
GSS-API Programming Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816–1331–06
February 2002

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 7

1 The GSS-API: An Overview 11

Introduction to the GSS-API 11

Application Portability 12

Security Services 13

Mechanisms Available With GSS-API 14

RPCSEC_GSS Layer 14

What the GSS-API Does Not Do For You 15

Language Bindings 16

Where to Get More Information 16

Some Introductory Concepts 16

Principals 16

GSS-API Data Types 17

Status Codes 26

GSS-API Tokens 27

Programming Using the GSS-API 29

Overview 29

Credentials 31

Context Establishment 34

Data Protection 55

Unwrapping and Verification 61

Context Deletion and Data Deallocation 65

3

2 A Walk–Through of the Sample GSS-API Programs 67

Introduction to the Sample Programs 67

Client-Side GSS-API: gss-client 67

Overview: main() (Client) 68

Specifying a Non-Default Mechanism 69

Calling the Server 70

Server-Side GSS-API: gss-server 75

Overview: main() (Server) 76

Creating an OID for the Mechanism 77

Acquiring Credentials 77

Accepting a Context, Getting and Signing Data 79

Cleanup 82

Accessory Functions 82

A Sample C–Based GSS-API Programs 83

Programs Using GSS-API 83

Client-Side Application 83

Program Headers 83

main() 85

parse_oid() 86

call_server() 87

read_file() 93

client_establish_context() 94

connect_to_server() 96

Server-Side Application 98

Program Headers 98

main() 99

createMechOid() 102

server_acquire_creds() 102

sign_server() 104

server_establish_context() 106

create_a_socket() 108

test_import_export_context() 109

timeval_subtract() 110

Ancillary Functions 111

Miscellaneous Support Functions 111

send_token() and recv_token() 115

4 GSS-API Programming Guide • February 2002 (Beta)

B GSS-API Reference 119

GSS-API Functions 119

Functions From Previous Versions of the GSS-API 121

GSS-API Status Codes 122

GSS-API Major Status Code Values 123

Displaying Status Codes 125

Status Code Macros 125

GSS-API Data Types and Values 126

Basic GSS-API Data Types 126

Name Types 127

Address Types for Channel Bindings 128

C Specifying an OID 131

Mechanisms and QOPs 131

Files Containing OID Values 131

gss_str_to_oid() 132

Constructing Mechanism OIDs 133

D Sun-Specific Features 135

Implementation-Specifc Features 135

Sun-Specific Functions 135

Human-Readable Name Syntax 135

Implementations of Selected Data Types 136

Deletion of Contexts and Stored Data 136

Protection of Channel-Binding Information 136

Context Exportation and Interprocess Tokens 137

Types of Credentials Supported 137

Credential Expiration 137

Context Expiration 137

Wrap Size Limits and QOP Values 137

Use of minor_status Parameter 138

E Kerberos v5 Status Codes 139

Table of Kerberos v5 Status Codes 139

Contents 5

Glossary 151

Index 157

6 GSS-API Programming Guide • February 2002 (Beta)

Preface

The GSS-API Programming Guide explains the Generic Security Services Application
Programming Interface — the GSS-API. The GSS-API is a framework that allows
developers to write applications that take advantage of security mechanisms such as
Kerberos v5, without having to explicitly program for any one mechanism. Programs
using the GSS-API therefore can be highly portable, not only from one platform to
another, but from one security setup to another and from one transport protocol to
another. The GSS-API provides several levels of data protection, consistent with the
underlying security mechanims that have been implemented on a system.

Who Should Use This Book
The GSS-API Programming Guide is intended for C-language developers who want to
write programs that transfer data from one application to another securely, such as
client-server programs. No specific knowledge of transport protocols or network
programming is necessary to understand or use the GSS-API. (Of course, you will
need to understand these areas in order to write networking applications, since the
GSS-API does not itself perform transport.)

Before You Read This Book
You should be familiar with C programming. A basic knowledge of security
mechanisms is helpful but not required. You do not need to have specialized
knowledge about network programming to use this book.

7

How This Book Is Organized
Chapter 1 provides an overview of the GSS-API. It explains the general steps involved
in using the GSS-API, covers the basic concepts, and details a few of the most
important functions.

Chapter 2 is a walk-through of the sample programs listed in Appendix A.

Appendix A is a program listing for two sample programs: a GSS-API client and a
GSS-API server.

Appendix B provides reference information on GSS-API functions, status codes, and
data types.

Appendix C is a short discussion about specifying a security mechanism in the
GSS-API.

Appendix D explains some features that are unique to Sun’s implementation of the
GSS-API.

Appendix E contains tables showing the status codes returned by the Kerberos v5
security mechanism.

Glossary is a list of words and phrases found in this book and their definitions.

Related Documentation
You might find the following to be helpful:

� ONC+ Developer’s Guide

Two documents provide descriptions of the GSS-API (and are somewhat more
oriented toward the GSS-API implementor than to the application developer). The
Generic Security Service Application Program Interface document
(ftp://ftp.isi.edu/in-notes/rfc2743.txt) provides a conceptual overview
of the GSS-API, while the Generic Security Service API Version 2: C-Bindings
document (ftp://ftp.isi.edu/in-notes/rfc2744.txt) discusses the specifics
of the C-language-based GSS-API.

8 GSS-API Programming Guide • February 2002 (Beta)

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

Preface 9

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

10 GSS-API Programming Guide • February 2002 (Beta)

CHAPTER 1

The GSS-API: An Overview

Introduction to the GSS-API
The Generic Security Standard Application Programming Interface (GSS-API)
provides a way for applications to protect data that is sent to peer applications;
typically, this might be from a client on one machine to a server on another. As its
name implies, the GSS-API enables programmers to write applications that are generic
with respect to security; that is, they do not have to tailor their security
implementations to any particular platform, security mechanism, type of protection, or
transport protocol. Although the GSS-API enables applications control over security
aspects, a programmer using GSS-API can write a program that is ignorant of the
details of protecting network data. Therefore, a program that takes advantage of
GSS-API is more portable as regards network security. More than anything else, this
portability is the hallmark of the Generic Security Standard API.

The GSS-API does not actually provide security services itself. Rather, it is a
framework that provides security services to callers in a generic fashion, supportable
with a range of underlying mechanisms and technologies such as Kerberos v5 or
public key technologies, as shown in Figure 1–1:

11

GSS-API

APPLICATION

PROTOCOL (RPC, ETC.)
(OPTIONAL)

SECURITY MECHANISMS
(KERBEROS v5, ETC.)

FIGURE 1–1 The GSS-API Layer

Broadly speaking, the GSS-API does two main things:

1. It creates a security context in which data can be passed between applications. A
context can be thought of as a sort of “state of trust” between two applications.
Applications that share a context know who each other are and thus can permit
data transfers between them as long as the context lasts.

2. It applies one or more types of protection, known as security services, to the data to
be transmitted. Security services are explained in “Security Services” on page 13.

Of course, the GSS-API is more complex than that. Some of the other things that the
GSS-API does include: data conversion; error checking; delegation of user privileges;
information display; and identity comparison. The GSS-API includes numerous
support or convenience functions.

Application Portability
As mentioned above, the GSS-API provides several types of portability for
applications:

12 GSS-API Programming Guide • February 2002 (Beta)

� Mechanism independence. GSS-API provides a generic interface to the mechanisms
for which it has been implemented. By specifying a default security mechanism, an
application does not need to know which mechanism it is using (for example,
Kerberos v5), or even what type of mechanism it uses. As an example, when an
application forwards a user’s credential to a server, it does not need to know if that
credential has a Kerberos format or the format used by some other mechanism, nor
how the credentials are stored by the mechanism and accessed by the application.
(If necessary, an application can specify a particular mechanism to use.)

� Protocol independence. The GSS–API is independent of any communications protocol
or protocol suite. It can be used with applications that use, for example, sockets,
RCP, or TCP/IP.

RPCSEC_GSS is an additional layer that smoothly integrates GSS-API with RPC.
For more information, see “RPCSEC_GSS Layer” on page 14.

� Platform independence. The GSS-API is completely oblivious to the type of operating
system on which an application is running.

� Quality of Protection independence. Quality of Protection (QOP) is the name given to
the type of algorithm used in encrypting data or generating cryptographic tags; the
GSS-API allows a programmer to ignore QOP, using a default provided by the
GSS-API. (On the other hand, an application can specify the QOP if necessary.)

Security Services
The basic security offered by the GSS-API is authentication. Authentication is the
verification of an identity: if you are authenticated, it means that you are recognized to
be who you say you are.

The GSS-API provides for two additional security services, if supported by the
underlying mechanisms:

� Integrity. It’s not always sufficient to know that an application sending you data is
who it claims to be. The data itself could have become corrupted or compromised.
The GSS-API provides for data to be accompanied by a cryptographic tag, known
as an Message Integrity Code (MIC), to prove that the data that arrives at your
doorstep is the same as the data that the sender transmitted. This verification of the
data’s validity is known as integrity.

� Confidentiality. Both authentication and integrity, however, leave the data itself
alone, so if it’s somehow intercepted, others can read it. The GSS-API therefore
allows data to be encrypted, if underlying mechanisms support it. This encryption
of data is known as confidentiality.

The GSS-API: An Overview 13

Mechanisms Available With GSS-API
The current implementation of the GSS-API works only with the Kerberos v5 security
mechanism. (This includes its Sun variant, the Solaris Enterprise Authentication
Mechanism, or SEAM. See the “SEAM Overview” in System Administration Guide,
Volume 2 for more information.) Kerberos v5 or SEAM must, therefore, be installed
and running on any system on which GSS-API-aware programs are running.

RPCSEC_GSS Layer
Programmers who employ the RPC (Remote Procedure Call) protocol for their
networking applications can use RPCSEC_GSS to provide security. RPCSEC_GSS is a
separate layer that sits on top of GSS-API; it provides all the functionality of GSS-API
in a way that is tailored to RPC. In fact, it serves to hide many aspects of GSS-API

14 GSS-API Programming Guide • February 2002 (Beta)

from the programmer, making RPC security especially accessible and portable. For
more information on RPCSEC_GSS, see the ONC+ Developer’s Guide.

Application

RPCSEC_GSS

GSS-API

Kerberos
V5

RSA
Public Key

Other...

FIGURE 1–2 RPCSEC_GSS and GSS-API

What the GSS-API Does Not Do For You
Although the GSS-API makes protecting data simple, it does not do certain things, in
order to maximize its generic nature. These include:

� Provide security credentials for a user or application. These must be provided by
the underlying security mechanism(s). The GSS-API does allow applications to
acquire credentials, either automatically or explicitly.

� Transfer data between applications. It is the application’s responsibility to handle
the transfer of all data between peers, whether it is security-related or “plain” data.

� Distinguish between different types of transmitted data (for example, to know or
determine that a data packet is plain data and not GSS–API related).

� Indicate status due to remote (asynchronous) errors.

� Automatically protect information sent between processes of a multiprocess
program.

� Allocate string buffers to be passed to GSS-API functions. See “Strings and Similar
Data” on page 17.

The GSS-API: An Overview 15

� Deallocate GSS-API data spaces. These must be explicitly deallocated with
functions such as gss_release_buffer() and gss_delete_name().

Language Bindings
This document currently covers only the C language bindings (functions and data
types) for the GSS-API. At some point a Java-bindings version of the GSS-API might
become available.

Where to Get More Information
Two documents provide descriptions of the GSS-API (and are somewhat more
oriented toward the GSS-API implementor than to the application developer). The
Generic Security Service Application Program Interface document
(ftp://ftp.isi.edu/in-notes/rfc2743.txt) provides a conceptual overview
of the GSS-API, while the Generic Security Service API Version 2: C-Bindings
document (ftp://ftp.isi.edu/in-notes/rfc2744.txt) discusses the specifics
of the C-language-based GSS-API.

Some Introductory Concepts
Before looking at the actual process of using the GSS-API, let’s examine four important
concepts. They are: principals, GSS-API data types, status codes, and tokens.

Principals
In network-security terminology, a principal is a user, a program, or a machine.
Principals can be either clients or servers. Examples of principals are: a user
(joe@machine) logging into another machine; a network service (nfs@machine); a
machine that runs an application (swim2birds@eng.company.com).

In the GSS-API, principals are referred to by a special data type— see “Names”
on page 18.

16 GSS-API Programming Guide • February 2002 (Beta)

GSS-API Data Types
The following sections explain the more important and visible GSS-API data types; see
“GSS-API Data Types and Values” on page 126 for more information.

Caution – It is the responsibility of the calling application to free all data space that
has been allocated.

Integers
Because the size of an int can vary from platform to platform, the GSS-API provides
the following integer data type:

OM_uint32

which is a 32–bit unsigned integer.

Strings and Similar Data
Since the GSS-API handles all data in internal formats, strings must be converted to a
GSS-API format before being passed to GSS-API functions. The GSS-API handles
strings with the gss_buffer_desc structure; gss_buffer_t is a pointer to such a
structure.

typedef struct gss_buffer_desc_struct {
size_t length;
void *value;

} gss_buffer_desc *gss_buffer_t;

Therefore, strings must be put into a gss_buffer_desc structure before being
passed to functions that use them. Consider a generic GSS-API function that takes a
message and processes it in some way (for example, applies protection to it before it is
transmitted), as follows:

EXAMPLE 1–1 Using Strings

char *message_string;
gss_buffer_desc input_msg_buffer;

input_msg_buffer.value = message_string;
input_msg_buffer.length = strlen(input_msg_buffer.value) + 1;

gss_generic_function(arg1, &input_msg_buffer, arg2...);

gss_release_buffer(input_msg_buffer);

The GSS-API: An Overview 17

Note that input_msg_buffer must be deallocated with gss_release_buffer()
when you are finished with it.

The gss_buffer_desc object is not just for character strings; for example, tokens are
manipulated as gss_buffer_desc objects. (See “GSS-API Tokens” on page 27.)

Names
A name refers to a principal — that is, a person, a machine, or an application, such as
joe@company or nfs@machinename. In the GSS-API, names are stored as a gss_name_t
object, which is opaque to the application. Names are converted from gss_buffer_t
objects to the gss_name_t form by the gss_import_name() function. Every
imported name has an associated name type, which indicates what kind of format the
name is in. (See under “OIDs” on page 24 for more about name types, and see
“Name Types” on page 127 for a list of valid name types).

gss_import_name() looks like this:

OM_uint32 gss_import_name (
OM_uint32 *minor_status,
const gss_buffer_t input_name_buffer,
const gss_OID input_name_type,
gss_name_t *output_name)

minor_status Status code returned by the underlying mechanism. (See “Status
Codes” on page 26.)

input_name_buffer The gss_buffer_desc structure containing the name to be
imported. The application must allocate this explicitly (see
“Strings and Similar Data” on page 17 as well as Example 1–2.)
This argument must be deallocated with
gss_release_buffer() when the application is finished with
it.

input_name_type A gss_OID that specifies the format that the input_name_buffer is
in. (See “Name Types” on page 25; also, “Name Types”
on page 127 contains a table of valid name types.)

output_name The gss_name_t structure to receive the name.

Slightly modifying the generic example shown in Example 1–1, here is how you can
use gss_import_name(). First, the regular string is inserted into a
gss_buffer_desc structure, and then gss_import_name() places it into a
gss_name_t structure.

EXAMPLE 1–2 Using gss_import_name()

char *name_string;
gss_buffer_desc input_name_buffer;
gss_name_t output_name_buffer;

18 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE 1–2 Using gss_import_name() (Continued)

input_name_buffer.value = name_string;
input_name_buffer.length = strlen(input_name_buffer.value) + 1;

gss_import_name(&minor_status, input_name_buffer,
GSS_C_NT_HOSTBASED_SERVICE, &output_name);

gss_release_buffer(input_name_buffer);

An imported name can be put back into a gss_buffer_t object for display in
human-readable form with gss_display_name(); however,
gss_display_name() does not guarantee that the resulting string will be the same
as the original, because of the way the underlying mechanisms store names. The
GSS-API includes several other functions for manipulating names; see “GSS-API
Functions” on page 119.

A gss_name_t structure can contain several versions of a single name — one version
produced for each mechanism supported by the GSS-API. That is, a gss_name_t
structure for “joe@company” might contain one version of that name as rendered by
Kerberos v5, another version as given by a different mechanism, and so on. The
GSS-API provides a function, gss_canonicalize_name(), that takes as its input an
internal name (that is, a gss_name_t structure) and a mechanism and yields a second
internal name (also a gss_name_t) that contains only a single version of the name,
specific to that mechanism.

Such a mechanism-specific name is called a Mechanism Name (MN). “Mechanism
Name” is a slightly confusing label, since it refers not to the name of a mechanism, but
to the name of a principal as produced by a given mechanism. This process is
illustrated by Figure 1–3.

The GSS-API: An Overview 19

joe@machine

joe@machine
mech1

joe@machine
mech2

joe@machine
mech2

joe@machine
mechn

string

internal name format

(gss_name_t)

internal name format,

MN (Mechanism Name)

(gss_name_t)

gss_import_name()

gss_canonicalize_name(mech2)

FIGURE 1–3 Internal Names and Mechanism Names

Comparing Names
Why is such a function useful? Consider the case where a server has received a name
from a client and wants to look up that name in an Access Control List. (An Access
Control List, or ACL, is a list of principals with particular access persmissions.) One
way to do this would be as follows:

20 GSS-API Programming Guide • February 2002 (Beta)

1. Import the client name into GSS-API internal format with gss_import_name(),
if it hasn’t already been imported.

In some cases, the server will receive a name in internal format, so this step will not
be necessary — in particular, if the server is looking up the client’s own name.
(During context initiation, the client’s own name is passed in internal format.)

2. Import each name in the ACL with gss_import_name().

3. Compare each imported ACL name with the imported client’s name, using
gss_compare_name().

This process is shown in Figure 1–4; in this case, we assume that Step 1 is needed.

The GSS-API: An Overview 21

ACL

ACL Name 1 ACL Name 2 ACL Name n

SERVER

ACL Name 2
(As internal

name)

ACL Name 1
(As internal

name)

ACL Name n
(As internal

name)

Client Name
(As internal

name)

Client Name

gss_compare_name()

gss_compare_name()

gss_compare_name()

gss_import_name()

gss_import_name()

gss_import_name()

gss_import_name()
1

2

3

(From
Client)

FIGURE 1–4 Comparing Names (Slow)

22 GSS-API Programming Guide • February 2002 (Beta)

That procedure is fine if you only need to compare the client’s name with a few
names. However, it is a very slow way to check a large list! Running
gss_import_name() and gss_compare_name() for every name in the ACL might
require a lot of CPU cycles. This is a better way:

1. Import the client’s name with gss_import_name() (if it hasn’t already been
imported).

As with the previous method of comparing names, in some cases the server
receives a name in internal format and so this step is not necessary.

2. Use gss_canonicalize_name() to produce an MN of the client’s name.

3. Use gss_export_name() to produce an “exported name,” a contiguous-string
version of the client’s name.

4. Compare the exported client’s name with each name in the ACL by using
memcmp(), which is a fast, low-overhead function.

This process is shown in Figure 1–5; again, assume the server needs to import the
name received from the client.

The GSS-API: An Overview 23

ACL

ACL Name 1

ACL Name 2

ACL Name n

SERVER

Client Name
(As MN)

Client Name
(As internal

name)

Client Name

Client Name
(As exported

name)

gss_canonicalize_name()

gss_import_name()

gss_export_name() memcmp()

memcmp()

memcmp()

1

2

3

4

ACL = Access Control List
MN = Mechanism Name

(From
Client)

FIGURE 1–5 Comparing Names (Fast)

Because gss_export_name() expects a Mechanism Name (MN), you must run
gss_canonicalize_name() on the client’s name first.

See the gss_canonicalize_name(3GSS), gss_export_name(3GSS), and
gss_import_name(3GSS) man pages for more information.

OIDs
Object Identifiers (OIDs) are used to store the following kinds of data: security
mechanisms, QOPs (Quality of Protection values), and name types. OIDs are stored in

24 GSS-API Programming Guide • February 2002 (Beta)

the GSS-API gss_OID_desc structure; the GSS-API provides a pointer to the
structure, gss_OID, as shown here.

EXAMPLE 1–3 OIDs

typedef struct gss_OID_desc_struct {
OM_uint32 length;
void *elements;

} gss_OID_desc, *gss_OID;

Further, one or more OIDs might be contained in a gss_OID_set_desc structure.

EXAMPLE 1–4 OID Sets

typedef struct gss_OID_set_desc_struct {
size_t count;
gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

Caution – Applications should not attempt to deallocate OIDs with free().

Mechanisms and QOPs

Although the GSS-API allows applications to choose which underlying security
mechanism to use, applications should use the default mechanism selected by the
GSS-API if possible. Likewise, the GSS-API allows an application to specify the QOP it
wants for protecting data — a QOP (Quality of Protection) is the algorithm used for
encrypting data or generating a cryptographic identification tag — the default QOP
should be used if possible. The default mechanism is represented by passing the value
GSS_C_NULL_OID to functions that expect a mechanism or QOP as an argument.

Caution – Specifying a security mechanism or QOP explicitly more or less defeats the
purpose of using the GSS-API, because it limits the portability of an application. Other
implementations of the GSS-API may not support that QOP or mechanism, or they
may support it in limited or unexpected ways. Nonetheless, Appendix C briefly
discusses how to find out which mechanisms and QOPs are available, and how to
choose one.

Name Types

Besides QOPs and security mechanisms, OIDs are also used to indicate name types,
which indicate the format for an associated name. For example, the function

The GSS-API: An Overview 25

gss_import_name(), which converts the name of a principal from a string to a
gss_name_t type, takes as one argument the format of the string to be converted. If
the name type is (for example) GSS_C_NT_HOSTBASED_SERVICE, then the function
knows that the name being input is of the form “service@host”, as in
“nfs@swim2birds”; if it’s equal to, for instance, GSS_C_NT_EXPORT_NAME, then the
function knows that it’s a GSS-API exported name. Applications can find out which
name types are available for a given mechanism with the
gss_inquire_names_for_mech() function. A list of name types used by the
GSS-API is given in “Name Types” on page 127.

Status Codes
All GSS-API functions return two types of codes that provide information on the
function’s success or failure. Both types of status codes are returned as OM_uint32
values. The two types of return codes are as follows:

� Major-status codes. These are codes that indicate: a) generic GSS-API routine errors
(such as giving a routine an invalid mechanism); b) calling errors specific to a
particular GSS-API language binding (namely, a function argument that cannot be
read, cannot be written, or is malformed); or c) both. Additionally, major-status
codes can provide supplementary information about a routine’s status — that an
operation is not finished, for example, or that a token has been sent out of order. If
no errors occur, the routine returns a major status value of GSS_S_COMPLETE.

Major-status codes are returned as shown here:

OM_uint32 major_status ; /* status returned by GSS-API */

major_status = gss_generic_function(arg1, arg2 ...);

Major status return codes can be processed like any other OM_uint32. For
example:

OM_uint32 maj_stat;

maj_sta = gss_generic_function(arg1, arg2 ...);

if (maj_stat == GSS_CREDENTIALS_EXPIRED)

<do something...>They can be processed with the macros
GSS_ROUTINE_ERROR(), GSS_CALLING_ERROR(), and
GSS_SUPPLEMENTARY_INFO(). “GSS-API Status Codes” on page 122 explains
how to read major-status codes and contains a list of GSS-API status codes.

� Minor status codes. These are returned by the underlying mechanism, and so are not
specifically documented in this manual.

26 GSS-API Programming Guide • February 2002 (Beta)

Every GSS-API function has as its first argument an OM_uint32 for the minor
code status. The minor status code is stored here when the function returns to the
function that called it:

OM_uint32 *minor_status ; /* status returned by mech */

major_status = gss_generic_function(&minor_status, arg1, arg2 ...);

The minor_status parameter is always set by a GSS-API routine, even if it returns a
fatal major-code error, although most other output parameters can remain unset.
However, output parameters that are expected to return pointers to storage
allocated by the routine are set to NULL to indicate that no storage was actually
allocated. Any length field associated with such pointers (as in a
gss_buffer_desc structure) are set to zero. In these cases applications don’t
need to release these buffers.

GSS-API Tokens
The basic unit of currency, so to speak, in the GSS-API is the token. Applications using
the GSS-API communicate with each other by using tokens, both for exchanging data
and for making security arrangements. Tokens are declared as gss_buffer_t data
types and are opaque to applications.

The two types of tokens are: context-level tokens and per-message tokens. Context-level
tokens are used primarily when a context is established (initiated and accepted),
although they can also be passed afterward to manage a context.

Per-message tokens are used after a context has been established, and are used to
provide protection services on data. For example, if an application wants to send a
message to another application, it might use the GSS-API to generate a cryptographic
identifier to go along that message; that identifier would be stored in a token.

Per-message tokens can be considered with regard to “messages” as follows. A message
is a piece of data that an application sends to a peer; for example, the ls command
sent to an ftp server. A per-message token is an object generated by the GSS-API for
that message, such as a cryptographic tag, or the encrypted form of the message.
(Semantically speaking, this last example is mildly inaccurate: an encrypted message
is still a message, not a token, since a token is only the GSS-API-generated information.
However, informally, message and per-message token are often used interchangeably.)

It is the responsibility of the application (not the GSS-API) to:

1. Send and receive tokens. The developer usually needs to write generalized read
and write functions for performing these actions. “send_token()” on page 115
and “recv_token()” on page 116 are examples of such functions.

2. Distinguish between types of tokens and manipulate them accordingly.

The GSS-API: An Overview 27

Because tokens are opaque to applications, there is no difference (to the
application) between one token and another. Therefore, an application must be able
to distinguish one token from another without explicitly knowing their contents,
before passing them on to the appropriate GSS-API functions. The ways an
application can distinguish tokens include:

� By state — that is, through the control-flow of a program. For example, if an
application is waiting to accept a context, it can assume that any token it
receives is a context-level token related to context-establishment, because it
expects peers to wait until the context is fully established before sending
message (data) tokens. After the context is established, the application can
assume that any tokens it receives are message tokens. This is a fairly common
way to handle tokens; the sample programs in this book use this method.

