
Solaris WBEM SDK Developer’s
Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–6828
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 15

1 Overview of Web-Based Enterprise Management 21

About WBEM 21

Sun WBEM SDK 22

About CIM 22

CIM Terms and Concepts 22

CIM Structure 25

How it All Fits Together 31

About Managed Object Format 32

MOF Syntax 32

Schema MOF Files 33

2 CIM WorkShop 35

About CIM WorkShop 35

Reference: CIM WorkShop Interface 36

Login Dialog Box 36

The CIM WorkShop Main Window 38

CIM WorkShop Menus 40

New Class Dialog Box 42

Add Property Dialog Box 43

Qualifiers Dialog Box 43

Scope and Flavors Dialog Boxes 44

Set Value Dialog Box 44

Instance Editor Window 48

3

Add Instance Dialog Box 51

Invoke Method Dialog Box 51

Icons on the CIM WorkShop Tool Bar 53

The Properties Tab 53

The Methods Tab 54

The Events Tab 54

Starting CIM WorkShop 55

� To Start CIM WorkShop 55

Navigating in CIM WorkShop 56

Browsing the Class Inheritance Tree 56

Finding a Class 57

Executing Queries 57

� To Execute a Query 57

Viewing Class Characteristics 58

Selecting a Class 58

Viewing Class Properties 58

Viewing Class Methods 58

Viewing Qualifiers 58

Viewing the Scope of a Qualifier 59

Viewing the Flavor of a Qualifier 59

Viewing Values 59

Working in Namespaces 59

Moving to Another Namespace 60

Creating and Deleting a Namespace 60

Moving to Another Host 61

Refreshing Classes and Namespaces 62

Adding a New Qualifier Type 62

Working with Classes 63

Adding a Class 64

Creating a Class 64

Adding Qualifiers 65

Adding New Properties to a Class 66

Adding Qualifiers 66

Adding Qualifiers to a Method 67

Deleting Classes and Their Attributes 68

Deleting a Class 68

Deleting a Property of a Class 68

4 Solaris WBEM SDK Developer’s Guide • December 2001

Deleting Qualifiers 69

Working with Instances 70

Displaying Instances 70

Adding Instances 71

Deleting Instances 72

Invoking Methods 73

� To Invoke a Method 73

3 Application Programming Interfaces 75

About the APIs 75

API Packages 76

4 Writing Client Applications 79

Overview 79

Sequence of a Client Application 80

Sample Solaris WBEM SDK Client Application 80

Typical Programming Tasks 82

Opening and Closing a Client Connection 82

About Namespaces 82

Connecting to the CIM Object Manager 83

Closing a Client Connection 85

Working with Instances 85

Creating an Instance 85

Deleting an Instance 86

Getting and Setting Instances 88

Enumerating Namespaces, Classes, and Instances 92

Deep and Shallow Enumeration 93

Getting Class and Instance Data 93

Getting Class and Instance Names 94

Enumerating Namespaces 94

Enumerating Class Names 96

Querying 98

The execQuery Method 99

Using the WBEM Query Language 99

Making a Data Query 101

About Associations 103

Contents 5

The Association Methods 103

Working With the associators and associatorNames Methods 107

Working With the references and referenceNames Methods 108

Calling Methods 109

Calling a Method 109

Retrieving Class Definitions 110

Handling Exceptions 111

Using the Try/Catch Clauses 111

Syntactic and Semantic Error Checking 112

Advanced Programming Topics 112

Creating a Namespace 112

Deleting a Namespace 113

Creating a Base Class 115

Deleting a Class 117

Working with Qualifier Types and Qualifiers 119

Sample Programs 120

5 Writing a Provider Program 123

About Providers 123

Types of Providers 124

Implementing the Provider Interfaces 124

Implementing an Instance Provider 125

Implementing a Property Provider 127

Implementing a Method Provider 128

Implementing an Association Provider 129

Writing a Native Provider 130

Installing a Provider 131

� How To Set Up the Environment 131

Setting the Solaris Provider CLASSPATH 131

Registering a Provider 132

� How To Register a Provider 133

Changing a MOF File 133

Registering a Provider 134

Modifying a Provider 135

� How To Modify a Provider 135

Handling WBEM Query Language Queries 135

Using the WQL APIs to Parse Query Strings 136

6 Solaris WBEM SDK Developer’s Guide • December 2001

Writing a Provider that Parses WQL Query Strings 139

6 Handling CIM Events 143

The CIM Event Model 143

How Indications are Generated 144

How Subscriptions are Created 146

Creating a Subscription 146

Adding a CIM Listener 147

Creating an Event Filter 147

Creating an Event Handler 149

Binding an Event Filter to an Event Handler 150

Generating an Event Indication 151

Methods in the EventProvider Interface 151

Creating and Delivering Indications 152

Authorizations 153

CIM Indication Classes 153

7 Using the Solaris WBEM SDK Sample Programs 155

About the Sample Programs 155

Running the Sample Applet 156

� How To Run the Sample Applet Using Appletviewer 156

� How To Run the Sample Applet using a Web Browser 156

About the Client Sample Programs 156

Running the Client Sample Programs 158

About the Provider Sample Program 159

Running the Provider Sample Program 160

A WBEM Error Messages 163

About WBEM Error Messages 163

Parts of an Error Message 163

Error Message Templates 164

List of Error Messages 164

Contents 7

Glossary 181

Index 187

8 Solaris WBEM SDK Developer’s Guide • December 2001

Tables

TABLE 1–1 Core Model Logical Elements 26

TABLE 1–2 Core Model System Classes 27

TABLE 2–1 The CIM Workshop Main Window 39

TABLE 2–2 CIM WorkShop Menus and Menu Selections 40

TABLE 2–3 Fields on the Qualifiers Dialog Box 43

TABLE 2–4 Qualifiers Dialog Box Buttons 44

TABLE 2–5 Icons on the Instance Editor Window Tool Bar 49

TABLE 2–6 Menus on the Instance Editor Window 50

TABLE 2–7 Icons on the CIM WorkShop Tool Bar 53

TABLE 4–1 Deep and Shallow Enumeration 93

TABLE 4–2 Mapping of SQL to WQL Data 100

TABLE 4–3 Supported WQL Key Words 100

TABLE 4–4 WQL Operators 101

TABLE 4–5 SELECT Statement 101

TABLE 4–6 The CIMClient Association Methods 104

TABLE 4–7 Optional Arguments to the Association Methods 106

TABLE 4–8 associators and associatorNames Methods 107

TABLE 4–9 references and referenceNames Methods 108

TABLE 4–10 Parameters to the invokeMethodMethod 109

TABLE 6–1 Properties in the CIM_IndicationFilter Class 147

TABLE 6–2 Properties in the CIM_IndicationHandler Class 149

TABLE 6–3 Methods in the EventProvider Interface 151

TABLE 6–4 CIM Events Indication Classes 153

TABLE 7–1 Client Sample Programs 157

TABLE 7–2 Provider Sample Files 159

9

10 Solaris WBEM SDK Developer’s Guide • December 2001

Figures

FIGURE 2–1 CIM Workshop Login Dialog Box 36

FIGURE 2–2 The CIM WorkShop Main Window 38

FIGURE 2–3 The New Class Dialog Box 42

FIGURE 2–4 The Instance Editor Window 48

FIGURE 2–5 The Instance Editor Window Tool Bar 49

FIGURE 2–6 The Invoke Method Dialog Box 51

FIGURE 2–7 The CIM WorkShop Tool Bar 53

FIGURE 4–1 An Association Between Teacher and Student 103

FIGURE 4–2 Teacher-Student Association Example 107

FIGURE 5–1 WBEM Classes that Represent the WBEM Query Language Expression
136

11

12 Solaris WBEM SDK Developer’s Guide • December 2001

Examples

EXAMPLE 4–1 Sample Solaris WBEM SDK Application 80

EXAMPLE 4–2 Connecting to the Default Namespace 84

EXAMPLE 4–3 Connecting to the Root Account 84

EXAMPLE 4–4 Connecting to a Non-Default Namespace 84

EXAMPLE 4–5 Authenticating as an RBAC Role Identity 85

EXAMPLE 4–6 Creating an Instance 86

EXAMPLE 4–7 Deleting Instances 87

EXAMPLE 4–8 Getting Instances of a Class 89

EXAMPLE 4–9 Printing Processor Information (getProperty) 90

EXAMPLE 4–10 Setting a Property 91

EXAMPLE 4–11 Setting Instances 92

EXAMPLE 4–12 Enumerating Namespaces 94

EXAMPLE 4–13 Enumerating Class Names 96

EXAMPLE 4–14 Enumerating Class Data 96

EXAMPLE 4–15 Enumerating Classes and Instances 96

EXAMPLE 4–16 execQuery Example 99

EXAMPLE 4–17 Passing Instances to the Associators Method 105

EXAMPLE 4–18 Calling a Method 109

EXAMPLE 4–19 Retrieving a Class Definition 110

EXAMPLE 4–20 Semantic Error Checking 112

EXAMPLE 4–21 Creating a Namespace 113

EXAMPLE 4–22 Deleting a Namespace 114

EXAMPLE 4–23 Creating a CIM Class 116

EXAMPLE 4–24 Deleting a Class 118

EXAMPLE 4–25 Getting CIM Qualifiers 119

EXAMPLE 4–26 Set Qualifiers 120

13

EXAMPLE 5–1 SimpleInstanceProvider Instance Provider 125

EXAMPLE 5–2 Implementing a Property Provider 127

EXAMPLE 5–3 Implementing a Method Provider 128

EXAMPLE 5–4 Implementing an Association Provider 129

EXAMPLE 5–5 SimpleInstanceProvider 134

EXAMPLE 5–6 Provider that Implements the execQuery Method 140

EXAMPLE 6–1 Adding a CIM Listener 147

EXAMPLE 6–2 Creating a CIM Event Handler 150

EXAMPLE 6–3 Binding an Event Filter to an Event Handler 150

EXAMPLE 7–1 Running the SystemInfo Client Program 158

14 Solaris WBEM SDK Developer’s Guide • December 2001

Preface

The Solaris WBEM SDK Developer’s Guide describes the Sun Web-Based Enterprise
Management Software Developer’s Toolkit, which enables software developers to
create standards-based applications that manage resources in the Solaris operating
environment. Developers can also use this toolkit to write providers, which are
programs that communicate with managed resources to access data.

The Solaris WBEM SDK includes client application programming interfaces (APIs) for
describing and managing resources in the Distributed Management Task Force
(DMTF) Common Information Model (CIM), and provider APIs for getting and setting
dynamic data on managed resources. The Solaris WBEM SDK also includes CIM
Workshop, a Java application that you can use to create and view managed resources
on a system, and sample WBEM client and provider programs.

Who Should Use This Book
This book is intended for the following developers:

� Instrumentation Developers

Instrumentation developers provide resources such as processors, memory, routers,
and other manageable devices. These developers communicate device information
in a standard CIM format to the CIM Object Manager, typically through a software
provider.

� System and Network Application Developers

System and Network Application Developers write applications that manage the
information stored in CIM classes and instances. These developers typically use the
Solaris WBEM Application Programming Interfaces to get and set the properties of
predefined CIM instances and classes.

15

Before You Read This Book
This book describes how to use the Solaris WBEM SDK components and tools to write
management applications.

This book requires a solid understanding of the following:

� Object-oriented programming concepts
� Java programming
� Common Information Model (CIM) concepts

If you are unfamiliar with these areas, you might find the following references useful:

� Java™ How to Program

H. M. Deitel and P. J. Deitel, Prentice Hall, ISBN 0–13–263401–5

� The Java Class Libraries, Second Edition, Volume 1, Patrick Chan, Rosanna Lee,
Douglas Kramer, Addison-Wesley, ISBN 0–201–31002–3

� CIM Tutorial, provided by the Distributed Management Task Force

The following Web sites are useful resources when working with WBEM technologies.

� Distributed Management Task Force (DMTF)

Visit www.dmtf.org for the latest developments on CIM, information about various
working groups, and contact information for extending the CIM Schema.

� Rational Software

Visit www.rational.com/uml for documentation on the Unified Modeling
Language (UML) and the Rose CASE tool.

How This Book Is Organized
Chapter 1 introduces Web-Based Enterprise Management (WBEM) and the Common
Information Model (CIM).

Chapter 2 describes how to use CIM WorkShop to manipulate CIM classes, instances,
methods, and properties.

Chapter 3 provides an overview of the client Application Programming Interfaces and
gives examples of how to use the APIs to create and manipulate CIM objects.

Chapter 4 explains how to use the Client APIs to write client applications.

16 Solaris WBEM SDK Developer’s Guide • December 2001

Chapter 5 describes a provider, provides an overview of the provider APIs, and
explains how to write a provider.

Chapter 6 describes the CIM event model, how providers generate CIM events, and
how applications subscribe to the notification of the occurrence of CIM events.

Chapter 7 explains how to run the code examples provided with the Solaris WBEM
SDK.

Appendix A explains the error messages returned by the Solaris WBEM SDK APIs.

Glossary defines terms found in the WBEM documentation.

Related Information
You may also want to refer to the following related documentation.

� Solaris WBEM Services Administration Guide – Explains Common Information Model
(CIM) concepts, and describes how to administer Web-based Enterprise
Management (WBEM) services in the Solaris™ operating environment.

� Javadoc reference pages – Describes the WBEM Application Programming
Interfaces at /usr/sadm/lib/wbem/doc/index.html

� CIM/Solaris Schema – Describes the CIM and Solaris Schema classes at
/usr/sadm/lib/wbem/doc/mofhtml/index.html

Ordering Sun Documents
Fatbrain.com, the Internet’s most comprehensive professional bookstore, stocks select
product documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Preface 17

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

18 Solaris WBEM SDK Developer’s Guide • December 2001

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 19

20 Solaris WBEM SDK Developer’s Guide • December 2001

CHAPTER 1

Overview of Web-Based Enterprise
Management

This chapter provides a description of Web-Based Enterprise Management (WBEM)
and includes the following topics:

� “About WBEM” on page 21
� “About CIM” on page 22
� “How it All Fits Together” on page 31
� “About Managed Object Format” on page 32

About WBEM

Tip – This section provides a broad overview of WBEM. For more in-depth
information, read about the Distributed Management Task Force’s “Web-Based
Enterprise Management (WBEM) Initiative” at
http://www.dmtf.org/standards/standard_wbem.php

Web-Based Enterprise Management (WBEM) is a set of management and Internet
technologies that unify the management of enterprise computing environments. With
WBEM, you can deliver an integrated set of standardized management tools that
leverage emerging Web technologies. By developing management applications
according to WBEM principles, you can develop compatible products at a low
development cost.

The Distributed Management Task Force (DMTF), an industry group that represents
corporations in the computer and telecommunications industries, is leading the effort
to develop and disseminate standards for the management of desktop environments,
enterprise-wide systems, and the Internet. The goal of the DMTF is to develop an

21

integrated approach to managing computers and networks across platforms and
protocols, resulting in cost-effective products that interoperate as flawlessly as
possible.

Sun WBEM SDK
The Sun WBEM SDK contains the components required to write management
applications that communicate with WBEM-enabled management devices. All
management applications developed using the SUN WBEM SDK run on the Java
platform. You can use the Sun WBEM SDK as a standalone application, or with Solaris
WBEM Services.

The Sun WBEM API documentation is delivered in Javadocs and is installed at
/usr/sadm/lib/wbem/doc/index.html.

About CIM

Tip – This section provides a broad overview of CIM. For a complete overview of
CIM, including white papers and a tutorial, refer to the DMTF Education Overview at
http:www.dmtf.org/education/index.php.

The Common Information Model (CIM), developed by the DMTF, is a core set of
standards that make up WBEM. CIM is a standard approach to managing systems and
networks, providing a common conceptual framework that classifies and defines the
parts of a networked environment, and depicts how these various parts integrate. The
model captures notions that are applicable to all areas of management, independent of
technology implementation. CIM is comprised of the CIM Specification and the CIM
Schema.

The CIM Specification defines the language and methodology for integration with
other management models, and the CIM Schema provides the actual model
descriptions for systems, applications, networks (LAN) and devices.

CIM Terms and Concepts
To understand CIM, you must first understand the concept of object-oriented
modeling and how the various objects within the CIM schema relate to one other.

22 Solaris WBEM SDK Developer’s Guide • December 2001

Object-oriented modeling is a method of representing something in the real world. The
goal of object-oriented modeling is to set a representation of a physical entity into a
framework, or model, that expresses the qualities and functions of the entity and its
relationships with other entities. In the context of CIM, object-oriented modeling is
used to model hardware and software elements.

CIM conventions for rendering a model are based on the diagrammatic concepts of the
Uniform Modeling Language (UML). The UML is a third-generation language for
specifying, visualizing, and documenting the artifacts of an object-oriented system.
UML uses shapes to represent physical entities, and lines to represent relationships.
For example, in UML, classes are represented as rectangles. Each rectangle contains
the name of the class it represents. A line between two rectangles represents a
relationship between the two classes. A forked line that joins two classes to a
higher-level class represents an association.

The following entities are represented:

Schema
The terms schema, model, and framework are synonymous; they are abstract
representations of an entity that has a physical or logical existence. In CIM, a schema
is a defined collection of classes used for naming and administration. Within a schema,
classes and their subclasses are represented hierarchically using the following syntax:

Schemaname_classname.propertyname.

Each class name within a schema must be unique. For example, Sun Microsystems’
WBEM includes a Solaris Schema, containing all classes specific to the Solaris
extension of CIM. You can view the Solaris Schema at
/usr/sadm/lib/wbem/doc/mofhtml/index.html.

Class
Classes relate to managed objects or the associations between managed objects. If you
need to instrument a managed object, you abstract the characteristics and properties of
that object into a CIM class which can then be viewed as a template for actual
instances of the managed object.

Classes can be abstract or concrete. Concrete classes have actual instances associated
with them. In Solaris WBEM services, a class is expressed as an instantiation of the
CIMClass Java class.

Overview of Web-Based Enterprise Management 23

Instance
Instances of CIM classes can be static or dynamic. Static instances are stored in CIM
repository, while dynamic instances are generated on demand by accessing the
managed object through a provider application. In Solaris WBEM services, an instance
is expressed as an instantiation of the CIMInstance

Property
Properties define the characteristics of a class. Properties of CIM classes are
manipulated using the CIMProperty class in the Java CIM API. Properties have
associated values and datatypes. Each property in a class has a unique name. A
property in a class can be overridden by its subclass. A special type of property is the
key property, which assists in distinguising one instance of a class from another
instance of the same class. Every concrete class in CIM must have at least one key
property.

Method
A method is an operation, together with its signature. The signature consists of a
possibly empty list of parameters and a return type. Methods define additional
behavioral characteristics of a managed object and cover operational semantics that
cannot be expressed as enumerations, retrieval, modification or deletions of instances
of classes. There are no restrictions on a method’s type of parameters, other than they
must be one of the valid CIM data types. Within the context of a class, each method
must have a unique name. Methods are inherited by subclasses and can be overridden
by subclasses.

Qualifier
Qualifiers are meta data about a property, method, method parameter, class, or
instance, but are not part of the definition itself. For example, a qualifier is used to
indicate whether a property value is modifiable using the WRITE qualifier. Qualifiers
always precede the declaration to which they apply. Certain qualifiers are well known
and cannot be redefined. However, you may use arbitrary qualifiers. Qualifiers can be
transmitted automatically from classes to derived classes, or from classes to instances,
subject to certain rules.

The rules for how qualifier transmission occurs are attached to each qualifier and are
encapsulated in the concept of the qualifier flavor. For example, you could designate a
qualifier in the base class as automatically transmitted to all of its derived classes, or
you could designate it as belonging specifically to that class.

24 Solaris WBEM SDK Developer’s Guide • December 2001

In addition, you can use the qualifier flavor to control whether or not derived classes
can override the qualifier value, or whether the value is fixed for an entire class
hierarchy. This aspect of qualifier flavor is referred to as override permissions. You
indicate the qualifier flavor using an optional clause after the qualifier preceded by a
colon. Flavors consist of some combination of the key words EnableOverride,
DisableOverride, ToSubclass and Restricted, indicating the applicable
propagation and override rules.

Override
An override relationship indicates the substitution of a property or method inherited
from a subclass for a property or method inherited from the superclass. In CIM,
guidelines determine what qualifiers of properties and methods can be overridden.
For example, if the qualifier type of a class is flagged as a key, then the key cannot be
overridden, because CIM guidelines specify that a key property cannot be overridden.

Association
An association is a class that represents a relationship between two or more classes.
Associations enable the creation of multiple relationship instances for a given class.
System components can be related in many different ways, and associations provide a
way of representing the relationships of these components. You can establish a
relationship between classes without affecting any of the related classes. Only
associations can have references.

Reference and Range
Reference and range define the role of an object involved in an association. The
reference specifies the role name of the class in the context of the association. The
domain of a reference is an association. The range of a reference is a character string
that indicates the reference type.

CIM Structure
The Common Information Model categorizes information from general to specific, and
consists of three information models:

� Core Model – Provides the underlying, general assumptions of the managed
environment. This model comprises a small set of classes and associations that
provide a basic vocabulary for analyzing and describing managed systems.

Overview of Web-Based Enterprise Management 25

� Common Model – Captures notions that are common to particular management
areas, but independent of a particular technology or implementation. Provides a
basis for the development of management applications.

Note – Collectively, the Core Model and the Common Model are referred to as the
CIM Schema.

� Extension Schema – Represents technology/platform-specific extensions to the
Common Model. These schemas are specific to environments, such as operating
systems. For example, the Solaris Schema is an extension schema. Vendors extend
the model for their products by creating subclasses of objects. Applications can
then transverse object instances in the standard model to manage different
products in a heterogeneous environment.

Solaris WBEM Services installs the CIM Schema and extensions at:
/usr/sadm/lib/wbem/doc/mofhtml/index.html.

The Core Model

Tip – For more in-depth information about the Core Model, see the Core Model White
Paper at http://www.dmtf.org/education/whitepapers.php

The Core Model provides classes and associations that you can use to develop
applications in which systems and their functions are represented as managed objects.
These classes and associations embody the characteristics unique to all elements that
comprise a system: physical and logical elements.

� Physical elements refer to the qualities of occupying space and conforming to the
elementary laws of physics.

� Logical elements represent abstractions used to manage and coordinate aspects of
the physical environment, such as system state or system capabilities. The Core
Model logical elements are described in the following table.

TABLE 1–1 Core Model Logical Elements

Element Description

Systems Grouping of logical elements. Because systems are themselves
logical elements, a system can be composed of other systems.

Network Components Classes that provide a topological view of a network.

Services and Access Points Provide a mechanism for organizing the structures that provide
access to the capabilities of a system.

26 Solaris WBEM SDK Developer’s Guide • December 2001

TABLE 1–1 Core Model Logical Elements (Continued)
Element Description

Devices Abstraction or emulation of a hardware entity, that may or may
not be realized in physical hardware.

Core Model System Classes
The following table lists the classes that represent system aspects of the Core schema.
The instances of these classes most often belong to the descendents of the objects
contained within the class.

TABLE 1–2 Core Model System Classes

Class Description Example

ManagedSystemElement Base class for the system
element hierarchy. Any
distinguishable component of a
system is a candidate for
inclusion in this class.

Software components, such as
files; devices, such as disk
drives and controllers, and
physical components, such as
chips and cards.

LogicalElement Base class for all the
components of the System that
represent abstract system
components

Profiles, processes, or system
capabilities in the form of
logical devices.

System LogicalElement that
aggregates an enumerable set of
ManagedSystemElements.
The aggregation operates as a
functional whole. Within any
particular subclass of System,
there is a well-defined list of
ManagedSystemElement
classes, whose instances must
be aggregated.

Local Area Network, Wide Area
Network, subnet, intranet

Service LogicalElement that contains
the information necessary to
represent and manage the
functionality provided by a
Device and/or
SoftwareFeature. A
Service is a general-purpose
object used to configure and
manage the implementation of
functionality; it is not the
functionality itself.

Printer, modem, fax machine

Overview of Web-Based Enterprise Management 27

Core Model Association Classes
Association classes define the relationships shared by other classes. Association classes
are flagged with an ASSOCIATION qualifer that denotes the purpose of the class. An
association class must have at least two references—the names of the classes that share
the particular relationship. Instances of an association always belong to the association
class.

Associations can have the following types of relationships:

� One to one

� One to many

� One to zero

� Aggregation, such as a containment relationship between a system and its parts

Associations express the relationship between a system and the managed elements
that make up the system. The CIM Schema defines two types of associations:

� Component associations – Indicate that one class is part of another.

� Dependency associations – Indicate that a class cannot function or exist without
another class.

These association types are abstract, which means that association classes do not have
instances alone. Instances must belong to one of an association class’s descendent
classes.

Component Associations

Component associations express the relationship between the parts of a system and the
system itself. Component associations describe the elements that make up a system.
Abstract classes that express component associations are used to create concrete
associations of this type in descendent classes. The descendent concrete associations
specify the composition relationships that the component, or class, has with other
components.

In its most specialized role, the component association expresses the relationship
between a system and its logical and physical parts.

Dependency Associations

Dependency associations establish the relationships between objects that rely on one
another. The Core Model provides for the following types of dependencies:

� Functional – The dependent object cannot function without the object on which it
depends.

28 Solaris WBEM SDK Developer’s Guide • December 2001

� Existence – The dependent object cannot exist without the object on which it
depends.

The following types of dependencies are included in the Core Model:

� HostedService – An association between a Service and the System on which
the functionality resides. This association is one-to-many. A System may host
many Services. Services are weak with respect to hosting Systems. Generally,
a Service is hosted on the System where the logical devices or software features
that implement the Service are located. The model does not represent Services
hosted across multiple systems. This is modeled as an application system that acts
as an aggregation point for Services that are each located on a single host.

� HostedAccessPoint – An association between a Service Access Point (SAP) and
the System on which the SAP is provided. This association is one-to-many and is
weak with respect to the System. Each System may host many SAPs. The access
point of a Service can be located on the same or a different host from the System
to which the Serviceprovides access. This feature allows the model to depict both
distributed systems (an application system with component Services on multiple
hosts) and distributed access (a Service with access points hosted on other
systems).

� ServiceSAPDependency – An association between a Service and a SAP which
indicates that the referenced SAP is required for the Service to provide its
functionality.

� SAPSAPDependency – An association between a SAP and another SAP which
indicates that the latter SAP is required in order for the former SAP to utilize or
connect with its Service.

� ServiceAccessBySAP – An association that identifies the access points for a
Service. For example, a printer may be accessed by Netware, Apple Macintosh,
or Microsoft Windows Service Access Points, potentially hosted on different
Systems.

You can develop many extensions to the Core Model. One possible extension includes
the addition of a ManagedElement class as an abstraction of the
ManagedSystemElement class. You can add descendents of the ManagedElement
class—classes that represent objects outside the managed system domain, such as
Users or Administrators—to the Core Model.

The Common Model
The Common Model provides a set of base classes for technology-specific schema:

� Systems Model
� Devices Model
� Applications Management Model
� Networks Model
� Physical Model

Overview of Web-Based Enterprise Management 29

These models are described in more detail in the following subsections.

Systems Model

The Systems Model describes the computer, application, and network systems that
comprise the top-level system objects that make up the managed environment.

Devices Model

The Devices Model is a representation of the discrete logical units of the system that
provide basic capabilities, such as storage, processing, communication, and
input/output functions. There is a strong temptation to identify the system devices
with the physical components of the system. This approach is incorrect because what
is being managed is not the physical components themselves, but rather the operating
system’s representation of the devices.

The representation provided by the operating system does not have a one-to-one
correspondence with the physical components of the system. For example, a modem
might correspond to a discrete physical component, be provided by a multi-function
card that supports a LAN adapter as well as a modem, or be provided by an ordinary
process running on the system.

Note – It is important to understand the distinction between Logical Devices and
Physical Components when using or making extensions to the model.

Applications Management Model

The Applications Management Model describes a set of details that is commonly
required to manage software products and applications. This model can be used for
various application structures, ranging from standalone desktop applications to a
sophisticated, multiplatform, distributed, Internet-based application. Likewise, the
model can be used to describe a single software product as well as a group of
interdependent applications that form a business system.

A fundamental characteristic of the application model is the idea of the application life
cycle. An application can be in one of four states:

� Deployable
� Installable
� Executable
� Executing

30 Solaris WBEM SDK Developer’s Guide • December 2001

Networks Model

The Networks Model represents the various aspects of the network environment,
including the network topology, the connectivity, and the various protocols and
services that drive and provide access to the network.

Physical Model

The Physical Model represents the actual physical environment. Most of a managed
environment is represented by logical objects, that is, objects that represent
informational aspects of the environment rather than actual physical objects. Systems
management is largely concerned with manipulating information that represents and
controls the state of the system. Any impact on the actual physical environment (such
as the movement of a read head on a physical drive or the starting of a fan) is likely to
only happen as an indirect consequence of the manipulation of the logical
environment. As such, the physical environment is typically not of direct concern.

Apart from anything else, physical parts of the system are not instrumented. Their
current state (and possibly even their very existence) can only be indirectly inferred
from other information about the system. In CIM, the physical model is a
representation of this aspect of the environment and it is expected that it will differ
dramatically from system to system and over time as technology evolves. It is also
expected that the physical environment will always remain difficult to track and
instrument, spawning the opportunity for a separate specialty, that of deploying
applications, tools, and environments specifically aimed at providing information
about the physical aspect of the managed environment.

