
man pages section 7: Device and
Network Interfaces

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816–0222–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011030@2471

Contents

Preface 11

Introduction 17

Intro(7) 18

Device and Network Interfaces 21

adp(7D) 22

afb(7d) 24

arp(7P) 25

asy(7D) 28

ata(7D) 31

audio(7I) 35

audiocs(7D) 46

audioens(7D) 50

audio_support(7I) 54

audiots(7D) 56

authmd5h(7M) 60

authsha1(7M) 61

bbc_beep(7D) 62

bd(7M) 63

bpp(7D) 65

bufmod(7M) 70

bwtwo(7D) 74

cadp160(7D) 75

cadp(7D) 76

3

cdio(7I) 81

ce(7D) 89

cgeight(7D) 93

cgfour(7D) 94

cgfourteen(7D) 95

cgsix(7D) 96

cgthree(7D) 97

cgtwo(7D) 98

chs(7D) 99

cmdk(7D) 100

connld(7M) 101

console(7D) 103

cpr(7) 104

cvc(7D) 106

cvcredir(7D) 107

dad(7D) 108

dbri(7D) 111

devinfo(7D) 117

dkio(7I) 118

dlpi(7P) 127

dman(7D) 128

dmfe(7D) 131

dnet(7D) 133

dpt(7D) 135

dr(7d) 137

ecpp(7D) 139

elx(7D) 145

elxl(7D) 147

encr3des(7M) 149

encraes(7M) 150

encrbfsh(7M) 151

encrdes(7M) 152

eri(7D) 153

esp(7D) 157

fas(7D) 163

fbio(7I) 171

fcip(7D) 173

4 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

fcp(7D) 176

fctl(7D) 177

fd(7D) 178

fdio(7I) 184

ffb(7D) 188

fp(7d) 189

FSS(7) 190

ge(7D) 193

gld(7D) 197

glm(7D) 207

gpio_87317(7D) 212

grbeep(7d) 213

hci1394(7D) 214

hdio(7I) 215

hid(7D) 217

hme(7D) 219

hpfc(7D) 224

hsfs(7FS) 226

hubd(7D) 229

i2o_bs(7D) 231

i2o_scsi(7D) 233

icmp6(7P) 234

icmp(7P) 236

idn(7d) 238

ieef(7D) 241

ifb(7d) 243

ifp(7D) 244

if_tcp(7P) 248

inet6(7P) 255

inet(7P) 258

ip6(7P) 261

ip(7P) 267

iprb(7D) 272

ipsec(7P) 275

ipsecah(7P) 279

ipsecesp(7P) 280

isdnio(7I) 282

Contents 5

isp(7D) 296

kb(7M) 302

kdmouse(7D) 311

kstat(7D) 312

ksyms(7D) 313

ldterm(7M) 315

le(7D) 318

llc1(7D) 322

llc2(7D) 325

lockstat(7D) 332

lofi(7D) 333

lofs(7FS) 334

log(7D) 336

logi(7D) 340

lp(7D) 341

ltem(7D) 343

m64(7D) 344

md(7D) 345

mediator(7D) 349

mem(7D) 352

mhd(7i) 353

mixer(7I) 358

msglog(7D) 368

msm(7D) 369

mt(7D) 370

mtio(7I) 371

ncrs(7D) 383

null(7D) 390

ocf_escr1(7D) 391

ocf_ibutton(7D) 392

ocf_iscr1(7D) 393

ohci(7D) 394

openprom(7D) 395

pcata(7D) 400

pcelx(7D) 402

pcfs(7FS) 404

pcic(7D) 409

6 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

pckt(7M) 411

pcmem(7D) 412

pcn(7D) 413

pcram(7D) 415

pcscsi(7D) 418

pcser(7D) 419

pf_key(7P) 421

pfmod(7M) 431

pipemod(7M) 434

pln(7D) 435

pm(7D) 436

poll(7d) 442

prnio(7I) 447

ptem(7M) 451

ptm(7D) 452

pts(7D) 454

pty(7D) 456

qfe(7d) 459

qlc(7D) 463

quotactl(7I) 464

random(7D) 466

rns_smt(7D) 468

route(7P) 469

routing(7P) 473

sad(7D) 475

sbpro(7D) 478

scman(7D) 483

scmi2c(7d) 486

sc_nct(7D) 487

scsa2usb(7D) 488

scsi_vhci(7D) 492

sd(7D) 495

se(7D) 501

se_hdlc(7D) 504

ses(7D) 507

sesio(7I) 509

sf(7D) 510

Contents 7

sgen(7D) 513

sk98sol(7D) 519

skfp(7D) 525

slp(7P) 527

soc(7D) 529

socal(7D) 531

sockio(7I) 533

sppptun(7M) 534

spwr(7D) 535

ssd(7D) 536

st(7D) 541

stc(7D) 555

stp4020(7D) 567

streamio(7I) 568

su(7D) 584

sxp(7D) 587

symhisl(7D) 590

sysmsg(7D) 593

tcp(7P) 594

tcx(7D) 599

termio(7I) 601

termiox(7I) 622

ticlts(7D) 628

timod(7M) 630

tirdwr(7M) 632

tmpfs(7FS) 634

tpf(7D) 636

ttcompat(7M) 637

tty(7D) 645

ttymux(7D) 646

tun(7M) 647

uata(7D) 651

udfs(7FS) 653

udp(7P) 654

uhci(7D) 657

usba(7D) 658

usb_ac(7D) 660

8 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

usb_as(7D) 664

usbkbm(7M) 666

usb_mid(7D) 668

usbms(7M) 669

usbprn(7D) 671

uscsi(7I) 677

usoc(7D) 681

visual_io(7I) 684

volfs(7FS) 691

vuidmice(7M) 693

wrsm(7D) 696

wrsmd(7D) 698

wscons(7D) 699

xmemfs(7FS) 708

zero(7D) 710

zs(7D) 711

zsh(7D) 714

Index 719

Contents 9

10 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

11

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

12 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 13

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

14 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 15

16 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

Introduction

17

Intro – introduction to special files

This section describes various device and network interfaces available on the system.
The types of interfaces described include character and block devices, STREAMS
modules, network protocols, file systems, and ioctl requests for driver subsystems and
classes.

This section contains the following major collections:

(7D) The system provides drivers for a variety of hardware devices, such as
disk, magnetic tapes, serial communication lines, mice, and frame buffers,
as well as virtual devices such as pseudo-terminals and windows.

This section describes special files that refer to specific hardware
peripherals and device drivers. STREAMS device drivers are also
described. Characteristics of both the hardware device and the
corresponding device driver are discussed where applicable.

An application accesses a device through that device’s special file. This
section specifies the device special file to be used to access the device as
well as application programming interface (API) information relevant to
the use of the device driver.

All device special files are located under the /devices directory. The
/devices directory hierarchy attempts to mirror the hierarchy of system
busses, controllers, and devices configured on the system. Logical device
names for special files in /devices are located under the /dev directory.
Although not every special file under /devices will have a corresponding
logical entry under /dev, whenever possible, an application should
reference a device using the logical name for the device. Logical device
names are listed in the FILES section of the page for the device in
question.

This section also describes driver configuration where applicable. Many
device drivers have a driver configuration file of the form
driver_name.conf associated with them (see driver.conf(4)). The
configuration information stored in the driver configuration file is used to
configure the driver and the device. Driver configuration files are located in
/kernel/drv and /usr/kernel/drv. Driver configuration files for
platform dependent drivers are located in /platform/‘uname
-i‘/kernel/drv where ‘uname -i‘ is the output of the uname(1)
command with the -i option.

Some driver configuration files may contain user configurable properties.
Changes in a driver’s configuration file will not take effect until the system
is rebooted or the driver has been removed and re-added (see
rem_drv(1M) and add_drv(1M)).

Intro(7)

NAME

DESCRIPTION

18 man pages section 7: Device and Network Interfaces • Last Revised 29 Sep 1994

(7FS) This section describes the programmatic interface for several file systems
supported by SunOS.

(7I) This section describes ioctl requests which apply to a class of drivers or
subsystems. For example, ioctl requests which apply to most tape devices
are discussed in mtio(7I). Ioctl requests relevant to only a specific device
are described on the man page for that device. The page for the device in
question should still be examined for exceptions to the ioctls listed in
section 7I.

(7M) This section describes STREAMS modules. Note that STREAMS drivers are
discussed in section 7D. streamio(7I) contains a list of ioctl requests used
to manipulate STREAMS modules and interface with the STREAMS
framework. Ioctl requests specific to a STREAMS module will be discussed
on the man page for that module.

(7P) This section describes various network protocols available in SunOS.

SunOS supports both socket-based and STREAMS-based network
communications. The Internet protocol family, described in inet(7P), is the
primary protocol family supported by SunOS, although the system can
support a number of others. The raw interface provides low-level services,
such as packet fragmentation and reassembly, routing, addressing, and
basic transport for socket-based implementations. Facilities for
communicating using an Internet-family protocol are generally accessed by
specifying the AF_INET address family when binding a socket; see
socket(3SOCKET) for details.

Major protocols in the Internet family include:

� The Internet Protocol (IP) itself, which supports the universal datagram
format, as described in ip(7P). This is the default protocol for
SOCK_RAW type sockets within the AF_INET domain.

� The Transmission Control Protocol (TCP); see tcp(7P). This is the
default protocol for SOCK_STREAM type sockets.

� The User Datagram Protocol (UDP); see udp(7P). This is the default
protocol for SOCK_DGRAM type sockets.

� The Address Resolution Protocol (ARP); see arp(7P).
� The Internet Control Message Protocol (ICMP); see icmp(7P).

add_drv(1M), rem_drv(1M), intro(3), ioctl(2), socket(3SOCKET),
driver.conf(4), arp(7P), icmp(7P), inet(7P), ip(7P), mtio(7I), st(7D),
streamio(7I), tcp(7P), udp(7P)

System Administration Guide: IP Services

STREAMS Programming Guide

Writing Device Drivers

Intro(7)

SEE ALSO

Introduction 19

Intro(7)

20 man pages section 7: Device and Network Interfaces • Last Revised 29 Sep 1994

Device and Network Interfaces

21

adp – Low-level module for controllers based on Adaptec AIC-7870P and AIC-7880P
SCSI chips

The adp module provides low-level interface routines between the common disk/tape
I/O system and SCSI (Small Computer System Interface) controllers based on the
Adaptec AIC-7870P and AIC-7880P SCSI chips. These controllers include the Adaptec
AHA–2940, AHA–2940W, AHA–2940U, AHA–2940UW, AHA–3940, and AHA–3940W,
as well as motherboards with embedded AIC-7870P and AIC-7880P SCSI chips.

Supported devices are AIC-7850, AIC-7860, AIC-7870, AIC-7880 and AIC-7895.

The adp module can be configured for disk and streaming tape support for one or
more host adapter boards, each of which must be the sole initiator on a SCSI bus.
Auto-configuration code determines if the adapter is present at the configured address
and what types of devices are attached to the adapter.

The Plug N Play SCAM Support option is not supported.

� To use the AHA-3940 or AHA-3940W adapters, the motherboard must have a BIOS
that supports the DEC PCI-to-PCI Bridge chip on the host bus adapter.

� User-level programs have exhibited problems on some PCI systems with an
Adaptec AHA-2940 or AHA-2940W card and certain motherboards. If problems
with user-level programs occur, use the BIOS setup to disable write-back CPU
caching (or all caching if there is no control over the caching algorithm). The
affected motherboards are:

- PCI motherboards with a 60-MHz Pentium chip, with PCI chipset numbers S82433LX
Z852 and S82434LX Z850. The part numbers of the Intel motherboards are
AA616393-007 and AA615988-009.
- PCI motherboards with a 90-MHz Pentium chip, with PCI chipset numbers
S82433NX Z895, S82434NX Z895, and S82434NX Z896. The part number of the Intel
motherboard is 541286-005. (Some Gateway 2000 systems use this motherboard.)
- AA-619772-002 motherboard with 82433LX Z852 and 82434LX Z882 chips causes
random memory inconsistencies. Return the motherboard to the vendor for a
replacement.

� If the AHA-2940 SCSI adapter does not recognize the Quantum Empire 1080S, HP
3323 SE or other SCSI disk drive, reduce the Synchronous Transfer rate on the
Adaptec controller to 8 Mbps.

� The AHA-3940 has been certified by Adaptec to work on specific systems; however,
some testing has shown that the Solaris operating environment works properly in
some of those systems and not in others.

Use the Adaptec configuration utility to perform the following steps:

� Configure each SCSI device to have a unique SCSI ID, then using the adapter’s
Advanced Configuration Options setup menu, set the Plug N Play SCAM Support
option to Disabled.

adp(7D)

NAME

DESCRIPTION

PRECONFIGURATION

Known Problems
and Limitations

CONFIGURATION

22 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

� If there is more than one controller (or an embedded controller), try to use one IRQ
per controller.

� Enable bus mastering for the slots with your host bus adapters, when the choice is
given.

� For older disk drives, tape drives, and most CD-ROM devices, make sure the
maximum SCSI data transfer speed is set to 5.0 Mbps.

� Enable support for disks larger than 1 Gbyte if applicable.

/kernel/drv/adp.conf Configuration file for the adp driver; there are no
user-configurable options in this file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5)

Solaris (Intel Platform Edition) Hardware Compatibility List

Throughout the release, support of additional devices may be added. See the Solaris
(Intel Platform Edition) Hardware Compatibility List for additional information.

The adp driver supports Logical Unit Number (“LUN”) values of 0 through 15. This
range exceeds the standard SCSI-2 requirements which call for support of LUNs 0
through 7.

adp(7D)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Device and Network Interfaces 23

afb – Elite3D graphics accelerator driver

The afb driver is the device driver for the Sun Elite3D graphics accelerators. The
afbdaemonprocess loads the afb microcode at system startup time and during the
resume sequence of a suspend-resume cycle.

/dev/fbs/afbn
Device special file

/usr/lib/afb.ucode
afb microcode

/usr/sbin/afbdaemon
afb microcode loader

afbconfig(1M)

afb(7d)

NAME

DESCRIPTION

FILES

SEE ALSO

24 man pages section 7: Device and Network Interfaces • Last Revised 27 Aug 1999

arp, ARP – Address Resolution Protocol

#include <sys/fcntl.h>

#include <sys/socket.h>

#include <net/if_arp.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

d = open ("/dev/arp", oflag);

ARP is a protocol used to map dynamically between Internet Protocol (IP) and
10Mb/s Ethernet addresses. It is used by all the 10Mb/s Ethernet datalink providers
(interface drivers) and it can be used by other datalink providers that support
broadcast, such as FDDI and Token Ring. The only network layer supported in this
implementation is the Internet Protocol, although ARP is not specific to that protocol.

ARP caches IP-to-Ethernet address mappings. When an interface requests a mapping
for an address not in the cache, ARP queues the message that requires the mapping
and broadcasts a message on the associated network requesting the address mapping.
If a response is provided, ARP caches the new mapping and transmits any pending
message. ARP will queue at most four packets while waiting for a response to a
mapping request; it keeps only the four most recently transmitted packets.

The STREAMS device /dev/arp is not a Transport Level Interface (“TLI)” transport
provider and may not be used with the TLI interface.

To facilitate communications with systems that do not use ARP, ioctl() requests are
provided to enter and delete entries in the IP-to-Ethernet tables.

#include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl() request takes the same structure as an argument. SIOCSARP sets an
ARP entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These
ioctl() requests may be applied to any Internet family socket descriptor s, or to a
descriptor for the ARP device, but only by the privileged user.

The arpreq structure contains:

/*
* ARP ioctl request
*/
struct arpreq {

arp(7P)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

Device and Network Interfaces 25

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */

};
/* arp_flags field values */

#define ATF_COM 0x2 /* completed entry (arp_ha valid) */
#define ATF_PERM 0x4 /* permanent entry */
#define ATF_PUBL 0x8 /* publish (respond for other host) */

#define ATF_USETRAILERS 0x10 /* send trailer packets to host */

The address family for the arp_pa sockaddr must be AF_INET; for the arp_ha
sockaddr, it must be AF_UNSPEC. The only flag bits that may be written are
ATF_PUBL and ATF_USETRAILERS. ATF_PERM makes the entry permanent if the
ioctl() request succeeds. The peculiar nature of the ARP tables may cause the
ioctl() request to fail if too many permanent IP addresses hash to the same slot.
ATF_PUBL specifies that the ARP code should respond to ARP requests for the
indicated host coming from other machines. This allows a host to act as an “ARP
server”, which may be useful in convincing an ARP-only machine to talk to a
non-ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations. Trailers are an
alternate encapsulation used to allow efficient packet alignment for large packets
despite variable-sized headers. Hosts that wish to receive trailer encapsulations so
indicate by sending gratuitous ARP translation replies along with replies to IP
requests; trailer encapsulations are also sent in reply to IP translation replies. The
negotiation is thus fully symmetrical, in that either host or both may request trailers.
The ATF_USETRAILERS flag records the receipt of such a reply and enables the
transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host which
responds to an ARP mapping request for the local host’s address).

arp(1M), ifconfig(1M), if_tcp(7P), inet(7P)

Leffler, Sam, and Michael Karels, Trailer Encapsulations, RFC 893, Network Information
Center, SRI International, Menlo Park, California, April 1984.

Plummer, Dave, An Ethernet Address Resolution Protocol -or- Converting Network Protocol
Addresses to 48.bit Ethernet Addresses for Transmission on Ethernet Hardware, RFC 826,
Network Information Center, SRI International, Menlo Park, California, November
1982.

IP: Hardware address ’%x:%x:%x:%x:%x:%x’
trying to be our address ’%d.%d.%d.%d’!

Duplicate IP address. ARP has discovered another host on the local network which
responds to mapping requests for the Internet address of this system.

IP: Proxy ARP problem? Hardware address ’%x:%x:%x:%x:%x:%x’
thinks it is ’%d.%d.%d.%d’

arp(7P)

SEE ALSO

DIAGNOSTICS

26 man pages section 7: Device and Network Interfaces • Last Revised 23 Aug 1994

This message will appear if arp(1M) has been used to create a published entry, and
some other host on the local network responds to mapping requests for the
published ARPentry.

arp(7P)

Device and Network Interfaces 27

asy – asynchronous serial port driver

#include <fcntl.h>

#include <sys/termios.h>

open("/dev/ttynn", mode);

open("/dev/ttydn", mode);

open("/dev/cuan", mode);

The asy module is a loadable STREAMS driver that provides basic support for the
standard UARTS that use Intel-8250, National Semiconductor-16450 and 16550
hardware, in addition to basic asynchronous communication support. The asy
module supports those termio(7I) device control functions specified by flags in the
c_cflag word of the termios structure, and by the IGNBRK, IGNPAR, PARMRK, or
INPCK flags in the c_iflag word of the termios structure. All other termio(7I)
functions must be performed by STREAMS modules pushed atop the driver. When a
device is opened, the ldterm(7M) and ttcompat(7M) STREAMS modules are
automatically pushed on top of the stream, providing the standard termio(7I)
interface.

The character-special devices /dev/tty00 and /dev/tty01 are used to access the
two standard serial ports (COM1 and COM2) on an x86–based system. The asy
module supports up to four serial ports, including the standard ports. The ttynn
devices have minor device numbers in the range 00-03, and may be assigned names of
the form /dev/ttydn, where n denotes the line to be accessed. These device names
are typically used to provide a logical access point for a dial-in line that is used with a
modem.

To allow a single tty line to be connected to a modem and used for incoming and
outgoing calls, a special feature is available that is controlled by the minor device
number. By accessing character-special devices with names of the form /dev/cuan, it
is possible to open a port without the Carrier Detect signal being asserted, either
through hardware or an equivalent software mechanism. These devices are commonly
known as dial-out lines.

Note – This module is affected by the setting of certain eeprom variables. For
information on parameters that are persistent across reboots, see the eeprom(1M) man
page.

Once a /dev/cuan line is opened, the corresponding tty, or ttyd line cannot be
opened until the /dev/cuan line is closed. A blocking open will wait until the
/dev/cuan line is closed (which will drop Data Terminal Ready, after which
Carrier Detect will usually drop as well) and carrier is detected again. A
non-blocking open will return an error. If the /dev/ttydn line has been opened
successfully (usually only when carrier is recognized on the modem), the
corresponding /dev/cuan line cannot be opened. This allows a modem to be
attached to a device, (for example, /dev/ttyd0, which is renamed from

asy(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

28 man pages section 7: Device and Network Interfaces • Last Revised 11 Jun 2001

/dev/tty00) and used for dial-in (by enabling the line for login in /etc/inittab)
or dial-out (by tip(1) or uucp(1C)) as /dev/cua0 when no one is logged in on the
line.

The standard set of termio ioctl() calls are supported by asy.

Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls.

The input and output line speeds may be set to any speed that is supported by
termio. The speeds cannot be set independently; for example, when the output speed
is set, the input speed is automatically set to the same speed.

When the asy module is used to service the serial console port, it supports a BREAK
condition that allows the system to enter the debugger or the monitor. The BREAK
condition is generated by hardware and it is usually enabled by default.

A BREAK condition originating from erroneous electrical signals cannot be
distinguished from one deliberately sent by remote DCE. The Alternate Break
sequence can be used as a remedy against this. Due to a risk of incorrect sequence
interpretation, binary protocols such as PPP, SLIP, and others should not be run over
the serial console port when Alternate Break sequence is in effect. By default, the
Alternate Break sequence is a three character sequence: carriage return, tilde and
control-B (CR ~ CTRL-B), but may be changed by the driver. For more information on
breaking (entering the debugger or monitor) , see kbd(1) and kb(7M)

An open() will fail under the following conditions:

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened while the dial-in device is
already open, or the dial-in device is being opened with a no-delay
open and the dial-out device is already open.

EBUSY The unit has been marked as exclusive-use by another process
with a TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

/dev/tty[00-03]
hardwired tty lines

/dev/ttyd[0-3]
dial-in tty lines

/dev/cua[0-3]
dial-out tty lines

/platform/i86pc/kernel/drv/asy.conf
asy configuration file

See attributes(5) for descriptions of the following attributes:

asy(7D)

IOCTLS

ERRORS

FILES

ATTRIBUTES

Device and Network Interfaces 29

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

tip(1), kbd(1), uucp(1C), eeprom(1M), ioctl(2), open(2), termios(3C),
attributes(5), ldterm(7M), ttcompat(7M), kb(7M) termio(7I)

asyn : silo overflow.
The hardware overrun occurred before the input character could be serviced.

asyn : ring buffer overflow.
The driver’s character input ring buffer overflowed before it could be serviced.

asy(7D)

SEE ALSO

DIAGNOSTICS

30 man pages section 7: Device and Network Interfaces • Last Revised 11 Jun 2001

ata – AT attachment disk driver

ata@1,ioaddr

The ata driver supports disk and CD-ROM interfaces conforming to the AT
Attachment specification including IDE interfaces. It excludes the MFM, RLL, ST506,
and ST412 interfaces. Support is provided for CD_ROM drives that conform to the
Small Form Factor (SFF) ATA Packet Interface (ATAPI) specification: SFF-8020 revision
1.2.

If two IDE drives share the same controller, you must set one to master and the other to
slave. If both an IDE disk drive and an IDE CD-ROM drive utilize the same controller,
you can designate the disk drive as the master with the CD-ROM drive as the slave,
although this is not mandatory. If there is only one drive on a controller, it must be set
to master.

Primary controller:

� IRQ Level: 14
� I/O Address: 0x1F0

Secondary controller:

� IRQ Level: 15
� I/O Address: 0x170

If an IDE CD-ROM drive is installed, the system BIOS parameter for that device
should be:

� Drive Type: Not installed

If an enhanced IDE drive is installed, set the system BIOS as follows:

� Enhanced IDE Drive: Enabled

Note – If the BIOS supports autoconfiguration, use this facility to set the number of
heads, cylinders, and sectors for the IDE disk drive. If this capability is not supported
by the BIOS, use the settings provided by the disk manufacturer.

� Panasonic LK-MC579B and the Mitsumi FX34005 IDE CD-ROM drives cannot be
used to install the Solaris operating environment and are not supported.

� Some vendors ship PCI-equipped machines with IDE interfaces on the
motherboard. A number of these machines use the CMD-604 PCI-IDE controller.
This chip provides two IDE interfaces. The primary IDE interface is at I/O address
0x1F0 and the secondary interface at 0x170. However, this chip cannot handle
simultaneous I/O on both IDE interfaces. This defect causes the Solaris software to
hang if both interfaces are used. Use only the primary IDE interface at address
0x1F0.

� You cannot boot from the third or fourth IDE disk drives; however you can install
Solaris software on them.

ata(7D)

NAME

SYNOPSIS

DESCRIPTION

PRECONFIGURATION

Supported Settings

Known Problems
and Limitations

Device and Network Interfaces 31

� The Solaris Volume Management software does not work with the Sony CDU-55E
CD-ROM drive no matter how it is configured (as the master or the slave).
Comment out the following line in the file /etc/vold.conf to prevent vold from
hanging the controller:

use cdrom drive /dev/rdsk/c*s2 dev_cdrom.so cdrom%d

� NEC CDR-260/CDR-260R/CDR-273 and Sony CDU-55E ATAPI CD-ROM drives
might fail during installation.

� Sony CDU-701 CD-ROM drives must be upgraded to use firmware version 1.0r or
later to support booting from the CD.

Direct Memory Access is enabled by default. To disable DMA for the ata driver, do
the following steps after you have installed the Solaris operating environment:

1. Run the Solaris (Intel Platform Edition) Device Configuration Assistant from the
boot diskette or the installation CD (if your system supports CD-ROM booting).

Note – After you boot using the boot diskette, the new ata-dma-enabled
property value is preserved on the diskette. This means that the changed value is
in effect each time you use the boot diskette.

2. Press F2_Continue to scan for devices.

3. Press F2_Continue to display a list of boot devices on the Boot Solaris menu.

4. Go to the View/Edit Property Settings menu.

5. Press F4_Boot Tasks, select View/Edit Property Settings, and press
F2_Continue.

6. Change the value of the ata-dma-enabled property. A value of 1 indicates that
DMA is enabled and 0 indicates that DMA is disabled.

� Select the ata-dma-disabled property from the list and press F3_Change.

� Type 0 and press F2_Continue to disable DMA.

� Press F2_Back to return to the Boot Tasks menu.

� Press F3_Back to return to the Boot Solaris menu.

� Select the device from which you want to install (network adapter or CD-ROM
drive) and press F2_Continue.

The driver initializes itself in accordance with the information found in the
configuration file ata.conf (see below). The only user configurable items in this file
are:

drive0_block_factor
drive1_block_factor ATA controllers support some amount of buffering

(blocking). The purpose is to interrupt the host when
an entire buffer full of data has been read or written
instead of using an interrupt for each sector. This
reduces interrupt overhead and significantly increases
throughput. The driver interrogates the controller to

ata(7D)

Direct Memory
Access (DMA) and

PCI-IDE Systems

CONFIGURATION

32 man pages section 7: Device and Network Interfaces • Last Revised 21 Aug 2001

find the buffer size. Some controllers hang when
buffering is used, so the values in the configuration file
are used by the driver to reduce the effect of buffering
(blocking). The values presented may be chosen from
0x1, 0x2, 0x4, 0x8 and 0x10.

The values as shipped are set to 0x1, and they can be
tuned to increase performance.

If your controller hangs when attempting to use higher
block factors, you may be unable to reboot the system.
For IA based systems, it is recommended that the
tuning be carried out using a duplicate of the
/platform/i86pc/kernel directory subtree. This
will ensure that a bootable kernel subtree exists in the
event of a failed test.

max_transfer This value controls the size of individual requests for
consecutive disk sectors. The value may range from
0x1 to 0x100. Higher values yield higher throughput.
The system is shipped with a value of 0x100, which
should not be changed.

ata-revert-to-defaults
revert—<diskmodel> When preparing to reboot (or shutdown), the ata

driver issues a command that allows the disk to revert
to power-on defaults when it receives a software reset
(SRST) sequence. This is usually appropriate as
preparation for the boot sequence. However, this
doesn’t work properly on certain combinations of disk
and system ROM (BIOS). Solaris maintains a list of
disks known to cause this problem; however the list is
not all-inclusive and other models may also be affected.

To disallow revert to power-on defaults for all ATA
disks, set ata-revert-to-defaults to 0.

To disallow revert to power-on defaults only for disks
of a particular model, set revert—<diskmodel> to 0.

Explicitly set ata-revert-to-defaults or
revert-<diskmodel> (IA only) to 1 to override
Solaris’ built-in list and allow reverting to power-on
defaults for all disks or a particular model of disk.

To determine the string to substitute for
<diskmodel>, boot your system (you may have to
press the reset button or power-cycle) and then go to
/var/adm/messages. Look for the string "IDE device

ata(7D)

Device and Network Interfaces 33

at targ" or "ATAPI device at targ." The next line will
contain the word "model" followed by the model
number and a comma. Ignore all characters except
letters, digits, ".", "_", and "-". Change uppercase letters
to lower case. If the string revert-<diskmodel> is
longer than 31 characters, use only the first 31
characters.

EXAMPLE 1 Sample ata Configuration File

for higher performance - set block factor to 16
drive0_block_factor=0x1 drive1_block_factor=0x1
max_transfer=0x100

flow_control="dmult" queue="qsort" disk="dadk" ;

EXAMPLE 2 ata-revert-to-defaults Property

tail ata.conf
timer resolution.
#
standby=-1 don’t modify the drive’s current setting
standby=0 disable standby timer
standby=n n == number of seconds to set the timer to
#

#standby=900;

revert-st320420a=0;

Output of /var/adm/messages:

Aug 17 06:49:43 caesar ata:[ID 640982 kern.info] IDE device at targ 0, lun 0 lastlun 0x0

Aug 17 06:49:43 caesar ata:[ID 521533 kern.info] model ST320420A, stat

/platform/i86pc/kernel/drv/ata
Device file.

/platform/i86pc/kernel/drv/ata.conf
Configuration file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), cmdk(7D)

ata(7D)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

34 man pages section 7: Device and Network Interfaces • Last Revised 21 Aug 2001

audio – generic audio device interface

#include <sys/audio.h>

An audio device is used to play and/or record a stream of audio data. Since a specific
audio device may not support all of the functionality described below, refer to the
device-specific manual pages for a complete description of each hardware device. An
application can use the AUDIO_GETDEV ioctl(2) to determine the current audio
hardware associated with /dev/audio.

Digital audio data represents a quantized approximation of an analog audio signal
waveform. In the simplest case, these quantized numbers represent the amplitude of
the input waveform at particular sampling intervals. To achieve the best
approximation of an input signal, the highest possible sampling frequency and
precision should be used. However, increased accuracy comes at a cost of increased
data storage requirements. For instance, one minute of monaural audio recorded in
-Law format (pronounced mew-law) at 8 KHz requires nearly 0.5 megabytes of
storage, while the standard Compact Disc audio format (stereo 16-bit linear PCM data
sampled at 44.1 KHz) requires approximately 10 megabytes per minute.

Audio data may be represented in several different formats. An audio device’s current
audio data format can be determined by using the AUDIO_GETINFO ioctl(2)
described below.

An audio data format is characterized in the audio driver by four parameters: Sample
Rate, Encoding, Precision, and Channels. Refer to the device-specific manual pages for
a list of the audio formats that each device supports. In addition to the formats that
the audio device supports directly, other formats provide higher data compression.
Applications may convert audio data to and from these formats when playing or
recording.

Sample rate is a number that represents the sampling frequency (in samples per
second) of the audio data.

An encoding parameter specifies the audio data representation. -Law encoding
corresponds to CCITT G.711, and is the standard for voice data used by telephone
companies in the United States, Canada, and Japan. A-Law encoding is also part of
CCITT G.711 and is the standard encoding for telephony elsewhere in the world.
A-Law and -Law audio data are sampled at a rate of 8000 samples per second with
12-bit precision, with the data compressed to 8-bit samples. The resulting audio data
quality is equivalent to that of standard analog telephone service.

Linear Pulse Code Modulation (PCM) is an uncompressed, signed audio format in
which sample values are directly proportional to audio signal voltages. Each sample is
a 2’s complement number that represents a positive or negative amplitude.

Precision indicates the number of bits used to store each audio sample. For instance,
mu-Law and A-Law data are stored with 8-bit precision. PCM data may be stored at
various precisions, though 16-bit PCM is most common.

audio(7I)

NAME

SYNOPSIS

OVERVIEW

AUDIO
FORMATS

Sample Rate

Encodings

Precision

Device and Network Interfaces 35

Multiple channels of audio may be interleaved at sample boundaries. A sample frame
consists of a single sample from each active channel. For example, a sample frame of
stereo 16-bit PCM data consists of 2 16-bit samples, corresponding to the left and right
channel data.

The device /dev/audio is a device driver that dispatches audio requests to the
appropriate underlying audio device driver. The audio driver is implemented as a
STREAMS driver. In order to record audio input, applications open(2) the
/dev/audio device and read data from it using the read(2) system call. Similarly,
sound data is queued to the audio output port by using the write(2) system call.
Device configuration is performed using the ioctl(2) interface.

Alternatively, opening /dev/audio may open a mixing audio driver that provides a
super set of this audio interface. The audio mixer removes the exclusive resource
restriction, allowing multiple processes to play and record audio at the same time. See
the mixer(7I) and audio_support(7I) manual pages for more information.

Because some systems may contain more than one audio device, application writers
are encouraged to query the AUDIODEV environment variable. If this variable is
present in the environment, its value should identify the path name of the default
audio device.

The audio device is treated as an exclusive resource – only one process can open the
device at a time. However, if the AUDIO_DUBLEX bit is set in hw_features of the
audio_info_t structure, two processes may simultaneously access the device. This
allows one process to open the device as read-only and a second process to open it as
write-only. See below for details.

When a process cannot open /dev/audio because the requested access mode is busy:

� if either the O_NDELAY or O_NONBLOCK flags are set in the open() oflag argument,
then –1 is immediately returned, with errno set to EBUSY.

� if neither the O_NDELAY nor the O_NONBLOCK flag are set, then open() hangs
until the device is available or a signal is delivered to the process, in which case a
–1 is returned with errno set to EINTR. This allows a process to block in the open
call while waiting for the audio device to become available.

Upon the initial open() of the audio device, the driver will reset the data format of
the device to the default state of 8-bit, 8Khz, mono -Law data. If the device is already
open and a different audio format has been set, this will not be possible on some
devices. Audio applications should explicitly set the encoding characteristics to match
the audio data requirements, rather than depend on the default configuration.

Since the audio device grants exclusive read or write access to a single process at a
time, long-lived audio applications may choose to close the device when they enter an
idle state and reopen it when required. The play.waiting and record.waiting flags in the
audio information structure (see below) provide an indication that another process has
requested access to the device. For instance, a background audio output process may
choose to relinquish the audio device whenever another process requests write access.

audio(7I)

Channels

DESCRIPTION

Opening the
Audio Device

36 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

The read() system call copies data from the system buffers to the application.
Ordinarily, read() blocks until the user buffer is filled. The I_NREAD ioctl (see
streamio(7I)) may be used to determine the amount of data that may be read
without blocking. The device may alternatively be set to a non-blocking mode, in
which case read() completes immediately, but may return fewer bytes than
requested. Refer to the read(2) manual page for a complete description of this
behavior.

When the audio device is opened with read access, the device driver immediately
starts buffering audio input data. Since this consumes system resources, processes that
do not record audio data should open the device write-only (O_WRONLY).

The transfer of input data to STREAMS buffers may be paused (or resumed) by using
the AUDIO_SETINFO ioctl to set (or clear) the record.pause flag in the audio
information structure (see below). All unread input data in the STREAMS queue may
be discarded by using the I_FLUSH STREAMS ioctl (see streamio(7I)). When
changing record parameters, the input stream should be paused and flushed before
the change, and resumed afterward. Otherwise, subsequent reads may return samples
in the old format followed by samples in the new format. This is particularly
important when new parameters result in a changed sample size.

Input data can accumulate in STREAMS buffers very quickly. At a minimum, it will
accumulate at 8000 bytes per second for 8-bit, 8 KHz, mono, mu-Law data. If the
device is configured for 16-bit linear or higher sample rates, it will accumulate even
faster. If the application that consumes the data cannot keep up with this data rate, the
STREAMS queue may become full. When this occurs, the record.error flag is set in the
audio information structure and input sampling ceases until there is room in the input
queue for additional data. In such cases, the input data stream contains a
discontinuity. For this reason, audio recording applications should open the audio
device when they are prepared to begin reading data, rather than at the start of
extensive initialization.

The write() system call copies data from an application’s buffer to the STREAMS
output queue. Ordinarily, write() blocks until the entire user buffer is transferred.
The device may alternatively be set to a non-blocking mode, in which case write()
completes immediately, but may have transferred fewer bytes than requested (see
write(2)).

Although write() returns when the data is successfully queued, the actual
completion of audio output may take considerably longer. The AUDIO_DRAIN ioctl
may be issued to allow an application to block until all of the queued output data has
been played. Alternatively, a process may request asynchronous notification of output
completion by writing a zero-length buffer (end-of-file record) to the output stream.
When such a buffer has been processed, the play.eof flag in the audio information
structure (see below) is incremented.

audio(7I)

Recording Audio
Data

Playing Audio
Data

Device and Network Interfaces 37

The final close(2) of the file descriptor hangs until audio output has drained. If a
signal interrupts the close(), or if the process exits without closing the device, any
remaining data queued for audio output is flushed and the device is closed
immediately.

The conversion of output data may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the play.pause flag in the audio information
structure. Queued output data may be discarded by using the I_FLUSH STREAMS
ioctl. (See streamio(7I)).

Output data will be played from the STREAMS buffers at a rate of at least 8000 bytes
per second for -Law or A-Law data (faster for 16-bit linear data or higher sampling
rates). If the output queue becomes empty, the play.error flag is set in the audio
information structure and output is stopped until additional data is written. If an
application attempts to write a number of bytes that is not a multiple of the current
sample frame size, an error will be generated and the device must be closed before
any future writes will succeed.

The I_SETSIG STREAMS ioctl enables asynchronous notification, through the
SIGPOLL signal, of input and output ready conditions. The O_NONBLOCK flag may be
set using the F_SETFL fcntl(2) to enable non-blocking read() and write()
requests. This is normally sufficient for applications to maintain an audio stream in the
background.

It is sometimes convenient to have an application, such as a volume control panel,
modify certain characteristics of the audio device while it is being used by an
unrelated process. The /dev/audioctl pseudo-device is provided for this purpose.
Any number of processes may open /dev/audioctl simultaneously. However,
read() and write() system calls are ignored by /dev/audioctl. The
AUDIO_GETINFO and AUDIO_SETINFO ioctl commands may be issued to
/dev/audioctl to determine the status or alter the behavior of /dev/audio. Note:
In general, the audio control device name is constructed by appending the letters
"ctl" to the path name of the audio device.

Applications that open the audio control pseudo-device may request asynchronous
notification of changes in the state of the audio device by setting the S_MSG flag in an
I_SETSIG STREAMS ioctl. Such processes receive a SIGPOLL signal when any of
the following events occur:

� An AUDIO_SETINFO ioctl has altered the device state.

� An input overflow or output underflow has occurred.

� An end-of-file record (zero-length buffer) has been processed on output.

� An open() or close() of /dev/audio has altered the device state.

� An external event (such as speakerbox volume control) has altered the device state.

audio(7I)

Asynchronous I/O

Audio Control
Pseudo-Device

Audio Status
Change

Notification

38 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

The state of the audio device may be polled or modified using the AUDIO_GETINFO
and AUDIO_SETINFO ioctl commands. These commands operate on the
audio_info structure as defined, in <sys/audioio.h>, as follows:

/* This structure contains state information for audio device
IO streams */

struct audio_prinfo {
/* The following values describe the audio data encoding */

uint_t sample_rate; /* samples per second */
uint_t channels; /* number of interleaved channels */
uint_t precision; /* number of bits per sample */
uint_t encoding; /* data encoding method */

/* The following values control audio device configuration */
uint_t gain; /* volume level */
uint_t port; /* selected I/O port */
uint_t buffer_size; /* I/O buffer size */

/* The following values describe the current device state */
uint_t samples; /* number of samples converted */
uint_t eof; /* End Of File counter (play only) */
uchar_t pause; /* non-zero if paused, zero to resume */
uchar_t error; /* non-zero if overflow/underflow */
uchar_t waiting; /* non-zero if a process wants access */
uchar_t balance; /* stereo channel balance */

/* The following values are read-only device state information */
uchar_t open; /* non-zero if open access granted */
uchar_t active; /* non-zero if I/O active */
uint_t avail_ports; /* available I/O ports */
uint_t mod_ports; /* modifyable I/O ports */

} audio_prinfo_t;

/* This structure is used in AUDIO_GETINFO and AUDIO_SETINFO ioctl
commands */

typedef struct audio_info {
audio_prinfo_t record; /* input status information */
audio_prinfo_t play; /* output status information */
uint_t monitor_gain; /* input to output mix */
uchar_t output_muted; /* non-zero if output muted */
uint_t hw_features; /* supported H/W features */
uint_t sw_features; /* supported S/W features */
uint_t sw_features_enabled; *

supported S/W features enabled */
} audio_info_t;

/* Audio encoding types */
#define AUDIO_ENCODING_ULAW (1) /* u-Law encoding */
#define AUDIO_ENCODING_ALAW (2) /* A-Law encoding */
#define AUDIO_ENCODING_LINEAR (3) /* Signed Linear PCM encoding */

/* These ranges apply to record, play, and monitor gain values */
#define AUDIO_MIN_GAIN (0) /* minimum gain value */
#define AUDIO_MAX_GAIN (255) /* maximum gain value */

/* These values apply to the balance field to adjust channel gain values */
#define AUDIO_LEFT_BALANCE (0) /* left channel only */

audio(7I)

Audio Information
Structure

Device and Network Interfaces 39

#define AUDIO_MID_BALANCE (32) /* equal left/right balance */
#define AUDIO_RIGHT_BALANCE (64) /* right channel only */

/* Define some convenient audio port names (for port and avail_ports) */
/* output ports (several might be enabled at once) */
#define AUDIO_SPEAKER (0x01) /* output to built-in speaker */
#define AUDIO_HEADPHONE (0x02) /* output to headphone jack */
#define AUDIO_LINE_OUT (0x04) /* output to line out */
#define AUDIO_SPDIF_OUT (0x08) /* output to SPDIF port */
#define AUDIO_AUX1_OUT (0x10) /* output to aux1 out */
#define AUDIO_AUX2_OUT (0x20) /* output to aux2 out */

/* input ports (usually only one may be enabled at a time) */
#define AUDIO_MICROPHONE (0x01) /* input from microphone */
#define AUDIO_LINE_IN (0x02) /* input from line in */
#define AUDIO_CD (0x04) \

* input from on-board CD inputs */
#define AUDIO_SPDIF_IN (0x08) /* input from SPDIF port */
#define AUDIO_AUX1_IN (0x10) /* input from aux1 in */
#define AUDIO_AUX2_IN (0x20) /

* input from aux2 in */
#define AUDIO_CODEC_LOOPB_IN (0x40)
* input from Codec inter. loopback */

#define MAX_AUDIO_DEV_LEN (16)

/* These defines are for hardware features */
#define AUDIO_HWFEATURE_DUPLEX (0x00000001u) *

simult. play & cap. supported */
#define AUDIO_HWFEATURE_MSCODEC (0x00000002u) /* multi-stream Codec */

/* These defines are for software features */
#define AUDIO_SWFEATURE_MIXER (0x00000001u) \

* audio mixer audio pers. mod. */

/* Parameter for the AUDIO_GETDEV ioctl to determine current audio devices */
#define MAX_AUDIO_DEV_LEN (16)
typedef struct audio_device {

char name[MAX_AUDIO_DEV_LEN];
char version[MAX_AUDIO_DEV_LEN];
char config[MAX_AUDIO_DEV_LEN];

} audio_device_t;

The play.gain and record.gain fields specify the output and input volume levels. A value
of AUDIO_MAX_GAIN indicates maximum volume. Audio output may also be
temporarily muted by setting a non-zero value in the output_muted field. Clearing this
field restores audio output to the normal state. Most audio devices allow input data to
be monitored by mixing audio input onto the output channel. The monitor_gain field
controls the level of this feedback path.

The play.port field controls the output path for the audio device. It can be set to either
AUDIO_SPEAKER (built-in speaker), AUDIO_HEADPHONE (headphone jack),
AUDIO_LINE_OUT (line-out port), AUDIO_AUX1_OUT (auxilary1 out), or
AUDIO_AUX2_OUT (auxilary2 out). For some devices, it may be set to a combination of

audio(7I)

40 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

these ports. The play.avail_ports field returns the set of output ports that are currently
accessible. The play.mod_ports field returns the set of output ports that may be turned
on and off. If a port is missing from play.mod_ports then that port is assumed to always
be on.

The input ports can be either AUDIO_MICROPHONE (microphone jack),
AUDIO_LINE_IN (line-out port), AUDIO_CD (internal CD-ROM), AUDIO_AUX1_IN
(auxilary1 in), AUDIO_AUX2_IN (auxilary2 in), or AUDIO_CODEC_LOOPB_IN (internal
loopback). The record.avail_ports field returns the set of input ports that are currently
accessible. The record.mod_ports field returns the set of input ports that may be turned
on and off. If a port is missing from record.mod_ports, it is assumed to always be on.
Input ports are considered to be mutually exclusive.

The play.balance and record.balance fields are used to control the volume between the
left and right channels when manipulating stereo data. When the value is set between
AUDIO_LEFT_BALANCE and AUDIO_MID_BALANCE, the right channel volume will be
reduced in proportion to the balance value. Conversely, when balance is set between
AUDIO_MID_BALANCE and AUDIO_RIGHT_BALANCE, the left channel will be
proportionally reduced.

The play.pause and record.pause flags may be used to pause and resume the transfer of
data between the audio device and the STREAMS buffers. The play.error and
record.error flags indicate that data underflow or overflow has occurred. The play.active
and record.active flags indicate that data transfer is currently active in the
corresponding direction.

The play.open and record.open flags indicate that the device is currently open with the
corresponding access permission. The play.waiting and record.waiting flags provide an
indication that a process may be waiting to access the device. These flags are set
automatically when a process blocks on open(), though they may also be set using
the AUDIO_SETINFO ioctl command. They are cleared only when a process
relinquishes access by closing the device.

The play.samples and record.samples fields are initialized, at open(), to zero and
increment each time a data sample is copied to or from the associated STREAMS
queue. Some audio drivers may be limited to counting buffers of samples, instead of
single samples for the samples accounting. For this reason, applications should not
assume that the samples fields contain a perfectly accurate count. The play.eof field
increments whenever a zero-length output buffer is synchronously processed.
Applications may use this field to detect the completion of particular segments of
audio output.

The record.buffer_size field controls the amount of input data that is buffered in the
device driver during record operations. Applications that have particular requirements
for low latency should set the value appropriately. Note however that smaller input
buffer sizes may result in higher system overhead. The value of this field is specified
in bytes and drivers will constrain it to be a multiple of the current sample frame size.
Some drivers may place other requirements on the value of this field. Refer to the

audio(7I)

Device and Network Interfaces 41

audio device-specific manual page for more details. If an application changes the
format of the audio device and does not modify the record.buffer_size field, the device
driver may use a default value to compensate for the new data rate. Therefore, if an
application is going to modify this field, it should modify it during or after the format
change itself, not before. When changing the record.buffer_size parameters, the input
stream should be paused and flushed before the change, and resumed afterward.
Otherwise, subsequent reads may return samples in the old format followed by
samples in the new format. This is particularly important when new parameters result
in a changed sample size. If you change the record.buffer_size for the first packet, this
protocol must be followed or the first buffer will be the default buffer size for the
device, followed by packets of the requested change size.

The record.buffer_size field may be modified only on the /dev/audio device by
processes that have it opened for reading.

The play.buffer_size field is currently not supported.

The audio data format is indicated by the sample_rate, channels, precision, and encoding
fields. The values of these fields correspond to the descriptions in the AUDIO FORMATS
section above. Refer to the audio device-specific manual pages for a list of supported
data format combinations.

The data format fields may be modified only on the /dev/audio device. Some audio
hardware may constrain the input and output data formats to be identical. If this is the
case, the data format may not be changed if multiple processes have opened the audio
device. As a result, a process should check that the ioctl() does not fail when it
attempts to set the data format.

If the parameter changes requested by an AUDIO_SETINFO ioctl cannot all be
accommodated, ioctl() will return with errno set to EINVAL and no changes will be
made to the device state.

All of the streamio(7I) ioctl commands may be issued for the /dev/audio
device. Because the /dev/audioctl device has its own STREAMS queues, most of
these commands neither modify nor report the state of /dev/audio if issued for the
/dev/audioctl device. The I_SETSIG ioctl may be issued for /dev/audioctl
to enable the notification of audio status changes, as described above.

The audio device additionally supports the following ioctl commands:

AUDIO_DRAIN The argument is ignored. This command suspends the calling
process until the output STREAMS queue is empty, or until a
signal is delivered to the calling process. It may not be issued for
the /dev/audioctl device. An implicit AUDIO_DRAIN is
performed on the final close() of /dev/audio.

AUDIO_GETDEV The argument is a pointer to an audio_device structure. This
command may be issued for either /dev/audio or
/dev/audioctl. The returned value in the name field will be a

audio(7I)

Streamio IOCTLS

Audio IOCTLS

42 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

string that will identify the current /dev/audio hardware device,
the value in version will be a string indicating the current version
of the hardware, and config will be a device-specific string
identifying the properties of the audio stream associated with that
file descriptor. Refer to the audio device-specific manual pages to
determine the actual strings returned by the device driver.

AUDIO_GETINFO The argument is a pointer to an audio_info_t structure. This
command may be issued for either /dev/audio or
/dev/audioctl. The current state of the /dev/audio device is
returned in the structure.

AUDIO_SETINFO The argument is a pointer to an audio_info structure. This
command may be issued for either the /dev/audio or the
/dev/audioctl device with some restrictions. This command
configures the audio device according to the supplied structure
and overwrites the existing structure with the new state of the
device. Note: The play.samples, record.samples, play.error, record.error,
and play.eof fields are modified to reflect the state of the device
when the AUDIO_SETINFO was issued. This allows programs to
automatically modify these fields while retrieving the previous
value.

Certain fields in the information structure, such as the pause flags are treated as
read-only when /dev/audio is not open with the corresponding access permission.
Other fields, such as the gain levels and encoding information, may have a restricted
set of acceptable values. Applications that attempt to modify such fields should check
the returned values to be sure that the corresponding change took effect. The
sample_rate, channels, precision, and encoding fields treated as read-only for
/dev/audioctl, so that applications can be guaranteed that the existing audio
format will stay in place until they relinquish the audio device. AUDIO_SETINFO will
return EINVAL when the desired configuration is not possible, or EBUSY when
another process has control of the audio device.

Once set, the following values persist through subsequent open() and close() calls
of the device: play.gain, record.gain, play.balance, record.balance, play.port, record.port and
monitor_gain. However, an automatic device driver unload will reset these parameters
to their default values on the next load. All other state is reset when the corresponding
I/O stream of /dev/audio is closed.

The audio_info_t structure may be initialized through the use of the
AUDIO_INITINFO macro. This macro sets all fields in the structure to values that are
ignored by the AUDIO_SETINFO command. For instance, the following code switches
the output port from the built-in speaker to the headphone jack without modifying
any other audio parameters:

audio_info_t info;
AUDIO_INITINFO(&info);
info.play.port = AUDIO_HEADPHONE;
err = ioctl(audio_fd, AUDIO_SETINFO, &info);

audio(7I)

Device and Network Interfaces 43

This technique eliminates problems associated with using a sequence of
AUDIO_GETINFO followed by AUDIO_SETINFO.

An open() will fail if:

EBUSY The requested play or record access is busy and either the
O_NDELAY or O_NONBLOCK flag was set in the open() request.

EINTR The requested play or record access is busy and a signal
interrupted the open() request.

An ioctl() will fail if:

EINVAL The parameter changes requested in the AUDIO_SETINFO ioctl
are invalid or are not supported by the device.

EBUSY The parameter changes requested in the AUDIO_SETINFO ioctl
could not be made because another process has the device open
and is using a different format.

The physical audio device names are system dependent and are rarely used by
programmers. The programmer should use the generic device names listed below.

/dev/audio symbolic link to the system’s primary audio device

/dev/audioctl symbolic link to the control device for /dev/audio

/dev/sound/0 first audio device in the system

/dev/sound/0ctl audio control device for /dev/sound/0

/usr/share/audio audio files

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture All

Availability SUNWcsu, SUNWaudd, SUNWauddx,
SUNWaudh

Stability Level Evolving

close(2), fcntl(2), ioctl(2), open(2), poll(2), read(2), write(2), audiocs(7D),
dbri(7D), sbpro(7D), usb_ac(7D), audio_support(7I) mixer(7I) streamio(7I)

Due to a feature of the STREAMS implementation, programs that are terminated or exit
without closing the audio device may hang for a short period while audio output
drains. In general, programs that produce audio output should catch the SIGINT
signal and flush the output stream before exiting.

audio(7I)

ERRORS

FILES

ATTRIBUTES

SEE ALSO

BUGS

44 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

On LX machines running Solaris 2.3, catting a demo audio file to the audio device
/dev/audio does not work. Use the audioplay command on LX machines instead
of cat.

Future audio drivers should use the mixer(7I) audio device to gain access to these
new features.

audio(7I)

FUTURE
DIRECTIONS

Device and Network Interfaces 45

audiocs – Crystal Semiconductor 4231 Audio driver

The audiocs driver supports the Crystal Semiconductor 4231 Codec to implement
the audio device interface.

This interface is described in the audio(7I) and mixer(7I) man pages.

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl to determine
which audio device is being used. The audiocs driver will return the string
SUNW,CS4231 in the name field of the audio_device structure. The version field will
contain a letter (defined in the table below) and the config field will contain the string
onboard1.

Platform
Type

Version Line Out Headphone Int. Spkr Line In Mic CD-ROM

SS-4/5 a Y Y Y Y Y Y

Ultra-1/2 b Y Y Y Y Y N

Ultra-450 f Y Y Y Y Y N

Ultra-30/60/80g Y Y Y Y Y N

Ultra-5/10 h Y Y Y Y Y Y

The audiocs device provides support for line out, headphone, internal speaker, line
in, microphone, and on some platforms, internal CD-ROM audio in. The
AUDIO_GETINFO ioctl should be used to get the play.avail_ports and record.avail_ports
fields to see which ports are available. The play.mod_ports and record.mod_ports fields
will show which ports may be manipulated.

The configuration file /usr/kernel/drv/audiocs.conf is used to configure the
audiocs driver so that the audio mixer is enabled or disabled. See the mixer(7I)
manual page for details. The audio mixer’s mode may be changed at any time using
the mixerctl(1) or sdtaudiocontrol.1 applications.

