
Java 2 SDK for Solaris Developer’s
Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–7930–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 7

1 New Features and Enhancements 11

Java 2 Platform 12

XML Processing 12

New I/O APIs 12

Security 12

Java 2D Technology 13

Image I/O Framework 13

Java Print Service API 14

AWT 14

Swing 14

Drag and Drop 15

Logging API 15

Java WebStart Product 15

Long-term Persistence of JavaBeans Components 16

JDBC 3.0 API 16

Assertion Facility 16

Preferences API 17

Java HotSpot Virtual Machines 17

Performance 17

Networking Support, Including IPv6 17

RMI 18

Serialization 18

Java Naming and Directory Interface (JNDI) 18

3

CORBA, Java IDL, and RMI-IIOP 19

Java Platform Debugger Architecture Product 19

Internationalization 20

Java Plug-in Product 20

Collections Framework 20

Accessibility 21

Regular Expressions 21

Math 21

Reflection 21

Java Native Interface 22

Tools and Utilities 22

2 Compatibility with Previous Releases 25

Binary Compatibility 25

Source Compatibility 26

Incompatibilities in the Java 2 Platform, Standard Edition, v1.4 27

3 Java HotSpot VM Options 33

33

Categories of Java HotSpot VM Options 33

Java HotSpot VM Equivalents of Exact VM Options 34

Java HotSpot VM Equivalents to _JIT_ARGS Environment Variables 35

Java HotSpot VM Equivalents to _JVM_ARGS Environment Variables 36

Additional Java HotSpot VM arguments 36

4 Assertion Facility 39

Compiling 40

Syntax 40

Semantics 40

Enabling and Disabling Assertions 41

Enabling and Disabling Assertions Programmatically 42

Setting the Default Assertion Status for a Class Loader 42

Setting the Assertion Status for a Package and its Subpackages 42

Setting the Assertion Status for a Class and its Nested Classes 43

Resetting to the Class Loader Default Assertion Status 43

Usage Notes 43

4 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Internal Invariants 43

Control-Flow Invariants 44

Preconditions, Postconditions, and Class Invariants 45

Removing all Trace of Assertions from Class Files 48

Requiring that Assertions are Enabled 49

Source Compatibility 49

Design FAQ 50

Design FAQ - General Questions 50

Design FAQ - Compatibility 51

Design FAQ - Syntax and Semantics 51

Design FAQ - The AssertionError Class 51

Design FAQ - Enabling and Disabling Assertions 52

Contents 5

6 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Preface

This manual is an introduction to and overview of the new features and enhancements
in version 1.4 of the Java™ 2 SDK, Standard Edition, for the Solaris™ Operating
Environment.

Who Should Use This Book
This document is intended for application developers who use the Java 2 SDK in the
Solaris™ Operating Environment. The Java 2 SDK, Standard Edition, software is
optimized to deliver superior performance to server- and client-side Java technology
applications in an enterprise environment.

This document is a subset of the Java 2 SDK documentation available at
http://java.sun.com/j2se/1.4/docs/index.html. Upon final release of this product,
consider that online documentation to be the definitive description of version 1.4 of
the Java 2 SDK, Standard Edition product.

How This Book Is Organized
Chapter 1 lists the features and enhancements of the product.

Chapter 2 discusses compatibility issues.

Chapter 3 describes command-line options available for maximizing virtual-machine
performance.

7

Chapter 4 describes the new assertions facility in the Java™ 2 Platform.

Related Documentation
These documents also have information related to this release:

� Solaris Java Plug-in User’s Guide

� Java 2 SDK, Standard Edition v. 1.4 Release Notes located online at
http://java.sun.com/j2se/1.4/relnotes.html.

� Java 2 SDK, Standard Edition, v. 1.4 Documentation located online at
http://java.sun.com/j2se/1.4/docs/index.html.

� Java 2 Platform, Standard Edition, v 1.4 API Specification located online at
http://java.sun.com/j2se/1.4/docs/api/index.html.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

8 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 9

10 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

New Features and Enhancements

The new features of version 1.4 of the Java 2 SDK, Standard Edition, (J2SDK) are listed
below. Documentation for the full list of features, including features brought forward
from previous versions of the J2SDK, is available at
http://java.sun.com/j2se/1.4/docs/index.html.

� “XML Processing” on page 12
� “New I/O APIs” on page 12
� “Security” on page 12
� “Java 2D Technology” on page 13
� “Image I/O Framework” on page 13
� “Java Print Service API” on page 14
� “AWT” on page 14
� “Swing” on page 14
� “Drag and Drop” on page 15
� “Logging API” on page 15
� “Java WebStart Product” on page 15
� “Long-term Persistence of JavaBeans Components” on page 16
� “JDBC 3.0 API” on page 16
� “Assertion Facility” on page 16
� “Preferences API” on page 17
� “Java HotSpot Virtual Machines” on page 17
� “Performance” on page 17
� “Networking Support, Including IPv6” on page 17
� “RMI” on page 18
� “Serialization” on page 18
� “Java Naming and Directory Interface (JNDI)” on page 18
� “CORBA, Java IDL, and RMI-IIOP” on page 19
� “Java Platform Debugger Architecture Product” on page 19
� “Internationalization” on page 20
� “Java Plug-in Product” on page 20
� “Collections Framework” on page 20
� “Accessibility” on page 21
� “Regular Expressions” on page 21

11

� “Math” on page 21
� “Reflection” on page 21
� “Java Native Interface” on page 22
� “Tools and Utilities” on page 22

Java 2 Platform

XML Processing
The Java™ API for XML processing has been added to the Java 2 Platform. It provides
basic support for processing XML documents through a standardized set of Java
Platform APIs. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/xml/index.html.

New I/O APIs
The new I/O (NIO) APIs provide new features and improved performance in the areas
of buffer management, character-set support, regular-expression matching, file I/O,
and scalable network I/O. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/nio/index.html.

Security
� The Java™ Cryptography Extension (JCE), Java™ Secure Socket Extension (JSSE),

and Java™ Authentication and Authorization Service (JAAS) security features have
now been integrated into J2SDK v 1.4 rather than being optional packages.

� There are two new security features:

� The Java™ GSS-API can be used for securely exchanging messages between
communicating applications using the Kerberos V5 mechanism. For more
information, see
http://java.sun.com/j2se/1.4/docs/guide/security/jgss/tutorials/index.html.

� The Java™ Certification Path API includes new classes and methods in the
java.security.cert package that allow you to build and validate
certification paths (also known as "certificate chains"). For more information, see
http://java.sun.com/j2se/1.4/docs/guide/security/certpath/CertPathProgGuide.html.

12 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

� Due to import control restrictions, the JCE jurisdiction policy files shipped with the
J2SDK, v 1.4 allow "strong" but limited cryptography to be used. An "unlimited"
version of these files indicating no restrictions on cryptographic strengths is
available.

� The JSSE implementation provided in this release includes the strong cipher suites.
However, due to U.S. export control restrictions, it does not allow the default
SSLSocketFactory and SSLServerSocketFactory to be replaced. For more
information, please see the JSSE Reference Guide at
http://java.sun.com/j2se/1.4/docs/guide/security/jsse/JSSERefGuide.html.

� With the integration of JAAS into the J2SDK, the java.security.Policy API
handles Principal-based queries, and the default policy implementation supports
Principal-based grant entries. Thus, access control can now be based not just on
what code is running, but also on who is running it.

� Support for dynamic policies has been added. In J2SDK releases prior to version
1.4, classes were statically bound with permissions by querying security policy
during class loading. The lifetime of this binding was scoped by the lifetime of the
class loader. In version 1.4 this binding is now deferred until needed by a security
check. The lifetime of the binding is now scoped by the lifetime of the security
policy.

For more information on security in J2SDK 1.4, see
http://java.sun.com/j2se/1.4/docs/guide/security/index.html.

Java 2D™ Technology
Java 2D™ technology has many new enhancements including performance
improvements, support for hardware acceleration for offscreen images, a pluggable
image I/O framework, a new print service API, and several new font features. For
more information, see
http://java.sun.com/j2se/1.4/docs/guide/2d/new_features.html.

Image I/O Framework
The Java Image I/O Framework provides a pluggable architecture for working with
images stored in files and accessed across the network. It offers substantially more
flexibility and power than the current APIs for loading and saving images. For more
information, see http://java.sun.com/j2se/1.4/docs/guide/imageio/index.html.

New Features and Enhancements 13

Java Print Service API
The Java™ Print Service is a new Java Print API that enables client and server
applications to:

� Discover and select print services based on their capabilities

� Specify the format of print data

� Submit print jobs to services that support the document type to be printed.