CIM Extensions
Extension schemas are built into CIM to connect specific technologies into the model.
By extending CIM, a specific operating environment such as Solaris can be made
available to a large number of users and administrators. Extension schemas provide
classes for software developers to build applications that manage and administer the
extended technology.

How it All Fits Together
The CIM Object Manager manages CIM objects on a WBEM-enabled system. When a
WBEM client application accesses information about a CIM object, the CIM Object
Manager contacts either the appropriate provider for that object, or the CIM Object
Manager Repository. When a WBEM client application requests data from a managed

Overview of Web-Based Enterprise Management 31

resource that is not available for the CIM Object Manager Repository, the CIM Object
Manager forwards the request to the provider for that managed resource. The
provider dynamically retrieves the information.

A WBEM client application contacts the CIM Object Manager to establish a connection
when it needs to perform WBEM operations, such as creating a CIM class or updating
a CIM instance. When a WBEM client application connects to the CIM Object
Manager, the WBEM client gets a reference to the CIM Object Manager, which it then
uses to request services and perform operations.

About Managed Object Format

Tip – For more in-depth information about the MOF language, files, and syntax, see
http://www.dmtf.org/education/cimtutorial/extend/spec.php

You use the Managed Object Format (MOF) language to specify schema in CIM and
WBEM. You define classes and instances using either Unicode or UTF-8, and place
them in a file that you submit to the MOF compiler, MofComp.exe. The MOF
compiler parses the file and adds the classes and instances defined in the file to the
CIM Object Manager repository.

Because you can convert MOF to Java, applications developed in MOF can run on any
system or in any environment that supports Java.

MOF Syntax
You use the CIM API to represent CIM objects, developed in MOF, as Java classes. The
CIM Object Manager checks and enforces that these CIM objects comply with the
current CIM Specification. In some cases, you can represent something syntactically
correct in a MOF file that does not adhere to the CIM specification. The CIM Object
Manager returns an error message when the MOF file is compiled.

For example, if you specify scope in the qualifier definition in a MOF file, the CIM
Object Manager returns a compilation error because scope can only be specified in the
definition of a CIM Qualifier Type. A CIM Qualifier cannot change the scope specified
in the CIM Qualifier Type.

32 Solaris WBEM SDK Developer’s Guide • December 2001

Schema MOF Files
When you install Solaris WBEM Services, MOF files that form the CIM Schema and
the Solaris Schema populate the /usr/sadm/mof directory. These files are
automatically compiled and run when the CIM Object Manager starts. The CIM
Schema files, denoted by CIM in the file name, form standard CIM objects.

The Solaris Schema extends the standard CIM schema by describing Solaris objects.
The MOF files that make up the Solaris Schema use the Solaris_ prefix in the file
name, but otherwise follow the same file name conventions as the CIM Schema MOF
files.

Overview of Web-Based Enterprise Management 33

34 Solaris WBEM SDK Developer’s Guide • December 2001

CHAPTER 2

CIM WorkShop

This chapter explains how to use CIM WorkShop to add new properties, methods, and
qualifiers to the classes and instances that you create. This chapter also describes how
to set the scope and flavor of new qualifiers for new classes and instances. Topics
include:

� “About CIM WorkShop” on page 35
� “Reference: CIM WorkShop Interface” on page 36
� “Starting CIM WorkShop” on page 55
� “Navigating in CIM WorkShop” on page 56
� “Executing Queries” on page 57
� “Viewing Class Characteristics” on page 58
� “Working in Namespaces” on page 59
� “Working with Classes” on page 63
� “Adding a Class” on page 64
� “Deleting Classes and Their Attributes” on page 68
� “Working with Instances” on page 70
� “Invoking Methods” on page 73

About CIM WorkShop
CIM WorkShop provides a graphical user interface through which you can view and
create classes and instances. In CIM WorkShop, you can:

� View and select namespaces

� Add namespaces

� View and create classes

� Add properties, qualifiers, and methods to new classes

35

� View and create instances

� View and modify instance values

� Traverse associations

� Subscribe to and display information about events for a selected class

� Search for and display WBEM information

� Execute methods

CIM WorkShop is included in the Solaris WBEM SDK.

Note – Common Information Model (CIM) guidelines prevent you from modifying or
editing the properties, methods, or qualifiers of CIM Schema or Solaris Schema classes.
However, you can create new classes and instances of classes.

When you create a new class or instance, you can add or delete properties and
qualifiers. You can also change the values of new qualifiers that you create for a new
class, instance, property, or method. You cannot, however, change the values of
inherited properties, methods, or qualifiers. When you add a new qualifier type, you
can also add scope and flavor.

Reference: CIM WorkShop Interface
This section describes the Login dialog box and selected menus, dialog boxes, tool
bars, panes, and fields of CIM Workshop.

Login Dialog Box
The CIM Workshop Login dialog box is displayed when you start CIM WorkShop.

36 Solaris WBEM SDK Developer’s Guide • December 2001

FIGURE 2–1 CIM Workshop Login Dialog Box

In the left pane on this dialog box, Context Help is displayed. When you click in a
field, new information that describes how to use that particular field is displayed in
the Context Help pane.

In the CIM Workshop Login dialog box, you specify:

� The host on which the CIM Object Manager is running and that contains the
namespace in which you want to work

� Namespace

� Your user name

� Your password

� The transfer protocol (RMI or HTTP) that you want to use

By default, CIM WorkShop uses the remote method invocation (RMI) protocol to
connect to the CIM Object Manager on the local host, in the default namespace,
root\cimv2. You can select HTTP if you want to communicate to a CIM Object
Manager by using the standard XML/HTTP protocol defined by the Desktop
Management Task Force (DMTF). When your host establishes a connection, all classes
that are contained in the specified namespace are displayed in the left pane on the
CIM WorkShop main window.

CIM WorkShop 37

Note – RMI is the only protocol that is supported for use with the com.sun
application programming interface to develop WBEM software. Sun Microsystems
does not support other protocols, such as XML/HTTP, for use with the com.sun
application programming interface.

The CIM WorkShop Main Window
The CIM WorkShop main window is displayed after you log into CIM Workshop.

The CIM Workshop main window is divided into two panes. In the left pane, you can
view the class inheritance tree of the current namespace. In the right pane, you can:

� View the properties and methods of a selected class.

� Specify an event for a selected class about which you want to be notified when
process indication event or an instance of that event occurs.

38 Solaris WBEM SDK Developer’s Guide • December 2001

FIGURE 2–2 The CIM WorkShop Main Window

TABLE 2–1 The CIM Workshop Main Window

Element Description

Title bar Shows the title of the CIM WorkShop main window and the name of
the host.

Menu bar Provides a set of menus from which you can select commands that
enable you to perform tasks, actions, and operations. The Menu bar
also provides a menu that enables you to display information.

Tool bar Provides icons that enable you to change hosts, change the location to
a namespace that you want, find a class in the class inheritance tree,
create a subclass, show instances and qualifiers of a selected class, and
refresh a selected class.

CIM WorkShop 39

TABLE 2–1 The CIM Workshop Main Window (Continued)
Element Description

Left pane (Class
Schema)

Displays classes that are contained in the namespace of the current
host. The left pane in the CIM WorkShop shows the contents of the
selected namespace. The classes that belong to the namespace are
displayed hierarchically. This organization of classes is known as a
class inheritance tree.

In the left pane, each class that contains subclasses is denoted by two
icons: a folder icon and an “enabler” icon. The enabler icon looks like
a knob. The enabler icon is displayed to the left of the folder icon. A
folder represents a class that contains one or more subclasses. The
enabler icon is a navigation aid.

When an enabler icon points towards a folder, that folder is closed
and the classes in the folder are contained. When an enabler icon
points downwards, that folder is open and classes are revealed.

Right pane Provides a Properties tab and a Methods tab, from which you can
view the values of properties and methods of a class. You can view
attributes and values of qualifiers and flavors by right clicking on a
property or method. You can also select the options on the Events tab
to subscribe to or unsubscribe from a event for a selected class.

Event Output pane Displays notification when events for a class that you select occur.

CIM WorkShop Menus
The following table describes the menus and menu selections on CIM WorkShop
menus.

TABLE 2–2 CIM WorkShop Menus and Menu Selections

Menu Menu Selection Description

Workshop Change Host Displays the Login Dialog box, in
which you specify another host and
namespace that you want to use.

Change Namespace Displays the Change Namespace
dialog box, which you use to select
another namespace to use or to
create or delete a namespace.

Exit Exits CIM Workshop.

40 Solaris WBEM SDK Developer’s Guide • December 2001

TABLE 2–2 CIM WorkShop Menus and Menu Selections (Continued)
Menu Menu Selection Description

Action Add Class Displays the New Class dialog box,
through which you create a subclass
of a class that you select.

Delete Class Deletes a class that you select.

Find Class Displays the Input dialog box, which
enables you to specify a class in the
class inheritance tree for which to
search.

Show Instances Displays the Instance Editor
Window for a class that you select.
All properties for the instances are
shown.

The Instance Editor Window enables
you to add new instances of a class,
delete instances of a class, and save
instances of a class.

Qualifiers Displays the Qualifiers dialog box,
which you use to view the qualifier
values, scope, and flavor of the class
and of the qualifiers.

Association Traversal Displays the Association Traversal
dialog box, which enables you to
view and traverse the associations of
a class.

Execute Query Displays the Query String dialog
box, which you use to specify a
Level 1 WBEM Query Language
(WQL) expression that you want to
use in searching for WBEM
information. If one or more instances
of the information for which you
search exist, the instances are
displayed in the Execute Query
Results dialog box:

CIM WorkShop 41

TABLE 2–2 CIM WorkShop Menus and Menu Selections (Continued)
Menu Menu Selection Description

Using WQL is described in
“Querying” on page 98.

Refresh Retrieves the latest changes for a
selected namespace, class, or
subclass from the CIM Object
Manager and displays those
changes.

Clear Event Output Removes the information that
appears in the Event Output pane.

Help About Displays the About dialog box,
which you select to display the
version of, and copyright
information about, the Instance
Editor.

New Class Dialog Box
The New Class dialog box enables you to create a new class. You display the New
Class dialog box by selecting Add Class from the Action menu on the CIM Workshop
main window.

42 Solaris WBEM SDK Developer’s Guide • December 2001

FIGURE 2–3 The New Class Dialog Box

Add Property Dialog Box
In the Add Property dialog box, you can add new properties to a class as you create it.
In the Name field, you specify the name of the property. In the Type field, you select a
type.

Qualifiers Dialog Box
In the Qualifiers dialog box, you can view qualifiers for a selected class, property, or
method. When you create a new class, you can add qualifiers to the class or modify
qualifiers of the class, its properties, or its methods in the Qualifiers dialog box. The
title bar of the Qualifiers dialog box indicates the name of the class for which you view
qualifiers or the class for which you add or modify qualifiers.

This table describes the fields on the Qualifiers dialog box.

TABLE 2–3 Fields on the Qualifiers Dialog Box

Name of Field Description Example

Name Shows the name of the qualifier. Provider

Type Shows the type of value that the
qualifier provides.

string

CIM WorkShop 43

TABLE 2–3 Fields on the Qualifiers Dialog Box (Continued)
Name of Field Description Example

Value Shows the value of the qualifier. Solaris

This table describes the buttons on the Qualifiers dialog box.

TABLE 2–4 Qualifiers Dialog Box Buttons

Name of Button Description

Scope Displays the Scope dialog box, which you use to view
the scope of a selected qualifier.

Flavors Displays the Flavors dialog box, which you use to view
the flavor of a selected qualifier.

Add Qualifier Displays the Add Qualifier dialog box, in which you
select a qualifier that you want to add for a new
subclass, property, or method.

Delete Qualifier Deletes the qualifier that you select.

Scope and Flavors Dialog Boxes
In the Scope dialog box, you view the scope of a qualifier that modifies an existing
class, property, or method. In the Flavors dialog box, you view the flavor of a qualifier.

Set Value Dialog Box
When you add a new property for a class or set input parameters for a method, you
use a dialog box that CIM WorkShop provides for specifying values of a particular
type. The Set value dialog box is configured to accept only a value of the correct type
within a particular context or null (empty value). You use the Set value dialog box to
set these values:

� Unsigned Integer
� Signed Integer
� String
� Boolean
� Real Number
� DateTime
� Character
� Array
� Reference

44 Solaris WBEM SDK Developer’s Guide • December 2001

Unsigned Integer
The Value field on this Set value dialog box accepts only an unsigned integer of a
specified size or null (empty value). An unsigned integer can be a positive whole
number only. CIM properties that have values that are unsigned integers can be 8 bits,
16 bits, 32 bits, or 64 bits in size. Depending on the size of the unsigned integer that
makes up the value of the property, type these values in the Value field:

� For a property that is an 8–bit unsigned integer, type a positive numeric value
equivalent to 8 bits.

� For a property that is a 16–bit unsigned integer, type a positive numeric value
equivalent to 16 bits.

� For a property that is a 32–bit unsigned integer, type a positive numeric value
equivalent to 32 bits.

� For a property that is a 64–bit unsigned integer, type a positive numeric value
equivalent to 64 bits.

Signed Integer
The Value field on this Set value dialog box accepts only a signed integer of a specified
size or null (empty value). A signed integer can be a negative or positive whole
number. CIM properties that contain values that are signed integers can be 8 bits, 16
bits, 32 bits, or 64 bits in size. Depending on the size of the signed integer that makes
up the value of the property, type these values in the Value field:

� For a property that is an 8–bit signed integer, type a positive or negative numeric
value equivalent to 8 bits.

� For a property that is a 16–bit signed integer, type a positive or negative numeric
value equivalent to 16 bits.

� For a property that is a 32–bit signed integer, type a positive or negative numeric
value equivalent to 32 bits.

� For a property that is a 64–bit signed integer, type a positive or negative numeric
value equivalent to 64 bits.

String
The Value field on this Set value dialog box accepts alphanumeric characters or null
(empty value). When you specify the value of a property that is a character string, you
must enter a character string, such as Processor_Type, in the Value field.

CIM WorkShop 45

Boolean
You select True, False, or No Value as the value of a selected property on this Set value
dialog box.

Real Number
The Value field on this Set value dialog box accepts only a real number or null (empty
value). A real number can be a negative or positive number, including a decimal point.
When you create a property that is of type Real Number, type a real number in the
Value field.

DateTime
You set the date and the time (as specified in the CIM Specification) for a new property
or method on this Set value dialog box. This Set value dialog box is displayed when
you select the:

� Value of a new property that uses the DateTime value on the New Class dialog
box.

� Input Value of a method’s parameter on the Invoke Method dialog box.

On this Set value dialog box, you specify no value, a date, or an interval. If you specify
a date, you specify these fields:

� Year yyyy is a 4-digit year.

� Month mm is the month.

� Day dd is the day.

� Hour hh is the hour, on a 24-hour clock.

� Minutes mm is the minute.

� Seconds ss is the second.

� Microseconds mmmmmm is the number of microseconds.

� Universal Coordinate Time s is a positive (+) or negative (-) sign that indicates the
Universal Coordinated Time, or a (:).

� utc is the offset from UTC in minutes.

If you want to specify an interval, specify these fields:

� Days is number days, which can range from 0 through 99999999 days.

� Hour is the hour, on a 24-hour clock.

� Minutes is the minute.

� Seconds is the second.

46 Solaris WBEM SDK Developer’s Guide • December 2001

� Microseconds is the number of microseconds, which can range from 0 through
999999.

Character
The Value field on this Set value dialog box accepts only a single, 16-bit, Universal
Character Set-2 (UCS-2) character as a value or null (empty value) for a property.

Array
On this Set value dialog box, you specify an array as a value for a property. Once you
specify the value you want, you can modify or delete that value. Types of components
of an array that you can specify include:

� 8–Bit Unsigned Integer Array – returns a collection of positive integers equivalent
to 8 bits in size.

� 16–Bit Unsigned Integer Array – returns a collection of positive integers equivalent
to 16 bits in size.

� 32–Bit Unsigned Integer Array – returns a collection of positive integers equivalent
to 32 bits in size.

� 64–Bit Unsigned Integer Array – returns a collection of positive integers equivalent
to 64 bits in size.

� 8–Bit Signed Integer Array – returns a collection of positive or negative integers
equivalent to 8 bits in size.

� 16–Bit Signed Integer Array – returns a collection of positive or negative integers
equivalent to 16 bits in size.

� 32–Bit Signed Integer Array – returns a collection of positive or negative integers
equivalent to 32 bits in size.

� 64–Bit Signed Integer Array – returns a collection of positive or negative integers
equivalent to 64 bits in size.

� String Array – returns a collection of character strings.

� Boolean Array – returns a collection of Boolean expressions, true or false.

� 32–Bit Real Array – returns a collection of positive or negative real numbers, with
or without a decimal point, equivalent to 32 bits in size.

� 64–Bit Real Array – returns a collection of positive or negative real numbers, with
or without a decimal point, equivalent to 64 bits in size.

� 16–Bit Character Array – returns a collection of alphabetic and numeric character
strings equivalent to 16 bits in size.

� DateTime Array – returns a collection of dates.

CIM WorkShop 47

Reference
When you set the value of a reference to a class, you are setting an instance. On the Set
value dialog box, you can choose an instance of that class or you can manually set the
values of the keys.

Instance Editor Window
The Instance Editor Window lists all instances of a selected class. You can also view
the properties, methods, and qualifiers that are associated with each instance.

FIGURE 2–4 The Instance Editor Window

You display the Instance Editor Window by:

� Right clicking a class in the CIM WorkShop dialog box and clicking Show Instances
in the pop-up menu.

� Click Action->Show Instances

� Click the Show Instances icon in the tool bar.

48 Solaris WBEM SDK Developer’s Guide • December 2001

On the tool bar, click the Show Instances icon (the large rectangle with rays).

Panes on the Instance Editor Window
If instances of a class that you select exist, the instances are listed in the left pane on
the Instance Editor Window. This dialog box contains the CIM object path (the
concatenated class name and all key value pairs) of each instance. If instances do not
exist, a message is displayed.

The right pane on the Instance Editor Window also contains two tabs: Properties and
Methods. All properties of the selected instance are displayed in the table of the
Properties tab. The Inherited Properties icon appears in the left column of the
Properties table as a rectangle with an arrow pointing downwards towards another
rectangle. The Inherited Properties icon indicates that the property is inherited from
one of the parent classes. The Key Qualifiers icon—which appears as a key—indicates
that the property has a Key qualifier.

Icons on the Instance Editor Tool Bar
The Instance Editor Window contains these icons on the tool bar:

FIGURE 2–5 The Instance Editor Window Tool Bar

TABLE 2–5 Icons on the Instance Editor Window Tool Bar

Icon Description

Add New Instance Displays the Add Instance dialog box, which you use to
add a new instance of a class.

Delete Selected Instance Enables you to delete an instance that you select.

Save Current Instance Property
Values

Updates the property values of the current instance.
You can click this icon (the icon is active) only if you
have made changes to instance property values.

CIM WorkShop 49

TABLE 2–5 Icons on the Instance Editor Window Tool Bar (Continued)
Icon Description

Refresh Instance List Retrieves the latest changes for a class or namespace
that you select from the CIM Object Manager and
displays those changes.

Menus on the Instance Editor Window
This dialog box contains these menus and menu selections:

TABLE 2–6 Menus on the Instance Editor Window

Menu Name Menu Selection Description

Instance Editor Exit Closes the Instance Editor Window.

Action Add Instance Displays the Add Instance dialog
box, which you use to add a new
instance of a class.

Delete Instance Deletes an instance that you select.

Save Instance Saves an instance that you select.

Association Traversal Displays the Association Traversal
dialog box, in which you view and
traverse all the associations of an
instance.

Refresh Retrieves the latest changes for a
class or namespace that you select
from the CIM Object Manager and
displays those changes.

Help About Displays the About dialog box,
which you select to display the
version of, and copyright
information about, the Instance
Editor.

50 Solaris WBEM SDK Developer’s Guide • December 2001

Note – You can add or delete instances only if the underlying provider enables you to
add or delete instances or only if the underlying provider enables you to change
property values.

Add Instance Dialog Box
In the Add Instance dialog box, if a property can be changed, you can click in the
Value field to open a Set value dialog box. You cannot change the values of inherited
properties.

When you add an instance, you set the key property values of that instance.

Invoke Method Dialog Box
The Invoke Method dialog box is displayed from the Methods tab of an instance of a
class that contains methods. To display the Invoke Method dialog box, you right click
the method and select Invoke Method from the pop-up menu that appears.

CIM WorkShop 51

FIGURE 2–6 The Invoke Method Dialog Box

In the Invoke Method dialog box, you set the input values for the variables or
parameters of a method. You also invoke the method. An example of a parameter
value is a signed integer or a DateTime value.

The Invoke Method dialog box supports three types of parameters:

� Input parameters, which specify data values that are passed to a function and
executed.

� Output parameters, which specify data values that are returned by a function.

� Input/Output parameters, which take data to complete functions and return
values.

The Parameter Type column of the Invoke Method dialog box indicates whether the
parameter of the method is input, output, or both input and output. The value of an
input parameter is displayed in the Input Value column. The value of an output
parameter is displayed in the Output Value column.

Information about how to invoke a method is presented in “Invoking Methods”
on page 73.

52 Solaris WBEM SDK Developer’s Guide • December 2001

Icons on the CIM WorkShop Tool Bar
The icons shown in the CIM WorkShop tool bar enable you to display and change
namespaces and search for classes and instances.

FIGURE 2–7 The CIM WorkShop Tool Bar

TABLE 2–7 Icons on the CIM WorkShop Tool Bar

Icon Description

Change Hosts Enables you to connect to a different host or namespace
and to log in with a different user name and password,
and set the transfer protocol.

Select Namespace Menu Button Enables you to select the namespace that you want to
use.

Change Namespace Displays the Change Namespace dialog box, which you
use to select another namespace to use or to create or
delete a namespace.

Find Class Enables you to search for a specific class in the
namespace.

Add New Class Displays the New Class dialog box, in which you create
a new subclass of a selected class.

Show Instances Displays the Instance Editor Window.

Note – You cannot show instances of an abstract class
(that is, classes for which no key properties exist).

Show Qualifiers Displays the Qualifiers dialog box, in which you view
the qualifiers of a selected class.

Refresh Selected Class Resets the display of the class hierarchy tree. Open
class folders are closed and the tree is returned to the
state it was in when it was first displayed.

The Properties Tab
The Properties tab in the right pane on the CIM Workshop main window provides
information about a selected property. An icon that resembles a folder and an arrow
pointing downwards indicates that the property is inherited from a super class. An
icon that resembles a key indicates that the property is a Key property. Key properties
provide unique identifiers for an instance of the class.

CIM WorkShop 53

In the Properties tab, the Name, Type, and Value of the property are displayed. You
can change the value of a property when you create a new class.

The Methods Tab
A method is a function that describes the behavior of a class. Examples of methods are
behaviors such as start service, stop service, format disk, and so on. By selecting the
Methods tab in the right pane, you can view all methods of the class. Methods are
listed consecutively.

Methods have two parts: a signature and a body. The signature consists of the method
name, the parameters names, types, and their order, and the method return type. The
method body consists of a sequence of instructions.

Reading from left to right horizontally, the method contains three parts:

� Return data type — The data type of the return value for this method.

� Name of the method.

� Parameters — A comma-separated list of parameters enclosed within parentheses.
Each parameter has a name and data type. Parameters that are input to the method
are preceded with [IN]. Parameters that are output from the method are preceded
with [OUT]. A parameter can have one or more qualifiers.

In the following example, the method SetDateTime takes the input parameter Time,
which is of type datetime and returns a boolean value.

boolean SetDateTime([IN(true)] datetime Time);

The Events Tab
The Events tab in the right pane is where you select an event about which you want to
be notified when an event occurs.

If the class that you select generates process indications, process indication events are
displayed in the Event Output pane. You can enable or disable process indication
events.

For all other classes, when you create, modify, or delete an instance of that class, a
message is displayed in the Event Output pane that notes when the event occurred.
You can set and unset particular events about which you want to be notified.

The actual notification that appears in Event Output pane depends on the option or
options that you select on the Events tab.

54 Solaris WBEM SDK Developer’s Guide • December 2001

Starting CIM WorkShop
You must have access to an installed CIM Object Manager to start and run CIM
WorkShop. During an installation of Solaris WBEM Services in the Solaris operating
environment, the CIM Object Manager runs on the local host. If you install only the
Solaris WBEM SDK, you must point to a host on which the CIM Object Manager has
already started. You can specify this information in the Host field of the CIM
Workshop Login dialog box that is displayed when you start CIM WorkShop.

The CIM Workshop Login dialog box, the CIM WorkShop main window, and CIM
Workshop menus and dialog boxes are described in “Reference: CIM WorkShop
Interface” on page 36.

� To Start CIM WorkShop
1. At the system prompt, type:

% /usr/sadm/bin/cimworkshop

The CIM Workshop Login dialog box is displayed.

2. Fill out the CIM Workshop Login dialog box:

� In the Host Name field, type the name of a host running the CIM Object Manager.

Note – By default, CIM WorkShop connects to the CIM Object Manager on the
local host, in the default namespace, root\cimv2. If you start CIM WorkShop as
part of the WBEM SDK in the Solaris operating environment or in the Microsoft
Windows environment, you need to provide the name of a host that is already
running a CIM Object Manager.

� In the Namespace field, click in the field and type the name of the namespace that
you want to use, or retain the name of the default namespace.

� In the User Name field, type the user name you generally use for system and
networking privileges.

CIM WorkShop 55

Note – You must have write access to the current namespace to perform particular
operations, such as adding or deleting a class in CIM Workshop. Setting user
privileges for a particular namespace is described in more detail in “Administering
Security” in Solaris WBEM Services Administration Guide.

� In the Password field, type the password you generally use for system and
networking privileges.

� Select the transfer protocol you want to use.

3. Click OK.

The CIM Workshop main window is displayed. A message is displayed that states that
the classes in the class inheritance tree are being enumerated.

Navigating in CIM WorkShop
When you start CIM WorkShop, the class inheritance tree is displayed in the left pane
on the CIM WorkShop main window. When you select a class, its associated properties
are listed in the right pane.

Information about the tool bar, menus, and layout of the CIM WorkShop main
window is presented in “Reference: CIM WorkShop Interface” on page 36.

Browsing the Class Inheritance Tree

� To Display the Contents of a Class
� Click the enabler icon that is displayed next to the class you want.

� To Display the Properties and Methods of a Class
� Click the folder icon that is displayed next to the class you want.

The properties and methods of the class are displayed in the right pane on the CIM
WorkShop main window.

56 Solaris WBEM SDK Developer’s Guide • December 2001

Finding a Class
CIM WorkShop enables you to search for a specific class.

� To Find a Class
1. Display the Find Class dialog box:

� From the menu bar, select Action->Find Class.
� On the tool bar, click the Find Class icon (the magnifying glass).

� Press the keys Alt+a and then Alt+f.

The Find Class dialog box is displayed.

2. In the Find Class dialog box, type the name of the class for which you want to
search and click OK.

If it is found, the class you specified is displayed. Details about the class for which you
searched are displayed in the right pane on the CIM WorkShop main window.

Executing Queries
You need to specify a Level 1 WBEM Query Language (WQL) expression to search for
WBEM information. Using WQL is described in “Querying” on page 98.

� To Execute a Query
1. From the CIM WorkShop main window, display the Query String dialog box:

� From the menu bar, select Action->Execute Query.
� Press the keys Alt+a and then Alt+x.

2. In the Query field, type the WQL expression that you want to use and click OK.

If one or more instances exist, the instances are displayed in the Execute Query Results
dialog box.

CIM WorkShop 57

Viewing Class Characteristics
Two tabs, Properties and Methods, which indicate the properties and methods of
classes, are displayed in the right pane on the CIM Workshop main window. The
Events tab, which you use to subscribe to or unsubscribe from events, is also
displayed in the right pane on the CIM Workshop main window. You select a tab by
clicking the tab.

Selecting a Class
You select a class by clicking the folder or page icon of the class in the class inheritance
tree.

Viewing Class Properties
By default, when the CIM WorkShop main window is displayed, properties appear in
the right pane on the CIM WorkShop main window. In the left pane on the CIM
WorkShop main window, you can select a class in the class inheritance tree. To view
all properties of that class, click the Properties tab.

Viewing Class Methods
After you select a class in the class inheritance tree, you can click the Methods tab to
display the methods associated with the class.

Viewing Qualifiers
In CIM, qualifiers are attributes of classes, instances, properties, and methods. In CIM
Workshop, you can view the qualifiers by right clicking a class, property, or method
and clicking Qualifiers in the pop-up menu. When you click Qualifiers, the Qualifiers
dialog box is displayed.

58 Solaris WBEM SDK Developer’s Guide • December 2001

Viewing the Scope of a Qualifier
When you click the Scope button on the Qualifiers dialog box, the Scope dialog box is
displayed. In the Scope dialog box, you can view the scope of a qualifier.

Viewing the Flavor of a Qualifier
When you click the Flavors button in the Qualifiers dialog box, the Flavors dialog box
is displayed. In the Flavors dialog box, you can view the flavor of a qualifier.