� An application might distinguish types of tokens when sending and receiving
them. For example, if the application has its own function for sending tokens to
peers, it can include a flag indicating what kind of token is being sent:

gss_buffer_t token; /* declare the token */
OM_uint32 token_flag /* flag for describing the type of token */

<get token from a GSS-API function>

token_flag = MIC_TOKEN; /* specify what kind of token it is */

send_a_token(&token, token_flag);Then the receiving application would
have a receiving function (say, “get_a_token()”) that would check the
token_flag argument.

� A third way might be through explicit tagging; for example, applications might
use their own “meta-tokens”: user-defined structures that contain tokens
received from GSS-API functions, along with user-defined fields that signal
how the GSS-API-provided tokens are to be used.

Interprocess Tokens
The GSS-API permits a security context to be passed from one process to another in a
multiprocess application. Typically, this application has accepted a client’s context and
wants to share it among its processes. See “Context Export and Import” on page 52
for information on multiprocess applications.

The gss_export_context() function creates an interprocess token that contains
information allowing the context to be reconstituted by a second process. It is the
responsibility of the application to pass this interprocess token from one process to the
other, just as it is the application’s responsibility to pass tokens to other applications.

Since this interprocess token might contain keys or other sensitive information, and
since it cannot be guaranteed that all GSS-API implementations will cryptographically

28 GSS-API Programming Guide • February 2002 (Beta)

protect interprocess tokens, it is up to the application to protect them before exchange.
This may involve encrypting them with gss_wrap(), if encryption is available.

Note – Interprocess tokens cannot be assumed to be transferable across different
GSS-API implementations.

Programming Using the GSS-API
This section is designed to show, in general steps, how to implement secure data
exchange using the GSS-API. It does not explain every GSS-API function. Instead, it
concentrates on the half-dozen or so functions that are most central to using the
GSS-API. For more information, see Appendix B, which contains a list of all GSS-API
functions (as well as GSS-API status codes and data types). Additionally, you can find
out more about any GSS-API function by checking its man page.

To make things easier, this manual follows a simple model: A client application sends
data to a remote server. The client does so directly — that is, without mediation by
transport protocol layers such as RPC. A set of sample programs (client and server) are
shown in Appendix A. Chapter 2 takes you step-by-step through these programs.

Overview
These are the basic steps in using the GSS-API:

1. Each application, sender and recipient, acquires credentials explicitly, if credentials
have not been acquired automatically.

2. The sender initiates a security context and the recipient accepts it.

3. The sender applies security protection to the message (data) it wants to transmit.
This means that it either encrypts the message or stamps it with an identification
tag. The sender transmits the protected message.

(The sender can choose not to apply either security protection, in which case the
message has only the default GSS-API security service associated with it. That is
authentication, in which the recipient knows that the sender is who it claims to be.)

4. The recipient decrypts the message (if needed) and verifies it (if appropriate).

5. (Optional) The recipient returns an identification tag to the sender for confirmation.

6. Both applications destroy the shared security context. If necessary, they can also
deallocate any “leftover” GSS-API data.

Applications that use the GSS-API should include the file gssapi.h.

The GSS-API: An Overview 29

A general schema of this process is presented in Figure 1–6, which shows one way that
the GSS-API can be used; other scenarios are possible.

CLIENT

SERVER

Use the data

Initialize context with
gss_init_sec_context()

1

Accept context with
gss_accept_sec_context()

3

Send context-level
token(s)

2

Wrap message with
gss_wrap()

5

Send message6

0

Unwrap message with
gss_unwrap()

7

8

9 Send confirmation
token (optional)

4
Send context-
level token(s)

(Loop continues until
context established...)

CLIENT

SERVER

STAGE ONE: CONTEXT ESTABLISHMENT

STAGE TWO: DATA TRANSFER

C

Server gets
credential for
network service

MIC

FIGURE 1–6 Using the GSS-API: An Overview

30 GSS-API Programming Guide • February 2002 (Beta)

Credentials
A credential is a data structure that provides proof of an application’s claim to a
principal name. An application uses a credential to establish its global identity. You
can think of a credential as a principal’s “identity badge,” a set of information that
proves that a person, machine, or program is who it claims to be and, often, what
privileges it has.

The GSS-API does not provide credentials. Credentials are created by the security
mechanisms that underly the GSS-API, before GSS-API functions are called. In many
cases, for example, users receive credentials when they log in to a system.

A given GSS-API credential is valid for a single principal. A single credential can
contain several elements for that principal, each created by a different mechanism, as
shown in Figure 1–7. This means that a credential acquired on a machine with several
security mechanisms will be valid if transferred to a machine that has only a subset of
those mechanisms. The GSS-API accesses credentials through the gss_cred_id_t

The GSS-API: An Overview 31

structure; this structure is called a credential handle. Credentials are opaque to
applications; you don’t need to know the specifics of a given credential.

C

mechanism1

C

C

mechanism2

C

mechanism3

GSS-API
credential
structure

Credential
for specific
mechanism

(Kerberos v5, etc.)

FIGURE 1–7 Generalized GSS-API Credential

Credentials come in three forms:

� GSS_C_INITIATE: A credential of this type identifies applications that only initiate
security contexts.

� GSS_C_ACCEPT: A credential of this type identifies applications that only accept
security contexts.

� GSS_C_BOTH: A credential of this type identifies applications that can initiate or
accept security contexts.

Acquiring Credentials
Before a security context can be established, both the server and the client must
acquire their respective credentials. Once acquired, credentials can be re-used until

32 GSS-API Programming Guide • February 2002 (Beta)

they expire, at which time they must be re-acquired. Credentials used by the client and
those used by the server might have different lifetimes.

GSS-API-based applications acquire credentials in one of two ways:

� By using the gss_acquire_cred() function (in some cases this will be the
gss_add_cred() function), or

� By specifying a default credential, represented by the value
GSS_C_NO_CREDENTIAL, when establishing a context.

In most cases, gss_acquire_cred() is called only by a context acceptor (server),
because the context initiator (client) is likely to have received its credentials at login.
The initiator, therefore, can usually specify only the default credential. The context
acceptor can also bypass using gss_acquire_cred() and use its default credential
instead.

The initiator’s credential proves its identity to other processes, while the acceptor
acquires a credential to enable it to accept a security context. Consider the case of a
client making an ftp request to a server. The client already has a credential, from login,
and the GSS-API is automatically retrieves that credential when the client attempts to
initiate a context. The server program, however, is explicitly acquires credentials for
the requested service (ftp).

gss_acquire_cred() takes the syntax shown below:

EXAMPLE 1–5

OM_uint32 gss_acquire_cred (
OM_uint32 *minor_status,
const gss_name_t desired_name,
OM_uint32 time_req,
const gss_OID_set desired_mechs,
gss_cred_usage_t cred_usage,
gss_cred_id_t *output_cred_handle,
gss_OID_set *actual_mechs,
OM_uint32 *time_rec)

minor_status The status code given by the underlying mechanism upon
return.

desired_name The name of the principal whose credential should be acquired.
In our example above, it would be “ftp.” This argument would
be created with gss_import_name() (see “Names”
on page 18).

Note that if desired_name is set to GSS_C_NO_NAME, then the
credential returned is a generic one that causes the GSS-API
context-initiation and context-acceptance routines to use their
default behavior with regard to credentials. In other words,
passing GSS_C_NO_NAME to gss_acquire_cred() returns

The GSS-API: An Overview 33

a credential that, when passed to gss_init_sec_context()
or gss_accept_sec_context(), is equivalent to passing
them the default credential request
(GSS_C_NO_CREDENTIAL). See “Context Initiation (Client)”
on page 35 and “Context Acceptance (Server)” on page 41 for
more information.

time_req The length of time (in seconds) for which the credential should
remain valid. Specify GSS_C_INDEFINITE to request the
maximum permitted lifetime.

desired_mechs The set of underlying mechanisms that the application wants to
use with this credential. This is a gss_OID_set data structure
containing one or more gss_OID structures, each representing
an appropriate mechanism. If possible, specify
GSS_C_NO_OID_SET to get a default set from the GSS-API.

cred_usage A flag that indicates how this credential should be used: for
context initiation (GSS_C_INITIATE), acceptance
(GSS_C_ACCEPT), or both (GSS_C_BOTH).

output_cred_handle The credential handle returned by this function.

actual_mechs A set of mechanisms that can be used with this credential. If you
don’t need to know what the mechanisms are, set this to NULL.

time_rec The actual number of seconds for which the credential is valid.
Set to NULL if this value doesn’t interest you.

gss_acquire_cred() returns GSS_S_COMPLETE if it completes successfully. If it
cannot return a valid credential, it returns GSS_S_NO_CRED; see the
gss_acquire_cred(3GSS) man page for other error codes. An example of
acquiring a credential can be found in “Acquiring Credentials” on page 77 (program
listing in “server_acquire_creds()” on page 102).

gss_add_cred() is similar to gss_acquire_cred(), but allows an application to
either create a new credential handle based on an existing credential or to add a new
credential element to the existing one. If GSS_C_NO_CREDENTIAL is specified as the
existing credential, then gss_add_cred() will create a new credential based on
default behavior. See the gss_add_cred(3GSS) man page for more information.

Context Establishment
As stated earlier, the two most significant things that the GSS-API does in providing
security are to create security contexts and to protect data. After an application has the
credential(s) it needs, it’s time to establish a security context. To do this, one
application (typically a client) initiates the context, and another (usually a server)
accepts it. Multiple contexts between peers are allowed.

34 GSS-API Programming Guide • February 2002 (Beta)

The communicating applications establish a joint security context by exchanging
authentication tokens. The security context is a pair of GSS-API data structures that
contain information shared between the two applications. This information describes
the state of each application (in terms of security). A security context is required for
protection of data.

Context Initiation (Client)
Security context initiation between an application and a remote peer is done using the
gss_init_sec_context() function. If successful, this function returns a context
handle for the context being established and a context-level token to send to the
acceptor. Before calling gss_init_sec_context(), however, the client should:

1. Acquire credentials, if necessary, with gss_acquire_cred(). Commonly,
however, the client has received credentials at login, and can skip this step.

2. Import the name of the server into GSS-API internal format with
gss_import_name(). See “Names” on page 18 for more about names and
gss_import_name().

When calling gss_init_sec_context(), the client typically passes the following
argument values:

� GSS_C_NO_CREDENTIAL for the cred_handle argument, to indicate the default
credential.

� GSS_C_NULL_OID for the mech_type argument, to indicate the default mechanism.

� GSS_C_NO_CONTEXT for the context_handle argument, to indicate an initial null
context. Because gss_init_sec_context() is usually called in a loop,
subsequent calls should pass the context handle returned by previous calls.

� GSS_C_NO_BUFFER for the input_token argument, to indicate an initially empty
token. Alternatively, the application can pass a pointer to a gss_buffer_desc
object whose length field has been set to zero.

� The name of the server, imported into internal GSS-API format with
gss_import_name().

Applications are not bound to use these default values. Additionally, the client will
specify its requirements for other security parameters with the req_flags argument. The
full set of gss_init_sec_context() arguments is described below.

The context acceptor can require several “handshakes” in order to establish a context;
that is, it can require the initiator to send more than one piece of context information
before it considers the context fully established. Therefore, for portability, context
initiation should always be done as part of a loop that checks whether the context has
been fully established.

The GSS-API: An Overview 35

If the context isn’t complete, gss_init_sec_context() returns a major-status code
of GSS_C_CONTINUE_NEEDED. Thus a loop should use
gss_init_sec_context()’s return value to test whether to continue the initiation
loop.

The client passes context information to the server in the form of the output token
returned by gss_init_sec_context(). The client receives information back from
the server as an input token, which can then be passed as an argument to subsequent
calls of gss_init_sec_context(). If the received input token has a length of zero,
however, then no more output tokens are required by the server.

Therefore, in addition to checking for the return status of
gss_init_sec_context(), the loop should check the input token’s length to see if
a further token needs to be sent to the server. (Before the loop begins, the input token’s
length should be initialized to zero, either by setting the input token to
GSS_C_NO_BUFFER or by setting the structure’s length field to a value of zero.)

This is what such a loop can look like, highly generalized:

context = GSS_C_NO_CONTEXT
input token = GSS_C_NO_BUFFER

do

call gss_init_sec_context(credential, context, name, input token,
output token, other args...)

if (there’s an output token to send to the acceptor)
send the output token to the acceptor
release the output token

if (the context is not complete)
receive an input token from the acceptor

if (there’s a GSS-API error)
delete the context

until the context is complete

Naturally, a real loop will be more complete, with, for example, much more extensive
error-checking. See “Establishing a Context” on page 70 (program listing in
“client_establish_context()” on page 94) for a real example of such a
context-initiation loop. Additionally, the gss_init_sec_context(3GSS) man page
gives a less generic example than this.

Again, the GSS-API does not send or receive tokens; these must be handled by the
application. Examples of token-transferring functions are found in “send_token()”
on page 115 and “recv_token()” on page 116.

36 GSS-API Programming Guide • February 2002 (Beta)

Here is a synopsis of gss_init_sec_context(). For more information, see the
gss_init_sec_context(3GSS) man page.

EXAMPLE 1–6 gss_init_sec_context()

OM_uint32 gss_init_sec_context (
OM_uint32 *minor_status,
const gss_cred_id_t initiator_cred_handle,
gss_ctx_id_t *context_handle,
const gss_name_t target_name,
const gss_OID mech_type,
OM_uint32 req_flags,
OM_uint32 time_req,
const gss_channel_bindings_t input_chan_bindings,
const gss_buffer_t input_token
gss_OID *actual_mech_type,
gss_buffer_t output_token,
OM_uint32 *ret_flags,

OM_uint32 *time_rec)

minor_status The status code returned by the underlying mechanism.

initiator_cred_handle The credential handle for the application. This should be
initialized to GSS_C_NO_CREDENTIAL to indicate the
default credential to use.

context_handle The context handle to be returned. This should be set to
GSS_C_NO_CONTEXT before the loop begins.

target_name The name of the principal to connect to; for example,
“nfs@machinename.”

mech_type The security mechanism to use. Set this to GSS_C_NO_OID to
get the default provided by the GSS-API.

req_flags Flags indicating additional services or parameters requested
for this context. req_flags flags should be logically OR’d to make
the desired bit-mask value, as in:

GSS_C_MUTUAL_FLAG | GSS_C_DELEG_FLAG

GSS_C_DELEG_FLAG

Requests that delegation of the initiator’s credentials be
permitted. See “Delegation” on page 46.

GSS_C_MUTUAL_FLAG

Requests mutual authentication. See “Mutual Authentication”
on page 47.

GSS_C_REPLAY_FLAG

The GSS-API: An Overview 37

Requests detection of repeated messages. See
“Out-of-Sequence Detection and Replay Detection”
on page 48.

GSS_C_SEQUENCE_FLAG

Requests detection of out-of-sequence messages. See
“Out-of-Sequence Detection and Replay Detection”
on page 48.

GSS_C_CONF_FLAG

Requests that the confidentiality service be allowed for
transferred messages; that is, that messages be encrypted. If
confidentiality is not allowed, then only data-origin
authentication and integrity services can be applied (this last
only if GSS_C_INTEG_FLAG is not false).

GSS_C_INTEG_FLAG

Requests that the integrity service be applicable to messages;
that is, that messages may be stamped with a MIC to ensure
their validity.

GSS_C_ANON_FLAG

Requests that the initiator remain anonymous. See
“Anonymous Authentication” on page 50.

time_req The number of seconds for which the context should remain
valid. Set this to zero (0) to request the default.

input_chan_bindings Specific peer-to-peer channel identification information
connected with the security context. See “Channel Bindings”
on page 50 for more information about channel bindings. Set
to GSS_C_NO_CHANNEL_BINDINGS if you don’t want to
use channel bindings.

input_token Token received from the context acceptor, if any. Should be
initialized to GSS_C_NO_BUFFER before the function is called
(or its length field set to zero).

actual_mech_type The mechanism actually used in the context. Specify NULL if
you don’t need to know.

output_token The token to send to the acceptor.

ret_flags Flags indicating additional services or parameters requested
for this context. ret_flags flags should be logically AND’d to test
the returned bit-mask value, as in:

38 GSS-API Programming Guide • February 2002 (Beta)

if (ret_flags & GSS_C_CONF_FLAG)

confidentiality = TRUE;

GSS_C_DELEG_FLAG

If true, indicates that the initiator’s credentials can be
delegated. See “Delegation” on page 46.

GSS_C_MUTUAL_FLAG

If true, indicates that mutual authentication is allowed. See
“Mutual Authentication” on page 47.

GSS_C_REPLAY_FLAG

If true, indicates that detection of repeated messages is in
effect. See “Out-of-Sequence Detection and Replay Detection”
on page 48.

GSS_C_SEQUENCE_FLAG

If true, indicates that detection of out-of-sequence messages is
in effect. See “Out-of-Sequence Detection and Replay
Detection” on page 48.

GSS_C_CONF_FLAG

If true, confidentiality service is allowed for transferred
messages; that is, that messages can be encrypted. If
confidentiality is not allowed, then only data-origin
authentication, and integrity services can be applied (this last
only if GSS_C_INTEG_FLAG is not returned as false).

GSS_C_INTEG_FLAG

If true, the integrity service can be applied to messages; that is,
that messages can be stamped with a MIC to ensure their
validity.

GSS_C_ANON_FLAG

If true, indicates that the context initiator will remain
anonymous. See “Anonymous Authentication” on page 50.

GSS_C_PROT_READY_FLAG

Sometimes context establishment can take several passes, and
sometimes the client might have to wait before it’s complete.
Even though a context is not fully established,
gss_init_sec_context() can indicate what protection

The GSS-API: An Overview 39

services, if any, will be available after the context is complete.
An application can therefore buffer its data, sending it when
the context is eventually fully established.

If ret_flags indicates GSS_C_PROT_READY_FLAG, the
protection services indicated by the GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG flags are available even if the context
has not been fully established (that is, if
gss_init_sec_context() returns
GSS_S_CONTINUE_NEEDED). An application can then call the
appropriate wrapping functions, gss_wrap() or
gss_get_mic(), with the preferred protection services, and
buffer the output for transfer when the context is complete.

If GSS_C_PROT_READY_FLAG is false, then the application
cannot make any assumptions about data protection, and must
wait until the context is complete (that is, when
gss_init_sec_context() returns GSS_S_COMPLETE).

Note – Earlier versions of the GSS-API did not support the
GSS_C_PROT_READY_FLAG argument, so developers wanting
to maximize portability should determine which per-message
services are available by looking at the GSS_C_CONF_FLAG
and GSS_C_INTEG_FLAG flags after a context has been
successfully established.

GSS_C_TRANS_FLAG

This flag indicates whether this context can be exported. For
more information on importing and exporting contexts, see
“Context Export and Import” on page 52.

time_rec Number of seconds for which the context will remain valid.
Specify NULL if you’re not interested in this value.

In general, the parameter values returned when a context is not fully established are
those that would be returned when the context is complete. See the
gss_init_sec_context() man page for more information.

gss_init_sec_context() returns GSS_S_COMPLETE if it completes successfully. If
a context-establishment token is required from the peer application, it returns
GSS_S_CONTINUE_NEEDED. If there are errors, it returns error codes, which can be
found on the gss_init_sec_context(3GSS) man page.

If context initiation fails, the client should disconnect from the server.

40 GSS-API Programming Guide • February 2002 (Beta)

Context Acceptance (Server)
The other half of context establishment is context acceptance, which is done through
the gss_accept_sec_context() function. In a typical scenario, a server accepts a
context initiated (with gss_init_sec_context()) by a client.

gss_accept_sec_context() takes as its main input an input token sent by the
initiator. It returns a context handle as well as an output token to be returned to the
initiator. Before gss_accept_sec_context() can be called, however, the server
should acquire credentials for the service requested by the client. The server acquires
these credentials with the gss_acquire_cred() function. Alternatively, the server
can bypass acquiring credentials explicitly and instead specify the default credential
(indicated by GSS_C_NO_CREDENTIAL) when calling
gss_accept_sec_context().

When calling gss_accept_sec_context(), the server passes the following
argument values:

� The credential handle returned by gss_acquire_cred(), or
GSS_C_NO_CREDENTIAL to indicate the default credential, for the cred_handle
argument.

� GSS_C_NO_CONTEXT for the context_handle argument, to indicate an initial null
context. Note that since gss_init_sec_context() is usually called in a loop,
subsequent calls should pass the context handle returned by previous calls.

� The context token received from the client for the input_token argument.

The full set of gss_accept_sec_context() arguments is described in the
following paragraphs.

Security context establishment may require several “handshakes”; that is, the initiator
and acceptor may have to send more than one piece of context information before the
context is fully established. Therefore, for portability, context acceptance should
always be done as part of a loop that checks whether the context has been fully
established. If it hasn’t, gss_accept_sec_context() returns a major-status code of
GSS_C_CONTINUE_NEEDED. Thus a loop should use the value returned by
gss_accept_sec_context() to test whether to continue the acceptance loop.

The context acceptor returns context information to the context initiator in the form of
the output token returned by gss_accept_sec_context(). Subsequently, the
acceptor can receive further information from the initiator as an input token, which is
then passed as an argument to subsequent calls of gss_accept_sec_context().
When gss_accept_sec_context() has no more tokens to send to the initiator, it
returns an output token with a length of zero. Therefore, in addition to checking for
the return status of gss_accept_sec_context(), the loop should check the output
token’s length to see if a further token must be sent. Before the loop begins, the output
token’s length should be initialized to zero, either by setting the output token to
GSS_C_NO_BUFFER or by setting the structure’s length field to a value of zero.

The GSS-API: An Overview 41

This is what such a loop might look like, highly generalized:

context = GSS_C_NO_CONTEXT
output token = GSS_C_NO_BUFFER

do

receive an input token from the initiator

call gss_accept_sec_context(context, cred handle, input token,
output token, other args...)

if (there’s an output token to send to the initiator)
send the output token to the initiator
release the output token

if (there’s a GSS-API error)
delete the context

until the context is complete

Naturally, a real loop will be more complete, doing much more extensive
error-checking. See “Accepting a Context” on page 79 (listing in
“server_establish_context()” on page 106) for a real example of such a
context-acceptance loop. Additionally, the gss_accept_sec_context() man page
gives a somewhat less generic example than this.

Again, the GSS-API does not send or receive tokens; these must be handled by the
application. Examples of token-transferring functions are found in “send_token()
and recv_token()” on page 115.

Here is a synopsis of gss_accept_sec_context(). For more information, see the
gss_accept_sec_context(3GSS) man page.

EXAMPLE 1–7 gss_accept_sec_context()

OM_uint32 gss_accept_sec_context (
OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,
const gss_cred_id_t acceptor_cred_handle,
const gss_buffer_t input_token_buffer,
const gss_channel_bindings_t input_chan_bindings,
const gss_name_t *src_name,
gss_OID *mech_type,
gss_buffer_t output_token,
OM_uint32 *ret_flags,
OM_uint32 *time_req,

gss_cred_id_t *delegated_cred_handle)

42 GSS-API Programming Guide • February 2002 (Beta)

minor_status The status code returned by the underlying mechanism.

context_handle The context handle to return to the initiator. This argument
should be set to GSS_C_NO_CONTEXT before the loop
begins.

acceptor_cred_handle The handle for the credentials acquired by the acceptor,
typically through gss_acquire_cred()). Can be initialized
to GSS_C_NO_CREDENTIAL to indicate a default credential
to use. If no default credential is defined, the function returns
GSS_C_NO_CRED.

(Note: if gss_acquire_cred() was passed
GSS_C_NO_NAME as a principal name, it produces a
credential that will cause gss_accept_sec_context() to
treat it as a default credential.)

input_token_buffer Token received from the context initiator.

input_chan_bindings Specific peer-to-peer channel identification information
connected with the security context. See “Channel Bindings”
on page 50 for more information about channel bindings. Set
to GSS_C_NO_CHANNEL_BINDINGS if you don’t want to
use channel bindings.

src_name The name of the initiating principal; for example,
nfs@machinename. If you don’t care, set to NULL.

mech_type The security mechanism used. Set to NULL if you don’t care
which mechanism is used.

output_token The token to send to the initiator. Should be initialized to
GSS_C_NO_BUFFER before the function is called (or its
length field set to zero). If the length is zero, no token needs
to be sent.

ret_flags Flags indicating additional services or parameters requested
for this context. ret_flags flags should be logically AND’d to test
the returned bit-mask value, as in:

if (ret_flags & GSS_C_CONF_FLAG)

confidentiality = TRUE;

GSS_C_DELEG_FLAG

Indicates the initiator’s credentials may be delegated via the
delegated_cred_handle argument. See “Delegation” on page 46.

GSS_C_MUTUAL_FLAG

Indicates that mutual authentication is available. See “Mutual
Authentication” on page 47.

The GSS-API: An Overview 43

GSS_C_REPLAY_FLAG

Indicates that detection of repeated messages is available. See
“Out-of-Sequence Detection and Replay Detection”
on page 48.

GSS_C_SEQUENCE_FLAG

Indicates that detection of out-of-sequence messages is
available. See “Out-of-Sequence Detection and Replay
Detection” on page 48.

GSS_C_CONF_FLAG

If true, confidentiality service is allowed for transferred
messages; that is, that messages can be encrypted. If
confidentiality is not allowed, then only data-origin
authentication and integrity services can be applied (this last
only if GSS_C_INTEG_FLAG is not returned as false).

GSS_C_INTEG_FLAG

If true, the integrity service can be applied to messages; that
is, that messages can be stamped with a MIC to ensure their
validity.

GSS_C_ANON_FLAG

Indicates that the context initiator will be anonymous. See
“Anonymous Authentication” on page 50.

GSS_C_PROT_READY_FLAG

Sometimes context establishment can take several passes, and
sometimes the client can send enough information on the
initial passes to allow the acceptor to process context-related
data, even though the context is incomplete. In those
circumstances the acceptor needs to know in which way, if
any, the information has been protected.