The audiocs device supports the audio formats listed in the following table. When
the audio mixer is in compatibility mode and the device is open for
simultaneous play and record, the input and output data formats must match. Some
sample rates are supported in compatibility mode that are not supported in mixer
mode. This is due to the computational overhead for sample rate conversion being too
high.

Supported Audio Data Formats

Sample Rate Encoding Precision Channels Mode

audiocs(7D)

NAME

DESCRIPTION

APPLICATION
PROGRAM

INTERFACEDriver Versions

Audio Mixer Mode

Audio Data
Formats

46 man pages section 7: Device and Network Interfaces • Last Revised 14 January 2000

5510 Hz -Law, A-Law or
linear

8 1 or 2 C only

6620 Hz -Law, A-Law or
linear

8 1 or 2 C only

8000 Hz -Law, A-Law or
linear

8 1 or 2 M and C

9600 Hz -Law, A-Law or
linear

8 1 or 2 M and C

11025 Hz -Law, A-Law or
linear

8 1 or 2 M and C

16000 Hz -Law, A-Law or
linear

8 1 or 2 M and C

18900 Hz -Law, A-Law or
linear

8 1 or 2 M and C

22050 Hz -Law, A-Law or
linear

8 1 or 2 M and C

27420 Hz -Law, A-Law or
linear

8 1 or 2 C only

32000 Hz -Law, A-Law or
linear

8 1 or 2 M and C

33075 Hz -Law, A-Law or
linear

8 1 or 2 M and C

37800 Hz -Law, A-Law or
linear

8 1 or 2 M and C

44100 Hz -Law, A-Law or
linear

8 1 or 2 M and C

48000 Hz -Law, A-Law or
linear

8 1 or 2 M and C

5510 Hz linear 16 1 or 2 C only

6620 Hz linear 16 1 or 2 C only

8000 Hz linear 16 1 or 2 M and C

9600 Hz linear 16 1 or 2 M and C

11025 Hz linear 16 1 or 2 M and C

16000 Hz linear 16 1 or 2 M and C

18900 Hz linear 16 1 or 2 M and C

22050 Hz linear 16 1 or 2 M and C

audiocs(7D)

Device and Network Interfaces 47

27420 Hz linear 16 1 or 2 C only

32000 Hz linear 16 1 or 2 M and C

33075 Hz linear 16 1 or 2 M and C

37800 Hz linear 16 1 or 2 M and C

44100 Hz linear 16 1 or 2 M and C

48000 Hz linear 16 1 or 2 M and C

At any given time the reported input and output sample counts will vary from the
actual sample count by no more than the size of the buffers the audiocs driver is
transferring. In general, programs should not rely on the absolute accuracy of the
play.samples and record.samples fields of the audio_info structure.

The driver determines how often play and record interrupts should happen. For
playing audio this determines how often and how much audio is requested from the
audio mixer. The impact on recording is minimal, however, if a very small read buffer
size is set then the interrupt rate should be increased. The play and record interrupt
rates are tuneable in the /usr/kernel/drv/audiocs.conf file.

Requesting asynchronous notification of changes to the audio device’s state is
described in the audio(7I) man page.

audiocs errors are described in the audio(7I) man pages.

/dev/audio
Symbolic link to the system’s primary audio device. (not necessarily an audiocs
audio device).

/dev/audioctl
Control device for the above audio device.

/dev/sound/0
Represents the first audio device on the system. (not necessarily an audiocs audio
device).

/dev/sound/0ctl
Audio control for above device.

/usr/share/audio
Audio files.

/usr/kernel/drv/audiocs
Audiocs driver.

/usr/kernel/drv/audiocs.conf
Audiocs driver configuration file.

See attributes(5) for descriptions of the following attributes:

audiocs(7D)

Sample
Granularity

Interrupt Rate

Audio Status
Change

Notification
ERRORS

FILES

ATTRIBUTES

48 man pages section 7: Device and Network Interfaces • Last Revised 14 January 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWaudd, SUNWauddx

Stability level Evolving

sdtaudiocontrol.1, ioctl(2), attributes(5), audio(7I), mixer(7I),
streamio(7I)

Crystal Semiconductor, Inc. CS42 Data Sheet

audiocs(7D)

SEE ALSO

Device and Network Interfaces 49

audioens – Ensoniq 1371/1373 and Creative Labs 5880 driver support

The audioens driver provides support for the Ensoniq 1371/1373 and Creative Labs
5880 audio controllers. Ensoniq 1371/1373 and Creative Labs 5880 chips are found on
add-in PCI cards commonly identified as Audio PCI, CT4740, CT4810, CT5803,
CT5808, and ES1371, and on some IA motherboards.

This interface is described in the mixer(7I) and audio(7I) man pages.

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl() to
determine which audio device is being used. The audioens driver returns the string
SUNW,audioens in the name field of the audio_device structure. The version field
contains a letter (defined in the table below) and the config field contains the string
onboard1.

The driver works on Sun architectures that support PCI slots, including Sparc 32 bit,
Sparc 64 bit, and IA 32 bit.

Different cards provide different input and output connectors and may internally
hardwire these connectors. SpeakerOut implies an internal audio amplifier and
LineOut imples the output is to go to an amplified speaker. The audioens driver
routes output data to both SpeakerOut and LineOut. The audioens driver supports
input selection from LineIn or Microphone.

Platform Type: Sun4u/IA

Version: a

Line Out: Yes

Headphone: No

Int. Speaker: Yes

Line In: Yes

Microphone: Yes

CD-ROM: No

The configuration file /usr/kernel/drv/audioens.conf is used to configure the
audioens driver and determines whether the audio mixer is enabled or disabled. See
the mixer(7I) manual page for details. You can change the audio mixer mode at any
time using the mixerctl(1) application.

The audioens audio device supports the audio data formats shown below. When the
audio mixer is disabled and the device is opened for simultaneous play and record,
the input and output data formats may differ. Some sample rates are supported when
the mixer is disabled (D) that are not supported when the mixer is enabled (E), due to
the overly high computational overhead for sample rate conversion.

audioens(7D)

NAME

DESCRIPTION

APPLICATION
PROGRAM

INTERFACEDriver Versions

Audio Mixer Mode

Audio Data
Formats

50 man pages section 7: Device and Network Interfaces • Last Revised 22 Oct 2001

Supported data formats.

Sample Rate Encoding Precision Channels Mode

5510 Hz u-Law or
A-Law

8 1 or 2 D only

6620 Hz u-Law or
A-Law

8 1 or 2 D only

8000 Hz u-law or A-law 8 1 or 2 E and D

9600 Hz u-law or A-law 8 1 or 2 E and D

11025 Hz u-law or A-law 8 1 or 2 E and D

16000 Hz u-law or A-law 8 1 or 2 E and D

18900 Hz u-law or A-law 8 1 or 2 E and D

22050 Hz u-law or A-law 8 1 or 2 E and D

27420 Hz u-law or A-law 8 1 or 2 D only

32000 Hz u-law or A-law 8 1 or 2 E and D

33075 Hz u-law or A-law 8 1 or 2 E and D

37800 Hz u-law or A-law 8 1 or 2 E and D

44100 Hz u-law or A-law 8 1 or 2 E and D

48000 Hz u-law or A-law 8 1 or 2 E and D

5510 Hz linear 16 1 or 2 D only

6620 Hz linear 16 1 or 2 D only

8000 Hz linear 16 1 or 2 E and D

9600 Hz linear 16 1 or 2 E and D

11025 Hz linear 16 1 or 2 E and D

16000 Hz linear 16 1 or 2 E and D

18900 Hz linear 16 1 or 2 E and D

22050 Hz linear 16 1 or 2 E and D

27420 Hz linear 16 1 or 2 D only

32000 Hz linear 16 1 or 2 E and D

33075 Hz linear 16 1 or 2 E and D

37800 Hz linear 16 1 or 2 E and D

audioens(7D)

Device and Network Interfaces 51

44100 Hz linear 16 1 or 2 E and D

48000 Hz linear 16 1 or 2 E and D

Because audioens manipulates buffers of audio data, the reported input and output
sample counts will vary at any given time, from the actual sample count by no more
than the size of the buffers the audioens driver is transfering. In general, programs
should not rely on the absolute accuracy of the play.samples and record.samples fields
of the audio_info structure.

The driver determines how often play and record interrupts take place. For playing
audio, the driver determines how often and how much audio is requested from the
audio mixer. The impact on recording is minimal, however, if a very small read buffer
size is set. You can tune the play and record interrupt rates using the
/usr/kernel/drv/audioens.conf file.

As described in the mixer(7I) and audio(7I) man pages, you can request
asynchronous notification of changes in the state of an audio device.

Errors are defined in the audio(7I) man page.

/dev/audio
Symbolic link to the system’s primary audio device. (Not necessarily an audioens
audio device).

/dev/audioctl
Control device for the primary audio device.

/dev/sound/0
Represents the first audio device on the system. (Not necessarily an audioens
audio device).

/dev/sound/0ctl
Audio control for /dev/sound/0.

/usr/demo/SOUND
Audio demonstration programs and other files.

/kernel/drv/audioens
32-bit audioens driver

/kernel/drv/audioens.conf
Driver configuration file

/kernel/drv/sparcv9/audioens
64-bit audioens driver

See attributes(5) for descriptions of the following attributes:

audioens(7D)

Sample
Granularity

Interrupt Rate

Audio Status
Change

Notification
ERRORS

FILES

ATTRIBUTES

52 man pages section 7: Device and Network Interfaces • Last Revised 22 Oct 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWaudd, SUNWauddx

mixerctl(1), ioctl(2), attributes(5), audio(7I), mixer(7I), streamio(7I)

Acer Laboratories Inc. M5451 PCI Audio Processor Technical Specification

In addition to being logged, the following messages may appear on the system
console.

init_state() play interrupt rate set
The interrupt rate set in audioens.conf is set too low. It is being reset to the rate
specified in the message. Update audioens.conf to a higher interrupt rate.

init_state() play interrupt rate set too high
The interrupt rate set in audioens.conf is set too high. It is being reset to the rate
specified in the message. Update audioens.conf to a lower interrupt rate.

init_state() record interrupt rate set too low
The interrupt rate set in audioens.conf is set too low. It is being reset to the rate
specified in the message. Update audioens.conf to a higher interrupt rate.

init_state() record interrupt rate set too high
The interrupt rate set in audioens.conf is set too high. It is being reset to the rate
specified in the message. Update audioens.conf to a lower interrupt rate.

audioens(7D)

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 53

audio_support – audio driver support routines and interface

#include <sys/audio.h>

The audio support module supports audio drivers that use the new audio driver
architecture. It also provides a limited number of ioctl(2) functions for application
programmers.

The following data structures are defined to manage the different audio device types
and channels.

The following enumeration lists a number of generic device types.

typedef enum {
UNDEFINED, AUDIO, AUDIOCTL, USER1, USER2, USER3

} audio_device_type_e;

Currently, the Solaris audio mixer implements only the AUDIO and AUDIOCTL audio
device types. See the mixer(7I) manual page for details. The USER1, USER2 and
USER3 device types allow third parties to write audio personality modules of their
own.

This structure is used to get and set state information on individual channels.

struct audio_channel {
pid_t pid; /* application’s process ID */
uint_t ch_number; /* channel this device is using */
audio_device_type_e dev_type; /* the device type */
uint_t info_size; /* size of the channel’s info structure */
void *info; /* the channel’s state information */

} audio_channel_t;

The ch_number must be set to the specific channel number to get or set. When the
ioctl() returns, the pid will contain the process ID of the process that has the
channel open and dev_type will contain the device type. If pid is 0 (zero), then the
channel is not open. The pointer *info must point to a buffer large enough to hold
whatever audio device-related state structure that may be returned. Currently, only
the audio_info_t structure is returned. See the audio(7I) and mixer(7I) man pages
for more information.

The audio support driver provides the following ioctls():

AUDIO_GET_CH_NUMBER This ioctl() returns the channel number
pointed to by the file descriptor. It is
returned in the integer pointer of the
ioctl() argument.

AUDIO_GET_CH_TYPE This ioctl() returns the type of channel
the process has open. It is returned in the
audio_device_type_e enumeration pointer
of the ioctl() argument.

audio_support(7I)

NAME

SYNOPSIS

DESCRIPTION

DATA
STRUCTURES

Device Types

Channel Structure

IOCTLS

54 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

AUDIO_GET_NUM_CHS This ioctl() returns the number of
channels the device supports. It is returned
in the integer pointer of the ioctl()
argument.

The following macro can be used to initialize data structures. The established
convention is that the state corresponding to a field set to -1 will not be modified.

AUDIO_INIT(I, S)

Where I is a pointer to an info structure and S is the size of that structure.

The following code segment demonstrates how to use this macro:

audio_info_t info;
AUDIO_INIT(&info, sizeof(info));
info.play.port = AUDIO_HEADPHONE;
err = ioctl(audio_fd, AUDIO_SETINFO, &info);

EINVAL The ioctl() is invalid for this file descriptor. The
audio_channel_t structure’s info pointer does not point to a
buffer, or the ch_number is bad.

ENOMEM The ioctl() failed due to lack of memory.

/usr/share/audio Audio files

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWaudd, SUNWauddx, SUNWaudh

Stability Level Evolving

ioctl(2), open(2), audio(7I), mixer(7I), streamio(7I)

Over time additional audio personallity modules will be added. Audio application
programmers are encouraged to review this man page with each Solaris release for
new audio personality modules.

audio_support(7I)

MACROS

ERRORS

FILES

ATTRIBUTES

SEE ALSO

FUTURE
DIRECTIONS

Device and Network Interfaces 55

audiots – Acer Laboratories Inc. M5451 audio processor interface

The audiots device uses the ALI M5451 audio processor and an AC-97 Codec to
implement the audio device interface.

This interface is described in the mixer(7I) and audio(7I) man pages.

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl to determine
which audio device is being used. The audiots driver will return the string
SUNW,audiots in the name field of the audio_device structure. The version field
will contain a letter (defined in the table below) and the config field will contain the
string onboard1.

Platform
Type

Version Line Out Headphone Int. Spkr Line In Mic CD-ROM

Grover a Y Y Y Y Y N

The audiots device provides support for line out, headphone, internal speaker, line
in, and microphone. The play.mod_ports and record.mod_ports fields indicate
which ports may be manipulated.

The configuration file /usr/kernel/drv/audiots.conf is used to configure the
audiots driver so that the audio mixer is enabled or disabled. See the mixer(7I)
manual page for details. The audio mixer mode may be changed at any time using the
mixerctl(1) command.

The audiots device supports the audio formats listed in the following table. When
the audio mixer is disabled and the device is opened for simultaneous play and
record, the input and output data formats may be different. Some sample rates are
supported when the mixer is disabled (D) that are not supported when the mixer is
enabled (E), due to the overly high computational overhead for sample rate
conversion.

The following table describes all supported data formats.

Supported Audio Data Formats

Sample Rate Encoding Precision Channels Mode

5510 Hz -Law/ A-Law 8 1 or 2 D only

6620 Hz -Law/ A-Law 8 1 or 2 D only

8000 Hz -Law/ A-Law 8 1 or 2 E and D

9600 Hz -Law/ A-Law 8 1 or 2 E and D

11025 Hz -Law/ A-Law 8 1 or 2 E and D

audiots(7D)

NAME

DESCRIPTION

APPLICATION
PROGRAM

INTERFACEDriver Versions

Audio Mixer Mode

Audio Data
Formats

56 man pages section 7: Device and Network Interfaces • Last Revised 7 April 2000

16000 Hz -Law/ A-Law 8 1 or 2 E and D

18900 Hz -Law/ A-Law 8 1 or 2 E and D

22050 Hz -Law/ A-Law 8 1 or 2 E and D

27420 Hz -Law/ A-Law 8 1 or 2 D only

32000 Hz -Law/ A-Law 8 1 or 2 E and D

33075 Hz -Law/ A-Law 8 1 or 2 E and D

37800 Hz -Law/ A-Law 8 1 or 2 E and D

44100 Hz -Law/ A-Law 8 1 or 2 E and D

48000 Hz -Law/ A-Law 8 1 or 2 E and D

5510 Hz linear 16 1 or 2 D only

6620 Hz linear 16 1 or 2 D only

8000 Hz linear 16 1 or 2 E and D

9600 Hz linear 16 1 or 2 E and D

11025 Hz linear 16 1 or 2 E and D

16000 Hz linear 16 1 or 2 E and D

18900 Hz linear 16 1 or 2 E and D

22050 Hz linear 16 1 or 2 E and D

27420 Hz linear 16 1 or 2 D only

32000 Hz linear 16 1 or 2 E and D

33075 Hz linear 16 1 or 2 E and D

37800 Hz linear 16 1 or 2 E and D

44100 Hz linear 16 1 or 2 E and D

48000 Hz linear 16 1 or 2 E and D

Because the audiots device manipulates buffers of audio data, the reported input
and output sample counts will vary, at any given time, from the actual sample count
by no more than the size of the buffers the audiots driver is transferring. In general,
programs should not rely on the absolute accuracy of the play.samples and
record.samples fields of the audio_info structure.

The driver determines how often play and record interrupts should take place. For
playing audio, this determines how often and how much audio is requested from the
audio mixer. The impact on recording is minimal, however, if a very small read buffer

audiots(7D)

Sample
Granularity

Interrupt Rate

Device and Network Interfaces 57

size is set. The play and record interrupt rates are tuneable in the
/usr/kernel/drv/audiots.conf file.

As described in the audio(7I) and mixer(7I) man pages, it is possible to request
asynchronous notification of changes in the state of an audio device.

audiots errors are described in the audio(7I) man page.

/dev/audio
Symbolic link to the system’s primary audio device. (Not necessarily an audiots
audio device).

/dev/audioctl
Control device for the primary audio device.

/dev/sound/0
Represents the first audio device on the system. (Not necessarily an audiots audio
device).

/dev/sound/0ctl
Audio control for /dev/sound/0.

/usr/demo/SOUND
Audio demonstration programs and other files.

/usr/kernel/drv/audiots.conf
audiots driver configuration file

/usr/kernel/drv/sparcv9/audiots
64–bit audiots driver

In addition to being logged, the following messages may appear on the system
console:

init_state() play interrupt rate set too low
The interrupt rate set in audiots.conf is set too low. It is being reset to the rate
specified in the message. Update audiots.conf to a higher interrupt rate.

init_state() play interrupt rate set too high
The interrupt rate set in audiots.conf is set too high. It is being reset to the rate
specified in the message. Update audiots.conf to a lower interrupt rate.

init_state() record interrupt rate set too low
The interrupt rate set in audiots.conf is set too low. It is being reset to the rate
specified in the message. Update audiots.conf to a higher interrupt rate.

init_state() record interrupt rate set too high
The interrupt rate set in audiots.conf is set too high. It is being reset to the rate
specified in the message. Update audiots.conf to a lower interrupt rate.

See attributes(5) for a descriptions of the following attributes:

audiots(7D)

Audio Status
Change

Notification
ERRORS

FILES

DIAGNOSTICS

ATTRIBUTES

58 man pages section 7: Device and Network Interfaces • Last Revised 7 April 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWaudd, SUNWauddx

mixerctl(1) , ioctl(2), attributes(5), audio(7I), mixer(7I), streamio(7I)

Acer Laboratories Inc. M5451 PCI Audio Processor Technical Specification

audiots(7D)

SEE ALSO

Device and Network Interfaces 59

authmd5h – HMAC-MD5 Authentication Algorithm Module for IPsec

strmod/authmd5h

This module implements the HMAC-MD5 authentication algorithm using the MD5
message-digest algorithm and the HMAC technique documented in RFC 2104. The
authmd5h module has the following properties:

key size 128 bits

digest size 96 bits (truncated from 128) authmd5h is used by both AH and ESP.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx (64-bit)

Interface Stability Evolving

ipseckey(1M), attributes(5), pf_key(7P), ipsec(7P), ipsecah(7P),
ipsecesp(7P)

Krawczyk, H., Ballare, M., and Canetti, R., RFC 2104, HMAC: Keyed-Hashing for
Message Authentication, The Internet Society, 1997

Madsen, C. and Glenn, R., RFC 2403, The Use of HMAC-MD5-96 within ESP and AH,
The Internet Society, 1998.

Rivest, R., RFC 1321, The MD5 Message-Digest Algorithm, The Internet Society, 1992.

authmd5h(7M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

60 man pages section 7: Device and Network Interfaces • Last Revised 28 Mar 2001

authsha1 – HMAC-SHA-1 Authentication Algorithm Module for IPsec

strmod/authsha1

This module implements the HMAC-SHA-1 authentication algorithm, using the
SHA-1 hash algorithm and the HMAC technique set forth in RFC 2104. The authshal
module has the following properties

key size 160 bits

digest size 96 bits (truncated from 160). authshal is used by both AH and
ESP.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx (64-bit)

Interface Stability Evolving

ipseckey(1M), attributes(5), pf_key(7P), ipsec(7P), ipsecah(7P),
ipsecesp(7P)

NIST, FIPS PUB 180–1: Secure Hash Standard, April 1995.

Krawczyk, H., Ballare, M., and Canetti, R., RFC 2104, HMAC: Keyed-Hashing for
Message Authentication, The Internet Society, 1997.

Madsen, C. and Glenn, R., RFC 2404, The Use of HMAC-SHA-1-96 within ESP and AH,
The Internet Society, 1998.

authsha1(7M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 61

bbc_beep – Platform-dependent Beep driver for BBC-based hardware.

beep@unit-address

The bbc_beep driver generates beep on platforms (including Sun Blade 1000) that use
BBC-based registers and USB keyboards. When the KIOCCMD ioctl is issued to the USB
keyboard module (see usbkbm(7M)) with command
KBD_CMD_BELL/KBD_CMD_NOBELL, usbkbm(7M) passes the request to the
bbc_beep driver to turn the beep on and off, respectively.

/platform/sun4u/kernel/drv/sparcv9/bbc_beep
64–bit ELF kernel driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWcarx.u

kbd(1), grbeep(7D), kb(7M), usbkbm(7M)

Writing Device Drivers

None

bbc_beep(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

62 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

bd – SunButtons and SunDials STREAMS module

open("/dev/bd", O_RDWR)

The bd STREAMS module processes the byte streams generated by the SunButtons
buttonbox and SunDials dialbox. The buttonbox generates a stream of bytes that
encode the identity and state transition of the buttons. The dialbox generates a stream
of bytes that encode the identity of the dials and the amount by which they are turned.
Both of these streams are merged together when a host has both a buttonbox and a
dialbox in use at the same time.

SunButtons reports the button number and up/down status encoded into a one byte
message. Byte values from 0xc0 to 0xdf indicate a transition to button down. To obtain
the button number, subtract 0xc0 from the byte value. Byte values from 0xe0 to 0xff
indicate a transition to button up. To obtain the button number, subtract 0xe0 from the
byte value.

Each dial sample in the byte stream consists of three bytes. The first byte identifies
which dial was turned and the next two bytes return the delta in signed binary format.
When bound to an application using the window system, Virtual User Input Device
(“VUID”) events are generated. An event from a dial is constrained to lie between 0x80
and 0x87.

A stream with the bd pushed streams module configured in it can emit firm_events as
specified by the protocol of a VUID. bd understands the VUIDSFORMAT and
VUIDGFORMAT ioctls (see reference below), as defined in
/usr/include/sys/bdio.h and
$OPENWINHOME/include/xview/win_event.h. All other ioctl() requests are
passed downstream.

The bd streams module sets the parameters of the serial port when it is first opened.
No termio(7I) ioctl () requests should be performed on a bd STREAMS module,
as bd expects the device parameters to remain as it set them.

VUIDSFORMAT
VUIDGFORMAT These are standard VUID ioctls.

BDIOBUTLITE The bd streams module implements this ioctl to enable processes
to manipulate the lights on the buttonbox. The BDIOBUTLITE ioctl
must be carried by an I_STR ioctl to the bd module. For an
explanation of I_STR see streamio(7I). The data for the
BDIOBUTLITE ioctl is an unsigned integer in which each bit
represents the lamp on one button. The macro LED_MAP in
<sys/bdio.h> maps button numbers to appropriate bits. Source
code for the demo program x_buttontest is provided with the
buttons and dials package, and may be found in the directory
/usr/demo/BUTTONBOX. Look at x_buttontest.c for an
example of how to manipulate the lights on the buttonbox.

bd(7M)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

Device and Network Interfaces 63

/usr/include/sys/bdio.h

/usr/include/sys/stropts.h

$OPENWINHOME/share/include/xview/win_event.h

bdconfig(1M), ioctl(2), x_buttontest(6), x_dialtest(6), streamio(7I),
termio(7I)

SunButtons Installation and Programmers Guide

SunDials Installation and Programmers Guide

The SunDials dial box must be used with a serial port.

bd(7M)

FILES

SEE ALSO

WARNINGS

64 man pages section 7: Device and Network Interfaces • Last Revised 19 Feb 1992

bpp – bi-directional parallel port driver

SUNW,bpp@slot,offset:bppn

The bpp driver provides a general-purpose bi-directional interface to parallel devices.
It supports a variety of output (printer) and input (scanner) devices, using
programmable timing relationships between the various handshake signals.

The bpp driver is an exclusive-use device. If the device has already been opened,
subsequent opens fail with EBUSY.

Each time the bpp device is opened, the default configuration is BPP_ACK_BUSY_HS
for read handshake, BPP_ACK_HS for write handshake, 1 microsecond for all setup
times and strobe widths, and 60 seconds for both timeouts. This configuration (in the
write mode) drives many common personal computer parallel printers with
Centronics-type interfaces. The application should use the BPPIOC_SETPARMS ioctl
request to configure the bpp for the particular device which is attached, if necessary.

If a failure or error condition occurs during a write(2), the number of bytes
successfully written is returned (short write). Note that errno will not be set. The
contents of certain status bits will be captured at the time of the error, and can be
retrieved by the application program, using the BPPIOC_GETERR ioctl request.
Subsequent write(2) calls may fail with the system error ENXIO if the error condition
is not rectified. The captured status information will be overwritten each time an
attempted transfer or a BPPIOC_TESTIO ioctl request occurs.

If a failure or error condition occurs during a read(2), the number of bytes
successfully read is returned (short read). Note that errno will not be set. The
contents of certain status bits will be captured at the time of the error, and can be
retrieved by the application, using the BPPIOC_GETERR ioctl request. Subsequent
read(2) calls may fail with ENXIO if the error condition is not rectified. The captured
register information will be overwritten each time an attempted transfer or a
BPPIOC_TESTIO ioctl request.

If the read_handshake element of the bpp_transfer_parms structure (see below)
is set to BPP_CLEAR_MEM or BPP_SET_MEM, zeroes or ones, respectively, are written
into the user buffer.

When the driver is opened for reading and writing, it is assumed that scanning will
take place, as scanners are the only devices supported by this mode. Most scanners
require that the SLCT_IN or AFX pin be set to tell the scanner the direction of the
transfer. The AFX line is set when the read_handshake element of the
bpp_transfer_parms structure is set to BPP_HSCAN_HS, otherwise the SLCT_IN
pin is set. Normally, scanning starts by writing a command to the scanner, at which
time the pin is set. When the scan data is read back, the pin is reset.

The following ioctl requests are supported:

BPPIOC_SETPARMS Set transfer parameters.

bpp(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
Default Operation

Write Operation

Read Operations

Read/Write
Operation

IOCTLS

Device and Network Interfaces 65

The argument is a pointer to a bpp_transfer_parms
structure. See below for a description of the elements of
this structure. If a parameter is out of range, EINVAL is
returned.

BPPIOC_GETPARMS Get current transfer parameters.

The argument is a pointer to a bpp_transfer_parms
structure. See below for a description of the elements of
this structure. If no parameters have been configured
since the device was opened, the contents of the
structure will be the default conditions of the
parameters (see Default Operation above).

BPPIOC_SETOUTPINS Set output pin values.

The argument is a pointer to a bpp_pins structure. See
below for a description of the elements of this
structure. If a parameter is out of range, EINVAL is
returned.

BPPIOC_GETOUTPINS

Read output pin values. The argument is a pointer to a
bpp_pins structure. See below for a description of the
elements of this structure.

BPPIOC_GETERR Get last error status.

The argument is a pointer to a bpp_error_status
structure. See below for a description of the elements of
this structure. This structure indicates the status of all
the appropriate status bits at the time of the most
recent error condition during a read(2) or write(2)
call, or the status of the bits at the most recent
BPPIOC_TESTIO ioctl request. Note: The bits in the
pin_status element indicate whether the associated
pin is active, not the actual polarity. The application
can check transfer readiness without attempting
another transfer using the BPPIOC_TESTIO ioctl. Note:
The timeout_occurred and bus_error fields will
never be set by the BPPIOC_TESTIO ioctl, only by an
actual failed transfer.

BPPIOC_TESTIO Test transfer readiness.

This command checks to see if a read or write transfer
would succeed based on pin status, opened mode, and
handshake selected. If a handshake would succeed, 0 is
returned. If a transfer would fail, -1 is returned, and

bpp(7D)

66 man pages section 7: Device and Network Interfaces • Last Revised 22 Aug 1994

errno is set to EIO, and the error status information is
captured. The captured status can be retrieved using
the BPPIOC_GETERR ioctl call. Note that the
timeout_occurred and bus_error fields will never
be set by this ioctl.

This structure is defined in <sys/bpp_io.h>.

struct bpp_transfer_parms {
enum handshake_t

read_handshake; /* parallel port read handshake mode */
int read_setup_time; /* DSS register - in nanoseconds */
int read_strobe_width; /* DSW register - in nanoseconds */
int read_timeout; /*

* wait this many seconds
* before aborting a transfer

*/
enum handshake_t

write_handshake; /* parallel port write handshake mode */
int write_setup_time; /* DSS register - in nanoseconds */
int write_strobe_width; /* DSW register - in nanoseconds */
int write_timeout; /*

* wait this many seconds
* before aborting a transfer

*/
};
/* Values for read_handshake and write_handshake fields */

enum handshake_t {
BPP_NO_HS, /* no handshake pins */
BPP_ACK_HS, /* handshake controlled by ACK line */
BPP_BUSY_HS, /* handshake controlled by BSY line */
BPP_ACK_BUSY_HS, /*

* handshake controlled by ACK and BSY lines
* read_handshake only!

*/
BPP_XSCAN_HS, /* xerox scanner mode,

* read_handshake only!
*/

BPP_HSCAN_HS, /*
* HP scanjet scanner mode
* read_handshake only!

*/
BPP_CLEAR_MEM, /* write 0’s to memory,

* read_handshake only!
*/

BPP_SET_MEM, /* write 1’s to memory,
* read_handshake only!

*/
/* The following handshakes are RESERVED. Do not use. */

BPP_VPRINT_HS, /* valid only in read/write mode */
BPP_VPLOT_HS /* valid only in read/write mode */

};

The read_setup_time field controls the time between dstrb falling edge to bsy
rising edge if the read_handshake field is set to BPP_NO_HS or BPP_ACK_HS. It

bpp(7D)

Transfer
Parameters

Structure

Device and Network Interfaces 67

controls the time between dstrb falling edge to ack rising edge if the
read_handshake field is set to BPP_ACK_HS or BPP_ACK_BUSY_HS. It controls the
time between ack falling edge to dstrb rising edge if the read_handshake field is set
to BPP_XSCAN_HS.

The read_strobe_width field controls the time between ack rising edge and ack
falling edge if the read_handshake field is set to BPP_NO_HS or
BPP_ACK_BUSY_HS. It controls the time between dstrb rising edge to dstrb falling
edge if the read_handshake field is set to BPP_XSCAN_HS.

The values allowed for the write_handshake field are duplicates of the definitions
for the read_handshake field. Note that some of these handshake definitions are
only valid in one mode or the other.

The write_setup_time field controls the time between data valid to dstrb rising
edge for all values of the write_handshake field.

The write_strobe_width field controls the time between dstrb rising edge and
dstrb falling edge if the write_handshake field is not set to BPP_VPRINT_HS or
BPP_VPLOT_HS. It controls the minimum time between dstrb rising edge to dstrb
falling edge if the write_handshake field is set to BPP_VPRINT_HS or
BPP_VPLOT_HS.

This structure is defined in <sys/bpp_io.h>.

struct bpp_pins {
uchar_t output_reg_pins; /* pins in P_OR register */
uchar_t input_reg_pins; /* pins in P_IR register */

};

/* Values for output_reg_pins field */
#define BPP_SLCTIN_PIN 0x01 /* Select in pin */
#define BPP_AFX_PIN 0x02 /* Auto feed pin */
#define BPP_INIT_PIN 0x04 /* Initialize pin */
#define BPP_V1_PIN 0x08 /* reserved pin 1 */
#define BPP_V2_PI 0x10 /* reserved pin 2 */
#define BPP_V3_PIN 0x20 /* reserved pin 3 */
#define BPP_ERR_PIN 0x01 /* Error pin */
#define BPP_SLCT_PIN 0x02 /* Select pin */

#define BPP_PE_PIN 0x04 /* Paper empty pin */

This structure is defined in the include file <sys/bpp_io.h>.

struct bpp_error_status {
char timeout_occurred; /* 1 if a timeout occurred */
char bus_error; /* 1 if an SBus bus error */
uchar_t pin_status; /*

* status of pins which could
* cause an error
*/

};
/* Values for pin_status field */
#define BPP_ERR_ERR 0x01 /* Error pin active */

bpp(7D)

Transfer Pins
Structure

Error Pins
Structure

68 man pages section 7: Device and Network Interfaces • Last Revised 22 Aug 1994

#define BPP_SLCT_ERR 0x02 /* Select pin active */
#define BPP_PE_ERR 0x04 /* Paper empty pin active */
#define BPP_SLCTIN_ERR 0x10 /* Select in pin active */

#define BPP_BUSY_ERR 0x40 /* Busy pin active */

EBADF The device is opened for write-only access and a read is attempted,
or the device is opened for read-only access and a write is
attempted.

EBUSY The device has been opened and another open is attempted. An
attempt has been made to unload the driver while one of the units
is open.

EINVAL A BPPIOC_SETPARMS ioctl is attempted with an out of range
value in the bpp_transfer_parms structure. A
BPPIOC_SETOUTPINS ioctl is attempted with an invalid value
in the pins structure. An ioctl is attempted with an invalid value
in the command argument. An invalid command argument is
received during modload(1M) or modunload(1M).

EIO The driver encountered an SBus bus error when attempting an
access.

A read or write does not complete properly, due to a peripheral
error or a transfer timeout.

A BPPIOC_TESTIO ioctl call is attempted while a condition
exists which would prevent a transfer (such as a peripheral error).

ENXIO The driver has received an open request for a unit for which the
attach failed. The driver has received a read or write request for a
unit number greater than the number of units available. The driver
has received a write request for a unit which has an active
peripheral error.

/dev/bppn bi-directional parallel port devices

ioctl(2), read(2), write(2), sbus(4)

bpp(7D)

ERRORS

FILES

SEE ALSO

Device and Network Interfaces 69

bufmod – STREAMS Buffer Module

ioctl(fd, I_PUSH, "bufmod");

bufmod is a STREAMS module that buffers incoming messages, reducing the number
of system calls and the associated overhead required to read and process them.
Although bufmod was originally designed to be used in conjunction with
STREAMS-based networking device drivers, the version described here is general
purpose so that it can be used anywhere STREAMS input buffering is required.

The behavior of bufmod depends on various parameters and flags that can be set and
queried as described below under IOCTLS. bufmod collects incoming M_DATA
messages into chunks, passing each chunk upstream when the chunk becomes full or
the current read timeout expires. It optionally converts M_PROTO messages to M_DATA
and adds them to chunks as well. It also optionally adds to each message a header
containing a timestamp, and a cumulative count of messages dropped on the stream
read side due to resource exhaustion or flow control. Thedefault settings of bufmod
allow it to drop messages when flow control sets in or resources are exhausted;
disabling headers and explicitly requesting no drops makes bufmod pass all messages
through. Finally, bufmod is capable of truncating upstream messages to a fixed,
programmable length.

When a message arrives, bufmod processes it in several steps. The following
paragraphs discuss each step in turn.

Upon receiving a message from below, if the SB_NO_HEADER flag is not set, bufmod
immediately timestamps it and saves the current time value for later insertion in the
header described below.

Next, if SB_NO_PROTO_CVT is not set, bufmod converts all leading M_PROTO blocks in
the message to M_DATA blocks, altering only the message type field and leaving the
contents alone.

It then truncates the message to the current snapshot length, which is set with the
SBIOCSSNAP ioctl described below.

Afterwards, if SB_NO_HEADER is not set, bufmod prepends a header to the converted
message. This header is defined as follows.

struct sb_hdr {
uint_t sbh_origlen;
uint_t sbh_msglen;
uint_t sbh_totlen;
uint_t sbh_drops;

#if defined(_LP64) || defined(_I32LPx)
struct timeval32 sbh_timestamp;

#else
struct timeval sbh_timestamp;

#endif /* !_LP64 */

};

bufmod(7M)

NAME

SYNOPSIS

DESCRIPTION

Read-side
Behavior

70 man pages section 7: Device and Network Interfaces • Last Revised 11 Nov 1997

The sbh_origlen field gives the message’s original length before truncation in bytes.
The sbh_msglen field gives the length in bytes of the message after the truncation
has been done. sbh_totlen gives the distance in bytes from the start of the truncated
message in the current chunk (described below) to the start of the next message in the
chunk; the value reflects any padding necessary to insure correct data alignment for
the host machine and includes the length of the header itself. sbh_drops reports the
cumulative number of input messages that this instance of bufmod has dropped due
to flow control or resource exhaustion. In the current implementation message
dropping due to flow control can occur only if the SB_NO_DROPS flag is not set. (Note:
this accounts only for events occurring within bufmod, and does not count messages
dropped by downstream or by upstream modules.) The sbh_timestamp field
contains the message arrival time expressed as a struct timeval.

After preparing a message, bufmod attempts to add it to the end of the current chunk,
using the chunk size and timeout values to govern the addition. The chunk size and
timeout values are set and inspected using the ioctl() calls described below. If
adding the new message would make the current chunk grow larger than the chunk
size, bufmod closes off the current chunk, passing it up to the next module in line, and
starts a new chunk. If adding the message would still make the new chunk overflow,
the module passes it upward in an over-size chunk of its own. Otherwise, the module
concatenates the message to the end of the current chunk.

To ensure that messages do not languish forever in an accumulating chunk, bufmod
maintains a read timeout. Whenever this timeout expires, the module closes off the
current chunk and passes it upward. The module restarts the timeout period when it
receives a read side data message and a timeout is not currently active. These two
rules insure that bufmod minimizes the number of chunks it produces during periods
of intense message activity and that it periodically disposes of all messages during
slack intervals, but avoids any timeout overhead when there is no activity.

bufmod handles other message types as follows. Upon receiving an M_FLUSH message
specifying that the read queue be flushed, the module clears the currently
accumulating chunk and passes the message on to the module or driver above. (Note:
bufmod uses zero length M_CTL messages for internal synchronization and does not
pass them through.) bufmod passes all other messages through unaltered to its upper
neighbor, maintaining message order for non high priority messages by passing up
any accumulated chunk first.

If the SB_DEFER_CHUNK flag is set, buffering does not begin until the second message
is received within the timeout window.

If the SB_SEND_ON_WRITE flag is set, bufmod passes up the read side any buffered
data when a message is received on the write side. SB_SEND_ON_WRITE and
SB_DEFER_CHUNK are often used together.

bufmod intercepts M_IOCTL messages for the ioctls described below. The module
passes all other messages through unaltered to its lower neighbor. If

bufmod(7M)

Write-side
Behavior

Device and Network Interfaces 71

SB_SEND_ON_WRITE is set, message arrival on the writer side suffices to close and
transmit the current read side chunk.

bufmod responds to the following ioctls.

SBIOCSTIME Set the read timeout value to the value referred to by the struct
timeval pointer given as argument. Setting the timeout value to
zero has the side-effect of forcing the chunk size to zero as well, so
that the module will pass all incoming messages upward
immediately upon arrival. Negative values are rejected with an
EINVAL error.

SBIOCGTIME Return the read timeout in the struct timeval pointed to by
the argument. If the timeout has been cleared with the
SBIOCCTIME ioctl, return with an ERANGE error.

SBIOCCTIME Clear the read timeout, effectively setting its value to infinity. This
results in no timeouts being active and the chunk being delivered
when it is full.

SBIOCSCHUNK Set the chunk size to the value referred to by the uint_t pointer
given as argument. See NOTES for a description of effect on
stream head high water mark.

SBIOCGCHUNK Return the chunk size in the uint_t pointed to by the argument.

SBIOCSSNAP Set the current snapshot length to the value given in the uint_t
pointed to by the ioctl’s final argument. bufmod interprets a
snapshot length value of zero as meaning infinity, so it will not
alter the message. See NOTES for a description of effect on stream
head high water mark.

SBIOCGSNAP Returns the current snapshot length in the uint_t pointed to by
the ioctl’s final argument.

SBIOCSFLAGS Set the current flags to the value given in the uint_t pointed to
by the ioctl’s final argument. Possible values are a combination
of the following.

SB_SEND_ON_WRITE Transmit the read side chunk on
arrival of a message on the write
side.

SB_NO_HEADER Do not add headers to read side
messages.

SB_NO_DROPS Do not drop messages due to flow
control upstream.

SB_NO_PROTO_CVT Do not convert M_PROTO messages
into M_DATA.

bufmod(7M)

IOCTLS

72 man pages section 7: Device and Network Interfaces • Last Revised 11 Nov 1997

SB_DEFER_CHUNK Begin buffering on arrival of the
second read side message in a
timeout interval.

SBIOCGFLAGS Returns the current flags in the uint_t pointed to by the ioctl’s
final argument.

dlpi(7P), le(7D), pfmod(7M)

Older versions of bufmod did not support the behavioral flexibility controlled by the
SBIOCSFLAGS ioctl. Applications that wish to take advantage of this flexibility can
guard themselves against old versions of the module by invoking the SBIOCGFLAGS
ioctl and checking for an EINVAL error return.

When buffering is enabled by issuing an SBIOCSCHUNK ioctl to set the chunk size to a
non zero value, bufmod sends a SETOPTS message to adjust the stream head high and
low water marks to accommodate the chunked messages.

When buffering is disabled by setting the chunk size to zero, message truncation can
have a significant influence on data traffic at the stream head and therefore the stream
head high and low water marks are adjusted to new values appropriate for the smaller
truncated message sizes.

bufmod does not defend itself against allocation failures, so that it is possible,
although very unlikely, for the stream head to use inappropriate high and low water
marks after the chunk size or snapshot length have changed.

bufmod(7M)

SEE ALSO

NOTES

BUGS

Device and Network Interfaces 73

bwtwo – black and white memory frame buffer

/dev/fbs/bwtwo

The bwtwo interface provides access to monochrome memory frame buffers. It
supports the ioctls described in fbio(7I).

Reading or writing to the frame buffer is not allowed — you must use the mmap(2)
system call to map the board into your address space.

/dev/fbs/bwtwo[0-9] device files

mmap(2), cgfour(7D), fbio(7I)

Use of vertical-retrace interrupts is not supported.

bwtwo(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

BUGS

74 man pages section 7: Device and Network Interfaces • Last Revised 27 Mar 1992

cadp160 – Adaptec Ultra160 SCSI host bus adapter driver

scsi@unit-address

The cadp160 host bus adapter driver is a SCSA-compliant nexus driver that supports
the following Adaptec Ultra160 SCSI devices:

� Adapters: 39160, 29160, 29160N, 29160LP
� Chips: AIC-7892B1, AIC-7899A, AIC-7899B2

The cadp160 driver supports standard functions provided by the SCSA interface
including tagged and untagged queuing, wide, fast and ultra SCSI, and auto request
sense. The cadp160 driver does not support linked commands. The cadp160 driver
supports hot swap SCSI, hot plug PCI, 64-bit addressing (dual address cycle), domain
validation, PCI bus clock rates up to 66MHZ and narrow and wide devices at
20MB/sec, 40MB/sec, 80MB/sec, and 160MB/sec.

/platform/i86pc/kernel/drv/cadp160
ELF kernel module

/boot/solaris/drivers/notisa.010/cadp160.bef
Realmode BEF driver

/platform/i86pc/kernel/drv/cadp160.conf
Optional configuration file

See attributes(5) for a description of the following attribute:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

prtconf(1M), driver.conf(4), pci(4), attributes(5), dlpi(7P),
scsi_abort(9F), scsi_hba_attach(9F), scsi_ifgetcap(9F),
scsi_ifsetcap(9F), scsi_reset(9F), scsi_sync_pkt(9F),
scsi_transport(9F), scsi_device(9S), scsi_extended_sense(9S),
scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

Solaris (Intel Platform Edition) Hardware Compatibility List

ANSI Small Computer System Interface-2 (SCSI-2)

cadp160(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 75

cadp – Adaptec Ultra-2 SCSI host bus adapter driver

scsi@unit-address

The cadp host bus adapter driver is a SCSA–compliant nexus driver that supports the
following Adaptec Ultra-2 SCSI devices:

� Adapters: Adaptec AHA-2940U2W, AHA-2940U2B, AHA-2940U2, AHA-2950U2B,
AHA-3950U2B

� Chips: AIC-7896/AIC-7897, AIC-7890/AIC-7890A, AIC-7891, AIC-7890AB,
AIC-7890A

The cadp driver supports standard functions provided by the SCSA interface,
including tagged and untagged queuing, Wide/Fast/Ultra SCSI, and auto request
sense. The cadp driver does not support linked commands.

� The Plug N Play SCAM Support option is not supported.

� If the BIOS is enabled on the card, ensure that the Adaptec SCSISelect BIOS option
Reset SCSI Bus at IC Initialization (under the Advanced Configuration Options
menu) is set to Enabled. Run the SCSISelect utility by pressing Ctrl-A when you
see the Adaptec banner during system boot.

� If the adapter is being used in a multi-initiator configuration, do the following: (1)
Ensure that the system boot disk is not on the shared (clustered) bus. (2) Set the
Reset SCSI Bus at IC Initialization option to Disabled. (3) Set the Host Adapter
BIOS option (under the Advanced Configuration Options menu) to
Disabled:Not scan. (4) Add the allow-bus-reset=0 property to the
/kernel/drv/cadp.conf file.

� Reboot the system after you install patches.

� The cadp.bef realmode driver supports only ten adapters at boot time. Therefore,
ensure that the boot disk is attached to one of the first ten adapters. Note that all
targets will be available for installation and use by the cadp driver.

� Running the format(1M) command on a Seagate ST19171W 9 GB disk drive fails.

� Some motherboards may have problems supporting channel B with boards based
on the Adaptec AIC-7896 chip. The problem arises because the BIOS doesn’t
properly assign two interrupts for PCI interrupts INTA and INTB on the slot
containing the AIC-7896 chip. As a result, timeouts and resets on those devices
appear on the console. For some motherboards, you can work around the problem
by setting the Advanced/PCI IRQ Mapping feature to ISA Legacy IRQs.

� If you experience problems when using a narrow SCSI CD-ROM drive on the
internal wide interface, disable "negotiate wide," "negotiate sync," or both for that
device in the Adaptec configuration utility.

� If you experience problems when using the narrow internal connector, then disable
"de-selection" in the Adaptec configuration utility.

� The Fujitsu narrow disk (M1603SAU) can reselect with an invalid queue tag ID.
This violates the SCSI protocol and it causes the cadp driver to behave

cadp(7D)

NAME

SYNOPSIS

DESCRIPTION

PRECONFIGURATION

Known Problems
and Limitations

76 man pages section 7: Device and Network Interfaces • Last Revised 3 Aug 2001

erroneously. Because this is difficult to guard against, you should disable tagged
queuing for these targets. Use the iostat --E command to determine if you have
a Fujitsu M1603S-512 disk. If you do, edit the /kernel/drv/cadp.conf file and
add the property targetn-scsi-options=0x1f78, where n is the target
number.

� The IBM external wide disk (DFHSS2W, Revision 1717) is not supported.

� When setting up a SCSI bus configuration, avoid connecting wide devices to a
narrow bus. However, if you have such a configuration, add the following entry to
the cadp.conf file: targetn-scsi-options=0x1df8 where n is the target ID
of the wide device on the narrow bus. This entry disables wide negotiation for the
specified target. Also ensure that the upper 8 bits of the bus are properly
terminated at both ends of the SCSI chain.

� If you experience installation problems on systems with Intel 440BX/440GX
motherboards, upgrade the motherboard BIOS with the latest revision.

You configure the cadp host bus adapter driver by defining the properties found in
cadp.conf. The cadp.conf file contains properties that you can modify, including:
scsi-options, target<n>-scsi-options, scsi-reset-delay, and
scsi-initiator-id. Properties in the cadp.conf file override global SCSI
settings.

The property target<n>-scsi-options overrides the scsi-options property
value for target<n>, where <n> can vary from decimal 0 to 15. The cadp driver
supports the following scsi-options: SCSI_OPTIONS_DR, SCSI_OPTIONS_SYNC,
SCSI_OPTIONS_TAG, SCSI_OPTIONS_FAST, SCSI_OPTIONS_WIDE,
SCSI_OPTIONS_FAST20, and SCSI_OPTIONS_FAST40.

You configure the SCSI devices using the Adaptec configuration utility. When
configuring the devices, you should observe the following guidelines:

� Configure each device using a unique SCSI ID. On the Advanced Configuration
Options menu, set Plug N Play SCAM Support to Disabled. Ensure that devices
on either end of the SCSI chain are terminated. When mixing wide (16 bits) and
narrow (8 bits) devices on the same wide chain, ensure that a wide device is at the
end of the chain. If you place a narrow device at the end of the chain, wide devices
on the same chain will terminate the low byte, resulting in a illegal configuration.

� If there is more than one controller, or an embedded controller, attempt to use one
IRQ per controller.

� When prompted, enable bus mastering for the slot(s) with your host bus
adapter(s.)

� For older disk drives, tape drives and most CD-ROM devices, be sure the
maximum SCSI data transfer speed is set to 5.0 Mbps.

� Enable support for disks larger than 1 Gbyte, if applicable.

cadp(7D)

CONFIGURATION

Device and Network Interfaces 77

EXAMPLE 1

Create a file called /kernel/drv/cadp.conf, then add the following line:

scsi-options=0x78;

The above line disables tagged queuing, Fast/Ultra SCSI, and wide mode for all cadp
instances.

To set scsi-options more specifically per target, add the following lines to
/kernel/drv/cadp.conf:

target1-scsi-options=0x78;
device-type-scsi-options-list =
"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

With the exception of one disk type that has scsi-options set to 0x58, the above
example sets scsi-options for target 1 to 0x78, and all remaining targets to 0x3f8.

The scsi-options properties that are specified per target ID have the highest
precedence, followed by scsi-options per device type. Global scsi-options for
all cadp instances per bus have the lowest precedence. You must reboot the system
for the specified scsi options to take effect.

To enable certain features on the cadp driver, the target driver must set capabilities.
The following capabilities can be queried and modified by the target driver:
synchronous, tagged-qing, wide-xfer, auto-rqsense, qfull-retries, and
qfull-retry-interval. All other capabilities are query only.

By default, the tagged-qing, auto-rqsense, and wide-xfer capabilities are
disabled. The disconnect, synchronous, and untagged-qing capabilities are
always enabled. The cadp driver capabilities can only be assigned binary values (0 or
1). The default value for qfull-retries is 10 and the default value for
qfull-retry-interval is 100. The qfull-retries capability is au_char (0 to
255) while qfull-retry-interval is a u_short (0 to 65535).

If a conflict occurs between the value of scsi-options and a capability, the value set
in scsi-options prevails. Only whom != 0 is supported in the
scsi_ifsetcap(9F)call. See scsi_ifsetcap(9F) and scsi_ifgetcap(9F)
for details.

/kernel/drv/cadp ELF kernel module

/kernel/drv/cadp.conf Optional configuration file

See attributes(5) for a description of the following attribute:

cadp(7D)

EXAMPLES

Driver Capabilities

FILES

ATTRIBUTES

78 man pages section 7: Device and Network Interfaces • Last Revised 3 Aug 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

prtconf(1M), driver.conf(4), pci(4), attributes(5), scsi_abort(9F),
scsi_hba_attach(9F), scsi_ifgetcap(9F), scsi_ifsetcap(9F),
scsi_reset(9F), scsi_sync_pkt(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

Solaris (Intel Platform Edition) Hardware Compatibility List

ANSI Small Computer System Interface-2 (SCSI-2)

The cadp driver supports the adapters and chipsets listed in this man page. For
information on support of additional devices, see the Solaris (Intel Platform Edition)
Hardware Compatibility List a component of the Information Library for Solaris 8 (Intel
Platform Edition).

The cadp driver exports properties indicating (per target) the negotiated transfer
speed (target<n>-sync-speed), whether wide bus (target<n>-wide), is
supported for that particular target (target<n>-scsi-options), and whether
tagged queuing (target<n>-tag-queue) has been enabled. The sync-speed
property value is the data transfer rate in KB/sec. The target<n>-tag-queue and
the target<n>-wide property have value 1 to indicate that the corresponding
capability is enabled, or 0 to indicate that the capability is disabled. See prtconf(1M)
(verbose option) for information on viewing the cadp properties.

Sample output is provided below:

pci9005,f500, instance #2
System software properties:

name <interrupt-priorities> length <4>
value <0x05000000>.

name <tape> length <5>
value <0x7363747000>.

name <disk> length <5>
value <0x7363646b00>.

name <queue> length <6>
value <0x71736f727400>.

name <flow_control> length <6>
value <0x646d756c7400>.

Driver properties:
name <target0-tag-queue> length <4>

value <0x01000000>.
name <target0-wide> length <4>

value <0x01000000>.
name <target0-sync-speed> length <4>

value <0x28000000>.
name <chosen-interrupt> length <8>

value <0x0100000000000000>.

cadp(7D)

SEE ALSO

NOTES

Device and Network Interfaces 79

name <scsi-selection-timeout> length <4>
value <0xfa000000>.

name <scsi-options> length <4>
value <0xf81f0000>.

name <scsi-watchdog-tick> length <4>
value <0x0a000000>.

name <scsi-tag-age-limit> length <4>
value <0x02000000>.

name <scsi-reset-delay> length <4>
value <0xb80b0000>.

cadp(7D)

80 man pages section 7: Device and Network Interfaces • Last Revised 3 Aug 2001

cdio – CD-ROM control operations

#include <sys/cdio.h>

The set of ioctl(2) commands described below are used to perform audio and
CD-ROM specific operations. Basic to these cdio ioctl requests are the definitions in
<sys/cdio.h>.

Several CD-ROM specific commands can report addresses either in LBA (Logical Block
Address) format or in MSF (Minute, Second, Frame) format. The READ HEADER, READ
SUBCHANNEL, and READ TABLE OF CONTENTS commands have this feature.

LBA format represents the logical block address for the CD-ROM absolute address field
or for the offset from the beginning of the current track expressed as a number of
logical blocks in a CD-ROM track relative address field. MSF format represents the
physical address written on CD-ROM discs, expressed as a sector count relative to
either the beginning of the medium or the beginning of the current track.