Viewing Values
In CIM Workshop, you can view the values of classes by right clicking a class,
property, or method and clicking Show value in the pop-up menu. When you click
Show value, the Show value dialog box is displayed.

Working in Namespaces
A namespace is a logical entity, an abstraction of a managed object in which classes
and instances can be stored. A namespace can be implemented in various forms
including a directory structure, a database, or a folder.

By default, CIM WorkShop connects to the CIM Object Manager on the local host, in
the default namespace root\cimv2. All classes that are located in the default
namespace are displayed in the left pane on the CIM WorkShop main window. The
name of the current namespace is listed on the tool bar in the CIM WorkShop main
window. In CIM WorkShop, you can browse the classes of namespaces on different
hosts and you can move to new namespaces.

When you want to set user privileges for a particular namespace, use the Solaris
WBEM User Manager. The Solaris WBEM User Manager tool is described in more
detail in “Administering Security” in Solaris WBEM Services Administration Guide.

This section here describes how to:

� Move to another namespace.
� Create a namespace.
� Delete a namespace.
� Move to another host.
� Refresh the class inheritance tree of a namespace.

CIM WorkShop 59

Moving to Another Namespace
In the Solaris WBEM SDK, the default namespace is root\cimv2. You can change to
another namespace if you choose.

� To Move to Another Namespace: Menu Selection or Icon
Method

1. In the CIM WorkShop main window, click Workshop->Change Namespace or click
the Change Namespace icon on the CIM WorkShop tool bar.

The Change Namespace dialog box is displayed.

2. In the Namespace window on the Change Namespace dialog box, select the
namespace that you want to use.

3. Click OK.

The namespace that you selected becomes the current namespace.

� To Move to Another Namespace: Select Namespace Menu
Button Method

1. On the tool bar on the CIM WorkShop main window, click the down arrow on the
Select Namespace Menu button.

2. On the menu, select the namespace that you want.

The namespace that you selected becomes the current namespace.

Creating and Deleting a Namespace
You can create or delete one or more namespaces within an existing namespace.

� To Create a Namespace
1. Select Change Namespace from the Workshop menu or click the Change

Namespace icon in the CIM WorkShop main window.

The Change Namespace dialog box is displayed.

2. In the Namespace window on the Change Namespace dialog box, select the
namespace in which you want to create the new namespace.

60 Solaris WBEM SDK Developer’s Guide • December 2001

3. Click Add.

The New Namespace dialog box appears.

4. Type the name of the new namespace that you want to create and click OK.

The new namespace that you specified is created in the namespace that you selected.

� To Delete a Namespace
1. Select Change Namespace from the Workshop menu or click the Change

Namespace icon in the CIM WorkShop main window.

The Change Namespace dialog box is displayed.

2. In the Namespace window on the Change Namespace dialog box, select the
namespace that you want to delete.

3. Click Delete.

A prompt appears that asks you to confirm that you want to delete the namespace that
you selected.

4. Click OK.

The namespace that you selected is deleted.

Moving to Another Host
You can move to another host to view namespaces or processes.

� To Move to Another Host
1. Display the Login dialog box:

� From the menu bar, select Workshop->Change Host.

� On the tool bar, click the Change Hosts icon (the computer screens with arrow).

� Press the keys Alt+w and then Alt+c.

The Login dialog box is displayed.

CIM WorkShop 61

2. In the Host Name field, type the name of the host on which the namespace in which
you want to work is located.

3. Type your user name and password in the User Name and Password fields,
respectively.

4. Click OK.

The CIM Workshop main window is displayed. The name of the host you specified is
displayed in the CIM Workshop main window title bar.

Refreshing Classes and Namespaces
You can refresh the display of the class inheritance tree in the namespace to reflect
current changes made by other users who work in the namespace.

� To Refresh a Class Inheritance Tree
1. In the class inheritance tree, click the folder of the class you want to refresh.

2. To refresh the class inheritance tree, choose one of these methods:

� From the menu bar, select Action->Refresh.

� On the tool bar, click the Refresh Selected Class icon (the recycle arrows).

� Press the keys Alt+a and then Alt+r.

The class inheritance tree is refreshed.

Adding a New Qualifier Type
The CIM Object Manager already contains many qualifier types. However, if you need
a custom qualifier type, you can add a qualifier type to any namespace.

� To Add a New Qualifier Type to a Namespace
1. Move to the namespace to which you want to add a qualifier type, as described in

“Moving to Another Namespace” on page 60.

62 Solaris WBEM SDK Developer’s Guide • December 2001

2. In the class inheritance tree in the left pane on the CIM WorkShop main window,
right click the namespace and, in the pop-up menu that appears, select Add
Qualifier Type.

The Add Qualifier Type dialog box is displayed.

3. Fill out the Add Qualifier Type dialog box:

� In the Name field, type the name that you want to assign to the new qualifier type.

� In the Type selection list, select the type that you want.

� If you want to specify a default value for the new qualifier type, click Set or press
the keys Alt+e, and in the Value field on the Set value dialog box that appears, type
the value that you want.

� Click Scope or press the keys Alt+s, and on the Scope dialog box that appears,
select the scope that you want and then click OK.

� Click Flavors or press the keys Alt+f, and on the Flavors dialog box that appears,
select the flavors that you want and then click OK.

4. When you’re done, on the Add Qualifier Type dialog box, click OK.

The new qualifier type is added to the active namespace.

Working with Classes
Classes are the building blocks of applications. When you start CIM WorkShop, it
becomes populated with the classes that are compiled into the CIM Object Manager.
These classes adhere to the DMTF standards. You cannot change their unique
properties, methods, and qualifier values.

To set new values for an existing class, you can create a new instance or class. The CIM
and Solaris Schema classes serve as templates. When you create a new instance or
class, you produce a copy of the selected class in which you can add new properties,
methods, and qualifier values. In this way, you build your own extensions into the
CIM or Solaris Schema.

Note – You cannot modify the values of inherited properties, methods, or qualifiers.

Creating an instance is described in “Working with Instances” on page 70. Creating a
class is described next.

CIM WorkShop 63

Adding a Class
Adding a class to an existing class includes:

� Selecting the class
� Creating a new class
� Adding new qualifiers to the class
� Adding new properties to the class
� Adding new qualifiers to the properties
� Setting the qualifier values scope and flavor

Creating a Class
The first step in creating a class is to specify a name for the class. In CIM WorkShop,
class names are displayed using standard CIM syntax: SchemaIndicator_ClassName. If
you create a class of a CIM Schema class, the acronym CIM precedes the class name. If
you create a class of a Solaris Schema class, the name Solaris precedes the class name.

Note – The underscore character (_) is required in the name of all classes.

� To Add a Class
1. In the class inheritance tree in the left pane on the CIM WorkShop main window,

select the class from which you want to create a class.

2. Display the New Class dialog box:

� From the menu bar, select Action->Add Class.

� On the tool bar, click the Add New Class icon (the small rectangle with rays).

� Right click the class that you have selected in the left pane, and, on the pop-up
menu that appears, click Add Class.

� Press the keys Alt+a and then Alt+l.

The New Class dialog box is displayed.

64 Solaris WBEM SDK Developer’s Guide • December 2001

3. In the Class Name field, type the name of the new class.

For example, you can create a class from the class Solaris_ComputerSystem titled
Ultra1_ComputerSystem.

4. Do you want to retain inherited properties and methods of the class or add a new
property?

� If you want to retain inherited properties, click OK.

A class is created that uses inherited properties, methods, qualifiers, and their
values.

� If you want to add a new property, click Add Property.

The Add Property dialog box is displayed.

5. Did you select Add Property in step 4?

� If no, go to the next step.

� If yes, specify the name and type of the property you want to add, and click OK.

Adding properties to a class is described in more detail in “Adding New Properties
to a Class” on page 66.

6. On the New Class dialog box, click OK.

The CIM Workshop main window is displayed.

Adding Qualifiers
You can add qualifiers to a new class. You cannot change or reset the values of
inherited qualifiers that modify the class. Also, you cannot delete inherited qualifiers.

� To Add Qualifiers
1. Display the New Class dialog box, as described in “To Add a Class” on page 64.

2. In the Class Name field, type the name of the new class that you want.

3. On the New Class dialog box, click Class Qualifiers.

The Qualifiers dialog box is displayed.

4. In the Qualifiers dialog box, right click the Qualifier for which you want to set new
values and select Add Qualifier.

The Add Qualifier dialog box is displayed.

CIM WorkShop 65

5. In the Add Qualifier dialog box, select the name of a qualifier in the list that you
want and click OK.

The New Class dialog box is displayed.

Adding New Properties to a Class
You can add new properties to a class and modify the values of these new properties.
You cannot change the values of inherited properties, and you cannot delete inherited
properties.

� To Add a New Property to a Class
1. Display the New Class dialog box, as described in “To Add a Class” on page 64.

2. In the Class Name field, type the name of the new class that you want.

3. On the New Class dialog box, click Add Property.

The Add Property dialog box is displayed.

4. In the Name field, type the name of the new property.

5. In the Type selection list, select the type of property that you want and click OK.

The new property is displayed in the list under the Properties tab on the New Class
dialog box.

Note – If the list of properties is long, click the scroll bar to view the property that you
added.

6. Click OK in the New Class dialog box.

The New Class dialog box closes and the CIM Workshop main window is again
displayed.

Adding Qualifiers
You can set the values of qualifiers for new properties of the class. You cannot change
or reset the values of qualifiers that modify inherited properties or methods. You
cannot delete inherited qualifiers.

66 Solaris WBEM SDK Developer’s Guide • December 2001

� To Add Qualifiers to a New Property
1. In the New Class dialog box, select the new property that you created in “To Add a

New Property to a Class” on page 66 and click Property Qualifiers.

The Qualifiers dialog box is displayed for the property that you created.

2. Click Add Qualifier.

3. In the Name field of the Add Qualifier dialog box, select the qualifier that you want
and click OK.

The Qualifiers dialog box is displayed.

4. On the Qualifiers dialog box, click OK.

The New Class dialog box is displayed.

5. On the New Class dialog box, click OK.

The CIM Workshop main window is displayed. The qualifier and qualifier type are set
for the property you selected.

Adding Qualifiers to a Method
In addition to adding qualifiers to a new property, you can also add qualifiers to a
method.

� To Add a Qualifier to a Method
1. From the selection list under the Methods tab on the New Class dialog box, right

click the method to which you want to add a method.

A pop-up menu is displayed.

2. In the pop-up menu, click Qualifiers.

The Qualifiers dialog box is displayed.

3. Click Add Qualifier or press Alt+q.

The Add Qualifier dialog box is displayed.

4. Select the name of the qualifier that you want and click OK.

The qualifier you selected is added.

5. On the Qualifiers dialog box, click OK.

The New Class dialog box is displayed.

CIM WorkShop 67

Deleting Classes and Their Attributes
CIM WorkShop provides a way to delete classes, properties, methods, and qualifiers
that you no longer need.

Note – When you delete a class, you delete all subclasses that it contains. You also
delete all associated properties, methods, and qualifiers of the class and its subclasses.

If a class is part of an association, however, you must first delete the association before
you can delete the class.

Deleting a Class
These steps describe how to delete a class from the class inheritance tree.

� To Delete a Class
1. In the class inheritance tree in the left pane on the CIM Workshop main window,

select the class that you want to delete.

2. Delete the class:

� From the menu bar, select Action->Delete Class.
� Press the keys Alt+a and then Alt+c.

A pop-up dialog box is displayed that asks you to confirm that you want to delete the
class you’ve selected.

3. Click OK.

The class that you selected is deleted.

Deleting a Property of a Class
You can delete only a property that you are creating in a new class. Otherwise, you
can view, but not modify or delete, properties of classes. You cannot delete an
inherited property in a subclass.

68 Solaris WBEM SDK Developer’s Guide • December 2001

� To Delete a Property of a Class
1. From the selection list under the Properties tab on the New Class dialog box, select

the name of the property or the type of the property that you want to delete.

2. Click Delete Property or press Alt+d.

The property is deleted.

3. On the New Class dialog box, click OK.

The CIM Workshop main window is displayed.

Deleting Qualifiers
When you create a new class, you can delete qualifiers of properties or methods
inherited from the parent class.

� To Delete a Qualifier of a Property
1. From the selection list under the Properties tab on the New Class dialog box, select

the property whose qualifier you want to delete.

2. Click Property Qualifiers or press Alt+q.

3. On the Qualifiers dialog box, select the qualifier that you want to delete.

4. Click Delete Qualifier or press Alt+d.

The qualifier is deleted.

5. On the Qualifiers dialog box, click OK.

The New Class dialog box is displayed.

� To Delete a Qualifier of a Method
1. From the selection list under the Methods tab on the New Class dialog box, right

click the method whose qualifier you want to delete.

A pop-up menu is displayed.

2. In the pop-up menu, click Qualifiers.

The Qualifiers dialog box is displayed.

3. Select the qualifier that you want to delete.

CIM WorkShop 69

4. Delete the qualifier:

� Click Delete Qualifier.

� Right click the name of the qualifier you want to delete, and, on the pop-up menu
that appears, click Delete Qualifier.

� Press the keys Alt+q.

The qualifier that you selected is deleted.

5. On the Qualifiers dialog box, click OK.

The New Class dialog box is displayed.

Working with Instances
In CIM WorkShop, you can create instances of classes. You can then change the
attributes of a new instance to create a unique instance of a class.

Displaying Instances
Before you create a new instance of a class, it is useful to view the instances of the
class to see the properties and methods that they contain.

� To Display Instances of an Existing Class
1. In the class inheritance tree in the left pane on the CIM Workshop main window,

select the class for which you want to view instances.

2. Display the Instance Editor Window:

� From the menu bar, select Action->Show Instances.

� On the tool bar, click the Show Instances icon (the large rectangle with rays).

� Right click the class that you have selected in the left pane, and, on the pop-up
menu that appears, click Show Instances.

� Press the keys Alt+a+i.

70 Solaris WBEM SDK Developer’s Guide • December 2001

The Instance Editor Window is displayed. If instances for the class you select exist, the
instances are displayed in the left pane on the Instance Editor Window. All properties
for the instances are shown. If instances for the class you select don’t exist, the left
pane on the Instance Editor Window displays nothing.

Adding Instances

� To Add an Instance to a Class
1. In the class inheritance tree in the left pane on the CIM Workshop main window,

select the class for which you want to add instances.

2. Display the Instance Editor Window:

� From the menu bar, select Action->Show Instances.

� On the tool bar, click the Show Instances icon (the large rectangle with rays).

� Right click the class that you have selected in the left pane, and, on the pop-up
menu that appears, select Show Instances.

� Press the keys Alt+a+i.

The Instance Editor Window is displayed. All properties for the instances are shown.

3. Add an instance:

� From the menu bar on the Instance Editor Window, select Action->Add Instance.

� On the tool bar on the Instance Editor Window, click the Add New Instance icon
(the large rectangle with rays).

� In the Instances pane, right click an instance, and, on the pop-up menu that
appears, select Add Instance.

� Press the keys Alt+a+d.

The Add Instance of class dialog box is displayed. All the keys for that class are shown.

CIM WorkShop 71

4. Click in the Value field for the instance key property that you want.

The Set value dialog box is displayed.

5. In the Value field, type the value that you want and click OK.

The Add Instance dialog box is displayed.

6. Repeat the previous two steps until you’ve set all the values in the Value column.

7. On the Add Instance of class dialog box, click OK.

The Instance Editor Window is displayed. You’ve added an instance.

Deleting Instances
You can delete an instance that you don’t need.

� To Delete an Instance
1. In the class inheritance tree in the left pane on the CIM Workshop main window,

select the class from which you want to delete an instance.

2. Display the Instance Editor Window:

� From the menu bar, select Action->Show Instances.

� On the tool bar, click the Show Instances icon (the large rectangle with rays).

� Right click the class that you have selected in the left pane, and, on the pop-up
menu that appears, select Show Instances.

� Press the keys Alt+a+i.

The Instance Editor Window is displayed. All properties for the instances are shown.

3. Delete the instance:

� From the menu bar on the Instance Editor Window, select Action->Delete Instance.

� On the tool bar on the Instance Editor Window, click the Delete Selected Instance
icon (the X).

72 Solaris WBEM SDK Developer’s Guide • December 2001

� In the Instances pane, right click an instance, and, on the pop-up menu that
appears, select Delete Instance.

� Press the keys Alt+a+s.

A pop-up dialog box is displayed that asks you to confirm that you want to delete the
instance you’ve selected.

4. Click OK.

The instance that you selected is deleted.

Invoking Methods
In CIM WorkShop, you can set input values for a parameter of a method and invoke
that method. Input parameters feed set values, such as a character string, Boolean
expression, or integer to a function of the method to enable the function to complete
its operations. Invoking the method returns additional data in the form of output
parameters.

The dialog boxes you use to set parameter values and invoke methods are described in
“Set Value Dialog Box” on page 44 and “Invoke Method Dialog Box” on page 51.

� To Invoke a Method
1. In the class inheritance tree in the left pane on the CIM Workshop main window,

select the class for which you want to invoke a method.

2. Display the Instance Editor Window:

� From the menu bar, select Action->Show Instances.

CIM WorkShop 73

� On the tool bar, click the Show Instances icon (the large rectangle with rays).

� Right click the class that you have selected in the left pane, and, on the pop-up
menu that appears, select Show Instances.

� Press the keys Alt+a+i.

The Instance Editor Window is displayed. Instances are displayed in the left pane on
the Instance Editor Window. All properties for the instances are shown.

3. Click the Methods Tab.

The methods for the class that you selected are displayed.

4. Right click the method that you want to invoke and, on the pop-up menu that
appears, select Invoke Method.

The Invoke Method dialog box is displayed.

5. Click in the field in the Input Value column for the parameter that you want to
modify.

The Set value dialog box is displayed.

6. In the Value field, type the value that you want and click OK.

The Set value dialog box is dismissed. The Invoke Method dialog box is displayed.
The value you specified now appears in the field that you selected earlier.

7. In each required input and output field, type the value that you want.

8. Click Invoke Method.

The return value as well as all output values are filled in automatically.

9. When you have finished adding new values and invoking the method, click Close.

The Invoke Method dialog box is dismissed. The Instance Editor Window is displayed.

10. Select Instance Editor->Exit or press the keys Alt+i+x.

The Instance Editor Window is dismissed. The CIM Workshop main window is
displayed.

74 Solaris WBEM SDK Developer’s Guide • December 2001

CHAPTER 3

Application Programming Interfaces

This chapter describes the WBEM Application Programming Interfaces (APIs) and
includes the following topic:

� “About the APIs” on page 75

This chapter provides a broad overview of the Sun WBEM APIs. For complete
documentation on the APIs installed with the Solaris WBEM SDK, see the Javadoc
reference pages at /usr/sadm/lib/wbem/doc/index.html.

About the APIs
The Solaris WBEM SDK applications request information or services from the
Common Information Model (CIM) Object Manager through the application
programming interfaces (APIs). The APIs represent and manipulate CIM objects.
These APIs represent CIM objects as Java classes. An object is a computer
representation or model of a managed resource, such as a printer, disk drive, or CPU.
Because the CIM Object Manager enforces the Common Information Model (CIM)
Specification, the objects you model using the APIs conform to standard CIM objects.

You can use these interfaces to describe managed objects and retrieve information
about managed objects in a particular system environment. The advantage of
modeling managed resources using CIM is that those objects can be shared across any
system that is CIM-compliant.

75

API Packages
The following API packages are included with the Solaris WBEM SDK:

� CIM APIs – javax.wbem.cim
� Client APIs – javax.wbem.client
� Provider APIs – javax.wbem.provider
� Query APIs – javax.wbem.query

CIM API
The WBEM CIM API package, javax.wbem.cim, includes common classes and
methods that applications use to represent all basic CIM elements. The CIM APIs
create objects on the local system.

Client API
The WBEM Client API package, javax.wbem.client, contains classes and methods
that transfer data between applications and the CIM Object Manager. Applications use
the CIMClient class to connect to the CIM Object Manager, and use the methods to
transfer data to and from the CIM Object Manager. The Client API transfers objects
that have been created on the local system to the CIM Object Manager.

The Batching API represents a new addition to the Client APIs. With the addition of
this API, clients can batch multiple requests in one remote call, reducing the delay
introduced by multiple remote message exchanges.

Provider API
When an application requests dynamic data from the CIM Object Manager, the CIM
Object Manager uses the Provider API package, javax.wbem.provider, to pass the
request to the provider. Providers are classes that perform the following functions in
response to a request from the CIM Object Manager:

� Map information from a managed device to CIM Java classes

� Get information from a device

� Pass the information to the CIM Object Manager in the form of CIM Java classes

� Map the information from CIM Java classes to managed device format

� Get the required information from the CIM Java class
� Pass the information to the device in native device format

76 Solaris WBEM SDK Developer’s Guide • December 2001

Query API
The WBEM Query API package, javax.wbem.query, [need info]

Application Programming Interfaces 77

78 Solaris WBEM SDK Developer’s Guide • December 2001

CHAPTER 4

Writing Client Applications

This chapter explains how to use the Client Application Programming Interfaces
(APIs) to write client applications, and includes the following topics:

� “Overview” on page 79
� “Opening and Closing a Client Connection” on page 82
� “Working with Instances” on page 85
� “Enumerating Namespaces, Classes, and Instances” on page 92
� “Querying” on page 98
� “About Associations” on page 103
� “Calling Methods” on page 109
� “Retrieving Class Definitions” on page 110
� “Handling Exceptions” on page 111
� “Advanced Programming Topics” on page 112
� “Sample Programs” on page 120

For detailed information on the WBEM Client APIs (javax.wbem.client), see the
Javadoc pages at /usr/sadm/lib/wbem/doc/index.html.

Overview
A Web-Based Enterprise Management (WBEM) application is a standard Java program
that uses Solaris WBEM SDK APIs to manipulate CIM objects. A client application
uses the CIM API to construct an object (for example, a namespace, class, or instance)
and then initialize that object. The application then uses the Client APIs to pass the
object to the CIM Object Manager and request a WBEM operation, such as creating a
CIM namespace, class, or instance.

79

Sequence of a Client Application
Solaris WBEM SDK applications typically follow this sequence:

1. Connect to the CIM Object Manager using CIMClient.

A client application connects to the CIM Object Manager each time it needs to
perform a WBEM operation, such as creating a CIM Class or updating a CIM
instance.

2. Use one or more APIs to perform some programming tasks.

Once a program connects to the CIM Object Manager, it uses the APIs to request
operations.

3. Close the client connection to the CIM Object Manager using CIMClient.

Applications should close the current client session when finished. Use the
CIMClient interface to close the current client session and free any resources used
by the client session.

Sample Solaris WBEM SDK Client Application
Following is a simple client application that connects to the CIM Object Manager
using all default values. The program gets a class, enumerates the instances in the
class, and prints the instances.

EXAMPLE 4–1 Sample Solaris WBEM SDK Application

import java.rmi.*;
import java.util.Enumeration;

import javax.wbem.cim.CIMClass;
import javax.wbem.cim.CIMException;
import javax.wbem.cim.CIMInstance;
import javax.wbem.cim.CIMNameSpace;
import javax.wbem.cim.CIMObjectPath;
import javax.wbem.cim.CIMProperty;
import javax.wbem.cim.CIMValue;

import javax.wbem.client.CIMClient;
import javax.wbem.client.PasswordCredential;
import javax.wbem.client.UserPrincipal;

/**
* Returns all instances of the specified class.
* This method takes four arguments: hostname (args[0]), username
* (args[1]), password (args[2]) and classname (args[3]).
*/
public class WBEMsample {

public static void main(String args[]) throws CIMException {

80 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–1 Sample Solaris WBEM SDK Application (Continued)

CIMClient cc = null;
/ if not four arguments, show usage and exit
if (args.length < 4) {

System.out.println("Usage: WBEMSample host username " +
"passwordd classname ");

System.exit(1);
}

try {
// args[0] contains the hostname. We create a CIMNameSpace
// (cns) pointing to the default namespace root\cimv2 on
// the specified host
CIMNameSpace cns = new CIMNameSpace(args[0]);

// args[1] and args[2] contain the username and password.
// We create a UserPrincipal (up) using the username and
// a PasswordCredential using the password.
UserPrincipal up = new UserPrincipal(args[1]);
PasswordCredential pc = new PasswordCredential(args[2]);

// Connect to the CIM Object Manager and pass it the
// CIMNameSpace, UserPrincipal and PasswordCredential objects
// we created.
cc = new CIMClient(cns, up, pc);

// Get the class name (args[3]) and create a CIMObjectPath
CIMObjectPath cop = new CIMObjectPath(args[3]);

// Do a deep enumeration of the instances of the class
Enumeration e = cc.enumerateInstances(cop, false, true,

true, true, null);
// Print out all the instances of the class and its
// subclasses.
while (e.hasMoreElements()) {

CIMInstance ci = (CIMInstance)e.nextElement();
System.out.println(ci);

} // end while

} catch (Exception e) {
// is we have an exception, catch it and print it out.
System.out.println("Exception: "+e);

} // end catch

// close session.
if (cc != null) {

cc.close();
}

}
}

Writing Client Applications 81

EXAMPLE 4–1 Sample Solaris WBEM SDK Application (Continued)

Typical Programming Tasks
Once a client application connects to the CIM Object Manager, it uses the API to
request operations. The program’s feature set determines which operations it needs to
request. The tasks that most programs perform are as follows:

� Create, delete, and update instances
� Enumerate objects
� Call methods
� Retrieve class definitions
� Handle errors

In addition, applications occasionally perform the following tasks:

� Create and delete namespaces
� Create and delete classes
� Work with qualifiers

Opening and Closing a Client
Connection
The first task an application performs is to establish a client session with the CIM
Object Manager. WBEM Client applications request object management services from
a CIM Object Manager. The client and CIM Object Manager can run on the same host
or on different hosts. Multiple clients can establish connections to the same CIM Object
Manager.

About Namespaces
A namespace is a directory-like structure that contains classes, instances, qualifier
types, and other namespaces. The names of the objects within a namespace must be
unique. All operations are performed within a namespace. When you install Solaris
WBEM Services, two namespaces are created:

� root\cimv2 – The default namespace. Contains the default CIM classes that
represent objects on the system on which Solaris WBEM Services is installed.

� root\security – Contains the security classes.

82 Solaris WBEM SDK Developer’s Guide • December 2001

When an application connects to the CIM Object Manager, it must connect to a
namespace. All subsequent operations occur within that namespace. When an
application connects to a namespace, it can access the classes and instances in that
namespace and in any other namespaces contained within that namespace.

For example, if you create a namespace called child in the root\cimv2 namespace,
you could connect to root\cimv2 and access the classes and instances in the
root\cimv2 and root\cimv2\child namespaces.

An application can connect to a namespace within a namespace. This is similar to
changing to a subdirectory within a directory. Once the application connects to the
new namespace, all subsequent operations occur within that namespace. For example,
if you open a new connection to root\cimv2\child, you can access any classes and
instances in that namespace but cannot access the classes and instances in the parent
namespace, root\cimv2.

Connecting to the CIM Object Manager
A client application contacts a CIM Object Manager to establish a connection each time
it needs to perform a WBEM operation, such as creating a CIM class or updating a
CIM instance. The application uses the CIMClient class to create an instance of the
client on the CIM Object Manager. The CIMClient class takes four optional
arguments:

� namespace – CIMNameSpace object that contains the names of the host name and
namespace for the client connection. The default is root\cimv2 on the local host.

� user name – Name of a valid Solaris user account. The CIM Object Manager checks
the access privileges for the user name to determine the type of access to CIM
objects that is allowed. The default user account is guest. By default, the guest
account allows users read access to all CIM objects in all namespaces.

� password – Password for the user account. The password must be a valid password
for the user’s Solaris account. The default password is guest.

� protocol – Protocol used for sending messages; either RMI (the default), or HTTP.

Once connected to the CIM Object Manager, all subsequent CIMClient operations
occur within the specified namespace.

Examples — Connecting to the CIM Object Manager
The following examples show two ways of using the CIMClient class to connect to
the CIM Object Manager.

Writing Client Applications 83

In the first example, the application takes all the default values; it connects to the CIM
Object Manager running on the local host (the same host the client application is
running on), in the default namespace (root\cimv2), using the default user account
and password, guest.

EXAMPLE 4–2 Connecting to the Default Namespace

/* Connect to root\cimv2 namespace on the local
host as user guest with password guest. */

cc = new CIMClient();

In this example, the application connects to the CIM Object Manager running on the
local host, in the default namespace (root\cimv2). The application creates a
UserPrincipal object for the root account, which has read and write access to all
CIM objects in the default namespaces.

EXAMPLE 4–3 Connecting to the Root Account

{
...

host as root. Create a namespace object initialized with two null strings
that specify the default host (the local host) and the default
namespace (root\cimv2).*/

CIMNameSpace cns = new CIMNameSpace("", "");

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");
/* Connect to the namespace as root with the root password. */

CIMClient cc = new CIMClient(cns, up, pc);
...

}

In Example 4–4, the application connects to namespace A on host happy. The
application first creates an instance of a namespace to contain the string name of the
namespace (A). Next the application uses the CIMClient class to connect to the CIM
Object Manager, passing it the namespace object, user name, and host name.