If true, GSS_C_PROT_READY_FLAG indicates that the
protection services indicated by the GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG flags are available. The acceptor can
therefore call the appropriate data–reception functions,
gss_unwrap() or gss_verify_mic(), with these services
in mind.

44 GSS-API Programming Guide • February 2002 (Beta)

(Additionally, as with the context initiator, the acceptor can
use these flags in buffering any data it might want to send to
the initiator, transmitting it when the context is fully
established.)

If GSS_C_PROT_READY_FLAG is false, then the acceptor
cannot make any assumptions about data protection, and
must wait until the context is complete (that is, when
gss_accept_sec_context() returns GSS_S_COMPLETE).

Note – Earlier versions of the GSS-API did not support the
GSS_C_PROT_READY_FLAG argument, so developers
wanting to maximize portability should determine which
per-message services are available by looking at the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG flags after a
context has been successfully established.

GSS_C_TRANS_FLAG

If true, this context can be exported. For more information on
importing and exporting contexts, see “Context Export and
Import” on page 52.

time_rec Number of seconds for which the context will remain valid.
Specify NULL if you’re not interested in this value.

delegated_cred_handle The credential handle for credentials received from the
context initiator, that is, the client’s credentials. Valid only if
the initiator has requested that the acceptor act as a proxy:
that is, if the ret_flags argument resolves to
GSS_C_DELEG_FLAG. See “Delegation” on page 46 for more
about delegation.

gss_accept_sec_context() returns GSS_S_COMPLETE if it completes
successfully. If the context is not complete, it returns GSS_S_CONTINUE_NEEDED. If
there are errors, it returns error codes; for more information, see the
gss_accept_sec_context(3GSS) man page.

Additional Context Services
The gss_init_sec_context() function (see “Context Initiation (Client)”
on page 35) allows an application to request certain additional data protection services
beyond basic context establishment. These services, discussed below, are requested
through the req_flags argument to gss_init_sec_context().

The GSS-API: An Overview 45

Because not all mechanisms offer all these services, gss_init_sec_context()’s
ret_flags argument indicates which of them are available in a given context. Similarly,
the context acceptor can determine which services are available by looking at the
ret_flags value returned by the gss_accept_sec_context() function. The
additional services are explained in the following sections.

Delegation

If permitted, a context initiator can request that the context acceptor act as a proxy, in
which case the acceptor can initiate further contexts on behalf of the initiator. An
example of such delegation would be where someone on Machine A wanted to

46 GSS-API Programming Guide • February 2002 (Beta)

rlogin to Machine B, and then rlogin from Machine B to Machine C, as shown in
Figure 1–8. (Depending on the mechanism, the delegated credential identifies B either
as A or “B acting for A.”)

Server2

Server1

Server1

C

C

Client

C

Client

C

gss_init_sec_context()
with credential delegation

rlogin rlogin

1. Credential delegation

2. Data transfer

FIGURE 1–8 Credential Delegation

If delegation is permitted, ret_flags will be set to GSS_C_DELEG_FLAG; the acceptor
receives a delegated credential as the delegated_cred_handle argument of
gss_accept_sec_context(). Delegating a credential is not the same as exporting
a context (see “Context Export and Import” on page 52). One difference is that an
application can delegate its credentials multiple times simultaneously, while a context
can only be held by one process at a time.

Mutual Authentication

If you are using ftpto download files into a public ftp site, you probably don’t
require that the site prove its identity, even if it requires proof of your own. On the
other hand, if you are providing a password or credit card number to an application,

The GSS-API: An Overview 47

you probably want to be sure of the receiver’s bona fides. In these cases, mutual
authentication is required — that is, both the context initiator and the acceptor must
prove their identities.

A context initiator can request mutual authentication by setting
gss_init_sec_context()’s req_flags argument to the value
GSS_C_MUTUAL_FLAG. If mutual authentication has been authorized, the function
indicates authorization by setting the ret_flags argument to this value. If mutual
authentication is requested but not available, it is the initiating application’s responsibility to
respond accordingly — the GSS-API will not terminate a context for this reason. Some
mechanisms will perform mutual authentication regardless of whether it has been
requested.

Out-of-Sequence Detection and Replay Detection

In the common case where a context initiator is transmitting several sequential data
packets to the acceptor, some mechanisms allow the context acceptor to check whether
or not the packets are arriving as they should: in the right order, and with no
unwanted duplication of packets (shown in Figure 1–9). The acceptor checks for these
two conditions when it verifies a packet’s validity or when it unwraps a packet; see
“Unwrapping and Verification” on page 61 for more information.

48 GSS-API Programming Guide • February 2002 (Beta)

MSG
2

MSG
1

MSG
3

MSG
2

MSG
1

MSG
3

Client

Server

MSG
2

MSG
1

MSG
1

MSG
2

MSG
1

MSG
3

Client

Server

Messages
Out of Sequence

Message
Replayed

Protocol

Protocol

FIGURE 1–9 Message Replay and Message Out-of-Sequence

To request that these two conditions be looked for, the initiator should logically OR the
req_flags argument with the values GSS_C_REPLAY_FLAG or
GSS_C_SEQUENCE_FLAG when initiating the context with
gss_init_sec_context().

The GSS-API: An Overview 49

Anonymous Authentication

In normal use of the GSS-API, the initiator’s identity is made available to the acceptor
as a result of the context establishment process. However, context initiators can
request that their identity not be revealed to the context acceptor.

As an example, consider an application providing access to a database containing
medical information, and offering unrestricted access to the service. A client of such a
service might want to authenticate the service (in order to establish trust in any
information retrieved from it), but might not want the service to be able to obtain the
client’s identity (perhaps due to privacy concerns about the specific inquiries, or
perhaps to avoid being placed on mailing lists).

To request anonymity, set the req_flags argument of gss_init_sec_context() to
GSS_C_ANON_FLAG; to check if anonymity is available, check the ret_flags argument to
gss_init_sec_context() or gss_accept_sec_context() to see if this same
value is returned.

If anonymity is in effect and gss_display_name() is called on a client name
returned by gss_accept_sec_context() or gss_inquire_context(),
gss_display_name() will produce a generic anonymous name.

Note – It is the application’s responsibility to take appropriate action if anonymity is
requested but not permitted — the GSS-API will not terminate a context on these
grounds.

Channel Bindings
For many applications, basic context establishment is sufficient to assure proper
authentication of a context initiator. In cases where additional security is desired, the
GSS-API offers the use of channel bindings. Channel bindings are tags that identify the
particular data channel being used — that is, the origin and endpoint (initiator and
acceptor) of the context. Because these tags are specific to the originator and recipient
applications, they offer more proof of a valid identity.

Channel bindings are pointed to by the gss_channel_bindings_t data type, which
is a pointer to a gss_channel_bindings_struct structure as shown in Example
1–8:

EXAMPLE 1–8 gss_channel_bindings_t

typedef struct gss_channel_bindings_struct {
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

50 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE 1–8 gss_channel_bindings_t (Continued)

} *gss_channel_bindings_t;

The first two fields are the address of the initiator along with an address type that
identifies the format in which the initiator’s address is being sent. For example, the
inititiator_addrtype might be sent to GSS_C_AF_INET to indicate that the
initiator_address is in the form of an Internet address — that is, an IP address. Similarly,
the third and fourth fields indicate the address and address type of the acceptor. The
final field, application_data, can be used by the application as it wants (it’s good
programming practice to set it to GSS_C_NO_BUFFER if you’re not going to use it). If
an application does not want to specify an address, it should set its address type field
to GSS_C_AF_NULLADDR. “Address Types for Channel Bindings” on page 128 has a
list of valid address type values.

These address types indicate address families, rather than specific addressing formats.
For address families that contain several alternative address forms, the initiator_address
and acceptor_address fields must contain sufficient information to determine which
address form is used. When not otherwise specified, addresses should be specified in
network byte-order (that is, native byte-ordering for the address family).

To establish a context using channel bindings, the input_chan_bindings argument for
gss_init_sec_context() should point to an allocated channel bindings structure.
The function concatenates the structure’s fields into an octet string, calculates a MIC
over this string, and binds the MIC to the output token produced by
gss_init_sec_context(). The application then sends the token to the context
acceptor, which receives it and calls gss_accept_sec_context(). (See “Context
Acceptance (Server)” on page 41.) gss_accept_sec_context() calculates a MIC
on the received channel bindings and returns GSS_C_BAD_BINDINGS if the MIC does
not match.

Because gss_accept_sec_context() returns the transmitted channel bindings, an
acceptor can do its own security checking based on the received channel binding
values. For example, it might check the value of application_data against code words
kept in a secure database. However, in many cases this is “overkill.”

The GSS-API: An Overview 51

Note – An underlying mechanism might or might not provide confidentiality for
channel binding information. Therefore, an application should not include sensitive
information as part of channel bindings unless it knows that confidentiality is ensured.
The application might check the ret_flags argument of gss_init_sec_context() or
gss_accept_sec_context(), especially for the values GSS_C_CONF_FLAG and
GSS_C_PROT_READY_FLAG in order to determine if confidentiality is available. See
“Context Initiation (Client)” on page 35 or “Context Acceptance (Server)” on page 41
for information on ret_flags.

Individual mechanisms can impose additional constraints on addresses and address
types that can appear in channel bindings. For example, a mechanism can verify that
the initiator_address field of the channel bindings presented to
gss_init_sec_context() contains the correct network address of the host system.
Portable applications should therefore ensure that they either provide correct
information for the address fields or omit addressing information, specifying
GSS_C_AF_NULLADDR as the address types.

Context Export and Import
The GSS-API provides a means for exporting and importing a context. The primary
reason for this ability is to allow a multiprocess application (usually the context
acceptor) to transfer a context from one process to another. For example, an acceptor
might have one process that listens for context initiators and another that processes
data sent in a context. (“test_import_export_context()” on page 109 shows
how a context can be saved and restored with these functions.)

The function gss_export_sec_context() creates an interprocess token that
contains information about the exported context. (See “Interprocess Tokens”
on page 28. This buffer to receive the token should be set to GSS_C_NO_BUFFER
before gss_export_sec_context() is called.)

The application then passes the token on to the other process, which accepts it and
passes it to gss_import_sec_context(). The same functions used to pass tokens
between applications can often be used to pass them between processes as well.

Only one instantiation of a security process can exist at a time.
gss_export_sec_context() deactivates the exported context and sets its context
handle to GSS_C_NO_CONTEXT. It also deallocates any and all process-wide
resources associated with that context. In the event that context exportation cannot be
completed, gss_export_sec_context() does not return an interprocess token, but
leaves the existing security context unchanged.

Not all mechanisms permit contexts to be exported. An application can determine
whether a context can be exported by checking the ret_flags argument to
gss_accept_sec_context() or gss_init_sec_context(). If this flag is set to

52 GSS-API Programming Guide • February 2002 (Beta)

GSS_C_TRANS_FLAG, then the context can be exported. (See “Context Acceptance
(Server)” on page 41 and “Context Initiation (Client)” on page 35.)

Figure 1–10 shows how a multiprocess acceptor might use context exporting to
multitask. In this case, Process 1 receives and processes tokens, separating the
context-level tokens from the data tokens, and passes the tokens on to Process 2,
which deals with data in an application-specific way. In this illustration, the clients
have already gotten export tokens from gss_init_sec_context(); they pass them
to a user-defined function, send_a_token(), which indicates whether the token it’s
transmitting is a context-level token or a message token. send_a_token() transmits
the tokens to the server. Although not shown here, send_a_token() would
presumably be used to pass tokens between threads as well.

The GSS-API: An Overview 53

Process 2 - processes data

Process 1 - accepts tokens

Multiprocess Server

gss_accept_sec_context()

gss_export_sec_context()

gss_import_sec_context()

send_a_token()

send_a_token()

send_a_token() takes
token, flag (data or context)
as arguments

get_a_token()

MSG

MSG

Client 1

MSG

Client 2

MSG

send_a_token()

send_a_token()

MSG

MSG

MSG

If context
token

If data
token

= context-level token

= data token

FIGURE 1–10 Exporting Contexts: Multithreaded Acceptor Example

Context Information
The GSS-API provides a function, gss_inquire_context(), that obtains

54 GSS-API Programming Guide • February 2002 (Beta)

information about a given security context (even an incomplete one). Given a context
handle, gss_inquire_context() provides the following information about it:

� The name of the context initiator.

� The name of the context acceptor.

� The number of seconds for which the context will remain valid.

� The security mechanism used with the context.

� Several context-parameter flags. These flags are the same as the ret_flags argument
of the gss_accept_sec_context() function (see “Context Acceptance (Server)”
on page 41), covering delegation, mutual authentication, and so on.

� A flag indicating whether or not the inquiring application was the context initiator.

� A flag indicating whether or not the context is fully established.

For more information, see the gss_inquire_context(3GSS) man page.

Data Protection
After a context has been established between two peers — say, a client and a server —
messages can be protected before being sent.

If you only establish a context and then send a message, you are utilizing the most
basic GSS-API protection: authentication, wherein the recipient knows that the message
comes from the principal claiming to be the sender. Depending on the underlying
security mechanism being used, the GSS-API provides two other levels of protection:

� Integrity — The message is given a Mechanism Integrity Code (MIC) that can be
checked by the recipient to ensure that the received message is the same as the one
sent. The GSS-API function gss_get_mic() generates a MIC.

� Confidentiality — In addition to receiving a MIC, the message is encrypted. The
GSS-API function gss_wrap() performs the encryption.

The difference between the two functions is shown in Figure 1–11.

The GSS-API: An Overview 55

MSG

MSG

MIC MSG

gss_wrap()
with confidentiality

gss_get_mic()

MIC = Message Integrity Code
MSG = Message

(Contains
MIC and message)

FIGURE 1–11 gss_get_mic() vs. gss_wrap()

Which function you use depends on your needs. Because gss_wrap() includes the
integrity service, many programs use gss_wrap(). They can test for the availability
of the confidentiality service, calling gss_wrap() with or without it, depending on
whether it’s available. An example is “Sending the Data” on page 73 (program listing
in “call_server()” on page 87). However, since messages protected with
gss_get_mic() don’t need to be unwrapped by a recipient, there is a savings in
CPU cycles over using gss_wrap(). Thus a program that doesn’t need confidentiality
may prefer to protect messages with gss_get_mic().

Message Tagging With gss_get_mic()

Programs can use gss_get_mic() to add a cryptographic MIC to a message; the
recipient can check this MIC to see if the received message is the same as the one that
was sent by calling gss_verify_mic(). gss_get_mic() has the following form:

OM_uint32 gss_get_mic (
OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,
gss_qop_t qop_req,
const gss_buffer_t message_buffer,

gss_buffer_t msg_token)

minor_status The status code returned by the underlying mechanism.

56 GSS-API Programming Guide • February 2002 (Beta)

context_handle The context under which the message will be sent.

qop_req A requested QOP (Quality of Protection). This is the cryptographic
algorithm used in generating the MIC. For portability’s sake,
applications should specify the default QOP by setting this
argument to GSS_C_QOP_DEFAULT whenever possible. (See
Appendix C on specifying a non-default QOP.)

message_buffer The message to be tagged with a MIC. This argument must be in the
form of a gss_buffer_desc object; see “Strings and Similar Data”
on page 17. Must be freed up with gss_release_buffer() when
you have finished with it.

msg_token The token containing the message and its MIC. This must be freed
up with gss_release_buffer() when you have finished with it.

Note that gss_get_mic() produces separate output for the message and the MIC.
(This is different from gss_wrap(), which bundles them together as output.) This
separation means that a sender application must arrange to send both the message
and its MIC. More significantly, the receiving application must be able to receive and
distinguish the message and the MIC. Ways to ensure the proper processing of
message and MIC include:

� Through program control (that is, state). A recipient application might know to call
its receiving function twice, once to get a message, once to get the message’s MIC.

� Through flags. Sending and receiving functions can flag what kind of token they’re
including.

� Through user-defined token structures that might include both message and MIC.

gss_get_mic() returns GSS_S_COMPLETE if it completes successfully. If the
specified QOP is not valid, it returns GSS_S_BAD_QOP. For more information, see the
gss_get_mic(3GSS) man page.

Message Wrapping With gss_wrap()

Messages can also be “wrapped” by the gss_wrap() function. Like
gss_get_mic(), gss_wrap() provides a MIC; it also encrypts a given message, if
confidentiality is requested (and permitted by the underlying mechanism). The
message receiver “unwraps” the message with gss_unwrap(). gss_wrap() looks
like this:

OM_uint32 gss_wrap (
OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req
const gss_buffer_t input_message_buffer,
int *conf_state,

gss_buffer_t output_message_buffer)

The GSS-API: An Overview 57

minor_status The status code returned by the underlying security
mechanism.

context_handle The context under which this message will be sent.

conf_req_flag A flag for requesting the confidentiality service (encryption).
If non-zero, both confidentiality and integrity are requested;
if zero, only the integrity service is requested.

qop_req A requested QOP (Quality of Protection). This is the
cryptographic algorithm used in generating the MIC and
doing the encryption. For portability’s sake, applications
should specify the default QOP by setting this argument to
GSS_C_QOP_DEFAULT whenever possible. (See Appendix C
on specifying a non-default QOP.)

input_message_buffer The message to be wrapped. This argument must be in the
form of a gss_buffer_desc object; see “Strings and Similar
Data” on page 17. Must be freed up with
gss_release_buffer() when you have finished with it.

conf_state A flag that, on the function’s return, indicates whether
confidentiality was applied or not. If non-zero,
confidentiality, message origin authentication, and integrity
services were applied. If zero, only message-origin
authentication and integrity were applied. Specify NULL if
not required.

output_message_buffer The buffer for the wrapped message. After the application is
done with the message, it must release this buffer with
gss_release_buffer().

Unlike gss_get_mic(), gss_wrap() wraps the message and its MIC together in the
outgoing message, so the function that transmits them need be called only once. On
the other end, gss_unwrap() will extract the message (the MIC is not visible to the
application).

gss_wrap() returns GSS_S_COMPLETE if the message was successfully wrapped. If
the requested QOP was not valid, it returns GSS_S_BAD_QOP. “Sending the Data”
on page 73 (listing in “call_server()” on page 87) shows an example of
gss_wrap() being used. For more information, see the gss_wrap(3GSS) man page.

Wrap Size

Wrapping a message with gss_wrap() increases its size. Because the protected
message packet must not be too big to “fit through” a given transportation protocol,
the GSS-API provides a function, gss_wrap_size_limit(), that calculates the
maximum size of a message that can be wrapped without becoming too large. The

58 GSS-API Programming Guide • February 2002 (Beta)

application can break up messages that exceed this size before calling gss_wrap().
It’s a good idea to check the wrap-size limit before actually wrapping the message.

The amount of the size increase depends on two things:

� Which QOP (Quality of Protection) algorithm is used for making the
transformation. Since the default QOP can vary from one implementation of the
GSS-API to another, a wrapped message can vary in size even if you do not specify
a non-default QOP. This is shown in Figure 1–12:

MSG

MSG

gss_wrap()
(QOP 1)

gss_wrap()
(QOP 2)

Protocol

Protocol

Maximum data
packet size

permitted by
protocol

gss_wrap_size_limit()
gives maximum size
of data that will "fit

protocol" after wrapping

QOP = Quality of Protection
 (protection algorithm)

FIGURE 1–12 Wrap Size (Different QOPs)

� Whether confidentiality is invoked. Whether or not confidentiality is applied,
gss_wrap() still increases the size of a message, because it embeds a MIC into the
transmitted message. However, encrypting the message can further increase the
size. Figure 1–13 shows how this works.

The GSS-API: An Overview 59

MSG
gss_wrap()

(With confidentiality)

Protocol

Protocol

Maximum data
packet size

permitted by
protocol

gss_wrap_size_limit()
gives maximum size
of data that will "fit

protocol" after wrapping

gss_wrap()
(No confidentiality)

MSGMSG

(MIC is
included)

FIGURE 1–13 Wrap Size (Confidentiality/No Confidentiality)

gss_wrap_size_limit() looks like this:

OM_uint32 gss_wrap_size_limit (
OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req,
OM_uint32 req_output_size,

OM_uint32 *max_input_size)

minor_status The status code returned by the underlying mechanism.

context_handle The context under which the data is transmitted.

conf_req_flag A flag for requesting the confidentiality service (encryption). If
non-zero, both confidentiality and integrity are requested; if zero,
only the integrity service is requested.

qop_req A requested QOP (Quality of Protection). This is the cryptographic
algorithm used in generating the MIC and doing the encryption.
For portability’s sake, applications should specify the default QOP

60 GSS-API Programming Guide • February 2002 (Beta)

by setting this argument to GSS_C_QOP_DEFAULT whenever
possible. (See Appendix C on specifying a non-default QOP.)

req_output_size The maximum size (as an int) of a data chunk that a given
transport protocol can handle. You must provide this information
yourself; since the GSS-API is protocol-independent, it has no way
of knowing which protocol is being used.

max_input_size Returned by the function, this is the maximum size of an
unwrapped message that, when wrapped, will not exceed
req_output_size.

gss_wrap_size_limit() returns GSS_S_COMPLETE if it completes successfully. If
the specified QOP was not valid, it returns GSS_S_BAD_QOP. “call_server()”
on page 87 includes an example of gss_wrap_size_limit() being used to return
the maximum original message size, both if confidentiality is used and if it is not used.

Successful completion of this call does not necessarily guarantee that gss_wrap()
will be able to protect a message of length max_input_size bytes, since this ability can
depend on the availability of system resources at the time that gss_wrap() is called.
For more information, see the gss_wrap_size_limit(3GSS) man page.

Unwrapping and Verification
Once it has been received, a wrapped message must be unwrapped with
gss_unwrap(). gss_unwrap() automatically verifies the message against the MIC
that is embedded with the wrapped message. If the sender did not wrap the message
but used gss_get_mic() to produce a MIC, then the received message can be
verified against that MIC with gss_verify_mic(). In this latter case the acceptor
must arrange to receive both the message and its MIC.

gss_unwrap()

gss_unwrap() looks like this:

OM_uint32 gss_unwrap (
OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,
const gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer,
int *conf_state

gss_qop_t *qop_state)

minor_status The status code returned by the underlying security
mechanism.

The GSS-API: An Overview 61

context_handle The context under which this message will be sent.

input_message_buffer The wrapped message. This argument must be in the form of
a gss_buffer_desc object; see “Strings and Similar Data”
on page 17. Must be freed up with
gss_release_buffer() when you have finished with it.

output_message_buffer The buffer for the unwrapped wrapped message. After the
application is done with the unwrapped message, it must
release this buffer with gss_release_buffer(). This
argument is also a gss_buffer_desc object.

conf_state A flag that indicates whether confidentiality was applied or
not. If non-zero, then confidentiality, message origin
authentication, and integrity services were applied. If zero,
only message-origin authentication and integrity were
applied. Specify NULL if not required.

qop_state The QOP (Quality of Protection) used. This is the
cryptographic algorithm used in generating the MIC and
doing the encryption. Specify NULL if not required.

gss_unwrap() returns GSS_S_COMPLETE if the message was successfully
unwrapped. If it cannot verify the message against its MIC, it returns
GSS_S_BAD_SIG.

gss_verify_mic()

If a message has been unwrapped, or if it was never wrapped in the first place, it can
be verified with gss_verify_mic(). gss_verify_mic() looks like this:

OM_uint32 gss_verify_mic (
OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,
const gss_buffer_t message_buffer,
const gss_buffer_t token_buffer,

gss_qop_t qop_state)

minor_status The status code returned by the underlying mechanism.

context_handle The context under which the message will be sent.

message_buffer The received message. This argument must be in the form of a
gss_buffer_desc object; see “Strings and Similar Data”
on page 17. Must be freed up with gss_release_buffer() when
you have finished with it.

token_buffer The token containing the received MIC. This argument must be in
the form of a gss_buffer_desc object; see “Strings and Similar

62 GSS-API Programming Guide • February 2002 (Beta)

Data” on page 17. This buffer must be freed up with
gss_release_buffer() when the application has finished with
it.

qop_state The QOP (Quality of Protection) that was applied in generating the
MIC. Specify NULL if not required.

gss_verify_mic() returns GSS_S_COMPLETE if the message was successfully
verified. If it cannot verify the message against its MIC, it returns GSS_S_BAD_SIG.

Transmission Confirmation (Optional)
After the recipient has unwrapped or verified the transmitted message, it might want
to send a confirmation to the sender. This means sending back a MIC for that message.
Consider the case of a message that was not wrapped by the sender, but only tagged
with a MIC with gss_get_mic(). The process, illustrated in Figure 1–14, is as
follows:

1. The initiator tags the message with gss_get_mic().

2. The initiator sends the message and MIC to the acceptor.

3. The acceptor verifies the message with gss_verify_mic().

4. The acceptor sends the MIC back to the initiator.

5. The initiator verifies the received MIC against the original message with
gss_verify_mic().

The GSS-API: An Overview 63

CLIENT SERVER

MIC

gss_get_mic()

gss_verify_mic()

gss_verify_mic()

MIC = Message Integrity Code

?=

?=
1

2

3

4

5

MIC MSG

MIC MSG

MSG

MIC MSG

MIC

FIGURE 1–14 Confirming MIC’d Data

In the case of wrapped data, the gss_unwrap() function never produces a separate
MIC, so the recipient must generate it from the received (and unwrapped) message.
The process, illustrated in Figure 1–15, is as follows:

1. The initiator wraps the message with gss_wrap().

2. The initiator sends the wrapped message.

3. The acceptor unwraps the message with gss_unwrap().

4. The acceptor calls gss_get_mic() to produce a MIC for the unwrapped message.

5. The acceptor sends the derived MIC to the initiator.

6. The initiator compares the received MIC against the original message with
gss_verify_mic().

64 GSS-API Programming Guide • February 2002 (Beta)

CLIENT SERVER

MSG

MIC MSG

MIC

gss_wrap()

gss_verify_mic()
gss_get_mic()

MSG

gss_unwrap()

MIC = Message Integrity Code

MIC

?=

1

2

3

4

5

6

FIGURE 1–15 Confirming Wrapped Data

Context Deletion and Data Deallocation
After all messages have been sent and received, and the initiator and acceptor
applications have finished, both applications should call
gss_delete_sec_context() to destroy their shared context.
gss_delete_sec_context() deletes local data structures associated with the
context. gss_delete_sec_context() looks like this:

OM_uint32 gss_delete_sec_context (
OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,

The GSS-API: An Overview 65

gss_buffer_t output_token)

minor_status The status code returned by the underlying mechanism.

context_handle The context to delete.

output_token Should be set to GSS_C_NO_BUFFER.