For more information, see http://java.sun.com/j2se/1.4/docs/guide/jps/index.html.

AWT
J2SDK 1.4 includes changes to the AWT package center for improving the robustness
and performance of programs that present a graphical user interface. A new focus
architecture replaces the previous implementation and addresses many focus-related
bugs caused by platform inconsistencies, and incompatibilities between AWT and
Swing components. The new full-screen exclusive mode API supports high performance
graphics by suspending the windowing system so that drawing can be done directly
to the screen; a benefit to applications like games, or other rendering-intensive
applications. Headless support is now enabled by new graphics environment methods
that indicate whether a display, keyboard, and mouse can be supported in a graphics
environment. The ability to disable native frame decorations is now available for
applications which need to take full control of specifying how a frame will look; when
enabled this prevents the rendering of a native titlebar, system menu, border, or other
native operating system dependent screen components. The oft-requested mouse wheel,
with a scroll wheel in place of the middle mouse button, is enabled with new built-in
Java support for scrolling via the mouse wheel. Also, a new mouse wheel listener class
allows customization of mouse wheel behavior. The AWT package has been modified
to be fully 64-bit compliant and now runs on Solaris platforms with 64-bit and 32-bit
addresses. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html.

Swing
Many new features have been added to Swing. The new spinner component a single
line input field that allows the user to select a number or a value by cycling through a
sequence of values using a tiny pair of up/down arrow buttons. The new formatted
text field component allows formatting of dates, numbers, and strings, such as a text
field that accepts only decimal money values. The Windows look and feel
implementation is updated to track features available in Windows 2000 and Windows
98. A new drag and drop architecture provides seamless drag and drop support between
components as well as an easy way to implement drag and drop in your customized

14 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Swing components - writing a couple of methods which describe the particulars of
your data model is all that is required. Swing’s progress bar component has been
enhanced to support an indeterminate state; rather than showing the degree of
completeness, the indeterminate progress bar uses constant animation to show that a
time-consuming operation is occurring. Due to great customer demand, the tabbed
pane component has been enhanced to support scrollable tabs. With this feature
enabled, if all the tabs will not fit within a single tab run, the tabbed pane component
will display a single, scrollable run of tabs, instead of wrapping the tabs onto multiple
runs. The popup and popup factory classes, which were previously package private, have
been exposed and made public so that programmers may customize or create their
own popups. The new focus architecture is fully integrated into Swing. For more
information, see
http://java.sun.com/j2se/1.4/docs/guide/swing/SwingChanges.html.

Drag and Drop
Swing has added support for data transfer between applications. A drag and drop
operation is a data transfer request that has been specified by a gesture with a
graphical pointing device. In the case of copy/paste, data transfer is often initiated
with the keyboard. The ability to transfer data takes two forms: Drag and drop
support and clipboard transfer via cut/copy/paste. See
http://java.sun.com/j2se/1.4/docs/guide/swing/1.4/dnd.html.

Logging API
The Java Logging APIs facilitate software servicing and maintenance at customer sites
by producing log reports suitable for analysis by end users, system administrators,
field service engineers, and software development teams. The Logging APIs capture
information such as security failures, configuration errors, performance bottlenecks,
and/or bugs in the application or platform. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/util/logging/index.html.

Java™ WebStart Product
The Java™ Web Start product is a new application-deployment technology that is
bundled with J2SDK 1.4. With Java Web Start, you launch applications simply by
clicking on a Web page link. If the application is not present on your computer, Java
Web Start automatically downloads all necessary files. It then caches the files on your
computer so the application is always ready to be relaunched any time you want --
either from an icon on your desktop or from the browser link. And no matter which
method you use to launch the application, the most current version of the application

New Features and Enhancements 15

is always presented to you. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/jws/index.html.

Long-term Persistence of JavaBeans™ Components
The new persistence model is designed to handle the process of converting a graph of
beans to and from a persistent form. The new API is suitable for creating archives of
graphs of JavaBeans™ components as textual representations of their properties. For
more information, see
http://java.sun.com/j2se/1.4/docs/guide/beans/changes14.html.

JDBC™ 3.0 API
The JDBC™ 3.0 API, comprised of packages java.sql and javax.sql, provides
universal data access from the Java programming language. Using the JDBC 3.0 API,
you can access virtually any data source, from relational databases to spreadsheets
and flat files. JDBC technology also provides a common base on which tools and
alternative interfaces can be built.

New features include the ability to set savepoints in a transaction, to keep result sets
open after a transaction is committed, to reuse prepared statements, to get metadata
about the parameters to a prepared statement, to retrieve keys that are automatically
generated, and to have multiple result sets open at one time. There are two new JDBC
data types, BOOLEAN and DATALINK, with the DATALINK type making it possible
to manage data outside of a data source. This release also establishes the relationship
between the JDBC Service Provider Interface and the Connector architecture.

For more information, see
http://java.sun.com/j2se/1.4/docs/guide/jdbc/index.html.

Assertion Facility
An assertion facility has been added to the Java 2 Platform. Assertions are boolean
expressions that the programmer believes to be true concerning the state of a
computer program. For example, after sorting a list, the programmer might assert that
the list is in ascending order. Evaluating assertions at runtime to confirm their validity
is one of the most powerful tools for improving code quality, as it quickly uncovers
the programmer’s misconceptions concerning a program’s behavior. For more
information, see “Assertion Facility” in Java 2 SDK for Solaris Developer’s Guide.

16 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Preferences API
This new feature a simple API for managing user preference and configuration data.
Applications require preference and configuration data to adapt to different users,
environments and needs. Applications need a way to store, retrieve, and modify this
data. This need is met by the Preferences API. The Preferences API is intended to
replace most common uses of class java.util.Properties, rectifying many of its
deficiencies, while retaining its light weight. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/lang/preferences.html.

Java™ HotSpot Virtual Machines
The Java™ HotSpot Virtual Machines in this release include several enhancements.

� Signal-chaining facility
� 64-bit support on Solaris™-SPARC™ platform edition.
� Error-handling mechanism.
� Concurrent garbage collector.
� New facility for logging garbage-collection events.

The Classic virtual machine is no longer part of the Java 2 SDK.

For more information, see http://java.sun.com/j2se/1.4/docs/guide/vm/index.html.

Performance
This release includes performance enhancements in many areas of the platform. For
more information, see
http://java.sun.com/j2se/1.4/docs/guide/performance/index.html.

Networking Support, Including IPv6
New features include support for IPv6 in TCP- and UDP-based applications, and
support for unconnected/unbound sockets, allowing more flexible socket creation,
binding, and connection. A mechanism called Java Secure Socket Extension provides
encryption for data sent via sockets, and a new class, java.net.URI, allows URI
construction and parsing without the presence of a protocol handler. The FTP Protocol
Handler has been overhauled for conformity to current standards. The default
character set is now UTF8, and APIs have been added to enable other character
schemes.

New Features and Enhancements 17

A new class, java.net.NetworkInterface, allows enumeration of interfaces and
addresses, and JNDI DNS SP Support in java.net.InetAddressenables
applications to configure a pure Java name service provider. TCP out-of-band data
provides support for legacy applications; a UDP Connection function registers
destination address with the OS, enabling asynchronous errors to be returned on the
UDP socket; and full SOCKS V5 and V4 TCP support includes auto-negotiation with
the proxy for which version to use. In addition, there are improvements to streaming,
request and response headers processing, and error handling.

For more information, see
http://java.sun.com/j2se/1.4/docs/guide/net/enhancements14.html.

RMI
Certain static methods of java.rmi.server.RMIClassLoader now delegate their
behavior to an instance of a new service provider interface,
java.rmi.server.RMIClassLoaderSpi. This service provider object can be
configured to augment RMI’s dynamic class loading behavior for a given application.
By default, the service provider implements the standard behavior of all of the static
methods in RMIClassLoader. See the class documentation of RMIClassLoader
(http://java.sun.com/j2se/1.4/docs/api/java/rmi/server/RMIClassLoader.html)
and RMIClassLoaderSpi
(http://java.sun.com/j2se/1.4/docs/api/java/rmi/server/RMIClassLoaderSpi.html)
for more details. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/rmi/relnotes.html.

Serialization
This release has several changes and enhancementsto the serialization API, including

� Support for deserialization of objects that are known to be unshared in the
data-serialization stream.

� Support for a class-defined readObjectNoData method.

� Important bug fixes.

For more information, see
http://java.sun.com/j2se/1.4/docs/guide/serialization/relnotes14.html.

Java Naming and Directory Interface™ (JNDI)
J2SDK 1.4 includes the following JNDI enhancements.