EXAMPLE 4–4 Connecting to a Non-Default Namespace

{
...
/* Create a namespace object initialized with A
(name of namespace) on host happy.*/
CIMNameSpace cns = new CIMNameSpace("happy", "A");
UserPrincipal up = new UserPrincipal("Mary");
PasswordCredential pc = new PasswordCredential("marys_password");

84 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–4 Connecting to a Non-Default Namespace (Continued)

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");
/* Connect to the namespace as root with the root password. */

CIMClient cc = new CIMClient(cns, up, pc);
...
...

}

EXAMPLE 4–5 Authenticating as an RBAC Role Identity

Authenticating a user’s role identity requires using the SolarisUserPrincipal and
SolarisPasswordCredential classes. The following examples authenticates as
Mary and assumes the role Admin.

{
...
CIMNameSpaceRole cns = new CIMNameSpace("happy", "A");
SolarisUserPrincipal sup = new SolarisUserRolePrincipal("Mary", "Admin");
SolarisPswdCredential spc = new

SolarisPswdCredential("marys_password", "admins_password");
CIMClient cc = new CIMClient(cns, sup, spc);

Closing a Client Connection
When you are finished with the client session, use the close method to close a
session and free any resources used by the client session. The following sample code
closes the client connection. The instance variable cc represents this client connection.

cc.close();

Working with Instances
This section describes how to create a CIM instance, delete a CIM instance, and update
an instance.

Creating an Instance
Use the newInstance method to create an instance of an existing class. If the existing
class has a key property, an application must set it to a value that is unique. As an

Writing Client Applications 85

option, an instance can define additional qualifiers that are not defined for the class.
These qualifiers can be defined for the instance or for a particular property of the
instance and do not need to appear in the class declaration.

Applications can use the getQualifiers method to get the set of qualifiers defined
for a class.

The following sample uses the newInstance method to create a Java class
representing a CIM instance, for example, a Solaris package, from the
Solaris_Package class.

EXAMPLE 4–6 Creating an Instance

...
{
/*Connect to the CIM Object Manager in the root\cimv2
namespace on the local host. Specify the username and password of an
account that has write permission to the objects in the
root\cimv2namespace. */

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");
/* Connect to the namespace as root with the root password. */

CIMClient cc = new CIMClient(cns, up, pc);
...

// Get the Solaris_Package class
cimclass = cc.getClass(new CIMObjectPath("Solaris_Package"),

true, true, true, null);

/* Create a new instance of the Solaris_Package
class populated with the default values for properties. If the provider
for the class does not specify default values, the values of the
properties will be null and must be explicitly set. */

ci = cimclass.newInstance();
}
...

Deleting an Instance
Use the deleteInstance method to delete an instance.

The following example connects the client application to the CIM Object Manager and
uses the following interfaces to delete all instances of a class:

� CIMObjectPath – Constructs an object containing the CIM object path of the
object to be deleted

� enumerateInstance – Gets the instance and all instances of its subclasses

86 Solaris WBEM SDK Developer’s Guide • December 2001

� deleteInstance – Deletes each instance

EXAMPLE 4–7 Deleting Instances

import java.rmi.*;
import java.util.Enumeration;

import javax.wbem.cim.CIMClass;
import javax.wbem.cim.CIMException;
import javax.wbem.cim.CIMInstance;
import javax.wbem.cim.CIMNameSpace;
import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.CIMClient;
import javax.wbem.client.PasswordCredential;
import javax.wbem.client.UserPrincipal;

/**
* Returns all instances of the specified class.
* This example takes five arguments: hostname (args[0]), username
* (args[1]), password (args[2]) namespace (args[3] and classname (args[3])
* It will delete all instances of the specified classname. The specified
* username must have write permissions to the specified namespace
*/
public class DeleteInstances {

public static void main(String args[]) throws CIMException {
CIMClient cc = null;
// if not five arguments, show usage and exit
if (args.length != 5) {

System.out.println("Usage: DeleteInstances host username " +
"password namespace classname ");

System.exit(1);
}

try {
// args[0] contains the hostname and args[3] contains the
// namespace. We create a CIMNameSpace (cns) pointing to
// the specified namespace on the specified host
CIMNameSpace cns = new CIMNameSpace(args[0], args[3]);

// args[1] and args[2] contain the username and password.
// We create a UserPrincipal (up) using the username and
// a PasswordCredential using the password.
UserPrincipal up = new UserPrincipal(args[1]);
PasswordCredential pc = new PasswordCredential(args[2]);

// Connect to the CIM Object Manager and pass it the
// CIMNameSpace, UserPrincipal and PasswordCredential objects
// we created.
cc = new CIMClient(cns, up, pc);

// Get the class name (args[4]) and create a CIMObjectPath
CIMObjectPath cop = new CIMObjectPath(args[4]);

Writing Client Applications 87

EXAMPLE 4–7 Deleting Instances (Continued)

// Get an enumeration of all the instance object paths of the
// class and all subclasses of the class. An instance object
// path is a reference used by the CIM object manager to
// locate the instance
Enumeration e = cc.enumerateInstanceNames(cop);

// Iterate through the instance object paths in the enumeration.
// Construct an object to store the object path of each
// enumerated instance, print the instance and then delete it
while (e.hasMoreElements()) {

CIMObjectPath op = (CIMObjectPath)e.nextElement();
System.out.println(op);
cc.deleteInstance(op);

} // end while
} catch (Exception e) {

// is we have an exception, catch it and print it out.
System.out.println("Exception: "+e);

} // end catch

// close session.
if (cc != null) {

cc.close();
}

}
}

Getting and Setting Instances
An application frequently uses the getInstance method to retrieve CIM instances
from the CIM Object Manager. When an instance of a class is created, it inherits the
properties of the class it is derived from and all parent classes in its class hierarchy.

The getInstance method takes the Boolean argument localOnly. If localOnly is true,
getInstance returns only the non-inherited properties in the specified instance. The
non-inherited properties are those defined in the instance itself. If localOnly is false, all
properties in the class are returned—those defined in the instance, and all properties
inherited from all parent classes in its class hierarchy.

To create a new instance, use the CIMInstance method in the CIMClass class to
create the instance on the local system. Then use the CIMClient.setInstance
method to update an existing instance in a namespace or use the
CIMClient.createInstance method to add a new instance to a namespace.

88 Solaris WBEM SDK Developer’s Guide • December 2001

Getting Instances
The following sample code lists all processes on a given system, and uses the
enumerateInstanceNames method to get the names of instances of the
CIM_Process class. If you run this code on a Solaris system, the code returns Solaris
processes. If you run this code on a Microsoft Windows 32 system, the code returns
Windows 32 processes.

EXAMPLE 4–8 Getting Instances of a Class

import java.rmi.*;
import java.util.Enumeration;

import javax.wbem.cim.CIMClass;
import javax.wbem.cim.CIMException;
import javax.wbem.cim.CIMInstance;
import javax.wbem.cim.CIMNameSpace;
import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.CIMClient;
import javax.wbem.client.PasswordCredential;
import javax.wbem.client.UserPrincipal;

/**
* Returns all instances of the specified class.
* This example takes five arguments: hostname (args[0]), username
* (args[1]), password (args[2]) namespace (args[3] and classname (args[3])
* It will delete all instances of the specified classname. The specified
* username must have write permissions to the specified namespace
*/
public class DeleteInstances {

public static void main(String args[]) throws CIMException {
CIMClient cc = null;
// if not five arguments, show usage and exit
if (args.length < 5) {

System.out.println("Usage: DeleteInstances host username " +
"password namespace classname ");

System.exit(1);
}

try {
// args[0] contains the hostname and args[3] contains the
// namespace. We create a CIMNameSpace (cns) pointing to
// the specified namespace on the specified host
CIMNameSpace cns = new CIMNameSpace(args[0], args[3]);

// args[1] and args[2] contain the username and password.
// We create a UserPrincipal (up) using the username and
// a PasswordCredential using the password.
UserPrincipal up = new UserPrincipal(args[1]);
PasswordCredential pc = new PasswordCredential(args[2]);

// Connect to the CIM Object Manager and pass it the

Writing Client Applications 89

EXAMPLE 4–8 Getting Instances of a Class (Continued)

// CIMNameSpace, UserPrincipal and PasswordCredential objects
// we created.
cc = new CIMClient(cns, up, pc);

// Get the class name (args[4]) and create a CIMObjectPath
CIMObjectPath cop = new CIMObjectPath(args[4]);

// Get an enumeration of all the instance object paths of the
// class and all subclasses of the class. An instance object
// path is a reference used by the CIM object manager to
// locate the instance
Enumeration e = cc.enumerateInstanceNames(cop);

// Iterate through the instance object paths in the enumeration.
// Construct an object to store the object path of each
// enumerated instance, print the instance and then delete it
while (e.hasMoreElements()) {

CIMObjectPath op = (CIMObjectPath)e.nextElement();
System.out.println(op);
cc.deleteInstance(op);

} // end while
} catch (Exception e) {

// is we have an exception, catch it and print it out.
System.out.println("Exception: "+e);

} // end catch

// close session.
if (cc != null) {

cc.close();
}

}
}

Getting a Property
The following sample code prints the value of the lockspeed property for all Solaris
processes. This code segment uses the following methods:

� enumerateInstanceNames – Gets the names of all instances of the Solaris
processor

� getProperty – Gets the value of the lockspeed for each instance

� println – Prints the lockspeed value

EXAMPLE 4–9 Printing Processor Information (getProperty)

...
{
/* Create an object (CIMObjectPath) to store the name of the

90 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–9 Printing Processor Information (getProperty) (Continued)

Solaris_Processor class. */

CIMObjectPath cop = new CIMObjectPath("Solaris_Processor");

/* The CIM Object Manager returns an enumeration containing the names
of instances of the Solaris_Processor class. */

Enumeration e = cc.enumerateInstancesNames(cop);

/* Iterate through the enumeration of instance object paths.
Use the getProperty method to get the lockspeed
value for each Solaris processor. */

while(e.hasMoreElements()) {
CIMValue cv = cc.getProperty(e.nextElement(), "lockspeed");
System.out.println(cv);

}
...
}

Setting a Property
The following sample code sets a hypothetical lockspeed value for all Solaris
processors. This code segment uses the following methods:

� enumerateInstanceNames – Gets the names of all instances of the Solaris
processor

� setProperty – Sets the value of the lockspeed for each instance

EXAMPLE 4–10 Setting a Property

...
{

/* Create an object (CIMObjectPath) to store the name of the
Solaris_Processor class. */

CIMObjectPath cop = new CIMObjectPath("Solaris_Processor");

/* The CIM Object Manager returns an enumeration containing the names
of instances of the Solaris_Processor class and
all its subclasses. */

Enumeration e = cc.enumerateInstanceNames(cop);

/* Iterate through the enumeration of instance object paths.
Use the setProperty method to set the lockspeed
value to 500 for each Solaris processor. */

Writing Client Applications 91

EXAMPLE 4–10 Setting a Property (Continued)

for (; e.hasMoreElements(); cc.setProperty(e.nextElement(), "lockspeed",
new CIMValue(new Integer(500))));

...
}

Setting Instances
The following sample code gets a CIM instance, updates one of its property values,
and passes the updated instances to the CIM Object Manager.

A CIM property is a value used to describe a characteristic of a CIM class. Properties
can be thought of as a pair of functions, one to set the property value and one to get
the property value.

EXAMPLE 4–11 Setting Instances

...
{

// Create an object path, an object that contains the
// CIM name for "myclass"
CIMObjectPath cop = new CIMObjectPath("myclass");
/* Get instances for each instance object path in an enumeration,
update the property value of b to 10 in each instance,
and pass the updated instance to the CIM Object Manager. */

while(e.hasMoreElements()) {
CIMInstance ci = cc.getInstance(CIMObjectPath)(e.nextElement(),

true, true, true, null);
ci.setProperty("b", new CIMValue(new Integer(10)));

cc.setInstance(new CIMObjectPath(),ci);
}

}
...

Enumerating Namespaces, Classes, and
Instances
An enumeration is a collection of objects that can be retrieved one at a time.

92 Solaris WBEM SDK Developer’s Guide • December 2001

The following examples show how to use the enumeration methods to enumerate
namespaces, a classes, and instances.

Deep and Shallow Enumeration
The enumeration methods take a Boolean argument that can have the value deep or
shallow. The behavior of deep and shallow depends upon the particular method being
used, as shown in the following table.

TABLE 4–1 Deep and Shallow Enumeration

Method deep shallow

enumClass Returns all subclasses of the
enumerated class, but does not
return the class itself

Returns the direct subclasses of
that class

enumerateInstances Returns the class instances and
all instances of its subclasses

Returns the instances of that class

Getting Class and Instance Data
The following enumeration methods return the class and instance data:

� enumerateInstances (CIMObjectPath path, boolean deep, boolean localOnly) –
Returns the instances for the class specified in Path. If deep=true, this method
returns the instances of the specified class and all classes derived from the class. If
shallow=true, this method returns the instances of the specified class.

When an instance of a class is created, it inherits the properties of the class it is
derived from and all parent classes in the class hierarchy. If localOnly=true,
enumerateInstances returns only non-inherited properties. If localOnly=false, all
properties in the class are returned.

� enumClass (CIMObjectPath path, boolean deep, boolean localOnly) – Returns the
entire class for the class specified in Path. If deep=true, this method returns all
classes derived from the enumerated class. If shallow=true, this method returns only
the first-level children of the enumerated class.

When a class is created, it inherits the methods and properties of the class it is
derived from and all parent classes in the class hierarchy. If localOnly=true, this
method returns only non-inherited properties and methods. If localOnly=false, all
properties in the class are returned.

Writing Client Applications 93

Getting Class and Instance Names
CIM WorkShop is an example of an application that uses enumeration methods to
return the names of classes and instances. Once you get a list of object names, you can
get the instances of an object, its properties, or other information about the object.

The following enumeration methods return the names of the enumerated class or
instance:

� enumerateInstanceNames (CIMObjectPath path) – Returns the names of the
instances for the specified class.

� enumerateClassNames (CIMObjectPath path, boolean deep) – Returns the names of
the classes for the class specified in Path. If deep=true, this method returns the
names of all classes derived from the enumerated class. If shallow=true, this method
returns only the names of the first-level children of the enumerated class.

Enumerating Namespaces
The following sample program uses the enumNameSpace method in the CIMClient
class to print the names of the namespace and all the namespaces contained within the
namespace.

EXAMPLE 4–12 Enumerating Namespaces

import java.rmi.*;
import java.util.Enumeration;

import javax.wbem.cim.CIMClass;
import javax.wbem.cim.CIMException;
import javax.wbem.cim.CIMInstance;
import javax.wbem.cim.CIMNameSpace;
import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.CIMClient;
import javax.wbem.client.PasswordCredential;
import javax.wbem.client.UserPrincipal;

/**
*
*/
public class EnumNameSpace {

public static void main(String args[]) throws CIMException {
CIMClient cc = null;
// if not four arguments, show usage and exit
if (args.length < 4) {

System.out.println("Usage: EnumNameSpace host username " +
"password namespace");

94 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–12 Enumerating Namespaces (Continued)

System.exit(1);
}

try {
// args[0] contains the hostname. We create a CIMNameSpace
// (cns) pointing to the specified namespace on the
// specified host
CIMNameSpace cns = new CIMNameSpace(args[0], "");

// args[1] and args[2] contain the username and password.
// We create a UserPrincipal (up) using the username and
// a PasswordCredential using the password.
UserPrincipal up = new UserPrincipal(args[1]);
PasswordCredential pc = new PasswordCredential(args[2]);

// Connect to the CIM Object Manager and pass it the
// CIMNameSpace, UserPrincipal and PasswordCredential objects
// we created.
cc = new CIMClient(cns, up, pc);

// Use the namespace (args[3]) to create a CIMObjectPath
CIMObjectPath cop = new CIMObjectPath("", args[3]);

// Enumerate the namespace and all the namespaces it contains
// (deep is set to true) and print each one
Enumeration e = cc.enumNameSpace(cop, true);
while (e.hasMoreElements()) {

System.out.println((CIMObjectPath)e.nextElement());
} // end while

// Enumerate the namespace (deep = false) and print each one
e = cc.enumNameSpace(cop, false);
while (e.hasMoreElements()) {

System.out.println((CIMObjectPath)e.nextElement());
} // end while

} catch (Exception e) {
// is we have an exception, catch it and print it out.
System.out.println("Exception: "+ e);

} // end catch

// close session.
if (cc != null) {

cc.close();
}

}
}

Writing Client Applications 95

EXAMPLE 4–12 Enumerating Namespaces (Continued)

Enumerating Class Names
A Java GUI application might use the following code segment to display a list of
classes and subclasses to a user.

EXAMPLE 4–13 Enumerating Class Names

...
{

/* Creates a CIMObjectPath object and initializes it
with the name of the CIM class to be enumerated (myclass). */
CIMObjectPath cop = new CIMObjectPath(myclass);

/* This enumeration contains the names of the classes and subclasses
in the enumerated class. */
Enumeration e = cc.enumerateClassNames(cop, true);

}
...

An application might use the following code segment to display the contents of a class
and its subclasses.

EXAMPLE 4–14 Enumerating Class Data

...
{

/* Creates a CIMObjectPath object and initializes it
with the name of the CIM class to be enumerated (myclass). */

CIMObjectPath cop = new CIMObjectPath(myclass);

/* This enumeration contains the classes and subclasses
in the enumerated class (deep=true). This enumeration
returns only the non-inherited methods and properties
for each class and subclass (localOnly is true).*/

Enumeration e = cc.enumerateClasses(cop, true, true);
}

...

The following sample program performs a deep and shallow enumeration of classes
and instances. This example uses the localOnly flag to return class and instance data
instead of returning the names of the classes and instances.

EXAMPLE 4–15 Enumerating Classes and Instances

import java.rmi.*;
import java.util.Enumeration;

96 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–15 Enumerating Classes and Instances (Continued)

import javax.wbem.client.CIMClient;
import javax.wbem.cim.CIMClass;
import javax.wbem.cim.CIMException;
import javax.wbem.cim.CIMInstance;
import javax.wbem.cim.CIMNameSpace;
import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.UserPrincipal;
import javax.wbem.client.PasswordCredential;

/**
* This example enumerates classes and instances. It does deep and shallow
* enumerations on a class that is passed from the command line
*/
public class ClientEnum {

public static void main(String args[]) throws CIMException {
CIMClient cc = null;
CIMObjectPath cop = null;
if (args.length < 4) {

System.out.println("Usage: ClientEnum host user passwd " +
"classname");

System.exit(1);
}
try {

CIMNameSpace cns = new CIMNameSpace(args[0]);
UserPrincipal up = new UserPrincipal(args[1]);
PasswordCredential pc = new PasswordCredential(args[2]);
cc = new CIMClient(cns, up, pc);

// Get the class name from the command line
cop = new CIMObjectPath(args[3]);
// Do a deep enumeration of the class
Enumeration e = cc.enumerateClasses(cop, true, true, true,

true);
// Will print out all the subclasses of the class.
while (e.hasMoreElements()) {

System.out.println(e.nextElement());
}
System.out.println("+++++");
// Do a shallow enumeration of the class
e = cc.enumerateClasses(cop, false, true, true, true);
// Will print out the first level subclasses.
while (e.hasMoreElements()) {

System.out.println(e.nextElement());
}
System.out.println("+++++");
// Do a deep enumeration of the instances of the class
e = cc.enumerateInstances(cop, false, true, true, true, null);
// Will print out all the instances of the class and its

Writing Client Applications 97

EXAMPLE 4–15 Enumerating Classes and Instances (Continued)

// subclasses.
while (e.hasMoreElements()) {

System.out.println(e.nextElement());
}
System.out.println("+++++");
// Do a shallow enumeration of the instances of the class
e = cc.enumerateInstances(cop, false, false, true, true, null);
// Will print out all the instances of the class.
while (e.hasMoreElements()) {

System.out.println(e.nextElement());
}
System.out.println("+++++");

e = cc.enumerateInstanceNames(cop);
while (e.hasMoreElements()) {

System.out.println(e.nextElement());
}
System.out.println("+++++");

e = cc.enumerateInstanceNames(cop);
while (e.hasMoreElements()) {

CIMObjectPath opInstance = (CIMObjectPath)e.nextElement();
CIMInstance ci = cc.getInstance(opInstance, false,

true, true, null);
System.out.println(ci);

}
System.out.println("+++++");

}
catch (Exception e) {

System.out.println("Exception: "+e);
}

// close session.
if (cc != null) {

cc.close();
}
}

}

Querying
The enumeration APIs return all instances in a class or class hierarchy. You can return
the instance names, or the details of the instance. Querying enables you to narrow
your search by specifying a query string. You can search for instances that match a

98 Solaris WBEM SDK Developer’s Guide • December 2001

specified query in a particular class, or in all classes in a particular namespace. For
example, you can search for all instances of the Solaris_DiskDrive class that have
a particular value for the Storage_Capacity property.

The execQuery Method
The execQuery method retrieves an enumeration of CIM instances that match a
query string. The query string must be formed using the WBEM Query Language
(WQL).

execQuery Syntax
The syntax for the execQuery method is as follows:

Enumeration execQuery(CIMObjectPath relNS, java.lang.String query, int ql)

The execQuery method takes the following parameters and returns an enumeration
of CIM instances:

Parameter Data Type Description

relNS CIMObjectPath The namespace relative to the namespace to which
you are connected. For example, if you are
connected to the root namespace and want to
query classes in the root\cimv2 namespace, you
pass new CIMObjectPath("", "cimv2");.

query String The text of the query in WBEM Query Language

ql String Identifies the query language, WQL

EXAMPLE 4–16 execQuery Example

The following execQuery call returns an enumeration of all instances of the
CIM_device class in the current namespace.

cc.execQuery(new CIMObjectPath(), SELECT * FROM CIM_device, cc.WQL)

Using the WBEM Query Language
The WBEM Query Language is a subset of standard American National Standards
Institute Structured Query Language (ANSI SQL) with semantic changes to support
WBEM on Solaris. Unlike SQL, WQL is currently a retrieval-only language. You cannot
use WQL to modify, insert, or delete information.

Writing Client Applications 99

SQL was written to query databases, in which data is stored in tables with a
row-column structure. WQL has been adapted to query data that is stored using the
CIM data model. In the CIM model, information about objects is stored in CIM classes
and CIM instances. CIM instances can contain properties, which have a name, data
type, and value. WQL maps the CIM object model to SQL tables.

TABLE 4–2 Mapping of SQL to WQL Data

SQL Is Represented in WQL as...

Table CIM class

Row CIM instance

Column CIM property

Supported WQL Key Words
The Sun WBEM SDK supports Level 1 WBEM SQL, which enables simple select
operations without joins. The following table describes the WQL key words supported
in the Sun WBEM SDK.

TABLE 4–3 Supported WQL Key Words

Key Word Description

AND Combines two Boolean expressions and returns TRUE when both
expressions are TRUE.

FROM Specifies the classes that contain the properties listed in a SELECT
statement.

NOT Comparison operator used with NULL.

OR Combines two conditions. When more than one logical operator is
used in a statement, OR operators are evaluated after AND operators.

SELECT Specifies the properties that will be used in a query.

WHERE Narrows the scope of a query.

WBEM Query Language Operators
The following table lists the standard WQL operators that can be used in the WHERE
clause of a SELECT statement.

100 Solaris WBEM SDK Developer’s Guide • December 2001

TABLE 4–4 WQL Operators

Operator Description

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

Making a Data Query
Data queries are statements that request instances of classes. To issue a data query,
applications use the execQuery method to pass a WBEM Query Language string to
the CIM Object Manager.

The SELECT Statement
The SELECT statement is the SQL statement for retrieving information, with a few
restrictions and extensions specific to WQL. Although the SQL SELECT statement is
typically used in the database environment to retrieve particular columns from tables,
the WQL SELECT statement is used to retrieve instances of a single class. WQL does
not support queries across multiple classes.

The SELECT statement specifies the properties to query in an object specified in the
FROM clause. The basic syntax for the SELECT statement is as follows:

SELECT instance FROM class

The following tables shows examples of using arguments in the SELECT clause to
refine a search.

TABLE 4–5 SELECT Statement

Example Query Description

SELECT * FROMclass Selects all instances of the specified class and
any of its subclasses.

SELECT PropertyA FROM class Selects only instances of the specified class
and any of its subclasses that contain
PropertyA.

Writing Client Applications 101

TABLE 4–5 SELECT Statement (Continued)
Example Query Description

SELECT PropertyA, PropertyB FROM class Selects only instances of the specified class
and any of its subclasses that contain
PropertyA or PropertyB.

The WHERE Clause
You use the WHERE clause to narrow the scope of a query. The WHERE clause can
contain a property or key word, an operator, and a constant. All WHERE clauses must
specify one of the predefined WQL operators.

The basic syntax for appending the WHERE clause to the SELECT statement is as
follows:

SELECT instance FROM class WHERE expression

The expression is composed of a property or key word, an operator, and a constant.
You can append the WHERE clause to the SELECT statement using one of the
following forms:

SELECT instance FROM class [WHERE property operator constant]

SELECT instance FROM class [WHERE constant operator property]

Valid WHERE clauses follow these rules:

� The value of the constant must be of the correct data type for the property.

� The operator must be a valid WQL operator.

� Either a property name or a constant must appear on either side of the operator in
the WHERE clause.

� Arbitrary arithmetic expressions cannot be used. For example, the following query
returns only instances of the Solaris_Printer class that represent a printer with
ready status:

SELECT * FROM Solaris_Printer WHERE Status = “ready”

The following is an invalid query:

SELECT * FROM PhysicalDisk WHERE Partitions < (8 + 2 - 2)

� Multiple groups of properties, operators, and constants can be combined in a
WHERE clause using logical operators and parenthetical expressions. Each group
must be joined with the AND, OR, or NOT operators.

This example retrieves all instances of the Solaris_FileSystem class with the
Name property set to either home or files:

SELECT * FROM Solaris_FileSystem WHERE Name= "home" OR Name= "files"

102 Solaris WBEM SDK Developer’s Guide • December 2001

This example retrieves disks named home and files only if they have a certain
amount of available space remaining, and have Solaris file systems.

SELECT * FROM Solaris_FileSystem WHERE (Name = “home” OR

Name = “files”) AND AvailableSpace > 2000000 AND FileSystem = “Solaris”

About Associations
An association describes a relationship between two or more managed resources, for
example, a computer and its hard disk. This relationship is described in an association
class, which is a special type of class that contains an association qualifier. An
association class also contains two or more references to the CIM instances
representing its managed resources. A reference is a special property type that is
declared with the REF keyword, indicating that it is a pointer to other instances. A
reference defines the role each managed resource plays in an association.

The following figure shows two classes, Teacher and Student. Both classes are
linked by the association, TeacherStudent. The TeacherStudent association has
two references: Teaches, a property that refers to instances of the Teacher class and
TaughtBy, a property that refers to instances of the Student class.

Teacher

Name: String

Student

Name: String
Teaches

Taught By

Teacher Student

FIGURE 4–1 An Association Between Teacher and Student

You must delete an association before you delete one of its references. You can add or
change the association between two or more objects without affecting the objects.

The Association Methods
The following methods in the CIMClient class return information about associations
(relationships) between classes and instances:

Writing Client Applications 103

TABLE 4–6 The CIMClient Association Methods

Method Description

associators Gets the CIM classes or instances that are associated with the
specified CIM class or instance.

associatorNames Gets the names of the CIM classes or instances that are
associated with the specified CIM class or instance.

references Gets the associations that refer to the specified CIM class or
instance.

referenceNames Gets the names of the associations that refer to the specified
CIM class or instance.

Specifying the Source Class or Instance
The association methods each take one required argument, CIMObjectPath, which is
the name of a source CIM class or CIM instance whose associations or associated
classes or instances you want to return. If the CIM Object Manager does not find any
associations, associated classes, or instances, it does not return anything.

If the CIMObjectpath is a class, the association methods return the associated classes
and the subclasses of each associated class. If the CIMObjectpath is an instance, the
methods return the associated instances and the class from which each instance is
derived.

Using the Model Path to Specify an Instance

To specify the name of an instance or class, you must specify its model path. The
model path for a class includes the namespace and class name. The model path for an
instance uniquely identifies a particular managed resource. The model path for an
instance includes the namespace, class name, and keys. A key is a property or set of
properties used to uniquely identify managed resource. Key properties are marked
with the KEY qualifier.

The model path
\\myserver\\root\cimv2\Solaris_ComputerSystem.Name=mycomputer:
CreationClassName=Solaris_ComputerSystem has three parts:

� \\myserver\root\cimv2 – Default CIM namespace on host myserver.

� Solaris_ComputerSystem – Name of the class from which the instances is
derived.

� Name=mycomputer, CreationClassName=Solaris_ComputerSystem – Two
key properties in the form key property = value.

104 Solaris WBEM SDK Developer’s Guide • December 2001

Using the APIs to Specify an Instance

In practice, you will usually use the enumerateInstances method to return all
instances of a given class. Then, use a loop structure to iterate through the instances.
In the loop, you can pass each instance to an association method. The code segment in
the following example does the following:

1. Enumerates the instances in the current class (op) and the subclasses of the current
class.

2. Uses a While loop to cast each instance to a CIMObjectPath (op),

3. Passes each instance as the first argument to the associators method.

The following code example passes null or false values for all other parameters.