See the gss_delete_sec_context(3GSS) man page for more information.

For good measure, applications should be sure to deallocate any data space they have
allocated for GSS-API data. The functions that do this are gss_release_buffer(),
gss_release_cred(), gss_release_name(), and gss_release_oid_set().
See their man pages for more information.

66 GSS-API Programming Guide • February 2002 (Beta)

CHAPTER 2

A Walk–Through of the Sample
GSS-API Programs

Introduction to the Sample Programs
Appendix A contains source code for two C-language applications, one for a client and
one for a server, that make use of the GSS-API. This chapter guides you through those
applications, step-by-step; it is intended to be read while referring to Appendix A. It
does not attempt to explain every facet of the applications in detail. Rather, it focuses
on the aspects that relate to using the GSS-API.

Caution – Because the GSS_API does not automatically clean up after itself,
applications and functions using the GSS-API must do so themselves. This means that
functions that use GSS-API buffers or GSS-API namespaces, for example, should call
GSS-API functions such as gss_release_buffer() and gss_release_name()
when they are finished.

To save space and avoid repetition, we have generally not included such cleanup in
the following code walk-through. Be aware that it must be performed. However; refer
to Appendix A to see the sample programs in full if you are unsure how or when to
use the cleanup functions.

Client-Side GSS-API: gss-client
The sample client-side program, gss-client, creates a security context with a server,
establishes security parameters, and sends a string (the “message”) to the server. It
uses a simple TCP-based sockets connection to make its connection.

67

gss-client takes this form on the command line:

gss-client [-port port] [-d] [-mech mech] host service [-f] msg

Specifically, gss-client does the following:

1. Parses the command line.

2. Creates an OID (object ID) for a mechanism, if specified.

3. Creates a connection to the server.

4. Establishes a context.

5. Wraps the message.

6. Sends the message.

7. Verifies that the message has been “signed” correctly by the server.

Following is a step-by-step description of how gss-client works. Because it is a sample
program designed to show off functionality, the parts of the program that do not
closely relate to the steps above are skipped. Some features, such as importing and
exporting contexts, or getting a wrap size, are discussed elsewhere in this manual.

Overview: main() (Client)
As with all C programs, the outer shell of the program is contained in the entry-point
function, main(). main() performs four functions:

1. It parses command-line arguments, assigning them to variables:

� If specified, port is the port number for making the connection to the remote
machine specified by host.

� If the -d flag is set, security credentials should be delegated to the server.
Specifically, the deleg_flag variable is set to the GSS-API value
GSS_C_DELEG_FLAG; otherwise deleg_flag is set to zero.

� mech is the (optional) name of the security mechanism, such as Kerberos v5 or
X.509, to use. If no mechanism is specified, the GSS-API will use a default
mechanism.

� The name of the network service requested by the client (such as telnet, ftp, or
login service) is assigned to service_name.

� Finally, msg is the string to send to the server as protected data. If the -f option
is specified, then msg is the name of a file from which to read the string.

An example command line might look like this:

% gss-client -port 8080 -d -mech kerberos_v5 erebos.eng nfs "ls"

This command line specifies neither mechanism nor port, and does not use
delegation:

68 GSS-API Programming Guide • February 2002 (Beta)

% gss-client erebos.eng nfs "ls"

2. It calls parse_oid() to create a GSS-API OID (object identifier) from the name of
a security mechanism (if such a name has been provided on the command line):

if (mechanism)

parse_oid(mechanism, &g_mechOid);where mechanism is the string to
translate and g_mechOid is a pointer to a gss_OID object for the mechanism. See
Appendix C for more about specifying a non-default mechanism.

3. It calls call_server(), which does the actual work of creating a context and
sending data.

if (call_server(hostname, port, g_mechOid, service_name,
deleg_flag, msg, use_file) < 0)

exit(1);

4. It releases the storage space for the OID if it has not been released yet.

if (g_mechOID != GSS_C_NULL_OID)

(void) gss_release_oid(&min_stat, &g_mechoid);

Note that gss_release_oid(), while supported by the Sun implementation of
the GSS-API, is not supported by all GSS-API implementations and is considered
nonstandard. Since applications should if possible use the default mechanism
provided by the GSS-API instead of allocating one (with gss_str_to_oid()),
the gss_release_oid() command generally should not be used.

Specifying a Non-Default Mechanism
As a general rule, any application using the GSS-API should not attempt to specify a
particular mechanism, but instead use the default mechanism provided by the
GSS-API implementation. The default mechanism is specified by setting the gss_OID
representing the mechanism to the value GSS_C_NULL_OID.

Because setting a non-default mechanism is not recommended, this part of the
program does not cover it here. Interested readers can see how the client application
parses the user-input mechanism name by looking at the code in “parse_oid()”
on page 86 and by looking at Appendix C, which explains how to using non-default
OIDs.

A Walk–Through of the Sample GSS-API Programs 69

Calling the Server
After the mechanism has been put in the form of a gss_OID, you can do the actual
work, so main() now calls the function call_server() with much the same
arguments as on the command line.

call_server(hostname, port, g_mechOid, service_name,

deleg_flag, msg, use_file);

(use_file is a flag indicating whether the message to be sent is contained in a file or
not.)

Connecting to the Server
After declaring its variables, call_server() first makes a connection with the
server:

if ((s = connect_to_server(host, port)) < 0)

return -1;where s is a file descriptor (an int, initially returned by a call to
socket()).

connect_to_server() is a simple function that uses sockets to create a connection.
Because it doesn’t use the GSS-API, it’s skipped here. You can see it at
“connect_to_server()” on page 96.

Establishing a Context
After the connection is established, call_server() uses the function
client_establish_context() to, yes, establish the security context:

int client_establish_context(s, service_name, deleg_flag, oid,

&context, &ret_flags)where

� s is a file descriptor representing the connection established by
connect_to_server().

� service_name is the network service requested (for example, nfs).

� deleg_flag specifies whether or not the server may act as a proxy for the client.

� oid is the mechanism.

� context is the context to be created.

� ret_flags is an int that specifies any flags returned by the GSS-API function
gss_init_sec_context().

To initiate the context, the application uses the function gss_init_sec_context().
As this function, like most GSS-API functions, requires names to be in internal

70 GSS-API Programming Guide • February 2002 (Beta)

GSS-API format, the application must first translate the service name from a string to
internal format. For that, it can use gss_import_name():

maj_stat = gss_import_name(&min_stat, &send_tok,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &target_name);

This function takes the name of the service (stored in an opaque GSS_API buffer,
send_tok) and converts it to the GSS_API internal name target_name. (send_tok
is used to save space, instead of declaring a new gss_buffer_desc.) The third
argument is a gss_OID type that indicates the name format that send_tok has. In
this case, it is GSS_C_NT_HOSTBASED_SERVICE, which means a service of the format
service@host. (See “Name Types” on page 127 for other possible values for this
argument.)

Once the service has been rendered in GSS-API internal format, we can proceed with
establishing the context. In order to maximize portability, context-establishment
should always be performed as a loop (see “Context Initiation (Client)” on page 35).

First, the application initializes the context to be null:

*gss_context = GSS_C_NO_CONTEXT;It does the same for the token that we’ll receive
from the server:

token_ptr = GSS_C_NO_BUFFER;

The application now enters the loop. The loop proceeds by checking two things: the
status returned by gss_init_sec_context() and the size of the token to be sent to
the server (also generated by gss_init_sec_context()). If the token’s size is zero,
then the server is not expecting another token from the client. The pseudocode for the
loop that follows looks like this:

do
gss_init_sec_context()
if no context was created

uh-oh. Exit with error;
if the status is neither "complete" nor "in process"

uh-oh. Release the service namespace and exit with error;
if there’s a token to send to the server (= if its size is nonzero)

send it;
if sending it fails,

oops! release the token and the service
namespaces and exit with error;

release the namespace for the token we’ve just sent;
if we’re not done setting up the context

receive a token from the server;
while the context is not complete

First, the call to gss_init_sec_context():

A Walk–Through of the Sample GSS-API Programs 71

do {
maj_stat = gss_init_sec_context(&min_stat,

GSS_C_NO_CREDENTIAL,
gss_context,
target_name
oid
GSS_C_MUTUAL_FLAG |

GSS_C_REPLAY_FLAG |
deleg_flag,

0,
NULL,
&send_tok,
ret_flags,

NULL);

where the arguments are as follows:

� The status code to be set by the underlying mechanism.

� The credential handle. We use GSS_C_NO_CREDENTIAL to act as a default
principal.

� (gss_context) The context handle to be created.

� (target_name) The service, as a GSS_API internal name.

� (oid) The mechanism.

� Request flags. In this case, the client requests that a) the server authenticate itself,
b) that message-duplication be turned on, and c) that the server act as a proxy if
requested.

� No time limit for the context.

� No request for channel bindings.

� (token_ptr) Pointer to the token received from the server, if any.

� The mechanism actually used by the server (set to NULL here because the
application isn’t interested in this value).

� (&send_tok) The token created by gss_init_sec_context() to send to the
server.

� Return flags. Set to NULL because we ignore them.

You might have noticed that the client does not need to acquire credentials before
initiating a context. On the client side, credential management is handled
transparently by the GSS-API. That is, the GSS-API “knows” how to get credentials
created by this mechanism for this principal (usually at login time). That is why the
application passes gss_init_sec_context() a default credential. On the server
side, however, a server application must explicitly acquire credentials for a service
before accepting a context. See “Acquiring Credentials” on page 77.

After checking that it has a context (but not necessarily a complete one) and that
gss_init_sec_context() is returning valid status, the appliction sees if

72 GSS-API Programming Guide • February 2002 (Beta)

gss_init_sec_context() has given it a token to send to the server. If it hasn’t, it’s
because the server has indicated that it doesn’t need (another) one. If it has, then send
it to the server. If sending it fails, release the namespaces for it and the service, and
exit. Remember, you can check for the presence of a token by looking at its length:

if (send_tok_length != 0) {
if (send_token(s, &send_tok) < 0) {

(void) gss_release_buffer(&min_stat, &send_tok);
(void) gss_release_name(&min_stat, &target_name);
return -1;

}

}

send_token() is not a GSS-API function; it is a basic write-to-file function written by
the user. (You can see it at “send_token()” on page 115.) Note that the GSS-API does
not send or receive tokens itself. It is the responsibility of the calling applications to send and
receive any tokens created by the GSS-API.

If the server doesn’t have any (more) tokens to send, then
gss_init_sec_context() returns GSS_S_COMPLETE. So if
gss_init_sec_context()hasn’t returned this value, the application knows there’s
another token out there to fetch. If the fetch fails it releases the service namespace and
quit:

if (maj_stat == GSS_S_CONTINUE_NEEDED) {
if (recv_token(s, &recv_tok) < 0) {

(void) gss_release_name(&min_stat, &target_name);

return -1;

Finally, the program resets its token pointers, and continues the loop until the context
is completely established. Thus its do loop ends as follows:

} while (maj_stat == GSS_S_CONTINUE_NEEDED);

Sending the Data
Having established the security context, gss-client needs to wrap the data, send it, and
then verify the “signature” that the server returns. Because gss-client is an example
program, it does various other things as well, such as display information about the
context, but we’ll skip all of that in order to get the data sent out and verified. So first
the program puts the message to be sent (such as “ls”) into a buffer:

if (use_file) {
read_file(msg, &in_buf);

} else {
/* Wrap the message */
in_buf.value = msg;
in_buf.length = strlen(msg) + 1;

}

A Walk–Through of the Sample GSS-API Programs 73

Before wrapping, the program checks to see if it can encrypt the data:

if (ret_flag & GSS_C_CONF_FLAG) {
state = 1;

else
state = 0;

}

And then it wraps it up:

maj_stat = gss_wrap(&min_stat, context, conf_req_flag,
GSS_C_QOP_DEFAULT, &in_buf, &state, &out_buf);

if (maj_stat != GSS_S_COMPLETE) {
display_status("wrapping message", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context,

GSS_C_NO_BUFFER);
return -1;

} else if (! state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

Thus the message stored in in_buf is to be sent to the server referenced by context, with
confidentiality service and the default Quality of Protection (QOP) requested. (Quality
of Protection indicates which algorithm to apply in transforming the data; it’s a good
idea for portability’s sake to use the default whenever possible.) gss_wrap() wraps
the message, puts the result into out_buf, and sets a flag (state) that indicates whether
confidentiality was in fact applied in the wrapping.

The client sends the wrapped message to the server with its own send_token()
function, which you’ve already seen in “Establishing a Context” on page 70:

send_token(s, &outbuf)

Verifying the Message
The program can now verify the validity of the message it sent. It knows that the
server returns the MIC for the message it sent, so it retrieves it with its
recv_token() function and then uses gss_verify_mic() to verify its “signature”
(the MIC).

maj_stat = gss_verify_mic(&min_stat, context, &in_buf,
&out_buf, &qop_state);

if (maj_stat != GSS_S_COMPLETE) {
display_status("verifying signature", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context,

GSS_C_NO_BUFFER);
return -1;

}

74 GSS-API Programming Guide • February 2002 (Beta)

gss_verify_mic() compares the MIC received with the server’s token (in out_buf)
with one it produces from the original, unwrapped message, held in in_buf. If the two
MICs match, the message is verified. The client releases the buffer for the received
token, out_buf.

To finish, call_server() deletes the context and returns to main().

Server-Side GSS-API: gss-server
Naturally, the client needs a server to perform a security handshake. Where the client
initiates a security context and sends data, the server must accept the context,
verifying the identity of the client. In doing so, it might need to authenticate itself to
the client, if requested to do so, and it may have to provide a “signature” for the data
to the client. Plus, of course, it has to process the data!

gss-server takes this form on the command line (the line has been broken up to
make it fit)::

gss-server [-port port] [-verbose] [-inetd] [-once] [-logfile file] \

[-mech mechanism] service_name

gss-server does the following:

1. Parses the command line.

2. Translates the mechanism name given on the command-line, if any, to internal
format.

3. Acquires credentials for the caller.

4. Checks to see if the user has specified using the inetd daemon for connecting or
not.

5. Establishes a connection.

6. Gets the data.

7. Signs the data and returns it.

8. Releases namespaces and exits.

Following is a step-by-step description of how gss-server works. Because it is a sample
program designed to show off functionality, the parts of the program that do not
closely relate to the steps above are skipped here.

A Walk–Through of the Sample GSS-API Programs 75

Overview: main() (Server)
gss-client begins with the main() function. main() performs the following tasks:

1. It parses command-line arguments, assigning them to variables:

� port, if specified, is the port number to listen on. If no port is specified, the
program uses port 4444 as the default.

� If -verbose is specified, the program runs in a quasi-debug mode.

� The -inetd option indicates that the program should use the inetd daemon
to listen to a port; inetd uses stdin and stdout to hand the connection to the
client.

� If -once is specified, then the program makes only a single-instance
connection.

� mechanism is the (optional) name of the security mechanism to use, such as
Kerberos v5, to use. If no mechanism is specified, the GSS-API uses a default
mechanism.

� The name of the network service requested by the client (such as telnet, ftp, or
login service) is specified by service_name.

An example command line might look like this:

% gss-server -port 8080 -once -mech kerberos_v5 erebos.eng nfs "hello"

2. It converts the mechanism, if specified, to a GSS-API object identifier (OID). This is
because GSS-API functions handle names in internal format.

3. It acquires the credentials for the service (such as ftp), for the mechanism being
used (for example, Kerberos v5).

4. It calls the sign_server() function, which does most of the work (establishes the
connection, retrieves and signs the message, and so on).

If the user has specified using inetd, then the program closes the standard output
and standard error and calls sign_server() on the standard input, which inetd
uses to pass connections. Otherwise, it creates a socket, accepts the connection for
that socket with the TCP function accept(), and calls sign_server() on the
file descriptor returned by accept().

If inetd is not used, the program creates connections and contexts until it’s
terminated. However, if the user has specified the -once option, the loop
terminates after the first connection.

5. It releases the credentials it has acquired.

6. It releases the mechanism OID namespace.

7. It closes the connection, if it’s still open.

76 GSS-API Programming Guide • February 2002 (Beta)

Creating an OID for the Mechanism
As with the gss-client program example, the sample server program allows the user to
specify a mechanism. However, it is strongly recommended that all applications use
the default mechanism provided by the GSS-API implementation. The default
mechanism is obtained by setting the gss_OID that represents the mechanism to
GSS_C_NULL_OID. Interested readers can refer to the code itself in
“createMechOid()” on page 102 and read about using non-default mechanisms in
Appendix C.

Acquiring Credentials
As with the client application, neither the server application nor the GSS-API create
credentials; they are created by the underlying mechanism(s). Unlike the client
program, the server needs to explicitly acquire the credentials it needs. (Some client
applications might want to acquire credentials explicitly, in which case they do so in
the same manner as shown here. But generally the client has acquired credentials
before that, at login time, and GSS-API acquires those automatically.)

The gss-server program has its own function, server_acquire_creds(), to get the
credentials for the service being provided. It takes as its input the name of the service,
and the security mechanism being used, then returns the credentials for the service.

server_acquire_creds() uses the GSS-API function gss_acquire_cred() to
get the credentials for the service that the server provides. Before it can do this,
however, it must do two things.

If a single credential can be shared by multiple mechanisms, gss_acquire_cred()
returns credentials for all those mechanisms. Therefore, it takes as input not a single
mechanism, but a set of mechanisms. (See “Credentials” on page 31.) However, in
most cases, including this one, a single credential might not work for multiple
mechanisms. Besides, in the server application, either a single mechanism is specified
on the command line or the default mechanism is used. Therefore, the first thing to do
is make sure that the set of mechanisms passed to gss_acquire_cred() contains a
single mechanism, default or otherwise:

if (mechOid != GSS_C_NULL_OID) {
desiredMechs = &mechOidSet;
mechOidSet.count = 1;
mechOidSet.elements = mechOid;

} else

desiredMechs = GSS_C_NULL_OID_SET;

GSS_C_NULL_OID_SET indicates that the default mechanism should be used.

A Walk–Through of the Sample GSS-API Programs 77

Because gss_acquire_cred() takes the service name in the form of a gss_name_t
structure, the second thing to do is import the name of the service into that format. To
do this, use gss_import_name(). Because this function, like all GSS-API functions,
requires arguments to be GSS-API types, the service name has to be copied to a
GSS-API buffer first:

name_buf.value = service_name;
name_buf.length = strlen(name_buf.value) + 1;
maj_stat = gss_import_name(&min_stat, &name_buf,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("importing name", maj_stat, min_stat);
if (mechOid != GSS_C_NO_OID)

gss_release_oid(&min_stat, &mechOid);
return -1;

}

Note again the use of the nonstandard function gss_release_oid(). See
“Overview: main() (Client)” on page 68.

The input is the service name, as a string in name_buf, and the output is the pointer to
a gss_name_t structure, server_name. The third argument,
GSS_C_NT_HOSTBASED_SERVICE, is the name type for the string in name_buf; in this
case it indicates that the string should be interpreted as a service of the format
service@host.

Now the server program can call gss_acquire_cred():

maj_stat = gss_acquire_cred(&min_stat, server_name, 0,
desiredMechs, GSS_C_ACCEPT,

server_creds, NULL, NULL);

Where:

� min_stat is the error code returned by the function.

� server_name is, as explained above, the name of the server.

� 0 indicates that the program isn’t interested the maximum lifetime of the
credential.

� desiredMechs is, as explained above, the set of mechanisms for which this credential
applies.

� GSS_C_ACCEPT means that the credential can be used only to accept security
contexts.

� server_creds is the credential handle to be returned by the function.

� NULL, NULL indicates that the program is not interested in knowing either the
specific mechanism being employed nor the amount of time the credential will be
valid.

78 GSS-API Programming Guide • February 2002 (Beta)

Accepting a Context, Getting and Signing Data
Having acquired credentials for the service, the server program checks to see if the
user has specified using inetd (see “Overview: main() (Server)” on page 76) and then
calls sign_server(), which does the main work of the program. The first thing that
sign_server() does is establish the context by calling
server_establish_context().

Note – inetd is not covered here. Basically, if inetd has been specified, the program
calls sign_server() on the standard input. If not, it creates a socket, accepts a
connection, and then calls sign_server() on that connection.

sign_server() does the following:

1. Accepts the context.
2. Unwraps the data.
3. Signs the data.
4. Returns the data.

Accepting a Context
Because establishing a context can involve a series of token exchanges between the
client and the server, both context acceptance and context initialization should be
performed in loops, to maintain program portability. Indeed, the loop for accepting a
context is very similar to that for establishing one, although rather in reverse.
(Compare with “Establishing a Context” on page 70.)

1. The first thing the server does is look for a token that the client should have sent as
part of the context initialization process. Remember, the GSS-API does not send or
receive tokens itself, so programs must have their own routines for performing
these tasks. The one the server uses for receiving the token is called
recv_token() (it can be found at “recv_token()” on page 116):

do {
if (recv_token(s, &recv_tok) < 0)

return -1;

2. Next, the program calls the GSS-API function gss_accept_sec_context():

maj_stat = gss_accept_sec_context(&min_stat,
context,
server_creds,
&recv_tok,
GSS_C_NO_CHANNEL_BINDINGS,
&client,
&doid,
&send_tok,

A Walk–Through of the Sample GSS-API Programs 79

ret_flags,
NULL, /* ignore time_rec */
NULL); /* ignore del_cred_handle */

where

� min_stat is the error status returned by the underlying mechanism.

� context is the context being established.

� server_creds is the credential for the service being provided (see “Acquiring
Credentials” on page 77).

� recv_tok is the token received from the client by recv_token().

� GSS_C_NO_CHANNEL_BINDINGS is a flag indicating not to use channel
bindings (see “Channel Bindings” on page 50).

� client is the ASCII name of the client.

� oid is the mechanism (in OID format).

� send_tok is the token to send to the client.

� ret_flags are various flags indicating whether the context supports a given
option, such as message-sequence-detection.

� NULL and NULL indicate that the program is not interested in the length of
time the context will be valid, nor in whether the server can act as a client’s
proxy. The acceptance loop continues (barring an error) as long as

gss_accept_sec_context() sets maj_stat to GSS_S_CONTINUE_NEEDED. If
maj_stat is not equal to either that value nor to GSS_S_COMPLETE, there’s a
problem and the loop exits.

3. gss_accept_sec_context() returns a positive value for the length of send_tok if
there is a token to send back to the client. The next step is to see if there’s a token to
send, and, if so, to send it:

if (send_tok.length != 0) {
. . .
if (send_token(s, &send_tok) < 0) {

fprintf(log, "failure sending token\n");
return -1;

}

(void) gss_release_buffer(&min_stat, &send_tok);

}

Unwrapping the Message
After accepting the context, the server receives the message sent by the client. Because
the GSS-API doesn’t provide a function to do this, the program uses its own function,
recv_token():

if (recv_token(s, &xmit_buf) < 0)

return(-1);

80 GSS-API Programming Guide • February 2002 (Beta)

Since the message might be encrypted, the program uses the GSS-API function
gss_unwrap() to unwrap it:

maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,
&conf_state, (gss_qop_t *) NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("unwrapping message", maj_stat, min_stat);
return(-1);

} else if (! conf_state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

(void) gss_release_buffer(&min_stat, &xmit_buf);

gss_unwrap() takes the message that recv_token() has placed in xmit_buf,
translates it, and puts the result in msg_buf. Two arguments to gss_unwrap() are
noteworthy: conf_state is a flag to indicate whether confidentiality was applied for this
message (that is, if the data is encrypted or not), and the final NULL indicates that the
program isn’t interested in the QOP used to protect the message.

Signing the Message, Sending It Back
All that is left, then, is for the server to “sign” the message — that is, to return the
message’s MIC (Message Integrity Code, a unique tag associated with message) to the
client to prove that the message was sent and unwrapped successfully. To do that, the
program uses the function gss_get_mic():

maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

&msg_buf, &xmit_buf);which looks at the message in
msg_buf and produces the MIC from it, storing it in xmit_buf. The server then sends the
MIC back to the client with send_token(), and the client verifies it with
gss_verify_mic(). See “Verifying the Message” on page 74.

Finally, sign_server() performs some cleanup; it releases the GSS-API buffers
msg_buf and xmit_buf with gss_release_buffer() and then destroys the context
with gss_delete_sec_context().

Importing and Exporting a Context
As noted in “Context Export and Import” on page 52, the GSS-API allows you to
export and import contexts. The usual reason for doing this is to share a context
between different processes in a multiprocess program.

sign_server() contains a proof-of-concept function,
test_import_export_context(), which illustrates how exporting and importing
contexts works. This function doesn’t pass a context between processes. It only

A Walk–Through of the Sample GSS-API Programs 81

displays the amount of time it takes to export and then import a context. Although
rather an artificial function, it does indicate how to use the GSS-API importing and
exporting functions, as well as give an idea of how to use timestamps with regard to
manipulating contexts. test_import_export_context() can be found in
“test_import_export_context()” on page 109.

Cleanup
Back in the main() function, the application deletes the service credential with
gss_delete_cred() and, if an OID for the mechanism has been specified, deletes
that with gss_delete_oid() and exits.