18 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

� An Internet Domain Naming System (DNS) service provider is part of the J2SDK
v1.4. This component enables applications to read data stored in the DNS.

� The JNDI Lightweight Directory Access Protocol (LDAP) service provider has
security enhancements that enable applications to establish secure sessions over
existing LDAP connections and to use different authentication protocols.

� The JNDI CORBA Object Services (COS) naming service provider supports the
Interoperable Naming Service (INS) specification (99-12-03).

For more information, see
http://java.sun.com/j2se/1.4/docs/guide/jndi/index.html#14changes.

CORBA, Java™ IDL, and RMI-IIOP
J2SDK 1.4 includes a Portable Object Adapter (POA) Object Request Broker (ORB). An
ORB makes it possible for CORBA objects to communicate with each other by
connecting objects making requests (clients) with objects servicing requests (servers).
A POA ORB allows programmers to construct object implementations that are
portable between different ORB products, provide support for objects with persistent
identities, and much more. To learn more about the changes in Java IDL between
J2SDK v.1.3 and J2SDK v.1.4, see
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlChanges.html. For general
information, see http://java.sun.com/j2se/1.4/docs/guide/idl/index.html.

Java™ Platform Debugger Architecture Product
HotSwap: This feature has been added to allow a class to be updated while under the
control of a debugger.

Instance Filters: EventRequests now have the capability of specifying an instance
filter, which restricts the events generated by the request to those in which the
currently executing instance is the object specified.

Support for Debugging Other Languages: The Java Platform Debugger Architecture has
been extended to that non-Java programming language source, which is translated
into Java programming language source, can be debugged in the future.

VMDeathRequests: A request can now be made to control target VM termination
notification, allowing clean shutdown synchronization.

For more information, see
http://java.sun.com/j2se/1.4/docs/guide/jpda/enhancements.html.

Full Speed Debugging Support: The Java HotSpot™ virtual machine now uses
"full-speed debugging". In the previous version of the Java HotSpot VMs, when

New Features and Enhancements 19

debugging is enabled, the program executed using only the interpreter. Now, the full
performance advantage of HotSpot technology is available to programs running with
debugging enabled. The improved performance allows long running programs to be
more easily debugged. It also allows testing to proceed at full speed and the launch of
a debugger to occur on an exception.

Internationalization
Unicode 3.0 Support: Character handling in J2SDK 1.4 is based on version 3.0 of the
Unicode standard. This affects the Character and String classes in the java.lang
package as well as the collation and bidirectional text analysis functionality in the
java.text package.

Support for Thai and Hindi: Thai and Hindi are now supported in all areas of
functionality. See the http://java.sun.com/j2se/1.4/docs/guide/intl/locale.doc.html
for the Supported Locales document for complete information on supported locales and
writing systems.

Java™ Plug-in Product
Version 1.4 of the Java™ Plug-in product offers the following new features:
multi-version support so that multiple versions of the JRE may be deployed in the
same environment and Java Plug-in can select the version it wants; support of HTTPS
through Java Secure Socket Extension (JSSE) rather than the browser; enhanced applet
caching so that other files, such as GIF, JPEG, XML, etc., can be cached in addition to
JAR and class files; apple persistence so that applets may persist across browser
sessions; and, on Microsoft Windows platforms, support for launching applets on Java
Plug-in with the <applet> tag.

Version 1.4 also provides access to the DOM via standard, w3c-defined interfaces;
assertion and logging support; applet usability enhancements including a progress bar
for applet loading; and improved JAR compression for faster downloads.

For more information, see
http://java.sun.com/j2se/1.4/docs/guide/plugin/index.html.

Collections Framework
The collections framework has several enhancements in J2SDK 1.4, including a marker
interface to advertise random access, an identity-based (rather than equality-based)
Map, insertion-order-preserving Map and Set implementations, and several new

20 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

algorithms for manipulating and returning values from lists. See
http://java.sun.com/j2se/1.4/docs/guide/collections/changes4.html for details.

Accessibility
New features include support for:

� Mnemonic tab navigation on a JTabbedPane
� Text editing by assistive technologies
� Accessibility of HTML components
� Accessibility of Swing Actions
� List navigation using the first letter of list items

For more information, see
http://java.sun.com/j2se/1.4/docs/guide/access/index.html.

Regular Expressions
New package java.util.regex contains classes for matching character sequences
against patterns specified by regular expressions. For details, see the API specification
for java.util.regex at
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/package-summary.html.

Math
A new, efficient method for generating prime numbers with no need for the caller to
specify a certainty has been added to class java.math.BigInteger. For more
information, see
http://java.sun.com/j2se/1.4/docs/guide/math/enhancements14.html.

Reflection
Certain reflective operations, specifically java.lang.reflect.Field,
java.lang.reflect.Method.invoke(),
java.lang.reflect.Constructor.newInstance() and
Class.newInstance() have been rewritten for higher performance. Reflective
invocations and instantiations are several times faster than in previous releases. For
more information, see
http://java.sun.com/j2se/1.4/docs/guide/reflection/index.html.

New Features and Enhancements 21

Java™ Native Interface
JNI has been enhanced in v 1.4 to reflect a new feature of the java.nio package:
direct buffers. The contents of a direct buffer can, potentially, reside in native memory
outside of the ordinary garbage-collected heap. In addition, new Invocation Interface
routine AttachCurrentThreadAsDaemon allows native code to attach a daemon
thread to the virtual machine; this is useful when the VM should not wait for this
thread to exit upon shutdown. See JNI Enhancements online at
http://java.sun.com/j2se/1.4/docs/guide/jni/jni-14.html.

Tools and Utilities
See the Tools Changes online documentation at
http://java.sun.com/j2se/1.4/docs/tooldocs/tools-changes.html for details on the
changes summarized here.

� The java application launcher supports command-line options for support of the
new Assertions Facility. On the Solaris™ Operating Environment (SPARC™
Platform Edition) new command-line options are available for specifying 64-bit or
32-bit operation. On all platforms, new option --Xloggc:file logs each
garbage-collection event in the specified file.

� The javadoc tool has several new tags, a dozen new options, smarter inheriting of
doc comments, more control over HTML output, improvements to the doclet API,
better error messages, dozens of bug fixes, and is easier to run. For more details,
see What’s New in Javadoc 1.4 online at
http://java.sun.com/j2se/1.4/docs/tooldocs/javadoc/whatsnew-1.4.htmlhttp://java.sun.com/j2se/1.4/do
Downloadable as a separate product, The MIF doclet
http://java.sun.com/j2se/javadoc/mifdoclet) has had a major upgrade -- it
generates API documentation in FrameMaker and PDF format.

� The native2ascii tool contains bug fixes to now correctly process source files
encoded with Unicode encoding.

� The idlj tool now generates server-side bindings following the Portable Servant
Inheritance Model. This change involves new default behavior, and new
command-line options that enable you to continue to generate
backwards-compatible server-side bindings. To learn more about the Portable
Servant Inheritance Model, see
http://java.sun.com/j2se/1.4/docs/guide/idl/POA.html. For more information
on the idlj tool, see
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/toJavaPortableUG.html.

� The orbd tool, or Object Request Broker Daemon, replaces the Transient Naming
Service, tnameserv. ORBD includes both a Transient Naming Service and a
Persistent Naming Service. The orbd tool is used to enable clients to transparently
locate and invoke persistent objects on servers in the CORBA environment. The
orbd tool incorporates the functionality of a Server Manager, an Interoperable

22 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Naming Service, and a Bootstrap Name Server. When used in conjunction with the
servertool, the Server Manager locates, registers, and activates a server when a
client wants to access the server. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/idl/orbd.html.

� The servertool is new to this release. The servertool provides an ease-of-use
interface for application programmers to register, unregister, startup, and
shutdown a server. For more information, see
http://java.sun.com/j2se/1.4/docs/guide/idl/servertool.html.

� The rmic compiler has a new option to enable Portable Object Adapter, or POA
support for Remote Method Invocation. The POA enables portability among
vendor ORBs, among other uses. To learn more about the POA, see
http://java.sun.com/j2se/1.4/docs/guide/idl/POA.html. To enable POA support
with the rmic compiler, use the arguments rmic -iiop -poa. For more
information on the rmic compiler, see
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/rmic.html.

� The graphicalPolicy Tool utility has been enhanced to enable specifying a Principal
field indicating what user is to be granted specified access control permissions.