EXAMPLE 4–17 Passing Instances to the Associators Method

{
...
Enumeration e = cc.enumerateInstances(op, true);
while (e.hasMoreElements()) {

op = (CIMObjectPath)e.nextElement();
Enumeration e1 = cc.associators(op, null, null,

null, null, false, false, null);
...

}

Using Optional Arguments to Filter Returned Classes and
Instances
The association methods also take the following optional arguments, which filter the
classes and instances that are returned. Each optional parameter value passes its
results to the next parameter for filtering until all arguments have been processed.

You can pass values for any one or a combination of the optional arguments. You must
enter a value for each parameter. The assocClass, resultClass, role, and
resultRole arguments filter the classes and instances that are returned. Only the
classes and instances that match the values specified for these parameters are
returned. The includeQualifiers, includeClassOrigin, and propertyList
arguments filter the information that is included in the classes and instances that are
returned.

The following table lists the optional arguments to the association methods:

Writing Client Applications 105

TABLE 4–7 Optional Arguments to the Association Methods

Argument Type Description Value

assocClass String Returns target objects that
participate in this type of
association with the source CIM
class or instance. If Null, does
not filter returned objects by
association.

Valid CIM association class
name or Null

resultClass String Returns target objects that are
instances of the resultClass
or one of its subclasses, or objects
that match the resultClass or
one of its subclasses.

Valid name of a CIM class or
Null

role String Specifies the role played by the
source CIM class or instance in
the association. Returns the
target objects of associations in
which the source object plays this
role.

Valid property name or Null

resultRole String Returns target objects that play
the specified role in the
association.

Valid property name or Null

includeQualifiers Boolean If true, returns all qualifiers for
each target object (qualifiers on
the object and any returned
properties). If false, returns no
qualifiers.

True or False

includeClassOrigin Boolean If true, includes the
CLASSORIGIN attribute in all
appropriate elements in each
returned object. If false, excludes
CLASSORIGIN attributes.

True or False

propertyList String Returns objects that include only
elements for properties on this
list. If an empty array, no
properties are included in each
returned object. If NULL, all
properties are included in each
returned object. Invalid property
names are ignored.

If you specify a property list, you
must specify a non-Null value
for resultClass.

An array of valid property
names. An empty array or Null

106 Solaris WBEM SDK Developer’s Guide • December 2001

Working With the associators and
associatorNames Methods
The examples in this section show how to use the associators and
associatorNames methods to get information about the classes associated with the
Teacher and Student classes shown in the following figure. Notice that the
associatorNames method does not take the arguments includeQualifiers,
includeClassOrigin, and propertyList because these arguments are irrelevant to a method
that returns only the names of instances or classes, not their entire contents.

Teacher

Name: String

Student

Name: String
Teaches

Taught By

Art Teacher

Name: String

Math Teacher

Name: String

Teacher 1:
Math Teacher

Student 1:
Student

Teacher 2:
Art Teacher

Teacher Student

FIGURE 4–2 Teacher-Student Association Example

TABLE 4–8 associators and associatorNames Methods

Example Output Description

associators(Teacher,
null, null, null, null,
false, false, null)

Student class Returns associated classes and their
subclasses.Student is linked to
Teacher by the TeacherStudent
association.

associators(Student,
null, null, null,
null,false, false, null)

Teacher,
MathTeacher, and
ArtTeacher classes

Returns associated classes and their
subclasses. Teacher is linked to
Student by the TeacherStudent
association. MathTeacher and
ArtTeacher inherit the
TeacherStudent association from
Teacher.

Writing Client Applications 107

TABLE 4–8 associators and associatorNames Methods (Continued)
Example Output Description

associatorNames(Teacher,
null, null, null, null)

Name of the Student
class

Returns the names of the associated
classes and their subclasses.
Student is linked to Teacher by
the TeacherStudentassociation.

associatorNames(Student,
null, null, null, null)

Teacher,
MatchTeacher, and
ArtTeacher class
names.

Returns the names of the associated
classes and their subclasses.
Teacher is linked to Student by
the TeacherStudent association.
MatchTeacher and ArtTeacher
inherit the TeacherStudent
association from Teacher.

Working With the references and
referenceNames Methods
The examples in this section show how to use the references and
referenceNames methods to get information about the associations between the
Teacher and Student classes in Figure 4–2. Notice that the referenceNames
method does not take the arguments includeQualifiers, includeClassOrigin, and
propertyList, because these arguments are irrelevant to a method that returns only the
names of instances or classes, not their entire contents.

TABLE 4–9 references and referenceNames Methods

Example Output Comments

references(Student, null,
null. false, false, null)

TeacherStudent Returns the associations in
which Student participates.

references(Teacher, null,
null. false, false, null)

TeacherStudent Returns the associations in
which Teacher participates.

referenceNames(Teacher,
null, null)

The name of the
TeacherStudent class.

Returns the names of the
associations in which Teacher
participates.

108 Solaris WBEM SDK Developer’s Guide • December 2001

Calling Methods
Use the invokeMethod interface to call a method in a class supported by a provider.
To retrieve the signature of a method, an application must first get the definition of the
class to which the method belongs. The invokeMethod interface takes four
arguments, as described in the following table:

TABLE 4–10 Parameters to the invokeMethodMethod

Parameter Data Type Description

name CIMObjectPath The name of the instance on which the method
must be invoked

methodName String The name of the method to call

inParams Vector Input parameters to pass to the method

outParams Vector Output parameters to get from the method

The invokeMethod method returns a CIMValue. The return value is null when the
method you invoke does not define a return value.

Calling a Method
The following code segment gets the instances of the CIM_Service class (services
that manage device or software features) and uses the invokeMethod method to stop
each service.

EXAMPLE 4–18 Calling a Method

{
...
/* Pass the CIM Object Path of the CIM_Service class
to the CIM Object Manager. We want to invoke a method defined in
this class. */

CIMObjectPath op = new CIMObjectPath("CIM_Service");

/* The CIM Object Manager returns an enumeration of instance
object paths, the names of instances of the CIM_Service
class. */

Enumeration e = cc.enumerateInstances(op, true);

/* Iterate through the enumeration of instance object paths.

Writing Client Applications 109

EXAMPLE 4–18 Calling a Method (Continued)

Use the CIM Client getInstance class to get
the instances referred to by each object path. */

while(e.hasMoreElements()) {
// Get the instance
CIMInstance ci = cc.getInstance(e.nextElement(), true);
//Invoke the Stop Service method to stop the CIM services.
cc.invokeMethod(ci, "StopService", null, null);

}
}

Retrieving Class Definitions
Use the getClass method to get a CIM class. When a class is created, it inherits the
methods and properties of the class it is derived from and all parent classes in the
class hierarchy. The getClass method takes the Boolean argument localOnly. If
localOnlyis true, this method returns only non-inherited properties and methods. If
localOnly is false, all properties in the class are returned.

The following sample code uses these methods to retrieve a class definition:

� CIMNameSpace – Create a new namespace

� CIMClient – Create a new client connection to the CIM Object Manager

� CIMObjectPath – Create an object path, which is an object to contain the name of
the class to retrieve

� getClass – Retrieve the class from the CIM Object Manager

EXAMPLE 4–19 Retrieving a Class Definition

import java.rmi.*;
import javax.wbem.client.CIMClient;
import javax.wbem.cim.CIMInstance;
import javax.wbem.cim.CIMValue;
import javax.wbem.cim.CIMProperty;
import javax.wbem.cim.CIMNameSpace;
import javax.wbem.cim.CIMObjectPath;
import javax.wbem.cim.CIMClass;
import javax.wbem.cim.CIMException;
import java.util.Enumeration;
/**
* Gets the class specified in the command line. Works in the default
* namespace root\cimv2.
*/

110 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–19 Retrieving a Class Definition (Continued)

public class GetClass {
public static void main(String args[]) throws CIMException {
CIMClient cc = null;
try {

CIMNameSpace cns = new CIMNameSpace(args[0]);
UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");
cc = new CIMClient(cns);
CIMObjectPath cop = new CIMObjectPath(args[1]);

// Returns only the methods and properties that
// are local to the specified class (localOnly is true).

cc.getClass(cop, true);
} catch (Exception e) {

System.out.println("Exception: "+e);
}
if(cc != null) {

cc.close();
}

}
}

Handling Exceptions
Each interface has a throws clause that defines a CIM Exception. An exception is an
error condition. The CIM Object Manager uses Java exception handling and creates a
hierarchy of WBEM-specific exceptions. The CIMException class is the base class for
CIM exceptions. All other CIM exception classes extend from the CIMException
class.

Each class of CIM exceptions defines a particular type of error condition that API code
handles.

Using the Try/Catch Clauses
The Client API uses standard Java try/catch clauses to handle exceptions. Generally,
an application catches exceptions and either takes some corrective action or passes
some information about the error to the user.

The CIM rules are not explicitly identified in the CIM specification. In many cases,
they are implied by example. In many cases, the error code refers to a general
problem, for example, a data type mismatch, but the programmer must figure out
what the correct data type is for the data.

Writing Client Applications 111

Syntactic and Semantic Error Checking
The MOF Compiler (mofc) compiles .mof text files into Java classes (bytecode). The
MOF Compiler does syntactical checking of the MOF files. The CIM Object Manager
does semantic and syntactical checking because it can be accessed by many different
applications.

The MOF file in the following example defines two classes, A and B. If this example
were compiled, the CIM Object Manager would return a semantic error because only a
key can override another key.

EXAMPLE 4–20 Semantic Error Checking

Class A \\Define Class A
{ [Key]
int a;
}
Class B:A \\Class B extends A
{ [overrides ("c", key (false))]
int b;
}

Advanced Programming Topics
This section describes some advanced programming operations.

Creating a Namespace
The installation compiles the standard CIM MOF files into the default namespaces,
root\cimv2 and root\security. If you create a new namespace, you must
compile the appropriate CIM .mof files into the new namespace before creating
objects in it. For example, if you plan to create classes that use the standard CIM
elements, compile the CIM Core Schema into the namespace. If you plan to create
classes that extend the CIM Application Schema, compile the CIM Application into the
namespace.

The following example uses a two-step process to create a namespace within an
existing namespace.

1. The CIMNameSpace method constructs a namespace object that contains the
parameters to be passed to the CIM Object Manager when the namespace is
actually created.

112 Solaris WBEM SDK Developer’s Guide • December 2001

2. The CIMClient class connects to the CIM Object Manager and passes it the
namespace object. The CIM Object Manager creates the namespace, using the
parameters contained in the namespace object.

EXAMPLE 4–21 Creating a Namespace

{
...
/* Creates a namespace object on the client, which stores parameters
passed to it from the command line. args[0] contains the host
name (for example, myhost); args[1] contains the
parent namespace (for example, the toplevel directory.) */

CIMNameSpace cns = new CIMNameSpace (args[0], args[1]);

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");

/* Connects to the CIM Object Manager and passes it three parameters:
the namespace object (cns), which contains the host name (args[0]) and
parent namespace name (args[1]), a user name string (args[3]), and a
password string (args[4]). */

CIMClient cc = new CIMClient (cns, "root", "secret");

/* Passes to the CIM Object Manager another namespace object that
contains a null string (host name) and args[2], the name of a
child namespace (for example, secondlevel). */

CIMNameSpace cop = new CIMNameSpace("", args[2]);

/* Creates a new namespace called secondlevel under the
toplevel namespace on myhost./*

cc.createNameSpace(cop);
...

}

Deleting a Namespace
Use the deleteNameSpace method to delete a namespace.

The following sample program deletes the specified namespace on the specified host.
The program takes five required string arguments (host name, parent namespace,
child namespace, username, and password). The user running this program must
specify the username and password for an account that has write permission to the
namespace to be deleted.

Writing Client Applications 113

EXAMPLE 4–22 Deleting a Namespace

{
import javax.wbem.cim.*;
import javax.wbem.client.CIMClient;
import javax.wbem.client.UserPrincipal;
import javax.wbem.client.PasswordCredential;

import java.rmi.*;
import java.util.Enumeration;

/**
* This example program deletes the specified name space on the
* specified host. The user must specify the username and
* password of the administrative account for the CIM Object Manager
* repository.
*/
public class DeleteNameSpace {

public static void main(String args[]) throws CIMException {

// Initialize an instance of the CIM Client class
CIMClient cc = null;

// Requires a 5 command-line arguments.
// If not all entered, prints command string.
if (args.length < 5) {

System.out.println("Usage: DeleteNameSpace host parentNS " +
"childNS username password");

System.exit(1);
}
try {

/**
* Creates a name space object (cns), which stores the host
* name and parent name space.
*/

CIMNameSpace cns = new CIMNameSpace(args[0], args[1]);

/**
* Creates the user principal and password credential used
* to authenticate the user to the CIMOM.
*/
UserPrincipal up = new UserPrincipal(args[3]);
PasswordCredential pc = new PasswordCredential(args[4]);

/**
* Connects to the CIM Object Manager, and passes it the
* namespace object (cns) and the user principal and password
* credential and protocol.
*/
cc = new CIMClient(cns, up, pc);

114 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–22 Deleting a Namespace (Continued)

/**
* Creates another name space object (cop), which stores the
* a null string for the host name and a string for the
* child name space (from the command-line arguments).
*/

CIMNameSpace cop = new CIMNameSpace("", args[2]);

/**
* Deletes the child name space under the parent name space.
*/

cc.deleteNameSpace(cop);
}
catch (Exception e) {

System.out.println("Exception: "+e);
}

// Close the session
if (cc != null) {

cc.close();
}

}
}

Creating a Base Class
Applications can create classes using either the MOF language or the client APIs. If
you are familiar with MOF syntax, use a text editor to create a MOF file and then use
the MOF Compiler to compile it into Java classes. This section describes how to use
the client APIs to create a base class.

Use the CIMClass class to create a Java class representing a CIM class. To declare the
most basic class, you need only specify the class name. Most classes include properties
that describe the data of the class. To declare a property, include the property’s data
type, name, and an optional default value. The property data type must be an instance
of CIMDataType (one of the predefined CIM data types).

A property can have a key qualifier, which identifies it as a key property. A key
property uniquely defines the instances of the class. Only keyed classes can have
instances. Therefore, if you do not define a key property in a class, the class can only
be used as an abstract class.

If you define a key property in a class in a new namespace, you must first compile the
core MOF files into the namespace. The core MOF files contain the declarations of the
standard CIM qualifiers, such as the key qualifier.

Writing Client Applications 115

Class definitions can be more complicated, including such MOF features as aliases,
qualifiers, and qualifier flavors.

The following example creates a new CIM class in the default namespace
root\cimv2 on the local host. This class has two properties, one of which is the key
property for the class. The example uses the newInstance method to create an
instance of the new class.

EXAMPLE 4–23 Creating a CIM Class

{
...

/* Connect to the root\cimv2 namespace
on the local host and create a new class called myclass */

// Connect to the default namespace on local host.
CIMClient cc = new CIMClient();

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");

// Construct a new CIMClass object
CIMClass cimclass = new CIMClass();

// Set CIM class name to myclass.
cimclass.setName("myclass");

// Construct a new CIM property object
CIMProperty cp = new CIMProperty();

// Set property name
cp.setName("keyprop");

// Set property type to one of the predefined CIM data types.
cp.setType(CIMDatatype.getPredefinedType(CIMDataType.STRING));

// Construct a new CIM Qualifier object
CIMQualifier cq = new CIMQualifier();

// Set the qualifier name
cq.setName("key");

// Add the new key qualifier to the property
cp.addQualfier(cq);

/* Create an integer property initialized to 10 */

// Construct a new CIM property object
CIMProperty mp = new CIMProperty();

// Set property name to myprop
mp.setName("myprop");

116 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 4–23 Creating a CIM Class (Continued)

// Set property type to one of the predefined CIM data types.
mp.setType(CIMDatatype.getPredefinedType(CIMDataType.SINT16));

// Initialize mp to a CIMValue that is a new Integer object
// with the value 10. The CIM Object Manager converts this
// CIMValue to the CIM Data Type (SINT16) specified for the
// property in the mp.setType statement in the line above.
// If the CIMValue (Integer 10) does not fall within the range
// of values allowed for the CIM Data Type of the property
// (SINT16), the CIM Object Manager throws an exception.
mp.setValue(new CIMValue(new Integer(10)));

/* Add the new properties to myclass and call
the CIM Object Manager to create the class. */

// Add the key property to class object
cimclass.addProperty(cp);

// Add the integer property to class object
cimclass.addProperty(mp);

/* Connect to the CIM Object Manager and pass the new class */
cc.createClass(new CIMObjectPath(),cimclass);

// Create a new CIM instance of myclass
ci = cc.newInstance();

// If the client connection is open, close it.
if(cc != null) {

cc.close();
}

}

Deleting a Class
Use the CIMClient deleteClass method to delete a class. Deleting a class removes
the class, its subclasses, and all instances of the class; it does not delete any
associations that refer to the deleted class.

The following example uses the deleteClass method to delete a class in the default
namespace root\cimv2. This program takes four required string arguments (host
name, class name, username, and password). The user running this program must
specify the username and password for an account that has write permission to the
root\cimv2namespace.

Writing Client Applications 117

EXAMPLE 4–24 Deleting a Class

import javax.wbem.cim.CIMClass;
import javax.wbem.cim.CIMException;
import javax.wbem.cim.CIMNameSpace;
import javax.wbem.cim.CIMObjectPath;
import javax.wbem.client.CIMClient;
import javax.wbem.client.UserPrincipal;
import javax.wbem.client.PasswordCredential;

import java.rmi.*;
import java.util.Enumeration;

/**
* Deletes the class specified in the command line. Works in the default
* namespace root/cimv2.
*/
public class DeleteClass {

public static void main(String args[]) throws CIMException {
CIMClient cc = null;
// if not four arguments, show usage and exit
if (args.length != 4) {

System.out.println("Usage: DeleteClass host className " +
"username password");

System.exit(1);
}
try {

// args[0] contains the hostname. We create a CIMNameSpace
// (cns) pointing to the default namespace on the specified host
CIMNameSpace cns = new CIMNameSpace(args[0]);

// args[2] and args[3] contain the username and password.
// We create a UserPrincipal (up) using the username and
// a PasswordCredential using the password.
UserPrincipal up = new UserPrincipal(args[2]);
PasswordCredential pc = new PasswordCredential(args[3]);

cc = new CIMClient(cns, up, pc);

// Get the class name (args[4]) and create a CIMObjectPath
CIMObjectPath cop = new CIMObjectPath(args[1]);
// delete the class
cc.deleteClass(cop);

}
catch (Exception e) {

System.out.println("Exception: "+e);
}
if (cc != null) {

cc.close();
}

}

}

118 Solaris WBEM SDK Developer’s Guide • December 2001

Working with Qualifier Types and Qualifiers
A CIM qualifier is an element that characterizes a CIM class, instance, property,
method, or parameter. Qualifiers have the following attributes:

� Type
� Value
� Name

In Managed Object Format syntax, each CIM qualifier must have a CIM qualifier type
declared in the same MOF file. Qualifiers do not have a scope attribute. Scope
indicates which CIM elements can use the qualifier. Scope can only be defined in the
qualifier type declaration; it cannot be changed in a qualifier.

The following sample code shows the MOF syntax for a CIM qualifier type
declaration. This statement defines a qualifier type named key, with a Boolean data
type (default value false), which can describe only a property and a reference to an
object. The DisableOverride flavor means that key qualifiers cannot change their
value.

Qualifier Key : boolean = false, Scope(property, reference),
Flavor(DisableOverride);

The following sample code shows the MOF syntax for a CIM qualifier. In this sample
MOF file, key and description are qualifiers for the property test. The property data
type is an integer with the value a.

{
[key, Description("test")]
int a
}

Getting CIM Qualifiers
The following example uses the CIMQualifier class to identify the CIM qualifiers in
a vector of CIM elements. The example returns the property name, value, and type for
each CIM Qualifier.

A qualifier flavor is a flag that governs the use of a qualifier. Flavors describe rules that
specify whether a qualifier can be propagated to derived classes and instances and
whether or not a derived class or instance can override the qualifier’s original value.

EXAMPLE 4–25 Getting CIM Qualifiers

{
...
} else if (tableType == QUALIFIER_TABLE) {

CIMQualifier prop = (CIMQualifier)cimElements.elementAt(row);
if (prop != null) {
if (col == nameColumn) {

Writing Client Applications 119

EXAMPLE 4–25 Getting CIM Qualifiers (Continued)

return prop.getName();
} else if (col == typeColumn) {

CIMValue cv = prop.getValue();
if (cv != null) {

return cv.getType().toString();
} else {

return "NULL";
}

}
...

Setting CIM Qualifiers
The following sample code sets a list of CIM qualifiers for a new class to the qualifiers
in its superclass.

EXAMPLE 4–26 Set Qualifiers

{

try {
cimSuperClass = cimClient.getClass(new CIMObjectPath(scName));

Vector v = new Vector();
for (Enumeration e = cimSuperClass.getQualifiers().elements();

e.hasMoreElements();) {
CIMQualifier qual = (CIMQualifier)((CIMQualifier)e.nextElement()).clone();

v.addElement(qual);
}
cimClass.setQualifiers(v);

} catch (CIMException exc) {
return;

}
}

}
...

Sample Programs
The examples directory contains sample programs that use the client API to perform a
function. You can use these examples to start writing your own applications more
quickly. The sample programs are described in Chapter 7.

To run a sample program, type the command:

120 Solaris WBEM SDK Developer’s Guide • December 2001

java program_name parameters

For example, java createNameSpace hostname username password namespaces

Writing Client Applications 121

122 Solaris WBEM SDK Developer’s Guide • December 2001

CHAPTER 5

Writing a Provider Program

This chapter describes how to write a provider program and includes the following
topics:

� “About Providers” on page 123
� “Implementing the Provider Interfaces” on page 124
� “Installing a Provider” on page 131
� “Registering a Provider” on page 132
� “Modifying a Provider” on page 135
� “Handling WBEM Query Language Queries” on page 135

Tip – For detailed information on the WBEM Provider APIs (javax.wbem.provider),
see the Javadoc pages at /usr/sadm/lib/wbem/doc/index.html.

About Providers
Providers are classes that communicate with managed resources to access data.
Providers forward this information to the CIM Object Manager for integration and
interpretation. When the CIM Object Manager receives a request from a management
application for data that is not available from the CIM Object Manager Repository, it
forwards the request to a provider.

Object providers must reside on the same machine as the CIM Object Manager. The
CIM Object Manager uses provider application programming interfaces (APIs) to
communicate with local providers.

When an application requests dynamic data from the CIM Object Manager, the CIM
Object Manager uses the provider interfaces to pass the request to the provider.

123

Providers can also maintain their own data, generating it dynamically when
necessary.This type of provider is known as a pull provider. Pull providers have
minimal interaction with the CIM Object Manager. The data managed by a pull
provider typically changes frequently, requiring the provider to either generate the
data dynamically or retrieve it from a file or the WBEM repository whenever an
application issues a request.

Providers perform the following functions in response to a request from the CIM
Object Manager:

� Map the native information format to CIM Java classes

� Get information from a device

� Pass the information to the CIM Object Manager in the form of CIM Java classes
� Map the information from CIM Java classes to the native device format

� Get the required information from the CIM Java class
� Pass the information to the device in the native device format

Types of Providers
Providers are categorized according to the types of requests they service. The Solaris
WBEM SDK supports the following types of providers:

� Instance – Supply dynamic instances of a given class, and support instance
retrieval, enumeration, modification, and deletion.

� Property – Supply dynamic property values.

� Method – Supply methods of one or more classes.

� Association – Supply instances of dynamic association classes.

� Event – Handle indications of CIM events. For more information on event
providers, see Chapter 6.

A single provider can act simultaneously as a class, instance, and method provider by
proper registration and implementation of all relevant methods.

Implementing the Provider Interfaces
The provider interfaces are included in the javax.wbem.provider package. When
the CIM Object Manager starts a provider, it calls the initialize method. The
initialize method takes an argument of type CIMOMhandle, which is a reference

124 Solaris WBEM SDK Developer’s Guide • December 2001

to the CIM Object Manager. The CIMOMhandle class contains methods that providers
use to transfer data to and from the CIM Object Manager.

You can include the providers in a single Java class file or store each provider in a
separate file.

Implementing an Instance Provider
The following sample code for the SimpleInstanceProvider instance provider
implements the enumInstances and getInstance interfaces for the
Ex_SimpleInstanceProvider class. For brevity, this example implements the
deleteInstance, createInstance, setInstance, and execQuery interfaces by
throwing a CIMException. In practice, an instance provider must implement all
InstanceProvider interfaces.

EXAMPLE 5–1 SimpleInstanceProvider Instance Provider

/*
* "@(#)SimpleInstanceProvider.java"
*/
import javax.wbem.cim.*;
import javax.wbem.client.*;
import javax.wbem.provider.CIMProvider;
import javax.wbem.provider.InstanceProvider;
import javax.wbem.provider.MethodProvider;
import java.util.*;
import java.io.*;

public class SimpleInstanceProvider implements InstanceProvider{
static int loop = 0;
public void initialize(CIMOMHandle cimom) throws CIMException {
}
public void cleanup() throws CIMException {
}
public CIMObjectPath[] enumerateInstanceNames(CIMObjectPath op,

CIMClass cc)
throws CIMException {

return null;
}
/*
* enumerateInstances:
* The entire instances and not just the names are returned.
*/
public CIMInstance[] enumerateInstances(CIMObjectPath op,

boolean localOnly,
boolean includeQualifiers, boolean includeClassOrigin,
String[] propertyList, CIMClass cc) throws CIMException {
if (op.getObjectName().equalsIgnoreCase\

("Ex_SimpleInstanceProvider"))
{

Writing a Provider Program 125

EXAMPLE 5–1 SimpleInstanceProvider Instance Provider (Continued)

Vector instances = new Vector();
CIMInstance ci = cc.newInstance();

if (loop == 0){
ci.setProperty("First", new CIMValue("red"));
ci.setProperty("Last", new CIMValue("apple"));
// only include the properties that were requested

ci = ci.filterProperties(propertyList, includeQualifier,
includeClassOrigin);

instances.addElement(ci);
loop += 1;

} else {
ci.setProperty("First", new CIMValue("red"));
ci.setProperty("Last", new CIMValue("apple"));
// only include the properties that were requested

ci = ci.filterProperties(propertyList, includeQualifier,
includeClassOrigin);

instances.addElement(ci);
ci = cc.newInstance();
ci.setProperty("First", new CIMValue("green"));
ci.setProperty("Last", new CIMValue("apple"));
// only include the properties that were requested

ci = ci.filterProperties(propertyList, includeQualifier,
includeClassOrigin);

instances.addElement(ci);
}

return (CIMInstance[])instances.toArray();
}

throw new CIMException(CIM_ERR_INVALID_CLASS);
}

public CIMInstance getInstance(CIMObjectPath op, boolean localOnly,
boolean includeQualifiers, boolean includeClassOrigin,
String[] propertyList, CIMClass cc)) throws CIMException {

if (op.getObjectName().equalsIgnoreCase
("Ex_SimpleInstanceProvider"))

{
CIMInstance ci = cc.newInstance();

// we need to get the keys from the passed in object path, this
// will uniqeuly identify the instance we want to get
java.util.Vector keys = cop.getKeys();
// Since this is a contrived example we will simply place the keys
// into the instance and be done.

ci.setProperties(keys);
// if we had other non-key properties we should add them here.

// only include the properties that were requested
ci = ci.filterProperties(propertyList, includeQualifiers,
includeClassOrigin);

return ci;
}
throw new CIMException(CIM_ERR_INVALID_CLASS);

}

126 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 5–1 SimpleInstanceProvider Instance Provider (Continued)

public CIMInstance[] execQuery(CIMObjectPath op, \
String query, String ql, CIMClass cc)

throws CIMException {
throw(new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED));

}

public void setInstance(CIMObjectPath op, CIMInstance ci)
throws CIMException {

throw(new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED));
}

public CIMObjectPath createInstance(CIMObjectPath op, CIMInstance ci)
throws CIMException {

throw(new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED));
}

public void deleteInstance(CIMObjectPath cp) throws CIMException {
throw(new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED));

}
}

Implementing a Property Provider
The following code sample creates the fruit_prop_provider property provider
class. The fruit_prop_provider implements the PropertyProvider interface.
This property provider illustrates the getPropertyValue method, which returns a
property value for the specified parent class and property name.

Note – A CIM property is defined by its name and origin class. Two or more
properties can have the same name, but the origin class uniquely identifies the
property.

EXAMPLE 5–2 Implementing a Property Provider

...

public class SimplePropertyProvider implements PropertyProvider{
public void initialize(CIMOMHandle cimom)
throws CIMException {
}

public void cleanup()
throws CIMException {
}

Writing a Provider Program 127

EXAMPLE 5–2 Implementing a Property Provider (Continued)

public CIMValue getPropertyValue(CIMObjectpath op, string originclass,
string PropertyName){
if (PropertyName.equals("A")

return new CIMValue("ValueA")
else

return new CIMValue("ValueB");
}
...