Accessory Functions
The client and server programs use certain support functions, for example to display
the value of returned flags. As they are either not specific to the GSS-API or else are
not terribly important, they are not covered here. They may be found in “Ancillary
Functions” on page 111. Two of them, however, send_token() and recv_token(),
are significant enough that they are listed separately in “send_token() and
recv_token()” on page 115.

82 GSS-API Programming Guide • February 2002 (Beta)

APPENDIX A

Sample C–Based GSS-API Programs

Programs Using GSS-API
This appendix shows the source code for two sample applications that use GSS-API to
make a safe network connection. One application is a client, and the other is a server.
The two programs display benchmarks as they run, so that a user can “see” GSS-API
being used. Additionally, certain miscellaneous functions are provided for use by the
client and server applications. For convenience’s sake we have divided each
application into its constituent functions.

These programs are examined in detail in Chapter 2.

Client-Side Application
The following sections detail the client-side program, gss_client.

Program Headers
These are the declarations for the client program, plus a function that explains the
syntax if an incorrect command line is given.

EXAMPLE A–1 Client Program Headers

/*
* Copyright 1994 by OpenVision Technologies, Inc.

83

EXAMPLE A–1 Client Program Headers (Continued)

*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of OpenVision not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. OpenVision makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <error.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <gssapi/gssapi.h>
#include <gssapi/gssapi_ext.h>
#include "gss-misc.h"

/* global mech oid needed by display status, and acquire cred */
gss_OID g_mechOid = GSS_C_NULL_OID;

void usage()
{

fprintf(stderr, "Usage: gss-client [-port port] [-d]"
" [-mech mechOid] host service msg\n");

exit(1);

}

84 GSS-API Programming Guide • February 2002 (Beta)

main()
This is the entrypoint to the program. The program takes the following syntax on the
command line:

gss-client [-port port] [-d] [-mech mech] host service msg

After parsing the command line, main() converts the name of the appropriate
security mechanism (if provided) to an OID, establishes a secure connection, and then
destroys the mechanism OID, if necessary.

Note – main() uses a nonstandard function, gss_release_oid(). This function is
not supported by all implementations of the GSS-API and should not be used if
possible. Since applications should use a default mechanism (specified by
GSS_C_NULL_OID) instead of allocating one of their own, this function should not be
needed in any case. It is included here for reasons of backward compatibility and to
show the full extent of this implementation of the GSS-API.

EXAMPLE A–2 main()

int main(argc, argv)
int argc;
char **argv;

{
/* char *service_name, *hostname, *msg; */
char *msg;
char service_name[128];
char hostname[128];
char *mechanism = 0;
u_short port = 4444;
int use_file = 0;
OM_uint32 deleg_flag = 0, min_stat;

display_file = stdout;

/* Parse arguments. */

argc--; argv++;
while (argc) {

if (strcmp(*argv, "-port") == 0) {
argc--; argv++;
if (!argc) usage();
port = atoi(*argv);

} else if (strcmp(*argv, "-mech") == 0) {
argc--; argv++;
if (!argc) usage();
mechanism = *argv;

} else if (strcmp(*argv, "-d") == 0) {
deleg_flag = GSS_C_DELEG_FLAG;

} else if (strcmp(*argv, "-f") == 0) {

Sample C–Based GSS-API Programs 85

EXAMPLE A–2 main() (Continued)

use_file = 1;
} else

break;
argc--; argv++;

}
if (argc != 3)

usage();

if (argc > 1) {
strcpy(hostname, argv[0]);

} else if (gethostname(hostname, sizeof(hostname)) == -1) {
perror("gethostname");
exit(1);

}

if (argc > 2) {
strcpy(service_name, argv[1]);
strcat(service_name, "@");
strcat(service_name, hostname);

}

msg = argv[2];

if (mechanism)
parse_oid(mechanism, &g_mechOid);

if (call_server(hostname, port, g_mechOid, service_name,
deleg_flag, msg, use_file) < 0)

exit(1);

if (g_mechOid != GSS_C_NULL_OID)
(void) gss_release_oid(&min_stat, &gmechOid);

return 0;

}

parse_oid()
Converts the name of the security mechanism provided on the command line (if any is
provided) to an OID for GSS-API to work with.

86 GSS-API Programming Guide • February 2002 (Beta)

Caution – Despite this sample, applications are strongly recommended to use the
default mechanism provided by the GSS-API implementation, rather than specifying
one. The default mechanism can be obtained by setting the mechanism OID value to
GSS_C_NULL_OID. Also, the function gss_str_to_oid() is not supported by all
GSS-API implementations.

EXAMPLE A–3 parse_oid()

static void parse_oid(char *mechanism, gss_OID *oid)
{

char *mechstr = 0, *cp;
gss_buffer_desc tok;
OM_uint32 maj_stat, min_stat;

if (isdigit(mechanism[0])) {
mechstr = malloc(strlen(mechanism)+5);
if (!mechstr) {

printf("Couldn’t allocate mechanism scratch!\n");
return;

}
sprintf(mechstr, "{ %s }", mechanism);
for (cp = mechstr; *cp; cp++)

if (*cp == ’.’)
*cp = ’ ’;

tok.value = mechstr;
} else

tok.value = mechanism;
tok.length = strlen(tok.value);
maj_stat = gss_str_to_oid(&min_stat, &tok, oid);
if (maj_stat != GSS_S_COMPLETE) {

display_status("str_to_oid", maj_stat, min_stat);
return;

}
if (mechstr)

free(mechstr);

}

call_server()
This is the centerpiece of the program.

EXAMPLE A–4 call_server()

/*
* Function: call_server
*
* Purpose: Call the "sign" service.
*
* Arguments:

Sample C–Based GSS-API Programs 87

EXAMPLE A–4 call_server() (Continued)

*
* host (r) the host providing the service
* port (r) the port to connect to on host
* service_name (r) the GSS-API service name to authenticate to
* msg (r) the message to have "signed"
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* call_server opens a TCP connection to <host:port> and establishes a
* GSS-API context with service_name over the connection. It then
* wraps msg in a GSS-API token with gss_wrap, sends it to the server,
* reads back a GSS-API signature block for msg from the server, and
* verifies it with gss_verify. -1 is returned if any step fails,
* otherwise 0 is returned.
*/
int call_server(host, port, oid, service_name, deleg_flag, msg, use_file)

char *host;
u_short port;
gss_OID oid;
char *service_name;
OM_uint32 deleg_flag;
char *msg;
int use_file;

{
gss_ctx_id_t context;
gss_buffer_desc in_buf, out_buf, context_token;
int s, state;
OM_uint32 ret_flags;
OM_uint32 maj_stat, min_stat;
gss_name_t src_name, targ_name;
gss_buffer_desc sname, tname;
OM_uint32 lifetime;
gss_OID mechanism, name_type;
int is_local;
OM_uint32 context_flags;
int is_open;
gss_qop_t qop_state;
gss_OID_set mech_names;
gss_buffer_desc oid_name;
int i;
int conf_req_flag = 0;
int req_output_size = 1012;
OM_uint32 max_input_size = 0;

char *mechStr;

/* Open connection */
if ((s = connect_to_server(host, port)) < 0)

return -1;

/* Establish context */

88 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–4 call_server() (Continued)

if (client_establish_context(s, service_name, deleg_flag, oid, &context,
&ret_flags) < 0) {

(void) close(s);
return -1;

}

/* Save and then restore the context */
maj_stat = gss_export_sec_context(&min_stat,

&context,
&context_token);

if (maj_stat != GSS_S_COMPLETE) {
display_status("exporting context", maj_stat, min_stat);
return -1;

}
maj_stat = gss_import_sec_context(&min_stat,

&context_token,
&context);

if (maj_stat != GSS_S_COMPLETE) {
display_status("importing context", maj_stat, min_stat);
return -1;

}
(void) gss_release_buffer(&min_stat, &context_token);

/* display the flags */
display_ctx_flags(ret_flags);

/* Get context information */
maj_stat = gss_inquire_context(&min_stat, context,

&src_name, &targ_name, &lifetime,
&mechanism, &context_flags,
&is_local,
&is_open);

if (maj_stat != GSS_S_COMPLETE) {
display_status("inquiring context", maj_stat, min_stat);
return -1;

}

if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
printf(" context expired\n");

display_status("Context is expired", maj_stat, min_stat);
return -1;

}

/* Test gss_wrap_size_limit */
maj_stat = gss_wrap_size_limit(&min_stat, context,

conf_req_flag,
GSS_C_QOP_DEFAULT,
req_output_size,
&max_input_size
);

if (maj_stat != GSS_S_COMPLETE) {
display_status("wrap_size_limit call", maj_stat, min_stat);

Sample C–Based GSS-API Programs 89

EXAMPLE A–4 call_server() (Continued)

} else
fprintf (stderr, "gss_wrap_size_limit returned "

"max input size = %d \n"
"for req_output_size = %d with Integrity only\n",
max_input_size , req_output_size , conf_req_flag);

conf_req_flag = 1;
maj_stat = gss_wrap_size_limit(&min_stat, context,

conf_req_flag,
GSS_C_QOP_DEFAULT,
req_output_size,
&max_input_size
);

if (maj_stat != GSS_S_COMPLETE) {
display_status("wrap_size_limit call", maj_stat, min_stat);

} else
fprintf (stderr, "gss_wrap_size_limit returned "

" max input size = %d \n"
"for req_output_size = %d with "
"Integrity & Privacy \n",
max_input_size , req_output_size);

maj_stat = gss_display_name(&min_stat, src_name, &sname,
&name_type);

if (maj_stat != GSS_S_COMPLETE) {
display_status("displaying source name", maj_stat, min_stat);
return -1;

}
maj_stat = gss_display_name(&min_stat, targ_name, &tname,

(gss_OID *) NULL);
if (maj_stat != GSS_S_COMPLETE) {

display_status("displaying target name", maj_stat, min_stat);
return -1;

}
fprintf(stderr, "\"%.*s\" to \"%.*s\", lifetime %u, flags %x, %s, %s\n",

(int) sname.length, (char *) sname.value,
(int) tname.length, (char *) tname.value, lifetime,
context_flags,
(is_local) ? "locally initiated" : "remotely initiated",
(is_open) ? "open" : "closed");

(void) gss_release_name(&min_stat, &src_name);
(void) gss_release_name(&min_stat, &targ_name);
(void) gss_release_buffer(&min_stat, &sname);
(void) gss_release_buffer(&min_stat, &tname);

maj_stat = gss_oid_to_str(&min_stat,
name_type,
&oid_name);

if (maj_stat != GSS_S_COMPLETE) {
display_status("converting oid->string", maj_stat, min_stat);

90 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–4 call_server() (Continued)

return -1;
}
fprintf(stderr, "Name type of source name is %.*s.\n",

(int) oid_name.length, (char *) oid_name.value);
(void) gss_release_buffer(&min_stat, &oid_name);

/* Now get the names supported by the mechanism */
maj_stat = gss_inquire_names_for_mech(&min_stat,

mechanism,
&mech_names);

if (maj_stat != GSS_S_COMPLETE) {
display_status("inquiring mech names", maj_stat, min_stat);
return -1;

}

maj_stat = gss_oid_to_str(&min_stat,
mechanism,
&oid_name);

if (maj_stat != GSS_S_COMPLETE) {
display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
mechStr = (char *)__gss_oid_to_mech(mechanism);

fprintf(stderr, "Mechanism %.*s (%s) supports %d names\n",
(int) oid_name.length, (char *) oid_name.value,
(mechStr == NULL ? "NULL" : mechStr),
mech_names->count);

(void) gss_release_buffer(&min_stat, &oid_name);

for (i=0; i < mech_names->count; i++) {
maj_stat = gss_oid_to_str(&min_stat,

&mech_names->elements[i],
&oid_name);

if (maj_stat != GSS_S_COMPLETE) {
display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(stderr, " %d: %.*s\n", i,

(int) oid_name.length, (char *) oid_name.value);

(void) gss_release_buffer(&min_stat, &oid_name);
}
(void) gss_release_oid_set(&min_stat, &mech_names);

if (use_file) {
read_file(msg, &in_buf);

} else {
/* Seal the message */
in_buf.value = msg;
in_buf.length = strlen(msg) + 1;

}

Sample C–Based GSS-API Programs 91

EXAMPLE A–4 call_server() (Continued)

if (ret_flag & GSS_C_CONF_FLAG) {
state = 1;

else
state = 0;

}

maj_stat = gss_wrap(&min_stat, context, 1, GSS_C_QOP_DEFAULT,
&in_buf, &state, &out_buf);

if (maj_stat != GSS_S_COMPLETE) {
display_status("wrapping message", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

} else if (! state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

/* Send to server */
if (send_token(s, &out_buf) < 0) {

(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}
(void) gss_release_buffer(&min_stat, &out_buf);

/* Read signature block into out_buf */
if (recv_token(s, &out_buf) < 0) {

(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}

/* Verify signature block */
maj_stat = gss_verify_mic(&min_stat, context, &in_buf,

&out_buf, &qop_state);
if (maj_stat != GSS_S_COMPLETE) {

display_status("verifying signature", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}
(void) gss_release_buffer(&min_stat, &out_buf);

if (use_file)
free(in_buf.value);

printf("Signature verified.\n");

/* Delete context */
maj_stat = gss_delete_sec_context(&min_stat, &context, &out_buf);
if (maj_stat != GSS_S_COMPLETE) {

display_status("deleting context", maj_stat, min_stat);

92 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–4 call_server() (Continued)

(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}

(void) gss_release_buffer(&min_stat, &out_buf);
(void) close(s);
return 0;

}

read_file()
In the case that the message to be transferred is contained in a file, this function, called
by call_server(), opens and reads the file.

EXAMPLE A–5 read_file()

void read_file(file_name, in_buf)
char *file_name;
gss_buffer_t in_buf;

{
int fd, bytes_in, count;
struct stat stat_buf;

if ((fd = open(file_name, O_RDONLY, 0)) < 0) {
perror("open");
fprintf(stderr, "Couldn’t open file %s\n", file_name);
exit(1);

}
if (fstat(fd, &stat_buf) < 0) {

perror("fstat");
exit(1);

}
in_buf->length = stat_buf.st_size;
in_buf->value = malloc(in_buf->length);
if (in_buf->value == 0) {

fprintf(stderr, "Couldn’t allocate %ld byte buffer for reading file\n",
in_buf->length);

exit(1);
}
memset(in_buf->value, 0, in_buf->length);
for (bytes_in = 0; bytes_in < in_buf->length; bytes_in += count) {

count = read(fd, in_buf->value, (OM_uint32)in_buf->length);
if (count < 0) {

perror("read");
exit(1);

}
if (count == 0)

break;

Sample C–Based GSS-API Programs 93

EXAMPLE A–5 read_file() (Continued)

}
if (bytes_in != count)

fprintf(stderr, "Warning, only read in %d bytes, expected %d\n",
bytes_in, count);

}

client_establish_context()
Calls gss_init_sec_context() to establish a context with the server.

EXAMPLE A–6 client_establish_context()

/*
* Function: client_establish_context
*
* Purpose: establishes a GSS-API context with a specified service and
* returns the context handle
*
* Arguments:
*
* s (r) an established TCP connection to the service
* service_name (r) the ASCII service name of the service
* context (w) the established GSS-API context
* ret_flags (w) the returned flags from init_sec_context
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* service_name is imported as a GSS-API name and a GSS-API context is
* established with the corresponding service; the service should be
* listening on the TCP connection s. The default GSS-API mechanism
* is used, and mutual authentication and replay detection are
* requested.
*
* If successful, the context handle is returned in context. If
* unsuccessful, the GSS-API error messages are displayed on stderr
* and -1 is returned.
*/

int client_establish_context(s, service_name, deleg_flag, oid,
gss_context, ret_flags)

int s;
char *service_name;
gss_OID oid;
OM_uint32 deleg_flag;
gss_ctx_id_t *gss_context;
OM_uint32 *ret_flags;

{
gss_buffer_desc send_tok, recv_tok, *token_ptr;

94 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–6 client_establish_context() (Continued)

gss_name_t target_name;
OM_uint32 maj_stat, min_stat;

/*
* Import the name into target_name. Use send_tok to save
* local variable space.
*/

send_tok.value = service_name;
send_tok.length = strlen(service_name) + 1;
maj_stat = gss_import_name(&min_stat, &send_tok,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &target_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("parsing name", maj_stat, min_stat);
return -1;

}

/*
* Perform the context-establishement loop.
*
* On each pass through the loop, token_ptr points to the token
* to send to the server (or GSS_C_NO_BUFFER on the first pass).
* Every generated token is stored in send_tok which is then
* transmitted to the server; every received token is stored in
* recv_tok, which token_ptr is then set to, to be processed by
* the next call to gss_init_sec_context.
*
* GSS-API guarantees that send_tok’s length will be non-zero
* if and only if the server is expecting another token from us,
* and that gss_init_sec_context returns GSS_S_CONTINUE_NEEDED if
* and only if the server has another token to send us.
*/

token_ptr = GSS_C_NO_BUFFER;
*gss_context = GSS_C_NO_CONTEXT;

do {
maj_stat =

gss_init_sec_context(&min_stat,
GSS_C_NO_CREDENTIAL,
gss_context,
target_name,
oid,
GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG |

deleg_flag,
0,
NULL, /* no channel bindings */
token_ptr,
NULL, /* ignore mech type */
&send_tok,
ret_flags,

Sample C–Based GSS-API Programs 95

EXAMPLE A–6 client_establish_context() (Continued)

NULL); /* ignore time_rec */
if (gss_context == NULL){

printf("Cannot create context\n");
return GSS_S_NO_CONTEXT;

}
if (token_ptr != GSS_C_NO_BUFFER)

(void) gss_release_buffer(&min_stat, &recv_tok);
if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

display_status("initializing context", maj_stat, min_stat);
(void) gss_release_name(&min_stat, &target_name);
return -1;

}

if (send_tok.length != 0) {
fprintf(stdout, "Sending init_sec_context token (size=%ld)...",

send_tok.length);
if (send_token(s, &send_tok) < 0) {

(void) gss_release_buffer(&min_stat, &send_tok);
(void) gss_release_name(&min_stat, &target_name);
return -1;

}
}
(void) gss_release_buffer(&min_stat, &send_tok);

if (maj_stat == GSS_S_CONTINUE_NEEDED) {
fprintf(stdout, "continue needed...");
if (recv_token(s, &recv_tok) < 0) {

(void) gss_release_name(&min_stat, &target_name);
return -1;

}
token_ptr = &recv_tok;

}
printf("\n");

} while (maj_stat == GSS_S_CONTINUE_NEEDED);

(void) gss_release_name(&min_stat, &target_name);
return 0;

}

connect_to_server()
This offers a basic, no-frills function that creates a TCP connection.

EXAMPLE A–7 connect_to_server()

/*
* Function: connect_to_server
*
* Purpose: Opens a TCP connection to the name host and port.

96 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–7 connect_to_server() (Continued)

*
* Arguments:
*
* host (r) the target host name
* port (r) the target port, in host byte order
*
* Returns: the established socket file desciptor, or -1 on failure
*
* Effects:
*
* The host name is resolved with gethostbyname(), and the socket is
* opened and connected. If an error occurs, an error message is
* displayed and -1 is returned.
*/
int connect_to_server(host, port)

char *host;
u_short port;

{
struct sockaddr_in saddr;
struct hostent *hp;
int s;

if ((hp = gethostbyname(host)) == NULL) {
fprintf(stderr, "Unknown host: %s\n", host);
return -1;

}

saddr.sin_family = hp->h_addrtype;
memcpy((char *)&saddr.sin_addr, hp->h_addr, sizeof(saddr.sin_addr));
saddr.sin_port = htons(port);

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("creating socket");
return -1;

}
if (connect(s, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) {

perror("connecting to server");
(void) close(s);
return -1;

}

return s;

}

Sample C–Based GSS-API Programs 97

Server-Side Application
This is the application that receives messages from the client function described
earlier.

Program Headers
These are the declarations for the server program, plus a function that explains the
syntax if an incorrect command line is given. Here the security mechanism is set to be
the GSS-API-provided default.

EXAMPLE A–8 Program Headers

/*
* Copyright 1994 by OpenVision Technologies, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of OpenVision not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. OpenVision makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/

#if !defined(lint) && !defined(__CODECENTER__)
static char *rcsid = "$Header: /afs/athena.mit.edu/astaff/project/krbdev/.cvsroot
/src/appl/gss-sample/gss-server.c,v 1.17 1996/10/22 00:07:59 tytso Exp $";
#endif

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>

98 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–8 Program Headers (Continued)

#endif
#include <stdlib.h>
#include <ctype.h>

#include <gssapi/gssapi.h>
#include <gssapi/gssapi_ext.h>
#include "gss-misc.h"

#ifdef USE_STRING_H
#include <string.h>
#else
#include <strings.h>
#endif

/* global mechanism oid used in acquire cred and display status */
gss_OID g_mechOid = GSS_C_NULL_OID;

void usage()
{

fprintf(stderr, "Usage: gss-server [-port port] [-verbose]\n");
fprintf(stderr, " [-inetd] [-logfile file]");
fprintf(stderr, " [-mech mechoid] [service_name]\n");
exit(1);

}

FILE *log;

int verbose = 0;

main()
This is the entrypoint to the program. The program takes the following syntax on the
command line:

gss-server [-port port] [-d] [-mech mech] host service msg

After parsing the command line, main() converts the name of the desired security
mechanism (if provided) to an OID, acquires credentials, establishes a context and
receives data, and then destroys the mechanism OID if necessary.

Sample C–Based GSS-API Programs 99

Note – Applications should normally not set the mechanism, but use defaults
provided by the GSS-API.

EXAMPLE A–9 main()

int
main(argc, argv)

int argc;
char **argv;

{
char *service_name, *mechType = NULL;
gss_cred_id_t server_creds;
OM_uint32 min_stat;
u_short port = 4444;
int s;
int once = 0;
int do_inetd = 0;

log = stdout;
display_file = stdout;
argc--; argv++;
while (argc) {

if (strcmp(*argv, "-port") == 0) {
argc--; argv++;
if (!argc) usage();
port = atoi(*argv);

} else if (strcmp(*argv, "-verbose") == 0) {
verbose = 1;

} else if (strcmp(*argv, "-once") == 0) {
once = 1;

} else if (strcmp(*argv, "-inetd") == 0) {
do_inetd = 1;

} else if (strcmp(*argv, "-mech") == 0) {
argc--; argv++;
if (!argc) usage();
mechType = *argv;

} else if (strcmp(*argv, "-logfile") == 0) {
argc--; argv++;
if (!argc) usage();
log = fopen(*argv, "a");
display_file = log;
if (!log) {

perror(*argv);
exit(1);

}
} else

break;
argc--; argv++;

}
if (argc != 1)

usage();

100 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–9 main() (Continued)

if ((*argv)[0] == ’-’)
usage();

service_name = *argv;

if (mechType != NULL) {
if ((g_mechOid = createMechOid(mechType)) == NULL) {

usage();
exit(-1);

}
}

if (server_acquire_creds(service_name, g_mechOid, &server_creds) < 0)
return -1;

if (do_inetd) {
close(1);
close(2);

sign_server(0, server_creds);
close(0);

} else {
int stmp;

if ((stmp = create_socket(port))) {
do {

/* Accept a TCP connection */
if ((s = accept(stmp, NULL, 0)) < 0) {

perror("accepting connection");
} else {

/* this return value is not checked, because there’s
not really anything to do if it fails */

sign_server(s, server_creds);
}

} while (!once);
}

close(stmp);
}

(void) gss_release_cred(&min_stat, &server_creds);
if (g_mechOid != GSS_C_NULL_OID)

gss_release_oid(&min_stat, &g_mechOid);

/*NOTREACHED*/
(void) close(s);
return 0;

}

Sample C–Based GSS-API Programs 101

createMechOid()
This function is shown for completeness’ sake. Normally, you should use the default
mechanism (specified by GSS_C_NULL_OID).

EXAMPLE A–10 createMechOid()

gss_OID createMechOid(const char *mechStr)
{

gss_buffer_desc mechDesc;
gss_OID mechOid;
OM_uint32 minor;

if (mechStr == NULL)
return (GSS_C_NULL_OID);

mechDesc.length = strlen(mechStr);
mechDesc.value = (void *) mechStr;

if (gss_str_to_oid(&minor, &mechDesc, &mechOid) !
= GSS_S_COMPLETE) {

fprintf(stderr, "Invalid mechanism oid specified <%s>",
mechStr);

return (GSS_C_NULL_OID);
}

return (mechOid);

}

server_acquire_creds()
Gets the credentials for the requested network service.

EXAMPLE A–11 server_acquire_creds()

/*
* Function: server_acquire_creds
*
* Purpose: imports a service name and acquires credentials for it
*
* Arguments:
*
* service_name (r) the ASCII service name

mechType (r) the mechanism type to use
* server_creds (w) the GSS-API service credentials
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* The service name is imported with gss_import_name, and service

102 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–11 server_acquire_creds() (Continued)

* credentials are acquired with gss_acquire_cred. If either operation
* fails, an error message is displayed and -1 is returned; otherwise,
* 0 is returned.
*/
int server_acquire_creds(service_name, mechOid, server_creds)

char *service_name;
gss_OID mechOid;
gss_cred_id_t *server_creds;

{
gss_buffer_desc name_buf;
gss_name_t server_name;
OM_uint32 maj_stat, min_stat;
gss_OID_set_desc mechOidSet;
gss_OID_set desiredMechs = GSS_C_NULL_OID_SET;

if (mechOid != GSS_C_NULL_OID) {
desiredMechs = &mechOidSet;
mechOidSet.count = 1;
mechOidSet.elements = mechOid;

} else
desiredMechs = GSS_C_NULL_OID_SET;

name_buf.value = service_name;
name_buf.length = strlen(name_buf.value) + 1;
maj_stat = gss_import_name(&min_stat, &name_buf,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("importing name", maj_stat, min_stat);
if (mechOid != GSS_C_NO_OID)

gss_release_oid(&min_stat, &mechOid);
return -1;

}

maj_stat = gss_acquire_cred(&min_stat, server_name, 0,
desiredMechs, GSS_C_ACCEPT,
server_creds, NULL, NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("acquiring credentials", maj_stat, min_stat);
return -1;

}

(void) gss_release_name(&min_stat, &server_name);

return 0;

}

Sample C–Based GSS-API Programs 103

sign_server()
This is the “guts” of the program. Calls server_establish_context() to accept
the context, receives the data, unwraps it, verifies it, then generates a MIC to send
back to the client. Finally, it deletes the context.