New Features and Enhancements 23

24 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Compatibility with Previous Releases

This document contains information on the following topics:

� “Binary Compatibility” on page 25
� “Source Compatibility” on page 26
� “Incompatibilities in the Java 2 Platform, Standard Edition, v1.4” on page 27

For information about incompatibilities between versions 1.3 and 1.2 of the Java
platform, see the compatibility documentation for the Java 2 Platform, v1.3 at
http://java.sun.com/j2se/1.3/compatibility.html.

For information about incompatibilities between versions 1.2 and 1.1 of the Java
platform, see the compatibility documentation for the Java 2 Platform, v1.2 at
http://java.sun.com/j2se/products/jdk/1.2/compatibility.html.

For information about incompatibilities between versions 1.0 and 1.1 of the Java
platform, see the compatibility documentation at
http://java.sun.com/products/jdk/1.1/compatibility.html for the JDK™ 1.1 software.

Binary Compatibility
The Java 2 SDK (J2SDK), v1.4 is upwards binary-compatible with J2SDK 1.3 except for
the incompatibilities listed below. This means that, except for the noted
incompatibilities, class files built with version 1.3 compilers will run correctly in the
J2SDK 1.4.

In general, the policy is that

� Maintenance releases (for example 1.2.1, 1.2.2) within a family (1.2.x) will maintain
both upward and downward binary-compatibility with each other.

25

� Functionality releases (for example 1.3, 1.4) within a family (1.x) will maintain
upward but not necessarily downward binary compatibility with each other.

Some early bytecode obfuscators produced class files that violated the class file format
as given in the virtual machine specification. Such improperly formatted class files will
not run on the J2SDK’s virtual machine, though some of them may have run on earlier
versions of the virtual machine. To remedy this problem, regenerate the class files with
a newer obfuscator that produces properly formatted class files.

Source Compatibility
The J2SDK 1.4 is upwards source-compatible with earlier versions, except for the
incompatibilities listed below. This means that, except for the noted incompatibilities,
source files written to use the language features and APIs defined for earlier releases
can be compiled and run in the J2SDK 1.4.

Downward source compatibility is not supported. If source files use new language
features or Java 2 Platform APIs, they will not be usable with an earlier version of the
Java platform.

In general, the policy is:

� Maintenance releases do not introduce any new language features or APIs, so they
maintain source-compatibility in both directions.

� Functionality releases and major releases maintain upwards but not downwards
source-compatibility.

Deprecated APIs are methods and classes that are supported only for backwards
compatibility, and the compiler will generate a warning message whenever one of
these is used, unless the -nowarn command-line option is used. It is recommended
that programs be modified to eliminate the use of deprecated methods and classes,
though there are no current plans to remove such methods and classes entirely from
the system.

Some APIs in the sun.* packages have changed. These APIs are not intended for use
by developers. Developers importing from sun.* packages do so at their own risk.
For more details, see Why Developers Should Not Write Programs That Call sun.*
Packages at http://java.sun.com/products/jdk/faq/faq-sun-packages.html.

26 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Incompatibilities in the Java 2 Platform,
Standard Edition, v1.4
J2SDK 1.4 is strongly compatible with previous versions of the Java 2 Platform. Almost
all existing programs should run on J2SDK 1.4 without modification. However, there
are some minor potential incompatibilities that involve rare circumstances and "corner
cases" that we are documenting here for completeness.

1. Beginning with version 1.4 of the Java 2 Platform, class
javax.swing.tree.DefaultTreeModel allows a null root node. In previous
versions, DefaultTreeModel would not allow a null root, even though the
specification for TreeModel indicated a null root was valid. DefaultTreeModel
now allows setting a null root, as well as a null root in the constructor. As part of
this change, the specification for DefaultTreeModel.setRoot() has been
revised. The old specification for DefaultTreeModel.setRoot() was:

Sets the root to root. This will throw an IllegalArgumentException if root is null.

The new DefaultTreeModel.setRoot() specification says:

Sets the root to root. A null root implies the tree is to display nothing, and is legal.

2. If a serializable inner class contains explicit references to its class object, then the
computed value of the serial version UID for the class will be different in J2SDK 1.3
and J2SDK 1.4. The difference is due to the fact that the computation of the serial
version UID is sensitive to modifications made in the javac compiler between
J2SDK 1.3 and J2SDK 1.4.

To avoid this problem affecting your applications, we recommend that you add an
explicit serial version UID to your serializable classes. You can use the serialver
tool to obtain the serial version UID of classes compiled with the J2SDK 1.3 javac
compiler.

3. Beginning with J2SDK 1.4.0, public static field DefaultPainter in class
javax.swing.text.DefaultHighlighter is final. In previous versions of the
Java 2 Platform, Standard Edition, this field was non-final.

4. The way in which HTML forms are modeled internally in the implementation of
the Java 2 Platform has changed in J2SDK 1.4.0. Previously, any attributes of a form
would be stored in the attributeset of all of the children character elements. In
J2SDK 1.4.0, an element is created to represent the form, better matching that of the
html file itself. This allows for better modeling of the form, as well as consistent
writing of the form. This change was made to address bug 4200439.

This change will effect developers who relied on forms being handled loosely. As
an example, pre-1.4.0 implementations would previously treat the following
invalid html

<table>
<form>

Compatibility with Previous Releases 27

</table>

</form>

as

<form>
<table>
</table>

</form>

J2SDK 1.4.0 instead treats it as:

<table>
<form>
</form>

</table>

While this change likely will not impact many developers, there is the possibility
you will need to update your code. If you had previously been expecting the
attributes of the leaf Elements to contain the Form’s attributes, you will now have
to get the attributes from the Form Element’s AttributeSet.

5. The value of static final field MOUSE_LAST in class
java.awt.event.MouseEvent has changed to 507 beginning in J2SDK 1.4.0. In
previous versions of the Java 2 Platform, the value of MOUSE_LAST was 506.

Because compilers hard-code static final values at compile-time, code that refers to
MOUSE_LAST and that was compiled against a pre-1.4.0 version of
java.awt.event.MouseEvent will retain the old value. Such code should be
recompiled with the version 1.4.0 compiler in order to work with J2SDK 1.4.0.

6. Changes have been made to make the APIs for the CORBA technology shipped in
J2SDK 1.4.0 compliant to the CORBA 2.3 mapping as specified by the OMG
documents referenced in CORBA Compatibility Information, available online at
http://java.sun.com/j2se/1.4/compatibility-CORBA.html. Consult that document
for information regarding all of the API changes related to CORBA functionality
between J2SDK v1.3 and v1.4.0, as well as a listing of all OMG specifications with
which J2SDK 1.4.0 complies.

7. Beginning with J2SDK 1.4.0, ObjectOutputStream’s public one-argument
constructor requires the "enableSubclassImplementation" SerializablePermission
when invoked (either directly or indirectly) by a subclass which overrides
ObjectOutputStream.putFields or
ObjectOutputStream.writeUnshared.

Also beginning with J2SDK 1.4.0, ObjectInputStream’s public one-argument
constructor requires the "enableSubclassImplementation" SerializablePermission
when invoked (either directly or indirectly) by a subclass which overrides
ObjectInputStream.readFieldsor ObjectInputStream.readUnshared.

This change will not affect the great majority of applications. However, it will affect
any ObjectInputStream/ObjectOutputStream subclasses which override the
putFields or readFields methods without also overriding the rest of the

28 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

serialization infrastructure.

8. The Javac bytecode compiler in J2SDK 1.4.0 is more strict than in previous versions
in enforcing compliance with the Java Language Specification. The new compiler
may not compile existing code that does not strictly conform to the Java Language
Specification, even though that code may have compiled with earlier versions of
the compiler.

The following are some examples of situations in which the J2SDK 1.4.0 compiler is
stricter.

� The compiler now detects unreachable empty statements as required by the
language specification. Here are two examples of fairly common cases that the
compiler now detects and rejects.

return 0;/* exit success */;

and

{
return f();

} catch (Whatever e) {
throw new Whatever2();

};

Note the extra semicolon in both cases, which the compiler now correctly
regards as unreachable empty statements. In addition, some automatically
generated source code may generate unreachable empty statements.

� The compiler now rejects import statements that import a type from the
unnamed namespace. Previous versions of the compiler would accept such
import declarations, even though they were arguably not allowed by the
language (because the type name appearing in the import clause is not in
scope). The specification is being clarified to state clearly that you cannot have a
simple name in an import statement, nor can you import from the unnamed
namespace.

To summarize, the syntax

import SimpleName;

is no longer legal. Nor is the syntax

import ClassInUnnamedNamespace.Nested;

which would import a nested class from the unnamed namespace. To fix such
problems in your code, move all of the classes from the unnamed namespace
into named namespace.