}

Implementing a Method Provider
The following code sample creates a Solaris provider class that routes requests to
execute methods from the CIM Object Manager to one or more specialized providers.
These specialized providers service requests for dynamic data for a particular type of
Solaris object. For example, the Solaris_Package provider services requests to
execute methods in the Solaris_Package class. The method provider in this
example implements a single method, invokeMethod, that calls the appropriate
provider to perform one of following operations:

� Reboot a Solaris system
� Reboot or shut down a Solaris system
� Delete a Solaris serial port

EXAMPLE 5–3 Implementing a Method Provider

...
public class Solaris implements MethodProvider {

public void initialize(CIMONHandle, ch) throws CIMException {
}
public void cleanup() throws CIMException {
}
public CIMValue invokeMethod(CIMObjectPath op, String methodName,

Vector inParams, Vector outParams) throws CIMException {
if (op.getObjectName().equalsIgnoreCase("solaris_computersystem")) {

Solaris_ComputerSystem sp = new Solaris_ComputerSystem();
if (methodName.equalsIgnoreCase("reboot")) {

return new CIMValue (sp.Reboot());
}

}
if (op.getObjectName().equalsIgnoreCase("solaris_operatingsystem")) {

Solaris_OperatingSystem sos = new Solaris_OperatingSystem();
if (methodName.equalsIgnoreCase("reboot")) {

return new CIMValue (sos.Reboot());
}
if (methodName.equalsIgnoreCase("shutdown")) {

return new CIMValue (sos.Shutdown());
}

128 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 5–3 Implementing a Method Provider (Continued)

}
if (op.getObjectName().equalsIgnoreCase("solaris_serialport")) {

Solaris_SerialPort ser = new Solaris_SerialPort();
if (methodName.equalsIgnoreCase("disableportservice")) {

return new CIMValue (ser.DeletePort(op));
}

}
return null;

}
}
...

Implementing an Association Provider
A complete association provider must implement all AssociatorProvider
methods. For brevity, the code segment in the following example implements only the
associators method. The CIM Object Manager passes values for assocName,
objectName, role, resultRole, includeQualifiers, includeClassOrigin,
and propertyList to the association provider.

This sample code prints the name of a CIM association class and the CIM class or
instance whose associated objects are to be returned. This provider handles instances
of example_teacher and example_student classes.

EXAMPLE 5–4 Implementing an Association Provider

public Vector associators(CCIMObjectPath assocName,
CIMObjectPath objectName,
String resultClass, String role, String resultRole,
boolean includeQualifiers, boolean includeClassOrigin,

String[] propertyList)
throws CIMException {
System.out.println("Associators "+assocName+" "+objectName);

if (objectName.getObjectName()equalsIgnoreCase
("example_teacher")) {

Vector v = new Vector();
if ((role != null) &&

(!role.equalsIgnoreCase("teaches"))) {
// Teachers only play the teaches role.
return v;

}
// Get the associators of a teacher

CIMProperty nameProp = (CIMProperty)objectName.getKeys().elementAt(0);
String name = (String)nameProp.getValue().getValue();

// Get the student class
CIMObjectPath tempOp = new CIMObjectPath("example_student");

tempOp.setNameSpace(assocName.getNameSpace());
CIMClass cc = cimom.getClass(tempOp, false);

Writing a Provider Program 129

EXAMPLE 5–4 Implementing an Association Provider (Continued)

// Test the instance name passed by objectName
// and return the associated instances of the student class.

if(name.equals("teacher1")) {
// Get students for teacher1
CIMInstance ci = cc.newInstance();
ci.setProperty("name", new CIMValue("student1"));
v.addElement(ci.filterProperties(propertyList,

includeQualifiers, includeClassOrigin));
ci = cc.newInstance();
ci.setProperty("name", new CIMValue("student2"));
v.addElement(ci.filterProperties(propertyList,

includeQualifiers, includeClassOrigin));
return v;

}

}

Writing a Native Provider
Providers get and set information on managed devices. A native provider is a
machine-specific program written to run on a managed device. For example, a
provider that accesses data on a Solaris system will most likely include C functions to
query the Solaris system.

The common reasons for writing a native provider are as follows:

� Efficiency – You may want to implement a small portion of time-critical code in a
lower-level programming language, such as Assembly, and then have your Java
application call these functions.

� Need to access platform-specific features – The standard Java class library may not
support the platform-dependent features required by your application.

� Legacy code - Often, you have Legacy code written in a programming language
other than Java and want to continue to use the code with a Java provider.

The Java Native Interface (JNI) is the Java native programming interface that is part of
the JDK. By writing programs using JNI, you ensure that your code is portable across
all platforms. JNI enables Java code that runs within a Java Virtual Machine (JVM) to
operate with applications and libraries written in other languages, such as C, C++, and
assembly.

For more information on writing and integrating Java programs with native methods,
visit the Java web site at
http://www.javasoft.com/docs/books/tutorial/native1.1/index.html.

130 Solaris WBEM SDK Developer’s Guide • December 2001

Installing a Provider
To install a provider, you must follow these steps:

1. Set up the environment. See “How To Set Up the Environment” on page 131.
2. Set the CLASSPATH. See “How To Set the Provider CLASSPATH” on page 132.
3. Become root user.
4. Stop the CIM Object Manager using /etc/init.d/init.wbem -stop.
5. Start the CIM Object Manager using /etc/init.d/init.wbem -start.
6. Exit root user.

� How To Set Up the Environment
1. Set the LD_LIBRARY_PATH environment variable to the location of the provider

class files and any shared library files:

� Using the C shell:

% setenv LD_LIBRARY_PATH /usr/sadm/lib/wbem

Using the Bourne shell:

% LD_LIBRARY_PATH = /usr/sadm/lib/wbem

Note – If you set the LD_LIBRARY_PATH environment variable in a shell, you
must stop and restart the CIM Object Manager in the same shell to recognize the
new variable.

2. Copy the shared library files to the directory specified by the LD_LIBRARY_PATH
environment variable:

% cp libnative.so native.c /usr/sadm/lib/wbem

3. Move the provider class files to the same path as the package in which they are
defined. For example, if the provider is packaged as
com.sun.providers.myprovider.*:

% mv *.class /usr/sadm/lib/wbem/com/sun/providers/myprovider/

Setting the Solaris Provider CLASSPATH
To set the Solaris provider CLASSPATH, use the client APIs to create an instance of the
Solaris_ProviderPath class and set its pathurl property to the location of your

Writing a Provider Program 131

provider class files. The Solaris_ProviderPath class is stored in the
\root\system namespace.

You can also set the provider CLASSPATH to the location of your provider class files.
You can set the class path to the jar file or to any directory that contains the classes.
Use the standard URL format that Java uses for setting the CLASSPATH.

Provider CLASSPATH Syntax

Absolute path to directory file:///a/b/c/

Relative path to directory from which the CIM
Object Manager was started (/)

file://a/b/c

� How To Set the Provider CLASSPATH
1. Create an instance of the Solaris_ProviderPath class. For example:

/* Create a namespace object initialized with root\system
(name of namespace) on the local host. */
CIMNameSpace cns = new CIMNameSpace("", "root\system");

// Connect to the root\system namespace as root.
cc = new CIMClient(cns, "root", "root_password");

// Get the Solaris_ProviderPath class
cimclass = cc.getClass(new CIMObjectPath("Solaris_ProviderPath");

// Create a new instance of Solaris_ProviderPath.
class ci = cimclass.newInstance();

2. Set the pathurl property to the location of your provider class files. For example:

/* Set the provider CLASSPATH to //com/mycomp/myproviders/.*/
ci.setProperty("pathurl", new CIMValue(new String
("//com/mycomp/myproviders/"));

3. Update the instance. For example:

// Pass the updated instance to the CIM Object Manager
cc.setInstance(new CIMObjectPath(), ci);

Registering a Provider
Providers register with the CIM Object Manager to publish information about the data
and operations they support, and their physical implementation. The CIM Object

132 Solaris WBEM SDK Developer’s Guide • December 2001

Manager uses this information to load and initialize the provider and to determine the
proper provider for a particular client request. All types of providers follow the same
procedure for registration.

� How To Register a Provider
1. Create a MOF file defining a CIM class.

2. Assign the provider qualifier to the class; assign a provider name to the provider
qualifier; specify the complete class name.

The provider name identifies the Java class to serve as the provider for this class. You
must prepend “java” to the provider qualifier to notify the CIM Object Manager that
the provider is written in the Java language. Currently, the CIM Object Manager
supports only providers written in Java.

[Provider("java:com.xyz.wbem.providers.provider_name")]
Class_name {
...
};

Note – Follow standard Java class and package naming conventions to create unique
provider names. The prefix of a unique package name is always written in
all-lowercase ASCII letters and should be one of the top-level domain names, currently
com, edu, gov, mil, net, org, or one of the English two-letter codes identifying
countries as specified in ISO Standards 3166, 1981.

Subsequent components of the package name will vary according to your
organization’s internal naming conventions. Such conventions might specify that
certain directory name components are division, department, project, machine, or
login names, for example, com.mycompany.wbem.myprovider.

3. Compile the MOF file:

% mofcomp class_name

For more information on using the MOF Compiler to compile a MOF file, see the
Solaris WBEM Services Administration Guide.

Changing a MOF File
If you change a class definition in a MOF file that was previously compiled, you must
delete the class from the CIM Object Manager Repository before recompiling the MOF
file. Otherwise, you will get an error that the class already exists and the new

Writing a Provider Program 133

information will not propagate to the CIM Object Manager. For more information on
using CIM WorkShop to delete a class, see “Deleting Classes and Their Attributes”
on page 68.

Registering a Provider
The following example shows a MOF file that declares to the CIM Object Manager the
Ex_SimpleInstanceProvider class that is served by the
SimpleInstanceProvider. Provider and class names in a valid MOF file follow
these rules:

� The class name must be a valid CIM Schema name, which means that it must have
a prefix of characters, followed by an underscore, followed by more characters. For
example: green_apples and red_apples are valid CIM schema names. The
class names apples and apples_ are not valid CIM Schema names.

� The class name must match the class name specified in the provider for the MOF
file. The MOF file in the following examples declares the
Ex_SimpleInstanceProvider class.

� The provider name specified in the MOF file must match the name of the provider
class file. The MOF file in the following example specifies the
SimpleInstanceProvider as the provider for the
Ex_SimpleInstanceProvider class.

EXAMPLE 5–5 SimpleInstanceProvider

// ==
// Title: SimpleInstanceProvider
// Filename: SimpleInstanceProvider.mof
// Description:
// ==

// ==
// Pragmas
// ==
#pragma Locale ("en-US")

// ==
// SimpleInstanceProvider
// ==
[Provider("java:SimpleInstanceProvider")]
class Ex_SimpleInstanceProvider
{

// Properties
[Key, Description("First Name of the User")]

string First;
[Description("Last Name of the User")]

string Last;
};

134 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 5–5 SimpleInstanceProvider (Continued)

Modifying a Provider
You can make changes to a provider while the CIM Object Manager and provider are
running. However, you must stop and then restart the CIM Object Manager for the
changes to take effect.

� How To Modify a Provider
1. Edit the provider source file.

2. Compile the provider source file:

% javac MyProvider.java

3. Become root user.

4. Stop the CIM Object Manager. See “Installing a Provider” on page 131.

5. Restart the CIM Object Manager. See “Installing a Provider” on page 131.

Handling WBEM Query Language
Queries
WBEM clients use the execQuery method in the CIMClient class to search for
instances that match a set of search criteria. The CIM Object Manager handles client
queries for CIM data stored in the CIM Object Manager Repository and it passes to
providers queries for CIM data that is served by a particular provider.

All instance providers must implement the execQuery interface in the
javax.wbem.provider package to handle client queries for the dynamic data they
provide. Providers can use the classes and methods in the javax.wbem.query
package to filter WBEM Query Language (WQL) query strings. Providers with access
to an entity that handles indexing can pass the query string to that entity for parsing.

Writing a Provider Program 135

Using the WQL APIs to Parse Query Strings
The classes and methods in the javax.wbem.query package represent a WBEM
Query Language parser and the WQL string to be parsed. The package includes
classes that represent clauses within the query string and methods for manipulating
the strings within those clauses.

Currently, SELECT is the only type of WQL expression that you can parse. A SELECT
expression contains the following parts:

� SELECT statement
� FROM clause
� WHERE clause

The WBEM Query Language Expression
The following figure and table shows the WBEM classes that represent the clauses in a
WQL expression.

SELECT attribute_expression...FROM table_attribute WHERE conditional_expression

SelectList class FromExp class QueryExp class

FIGURE 5–1 WBEM Classes that Represent the WBEM Query Language Expression

WBEM Query Lanuage WBEM Query Class

SELECT attribute_expression SelectList

FROM table_attribute FromExp

WHERE conditional_expression QueryExp

WQL has been adapted to query data that is stored using the CIM data model. In the
CIM model, information about objects is stored in CIM classes and CIM instances.
CIM instances can contain properties, which have a name, data type, and value. WQL
maps the CIM object model to SQL tables, as shown in the following table:

SQL WQL

Table CIM class

136 Solaris WBEM SDK Developer’s Guide • December 2001

SQL WQL

Row CIM instance

Column CIM property

In CIM, a WQL expression is expressed in the following form:

SELECT CIM property …FROM CIM class WHERE propertyA = 40

For example:

SELECT * FROM Solaris_FileSystem WHERE

(Name="home" OR Name="files") AND AvailableSpace > 2000000

The SELECT Statement
The SelectExp class represents the SELECT statement. The SELECT statement is the
SQL statement for retrieving information, with a few restrictions and extensions
specific to WQL. Although the SQL SELECT statement is typically used in the
database environment to retrieve particular columns from tables, the WQL SELECT
statement is used to retrieve instances of a single class. WQL does not support queries
across multiple classes.

The SELECT expression identifies the search list. The SELECT statement can take one
of the following forms:

SELECT Statement Selects

SELECT * All instances of the specified class and any
of its subclasses.

SELECT attr_exp, attr_exp...attr_exp Only instances of the specified class and
any of its subclasses that contain the
specifies identifiers.

The FROM Clause
The FROM clause is represented by the abstract class, fromExp. Currently
NonJoinExp is the only direct subclass of fromExp. The NonJoinExp represents
FROM clauses with only one table (CIM class) to which the select operation should be
applied.

The FROM clause identifies the class in which to search for instances that match the
query string. In SQL terms, the FROM clause identifies a qualified attribute

Writing a Provider Program 137

expression, which is the name of a class to search. A qualified attribute expression
identifies the table and class. Only non-joined expressions are supported, which means
that a valid WQL FROM clause includes only a single class.

The WHERE Clause
The QueryExp class is an abstract class whose subclasses represent conditional
expressions which return a boolean value when a particular CIMInstance is applied
to them.

The WHERE clause narrows the scope of a query. The WHERE clause contains a
conditional expression, which can contain a property or key word, an operator, and a
constant. All WHERE clauses must specify one of the predefined WQL operators.

Following is the basic syntax for a WHERE clause appended to a SELECT statement:

SELECT CIM instance FROM CIM classWHERE conditional_expression

The conditional expression in a WHERE clause takes the following form:

property operator constant

The following subclasses of the QueryExp class manipulate particular types of
conditional expressions in the WHERE clause:

� AndQueryExp
� BinaryRelQueryExp
� NotQueryExp
� OrQueryExp

The conditional expression in the WHERE clause is represented by the QueryExp
class. The QueryExp class returns only the top level of the query expression tree. The
provider can then use methods within that class to get branches down the query
expression tree.

Using the Canonize Methods
The following methods are useful for providers that pass the WQL query string to
another entity that parses the string:

� canonizeDOC - Canonizes the expression into a Disjunction of Conjunctions form.
(OR of ANDed comparison expressions). This enables handling of the expression
as a List of Lists rather than a tree form, enabling ease of evaluation. For example:
(x > 5 and y > 6) or (y > 6 and z=7)

� canonizeCOD - Canonizes the expression into a Conjunction of Disjunctions form.
(AND of ORed comparison expressions). This enables handling of the expression
as a List of Lists rather than a tree form, enabling ease of evaluation. For example:

138 Solaris WBEM SDK Developer’s Guide • December 2001

(x > 5 or y > 6) and (y > 6 or z=7)

Writing a Provider that Parses WQL Query Strings
The general procedure for writing a provider that parses WQL queries using the
Query APIs follows.

� How To Write A Provider that Parses WQL Query Strings
1. Initialize the WQL parser:

/* Read query string passed to execQuery from the CIM Object
Manager into an input data stream. */

ByteArrayInputStream in = new ByteArrayInputStream(query.getBytes());

/* Initialize the parser with the input data stream. */
WQLParser parser = new WQLParser(in);

2. Create a vector to store the result of the query:

Vector result = new Vector();

3. Get the select expression from the query:

/* querySpecification returns the WQL expression from the parser.
(SelectExp)parser casts the WQL expression to a select expression. */

SelectExp q = (SelectExp)parser.querySpecification();

4. Get the select list from the select expression:

/* Use the SelectList method in the SelectExp class
to return the select list. The select list is the list
of attributes, or CIM properties. */

SelectList attrs = q.getSelectList();

5. Get the from clause:

/* Use the getFromClause method in the SelectExp class
to return the From clause. Cast the From clause to a
Non Join Expression, a table that represents a single
CIM class. */

NonJoinExp from = (NonJoinExp)q.getFromClause();

Writing a Provider Program 139

6. Use the enumInstances method to return a deep enumeration of the class:

/* Returns all instances, including inherited and local properties,
belonging to the specified class (cc). */

Vector v = new Vector();
v = enumInstances(op, true, cc, true);
...

7. Iterate through the instances in the enumeration, matching the query expression
and select list to each instance:

/* Test whether the query expression in the WHERE
clause matches the CIM instance. Apply the select

list to the CIM instance and add any instance that
matches the select list (list of CIM properties)
to the result. */

for (int i = 0; i < v.size(); i++) {
if ((where == null) || // If there is a WHERE clause
(where.apply((CIMInstance)v.elementAt(i)) == true)) {
result.addElement(attrs.apply((CIMInstance)v.elementAt(i)));

...

8. Return the query result:

return result;

Implementing the execQuery Method
The following sample program uses the Query APIs to parse the WQL string passed to
it by the execQuery method. This program parses the select expression in the query
string, does a deep enumeration of the class, and iterates through the instances in the
enumeration, matching the query expression and select list to each instance. Finally,
the program returns a vector containing the enumeration of the instances that match
the query string.

EXAMPLE 5–6 Provider that Implements the execQuery Method

/*
* The execQuery method will support only limited queries
* based upon partial key matching. An empty Vector is
* returned if no entries are selected by the query.
*
* @param op The CIM object path of the CIM instance to be returned
* @param query The CIM query expression
* @param ql The CIM query language indicator
* @param cc The CIM class reference
*
* @return A vector of CIM object instances
*
* @version 1.19 01/26/00

140 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 5–6 Provider that Implements the execQuery Method (Continued)

* @author Sun Microsystems, Inc.
*/
public CIMInstance[] execQuery(CIMObjectPath op,

String query,
String ql,
CIMClass cc)

throws CIMException {

ByteArrayInputStream in = new ByteArrayInputStream(query.getBytes());
WQLParser parser = new WQLParser(in);
Vector result = new Vector();
try {

SelectExp q = (SelectExp)parser.querySpecification();
SelectList attrs = q.getSelectList();
NonJoinExp from = (NonJoinExp)q.getFromClause();
QueryExp where = q.getWhereClause();

CIMInstance[] v = enumerateInstances(op, false, true,
true, null, cc);

// filtering the instances
for (int i = 0; i < v.length; i++) {

if ((where == null) || (where.apply(v[i]) == true)) {
result.addElement(attrs.apply(v[i]));

}
}

} catch (Exception e) {
throw new CIMException(CIMException.CIM_ERR_FAILED, e.toString());

}
return (CIMInstance[])result.toArray();

} // execQuery
}

Writing a Provider Program 141

142 Solaris WBEM SDK Developer’s Guide • December 2001

CHAPTER 6

Handling CIM Events

This chapter describes CIM Indications and how they are used to communicate the
occurrences of events, and the classes that enable clients to subscribe to CIM
Indications. This chapter includes the following topics:

� “The CIM Event Model” on page 143
� “Creating a Subscription” on page 146
� “Generating an Event Indication” on page 151

Tip – For more in-depth information on the CIM Event Model, see the Distributed
Management Task Force white paper at
http://www.dmtf.org/education/whitepapers.php.

The CIM Event Model

Tip – The CIM Event API is located at
/usr/sadm/lib/wbem/doc/javax/wbem/client/CIMEvent.html.

An event is a real world occurrence, and an indication is an object that is created as a
result of the occurrence of an event. It is important to distinguish between the event
itself and the notification of the event, the indication. In CIM, events are not published;
indications are published.

An indication is a subtype of a class that has an association with zero or more triggers
(the description of the change) that can create instances of the class Indication. The
WBEM implementation does not have an explicit object representing a trigger.
Triggers are implied either by the operations on basic objects of the system (create,

143

delete, and modify on classes, instances, and namespaces) or by events in the
managed environment. When an event takes place, the WBEM provider generates an
indication that something happened in the system.

For example, with a Service class, when the service stops and a trigger is engaged, it
results in an indication that serves as notification that the service stopped.

You can view the related CIM classes in the Solaris WBEM Services schema at
/usr/sadm/lib/wbem/doc/mofhtml/index.html. The class is structured as
follows:

� Root class: CIM_Indication

� Superclass: CIM_ClassIndication

� Subclasses: CIM_ClassCreation
� CIM_ClassDeletion
� CIM_ClassModification

� Superclass: CIM_InstIndication

� Subclasses: CIM_InstCreation
� CIM_InstDeletion
� CIM_InstModification
� CIM_InstMethodCall
� CIM_InstRead

� Superclass: CIM_ProcessIndication

How Indications are Generated
By default, the CIM Object Manager polls for indications of life cycle events at regular
intervals. Administrators can change the event polling interval and the default polling
behavior of the CIM Object Manager by editing the properties in the
cimom.properties file. For instructions on editing the cimom.properties file,
see the Solaris WBEM Services Administration Guide.

CIM events can be classified as either life cycle or process. A life cycle event is a built-in
CIM event that occurs in response to a change to data in which a class or class instance
is created, modified, or deleted. A process event is a user-defined event that is not
described by a life cycle event.

Event providers generate indications in response to requests made by the CIM Object
Manager. The CIM Object Manager analyzes subscription requests and uses the
EventProvider interface to contact the appropriate provider, requesting that it
generate the appropriate indications. When the provider generates the indication, the
CIM Object Manager routes the indication to the destinations specified by the
CIM_IndicationHandler instances. These instances are created by the subscribers.

144 Solaris WBEM SDK Developer’s Guide • December 2001

Event providers are located in the same manner as instance providers. In the the case
of subscriptions pertaining to instance life cycle indication (subclasses of
CIM_InstIndication), once the CIM Object Manager determines the CIM classes
covered by the subscription, it contacts the instance providers for those CIM classes.
For process indications, the appropriate provider is contacted via the Provider
qualifier.

There are certain cases where the CIM Repository and the CIM Object Manager handle
indications:

� The CIM Repository handles class indications and life cycle indications for classes
that do not have providers, as well as subscriptions made to
CIM_ClassCreation, CIM_ClassDeletion CIM_ClassModification,
CIM_InstCreation, CIM_InstModification, CIM_InstDeletion and
CIM_InstRead.

� The CIM Object Manager handles CIM_InstMethodCall,
CIM_InstModification, CIM_InstDeletion and CIM_InstCreation
eventsby polling.

In these cases, the provider does not generate indications or implement the
EventProvider interface. In addition, the provider can delegate event generation
responsibilities to the CIM Object Manager. The CIM Object Manager invokes
enumerateInstances on the providers and compares snapshots of previous states
to current states to determine if instances have been created, modified, or deleted.

Note – In most cases, providers should handle their own indications and not delegate
to the CIM Object Manager, since polling has a high overhead. If the provider has to
poll, the provider can delegate to the CIM Object Manager. To control the polling
interval, modify the cimom.properties.

If a provider implements the EventProvider interface, the CIM Object Manager
invokes the methods in the interface and takes actions according to the responses.
When the CIM Object Manager determines that a particular provider must participate
in a subscription request, the methods are invoked in the following order:

1. mustPoll - Invoked by the CIM Object Manager for CIM_InstCreation,
CIM_InstDeletion, and CIM_InstModification to determine if the provider
wants the CIM Object Manager to poll. If the provider does not implement the
EventProvider interface, the CIM Object Manager assumes polling by default.

2. authorizeFilter - If the provider implements theAuthorizable interface, this
method is invoked by the CIM Object Manager to determine if the subscription is
authorized. The provider can make the determination based on the user ID of the
owner of the indication handler—the user who receives the indications—or based
on the user ID of the user who created the subscription.

If the provider does not implement the Authorizableinterface, the CIM Object
Manger performs the default read authorization check for the namespace. For more

Handling CIM Events 145

information on this procedure, refer to the Solaris WBEM Services Administration
Guide.

If the provider does not implement the EventProvider interface and the CIM
Object Manager tries to poll, the authorization succeeds if the
enumerateInstances on the provider succeeds.

3. activateFilter - Invoked by the CIM Object Manager when the authorization
succeeds and the provider does not want to be polled.

4. deActivateFilter - Called when a subscription is removed either by the
subscriber or the CIM Object Manager (for example, if the destination handler
malfunctions).

How Subscriptions are Created
A client application can subscribe to be notified of CIM events. A subscription is a
declaration of interest in one or more streams of indications. Currently, providers
cannot subscribe for event indications.

An application that subscribes for indications of CIM events describes:

� The events in which it is interested.

� The action that the CIM Object Manager must take when the events occur.

The occurrence of an event is represented as an instance of one of the subclasses of the
CIM_Indication class. An indication is generated only when a client subscribes for
the event.

Creating a Subscription
To create a subscription, specify an instance of the CIMListener interface and create
instances of the following classes:

� CIM_IndicationFilter – Defines the criteria for generating an indication and
the data that is returned in the indication.

� CIM_IndicationHandler – Describes how to process and handle an indication.
May include a destination and protocol for delivering indications.

� CIM_IndicationSubscription – An association that binds an event filter with
an event handler.

An application can create one or more event filters with one or more event handlers.
Event indications are not delivered until the application creates the event subscription.

146 Solaris WBEM SDK Developer’s Guide • December 2001

Adding a CIM Listener
To register for indications of CIM events, add an instance of the CIMListener
interface. The CIM Object Manager generates indications for CIM events that are
specified by the event filter when a client subscription is created.

The CIMListener interface must implement the indicationOccured method
which takes the argument CIMEvent. This method is invoked when an indication is
available for delivery.

EXAMPLE 6–1 Adding a CIM Listener

// Connect to the CIM Object Manager
cc = new CIMClient();

// Register the CIM Listener
cc.addCIMListener(
new CIMListener() {

public void indicationOccured(CIMEvent e) {
}

});

Creating an Event Filter
Event filters describe the types of events to be delivered and the conditions under
which they are delivered. An application creates an event filter by creating an instance
of the CIM_IndicationFilter class and defining values for its properties. Event
filters belong to a namespace. Each event filter works only on events that belong to the
namespace to which the filter also belongs.

The CIM_IndicationFilter class has string properties that an application can set
to uniquely identify the filter, specify a query string, and the query language to parse
the query string, as shown in the following table. Currently, only the WBEM Query
Language is supported.

TABLE 6–1 Properties in the CIM_IndicationFilter Class

Property Description Required/Optional

SystemCreationClassName The name of the system on
which the creation class for
the filter resides or to which
it applies.

Optional. The value is
decided by the CIM Object
Manager.

SystemName The name of the system on
which the filter resides or to
which it applies.

Optional. The default for this
key property is the name of
the system on which the CIM
Object Manager is running.

Handling CIM Events 147

TABLE 6–1 Properties in the CIM_IndicationFilter Class (Continued)
Property Description Required/Optional

CreationClassName The name of the class or
subclass used to create the
filter.

Optional. The CIM Object
Manager assigns
CIM_IndicationFilter as
the default for this key
property.

Name The unique name of the
filter.

Optional. The CIM Object
Manager assigns a unique
name.

SourceNamespace The path to a local
namespace where the CIM
indications originate.

Optional. The default is null.

Query A query expression that
defines the conditions under
which indications will be
generated. Currently, only
Level 1 WBEM Query
Language expressions are
supported. To learn how to
construct WQL query
expressions, see “Querying”
on page 98.

Required.

QueryLanguage The language in which the
query is expressed.

Required. The default is WQL
(WBEM Query Language).

� To Create an Event Filter
1. Create an instance of the CIM_IndicationFilter class:

CIMClass cimfilter = cc.getClass
(new CIMObjectPath(“CIM_IndicationFilter”),
true, true, true, null);CIMInstance ci = cimfilter.newInstance();

2. Specify the name of the event filter:

Name = “filter_all_new_solarisdiskdrives”

3. Create a WQL string to identify event indications to be returned:

String filterString = “SELECT *
FROM CIM_InstCreation WHERE sourceInstance
is ISA Solaris_DiskDrive”;

4. Set property values in the cimfilter instance to identify the name of the filter, the
filter string to select CIM events, and the query language to parse the query string.

Currently, only the WBEM Query Language can be used to part query strings.