The following I/O controls do not have any additional data passed into or received
from them.

CDROMSTART
This ioctl() spins up the disc and seeks to the last address requested.

CDROMSTOP
This ioctl() spins down the disc.

CDROMPAUSE
This ioctl() pauses the current audio play operation.

CDROMRESUME
This ioctl() resumes the paused audio play operation.

CDROMEJECT
This ioctl() ejects the caddy with the disc.

The following I/O controls require a pointer to the structure for that ioctl(), with
data being passed into the ioctl().

CDROMPLAYMSF
This ioctl() command requests the drive to output the audio signals at the
specified starting address and continue the audio play until the specified ending
address is detected. The address is in MSF format. The third argument of this
ioctl() call is a pointer to the type struct cdrom_msf.

/*
* definition of play audio msf structure
*/
struct cdrom_msf {

unsigned char cdmsf_min0; /* starting minute*/
unsigned char cdmsf_sec0; /* starting second*/
unsigned char cdmsf_frame0; /*starting frame*/
unsigned char cdmsf_min1; /* ending minute */

cdio(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

Device and Network Interfaces 81

unsigned char cdmsf_sec1; /* ending second */
unsigned char cdmsf_frame1; /* ending frame */

};

The CDROMREADTOCENTRY ioctl request may be used to obtain the start time for a
track. An approximation of the finish time can be obtained by using the
CDROMREADTOCENTRY ioctl request to retrieve the start time of the track following
the current track.

The leadout track is the next consecutive track after the last audio track. Hence, the
start time of the leadout track may be used as the effective finish time of the last
audio track.

CDROMPLAYTRKIND
This ioctl() command is similar to CDROMPLAYMSF. The starting and ending
address is in track/index format. The third argument of the ioctl() call is a
pointer to the type struct cdrom_ti.

/*
* definition of play audio track/index structure
*/
struct cdrom_ti {

unsigned char cdti_trk0; /* starting track*/
unsigned char cdti_ind0; /* starting index*/
unsigned char cdti_trk1; /* ending track */
unsigned char cdti_ind1; /* ending index */

};

CDROMVOLCTRL
This ioctl() command controls the audio output level. The SCSI command
allows the control of up to four channels. The current implementation of the
supported CD-ROM drive only uses channel 0 and channel 1. The valid values of
volume control are between 0x00 and 0xFF, with a value of 0xFF indicating
maximum volume. The third argument of the ioctl() call is a pointer to struct
cdrom_volctrl which contains the output volume values.

/*
* definition of audio volume control structure
*/
struct cdrom_volctrl {

unsigned char channel0;
unsigned char channel1;
unsigned char channel2;
unsigned char channel3;

};

The following I/O controls take a pointer that will have data returned to the user
program from the CD-ROM driver.

cdio(7I)

82 man pages section 7: Device and Network Interfaces • Last Revised 4 Oct 2001

CDROMREADTOCHDR
This ioctl() command returns the header of the table of contents (TOC). The
header consists of the starting tracking number and the ending track number of the
disc. These two numbers are returned through a pointer of struct
cdrom_tochdr. While the disc can start at any number, all tracks between the first
and last tracks are in contiguous ascending order.

/*
* definition of read toc header structure
*/
struct cdrom_tochdr {

unsigned char cdth_trk0; /* starting track*/
unsigned char cdth_trk1; /* ending track*/

};

CDROMREADTOCENTRY
This ioctl() command returns the information of a specified track. The third
argument of the function call is a pointer to the type struct cdrom_tocentry.
The caller needs to supply the track number and the address format. This command
will return a 4-bit adr field, a 4-bit ctrl field, the starting address in MSF format
or LBA format, and the data mode if the track is a data track. The ctrl field
specifies whether the track is data or audio.

/*
* definition of read toc entry structure
*/
struct cdrom_tocentry {

unsigned char cdte_track;
unsigned char cdte_adr :4;
unsigned char cdte_ctrl :4;
unsigned char cdte_format;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdte_addr;
unsigned char cdte_datamode;

};

To get the information from the leadout track, the following value is appropriate for
the cdte_track field:

CDROM_LEADOUT Leadout track

To get the information from the data track, the following value is appropriate for the
cdte_ctrl field:

CDROM_DATA_TRACK Data track

The following values are appropriate for the cdte_format field:

cdio(7I)

Device and Network Interfaces 83

CDROM_LBA LBA format

CDROM_MSF MSF format

CDROMSUBCHNL
This ioctl() command reads the Q sub-channel data of the current block. The
subchannel data includes track number, index number, absolute CD-ROM address,
track relative CD-ROM address, control data and audio status. All information is
returned through a pointer to struct cdrom_subchnl. The caller needs to
supply the address format for the returned address.

struct cdrom_subchnl {
unsigned char cdsc_format;
unsigned char cdsc_audiostatus;
unsigned char cdsc_adr: 4;
unsigned char cdsc_ctrl: 4;
unsigned char cdsc_trk;
unsigned char cdsc_ind;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdsc_absaddr;
union {

struct {
unsigned char minute;
unsigned char second;
unsigned char frame;

} msf;
int lba;

} cdsc_reladdr;

};

The following values are valid for the audio status field returned from READ
SUBCHANNEL command:

CDROM_AUDIO_INVALID Audio status not supported.

CDROM_AUDIO_PLAY Audio play operation in progress.

CDROM_AUDIO_PAUSED Audio play operation paused.

CDROM_AUDIO_COMPLETED Audio play successfully completed.

CDROM_AUDIO_ERROR Audio play stopped due to error.

CDROM_AUDIO_NO_STATUS No current audio status to return.

CDROMREADOFFSET
This ioctl() command returns the absolute CD-ROM address of the first track in
the last session of a Multi-Session CD-ROM. The third argument of the ioctl() call
is a pointer to an int.

cdio(7I)

84 man pages section 7: Device and Network Interfaces • Last Revised 4 Oct 2001

CDROMCDDA
This ioctl() command returns the CD-DA data or the subcode data. The third
argument of the ioctl() call is a pointer to the type struct cdrom_cdda. In
addition to allocating memory and supplying its address, the caller needs to supply
the starting address of the data, the transfer length in terms of the number of blocks
to be transferred, and the subcode options. The caller also needs to issue the
CDROMREADTOCENTRY ioctl() to find out which tracks contain CD-DA data
before issuing this ioctl().

/*
* Definition of CD-DA structure
*/
struct cdrom_cdda {

unsigned int cdda_addr;
unsigned int cdda_length;
caddr_t cdda_data;
unsigned char cdda_subcode;

};

cdda_addr signifies the starting logical block address.

cdda_length signifies the transfer length in blocks. The length of the block
depends on the cdda_subcode selection, which is explained below.

To get the subcode information related to CD-DA data, the following values are
appropriate for the cdda_subcode field:

CDROM_DA_NO_SUBCODE CD-DA data with no subcode.

CDROM_DA_SUBQ CD-DA data with sub Q code.

CDROM_DA_ALL_SUBCODE CD-DA data with all subcode.

CDROM_DA_SUBCODE_ONLY All subcode only.

To allocate the memory related to CD-DA and/or subcode data, the following values
are appropriate for each data block transferred:

CD-DA data with no subcode 2352 bytes

CD-DA data with sub Q code 2368 bytes

CD-DA data with all subcode 2448 bytes

All subcode only 96 bytes

CDROMCDXA
This ioctl() command returns the CD-ROM XA (CD-ROM Extended Architecture)
data according to CD-ROM XA format. The third argument of the ioctl() call is a
pointer to the type struct cdrom_cdxa. In addition to allocating memory and
supplying its address, the caller needs to supply the starting address of the data,
the transfer length in terms of number of blocks, and the format. The caller also

cdio(7I)

Device and Network Interfaces 85

needs to issue the CDROMREADTOCENTRY ioctl() to find out which tracks contain
CD-ROM XA data before issuing this ioctl().

/*
* Definition of CD-ROM XA structure
*/
struct cdrom_cdxa {

unsigned int cdxa_addr;
unsigned int cdxa_length;
caddr_t cdxa_data;
unsigned char cdxa_format;

};

To get the proper CD-ROM XA data, the following values are appropriate for the
cdxa_format field:

CDROM_XA_DATA CD-ROM XA data only

CDROM_XA_SECTOR_DATA CD-ROM XA all sector data

CDROM_XA_DATA_W_ERROR CD-ROM XA data with error flags data

To allocate the memory related to CD-ROM XA format, the following values are
appropriate for each data block transferred:

CD-ROM XA data only
2048 bytes

CD-ROM XA all sector data
2352 bytes

CD-ROM XA data with error flags data
2646 bytes

CDROMSUBCODE
This ioctl() command returns raw subcode data (subcodes P ~ W are described
in the "Red Book," see SEE ALSO) to the initiator while the target is playing audio.
The third argument of the ioctl() call is a pointer to the type struct
cdrom_subcode. The caller needs to supply the transfer length in terms of number
of blocks and allocate memory for subcode data. The memory allocated should be a
multiple of 96 bytes depending on the transfer length.

/*
* Definition of subcode structure
*/
struct cdrom_subcode {

unsigned int cdsc_length;
caddr_t cdsc_addr;

};

The next group of I/O controls get and set various CD-ROM drive parameters.

cdio(7I)

86 man pages section 7: Device and Network Interfaces • Last Revised 4 Oct 2001

CDROMGBLKMODE
This ioctl() command returns the current block size used by the CD-ROM drive.
The third argument of the ioctl() call is a pointer to an integer.

CDROMSBLKMODE
This ioctl() command requests the CD-ROM drive to change from the current
block size to the requested block size. The third argument of the ioctl() call is an
integer which contains the requested block size.

This ioctl() command operates in exclusive-use mode only. The caller must
ensure that no other processes can operate on the same CD-ROM device before
issuing this ioctl(). read(2) behavior subsequent to this ioctl() remains the
same: the caller is still constrained to read the raw device on block boundaries and
in block multiples.

To set the proper block size, the following values are appropriate:

CDROM_BLK_512 512 bytes

CDROM_BLK_1024 1024 bytes

CDROM_BLK_2048 2048 bytes

CDROM_BLK_2056 2056 bytes

CDROM_BLK_2336 2336 bytes

CDROM_BLK_2340 2340 bytes

CDROM_BLK_2352 2352 bytes

CDROM_BLK_2368 2368 bytes

CDROM_BLK_2448 2448 bytes

CDROM_BLK_2646 2646 bytes

CDROM_BLK_2647 2647 bytes

CDROMGDRVSPEED
This ioctl() command returns the current CD-ROM drive speed. The third
argument of the ioctl() call is a pointer to an integer.

CDROMSDRVSPEED
This ioctl() command requests the CD-ROM drive to change the current drive
speed to the requested drive speed. This speed setting is only applicable when
reading data areas. The third argument of the ioctl() is an integer which
contains the requested drive speed.

To set the CD-ROM drive to the proper speed, the following values are appropriate:

CDROM_NORMAL_SPEED 150k/second

CDROM_DOUBLE_SPEED 300k/second

CDROM_QUAD_SPEED 600k/second

cdio(7I)

Device and Network Interfaces 87

CDROM_MAXIMUM_SPEED 300k/second (2x drive) 600k/second (4x
drive)

Note that these numbers are only accurate when reading 2048 byte blocks. The
CD-ROM drive will automatically switch to normal speed when playing audio tracks
and will switch back to the speed setting when accessing data.

ioctl(2), read(2)

N. V. Phillips and Sony Corporation, System Description Compact Disc Digital Audio,
("Red Book").

N. V. Phillips and Sony Corporation, System Description of Compact Disc Read Only
Memory, ("Yellow Book").

N. V. Phillips, Microsoft, and Sony Corporation, System Description CD-ROM XA, 1991.

Volume and File Structure of CD-ROM for Information Interchange, ISO 9660:1988(E).

SCSI-2 Standard, document X3T9.2/86-109

SCSI Multimedia Commands, Version 2 (MMC-2)

The CDROMCDDA, CDROMCDXA, CDROMSUBCODE, CDROMGDRVSPEED,
CDROMSDRVSPEED, and some of the block sizes in CDROMSBLKMODE are designed for
new Sun-supported CD-ROM drives and might not work on some of the older CD-ROM
drives.

CDROMCDDA, CDROMCDXA and CDROMSUBCODE will return error if the
transfer length exceeds valid limits as determined appropriate. Example: for MMC-2
drives, length can not exceed 3 bytes (i.e. 0xffffff). The same restriction is enforced for
older, pre-MMC-2 drives, as no limit was published for these older drives (and 3 bytes
is reasonable for all media). Note that enforcing this limit does not imply that values
passed in below this limit will actually be applicable for each and every piece of
media.

The interface to this device is preliminary and subject to change in future releases.
Programs should be written in a modular fashion so that future changes can be easily
incorporated.

cdio(7I)

SEE ALSO

NOTES

88 man pages section 7: Device and Network Interfaces • Last Revised 4 Oct 2001

ce – Cassini Gigabit-Ethernet device driver

/dev/ce

The ce Sun Gigabit-Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface,
dlpi(7P), over all implementations of PCI Cassini Gigabit-Ethernet add-in adapters.
Multiple Cassini-based adapters installed within the system are supported by the
driver. The ce driver provides basic support for the Cassini-based Ethernet hardware
and handles the pci108e,abba (PCI Cassini) devices. Functions include chip
initialization, frame transmit and receive, multicast and promiscuous support, and
error recovery and reporting. The Cassini device provides 1000BASE-SX networking
interfaces using the Cassini ASIC external SERDES and fiber optical transceiver, or
10/100/1000BASE-T using a Cassini ASIC attached to a GMII twisted pair copper
transceiver, or 10/100BASE-T using a Cassini ASIC attached to a MII twisted pair
copper transceiver.

The 1000Base-SX standard specifies an auto-negotiation protocol to automatically
select the mode of operation. In addition to the duplex mode of operation, the Cassini
ASIC can auto-negotiate for IEEE 802.3x frame-based flow control capabilities. The
Cassini PCS can perform auto-negotiation with the link’s remote-end (link partner)
and receives the capabilities of the remote end. It selects the highest common
denominator mode of operation based on the priorities. It also supports forced-mode
of operation where the driver selects the mode of operation.

The /dev/ce cloning character-special device is used to access all ce controllers
installed on the system.

The ce driver is a Style 2 data link service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. Valid DLPI primitives are defined in
<sys/dlpi.h>. Refer to dlpi(7P) for more information. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device (ppa). The ppa ID is interpreted as an unsigned long data type and
indicates the corresponding device instance (unit) number. An error (DL_ERROR_ACK)
is returned by the driver if the ppa field value does not correspond to a valid device
instance number for this system. The device is initialized on first attach and
de-initialized (stopped) upon last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ are as follows:

� Maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� Minimum SDU is 0.

� The dlsap address length is 8.

� MAC type is DL_ETHER.

� The sap length value is –2 meaning the physical address component is followed
immediately by a 2 byte sap component within the DLSAP address.

ce(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
ce and DLPI

Device and Network Interfaces 89

� Service mode is DL_CLDLS.

� Optional quality of service (QOS) is not supported; the QOS fields are 0.

� Provider style is DL_STYLE2.

� Version is DL_VERSION_2.

� Broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF.)

Once in the DL_ATTACHED state, you must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The ce driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type,” therefore valid values for
the sap field are in the range [0-0xFFFF]. Only one Ethernet type can be bound to the
stream at any time.

If you select a sap with a value of 0, the receiver will be in 802.3 mode. All frames
received from the media having a “type” field in the range [0-1500] are assumed to be
802.3 frames and are routed up all open streams which are bound to sap value 0 . If
more than one stream is in 802.3 mode, the frame will be duplicated and routed up
multiple streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ to verify that the
sap value is 0, and that the destination type field is in the range [0-1500]. If either is
true, the driver computes the length of the message, not including initial M_PROTO
mblk (message block), of all subsequent DL_UNITDATA_REQ messages and transmits
802.3 frames that have this value in the MAC frame header length field.

The ce driver DLSAP address format consists of the 6 byte physical (Ethernet) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hard code to this particular
implementation-specific DLSAP address format, but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, you can transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the ce driver. The ce driver will route received
Ethernet frames up all open and bound streams having a sap which matches the
Ethernet type as DL_UNITDATA_IND messages. Received Ethernet frames are
duplicated and routed up multiple open streams, if necessary. The DLSAP address
contained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set, the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be

ce(7D)

ce Primitives

90 man pages section 7: Device and Network Interfaces • Last Revised 7 Feb 2001

iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS option set in the dl_level field enables/disables reception of all
“promiscuous mode” frames on the media, including frames generated by the local
host. When used with the DL_PROMISC_SAP option set, this enables/disables
reception of all sap (Ethernet type) values. When used with the DL_PROMISC_MULTI
option set this enables/disables reception of all multicast group addresses. The effect
of each is always on a per-stream basis and independent of the other sap and physical
level configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process which
originally opened this stream must be superuser. Otherwise EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive because it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams
attached to this device when this primitive is successful on this stream. Once changed,
all streams subsequently opened and attached to this device will obtain this new
physical address. Once changed, the physical address will remain until this primitive
is used to change the physical address again or the system is rebooted, whichever
comes first.

By default, the ce driver performs auto-negotiation to select the mode and flow
control capabilities of the link.

The link can assume one of the following modes:

� 1000 Mbps, full-duplex
� 1000 Mbps, half-duplex
� Symmetric pause
� Asymmetric pause

Speeds and modes are described in the 1000Base-TX standard.

The auto–negotiation protocol automatically selects:

� Operation mode (half-duplex or full-duplex)
� Flow control capability (symmetric and/or asymmetric)

The auto–negotiation protocol does the following:

� Gets all modes of operation supported by the link partner.

� Advertises its capabilities to the link partner.

ce(7D)

ce DRIVER

Device and Network Interfaces 91

� Selects the highest common denominator mode of operation based on the
priorities.

The Cassini hardware can operate in all modes listed above, providing
auto-negotiation is used by default to bring up the link and select the common mode
of operation with the link partner. The PCS also supports forced-mode of operation in
which the driver can select the mode of operation and the flow control capabilities,
using the ndd utility.

The Cassini device also supports programmable IPG (Inter-Packet Gap) parameters
ipg1 and ipg2. By default, the driver sets ipg1 and ipg2 to 8 and 4 byte-times
respectively (which are the standard values). If desired, you can alter these values
from the standard 1000 Mpbs IPG set to 0.096 microseconds.

The ce driver enables the setting and getting of various parameters for the Cassini
device. The parameter list includes current transceiver status, current link status,
inter-packet gap, PCS capabilities and link partner capabilities.

The PCS features two set of capabilities. One set reflects the capabilities of the
hardware and are read-only. The second set, which reflects the values you choose, are
used in speed selection and possess read/write capabilities. At boot time, these two
sets of capabilities are the same. The link partner capabilities are also read-only
because the current default value of these parameters can be read but not modified.

/dev/ce ce special character device.

/kernel/drv/ce.conf System-wide default device driver
properties

ndd(1M), netstat(1M), driver.conf(4), ge(7D), hme(7D), le(7D), qfe(7D),
dlpi(7P)

ce(7D)

ce Parameter List

FILES

SEE ALSO

92 man pages section 7: Device and Network Interfaces • Last Revised 7 Feb 2001

cgeight – 24-bit color memory frame buffer

/dev/fbs/cgeightn

The cgeight is a 24-bit color memory frame buffer with a monochrome overlay plane
and an overlay enable plane implemented optionally on the Sun-4/110, Sun-4/150,
Sun-4/260 and Sun-4/280 system models. It provides the standard frame buffer
interface as defined in fbio(7I).

In addition to the ioctls described under fbio(7I) the cgeight interface responds to
two cgeight-specific colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP.
FBIOPUTCMAP returns no information other than success/failure using the ioctl return
value. FBIOGETCMAP returns its information in the arrays pointed to by the red, green,
and blue members of its fbcmap structure argument; fbcmap is defined in
<sys/fbio.h> as:

struct fbcmap {
int index; /* first element (0 origin) */
int count; /* number of elements */
unsigned char *red; /* red color map elements */
unsigned char *green /* green color map elements */
unsigned char *blue; /* blue color map elements */

};

The driver uses color board vertical-retrace interrupts to load the colormap.

The systems have an overlay plane colormap, which is accessed by encoding the plane
group into the index value with the PIX_GROUP macro (see
<sys/pr_planegroups.h>).

When using the mmap(2) system call to map in the cgeight frame buffer. The device
looks like:

DACBASE: 0x200000 -> Brooktree Ramdac 16 bytes
0x202000 -> P4 Register 4 bytes

OVLBASE: 0x210000 -> Overlay Plane 1152x900x1
0x230000 -> Overlay Enable Planea 1152x900x1

0x250000 -> 24-bit Frame Buffera 1152x900x32

/dev/fbs/cgeight0

<sys/fbio.h>

<sys/pr_planegroups.h>

mmap(2), fbio(7I)

cgeight(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

Device and Network Interfaces 93

cgfour – P4-bus 8-bit color memory frame buffer

/dev/fbs/cgfourn

The cgfour is a color memory frame buffer with a monochrome overlay plane and an
overlay enable plane. It provides the standard frame buffer interface as defined in
fbio(7I).

In addition to the ioctls described under fbio(7I) the cgfour interface responds to
two cgfour-specific colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP.
FBIOPUTCMAP returns no information other than success/failure using the ioctl return
value. FBIOGETCMAP returns its information in the arrays pointed to by the red, green,
and blue members of its fbcmap structure argument; fbcmap is defined in
<sys/fbio.h> as:

struct fbcmap {
int index; /* first element (0 origin) */
int count; /* number of elements */
unsigned char *red /* red color map elements */
unsigned char *green; /* green color map elements */
unsigned char *blue; /* blue color map elements */

};

The driver uses color board vertical-retrace interrupts to load the colormap.

The cgfour has an overlay plane colormap, which is accessed by encoding the plane
group into the index value with the PIX_GROUP macro (see
<sys/pr_planegroups.h>).

/dev/fbs/cgfour0

mmap(2), fbio(7I)

cgfour(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

94 man pages section 7: Device and Network Interfaces • Last Revised 27 Mar 1992

cgfourteen – 24-bit color graphics device

/dev/fbs/cgfourteenn

The cgfourteen device driver controls the video SIMM (VSIMM) component of the
video and graphics subsystem of the Desktop SPARCsystems with SX graphics option.
The VSIMM provides 24-bit truecolor visuals in a variety of screen resolutions and
pixel depths.

The driver supports multi-threaded applications and has an interface accessible
through mmap(2). The user must have an effective user ID of 0 to be able to write to the
control space of the cgfourteen device.

There are eight distinct physical spaces the user may map, in addition to the control
space. The mappings are set up by giving the desired offset to the mmap(2) call.

The cgfourteen device supports the standard frame buffer interface as defined in
fbio(7I).

The cgfourteen device can serve as a system console device.

See /usr/include/sys/cg14io.h for other device-specific information.

/kernel/drv/cgfourteen cgfourteen device driver

/dev/fbs/cgfourtee.n[0-9] Logical device name.

/usr/include/sys/cg14io.h Header file that contains device specific
information

/usr/include/sys/cg14reg.h Header file that contains device specific
information

mmap(2), fbio(7I)

cgfourteen(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

Device and Network Interfaces 95

cgsix – accelerated 8-bit color frame buffer

/dev/fbs/cgsixn

cgsix is a low-end graphics accelerator designed to enhance vector and polygon
drawing performance. It has an 8-bit color frame buffer and provides the standard
frame buffer interface as defined in fbio(7I).

In addition, cgsix supports the following cgsix-specific IOCTL, defined in
<sys/fbio.h>.

FBIOGXINFO Returns cgsix-specific information about the hardware. See the
definition of cg6_info in <sys/fbio.h> for more information.

cgsix has registers and memory that may be mapped with mmap(2), using the offsets
defined in <sys/cg6reg.h>.

/dev/fbs/cgsix0

mmap(2), fbio(7I)

cgsix(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

96 man pages section 7: Device and Network Interfaces • Last Revised 27 Mar 1992

cgthree – 8-bit color memory frame buffer

/dev/fbs/cgthreen

cgthree is a color memory frame buffer. It provides the standard frame buffer
interface as defined in fbio(7I).

/dev/fbs/cgthree[0-9]

mmap(2), fbio(7I)

cgthree(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

Device and Network Interfaces 97

cgtwo – color graphics interface

/dev/cgtwon

The cgtwo interface provides access to the color graphics controller board, which is
normally supplied with a 19’’ 66 Hz non-interlaced color monitor. It provides the
standard frame buffer interface as defined in fbio(7I).

The hardware consumes 4 megabytes of VME bus address space. The board starts at
standard address 0x400000. The board must be configured for interrupt level 4.

/dev/cgtwo[0-9]

mmap(2), fbio(7I)

cgtwo(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

98 man pages section 7: Device and Network Interfaces • Last Revised 21 Oct 1991

chs – IBM ServeRAID PCI host adapter driver

The chs driver is the IBM ServeRAID PCI controller driver.

To prevent data loss, a SCSI disk drive that is not defined as part of any physical pack
within a logical drive will not be accessible through the Solaris operating environment.

Auto-configuration code determines whether the adapter is present at the configured
address and what types of devices are attached to it. The IBM ServeRAID is primarily
used as a disk array (system drive) controller.

To configure the attached disk arrays, you must configure the controller (using the
configuration utilities provided by the hardware manufacturer) before booting the
Solaris operating environment You use the configuration utilities to set RAID levels,
stripe parameters, cache mechanisms and perform other functions. For more
information, see the user manual supplied with your hardware.

/kernel/drv/chs.conf chs configuration file

/dev/dsk/cndn[s|p]n block device

/dev/rdsk/cndn[s|p]n raw device where:

cn controller n

dn LUN n (0–7)

sn UNIX system slice n (0–15)

pn fdisk(1M) partition (0)

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

fdisk(1M), attributes(5), cmdk(7D)

chs(7D)

NAME

DESCRIPTION

Known Problems
and Limitations

CONFIGURATION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 99

cmdk – common disk driver

cmdk@target, lun : [partition | slice]

The cmdk device driver is a common interface to various disk devices. The driver
supports magnetic fixed disks and magnetic removable disks.

The block-files access the disk using the system’s normal buffering mechanism and are
read and written without regard to physical disk records. There is also a "raw"
interface that provides for direct transmission between the disk and the user’s read or
write buffer. A single read or write call usually results in one I/O operation; raw I/O
is therefore considerably more efficient when many bytes are transmitted. The names
of the block files are found in /dev/dsk; the names of the raw files are found in
/dev/rdsk.

I/O requests to the magnetic disk must have an offset and transfer length that is a
multiple of 512 bytes or the driver returns an EINVAL error.

Slice 0 is normally used for the root file system on a disk, slice 1 as a paging area (for
example, swap), and slice 2 for backing up the entire fdisk partition for Solaris
software. Other slices may be used for usr file systems or system reserved area.

Fdisk partition 0 is to access the entire disk and is generally used by the fdisk(1M)
program.

/dev/dsk/cndn[s|p]n block device (IDE)

/dev/rdsk/cndn[s|p]n raw device (IDE)

where:

cn controller n

dn lun n (0-7)

sn UNIX system slice n (0-15)

pn fdisk partition (0)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

fdisk(1M), mount(1M), lseek(2), read(2), write(2), readdir(3C), scsi(4),
vfstab(4), attributes(5), dkio(7I)

cmdk(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

100 man pages section 7: Device and Network Interfaces • Last Revised 9 May 2001

connld – line discipline for unique stream connections

/dev/connld

connld is a STREAMS-based module that provides unique connections between
server and client processes. It can only be pushed (see streamio(7I)) onto one end of
a STREAMS-based pipe that may subsequently be attached to a name in the file
system name space with fattach(3C). After the pipe end is attached, a new pipe is
created internally when an originating process attempts to open(2) or creat(2) the
file system name. A file descriptor for one end of the new pipe is packaged into a
message identical to that for the ioctl I_SENDFD (see streamio(7I)) and is
transmitted along the stream to the server process on the other end. The originating
process is blocked until the server responds.

The server responds to the I_SENDFD request by accepting the file descriptor through
the I_RECVFD ioctl message. When this happens, the file descriptor associated with
the other end of the new pipe is transmitted to the originating process as the file
descriptor returned from open(2) or creat(2).

If the server does not respond to the I_SENDFD request, the stream that the connld
module is pushed on becomes uni-directional because the server will not be able to
retrieve any data off the stream until the I_RECVFD request is issued. If the server
process exits before issuing the I_RECVFD request, the open(2) or the creat(2)
invocation will fail and return -1 to the originating process.

When the connld module is pushed onto a pipe, it ignores messages going back and
forth through the pipe.

On success, an open of connld returns 0. On failure, errno is set to the following
values:

EINVAL A stream onto which connld is being pushed is not a pipe or the
pipe does not have a write queue pointer pointing to a stream
head read queue.

EINVAL The other end of the pipe onto which connld is being pushed is
linked under a multiplexor.

EPIPE connld is being pushed onto a pipe end whose other end is no
longer there.

ENOMEM An internal pipe could not be created.

ENXIO An M_HANGUP message is at the stream head of the pipe onto
which connld is being pushed.

EAGAIN Internal data structures could not be allocated.

ENFILE A file table entry could not be allocated.

creat(2), open(2), fattach(3C), streamio(7I)

connld(7M)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

SEE ALSO

Device and Network Interfaces 101

STREAMS Programming Guide

connld(7M)

102 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

console – STREAMS-based console interface

/dev/console

The file /dev/console refers to the system console device. /dev/console should
be used for interactive purposes only. Use of /dev/console for logging purposes is
discouraged; syslog(3C) or msglog(7D) should be used instead.

The identity of this device depends on the EEPROM or NVRAM settings in effect at
the most recent system reboot; by default, it is the ‘‘workstation console’’ device
consisting of the workstation keyboard and frame buffer acting in concert to emulate
an ASCII terminal (see wscons(7D)).

Regardless of the system configuration, the console device provides asynchronous
serial driver semantics so that, in conjunction with the STREAMS line discipline
module ldterm(7M), it supports the termio(7I) terminal interface.

syslog(3C), termios(3C), ldterm(7M), termio(7I), msglog(7D), wscons(7D)

In contrast to pre-SunOS 5.0 releases, it is no longer possible to redirect I/O intended
for /dev/console to some other device. Instead, redirection now applies to the
workstation console device using a revised programming interface (see wscons(7D)).
Since the system console is normally configured to be the work station console, the
overall effect is largely unchanged from previous releases.

See wscons(7D) for detailed descriptions of control sequence syntax, ANSI control
functions, control character functions and escape sequence functions.

console(7D)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

Device and Network Interfaces 103

cpr – Suspend and resume module

/platform/’uname -m’/kernel/misc/cpr

The cpr module is a loadable module used to suspend and resume the entire system.
You may wish to suspend a system to save power or to power off temporarily for
transport. The cpr module should not be used in place of a normal shutdown when
performing any hardware reconfiguration or replacement. In order for the resume
operation to succeed, it is important that the hardware configuration remain the same.
When the system is suspended, the entire system state is preserved in non-volatile
storage until a resume operation is conducted.

dtpower(1M) or power.conf(4) are used to configure the suspend-resume feature.

The speed of suspend and resume operations can range from 15 seconds to several
minutes, depending on the system speed, memory size, and load.

During resume operation, the SIGTHAW signal is sent to all processes to allow them to
do any special processing in response to suspend-resume operation. Normally
applications are not required to do any special processing because of suspend-resume,
but some specialized processes can use SIGTHAW to restore the state prior to suspend.
For example, X can refresh the screen in response to SIGTHAW.

In some cases the cpr module may be unable to perform the suspend operation. If a
system contains additional devices outside the standard shipped configuration, it is
possible that device drivers for these additional devices might not support
suspend-resume operations. In this case, the suspend fails and an error message is
displayed. These devices must be removed or their device drivers unloaded for the
suspend operation to succeed. Contact the device manufacturer to obtain a new
version of device driver that supports suspend-resume.

A suspend may also fail when devices or processes are performing critical or
time-sensitive operations (such as realtime operations). The system will remain in its
current running state. Messages reporting the failure will be displayed on the console
and status returned to the caller. Once the system is successfully suspended the
resume operation will succeed, barring external influences such as a hardware
reconfiguration.

Some network-based applications may fail across a suspend and resume cycle. This
largely depends on the underlying network protocol and the applications involved. In
general, applications that retry and automatically reestablish connections will continue
to operate transparently on a resume operation; those applications that do not will
likely fail.

See attributes(5) for descriptions of the following attributes:

cpr(7)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

104 man pages section 7: Device and Network Interfaces • Last Revised 7 May 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcpr

Interface stability Unstable

dtpower(1M) (OpenWindows Reference Manual), pmconfig(1M), uadmin(1M),
uadmin(2), power.conf(4), attributes(5)

Using Power Management

Writing Device Drivers

Certain device operations such as tape and floppy disk activities are not resumable
due to the nature of removable media. These activities are detected at suspend time,
and must be stopped before the suspend operation will complete successfully.

Suspend-resume is currently supported only on a limited set of hardware platforms.
Please see the book Using Power Management for a complete list of platforms that
support system Power Management. See uname(2) to programatically determine if the
machine supports suspend-resume.

cpr(7)

SEE ALSO

NOTES

Device and Network Interfaces 105

cvc – virtual console driver

The cvc virtual console driver is a STREAMS-based pseudo driver that supports the
network console. The cvc driver interfaces with console(7D).

Logically, the cvc driver sits below the console driver. It redirects console output to
the cvcredir(7D) driver if a network console connection is active. If a network
console connection is not active, it redirects console output to an internal hardware
interface.

The cvc driver receives console input from cvcredir and internal hardware and
passes it to the process associated with /dev/console.

The cvc facility supersedes the SunOS wscons(7D) facility, which should not be used
in conjunction with cvc. The wscons driver is useful for systems with directly
attached consoles (frame buffers and keyboards), but is not useful with platforms
using cvc, which have no local keyboard or frame buffer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sun Enterprise 10000 servers, Sun Fire 15000 servers

Availability SUNWcvc.u

cvcd(1M), attributes(5), console(7D), cvcredir(7D), wscons(7D)

Sun Enterprise 10000 SSP Reference Manual

Sun System Management Services (SMS) Reference Manual

cvc(7D)

NAME

DESCRIPTION

NOTES

ATTRIBUTES

SEE ALSO

106 man pages section 7: Device and Network Interfaces • Last Revised 15 Sep 2000

cvcredir – virtual console redirection driver

The cvcredir virtual console redirection driver is a STREAMS-based pseudo driver
that supports the network console provided on some platforms. The cvcredir driver
interfaces with the virtual console driver cvc(7D), and the virtual console daemon,
cvcd(1M).

The cvcredir driver receives console output from cvc and passes it to cvcd. It
receives console input from cvcd and passes it to cvc.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sun Enterprise 10000 servers, Sun Fire 15000
servers

Availability SUNWcvc.u

cvcd(1M), attributes(5), console(7D), cvc(7D)

Sun Enterprise 10000 SSP Reference Manual

Sun System Management Services (SMS) Reference Manual

cvcredir(7D)

NAME

DESCRIPTION

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 107

dad – driver for IDE disk devices

dad@ target,lun:partition

This driver handles the ide disk drives on SPARC platforms. The type of disk drive is
determined using the ATA IDE identify device command and by reading the volume
label stored on block 0 of the drive. The volume label describes the disk geometry and
partitioning; it must be present or the disk cannot be mounted by the system.

The block-files access the disk using the system’s normal buffering mechanism and are
read and written without regard to physical disk records. There is also a "raw"
interface that provides for direct transmission between the disk and the user’s read or
write buffer. A single read or write call usually results in one I/O operation; raw I/O
is therefore considerably more efficient when many bytes are transmitted. The names
of the block files are found in /dev/dsk; the names of the raw files are found in
/dev/rdsk.

I/O requests to the raw device must be aligned on a 512-byte (DEV_BSIZE) boundary
and must have a length that is a multiple of 512 bytes. Requests which do not meet the
restrictions will cause the driver to return an EINVAL error. I/O requests to the block
device have no alignment or length restrictions.

Each device maintains I/O statistics both for the device and for each partition
allocated on that device. For each device/partition, the driver accumulates reads,
writes, bytes read, and bytes written. The driver also takes hi-resolution time stamps
at queue entry and exit points, which facilitates monitoring the residence time and
cumulative residence-length product for each queue.

Each device also has error statistics associated with it. These must include counters for
hard errors, soft errors and transport errors. Other data may be implemented as
required.

/dev/dsk/cntndnsn block files

/dev/rdsk/cntndnsn raw files

where:

cn controller n

tn IDE target id n (0-3)

dn Always 0.

sn partition n (0-7)

The target ide numbers are assigned as:

0 Master disk on Primary channel.

1 Slave disk on Primary channel.

2 Master disk on Secondary channel

dad(7D)

NAME

SYNOPSIS

DESCRIPTION

Device Statistics
Support

FILES

108 man pages section 7: Device and Network Interfaces • Last Revised 15 Mar 1999

3 Slave disk on Secondary channel.

Refer to dkio(7I).

EACCES Permission denied.

EBUSY The partition was opened exclusively by another thread.

EFAULT The argument was a bad address.

EINVAL Invalid argument.

EIO An I/O error occurred.

ENOTTY This indicates that the device does not support the requested ioctl
function.

ENXIO During opening, the device did not exist.

EROFS The device is a read-only device.

format(1M), mount(1M), lseek(2), read(2), write(2), driver.conf(4),
vfstab(4), dkio(7I)

X3T10 ATA-4 specifications.

offline
The driver has decided that the target disk is no longer there.

disk ok
The target disk is now responding again.

corrupt label - bad geometry
The disk label is corrupted.

corrupt label - label checksum failed
The disk label is corrupted.

corrupt label - wrong magic number
The disk label is corrupted.

disk not responding to selection
The target disk is not responding.

i/o to invalid geometry
The geometry of the drive could not be established.

incomplete read/write - retrying/giving up
There was a residue after the command completed normally.

no bp for disk label
A bp with consistent memory could not be allocated.

no memory for disk label
Free memory pool exhausted.

dad(7D)

IOCTLS

ERRORS

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 109

ATA transport failed: reason ’nnnn’: {retrying|giving}
The host adapter has failed to transport a command to the target for the reason
stated. The driver will either retry the command or, ultimately, give up.

corrupt label - wrong magic number
The disk label is corrupted.

corrupt label - label checksum failed
The disk label is corrupted.

corrupt label - bad geometry
The disk label is corrupted.

no mem for property
Free memory pool exhausted.

transport rejected (<n>)
Host adapter driver was unable to accept a command.

Device Fault
There has been a Device Fault - reason for such error is vendor specific.

dad(7D)

110 man pages section 7: Device and Network Interfaces • Last Revised 15 Mar 1999

dbri – Dual Basic Rate ISDN and audio Interface

The dbri device uses the T5900FC Dual Basic Rate ISDN Interface (DBRI) and
Multimedia Codec chips to implement the audio device interface. This interface is
described fully in the audio(7I) manual page.

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl to determine
which audio device is being used. The dbri driver will return the string "SUNW,dbri"
in the name field of the audio_device structure. The version field will contain "e"
and the config field will contain one of the following values: "isdn_b" on an ISDN B
channel stream, "speakerbox" on a /dev/audio stream associated with a
SpeakerBox, and lastly "onboard1" on a /dev/audio stream associated with the
onboard Multimedia Codec.

The AUDIO_SETINFO ioctl controls device configuration parameters. When an
application modifies the record.buffer_size field using the AUDIO_SETINFO ioctl, the
driver will constrain it to be non-zero and a multiple of 16 bytes, up to a maximum of
8176 bytes.

The SpeakerBox audio peripheral is available for connection to the SpeakerBox
Interface (SBI) port of most dbri equipped systems and provides an integral
monaural speaker as well as stereo line out, stereo line in, stereo headphone, and
monaural microphone connections. The headset output level is adequate to power
most headphones, but may be too low for some external speakers. Powered speakers
or an external amplifier may be used with both the headphone and line out ports.

SPARCstation LX systems have the Multimedia Codec integrated onto the CPU board
of the machine thus giving users the option of using it or using a SpeakerBox plugged
into the AUI/Audio port on the back panel. When using the "onboard" Codec, the
microphone and headphone ports are located on the system back panel - there are no
Line In or Line Out ports available for this configuration. In addition, the headphone
and microphone ports do not have the input detection circuitry to determine whether
or not there is currently headphones or a microphone plugged in. If a SpeakerBox is
plugged in when the machine is first rebooted and reconfigured, or upon the first
access of the audio device, it will be used, otherwise the onboard Codec will be used.

The Sun Microphone is recommended for normal desktop audio recording. When the
Sun Microphone is used in conjunction with the SpeakerBox, the microphone battery
is bypassed. Other audio sources may be recorded by connecting their line output to
the SpeakerBox line input (audio sources may also be connected from their headphone
output if the volume is adjusted properly).

The DBRI controller offers two Basic Rate ISDN (BRI) interfaces. One is a BRI Terminal
Equipment (TE) interface and the other is a BRI Network Termination (NT) interface.

The NT connector is switched by a relay so that when system power is not available or
when software is not accessing the NT port, the TE and NT connectors are electrically
connected and devices plugged into the NT port will be on the same BRI passive bus.

dbri(7D)

NAME

DESCRIPTION

Audio Interfaces

ISDN Interfaces

Device and Network Interfaces 111

The dbri device supports the audio formats listed in the following table. When the
device is open for simultaneous play and record, the input and output data formats
must match.

Supported Audio Data Formats

Sampe Rate Encoding Precision Channels

8000 Hz mu-law or A-law 8 1

9600 Hz mu-law or A-law 8 1

11025 Hz mu-law or A-law 8 1

16000 Hz mu-law or A-law 8 1

18900 Hz mu-law or A-law 8 1

22050 Hz mu-law or A-law 8 1

32000 Hz mu-law or A-law 8 1

37800 Hz mu-law or A-law 8 1

44100 Hz mu-law or A-law 8 1

48000 Hz mu-law or A-law 8 1

8000 Hz linear 16 1 or 2

9600 Hz linear 16 1 or 2

11025 Hz linear 16 1 or 2

16000 Hz linear 16 1 or 2

18900 Hz linear 16 1 or 2

22050 Hz linear 16 1 or 2

32000 Hz linear 16 1 or 2

37800 Hz linear 16 1 or 2

44100 Hz linear 16 1 or 2

48000 Hz linear 16 1 or 2

ISDN channels implement a subset of audio semantics. The preferred ioctls for
querying or setting the format of a BRI channel are ISDN_GET_FORMAT,
ISDN_SET_FORMAT, and ISDN_SET_CHANNEL. In particular, there is no audio
format described in audio(7I) that covers HDLC or transparent data. The dbri driver
maps HDLC and transparent data to AUDIO_ENCODING_NONE. ISDN D-channels are
always configured for HDLC encoding of data. The programmer should interpret an

dbri(7D)

Audio Data
Formats for the

Multimedia
Codec/SpeakerBox

Audio Data
Formats for BRI

Interfeces

112 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

encoding value of AUDIO_ENCODING_NONE as an indication that the fd is not being
used to transfer audio data.

B-channels can be configured for mu-law (as in the Greek letter mu), A-law, or HDLC
encoding of data. The mu-law and A-law formats are always at 8000 Hz, 8-bit, mono.
Although a BRI H-channel is actually 16 bits wide at the physical layer and the 16-bit
sample occurs at 8 kHz, the HDLC encoding always presents the data in 8-bit
quantities. Therefore, 56 bit-per-second (bps), 64 bps, and 128 bps formats are all
presented to the programmer as 8-bit wide, mono, AUDIO_ENCODING_NONE format
streams at different sample rates. A line rate of 56kbps results in a 8-bit sample rate of
7000 Hz. If the bit stuffing and un-stuffing of HDLC were taken into account, the data
rate would be slightly less.

For the sake of compatibility, AUDIO_GETINFO will return one of the following on a
ISDN channel:

BRI Audio Data Formats

Sample Rate Encoding Precision Channels

8000 Hz mu-law or A-law 8 1

- AUDIO_ENCODING_NONE - -

ISDN_GET_FORMAT will return one of the following for an ISDN channel:

BRI Audio Data Formats

Mode Sample Rate Encoding Precision # Ch Available on

HDLC 2000 Hz NONE 8 1 D

HDLC 7000 Hz NONE 8 1 B1,B2

HDLC 8000 Hz NONE 8 1 B1,B2

HDLC 16000 Hz NONE 8 1 B1,B2

TRANS 8000 Hz mu-law 8 1 B1,B2

TRANS 8000 Hz A-law 8 1 B1,B2

TRANS 8000 Hz NONE 8 1 B1,B2

TRANS 8000 Hz NONE 16 1 B1 only

In the previous table:

HDLC = ISDN_MODE_HDLC TRANS = ISDN_MODE_TRANSPARENT

dbri(7D)

Device and Network Interfaces 113

Audio ports are not relevant to ISDN D or B channels.

The record.avail_ports and play.avail_ports fields of the audio_info structure report the
available input and output ports. The dbri device supports two input ports, selected
by setting the record.port field to either AUDIO_MICROPHONE or AUDIO_LINE_IN. The
play.port field may be set to any combination of AUDIO_SPEAKER,
AUDIO_HEADPHONE, and AUDIO_LINE_OUT by OR’ing the desired port names
together. As noted above, when using the onboard Multimedia Codec on the
SPARCstation LX, the Line In and Line Out ports are not available.

Since the dbri device manipulates buffers of audio data, at any given time the
reported input and output sample counts will vary from the actual sample count by
no more than the size of the buffers it is transferring. Programs should, in general, not
rely on absolute accuracy of the play.samples and record.samples fields of the
audio_info structure.

As described in audio(7I), it is possible to request asynchronous notification of
changes in the state of an audio device. The DBRI driver extends this to the ISDN B
channels by sending the signal up the data channel instead of the control channel.
Asynchronous notification of events on a B-channel only occurs when the channel is in
a transparent data mode. When the channel is in HDLC mode, no such notification
will take place.

In addition to the errors described in audio(7I), an open() will fail if:

ENODEV The driver is unable to communicate with the SpeakerBox,
possibly because it is currently not plugged in.

The physical device names are very system dependent and are rarely used by
programmers. For example:

/devices/sbus@1,f8000000/SUNW,DBRIe@1,10000:te,b2.

The programmer should instead use the generic device names listed below:

/dev/audio symlink to the system’s primary audio device, not
necessarily a dbri based audio device

/dev/audioctl control device for the above audio device

/dev/sound/0* represents the first audio device on the system and is
not necessarily based on dbri or SpeakerBox

/dev/sound/0 first audio device in the system

/dev/sound/0ctl audio control for above device

/dev/isdn/0/* represents the first ISDN device on the system and any
associated interfaces. This device is not necessarily
based on dbri.

/dev/isdn/0/te/mgt TE management device

dbri(7D)

Audio Ports

Sample
Granularity

Audio Status
Change

Notification

ERRORS

FILES

114 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

/dev/isdn/0/te/d TE D channel

/dev/isdn/0/te/b1 TE B1 channel

/dev/isdn/0/te/b2 TE B2 channel

/dev/isdn/0/nt/mgt NT management device

/dev/isdn/0/nt/d NT D channel

/dev/isdn/0/nt/b1 NT B1 channel

/dev/isdn/0/nt/b2 NT B2 channel

/dev/isdn/0/aux/0 SpeakerBox or onboard Multimedia Codec

/dev/isdn/0/aux/0ctl Control device for SpeakerBox or onboard Multimedia
Codec

/usr/share/audio Audio files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

The DBRI Multimedia Codec, and SpeakerBox are available on SPARCstation 10 and
LX systems.

SPARCstation 10SX and SPARCstation 20 systems have the Multimedia Codec
integrated onto the CPU board of the machine.

This hardware may or may not be available on future systems from Sun Microsystems
Computer Corporation.

There are new configurations for the SX10SX and Gypsy machines. The SS10BSX looks
like a speakerbox but does not have auto-detection of the Headphone and Microphone
ports. The Gypsy claims to be "onboard" but does have line in and line out ports.

ioctl(2), attributes(5), audio(7I), isdnio(7I), streamio(7I)

AT&T Microelectronics data sheet for the T5900FC Sun Dual Basic Rate ISDN
Interface.

Crystal Semiconductor, Inc., data sheet for the CS4215 16-Bit, 48 kHz, Multimedia
Audio Codec Publication number DS76PP5.

Due to hardware restrictions, it is impossible to reduce the record gain to 0. A valid
input signal is still received at the lowest gain setting the Multimedia Codec allows.
For security reasons, the dbri driver disallows a record gain value of 0. This is to
provide feedback to the user that such a setting is not possible and that a valid input

dbri(7D)

ATTRIBUTES

SEE ALSO

NOTES

Device and Network Interfaces 115

signal is still being received. An attempt to set the record gain to 0 will result in the
lowest possible non-zero gain. The audio_info structure will be updated with this
value when the AUDIO_SETINFO ioctl returns.

When a DBRI channel associated with the SpeakerBox Interface underruns, DBRI may
not always repeat the last sample but instead could repeat more than one sample. This
behavior can result in a tone being generated by an audio device connected to the SBI
port.

Monitor STREAMs connected to a B1 channel on either the TE or NT interface do not
work because of a DBRI hardware problem. The device driver disallows the creation
of such monitors.

dbri(7D)

BUGS

116 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

devinfo – device information driver

The devinfo driver is a private mechanism used by the libdevinfo interfaces to
access kernel device configuration data and to guarantee data consistency.

/devices/pseudo/devinfo@0:devinfo

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Private

libdevinfo(3DEVINFO), attributes(5)

Writing Device Drivers

devinfo(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 117

dkio – disk control operations

#include <sys/dkio.h>

#include <sys/vtoc.h>

Disk drivers support a set of ioctl(2) requests for disk controller, geometry, and
partition information. Basic to these ioctl() requests are the definitions in
<sys/dkio.h>.

The following ioctl() requests set and/or retrieve the current disk controller,
partitions, or geometry information on all architectures:

DKIOCINFO The argument is a pointer to a dk_cinfo structure (described
below). This structure tells the controller–type and attributes
regarding bad-block processing done on the controller.

/*
* Structures and definitions for disk I/O control commands
*/
#define DK_DEVLEN 16 /* device name max length, */

/* including unit # and NULL */
/* Used for controller info */

struct dk_cinfo {
char dki_cname[DK_DEVLEN]; /* controller name */

/*(no unit #)*/
ushort_t dki_ctype; /* controller type */
ushort_t dki_flags; /* flags */
ushort_t dki_cnum; /* controller number */
uint_t dki_addr; /* controller address */
uint_t dki_space; /* controller bus type */
uint_t dki_prio; /* interrupt priority */
uint_t dki_vec; /* interrupt vector */
char dki_dname[DK_DEVLEN]; /* drive name (no unit #) */
uint_t dki_unit; /* unit number */
uint_t dki_slave; /* slave number */
ushort_t dki_partition; /* partition number */
ushort_t dki_maxtransfer; /* maximum transfer size */

/* in DEV_BSIZE */

};
/*
* Controller types
*/

#define DKC_UNKNOWN 0
#define DKC_CDROM 1 /* CD-ROM, SCSI or other */
#define DKC_WDC2880 2
#define DKC_XXX_0 3 /* unassigned */
#define DKC_XXX_1 4 /* unassigned */
#define DKC_DSD5215 5
#define DKC_ACB4000 7
#define DKC_XXX_2 9 /* unassigned */
#define DKC_NCRFLOPPY 10
#define DKC_SMSFLOPPY 12
#define DKC_SCSI_CCS 13 /* SCSI CCS compatible */

dkio(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

118 man pages section 7: Device and Network Interfaces • Last Revised 19 April 2001

#define DKC_INTEL82072 14 /* native floppy chip */
#define DKC_MD 16 /* meta-disk (virtual-disk) */

/* driver */
#define DKC_INTEL82077 19 /* 82077 floppy disk */

/* controller */
#define DKC_DIRECT 20 /* Intel direct attached */

/* device (IDE) */
#define DKC_PCMCIA_MEM 21 /* PCMCIA memory disk-like */

/* type */
#define DKC_PCMCIA_ATA 22 /* PCMCIA AT Attached type */

/*
* Sun reserves up through 1023
*/

#define DKC_CUSTOMER_BASE 1024

/*
* Flags
*/

#define DKI_BAD144 0x01 /* use DEC std 144 */
/* bad sector fwding */

#define DKI_MAPTRK 0x02 /* controller does */
/* track mapping */

#define DKI_FMTTRK 0x04 /* formats only full
/* track at a time*/

#define DKI_FMTVOL 0x08 /* formats only full */
/* volume at a time*/

#define DKI_FMTCYL 0x10 /* formats only full */
/* cylinders at a time*/

#define DKI_HEXUNIT 0x20 /* unit number printed as */
/* 3 hexdigits */

#define DKI_PCMCIA_PFD 0x40 /* PCMCIA pseudo-floppy */
/* memory card */

*/
* Sun reserves up through 1023
*/

#define DKC_CUSTOMER_BASE 1024

/*
* Flags
*/

#define DKI_BAD144 0x01 /* use DEC std 144
/* bad sector fwding */

#define DKI_MAPTRK 0x02 /* controller does */
/* track mapping */

#define DKI_FMTTRK 0x04 /* formats only full
/* track at a time*/

#define DKI_FMTVOL 0x08 /* formats only full */
/* volume at a time*/

#define DKI_FMTCYL 0x10 /* formats only full */
/* cylinders at a time*/

#define DKI_HEXUNIT 0x20 /* unit number printed */
/* as 3 hex digits */

#define DKI_PCMCIA_PFD 0x40 /* PCMCIA pseudo-floppy*/

dkio(7I)

Device and Network Interfaces 119

/* memory card */

DKIOCGAPART The argument is a pointer to a dk_allmap structure (described
below). This ioctl() gets the controller’s notion of the current
partition table for disk drive.

DKIOCSAPART The argument is a pointer to a dk_allmap structure (described
below). This ioctl() sets the controller’s notion of the partition
table without changing the disk itself.

/*
* Partition map (part of dk_label)
*/ struct dk_map {

daddr_t dkl_cylno; /* starting cylinder */
daddr_t dkl_nblk; /* number of blocks */
};

/*
* Used for all partitions
*/
struct dk_map {
struct dk_allmap {
struct dk_map dka_map[NDKMAP];

};

DKIOCGGEOM The argument is a pointer to a dk_geom structure (described
below). This ioctl() gets the controller’s notion of the current
geometry of the disk drive.

DKIOCSGEOM The argument is a pointer to a dk_geom structure (described
below). This ioctl() sets the controller’s notion of the geometry
without changing the disk itself.

DKIOCGVTOC The argument is a pointer to a vtoc structure (described below).
This ioctl() returns the device’s current volume table of
contents (VTOC.)