9. As of J2SDK 1.4.0, the javac bytecode compiler uses "-target 1.2" by default as
opposed to the previous "-target 1.1" behavior. See the reference page for the
javac compiler at http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/javac.html
for descriptions of these behaviors. One of the changes involved in targeting 1.2 is
that the compiler no longer generates and inserts method declarations into class
files when the class inherits unimplemented methods from interfaces. These

Compatibility with Previous Releases 29

inserted methods, like all other non-private methods, are included in the default
serialVersionUID computation. As a result, if you define an abstract serializable
class which directly implements an interface but does not implement one or more
of its methods, then its default serialVersionUID value will vary depending on
whether it is compiled with the J2SDK 1.4 version of javac or a previous javac.

For background information on these methods inserted by earlier versions of javac,
see the report for bug 4043008, available online at
http://java.sun.com/jdc/bugParade/bugs/4043008.html.

10. Source incompatibility - The JDBC 3.0 API, included as part of the J2SDK 1.4,
introduces two new interfaces and adds several new methods to existing interfaces.
Drivers and applications that use earlier versions of the JDBC API are binary
compatible with the J2SDK 1.4 and will run with no problem. However, the
changes made in the JDBC 3.0 API are not source compatible. Drivers and
applications that implement the JDBC interfaces must be updated to reflect the
changes in order to build successfully. Chapter 6 of The JDBC 3.0 Specification
gives a complete list of what must be done to be compliant with the JDBC 3.0 API,
and thereby be source compatible with J2SDK 1.4.

11. Prior to J2SDK 1.4, a FileNotFoundException would be thrown if the file type
was known and the response code was greater than or equal to 400. Otherwise no
exception would be thrown. The correct behavior as implemented in J2SDK 1.4 is
for URLConnection.getInputStream to throw an IOException for all http
errors regardless of the file type and throw FileNotFoundException, which is a
subclass of IOException, only if the http response indicates that the resource was
not found. In other words, the FileNotFoundException is thrown only if the
response code is 404 or 410. As part of this change,
HttpURLConnection.getErrorStream now can be used to read the error page
returned from the server. Prior to J2SDK 1.4, getErrorStream always returned
null. Also, method HttpURLConnection.getResponseCode works correctly
in J2SDK 1.4.

12. The assert keyword has been added to the Java Programming Language in
J2SDK 1.4. Because of the new keyword, existing programs that use "assert" as an
identifier will not be in conformance with J2SDK 1.4. The addition of this keyword
does not, however, cause any problems with the use of preexisting binaries (.class
files). In order to ease the transition from pre-J2SDK 1.4 releases in which “assert”
is a legal identifier to J2SDK 1.4 where it isn’t, the Javac bytecode compiler
supports two modes of operation in J2SDK 1.4.

� In the normal mode of operation, the compiler accepts programs conforming to
the specification for the previous release (J2SDK 1.3). Assertions are not
permitted, and the compiler generates a warning if the assert keyword is used
as an identifier.

� In an alternate mode of operation, the compiler accepts programs conforming
to the specification for J2SE 1.4. Assertions are permitted, and the compiler
generates an error message if the assert keyword is used as an identifier. To

enable assertions, use the following command line switch.

30 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

-source 1.4 In the absence of this flag, the behavior defaults to "1.3" for maximal
source compatibility. Support for 1.3 source compatibility is likely to be phased out
over time.

13. The API specification for interface java.applet.AppletContext has been
modified to enable applet developers to stream data and objects for persistent use
during a browser session. This eliminates the need for developers to use static
classes to cache data and objects, but it introduces a potential binary
incompatibility. Any existing applications containing classes that implement the
AppletContext interface will not be compatible with the new AppletContext
specification. Such classes will have to be modified to implement the revised
AppletContext API. In practice, the only applications that commonly implement
AppletContext are those that act as applet containers, such as Java™ Plug-in and
appletviewer. The impact of this potential incompatibility is therefore expected to
be minimal.

Compatibility with Previous Releases 31

32 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Java™ HotSpot VM Options

This chapter provides information on the command-line options and environment
variables that can affect the performance characteristics of the Java™ HotSpot Virtual
Machine. Unless otherwise noted, all information in this document pertains to both
the Java HotSpot Client VM and the Java HotSpot Server VM.

The chapter contains the following sections.

� “Categories of Java HotSpot VM Options” on page 33
� “Java HotSpot VM Equivalents of Exact VM Options” on page 34
� “Java HotSpot VM Equivalents to _JIT_ARGS Environment Variables”

on page 35
� “Java HotSpot VM Equivalents to _JVM_ARGS Environment Variables”

on page 36
� “Additional Java HotSpot VM arguments” on page 36

Categories of Java HotSpot VM Options
Standard options recognized by the Java HotSpot VM are described on the man page
for the Java Application Launcher (the java utility) and in the online documentation at
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/java.html. This chapter
describes non-standard options recognized by the Java HotSpot VM:

� Options that begin with -X are non-standard (not guaranteed to be supported on
all VM implementations), and are subject to change without notice in subsequent
releases of the Java 2 SDK.

� Options that begin with -XX are generally intended for Sun’s internal development
use. Sun is not committed to supporting these options by fixing any bugs noted
with them, and these options are subject to change without notice. You use these
options at your own risk.

33

Java HotSpot VM Equivalents of Exact VM Options
For additional information on issues related to the Java HotSpot VM, see the online
documentation at http://java.sun.com/j2se/1.4/docs/guide/vm/index.html.

Prior to version 1.3.0, the production releases of the Java 2 SDK for the Solaris
Operating Environment shipped with a virtual-machine implementation known as the
Exact VM (EVM). Beginning with version 1.3.0, the Exact VM is replaced by the Java
HotSpot VM.

Some options supported by the Exact VM have changed names or become obsolete in
the Java HotSpot VM. These EVM options and their Java HotSpot VM equivalents in
Java 2 SDK v 1.4.0 are given in the following table.

EVM Option Description Java HotSpot VM equivalent

-Xt Instruction tracing None (obsolete option)

-Xtm Method tracing None (obsolete option)

-Xoss Maximum java stack size None (Java HotSpot VM
doesn’t have separate native
and Java programming
language stacks)

-Xverifyheap Verify heap integrity -XX:+VerifyBeforeGC

-XX:+VerifyAfterGC

-XX:+VerifyTLAB

-XX:+VerifyBeforeScavenge

-XX:+VerifyAfterScavenge
(all debug only)

-Xmaxjitcodesize Maximum compiled code size -Xmaxjitcodesize (used to
be -Xmaxjitcodesize=32m
, now
-Xmaxjitcodesize32m)

-Xgenconfig Configure the heap (See section on Xgenconfig
below)

-Xoptimize Use optimizing JIT Compiler -server

-Xconcgc Use concurrent garbage
collector (1.2.2_07+)

None (not yet in 1.3, 1.4)

The Java HotSpot VM currently recognizes the following -X options that were not
supported by the Exact VM.

34 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Option Description

-Xincgc Use Train GC

-Xnoincgc Do not use Train Garbage Collection (default
0)

-Xmaxf Maximum Heap free percentage (default 70)

-Xminf Minimum Heap free percentage (default 40)

-Xint Interpreter only

-Xboundthreads Bind user level threads

-Xmn Size Set the size of the young generation (1.4 only)

Java HotSpot VM Equivalents to _JIT_ARGS
Environment Variables
Most _JIT_ARGS environment variables are internal debugging options only and
have no corresponding Java HotSpot VM options. Most simply turn off some form of
optimization which may have caused instability when first introduced and could be
used by the internal testing group to track down problems.

_JIT_ARGS Environment Java HotSpot VM Option Description

jit/jbe -client/ -server jbe is the same as
-Xoptimize in 1.2–based
systems, jit is the default. Use
-server to replace
-Xoptimize (or jbe) in 1.2.

trace -XX:+PrintCompilation traces methods as compiled
(debug only)

V8/V9 -XX:+UseV8InstrsOnly Done automatically on both
systems, force architecture
using these flags
(Sparc/debug only)

Java™ HotSpot VM Options 35

Java HotSpot VM Equivalents to _JVM_ARGS
Environment Variables

_JVM_ARGS Environment Java HotSpot VM Option Description

bound_threads -Xboundthreads This option forces all
threads to be created as
bound threads.

fixed_size_young_gen -XX:NewSize=<size>

-XX:MaxNewSize=<size>

Disable young
generation resizing. To
do this on the Java
HotSpot VM, simply
set the size of the
young generation to a
constant.

gc_stats -verbose:gc/
-XX:+PrintGCDetails

Turns on various forms
of gc statistics
gathering.

ims_concurrent none

inline_instrs -XX:MaxInlineSize=<size> Integer specifying
maximum number of
bytecode instructions
in a method which gets
inlined.

inline_print -XX:+PrintInlining Print message about
inlined methods
(debug only)

no_parallel_gc none

sync_final none

yield_interval -XX:DontYieldALotInterval=<ms> (debug only) Interval
in milliseconds
between yields

monitor_order none

Additional Java HotSpot VM arguments
Numbers can include ’m’ or ’M’ for megabytes, ’k’ or ’K’ for kilobytes, and ’g’ or ’G’
for gigabytes (for example, 32k is the same as 32768). Turn on a boolean flag with
-XX:+<option> and off with -XX:-<option>.

