2.5.4.2 Processing Shutdown Request Denied PDU

	3.2.5.5 Deactivation-Reconnection Sequence
	3.2.5.5.1 Processing Deactivate All PDU

	3.2.5.6 Auto-Reconnect Sequence
	3.2.5.6.1 Processing Auto-Reconnect Status PDU

	3.2.5.7 Server Error Reporting
	3.2.5.7.1 Processing Set Error Info PDU

	3.2.5.8 Keyboard and Mouse Input
	3.2.5.8.1 Input Event Notifications
	3.2.5.8.1.1 Sending Slow-Path Input Event PDU
	3.2.5.8.1.2 Sending Fast-Path Input Event PDU

	3.2.5.8.2 Keyboard Status PDUs
	3.2.5.8.2.1 Processing Set Keyboard Indicators PDU
	3.2.5.8.2.2 Processing Set Keyboard IME Status PDU

	3.2.5.9 Basic Output
	3.2.5.9.1 Processing Slow-Path Graphics Update PDU
	3.2.5.9.2 Processing Slow-Path Pointer Update PDU
	3.2.5.9.3 Processing Fast-Path Update PDU
	3.2.5.9.4 Sound
	3.2.5.9.4.1 Processing Play Sound PDU

	3.2.5.9.5 Connection Management
	3.2.5.9.5.1 Processing Save Session Info PDU

	3.2.5.10 Controlling Server Graphics Output
	3.2.5.10.1 Sending Refresh Rect PDU
	3.2.5.10.2 Sending Suppress Output PDU

	3.2.6 Timer Events
	3.2.6.1 Connection Sequence Timeout

	3.2.7 Other Local Events
	3.2.7.1 Disconnection Due to Network Error

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 Received Client Data
	3.3.1.2 User Channel ID
	3.3.1.3 I/O Channel ID
	3.3.1.4 Server Channel ID
	3.3.1.5 Client Licensing Encryption Ability
	3.3.1.6 Client Capabilities
	3.3.1.7 Persistent Bitmap Keys
	3.3.1.8 Pointer Image Cache

	3.3.2 Timers
	3.3.2.1 Auto-Reconnect Cookie Update Timer

	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Constructing a Basic Server-to-Client Slow-Path PDU
	3.3.5.2 Processing a Basic Client-to-Server Slow-Path PDU
	3.3.5.3 Normal Connection Sequence
	3.3.5.3.1 Processing X.224 Connection Request PDU
	3.3.5.3.2 Sending X.224 Connection Confirm PDU
	3.3.5.3.3 Processing MCS Connect Initial PDU with GCC Conference Create Request
	3.3.5.3.4 Sending MCS Connect Response PDU with GCC Conference Create Response
	3.3.5.3.5 Processing MCS Erect Domain Request PDU
	3.3.5.3.6 Processing MCS Attach User Request PDU
	3.3.5.3.7 Sending MCS Attach User Confirm PDU
	3.3.5.3.8 Processing MCS Channel Join Request PDU(s)
	3.3.5.3.9 Sending MCS Channel Join Confirm PDU(s)
	3.3.5.3.10 Processing Security Exchange PDU
	3.3.5.3.11 Processing Client Info PDU
	3.3.5.3.12 Sending License Error PDU - Valid Client
	3.3.5.3.13 Mandatory Capability Negotiation
	3.3.5.3.13.1 Sending Demand Active PDU
	3.3.5.3.13.2 Processing Confirm Active PDU

	3.3.5.3.14 Processing Synchronize PDU
	3.3.5.3.15 Processing Control PDU - Cooperate
	3.3.5.3.16 Processing Control PDU - Request Control
	3.3.5.3.17 Processing Persistent Key List PDU(s)
	3.3.5.3.18 Processing Font List PDU
	3.3.5.3.19 Sending Synchronize PDU
	3.3.5.3.20 Sending Control PDU - Cooperate
	3.3.5.3.21 Sending Control PDU - Granted Control
	3.3.5.3.22 Sending Font Map PDU

	3.3.5.4 Disconnection Sequences
	3.3.5.4.1 Processing Shutdown Request PDU
	3.3.5.4.2 Sending Shutdown Request Denied PDU

	3.3.5.5 Deactivation-Reconnection Sequence
	3.3.5.5.1 Sending Deactivate All PDU

	3.3.5.6 Auto-Reconnect Sequence
	3.3.5.6.1 Sending Auto-Reconnect Status PDU

	3.3.5.7 Server Error Reporting
	3.3.5.7.1 Sending Set Error Info PDU

	3.3.5.8 Keyboard and Mouse Input
	3.3.5.8.1 Input Event Notifications
	3.3.5.8.1.1 Processing Slow-Path Input Event PDU
	3.3.5.8.1.2 Processing Fast-Path Input Event PDU

	3.3.5.8.2 Keyboard Status PDUs
	3.3.5.8.2.1 Sending Set Keyboard Indicators PDU
	3.3.5.8.2.2 Sending Set Keyboard IME Status PDU

	3.3.5.9 Basic Output
	3.3.5.9.1 Sending Slow-Path Graphics Update PDU
	3.3.5.9.2 Sending Slow-Path Pointer Update PDU
	3.3.5.9.3 Sending Fast-Path Update PDU
	3.3.5.9.4 Sound
	3.3.5.9.4.1 Sending Play Sound PDU