DKIOCSVTOC The argument is a pointer to a vtoc structure (described below).
This ioctl() changes the VTOC associated with the device.

struct partition {
ushort_t p_tag; /* ID tag of partition */
ushort_t p_flag; /* permission flags */
daddr_t p_start; /* start sector of partition */
long p_size; /* # of blocks in partition */

};

If DKIOCSVTOC is used with a floppy diskette, the p_start field must be the first
sector of a cylinder. To compute the number of sectors per cylinder, multiply the
number of heads by the number of sectors per track.

struct vtoc {
unsigned long v_bootinfo[3]; /* info needed by mboot

dkio(7I)

120 man pages section 7: Device and Network Interfaces • Last Revised 19 April 2001

/* (unsupported)*/
unsigned long v_sanity; /* to verify vtoc sanity */
unsigned long v_version; /* layout version */
char v_volume[LEN_DKL_VVOL]; /* volume name */
ushort_t v_sectorsz; *

sector size in bytes*/
ushort_t v_nparts; *

number of partitions*/
unsigned long v_reserved[10]; /* free space */
struct partition v_part[V_NUMPAR]; /* partition headers*/
time_t timestamp[V_NUMPAR]; /* partition timestamp

/* (unsupported)*/
char v_asciilabel[LEN_DKL_ASCII]; /* compatibility */
};

/*
* Partition permission flags
*/

#define V_UNMNT 0x01 /* Unmountable partition */
#define V_RONLY 0x10 /* Read only */

/*
* Partition identification tags
*/

#define V_UNASSIGNED 0x00 /* unassigned partition */
#define V_BOOT 0x01 /* Boot partition */
#define V_ROOT 0x02 /* Root filesystem */
#define V_SWAP 0x03 /* Swap filesystem */
#define V_USR 0x04 /* Usr filesystem */
#define V_BACKUP 0x05 /* full disk */
#define V_VAR 0x07 /* Var partition */
#define V_HOME 0x08 /* Home partition */

#define V_ALTSCTR 0x09 /* Alternate sector partition */

DKIOCEJECT If the drive supports removable media, this ioctl()
requests the disk drive to eject its disk.

DKIOCREMOVABLE The argument to this ioctl() is an integer. After
successful completion, this ioctl() will set that
integer to a non-zero value if the drive in question has
removable media. If the media is not removable, that
integer will be set to 0.

DKIOCSTATE This ioctl() blocks until the state of the drive,
inserted or ejected, is changed. The argument is a
pointer to a dkio_state, enum, whose possible
enumerations are listed below. The initial value should
be either the last reported state of the drive, or
DKIO_NONE. Upon return, the enum pointed to by the
argument is updated with the current state of the drive.

dkio(7I)

Device and Network Interfaces 121

enum dkio_state {
DKIO_NONE, /* Return disk’s current state */
DKIO_EJECTED, /* Disk state is ’ejected’ */
DKIO_INSERTED /* Disk state is ’inserted’ */

};

DKIOCLOCK For devices with removable media, this ioctl()
requests the disk drive to lock the door.

DKIOCUNLOCK For devices with removable media, this ioctl()
requests the disk drive to unlock the door.

DKIOCGMEDIAINFO The argument to this ioctl() is a pointer to a
dk_minfo structure. The structure indicates the type of
media or the command set profile used by the drive to
operate on the media. The dk_minfo structure also
indicates the logical media blocksize the drive uses as
the basic unit blocksize of operation and the raw
formatted capacity of the media in number of logical
blocks.

/*
* Used for media info or profile info
*/
struct dk_minfo {
uint_t dki_media_type; /* Media type or profile info */
uint_t dki_lbsize; /* Logical blocksize of media */
diskaddr_t dki_capacity; /* Capacity as # of dki_lbsize blks */
};
/*
* Media types or profiles known
*/
#define DK_UNKNOWN 0x00 /* Media inserted - type unknown */

/*
* SFF 8090 Specification Version 3, media types 0x01 - 0xfffe are retained to
* maintain compatibility with SFF8090. The following define the
* optical media type.
*/
#define DK_MO_ERASABLE 0x03 /* MO Erasable */
#define DK_MO_WRITEONCE 0x04 /* MO Write once */
#define DK_AS_MO 0x05 /* AS MO */
#define DK_CDROM 0x08 /* CDROM */
#define DK_CDR 0x09 /* CD-R */
#define DK_CDRW 0x0A /* CD-RW */
#define DK_DVDROM 0x10 /* DVD-ROM */
#define DK_DVDR 0x11 /* DVD-R */
#define DK_DVDRAM 0x12 /* DVD_RAM or DVD-RW */

/*
* Media types for other rewritable magnetic media
*/
#define DK_FIXED_DISK 0x10001 /* Fixed disk SCSI or otherwise */
#define DK_FLOPPY 0x10002 /* Floppy media */

dkio(7I)

122 man pages section 7: Device and Network Interfaces • Last Revised 19 April 2001

#define DK_ZIP 0x10003 /* IOMEGA ZIP media */

#define DK_JAZ 0x10004 /* IOMEGA JAZ media */

If the media exists and the host can obtain a current profile list, the command will
succeed and return the dk_minfo structure with data representing that media.

If there is no media in the drive, the command will fail and the host will return an
ENXIO error, indicating that it cannot gather the information requested.

If the profile list is not available, the host will attempt to identify the media-type based
on the available information.

If identification is not possible, the host will return media type DK_UNKNOWN. See
NOTES for blocksize usage and capacity information.

DKIOCSMBOOT The argument is a pointer to struct mboot.

Copies the mboot information supplied in the argument
to the absolute sector 0 of the device. Prior to copying
the information, this ioctl() performs the following
checks on the mboot data:

� Ensures that the signature field is set to 0xAA55.
� Ensures that partitions do not overlap.
� On SPARC platforms, determines if the device is a

removable media. If the above verification fails,
errno will be set to EINVAL and the
ioctl() command will fail.

IA Platforms — Upon successful write of mboot, the
partition map structure maintained in the driver is
updated. If the new Solaris partition is different from
the previous one, the internal VTOC table maintained
in the driver will be set as follows:

If _SUNOS_VTOC_8 is defined:

PARTITION START SIZE

0 0 Capacity of device

2 0 Capacity of device

If _SUNOS_VTOC_16 is defined:

dkio(7I)

Device and Network Interfaces 123

PARTITION START SIZE

2 0 Size specified in
mboot - 2
cylinders

8 0 Sectors/cylinder

9 Sectors/

cylinder

2 *
sectors/cylinder

To determine if the Solaris partition has changed:

If either offset or the size of the Solaris partition is
different from the previous one then it shall be deemed
to have changed. In all other cases, the internal VTOC
info will remain as before.

SPARC Platforms — The VTOC label and mboot both
occupy the same location, namely sector 0. As a result,
following the successful write of mboot info, the
internal VTOC table maintained in the driver will be
set as follows:

PARTITION START SIZE

0 0 Capacity of device

2 0 Capacity of device

See the NOTES section for usage of DKIOCSMBOOT
when modifying Solaris partitions.

DKIOCGMBOOT The argument is a pointer to struct mboot. The 512 bytes
of absolute sector 0 of the device is copied to the mboot
structure pointed to by the argument.

Upon successful completion, the value returned is 0. Otherwise, -1 is returned and
errno is set to indicate the error.

The following ioctl() requests set and/or retrieve the current disk controller,
partitions, or geometry information on IA architecture.

DKIOCG_PHYGEOM The argument is a pointer to a dk_geom structure
(described below). This ioctl() gets the driver’s
notion of the physical geometry of the disk drive. It is
functionally identical to the DKIOCGGEOM ioctl().

dkio(7I)

RETURN VALUES

IA Only

124 man pages section 7: Device and Network Interfaces • Last Revised 19 April 2001

DKIOCG_VIRTGEOM The argument is a pointer to a dk_geom structure
(described below). This ioctl() gets the controller’s
(and hence the driver’s) notion of the virtual geometry
of the disk drive. Virtual geometry is a view of the disk
geometry maintained by the firmware in a host bus
adapter or disk controller. If the disk is larger than 8
Gbytes, this ioctl will fail because a CHS-based
geometry is not relevant or useful for this drive.

/*
* Definition of a disk’s geometry
*/
*/struct dk_geom {
unsigned shor dkg_ncyl; /* # of data cylinders */
unsigned shor dkg_acyl; /* # of alternate cylinders */
unsigned short dkg_bcyl; /* cyl offset (for fixed head area) */
unsigned short dkg_nhead; /* # of heads */
unsigned short dkg_obs1; /* obsolete */
unsigned short dkg_nsect; /* # of sectors per track*/
unsigned short dkg_intrlv; /* interleave factor */
unsigned short dkg_obs2; /* obsolete */
unsigned short dkg_obs3; /* obsolete */
unsigned short dkg_apc; /* alternates per cylinder */

/* (SCSI only) */
unsigned short dkg_rpm; /* revolutions per min*/
unsigned short dkg_pcyl; /* # of physical cylinders */
unsigned short dkg_write_reinstruct; /* # sectors to skip, writes*/
unsigned short dkg_read_reinstruct; /* # sectors to skip, reads*/
unsigned short dkg_extra[7]; /* for compatible expansion*/
};
#define dkg_gap1 dkg_extra[0] /* for application compatibility*/

#define dkg_gap2 dkg_extra[1] /* for application compatibility*/

DKIOCADDBAD This ioctl() forces the driver to re-examine the alternates slice
and rebuild the internal bad block map accordingly. It should be
used whenever the alternates slice is changed by any method other
than the addbadsec(1M) or format(1M) utilities. DKIOCADDBAD
can only be used for software remapping on IDE drives; SCSI
drives use hardware remapping of alternate sectors.

DKIOCPARTINFO The argument is a pointer to a part_info structure (described
below). This ioctl() gets the driver’s notion of the size and
extent of the partition or slice indicated by the file descriptor
argument.

/*
* Used by applications to get partition or slice information
*/
struct part_info {
daddr_t p_start;
int p_length;

};

dkio(7I)

Device and Network Interfaces 125

fdisk(1M), format(1M), ioctl(2), sd(7D), cdio(7I), fdio(7I), hdio(7I)

addbadsec(1M), cmdk(7D)

Blocksize information provided in DKIOCGMEDIAINFO is the size (in bytes) of the
device’s basic unit of operation and may differ from the blocksize that the Solaris
operating environment exports to the user. Capacity information provided in the
DKIOCGMEDIAINFO are for reference only and you are advised to use the values
returned by DKIOCGGEOM or other appropriate ioctl for accessing data using the
standard interfaces.

IA only: If the DKIOCSMBOOT command is used to modify the Solaris partitions, the
VTOC information should also be set appropriately to reflect the the changes to
partition. Failure to do so will lead to unexpected results when the device is closed
and re-opened fresh at a later time. This is because a default VTOC is assumed by
driver when a Solaris partition is changed. The default VTOC will persist until the
ioctl DKIOCSVTOC is called to modify VTOC or the device is closed and re-opened.
At that point, the old valid VTOC will be read from the disk if it is still available.

dkio(7I)

SEE ALSO

IA Only

NOTES

126 man pages section 7: Device and Network Interfaces • Last Revised 19 April 2001

dlpi – Data Link Provider Interface

#include <sys/dlpi.h>

SunOS STREAMS-based device drivers wishing to support the STREAMS TCP/IP and
other STREAMS-based networking protocol suite implementations support Version 2
of the Data Link Provider Interface (“DLPI”). DLPI V2 enables a data link service user
to access and use any of a variety of conforming data link service providers without
special knowledge of the provider’s protocol. Specifically, the interface is intended to
support Ethernet, X.25 LAPB, SDLC, ISDN LAPD, CSMA/CD, FDDI, token ring,
token bus, Bisync, and other datalink-level protocols.

The interface specifies access to the data link service provider in the form of M_PROTO
and M_PCPROTO type STREAMS messages and does not define a specific protocol
implementation. The interface defines the syntax and semantics of primitives
exchanged between the data link user and the data link provider to attach a physical
device with physical-level address to a stream, bind a datalink-level address to the
stream, get implementation-specific information from the data link provider, exchange
data with a peer data link user in one of three communication modes (connection,
connectionless, acknowledged connectionless), enable/disable multicast group and
promiscuous mode reception of datalink frames, get and set the physical address
associated with a stream, and several other operations.

For details on this interface refer to the <sys/dlpi.h> header and to the STREAMS
DLPI Specification, 800-6915-01.

Files in or under /dev.

le(7D), hme(7D), ge(7D), qfe(7D), gld(7D)

Streams drivers for network interface cards (NIC) must meet the following driver
name constraints:

� Length — Name cannot exceed 16 characters. Names containing three to eight
characters are preferred.

� Legal Characters — Legal characters are: alphanumeric (a-z, A-Z, 0-9), and the
underscore (’_’). Additionally, the first and/or last character of a name cannot be a
digit.

dlpi(7P)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

Device and Network Interfaces 127

dman – SUNW,dman Sun Fire 15000 management network device driver

/dev/dman

The dman(7D) network device driver is a loadable, clonable, STREAMS hardware
driver that supports the connectionless data link provider interface dlpi(7P) over the
SUNW,dman network controller. The dman controller provides a highly available,
secure communication channel between the dynamic system domains and the Sun Fire
15000 system controller.

The dman driver provides basic support for the SUNW,dman controller. Driver
functions include network initialization, frame transit and receive, multicast and
promiscuous support, and error recovery and reporting.

The dman controller is physically located in each Sun Fire 15000 dynamic system
domain and connects to SUNWscman controllers in the Sun Fire 15000 chassis. See
scman(7D). All links are point-to-point and are internal to the Sun Fire 15000 chassis.
Traffic between the dynamic system domains and the system controller is not
accessible by any third party; for example, another system domain within the Sun Fire
15000 chassis. Only the system controller is accessible through the dman controller.

The link layer frame format is identical to that used by Ethernet (sys/ethernet.h).

The /dev/dman cloning character-special device is used to access the SUNW,dman
controller installed on the system.

The dman driver is a style 2 data link provider interface. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. Valid DLPI primitives are defined in
sys/dlpi.h. Refer to dlpi(7P) for more information. An explicit DL_ATTACH_REQ
message by the user is required to associate the opened stream with a particular
device or physical point of attachment (PPA).

The PPA ID is interpreted as an unsigned long data type and indicates the
corresponding device instance (unit) number. The only valid unit number is 0. An
error (DL_ERROR_ACK) is returned by the driver if the PPA field value does not
correspond to a valid device instance number for this system. The device is initialized
on the first attach and deinitialized (stopped) upon the last detach.

The values returned by the dman driver in the DL_INFO_ACK primitive in response to
the DL_INFO_REQ from the user are:

� Maximum service data units (SDU) are 1500.

� Minimum SDU is 0.

� Data link service access point (DLSAP) address length is 8.

� Media access control (MAC) type is DL_ETHER.

� Service access point (SAP) length value is -2, meaning the physical address
component is followed immediately by a two-byte SAP component within the
DLSAP address.

dman(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
DLPI

128 man pages section 7: Device and Network Interfaces • Last Revised 10 Sep 2000

� Service mode is DL_CLDLS.

� Optional quality of service (QOS) support is not included; the QOS fields are 0.

� Provider style is DL_STYLE2.

� Version is DL_VERSION_2.

� Broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

Once in the DL_ATTACHED state, you can transmit a DL_BIND_REQ to associate a
particular SAP with the stream. The dman driver interprets the SAP field within the
DL_BIND_REQ as an Ethernet type; as a result, valid values for the SAP field are in the
0 through 0xFFFF range. Only one Ethernet type can be bound to the stream at any
time.

If you select the SAP with a value of 0, the receiver will be in 802.3 mode. All frames
received from the media having a type field in the range from 0 through 1500 are
assumed to be 802.3 frames and are routed up all open streams that are bound to SAP
value 0. If more than one stream is in 802.3 mode, the frame is duplicated and routed
up multiple streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the DL_BIND_REQ SAP field to determine if the SAP
value is 0 and the destination type field is in the range from 0 through 1500. If either is
true, the driver computes the length of the message, not including the initial M_PROTO
message block (mblk), of all subsequent DL_UNITDATA_REQ messages and transmits
802.3 frames that have this value in the MAC frame header length field.

The dman driver DLSAP address format consists of the six-byte physical (Ethernet)
address component followed immediately by the two-byte SAP (type) component
producing an eight-byte DLSAP address. Applications should not be hard-coded to this
implementation-specific DLSAP address format, but instead use information returned
in the DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The SAP
length, full DLSAP length, and SAP physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the SAP
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, youcan atransmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the dman driver. The dman driver routes received
Ethernet frames as DL_UNITDATA_IND messages up all open and bound streams
having a SAP matching the Ethernet type. Received Ethernet frames are duplicated
and routed up multiple open streams, if necessary. The DLSAP address contained
within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the
SAP (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set, the dman driver
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable or disable
reception of individual multicast group addresses. A set of multicast addresses may be

dman(7D)

PRIMITIVES

Device and Network Interfaces 129

iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables or disables reception of all
promiscuous mode frames on the media, including frames generated by the local host.
When used with the DL_PROMISC_SAP flag set, this enables or disables reception of
all SAP (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables or disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of other SAP and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the six-octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive is not supported.

The dman driver operates at 10 Mbps, full-duplex.

The dman driver allows you to set and get various parameters for the SUNW,dman
device. The parameter list includes current transceiver status, current link status,
interpacket gap, local transceiver capabilities, and link partner capabilities.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sun Fire 15000 servers

Availability SUNWcar

The dman driver utilizes the following files:

/dev/dman
Special character device

/platform/SUNW,Sun-Fire-15000/kernel/drv/dman.conf
System-wide default device driver properties

ndd(1M), netstat(1M), driver.conf(4), eri(7D), scman(7D),dlpi(7P)

dman(7D)

dman DRIVER

PARAMETER
LIST

ATTRIBUTES

FILES

SEE ALSO

130 man pages section 7: Device and Network Interfaces • Last Revised 10 Sep 2000

dmfe – Davicom Fast Ethernet driver for Davicom DM9102A

/platform/SUNW,UltraAX-i2/kernel/drv/sparcv9/dmfe

The dmfe Ethernet device provides 100Base-TX networking interfaces using the
Davicom DM9102A chip, which incorporates its own internal transceiver.

The dmfe driver is a multithreaded, loadable, clonable, GLD-based STREAMS driver.
Multiple controllers installed within the system are supported by the driver. The dmfe
driver functions include controller initialization, frame transmit and receive,
promiscuous and multicast support, and error recovery and reporting.

The 100Base-TX standard specifies an auto-negotiation protocol to automatically select
the mode and speed of operation. The internal transceiver is capable of performing
autonegotiation with the remote-end of the link (link partner) and receives the
capabilities of the remote end. It selects the highest common denominator mode of
operation based on the priorities. The internal transceiver also supports a forced-mode
of operation under which the driver selects the operational mode.

The /dev/dmfe cloning character-special device is used to access all Davicom
DM9102A devices installed in the system.

The dmfe driver is dependent on /kernel/misc/gld, a loadable kernel module that
provides the dmfe driver with the DLPI and STREAMS functionality required of a
LAN driver. See gld(7D) for more details on the primitives supported by the driver.

You must send an explicit DL_ATTACH_REQ message to associate the opened stream
with a particular device (ppa). The ppa ID is interpreted as an unsigned integer data
type and indicates the corresponding device instance (unit) number. If the ppa field
value does not correspond to a valid device instance number for this system, an error
(DL_ERROR_ACK) is returned. The device is initialized on first attach and
de-initialized (stopped) at last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to a
DL_INFO_REQ are as follows:

� Maximum SDU is 1500 (ETHERMTU - defined in sys/ethernet.h).

� Minimum SDU is 0.

� DLSAP address length is 8.

� MAC type is DL_ETHER.

� The sap length value is -2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

� The broadcast address value is the Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, you must send a DL_BIND_REQ to associate a
particular Service Access Point (SAP) with the stream.

dmfe(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

Device and Network Interfaces 131

By default, the dmfe driver performs auto-negotiation to select the speed and mode of
the link. Link speed and mode can be 100 Mbps (full or half-duplex) or 10 Mbps (full
or half-duplex) as described in the 100Base-TX standard.

The auto-negotiation protocol automatically selects speed mode (either 100 Mbps or 10
Mbps) and operation mode (either full-duplex or half-duplex) as the highest common
denominator supported by both link partners. Because the dmfe device supports all
modes, this effectively selects the highest-throughput mode supported by the other
device.

Alternatively, you can explicitly specify the link parameters by adding entries to the
dmfe driver configuration file
(/platform/SUNW,UltraAX-i2/kernel/drv/dmfe.conf). You can set the
speed parameter to 10 or 100 to force dmfe devices to operate at the specified speed.
Additionally, you can set the full-duplex parameter to 0 or 1 to disable or force
full-duplex operation, respectively.

Note that specifying either "speed" or "full-duplex" explicitly disables
auto-negotiation. To enable the driver to determine the appropriate setting for each
parameter, you should always set both parameters. If it is necessary to force either
speed or duplex setting (for example, because the dmfe device is connected to an
ancient device or hub that does not support auto-negotiation), both parameters should
be explicitly specified to match the requirements of the external device.

/dev/dmfe
Character special device

/platform/SUNW,UltraAX-i2/kernel/drv/dmfe.conf
dmfe configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), gld(7D), dlpi(7P), streamio(7I)

Writing Device Drivers

STREAMS Programming Guide

Network Interfaces Programmer’s Guide

dmfe(7D)

CONFIGURATION

FILES

ATTRIBUTES

SEE ALSO

132 man pages section 7: Device and Network Interfaces • Last Revised 30 April 2001

dnet – Ethernet driver for DEC 21040, 21041, 21140 Ethernet cards

/kernel/drv/dnet

The dnet Ethernet driver is a multithreaded, loadable, clonable, STREAMS GLD
driver. Multiple controllers installed within the system are supported by the driver.
The dnet driver functions include controller initialization, frame transmit and receive,
functional addresses, promiscuous and multicast support, and error recovery and
reporting.

The cloning character-special device, /dev/dnet, is used to access all DEC
21040/21041/21140 devices installed in the system.

The dnet driver is dependent on /kernel/misc/gld, a loadable kernel module that
provides the dnet driver with the DLPI and STREAMS functionality required of a
LAN driver. See gld(7D) for more details on the primitives supported by the driver.

The device is initialized on the first attach and de-initialized (stopped) on the last
detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to a
DL_INFO_REQ from the user are as follows:

� The maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� The minimum SDU is 0.

� The DLSAP address length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

� The broadcast address value is the Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular Service Access Point (SAP) with the stream.

The PCI configuration process varies from system to system. Follow the instructions
provided by the vendor.

� On multiport cards (exception: Osicom (Rockwell) RNS2340), the first port is the
top port. (On the Osicom RNS2340, the first port is the bottom port.)

� If the dnet driver fails to determine the correct speed and duplex mode resulting
in a corresponding drop in performance, set the speed and duplex mode using the
dnet.conf file.

� The dnet driver incorrectly counts carrier lost or no carrier errors while in
full-duplex mode. There is no carrier signal present when in full-duplex mode and
it should not be counted as an error.

� Version 4 SROM formats are not supported.

dnet(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

PRECONFIGURATION

Known Problems
and Limitations

Device and Network Interfaces 133

The /kernel/drv/dnet.conf file supports the following options:

full-duplex For full duplex operation use full-duplex=1, for half duplex
use full-duplex=0. Half-duplex operation gives better results
on older 10mbit networks.

speed For 10mbit operation use speed=10, for 100mbit operation use
speed=100. Certain 21140 based cards will operate at either
speed. Use the speed property to override the 100mbit default in
this case.

/dev/dnet character special device

/kernel/drv/dnet.conf dnet configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), dlpi(7P), gld(7D) streamio(7I)

Writing Device Drivers

STREAMS Programming Guide

Network Interfaces Programmer’s Guide

dnet(7D)

CONFIGURATION

FILES

ATTRIBUTES

SEE ALSO

134 man pages section 7: Device and Network Interfaces • Last Revised 20 OCT 2000

dpt – DPT ServeRAID IV SCSI host bus adapter and RAID adapter driver

The dpt driver is a driver for the DPT (Distributed Processing Technology) family of
SmartRAID IV SCSI HBA and RAID adapters. The following HBA adapters are
supported: PM2024, PM2044UW, PM2044W, PM2124, PM2124W, PM2144UW, and
PM2144W.

The following RAID adapters are supported: PM3224, PM3224W, PM3334UW, and
PM3334W.

� DPT PM3224 only: Only EPROM 7A and later versions are supported.

� DPT PM2024 and PM2124 only: Only EPROM 6D4 and later versions are
supported.

� Use adapters with SmartROM version 3.B or later versions only.

� Be sure that the controller board is installed in a PCI bus-mastering slot.

� Disable PCI parity checking if your firmware version is earlier than version 7A, if
your system memory is ECC, or if your system does not check parity.

During system boot, a message may be displayed saying a DPT controller driver
cannot be installed. This message indicates that the motherboard installed in your
system may contain ECC memory or may not check parity. If you see this message is
displayed, disable PCI parity checking.

� I/O Address: Auto

Auto-configuration code determines whether the adapter is present at the configured
address and what types of devices are attached to it. The DPT ServeRAID is primarily
used as a disk array (system drive) controller.

To configure the attached disk arrays, you must configure the controller (using the
configuration utilities provided by the hardware manufacturer) before you boot the
Solaris operating environment. You use the configuration utilities to set RAID levels,
stripe parameters, cache mechanisms and perform other functions. For more
information, see the user manual supplied with your hardware.

/kernel/drv/dpt.conf dpt configuration file

/dev/dsk/cndn[s|p]n block device

/dev/rdsk/cndn[s|p]n raw device where:

cn controller n

dn LUN n (0–7)

sn UNIX system slice n (0–15)

pn fdisk(1M) partition (0)

See attributes(5) for descriptions of the following attributes:

dpt(7D)

NAME

DESCRIPTION

PRECONFIGURATION

Known Problems
and Limitations

Supported Settings

CONFIGURATION

FILES

ATTRIBUTES

Device and Network Interfaces 135

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

fdisk(1M), attributes(5), cmdk(7D)

dpt(7D)

SEE ALSO

136 man pages section 7: Device and Network Interfaces • Last Revised 27 November 2000

dr, drmach, ngdr, ngdrmach – Sun Enterprise 10000 and Sun Fire 15K dynamic
reconfiguration driver

dr

drmach

ngdr

ngdrmach

The dynamic reconfiguration (DR) driver consists of a platform-independent driver
and a platform-specific module. The DR driver uses standard features of the Solaris
operating environment whenever possible to control DR operations and calls the
platform specific module as needed. The DR driver creates minor nodes in the file
system that serve as attachment points for DR operations.

The DR driver provides a pseudo-driver interface to sequence attach and detach
operations on system boards using file system entry points referred to as ”attachment
points.” The form of the attachment point depends on the platform.

On the Sun Enterprise 10000 server, the DR driver consists of a platform-independent
driver (ngdr) and a platform-specific module (ngdrmach).

The domain configuration server (DCS) accepts DR requests from the system services
processor (SSP) and uses the libcfgadm(3LIB) interface to initiate the DR operation.
After the operation is performed, the results are returned to the SSP. For more
information about the DCS on the Sun Enterprise 10000, refer to the dcs(1M) man
page and the Sun Enterprise 10000 Dynamic Reconfiguration User Guide.

The DR driver creates physical attachment points for system board slots that takes the
following form:

/devices/pseudo/ngdr@0:SBx

Where x represents the slot number (0 to 15) for a particular board.

The cfgadm_sbd(1M) plugin creates dynamic attachment points that refer to
components on system boards, including CPUs, memory, or I/O devices. Refer to the
cfgadm_sbd(1M) man page for more details.

On the Sun Fire 15K server, the DR driver consists of a platform-independent driver
(dr) and a platform-specific module (drmach).

The domain configuration server (DCS) accepts DR requests from the domain
configuration agent (DCA) that runs on the Sun Fire 15K system controller. After the
DCS accepts a DR request, it uses the libcfgadm(3LIB) interface to initiate the DR
operation. After the operation is performed, the results are returned to the DCA. For
more information about the DCS, refer to the dcs(1M) man page and the Sun Fire 15K
Dynamic Reconfiguration User Guide. For more information about the DCA, refer to the
System Management Services (SMS) Dynamic Reconfiguration User Guide.

dr(7d)

NAME

SYNOPSIS

DESCRIPTION

Sun Enterprise
10000 Server

Sun Fire 15K
Server

Device and Network Interfaces 137

The DR driver creates physical attachment points for system board slots that take one
of the following forms:

/devices/pseudo/dr@0:SBx

/devices/pseudo/dr@0:IOx

Where x represents the expander number (0 to 17) for a particular board.

The cfgadm_sbd(1M) plugin creates dynamic attachment points. These attachment
points refer to components on system boards, including CPUs, memory, or I/O
devices. Refer to the cfgadm_sbd(1M) man page for more details.

cfgadm_sbd(1M), dcs(1M), ioctl(2), libcfgadm(3LIB)

Sun Enterprise 10000 Dynamic Reconfiguration User Guide

Sun Fire 15K Dynamic Reconfiguration User Guide

System Management Services (SMS) Dynamic Reconfiguration User Guide

dr(7d)

SEE ALSO

138 man pages section 7: Device and Network Interfaces • Last Revised 26 Sep 2001

ecpp – IEEE 1284 compliant parallel port driver

#include <sys/types.h>

#include <sys/ecppio.h>

ecpp@unit-address

The ecpp driver provides a bi-directional interface to IEEE 1284 compliant devices as
well as a forward single-directional interface to Centronics devices. In addition to the
Centronics protocol, the ecpp driver supports the IEEE 1284Compatibility, Nibble,
and ECP protocols. ECPP_COMPAT_MODE and ECPP_CENTRONICS modes of operation
have logically identical handshaking protocols, however devices that support
ECPP_COMPAT_MODE are IEEE 1284 compliant devices. IEEE 1284 compliant devices
support at least ECPP_COMPAT_MODE and ECPP_NIBBLE_MODE. Centronics devices
support only ECPP_CENTRONICS mode.

By default, ECPP_COMPAT_MODE devices have a strobe handshaking pulse width of
500ns. For this mode, forward data transfers are conducted by DMA. By default, the
strobe pulse width for ECPP_CENTRONICS devices is two microsecond. Forward
transfers for these devices are managed through PIO. The default characteristics for
both ECPP_COMPAT_MODE and ECPP_CENTRONICS devices may be changed through
tunable variables defined in ecpp.conf.

The ecpp driver is an exclusive-use device, meaning that if the device is already open,
subsequent opens fail with EBUSY.

Each time the ecpp device is opened, the device is marked as EBUSY and the
configuration variables are set to their default values. The write_timeout period is
set to 90 seconds.

The driver sets the mode variable according to the following algorithm: The driver
initially attempts to negotiate the link into ECPP_ECP_MODE during open(2). If it fails,
the driver tries to negotiate in ECPP_NIBBLE_MODE mode. If that fails, the driver
operates in ECPP_CENTRONICS mode. Upon successfully opening the device, IEEE
1284 compliant devices will be left idle in either reverse idle phase of
ECPP_ECP_MODE or ECPP_NIBBLE_MODE. Subsequent calls to write(2) invokes the
driver to move the link into either forward phase of ECPP_ECP_MODE or
ECPP_COMPAT_MODE. After the transfer completes, the link returns to idle state.

The application may attempt to negotiate the device into a specific mode or set the
write_timeout values through the ECPPIOC_SETPARMS ioctl(2) call. For mode
negotiation to be successful, both the host workstation and the peripheral must
support the requested mode.

Characteristics of the ecpp driver may be tuned by the variables described in
/kernel/drv/ecpp.conf. These variables are read by the kernel during system
startup. To tune the variables, edit the ecpp.conf file and invoke update_drv(1M)
to have the kernel read the file again.

ecpp(7D)

NAME

SYNOPSIS

DESCRIPTION

Default Operation

Tunables

Device and Network Interfaces 139

Some Centronics peripherals and certain IEEE 1284 compatible peripherals will not
operate with the parallel port operating in a fast handshaking mode. If printing
problems occur, set "fast-centronics" and "fast-1284-compatible" to "false.” See
/kernel/drv/ecpp.conf for more information.

The ecpp driver is a full duplex STREAMS device driver. While an application is
writing to an IEEE 1284 compliant device, another thread may read from it.

A write(2) operation returns the number of bytes successfully written to the stream
head. If a failure occurs while a Centronics device is transferring data, the content of
the status bits will be captured at the time of the error and can be retrieved by the
application program using the BPPIOC_GETERR ioctl(2) call. The captured status
information is overwritten each time an attempted transfer or a BPPIOC_TESTIO
ioctl(2) occurs.

If a failure or error condition occurs during a read(2), the number of bytes
successfully read is returned (short read). When attempting to read the port that has
no data currently available, read(2) returns 0 if O_NDELAY is set. If O_NONBLOCK is
set, read(2) returns -1 and sets errno to EAGAIN. If O_NDELAY and O_NONBLOCK are
clear, read(2) blocks until data become available.

The ioctl(2) calls described below are supported. Note that when ecpp is
transferring data, the driver waits until the data has been sent to the device before
processing the ioctl(2) call.

The ecpp driver supports prnio(7I) interfaces.

Note – The PRNIOC_RESET command toggles nInit signal for 2 ms, followed by
default negotiation.

The following ioctl(2) calls are supported for backward compatibility and are not
recommended for new applications:

ECPPIOC_GETPARMS
Get current transfer parameters. The argument is a pointer to a struct
ecpp_transfer_parms. See below for a description of the elements of this
structure. If no parameters have been configured since the device was opened, the
structure will be set to its default configuration. See Default Operation above for
more information.

ECPPIOC_SETPARMS
Set transfer parameters. The argument is a pointer to a struct
ecpp_transfer_parms. If a parameter is out of range, EINVAL is returned. If the
peripheral or host device cannot support the requested mode, EPROTONOSUPPORT
is returned. See below for a description of ecpp_transfer_parms and its valid
parameters.

The Transfer Parameters Structure is defined in <sys/ecppio.h>.

ecpp(7D)

Read/Write
Operation

Write Operation

Read Operation

IOCTLS

140 man pages section 7: Device and Network Interfaces • Last Revised 4 Sep 2001

struct ecpp_transfer_parms {
int write_timeout;
int mode;

};

The write_timeout field is set to the value of ecpp-transfer-timeout
specified in the ecpp.conf. The write_timeout field specifies how long the
driver will wait for the peripheral to respond to a transfer request. The value must
be greater than 0 and less than ECPP_MAX_TIMEOUT. All other values are out of
range.

The mode field reflects the IEEE 1284 mode to which the parallel port is currently
configured. The mode may be set to one of the following values only:
ECPP_CENTRONICS, ECPP_COMPAT_MODE, ECPP_NIBBLE_MODE,
ECPP_ECP_MODE. All other values are invalid. If the requested mode is not
supported, ECPPIOC_SETPARMS will return EPROTONOSUPPORT and the mode
will be set to ECPP_CENTRONICS mode. Afterwards, the application may change
the mode back to the original mode with ECPPIOC_SETPARMS.

ECPPIOC_GETDEVID
This ioctl gets the IEEE 1284 device ID from the peripheral in specified mode.
Currently device ID can be retrieved only in Nibble mode. Pointer to the structure
defined in <sys/ecppsys.h> must be passed as an argument.

The 1284 device ID stucture:

struct ecpp_device_id {
int mode; /* mode to use for reading device id */
int len; /* length of buffer */
int rlen; /* actual length of device id string */
char *addr; /* buffer address */

};

The mode is the IEEE 1284 mode in which the port will be negotiated into to
retrieve device ID information. If the peripheral or host do not support the mode,
EPROTONOSUPPORT is returned. Applications should set mode to
ECPP_NIBBLE_MODE. len is the length of the buffer pointed to by addr. rlen is
the actual length of the device ID string returned from the peripheral. If the
returned rlen is greater than len, the application can call ECPPIOC_GETDEVID
again with a buffer length equal or greater than rlen. Note that the two length
bytes of the IEEE 1284 device ID are not taken into account and are not returned in
the user buffer.

After ECPPIOC_GETDEVID successfully completes, the driver returns the link to
ECPP_COMPAT_MODE. The application is responsible for determining the previous
mode the link was operating in and returning the link to that mode.

BPPIOC_TESTIO
Tests the forward transfer readiness of a peripheral operating in Centronics or
Compatibility mode.

ecpp(7D)

Device and Network Interfaces 141

TESTIO determines if the peripheral is ready to receive data by checking the open
flags and the Centronics status signals. If the current mode of the device is
ECPP_NIBBLE_MODE, the driver negotiates the link into ECPP_COMPAT_MODE,
check the status signals and then return the link to ECPP_NIBBLE_MODE mode. If
the current mode is ECPP_CENTRONICS or ECPP_COMPAT_MODE, TESTIO
examines the Centronics status signals in the current mode. To receive data, the
device must have the nErr and Select signals asserted and must not have the PE
and Busy signals asserted. If ecpp is transferring data, TESTIO waits until the
previous data sent to the driver is delivered before executing TESTIO. However if
an error condition occurs while a TESTIO is waiting, TESTIO returns immediately.
If TESTIO determines that the conditions are ok, 0 is returned. Otherwise, -1 is
returned, errno is set to EIO and the state of the status pins is captured. The
captured status can be retrieved using the BPPIOC_GETERR ioctl(2) call. The
timeout_occurred and bus_error fields will never be set by this ioctl(2).
BPPIOC_TESTIO and BPPIOC_GETERR are compatible to the ioctls specified in
bpp(7D).

BPPIOC_GETERR
Get last error status. The argument is a pointer to a struct bpp_error_status
defined in <sys/bpp_io.h> header file. The error status structure is:

struct bpp_error_status {
char timeout_occurred; /* 1=timeout */
char bus_error; /* not used */
uchar_t pin_status; /* status of pins which

/* could cause error */
};

The pin_status field indicates possible error conditions. The valid bits for pin_status
are: BPP_ERR_ERR, BPP_SLCT_ERR, BPP_PE_ERR, BPP_BUSY_ERR. A set bit
indicates that the associated pin is asserted.

This structure indicates the status of all the appropriate status bits at the time of the
most recent error condition during a write(2) call, or the status of the bits at the
most recent BPPIOC_TESTIO ioctl(2)call.

pin_status indicates possible error conditions under ECPP_CENTRONICS or
ECPP_COMPAT_MODE. Under these modes, the state of the status pins will indicate
the state of the device. For instance, many Centronics printers lower the nErr
signal when a paper jam occurs. The behavior of the status pins depends on the
device. Additional status information may be retrieved through the backchannel.

The timeout_occurred value is set when a timeout occurs during write(2).
bus_error is not used in this interface.

The following ioctls are used to directly read and write the parallel port status and
control signals. If the current mode of the device is ECPP_ECP_MODE or
ECPP_NIBBLE_MODE, the driver negotiates the link into ECPP_COMPAT_MODE, get or
set the registers and then return the link to ECPP_NIBBLE_MODE. If the current mode

ecpp(7D)

142 man pages section 7: Device and Network Interfaces • Last Revised 4 Sep 2001

is ECPP_CENTRONICS or ECPP_COMPAT_MODE, these ioctls will get/set the register
values in the current mode.

ECPPIOC_GETREGS
Read register values. The argument is a pointer to a struct ecpp_regs. See
below for a description of this structure.

ECPPIOC_SETREGS
Set ecpp register values. The argument is a pointer to a struct ecpp_regs. See
below for a description of this structure. If a parameter is out of range, EINVAL is
returned.

The Port Register Structure is defined in <sys/ecppio.h>.

struct ecpp_regs {
uchar dsr; /* status reg */
u_char dcr; /* control reg */

};

The status register is read-only. The ECPPIOC_SETREGS ioctl has no affect on this
register. Valid bit values for dsr are: ECPP_nER, ECPP_SLCT, ECPP_PE,
ECPP_nACK, ECPP_nBUSY. All other bits are reserved and always return 1.

The control resister is read/write. Valid bit values for dcr are: ECPP_STB,
ECPP_AFX, ECPP_nINIT, ECPP_SLCTIN. All other bits are reserved. Reading
reserved bits always return 1. An attempt to write 0s into these bits results in
EINVAL.

/dev/ecppN
/dev/printersN

1284 compliant parallel port device special files appears in both namespaces.

kernel/drv/ecpp 32–bit ELF kernel module

kernel/drv/sparcv9/ecpp64–bit ELF kernel module

kernel/drv/ecpp.conf Driver configuration file

EBADF The device is opened for write-only access and a read is attempted,
or the device is opened for read-only access and a write is
attempted.

EBUSY The device has been opened and another open is attempted. An
attempt has been made to unload the driver while one of the units
is open.

EINVAL A ECPPIOC_SETPARMS ioctl() is attempted with an
out-of-range value in the ecpp_transfer_parms structure. A
ECPPIOC_SETREGS ioctl() is attempted with an invalid value
in the ecpp_regs structure. An ioctl() is attempted with an
invalid value in the command argument.An invalid command
argument is received during modload(1M) or modunload(1M).

ecpp(7D)

DEVICE SPECIAL
FILES

FILES

ERRORS

Device and Network Interfaces 143

EIO The driver encountered a bus error when attempting an access. A
read or write did not complete properly, due to a peripheral error
or a transfer timeout.

ENXIO The driver has received an open request for a unit for which the
attach failed. The driver has received a write request for a unit
which has an active peripheral error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWpd

Interface stability Evolving

update_drv(1M), ioctl(2), read(2), write(2), system(4), bpp(7D), usbprn(7D),
prnio(7I), streamio(7I)

IEEE Std 1284–1994

Parallel port controller not supported
Driver does not support parallel port controller on the given host. Attach failed.

ecpp(7D)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

144 man pages section 7: Device and Network Interfaces • Last Revised 4 Sep 2001

elx – 3COM EtherLink III Ethernet device driver

#include <sys/stropts.h>

#include <sys/ethernet.h>

#include <sys/dlpi.h>

#include <sys/gld.h>

The elx Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7P), over the
following 3COM ETHERLINK III Ethernet controllers. For IA based systems: 3C509,
3C509B, 3C579 and 3C59x controllers. Multiple EtherLink III controllers installed
within the system are supported by the driver. The elx driver provides basic support
for the EtherLink III hardware. Functions include chip initialization, frame transmit
and receive, multicast and “promiscuous” support, and error recovery and reporting.

The cloning, character-special device /dev/elx is used to access all EtherLink III
devices installed within the system.

The elx driver is dependent on /kernel/misc/gld, a loadable kernel module that
provides the elx driver with the DLPI and STREAMS functionality required of a LAN
driver. See gld(7D) for more details on the primatives supported by the driver.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum SDU is 1500 (ETHERMTU).

� The minimum SDU is 0. The driver will pad to the mandatory 60-octet minimum
packet size.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

� The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

/dev/elx
special character device

/platform/i86pc/kernel/drv/elx.conf
configuration file for elx driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

elx(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

Device and Network Interfaces 145

attributes(5), dlpi(7P), gld(7D)

elx(7D)

SEE ALSO

146 man pages section 7: Device and Network Interfaces • Last Revised 24 Feb 1998

elxl – 3Com Ethernet device driver

/kernel/drv/elxl

The elxl driver currently supports the following network cards: EtherLink XL
(3C900-TPO, 3C900-COMBO, 3C900B-TPO, 3C900B-COMBO, and 3C900B-TPC),
EtherLink XL 10/100 (3C905-TX Fast, 3C905-T4 Fast, 3C905B-TX Fast, 3C905B-T4 Fast,
and 3C905C-TX-M Fast), and EtherLink Server 10/100 (3C980-TX Fast and
3C980C-TXM).

The elxl Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7P). Multiple
EtherLink XL controllers installed within the system are supported by the driver. The
elxl driver provides basic support for the EtherLink hardware. Functions include
chip initialization, frame transmit and receive, multicast and promiscuous mode
support, and error recovery and reporting.

The cloning, character-special device /dev/elxl is used to access all EtherLink
devices installed within the system.

The elxl driver is dependent on /kernel/misc/gld, a loadable kernel module that
provides the elxl driver with the DLPI and STREAMS functionality required of a
LAN driver. See gld(7D) for more details on the primatives supported by the driver.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� Maximum SDU is 1500 (ETHERMTU).

� Minimum SDU is 0. The driver will pad to the mandatory 60-octet minimum packet
size.

� The dlsap address length is 8.

� MAC type is DL_ETHER.

� The sap length value is –2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

� The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

� Media Type: Auto Select

� 3C905B cards in a Compaq ProLiant 6500 can fail to generate interrupts. There is no
known workaround for this problem. However, because some slots appear to be
more prone to the problem than others, try correcting the problem by moving the
card to another PCI slot. If that fails, try rebooting the machine a number of times
to free the card from the wedged state.

� Early versions of the 3Com 3C905C-TX-M adapter firmware do not support PXE
network boot on Solaris systems. If you are using a version earlier than 4.11,
upgrade the firmware. The PXE version is indicated by the Managed Boot Agent
version number. This number is not normally displayed during boot, but is shown

elxl(7D)

NAME

SYNOPSIS

DESCRIPTION

Supported Settings

Known Problems
and Limitations

Device and Network Interfaces 147

on the PXE configuration screen.

The /kernel/drv/elxl.conf file supports the following option:

full-duplex For full duplex operation use full-duplex=1. For half duplex
use full-duplex=0. Half-duplex operation provides better
results on older 10-Mbit networks.

/dev/elxl Special character device

/kernel/drv/elxl.conf Configuration file for elxl driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), gld(7D), streamio(7I), dlpi(7P).

elxl(7D)

CONFIGURATION

FILES

ATTRIBUTES

SEE ALSO

148 man pages section 7: Device and Network Interfaces • Last Revised 27 November 2000

encr3des – Triple-DES-CBC Encryption Algorithm Module for IPSec

strmod/encr3des

This module implements triple-DES, which is the application of the United States Data
Encryption Standard (DES) three times with three different keys for IPSec. The triple
application of DES, given K1, K2, and K3, happens on a per-block basis as follows:

Encryption: Encrypt w/K1, Decrypt w/K2, Encrypt w/K3

Decryption: Decrypt w/K3, Encrypt w/K2, Decrypt w/K1

Triple-DES roughly doubles the effective key strength of DES. For further discussions
on Triple-DES, see Applied Cryptography: Protocols, Algorithms, and Source Code in C by
Bruce Schneier.

The encr3des module uses cipher-block chaining (“CBC”), as per RFC 2451 and has
the following properties:

Key Size 192 bits. The single 192-bit key consists of three DES keys
concatenated together in the outbound-encryption order. See
encrdes(7M). The encr3des module supports weak-key
checking and parity-fixing to aid pf_key(7P).

Block Size 64 bit.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx.u (64-bit)

Interface Stability Evolving

ipseckey(1M), attributes(5), encrdes(7M), ipsec(7P), ipsecesp(7P),
pf_key(7P)

NIST, FIPS PUB 46-2: Data Encryption Standard, December, 1993.

Pereira, R. and Adams, R., RFC 2451, The ESP CBC-Mode Cipher Algorithms, The
Internet Society, 1998.

Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C. Second
ed. New York, New York: John Wiley & Sons, 1996.

encr3des(7M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 149

encraes – AES-CBC encryption algorithm for IPsec

strmod/encraes

The encraes module implements AES, the US Government Advanced Encryption
Standard for IPsec. This module uses the cipher-block chaining mode (CBC) pursuant
to RFC 2451. The encraes module has the following properties:

Key size 128, 192, or 256 bits. The key length affects the number of rounds
performed per cipher block, and therefore affects the speed of the
algorithm.

Block Size 128 bits

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcryr (32-bit)

SUNWcryrx (64-bit)

Interface Stability Evolving

ipseckey(1M), attributes(5), ipsec(7P), ipsecesp(7P), pf_key(7P)

Pereira, R. and Adams, R. RFC 2451, The ESP CBC-Mode Cipher Algorithms, The
Internet Society, 1998.

encraes(7M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

150 man pages section 7: Device and Network Interfaces • Last Revised 17 Sep 2001

encrbfsh – Blowfish-CBC Encryption Algorithm Module for IPsec

strmod/encrbfsh

This module implements Blowfish, a cipher developed by Bruce Schneier, for IPsec.
The encrbfsh module uses cipher-block chaining (“CBC”) pursuant to RFC 2451.
This module has the following properties:

Key Size 32 to 448 bits. Keys are encoded internally as 448–bit quantities. A
smaller key size will repeat its pattern until 448 bits are reached.

Block Size 64 bits.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcryr (32-bit)

SUNWcryrx (64-bit)

Interface Stability Evolving

ipseckey(1M), attributes(5), ipsec(7P), ipsecesp(7P), pf_key(7P)

Pereira, R. and Adams, R., RFC 2451, The ESP CBC-Mode Cipher Algorithms, The
Internet Society, 1998.

Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C. Second
ed. New York, New York: John Wiley & Sons, 1996.

encrbfsh(7M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 151

encrdes – DES-CBC Encryption Algorithm Module for IPsec

strmod/encrdes

This module implements the United States Data Encryption Standard (DES) for IPsec.
encrdes uses cipher-block chaining (CBC), as per RFC 2405 and has the following
properties:

Key Size 64 bits. 56 bit key, plus 8 parity bits. 7 bits of key are followed by
one bit of odd parity. For example, the 56-bit key FF FF FF FF FF
FF FF would be encoded as FE FE FE FE FE FE FE FE.
encrdes supports weak-key checking and parity-fixing to aid
pf_key(7P).

Block Size 64 bits.

It is used by ESP.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx.u (64-bit)

Interface Stability Evolving

ipseckey(1M), attributes(5), ipsec(7P), ipsecesp(7P), pf_key(7P)

Madson, C., and Doraswamy, N, RFC 2405, The ESP DES-CBC Cipher Algorithm with
Explicit IV, The Internet Society, 1998.

NIST, FIPS PUB 46-2: Data Encryption Standard, December, 1993.

encrdes(7M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

152 man pages section 7: Device and Network Interfaces • Last Revised 22 Oct 2001

eri – eri Fast-Ethernet device driver

/dev/eri

The eri Fast Ethernet driver is a multi-threaded, loadable, clonable,
STREAMS—based hardware driver supporting the connectionless Data Link Provider
Interface dlpi(7P) over an eri Fast-Ethernet controller. Multiple eri devices
installed within the system are supported by the driver.

The eri driver provides basic support for the eri hardware and handles the eri
device. Functions include chip initialization, frame transit and receive, multicast and
promiscuous support, and error recovery and reporting.

The eri device provides 100Base-TX networking interfaces using the SUN RIO ASIC
and an internal transceiver. The RIO ASIC provides the PCI interface and MAC
functions. The physical layer functions are provided by the internal transceiver which
connects to a RJ-45 connector.

The 100Base-TX standard specifies an auto-negotiation protocol to automatically select
the mode and speed of operation. The internal transceiver is capable of performing
auto-negotiation using the remote-end of the link (link partner) and receives the
capabilities of the remote end. It selects the highest common denominator mode of
operation based on the priorities. It also supports a forced-mode of operation under
which the driver selects the mode of operation.

The cloning character-special device /dev/eri is used to access all eri controllers
installed within the system.

The eri driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. Valid DLPI primitives
are defined in <sys/dlpi.h>. Refer to dlpi(7P) for more information.

An explicit DL_ATTACH_REQ message by the user is required to associate the opened
stream with a particular device (ppa). The ppa ID is interpreted as an unsigned
integer data type and indicates the corresponding device instance (unit) number. An
error (DL_ERROR_ACK) is returned by the driver if the ppa field value does not
correspond to a valid device instance number for this system. The device is initialized
on first attach and de-initialized (stopped) at last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� The minimum SDU is 0.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length values is –2, meaning the physical address component is followed
immediately by a 2 byte sap component within the DLSAP address.

eri(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
eri and DLPI

Device and Network Interfaces 153

� The service mode is DL_CLDLS.

� Optional quality of service (QOS) is not currently supported so QOS fields are 0.

� The provider style is DL_STYLE.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The eri driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type,” therefore valid values for
the sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

If the user selects a sap with a value of 0, the receiver will be in IEEE 802.3 mode. All
frames received from the media having a Ethernet type field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open Streams which are bound to
sap value 0. If more than one Stream is in 802.3 mode, the frame will be duplicated
and routed up multiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ to determine if
the value is 0 or if the Ethernet type field is in the range [0-1500]. If either is true, the
driver computes the length of the message, not including initial M_PROTO mblk
(message block), of all subsequent DL_UNITDATA_REQ messages, and transmits 802.3
frames that have this value in the MAC frame header length field.

The eri driver’s DLSAP address format consists of the 6 byte physical (Ethernet)
address component followed immediately by the 2 byte sap (type) component,
producing an 8 byte DLSAP address. Applications should not hardcode to this
particular implementation-specific DLSAP address format but use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP
addresses. The sap length, full DLSAP length, and sap/physical ordering are
included within the DL_INFO_ACK. The physical address length can be computed by
subtracting the sap length from the full DLSAP address length or by issuing the
DL_PHYS_ADDR_REQ to obtain the current physical address associated with the
stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the eri driver. The eri driver will route received
Ethernet frames up all open and bound streams having a sap which matches the
Ethernet type as DL_UNITDATA_IND messages. Received Ethernet frames are
duplicated and routed up multiple open streams if necessary. The DLSAP address
contained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set, the driver also
supports the following primitives:

eri(7D)

eri Primitives

154 man pages section 7: Device and Network Interfaces • Last Revised 1 Mar 2000

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
promiscuous mode frames on the media, including frames generated by the local host.
When used with the DL_PROMISC_SAP flag set, this enables/disables reception of all
sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of the other sap and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process which
originally opened this stream must be superuser, or EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive because it affects all current and future
streams attached to this device. An M_ERROR is sent up all other streams attached to
this device when this primitive is successful on this stream. Once changed, all streams
subsequently opened and attached to this device will obtain this new physical
address. Once changed, the physical address will remain until this primitive is used to
change the physical address again or the system is rebooted, whichever comes first.

By default, the eri driver performs auto-negotiation to select the mode and speed of
the link, which can be in one of the following modes, as described in the 100Base-TX
standard:

� 100 Mbps, full-duplex
� 100 Mbps, half-duplex
� 10 Mbps, full-duplex
� 10 Mbps, half-duplex

The auto-negotiation protocol automatically selects:

� Operation mode (half-duplex or full-duplex)
� Speed (100 Mbps or 10 Mbps)

The auto–negotiation protocol does the following:

� Gets all modes of operation supported by the link partner

� Advertises its capabilities to the Link Partner

� Selects the highest common denominator mode of operation based on the priorities

eri(7D)

eri DRIVER

Device and Network Interfaces 155

The internal transceiver is capable of all of the operating speeds and modes listed
above. By default, auto-negotiation is used to select the speed and the mode of the link
and the common mode of operation with the link partner.

For users who want to select the speed and mode of the link, the eri device supports
programmable IPG (Inter-Packet Gap) parameters ipg1 and ipg2. Sometimes, the
user may want to alter these values depending on whether the driver supports 10
Mbps or 100 Mpbs and accordingly, IPG will be set to 9.6 or 0.96 microseconds.