36 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Flag and Default Description

-XX:-AllowUserSignalHandlers Do not complain is the application installs
signal handlers

-XX:AltStackSize=16384 Alternate signal stack size (in Kbytes)

-XX:+MaxFDLimit Bump the number of file descriptors to max

-XX:MaxHeapFreeRatio=70 Maximum percentage of heap free after GC to
avoid shrinking

-XX:MinHeapFreeRatio=40 Minimum percentage of heap free after GC to
avoid expansion

-XX:ReservedCodeCacheSize=32m Reserved code cache size (in bytes) —
maximum code cache size

-XX:-UseBoundThreads Bind user level threads to kernel threads

-XX:-UseLWPSynchronization Use LWP-based instead of thread based
synchronization

-XX:+UseThreadPriorities Use native thread priorities

-XXMaxPermSize=64m Size of the permanent genration.

-XX:-CITime Time spent in JIT Compiler (1.4 only)

-XX:-PrintTenuringDistribution Print tenuring age information

-XX:TargetSurvivorRatio=50 Desired percentage of survivor space used
after scavenge

XX:-DisableExplicitGC Disable calls to System.gc(). VM still
performs garbage collection when necessary.

-XX:-OverrideDefaultLibthread On Solaris 8, J2SDK versions 1.3.1_02+ and
1.4+ use this option when using the alternate
threads library. See the threads document at
http://java.sun.com/docs/hotspot/threads/threads.html.

Those flags differing per architecture/OS. "Flag and Default" has the default of
Sparc/-server.

Flag and Default Description

-XX:CompileThreshold=1000 Number of method invocations/branches
before (re-) compiling [10,000 —server, 1,500
— client]

Java™ HotSpot VM Options 37

Flag and Default Description

-XX:MaxNewSize=32m Maximum size of new generation (in bytes)
[32m Sparc, 2.5m x86for 1.3, no limit for 1.4 as
NewRatio is now used to determine
MaxNewSize]]

-XX:NewRatio=2 Ratio of new/old generation sizes [Sparc
-server: 2; Sparc -client: 4 (1.3), 8 (1.3.1+); x86:
12]

-XX:NewSize=2228224 Default size of new generation (in bytes)
[Sparc 2.125M, x86: 640k]

-XX:SurvivorRatio=64 Ratio of eden/survivor space size [Solaris: 64]

-XX:ThreadStackSize=512 Thread Stack Size (in Kbytes) (0 means use
default stack size) [Solaris Sparc: 512, Solaris
x86: 256]

-XX:+UseTLE (XX:+UseTLAB in J2SDK 1.4) Use thread-local object allocation [Sparc
-server: true, all others: false]

-XX:+UseISM See Intimate Shared Memory, online at
http://java.sun.com/docs/hotspot/ism.html.

38 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Assertion Facility

An assertion is understood to be a statement containing a boolean expression that the
programmer believes to be true at the time the statement is executed. For example,
after unmarshalling all of the arguments from a data buffer, a programmer might
assert that the number of bytes of data remaining in the buffer is zero. The system
executes the assertion by evaluating the boolean expression and reporting an error if
the expression evaluates to false. By verifying that the boolean expression is indeed
true, the system corroborates the programmer’s knowledge of the program thus
increasing the possibility that the program is free of errors.

Assertion checking may be disabled for increased performance. Typically, assertion
checking is enabled during program development and testing and disabled for
deployment.

Because assertions may be disabled, programs must not assume that the boolean
expressions contained in assertions will be evaluated. Thus these expressions should
be free of side effects. That is, evaluating such an expression should not affect any state
that is visible after the evaluation is complete. Although it is not illegal for a boolean
expression contained in an assertion to have a side effect, it is generally inappropriate,
as it could cause program behavior to vary depending on whether assertions are
enabled or disabled.

Similarly, assertions should not be used for argument checking in public methods.
Argument checking is typically part of the contract of a method, and this contract
must be upheld whether assertions are enabled or disabled. Another problem with
using assertions for argument checking is that erroneous arguments should result in
an appropriate runtime exception (such as IllegalArgumentException,
IndexOutOfBoundsException or NullPointerException). An assertion failure will not
throw an appropriate exception.

For more details, choose from the following links:

� “Compiling” on page 40
� “Syntax” on page 40
� “Semantics” on page 40

39

� “Enabling and Disabling Assertions” on page 41
� “Enabling and Disabling Assertions Programmatically” on page 42
� “Usage Notes” on page 43
� “Source Compatibility” on page 49
� “Design FAQ” on page 50

Compiling
In order for the javac bytecode compiler to accept code containing assertions, you
must use the -source 1.4 command-line option as in this example:

javac -source 1.4 MyClass.java

Syntax
A new keyword is added to the language. Use of the assert keyword is governed by
one modified production and one new production in the grammar:

StatementWithoutTrailingSubstatement:
<All current possibilities, as per JLS,

Section 14.4> AssertStatement
AssertStatement:

assert Expression1;
assert Expression1 : Expression2;

In both forms of the assert statement, Expression1 must be of type boolean or a
compile-time error occurs.

Semantics
If assertions are disabled in a class, the assert statements contained in that class have
no effect. If assertions are enabled, the first expression is evaluated. If it evaluates to
false, an AssertionError is thrown. If the assertion contains a second expression
(preceded by a colon), this expression is evaluated and passed to the constructor of the
AssertionError; otherwise the parameterless constructor is used. (If the first expression
evaluates to true, the second expression is not evaluated.)

40 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

If an exception is thrown while either expression is being evaluated, the assert
statement completes abruptly, throwing this exception.

Enabling and Disabling Assertions
By default, assertions are disabled. Two command-line switches allow you to
selectively enable or disable assertions.

The following switch enables assertions at various granularities:

java [-enableassertions | -ea] [:<package name>"..." | :<class name>]

With no arguments, the switch enables assertions by default. With one argument
ending in "...", assertions are enabled in the specified package and any subpackages by
default. If the argument is simply "...", assertions are enabled in the unnamed package
in the current working directory. With one argument not ending in "...", assertions are
enabled in the specified class.

The following switch disables assertions in similar fashion:

java [-disableassertions | -da] [:<package name>"..." | :<class name>]

If a single command line contains multiple instances of these switches, they are
processed in order before loading any classes. For example, to run a program with
assertions enabled only in package com.wombat.fruitbat (and any subpackages),
the following command could be used:

java -ea:com.wombat.fruitbat... java -ea:com.wombat.fruitbat... <Main class>

To run a program with assertions enabled in package com.wombat.fruitbat but
disabled in class com.wombat.fruitbat.Brickbat, the following command could
be used:

java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat <class>

The above switches apply to all class loaders, and to system classes (which do not
have a class loader). There is one exception to this rule: in their no-argument form, the
switches do not apply to system classes. This makes it easy to turn on asserts in all
classes except for system classes. A separate switch is provided to enable asserts in all
system classes (i.e., to set the default assertion status for system classes to true).

java [-enablesystemassertions | -esa]

For symmetry, a corresponding switch is provided to enable asserts in all system
classes.

java [-disablesystemassertions | -dsa]

Assertion Facility 41

Enabling and Disabling Assertions
Programmatically
Most programmers will not need to use the following methods. They are provided for
those writing interpreters or other execution environments.

� “Setting the Default Assertion Status for a Class Loader” on page 42
� “Setting the Assertion Status for a Package and its Subpackages” on page 42
� “Setting the Assertion Status for a Class and its Nested Classes” on page 43
� “Resetting to the Class Loader Default Assertion Status ” on page 43
� See also: “Design FAQ” on page 50

Setting the Default Assertion Status for a Class
Loader
Each class loader maintains a default assertion status, a boolean value that determines
whether assertions are, by default, enabled or disabled in new classes that are
subsequently initialized by the class loader. A newly created class loader’s default
assertion status is false (disabled). It can be changed at any time by invoking a new
method in class ClassLoader:

public void setDefaultAssertionStatus(boolean enabled)

If, at the time that a class is loaded, its class loader has been given specific instructions
regarding the assertion status of the class’s package name or its class name (via either
of the two new methods in ClassLoader described below), those instructions take
precedence over the class loader’s default assertion status. Otherwise, the class’s
assertions are enabled or disabled as specified by its class loader’s default assertion
status.