	3.3.5.9.5 Connection Management
	3.3.5.9.5.1 Sending Save Session Info PDU

	3.3.5.10 Controlling Server Graphics Output
	3.3.5.10.1 Processing Refresh Rect PDU
	3.3.5.10.2 Processing Suppress Output PDU

	3.3.6 Timer Events
	3.3.6.1 Connection Sequence Timeout

	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Annotated Connection Sequence
	4.1.1 Client X.224 Connection Request PDU
	4.1.2 Server X.224 Connection Confirm PDU
	4.1.3 Client MCS Connect Initial PDU with GCC Conference Create Request
	4.1.4 Server MCS Connect Response PDU with GCC Conference Create Response
	4.1.5 Client MCS Erect Domain Request PDU
	4.1.6 Client MCS Attach User Request PDU
	4.1.7 Server MCS Attach-User Confirm PDU
	4.1.8 MCS Channel Join Request and Confirm PDUs
	4.1.9 Channel 1007
	4.1.9.1 Client Join Request PDU for Channel 1007 (User Channel)
	4.1.9.2 Server Join Confirm PDU for Channel 1007 (User Channel)

	4.1.10 Channel 1003
	4.1.10.1 Client Join Request PDU for Channel 1003 (I/O Channel)
	4.1.10.2 Server Join Confirm PDU for Channel 1003 (I/O Channel)

	4.1.11 Channel 1004
	4.1.11.1 Client Join Request PDU for Channel 1004 (rdpdr Channel)
	4.1.11.2 Server Join Confirm PDU for Channel 1004 (rdpdr Channel)

	4.1.12 Channel 1005
	4.1.12.1 Client Join Request PDU for Channel 1005 (cliprdr Channel)
	4.1.12.2 Server Join Confirm PDU for Channel 1005 (cliprdr Channel)

	4.1.13 Channel 1006
	4.1.13.1 Client Join Request PDU for Channel 1006 (rdpsnd Channel)
	4.1.13.2 Server Join Confirm PDU for Channel 1006 (rdpsnd Channel)

	4.1.14 Client Security Exchange PDU
	4.1.15 Client Info PDU
	4.1.16 Server License Error PDU - Valid Client
	4.1.17 Server Demand Active PDU
	4.1.18 Client Confirm Active PDU
	4.1.19 Client Synchronize PDU
	4.1.20 Client Control PDU - Cooperate
	4.1.21 Client Control PDU - Request Control
	4.1.22 Client Persistent Key List PDU
	4.1.23 Client Font List PDU
	4.1.24 Server Synchronize PDU
	4.1.25 Server Control PDU - Cooperate
	4.1.26 Server Control PDU - Granted Control
	4.1.27 Server Font Map PDU

	4.2 Annotated User-Initiated (on Client) Disconnection Sequence
	4.2.1 MCS Disconnect Provider Ultimatum PDU
	4.2.2 Client Shutdown Request PDU
	4.2.3 Server Shutdown Request Denied PDU

	4.3 Annotated Save Session Info PDU
	4.3.1 Logon Info Version 2
	4.3.2 Plain Notify
	4.3.3 Logon Info Extended

	4.4 Annotated Server-to-Client Virtual Channel PDU
	4.5 Java Code to Encrypt and Decrypt a Sample Client Random
	4.6 Java Code to Sign a Sample Proprietary Certificate Hash

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters
	5.3 Standard RDP Security
	5.3.1 Encryption Levels
	5.3.2 Negotiating the Cryptographic Configuration
	5.3.3 Server Certificates
	5.3.3.1 Proprietary Certificates
	5.3.3.1.1 Terminal Services Signing Key
	5.3.3.1.2 Signing a Proprietary Certificate
	5.3.3.1.3 Validating a Proprietary Certificate

	5.3.3.2 X.509 Certificate Chains

	5.3.4 Client and Server Random Values
	5.3.4.1 Encrypting Client Random
	5.3.4.2 Decrypting Client Random

	5.3.5 Session Key Generation
	5.3.5.1 Non-FIPS
	5.3.5.2 FIPS

	5.3.6 Encrypting and Decrypting the I/O Data Stream
	5.3.6.1 Non-FIPS
	5.3.6.1.1 Salted MAC Generation

	5.3.6.2 FIPS

	5.3.7 Session Key Updates
	5.3.7.1 Non-FIPS
	5.3.7.2 FIPS

	5.3.8 Packet Layout in the I/O Data Stream

	5.4 Enhanced RDP Security
	5.4.1 Encryption Levels
	5.4.2 Security-Enhanced Connection Sequence
	5.4.2.1 Negotiation-Based Approach
	5.4.2.2 Direct Approach
	5.4.2.3 Changes to the Security Commencement Phase
	5.4.2.4 Disabling Forced Encryption of Licensing Packets

	5.4.3 Encrypting and Decrypting the I/O Data Stream
	5.4.4 Packet Layout in the I/O Data Stream
	5.4.5 External Security Protocols used by RDP
	5.4.5.1 Transport Layer Security (TLS) 1.0
	5.4.5.2 CredSSP
	5.4.5.2.1 User Authorization Failures

	5.5 Automatic Reconnection

	6 Appendix A: Windows Behavior
	7 Index