The eri driver provides for setting and getting various parameters for the eri device.
The parameter list includes current transceiver status, current link status, inter-packet
gap, local transceiver capabilities and link partner capabilities.

The local transceiver has two set of capabilities: one set reflects hardware capabilities,
which are read-only (RO) parameters. The second set reflects the values chosen by the
user and is used in speed selection and possess read/write (RW) capability. At boot
time, these two sets of capabilities will be the same. Because the current default value
of these parameters can only be read and not modified, the link partner capabilities are
also read only.

/dev/eri eri special character device.

/kernel/drv/eri.conf System wide default device driver
properties

/kernel/drv/sparcv9/eri 64 bit device driver

ndd(1M), netstat(1M), driver.conf(4), hme(7D), qfe(7D), dlpi(7P)

eri(7D)

eri Parameter List

FILES

SEE ALSO

156 man pages section 7: Device and Network Interfaces • Last Revised 1 Mar 2000

esp – ESP SCSI Host Bus Adapter Driver

esp@sbus-slot,80000

The esp Host Bus Adapter driver is a SCSA compliant nexus driver that supports the
Emulex family of esp SCSI chips (esp100, esp100A, esp236, fas101, fas236).

The esp driver supports the standard functions provided by the SCSA interface. The
driver supports tagged and untagged queuing, fast SCSI (on FAS esp’s only), almost
unlimited transfer size (using a moving DVMA window approach), and auto request
sense; but it does not support linked commands.

The esp driver can be configured by defining properties in esp.conf which override
the global SCSI settings. Supported properties are: scsi-options,
target<n>-scsi-options, scsi-reset-delay, scsi-watchdog-tick,
scsi-tag-age-limit, scsi-initiator-id.

target<n>-scsi-options overrides the scsi-options property value for
target<n>. <n> can vary from 0 to 7.

Refer to scsi_hba_attach(9F) for details.

EXAMPLE 1 A sample of esp configuration file.

Create a file /kernel/drv/esp.conf and add this line:

scsi-options=0x78;

This will disable tagged queuing, fast SCSI, and Wide mode for all esp instances. To
disable an option for one specific esp (refer to driver.conf(4)):

name="esp"
parent="/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000"

reg=0xf,0x800000,0x40
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will occur at
attach time. It may be preferable to change the initiator ID in OBP.

The above would set scsi-options for target 1 to 0x58 and for all other targets on
this SCSI bus to 0x178. The physical pathname of the parent can be determined using
the /devices tree or following the link of the logical device name:

example# ls -l /dev/rdsk/c0t3d0s0
lrwxrwxrwx 1 root root 88 Aug 22 13:29 /dev/rdsk/c0t3d0s0 ->
../../devices/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/

esp@f,800000/sd@3,0:a,raw

The register property values can be determined from prtconf(1M) output (-v
option):

esp, instance #0
....

Register Specifications:
Bus Type=0xf, Address=0x800000, Size=40

esp(7D)

NAME

SYNOPSIS

DESCRIPTION

CONFIGURATION

EXAMPLES

Device and Network Interfaces 157

EXAMPLE 1 A sample of esp configuration file. (Continued)

To set scsi-options more specifically per target:

target1-scsi-options=0x78;
device-type-scsi-options-list =

"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;

scsi-options=0x3f8;

The above would set scsi-options for target 1 to 0x78 and for all other targets on
this SCSI bus to 0x378 except for one specific disk type which will have
scsi-options set to 0x58.

scsi-options specified per target ID has the highest precedence, followed by
scsi-options per device type. To get the inquiry string run probe-scsi or
probe-scsi-all command at the ok prompt before booting the system.

Global, for example. for all esp instances, scsi-options per bus has the lowest
precedence.

The system needs to be rebooted before the specified scsi-options take effect.

/kernel/drv/esp ELF Kernel Module

/kernel/drv/esp.conf Configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SBus-based systems with esp-based

SCSI port and SSHA, SBE/S, FSBE/S,

and DSBE/S SBus SCSI Host Adapter options

prtconf(1M), driver.conf(4), attributes(5), fas(7D), scsi_abort(9F),
scsi_hba_attach(9F), scsi_ifgetcap(9F), scsi_reset(9F),
scsi_sync_pkt(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

OpenBoot Command Reference

ANSI Small Computer System Interface-2 (SCSI-2)

ESP Technical Manuals, QLogic Corp.

esp(7D)

FILES

ATTRIBUTES

SEE ALSO

158 man pages section 7: Device and Network Interfaces • Last Revised 7 Feb 1997

The messages described below are some that may appear on the system console, as
well as being logged.

The first four messages may be displayed while the esp driver is trying to attach;
these messages mean that the esp driver was unable to attach. All of these messages
are preceded by "esp%d", where "%d" is the instance number of the esp controller.

Device in slave-only slot
The SBus device has been placed in a slave-only slot and will not be accessible;
move to non-slave-only SBus slot.

Device is using a hilevel intr
The device was configured with an interrupt level that cannot be used with this
esp driver. Check the SBus device.

Unable to map registers
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device; SCSI devices will be inaccessible.

Cannot find dma controller
Driver was unable to locate a dma controller. This is an auto-configuration error.

Disabled TQ since disconnects are disabled
Tagged queuing was disabled because disconnects were disabled in
scsi-options.

Bad clock frequency- setting 20mhz, asynchronous mode
Check for bad hardware.

Sync pkt failed
Syncing a SCSI packet failed. Refer to scsi_sync_pkt(9F).

Slot %x: All tags in use!!!
The driver could not allocate another tag number. The target devices do not
properly support tagged queuing.

Target %d.%d cannot alloc tag queue\n
The driver could not allocate space for tag queue.

Gross error in esp status (%x)
The driver experienced severe SCSI bus problems. Check cables and terminator.

Spurious interrupt
The driver received an interrupt while the hardware was not interrupting.

Lost state in phasemanage
The driver is confused about the state of the SCSI bus.

Unrecoverable DMA error during selection
The DMA controller experienced host SBus problems. Check for bad hardware.

Bad sequence step (0x%x) in selection
The esp hardware reported a bad sequence step. Check for bad hardware.

esp(7D)

DIAGNOSTICS

Device and Network Interfaces 159

Undetermined selection failure
The selection of a target failed unexpectedly. Check for bad hardware.

>2 reselection IDs on the bus
Two targets selected simultaneously, which is illegal. Check for bad hardware.

Reconnect: unexpected bus free
A reconnect by a target failed. Check for bad hardware.

Timeout on receiving tag msg
Suspect target f/w failure in tagged queue handling.

Parity error in tag msg
A parity error was detected in a tag message. Suspect SCSI bus problems.

Botched tag
The target supplied bad tag messages. Suspect target f/w failure in tagged queue
handling.

Parity error in reconnect msg’s
The reconnect failed because of parity errors.

Target <n> didn’t disconnect after sending <message>
The target unexpectedly did not disconnect after sending <message>.

No support for multiple segs
The esp driver can only transfer contiguous data.

No dma window?
Moving the DVMA window failed unexpectedly.

No dma window on <type> operation
Moving the DVMA window failed unexpectedly.

Cannot set new dma window
Moving the DVMA window failed unexpectedly.

Unable to set new window at <address> for <type> operation
Moving the DVMA window failed unexpectedly.

Illegal dma boundary? %x
An attempt was made to cross a boundary that the driver could not handle.

Unwanted data out/in for Target <n>
The target went into an unexpected phase.

Spurious <name> phase from target <n>
The target went into an unexpected phase.

SCSI bus DATA IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error
The driver detected parity errors on the SCSI bus.

esp(7D)

160 man pages section 7: Device and Network Interfaces • Last Revised 7 Feb 1997

SCSI bus STATUS phase parity error
The driver detected parity errors on the SCSI bus.

Premature end of extended message
An extended SCSI bus message did not complete. Suspect a target f/w problem.

Premature end of input message
A multibyte input message was truncated. Suspect a target f/w problem.

Input message botch
The driver is confused about messages coming from the target.

Extended message <n> is too long
The extended message sent by the target is longer than expected.

<name> message <n> from Target <m> garbled
Target <m> sent message <name> of value <n> which the driver did not
understand.

Target <n> rejects our message <name>
Target <n> rejected a message sent by the driver.

Rejecting message <name> from Target <n>
The driver rejected a message received from target <n>

Cmd dma error
The driver was unable to send out command bytes.

Target <n> refused message resend
The target did not accept a message resend.

Two-byte message <name> <value> rejected
The driver does not accept this two-byte message.

Unexpected selection attempt
An attempt was made to select this host adapter by another initiator.

Polled cmd failed (target busy)
A polled command failed because the target did not complete outstanding
commands within a reasonable time.

Polled cmd failed
A polled command failed because of timeouts or bus errors.

Disconnected command timeout for Target <id>.<lun>
A timeout occurred while target/lun was disconnected. This is usually a target f/w
problem. For tagged queuing targets, <n> commands were outstanding when the
timeout was detected.

Disconnected tagged cmds (<n>) timeout for Target <id>.<lun>
A timeout occurred while target/lun was disconnected. This is usually a target f/w
problem. For tagged queuing targets, <n> commands were outstanding when the
timeout was detected.

esp(7D)

Device and Network Interfaces 161

Connected command timeout for Target <id>.<lun>
This is usually a SCSI bus problem. Check cables and termination.

Target <id>.<lun> reverting to async. mode
A data transfer hang was detected. The driver attempts to eliminate this problem by
reducing the data transfer rate.

Target <id>.<lun> reducing sync. transfer rate
A data transfer hang was detected. The driver attempts to eliminate this problem by
reducing the data transfer rate.

Reverting to slow SCSI cable mode
A data transfer hang was detected. The driver attempts to eliminate this problem by
reducing the data transfer rate.

Reset SCSI bus failed
An attempt to reset the SCSI bus failed.

External SCSI bus reset
Another initiator reset the SCSI bus.

The esp hardware does not support Wide SCSI mode. Only FAS-type esp’s support
fast SCSI (10 MB/sec).

The esp driver exports properties indicating per target the negotiated transfer speed
(target<n>-sync-speed) and whether tagged queuing has been enabled
(target<n>-TQ). The sync-speed property value is the data transfer rate in
KB/sec. The target-TQ property has no value. The existence of the property
indicates that tagged queuing has been enabled. Refer to prtconf(1M) (verbose
option) for viewing the esp properties.

dma, instance #3
Register Specifications:

Bus Type=0x2, Address=0x81000, Size=10
esp, instance #3

Driver software properties:
name <target3-TQ> length <0> − <no

value>.
name <target3-sync-speed> length <4>

value <0x00002710>.
name <scsi-options> length <4>

value <0x000003f8>.
name <scsi-watchdog-tick> length <4>

value <0x0000000a>.
name <scsi-tag-age-limit> length <4>

value <0x00000008>.
name <scsi-reset-delay> length <4>

value <0x00000bb8>.

esp(7D)

WARNINGS

NOTES

162 man pages section 7: Device and Network Interfaces • Last Revised 7 Feb 1997

fas – FAS SCSI Host Bus Adapter Driver

fas@sbus-slot,0x8800000

The fas Host Bus Adapter driver is a SCSA compliant nexus driver that supports the
Qlogic FAS366 SCSI chip.

The fas driver supports the standard functions provided by the SCSA interface. The
driver supports tagged and untagged queuing, wide and fast SCSI, almost unlimited
transfer size (using a moving DVMA window approach), and auto request sense; but
it does not support linked commands.

The fas driver can be configured by defining properties in fas.conf which override
the global SCSI settings. Supported properties are: scsi-options,
target<n>-scsi-options, scsi-reset-delay, scsi-watchdog-tick,
scsi-tag-age-limit, scsi-initiator-id.

target<n>-scsi-options overrides the scsi-options property value for
target<n>. <n> can vary from decimal 0 to 15. The supported scsi-options are:
SCSI_OPTIONS_DR, SCSI_OPTIONS_SYNC, SCSI_OPTIONS_TAG,
SCSI_OPTIONS_FAST, and SCSI_OPTIONS_WIDE.

After periodic interval scsi-watchdog-tick, the fas driver searches all current
and disconnected commands for timeouts.

scsi-tag-age-limit is the number of times that the fas driver attempts to
allocate a particular tag ID that is currently in use after going through all tag IDs in a
circular fashion. After finding the same tag ID in use scsi-tag-age-limit times,
no more commands will be submitted to this target until all outstanding commands
complete or timeout.

Refer to scsi_hba_attach(9F) for details.

EXAMPLE 1 A sample of fas configuration file

Create a file called /kernel/drv/fas.conf and add this line:

scsi-options=0x78;

This disables tagged queuing, Fast SCSI, and Wide mode for all fas instances. The
following example disables an option for one specific fas (refer to driver.conf(4)
for more details):

name="fas" parent="/iommu@f,e0000000/sbus@f,e0001000"
reg=3,0x8800000,0x10,3,0x8810000,0x40
target1-scsi-options=0x58

scsi-options=0x178 scsi-initiator-id=6;Note that the default initiator ID in
OBP is 7 and that the change to ID 6 will occur at attach time. It may be preferable to
change the initiator ID in OBP.

fas(7D)

NAME

SYNOPSIS

DESCRIPTION

Driver
Configuration

EXAMPLES

Device and Network Interfaces 163

The example above sets scsi-options for target 1 to 0x58 and all other targets on
this SCSI bus to 0x178.

The physical pathname of the parent can be determined using the /devices tree or
following the link of the logical device name:

ls -l /dev/rdsk/c1t3d0s0
lrwxrwxrwx 1 root other 78 Aug 28 16:05 /dev/rdsk/c1t3d0s0 ->

. . /. . /devices/iommu@f,e0000000\

sbus@f,e0001000/SUNW,fas@3,8800000/sd@3,0:a,raw

Determine the register property values using the output from prtconf(1M) (with the
-v option):

SUNW,fas, instance #0
. . . .
Register Specifications:

Bus Type=0x3, Address=0x8800000, Size=10

Bus Type=0x3, Address=0x8810000, Size=40scsi-options can also be specified
per device type using the device inquiry string. All the devices with the same inquiry
string will have the same scsi-options set. This can be used to disable some
scsi-options on all the devices of the same type.

device-type-scsi-options-list=
"TOSHIBA XM5701TASUN12XCD", "cd-scsi-options";

cd-scsi-options = 0x0;The above entry in /kernel/drv/fas.conf sets the
scsi-options for all devices with inquiry string TOSHIBA XM5701TASUN12XCD to
cd-scsi-options. To get the inquiry string, run the probe-scsi or
probe-scsi-all command at the ok prompt before booting the system.

To set scsi-options more specifically per target:

target1-scsi-options=0x78;
device-type-scsi-options-list =

"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;

scsi-options=0x3f8;

The above sets scsi-options for target 1 to 0x78 and for all other targets on this
SCSI bus to 0x3f8 except for one specific disk type which will have scsi-options
set to 0x58.

scsi-options specified per target ID have the highest precedence, followed by
scsi-options per device type. Global fas scsi-options (effecting all instances)
per bus have the lowest precedence.

The system needs to be rebooted before the specified scsi-options take effect.

fas(7D)

164 man pages section 7: Device and Network Interfaces • Last Revised 20 Jun 1997

The target driver needs to set capabilities in the fas driver in order to enable some
driver features. The target driver can query and modify these capabilities:
synchronous, tagged-qing, wide-xfer, auto-rqsense, qfull-retries,
qfull-retry-interval. All other capabilities can only be queried.

By default, tagged-qing, auto-rqsense, and wide-xfer capabilities are disabled,
while disconnect, synchronous, and untagged-qing are enabled. These
capabilities can only have binary values (0 or 1). The default value for
qfull-retries is 10 and the default value for qfull-retry-interval is 100.
The qfull-retries capability is a uchar_t (0 to 255) while
qfull-retry-interval is a ushort_t (0 to 65535).

The target driver needs to enable tagged-qing and wide-xfer explicitly. The
untagged-qing capability is always enabled and its value cannot be modified,
because fas can queue commands even when tagged-qing is disabled.

Whenever there is a conflict between the value of scsi-options and a capability, the
value set in scsi-options prevails. Only whom != 0 is supported in the
scsi_ifsetcap(9F) call.

Refer to scsi_ifsetcap(9F) and scsi_ifgetcap(9F) for details.

/kernel/drv/fas ELF Kernel Module

/kernel/drv/fas.conf Optional configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to Sparc SBus-based systems with
FAS366-based SCSI port and SunSWIFT SBus SCSI
Host Adapter/Fast Ethernet option.

prtconf(1M), driver.conf(4), attributes(5), scsi_abort(9F),
scsi_hba_attach(9F), scsi_ifgetcap(9F), scsi_ifsetcap(9F),
scsi_reset(9F), scsi_sync_pkt(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

QLogic Corporation, FAS366 Technical Manuals.

The messages described below are some that may appear on the system console, as
well as being logged.

fas(7D)

Driver Capabilities

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 165

The first five messages may be displayed while the fas driver is trying to attach; these
messages mean that the fas driver was unable to attach. All of these messages are
preceded by "fas%d", where "%d" is the instance number of the fas controller.

Device in slave-only slot
The SBus device has been placed in a slave-only slot and will not be accessible;
move to non-slave-only SBus slot.

Device is using a hilevel intr
The device was configured with an interrupt level that cannot be used with this
fas driver. Check the SBus device.

Cannot allocate soft state

Cannot alloc dma handle

Cannot alloc cmd area

Cannot create kmem_cache
Driver was unable to allocate memory for internal data structures.

Unable to map FAS366 registers
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device; SCSI devices will be inaccessible.

Cannot add intr
Driver could not add its interrupt service routine to the kernel.

Cannot map dma
Driver was unable to locate a DMA controller. This is an auto-configuration error.

Cannot bind cmdarea
Driver was unable to bind the DMA handle to an address.

Cannot create devctl minor node
Driver is unable to create a minor node for the controller.

Cannot attach
The driver was unable to attach; usually follows another warning that indicates
why attach failed.

Disabled TQ since disconnects are disabled
Tagged queuing was disabled because disconnects were disabled in
scsi-options.

Bad clock frequency
Check for bad hardware.

Sync of pkt (<address>) failed
Syncing a SCSI packet failed. Refer to scsi_sync_pkt(9F).

All tags in use!
The driver could not allocate another tag number. The target devices do not
properly support tagged queuing.

fas(7D)

166 man pages section 7: Device and Network Interfaces • Last Revised 20 Jun 1997

Gross error in FAS366 status
The driver experienced severe SCSI bus problems. Check cables and terminator.

Spurious interrupt
The driver received an interrupt while the hardware was not interrupting.

Lost state in phasemanage
The driver is confused about the state of the SCSI bus.

Unrecoverable DMA error during selection
The DMA controller experienced host SBus problems. Check for bad hardware.

Bad sequence step (<step number>) in selection
The FAS366 hardware reported a bad sequence step. Check for bad hardware.

Undetermined selection failure
The selection of a target failed unexpectedly. Check for bad hardware.

Target <n>: failed reselection (bad reselect bytes)
A reconnect failed, target sent incorrect number of message bytes. Check for bad
hardware.

Target <n>: failed reselection (bad identify message)
A reconnect failed, target didn’t send identify message or it got corrupted. Check
for bad hardware.

Target <n>: failed reselection (not in msgin phase)
Incorrect SCSI bus phase after reconnection. Check for bad hardware.

Target <n>: failed reselection (unexpected bus free)
Incorrect SCSI bus phase after reconnection. Check for bad hardware.

Target <n>: failed reselection (timeout on receiving tag msg)
A reconnect failed; target failed to send tag bytes. Check for bad hardware.

Target <n>: failed reselection (botched tag)
A reconnect failed; target failed to send tag bytes. Check for bad hardware.

Target <n>: failed reselection (invalid tag)
A reconnect failed; target sent incorrect tag bytes. Check for bad hardware.

Target <n>: failed reselection (Parity error in reconnect msg’s)
A reconnect failed; parity error detected. Check for bad hardware.

Target <n>: failed reselection (no command)
A reconnect failed; target accepted abort or reset, but still tries to reconnect.
Check for bad hardware.

Unexpected bus free
Target disconnected from the bus without notice. Check for bad hardware.

Target <n> didn’t disconnect after sending <message>
The target unexpectedly did not disconnect after sending <message>.

fas(7D)

Device and Network Interfaces 167

Bad sequence step (0x?) in selection
The sequence step register shows an improper value. The target might be
misbehaving.

Illegal dma boundary?
An attempt was made to cross a boundary that the driver could not handle.

Unwanted data xfer direction for Target <n>
The target went into an unexpected phase.

Unrecoverable DMA error on dma <send/receive>
There is a DMA error while sending/receiving data. The host DMA controller is
experiencing some problems.

SCSI bus DATA IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error
The driver detected parity errors on the SCSI bus.

Premature end of extended message
An extended SCSI bus message did not complete. Suspect a target firmware
problem.

Premature end of input message
A multibyte input message was truncated. Suspect a target firmware problem.

Input message botch
The driver is confused about messages coming from the target.

Extended message <n> is too long
The extended message sent by the target is longer than expected.

<name> message <n> from Target <m> garbled
Target <m> sent message <name> of value <n> which the driver did not
understand.

Target <n> rejects our message <name>
Target <n> rejected a message sent by the driver.

Rejecting message <name> from Target <n>
The driver rejected a message received from target <n>.

Cmd transmission error
The driver was unable to send out command bytes.

Target <n> refused message resend
The target did not accept a message resend.

MESSAGE OUT phase parity error
The driver detected parity errors on the SCSI bus.

fas(7D)

168 man pages section 7: Device and Network Interfaces • Last Revised 20 Jun 1997

Two byte message <name> <value> rejected
The driver does not accept this two byte message.

Gross error in fas status <stat>
The fas chip has indicated a gross error like FIFO overflow.

Polled cmd failed (target busy)
A polled command failed because the target did not complete outstanding
commands within a reasonable time.

Polled cmd failed
A polled command failed because of timeouts or bus errors.

Auto request sense failed
Driver is unable to get request sense from the target.

Disconnected command timeout for Target <id>.<lun>
A timeout occurred while target id/lun was disconnected. This is usually a target
firmware problem. For tagged queuing targets, <n> commands were outstanding
when the timeout was detected.

Disconnected tagged cmds (<n>) timeout for Target <id>.<lun>
A timeout occurred while target id/lun was disconnected. This is usually a target
firmware problem. For tagged queuing targets, <n> commands were outstanding
when the timeout was detected.

Connected command timeout for Target <id>.<lun>
This is usually a SCSI bus problem. Check cables and termination.

Target <id>.<lun> reverting to async. mode
A data transfer hang was detected. The driver attempts to eliminate this problem by
reducing the data transfer rate.

Target <id>.<lun> reducing sync. transfer rate
A data transfer hang was detected. The driver attempts to eliminate this problem by
reducing the data transfer rate.

Reverting to slow SCSI cable mode
A data transfer hang was detected. The driver attempts to eliminate this problem by
reducing the data transfer rate.

Target <id> reducing sync. transfer rate

Target <id> reverting to async. mode

Target <id> disabled wide SCSI mode
Due to problems on the SCSI bus, the driver goes into more conservative mode of
operation to avoid further problems.

Reset SCSI bus failed
An attempt to reset the SCSI bus failed.

External SCSI bus reset
Another initiator reset the SCSI bus.

fas(7D)

Device and Network Interfaces 169

The fas hardware (FAS366) supports both Wide and Fast SCSI mode, but fast20 is not
supported. The maximum SCSI bandwidth is 20 MB/sec. Initiator mode block
sequence (IBS) is not supported.

The fas driver exports properties indicating per target the negotiated transfer speed
(target<n>-sync-speed), whether wide bus is supported (target<n>-wide),
scsi-options for that particular target (target<n>-scsi-options), and whether
tagged queuing has been enabled (target<n>-TQ). The sync-speed property value
is the data transfer rate in KB/sec. The target<n>-TQ and the target<n>-wide
property have value 1 to indicate that the corresponding capability is enabled, or 0 to
indicate that the capability is disabled for that target. Refer to prtconf(1M) (verbose
option) for viewing the fas properties.

SUNW,fas,instance #1
Driver software properties:

name <target3-TQ> length <4>
value <0x00000001>.

name <target3-wide> length <4>
value <0x00000000>.

name <target3-sync-speed> length <4>
value <0x00002710>.

name <target3-scsi-options> length <4>
value <0x000003f8>.

name <target0-TQ> length <4>
value <0x00000001>.

name <pm_norm_pwr> length <4>
value <0x00000001>.

name <pm_timestamp> length <4>
value <0x30040346>.

name <scsi-options> length <4>
value <0x000003f8>.

name <scsi-watchdog-tick> length <4>
value <0x0000000a>.

name <scsi-tag-age-limit> length <4>
value <0x00000002>.

name <scsi-reset-delay> length <4>
value <0x00000bb8>.

Register Specifications:
Bus Type=0x3, Address=0x8800000, Size=10
Bus Type=0x3, Address=0x8810000, Size=40

Interrupt Specifications:

Interrupt Priority=0x35 (ipl 5)

fas(7D)

WARNINGS

NOTES

170 man pages section 7: Device and Network Interfaces • Last Revised 20 Jun 1997

fbio – frame buffer control operations

The frame buffers provided with this release support the same general interface that is
defined by <sys/fbio.h>. Each responds to an FBIOGTYPE ioctl(2) request which
returns information in a fbtype structure.

Each device has an FBTYPE which is used by higher-level software to determine how
to perform graphics functions. Each device is used by opening it, doing an
FBIOGTYPE ioctl() to see which frame buffer type is present, and thereby selecting
the appropriate device-management routines.

FBIOGINFO returns information specific to the GS accelerator.

FBIOSVIDEO and FBIOGVIDEO are general-purpose ioctl() requests for controlling
possible video features of frame buffers. These ioctl() requests either set or return
the value of a flags integer. At this point, only the FBVIDEO_ON option is available,
controlled by FBIOSVIDEO. FBIOGVIDEO returns the current video state.

The FBIOSATTR and FBIOGATTR ioctl() requests allow access to special features of
newer frame buffers. They use the fbsattr and fbgattr structures.

Some color frame buffers support the FBIOPUTCMAP and FBIOGETCMAP ioctl()
requests, which provide access to the colormap. They use the fbcmap structure.

Also, some framebuffers with multiple colormaps will either encode the colormap
identifier in the high-order bits of the "index" field in the fbcmap structure, or use the
FBIOPUTCMAPI and FBIOGETCMAPI ioctl() requests.

FBIOVERTICAL is used to wait for the start of the next vertical retrace period.

FBIOVRTOFFSET Returns the offset to a read-only vertical retrace page for those
framebuffers that support it. This vertical retrace page may be mapped into user space
with mmap(2). The first word of the vertical retrace page (type unsigned int) is a
counter that is incremented every time there is a vertical retrace. The user process can
use this counter in a variety of ways.

FBIOMONINFO returns a mon_info structure which contains information about the
monitor attached to the framebuffer, if available.

FBIOSCURSOR, FBIOGCURSOR, FBIOSCURPOS and FBIOGCURPOS are used to
control the hardware cursor for those framebuffers that have this feature.
FBIOGCURMAX returns the maximum sized cursor supported by the framebuffer.
Attempts to create a cursor larger than this will fail.

Finally FBIOSDEVINFO and FBIOGDEVINFO are used to transfer variable-length,
device-specific information into and out of framebuffers.

ioctl(2), mmap(2), bwtwo(7D), cgeight(7D), cgfour(7D), cgsix(7D),
cgthree(7D), cgtwo(7D)

fbio(7I)

NAME

DESCRIPTION

SEE ALSO

Device and Network Interfaces 171

The FBIOSATTR and FBIOGATTR ioctl() requests are only supported by frame
buffers which emulate older frame buffer types. For example, cgfour(7D) frame
buffers emulate bwtwo(7D) frame buffers. If a frame buffer is emulating another frame
buffer, FBIOGTYPE returns the emulated type. To get the real type, use FBIOGATTR.

The FBIOGCURPOS ioctl was incorrectly defined in previous operating systems, and
older code running in binary compatibility mode may get incorrect results.

fbio(7I)

BUGS

172 man pages section 7: Device and Network Interfaces • Last Revised 27 Mar 1992

fcip – IP/ARP over Fibre Channel datagram encapsulation driver

/dev/fcip

The fcip driver is a Fibre Channel upper layer protocol module for encapsulating IP
(IPv4) and ARP datagrams over Fibre Channel. The fcip driver is a loadable,
clonable, STREAMS driver supporting the connectionless Data Link Provider
Interface, dlpi(7P) over any Sun Fibre Channel transport layer-compliant host
adapter.

The fcip driver complies with the RFC 2625 specification for encapsulating IP/ARP
datagrams over Fibre Channel, and allows encapsulation of IPv4 only, as specified in
RFC 2625. The fcip driver interfaces with the fp(7D) Sun Fibre Channel port driver.

The cloning character-special device /dev/fcip is used to access all Fibre Channel
ports capable of supporting IP/ARP traffic on the system.

The fcip driver is a "style 2" Data Link Service Provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. Valid DLPI primitives
are defined in <sys/dlpi.h>. Refer to dlpi(7P) for more information on DLPI
primitives.

An explicit DL_ATTACH_REQ message must be sent to associate the opened stream
with a particular Fibre Channel port (ppa). The ppa ID is interpreted as an unsigned
long data type and indicates the corresponding Fibre Channel port driver instance
number. An error (DL_ERROR_ACK) is returned by the driver if the ppa field value
does not correspond to a valid port driver instance number or if the Fibre Channel
port is not ONLINE. Refer to fp(7D) for more details on the Fibre Channel port driver.

The values returned by the driver in the DL_INFO_ACK primitive in response to a
DL_INFO_REQ from the user are as follows:

� Maximum SDU is 65280 (defined in RFC 2625).
� Minimum SDU is 0.
� DLSAP address length is 8.
� MAC type is DL_ETHER.
� SAP length is -2.
� Service mode is DL_CLDLS.
� Optional quality of service (QOS) fields are set to 0.
� Provider style is DL_STYLE2.
� Provider version is DL_VERSION_2.
� Broadcast address value is 0xFFFFFFFF.

Once in DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Point) with the stream. The fcip driver DLSAP
address format consists of the 6–byte physical address component followed
immediately by the 2–byte SAP component producing an 8–byte DLSAP address.
Applications should not be programmed to use this implementation-specific DLSAP
address format, but use information returned in the DL_INFO_ACK primitive to

fcip(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
fcip and DLPI

Device and Network Interfaces 173

compose and decompose DLSAP addresses. The SAP length, full DLSAP length, and
SAP/physical ordering are included within the DL_INFO_ACK. The physical address
length is the full DLSAP address length minus the SAP length. The physical address
length can also be computed by issuing the DL_PHYS_ADDR_REQ primitive to obtain
the current physical address associated with the stream.

Once in the DL_BOUND state, the user can transmit frames on the fibre by sending
DL_UNITDATA_REQ messages to the fcip driver. The fcip driver will route received
frames up any of the open and bound streams having a SAP which matches the
received frame’s SAP type as DL_UNITDATA_IND messages. Received Fibre Channel
frames are duplicated and routed up multiple open streams if necessary. The DLSAP
address contained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages
consists of both the SAP (type) and physical address (WorldWideName) components.

In Fibre Channel, multicasting is defined as an optional service for Fibre Channel
classes three and six only. If required, the Fibre Channel broadcast service can be used
for multicasting. The RFC 2625 specification does not support IP multicasting or
promiscuous mode.

The fcip driver will use the FARP Fibre Channel Extended Link Service (ELS), where
supported, to resolve WorldWide Names (MAC address) to FC Port
Identifiers(Port_ID). The fcip driver also supports InARP to resolve WorldWide
Name and Port_ID to an IP address.

/dev/fcip
fcip character-special device

/kernel/drv/fcip
32-bit ELF kernel driver

/kernel/drv/sparcv9/fcip
64-bit ELF kernel driver

/kernel/drv/fcip.conf
fcip driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWfcip

netstat(1M), prtconf(1M), driver.conf(4), fp(7D), dlpi(7P)

Writing Device Drivers

IP and ARP over Fibre Channel, RFC 2625 M. Rajagopal, R. Bhagwat, W. Rickard.
Gadzoox Networks, June 1999

fcip(7D)

Other Primitives

fcip Fibre Channel
ELS

FILES

ATTRIBUTES

SEE ALSO

174 man pages section 7: Device and Network Interfaces • Last Revised 11 Jan 2000

ANSI X3.230-1994, Fibre Channel Physical and Signalling Interface (FC-PH)

ANSI X3.272-1996, Fibre Channel Arbitrated Loop (FC-AL)

If you use a Fibre Channel adapter with two or more ports that each share a common
Node WorldWideName, the fcip driver will likely attach to the first port on the
adapter.

RFC 2625 requires that both source and destination WorldWideNames have their 4 bit
NAA identifiers set to binary ’0001,’ indicating that an IEEE 48–bit MAC address is
contained in the lower 48 bits of the network address fields. For additional details, see
the RFC 2625 specification.

fcip(7D)

NOTES

Device and Network Interfaces 175

fcp – Fibre Channel protocol driver

The fcp driver is the upper layer protocol that supports mechanisms for transporting
SCSI-3 commands over Fibre Channel. The fcp driver, which interfaces with the Sun
Fibre Channel transport library fctl(7D), supports the standard functions provided
by the SCSA interface.

/kernel/drv/fcp
32–bit ELF kernel driver

/kernel/drv/sparcv9/fcp
64–bit ELF kernel driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWfcp

prtconf(1M), driver.conf(4), fctl(7D), fp(7D), usoc(7D)

Writing Device Drivers

Fibre Channel Physical and Signaling Interface (FC-PH) ANSI X3.230: 1994

Fibre Channel Generic Services (FC-GS-2) Project 1134-D

Fibre Channel Arbitrated Loop (FC-AL) ANSI X3.272-1996

Fibre Channel Protocol for SCSI (FCP) ANSI X3.269-1996

SCSI-3 Architecture Model (SAM) Fibre Channel Private Loop SCSI Direct Attach
(FC-PLDA) ANSI X3.270-1996

Fabric Loop Attachment (FC-FLA), NCITS TR-20:1998

fcp(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

176 man pages section 7: Device and Network Interfaces • Last Revised 20 Jul 1999

fctl – Sun Fibre Channel transport library

The fctl kernel module interfaces the Sun Fibre Channel upper layer protocol (ULP)
mapping modules with Sun Fibre Channel adapter (FCA) drivers. There are no
user-configurable options for this module.

/kernel/misc/fctl
32–bit ELF kernel module

/kernel/misc/sparcv9/fctl
64–bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWfctl

fp(7D)

fctl(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 177

fd, fdc – drivers for floppy disks and floppy disk controllers

/dev/diskette0

/dev/rdiskette0

/dev/diskette[0-1]

/dev/rdiskette[0-1]

The fd driver provides the interfaces to the floppy disks using the Intel 82072 on
sun4c systems and the Intel 82077 on sun4m systems.

The fd and fdc drivers provide the interfaces to floppy disks using the Intel 8272,
Intel 82077, NEC 765, or compatible disk controllers on IA based systems.

The default partitions for the floppy driver are:

a All cylinders except the last

b Only the last cylinder

c Entire diskette

The fd driver autosenses the density of the diskette.

When the floppy is first opened the driver looks for a SunOS label in logical block 0 of
the diskette. If attempts to read the SunOS label fail, the open will fail. If block 0 is
read successfully but a SunOS label is not found, auto-sensed geometry and default
partitioning are assumed.

The fd driver supports both block and “raw” interfaces.

The block files (/dev/diskette*) access the diskette using the system’s normal
buffering mechanism and may be read and written without regard to physical diskette
records.

There is also a “raw” (/dev/rdiskette*) interface that provides for direct
transmission between the diskette and the user’s read or write buffer. A single read(2)
or write(2) call usually results in one I/O operation; therefore raw I/O is
considerably more efficient when larger blocking factors are used. A blocking factor of
no less than 8 Kbytes is recommended. See the Notes section, below, for information
on the number of sectors per track.

For 3.5" double-sided diskettes, the following densities are supported:

1.7 Mbyte density 80 cylinders, 21 sectors per track, 1.7 Mbyte capacity

high density 80 cylinders, 18 sectors per track, 1.44 Mbyte capacity

double density 80 cylinders, 9 sectors per track, 720 Kbyte capacity

medium density 77 cylinders, 8 sectors per track, 1.2 Mbyte capacity
(sun4m only)

fd(7D)

NAME

SPARC

IA

DESCRIPTION

3.5" Diskettes

SPARC

178 man pages section 7: Device and Network Interfaces • Last Revised 24 Feb 1998

extended density 80 cylinders, 36 sectors per track, 2.88 Mbyte capacity

1.7 Mbyte density 80 cylinders, 21 sectors per track, 1.7 Mbyte capacity

high density 80 cylinders, 18 sectors per track, 1.44 Mbyte capacity

double density 80 cylinders, 9 sectors per track, 760 Kbyte capacity

For 5.25" double-sided diskettes on IA platforms, the densities listed below are
supported:

5.25" diskettes are not supported on SPARC platforms.

high density 80 cylinders, 15 sectors per track, 1.2 Mbyte capacity

double density 40 cylinders, 9 sectors per track, 360 Kbyte capacity

double density 40 cylinders, 8 sectors per track, 320 Kbyte capacity

quad density 80 cylinders, 9 sectors per track, 720 Kbyte capacity

double density 40 cylinders, 16 sectors per track (256 bytes per sector),
320 Kbyte capacity

double density 40 cylinders, 4 sectors per track (1024 bytes per sector),
320 Kbyte capacity

EBUSY During opening, the partition has been opened for
exclusive access and another process wants to open the
partition. Once open, this error is returned if the floppy
disk driver attempted to pass a command to the floppy
disk controller when the controller was busy handling
another command. In this case, the application should
try the operation again.

EFAULT An invalid address was specified in an ioctl command
(see fdio(7I)).

EINVAL The number of bytes read or written is not a multiple
of the diskette’s sector size. This error is also returned
when an unsupported command is specified using the
FDIOCMD ioctl command (see fdio(7I)).

EIO During opening, the diskette does not have a label or
there is no diskette in the drive. Once open, this error is
returned if the requested I/O transfer could not be
completed.

ENOSPC An attempt was made to write past the end of the
diskette.

ENOTTY The floppy disk driver does not support the requested
ioctl functions (see fdio(7I)).

fd(7D)

IA

5.25" Diskettes

SPARC

IA

ERRORS

Device and Network Interfaces 179

ENXIO The floppy disk device does not exist or the device is
not ready.

EROFS The floppy disk device is opened for write access and
the diskette in the drive is write protected.

ENOSYS The floppy disk device does not support the requested
ioctl function (FDEJECT).

The driver attempts to initialize itself using the information found in the configuration
file, /platform/i86pc/kernel/drv/fd.conf.

name="fd" parent="fdc" unit=0;

name="fd" parent="fdc" unit=1;

/platform/sun4c/kernel/drv/fd driver module

/platform/sun4m/kernel/drv/fd driver module

/platform/sun4u/kernel/drv/fd driver module

/usr/include/sys/fdreg.h structs and definitions for Intel 82072 and
82077 controllers

/usr/include/sys/fdvar.h structs and definitions for floppy drivers

/dev/diskette device file

/dev/diskette0 device file

/dev/rdiskette raw device file

/dev/rdiskette0 raw device file

For ucb Compatibility

/dev/fd0[a-c] block file

/dev/rfd0[a-c] raw file

/vol/dev/diskette0 directory containing volume management
character device file

/vol/dev/rdiskette0 directory containing the volume
management raw character device file

/vol/dev/aliases/floppy0 symbolic link to the entry in
/vol/dev/rdiskette0

/platform/i86pc/kernel/drv/fd
driver module

/platform/i86pc/kernel/drv/fd.conf
configuration file for floppy driver

fd(7D)

IA Only

IA
CONFIGURATION

SPARC

IA

180 man pages section 7: Device and Network Interfaces • Last Revised 24 Feb 1998

/platform/i86pc/kernel/drv/fdc
floppy-controller driver module

/platform/i86pc/kernel/drv/fdc.conf
configuration file for the floppy-controller

/usr/include/sys/fdc.h
structs and definitions for IA floppy devices

/usr/include/sys/fdmedia.h
structs and definitions for IA floppy media

IA First Drive

/dev/diskette device file

/dev/diskette0 device file

/dev/rdiskette raw device file

/dev/rdiskette0 raw device file

For ucb Compatibility

/dev/fd0[a-c] block file

/dev/rfd0[a-c] raw file

/vol/dev/diskette0 directory containing volume management
character device file

/vol/dev/rdiskette0 directory containing the volume
management raw character device file

/vol/dev/aliases/floppy0 symbolic link to the entry in
/vol/dev/rdiskette0

IA Second Drive

/dev/diskette1 device file

/dev/rdiskette1 raw device file

For ucb Compatibility

/dev/fd1[a-c] block file

/dev/rfd1[a-c] raw file

/vol/dev/diskette1 directory containing volume management
character device file

/vol/dev/rdiskette1 directory containing the volume
management raw character device file

/vol/dev/aliases/floppy1 symbolic link to the entry in
/vol/dev/rdiskette1

fd(7D)

Device and Network Interfaces 181

fdformat(1), dd(1M), drvconfig(1M), vold(1M), read(2), write(2),
driver.conf(4), dkio(7I) fdio(7I)

fd<n>: <command name> failed (<sr1> <sr2> <sr3>)
The <command name> failed after several retries on drive <n>. The three hex
values in parenthesis are the contents of status register 0, status register 1, and
status register 2 of the Intel 8272, the Intel 82072, and the Intel 82077 Floppy Disk
Controller on completion of the command, as documented in the data sheet for that
part. This error message is usually followed by one of the following, interpreting
the bits of the status register:

fd<n>: not writable

fd<n>: crc error blk <block number>

There was a data error on <block number>.

fd<n>: bad format

fd<n>: timeout

fd<n>: drive not ready

fd<n>: unformatted diskette or no diskette in drive

fd<n>: block <block number> is past the end!

(nblk=<total number of blocks>)

The operation tried to access a block number that is greater than
the total number of blocks.

fd<n>: b_bcount 0x<op_size> not % 0x<sect_size>

The size of an operation is not a multiple of the sector size.

fd<n>: overrun/underrun

fd<n>: host bus error. There was a hardware error on a system
bus.

Overrun/underrun errors occur when accessing a diskette while the system is heavily
loaded. Decrease the load on the system and retry the diskette access.

3.5" high density diskettes have 18 sectors per track and 5.25" high density diskettes
have 15 sectors per track. They can cross a track (though not a cylinder) boundary
without losing data, so when using dd(1M) or read(2)/write(2) calls to or from the
“raw” diskette, you should specify bs=18k or multiples thereof for 3.5" diskettes, and
bs=15k or multiples thereof for 5.25" diskettes.

The SPARC fd driver is not an unloadable module.

Under Solaris (Intel Platform Edition), the configuration of the floppy drives is
specified in CMOS configuration memory. Use the BIOS setup program or an EISA

fd(7D)

SEE ALSO

All Platforms

SPARC Only

NOTES

182 man pages section 7: Device and Network Interfaces • Last Revised 24 Feb 1998

configuration program for the system to define the diskette size and density/capacity
for each installed drive. Note that MS-DOS may operate the floppy drives correctly,
even though the CMOS configuration may be in error. Solaris (Intel Platform Edition)
relies on the CMOS configuration to be accurate.

fd(7D)

Device and Network Interfaces 183

fdio – floppy disk control operations

#include <sys/fdio.h>

The Solaris floppy driver supports a set of ioctl(2) requests for getting and setting
the floppy drive characteristics. Basic to these ioctl() requests are the definitions in
<sys/fdio.h>.

The following ioctl() requests are available on the Solaris floppy driver.

FDDEFGEOCHAR IA based systems: This ioctl() forces the floppy driver to restore
the diskette and drive characteristics and geometry, and partition
information to default values based on the device configuration.

FDGETCHANGE The argument is a pointer to an int. This ioctl() returns the
status of the diskette-changed signal from the floppy interface. The
following defines are provided for cohesion.

Note: For IA based systems, use FDGC_DETECTED (which is available only on IA
based systems) instead of FDGC_HISTORY.

/*
* Used by FDGETCHANGE, returned state of the sense disk change bit.
*/
#define FDGC_HISTORY 0x01 /* disk has changed since last call */
#define FDGC_CURRENT 0x02 /* current state of disk change */
#define FDGC_CURWPROT 0x10 /* current state of write protect */

#define FDGC_DETECTED 0x20 /* previous state of DISK CHANGE */

FDIOGCHAR The argument is a pointer to an fd_char structure (described
below). This ioctl() gets the characteristics of the floppy diskette
from the floppy controller.

FDIOSCHAR The argument is a pointer to an fd_char structure (described
below). This ioctl() sets the characteristics of the floppy diskette
for the floppy controller. Typical values in the fd_char structure
for a high density diskette:

field value
fdc_medium 0
fdc_transfer_rate 500
fdc_ncyl 80
fdc_nhead 2
fdc_sec_size 512
fdc_secptrack 18

fdc_steps -1 { This field doesn’t apply. }

/*
* Floppy characteristics
*/
struct fd_char {
uchar_t fdc_medium; /* equals 1 if floppy is medium density format */
int fdc_transfer_rate; /* transfer rate */
int fdc_ncyl; /* number of cylinders */

fdio(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

184 man pages section 7: Device and Network Interfaces • Last Revised 26 April 2001

int fdc_nhead; /* number of heads */
int fdc_sec_size; /* sector size */
int fdc_secptrack; /* sectors per track */
int fdc_steps; /* no. of steps per data track */

};

FDGETDRIVECHAR The argument to this ioctl() is a pointer to an
fd_drive structure (described below). This ioctl()
gets the characteristics of the floppy drive from the
floppy controller.

FDSETDRIVECHAR IA based systems: The argument to this ioctl() is a
pointer to an fd_drive structure (described below).
This ioctl() sets the characteristics of the floppy
drive for the floppy controller. Only fdd_steprate,
fdd_headsettle, fdd_motoron, and
fdd_motoroff are actually used by the floppy disk
driver.

/*
* Floppy Drive characteristics
*/
struct fd_drive {

int fdd_ejectable; /* does the drive support eject? */
int fdd_maxsearch; /* size of per-unit search table */
int fdd_writeprecomp; /* cyl to start write precompensation */
int fdd_writereduce; /* cyl to start recucing write current */
int fdd_stepwidth; /* width of step pulse in 1 us units */
int fdd_steprate; /* step rate in 100 us units */
int fdd_headsettle; /* delay, in 100 us units */
int fdd_headload; /* delay, in 100 us units */
int fdd_headunload; /* delay, in 100 us units */
int fdd_motoron; /* delay, in 100 ms units */
int fdd_motoroff; /* delay, in 100 ms units */
int fdd_precomplevel; /* bit shift, in nano-secs */
int fdd_pins; /* defines meaning of pin 1, 2, 4 and 34 */
int fdd_flags; /* TRUE READY, Starting Sector #, & Motor On */

};

FDGETSEARCH Not available.

FDSETSEARCH Not available.

FDEJECT SPARC: This ioctl() requests the floppy drive to eject the
diskette.

FDIOCMD The argument is a pointer to an fd_cmd structure (described
below). This ioctl() allows access to the floppy diskette using
the floppy device driver. Only the FDCMD_WRITE, FDCMD_READ,
and FDCMD_FORMAT_TRACK commands are currently available.

struct fd_cmd {
ushort_t fdc_cmd; /* command to be executed */
int fdc_flags; /* execution flags (IA only) */

fdio(7I)

Device and Network Interfaces 185

daddr_t fdc_blkno; /* disk address for command */
int fdc_secnt; /* sector count for command */
caddr_t fdc_bufaddr; /* user’s buffer address */
uint_t fdc_buflen; /* size of user’s buffer */

};Please note that the fdc_buflen field is currently unused. The fdc_secnt field is
used to calculate the transfer size, and the buffer is assumed to be large enough to
accommodate the transfer.

{
/*
* Floppy commands
*/
#define FDCMD_WRITE 1
#define FDCMD_READ 2
#define FDCMD_SEEK 3
#define FDCMD_REZERO 4
#define FDCMD_FORMAT_UNIT 5
#define FDCMD_FORMAT_TRACK 6

};

FDRAW The argument is a pointer to an fd_raw structure (described
below). This ioctl() allows direct control of the floppy drive
using the floppy controller. Refer to the appropriate
floppy-controller data sheet for full details on required command
bytes and returned result bytes. The following commands are
supported.

/*
* Floppy raw commands
*/
#define FDRAW_SPECIFY 0x03
#define FDRAW_READID 0x0a (IA only)
#define FDRAW_SENSE_DRV 0x04
#define FDRAW_REZERO 0x07
#define FDRAW_SEEK 0x0f
#define FDRAW_SENSE_INT 0x08 (IA only)
#define FDRAW_FORMAT 0x0d
#define FDRAW_READTRACK 0x02
#define FDRAW_WRCMD 0x05
#define FDRAW_RDCMD 0x06
#define FDRAW_WRITEDEL 0x09

#define FDRAW_READDEL 0x0cPlease note that when using FDRAW_SEEK or
FDRAW_REZERO, the driver automatically issues a FDRAW_SENSE_INT command to
clear the interrupt from the FDRAW_SEEK or the FDRAW_REZERO. The result bytes
returned by these commands are the results from the FDRAW_SENSE_INT command.
Please see the floppy-controller data sheet for more details on FDRAW_SENSE_INT.

/*
* Used by FDRAW
*/
struct fd_raw {
char fdr_cmd[10]; /* user-supplied command bytes */
short fdr_cnum; /* number of command bytes */
char fdr_result[10]; /* controller-supplied result bytes */

fdio(7I)

186 man pages section 7: Device and Network Interfaces • Last Revised 26 April 2001

ushort_t fdr_nbytes; /* number to transfer if read/write command */
char *fdr_addr; /* where to transfer if read/write command */

};

ioctl(2), dkio(7I), fd(7D), hdio(7I)

fdio(7I)

SEE ALSO

Device and Network Interfaces 187

ffb – 24-bit UPA color frame buffer and graphics accelerator

ffb is a 24-bit UPA-based color frame buffer and graphics accelerator which comes in
the two configurations: single buffered frame and double buffered frame.

Single buffered frame buffer Consists of 32 video memory planes of 1280
x 1024 pixels, including 24-bit
single-buffering and 8-bit X planes.

Double buffered frame buffer Consists of 96 video memory planes of 1280
x 1024 pixels, including 24-bit
double-buffering, 8-bit X planes, 28-bit
Z-buffer planes and 4-bit Y planes.

The driver supports the following frame buffer ioctls which are defined in fbio(7I):

FBIOPUTCMAP, FBIOGETCMAP, FBIOSVIDEO, FBIOGVIDEO, FBIOVERTICAL,
FBIOSCURSOR, FBIOGCURSOR, FBIOSCURPOS, FBIOGCURPOS, FBIOGCURMAX,

FBIO_WID_PUT, FBIO_WID_GET

/dev/fbs/ffb0 device special file

ffbconfig(1M), mmap(2), fbio(7I)

ffb(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

188 man pages section 7: Device and Network Interfaces • Last Revised 10 Jun 1997

fp – Sun Fibre Channel port driver

The fp driver is a Sun Fibre Channel nexus driver that enables Fibre Channel
topology discovery, device discovery, Fibre Channel adapter port management and
other capabilities through well-defined Fibre Channel adapter driver interfaces.

The fp driver requires the presence of a fabric name server in fabric and public loop
topologies to discover fibre channel devices. In private loop topologies, the driver
discovers devices by performing PLOGI to all valid AL_PAs, provided that devices do
not participate in LIRP and LILP stages of loop initialization.

/kernel/drv/fp
32–bit ELF kernel driver

/kernel/drv/sparcv9/fp
64–bit ELF kernel driver

/kernel/drv/fp.conf
fp driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWfctl

prtconf(1M), driver.conf(4), fctl(7D)

Writing Device Drivers,

Fibre Channel Physical and Signaling Interface (FC-PH) ANSI X3.230: 1994,

Fibre Channel Generic Services (FC-GS-2) Project 1134-D,

Fibre Channel Arbitrated Loop (FC-AL) ANSI X3.272-1996,

Fibre Channel Protocol for SCSI (FCP) ANSI X3.269-1996,

SCSI-3 Architecture Model (SAM) Fibre Channel Private Loop SCSI Direct Attach
(FC-PLDA) ANSI X3.270-1996,

SCSI Direct Attach (FC-PLDA) NCITS TR-19:1998,

Fabric Loop Attachment (FC-FLA), NCITS TR-20:1998

fp(7d)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 189

FSS – Fair share scheduler

The fair share scheduler (FSS) guarantees application performance by explicitly
allocating shares of CPU resources to projects. A share indicates a project’s entitlement
to available CPU resources. Because shares are meaningful only in comparison with
other project’s shares, the absolute quantity of shares is not important. Any number
that is in proportion with the desired CPU entitlement can be used.

The goals of the FSS scheduler differ from the traditional time-sharing scheduling class
(TS). In addition to scheduling individual LWPs, the FSS scheduler schedules projects
against each other, making it impossible for any project to acquire more CPU cycles
simply by running more processes concurrently.

A project’s entitlement is individually calculated by FSS independently for each
processor set if the project contains processes bound to them. If a project is running on
more than one processor set, it can have different entitlements on every set. A project’s
entitlement is defined as a ratio between the number of shares given to a project and
the sum of shares of all active projects running on the same processor set. An active
project is one that has at least one running or runnable process. Entitlements are
recomputed whenever any project becomes active or inactive, or whenever the
number of shares is changed.

Processor sets represent virtual machines in the FSS scheduling class and processes are
scheduled independently in each processor set. That is, processes compete with each
other only if they are running on the same processor set. When a processor set is
destroyed, all processes that were bound to it are moved to the default processor set,
which always exists. Empty processor sets (that is, sets without processors in them)
have no impact on the FSS scheduler behavior.

If a processor set contains a mix of TS/IA and FSS processes, the fairness of the FSS
scheduling class can be compromised because these classes use the same range of
priorities. Fairness is most significantly affected if processes running in the TS
scheduling class are CPU-intensive and are bound to processors within the processor
set. As a result, you should avoid having processes from TS/IA and FSS classes share
the same processor set. RT and FSS processes use disjoint priority ranges and therefore
can share processor sets.

As projects execute, their CPU usage is accumulated over time. The FSS scheduler
periodically decays CPU usages of every project by multiplying it with a decay factor,
ensuring that more recent CPU usage has greater weight when taken into account for
scheduling. The FSS scheduler continually adjusts priorities of all processes to make
each project’s relative CPU usage converge with its entitlement.

While FSS is designed to fairly allocate cycles over a long-term time period, it is
possible that projects will not receive their allocated shares worth of CPU cycles due to
uneven demand. This makes one-shot, instantaneous analysis of FSS performance data
unreliable.