EXAMPLE A–12 sign_server()

/*
* Function: sign_server
*
* Purpose: Performs the "sign" service.
*
* Arguments:
*
* s (r) a TCP socket on which a connection has been
* accept()ed
* service_name (r) the ASCII name of the GSS-API service to
* establish a context as
*
* Returns: -1 on error
*
* Effects:
*
* sign_server establishes a context, and performs a single sign request.
*
* A sign request is a single GSS-API wrapped token. The token is
* unwrapped and a signature block, produced with gss_get_mic, is returned
* to the sender. The context is the destroyed and the connection
* closed.
*
* If any error occurs, -1 is returned.
*/
int sign_server(s, server_creds)

int s;
gss_cred_id_t server_creds;

{
gss_buffer_desc client_name, xmit_buf, msg_buf;
gss_ctx_id_t context;
OM_uint32 maj_stat, min_stat;
int i, conf_state, ret_flags;
char *cp;

/* Establish a context with the client */
if (server_establish_context(s, server_creds, &context,

&client_name, &ret_flags) < 0)
return(-1);

printf("Accepted connection: \"%.*s\"\n",
(int) client_name.length, (char *) client_name.value);

(void) gss_release_buffer(&min_stat, &client_name);

for (i=0; i < 3; i++)

104 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–12 sign_server() (Continued)

if (test_import_export_context(&context))
return -1;

/* Receive the wrapped message token */
if (recv_token(s, &xmit_buf) < 0)

return(-1);

if (verbose && log) {
fprintf(log, "Wrapped message token:\n");
print_token(&xmit_buf);

}

maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,
&conf_state, (gss_qop_t *) NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("unwrapping message", maj_stat, min_stat);
return(-1);

} else if (! conf_state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

(void) gss_release_buffer(&min_stat, &xmit_buf);

fprintf(log, "Received message: ");
cp = msg_buf.value;
if (isprint(cp[0]) && isprint(cp[1]))

fprintf(log, "\"%s\"\n", cp);
else {

printf("\n");
print_token(&msg_buf);

}

/* Produce a signature block for the message */
maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

&msg_buf, &xmit_buf);
if (maj_stat != GSS_S_COMPLETE) {

display_status("signing message", maj_stat, min_stat);
return(-1);

}

(void) gss_release_buffer(&min_stat, &msg_buf);

/* Send the signature block to the client */
if (send_token(s, &xmit_buf) < 0)

return(-1);

(void) gss_release_buffer(&min_stat, &xmit_buf);

/* Delete context */
maj_stat = gss_delete_sec_context(&min_stat, &context, NULL);
if (maj_stat != GSS_S_COMPLETE) {

display_status("deleting context", maj_stat, min_stat);

Sample C–Based GSS-API Programs 105

EXAMPLE A–12 sign_server() (Continued)

return(-1);
}

fflush(log);

return(0);

}

server_establish_context()
This calls gss_accept_sec_context() as part of a context-establishment loop.

EXAMPLE A–13 server_establish_context()

/*
* Function: server_establish_context
*
* Purpose: establishses a GSS-API context as a specified service with
* an incoming client, and returns the context handle and associated
* client name
*
* Arguments:
*
* s (r) an established TCP connection to the client
* service_creds (r) server credentials, from gss_acquire_cred
* context (w) the established GSS-API context
* client_name (w) the client’s ASCII name
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* Any valid client request is accepted. If a context is established,
* its handle is returned in context and the client name is returned
* in client_name and 0 is returned. If unsuccessful, an error
* message is displayed and -1 is returned.
*/
int server_establish_context(s, server_creds, context, client_name, ret_flags)

int s;
gss_cred_id_t server_creds;
gss_ctx_id_t *context;
gss_buffer_t client_name;
OM_uint32 *ret_flags;

{
gss_buffer_desc send_tok, recv_tok;
gss_name_t client;
gss_OID doid;
OM_uint32 maj_stat, min_stat;
gss_buffer_desc oid_name;

106 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–13 server_establish_context() (Continued)

char *mechStr;

*context = GSS_C_NO_CONTEXT;

do {
if (recv_token(s, &recv_tok) < 0)

return -1;

if (verbose && log) {
fprintf(log, "Received token (size=%d): \n", recv_tok.length);
print_token(&recv_tok);

}

maj_stat =
gss_accept_sec_context(&min_stat,

context,
server_creds,
&recv_tok,
GSS_C_NO_CHANNEL_BINDINGS,
&client,
&doid,
&send_tok,
ret_flags,
NULL, /* ignore time_rec */
NULL); /* ignore del_cred_handle */

if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {
display_status("accepting context", maj_stat, min_stat);
(void) gss_release_buffer(&min_stat, &recv_tok);
return -1;

}

(void) gss_release_buffer(&min_stat, &recv_tok);

if (send_tok.length != 0) {
if (verbose && log) {

fprintf(log,
"Sending accept_sec_context token (size=%d):\n",
send_tok.length);

print_token(&send_tok);
}
if (send_token(s, &send_tok) < 0) {

fprintf(log, "failure sending token\n");
return -1;

}

(void) gss_release_buffer(&min_stat, &send_tok);
}
if (verbose && log) {

if (maj_stat == GSS_S_CONTINUE_NEEDED)
fprintf(log, "continue needed...\n");

else

Sample C–Based GSS-API Programs 107

EXAMPLE A–13 server_establish_context() (Continued)

fprintf(log, "\n");
fflush(log);

}
} while (maj_stat == GSS_S_CONTINUE_NEEDED);

/* display the flags */
display_ctx_flags(*ret_flags);

if (verbose && log) {
maj_stat = gss_oid_to_str(&min_stat, doid, &oid_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
mechStr = (char *)__gss_oid_to_mech(doid);

fprintf(log, "Accepted connection using mechanism OID %.*s (%s).\n",
(int) oid_name.length, (char *) oid_name.value,

(mechStr == NULL ? "NULL" : mechStr));
(void) gss_release_buffer(&min_stat, &oid_name);

}

maj_stat = gss_display_name(&min_stat, client, client_name, &doid);
if (maj_stat != GSS_S_COMPLETE) {

display_status("displaying name", maj_stat, min_stat);
return -1;

}
return 0;

}

create_a_socket()
This is a no-frills function for creating a transport connection with the client.

EXAMPLE A–14 create_a_socket()

/*
* Function: create_socket
*
* Purpose: Opens a listening TCP socket.
*
* Arguments:
*
* port (r) the port number on which to listen
*
* Returns: the listening socket file descriptor, or -1 on failure
*
* Effects:
*
* A listening socket on the specified port and created and returned.

108 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–14 create_a_socket() (Continued)

* On error, an error message is displayed and -1 is returned.
*/
int create_socket(port)

u_short port;
{

struct sockaddr_in saddr;
int s;
int on = 1;

saddr.sin_family = AF_INET;
saddr.sin_port = htons(port);
saddr.sin_addr.s_addr = INADDR_ANY;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("creating socket");
return -1;

}
/* Let the socket be reused right away */
(void) setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)&on,

sizeof(on));
if (bind(s, (struct sockaddr *) &saddr, sizeof(saddr)) < 0)

{
perror("binding socket");
(void) close(s);
return -1;

}
if (listen(s, 5) < 0) {

perror("listening on socket");
(void) close(s);
return -1;

}
return s;

}

test_import_export_context()
Finally, this is a small function to show how gss_export_sec_context() and
gss_import_sec_context() work. Of limited practicality, this function is here
mostly to indicate how these GSS-API functions can be used.

EXAMPLE A–15 test_import_export_context()

int test_import_export_context(context)
gss_ctx_id_t *context;

{
OM_uint32 min_stat, maj_stat;
gss_buffer_desc context_token, copied_token;
struct timeval tm1, tm2;

Sample C–Based GSS-API Programs 109

EXAMPLE A–15 test_import_export_context() (Continued)

/*
* Attempt to save and then restore the context.
*/
gettimeofday(&tm1, (struct timezone *)0);
maj_stat = gss_export_sec_context(&min_stat, context, &context_token);
if (maj_stat != GSS_S_COMPLETE) {

display_status("exporting context", maj_stat, min_stat);
return 1;

}
gettimeofday(&tm2, (struct timezone *)0);
if (verbose && log)

fprintf(log, "Exported context: %d bytes, %7.4f seconds\n",
context_token.length, timeval_subtract(&tm2, &tm1));

copied_token.length = context_token.length;
copied_token.value = malloc(context_token.length);
if (copied_token.value == 0) {

fprintf(log, "Couldn’t allocate memory to copy context token.\n");
return 1;

}
memcpy(copied_token.value, context_token.value, copied_token.length);
maj_stat = gss_import_sec_context(&min_stat, &copied_token, context);
if (maj_stat != GSS_S_COMPLETE) {

display_status("importing context", maj_stat, min_stat);
return 1;

}
gettimeofday(&tm1, (struct timezone *)0);
if (verbose && log)

fprintf(log, "Importing context: %7.4f seconds\n",
timeval_subtract(&tm1, &tm2));

(void) gss_release_buffer(&min_stat, &context_token);
return 0;

}

timeval_subtract()
This is a convenience function used by test_import_export_context().

EXAMPLE A–16 timeval_subtract()

static float timeval_subtract(tv1, tv2)
struct timeval *tv1, *tv2;

{
return ((tv1->tv_sec - tv2->tv_sec) +

((float) (tv1->tv_usec - tv2->tv_usec)) / 1000000);

}

110 GSS-API Programming Guide • February 2002 (Beta)

Ancillary Functions
To make the client and server programs work as shown, a number of other functions
are required. These are mostly for displaying values, and are not necessary to the basic
functioning of the programs. They are shown here for completeness.

Two functions, however, are significant: send_token() and recv_token(), which
do the actual transfer of context tokens and messages. They are actually plain
“vanilla” functions that open up a file descriptor and read to or write from it.
Although ordinary, and not directly related to the GSS-API, they are sufficiently
important to call out separately.

Miscellaneous Support Functions
These functions include:

� display_status() — Shows the status returned by the last GSS-API function
called.

� write_all() — Writes a buffer to a file.

� read_all() — Reads a file into a buffer.

� display_ctx_flags() — Shows in a readable form information about the
current context, such as whether confidentiality or mutual authentication is
allowed.

� print_token() — Prints out a token’s value.

EXAMPLE A–17

/*
* Copyright 1994 by OpenVision Technologies, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of OpenVision not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. OpenVision makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

Sample C–Based GSS-API Programs 111

EXAMPLE A–17 (Continued)

* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/

#if !defined(lint) && !defined(__CODECENTER__)
static char *rcsid = "$Header: /afs/athena.mit.edu/astaff/project/krbdev/.cvsroot
/src/appl/gss-sample/gss-misc.c,v 1.15 1996/07/22 20:21:20 marc Exp $";
#endif

#include <stdio.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <errno.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <string.h>

#include <gssapi/gssapi.h>
#include "gss-misc.h"
#include <stdlib.h>

FILE *display_file;
extern gss_OID g_mechOid;

static void display_status_1(char *m, OM_uint32 code, int type);

static int write_all(int fildes, char *buf, unsigned int nbyte)
{

int ret;
char *ptr;

for (ptr = buf; nbyte; ptr += ret, nbyte -= ret) {
ret = write(fildes, ptr, nbyte);
if (ret < 0) {

if (errno == EINTR)
continue;

return(ret);
} else if (ret == 0) {

return(ptr-buf);
}

}

return(ptr-buf);
}

static int read_all(int fildes, char *buf, unsigned int nbyte)
{

int ret;
char *ptr;

112 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–17 (Continued)

for (ptr = buf; nbyte; ptr += ret, nbyte -= ret) {
ret = read(fildes, ptr, nbyte);
if (ret < 0) {

if (errno == EINTR)
continue;

return(ret);
} else if (ret == 0) {

return(ptr-buf);
}

}

return(ptr-buf);
}

static void display_status_1(m, code, type)
char *m;
OM_uint32 code;
int type;

{
OM_uint32 maj_stat, min_stat;
gss_buffer_desc msg = GSS_C_EMPTY_BUFFER;
OM_uint32 msg_ctx;

msg_ctx = 0;
while (1) {

maj_stat = gss_display_status(&min_stat, code,
type, g_mechOid,
&msg_ctx, &msg);

if (maj_stat != GSS_S_COMPLETE) {
if (display_file) {

fprintf(display_file, "error in gss_display_status"
" called from <%s>\n", m);

}
break;

}
else if (display_file)

fprintf(display_file, "GSS-API error %s: %s\n", m,
(char *)msg.value);

if (msg.length != 0)
(void) gss_release_buffer(&min_stat, &msg);

if (!msg_ctx)
break;

}
}

/*
* Function: display_status
*
* Purpose: displays GSS-API messages
*
* Arguments:

Sample C–Based GSS-API Programs 113

EXAMPLE A–17 (Continued)

*
* msg a string to be displayed with the message
* maj_stat the GSS-API major status code
* min_stat the GSS-API minor status code
*
* Effects:
*
* The GSS-API messages associated with maj_stat and min_stat are
* displayed on stderr, each preceeded by "GSS-API error <msg>:
" and
* followed by a newline.
*/
void display_status(msg, maj_stat, min_stat)

char *msg;
OM_uint32 maj_stat;
OM_uint32 min_stat;

{
display_status_1(msg, maj_stat, GSS_C_GSS_CODE);
display_status_1(msg, min_stat, GSS_C_MECH_CODE);

}

/*
* Function: display_ctx_flags
*
* Purpose: displays the flags returned by context initation in
* a human-readable form
*
* Arguments:
*
* int ret_flags
*
* Effects:
*
* Strings corresponding to the context flags are printed on
* stdout, preceded by "context flag: " and followed by a newline
*/

void display_ctx_flags(flags)
OM_uint32 flags;

{
if (flags & GSS_C_DELEG_FLAG)

fprintf(display_file, "context flag: GSS_C_DELEG_FLAG\n");
if (flags & GSS_C_MUTUAL_FLAG)

fprintf(display_file, "context flag: GSS_C_MUTUAL_FLAG\n");
if (flags & GSS_C_REPLAY_FLAG)

fprintf(display_file, "context flag: GSS_C_REPLAY_FLAG\n");
if (flags & GSS_C_SEQUENCE_FLAG)

fprintf(display_file, "context flag: GSS_C_SEQUENCE_FLAG\n");
if (flags & GSS_C_CONF_FLAG)

fprintf(display_file, "context flag: GSS_C_CONF_FLAG \n");
if (flags & GSS_C_INTEG_FLAG)

114 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–17 (Continued)

fprintf(display_file, "context flag: GSS_C_INTEG_FLAG \n");
}

void print_token(tok)
gss_buffer_t tok;

{
int i;
unsigned char *p = tok->value;

if (!display_file)
return;

for (i=0; i < tok->length; i++, p++) {
fprintf(display_file, "%02x ", *p);
if ((i % 16) == 15) {

fprintf(display_file, "\n");
}

}
fprintf(display_file, "\n");
fflush(display_file);

}

send_token() and recv_token()
These functions send and receive data between the client and the server. (In a
multiprocess application they could do the same between processes.) They are slightly
misnamed, since they send and receive messages as well as tokens. They are oblivious to
the content they handle.

send_token()

This function sends a token or message.

EXAMPLE A–18 send_token()

/*
* Function: send_token
*
* Purpose: Writes a token to a file descriptor.
*
* Arguments:
*
* s (r) an open file descriptor
* tok (r) the token to write
*
* Returns: 0 on success, -1 on failure
*

Sample C–Based GSS-API Programs 115

EXAMPLE A–18 send_token() (Continued)

* Effects:
*
* send_token writes the token length (as a network long) and then the
* token data to the file descriptor s. It returns 0 on success, and
* -1 if an error occurs or if it could not write all the data.
*/
int send_token(s, tok)

int s;
gss_buffer_t tok;

{
int len, ret;

len = htonl((OM_uint32)tok->length);
ret = write_all(s, (char *) &len, sizeof(int));
if (ret < 0) {

perror("sending token length");
return -1;

} else if (ret != 4) {
if (display_file)

fprintf(display_file,
"sending token length: %d of %d bytes written\n",
ret, 4);

return -1;
}

ret = write_all(s, tok->value, (OM_uint32)tok->length);
if (ret < 0) {

perror("sending token data");
return -1;

} else if (ret != tok->length) {
if (display_file)

fprintf(display_file,
"sending token data: %d of %d bytes written\n",
ret, tok->length);

return -1;
}

return 0;

}

recv_token()

This function receives a token or message.

EXAMPLE A–19 recv_token()

/*
* Function: recv_token
*
* Purpose: Reads a token from a file descriptor.

116 GSS-API Programming Guide • February 2002 (Beta)

EXAMPLE A–19 recv_token() (Continued)

*
* Arguments:
*
* s (r) an open file descriptor
* tok (w) the read token
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* recv_token reads the token length (as a network long), allocates
* memory to hold the data, and then reads the token data from the
* file descriptor s. It blocks to read the length and data, if
* necessary. On a successful return, the token should be freed with
* gss_release_buffer. It returns 0 on success, and -1 if an error
* occurs or if it could not read all the data.
*/
int recv_token(s, tok)

int s;
gss_buffer_t tok;

{
int ret, len;

ret = read_all(s, (char *) &len, sizeof(int));
if (ret < 0) {

perror("reading token length");
return -1;

} else if (ret != 4) {
if (display_file)

fprintf(display_file,
"reading token length: %d of %d bytes read\n",
ret, 4);

return -1;
}

tok->length = ntohl(len);
tok->value = (char *) malloc(tok->length);
if (tok->value == NULL) {

if (display_file)
fprintf(display_file,

"Out of memory allocating token data\n");
return -1;

}

ret = read_all(s, (char *) tok->value, (OM_uint32)tok->length);
if (ret < 0) {

perror("reading token data");
free(tok->value);
return -1;

} else if (ret != tok->length) {
fprintf(stderr, "sending token data: %d of %d bytes written\n",

ret, tok->length);

Sample C–Based GSS-API Programs 117

EXAMPLE A–19 recv_token() (Continued)

free(tok->value);
return -1;

}

return 0;

}

118 GSS-API Programming Guide • February 2002 (Beta)

APPENDIX B

GSS-API Reference

This appendix includes the following sections:

� “GSS-API Functions” on page 119 provides a table of GSS-API functions.

� “GSS-API Status Codes” on page 122 discusses status codes returned by GSS-API
functions, and provides a list of those status codes.

� “GSS-API Data Types and Values” on page 126 discusses the various data types
used by the GSS-API.

Additional GSS-API definitions can be found in the file gssapi.h.

GSS-API Functions
The following table lists the functions of the GSS-API. For more information on each
function, see its man page. See also “Functions From Previous Versions of the
GSS-API” on page 121.

TABLE B–1 Table Caption

Header Function

gss_acquire_cred() Assume a global identity; obtain a GSS-API
credential handle for pre-existing credentials

gss_add_cred() Construct credentials incrementally

gss_inquire_cred() Obtain information about a credential

gss_inquire_cred_by_mech() Obtain per-mechanism information about a
credential

119

TABLE B–1 Table Caption (Continued)
Header Function

gss_release_cred() Discard a credential handle

gss_init_sec_context() Initiate a security context with a peer
application

gss_accept_sec_context() Accept a security context initiated by a peer
application

gss_delete_sec_context() Discard a security context

gss_process_context_token() Process a token on a security context from a
peer application

gss_context_time() Determine for how long a context will remain
valid

gss_inquire_context() Obtain information about a security context

gss_wrap_size_limit() Determine token-size limit for gss_wrap()
on a context

gss_export_sec_context() Transfer a security context to another process

gss_import_sec_context() Import a transferred context

gss_get_mic() Calculate a cryptographic message integrity
code (MIC) for a message; integrity service

gss_verify_mic() Check a MIC against a message; verify
integrity of a received message

gss_wrap() Attach a MIC to a message, and optionally
encrypt the message content

gss_unwrap() Verify a message with attached MIC, and
decrypt message content if necessary

gss_import_name() Convert a contiguous string name to
internal-form

gss_display_name() Convert internal-form name to text

gss_compare_name() Compare two internal-form names

gss_release_name() Discard an internal-form name

gss_inquire_names_for_mech() List the name types supported by the specified
mechanism

gss_inquire_mechs_for_name() List mechanisms that support the specified
name type

gss_canonicalize_name() Convert an internal name to an MN

120 GSS-API Programming Guide • February 2002 (Beta)

TABLE B–1 Table Caption (Continued)
Header Function

gss_export_name() Convert an MN to export form

gss_duplicate_name() Create a copy of an internal name

gss_add_oid_set_member() Add an object identifier to a set

gss_display_status() Convert a GSS-API status code to text

gss_indicate_mechs() Determine available underlying authentication
mechanisms

gss_release_buffer() Discard a buffer

gss_release_oid_set() Discard a set of object identifiers

gss_create_empty_oid_set() Create a set containing no object identifiers

gss_test_oid_set_member() Determine whether an object identifier is a
member of a set

Functions From Previous Versions of the GSS-API
This section explains functions that were included in previous versions of the
GSS-API.

Functions for Manipulating OIDs
The following functions are supported by the Sun implementation of the GSS-API for
convenience and for backward compatibility with programs written for older versions
of the GSS-API. However, they should not be relied upon, as they might not be
supported by other implementations of the GSS-API.

� gss_delete_oid()
� gss_oid_to_str()
� gss_str_to_oid()

Although these functions make it possible to convert a mechanism’s name from a
string to an OID, programmers should use the default GSS-API mechanism, instead of
specifying one, if at all possible.

GSS-API Reference 121

Renamed Functions
The following functions have been supplanted by newer functions. In each case, the
new function is the functional equivalent of the old one. Although the old functions
are supported, developers should replace them with the newer functions whenever
possible.

� gss_sign() has been replaced with gss_get_mic().
� gss_verify() has been replaced with gss_verify_mic().
� gss_seal() has been replaced with gss_wrap().
� gss_unseal() has been replaced with gss_unwrap().

GSS-API Status Codes
Major status codes are encoded in the OM_uint32 as shown in Figure B–1.

Most Significant Bit (MSB) LSB

016 1524 23Bit 31

Calling Error Supplementary Info

Major Status Code OM_uint32

Routine Error

FIGURE B–1 Major-Status Encoding

If a GSS-API routine returns a GSS status code whose upper 16 bits contain a non-zero
value, the call has failed. If the calling error field is non-zero, the invoking
application’s call of the routine was erroneous. Calling errors are listed in Table B–2. If
the routine error field is non-zero, the routine failed because of a routine-specific error,
as listed below in Table B–3. Whether or not the upper 16 bits indicate a failure or a
success, the routine might indicate additional information by setting bits in the
supplementary information field of the status code. The meaning of individual bits is
listed in Table B–4.

122 GSS-API Programming Guide • February 2002 (Beta)

GSS-API Major Status Code Values
The following tables lists calling errors returned by the GSS-API; that is, errors that are
specific to a particular language-binding (C, in this case).

TABLE B–2 Calling Errors

Error Value in Field Meaning

GSS_S_CALL_INACCESSIBLE_READ 1 A required input parameter
could not be read

GSS_S_CALL_INACCESSIBLE_WRITE 2 A required output parameter
could not be written

GSS_S_CALL_BAD_STRUCTURE 3 A parameter was malformed

The following table lists the routine errors (that is, generic errors returned by GSS-API
functions).

TABLE B–3 Routine Errors

Error Value in Field Meaning

GSS_S_BAD_MECH 1 An unsupported mechanism was
requested

GSS_S_BAD_NAME 2 An invalid name was supplied

GSS_S_BAD_NAMETYPE 3 A supplied name was of an
unsupported type

GSS_S_BAD_BINDINGS 4 Incorrect channel bindings were
supplied

GSS_S_BAD_STATUS 5 An invalid status code was supplied

GSS_S_BAD_MIC, GSS_S_BAD_SIG 6 A token had an invalid MIC

GSS_S_NO_CRED 7 No credentials were supplied, or the
credentials were unavailable or
inaccessible

GSS_S_NO_CONTEXT 8 No context has been established

GSS_S_DEFECTIVE_TOKEN 9 A token was invalid

GSS_S_DEFECTIVE_CREDENTIAL 10 A credential was invalid

GSS_S_CREDENTIALS_EXPIRED 11 The referenced credentials have
expired

GSS_S_CONTEXT_EXPIRED 12 The context has expired

GSS-API Reference 123

TABLE B–3 Routine Errors (Continued)
Error Value in Field Meaning

GSS_S_FAILURE 13 Miscellaneous failure (see text)

GSS_S_BAD_QOP 14 The quality-of-protection requested
could not be provided

GSS_S_UNAUTHORIZED 15 The operation is forbidden by local
security policy

GSS_S_UNAVAILABLE 16 The operation or option is unavailable

GSS_S_DUPLICATE_ELEMENT 17 The requested credential element
already exists

GSS_S_NAME_NOT_MN 18 The provided name was not a
Mechanism Name (MN)

The routine documentation also uses the name GSS_S_COMPLETE, which is a zero
value, to indicate an absence of any API errors or supplementary information bits.

The following table lists the supplementary information values returned by GSS-API
functions.

TABLE B–4 Supplementary Information Codes

Code Bit Number Meaning

GSS_S_CONTINUE_NEEDED 0 (LSB) Returned only by
gss_init_sec_context() or
gss_accept_sec_context(). The
routine must be called again to complete
its function

GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of an earlier
token

GSS_S_OLD_TOKEN 2 The token’s validity period has expired

GSS_S_UNSEQ_TOKEN 3 A later token has already been processed

GSS_S_GAP_TOKEN 4 An expected per-message token was not
received

The GSS major status code GSS_S_FAILURE is used to indicate that the underlying
mechanism detected an error for which no specific GSS–API status code is defined.
The mechanism-specific status code (minor-status code) will provide more details
about the error.