Setting the Assertion Status for a Package and its
Subpackages
The following method allows the invoker to set a per-package default assertion status.
Note that a per-package default actually applies to a package and any subpackages.

public void setPackageAssertionStatus(String packageName, boolean
enabled);

42 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

Setting the Assertion Status for a Class and its
Nested Classes
The following method is used to set assertion status on a per-class basis:

public void setClassAssertionStatus(string className, boolean
enabled);

Resetting to the Class Loader Default Assertion
Status
The following method clears any assertion status settings associated with a class
loader:

public void clearAssertStatus();

Usage Notes
The material contained in this section is not part of the assert specification, instead it is
intended to provide information about the use of the facility. In the parlance of the
standards community, the information in this section is non-normative.

You will find examples of appropriate and inappropriate use of the assert construct.
The examples are not exhaustive and are meant to convey the intended usage of the
construct.

� “Internal Invariants” on page 43
� “Control-Flow Invariants” on page 44
� “Preconditions, Postconditions, and Class Invariants” on page 45
� “Removing all Trace of Assertions from Class Files” on page 48
� “Requiring that Assertions are Enabled” on page 49

Internal Invariants
In general, it is appropriate to frequently use short assertions indicating important
assumptions concerning a program’s behavior.

In the absence of an assertion facility, many programmers use comments in the
following way:

Assertion Facility 43

if (i%3 == 0) {
...

} else if (i%3 == 1) {
...

} else { // (i%3 == 2)
...

}

When your code contains a construct that asserts an invariant, you should change it to
an assert. To change the above example (where an assert protects the else clause in a
multiway if-statement) you might do the following:

if (i % 3 == 0) {
...

} else if (i%3 == 1) {
...

} else {
assert i%3 == 2;
...

}

Note, the assertion in the above example may fail if i is negative, as the % operator is
not a true mod operator, but computes the remainder, which may be negative.

Control-Flow Invariants
Another good candidate for an assertion is a switch statement with no default case.

For example:

switch(suit) {
case Suit.CLUBS:
...
break;

case Suit.DIAMONDS:
...
break;

case Suit.HEARTS:
...
break;

case Suit.SPADES:
...

}

The programmer probably assumes that one of the four cases in the above switch
statement will always be executed. To test this assumption, add the following default
case:

44 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

default:
assert false;

More generally, the following statement should be placed at any location the
programmer assumes will not be reached.

assert false;

For example, suppose you have a method that looks like this:

void foo() {
for (...) {

if (...)
return;

}
// Execution should never reach this point!!!

}

Replace the final comment with:

assert false;

Note, use this technique with discretion. If a statement is unreachable as defined in
(JLS 14.19), you will see a compile time error if you try to assert that it is unreached.

Preconditions, Postconditions, and Class Invariants
While the assert construct is not a full-blown design-by-contract facility, it can help
support an informal design-by-contract style of programming.

Preconditions
By convention, preconditions on public methods are enforced by explicit checks inside
methods resulting in particular, specified exceptions. For example:

/**
* Sets the refresh rate.
*
* @param rate refresh rate, in frames per second.
* @throws IllegalArgumentException if rate <= 0 or
* rate > MAX_REFRESH_RATE.
*/
public void setRefreshRate(int rate) {

// Enforce specified precondition in public method
if (rate <= 0 || rate > MAX_REFRESH_RATE)

throw new IllegalArgumentException("Illegal rate: " + rate);

setRefreshInterval(1000/rate);
}

Assertion Facility 45

This convention is unaffected by the addition of the assert construct. An assert is
inappropriate for such preconditions, as the enclosing method guarantees that it will
enforce the argument checks, whether or not assertions are enabled. Further, the assert
construct does not throw an exception of the specified type.

If, however, there is a precondition on a nonpublic method and the author of a class
believes the precondition to hold no matter what a client does with the class, then an
assertion is entirely appropriate. For example:

/**
* Sets the refresh interval (must correspond to a legal frame rate).
*
* @param interval refresh interval in milliseconds.
*/
private void setRefreshInterval(int interval) {

// Confirm adherence to precondition in nonpublic method
assert interval > 0 && interval <= 1000/MAX_REFRESH_RATE;

... // Set the refresh interval
}

Note, the above assertion will fail if MAX_REFRESH_RATE is greater than 1000 and the
user selects a refresh rate greater than 1000. This would, in fact, indicate a bug in the
library!

Postconditions
Postcondition checks are best implemented via assertions, whether or not they are
specified in public methods. For example:

/**
* Returns a BigInteger whose value is (this-1 mod m).
*
* @param m the modulus.
* @return this-1 mod m.
* @throws ArithmeticException m <= 0, or this BigInteger
* has no multiplicative inverse mod m (that is, this BigInteger
* is not relatively prime to m).
*/
public BigInteger modInverse(BigInteger m) {

if (m.signum <= 0)
throw new ArithmeticException("Modulus not positive: " + m);

if (!this.gcd(m).equals(ONE))
throw new ArithmeticException(this + " not invertible mod " + m);

... // Do the computation

assert this.multiply(result).mod(m).equals(ONE);
return result;

}

46 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

In practice, one would not check the second precondition
(this.gcd(m).equals(ONE)) prior to performing the computation, because it is
wasteful. This precondition is checked as a side effect of performing the modular
multiplicative inverse computation by standard algorithms.

Occasionally, it is necessary to save some data prior to performing a computation in
order to check a postcondition after it is complete. This can be done with two assert
statements and the help of a simple inner class designed to save the state of one or
more variables so they can be checked (or rechecked) after the computation. For
example, suppose you have a piece of code that looks like this:

void foo(int[] array) {
// Manipulate array
...

// At this point, array will contain exactly the ints that it did
// prior to manipulation, in the same order.

}

Here is how you could modify the above method to turn the textual assertion into a
functional one:

void foo(final int[] array) {

class DataCopy {
private int[] arrayCopy;

DataCopy() { arrayCopy = (int[])(array.clone()); }

boolean isConsistent() { return Arrays.equals(array, arrayCopy); }
}

DataCopy copy = null;

// Always succeeds; has side effect of saving a copy of array
assert (copy = new DataCopy()) != null;

... // Manipulate array

assert copy.isConsistent();
}

Note that this idiom easily generalizes to save more than one data field, and to test
arbitrarily complex assertions concerning pre-computation and post-computation
values.

The first assert statement (which is executed solely for its side-effect) could be replaced
by the more expressive:

copy = new DataCopy();

but this would copy the array whether or not asserts were enabled, violating the
dictum that asserts should have no cost when disabled.

Assertion Facility 47

Class Invariants
As noted above, assertions are appropriate for checking internal invariants. The
assertion mechanism itself does not enforce any particular style for doing so. It is
sometimes convenient to combine many expressions that check required constraints
into a single internal method that can then be invoked by assertions. For example,
suppose one were to implement a balanced tree data structure of some sort. It might
be appropriate to implement a private method that checked that the tree was indeed
balanced as per the dictates of the data structure:

// Returns true if this tree is properly balanced
private boolean balanced() {

...
}

This method is a class invariant. It should always be true before and after any method
completes. To check that this is indeed the case, each public method and constructor
should contain the line:

assert balanced();

immediately prior to each return. It is generally overkill to place similar checks at the
head of each public method unless the data structure is implemented by native
methods. In this case, it is possible that a memory corruption bug could corrupt a
"native peer" data structure in between method invocations. A failure of the assertion
at the head of such a method would indicate that such memory corruption had
occurred. Similarly, it may be advisable to include class invariant checks at the head of
methods in classes whose state is modifiable by other classes. (Better yet, design
classes so that their state is not directly visible by other classes!)

Removing all Trace of Assertions from Class Files
Programmers developing for resource-constrained devices may wish to strip
assertions out of class files entirely. While this makes it impossible to enable assertions
in the field, it also reduces class file size, possibly leading to improved class loading
performance. In the absence of a high quality JIT, it could lead to decreased footprint
and improved runtime performance.