FSS(7)

NAME

DESCRIPTION

190 man pages section 7: Device and Network Interfaces • Last Revised 13 April 2001

Note that share is not the same as utilization. A project may be allocated 50% of the
system, although on the average, it uses just 20%. Shares serve to cap a project’s CPU
usage only when there is competition from other projects running on the same
processor set. When there is no competition, utilization may be larger than entitlement
based on shares. Allocating a small share to a busy project slows it down but does not
prevent it from completing its work if the system is not saturated.

The configuration of CPU shares is managed by the name server as a property of the
project(4) database. In the following example, an entry in the /etc/project file
sets the number of shares for project "x-files" to 10:

x-files:100::::project.cpu-shares=(privileged,10,none)

Projects with undefined number of shares are given one share each. This means that
such projects are treated with equal importance. Projects with 0 shares only run when
there are no projects with non-zero shares competing for the same processor set. The
maximum number of shares that can be assigned to one project is 65535.

You can use the prctl(1) command to determine the current share assignment for a
given project:

$ prctl -n project.cpu-shares -i project x-files

or to change the amount of shares if you have root privileges:

prctl -r -n project.cpu-shares -v 5 -i project x-files

See the prctl(1) man page for additional information on how to modify and examine
resource controls associated with active processes, tasks, or projects on the system.

By default, project "system" (project ID 0) includes all system daemons started by
initialization scripts and has an "unlimited" amount of shares. That is, it is always
scheduled first no matter how many shares are given to other projects.

The following command sets FSS as the default scheduler for the system:

dispadmin -d FSS

This change will take effect on the next reboot. Alternatively, you can move processes
from the time-share scheduling class (as well as the special case of init) into the FSS
class without changing your default scheduling class and rebooting by becoming
root, and then using the priocntl(1) command, as shown in the following example:

priocntl -s -c FSS -i class TS
priocntl -s -c FSS -i pid 1

You can use the dispadmin(1M) command to examine and "tune" the FSS scheduler’s
time quantum value. Time quantum is the amount of time that a thread is allowed to
run before it must relinquish the processor. The following example dumps the current
time quantum for the fair share scheduler:

$ dispadmin -g -c FSS
#

FSS(7)

CONFIGURING
SCHEDULER

WITH
DISPADMIN

Device and Network Interfaces 191

Fair Share Scheduler Configuration
#
RES=1000
#
Time Quantum
#

QUANTUM=110

The value of the QUANTUM represents some fraction of a second with the fractional
value determied by the reciprocal value of RES. With the default value of RES = 1000,
the reciprocal of 1000 is .001, or milliseconds. Thus, by default, the QUANTUM value
represents the time quantum in milliseconds.

If you change the RES value using dispadmin with the -r option, you also change
the QUANTUM value. For example, instead of quantum of 110 with RES of 1000, a
quantum of 11 with a RES of 100 results. The fractional unit is different while the
amount of time is the same.

You can use the -s option to change the time quantum value. Note that such changes
are not preserved across reboot. Please refer to the dispadmin(1M) man page for
additional information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SUNWcsu

prctl(1), priocntl(1), dispadmin(1M), psrset(1M), priocntl(2), project(4),
attributes(5)

System Administration Guide

FSS(7)

ATTRIBUTES

SEE ALSO

192 man pages section 7: Device and Network Interfaces • Last Revised 13 April 2001

ge – GEM Gigabit-Ethernet device driver

/dev/ge

The ge Gigabit-Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface, dlpi(7P)
over GEM, SBus and PCI Gigabit-Ethernet add-in adapters. Multiple GEM-based
adapters installed within the system are supported by the driver. The ge driver
provides basic support for the GEM-based Ethernet hardware and handles the
SUNW,sbus-gem (SBus GEM) and pci108e,2bad (PCI GEM) devices. Functions
include chip initialization, frame transmit and receive, multicast and promiscuous
support, and error recovery and reporting.

The GEM device provides 1000BASE-SX networking interfaces using the GEM ASIC
external SERDES and fiber optical transceiver. The GEM ASIC provides the
appropriate bus interface, MAC functions and physical code sub-layer (PCS)
functions. The external SERDES connects to a fiber transceiver and provides the
physical connection.

The 1000Base-SX standard specifies an auto-negotiation protocol to automatically
select the mode of operation. In addition to duplex operation, the GEM ASIC can
auto-negotiate for IEEE 802.3x frame based flow control capabilities. The GEM PCS is
capable of performing auto-negotiation using the remote (or link partner) link end and
receives the capabilities of the remote end. It selects the highest common demoninator
mode of operation based on priorities. The ge driver also supports forced-mode
operation under which the driver selects the mode of operation.

The cloning character-special device /dev/ge is used to access all ge controllers
installed within the system.

The ge driver is a Style 2 data link service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. Valid DLPI primitives are defined in
<sys/dlpi.h>. Refer to dlpi(7P) for more information.

You must send an explicit DL_ATTACH_REQ message to associate the opened stream
with a particular device (ppa). The ppa ID is interpreted as an unsigned long data
type and indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond
to a valid device instance number for the system. The device is initialized on first
attach and de-initialized (stopped) upon last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ are:

� Maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� Minimum SDU is 0.

� dlsap address length is 8.

� MAC type is DL_ETHER.

ge(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
ge and DLPI

Device and Network Interfaces 193

� sap length value is –2, meaning the physical address component is followed
immediately by a 2 byte sap component within the DLSAP address.

� Service mode is DL_CLDLS.

� Quality of service (QOS) is not supported; accordingly, QOS fields are 0.

� Provider style is DL_STYLE2.

� Version is DL_VERSION_2.

� Broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

Once in the DL_ATTACHED state, you must send a DL_BIND_REQ to associate a
particular Service Access Pointer (SAP) with the stream. The ge driver interprets the
sap field within the DL_BIND_REQ as an Ethernet type; accordingly, valid values for
the sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

If you select a sap with a value of 0, the receiver will be in 802.3 mode. All frames
received from the media with a type field in the range [0-1500] are assumed to be
802.3 frames and are routed up all open streams bound to sap value 0. If more than
one stream is in 802.3 mode, the frame will be duplicated and routed up multiple
streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ to determine if
the sap value is 0 and the destination type field is in the range [0-1500]. If either is
true, the driver computes the length of the message, not including initial M_PROTO
mblk (message block), of all subsequent DL_UNITDATA_REQ messages and transmits
802.3 frames of that value in the MAC frame header length field.

The ge driver DLSAP address format consists of the 6 byte physical (Ethernet) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hard code to this particular
implementation-specific DLSAP address format, but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length and sap physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, you may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the ge driver. The ge driver will route received
Ethernet frames up all open and bound streams having a sap which matches the
Ethernet type as DL_UNITDATA_IND messages. Received Ethernet frames are
duplicated and routed up multiple open streams if necessary. The DLSAP address
contained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set, the driver additionally
supports ge primitives.

ge(7D)

194 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. The
DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives are accepted by the
driver in any state following DL_ATTACHED.

With the DL_PROMISC_PHYS flag set in the dl_level field, the DL_PROMISCON_REQ
and DL_PROMISCOFF_REQ primitives enable/disable reception of all promiscuous
mode frames on the media including frames generated by the local host. When used
with the DL_PROMISC_SAP flag set, this enables/disables reception of all sap
(Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables/disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of the other sap and physical level
configurations on the stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the six octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to the stream. The credentials of the process which
originally opened the stream must be superuser or EPERM is returned in the
DL_ERROR_ACK. The DL_SET_PHYS_ADDR_REQ primitive is destructive and affects
all other current and future streams attached to this device. A M_ERROR is sent up all
other streams attached to the device when DL_SET_PHYS_ADDR_REQ is successful on
the stream. Once changed, all streams subsequently opened and attached to the device
will obtain the new physical address. Once changed, the physical address will remain
until DL_SET_PHYS_ADDR_REQ is used to change the physical address again or the
system is rebooted, whichever comes first.

By default, the ge driver performs auto-negotiation to select the mode and flow
control capabilities of the link. The link can be in one of the following modes:

� 1000 Mbps, full-duplex
� 1000 Mbps, half-duplex
� Symmetric pause
� Asymmetric pause

Speeds and modes are described in the 1000Base-TX standard.

The auto-negotation protocol automatically selects:

� Operation mode (half-duplex or full-duplex)
� Flow control capability (Symmetric and/or Asymmetric)

The auto–negotiation protocol:

� Gets all the modes of operation supported by the link partner.

� Advertises its capabilities to the link partner.

ge(7D)

ge Primitives

ge DRIVER

Device and Network Interfaces 195

� Selects the highest common denominator mode of operation based on the
priorities.

When by default, auto-negotiation is used to bring up the link and select the common
mode of operation with the link partner, the GEM hardware is capable of all of the
operating modes listed above. The PCS also supports forced-mode of operation under
which the driver can select the mode of operation and flow control capabilities using
the ndd utility.

The GEM device also supports programmable Inter-Packet Gap (IPG) parameters ipg1
and ipg2. By default, the driver sets ipg1 to 8 byte-times and ipg2 to 4 byte-times,
(the standard values.) You may want to alter these values from the standard 1000
Mpbs IPG set to 0.096 microseconds.

You can use the ge driver to set and get parameters for the GEM device. The
parameter list includes current transceiver status, current link status, inter-packet gap,
PCS capabilities and link partner capabilities.

The PCS has two set of capabilities. One set reflects the capabilities of the hardware
and are read-only. The second set are read/write and are used in speed selection and
reflect the values you choose. At boot time, both sets will be the same. The link partner
capabilities are read only and cannot be modified.

/dev/ge ge special character device

/kernel/drv/ge.conf System wide default device driver
properties

ndd(1M), netstat(1M), driver.conf(4), dlpi(7P), le(7D), hme(7D), qfe(7D)

ge(7D)

ge Parameter List

FILES

SEE ALSO

196 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

gld – Generic LAN Driver

#include <sys/stropts.h>

#include <sys/stream.h>

#include <sys/dlpi.h>

#include <sys/gld.h>

Solaris architecture specific (Solaris DDI).

GLD is a multi-threaded, clonable, loadable kernel module providing support for
Solaris local area network (LAN) device drivers. LAN drivers in Solaris are
STREAMS-based drivers that use the Data Link Provider Interface (DLPI) to
communicate with network protocol stacks. These protocol stacks use the network
drivers to send and receive packets on a local area network. A network device driver
must implement and adhere to the requirements imposed by the DDI/DKI
specification, STREAMS specification, DLPI specification, and programmatic interface
of the device itself.

GLD implements most STREAMS and DLPI functionality required of a Solaris LAN
driver. Several Solaris network drivers are implemented using GLD.

A Solaris network driver implemented using GLD comprises two distinct parts: a
generic component that deals with STREAMS and DLPI interfaces, and a
device-specific component that deals with the particular hardware device. The
device-specific module indicates its dependency on the GLD module and registers
itself with GLD from within the driver’s attach(9E) function. Once it is successfully
loaded, the driver is DLPI-compliant. The device-specific part of the driver calls
gld(9F) functions when it receives data or needs some service from GLD. GLD makes
calls into the gld(9E) entry points of the device-specific driver through pointers
provided to GLD by the device-specific driver when it registered itself with GLD. The
gld_mac_info(9S) structure is the main data interface between GLD and the
device-specific driver.

The GLD facility currently supports devices of type DL_ETHER, DL_TPR, and
DL_FDDI. GLD drivers are expected to process fully-formed MAC-layer packets and
should not perform logical link control (LLC) handling.

In some cases, it may be necessary or desirable to implement a full DLPI-compliant
driver without using the GLD facility. This is true for devices that are not IEEE
802-style LAN devices, or where a device type or DLPI service not supported by GLD
is required.

The name of the device-specific driver module must adhere to the naming constraints
outlined in the NOTES section of dlpi(7P).

For devices designated type DL_ETHER, GLD provides support for both Ethernet V2
and ISO 8802-3 (IEEE 802.3) packet processing. Ethernet V2 enables a data link service
user to access and use any of a variety of conforming data link service providers

gld(7D)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

Device Naming
Constraints

Type DL_ETHER:
Ethernet V2 and

ISO 8802-3 (IEEE
802.3)

Device and Network Interfaces 197

without special knowledge of the provider’s protocol. A service access point (SAP) is
the point through which the user communicates with the service provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and denote
that the user wishes to use 802.3 mode. If the value of the SAP field of the
DL_BIND_REQ is within this range, GLD computes the length, not including the
14-byte MAC header, of each subsequent DL_UNITDATA_REQ message on that stream
and transmits 802.3 frames having that length in the MAC frame header type field.
Such lengths will never exceed 1500.

All frames received from the media that have a type field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open streams that are in 802.3 mode,
(those streams bound to a SAP value in the [0-255] range). If more than one stream is
in 802.3 mode, the incoming frame will be duplicated and routed up each such stream.

Streams bound to SAP values > 1500 receive incoming packets whose Ethernet MAC
header type value exactly matches the value of the SAP to which the stream is bound.

For media types DL_TPR and DL_FDDI, GLD implements minimal SNAP (Sub-Net
Access Protocol) processing for any stream bound to a SAP value greater than 255.
SAP values in the range [0-255] are LLC SAP values and are carried naturally by the
media packet format. SAP values greater than 255 require a SNAP header, under the
LLC header, to carry the 16-bit Ethernet V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP 0xAA. For
outgoing packets with SAP values greater than 255, GLD creates an LLC+ SNAP
header that always looks like:

‘‘AA AA 03 00 00 00 XX XX’’

where ‘‘XX XX’’ represents the 16-bit SAP, corresponding to the Ethernet V2 style
‘‘type.’’ This is the only class of SNAP header supported — non-zero OUI fields, and
LLC control fields other than 03 are considered to be LLC packets with SAP 0xAA.
Clients wishing to use SNAP formats other than this one must use LLC and bind to
SAP 0xAA.

Incoming packets are examined to ascertain whether they fall into the format specified
above. Packets that do will be matched to streams bound to the packet’s 16-bit SNAP
type, as well as being considered to match the LLC SNAP SAP 0xAA.

Packets received for any LLC SAP are passed up all streams that are bound to an LLC
SAP, as described for media type DL_ETHER above.

For type DL_TPR devices, GLD implements minimal support for source routing.
Source routing enables a station that is sending a packet across a bridged medium to
specify (in the packet MAC header) routing information that determines the route that
the packet will take through the network.

gld(7D)

Types DL_TPR
and DL_FDDI:

SNAP Processing

Type DL_TPR:
Source Routing

198 man pages section 7: Device and Network Interfaces • Last Revised 31 May 2000

Functionally, the source routing support provided by GLD learns routes, solicits and
responds to requests for information about possible multiple routes and selects among
the multiple routes that are available. It adds Routing Information Fields to the MAC
headers of outgoing packets and recognizes such fields in incoming packets.

GLD’s source routing support does not implement the full Route Determination Entity
(RDE) specified in ISO 8802-2 (IEEE 802.2) Section 9. However, it is designed to
interoperate with any such implementations that may exist in the same (or a bridged)
network.

GLD implements both Style 1 and Style 2 providers. A physical point of attachment
(PPA) is the point at which a system attaches itself to a physical communication
medium. All communication on that physical medium funnels through the PPA. The
Style 1 provider attaches the stream to a particular PPA based on the major/minor
device that has been opened. The Style 2 provider requires the DLS user to explicitly
identify the desired PPA using DL_ATTACH_REQ. In this case, open(9E) creates a
stream between the user and GLD and DL_ATTACH_REQ subsequently associates a
particular PPA with that stream. Style 2 is denoted by a minor number of zero. If a
device node whose minor number is not zero is opened, Style 1 is indicated and the
associated PPA is the minor number minus 1. In both Style 1 and Style 2 opens, the
device is cloned.

GLD implements the following DLPI primitives:

The DL_INFO_REQ primitive requests information about the DLPI stream. The
message consists of one M_PROTO message block. GLD returns device-dependent
values in the DL_INFO_ACK response to this request, based on information the
GLD-based driver specified in the gld_mac_info(9S) structure passed to
gld_register(). However GLD returns the following values on behalf of all
GLD-based drivers:

� The version is DL_VERSION_2.

� The service mode is DL_CLDLS — GLD implements connectionless-mode service.

� The provider style is DL_STYLE1 or DL_STYLE2, depending on how the stream
was opened.

� No optional Quality Of Service (QOS) support is present and the QOS fields are
zero.

The DL_ATTACH_REQ primitive is called to associate a PPA with a stream. This request
is needed for Style 2 DLS providers to identify the physical medium over which the
communication will transpire. Upon completion, the state changes from
DL_UNATTACHED to DL_UNBOUND. The message consists of one M_PROTO message
block. This request may not be issued when using the driver in Style 1 mode; streams
opened using Style 1 are already attached to a PPA by the time the open completes.

The DL_DETACH_REQ primitive requests to detach the PPA from the stream. This is
only allowed if the stream was opened using Style 2.

gld(7D)

Style 1 and 2
Providers

Implemented
DLPI Primitives

Device and Network Interfaces 199

The DL_BIND_REQ and DL_UNBIND_REQ primitives bind and unbind a DLSAP to the
stream. The PPA associated with each stream will have been initialized upon
completion of the processing of the DL_BIND_REQ. Multiple streams may be bound
to the same SAP; each such stream receives a copy of any packets received for that
SAP.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable and disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. The
stream must be attached to a PPA for these primitives to be accepted.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives enable and disable
promiscuous mode on a per-stream basis, either at a physical level or at the SAP level.
The DL Provider will route all received messages on the media to the DLS user until
either a DL_DETACH_REQ or a DL_PROMISCOFF_REQ is received or the stream is
closed. Physical level promiscuous mode may be specified for all packets on the
medium or for multicast packets only. The stream must be attached to a PPA for these
primitives to be accepted.

The DL_UNITDATA_REQ primitive is used to send data in a connectionless transfer.
Because this is an unacknowledged service, there is no guarantee of delivery. The
message consists of one M_PROTO message block followed by one or more M_DATA
blocks containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is received and is to be passed
upstream. The packet is put into an M_PROTO message with the primitive set to
DL_UNITDATA_IND.

The DL_PHYS_ADDR_REQ primitive returns the MAC address currently associated
with the PPA attached to the stream, in the DL_PHYS_ADDR_ACK primitive. When
using style 2, this primitive is only valid following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the MAC address currently
associated with the PPA attached to the stream. This primitive affects all other current
and future streams attached to this device. Once changed, all streams currently or
subsequently opened and attached to this device will obtain this new physical
address. The new physical address will remain in effect until this primitive is used to
change the physical address again or the driver is reloaded.

The DL_GET_STATISTICS_REQ primitive requests a DL_GET_STATISTICS_ACK
response containing statistics information associated with the PPA attached to the
stream. Style 2 streams must be attached to a particular PPA using DL_ATTACH_REQ
before this primitive will be successful.

GLD implements the ioctl ioc_cmd function described below. If GLD receives an ioctl
command that it does not recognize, it passes it to the device-specific driver’s
gldm_ioctl() routine as described in gld(9E).

gld(7D)

Implemented ioctl
Functions

200 man pages section 7: Device and Network Interfaces • Last Revised 31 May 2000

The DLIOCRAW ioctl function is used by some DLPI applications, most notably the
snoop(1M) command. The DLIOCRAW command puts the stream into a raw mode,
which, upon receive, causes the the full MAC-level packet to be sent upstream in an
M_DATA message instead of it being transformed into the DL_UNITDATA_IND form
normally used for reporting incoming packets. Packet SAP filtering is still performed
on streams that are in raw mode; if a stream user wants to receive all incoming packets
it must also select the appropriate promiscuous modes. After successfully selecting
raw mode, the application is also allowed to send fully formatted packets to the driver
as M_DATA messages for transmission. DLIOCRAW takes no arguments. Once enabled,
the stream remains in this mode until closed.

GLD-based drivers must include the header file <sys/gld.h>.

GLD-based drivers must also include the following declaration:

char _depends_on[] = "misc/gld";

GLD implements the open(9E) and close(9E) functions and the required STREAMS
put(9E) and srv(9E) functions on behalf of the device-specific driver. GLD also
implements the getinfo(9E) function for the driver.

The mi_idname element of the module_info(9S) structure is a string specifying the
name of the driver. This must exactly match the name of the driver module as it exists
in the file system.

The read-side qinit(9S) structure should specify the following elements as shown
below:

qi_putp NULL

qi_srvp gld_rsrv

qi_qopen gld_open

qi_qclose gld_close

The write-side qinit(9S) structure should specify the following elements as shown
below:

qi_putp gld_wput

qi_srvp gld_wsrv

qi_qopen NULL

qi_qclose NULL

The devo_getinfo element of the dev_ops(9S) structure should specify
gld_getinfo as the getinfo(9E) routine.

gld(7D)

Requirements on
GLD Drivers

Device and Network Interfaces 201

The driver’s attach(9E) function does all the work of associating the
hardware-specific device driver with the GLD facility and preparing the device and
driver for use.

The attach(9E) function allocates a gld_mac_info(9S) (‘‘macinfo’’) structure using
gld_mac_alloc(). The driver usually needs to save more information per device
than is defined in the macinfo structure; it should allocate the additional required data
structure and save a pointer to it in the gldm_private member of the
gld_mac_info(9S) structure.

The attach(9E) routine must initialize the macinfo structure as described in
gld_mac_info(9S) and then call gld_register() to link the driver with the GLD
module. The driver should map registers if necessary and be fully initialized and
prepared to accept interrupts before calling gld_register(). The attach(9E)
function should add interrupts but not enable the device to generate them. The driver
should reset the hardware before calling gld_register() to ensure it is quiescent;
the device must not be started or put into a state where it may generate an interrupt
before gld_register() is called. That will be done later when GLD calls the
driver’s gldm_start() entry point described in gld(9E). Once gld_register()
succeeds, the gld(9E) entry points may be called by GLD at any time.

The attach(9E) routine should return DDI_SUCCESS if gld_register() succeeds.
If gld_register() fails, it returns DDI_FAILURE and the attach(9E) routine
should deallocate any resources it allocated before calling gld_register() and then
also return DDI_FAILURE. Under no circumstances should a failed macinfo structure
be reused; it should be deallocated using gld_mac_free().

The detach(9E) function should attempt to unregister the driver from GLD. This is
done by calling gld_unregister() described in gld(9F). The detach(9E) routine
can get a pointer to the needed gld_mac_info(9S) structure from the device’s private
data using ddi_get_driver_private(9F). gld_unregister() checks certain
conditions that could require that the driver not be detached. If the checks fail,
gld_unregister() returns DDI_FAILURE, in which case the driver’s detach(9E)
routine must leave the device operational and return DDI_FAILURE. If the checks
succeed, gld_unregister() ensures that the device interrupts are stopped, calling
the driver’s gldm_stop() routine if necessary, unlinks the driver from the GLD
framework, and returns DDI_SUCCESS. In this case, the detach(9E) routine should
remove interrupts, deallocate any data structures allocated in the attach(9E) routine,
using gld_mac_free() to deallocate the macinfo structure, and return
DDI_SUCCESS. It is important to remove the interrupt before calling
gld_mac_free().

Solaris network drivers must implement statistics variables. GLD itself tallies some
network statistics, but other statistics must be counted by each GLD-based driver.
GLD provides support for GLD-based drivers to report a standard set of network
driver statistics. Statistics are reported by GLD using the kstat(7D) and kstat(9S)
mechanism. The DL_GET_STATISTICS_REQ DLPI command may also be used to

gld(7D)

Network Statistics

202 man pages section 7: Device and Network Interfaces • Last Revised 31 May 2000

retrieve the current statistics counters. All statistics are maintained as unsigned, and
all are 32 bits unless otherwise noted.

GLD maintains and reports the following statistics.

rbytes64 Total bytes successfully received on the interface (64
bits).

rbytes Total bytes successfully received on the interface.

obytes64 Total bytes requested to be transmitted on the interface
(64 bits).

obytes Total bytes requested to be transmitted on the interface.

ipackets64 Total packets successfully received on the interface (64
bits).

ipackets Total packets successfully received on the interface.

opackets64 Total packets requested to be transmitted on the
interface (64 bits).

opackets Total packets requested to be transmitted on the
interface.

multircv Multicast packets successfully received, including
group and functional addresses (long).

multixmt Multicast packets requested to be transmitted,
including group and functional addresses (long).

brdcstrcv Broadcast packets successfully received (long).

brdcstxmt Broadcast packets requested to be transmitted (long).

unknowns Valid received packets not accepted by any stream
(long).

noxmtbuf Packets discarded on output because transmit buffer
was busy, or no buffer could be allocated for transmit
(long).

blocked Times a received packet could not be put up a stream
because the queue was flow controlled (long).

xmtretry Times transmit was retried after having been delayed
due to lack of resources (long).

promisc Current ‘‘promiscuous’’ state of the interface (string).

The device dependent driver counts the following statistics, keeping track of them in a
private per-instance structure. When GLD is asked to report statistics, it calls the
driver’s gldm_get_stats() entry point, as described in gld(9E), to update the

gld(7D)

Device and Network Interfaces 203

device-specific statistics in the gld_stats(9S) structure. GLD then reports the
updated statistics using the named statistics variables below.

ifspeed Current estimated bandwidth of the interface in bits
per second (64 bits).

media Current media type in use by the device (string).

intr Times interrupt handler was called and claimed the
interrupt (long).

norcvbuf Times a valid incoming packet was known to have
been discarded because no buffer could be allocated for
receive (long).

ierrors Total packets received that couldn’t be processed
because they contained errors (long).

oerrors Total packets that weren’t successfully transmitted
because of errors (long).

missed Packets known to have been dropped by the hardware
on receive (long).

uflo Times FIFO underflowed on transmit (long).

oflo Times receiver overflowed during receive (long).

The following group of statistics applies to networks of type DL_ETHER; these are
maintained by device-specific drivers of that type, as above.

align_errors Packets received with framing errors (not an integral
number of octets) (long).

fcs_errors Packets received with CRC errors (long).

duplex Current duplex mode of the interface (string).

carrier_errors Times carrier was lost or never detected on a
transmission attempt (long).

collisions Ethernet collisions during transmit (long).

ex_collisions Frames where excess collisions occurred on transmit,
causing transmit failure (long).

tx_late_collisions Times a transmit collision occurred late (after 512 bit
times) (long).

defer_xmts Packets without collisions where first transmit attempt
was delayed because the medium was busy (long).

first_collisions Packets successfully transmitted with exactly one
collision.

gld(7D)

204 man pages section 7: Device and Network Interfaces • Last Revised 31 May 2000

multi_collisions Packets successfully transmitted with multiple
collisions.

sqe_errors Times SQE test error was reported.

macxmt_errors Packets encountering transmit MAC failures, except
carrier and collision failures.

macrcv_errors Packets received with MAC errors, except align, fcs,
and toolong errors.

toolong_errors Packets received larger than the maximum permitted
length.

runt_errors Packets received smaller than the minimum permitted
length (long).

The following group of statistics applies to networks of type DL_TPR; these are
maintained by device-specific drivers of that type, as above.

line_errors Packets received with non-data bits or FCS errors.

burst_errors Times an absence of transitions for five half-bit timers
was detected.

signal_losses Times loss of signal condition on the ring was detected.

ace_errors Times an AMP or SMP frame in which A is equal to C
is equal to 0, was followed by another such SMP frame
without an intervening AMP frame.

internal_errors Times the station recognized an internal error.

lost_frame_errors Times the TRR timer expired during transmit.

frame_copied_errors Times a frame addressed to this station was received
with the FS field A bit set to 1.

token_errors Times the station acting as the active monitor
recognized an error condition that needed a token
transmitted.

freq_errors Times the frequency of the incoming signal differed
from the expected frequency.

The following group of statistics applies to networks of type DL_FDDI; these are
maintained by device-specific drivers of that type, as above.

mac_errors Frames detected in error by this MAC that had not
been detected in error by another MAC.

mac_lost_errors Frames received with format errors such that the frame
was stripped.

gld(7D)

Device and Network Interfaces 205

mac_tokens Number of tokens received (total of non-restricted and
restricted).

mac_tvx_expired Number of times that TVX has expired.

mac_late Number of TRT expirations since this MAC was reset
or a token was received.

mac_ring_ops Number of times the ring has entered the
‘‘Ring_Operational’’ state from the ‘‘Ring Not
Operational’’ state.

/kernel/misc/gld loadable kernel module

kstat(7D), dlpi(7P), attach(9E), gld(9E), open(9E), gld(9F), gld_mac_info(9S),
gld_stats(9S), kstat(9S)

Writing Device Drivers

Contrary to the DLPI specification, GLD returns the device’s correct address length
and broadcast address in DL_INFO_ACK even before the stream has been attached to a
PPA.

Promiscuous mode may only be entered by streams that are attached to a PPA.

The physical address of a PPA may be changed by the superuser while other streams
are bound to the same PPA.

gld(7D)

FILES

SEE ALSO

WARNINGS

206 man pages section 7: Device and Network Interfaces • Last Revised 31 May 2000

glm – GLM SCSI Host Bus Adapter Driver

scsi@unit-address

The glm Host Bus Adapter driver is a SCSA compliant nexus driver that supports the
LSI 53c810, LSI 53c875, LSI 53c876, LSI 53C896 and LSI 53C1010 SCSI chips

It supports the standard functions provided by the SCSA interface. That is, it supports
tagged and untagged queuing, Narrow/Wide/Fast/Ultra SCSI/Ultra SCSI 2/Ultra
SCSI 3, and auto request sense, but it does not support linked commands.

Configure the glm driver by defining properties in glm.conf. These properties
override the global SCSI settings. glm supports these properties which can be
modified by the user: scsi-options, target<n>-scsi-options,
scsi-reset-delay, scsi-tag-age-limit, scsi-watchdog-tick, and
scsi-initiator-id.

target<n>-scsi-options overrides the scsi-options property value for
target<n>. <n> can vary from decimal 0 to 15. glm supports these scsi-options:
SCSI_OPTIONS_DR, SCSI_OPTIONS_SYNC, SCSI_OPTIONS_TAG,
SCSI_OPTIONS_FAST, SCSI_OPTIONS_WIDE, SCSI_OPTIONS_FAST20,
SCSI_OPTIONS_FAST40 and SCSI_OPTIONS_FAST80.

After periodic interval scsi-watchdog-tick, the glm driver searches through all
current and disconnected commands for timeouts.

scsi-tag-age-limit is the number of times that the glm driver attempts to
allocate a particular tag ID that is currently in use after going through all tag IDs in a
circular fashion. After finding the same tag ID in use scsi-tag-age-limit times,
no more commands will be submitted to this target until all outstanding commands
complete or timeout.

Refer to scsi_hba_attach(9F).

EXAMPLE 1 Using the glm Configuration File

Create a file called /kernel/drv/glm.conf and add the following line:

scsi-options=0x78;

This disables tagged queuing, Fast/Ultra SCSI and wide mode for all glm instances.

The following example disables an option for one specific glm (refer to
driver.conf(4) and pci(4) for more details):

name="glm" parent="/pci@1f,4000"
unit-address="3"
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will occur at
attach time. It may be preferable to change the initiator ID in OBP.

glm(7D)

NAME

SYNOPSIS

DESCRIPTION

Driver
Configuration

EXAMPLES

Device and Network Interfaces 207

EXAMPLE 1 Using the glm Configuration File (Continued)

The example above sets scsi-options for target 1 to 0x58 and all other targets on
this SCSI bus to 0x178.

The physical pathname of the parent can be determined using the /devices tree or
following the link of the logical device name:

ls -l /dev/rdsk/c0t0d0s0
lrwxrwxrwx 1 root root 45 May 16 10:08 /dev/rdsk/c0t0d0s0 ->

. . / . . /devices/pci@1f,4000/scsi@3/sd@0,0:a,raw

In this case, like the example above, the parent is /pci@1f,4000 and the
unit-address is the number bound to the scsi@3 node.

To set scsi-options more specifically per target:

target1-scsi-options=0x78;
device-type-scsi-options-list =

"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

The above sets scsi-options for target 1 to 0x78 and for all other targets on this
SCSI bus to 0x3f8 except for one specific disk type which will have scsi-options
set to 0x58.

scsi-options specified per target ID have the highest precedence, followed by
scsi-options per device type. Global scsi-options (for all glm instances) per
bus have the lowest precedence.

The system needs to be rebooted before the specified scsi-options take effect.

The target driver needs to set capabilities in the glm driver in order to enable some
driver features. The target driver can query and modify these capabilities:
synchronous, tagged-qing, wide-xfer, auto-rqsense, qfull-retries,
qfull-retry-interval. All other capabilities can only be queried.

By default, tagged-qing, auto-rqsense, and wide-xfer capabilities are disabled,
while disconnect, synchronous, and untagged-qing are enabled. These
capabilities can only have binary values (0 or 1). The default value for
qfull-retries is 10 and the default value for qfull-retry-interval is 100.
The qfull-retries capability is a uchar_t (0 to 255) while
qfull-retry-interval is a ushort_t (0 to 65535).

The target driver needs to enable tagged-qing and wide-xfer explicitly. The
untagged-qing capability is always enabled and its value cannot be modified.

Whenever there is a conflict between the value of scsi-options and a capability, the
value set in scsi-options prevails. Only whom != 0 is supported in the
scsi_ifsetcap(9F) call.

glm(7D)

Driver Capabilities

208 man pages section 7: Device and Network Interfaces • Last Revised 20 Jul 2001

Refer to scsi_ifsetcap(9F) and scsi_ifgetcap(9F) for details.

/kernel/drv/glm ELF Kernel Module

/kernel/drv/glm.conf Optional configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems with LSI 53c810, LSI
53c875, LSI 53c876, LSI 53c896 and LSI 53c1010 SCSI
I/O processors

prtconf(1M), driver.conf(4), pci(4), attributes(5), scsi_abort(9F),
scsi_hba_attach(9F), scsi_ifgetcap(9F), scsi_ifsetcap(9F),
scsi_reset(9F), scsi_sync_pkt(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2),

LSI Logi Inc (formerly Symbios Logic Inc.):

� SYM53c810 PCI-SCSI I/O processor with Narrow operation
� SYM53c875 PCI-SCSI I/O Processor With Fast-20
� SYM53c876 PCI-SCSI I/O processor Dual channel Fast-20
� SYM53c896 PCI-SCSI I/O processor Dual channel Fast-40
� SYM53c1010 PCI-SCSI I/O processor Dual Channel Fast-80

The messages described below are some that may appear on the system console, as
well as being logged.

Device is using a hilevel intr
The device was configured with an interrupt level that cannot be used with this
glm driver. Check the PCI device.

map setup failed
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device; SCSI devices will be inaccessible.

glm_script_alloc failed
The driver was unable to load the SCRIPTS for the SCSI processor, check for bad
hardware. Driver did not attach to device; SCSI devices will be inaccessible.

cannot map configuration space.
The driver was unable to map in the configuration registers. Check for bad
hardware. SCSI devices will be inaccessible.

glm(7D)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 209

attach failed
The driver was unable to attach; usually preceded by another warning that
indicates why attach failed. These can be considered hardware failures.

SCSI bus DATA IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error
The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error
The driver detected parity errors on the SCSI bus.

Unexpected bus free
Target disconnected from the bus without notice. Check for bad hardware.

Disconnected command timeout for Target <id>.<lun>
A timeout occurred while target id/lun was disconnected. This is usually a target
firmware problem. For tagged queuing targets, <n> commands were outstanding
when the timeout was detected.

Disconnected tagged cmd(s) (<n>) timeout for Target <id>.<lun>
A timeout occurred while target id/lun was disconnected. This is usually a target
firmware problem. For tagged queuing targets, <n> commands were outstanding
when the timeout was detected.

Connected command timeout for Target <id>.<lun>
This is usually a SCSI bus problem. Check cables and termination.

Target <id> reducing sync. transfer rate
A data transfer hang or DATA-IN phase parity error was detected. The driver
attempts to eliminate this problem by reducing the data transfer rate.

Target <id> reverting to async. mode
A second data transfer hang was detected for this target. The driver attempts to
eliminate this problem by reducing the data transfer rate.

Target <id> disabled wide SCSI mode
A second data phase hang was detected for this target. The driver attempts to
eliminate this problem by disabling wide SCSI mode.

auto request sense failed
An attempt to start an auto request packet failed. Another auto request packet may
already be in transport.

invalid reselection (<id>.<lun>)
A reselection failed; target accepted abort or reset, but still tries to reconnect.
Check for bad hardware.

invalid intcode
The SCRIPTS processor generated an invalid SCRIPTS interrupt. Check for bad
hardware.

glm(7D)

210 man pages section 7: Device and Network Interfaces • Last Revised 20 Jul 2001

The glm driver supports the following LSI chips:

� LSI 53C810, which supports Narrow, Fast SCSI mode. The maximum SCSI
bandwidth is 10 MB/sec.

� LSI 53C875, which supports Wide, Fast, and Ultra SCSI mode. The maximum SCSI
bandwidth is 40 MB/sec.

� LSI 53C896, which supports Wide, Fast and Ultra SCSI 2 mode. The maximum LVD
SCSI bandwidth is 80 MB/sec.

� LSI 53c1010, which supports wide, Fast and Ultra SCSI 3 mode. The maximum
LVD SCSI bandwidth is 160 MB/sec.

The glm driver exports properties indicating per target the negotiated transfer speed
(target<n>-sync-speed), whether wide bus is supported (target<n>-wide), for
that particular target (target<n>-scsi-options), and whether tagged queuing has
been enabled (target<n>-TQ). The sync-speed property value is the data transfer
rate in KB/sec. The target<n>-TQ and the target<n>-wide property have value 1
to indicate that the corresponding capability is enabled, or 0 to indicate that the
capability is disabled for that target. Refer to prtconf(1M) (verbose option) for
viewing the glm properties.

scsi, instance #0
Driver properties:

name <target6-TQ> length <4>
value <0x00000000>.

name <target6-wide> length <4>
value <0x00000000>.

name <target6-sync-speed> length <4>
value <0x00002710>.

name <target1-TQ> length <4>
value <0x00000001>.

name <target1-wide> length <4>
value <0x00000000>.

name <target1-sync-speed> length <4>
value <0x00002710>.

name <target0-TQ> length <4>
value <0x00000001>.

name <target0-wide> length <4>
value <0x00000001>.

name <target0-sync-speed> length <4>
value <0x00009c40>.

name <scsi-options> length <4>
value <0x000007f8>.

name <scsi-watchdog-tick> length <4>
value <0x0000000a>.

name <scsi-tag-age-limit> length <4>
value <0x00000002>.

name <scsi-reset-delay> length <4>
value <0x00000bb8>.

name <latency-timer> length <4>
value <0x00000088>.

name <cache-line-size> length <4>

value <0x00000010>.

glm(7D)

NOTES

Device and Network Interfaces 211

gpio_87317 – General purpose I/O driver for SuperIO

The gpio_87317 driver is the general purpose I/O driver for the National
Semiconductor SuperIO (PC87317) chipset. It supports remote system controller (RSC)
administration via an interface to the SuperIO’s general purpose I/O bits.

/kernel/drv/sparcv9/gpio_87317
64-bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to SPARC systems with SuperIO

Availability SUNWcarx.u

Interface Stability Unstable

PC87317VUL/PC97317VUL SuperI/O Data Sheet — National Semiconductor

gpio_87317(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

212 man pages section 7: Device and Network Interfaces • Last Revised 12 April 2000

grbeep – Platform-dependent beep driver for SMBus-based hardware

beep@unit-address

The grbeep driver generates beep on platforms (including Sun Blade 100) that use
SMBbus-based registers and USB keyboards. When the KIOCCMD ioctl is issued to the
USB keyboard module (see usbkbm(7M)) with command
KBD_CMD_BELL/KBD_CMD_NOBELL, usbkbm(7M) passes the request to the grbeep
driver to turn the beep on and off, respectively.

/platform/SUNW,Sun-Blade-100/kernel/drv/sparcv9/grbeep
64–bit ELF kernel driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWcarx.u

kbd(1), bbc_beep(7D), kb(7M), usbkbm(7M)

Writing Device Drivers

None

grbeep(7d)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 213

hci1394 – 1394 OpenHCI host controller driver

firewire@unit-address

The hci1394 host controller driver is an IEEE 1394 compliant nexus driver that
supports the 1394 Open Host Controller Interface Specification 1.0, an industry standard
developed by Sun, Apple, Compaq, Intel, Microsoft, National Semconductor, and
Texas Instruments. The hci1394 driver supports asynchronous transfers,
isochronous transfers, and bus reset management. The hci1394 driver also supports
the nexus device control interface.

/kernel/drv/sparcv9/hci1394
64–bit ELF kernel module

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based SPARC systems

Availability SUNW1394x

Interface Stability Unstable

IEEE 1394 - IEEE Standard for a High Performance Serial Bus

1394 Open Host Controller Interface Specification 1.0

hci1394(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

214 man pages section 7: Device and Network Interfaces • Last Revised 2 Mar 2000

hdio – SMD and IPI disk control operations

#include <sys/hdio.h>

The SMD and IPI disk drivers supplied with this release support a set of ioctl(2)
requests for diagnostics and bad sector information. Basic to these ioctl() requests
are the definitions in <sys/hdio.h>.

HDKIOCGTYPE The argument is a pointer to a hdk_type structure (described
below). This ioctl() gets specific information from the hard
disk.

HDKIOCSTYPE The argument is a pointer to a hdk_type structure (described
below). This ioctl() sets specific information about the hard
disk.

/*
* Used for drive info
*/
struct hdk_type {
ushort_t hdkt_hsect; /* hard sector count (read only) */
ushort_t hdkt_promrev; /* prom revision (read only) */
uchar_t hdkt_drtype; /* drive type (ctlr specific) */
uchar_t hdkt_drstat; /* drive status (ctlr specific, ro) */

};

HDKIOCGBAD The argument is a pointer to a hdk_badmap structure (described
below). This ioctl() is used to get the bad sector map from the
disk.

HDKIOCSBAD The argument is a pointer to a hdk_badmap structure (described
below). This ioctl() is used to set the bad sector map on the
disk.

/*
* Used for bad sector map
*/
struct hdk_badmap {

caddr_t hdkb_bufaddr; /* address of user’s map buffer */

};

HDKIOCGDIAG The argument is a pointer to a hdk_diag structure (described
below). This ioctl() gets the most recent command that failed
along with the sector and error number from the hard disk.

/*
* Used for disk diagnostics
*/
struct hdk_diag {
ushort_t hdkd_errcmd; /* most recent command in error */
daddr_t hdkd_errsect; /* most recent sector in error */
uchar_t hdkd_errno; /* most recent error number */
uchar_t hdkd_severe; /* severity of most recent error */

};

hdio(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

Device and Network Interfaces 215

ioctl(2), dkio(7I)

hdio(7I)

SEE ALSO

216 man pages section 7: Device and Network Interfaces • Last Revised 19 Feb 1993

hid – Human interface device (HID) class driver

keyboard@unit-address

mouse@unit-address

The hid driver is a USBA (Solaris USB Architecture) compliant client driver that
supports the Human Interface Device Class (HID) 1.0 specification. The Human Interface
Device (HID) class encompasses devices controlled by humans to operate computer
systems. Typical examples of HID devices include keyboards, mice, trackballs, and
joysticks. HID also covers front-panel controls such as knobs, switches, and buttons. A
USB device with multiple interfaces may have one interface for audio and a HID
interface to define the buttons that control the audio.

The hid driver is general and primarily handles the USB functionality of the device
and generic HID functionality. For example, HID interfaces are required to have an
interrupt pipe for the device to send data packets, and the hid driver opens the pipe
to the interrupt endpoint and starts polling. The hid driver is also responsible for
managing the device through the default control pipe. In addition to being a USB
client driver, the hid driver is also a STREAMS driver so that modules may be pushed
on top of it.

The HID specification is flexible, and HID devices dynamically describe their packets
and other parameters through the HID report descriptor. The HID parser is a misc
module that parses the HID report descriptor and creates a database of information
about the device. The hid driver queries the HID parser to find out the type and
characteristics of the HID device. The HID specification predefines packet formats for
the boot protocol keyboard and mouse.

/kernel/drv/hid
32 bit ELF kernel module

/kernel/drv/sparcv9/hid
64 bit ELF kernel module

/kernel/misc/hidparser
/kernel/misc/sparcv9/hidparser

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWusb, SUNWusbx

hubd(7D), ohci(7D), uhci(7D), usb_mid(7D), usbkbm(7M), usbms(7M), usba(7D)

Writing Device Drivers

STREAMS Programming Guide

hid(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 217

Universal Serial Bus Specification 1.0 and 1.1

Device Class Definition for Human Interface Devices (HID) 1.0

System Administration Guide: Basic Administration

None.

The hid driver currently supports only keyboards and mice.

hid(7D)

DIAGNOSTICS

NOTES

218 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

hme – SUNW,hme Fast-Ethernet device driver

/dev/hme

The SUNW,hme Fast-Ethernet driver is a multi-threaded, loadable, clonable, STREAMS
hardware driver supporting the connectionless Data Link Provider Interface,
dlpi(7P), over a SUNW,hme Fast-Ethernet controller. The motherboard and add-in
SBus SUNW,hme controllers of several varieties are supported. Multiple SUNW,hme
controllers installed within the system are supported by the driver.

The hme driver provides basic support for the SUNW,hme hardware. It is used to
handle the SUNW,hme device. Functions include chip initialization, frame transit and
receive, multicast and promiscuous support, and error recovery and reporting.
SUNW,hme The SUNW,hme device provides 100Base-TX networking interfaces using
SUN’s FEPS ASIC and an Internal Transceiver. The FEPS ASIC provides the Sbus
interface and MAC functions and the Physical layer functions are provided by the
Internal Transceiver which connects to a RJ-45 connector. In addition to the RJ-45
connector, an MII (Media Independent Interface) connector is also provided on all
SUNW,hme devices except the SunSwith SBus adapter board. The MII interface is used
to connect to an External Transceiver which may use any physical media (copper or
fiber) specified in the 100Base-TX standard. When an External Transceiver is connected
to the MII, the driver selects the External Transceiver and disables the Internal
Transceiver.

The 100Base-TX standard specifies an “auto-negotiation” protocol to automatically
select the mode and speed of operation. The Internal transceiver is capable of doing
“auto-negotiation” with the remote-end of the link (Link Partner) and receives the
capabilities of the remote end. It selects the Highest Common Denominator mode
of operation based on the priorities. It also supports forced-mode of operation
where the driver can select the mode of operation.

The cloning character-special device /dev/hme is used to access all SUNW,hme
controllers installed within the system.

The hme driver is a “style 2” Data Link Service provider. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. Valid DLPI primitives
are defined in <sys/dlpi.h>. Refer to dlpi(7P) for more information. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device (ppa). The ppa ID is interpreted as an unsigned long data type
and indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond
to a valid device instance number for this system. The device is initialized on first
attach and de-initialized (stopped) at last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� The minimum SDU is 0.

hme(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
hme and DLPI

Device and Network Interfaces 219

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length values is −2 meaning the physical address component is followed
immediately by a 2 byte sap component within the DLSAP address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so the QOS
fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The hme driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for
the sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

If the user selects a sap with a value of 0, the receiver will be in “802.3 mode”. All
frames received from the media having a “type” field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open Streams which are bound to
sap value 0. If more than one Stream is in “802.3 mode” then the frame will be
duplicated and routed up multiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ if the sap value
is 0, and if the destination type field is in the range [0-1500]. If either is true, the
driver computes the length of the message, not including initial M_PROTO mblk
(message block), of all subsequent DL_UNITDATA_REQ messages and transmits 802.3
frames that have this value in the MAC frame header length field.

The hme driver DLSAP address format consists of the 6 byte physical (Ethernet)
address component followed immediately by the 2 byte sap (type) component
producing an 8 byte DLSAP address. Applications should not hardcode to this
particular implementation-specific DLSAP address format but use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP
addresses. The sap length, full DLSAP length, and sap/physical ordering are included
within the DL_INFO_ACK. The physical address length can be computed by
subtracting the sap length from the full DLSAP address length or by issuing the
DL_PHYS_ADDR_REQ to obtain the current physical address associated with the
stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the hme driver. The hme driver will route received
Ethernet frames up all those open and bound streams having a sap which matches the
Ethernet type as DL_UNITDATA_IND messages. Received Ethernet frames are
duplicated and routed up multiple open streams if necessary. The DLSAP address

hme(7D)

220 man pages section 7: Device and Network Interfaces • Last Revised 5 Sep 1995

contained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local
host. When used with the DL_PROMISC_SAP flag set this enables/disables reception
of all sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set
this enables/disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of the other sap and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process which
originally opened this stream must be superuser. Otherwise EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams
attached to this device when this primitive is successful on this stream. Once changed,
all streams subsequently opened and attached to this device will obtain this new
physical address. Once changed, the physical address will remain until this primitive
is used to change the physical address again or the system is rebooted, whichever
comes first.

By default, the hme driver performs “auto-negotiation” to select the mode and speed
of the link, when the Internal Transceiver is used.

When an External Transceiver is connected to the MII interface, the driver selects the
External Transceiver for networking operations. If the External Transceiver supports
“auto-negotiation”, the driver uses the auto-negotiation procedure to select the link
speed and mode. If the External Transceiver does not support auto-negotiation, it will
select the highest priority mode supported by the transceiver.

� 100 Mbps, full-duplex
� 100 Mbps, half-duplex
� 10 Mbps, full-duplex
� 10 Mbps, half-duplex

hme(7D)

hme Primitives

hme DRIVER

Device and Network Interfaces 221

The link can be in one of the 4 following modes:

These speeds and modes are described in the 100Base-TX standard.

The auto−negotiation protocol automatically selects:

� Operation mode (half-duplex or full-duplex)
� Speed (100 Mbps or 10 Mbps)

The auto−negotiation protocol does the following:

� Gets all the modes of operation supported by the Link Partner

� Advertises its capabilities to the Link Partner

� Selects the highest common denominator mode of operation based on the priorities

The internal transceiver is capable of all of the operating speeds and modes listed
above. When the internal transceiver is used, by default, auto-negotiation is used to
select the speed and the mode of the link and the common mode of operation with the
Link Partner.

When an external transceiver is connected to the MII interface, the driver selects the
external transceiver for networking operations. If the external transceiver supports
auto-negotiation:

� The driver uses the auto-negotiation procedure to select the link speed and mode.

If the external transceiver does not support auto-negotiation

� The driver selects the highest priority mode supported by the transceiver.

Sometimes, the user may want to select the speed and mode of the link. The
SUNW,hme device supports programmable “IPG” (Inter-Packet Gap) parameters ipg1
and ipg2. By default, the driver sets ipg1 to 8 byte-times and ipg2 to 4
byte-times (which are the standard values). Sometimes, the user may want to alter
these values depending on whether the driver supports 10 Mbps or 100 Mpbs and
accordingly, IPG will be set to 9.6 or 0.96 microseconds.

The hme driver provides for setting and getting various parameters for the SUNW,hme
device. The parameter list includes:

current transceiver status
current link status
inter-packet gap
local transceiver capabilities
link partner capabilities

The local transceiver has two set of capabilities: one set reflects the capabilities of the
hardware, which are read-only (RO) parameters and the second set reflects the
values chosen by the user and is used in speed selection. There are read/write

hme(7D)

hme Parameter
List

222 man pages section 7: Device and Network Interfaces • Last Revised 5 Sep 1995

(RW) capabilities. At boot time, these two sets of capabilities will be the same. The
Link Partner capabilities are also read only parameters because the current default
value of these parameters can only be read and cannot be modified.

/dev/hme hme special character device

/kernel/drv/hme.conf System-wide default device driver properties

ndd(1M), netstat(1M), driver.conf(4), dlpi(7P), le(7D)

hme(7D)

FILES

SEE ALSO

Device and Network Interfaces 223

hpfc – Agilent fibre channel host bus adapter

PCI pci103c

The hpfc fibre channel host bus adapter is a SCSA compliant nexus driver that
supports all Agilent fibre channel host bus adapters, including the HHBA5100x,
HHBA5101x, and HHBA5121x models. Agilent host bus adapters support the fibre
channel protocol on private fibre channel arbitrated loops and fabrics. The driver
supports up to ten host bus adapters, with a maximum of 125 fibre channel devices on
each host bus adapter. The hpfc driver supports a maximum of 256 LUNs per target.

The hpfc driver does not support the BIOS Int 13 feature, which enables the booting
of an operating system. As a result, you should not install an operating system on
devices attached to the hpfc driver.

The hpfc driver attempts to configure itself using the information in the
/kernel/drv/hpfc.conf configuration file.

By default, the driver supports only LUN 0 for each target device. To add multiple
LUN support, modify the /kernel/drv/sd.conf file.

Before upgrading the hpfc driver, backup the sd.conf file to save customized LUN
settings and then use pkgrm(1M) to remove the old version of the driver.

The host bus adapter port is initialized to FL_Port when connected to a fabric switch.
To change it to F_Port, add the init_as_nport=1 entry to the hpfc.conf file and
reboot the system.

To conserve system resources, at least one disk drive must be attached to the hpfc
driver. If no devices are attached, the driver will not load.

/kernel/drv/hpfc 32–bit ELF kernel module

/kernel/drv/sparcv9/hpfc 64–bit ELF kernel module

/kernel/drv/hpfc.conf Driver configuration file

/kernel/drv/sd.conf SCSI disk configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA, SPARC

luxadm(1M), pkgrm(1M), prtconf(1M), driver.conf(4), attributes(5),
ses(7D), ssd(7D)

ANSI X3.272–1996, Fibre Channel Arbitrated Loop (FC-AL),

hpfc(7D)

NAME

SYNOPSIS

DESCRIPTION

CONFIGURATION

FILES

ATTRIBUTES

SEE ALSO

224 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

ANSI X3.269-1996, Fibre Channel Protocol for SCSI (FCP),

ANSI X3.270-1996, SCSI-3 Architecture Model (SAM),

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA)

hpfc(7D)

Device and Network Interfaces 225

hsfs – High Sierra & ISO 9660 CD-ROM file system

HSFS is a file system type that allows users access to files on High Sierra or ISO 9660
format CD-ROM disks from within the SunOS operating system. Once mounted, a
HSFS file system provides standard SunOS read-only file system operations and
semantics. That is, users can read files and list files in a directory on a High Sierra or
ISO 9660 CD-ROM, and applications can use standard UNIX system calls on these files
and directories.

This file system also contains support for the Rock Ridge Extensions. If the extensions
are contained on the CD-ROM, then the file system will provide all of the file system
semantics and file types of UFS, except for writability and hard links.

If your /etc/vfstab file contains a line similar to

/dev/dsk/c0t6d0s0 −/hsfs hsfs -no roand /hsfs exists, you can mount an HSFS file
system with either of the following commands:

mount -F hsfs -o ro device-special directory-nameor

mount /hsfs

Normally, if Rock Ridge extensions exist on the CD-ROM, the file system will
automatically use those extensions. If you do not want to use the Rock Ridge
extensions, use the ‘‘nrr’’ (No Rock Ridge) mount option. The mount command would
then be:

mount -F hsfs -o ro,nrr device-special directory-nameFiles on a High Sierra or ISO 9660
CD-ROM disk have names of the form filename.ext;version, where filename and the
optional ext consist of a sequence of uppercase alphanumeric characters (including
‘‘_’’), while the version consists of a sequence of digits, representing the version
number of the file. HSFS converts all the uppercase characters in a file name to
lowercase, and truncates the ‘‘;’’ and version information. If more than one version of
a file is present on the CD-ROM, only the file with the highest version number is
accessible.