For more on status codes, see “Status Codes” on page 26.

124 GSS-API Programming Guide • February 2002 (Beta)

Displaying Status Codes
The function gss_display_status() translates GSS-API status codes into text
format, allowing them to be displayed to a user or put in a text log. Because
gss_display_status() only displays one status code at a time, and some
functions can return multiple status conditions, it should be invoked as part of a loop.
As long as gss_display_status() indicates a non-zero status code (in Example
B–1, the value returned in the message_context parameter), another status code is
available for the function to fetch.

EXAMPLE B–1 Displaying Status Codes with gss_display_status()

OM_uint32 message_context;
OM_uint32 status_code;
OM_uint32 maj_status;
OM_uint32 min_status;
gss_buffer_desc status_string;

...

message_context = 0;

do {

maj_status = gss_display_status(
&min_status,
status_code,
GSS_C_GSS_CODE,
GSS_C_NO_OID,
&message_context,
&status_string);

fprintf(stderr, "%.*s\n", \
(int)status_string.length, \
(char *)status_string.value);

gss_release_buffer(&min_status, &status_string,);

} while (message_context != 0);

Status Code Macros
The macros GSS_CALLING_ERROR(), GSS_ROUTINE_ERROR() and
GSS_SUPPLEMENTARY_INFO() are provided, each of which takes a GSS status code
and removes all but the relevant field. For example, the value obtained by applying
GSS_ROUTINE_ERROR() to a status code removes the calling errors and
supplementary information fields, leaving only the routine errors field. The values
delivered by these macros can be directly compared with a GSS_S_xxx symbol of the
appropriate type. The macro GSS_ERROR() is also provided, which when applied to a

GSS-API Reference 125

GSS–API status code returns a non-zero value if the status code indicated a calling or
routine error, and a zero value otherwise. All macros defined by the GSS-API evaluate
their argument(s) exactly once.

GSS-API Data Types and Values
This section covers various types of GSS-API data types and values. Certain data types
that are opaque to the user, such as gss_cred_id_t or gss_name_t, are not covered
here, since there is no advantage to knowing their structure. This section explains the
following:

� “Basic GSS-API Data Types” on page 126 — Shows the definitions of the
OM_uint32, gss_buffer_desc, gss_OID_desc, gss_OID_set_desc_struct,
and gss_channel_bindings_struct data types.

� “Name Types” on page 127 — Shows the various name formats recognized by the
GSS-API for specifying names.

� “Address Types for Channel Bindings” on page 128 — Shows the various values
that may be used as the initiator_addrtype and acceptor_addrtype fields of the
gss_channel_bindings_t structure.

Basic GSS-API Data Types
These are some of the data types used by the GSS-API.

OM_uint32
The OM_uint32 is a platform-independent 32–bit unsigned integer.

gss_buffer_desc

This is the definition of the gss_buffer_desc and the gss_buffer_t pointer:

typedef struct gss_buffer_desc_struct {
size_t length;
void *value;

} gss_buffer_desc, *gss_buffer_t;

126 GSS-API Programming Guide • February 2002 (Beta)

gss_OID_desc

This is the definition of the gss_OID_desc and the gss_OID pointer:

typedef struct gss_OID_desc_struct {
OM_uint32 length;
void*elements;

} gss_OID_desc, *gss_OID;

gss_OID_set_desc

This is the definition of the gss_OID_set_desc and the gss_OID_set pointer:

typedef struct gss_OID_set_desc_struct {
size_t count;
gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

gss_channel_bindings_struct

This is the definition of the gss_channel_bindings_struct structure and the
gss_channel_bindings_t pointer:

typedef struct gss_channel_bindings_struct {
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} *gss_channel_bindings_t;

Name Types
A name type indicates the format of the name with which it is associated. (See
“Names” on page 18 and “OIDs” on page 24 for more on names and name types.) The
GSS-API supports the following name types, which are all gss_OID types:

TABLE B–5 Name Types

Name Type Meaning

GSS_C_NO_NAME The recommended symbolic name
GSS_C_NO_NAME indicates that no name
is being passed within a particular value of
a parameter used for the purpose of
transferring names.

GSS-API Reference 127

TABLE B–5 Name Types (Continued)
Name Type Meaning

GSS_C_NO_OID This value corresponds to a null input
value instead of an actual object identifier.
Where specified, it indicates interpretation
of an associated name based on a
mechanism-specific default printable
syntax.

GSS_C_NT_ANONYMOUS Provided as a means to identify
anonymous names, and can be compared
against in order to determine, in a
mechanism-independent fashion, whether
a name refers to an anonymous principal.

GSS_C_NT_EXPORT_NAME A name that has been exported with the
gss_export_name() function.

GSS_C_NT_HOSTBASED_SERVICE This name type is used to represent
services associated with host computers.
This name form is constructed using two
elements, "service" and "hostname,” as
follows: service@hostname.

GSS_C_NT_MACHINE_UID_NAME This name type is used to indicate a
numeric user identifier corresponding to a
user on a local system. Its interpretation is
OS-specific. The gss_import_name()
function resolves this UID into a username,
which is then treated as the User Name
Form.

GSS_C_NT_STRING_STRING_UID_NAME This name type is used to indicate a string
of digits representing the numeric user
identifier of a user on a local system. Its
interpretation is OS-specific. This name
type is similar to the Machine UID Form,
except that the buffer contains a string
representing the user ID.

GSS_C_NT_USER_NAME A named user on a local system. Its
interpretation is OS-specific. It takes the
form: username.

Address Types for Channel Bindings
Table B–6 shows the possible values for the initiator_addrtype and acceptor_addrtype
fields of the gss_channel_bindings_struct structure. These fields indicate the

128 GSS-API Programming Guide • February 2002 (Beta)

format that a name can take (for example, ARPAnet IMP address format or AppleTalk
address format). Channel bindings are discussed in “Channel Bindings” on page 50.

TABLE B–6 Channel Binding Address Types

Field Value (Decimal) Address Type

GSS_C_AF_UNSPEC 0 Unspecified address type

GSS_C_AF_LOCAL 1 Host-local

GSS_C_AF_INET 2 Internet address type (example: IP)

GSS_C_AF_IMPLINK 3 ARPAnet IMP

GSS_C_AF_PUP 4 pup protocols (example: BSP)

GSS_C_AF_CHAOS 5 MIT CHAOS protocol

GSS_C_AF_NS 6 XEROX NS

GSS_C_AF_NBS 7 nbs

GSS_C_AF_ECMA 8 ECMA

GSS_C_AF_DATAKIT 9 datakit protocols

GSS_C_AF_CCITT 10 CCITT

GSS_C_AF_SNA 11 IBM SNA

GSS_C_AF_DECnet 12 DECnet

GSS_C_AF_DLI 13 Direct data link interface

GSS_C_AF_LAT 14 LAT

GSS_C_AF_HYLINK 15 NSC Hyperchannel

GSS_C_AF_APPLETALK 16 AppleTalk

GSS_C_AF_BSC 17 BISYNC

GSS_C_AF_DSS 18 Distributed system services

GSS_C_AF_OSI 19 OSI TP4

GSS_C_AF_X25 21 X.25

GSS_C_AF_NULLADDR 255 No address specified

GSS-API Reference 129

130 GSS-API Programming Guide • February 2002 (Beta)

APPENDIX C

Specifying an OID

Mechanisms and QOPs
Although it is strongly recommended that you use the default QOP and mechanism
provided by the GSS-API if at all possible (see “OIDs” on page 24), you might have
your own reasons for specifying these OIDs. For that reason this chapter briefly
discusses how to specify OIDs.

Files Containing OID Values
For convenience, the GSS-API does allow mechanisms and QOPs to be displayed in
human-readable form. On Solaris systems, two files, /etc/gss/mech and
/etc/gss/qop, contain information about available mechanisms and QOPs. If you
don’t have access to these files (perhaps because a remote machine won’t let you in),
then you must provide the string literals from some other source, such as the
published internet standard for that mechanism or QOP.

The /etc/gss/mech File
You can look in the /etc/gss/mech file to see which mechanisms are available;
/etc/gss/mech contains their names in both numerical and alphabetic form.
/etc/gss/mech presents the information in this format: the mechanism name, in
ASCII; the mechanism’s OID; the shared library implementing the services provided
by this mechanism; and, optionally, the kernel module implementing the service. A
sample /etc/gss/mech might look like Example C–1.

131

EXAMPLE C–1 The /etc/gss/mech File

#
Copyright (c) 2000, by Sun Microsystems, Inc.
All rights reserved.
#
#ident "@(#)mech 1.6 00/12/04 SMI"
#
This file contains the GSS-API based security mechanism names,
its object identifier (OID) and a shared library that implements
the services for that mechanism under GSS-API.
#
Mechanism Name Object Identifier Shared Library Kernel Module
#
diffie_hellman_640_0 1.3.6.4.1.42.2.26.2.4 dh640-0.so.1
diffie_hellman_1024_0 1.3.6.4.1.42.2.26.2.5 dh1024-0.so.1

kerberos_v5 1.2.840.113554.1.2.2 gl/mech_krb5.so gl_kmech_krb5

The /etc/gss/qop File
The /etc/gss/qop file stores, for all mechanisms installed, all the QOPs supported
by each mechanism, both as an ASCII string as its corresponding 32–bit integer. A
sample /etc/gss/qop might look like Example C–2.

EXAMPLE C–2 The /etc/gss/qop File

#
Copyright (c) 2000, by Sun Microsystems, Inc.
All rights reserved.
#
#ident "@(#)qop 1.3 00/11/09 SMI"
#
This file contains information about the GSS-API based quality of
protection (QOP), its string name and its value (32-bit integer).
#
QOP string QOP Value Mechanism Name
#
GSS_KRB5_INTEG_C_QOP_DES_MD5 0 kerberos_v5

GSS_KRB5_CONF_C_QOP_DES 0 kerberos_v5

gss_str_to_oid()
For backward compatibility with earlier versions of the GSS-API, this implementation
of the GSS-API supports the function gss_str_to_oid(). gss_str_to_oid()
converts a string representing a mechanism or QOP (either as a number or a word) to
an OID.

132 GSS-API Programming Guide • February 2002 (Beta)

Caution – gss_str_to_oid(), gss_oid_to_str(), and gss_release_oid()
are not supported by some implementations of the GSS-API in order to discourage the
use of explicit, non-default mechanisms and QOPs.

The string can be hard-coded in the application, or come from user input. However,
not all implementations of the GSS-API support this function, so applications
shouldn’t rely on it.

Note that the number representing a mechanism can have two different formats. The
first

{ 1 2 3 4 }is officially mandated by the GSS-API specifications, while the second:

1.2.3.4is more widely used but is not an official standard format. gss_str_to_oid()
expects the mechanism number in the first format, so you must convert the string if
it’s in the second format before calling gss_str_to_oid(). An example of this is
shown in “parse_oid()” on page 86. If the mechanism is not a valid one,
gss_str_to_oid() returns GSS_S_BAD_MECH.

Because gss_str_to_oid() allocates GSS-API dataspace, the
gss_release_oid() function exists, to remove the allocated OID when you’ve
finished with it. Like gss_str_to_oid(), gss_release_oid() is not a generally
supported function and should not be relied upon in programs that aspire to universal
portability.

Constructing Mechanism OIDs
Since gss_str_to_oid() is not always available or desirable, there are preferable, if
more complex, ways to find out which mechanisms are available, and to choose one.
One way is to construct a mechanism OID “by hand” and then compare it to a set of
available mechanisms; another way is to get the set of available mechanisms and
choose one from it.

The gss_OID type has the following form:

typedef struct gss_OID_desc struct {
OM_uint32 length;
void *elements;

} gss_OID_desc, *gss_OID;where the elements field of this structure points to the first
byte of an octet string containing the ASN.1 BER encoding of the value portion of the
normal BER TLV encoding of the gss_OID. The length field contains the number of
bytes in this value. For example, the gss_OID value corresponding to the DASS X.509
authentication mechanism, has a length field of 7 and an elements field pointing to
seven octets containing the following octal values: 53,14,2,207,163,7,5.

Specifying an OID 133

One way to construct a mechanism OID is to declare a gss_OID and then initialize its
elements “by hand” to represent that of a given mechanism. (As above, the input for
the elements values might be hard-coded, be looked up in a table, or come from user
input.) This is somewhat more painstaking than using gss_str_to_oid() but
achieves the same effect.

Such a gss_OID can then be compared against a set of available mechanisms returned
by the functions gss_indicate_mechs() or gss_inquire_mechs_for_name().
The application can check to see if its constructed mechanism OID is in this set of
available mechanisms by using the gss_test_oid_set_member() function. If
gss_test_oid_set_member() does not return an error, then the constructed OID
can be used as the mechanism for GSS-API transactions.

As an alternative to constructing a pre-set OID, the application can use
gss_indicate_mechs() or gss_inquire_mechs_for_name() to get the
gss_OID_set of available mechanisms. A gss_OID_set has the following form:

typedef struct gss_OID_set_desc_struct {
OM_uint32 length;
void *elements;

} gss_OID_set_desc, *gss_OID_set;where each of the elements is a gss_OID
representing a mechanism. The application can then parse each mechanism and
display the element values of each one, in effect displaying the numerical
representation of each mechanism. A user can then choose which of the mechanisms to
use, based on this display, and the application then sets its mechanism to be the
appropriate member of the gss_OID_set. Or the application can compare these
desired mechanisms with a list of preferred mechanisms.

134 GSS-API Programming Guide • February 2002 (Beta)

APPENDIX D

Sun-Specific Features

This appendix covers features unique to Sun’s implementation of the GSS-API.

Implementation-Specifc Features
A few aspects of the GSS-API may differ from one implementation of the API to
another. In most cases differences in implementations have only minimal effect on
programs; in all cases developers can maximize portability by not relying on any
behavior specific to a given implementation, including Sun’s.

Sun-Specific Functions
There are no GSS-API functions that are unique to Sun’s implementation.

Human-Readable Name Syntax
Implementations of the GSS-API may differ in the printable syntax that corresponds to
names. Applications that aim for portability should refrain from comparing names
based on human—readable (that is, printable) forms and should instead use
gss_compare_name() to determine whether or not one internal-format name
matches another.

Sun’s implementation of gss_display_name() displays names as follows: if the
input_nameargument denotes a user principal, the gss_display_name() returns

135

user_principal@realm as the output_name_buffer, and the gss_OID value as the
output_name_type. If Kerberos v5 is the underlying mechanism, gss_OID is
1.2.840.11354.1.2.2.

If the name given to gss_display_name() was created by a call to
gss_import_name(), specifying GSS_C_NO_OID as the name type,
gss_display_name() returns GSS_C_NO_OID via the output_name_type parameter.

Format of Anonymous Names
The gss_display_name() function outputs the string ’<anonymous>’ to indicate
an anonymous GSS-API principal. The name type OID associated with this name is
GSS_C_NT_ANONYMOUS. No other valid printable names supported by Sun’s
implementation can begin with ’<’ and end with ’>’.

Implementations of Selected Data Types
The following data types have been implemented as pointers (some implementations
may specify them as arithmetic types): gss_cred_t, gss_ctx_id_t, gss_name_t.

Deletion of Contexts and Stored Data
In the case where context establishment fails, Sun’s implementation does not
automatically delete “half-built” contexts. Applications should therefore handle this
event by deleting the contexts themselves with gss_delete_sec_context().

Sun’s implementation automatically releases stored data, such as internal names,
through memory management. However, for good measure, applications should still
call appropriate functions, such as gss_release_name(), when data elements are
no longer needed.

Protection of Channel-Binding Information
Sun does not encrypt information contained in channel bindings. Programmers must
therefore not assume that this information is unassailable.

136 GSS-API Programming Guide • February 2002 (Beta)

Context Exportation and Interprocess Tokens
Sun’s implementation supports context exportation; other implementations of the
GSS-API may not. The interprocess token used in exporting a context may contain
sensitive data from the original security context, including cryptographic keys. Sun’s
implementation of the GSS-API does not encrypt interprocess tokens. Therefore,
applications that export security contexts must take appropriate steps to protect these
tokens in transit (that is, wrap them themselves).

Sun’s implementation detects and rejects attempted multiple imports of the same
context.

Types of Credentials Supported
Sun’s implementation of the GSS-API supports the acquisition of GSS_C_INITIATE,
GSS_C_ACCEPT, and GSS_C_BOTH credentials via gss_acquire_cred().

Credential Expiration
The Sun implementation of the GSS-API supports credential expiration. Therefore,
programmers can use parameters relating to credential lifetime in functions such as
gss_acquire_cred() and gss_add_cred().

Context Expiration
Sun’s implementation of the GSS-API supports context expiration. Therefore,
programmers can use parameters relating to context lifetime in functions such as
gss_init_sec_context() and gss_inquire_context().

Wrap Size Limits and QOP Values
Sun’s implementation of the GSS-API (as opposed to any underlying mechanism) does
not impose a maximum size on the size of messages to be processed by gss_wrap().
Applications can determine the maximum message size with
gss_wrap_size_limit().

Sun’s implementation of the GSS-API detects invalid QOP values when
gss_wrap_size_limit() is called.

Sun-Specific Features 137

Use of minor_status Parameter
In Sun’s implementation of the GSS-API, functions return only mechanism-specific
information in the minor_status parameter. (Other implementations may include
implementation-specific return values as part of the returned minor-status code.)

138 GSS-API Programming Guide • February 2002 (Beta)

APPENDIX E

Kerberos v5 Status Codes

Table of Kerberos v5 Status Codes
Each GSS-API function returns two status codes: a major status code and a minor status
code. Major status codes relate to the behavior of the GSS-API itself. For example, if an
application attempts to transmit a message after a security context has expired, the
GSS-API returns a major status code of GSS_S_CONTEXT_EXPIRED. Major status
codes are listed in “GSS-API Status Codes” on page 122.

Minor status codes are returned by the underlying security mechanisms supported by
a given implementation of the GSS-API. At present, the only such mechanism
supported by Sun’s implementation of the GSS-API is Kerberos v5. (Sun’s
implementation of the Kerberos v5 is known as SEAM, the Sun Enterprise
Authentication Mechanism; for our purposes, you can think of them as the same
thing.) Every GSS-API function takes as its first argument a minor_status (or minor_stat)
parameter; an application can examine this parameter when the function returns,
successfully or not, to see what the status the underlying mechanism reports.

The following table lists the status messages that might be returned by Kerberos v5 in
the minor_status argument.

For more on GSS-API status codes, see “Status Codes” on page 26.

TABLE E–1 Kerberos v5 Status Codes 1

Minor Status Value Meaning

KRB5KDC_ERR_NONE -1765328384L No error

KRB5KDC_ERR_NAME_EXP -1765328383L Client’s entry in
database has expired

139

TABLE E–1 Kerberos v5 Status Codes 1 (Continued)
Minor Status Value Meaning

KRB5KDC_ERR_SERVICE_EXP -1765328382L Server’s entry in
database has expired

KRB5KDC_ERR_BAD_PVNO -1765328381L Requested protocol
version not supported

KRB5KDC_ERR_C_OLD_MAST_KVNO -1765328380L Client’s key is encrypted
in an old master key

KRB5KDC_ERR_S_OLD_MAST_KVNO -1765328379L Server’s key is
encrypted in an old
master key

KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN -1765328378L Client not found in
Kerberos database

KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN -1765328377L Server not found in
Kerberos database

KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE -1765328376L Principal has multiple
entries in Kerberos
database

KRB5KDC_ERR_NULL_KEY -1765328375L Client or server has a
null key

KRB5KDC_ERR_CANNOT_POSTDATE -1765328374L Ticket is ineligible for
postdating

KRB5KDC_ERR_NEVER_VALID -1765328373L Requested effective
lifetime is negative or
too short

KRB5KDC_ERR_POLICY -1765328372L KDC policy rejects
request

KRB5KDC_ERR_BADOPTION -1765328371L KDC can’t fulfill
requested option

KRB5KDC_ERR_ETYPE_NOSUPP -1765328370L KDC has no support for
encryption type

KRB5KDC_ERR_SUMTYPE_NOSUPP -1765328369L KDC has no support for
checksum type

KRB5KDC_ERR_PADATA_TYPE_NOSUPP -1765328368L KDC has no support for
padata type

KRB5KDC_ERR_TRTYPE_NOSUPP -1765328367L KDC has no support for
transited type

KRB5KDC_ERR_CLIENT_REVOKED -1765328366L Client’s credentials have
been revoked

140 GSS-API Programming Guide • February 2002 (Beta)

TABLE E–1 Kerberos v5 Status Codes 1 (Continued)
Minor Status Value Meaning

KRB5KDC_ERR_SERVICE_REVOKED -1765328365L Credentials for server
have been revoked

TABLE E–2 Kerberos v5 Status Codes 2

Minor Status Value Meaning

KRB5KDC_ERR_TGT_REVOKED -1765328364L TGT has been revoked

KRB5KDC_ERR_CLIENT_NOTYET -1765328363L Client not yet valid —
try again later

KRB5KDC_ERR_SERVICE_NOTYET -1765328362L Server not yet valid —
try again later

KRB5KDC_ERR_KEY_EXP -1765328361L Password has expired

KRB5KDC_ERR_PREAUTH_FAILED -1765328360L Preauthentication failed

KRB5KDC_ERR_PREAUTH_REQUIRED -1765328359L Additional
pre-authentication
required

KRB5KDC_ERR_SERVER_NOMATCH -1765328358L Requested server and
ticket don’t match

KRB5PLACEHOLD_27 through KRB5PLACEHOLD_30 -1765328357L through
-1765328354L

KRB5 error codes 27
through 30 (reserved)

KRB5KRB_AP_ERR_BAD_INTEGRITY -1765328353L Decrypt integrity check
failed

KRB5KRB_AP_ERR_TKT_EXPIRED -1765328352L Ticket expired

KRB5KRB_AP_ERR_TKT_NYV -1765328351L Ticket not yet valid

KRB5KRB_AP_ERR_REPEAT -1765328350L Request is a replay

KRB5KRB_AP_ERR_NOT_US -1765328349L The ticket isn’t for us

KRB5KRB_AP_ERR_BADMATCH -1765328348L Ticket/authenticator
don’t match

KRB5KRB_AP_ERR_SKEW -1765328347L Clock skew too great

KRB5KRB_AP_ERR_BADADDR -1765328346L Incorrect net address

KRB5KRB_AP_ERR_BADVERSION -1765328345L Protocol version
mismatch

KRB5KRB_AP_ERR_MSG_TYPE -1765328344L Invalid message type

Kerberos v5 Status Codes 141

TABLE E–2 Kerberos v5 Status Codes 2 (Continued)
Minor Status Value Meaning

KRB5KRB_AP_ERR_MODIFIED -1765328343L Message stream
modified

KRB5KRB_AP_ERR_BADORDER -1765328342L Message out of order

KRB5KRB_AP_ERR_ILL_CR_TKT -1765328341L Illegal cross-realm ticket

KRB5KRB_AP_ERR_BADKEYVER -1765328340L Key version is not
available

TABLE E–3 Kerberos v5 Status Codes 3

Minor Status Value Meaning

KRB5KRB_AP_ERR_NOKEY -1765328339L Service key not
available

KRB5KRB_AP_ERR_MUT_FAIL -1765328338L Mutual authentication
failed

KRB5KRB_AP_ERR_BADDIRECTION -1765328337L Incorrect message
direction

KRB5KRB_AP_ERR_METHOD -1765328336L Alternative
authentication method
required

KRB5KRB_AP_ERR_BADSEQ -1765328335L Incorrect sequence
number in message

KRB5KRB_AP_ERR_INAPP_CKSUM -1765328334L Inappropriate type of
checksum in message

KRB5PLACEHOLD_51 through KRB5PLACEHOLD_59 -1765328333L through
-1765328325L

KRB5 error codes 51
through 59 (reserved)

KRB5KRB_ERR_GENERIC -1765328324L Generic error

KRB5KRB_ERR_FIELD_TOOLONG -1765328323L Field is too long for this
implementation

KRB5PLACEHOLD_62 through KRB5PLACEHOLD_127 -1765328322L through
-1765328257L

KRB5 error codes 62
through 127 (reserved)

(value not returned) -1765328256L For internal use only

KRB5_LIBOS_BADLOCKFLAG -1765328255L Invalid flag for file lock
mode

KRB5_LIBOS_CANTREADPWD -1765328254L Cannot read password

KRB5_LIBOS_BADPWDMATCH -1765328253L Password mismatch

142 GSS-API Programming Guide • February 2002 (Beta)

TABLE E–3 Kerberos v5 Status Codes 3 (Continued)
Minor Status Value Meaning

KRB5_LIBOS_PWDINTR -1765328252L Password read
interrupted

KRB5_PARSE_ILLCHAR -1765328251L Illegal character in
component name

KRB5_PARSE_MALFORMED -1765328250L Malformed
representation of
principal

KRB5_CONFIG_CANTOPEN -1765328249L Can’t open/find
Kerberos
/etc/krb5/krb5
configuration file

KRB5_CONFIG_BADFORMAT -1765328248L Improper format of
Kerberos
/etc/krb5/krb5
configuration file

KRB5_CONFIG_NOTENUFSPACE -1765328247L Insufficient space to
return complete
information