The assertion facility offers no direct support for stripping assertions out of class files.
However, the assert statement may be used in conjunction with the "conditional
compilation" idiom described in JLS 14.19:

static final boolean asserts = ... ; // false to eliminate asserts

if (asserts)
assert <expr> ;

48 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

If asserts are used in this fashion, the compiler is free to eliminate all traces of these
asserts from the class files that it generates. It is recommended that this be done where
appropriate to support generation of code for resource-constrained devices.

Requiring that Assertions are Enabled
Programmers of certain critical systems might wish to ensure that assertions are not
disabled in the field. Here is an idiom that prevents a class from being loaded if
assertions have been disabled for that class:

static {
boolean assertsEnabled = false;
assert assertsEnabled = true; // Intentional side effect!!!
if (!assertsEnabled)

throw new RuntimeException("Asserts must be enabled!!!");
}

Source Compatibility
The addition of the assert keyword to the Java Programming Language causes
existing programs that use assert as an identifier to become invalid. The addition of
this keyword does not, however, cause any problems with the use of preexisting
binaries (.class files). In order to ease the transition from a world where assert is a legal
identifier to one where it isn’t, the compiler supports two modes of operation in this
release.

� In the normal mode of operation the compiler accepts programs conforming to the
specification for the previous release (1.3). Assertions are not permitted, and the
compiler generates a warning if the assert keyword is used as an identifier or label.

� In an alternate mode of operation, the compiler accepts programs conforming to
the specification for release 1.4. Assertions are permitted, and the compiler
generates an error message if the assert keyword is used as an identifier or label.

To enable assertions, use the following command line switch.

-source 1.4

In the absence of this flag, the behavior defaults to "1.3" for maximal source
compatibility. Support for 1.3 source compatibility is likely to be phased out over time.

Assertion Facility 49

Design FAQ
Following is a collection of frequently asked questions concerning the design of the
assertion facility.

� General Questions
� Compatibility
� Syntax and Semantics
� The AssertionError Class
� Enabling and Disabling Assertions

Design FAQ - General Questions
1. Why provide an assertion facility at all, given that one can program assertions atop the

Java programming language with no special support?

Although ad hoc implementations are possible, they are of necessity either ugly
(requiring an if statement for each assertion) or inefficient (evaluating the condition
even if assertions are disabled). Further, each ad hoc implementation has its own
means of enabling and disabling assertions, which lessens the utility of these
implementations, especially for debugging in the field. As a result of these
shortcomings, assertions have never become a part of the Java culture. Adding
assertion support to the platform stands a good chance of rectifying this situation.

2. Why does this facility justify a language change, as opposed to a library solution?

We recognize that a language change is a serious effort, not to be undertaken
lightly. The library approach was considered. It was, however, deemed essential
that the runtime cost of assertions be negligible if they are disabled. In order to
achieve this with a library, the programmer is forced to hard-code each assertion as
an if statement. Many programmers would not do this. Either they would omit the
if statement and performance would suffer, or they would ignore the facility
entirely. Note also that assertions were contained in James Gosling’s original
specification for Java. Assertions were removed from the Oak specification because
time constraints prevented a satisfactory design and implementation.

3. Why not provide a full-fledged design-by-contract facility with preconditions,
postconditions and class invariants, like the one in the Eiffel programming language?

We considered providing such a facility, but were unable to convince ourselves that
it is possible to graft it onto the Java programming language without massive
changes to the Java platform libraries, and massive inconsistencies between old
and new libraries. Further, we were not convinced that such a facility would
preserve the simplicity that is Java’s hallmark. On balance, we came to the
conclusion that a simple boolean assertion facility was a fairly straight-forward
solution and far less risky. It’s worth noting that adding a boolean assertion facility

50 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

to the language doesn’t preclude adding a full-fledged design-by-contract facility
at some time in the future.

The simple assertion facility does enable a limited form of design-by-contract style
programming. The assert statement is appropriate for postcondition and class
invariant checking. Precondition checking should still be performed by checks
inside methods that result in particular, documented exceptions, such as
IllegalArgumentException and IllegalStateException.

4. In addition to boolean assertions, why not provide an assert-like construct to suppress the
execution of an entire block of code if assertions are disabled?

Providing such a construct would encourage programmers to put complex
assertions inline, when they are better relegated to separate methods.

Design FAQ - Compatibility
1. Won’t the new keyword cause compatibility problems with existing programs that use

assert as an identifier?

Yes, for source files. (Binaries for classes that use assert as an identifier will
continue to work fine.) To ease the transition, we describe a strategy whereby
developers can continue using assert as an identifier during a transitional period.
See “Source Compatibility” on page 49.

Design FAQ - Syntax and Semantics
1. Why allow primitive types in Expression2?

There is no compelling reason to restrict the type of this expression. Allowing
arbitrary types provides convenience for developers who for example want to
associate a unique integer code with each assertion. Further, it makes this
expression seem like System.out.print(...), which is desirable.

Design FAQ - The AssertionError Class
1. When an AssertionError is generated by an assert statement in which Expression2 is

absent, why isn’t the program text of the asserted condition used as the detail message (e.g.,
"height < maxHeight")?

While doing so might improve out-of-the-box usefulness of assertions in some
cases, the benefit doesn’t justify the cost of adding all those string constants to
.class files and runtime images.

Assertion Facility 51

2. Why doesn’t an AssertionError allow access to the object that generated it? Similarly, why
not pass an arbitrary object from the assertion to the AssertionError in place of a detail
message?

Access to these objects would encourage programmers to attempt to recover from
assertion failures, which defeats the purpose of the facility.

3. Why not provide context accessors (like getFile, getLine, getMethod) on AssertionError?

This facility is best provided on Throwable, so it may be used for all throwables,
and not just assertion errors. We intend to enhance Throwable to provide this
functionality in the same release in which the assertion facility first appears.

4. Why is AssertionError a subclass of Error rather than RuntimeException?

This issue was controversial. The expert group discussed it at length, and came to
the conclusion that Error was more appropriate to discourage programmers from
attempting to recover from assertion failures. It is, in general, difficult or impossible
to localize the source of an assertion failure. Such a failure indicates that the
program is operating "outside of known space," and attempts to continue execution
are likely to be harmful. Further, convention dictates that methods specify most
runtime exceptions they may throw (via "@throws" doc comments). It makes little
sense to include in a method’s specification the circumstances under which it may
generate an assertion failure. Such information may be regarded as an
implementation detail, which can change from implementation to implementation
and release to release.

Design FAQ - Enabling and Disabling Assertions
1. Why not provide a compiler flag to completely eliminate assertions from object files?

It is a firm requirement that it be possible to enable assertions in the field, for
enhanced serviceability. It would have been possible to also permit developers to
eliminate assertions from object files at compile time. However, since assertions can
contain side effects (though they should not), such a flag could alter the behavior of
a program in significant ways. It is viewed as good thing that there is only one
semantics associated with each valid Java program. Also, we want to encourage
users to leave asserts in object files so they can be enabled in the field. Finally, the
standard Java "conditional compilation idiom" described in JLS 14.19 can be used
to achieve this effect for developers who really want it.

2. Why does setPackageAssertionStatus have package-tree semantics instead of the more
obvious package semantics?

Hierarchical control is useful, as programmers really do use package hierarchies to
organize their code. For example, package-tree semantics allow assertions to be
enabled or disabled in all of Swing at one time.

3. Why does setClassAssertionStatus return a boolean instead of throwing an exception if it is
invoked when it’s too late to set the assertion status (i.e., the named class has already been
loaded)?

52 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

No action (other than perhaps a warning message) is necessary or desirable if it’s
too late to set the assertion status. An exception seems unduly heavyweight.

4. Why not overload a single method to take the place of setDefaultAssertionStatus and
setAssertionStatus?

Clarity in method naming is for the greater good.

5. Why is there no RuntimePermission to prevent applets from enabling/disabling assertions?

While applets have no reason to call any of the ClassLoader methods for modifying
assertion status, allowing them to do so seems harmless. At worst, an applet can
mount a weak denial-of-service attack by turning on asserts in classes that have yet
to be loaded. Moreover, applets can only affect the assert status of classes that are
to be loaded by class loaders that the applets can access. There already exists a
RuntimePermission to prevent untrusted code from gaining access to class loaders
(getClassLoader).

6. Why not provide a construct to query the assert status of the containing class?

Such a construct would encourage people to inline complex assertion code, which
we view as a bad thing:

if (assertsEnabled()) {
...

}

Further, it is straightforward to query the assert status atop the current API, if you
feel you must:

boolean assertsEnabled = false;
assert assertsEnabled = true; // Intentional side-effect!!!
// Now assertsEnabled is set to the correct value

Assertion Facility 53

54 Java 2 SDK for Solaris Developer’s Guide • December 2001 (Beta)