148 Solaris WBEM SDK Developer’s Guide • December 2001

ci.setProperty(“Name”, new
CIMValue("filter_all_new_solarisdiskdrives”));

ci.setProperty("Query", new CIMValue(filterString));
ci.setProperty("QueryLanguage", new CIMValue("WQL");)

5. Create an instance from the cimfilter instance, called filter, and store it in the
CIM Object Manager Repository:

CIMObjectPath filter = cc.createInstance(new CIMObjectPath(), ci);

Creating an Event Handler
An event handler is an instance of a CIM_IndicationHandler class. The CIM Event
MOF defines a CIM_IndicationHandlerXMLHTTP class for describing the
destination for indications to be delivered to client applications using the HTTP
protocol. Event delivery to HTTP clients is not supported because HTTP delivery for
events is not defined yet.

The Solaris Event MOF extends the CIM_IndicationHandler class by creating the
Solaris_JAVAXRMIDelivery class to handle delivery of indications of CIM events
to client applications using the RMI protocol. RMI clients must instantiate the
Solaris_JAVAXRMIDelivery class to set up an RMI delivery location.

An application sets the properties in the CIM_IndicationHandler class to uniquely
name the handler and identify the UID of its owner.

TABLE 6–2 Properties in the CIM_IndicationHandler Class

Property Description Required/Optional

SystemCreationClassName The name of the system on
which the creation class
for the handler resides or
to which it applies.

Optional. Completed by the CIM
Object Manager.

SystemName The name of the system on
which the handler resides
or to which it applies.

Optional. The default value for
this key property is the name of
the system on which the CIM
Object Manager is running.

CreationClassName The class or subclass used
to create the handler.

Optional. The CIM Object
Manager assigns the appropriate
class name as the default for this
key property.

Name The unique name of the
handler.

Required. The client application
must assign a unique name.

Handling CIM Events 149

TABLE 6–2 Properties in the CIM_IndicationHandler Class (Continued)
Property Description Required/Optional

Owner The name of the entity
that created or maintains
this handler. Provider can
check this value to
determine whether or not
to authorize a handler to
receive an indication.

Optional. The default value is the
Solaris user name of the user
creating the instance.

EXAMPLE 6–2 Creating a CIM Event Handler

// Create an instance of the Solaris_JAVAXRMIDelivery class.
CIMClass rmidelivery = cc.getClass(new CIMObjectPath

(“Solaris_JAVAXRMIDelivery”), false, true, true, null);

CIMInstance ci = rmidelivery.newInstance();

//Create a new instance (delivery) from
//the rmidelivery instance.
CIMObjectPath delivery = cc.createInstance(new CIMObjectPath(), ci);

Binding an Event Filter to an Event Handler
An application binds an event filter to an event handler by creating an instance of the
CIM_IndicationSubscription class. When a CIM_IndicationSubscription
is created, indications for the events specified by the event filter are delivered.

The following example creates a subscription (filterdelivery) and defines the
filter property to the filter object created in “To Create an Event Filter”
on page 148, and defines the handler property to the delivery object created in
Example 6–2.

EXAMPLE 6–3 Binding an Event Filter to an Event Handler

CIMClass filterdelivery = cc.getClass(new
CIMObjectPath(“CIM_IndicationSubscription”),
true, true, true, null);

ci = filterdelivery.newInstance():

//Create a property called filter that refers to the filter instance.
ci.setProperty("filter", new CIMValue(filter));

//Create a property called handler that refers to the delivery instance.
ci.setProperty("handler", new CIMValue(delivery));

CIMObjectPath indsub = cc.createInstance(new CIMObjectPath(), ci);

150 Solaris WBEM SDK Developer’s Guide • December 2001

EXAMPLE 6–3 Binding an Event Filter to an Event Handler (Continued)

Generating an Event Indication
To generate an indication for a CIM event, do the following:

� Usinge the methods in the EventProvider interface to detect when to start and
stop delivering indications of CIM event.

� Create an instance of one or more subclasses of the CIM_Indication class to
store information about the CIM event that occurred.

� Use the deliverEvent method in the ProviderCIMOMHandle interface to
deliver indications to the CIM Object Manager.

Methods in the EventProvider Interface
An event provider must implement the EventProvider interface. This interface
contains methods that the CIM Object Manager uses to notify the provider when a
client has subscribed for indications of CIM events, and when a client has cancelled
the subscription for CIM events. These methods also allow the provider to indicate
whether or not the CIM Object Manager should poll for some event indications and
whether or not the provider should authorize the return of an indication to a handler.

The following table lists the methods in the EventProvider interface that must be
executed by an event provider.

TABLE 6–3 Methods in the EventProvider Interface

Method Description

activateFilter When a client creates a subscription, the CIM Object
Manager calls this method to ask the provider to check for
CIM events.

authorizeFilter When a client creates a subscription, the CIM Object
Manager calls this method to test if the specified filter
expression is allowed.

deActivateFilter When a client removes a subscription, the CIM Object
Manager calls this method to ask the provider to deactivate
the specified event filter.

Handling CIM Events 151

TABLE 6–3 Methods in the EventProvider Interface (Continued)
Method Description

mustPoll When a client creates a subscription, the CIM Object
Manager calls this method to test if the specified filter
expression is allowed by the provider, and if it must be
polled.

The CIM Object Manager passes values for the following arguments to all methods:

� filter – SelectExp that specifies the CIM events for which indications must be
generated.

� eventType – String that specifies the type of CIM event, which can also be
extracted from the FROM clause of the select expression.

� classPath – CIMObjectPath that specifies the name of the class for which the
event is required.

In addition, the activateFilter method takes the boolean firstActivation,
indicating that this is the first filter for this event type. The deActivateFilter
method takes the boolean lastActivation, indicating that this is the last filter for
this event type.

Creating and Delivering Indications
When a client application subscribes for indications of CIM events by creating an
instance of the CIM_IndicationSubscription class, the CIM Object Manager
forwards the request to the appropriate provider. If the provider implements the
EventProvider interface, the CIM Object Manager notifies the provider when to
start sending indications for the specified events by calling the provider’s
activateFilter method, and it notifies the provider when to stop sending
indications for the specified events by calling the provider’s deActivateFilter
method.

The provider responds to the CIM Object Manager’s requests by creating and
delivering an indication each time the provider creates, modifies, or deletes an
instance. A provider typically defines a flag variable that is set when the CIM Object
Manager calls the activateFilter method and cleared when the CIM Object
Manager calls the deActivateFilter method. Then in each method that creates,
modifies, or deletes an instance, the provider checks the status of the activate filter
flag. If the flag is set, the provider creates an indication containing the created CIM
instance object and uses the deliverEvent method to return the indication to the
CIM Object Manager. If the flag is not set, the provider does not create and deliver an
indication of the event.

152 Solaris WBEM SDK Developer’s Guide • December 2001

A provider starts delivering indications when the activateFilter method is called.
The provider creates instances of concrete subclasses of CIM_Indication and
invokes the ProviderCIMOMHandled.deliverIndication method. The CIM
Object Manager receives the indication and delivers the indication to the appropriate
indication handlers. A provider can handle multiple event types. For example, in the
case of life cycle indications, a provider can handle CIM_InstCreation,
CIM_InstDeletion, and CIM_InstModification.

In order to keep track of the types that have subscriber interest, the provider can use
the firstActivation and lastActivation flags passed in the activateFilter
and deActivateFilter calls, respectively. The firstActivation flag is true
when the subscription is the first one for the particular event type. Similarly,
lastActivation is true when the last subscription for the particular event type is
removed. By checking these flags, the provider can easily allocate or deallocate
resources to monitor the specified event types.

Authorizations
A provider that handles sensitive data can check authorizations for requests for
indications. The provider must implement the Authorizable interface to indicate
that it handles authorization checking. The provider also implements the
authorizeFilter method. The CIM Object Manager calls this method to test if the
owner (UID) of an event handler is authorized to receive the indications that result
from evaluating a filter expression. The UID for the owner of the event destination
(event handler) can be different than the owner of the client application requesting the
filter activation.

CIM Indication Classes
Providers generate indications of CIM events by creating instances of subclasses of the
CIM_Indication class.

The following table lists the life cycle CIM events that a provider generates.

TABLE 6–4 CIM Events Indication Classes

Event Class Description

CIM_InstCreation Notifies when a new instance is created.

CIM_InstDeletion Notifies when an existing instance is deleted.

CIM_InstModification Notifies when an instance is modified. The indication
must include a copy of the previous instance whose
change generated the indication.

Handling CIM Events 153

� To Generate an Event Indication
1. Implement the EventProvider interface:

public class sampleEventProvider implements
InstanceProvider EventProvider{

// Reference for provider to contact the CIM Object Manager
private ProviderCIMOMHandle cimom;
}

2. Execute each of the methods listed in Table 6–3 for each instance indication that the
provider handles.

3. Create an indication listed in Table 6–4 for each create, modify, and delete instance
event type. For example, in the createInstance method:

public CIMObjectPath createInstance(CIMObjectPath op,
CIMInstance ci)

throws CIMException {
CIMObjectpath newop = ip.createInstance(op, ci);
CIMInstance indication = new CIMInstance();
indication.setClassName("CIM_InstCreation");
CIMProperty cp = new CIMProperty();
cp.setName("SourceInstance");
cp.setValue(new CIMValue(ci));
Vector v = new Vector();
v.addElement(cp);
indication.setProperties(v);
...

}

4. Deliver the event indication to the CIM Object Manager:

cimom.deliverEvent(op.getNameSpace(), indication);
return newop;

154 Solaris WBEM SDK Developer’s Guide • December 2001

CHAPTER 7

Using the Solaris WBEM SDK Sample
Programs

This chapter describes the sample programs provided with the Solaris WBEM SDK
and includes the following topics:

� “About the Sample Programs” on page 155
� “Running the Sample Applet” on page 156
� “About the Client Sample Programs” on page 156
� “About the Provider Sample Program” on page 159

About the Sample Programs
The Solaris WBEM SDK provides a sample Java™ applet and programs installed in
/usr/demo/wbem. You can use these samples as a basis for developing your own
programs.

Note – These examples assume that /usr/java points to JDK 1.2 and that WBEM
files are installed in the /usr directory.

The following samples are provided:

� Applet – List and describe the Solaris software packages that are installed on a
system running Solaris WBEM Services, and connect to the CIM Object Manager
running on a local or a remote system.

� Client programs – Use the client and CIM APIs to make requests to the CIM Object
Manager

� Provider programs – Communicate with managed objects to access data

155

Running the Sample Applet
To run the applet you need the following:

� Java Development Kit (JDK) 1.2 Appletviewer, or a Java-enabled Web browser that
uses JRE 1.2.2 or Java™ Plug-in 1.2.2. If you need more information on Java
Plug-in, refer to the Java Plug-in documentation.

� A client machine that has network access to a system running the CIM Object
Manager

For more detailed information on this applet, see
/usr/demo/wbem/applet/README.

� How To Run the Sample Applet Using
Appletviewer

� Type the following command:

% appletviewer -JD \
java.security.policy=/usr/demo/wbem/applet/applet.policy \

/usr/demo/wbem/applet/GetPackageInfoAp.html

� How To Run the Sample Applet using a Web
Browser

� Open the /usr/demo/wbem/applet/GetPackageInfoAp.html file in your Web
browser.

About the Client Sample Programs
The client sample programs are located in subdirectories of
/usr/demo/wbem/client and are described in the following table.

156 Solaris WBEM SDK Developer’s Guide • December 2001

TABLE 7–1 Client Sample Programs

Directory Program(s) Purpose

./batching/ ./TestBatch host username
password classname [rmi|http]

Perform
enumerateInstanceName,
getClassName, and
enumerateInstances in a single
batching call.

./enumeration ./ClientEnum host username
password classname [rmi|http]

Enumerate classes and instances in
the specified class in the default
namespace root\cimv2 on the
specified host.

./events ./Subscribe host username
password classname

Subscribe to lifecycle events for a
specified class, print events that
occur within one minute of the
subscription, and then unsubscribe
to the events.

./logging ./CreateLog host root_username
root_password [rmi|http]

Create a log record on the specified
host.

./ReadLog host root_username
root_password [rmi|http]

Read a log record on the specified
host.

./misc ./DeleteClass host classname
root_username root_password
[rmi|http]

Delete the specified class in the
default namespace root\cimv2 on
the specified host.

./DeleteInstances host
classname root_username
root_password [rmi|http]

Delete instances of the specified
class in the default namespace
root\cimv2 on the specified host.

./namespace ./CreateNameSpace host
parentNS childNS root_username
root_password [rmi|http]

Connect to the CIM Object Manager
as the specified user and create a
namespace on the specified host.

./DeleteNameSpace host
parentNS childNS root_username
root_password [rmi|http]

Delete the specified namespace on
the specified host.

./CreateQualifierType host
namespace root_username
root_password qualifier_type_name
[rmi|http]

Create the specified qualifier type in
the specified namespace on the
specified host.

./query ./ExampleQuery host username
password [rmi|http]

Create a test class with sample
instances and perform queries on
that class.

./TestQuery host username
password [rmi|http]

Perform the specified WQL query.

Using the Solaris WBEM SDK Sample Programs 157

TABLE 7–1 Client Sample Programs (Continued)
Directory Program(s) Purpose

./systeminfo ./SystemInfo host username
password [rmi|http]

Display Solaris processor and
system information for the specified
host in a separate window.

Running the Client Sample Programs
You must first set up your environment before you run the client programs.

� How to Set Up Your Environment
� Set your CLASSPATH environment variable to use the WBEM jar files.

If you use the C shell:

% setenv CLASSPATH .:/usr/sadm/lib/wbem.jar:/usr/sadm/lib/xml.jar

If you use the Bourne shell:

% set CLASSPATH=.:/usr/sadm/lib/wbem.jar:/usr/sadm/lib/xml.jar

� How to Run the Sample Programs
Most of the client sample programs accept an optional parameter that specifies the
protocol to use to connect to the CIM Object Manager. RMI is the default protocol.

� To run the sample programs use the following format:

% java program_name parameters

EXAMPLE 7–1 Running the SystemInfo Client Program

The following example connects to myhost as root user with the secret password using
the HTTP protocol, and runs the SystemInfo Java program:

% java SystemInfo myhost root secrethttp

158 Solaris WBEM SDK Developer’s Guide • December 2001

About the Provider Sample Program
The provider sample program returns system properties and prints the string, “Hello
World”. The program calls native C methods to execute the code and return the values
to the provider.

Note – For detailed information on writing and integrating Java programs with native
methods, visit the Java Web page at
http://www.javasoft.com/docs/books/tutorial/native1.1/TOC.html.

The program files are located in /usr/demo/wbem/provider, and are described in
the following table.

TABLE 7–2 Provider Sample Files

File Name Purpose

NativeProvider Top-level provider program that fulfills requests from the CIM
Object Manager and routes them to the Native_Example
provider. The NativeProvider program implements the
instanceProvider and methodProvider APIs, and
declares methods that enumerate instances and get an instance
of the Native_Example class. It also declares a method that
invokes a method to print the string "Hello World."

Native_Example.mof Creates a class that registers the NativeProvider provider
with the CIM Object Manager. The Native_Example.mof file
identifies NativeProvider as the provider to service requests
for dynamic data in the Native_Example class. This MOF file
also declares the properties and methods to be implemented by
the NativeProvider.

Native_Example.java The NativeProvider program calls this provider to
implement methods that enumerate instances and get an
instance of the Native_Example class. The Native_Example
provider uses the APIs to enumerate objects and create
instances of objects. The Native_Example class declares native
methods, which call C functions in the native.c file to get
system-specific values, such as host name, serial number,
release, machine, architecture, and manufacturer.

native.c C program that implements calls from the Native_Example
Java provider in native C code.

Using the Solaris WBEM SDK Sample Programs 159

TABLE 7–2 Provider Sample Files (Continued)
File Name Purpose

Native_Example.h Machine-generated header file for Native_Example class.
Defines the correspondence between the Java native method
names and the native C functions that execute those methods.

libnative.so Binary native C code compiled from the native.c file.

Running the Provider Sample Program
The sample provider program, NativeProvider, enumerates instances and gets
properties for instances of the Native_Example class. You can use CIM WorkShop to
view this class and its instances.

� How To Run the NativeProvider Program
1. Set the LD_LIBRARY_PATH environment variable to the location of the provider

class files and any shared library files:

� Using the C shell:

% setenv LD_LIBRARY_PATH /usr/sadm/lib/wbem

Using the Bourne shell:

% LD_LIBRARY_PATH = /usr/sadm/lib/wbem

Note – If you set the LD_LIBRARY_PATH environment variable in a shell, you
must stop and restart the CIM Object Manager in the same shell to recognize the
new variable.

2. Copy the shared library files to the directory specified by the LD_LIBRARY_PATH
environment variable:

% cp libnative.so /usr/sadm/lib/wbem

3. Move the provider class files to the same path as the package in which they are
defined:

% mv *.class /usr/sadm/lib/wbem

4. Become root user.

5. Stop the CIM Object Manager:

/etc/init.d/init.wbem -stop

160 Solaris WBEM SDK Developer’s Guide • December 2001

6. Start the CIM Object Manager:

/etc/init.d/init.wbem -start

7. Compile Native_Example.mof to load the Native_Example class in the CIM
Object Manager and identify NativeProvider as its provider:

% mofcomp Native_Example.mof

8. Start CIM WorkShop:

% /usr/sadm/bin/cimworkshop &

9. In the CIM WorkShop Toolbar, click the Find Class icon.

10. In the Input dialog box, type Native_Example and click OK.

The Native_Example class displays.

Using the Solaris WBEM SDK Sample Programs 161

162 Solaris WBEM SDK Developer’s Guide • December 2001

APPENDIX A

WBEM Error Messages

This appendix discusses the error messages generated by components of Solaris
WBEM Services and the Solaris WBEM SDK, and covers the following topics:

� “About WBEM Error Messages” on page 163
� “List of Error Messages” on page 164

About WBEM Error Messages
The CIM Object Manager generates error messages that are used by both the MOF
Compiler and CIM WorkShop. The MOF Compiler appends a line to the error
message that indicates the line number in which the error occurred in the .mof file.

Parts of an Error Message
An error message consists of the following parts:

� Unique identifier – A character string that differentiates the error message. You can
search for the unique identifier in the Javadocreference pages to see an explanation
of the content of the error message.

� Exception message – An explanation of the error message

� Parameters – Placeholders for the specific classes, methods, and qualifiers that are
cited in the exception message.

For example, the MOF Compiler returns the following error message:

REF_REQUIRED = Association class CIM_Docked needs
at least two refs. Error in line 12.

163

Where:

� REF_REQUIRED is the unique identifier

� Association class CIM_Docked needs at least two refs is the exception
message.

� CIM_Docked is a parameter.

� Error in line 12 indicates the line number in the .mof file where the error
occurred.

Error Message Templates
WBEM provides error message templates in the ErrorMessages_en.properties
file of each API. If the exception message includes parameters, the first parameter is
represented as {0}, the second parameter is represented as {1}, and so on.

In this error message:

REF_REQUIRED = Association class CIM_Docked needs
at least two refs. Error in line 12.

The following template is used:

REF_REQUIRED = Association class {0} needs at least
two refs.

List of Error Messages
This section describes the WBEM error messages, sorted by unique identifier.

ABSTRACT_INSTANCE
Description: This error message uses one parameter, {0}, which is replaced by the
name of the abstract class.

Cause: Instances were programmed for the specified class. However, the specified
class is an abstract class, and abstract classes cannot have instances.

Solution: Remove the programmed instances.

CANNOT_ASSUME_ROLE
Description: This error message uses two parameters:

� {0} is replaced by the user name.
� {1} is replaced by the role name.

164 Solaris WBEM SDK Developer’s Guide • December 2001

Cause: The specified principal cannot assume the specified role.

Solution: Make sure the user has the appropriate rights to assume the given role. If
the user does not have the appropriate rights, contact your system administrator.

CHECKSUM_ERROR
Description: This error message does not use parameters.

Cause: The message could not be sent because it was damaged or corrupted. The
damage could have occurred accidentally in transit or by a malicious third party.

Note – This error message is displayed when the CIM Object Manager receives an
invalid checksum. A checksum is the number of bits in a packet of data passed
over the network. This number is used by the sender and the receiver of the
information to ensure that the transmission is secure and that the data has not been
corrupted or intentionally modified during transit.

An algorithm is run on the data before transmission, and the checksum is
generated and included with the data to indicate the size of the data packet. When
the message is received, the receiver can recompute the checksum and compare it
to the sender’s checksum. If the checksums match, the transmission was secure and
the data was not corrupted or modified.

Solution: Resend the message using Solaris WBEM Services security features. For
information about Solaris WBEM Services security, see “Administering Security” in
Solaris WBEM Services Administration Guide.

CIM_ERR_ACCESS_DENIED
Description: This error message does not use parameters.

Cause: This error message is displayed when a user does not have the appropriate
privileges and permissions to complete an action.

Solution: See your system administrator or the person who is responsible for your
CIM Object Manager to request privileges to complete the operation.

CIM_ERR_ALREADY_EXISTS
Instance 1: CIM_ERR_ALREADY_EXISTS

Description: This instance of uses one parameter, {0}, which is replaced by the
name of the duplicate class.

Cause: The class you attempted to create uses the same name as an existing class.

Solution: In CIM WorkShop, search for existing classes to see the class names that
are in use. Then create the class using a unique class name.

WBEM Error Messages 165

Instance 2: CIM_ERR_ALREADY_EXISTS

Description: This instance uses one parameter, {0}, which is replaced by the name
of the duplicate instance.

Cause: The instance for a class you attempted to create uses the same name as an
existing instance.

Solution: In CIM WorkShop, search for existing instances to see the names that are
in use. Then create the instance using a unique name.

Instance 3: CIM_ERR_ALREADY_EXISTS

Description: This instance uses one parameter, {0}, which is replaced by the name
of the duplicate namespace.

Cause: The namespace you attempted to create uses the same name as an existing
namespace.

Solution: In CIM WorkShop, search for existing namespaces to see the names that
are in use. Then create the namespace using a unique name.

Instance 4: CIM_ERR_ALREADY_EXISTS

Description: This instance uses one parameter, {0}, which is replaced by the name
of the duplicate qualifier type.

Cause: The qualifier type you attempted to create uses the same name as an
existing qualifier type of the property it modifies.

Solution: In CIM WorkShop, search for qualifier types that exist for the property to
see the names that are in use. Then create the qualifier type using a unique name.

CIM_ERR_CLASS_HAS_CHILDREN
Description: This error message uses one parameter, {0}, which is replaced by the
class name.

Cause: This exception is thrown by the CIM object manager to disallow
invalidation of the subclasses by a super class deletion. Clients must explicitly
delete the subclasses first. The check for subclasses is made before the check for
class instances.

Solution: Remove the subclasses of the given class.

CIM_ERR_CLASS_HAS_INSTANCES
Description: This error message uses one parameter, {0}, which is replaced by the
class name.

Cause: This exception is thrown if you attempt to delete a class that has instances.

166 Solaris WBEM SDK Developer’s Guide • December 2001

Solution: Remove the instances of the given class.

CIM_ERR_FAILED
Description: This error message uses one parameter, {0}, which is replaced by a
message that explains the error condition and its possible cause.

Cause: This error message is a generic, and can be displayed for many different
error conditions.

Solution: Because this error message is generic, many conditions can cause the
message. The solution varies depending on the error condition.

CIM_ERR_INVALID_PARAMETER
Description: This error message uses one parameter, {0}, which is replaced by the
name of the class that is missing a schema prefix.

Cause: A class was created without providing a schema prefix in front of the class
name. The Common Information Model requires that all classes are provided with
a schema prefix. For example, classes developed as part of the CIM Schema require
a CIM prefix: CIM_Container. Classes developed as part of the Solaris Schema
require a Solaris prefix: Solaris_System.

Solution: Provide the appropriate schema prefix for the class definition. Find all
instances of the class missing the prefix and replace them with the class name and
prefix.

CIM_ERR_INVALID_QUERY
Description: This error message uses two parameters:

� {0} is replaced by the invalid snippet of the query.

� {1} is replaced by additional information, including the actual error in the
query.

Cause: The given query either has syntactical or semantic errors.

Solution: Fix errors based on the exception details. In addition, make sure that the
query string and query language match.

CIM_ERR_INVALID_SUPERCLASS
Description: This error message uses two parameters:

� {0} is replaced by the name of the specified subclass.

� {1} is replaced by the name of the class for which a specified subclass does not
exist.

Cause: A class is specified to belong to a particular superclass, but the superclass
does not exist. The specified superclass may be misspelled, or a non-existent
superclass name may have been accidentally specified in place of the intended
superclass name. Or, the superclass and the subclass may have been interpolated:

WBEM Error Messages 167

the specified superclass actually may be a subclass of the specified subclass. In the
previous example, CIM_Chassis is specified as the superclass of
CIM_Container, but CIM_Chassis is a subclass of CIM_Container.

Solution: Check the spelling and the name of the superclass to ensure it is correct.
Ensure that the superclass exists in the namespace.

CIM_ERR_LOW_ON_MEMORY
Description: This error message does not use parameters.

Cause: The CIM is low on memory.

Solution: You may have to delete some class definitions and static instances to free
up memory.

CIM_ERR_NOT_FOUND
Instance 1: CIM_ERR_NOT_FOUND

Description: This instance uses one parameter, {0}, which is replaced by the name
of the non-existent class.

Cause: A class is specified, but it does not exist. The specified class may be
misspelled, or a non-existent class name may have been accidentally specified in
place of the intended class name.

Solution: Check the spelling and the name of the class to ensure that it is correct.
Ensure that the class exists in the namespace.

Instance 2: CIM_ERR_NOT_FOUND

Description: This instance uses two parameters:

� {0} is replaced by the name of the specified instance.
� {1} is replaced by the name of the specified class.

Cause: The instance does not exist.

Solution: Create the instance.

Instance 3: CIM_ERR_NOT_FOUND

Description: This instance uses one parameter, {0}, the name of the specified
namespace.

Cause: The specified namespace is not found. This error may occur if the name of
the namespace was entered incorrectly due to a typing error or spelling mistake.

Solution: Retype the name of the namespace. Ensure that typing and spelling are
correct.

168 Solaris WBEM SDK Developer’s Guide • December 2001

CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED
Description: This error message uses one parameter, {0}, which is replaced by the
invalid query language string.

Cause: The requested query language is not recognized by CIM.

Solution: Provide a supported query language.

CLASS_REFERENCE
Description: The CLASS_REFERENCE error message uses two parameters:

� {0} parameter is replaced by the name of the class that was defined to
participate in a reference.

� {1} parameter is replaced by the name of the reference.

Cause: A property was defined for a class to indicate that the class has a reference.
However, the class is not part of an association relationship. A class can only be
defined to have a reference as a property if it participates in an association
relationship with another class.

Solution: Create the association relationship. Then set up the reference to the
association as a property of this class.

INVALID_DATA
Description: This error message does not use parameters.

Cause: The security authenticator data is invalid, or is not consistent with the
security mechanism you are using.

Solution: Make sure that your security modules are configured correctly.

INVALID_CREDENTIAL
Description: This error message does not use parameters.

Cause: This error message is displayed when an invalid password has been
entered.

Solution: If you receive this message from CIM WorkShop, delete the invalid
password from the Password field of the CIM WorkShop authentication dialog box
and retype the password. If this error message was received from the MOF
Compiler, at the system prompt, log in again and type the correct password.
Ensure that you spell the password correctly.

INVALID_QUALIFIER_NAME
Description: This error message uses one parameter, {0}, which is replaced by the
Managed Object Format notation that depicts an empty qualifier name.

Cause: A qualifier was created for a property, but a qualifier name was not
specified.

WBEM Error Messages 169

Solution: Include the qualifier name in the context of the qualifier definition.

KEY_OVERRIDE
Description: This error message uses two parameters:

� {0} is replaced by the name of the non-abstract class that is put in an override
relationship with a class that has one or more Key qualifiers.

� {1} is replaced by the name of the concrete class that has the Key qualifier.

Cause: A non-abstract class, referred to as a concrete class, is put into an override
relationship with a concrete class that has one or more Key qualifiers. In CIM, all
concrete classes require at least one Key qualifier, and a non-Key class cannot
override a class that has a Key.

Solution: Create a Key qualifier for the non-Key class.

KEY_REQUIRED
Description: This error message uses one parameter, {0}, which is replaced by the
name of the class that requires a key.

Cause: A Key qualifier was not provided for a concrete class. In CIM, all
non-abstract classes, referred to as concrete classes, require at least one Key
qualifier.

Solution: Create a Key qualifier for the class.

METHOD_OVERRIDDEN
Description: This error message uses three parameters:

� {0} replaced by the name of the method that is trying to override the method
represented by parameter {1}.

� {1} is replaced by the name of the method that has already been overridden by
the method represented by parameter {2}.

� {2} is replaced by the name of the method that has overridden parameter {1}.

Cause: A method is specified to override another method that has already been
overridden by a third method. Once a method has been overridden, it cannot be
overridden again.

Solution: Specify a different method to override.

NEW_KEY
Description: This error message uses two parameters:

� {0} is replaced by the name of the key.

� {1} is replaced by the name of the class that is trying to define a new key.

170 Solaris WBEM SDK Developer’s Guide • December 2001

Cause: A class is trying to define a new key when keys already have been defined
in a superclass. Once keys have been defined in a superclass, new keys cannot be
introduced into the subclasses.