Conversion of uppercase to lowercase characters may be disabled by using the -o
nomaplcase option to mount(1M). (See mount_hsfs(1M)).

If the CD-ROM contains Rock Ridge extensions, the file names and directory names
may contain any character supported under UFS. The names may also be upper
and/or lower case and will be case sensitive. File name lengths can be as long as those
of UFS.

Files accessed through HSFS have mode 555 (owner, group and world readable and
executable), uid 0 and gid 3. If a directory on the CD-ROM has read permission, HSFS
grants execute permission to the directory, allowing it to be searched.

hsfs(7FS)

NAME

DESCRIPTION

226 man pages section 7: Device and Network Interfaces • Last Revised 25 Apr 1994

With Rock Ridge extensions, files and directories can have any permissions that are
supported on a UFS file system; however, despite any write permissions, the file
system is read-only, with EROFS returned to any write operations.

High Sierra and ISO 9660 CD-ROMs support only regular files and directories, thus
HSFS supports only these file types. A Rock Ridge CD-ROM can support regular files,
directories, and symbolic links, as well as device nodes, such as block, character, and
FIFO.

EXAMPLE 1 Sample Display of File System Files

If there is a file BIG.BAR on a High Sierra or ISO 9660 format CD-ROM it will show
up as big.bar when listed on a HSFS file system.

If there are three files

BAR.BAZ;1

BAR.BAZ;2

and

BAR.BAZ;3

on a High Sierra or ISO 9660 format CD-ROM, only the file BAR.BAZ;3 will be
accessible. It will be listed as bar.baz.

mount(1M), mount_hsfs(1M), vfstab(4)

N. V. Phillips and Sony Corporation, System Description Compact Disc Digital Audio,
("Red Book").

N. V. Phillips and Sony Corporation, System Description of Compact Disc Read Only
Memory, ("Yellow Book").

IR "Volume and File Structure of CD-ROM for Information Interchange", ISO
9660:1988(E).

hsfs: Warning: the file system...
does not conform to the ISO-9660 spec

The specific reason appears on the following line. You might be attempting to
mount a CD-ROM containing a different file system, such as UFS.

hsfs: Warning: the file system...
contains a file [with an] unsupported type

The hsfs file system does not support the format of some file or directory on the
CD-ROM, for example a record structured file.

hsfs: hsnode table full, %d nodes allocated
There are not enough HSFS internal data structure elements to handle all the files
currently open. This problem may be overcome by adding a line of the form set
hsfs:nhsnode=number to the /etc/system system configuration file and
rebooting. See system(4).

hsfs(7FS)

EXAMPLES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 227

Do not physically eject a CD-ROM while the device is still mounted as a HSFS file
system.

Under MS-DOS (for which CD-ROMs are frequently targeted), files with no extension
may be represented either as

filename.or

filenamethat is, with or without a trailing period. These names are not equivalent under
UNIX systems. For example, the names

BAR.and

BARare not names for the same file under the UNIX system. This may cause confusion
if you are consulting documentation for CD-ROMs originally intended for MS-DOS
systems.

Use of the -o notraildot option to mount(1M) makes it optional to specify the
trailing dot. (See mount_hsfs(1M)).

No translation of any sort is done on the contents of High Sierra or ISO 9660 format
CD-ROMs; only directory and file names are subject to interpretation by HSFS.

hsfs(7FS)

WARNINGS

NOTES

228 man pages section 7: Device and Network Interfaces • Last Revised 25 Apr 1994

hubd – USB hub driver

hub@unit-address

The hubd is a USBA (Solaris USB Architecture) compliant client driver that supports
USB hubs conforming to the Universal Serial Bus Specification 1.0 and 1.1. The hubd
driver supports bus–powered and self–powered hubs. The driver supports hubs with
individual port power, ganged power and no power switching.

When a device is attached to the hub port, the hubd driver enumerates the devices by
determining the type of device and assigning an address to it. The hubd driver also
attaches a driver to the device if one is available. When the device is disconnected
from the hub port, the hubd driver offlines any driver instance attached to the device.

/kernel/drv/hubd
32 bit ELF kernel module

/kernel/drv/sparcv9/hubd
64 bit ELF kernel module

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWusb, SUNWusbx

ohci(7D), uhci(7D), usba(7D), usb_mid(7D)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

System Administration Guide: Basic Administration

The messages described below may appear on the system console as well as being
logged. All messages are formatted in the following manner:

WARNING: <device path> <usb<instance number>>: Error message...

where <instance number> is the instance number of hubd and <device path> is
the physical path to the device in /devices directory. Messages from the root hub are
displayed with a usb<instance number> prefix instead of hub<instance
number> as the root hub is an integrated part of the host controller.

Connecting device on port <number> failed.

The driver failed to enumerate device connected on port <number> of hub. If
enumeration fails, you should disconnect and re-connect.

hubd(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 229

Global over current condition. Please disconnect.

The driver detected an over current condition. This means that the aggregate current
being drawn by the devices on the downstream port exceeds a preset value. Refer to
section 7.2.1.2.1 and 11.13.5 of the Universal Serial Bus Specification 1.1. You must
remove and insert this hub to render it and its downstream devices functional again. If
this message continues to display for a particular hub, you may need to remove
downstream devices to eliminate the problem.

Cannot access device. Please reconnect <device name>.

This hub has been disconnected because a device other than the original one has been
inserted. The driver informs you of this fact by displaying the name of the original
device.

Devices not identical to the previous one on this port.

Please disconnect and reconnect.

Same condition as described above; however in this case, the driver is unable to
identify the original device with a name string.

Local power has been lost, please disconnect hub.

The USB self-powered hub has lost external power. All USB devices connected
down-stream to this hub will cease to function. Disconnect the hub, plug in the
external power-supply and then plug in the hub again.

Hub driver supports max of <n> ports on hub.
Hence, using the first <number of physical ports> of <n>
ports available.

The current hub driver supports hubs that have <n> ports or less. A hub with more
than <n> ports has been plugged in. Only the first <n> out of the total <number of
physical ports> ports are usable.

hubd(7D)

230 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

i2o_bs – Block Storage OSM for I2O

disk@local target id#:a through u

disk@local target id#:a through u raw

The I2O Block Storage OSM abstraction (BSA, which also is referred to as block
storage class) layer is the primary interface that Solaris operating environments use to
access block storage devices. A block storage device provides random access to a
permanent storage medium. The i2o_bs device driver uses I2O Block Storage class
messages to control the block device; and provides the same functionality (ioctls,
for example) that is present in the Solaris device driver like ’cmdk, dadk’ on IA for
disk. The maximum size disk supported by i2o_bs is the same as what is available
on IA.

The i2o_bs is currently implemented version 1.5 of Intelligent IO specification.

The block files access the disk using the system’s normal buffering mechanism and are
read and written without regard to physical disk records. There is also a "raw"
interface that provides for direct transmission between the disk and the user’s read or
write buffer. A single read or write call usually results in one I/O operation; raw I/O
is therefore considerably more efficient when many bytes are transmitted. The names
of the block files are found in /dev/dsk; the names of the raw files are found in
/dev/rdsk.

I2O associates each block storage device with a unique ID called a local target id that is
assigned by I2O hardware. This information can be acquired by the block storage
OSM through I2O Block Storage class messages. For Block Storage OSM, nodes are
created in /devices/pci#/pci# which include the local target ID as one component
of device name that the node refers to. However the /dev names and the names in
/dev/dsk and /dev/rdsk do not encode the local target id in any part of the name.

For example, you might have the following:

/devices/ /dev/dsk name

/devices/pci@0,0/pci101e,0@10,1/disk@10:a /dev/dsk/c1d0s0

I/O requests to the disk must have an offset and transfer length that is a multiple of
512 bytes or the driver returns an EINVAL error.

Slice 0 is normally used for the root file system on a disk, slice 1 is used as a paging
area (for example, swap), and slice 2 for backing up the entire fdisk partition for
Solaris software. Other slices may be used for usr file systems or system reserved
area.

Fdisk partition 0 is to access the entire disk and is generally used by the fdisk(1M)
program.

/dev/dsk/cndn[s|p]n block device

/dev/rdsk/cndn[s|p]n raw device

i2o_bs(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

Device and Network Interfaces 231

where:

cn controller n

dn instance number

sn UNIX system slice n (0-15)

pn fdisk partition (0)

/kernel/drv/i2o_bs i2o_bs driver

/kernel/drv/i2o_bs.conf Configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

fdisk(1M), format(1M)mount(1M),lseek(2), read(2), write(2), readdir(3C),
vfstab(4), acct(3HEAD), attributes(5), dkio(7I)

i2o_bs(7D)

ATTRIBUTES

SEE ALSO

232 man pages section 7: Device and Network Interfaces • Last Revised 21 Jul 1998

i2o_scsi – an I2O OS specific module that supports SCSA interface.

The i2o_scsi OSM module is a SCSI HBA driver that supports the SCSA interface. It
supports both SCSI Adapter Class and SCSI Peripheral Class functions. It translates
the SCSI packet coming down from the SCSA into an I2O SCSI Peripheral Class
message, passes it along to the IOP which in turn passes it to the HDM (hardware
specific module).

It also uses SCSI Adapter Class functions to manage the SCSI adapter and SCSI bus.
For each SCSI Adapter Class I2O device (a SCSI controller), it claims the SCSI
Peripheral class devices which are attached to that port. The existing SCSI target
drivers which use the SCSA interface should only work with i2o_scsi. This includes
target drivers like sd, st, and so on.

/kernel/drv/i2o_scsi.conf configuration file for the i2o_scsi driver;
there are no user-configurable options in
this file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5)

Solaris 9 Installation Guide

Throughout the release, support of additional devices may be added. See the Solaris 9
(Intel Platform Edition) Hardware Compatibility List for additional information.

i2o_scsi(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

NOTES

Device and Network Interfaces 233

icmp6 – Internet Control Message Protocol for Internet Protocol Version 6

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>

#include <netinet/icmp6.h>

s = socket(AF_INET6, SOCK_RAW, proto);

t = t_open("/dev/icmp6", O_RDWR);

The ICMP6 protocol is the error and control message protocol used with Version 6 of
the Internet Protocol. It is used by the kernel to handle and report errors in protocol
processing. It is also used for IPv6 neighbor and router discovery, and for multicast
group membership queries and reports. It may also be accessed by programs using the
socket interface or the Transport Level Interface (TLI) for network monitoring and
diagnostic functions. When used with the socket interface, a “raw socket” type is used.
The protocol number for ICMP6, used in the proto parameter to the socket call, can be
obtained from getprotobyname(3SOCKET). ICMP6 file descriptors and sockets are
connectionless and are normally used with the t_sndudata / t_rcvudata and the
sendto() / recvfrom() calls. They may also be used with the
sendmsg()/recvgmsg() calls when sending or receiving ancillary data.

Outgoing packets automatically have an Internet Protocol Version 6 (IPv6) header and
zero or more IPv6 extension headers prepended. These headers are prepended by the
kernel. Unlike ICMP for IPv4, the IP_HDRINCL option is not supported for ICMP6, so
ICMP6 applications neither build their own outbound IPv6 headers, nor do they
receive the inbound IPv6 headers with received data. IPv6 extension headers and
relevant fields of the IPv6 header may be set or received as ancillary data to a
sendmsg(3SOCKET) or recvmsg(3SOCKET) system call. Each of these fields and
extension headers may also be set on a per socket basis with the
setsockopt(3SOCKET) system call. Such "sticky" options are used on all outgoing
packets unless overridden by ancillary data. When any ancillary data is present with a
sendmsg(3SOCKET) system call, all sticky options are ignored for that system call,
but subsequently remain configured.

ICMP6 is a datagram protocol layered above IPv6. Received ICMP6 messages may be
reflected back to users of higher-level protocols such as TCP or UDP as error returns
from system calls. A copy of each ICMP6error message received by the system is
provided to every holder of an open ICMP6 socket or TLI descriptor.

getprotobyname(3SOCKET), recv(3SOCKET), recvmsg(3SOCKET),
send(3SOCKET), sendmsg(3SOCKET), setsockopt(3SOCKET),
t_rcvudata(3NSL), t_sndudata(3NSL), inet6(7P), ip6(7P), routing(7P)

Conta, A. and Deering, S., RFC 2463, Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification, The Internet Society, December 1998.

A socket operation may fail with one of the following errors returned:

icmp6(7P)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

234 man pages section 7: Device and Network Interfaces • Last Revised 10 Nov 1999

EISCONN An attempt was made to establish a connection on a
socket which already has one, or when trying to send a
datagram with the destination address specified and
the socket is already connected.

ENOTCONN An attempt was made to send a datagram, but no
destination address is specified, and the socket has not
been connected.

ENOBUFS The system ran out of memory for an internal data
structure.

EADDRNOTAVAIL An attempt was made to create a socket with a network
address for which no network interface exists.

ENOMEM The system was unable to allocate memory for an
internal data structure.

ENOPROTOOPT An attempt was made to set an IPv4 socket option on
an IPv6 socket.

EINVAL An attempt was made to set an invalid or malformed
socket option.

EAFNOSUPPORT An attempt was made to bind or connect to an IPv4 or
mapped address, or to specify an IPv4 or mapped
address as the next hop.

icmp6(7P)

Device and Network Interfaces 235

icmp, ICMP – Internet Control Message Protocol

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>
s = socket(AF_INET, SOCK_RAW, proto);

t = t_open("/dev/icmp", O_RDWR);

ICMP is the error and control message protocol used by the Internet protocol family. It
is used by the kernel to handle and report errors in protocol processing. It may also be
accessed by programs using the socket interface or the Transport Level Interface (TLI)
for network monitoring and diagnostic functions. When used with the socket
interface, a “raw socket” type is used. The protocol number for ICMP, used in the proto
parameter to the socket call, can be obtained from getprotobyname(3SOCKET).
ICMP file descriptors and sockets are connectionless, and are normally used with the
t_sndudata / t_rcvudata and the sendto() / recvfrom() calls.

Outgoing packets automatically have an Internet Protocol (IP) header prepended to
them. Incoming packets are provided to the user with the IP header and options intact.

ICMP is an datagram protocol layered above IP. It is used internally by the protcol
code for various purposes including routing, fault isolation, and congestion control.
Receipt of an ICMP “redirect” message will add a new entry in the routing table, or
modify an existing one. ICMP messages are routinely sent by the protocol code.
Received ICMP messages may be reflected back to users of higher-level protocols such
as TCP or UDP as error returns from system calls. A copy of all ICMP message
received by the system is provided to every holder of an open ICMP socket or TLI
descriptor.

getprotobyname(3SOCKET), recv(3SOCKET), send(3SOCKET),
t_rcvudata(3NSL), t_sndudata(3NSL), inet(7P), ip(7P), routing(7P)

Postel, Jon, Internet Control Message Protocol — DARPA Internet Program Protocol
Specification, RFC 792, Network Information Center, SRI International, Menlo Park,
Calif., September 1981.

A socket operation may fail with one of the following errors returned:

EISCONN An attempt was made to establish a connection on a
socket which already has one, or when trying to send a
datagram with the destination address specified and
the socket is already connected.

ENOTCONN An attempt was made to send a datagram, but no
destination address is specified, and the socket has not
been connected.

ENOBUFS The system ran out of memory for an internal data
structure.

icmp(7P)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

236 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

EADDRNOTAVAIL An attempt was made to create a socket with a network
address for which no network interface exists.

Replies to ICMP “echo” messages which are source routed are not sent back using
inverted source routes, but rather go back through the normal routing mechanisms.

icmp(7P)

NOTES

Device and Network Interfaces 237

idn – inter-domain network device driver

/dev/idn

The idn driver is a multi-thread, loadable, clonable, STREAMS-based pseudo driver
that supports the connectionless Data Link Provider Interface dlpi(7P) over the Sun
Enterprise 10000 Gigplane-XB Interconnect. This connection is permitted only between
domains within the same Sun Enterprise 10000 server.

The idn driver supports 1 to 32 logical network interfaces that can be connected to
domains linked to the local domain through the domain_link(1M) command. (See
domain_link(1M) in the Sun Enterprise 10000 SSP 3.2 Reference Manual for more
information.) The idn driver works in conjunction with the System Service Processor
(SSP) to perform domain linking/unlinking and automated linking upon host bootup.

The /dev/idn device is used to access all IDN services provided by the system.

The idn driver is a style-2 Data Link Service provider. All M_PROTO and
M_PCPROTO–type messages are interpreted as DLPI primitives. For the idn driver to
associate the opened stream with a particular device (ppa), you must send an explicit
DL_ATTACH_REQ message. The ppa ID is interpreted as an unsigned long and
indicates the corresponding device instance (unit) number. The DL_ERROR_ACK error
is returned by the driver if the ppa field value does not correspond to a valid
device-instance number for the system. The device is initialized on first attach and
de-initialized (stopped) on the last detach.

� The maximum SDU is configurable by using the idn.conf file and has a range of
512 bytes to 512 Kbytes. The default value is 16384 bytes.

� The minimum SDU is 0.

� The Service Access Pointer (SAP) address length is 8.

� The MAC type is DL_ETHER.

� The SAP length value is -2, meaning the physical address component is followed
immediately by a 2-byte SAP component within the DLSAP address.

� The service mode is DL_CLDLS.

� Optional quality of service (QOS) is not presently supported; accordingly, the QOS
fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF). The
idn driver supports broadcast by issuing messages to each target individually. The
idn driver is inherently a point-to-point network between domains. When the idn
driver is in the DL_ATTACHED state, the user must send a DL_BIND_REQ request to
associate a particular SAP with the stream. The idn driver interprets the SAP field
within the DL_BIND_REQ message as an Ethernet type and valid values for the
SAP field are in the range of 0 to 0xFFFF. Only one Ethernet type can be bound to
the stream at any time.

idn(7d)

NAME

SYNOPSIS

DESCRIPTION

IDN and DLPI

238 man pages section 7: Device and Network Interfaces • Last Revised 3 Jun 1999

If a SAP with a value of 0 is selected, the receiver will be in 802.3 mode. All frames
received from the media having a type field in the range of 0 to 1500 are assumed to
be 802.3 frames and are routed up all open streams which are bound to SAP value 0. If
more than one stream is in 802.3 mode, then the frame will be duplicated and routed
up as multiple stream DL_UNITDATA_IND messages.

In transmission, the driver checks the SAP field of the DL_BIND_REQ to determine if
the SAP value is 0, and if the destination type field is in the range of 0 to 1500. If either
is true, the driver computes the length of the message, (excluding the initial message
block M_PROTO mblk) of all subsequent DL_UNITDATA_REQ messages and transmits
802.3 frames that have this value in the MAC frame header length field.

The driver also supports raw M_DATA mode. When the user sends a DLIOCRAW ioctl,
the particular stream is put in raw mode. A complete frame and a proper ether header
is expected as part of the data.

The DLSAP address format consists of the 6-byte, physical address component
(Ethernet) followed immediately by the 2-byte SAP component (type), producing an
8-byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format, but instead should use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP
addresses. The SAP length, full DLSAP length, and SAP physical ordering are
included within the DL_INFO_ACK primitive. The physical address length can be
computed by subtracting the SAP length from the full DLSAP address length or by
issuing the DL_PHYS_ADDR_REQ message to obtain the current physical address
associated with the stream.

When the idn driver is in the DL_BOUND state, you can transmit frames on the IDN by
sending DL_UNITDATA_REQ messages to the driver. The driver then routes received
IDN frames up the open and bound streams having a SAP which matches the Ethernet
type as DL_UNITDATA_IND messages. If necessary, received IDN frames are
duplicated and routed up multiple open streams. The DLSAP address contained
within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the
SAP (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set, the idn driver
supports the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives which enable or
disable, respectively, the reception of individual multicast group addresses. A set of
multicast addresses may be iteratively created and modified on a per-stream basis
using these primitives. These primitives are accepted by the driver in any state
following the DL_ATTACHED state.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives, which with the
DL_PROMISC_PHYS flag set in the dl_level field, enable or disable, respectively, the
reception of all promiscuous frames on the media, including frames generated by the
local domain. When used with the DL_PROMISC_SAP flag set in the dl_level field,

idn(7d)

IDN Primitives

Device and Network Interfaces 239

these primitives enable or disable, respectively, the reception of all SAP (Ethernet type)
values. When used with the DL_PROMISC_MULTI flag set in the dl_level field,
these primitives enable or disable, respectively, the reception of all multicast group
addresses. The effect of each is always on a per-stream basis and independent of the
other SAP and physical level configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive which returns the 6-octet, Ethernet address
associated with (or attached to) the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ request.

Because the driver maintains domain address information in the address to direct
packets to the correct destination, the DL_SET_PHYS_ADDR_REQ primitive is not
allowed.

The following files are supported:

/dev/idn
IDN special character device

/platform/SUNW,Ultra-Enterprise-10000/kernel/drv/idn.conf
System-wide and per-interface default device driver properties

netstat(1M), ndd(1M), dlpi(7P)

domain_link(1M) in the Sun Enterprise 10000 SSP 3.2 Reference Manual.

Sun Enterprise 10000 InterDomain Networks User Guide

The idn driver supports a set of properties that can be set by using the driver.conf
file for the IDN. See the Sun Enterprise 10000 InterDomain Networks User Guide for more
information about the properties in the driver.conf(4), (idn.conf, for IDNs).

idn(7d)

FILES

SEE ALSO

NOTES

240 man pages section 7: Device and Network Interfaces • Last Revised 3 Jun 1999

ieef – Intel Ethernet device driver

/kernel/drv/ieef

The ieef driver currently supports the Intel EtherExpress Flash (ISA) and Intel 82256
EEpro100 Ethernet (PCI) network cards.

The ieef Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7P). Multiple
controllers installed within the system are supported by the driver. The ieef driver
provides basic support for the hardware. Functions include chip initialization, frame
transmit and receive, multicast and promiscuous mode support, and error recovery
and reporting.

The cloning, character-special device /dev/ieef is used to access all Intel devices
installed within the system.

The ieef driver is dependent on /kernel/misc/gld, a loadable kernel module that
provides the ieef driver with the DLPI and STREAMS functionality required of a
LAN driver. See gld(7D) for more details on the primatives supported by the driver.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� Maximum SDU is 1500 (ETHERMTU).

� Minimum SDU is 0. The driver will pad to the mandatory 60-octet minimum packet
size.

� The dlsap address length is 8.

� MAC type is DL_ETHER.

� The sap length value is –2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

� The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

The ieef driver provides 100-Mbps Ethernet support. Note that the driver does not
currently transfer data at rates expected of a 100-Mbps interface.

The /kernel/drv/ieef.conf file supports the following options:

ioaddr

intr

/dev/ieef Special character device

/kernel/drv/ieef.conf Driver configuration file

See attributes(5) for descriptions of the following attributes:

ieef(7D)

NAME

SYNOPSIS

DESCRIPTION

Known Problems
and Limitations

CONFIGURATION

FILES

ATTRIBUTES

Device and Network Interfaces 241

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), gld(7D), streamio(7I), dlpi(7P)

ieef(7D)

SEE ALSO

242 man pages section 7: Device and Network Interfaces • Last Revised 27 November 2000

ifb – 24-bit PCI color frame buffer and graphics accelerator driver

The ifb driver is the device driver for the Sun Expert3D graphics accelerators. The
Expert3D is a high resolution, high performance PCI graphics framebuffer providing
hardware texture mapping. The Expert3D also supports 1920x1200 double buffered,
z-buffered display and 1280 x 1024 stereo.

The ifbdaemon process loads the ifb microcode at system startup time and during
the resume sequence of a suspend-resume cycle.

/dev/fbs/ifbn
Device special file

/usr/lib/ifb.ucode
ifb microcode

/usr/sbin/ifbdaemon
ifb microcode loader

SUNWifb_config(1M)

ifb(7d)

NAME

DESCRIPTION

FILES

SEE ALSO

Device and Network Interfaces 243

ifp – ISP2100 Family Fibre Channel Host Bus Adapter Driver

PCI SUNW,ifp@pci-slot

The ifp Host Bus Adapter is a SCSA compliant nexus driver for the Qlogic
ISP2100/ISP2100A chips. These chips support Fibre Channel Protocol for SCSI on
Private Fibre Channel Arbitrated loops.

The ifp driver interfaces with SCSI disk target driver, ssd(7D), and the SCSI-3
Enclosure Services driver, ssd(7D). Only SCSI devices of type disk and ses are
supported at present time.

The ifp driver supports the standard functions provided by the SCSA interface. It
supports auto request sense (cannot be turned off) and tagged queueing by default.
The driver requires that all devices have unique hard addresses defined by switch
settings in hardware. Devices with conflicting hard addresses will not be accessible.

/kernel/drv/ifp ELF Kernel Module

/kernel/drv/sparcv9/ifp ELF Kernel Module (64–bit version)

/kernel/drv/ifp.conf Driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SPARC

luxadm(1M),prtconf(1M),driver.conf(4),attributes(5),ses(7D),ssd(7D)

Writing Device Drivers,

ANSI X3.272–1996, Fibre Channel Arbitrated Loop (FC-AL),

ANSI X3.269-1996, Fibre Channel Protocol for SCSI (FCP),

ANSI X3.270-1996, SCSI-3 Architecture Model (SAM),

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA),

ISP2100 Firmware Interface Specification, QLogic Corporation

The messages described below are some that may appear on the system console, as
well as being logged.

This first set of messages may be displayed while the ifp driver is initially trying to
attach. All of these messages mean that the ifp driver was unable to attach. These
messages are preceded by "ifp<number>", where "<number>" is the instance number
of the ISP2100 Host Bus Adapter.

ifp(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

244 man pages section 7: Device and Network Interfaces • Last Revised 22 Jul 1998

Device is using a hilevel intr, unused
The device was configured with an interrupt level that cannot be used with this ifp
driver. Check the device.

Failed to alloc soft state
Driver was unable to allocate space for the internal state structure. Driver did not
attach to device; SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to device;
SCSI devices will be inaccessible.

Unable to map pci config registers
Unable to map biu registers

Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device; SCSI devices will be inaccessible.

Cannot alloc tran
Driver was unable to obtain a transport handle to be able to communicate with
SCSA framework. Driver did not attach to device; SCSI devices will be inaccessible.

ddi_create_minor_node failed
Driver was unable to create devctl minor node that is used by luxadm(1M) for
administering the loop. Driver did not attach to device; SCSI devices will be
inaccessible.

Cannot alloc dma handle
Driver was unable allocate a dma handle for communicating with the Host Bus
Adapter. Driver did not attach to device; SCSI devices will be inaccessible.

Cannot alloc cmd area
Driver was unable allocate dma memory for request and response queues. Driver
did not attach to device; SCSI devices will be inaccessible.

Cannot bind cmd area
Driver was unable to bind dma handle to the cmd area. Driver did not attach to
device; SCSI devices will be inaccessible.

Cannot alloc fcal handle
Driver was unable allocate a dma handle for retrieving loop map from the Host Bus
Adapter. Driver did not attach to device; SCSI devices will be inaccessible.

Cannot bind portdb
Driver was unable to bind fcal port handle to the memory used for obtaining port
database. Driver did not attach to device; SCSI devices will be inaccessible.

scsi_hba_attach failed
Driver was unable to attach to the SCSA framework. Driver did not attach to
device; SCSI devices will be inaccessible.

Unable to create hotplug thread
Driver was not able to create the kernel thread used for hotplug support. Driver did
not attach to device; SCSI devices will be inaccessible.

ifp(7D)

Device and Network Interfaces 245

Cannot add intr
Driver was not able to add the interrupt routine to the kernel. Driver did not attach
to device; SCSI devices will be inaccessible.

Unable to attach
Driver was unable to attach to the hardware for some reason that may be printed.
Driver did not attach to device; SCSI devices will be inaccessible.

The following set of messages may be display at any time. They will be printed with
the full device pathname followed by the shorter form described above.

Firmware checksum incorrect
Firmware has an invalid checksum and will not be downloaded.

Chip reset timeout
ISP chip failed to reset in the time allocated; may be bad hardware.

Stop firmware failed
Stopping the firmware failed; may be bad hardware.

Load ram failed
Unable to download new firmware into the ISP chip.

DMA setup failed
The DMA setup failed in the host adapter driver on a scsi_pkt. This will return
TRAN_BADPKT to a SCSA target driver.

Bad request pkt type
Bad request pkt
Bad request pkt hdr
Bad req pkt order

The ISP Firmware rejected the packet as being set up incorrectly. This will cause the
ifp driver to call the target completion routine with the reason of CMD_TRAN_ERR
set in the scsi_pkt. Check the target driver for correctly setting up the packet.

Firmware error
The ISP chip encountered a firmware error of some kind. This error will cause the
ifp driver to do error recovery by resetting the chip.

DMA Failure (event)
The ISP chip encountered a DMA error while reading from the request queue
(event is 8003) or writing to the response queue (event is 8004). This error will cause
the ifp driver to do error recovery by resetting the chip.

Fatal error, resetting interface
This is an indication that the ifp driver is doing error recovery. This will cause all
outstanding commands that have been transported to the ifp driver to be
completed via the scsi_pkt completion routine in the target driver with reason of
CMD_RESET and status of STAT_BUS_RESET set in the scsi_pkt.

ifp(7D)

246 man pages section 7: Device and Network Interfaces • Last Revised 22 Jul 1998

target t, duplicate port wwns
The driver detected target t to be having the same port WWN as a different target;
this is not supposed to happen. Target t will become inaccessible.

target t, duplicate switch settings
The driver detected devices with the same switch setting t. All such devices will
become inaccessible.

WWN changed on target t
The World Wide Name (WWN) has changed on the device with switch setting t.

target t, unknown device type dt
The driver does not know the device type dt reported by the device with switch
setting t.

ifp(7D)

Device and Network Interfaces 247

if_tcp, if – general properties of Internet Protocol network interfaces

A network interface is a device for sending and receiving packets on a network. It is
usually a hardware device, although it can be implemented in software. Network
interfaces used by the Internet Protocol (IPv4 or IPv6) must be STREAMS devices
conforming to the Datalink Provider Interface (DLPI). See dlpi(7P).

An interface becomes available to IP when it is opened and the IP module is pushed
onto the stream with the I_PUSH ioctl(2) command (see streamio(7I)), and the
SIOCSLIFNAME ioctl(2) is issued to specify the name of the interface and whether it
is IPv4 or IPv6 . This may be initiated by the kernel at boot time or by a user program
some time after the system is running. Each interface must be assigned an IP address
with the SIOCSLIFADDR ioctl() before it can be used. On interfaces where the
network-to-link layer address mapping is static, only the network number is taken
from the ioctl() request; the remainder is found in a hardware specific manner. On
interfaces which provide dynamic network-to-link layer address mapping facilities,
for example, 10Mb/s Ethernets using arp(7P), the entire address specified in the
ioctl() is used. A routing table entry for destinations on the network of the interface
is installed automatically when an interface’s address is set.

The following ioctl() calls may be used to manipulate IP network interfaces. Unless
specified otherwise, the request takes an lifreq structure as its parameter. This
structure has the form:

/* Interface request structure used for socket ioctls. All */
/* interface ioctls must have parameter definitions which */
/* begin with ifr_name. The remainder may be interface specific. */
struct lifreq {
#define LIFNAMSIZ 32

char lfr_name[LIFNAMSIZ]; /* if name, for example "le1" */
union {

int lifru_addrlen; /* for subnet/token etc */
uint_t lifru_ppa; /* SIOCSLIFNAME */

} lifr_lifru1;
union {

struct sockaddr_storage lifru_addr;
struct sockaddr_storage lifru_dstaddr;
struct sockaddr_storage lifru_broadaddr;
struct sockaddr_storage lifru_token; /* With lifr_addrlen */
struct sockaddr_storage lifru_subnet; /* With lifr_addrlen */
int lifru_index; /* interface index */
uint64_t lifru_flags; /* SIOC?LIFFLAGS */
int lifru_metric;
uint_t lifru_mtu;
char lifru_data[1]; /* intfce.dep. data/
char lifru_enaddr[6];
int lif_muxid[2]; /* mux id’s for arp and ip */
struct lif_nd_req lifru_nd_req;
struct lif_ifinfo_req lifru_ifinfo_req;

} lifr_lifru;

#define lifr_addrlen lifr_lifru1.lifru_addrlen
#define lifr_ppa lifr_lifru1.lifru_ppa /* Driver’s ppa */

if_tcp(7P)

NAME

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

IOCTLS

248 man pages section 7: Device and Network Interfaces • Last Revised 13 Oct 1999

#define lifr_addr lifr_lifru.lifru_addr /* address */
#define lifr_dstaddr lifr_lifru.lifru_dstaddr
#define lifr_broadaddr lifr_lifru.lifru_broadaddr /* broadcast address */
#define lifr_token lifr_lifru.lifru_token /* address token */
#define lifr_subnet lifr_lifru.lifru_subnet /* subnet prefix */
#define lifr_index lifr_lifru.lifru_index /* interface index */
#define lifr_flags lifr_lifru.lifru_flags /* flags */
#define lifr_metric lifr_lifru.lifru_metric /* metric */
#define lifr_mtu lifr_lifru.lifru_mtu /* mtu */
#define lifr_data lifr_lifru.lifru_data
#define lifr_enaddr lifr_lifru.lifru_enaddr /* ethernet address */
#define lifr_index lifr_lifru.lifru_index /* interface index */
#define lifr_ip_muxid lifr_lifru.lif_muxid[0]
#define lifr_arp_muxid lifr_lifru.lif_muxid[1]
#define lifr_nd lifr_lifru.lifru_nd_req /* SIOCLIF*ND */
#define lifr_ifinfo lifr_lifru.lifru_ifinfo_req /* SIOC[GS]LIFLNKINFO */
};

SIOCSLIFADDR Set interface address. Following the address
assignment, the “initialization” routine for the interface
is called.

SIOCGLIFADDR Get interface address.

SIOCSLIFDSTADDR Set point to point address for interface.

SIOCGLIFDSTADDR Get point to point address for interface.

SIOCSLIFFLAGS Set interface flags field. If the interface is marked down,
any processes currently routing packets through the
interface are notified.

SIOCGLIFFLAGS Get interface flags.

SIOCGLIFCONF Get interface configuration list. This request takes an
lifconf structure (see below) as a value-result
parameter. The lifc_len field should be initially set
to the size of the buffer pointed to by lifc_buf. On
return it will contain the length, in bytes, of the
configuration list. The lifc_family field should be
set to AF_UNSPEC to retrieve both AF_INET and
AF_INET6 interfaces. The lifc_flags field should be
initially set to zero.

SIOCGLIFNUM Get number of interfaces. This request returns an
integer which is the number of interface descriptions
(struct lifreq) that will be returned by the
SIOCGLIFCONF ioctl; that is, it gives an indication of
how large lifc_len has to be. This request takes an
lifnum structure (see below) as a value-result
parameter. The lifn_family field should be set to
AF_UNSPEC to count both AF_INET and AF_INET6
interfaces. The lifn_flags field should be initially
set to zero.

if_tcp(7P)

Device and Network Interfaces 249

SIOCSLIFMTU Set the maximum transmission unit (MTU) size for
interface. Place the result of this request in lifru_mtu
field. The MTU can not exceed the physical MTU
limitation (which is reported in the DLPI
DL_INFO_ACK message).

SIOCGLIFMTU Get the maximum transmission unit size for interface.
Place the result of this request in ifru_mtu field.

SIOCSLIFMETRIC Set the metric associated with the interface. The metric
is used by routine daemons such as in.routed(1M).

SIOCGLIFMETRIC Get the metric associated with the interface.

SIOCGLIFMUXID Get the ip and arp muxid associated with the
interface.

SIOCSLIFMUXID Set the ip and arp muxid associated with the
interface.

SIOCGLIFINDEX Get the interface index associated with the interface.

SIOCSLIFINDEX Set the interface index associated with the interface.

SIOCLIFADDIF Add a new logical interface on a physical interface
using an unused logical unit number.

SIOCLIFREMOVEIF Remove a logical interface by specifying its IP address
or logical interface name.

SIOCSLIFTOKEN Set the address token used to form IPv6 link-local
addresses and for stateless address autoconfiguration.

SIOCGLIFTOKEN Get the address token used to form IPv6 link-local
addresses and for stateless address autoconfiguration.

SIOCSLIFSUBNET Set the subnet prefix associated with the interface.

SIOCGLIFSUBNET Get the subnet prefix associated with the interface.

SIOCSLIFLNKINFO Set link specific parameters for the interface.

SIOCGLIFLNKINFO Get link specific parameters for the interface.

SIOCLIFDELND Delete a neighbor cache entry for IPv6 .

SIOCLIFGETND Get a neighbor cache entry for IPv6 .

SIOCLIFSETND Set a neighbor cache entry for IPv6 .

SIOCTMYADDR Test if the address is assigned to this node. This request
takes an sioc_addrreq structure (see below) as a
value-result parameter. The sa_addr field should be
set to the address to test. The sa_res field will contain
a non-zero value if the address is assigned to this node.

if_tcp(7P)

250 man pages section 7: Device and Network Interfaces • Last Revised 13 Oct 1999

SIOCTONLINK Test if the address is directly reachable, for example,
that it can be reached without going through a router.
This request takes an sioc_addrreq structure (see
below) as a value-result parameter. The sa_addr field
should be set to the address to test. The sa_res field
will contain a non-zero value if the address is onlink.

SIOCTMYSITE Test if the address is part of the same site as this node.
This request takes an sioc_addrreq structure (see
below) as a value-result parameter. The sa_addr field
should be set to the address to test. The sa_res field
will contain a non-zero value if the address is in the
same site.

The lifconf structure has the form:

/*
* Structure used in SIOCGLIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/
struct lifconf {

sa_family_t lifc_family;
int lifc_flags; /* request specific interfaces */
int lifc_len; /* size of associated buffer */
union {

caddr_t lifcu_buf;
struct ifreq *lifcu_req;

} lifc_lifcu;

#define lifc_buf lifc_lifcu.lifcu_buf /* buffer address */
#define lifc_req lifc_lifcu.lifcu_req /* array of structures returned */

};

The sioc_addrreq structure has the form:

/* Structure used in SIOCGLIFNUM request. */
struct lifnum {

sa_family_t lifn_family;
int lifn_flags; /* request specific interfaces */
int lifn_count; /* Result */

};

/*
* Argument structure for SIOCT* address testing ioctls.
*/
struct sioc_addrreq {

struct sockaddr_storage sa_addr; /* Address to test */
int sa_res; /* Result - 0/1 */

};

if_tcp(7P)

Device and Network Interfaces 251

The following ioctl() calls are maintained for compatibility but only apply to IPv4
network interfaces, since the data structures are to small to hold an IPv6 address.
Unless specified otherwise, the request takes an ifreq structure as its parameter. This
structure has the form:

/* Interface request structure used for socket ioctls. All */
/* interface ioctls must have parameter definitions which */
/* begin with ifr_name. The remainder may be interface specific. */
struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ]; /* if name, for example */
/* "le1" */

union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ]; /* other if name */
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1]; /* intfce. depen. data */
char ifru_enaddr[6];
int if_muxid[2]; /* mux id’s for arp and ip */
int ifru_index; /* interface index */

} ifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define ifr_oname ifr_ifru.ifru_oname /* other if name */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_index ifr_ifru.ifru_index /* interface index */
#define ifr_metric ifr_ifru.ifru_metric /* metric */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */
#define ifr_enaddr ifr_ifru.ifru_enaddr a/* ethernet address */

};

SIOCSIFADDR Set interface address. Following the address
assignment, the “initialization” routine for the interface
is called.

SIOCGIFADDR Get interface address.

SIOCSIFDSTADDR Set point to point address for interface.

SIOCGIFDSTADDR Get point to point address for interface.

SIOCSIFFLAGS Set interface flags field. If the interface is marked down,
any processes currently routing packets through the
interface are notified.

SIOCGIFFLAGS Get interface flags.

SIOCGIFCONF Get interface configuration list. This request takes an
ifconf structure (see below) as a value-result
parameter. The ifc_len field should be initially set to

if_tcp(7P)

252 man pages section 7: Device and Network Interfaces • Last Revised 13 Oct 1999

the size of the buffer pointed to by ifc_buf. On return
it will contain the length, in bytes, of the configuration
list.

SIOCGIFNUM Get number of interfaces. This request returns an
integer which is the number of interface descriptions
(struct ifreq) that will be returned by the
SIOCGIFCONF ioctl; that is, it gives an indication of
how large ifc_len has to be.

SIOCSIFMTU Set the maximum transmission unit (MTU) size for
interface. Place the result of this request in
ifru_metric field. The MTU has to be smaller than
physical MTU limitation (which is reported in the DLPI
DL_INFO_ACK message).

SIOCGIFMTU Get the maximum transmission unit size for interface.
Place the result of this request in ifru_metric field.

SIOCSIFMETRIC Set the metric associated with the interface. The metric
is used by routine daemons such as in.routed(1M).

SIOCGIFMETRIC Get the metric associated with the interface.

SIOCGIFMUXID Get the ip and arp muxid associated with the
interface.

SIOCSIFMUXID Set the ip and arp muxid associated with the
interface.

SIOCGIFINDEX Get the interface index associated with the interface.

SIOCSIFINDEX Set the interface index associated with the interface.

The ifconf structure has the form:

/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/
struct ifconf {

int ifc_len; /* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */

};

EPERM The effective user id of the calling process in not superuser.

if_tcp(7P)

ERRORS

Device and Network Interfaces 253

ENXIO The lifr_name member of the lifreq structure contains an
invalid value.

EBADADDR Wrong address family or malformed address.

EBUSY For SIOCSLIFFLAGS, this error is returned when the order of
bringing the primary/physical interface (for example, le0) and a
secondary/logical interface associated with the same physical
interface (for example, le0:1) up or down is violated. The
physical interface must be configured up first and cannot be
configured down until all the corresponding logical interfaces
have been configured down.

EINVAL For SIOCGLIFCONF, this error is returned when the size of the
buffer pointed to by the lifc_buf member of the lifconf
structure is too small.

For SIOCSLIFMTU, this error is returned when the requested MTU
size is invalid. This error indicates the MTU size is greater than the
MTU size supported by the DLPI provider or less than 68 (for
IPv4) or less than 1200 (for IPv6).

ifconfig(1M), in.routed(1M), ioctl(2), arp(7P), dlpi(7P), ip(7P), ip6(7P),
streamio(7I)

if_tcp(7P)

SEE ALSO

254 man pages section 7: Device and Network Interfaces • Last Revised 13 Oct 1999

inet6 – Internet protocol family for Internet Protocol version 6

#include <sys/types.h>

#include <netinet/in.h>

The inet6 protocol family implements a collection of protocols that are centered
around the Internet Protocol version 6 (IPv6) and share a common address format. The
inet6 protocol family can be accessed using the socket interface, where it supports
the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types, or the Transport Level
Interface (TLI), where it supports the connectionless (T_CLTS) and connection
oriented (T_COTS_ORD) service types.

The Internet protocol family for IPv6 included the Internet Protocol Version 6 (IPv6),
the Neighbor Discovery Protocol (NDP), the Internet Control Message Protocol
(ICMPv6), the Transmission Control Protocol (TCP), and the User Datagram Protocol
(UDP).

TCP supports the socket interface’s SOCK_STREAM abstraction and TLI’s T_COTS_ORD
service type. UDP supports the SOCK_DGRAM socket abstraction and the TLI T_CLTS
service type. See tcp(7P) and udp(7P). A direct interface to IPv6 is available using the
socket interface. See ip6(7P). ICMPv6 is used by the kernel to handle and report
errors in protocol processing. It is also accessible to user programs. See icmp6(7P).
NDP is used to translate 128-bit IPv6 addresses into 48–bit Ethernet addresses.

IPv6 addresses come in three types: unicast, anycast, and multicast. A unicast address
is an identifier for a single network interface. An anycast address is an identifier for a
set of interfaces; a packet sent to an anycast address is delivered to the "nearest"
interface identified by that address, pursuant to the routing protocol’s measure of
distance. A multicast address is an identifier for a set of interfaces; a packet sent to a
multicast address is delivered to all interfaces identified by that address. There are no
broadcast addresses as such in IPv6; their functionality is superseded by multicast
addresses.

For IPv6 addresses, there are three scopes within which unicast addresses are
guaranteed to be unique. The scope is indicated by the address prefix. The three
varieties are link-local (the address is unique on that physical link), site-local (the
address is unique within that site), and global (the address is globally unique).

The three highest order bits for global unicast addresses are set to 001. The ten highest
order bits for site-local addresses are set to 1111 1110 11. The ten highest order bits
for link-local addresses are set to 1111 1110 11. For multicast addresses, the eight
highest order bits are set to 1111 1111. Anycast addresses have the same format as
unicast addresses.

IPv6 addresses do not follow the concept of "address class" seen in IP.

A global unicast address is divided into the following segments:

� The first three bits are the Format Prefix identifying a unicast address.

inet6(7P)

NAME

SYNOPSIS

DESCRIPTION

PROTOCOLS

Device and Network Interfaces 255

� The next 13 bits are the Top-Level Aggregation (TLA) identifier. For example, the
identifier could specify the ISP.

� The next eight bits are reserved for future use.

� The next 24 bits are the Next-Level Aggregation (NLA) identifier.

� The next 16 bits are the Site-Level Aggregation (SLA) identifier.

� The last 64 bits are the interface ID. This will most often be the hardware address of
the link in IEEE EUI-64 format.

Link-local unicast addresses are divided in this manner:

� The first ten bits are the Format Prefix identifying a link-local address.

� The next 54 bits are zero.

� The last 64 bits are the interface ID. This will most often be the hardware address of
the link in IEEE EUI-64 format.

Site-local unicast addresses are divided in this manner:

� The first ten bits are the Format Prefix identifying a site-local address.

� The next 38 bits are zero.

� The next 16 bits are the subnet ID.

� The last 64 bits are the interface ID. This will most often be the hardware address of
the link in IEEE EUI-64 format.

IPv6 addresses are sixteen byte quantities, stored in network byte order. The socket
API uses the sockaddr_in6 structure when passing IPv6 addresses between an
application and the kernel. The sockaddr_in6 structure has the following members:

sa_familty_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

uint32_t __sin6_src_id; Library routines are provided to manipulate
structures of this form. See inet(3SOCKET).

The sin6_addr field of the sockaddr_in6 structure specifies a local or remote IPv6
address. Each network interface has one or more IPv6 addresses configured, that is, a
link-local address, a site-local address, and one or more global unicast IPv6 addresses.
The special value of all zeros may be used on this field to test for "wildcard" matching.
Given in a bind(3SOCKET) call, this value leaves the local IPv6 address of the socket
unspecified, so that the socket will receive connections or messages directed at any of
the valid IPv6 addresses of the system. This can prove useful when a process neither
knows nor cares what the local IPv6 address is, or when a process wishes to receive
requests using all of its network interfaces. The sockaddr_in6 structure given in the
bind() call must specify an in6_addr value of either all zeros or one of the system’s
valid IPv6 addresses. Requests to bind any other address will elicit the error

inet6(7P)

ADDRESSING

256 man pages section 7: Device and Network Interfaces • Last Revised 1 Jul 1999

EADDRNOTAVAI. When a connect(3SOCKET) call is made for a socket that has a
wildcard local address, the system sets the sin6_addr field of the socket to the IPv6
address of the network interface through which the packets for that connection are
routed.

The sin6_port field of the sockaddr_in6 structure specifies a port number used by
TCP or UDP. The local port address specified in a bind() call is restricted to be
greater than IPPORT_RESERVED (defined in <netinet/in.h>) unless the creating
process is running as the super-user, providing a space of protected port numbers. In
addition, the local port address cannot be in use by any socket of the same address
family and type. Requests to bind sockets to port numbers being used by other sockets
return the error EADDRINUSE. If the local port address is specified as 0, the system
picks a unique port address greater than IPPORT_RESERVED. A unique local port
address is also selected when a socket which is not bound is used in a
connect(3SOCKET) or sendto() call. See send(3SOCKET). This allows programs
that do not care which local port number is used to set up TCP connections by simply
calling socket(3SOCKET) and then connect(3SOCKET), and then sending UDP
datagrams with a socket() call followed by a sendto() call.

Although this implementation restricts sockets to unique local port numbers, TCP
allows multiple simultaneous connections involving the same local port number so
long as the remote IPv6 addresses or port numbers are different for each connection.
Programs may explicitly override the socket restriction by setting the SO_REUSEADDR
socket option with setsockopt(). See getsockopt(3SOCKET).

In addition, the same port may be bound by two separate sockets if one is an IP socket
and the other an IPv6 socket.

TLI applies somewhat different semantics to the binding of local port numbers. These
semantics apply when Internet family protocols are used using the TLI.

ioctl(2), bind(3SOCKET), connect(3SOCKET),getipnodebyaddr(3SOCKET),
getipnodebyname(3SOCKET),getprotobyname(3SOCKET),
getservbyname(3SOCKET), getsockopt(3SOCKET), inet(3SOCKET),
send(3SOCKET), icmp6(7P), ip6(7P), tcp(7P), udp(7P)

Conta, A. and Deering, S., Internet Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification, RFC 1885, December 1995.

Deering, S. and Hinden, B., Internet Protocol, Version 6 (IPv6) Specification, RFC 1883,
December 1995.

Hinden, B. and Deering, S., IP Version 6 Addressing Architecture, RFC 1884, December
1995.

The IPv6 support is subject to change as the Internet protocols develop. Users should
not depend on details of the current implementation, but rather the services exported.

inet6(7P)

SEE ALSO

NOTES

Device and Network Interfaces 257

inet – Internet protocol family

#include <sys/types.h>

#include <netinet/in.h>

The Internet protocol family implements a collection of protocols which are centered
around the Internet Protocol (“IP”) and which share a common address format. The
Internet family protocols can be accessed using the socket interface, where they
support the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types, or the
Transport Level Interface (TLI), where they support the connectionless (T_CLTS) and
connection oriented (T_COTS_ORD) service types.

The Internet protocol family is comprised of the Internet Protocol (“IP”), the Address
Resolution Protocol (“ARP”), the Internet Control Message Protocol (“ICMP”), the
Transmission Control Protocol (“TCP”), and the User Datagram Protocol (“UDP”).

TCP supports the socket interface’s SOCK_STREAM abstraction and TLI’s T_COTS_ORD
service type. UDP supports the SOCK_DGRAM socket abstraction and the TLI T_CLTS
service type. See tcp(7P) and udp(7P). A direct interface to IP is available using both
TLI and the socket interface (see ip(7P)). ICMP is used by the kernel to handle and
report errors in protocol processing. It is also accessible to user programs (see
icmp(7P)). ARP is used to translate 32-bit IP addresses into 48-bit Ethernet addresses.
See arp(7P).

The 32-bit IP address is divided into network number and host number parts. It is
frequency-encoded. The most-significant bit is zero in Class A addresses, in which the
high-order 8 bits represent the network number. Class B addresses have their high
order two bits set to 10 and use the high-order 16 bits as the network number field.
Class C addresses have a 24-bit network number part of which the high order three
bits are 110. Sites with a cluster of IP networks may chose to use a single network
number for the cluster; this is done by using subnet addressing. The host number
portion of the address is further subdivided into subnet number and host number
parts. Within a subnet, each subnet appears to be an individual network. Externally,
the entire cluster appears to be a single, uniform network requiring only a single
routing entry. Subnet addressing is enabled and examined by the following ioctl(2)
commands. They have the same form as the SIOCSIFADDR command.

SIOCSIFNETMASK Set interface network mask. The network mask defines
the network part of the address; if it contains more of
the address than the address type would indicate, then
subnets are in use.

SIOCGIFNETMASK Get interface network mask.

IP addresses are four byte quantities, stored in network byte order. IP addresses
should be manipulated using the byte order conversion routines. See
byteorder(3SOCKET).

inet(7P)

NAME

SYNOPSIS

DESCRIPTION

PROTOCOLS

ADDRESSING

258 man pages section 7: Device and Network Interfaces • Last Revised 3 Aug 2000

Addresses in the Internet protocol family use the sockaddr_in structure, which has
that following members:

short sin_family;
ushort_t sin_port;
struct in_addr sin_addr;

char sin_zero[8];Library routines are provided to manipulate structures of this
form; See inet(3SOCKET).

The sin_addr field of the sockaddr_in structure specifies a local or remote IP
address. Each network interface has its own unique IP address. The special value
INADDR_ANY may be used in this field to effect “wildcard” matching. Given in a
bind(3SOCKET) call, this value leaves the local IP address of the socket unspecified,
so that the socket will receive connections or messages directed at any of the valid IP
addresses of the system. This can prove useful when a process neither knows nor cares
what the local IP address is or when a process wishes to receive requests using all of
its network interfaces. The sockaddr_in structure given in the bind(3SOCKET) call
must specify an in_addr value of either INADDR_ANY or one of the system’s valid IP
addresses. Requests to bind any other address will elicit the error EADDRNOTAVAIL.
When a connect(3SOCKET) call is made for a socket that has a wildcard local
address, the system sets the sin_addr field of the socket to the IP address of the
network interface that the packets for that connection are routed through.

The sin_port field of the sockaddr_in structure specifies a port number used by
TCP or UDP. The local port address specified in a bind(3SOCKET) call is restricted to
be greater than IPPORT_RESERVED (defined in <<netinet/in.h>>) unless the
creating process is running as the superuser, providing a space of protected port
numbers. In addition, the local port address must not be in use by any socket of same
address family and type. Requests to bind sockets to port numbers being used by
other sockets return the error EADDRINUSE. If the local port address is specified as 0,
then the system picks a unique port address greater than IPPORT_RESERVED. A
unique local port address is also picked when a socket which is not bound is used in a
connect(3SOCKET) or sendto (see send(3SOCKET)) call. This allows programs
which do not care which local port number is used to set up TCP connections by
simply calling socket(3SOCKET) and then connect(3SOCKET), and to send UDP
datagrams with a socket(3SOCKET) call followed by a sendto() call.

Although this implementation restricts sockets to unique local port numbers, TCP
allows multiple simultaneous connections involving the same local port number so
long as the remote IP addresses or port numbers are different for each connection.
Programs may explicitly override the socket restriction by setting the SO_REUSEADDR
socket option with setsockopt (see getsockopt(3SOCKET)).

TLI applies somewhat different semantics to the binding of local port numbers. These
semantics apply when Internet family protocols are used using the TLI.

ioctl(2), bind(3SOCKET), byteorder(3SOCKET), connect(3SOCKET),
gethostbyname(3NSL), getnetbyname(3SOCKET), getprotobyname(3SOCKET),

inet(7P)

SEE ALSO

Device and Network Interfaces 259

getservbyname(3SOCKET), getsockopt(3SOCKET), send(3SOCKET),
socket(3SOCKET), arp(7P), icmp(7P), ip(7P), tcp(7P), udp(7P)

Network Information Center, DDN Protocol Handbook (3 vols.), Network Information
Center, SRI International, Menlo Park, Calif., 1985.