KRB5_BADMSGTYPE -1765328246L Invalid message type
specified for encoding

KRB5_CC_BADNAME -1765328245L Credential cache name
malformed

TABLE E–4 Kerberos v5 Status Codes 4

Minor Status Value Meaning

KRB5_CC_UNKNOWN_TYPE -1765328244L Unknown credential
cache type

KRB5_CC_NOTFOUND -1765328243L Matching credential not
found

KRB5_CC_END -1765328242L End of credential cache
reached

KRB5_NO_TKT_SUPPLIED -1765328241L Request did not supply
a ticket

KRB5KRB_AP_WRONG_PRINC -1765328240L Wrong principal in
request

KRB5KRB_AP_ERR_TKT_INVALID -1765328239L Ticket has invalid flag
set

Kerberos v5 Status Codes 143

TABLE E–4 Kerberos v5 Status Codes 4 (Continued)
Minor Status Value Meaning

KRB5_PRINC_NOMATCH -1765328238L Requested principal and
ticket don’t match

KRB5_KDCREP_MODIFIED -1765328237L KDC reply did not
match expectations

KRB5_KDCREP_SKEW -1765328236L Clock skew too great in
KDC reply

KRB5_IN_TKT_REALM_MISMATCH -1765328235L Client/server realm
mismatch in initial
ticket request

KRB5_PROG_ETYPE_NOSUPP -1765328234L Program lacks support
for encryption type

KRB5_PROG_KEYTYPE_NOSUPP -1765328233L Program lacks support
for key type

KRB5_WRONG_ETYPE -1765328232L Requested encryption
type not used in
message

KRB5_PROG_SUMTYPE_NOSUPP -1765328231L Program lacks support
for checksum type

KRB5_REALM_UNKNOWN -1765328230L Cannot find KDC for
requested realm

KRB5_SERVICE_UNKNOWN -1765328229L Kerberos service
unknown

KRB5_KDC_UNREACH -1765328228L Cannot contact any
KDC for requested
realm

KRB5_NO_LOCALNAME -1765328227L No local name found for
principal name

KRB5_MUTUAL_FAILED -1765328226L Mutual authentication
failed

KRB5_RC_TYPE_EXISTS -1765328225L Replay cache type is
already registered

KRB5_RC_MALLOC -1765328224L No more memory to
allocate (in replay cache
code)

KRB5_RC_TYPE_NOTFOUND -1765328223L Replay cache type is
unknown

144 GSS-API Programming Guide • February 2002 (Beta)

TABLE E–5 Kerberos v5 Status Codes 5

Minor Status Value Meaning

KRB5_RC_UNKNOWN -1765328222L Generic unknown RC
error

KRB5_RC_REPLAY -1765328221L Message is a replay

KRB5_RC_IO -1765328220L Replay I/O operation
failed

KRB5_RC_NOIO -1765328219L Replay cache type does
not support non-volatile
storage

KRB5_RC_PARSE -1765328218L Replay cache name
parse/format error

KRB5_RC_IO_EOF -1765328217L End-of-file on replay
cache I/O

KRB5_RC_IO_MALLOC -1765328216L No more memory to
allocate (in replay cache
I/O code)

KRB5_RC_IO_PERM -1765328215L Permission denied in
replay cache code

KRB5_RC_IO_IO -1765328214L I/O error in replay
cache i/o code

KRB5_RC_IO_UNKNOWN -1765328213L Generic unknown
RC/IO error

KRB5_RC_IO_SPACE -1765328212L Insufficient system space
to store replay
information

KRB5_TRANS_CANTOPEN -1765328211L Can’t open/find realm
translation file

KRB5_TRANS_BADFORMAT -1765328210L Improper format of
realm translation file

KRB5_LNAME_CANTOPEN -1765328209L Can’t open/find lname
translation database

KRB5_LNAME_NOTRANS -1765328208L No translation available
for requested principal

KRB5_LNAME_BADFORMAT -1765328207L Improper format of
translation database
entry

Kerberos v5 Status Codes 145

TABLE E–5 Kerberos v5 Status Codes 5 (Continued)
Minor Status Value Meaning

KRB5_CRYPTO_INTERNAL -1765328206L Cryptosystem internal
error

KRB5_KT_BADNAME -1765328205L Key table name
malformed

KRB5_KT_UNKNOWN_TYPE -1765328204L Unknown Key table
type

KRB5_KT_NOTFOUND -1765328203L Key table entry not
found

KRB5_KT_END -1765328202L End of key table reached

KRB5_KT_NOWRITE -1765328201L Cannot write to
specified key table

TABLE E–6 Kerberos v5 Status Codes 6

Minor Status Value Meaning

KRB5_KT_IOERR -1765328200L Error writing to key
table

KRB5_NO_TKT_IN_RLM -1765328199L Cannot find ticket for
requested realm

KRB5DES_BAD_KEYPAR -1765328198L DES key has bad parity

KRB5DES_WEAK_KEY -1765328197L DES key is a weak key

KRB5_BAD_ENCTYPE -1765328196L Bad encryption type

KRB5_BAD_KEYSIZE -1765328195L Key size is incompatible
with encryption type

KRB5_BAD_MSIZE -1765328194L Message size is
incompatible with
encryption type

KRB5_CC_TYPE_EXISTS -1765328193L Credentials cache type
is already registered

KRB5_KT_TYPE_EXISTS -1765328192L Key table type is already
registered

KRB5_CC_IO -1765328191L Credentials cache I/O
operation failed

KRB5_FCC_PERM -1765328190L Credentials cache file
permissions incorrect

146 GSS-API Programming Guide • February 2002 (Beta)

TABLE E–6 Kerberos v5 Status Codes 6 (Continued)
Minor Status Value Meaning

KRB5_FCC_NOFILE -1765328189L No credentials cache file
found

KRB5_FCC_INTERNAL -1765328188L Internal file credentials
cache error

KRB5_CC_WRITE -1765328187L Error writing to
credentials cache file

KRB5_CC_NOMEM -1765328186L No more memory to
allocate (in credentials
cache code)

KRB5_CC_FORMAT -1765328185L Bad format in
credentials cache

KRB5_INVALID_FLAGS -1765328184L Invalid KDC option
combination (library
internal error)

KRB5_NO_2ND_TKT -1765328183L Request missing second
ticket

KRB5_NOCREDS_SUPPLIED -1765328182L No credentials supplied
to library routine

KRB5_SENDAUTH_BADAUTHVERS -1765328181L Bad sendauth version
was sent

KRB5_SENDAUTH_BADAPPLVERS -1765328180L Bad application version
was sent (by sendauth)

KRB5_SENDAUTH_BADRESPONSE -1765328179L Bad response (during
sendauth exchange)

KRB5_SENDAUTH_REJECTED -1765328178L Server rejected
authentication (during
sendauth exchange)

TABLE E–7 Kerberos v5 Status Codes 7

Minor Status Value Meaning

KRB5_PREAUTH_BAD_TYPE -1765328177L Unsupported
pre-authentication type

KRB5_PREAUTH_NO_KEY -1765328176L Required
pre-authentication key
not supplied

Kerberos v5 Status Codes 147

TABLE E–7 Kerberos v5 Status Codes 7 (Continued)
Minor Status Value Meaning

KRB5_PREAUTH_FAILED -1765328175L Generic
preauthentication failure

KRB5_RCACHE_BADVNO -1765328174L Unsupported replay
cache format version
number

KRB5_CCACHE_BADVNO -1765328173L Unsupported
credentials cache format
version number

KRB5_KEYTAB_BADVNO -1765328172L Unsupported key table
format version number

KRB5_PROG_ATYPE_NOSUPP -1765328171L Program lacks support
for address type

KRB5_RC_REQUIRED -1765328170L Message replay
detection requires
rcache parameter

KRB5_ERR_BAD_HOSTNAME -1765328169L Host name cannot be
canonicalized

KRB5_ERR_HOST_REALM_UNKNOWN -1765328168L Cannot determine realm
for host

KRB5_SNAME_UNSUPP_NAMETYPE -1765328167L Conversion to service
principal undefined for
name type

KRB5KRB_AP_ERR_V4_REPLY -1765328166L Initial Ticket response
appears to be Version 4
error

KRB5_REALM_CANT_RESOLVE -1765328165L Cannot resolve KDC for
requested realm

KRB5_TKT_NOT_FORWARDABLE -1765328164L Requesting ticket can’t
get forwardable tickets

KRB5_FWD_BAD_PRINCIPAL -1765328163L Bad principal name
while trying to forward
credentials

KRB5_GET_IN_TKT_LOOP -1765328162L Looping detected inside
krb5_get_in_tkt

KRB5_CONFIG_NODEFREALM -1765328161L Configuration file
/etc/krb5/krb5.conf
does not specify default
realm

148 GSS-API Programming Guide • February 2002 (Beta)

TABLE E–7 Kerberos v5 Status Codes 7 (Continued)
Minor Status Value Meaning

KRB5_SAM_UNSUPPORTED -1765328160L Bad SAM flags in
obtain_sam_padata

KRB5_KT_NAME_TOOLONG -1765328159L Keytab name too long

KRB5_KT_KVNONOTFOUND -1765328158L Key version number for
principal in key table is
incorrect

KRB5_CONF_NOT_CONFIGURED -1765328157L Kerberos
/etc/krb5/krb5.conf
configuration file not
configured

gERROR_TABLE_BASE_krb5 -1765328384L default

Kerberos v5 Status Codes 149

150 GSS-API Programming Guide • February 2002 (Beta)

Glossary

ACL See Access Control List (ACL).

Access Control List
(ACL)

A file containing a list of principals with certain access permissions.
Typically, a server consults an access control list to verify that a client
has permission to use its services. Note that a principal authenticated
by GSS-API can still be denied services if an ACL does not permit
them.

authentication A security service that verifies the claimed identity of a principal.

authorization The process of determining whether a principal can use a service,
which objects the principal is allowed to access, and the type of access
allowed for each.

client Narrowly, a process that makes use of a network service on behalf of a
user; for example, an application that uses rlogin. In some cases, a
server can itself be a client of some other server or service. Informally,
a principal that makes use of a service.

confidentiality A security service that encrypts data; confidentiality also includes
integrity and authentication services. See also authentication, integrity,
service.

context A “state of trust” between two applications. When a context has
successfully been established between two peers, the context acceptor
is aware that the context initiator is who it claims to be, and can verify
and decrypt messages sent to it. If the context includes mutual
authentication, then initiator knows the acceptor’s identity is valid and
can also verify and/or decrypt messages from it.

context-level token See token.

credential An information package that identifies a principal; a principal’s
“identification badge,” specifying who the principal is and, often, what
privileges it has. Credentials are produced by security mechanisms.

151

credential cache A storage space (usually a file) containing credentials stored by a given
mechanism.

data replay Data replay is said to occur when a single message in a message
stream is received more than once. Many security mechanisms support
data replay detection. Replay detection, if available, must be requested
at context-establishment time.

data type (Also data type) The form that a given piece of data takes — for
example, an int, a string, a gss_name_t structure, or a gss_OID_set
structure.

delegation If permitted by the underlying security mechanism, a principal
(generally the context initiator) can designate a peer principal (usually
the context acceptor) as a proxy by delegating its credentials to it. The
delegated credentials can be used by the recipient to make requests on
behalf of the original principal, as might be the case when a principal
uses rlogin from machine to machine to machine.

exported name A name that has been converted from the GSS-API internal-name
format (specifically, a Mechanism Name) to the GSS-API Exported
Name format by gss_export_name(). An exported name can be
compared with names that are in non-GSS-API string format with
memcmp(). See also Mechanism Name (MN), name.

flavor Historically, security flavor and authentication flavor were equivalent
terms, as a flavor indicated a type of authentication (AUTH_UNIX,
AUTH_DES, AUTH_KERB). RPCSEC_GSS is also a security flavor,
even though it provides integrity and confidentiality services in
addition to authentication.

GSS-API The Generic Security Service Application Programming Interface. A
network layer providing support for various modular security
services. GSS-API provides for security authentication, integrity, and
confidentiality services, and allows maximum portability of
applications with regard to security. See also authentication,
confidentiality, integrity.

host A machine accessible over a network.

integrity A security service that, in addition to user authentication, provides
proof of the validity of transmitted data through cryptographic
tagging. See also authentication, confidentiality, Message Integrity
Code (MIC).

mechanism A software package that specifies cyptographic techniques to achieve
data authentication or confidentiality. Examples include Kerberos v5
and Diffie-Hellman public key.

Mechanism Name (MN) A special instance of a GSS-API internal-format name. A normal
internal-format GSS-API name may contain several instances of a
name, each in the format of an underlying mechanism; a Mechanism

152 GSS-API Programming Guide • February 2002 (Beta)

Name, however, is unique to a particular mechanism. Mechanism
Names are generated by gss_canonicalize_name().

message Data in the form of a gss_buffer_t object sent from one
GSS-API-based application to its peer. An example of a message is
“ls” sent to a remote ftp server.

A message can contain more than just the user-provided data. For
example, gss_wrap() takes an unwrapped message and produces a
wrapped one to be sent; the wrapped message includes both the
original message and an accompanying MIC. GSS-API-generated
information that does not include a message is a token — see token for
more.

Message Integrity Code
(MIC)

A cryptographic “tag” attached to transmitted data to ensure the data’s
validity. The recipient of the data generates its own MIC and compares
it to the one that was sent; if they’re equal, the message is valid. Some
MICs, such as those generated by gss_get_mic(), are visible to the
application, while others, such as those generated by gss_wrap() or
gss_init_sec_context(), are not.

message–level token See token.

MIC See Message Integrity Code (MIC).

MN See Mechanism Name (MN).

mutual authentication When a context is established, a context initiator must authenticate
itself to the context acceptor. In some cases the initiator might request
that the acceptor authenticate itself back. If the acceptor does so, the
two are said to be mutually authenticated.

name The name of a principal, such as “joe@machine.” Names in the
GSS-API are handled through the gss_name_t structure, which is
opaque to applications. See also exported name, Mechanism Name
(MN), name type, principal.

name type The particular form that a name is given in. Name types are stored as
gss_OID types and are used to indicate the format used for a name.
For example, the name “joe@machine” would have a name type of
GSS_C_NT_HOSTBASED_SERVICE. See also exported name,
Mechanism Name (MN), name.

opacity See opaque.

opaque A particular piece of data is said to be opaque if its value or format is
not normally visible to functions that use it. For example, the
input_token parameter to gss_init_sec_context() is opaque to
the application, but significant to the GSS-API; similarly, the
input_message parameter to gss_wrap() is opaque to the GSS-API but
important to the application doing the wrapping.

Glossary 153

out-of-sequence
detection

Many security mechanisms can detect if messages in a message stream
are received out of their proper order. Message detection, if available,
must be requested at context-establishment time.

per-message token See token.

principal A uniquely named client/user or server/service instance that
participates in a network communication; GSS–API–based transactions
involve interactions between principals. Examples of principal names
include:

� joe
� joe@machine
� nfs@machine
� 123.45.678.9
� ftp://ftp.company.com

See also name, name type.

privacy See confidentiality.

QOP See Quality of Protection (QOP).

Quality of Protection
(QOP)

A parameter used to select the cryptographic algorithms to be used in
conjunction with the integrity or confidentiality service. With integrity,
the QOP specifies the algorithm for producing a Message Integrity
Code (MIC); with confidentiality, it specifies the algorithm for both the
MIC and message encryption.

replay detection Many security mechanisms can detect if a message in a message
stream has been incorrectly repeated. Message replay detection, if
available, must be requested at context-establishment time.

security flavor See flavor.

security mechanism See mechanism.

security service See service.

server A principal that provides a resource to network clients. For example, if
you rlogin to the machine boston.eng.acme.com, then that
machine is the server providing the rlogin service.

service

1. (Also, network service) A resource provided to network clients; often
provided by more than one server. For example, if you rlogin to
the machine boston.eng.acme.com, then that machine is the
server providing the rlogin service.

2. A security service can be either integrity or confidentiality, providing
a level of protection beyond authentication. See also authentication,
integrity and confidentiality.

154 GSS-API Programming Guide • February 2002 (Beta)

token A data packet in the form of a GSS-API gss_buffer_t structure.
Tokens are produced by GSS-API functions for transfer to peer
applications.

Tokens come in two types. Context-level tokens contain information
used to establish or manage a security context. For example,
gss_init_sec_context() bundles a context initiator’s credential
handle, the target machine’s name, flags for various requested services,
and more into a token to be sent to the context acceptor.

Message tokens (also known as per-message tokens or message-level tokens)
contain information generated by a GSS-API function from messages
to be sent to a peer application. For example, gss_get_mic()
produces an identifying cryptographic tag for a given message and
stores it in a token to be sent to a peer with the message. (Technically, a
token is considered to be separate from a message, which is why
gss_wrap() is said to produce an output_message and not an
output_token.)

See also message.

Glossary 155

156 GSS-API Programming Guide • February 2002 (Beta)

Index

A
Access Control List, 20, 151
ACL, See Access Control List
acquiring context information, 54
acquiring credentials, 32
address types for channel bindings, 128
anonymous authentication, 50
anonymous name format, 136
authentication, 55, 151

anonymous, 50
flavor, 152
mutual, 47, 153

authentication flavor, 152
authorization, 151

C
calling errors, 123
channel bindings, 50, 127

address types for, 128
protection of information, 136

client, 151
client-side sample program, 67
comparing names, 20
confidentiality, 13, 55, 151
confirming data transfer, 63
context, 12, 151

acceptance, 41, 79
deletion, 65, 136
establishment, 34
expiration, 137

context (continued)
exportation, 137
exporting, 40, 45
handle, 35
import and export, 52, 81
information about, acquiring, 54
initiation, 35
using loop to establish, 35, 41

context handle, 35
context-level tokens, 27, 155
credential cache, 151
credential handle, 31
credentials, 31, 151

acquiring, 32, 77
credential handles, 31
default, 33
delegation, 46
expiration, 32, 137
GSS_C_ACCEPT, 32
GSS_C_BOTH, 32
GSS_C_INITIATE, 32
lifetime of, 32
structure of, 31
supported types, 137
types of, 32

cryptographic checksum (MIC), 56

157

D
data

See also message
confirming receipt of, 63
deallocation, 65
deletion, 136
encryption, 57
maximum size for wrapping, 58
out-of-sequence detection, 48
replay detection, 48
signing, 81
unwrapping, 61
verifying, 62

data protection, 55
data replay, 152
data types, 17, 126, 152

gss_buffer_desc, 126
gss_channel_bindings_t, 127
gss_OID_desc, 127
gss_OID_set_desc, 127
implementation of specific, 136
integers, 17, 126
names, 18
strings, 17

default credential, 33
delegation, 46, 152
detection

out-of-sequence, 48, 153
replay, 48, 154

displaying status codes, 125

E
encryption, 55

data message, 57
error codes, See status codes
/etc/gss/mech file, 131
/etc/gss/qop file, 132
exported name, 152
exporting contexts, 40, 45, 52

F
file

/etc/gss/mech, 131

file (continued)
/etc/gss/qop, 132
gssapi.h, 29, 119

flavor, See security flavor
format of anonymous names, 136
function

from previous versions of GSS-API, 121
gss_accept_sec_context, 41
gss_acquire_cred, 33
gss_add_cred, 34
gss_canonicalize_name, 19
gss_compare_name, 21, 23
gss_delete_oid, 121
gss_display_name, 19
gss_display_status, 125
gss_export_context, 28
gss_export_sec_context, 52
gss_get_mic, 55, 56
gss_get_mic vs. gss_wrap, 55
gss_import_name, 18
gss_import_sec_context, 52
gss_init_sec_context, 35
gss_inquire_context, 54
gss_oid_to_str, 121
gss_seal, 122
gss_sign, 122
gss_str_to_oid, 121, 132
gss_unseal, 122
gss_unwrap, 61
gss_verify, 122
gss_verify_mic, 62
gss_wrap, 55, 57
gss_wrap_size_limit, 58
list of, 119
memcmp, 23
recv_token, 116
renamed or supplanted, 122
send_token, 115
Sun-specific, 135

G
General Security Standard Application

Programming Interface, See GSS-API
gss_accept_sec_context function, 41
gss_acquire_cred function, 33

158 GSS-API Programming Guide • February 2002 (Beta)

gss_add_cred function, 34
GSS-API, 152

comparing names in, 20
credentials, 31
data types, 17, 126
functions, 119
header files, 29
in communication layers, 11
include files, 29
integers, 126
introduction, 11
language bindings, 16
macros, 125
name types, 25
OIDs, 24
portability, 12
principal, 16
programming with, 29
reference, 119
services not provided by, 15
status codes, 26, 122
steps in using, 29
Sun-specific features, 135
tokens, 27
where to find more information, 16

gssapi.h file, 29, 119
gss_buffer_desc structure, 17, 126
gss_buffer_t pointer, 17, 18, 126
GSS_C_ACCEPT credential, 32
GSS_CALLING_ERROR macro, 26, 125
GSS_C_ANON_FLAG, 38, 39, 44
gss_canonicalize_name function, 19
GSS_C_BOTH credential, 32
GSS_C_CONF_FLAG, 38, 39, 44
GSS_C_DELEG_FLAG, 37, 39, 43
gss_channel_bindings_t data type, 50
gss_channel_bindings_t pointer, 127
GSS_C_INITIATE credential, 32
GSS_C_INTEG_FLAG, 38, 39, 44
GSS_C_MUTUAL_FLAG, 37, 39, 43
gss_compare_name function, 21, 23
GSS_C_PROT_READY_FLAG, 39, 44
GSS_C_REPLAY_FLAG, 37, 39, 44
GSS_C_SEQUENCE_FLAG, 38, 39, 44
GSS_C_TRANS_FLAG, 40, 45
gss_delete_oid function, 121
gss_display_name function, 19

gss_display_status function, 125
gss_export_context function, 28
gss_export_sec_context function, 52
gss_get_mic function, 55, 56

vs. gss_wrap, 55
gss_get_mic vs. gss_wrap, 55
gss_import_name function, 18
gss_import_sec_context function, 52
gss_init_sec_context function, 35
gss_inquire_context function, 54
gss_OID pointer, 25, 127
gss_OID_desc structure, 127
gss_OID_set pointer, 25, 127
gss_OID_set_desc structure, 25, 127
gss_oid_to_str function, 121
GSS_ROUTINE_ERROR macro, 26, 125
gss_seal function, 122
gss_sign function, 122
gss_str_to_oid function, 121, 132
GSS_SUPPLEMENTARY_INFO macro, 26, 125
gss_unseal function, 122
gss_unwrap function, 61
gss_verify function, 122
gss_verify_mic function, 62
gss_wrap, 57
gss_wrap function, 55

and wrap size, 58
vs. gss_get_mic, 55

gss_wrap vs. gss_get_mic, 55
gss_wrap_size_limit function, 58

H
header files for GSS-API, 29
host, 152
human-readable name syntax, 135

I
implementation-specific features, See

Sun-specific features
importing contexts, 52
importing names, 18
include file, 29
information about contexts, 54

Index 159

integers, 17, 126
integrity, 13, 55, 152
interprocess tokens, 28, 137

K
Kerberos v5, 14

table of status codes, 139

L
language bindings, 16

M
macros, 125

GSS_CALLING_ERROR, 26, 125
GSS_ROUTINE_ERROR, 26, 125
GSS_SUPPLEMENTARY_INFO, 26, 125

major-status codes, 26
calling errors, 123
encoding, 122
routine errors, 123
supplementary information, 124
values, 123

mechanism, 152
formats of printable representation, 133
specifying, 25, 69, 77, 131
types available with Sun implementation of

GSS-API, 14
Mechanism Name (MN), 19, 152
memcmp function, 23
message

See also data, 27, 153
confirming receipt of, 63
encryption, 57
maximum size for wrapping, 58
out-of-sequence detection, 48
replay detection, 48
signing, 81
tagging with MIC, 56
unwrapping, 61, 80
verifying, 62

Message Integrity Code, See MIC
MIC, 55, 56, 153
minor-status codes, 26

Kerberos v5, 139
minor_status parameter, 26, 139
MN, See Mechanism Name
multiprocess applications, 52
mutual authentication, 47, 153

N
name, 153
name types, 25, 153

list of, 127
names, 18

comparing, 20
importing, 18
name types, 25
readable syntax, 135

network service, 16, 154

O
Object Identifiers, See OIDs
OID sets, 25
OIDs, 24

constructing, 133
deallocation of, 25
file containing values, 131
sets, 25
specifying, 25, 77, 131
types of data stored as, 24

OM_uint32 data type, 126
opacity, 153
out-of-sequence detection, 48, 153

P
per-message tokens, 27, 155
portability, 12
principal, 16, 154
printable-name syntax, 135
privacy, 154
protecting data, 55

160 GSS-API Programming Guide • February 2002 (Beta)

protection of channel-binding information, 136

Q
QOP, 13, 59, 154

specifying, 25, 131
Quality of Protection, See QOP

R
recv_token function, 116
replay detection, 48, 154
return codes, See status codes
routine errors, 123
RPCSEC_GSS, 14

S
sample programs, 67

client-side, 67
server-side, 75

SEAM, 14
security context, See context
security flavor, 152
security mechanism, See mechanism
security service, 12, 154

authentication, 13
confidentiality, 13
integrity, 13
types of, 13

send_token function, 115
sequence detection, 48
server, 154
server-side sample program, 75
service, See security service or network service
signing data, 81
Solaris Enterprise Authentication Mechanism,

See SEAM
specifying a mechanism, 69, 77, 131
specifying a QOP, 131
specifying OIDs, 25, 131
status codes, 26, 122

displaying, 125
Kerberos v5, 139

status codes (continued)
macros, 125
major, 26
minor, 26

strings, 17
Sun-specific features, 135, 137

anonymous name format, 136
channel-binding information, protection

of, 136
context exportation, 137
data types, 136
deletion of contexts and data, 136
interprocess tokens, 137
minor-status codes, 138
printable name syntax, 135
readable name syntax, 135
Sun-specific functions, 135
supported credentials, 137
wrap-size limits, 137

Sun-specific functions, 135
supplementary information (status codes), 124

T
tokens, 27, 154

context-level, 27, 155
distinguishing types of, 27
interprocess, 28
per-message, 27, 155

U
unwrapping messages, 61, 80

V
verifying messages, 62

W
where to find more information, 16
wrap size, 58

determining maximum, 58

Index 161

wrap size (continued)
maximum, 137

162 GSS-API Programming Guide • February 2002 (Beta)