Solution: No action can be taken.

NO_CIMOM
Description: This error message uses one parameter, {0}, which is replaced by the
name of the host that is expected to be running the CIM Object Manager.

Cause: The CIM Object Manager is not running on the specified host.

Solution: Ensure that the CIM Object Manager is running on the host to which you
are trying to connect. If the CIM Object Manager is not running on that host,
connect to a host running the CIM Object Manager.

NO_EVENT_PROVIDER
Description: This error message does not use parameters.

Cause: The property provider class is not found.

Solution: Ensure that the class path of the CIMOM contains the provider class
parameters, the indication class for which the provider is being defined, and the
name of the Java provider class.

NOT_EVENT_PROVIDER
Description: This error message does not use parameters.

Cause: The provider class present in the class path does not implement the
EventProvider interface.

Solution: Ensure that the class path of the CIMOM contains the provider class
parameters, the indication class for which the provider is being defined, and the
name of the Java provider class.

NO_INSTANCE_PROVIDER
Description: This error message uses two parameters:

� {0} is replaced by the name of the class for which the instance provider cannot
be found.

� {1} is replaced by the name of the instance provider class that was specified.

Cause: The Java class of the specified instance provider is not found. This error
message indicates that the class path of the CIM Object Manager is missing one or
more of the following:

� Name of the provider class
� Parameters of the provider class
� CIM class for which the provider is defined

WBEM Error Messages 171

Solution: Set the CIM Object Manager environment variable.

NO_METHOD_PROVIDER
Description: This error message uses two parameters:

� {0} is replaced by the name of the class for which the method provider cannot
be found.

� {1} is replaced by the name of the method provider class that was specified.

Cause: The Java class of the specified method provider is not found. This error
message indicates that the class path of the CIM Object Manager is missing one or
more of the following:

� Name of the provider class
� Parameters of the provider class
� CIM class for which the provider is defined

Solution: Set the CIM Object Manager class path.

NO_OVERRIDDEN_METHOD
Description: Theis error message uses two parameters:

� {0} is replaced by the name of the method that has overridden the method
represented by {1}.

� {1} is replaced by the name of the method that has been overridden.

Cause: The method of a subclass is trying to override the method of the superclass,
but the method of the superclass already has been overridden by a method that
belongs to another subclass. The overridden method that you are trying to override
does not exist in the class hierarchy because it has never been defined.

When you override a method, you override its implementation and its signature.

Solution: Ensure that the method exists in the superclass.

NO_OVERRIDDEN_PROPERTY
Description: This error message uses two parameters:

� {0} is replaced by the name of the property that has overridden {1}.

� {1} is replaced by the name of the overriding property.

Cause: The property of a subclass is trying to override the property of the
superclass, but it doesn’t succeed because the property of the superclass already
has been overridden. The property that you are trying to override does not exist in
the class hierarchy.

Solution: Ensure that the property exists in the superclass.

172 Solaris WBEM SDK Developer’s Guide • December 2001

NO_PROPERTY_PROVIDER
Description: This error message uses two parameters:

� {0} is replaced by the name of the class for which the property provider cannot
be found.

� {1} is replaced by the name of the property provider class that was specified.

Cause: The Java class of the specified property provider is not found. This error
message indicates that the class path of the CIM Object Manager is missing one or
more of the following:

� Name of the provider class
� Parameters of the provider class
� CIM class for which the provider is defined

Solution: Set the CIM Object Manager class path.

NO_QUALIFIER_VALUE
Description: This error message uses two parameters:

� {0} is replaced by the name of the qualifier that modifies the element {1}.

� {1} is the element to which the qualifier refers. Depending on the qualifier, {1}
can be a class, property, method, or reference.

Cause: A qualifier was specified for a property or method, but values were not
included for the qualifier. For example, the qualifier VALUES requires a string array
to be specified. If the VALUES qualifier is specified without the required string
array, the NO_QUALIFIER_VALUE error message is displayed.

Solution: Specify the required parameters for the qualifier. For information about
what attributes are required for which qualifiers, see the CIM Specification by the
Distributed Management Task Force at: http://dmtf.org/spec/cims.html.

NO_SUCH_METHOD
Description: Th is error message uses two parameters:

� {0} is replaced by the name of the specified method.
� {1} is replaced by the name of the specified class.

Cause: Most likely, the method was not defined for the specified class. If the
method is defined for the specified class, another method name may have been
mispelled or typed differently in the definition.

Solution: Define the method as an operation for the specified class. Otherwise,
ensure that the method name and class name were typed correctly.

NO_SUCH_PRINCIPAL
Description: This error message uses one parameter, {0}, which is replaced by the
name of the principal, a user account.

WBEM Error Messages 173

Cause: The specified user account cannot be found. The user name may have been
mistyped upon login, or a user account has not been set up for the user.

Solution: Ensure that the user name is spelled and typed correctly upon login.
Ensure that a user account has been set up for the user.

NO_SUCH_QUALIFIER1
Description: This error message uses one parameter, {0}, which is replaced by the
name of the undefined qualifier.

Cause: A new qualifier was specified, but was not defined as part of the extension
schema. The qualifier is required to be defined as part of the CIM Schema or an
extension schema to be recognized as a valid qualifier for a property or method of
a particular class.

Solution: Define the qualifier as part of the extension schema or use a standard
CIM qualifier. For information about standard CIM qualifiers and the usage of
qualifiers in the CIM schema, see the Distributed Management Task Force CIM
Specification at: http://www.dmtf.org/spec/cims.html.

NO_SUCH_QUALIFIER2
Description: This error message uses two parameters:

� {0} is replaced by the name of the class, property, or method that the qualifier
modifies.

� {1} is replaced by the name of the qualifier that cannot be found.

Cause: A new qualifier was specified to modify a property or method of a
particular class. The qualifier was not defined as part of the extension schema. The
qualifier is required to be defined as part of the CIM schema or an extension
schema to be recognized as a valid qualifier for a property or method of a
particular class.

Solution: Define the qualifier as part of the extension schema or use a standard
CIM qualifier. For information about standard CIM qualifiers and the usage of
qualifiers in the CIM schema, see the Distributed Management Task Force CIM
Specification at: http://www.dmtf.org/spec/cims.html.

NO_SUCH_ROLE
Description: This error message uses one parameter, {0}, which is replaced by the
role name.

Cause: The specified role cannot be found, or is not a role identity.

Solution: Make sure that the input role exists. If the role is required, contact your
system administrator to set up the role.

174 Solaris WBEM SDK Developer’s Guide • December 2001

NO_SUCH_SESSION
Description: This error message uses one parameter, {0}, which is replaced by the
session identifier.

Cause: This message is displayed when a session has been infringed upon by an
intruder. The CIM Object Manager removes the session when it detects that
someone is trying to maliciously change data. For information about Solaris WBEM
Services security features, see “Administering Security” in Solaris WBEM Services
Administration Guide.

Solution: Ensure that your CIM environment is secure.

NOT_HELLO
Description: This error message does not parameters.

Cause: This error message is displayed if the data in the hello message - the first
message sent to the CIM Object Manager - is corrupted, indicating a security
breach.

Solution: No action is available in response to this error message. For information
about Solaris WBEM Services security features, see “Administering Security” in
Solaris WBEM Services Administration Guide.

NOT_INSTANCE_PROVIDER
Description: This error message uses two parameters:

� {0} is replaced by the name of the instance for which the InstanceProvider
interface is being defined.

� {1} is replaced by the name of the Java provider class that does not implement
the InstanceProvider interface. The InstanceProvider interface must be
implemented to enumerate all instances of the specified class.

Cause: The path to the Java provider class specified by the CLASSPATH
environment variable does not implement the InstanceProvider interface.

Solution: Ensure that the Java provider class present in the class path implements
the InstanceProvider interface. Use the following command when you declare the
provider: public Solaris implements InstanceProvider. For information
about how to implement Solaris WBEM Services providers, see Chapter 5.

NOT_METHOD_PROVIDER
Description: This error message uses two parameters:

� {0} is replaced by the name of the method for which the MethodProvider
interface is being defined. The MethodProvider causes a specified method to
be implemented in a program and enacted.

� {1} is replaced by the name of the Java provider class that does not implement
the MethodProvider interface.

WBEM Error Messages 175

Cause: The Java provider class present in the class path does not implement the
MethodProvider interface.

Solution: Ensure that the Java provider class present in the class path implements
the MethodProvider interface. Use the following command when you declare
the provider: public Solaris implements MethodProvider. For
information about how to implement Solaris WBEM Services providers, see
Chapter 5.

NOT_PROPERTY_PROVIDER
Description: This error message uses two parameters:

� {0} is replaced by the name of the method for which the PropertyProvider
interface is being defined. The PropertyProvider interface is required to
retrieve the values of the specified property.

� {1}is replaced by the name of the Java provider class that does not implement
the PropertyProvider interface.

Cause: The Java provider class present in the class path does not implement the
PropertyProvider interface.

Solution: Ensure that the Java provider class present in the class path implements
the PropertyProvider interface. Use the following command when you declare
the provider: public Solaris implements PropertyProvider. For
information about how to implement Solaris WBEM Services providers, see
Chapter 5.

NOT_RESPONSE
Description: This error message does not use parameters.

Cause: This error message is displayed when the data in a first response message
from the CIM Object Manager is corrupted, indicating a security breach.

Solution: No action is available in response to this error message. For information
about Solaris WBEM Services security features, see “Administering Security” in
Solaris WBEM Services Administration Guide.

PROPERTY_OVERRIDDEN
Description: This error message uses three parameters:

� {0} is replaced by the name of the property that is trying to override the
property represented by parameter {1}.

� {1} is replaced by the name of the property that already has been overridden.

� {2} is replaced by the name of the property that has overridden the property
represented by parameter {1}.

176 Solaris WBEM SDK Developer’s Guide • December 2001

Cause: A property is specified to override another method that has already been
overridden by a third method. Once a property has been overridden, it cannot be
overridden again.

Solution: Specify a different property to override.

PS_CONFIG
Description: This error message uses one parameter, {0}, which is replaced by a
description of the details that cause the error to occur. The description varies
depending on the type of database used for the repository and the type of situation
that causes the error message.

Cause: Solaris WBEM Services requires that you run wbemconfig(1M) after
installing the Solaris operating environment. wbemconfig configures the
persistent store and compiles the MOF files that provide the CIM and Solaris
Schema classes. If you do not run wbemconfig after you install Solaris WBEM
Services, this error occurs. If you configure the repository after installing Solaris
WBEM Services and this error occurs, you might have corrupted the database.

Solution: Run wbemconfig. Running wbemconfig is described in “Upgrading
the CIM Object Manager Repository” in Solaris WBEM Services Administration Guide

PS_UNAVAILABLE
Description: This error message uses one parameter, {0}, which is replaced by a
message that describes why the persistent store became unavailable.

Cause: This error message is displayed when the CIM Repository is unavailable.
This situation could occur if the host on which the CIM Repository resides is
brought down temporarily for maintenance, or if the host on which the CIM
Repository resides becomes damaged and the repository is taken down and then
restored on another host.

Solution: If you receive this message while working in the CIM WorkShop, click
the icon that causes the CIM WorkShop authentication dialog box to display. Then,
in the Host field, type the name of another host that is running the CIM Repository
and the CIM Object Manager. Type the namespace in the Namespace field, your
user name and password, and log in. If you receive this message when running the
MOF Compiler, type the following command to point to another host running the
CIM Repository and CIM Object Manager: mofcomp -c hostname where mofcomp
is the command to start the MOF Compiler, -c is the parameter that enables you to
specify a host computer running the CIM Object Manager, and hostname is the
name of the specified computer.

QUALIFIER_UNOVERRIDABLE
Description: This error message uses two parameters:

� {0} parameter is replaced by the name of the qualifier that is set with the
DisableOverride flavor.

WBEM Error Messages 177

� {1} parameter is replaced by the name of the qualifier that is set to be disabled
by {0}.

Cause: The ability of the specified qualifier to override another qualifier is disabled
because the flavor of the specified qualifier has been set to DisableOverride or
Override=False.

Solution: Reset the ability of the qualifier to EnableOverride or to
Override=True.

REF_REQUIRED
Description: This error message uses one parameter, {0}, which is replaced by the
name of the class specified to participate in an association relationship.

Cause: A class was set up to participate in an association, but no references were
cited. The rules of the Common Information Model specify that an association
must contain two or more references.

Solution: Set up the references to the class. Then set up the association.

SCOPE_ERROR
Description: This error message uses three parameters:

� {0} is replaced by the name of the class the specified qualifier modifies.

� {1} is replaced by the name of the specified qualifier.

� {2} is replaced by the type of attribute that the qualifier modifies.

Cause: A qualifier was specified in a manner that conflicts with the requirements of
the CIM Specification. For example, the [READ] qualifier is defined in the CIM
Specification to modify a Property. The scope of the [READ] qualifier is the
definition that directs the [READ] qualifier to modify a Property. If the [READ]
qualifier is used in a manner other than the direction of its scope—for example, if
the [READ] qualifier is specified to modify a Method—the SCOPE_ERROR message
is returned.

Note – The CIM Specification defines the types of CIM elements that a CIM
qualifier can modify. This definition of the way in which a qualifier can be used is
referred to as its scope. Most qualifiers, by definition, have a scope that directs
them to modify properties or methods or both. Many qualifiers have a scope that
directs them to modify parameters, classes, associations, indications, or schemas.

Solution: Confirm the scope of the specified qualifier. Refer to the section,
“1.Qualifiers” of the Distributed Management Task Force CIM Specification at the
following URL:http://www.dmtf.org/spec/cim_spec_v20 for the standard

178 Solaris WBEM SDK Developer’s Guide • December 2001

definitions of CIM qualifiers. Use a different qualifier for the results you want to
achieve, or change your program to use the qualifier according to its CIM
definition.

SIGNATURE_ERROR
Description: This error message does not use parameters.

Cause: This message is displayed when a message is accidentally or
maliciouslycorrupted. It differs from the checksum error in that the message has a
valid checksum, but the signature cannot be verified by the public key of the client.
This protection ensures that even though the session key has been compromised,
only the initial client which created the session is authenticated.

Solution: No action is provided for this message, which is displayed when a
session has been infringed upon by an intruder. For information about Solaris
WBEM Services security features, see “Administering Security” in Solaris WBEM
Services Administration Guide.

TYPE_ERROR
Description: This error message uses five parameters:

� {0} is replaced by the name of the specified element, such as a property,
method, or qualifier.

� {1} is replaced by the name of the class to which the specified element belongs.

� {2} is replaced by the type defined for the element.

� {3} is replaced by the type of value assigned.

� {4} is replaced by the actual value assigned.

Cause: The value of a property or method parameter and its defined type are
mismatched.

Solution: Match the value of the property or method with its defined type.

UNKNOWNHOST
Description: Th is error message uses one parameter, {0}, which is replaced by the
name of the host.

Cause: A call was made to a specified host. The specified host is unavailable or
cannot be located. It is possible that the host name was misspelled, the host
computer was moved to a different domain, the host name has not been registered
in the list of hosts that belong to the domain, or the host is temporarily unavailable
due to system conditions.

Solution: Check the spelling of the host name. Ensure that no typing errors were
made. Use the ping command to ensure that the host computer is responding.
Check the system conditions of the host. Ensure that the host belongs to the
specified domain.

WBEM Error Messages 179

VER_ERROR
Description: This error message uses one parameter, {0}, which is replaced by the
version number of the running CIM Object Manager.

Cause: The upgraded version of Solaris WBEM Services does not support the
current CIM Object Manager.

Solution: Install the supported version.

180 Solaris WBEM SDK Developer’s Guide • December 2001

Glossary

This Glossary defines terms used in the Solaris WBEM documentation. Many of these
terms are familiar to developers, but have a new or altered meaning in the WBEM
environment.

Tip – For an expanded glossary, refer to the Distributed Management Task Force
Glossary at http://www.dmtf.org/education/cimtutorial/reference/glossary.php

alias A symbolic reference in either a class or instance declaration to an
object located elsewhere in a MOF file. Alias names follow the same
rules as instance and class names. Aliases are typically used as
shortcuts to lengthy paths.

aggregation relationship A relationship in which one entity is made up of the aggregation of
some number of other entities.

association class A class that describes a relationship between two classes or between
instances of two classes. The properties of an association class include
pointers, or references, to the two classes or instances. All WBEM
classes can be included in one or more associations.

Backus-Naur Form
(BNF)

A metalanguage that specifies the syntax of programming languages.

cardinality The number of values that may apply to an attribute for a given entity.

class A collection or set of objects that have similar properties and fulfill
similar purposes.

CIM Object Manager
Repository

A central storage area managed by the Common Information Model
Object Manager (CIM Object Manager). This repository contains the
definitions of classes and instances that represent managed objects and
the relationships among them.

CIM Schema A collection of class definitions used to represent managed objects that
occur in every management environment.

181

See also core model, common model, and extension schema.

The CIM is divided into the metamodel and the standard schema. The
metamodel describes what types of entities make up the schema. It
also defines how these entities can be combined into objects that
represent managed objects.

common model The second layer of the CIM schema, which includes a series of
domain-specific but platform-independent classes. The domains are
systems, networks, applications, and other management-related data.
The common model is derived from the core model.

See also extension schema.

core model The first layer of the CIM schema, which includes the top-level classes
and their properties and associations. The core model is both domain-
and platform-independent.

See also common model and extension schema.

Distributed
Management Task Force
(DMTF)

An industry-wide consortium committed to making personal
computers easier to use, understand, configure, and manage.

domain The class to which a property or method belongs. For example, if
status is a property of Logical Device, it is said to belong to the Logical
Device domain.

dynamic class A class whose definition is supplied by a provider at runtime as
needed. Dynamic classes are used to represent provider-specific
managed objects and are not stored permanently in the CIM Object
Manager Repository. Instead, the provider responsible for a dynamic
class stores information about its location. When an application
requests a dynamic class, the CIM Object Manager locates the provider
and forwards the request. Dynamic classes support only dynamic
instances.

dynamic instances An instance that is supplied by a provider when the need arises and is
not stored in the CIM Object Manager Repository. Dynamic instances
can be provided for either static or dynamic classes. Supporting
instances of a class dynamically allows a provider to always supply
up-to-the-minute property values.

enumeration Java term for getting a list of objects. Java provides an Enumeration
interface that has methods for enumerating a list of objects. An
individual object on this list to be enumerated is called an element.

extension schema The third layer of the CIM Schema, which includes platform-specific
extensions of the CIM Schema such as Solaris and UNIX.

See also common model and core model.

182 Solaris WBEM SDK Developer’s Guide • December 2001

flavor See qualifier flavor.

indication An operation executed as a result of some action such as the creation,
modification, or deletion of an instance, access to an instance, or
modification or access to a property. Indications can also result from
the passage of a specified period of time. An indication typically
results in an event.

inheritance The relationship that describes how classes and instances are derived
from parent classes or superclasses. A class can spawn a new subclass,
also called a child class. A subclass contains all the methods and
properties of its parent class. Inheritance is one of the features that
allows WBEM classes to function as templates for actual managed
objects in the WBEM environment.

instance A representation of a managed object that belongs to a particular class,
or a particular occurrence of an event. Instances contain actual data.

instance provider A type of provider that supports instances of system- and
property-specific classes. Instance providers can support data retrieval,
modification, deletion, and enumeration. Instance providers can also
invoke methods.

See also property provider.

interface class The class used to access a set of objects. The interface class can be an
abstract class representing the scope of an enumeration.

See also enumeration and scope.

Interface Definition
Language (IDL)

A generic term for a language that lets a program or object written in
one language communicate with another program written in an
unknown language.

key A property that is used to provide a unique identifier for an instance of
a class. Key properties are marked with the Key qualifier.

Key qualifier A qualifier that must be attached to every property in a class that
serves as part of the key for that class.

managed object A hardware or software component that is represented as an instance
of the CIM class. Information about managed objects is supplied by
providers as well as the CIM Object Manager.

See also managed resource.

Managed Object Format
(MOF)

A compiled language for defining classes and instances. The MOF
compiler (mofc) compiles .mof text files into Java classes and adds the
data to the CIM Object Manager Repository. MOF eliminates the need
to write code, thus providing a simple and fast technique for
modifying the CIM Object Manager Repository.

Glossary 183

managed resource A hardware or software component that can be managed by a
management application. Hard disks, CPUs, and operating systems
are examples of managed resources. Managed resources are described
in WBEM classes.

See also managed object.

management application An application or service that uses information originating from one or
more managed objects in a managed environment. Management
applications retrieve this information through calls to the CIM Object
Manager API from the CIM Object Manager and from providers.

management
information base

A database of managed objects.

metamodel A CIM component that describes the entities and relationships
representing managed objects. For example, classes, instances, and
associations are included in the metamodel.

metaschema A formal definition of the Common Information Model, which defines
the terms used to express the model, its usage, and its semantics.

method A function describing the behavior of a class. Including a method in a
class does not guarantee an implementation of the method.

MOF file A text file that contains definitions of classes and instances using the
Managed Object Format (MOF) language.

Named Element An entity that can be expressed as an object in the metaschema.

namespace A directory-like structure that can contain classes, instances, and other
namespaces.

object path A formatted string used to access namespaces, classes, and instances.
Each object on the system has a unique path which identifies it locally
or over the network. Object paths are conceptually similar to Universal
Resource Locators (URLs).

override Indicates that the property, method, or reference in the derived class
overrides the similar construct in the parent class in the inheritance
tree or in the specified parent class.

polymorphism The ability to alter methods and properties in a derived class without
changing their names or altering interfaces. For example, a subclass
can redefine the implementation of a method or property inherited
from its superclass. The property or method is thereby redefined even
if the superclass is used as the interface class.

Thus, the LogicalDevice class can define the variable status as a string,
and can return the values "on" or "off." The Modem subclass of
LogicalDevice can redefine (override) status by returning "on," "off,"
and "connected." If all LogicalDevices are enumerated, any

184 Solaris WBEM SDK Developer’s Guide • December 2001

LogicalDevice that happens to be a modem can return the value
"connected" for the status property.

property A value used to characterize the instances of a class. Property names
cannot begin with a digit and cannot contain white space. Property
values must have a valid Managed Object Format (MOF) data type.

property provider A program that communicates with managed objects to access data
and event notifications from a variety of sources, such as the Solaris
operating environment or a Simple Network Management Protocol
(SNMP) SNMP device. Providers forward this information to the CIM
Object Manager for integration and interpretation.

qualifier A modifier containing information that describes a class, an instance, a
property, a method, or a parameter. The three categories of qualifiers
are: those defined by the Common Information Model (CIM), those
defined by WBEM (standard qualifiers), and those defined by
developers. Standard qualifiers are attached automatically by the CIM
Object Manager.

qualifier flavor An attribute of a CIM qualifier that governs the use of a qualifier.
WBEM flavors describe rules that specify whether a qualifier can be
propagated to derived classes and instances and whether or not a
derived class or instance can override the qualifier’s original value.

range A class that is referenced by a reference property.

reference A special string property type that is marked with the reference
qualifier, indicating that it is a pointer to other instances.

required property A property that must have a value.

schema A collection of class definitions that describe managed objects in a
particular environment.

scope An attribute of a CIM qualifier that indicates which CIM elements can
use the qualifier. Scope can only be defined in the Qualifier Type
declaration; it cannot be changed in a qualifier.

selective inheritance The ability of a descendant class to drop or override the properties of
an ancestral class.

Simple Network
Management Protocol
(SNMP)

A protocol of the Internet reference model used for network
management.

singleton class A WBEM class that supports only a single instance.

Solaris Schema A Sun extension to the CIM Schema that contains definitions of classes
and instances to represent managed objects that exist in a typical
Solaris operating environment.

standard schema A common conceptual framework for organizing and relating the
various classes representing the current operational state of a system,

Glossary 185

network, or application. The standard schema is defined by the
Distributed Management Task Force (DMTF) in the Common
Information Model (CIM).

static class A WBEM class whose definition is persistent. The definition is stored
in the CIM Object Manager Repository until it is explicitly deleted. The
CIM Object Manager can provide definitions of static classes without
the help of a provider. Static classes can support either static or
dynamic instances.

static instance An instance that is persistently stored in the CIM Object Manager
Repository.

subclass A class that is derived from a superclass. The subclass inherits all
features of its superclass, but can add new features or redefine existing
ones.

subschema A part of a schema owned by a particular organization. The Win32 and
Solaris Schemas are examples of subschemas.

superclass The class from which a subclass inherits.

transitive dependency In a relation having at least three attributes R (A, B, C), the situation in
which A determines B, B determines C, but B does not determine A.

trigger A recognition of a state change (such as create, delete, update, or
access) of a class instance, and update or access of a property. The
WBEM implementation does not have an explicit object representing a
trigger. Triggers are implied either by the operations on basic objects of
the system (create, delete, and modify on classes, instances and
namespaces) or by events in the managed environment.

Unified Modeling
Language (UML)

A notation language used to express a software system using boxes
and lines to represent objects and relationships.

Unicode A 16-bit character set capable of encoding all known characters and
used as a worldwide character-encoding standard.

UTF-8 An 8-bit transformation format that may also serve as a transformation
format for Unicode character data.

virtual function table
(VTBL)

A table of function pointers, such as an implementation of a class. The
pointers in the VTBL point to the members of the interfaces that an
object supports.

Win32 Schema A Microsoft extension to the CIM Schema that contains definitions of
classes and instances to represent managed objects that exist in a
typical Win32 environment.

186 Solaris WBEM SDK Developer’s Guide • December 2001

Index

A
application programming interfaces (APIs)

calling methods, 109
connecting to CIM Object Manager with

default namespace, 84
creating a namespace, 113
creating instances, 86
deleting a class, 117
deleting instances, 86
enumerating classes, 96
enumerating namespaces, 94
example program, 80
exception handling, 111
getting CIM qualifiers, 119
getting properties, 90
overview, 75
programming tasks, 82
provider, 123
retrieving classes, 110
setting CIM qualifiers, 120
setting instances, 92
specifying a namespace, 84

B
base class

creating, 115

C
CIM Object Manager

connecting to, 83
connecting to default namespace, 84
error messages, 163
how it uses providers, 123
registering a provider, 132

CIM qualifiers
getting, 119
setting, 120

CIM Schema, 26
CIM Workshop

adding classes, 64
CIM WorkShop

displaying and creating instances, 70
interface, 36
starting, 55
working in namespaces, 59

class
deleteClass, 117
deleting, 117
enumerating, 96
newInstance, 116
retrieving, 110

class definition
retrieving, 82

classes
CIMClass, 115
creating, 115
deleting, 117
retrieving definition of, 82

187

client session
opening, 82

Common Information Model
basic terms

association, 25
extension schemas, 31
schema, 25

Core Model
dependencies, 29
system classes, 27

D
default namespace, 59, 82
Distributed Management Task Force, 21
dynamic data, 123

E
Error messages, 163
error messages

handling, 82
example programs

running, 158
examples

calling a method, 109
connecting to CIM Object Manager, 83
creating a namespace, 113
creating an instance, 86
deleting a class, 117
deleting an instance, 86
enumerating classes, 96
enumerating namespaces, 94
error message, 164
getting a property, 90
getting CIM qualifiers, 119
implementing a property provider, 127
Java output, 80
retrieving a class, 110
setting CIM qualifiers, 120
setting instances, 92
specifying a namespace, 84

exception handling, 111

exceptions, See error messages

H
host

moving to another, 61

I
instance

creating, 85
deleting, 86
getting and setting, 88
type of provider, 124

instances
in CIM WorkShop, 70

J
Java

creating instances, 86
deleting instances, 86
getting properties, 90
integrating Java programs with native

methods, 130, 159
Java Native Interface (JNI), 130
setting instances, 92
Solaris WBEM SDK example programs, 155
specifying a namespace, 84

M
Managed Object Format

creating base classes, 115
description, 32

method
calling, 82
deleteInstance, 86
deleting a namespace, 113
enumNameSpace, 94
getClass, 110
getInstance, 88
getProperty, 90, 91

188 Solaris WBEM SDK Developer’s Guide • December 2001

method (continued)
getPropertyValue, 127
invokeMethod, 109
type of provider, 124

Methods
calling, 109

MOF Compiler
error checking, 112

N
namespace

connecting to default, 84
creating, 113
default, 83, 112
enumerating, 94
refreshing a, 62

namespaces
creating, 82

O
object

enumerating, 82

P
property

getting, 90, 91
type of provider, 124

provider
functions, 124
implementing a Property Provider, 127
interfaces, 125
registering with the CIM Object

Manager, 133
types, 124
writing a native provider, 130

Q
qualifier

definition, 119

qualifier (continued)
example type declaration, 119
key, 115

Query
executing, 57

S
schema

CIM Schema, 26
security namespace, 82
single provider, 124
Solaris WBEM SDK

example program, 80
programming tasks, 82

Solaris WBEM SDK error messages, See error
messages

Solaris WBEM SDK example programs, See
example programs

Solaris WBEM Services error messages, See error
messages

T
technology-specific schemas, 29

U
Uniform Modeling Language, 23

W
WBEM

application programming interfaces
(APIs), 75

definition, 21
workshop

See CIM WorkShop

Index 189

190 Solaris WBEM SDK Developer’s Guide • December 2001