The Internet protocol support is subject to change as the Internet protocols develop.
Users should not depend on details of the current implementation, but rather the
services exported.

inet(7P)

NOTES

260 man pages section 7: Device and Network Interfaces • Last Revised 3 Aug 2000

ip6 – Internet Protocol Version 6

#include <sys/socket.h>
#include <netinet/in.h>,

#include <netinet/ip6.h>

s = socket(AF_INET6, SOCK_RAW, proto);

t = t_open ("/dev/rawip6", O_RDWR);

The IPv6 protocol is the next generation of the internetwork datagram delivery
protocol of the Internet protocol family. Programs may use IPv6 through higher-level
protocols such as the Transmission Control Protocol (TCP) or the User Datagram
Protocol (UDP), or may interface directly to IPv6. See tcp(7P) and udp(7P). Direct
access may be by means of the socket interface, using a “raw socket,” or by means of
the Transport Level Interface (TLI). The protocol options and IPv6 extension headers
defined in the IPv6 specification may be set in outgoing datagrams.

The STREAMS driver /dev/rawip6 is the TLI transport provider that provides raw
access to IPv6.

Raw IPv6 sockets are connectionless and are normally used with the sendto() and
recvfrom() calls (see send(3SOCKET) and recv(3SOCKET)), although the
connect(3SOCKET) call may also be used to fix the destination for future datagrams.
In this case, the read(2) or recv(3SOCKET) and write(2) or send(3SOCKET) calls
may be used. Ancillary data may also be sent or received over raw IPv6 sockets using
the sendmsg(3SOCKET) and recvmsg(3SOCKET) system calls.

Unlike raw IP, IPv6 applications do not include a complete IPv6 header when sending;
there is no IPv6 analog to the IP IP_HDRINCL socket option. IPv6 header values may
be specified or received as ancillary data to a sendmsg(3SOCKET) or
recvmsg(3SOCKET) system call, or may be specified as "sticky" options on a
per-socket basis by using the setsockopt(3SOCKET) system call. Such sticky options
are applied to all outbound packets unless overridden by ancillary data. If any
ancillary data is specified in a sendmsg(3SOCKET) call, all sticky options not
explicitly overridden revert to default values for that datagram only; the sticky options
persist as set for subsequent datagrams.

Since sendmsg(3SOCKET) is not supported for SOCK_STREAM upper level protocols
such as TCP, ancillary data is unsupported for TCP. Sticky options, however, are
supported.

Since sendmsg(3SOCKET) is supported for SOCK_DGRAM upper level protocols, both
ancillary data and sticky options are supported for UDP, ICMP6, and raw IPv6
sockets.

The socket options supported at the IPv6 level are:

IPV6_BOUND_IF Limit reception transmission of packets to this
interface. Takes an integer as an argument; the integer
is the selected interace index.

ip6(7P)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

Device and Network Interfaces 261

IPV6_UNSPEC_SRC Boolean. Allow/disallow sending with a zero source
address.

IPV6_UNICAST_HOPS Default hop limit for unicast datagrams. This option
takes an integer as an argument. Its value becomes the
new default value for ip6_hops that IPv6 will use on
outgoing unicast datagrams sent from that socket. The
initial default is 60.

IPV6_CHECKSUM Specify the integer offset in bytes into the user data of
the checksum location. Does not apply to the ICMP6
protocol. Note: checksums are required for all IPv6
datagrams; this is different from IP, in which datagram
checksums were optional. IPv6 will compute the ULP
checksum if the value in the checksum field is zero.

IPV6_SEC_OPT Enable or obtain IPsec security settings for this socket.
For more details on the protection services of IPsec, see
ipsec(7P).

The following options are boolean switches controlling the reception of ancillary data:

IPV6_RECVPKTINFO Enable/disable receipt of the index of the interface the
packet arrived on, and of the inbound packet’s
destination address.

IPV6_RECVHOPLIMIT Enable/disable receipt of the inbound packet’s current
hoplimit.

IPV6_RECVHOPOPTS Enable/disable receipt of the inbound packet’s IPv6
hop-by-hop extension header.

IPV6_RECVDSTOPTS Enable/disable receipt of the inbound packet’s IPv6
destination options extension header.

IPV6_RECVRTHDR Enable/disable receipt of the inbound packet’s IPv6
routing header.

IPV6_RECVRTHDRDSTOPTS Enable/disable receipt of the inbound packet’s
intermediate-hops options extension header.

The following options may be set as sticky options with setsockopt(3SOCKET) or as
ancillary data to a sendmsg(3SOCKET) system call:

IPV6_PKTINFO Set the source address and/or interface out which the
packet(s) will be sent. Takes a struct ip6_pktinfo
as the parameter.

IPV6_HOPLIMIT Set the initial hoplimit for outbound datagrams. Takes
an integer as the parameter. Note: This option sets the
hoplimit only for ancillary data or sticky options and
does not change the default hoplimit for the socket; see

ip6(7P)

262 man pages section 7: Device and Network Interfaces • Last Revised 18 Apr 2001

IPV6_UNICAST_HOPS and IPV6_MULTICAST_HOPS
to change the socket’s default hoplimit.

IPV6_NEXTHOP Specify the IPv6 address of the first hop, which must be
a neighbor of the sending host. Takes a struct
sockaddr_in6 as the parameter. When this option
specifies the same address as the destination IPv6
address of the datagram, this is equivalent to the
existing SO_DONTROUTE option.

IPV6_HOPOPTS Specify one or more hop-by-hop options. Variable
length. Takes a complete IPv6 hop-by-hop options
extension header as the parameter.

IPV6_DSTOPTS Specify one or more destination options. Variable
length. Takes a complete IPv6 destination options
extension header as the parameter.

IPV6_RTHDR Specify the IPv6 routing header. Variable length. Takes
a complete IPv6 routing header as the parameter.
Currently, only type 0 routing headers are supported.

IPV6_RTHDRDSTOPTS Specify one or more destination options for all
intermediate hops. May be configured, but will not be
applied unless an IPv6 routing header is also
configured. Variable length. Takes a complete IPv6
destination options extension header as the parameter.

The following options affect the socket’s multicast behavior:

IPV6_JOIN_GROUP Join a multicast group. Takes a struct ipv6_mreq as
the parameter; the structure contains a multicast
address and an interface index.

IPV6_LEAVE_GROUP Leave a multicast group. Takes a struct ipv6_mreq
as the parameter; the structure contains a multicast
address and an interface index.

IPV6_MULTICAST_IF The outgoing interface for multicast packets. This
option takes an integer as an argument; the integer is
the interface index of the selected interface.

IPV6_MULTICAST_HOPS Default hop limit for multicast datagrams. This option
takes an integer as an argument. Its value becomes the
new default value for ip6_hops that IPv6 will use on
outgoing multicast datagrams sent from that socket.
The initial default is 1.

IPV6_MULTICAST_LOOP Loopback for multicast datagrams. Normally multicast
datagrams are delivered to members on the sending
host. Setting the unsigned character argument to 0 will
cause the opposite behavior.

ip6(7P)

Device and Network Interfaces 263

The multicast socket options can be used with any datagram socket type in the IPv6
family.

At the socket level, the socket option SO_DONTROUTE may be applied. This option
forces datagrams being sent to bypass routing and forwarding by forcing the IPv6
hoplimit field to 1, meaning that the packet will not be forwarded by routers.

Raw IPv6 datagrams can also be sent and received using the TLI connectionless
primitives.

Datagrams flow through the IPv6 layer in two directions: from the network up to user
processes and from user processes down to the network. Using this orientation, IPv6 is
layered above the network interface drivers and below the transport protocols such as
UDP and TCP. The Internet Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) is logically a part of IPv6. See icmp6(7P).

Unlike IP, IPv6 provides no checksum of the IPv6 header. Also unlike IP, upper level
protocol checksums are required. IPv6 will compute the ULP/data portion checksum
if the checksum field contains a zero (see IPV6_CHECKSUM option above).

IPv6 extension headers in received datagrams are processed in the IPv6 layer
according to the protocol specification. Currently recognized IPv6 extension headers
include hop-by-hop options header, destination options header, routing header
(currently, only type 0 routing headers are supported), and fragment header.

The IPv6 layer will normally act as a router (forwarding datagrams that are not
addressed to it, among other things) when the machine has two or more IPv6
interfaces that are up. This behavior can be overridden by using ndd(1M) to set the
/dev/ip6 variable, ip6_forwarding. The value 0 means do not forward; the value
1 means forward. The initialization scripts (see /etc/init.d/inetinit) set this
value at boot time based on the number of "up" interfaces and whether or not the
neighbor discovery protocol daemon configuration file /etc/inet/ndpd.conf
exists. The default value is zero; ip6_forwarding is set to 1 only if more than one
interface has been configured for IPv6 and if /etc/inet/ndpd.conf exists.

Additionally, finer grained forwarding can be configured in IPv6. Each interface will
create an ifname:ip6_forwarding /dev/ip6 variable that can be modified using
ndd(1M). If a per-interface :ip6_forwarding variable is set to 0, packets will neither
be forwarded from this interface to others, nor forwarded to this interface. Setting the
ip6_forwarding variable will toggle all of the per-interface :ip6_forwarding
variables to the setting of ip6_forwarding.

The IPv6 layer will send an ICMP6 message back to the source host in many cases
when it receives a datagram that can not be handled. A "time exceeded" ICMP6
message will be sent if the ip6_hops field in the IPv6 header drops to zero in the
process of forwarding a datagram. A "destination unreachable" message will be
sent by a router or by the originating host if a datagram can not be sent on because
there is no route to the final destination; it will be sent by a router when it encounters
a firewall prohibition; it will be sent by a destination node when the transport protocol

ip6(7P)

264 man pages section 7: Device and Network Interfaces • Last Revised 18 Apr 2001

(that is, TCP) has no listener. A "packet too big" message will be sent by a router if
the packet is larger than the MTU of the outgoing link (this is used for Path MTU
Discovery). A "parameter problem" message will be sent if there is a problem with a
field in the IPv6 header or any of the IPv6 extension headers such that the packet
cannot be fully processed.

The IPv6 layer supports fragmentation and reassembly. Datagrams are fragmented on
output if the datagram is larger than the maximum transmission unit (MTU) of the
network interface. Fragments of received datagrams are dropped from the reassembly
queues if the complete datagram is not reconstructed within a short time period.

Errors in sending discovered at the network interface driver layer are passed by IPv6
back up to the user process.

ndd(1M), read(2), write(2), bind(3SOCKET), connect(3SOCKET),
getsockopt(3SOCKET), recv(3SOCKET), recvmsg(3SOCKET), send(3SOCKET),
sendmsg(3SOCKET), setsockopt(3SOCKET), defaultrouter(4), icmp6(7P),
if_tcp(7P), ipsec(7P), inet6(7P), routing(7P), tcp(7P), udp(7P)

Deering, S. and Hinden, B. RFC 2460, Internet Protocol, Version 6 (IPv6) Specification. The
Internet Society. December, 1998.

Stevens, W., and Thomas, M. RFC 2292, Advanced Sockets API for IPv6. Network
Working Group. February 1998.

A socket operation may fail with one of the following errors returned:

EACCES A bind() operation was attempted with a “reserved”
port number and the effective user ID of the process
was not the privileged user.

EADDRINUSE A bind() operation was attempted on a socket with a
network address/port pair that has already been
bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted for an address that
is not configured on this machine.

EINVAL A sendmsg() operation with a non-NULL
msg_accrights was attempted.

EINVAL A getsockopt() or setsockopt() operation with
an unknown socket option name was given.

EINVAL A getsockopt() or setsockopt() operation was
attempted with the IPv6 option field improperly
formed; an option field was shorter than the minimum
value or longer than the option buffer provided; the
value in the option field was invalid.

EISCONN A connect() operation was attempted on a socket on
which a connect() operation had already been

ip6(7P)

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 265

performed, and the socket could not be successfully
disconnected before making the new connection.

EISCONN A sendto() or sendmsg() operation specifying an
address to which the message should be sent was
attempted on a socket on which a connect()
operation had already been performed.

EMSGSIZE A send(), sendto(), or sendmsg() operation was
attempted to send a datagram that was too large for an
interface, but was not allowed to be fragmented (such
as broadcasts).

ENETUNREACH An attempt was made to establish a connection via
connect(), or to send a datagram by means of
sendto() or sendmsg(), where there was no
matching entry in the routing table; or if an ICMP
“destination unreachable” message was
received.

ENOTCONN A send() or write() operation, or a sendto() or
sendmsg() operation not specifying an address to
which the message should be sent, was attempted on a
socket on which a connect() operation had not
already been performed.

ENOBUFS The system ran out of memory for fragmentation
buffers or other internal data structures.

ENOMEM The system was unable to allocate memory for an IPv6
socket option or other internal data structures.

ENOPROTOOPT An IP socket option was attempted on an IPv6 socket,
or an IPv6 socket option was attempted on an IP
socket.

Applications using the sockets API must use the Advanced Sockets API for IPv6 (RFC
2292) to see elements of the inbound packet’s IPv6 header or extension headers.

ip6(7P)

NOTES

266 man pages section 7: Device and Network Interfaces • Last Revised 18 Apr 2001

ip, IP – Internet Protocol

#include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_RAW, proto);

t = t_open ("/dev/rawip", O_RDWR);

IP is the internetwork datagram delivery protocol that is central to the Internet
protocol family. Programs may use IP through higher-level protocols such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), or may
interface directly to IP. See tcp(7P) and udp(7P). Direct access may be by means of the
socket interface, using a “raw socket,” or by means of the Transport Level Interface
(“TLI”). The protocol options defined in the IP specification may be set in outgoing
datagrams.

The STREAMS driver /dev/rawip is the TLI transport provider that provides raw
access to IP.

Raw IP sockets are connectionless and are normally used with the sendto() and
recvfrom() calls (see send(3SOCKET) and recv(3SOCKET)), although the
connect(3SOCKET) call may also be used to fix the destination for future datagram.
In this case, the read(2) or recv(3SOCKET) and write(2) or send(3SOCKET) calls
may be used. If proto is IPPROTO_RAW or IPPROTO_IGMP, the application is expected
to include a complete IP header when sending. Otherwise, that protocol number will
be set in outgoing datagrams and used to filter incoming datagrams and an IP header
will be generated and prepended to each outgoing datagram. In either case, received
datagrams are returned with the IP header and options intact.

The socket options supported at the IP level are:

IP_OPTIONS IP options for outgoing datagrams. This socket option
may be used to set IP options to be included in each
outgoing datagram. IP options to be sent are set with
setsockopt() (see getsockopt(3SOCKET)). The
getsockopt(3SOCKET) call returns the IP options set
in the last setsockopt() call. IP options on received
datagrams are visible to user programs only using raw
IP sockets. The format of IP options given in
setsockopt() matches those defined in the IP
specification with one exception: the list of addresses
for the source routing options must include the
first-hop gateway at the beginning of the list of
gateways. The first-hop gateway address will be
extracted from the option list and the size adjusted
accordingly before use. IP options may be used with
any socket type in the Internet family.

ip(7P)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

Device and Network Interfaces 267

IP_SEC_OPT Enable or obtain IPsec security settings for this socket.
For more details on the protection services of IPsec, see
ipsec(7P).

IP_ADD_MEMBERSHIP Join a multicast group.

IP_DROP_MEMBERSHIP Leave a multicast group.

These options take a struct ip_mreq as the parameter. The structure contains a
multicast address which has to be set to the CLASS-D IP multicast address, and an
interface address. Normally the interface address is set to INADDR_ANY which causes
the kernel to choose the interface to join on.

IP_MULTICAST_IF The outgoing interface for multicast packets. This
option takes a struct in_addr as an argument, and
it selects that interface for outgoing IP multicast
packets. If the address specified is INADDR_ANY, it will
use the unicast routing table to select the outgoing
interface (which is the default behavior).

IP_MULTICAST_TTL Time to live for multicast datagrams. This option takes
an unsigned character as an argument. Its value is the
TTL that IP will use on outgoing multicast datagrams.
The default is 1.

IP_MULTICAST_LOOP Loopback for multicast datagrams. Normally multicast
datagrams are delivered to members on the sending
host. Setting the unsigned character argument to 0 will
cause the opposite behavior.

IP_TOS This option takes an integer argument as its input
value. The least significant 8 bits of the value are used
to set the Type Of Service field in the IP header of the
outgoing packets.

The multicast socket options can be used with any datagram socket type in the
Internet family.

At the socket level, the socket option SO_DONTROUTE may be applied. This option
forces datagrams being sent to bypass routing and forwarding by forcing the IP Time
To Live field to 1, meaning that the packet will not be forwarded by routers.

Raw IP datagrams can also be sent and received using the TLI connectionless
primitives.

Datagrams flow through the IP layer in two directions: from the network up to user
processes and from user processes down to the network. Using this orientation, IP is
layered above the network interface drivers and below the transport protocols such as
UDP and TCP. The Internet Control Message Protocol (ICMP) is logically a part of IP.
See icmp(7P).

ip(7P)

268 man pages section 7: Device and Network Interfaces • Last Revised 31 Mar 2000

IP provides for a checksum of the header part, but not the data part, of the datagram.
The checksum value is computed and set in the process of sending datagrams and
checked when receiving datagrams.

IP options in received datagrams are processed in the IP layer according to the
protocol specification. Currently recognized IP options include: security, loose source
and record route (LSRR), strict source and record route (SSRR), record route, and
internet timestamp.

The IP layer will normally act as a router when the machine has two or more
interfaces that are up, forwarding datagrams that are not addressed to it, among other
things. This behavior can be overridden by using ndd(1M) to set the /dev/ip
variable, ip_forwarding. The value 0 means do not forward; the value 1 means
forward. The initialization scripts set this value at boot time based on the number of
"up" interfaces, but will not turn on IP forwarding at all if the file /etc/notrouter
exists. See /etc/init.d/inetinit. When the IP module is loaded,
ip_forwarding is 0 and remains so if:

� only one non-DHCP-managed interface is up (the most common case)

� the file /etc/notrouter exists and DHCP does not say that IP forwarding is on

� the file /etc/defaultrouter exists and DHCP does not say IP forwarding is on

Otherwise, ip_forwarding will be set to 1.

Additionally, finer-grained forwarding can be configured in IP. Each interface will
create an <ifname>:ip_forwarding /dev/ip variable that can be modified using
ndd(1M). If a per-interface :ip_forwarding variable is set to 0, packets will neither
be forwarded from this interface to others, nor forwarded to this interface. Setting the
ip_forwarding variable will toggle all of the per-interface :ip_forwarding
variables to the setting of ip_forwarding.

The IP layer will send an ICMP message back to the source host in many cases when it
receives a datagram that can not be handled. A “time exceeded” ICMP message will be
sent if the “time to live” field in the IP header drops to zero in the process of
forwarding a datagram. A “destination unreachable” message will be sent if a
datagram can not be forwarded because there is no route to the final destination, or if
it can not be fragmented. If the datagram is addressed to the local host but is destined
for a protocol that is not supported or a port that is not in use, a destination
unreachable message will also be sent. The IP layer may send an ICMP “source
quench” message if it is receiving datagrams too quickly. ICMP messages are only sent
for the first fragment of a fragmented datagram and are never returned in response to
errors in other ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented on
output if the datagram is larger than the maximum transmission unit (MTU) of the
network interface. Fragments of received datagrams are dropped from the reassembly
queues if the complete datagram is not reconstructed within a short time period.

ip(7P)

Device and Network Interfaces 269

Errors in sending discovered at the network interface driver layer are passed by IP
back up to the user process.

ndd(1M), read(2), write(2), bind(3SOCKET), connect(3SOCKET),
getsockopt(3SOCKET), recv(3SOCKET), send(3SOCKET), defaultrouter(4),
icmp(7P), if_tcp(7P), inet(7P), ip6(7P), ipsec(7P),routing(7P), tcp(7P), udp(7P)

Braden, R., RFC 1122, Requirements for Internet Hosts − Communication Layers,
Information Sciences Institute, University of Southern California, October 1989.

Postel, J., RFC 791, Internet Protocol − DARPA Internet Program Protocol Specification,
Information Sciences Institute, University of Southern California, September 1981.

A socket operation may fail with one of the following errors returned:

EACCES A bind() operation was attempted with a “reserved”
port number and the effective user ID of the process
was not the privileged user.

EADDRINUSE A bind() operation was attempted on a socket with a
network address/port pair that has already been
bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted for an address that
is not configured on this machine.

EINVAL A sendmsg() operation with a non-NULL
msg_accrights was attempted.

EINVAL A getsockopt() or setsockopt() operation with
an unknown socket option name was given.

EINVAL A getsockopt() or setsockopt() operation was
attempted with the IP option field improperly formed;
an option field was shorter than the minimum value or
longer than the option buffer provided.

EISCONN A connect() operation was attempted on a socket on
which a connect() operation had already been
performed, and the socket could not be successfully
disconnected before making the new connection.

EISCONN A sendto() or sendmsg() operation specifying an
address to which the message should be sent was
attempted on a socket on which a connect()
operation had already been performed.

EMSGSIZE A send(), sendto(), or sendmsg() operation was
attempted to send a datagram that was too large for an
interface, but was not allowed to be fragmented (such
as broadcasts).

ip(7P)

SEE ALSO

DIAGNOSTICS

270 man pages section 7: Device and Network Interfaces • Last Revised 31 Mar 2000

ENETUNREACH An attempt was made to establish a connection by
means of connect(), or to send a datagram by means
of sendto() or sendmsg(), where there was no
matching entry in the routing table; or if an ICMP
“destination unreachable” message was received.

ENOTCONN A send() or write() operation, or a sendto() or
sendmsg() operation not specifying an address to
which the message should be sent, was attempted on a
socket on which a connect() operation had not
already been performed.

ENOBUFS The system ran out of memory for fragmentation
buffers or other internal data structures.

ENOBUFS SO_SNDBUF or SO_RCVBUF exceeds a system limit.

EINVAL Invalid length for IP_OPTIONS.

EHOSTUNREACH Invalid address for IP_MULTICAST_IF.

EINVAL Not a multicast address for IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP.

EADDRNOTAVAIL Bad interface address for IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP.

EADDRINUSE Address already joined for IP_ADD_MEMBERSHIP.

ENOENT Address not joined for IP_DROP_MEMBERSHIP.

EPERM No permissions.

Raw sockets should receive ICMP error packets relating to the protocol; currently such
packets are simply discarded.

Users of higher-level protocols such as TCP and UDP should be able to see received IP
options.

ip(7P)

NOTES

Device and Network Interfaces 271

iprb – Intel 82557, 82558, 82559–controlled network interface controllers

/dev/iprb

The iprb Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7P), over
Intel D100 82557, 82558, and 82559 controllers. Multiple 82557, 82558, and 82559
controllers installed within the system are supported by the driver. The iprb driver
provides basic support for the 82557, 82558, and 82559 hardware. Functions include
chip initialization, frame transmit and receive, multicast support, and error recovery
and reporting.

The cloning, character-special device /dev/iprb is used to access all 82557, 82558,
and 82559 devices installed within the system.

The iprb driver is dependent on /kernel/misc/gld, a loadable kernel module that
provides the iprb driver with the DLPI and STREAMS functionality required of a
LAN driver. See gld(7D) for more details on the primitives supported by the driver.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� Maximum SDU is 1500 (ETHERMTU).

� Minimum SDU is 0. The driver will pad to the mandatory 60-octet minimum
packet size.

� The dlsap address length is 8.

� MAC type is DL_ETHER.

� The sap length value is −2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

� Broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

IA based systems with the Intel EtherExpress PRO/100B or the Intel EtherExpress
PRO/100+ might hang when the interface is brought down at the very instant that a
packet is being received. To avoid this, wait until the system is experiencing light or
no network traffic before bringing the interface down.

Early versions of the firmware on Intel EtherExpress PRO/100+ and Intel PRO/100+
Management adapters do not support PXE network boot on Solaris systems. Upgrade
the firmware if the version is lower than 078. PXE firmware versions are expressed as
three-digit build numbers. The build number is typically displayed by the firmware
during boot. If the PXE build number is not displayed during boot, change the system
BIOS or adapter BIOS configuration to display PXE messages during boot.

iprb Device special file

/kernel/drv/iprb.conf iprb configuration file

<sys/stropts.h> stropts network header file

iprb(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
iprb and DLPI

Known Problems
and Limitations

FILES

272 man pages section 7: Device and Network Interfaces • Last Revised 17 November 2000

<sys/ethernet.h> Ethernet network header file

<sys/dlpi.h> dlpi network header file

<sys/gld.h> gld network header file

The iprb.conf configuration file options include:

-TxURRetry
Default: 3

Allowed Values: 0, 1, 2, 3

Sets the number of retransmissions. Modified when tuning performance.

-MWIEnable
Default: 0 (Disable)

Allowed Values: 0 (Disable), 1 (Enable)

Should only be set for 82558 adapters and systems in which the PCI bus supports
Memory Write & Invalidate operations. Can improve the performance for some
configurations.

-FlowControl
Default: 0 (Disable)

Allowed Values: 0 (Disable), 1 (Enable)

Setting this value can improve the performance for some configurations

-CollisionBackOffModification
Default: 0 (Disable)

Allowed Values: 0 (Disable), 1 (Enable)

Setting this value can improve the performance for some configurations

-PhyErrataFrequency
Default: 0 (Disable)

Allowed Values: 0 (Disable), 10 (Enable)

If you have problems establishing links with cables length = 70 Ft, set this field to
10

-CpuCycleSaver
Default: 0

Allowed Values: 1 through FFFFh

Reasonable Values: 200h through 800h

iprb(7D)

Device and Network Interfaces 273

The CPUSaver algorithm improves the system’s P/E ratio by reducing the number
of interrupts generated by the card. The algorithm bundles multiple receive frames
together, then generates a single interrupt for the bundle. Because the microcode
does not support run-time configuration, configuration must be done prior to the
micro code being loaded into the chip. Changing this value from its default means
that the driver will have to be unloaded and loaded for the change to take affect.
Setting the CpuCycleSaver option to 0 prevents the algorithm from being used.
Because it varies for different network environments, the optimal value for this
parameter is impossible to predict. Accordingly, developers should run tests to
determine the effect that changing this value has on bandwidth and CPU
utilization.

-ForceSpeedDuplex
Default: 5 (Auto-negotiate)

Allowed Values: 4 (100 FDX)

3 (100 HDX)

2 (10 FDX)

1 (10 HDX)

Specify the speed and duplex mode for each instance.

Example: ForceSpeedDuplex=5,4;

Sets iprb0 to autonegotiate and iprb1 to 100 FDX.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), dlpi(7P), gld(7D)

iprb(7D)

ATTRIBUTES

SEE ALSO

274 man pages section 7: Device and Network Interfaces • Last Revised 17 November 2000

ipsec – Internet Protocol Security Architecture

The IP Security Architecture (IPsec) provides protection for IP datagrams. The
protection can include confidentiality, strong integrity of the data, partial sequence
integrity (replay protection), and data authentication. IPsec is performed inside the IP
processing, and it can be applied with or without the knowledge of an Internet
application.

IPsec applies to both IPv4 and IPv6. See ip(7P) and ip6(7P).

IPsec provides two mechanisms for protecting data. The Authentication Header (AH)
provides strong integrity, replay protection, and data authentication. AH protects as
much of the IP datagram as it can. AH cannot protect fields that change
nondeterministically between sender and receiver.

The Encapsulating Security Payload (ESP) provides confidentiality over what it
encapsulates, as well as the services that AH provides, but only over that which it
encapsulates. ESP’s authentication services are optional, which allow ESP and AH to
be used together on the same datagram without redundancy.

Authentication and encryption algorithms are used for IPsec. Authentication
algorithms produce an integrity checksum value or "digest" based on the data and a
key. The size of both the digest and the key are described in authentication algorithm
pages. See authmd5h(7M) and authsha1(7M). Encryption algorithms encrypt data
with a key. Encryption algorithms operate on data in units of a "block size." The size of
both the block size and the key size are described in the encryption algorithm pages.
See encr3des(7M) for an example of block size and key size descriptions.

AH and ESP use Security Associations (SA). SA’s are entities that specify security
properties from one host to another. Two communicating machines require two SAs
(at a minimum) to communicate securely. However, communicating machines that use
multicast can share the same multicast SA. SAs are managed through the pf_key(7P)
interface. For IPv4, automatic SA management is available through the Internet Key
Exchange (IKE), as implemented by in.iked(1M). A command-line front-end is
available by means of ipseckey(1M). An IPsec SA is identified by a tuple of <AH or
ESP, destination IP address, and SPI>. The Security Parameters Index (SPI) is an
arbitrary 32-bit value that is transmitted on the wire with an AH or ESP packet. See
ipsecah(7P) or ipsecesp(7P) for an explanation about where the SPI falls in a
protected packet.

Mechanism and policy are separate. The policy for applying IPsec can be enforced in
two places: on a system-wide or per-socket level. Configuring systemwide policy is
done by the command ipsecconf(1M). Configuring per-socket policy will be
discussed later in this section.

Systemwide IPsec policy is applied to incoming and outgoing datagrams. Some
additional rules can be applied to outgoing datagrams because of the additional data
known by the system. Inbound datagrams can either be accepted or dropped. The
decision to drop or accept an inbound datagram is based on several criteria, which

ipsec(7P)

NAME

DESCRIPTION

Protection
Mechanisms

Security
Associations

Protection Policy
and Enforcement

Mechanisms

Device and Network Interfaces 275

sometimes overlap or conflict. Conflict resolution is resolved by which rule is parsed
first, with one exception. If a policy entry states that traffic should bypass all other
policy, it will automaticaly be accepted. Outbound datagrams will be sent with or
without protection. Protection may (or may not) indicate specific algorithms. If policy
normally would protect a datagram, it can be bypassed in either by an exception in
systemwide policy, or by requesting a bypass in per-socket policy.

Intra-machine traffic policies are enforced, but actual security mechanisms are not
applied; rather, the outbound policy on an intra-machine packet translates into an
inbound packet with those mechanisms applied.

The IP_SEC_OPT or IPV6_SEC_OPT socket option is used to set per-socket IPsec
policy. The structure used for an IP_SEC_OPT request is:

typedef struct ipsec_req {
uint_t ipsr_ah_req; /* AH request */
uint_t ipsr_esp_req; /* ESP request */
uint_t ipsr_self_encap_req; /* Self-Encap request */
uint8_t ipsr_auth_alg; /* Auth algs for AH */
uint8_t ipsr_esp_alg; /* Encr algs for ESP */
uint8_t ipsr_esp_auth_alg; /* Auth algs for ESP */

} ipsec_req_t;

The IPsec request has fields for both AH and ESP. Algorithms may or may not be
specified. The actual request for AH or ESP services can take one of the following
values:

IPSEC_PREF_NEVER Bypass all policy. Only the superuser may request this
service.

IPSEC_PREF_REQUIRED Regardless of other policy, require the use of the IPsec
service.

The following value can be logically ORed to an IPSEC_PREF_REQUIRED value:

IPSEC_PREF_UNIQUE Regardless of other policy, enforce a unique SA for
traffic originating from this socket.

In the event IP options not normally encapsulated by ESP need to be, the
ipsec_self_encap_req is used to add an additional IP header outside the original
one. Algorithm values from <net/pfkeyv2.h> are as follows:

SADB_AALG_MD5HMAC Uses the MD5-HMAC (RFC 2403) algorithm for
authentication. See authmd5h(7M).

SADB_AALG_SHA1HMAC Uses the SHA1-HMAC (RFC 2404) algorithm for
authentication. See authsha1(7M).

SADB_EALG_DESCBC Uses the DES (RFC 2405) algorithm for encryption. See
encrdes(7M).

ipsec(7P)

Per-Socket Policy

276 man pages section 7: Device and Network Interfaces • Last Revised 21 Sep 2001

SADB_EALG_3DESCBC Uses the Triple DES (RFC 2451) algorithm for
encryption. See encr3des(7M).

SADB_EALG_BLOWFISH Uses the Blowfish (RFC 2451) algorithm for encryption.
See encrbfsh(7M).

SADB_EALG_AES Uses the Advanced Encryption Standard algorithm for
encryption. See encraes(7M).

An application should use either the getsockopt(3SOCKET) or the
setsockopt(3SOCKET) call to manipulate IPsec requests. For example:

#include <sys/socket.h>
#include <netinet/in.h>
#include <net/pfkeyv2.h> /* For SADB_*ALG_* */
/* socket setup skipped */
rc = setsockopt(s, IPPROTO_IP, IP_SEC_OPT,

(const char *)&ipsec_req, sizeof (ipsec_req_t));

While IPsec is an effective tool in securing network traffic, it will not make security
problems disappear. Security issues beyond the mechanisms that IPsec offers may be
discussed in similar “Security Consideration” sections within individual reference
manual pages.

While a non-root user cannot bypass IPsec, a non-root user can set policy to be
different from the system-wide policy. For ways to prevent this, consult the ndd(1M)
variables in /dev/ip.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

in.iked(1M), ipsecconf(1M), ipseckey(1M), getsockopt(3SOCKET),
setsockopt(3SOCKET), attributes(5), authmd5h(7M), authsha1(7M),
encraes(7M), encrbfsh(7M), encrdes(7M), encr3des(7M), inet(7P), ip(7P),
ip6(7P), ipsecah(7P), ipsecesp(7P), pf_key(7P)

Kent, S., and Atkinson, R., RFC 2401, Security Architecture for the Internet Protocol, The
Internet Society, 1998.

Kent, S. and Atkinson, R., RFC 2406, IP Encapsulating Security Payload (ESP), The
Internet Society, 1998.

Madson, C., and Doraswamy, N., RFC 2405, The ESP DES-CBC Cipher Algorithm with
Explicit IV, The Internet Society, 1998.

ipsec(7P)

SECURITY
CONSIDERATIONS

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 277

Madsen, C. and Glenn, R., RFC 2403, The Use of HMAC-MD5-96 within ESP and AH,
The Internet Society, 1998.

Madsen, C. and Glenn, R., RFC 2404, The Use of HMAC-SHA-1-96 within ESP and AH,
The Internet Society, 1998.

Pereira, R. and Adams, R., RFC 2451, The ESP CBC-Mode Cipher Algorithms, The
Internet Society, 1998.

ipsec(7P)

278 man pages section 7: Device and Network Interfaces • Last Revised 21 Sep 2001

ipsecah, AH – IPsec Authentication Header

drv/ipsecah

The ipsecah module (“AH”) provides strong integrity, authentication, and partial
sequence integrity (replay protection) to IP datagrams. AH protects the parts of the IP
datagram that can be predicted by the sender as it will be received by the receiver. For
example, the IP TTL field is not a predictable field, and is not protected by AH.

AH is inserted between the IP header and the transport header. The transport header
can be TCP, UDP, ICMP, or another IP header, if tunnels are being used. See tun(7M).

AH is implemented as a module that is auto-pushed on top of IP. The entry
/dev/ipsecah is used for tuning AH with ndd(1M), as well as to allow future
authentication algorithms to be loaded on top of AH. Current authentication
algorithms include HMAC-MD5 and HMAC-SHA-1. See authmd5h(7M) and
authsha1(7P). Each authentication algorithm has its own key size and key format
properties.

Without replay protection enabled, AH is vulnerable to replay attacks. AH does not
protect against eavesdropping. Data protected with AH can still be seen by an
adversary.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx (64-bit)

Interface Stability Evolving

ipsecconf(1M), ndd(1M), attributes(5), authmd5h(7M), authsha1(7P), ip(7P),
ipsec(7P), ipsecesp(7P), tun(7M)

Kent, S. and Atkinson, R.RFC 2402, IP Authentication Header, The Internet Society, 1998.

ipsecah(7P)

NAME

SYNOPSIS

DESCRIPTION

Authentication
Algorithms And
The AH Device

Security
Considerations

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 279

ipsecesp, ESP – IPsec Encapsulating Security Payload

drv/ipsecesp

The ipsecesp module provides confidentiality, integrity, authentication, and partial
sequence integrity (replay protection) to IP datagrams. The encapsulating security
payload (ESP) encapsulates its data, enabling it to protect data that follows in the
datagram. For TCP packets, ESP encapsulates the TCP header and its data only. If the
packet is an IP in IP datagram, ESP protects the inner IP datagram. Per-socket policy
allows "self-encapsulation" so ESP can encapsulate IP options when necessary. See
ipsec(7P).

Unlike the authentication header (AH), ESP allows multiple varieties of datagram
protection. (Using a single datagram protection form can expose vulnerabilities.) For
example, only ESP can be used to provide confidentiality. But protecting
confidentiality alone exposes vulnerabilities in both replay attacks and cut-and-paste
attacks. Similarly, if ESP protects only integrity and does not fully protect against
eavesdropping, it may provide weaker protection than AH. See ipsecah(7P).

ESP is implemented as a module that is auto-pushed on top of IP. Use the
/dev/ipsecesp entry to tune ESP with ndd(1M), as well as to allow future
algorithms to be loaded on top of ESP. ESP allows encryption algorithms to be pushed
on top of it, in addition to the authentication algorithms that can be used in AH.
Authentication algorithms include HMAC-MD5 and HMAC-SHA-1. See
authmd5h(7M) and authsha1(7M). Encryption algorithms include DES, Triple-DES,
Blowfish and AES. See encrdes(7M), encr3des(7M), encrbfsh(7M) and
encraes(7M). Each authentication and encryption algorithm contain key size and key
format properties. Because of export laws in the United States, not all encryption
algorithms are available outside of the United States.

ESP without authentication exposes vulnerabilities to cut-and-paste cryptographic
attacks as well as eavesdropping attacks. Like AH, ESP is vulnerable to eavesdropping
when used without confidentiality.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx (64-bit)

Interface Stability Evolving

ipsecconf(1M), ndd(1M), attributes(5), authmd5h(5), authsha1(7M),
encrdes(7M), encr3des(7M), encrbfsh(7M), ip(7P), ipsec(7P), ipsecah(7P)

Kent, S. and Atkinson, R.RFC 2406, IP Encapsulating Security Payload (ESP), The
Internet Society, 1998.

ipsecesp(7P)

NAME

SYNOPSIS

DESCRIPTION

Algorithms and
the ESP Device

Security
Considerations

ATTRIBUTES

SEE ALSO

280 man pages section 7: Device and Network Interfaces • Last Revised 20 Mar 2001

Due to United States export control laws, encryption strength available on ESP varies
for versions of the SunOS sold outside the United States.

See authmd5h(7M) and authsha1(7M). Encryption algorithms include DES,
Triple-DES, Blowfish and AES. See encrdes(7M), encr3des(7M), and
encrbfsh(7M).

ipsecesp(7P)

NOTES

Device and Network Interfaces 281

isdnio – ISDN interfaces

#include <sun/audioio.h>

#include <sun/isdnio.h>

int ioctl(int fd, int command, /* arg */ ...);

ISDN ioctl commands are a subset of ioctl(2) commands that perform a variety of
control functions on Integrated Services Digital Network (ISDN) STREAMS devices.
The arguments command and arg are passed to the file designated by fd and are
interpreted by the ISDN device driver.

fd is an open file descriptor that refers to a stream. command determines the control
function to be performed as described in the IOCTLS section of this document. arg
represents additional information that is needed by command. The type of arg depends
upon the command, but generally it is an integer or a pointer to a command-specific
data structure.

Since these ISDN commands are a subset of ioctl and streamio(7I), they are
subject to errors as described in those interface descriptions.

This set of generic ISDN ioctl commands is meant to control various types of ISDN
STREAMS device drivers. The following paragraphs give some background on
various types of ISDN hardware interfaces and data formats, and other device
characteristics.

This manual page discusses operations on, and facilities provided by ISDN controllers,
interfaces and channels. A controller is usually a hardware peripheral device that
provides one or more ISDN interfaces and zero or more auxiliary interfaces. In this
context, the term interface is synonymous with the term “port”. Each interface can
provide one or more channels.

ISDN BRI-TE, BRI-NT, and PRI interfaces are all examples of Time Division
Multiplexed Serial Interfaces. As an example, a Basic Rate ISDN (BRI) Terminal
Equipment (TE) interface provides one D-channel and two B-channels on the same set
of signal wires. The BRI interface, at the S reference point, operates at a bit rate of
192,000 bits per second. The bits are encoded using a pseudoternary coding system
that encodes a logic one as zero volts, and a logic zero as a positive or negative
voltage. Encoding rules state that adjacent logic zeros must be encoded with opposite
voltages. Violations of this rule are used to indicate framing information such that
there are 4000 frames per second, each containing 48 bits. These 48 bits are divided
into channels. Not including framing and synchronization bits, the frame is divided
into 8 bits for the B1-channel, 1 bit for the D-channel, 8 bits for B2, 1 bit for D, 8 bits for
B1, 1 bit for D, and 8 bits for B2. This results in a 64,000 bps B1-channel, a 64,000 bps
B2-channel, and a 16,000 bps D-channel, all on the same serial interface.

A Basic Rate ISDN (BRI) interface consists of a 16000 bit per second Delta Channel
(D-channel) for signaling and X.25 packet transmission, and two 64000 bit per second
Bearer Channels (B-channels) for transmission of voice or data.

isdnio(7I)

NAME

SYNOPSIS

DESCRIPTION

Controllers,
Interfaces, and

Channels

Time Division
Multiplexed Serial

Interfaces

Basic Rate ISDN

282 man pages section 7: Device and Network Interfaces • Last Revised 7 Apr 1998

The CCITT recommendations on ISDN Basic Rate interfaces, I.430, identify several
“reference points” for standardization. From (Stallings89): Reference point T (terminal)
corresponds to a minimal ISDN network termination at the customer’s premises. It
separates the network provider’s equipment from the user’s equipment. Reference
point S (system) corresponds to the interface of individual ISDN terminals. It separates
user terminal equipment from network-related communications functions. Reference
point R (rate) provides a non-ISDN interface between user equipment that is not
ISDN-compatible and adaptor equipment. . . . The final reference point . . . is
reference point U (user). This interface describes the full-duplex data signal on the
subscriber line.

Some older technology components of some ISDN networks occasionally steal the low
order bit of an ISDN B-channel octet in order to transmit in-band signaling
information between switches or other components of the network. Even when
out-of-band signaling has been implemented in these networks, and the in-band
signaling is no longer needed, the bit-robbing mechanism may still be present. This bit
robbing behavior does not appreciably affect a voice call, but it will limit the usable
bandwidth of a data call to 56000 bits per second instead of 64000 bits per second.
These older network components only seem to exist in the United States of America,
Canada and Japan. ISDN B-channel data calls that have one end point in the United
States, Canada or Japan may be limited to 56000 bps usable bandwidth instead of the
normal 64000 bps. Sometimes the ISDN service provider may be able to supply 56kbps
for some calls and 64kbps for other calls. On an international call, the local ISDN
service provider may advertise the call as 64kbps even though only 56kbps are reliably
delivered because of bit-robbing in the foreign ISDN that is not reported to the local
switch.

A Basic Rate Interface implements either a Terminal Equipment (TE) interface or a
Network Termination (NT) interface. TE’s can be ISDN telephones, a Group 4 fax, or
other ISDN terminal equipment. A TE connects to an NT in order to gain access to a
public or private ISDN network. A private ISDN network, such as provided by a
Private Branch Exchange (PBX), usually provides access to the public network.

If multi-point configurations are allowed by an NT, it may be possible to connect up to
eight TE’s to a single NT interface. All of the TE’s in a multipoint configuration share
the same D and B-channels. Contention for B-Channels by multiple TEs is resolved by
the ISDN switch (NT) through signaling protocols on the D-channel.

Contention for access to the D-channel is managed by a collision detection and
priority mechanism. D-channel call control messages have higher priority than other
packets. This media access function is managed at the physical layer.

A BRI-TE interface may implement a “Q-channel”, the Q-channel is a slow speed, 800
bps, data path from a TE to an NT. Although the structure of the Q-channel is defined
in the I.430 specification, the use of the Q-channel is for further study.

A BRI-NT interface may implement an “S-channel”, the S-channel is a slow speed,
4000 bps, data path from a NT to an TE. The use of the S-channel is for further study.

isdnio(7I)

Device and Network Interfaces 283

Primary Rate ISDN (PRI) interfaces are either 1.544Mbps (T1 rate) or 2.048Mbps (E1
rate) and are typically organized as 23 B-channels and one D-Channel (23B+D) for T1
rates, and 30 B-Channels and one D-Channel (30B+D) for E1 rates. The D-channels on
a PRI interface operate at 64000 bits per second. T1 rate PRI interface is the standard in
the United States, Canada and Japan while E1 rate PRI interface is the standard in
European countries. Some E1 rate PRI interface implementations allow access to
channel zero which is used for framing.

ISDN channels fall into several categories; D-channels, bearer channels, and
management pseudo channels. Each channel has a corresponding device name
somewhere under the directory /dev/isdn/ as documented in the appropriate
hardware specific manual page.

D-channels
There is at most one D-channel per ISDN interface. The D-channel carries signaling
information for the management of ISDN calls and can also carry X.25 packet data.
In the case of a PRI interface, there may actually be no D-channel if Non-Facility
Associated Signaling is used. D-channels carry data packets that are framed and
checked for transmission errors according to the LAP-D protocol. LAP-D uses
framing and error checking identical to the High Speed Data Link (HDLC) protocol.

B-channels
BRI interfaces have two B-channels, B1 and B2. On a BRI interface, the only other
type of channel is an H-channel which is a concatenation of the B1 and B2 channels.
An H-channel is accessed by opening the “base” channel, B1 in this case, and using
the ISDN_SET_FORMAT ioctl to change the configuration of the B-channel from
8-bit, 8 kHz to 16-bit, 8kHz.

On a primary rate interface, B channels are numbered from 0 to 31 in Europe and 1
to 23 in the United States, Canada and Japan.

H-Channels
A BRI or PRI interface can offer multiple B-channels concatenated into a single,
higher bandwidth channel. These concatenated B-channels are referred to as an
“H-channels” on a BRI interface. The PRI interface version of an H-channel is
referred to as an Hn-channels where n is a number indicating how the B-channels
have been aggregated into a single channel.

� A PRI interface H0 channel is 384 kbps allowing 3H0+D on a T1 rate PRI
interface and 4H0+D channels on an E1 rate PRI interface.

� A T1 PRI interface H11 channel is 1536 kbps (24×64000bps). This will consume
the channel normally reserved for the D-channel, so signaling must be done
with Non-Facility Associated Signaling (NFAS) from another PRI interface.

� An E1 PRI interface H12 channel is 1920 kbps (30×64000bps). An H12-channel
leaves room for the framing-channel as well as the D-channel.

Auxiliary channels
Auxiliary channels are non-ISDN hardware interfaces that are closely tied to the
ISDN interfaces. An example would be a video or audio coder/decoder (codec).

isdnio(7I)

Primary Rate
ISDN

Channel Types

284 man pages section 7: Device and Network Interfaces • Last Revised 7 Apr 1998

The existence of an auxiliary channel usually implies that one or more B-channels
can be “connected” to an auxiliary interface in hardware.

Management pseudo-channels
A management pseudo-channel is used for the management of a controller,
interface, or hardware channel. Management channels allow for out-of-band control
of hardware interfaces and for out-of-band notification of status changes. There is at
least one management device per hardware interface.

There are three different types of management channels implemented by ISDN
hardware drivers:

� A controller management device handles all ioctls that simultaneously affect
hardware channels on different interfaces. Examples include resetting a
controller, mu-code (as in the Greek letter mu) downloading of a controller, or
the connection of an ISDN B-channel to an auxiliary channel that represents an
audio coder/decoder (codec). The latter case would be accomplished using the
ISDN_SET_CHANNEL ioctl.

� An interface management device handles all ioctls that affect multiple channels
on the same interface. Messages associated with the activation and deactivation
of an interface arrive on the management device associated with the D channel
of an ISDN interface.

� Auxiliary interfaces may also have management devices. See the hardware
specific man pages for operations on auxiliary devices.

Trace pseudo-channels
A device driver may choose to implement a trace device for a data or management
channel. Trace channels receive a special M_PROTO header with the original
channel’s original M_PROTO or M_DATA message appended to the special header.
The header is described by:

typedef struct {
uint_t seq; /* Sequence number */
int type; /* device dependent */
struct timeval timestamp;
char _f[8]; /* filler */

} audtrace_hdr_t;

The isdn_chan_t type enumerates the channels available on ISDN interfaces. If a
particular controller implements any auxiliary channels then those auxiliary channels
will be described in a controller specific manual page. The defined channels are
described by the isdn_chan_t type as shown below:

/* ISDN channels */
typedef enum {

ISDN_CHAN_NONE = 0x0, /* No channel given */
ISDN_CHAN_SELF, /* The channel performing the ioctl */
ISDN_CHAN_HOST, /* Unix STREAM */
ISDN_CHAN_CTRL_MGT, /* Controller management */

/* TE channel defines */

isdnio(7I)

ISDN Channel
types

Device and Network Interfaces 285

ISDN_CHAN_TE_MGT, /* Receives activation/deactivation */
ISDN_CHAN_TE_D_TRACE, /* Trace device for protocol analysis apps */
ISDN_CHAN_TE_D,
ISDN_CHAN_TE_B1,
ISDN_CHAN_TE_B2,

/* NT channel defines */

ISDN_CHAN_NT_MGT, /* Receives activation/deactivation */
ISDN_CHAN_NT_D_TRACE, /* Trace device for protocol analysis apps */
ISDN_CHAN_NT_D,
ISDN_CHAN_NT_B1,
ISDN_CHAN_NT_B2,

/* Primary rate ISDN */

ISDN_CHAN_PRI_MGT,
ISDN_CHAN_PRI_D,
ISDN_CHAN_PRI_B0, ISDN_CHAN_PRI_B1,
ISDN_CHAN_PRI_B2, ISDN_CHAN_PRI_B3,
ISDN_CHAN_PRI_B4, ISDN_CHAN_PRI_B5,
ISDN_CHAN_PRI_B6, ISDN_CHAN_PRI_B7,
ISDN_CHAN_PRI_B8, ISDN_CHAN_PRI_B9,
ISDN_CHAN_PRI_B10, ISDN_CHAN_PRI_B11,
ISDN_CHAN_PRI_B12, ISDN_CHAN_PRI_B13,
ISDN_CHAN_PRI_B14, ISDN_CHAN_PRI_B15,
ISDN_CHAN_PRI_B16, ISDN_CHAN_PRI_B17,
ISDN_CHAN_PRI_B18, ISDN_CHAN_PRI_B19,
ISDN_CHAN_PRI_B20, ISDN_CHAN_PRI_B21,
ISDN_CHAN_PRI_B22, ISDN_CHAN_PRI_B23,
ISDN_CHAN_PRI_B24, ISDN_CHAN_PRI_B25,
ISDN_CHAN_PRI_B26, ISDN_CHAN_PRI_B27,
ISDN_CHAN_PRI_B28, ISDN_CHAN_PRI_B29,
ISDN_CHAN_PRI_B30, ISDN_CHAN_PRI_B31,

/* Auxiliary channel defines */

ISDN_CHAN_AUX0, ISDN_CHAN_AUX1, ISDN_CHAN_AUX2, ISDN_CHAN_AUX3,
ISDN_CHAN_AUX4, ISDN_CHAN_AUX5, ISDN_CHAN_AUX6, ISDN_CHAN_AUX7

} isdn_chan_t;

The isdn_interface_t type enumerates the interfaces available on ISDN
controllers. The defined interfaces are described by the isdn_interface_t type as
shown below:

/* ISDN interfaces */
typedef enum {

ISDN_TYPE_UNKNOWN = -1, /* Not known or applicable */
ISDN_TYPE_SELF = 0, /*

* For queries, application may
* put this value into "type" to
* query the state of the file
* descriptor used in an ioctl.
*/

isdnio(7I)

ISDN Interface
types

286 man pages section 7: Device and Network Interfaces • Last Revised 7 Apr 1998

ISDN_TYPE_OTHER, /* Not an ISDN interface */
ISDN_TYPE_TE,
ISDN_TYPE_NT,
ISDN_TYPE_PRI,

} isdn_interface_t;

The management device associated with an ISDN D-channel is used to request
activation, deactivation and receive information about the activation state of the
interface. See the descriptions of the ISDN_PH_ACTIVATE_REQ and
ISDN_MPH_DEACTIVATE_REQ ioctls. Changes in the activation state of an interface
are communicated to the D-channel application through M_PROTO messages sent
up-stream on the management device associated with the D-channel. If the D-channel
protocol stack is implemented as a user process, the user process can retrieve the
M_PROTO messages using the getmsg(2) system call.

These M_PROTO messages have the following format:

typedef struct isdn_message {
unsigned int magic; /* set to ISDN_PROTO_MAGIC */
isdn_interface_t type; /* Interface type */
isdn_message_type_t message; /* CCITT or vendor Primitive */
unsigned int vendor[5]; /* Vendor specific content */

} isdn_message_t;
typedef enum isdn_message_type {

ISDN_VPH_VENDOR = 0, /* Vendor specific messages */
ISDN_PH_AI, /* Physical: Activation Ind */
ISDN_PH_DI, /* Physical: Deactivation Ind */
ISDN_MPH_AI, /* Management: Activation Ind */
ISDN_MPH_DI, /* Management: Deactivation Ind */
ISDN_MPH_EI1, /* Management: Error 1 Indication */
ISDN_MPH_EI2, /* Management: Error 2 Indication */
ISDN_MPH_II_C, /* Management: Info Ind, connection */
ISDN_MPH_II_D /* Management: Info Ind, disconn. */

} isdn_message_type_t;

All of the streamio(7I) ioctl commands may be issued for a device conforming to
the the isdnio interface.

ISDN interfaces that allow access to audio data should implement a reasonable subset
of the audio(7I) interface.

ISDN_PH_ACTIVATE_REQ
Request ISDN physical layer activation. This command is valid for both TE and NT
interfaces. fd must be a D-channel file descriptor. arg is ignored.

TE activation will occur without use of the ISDN_PH_ACTIVATE_REQ ioctl if the
device corresponding to the TE D-channel is open, “on”, and the ISDN switch is
requesting activation.

ISDN_MPH_DEACTIVATE_REQ
fd must be an NT D-channel file descriptor. arg is ignored.

isdnio(7I)

Activation and
Deactivation of

ISDN Interfaces

STREAMS
IOCTLS

ISDN ioctls

Device and Network Interfaces 287

This command requests ISDN physical layer de-activation. This is not valid for TE
interfaces. A TE interace may be turned off by use of the ISDN_PARAM_POWER
command or by close(2) on the associated fd.

ISDN_ACTIVATION_STATUS
fd is the file descriptor for a D-channel, the management device associated with an
ISDN interface, or the management device associated with the controller. arg is a
pointer to an isdn_activation_status_t structure. Although it is possible for
applications to determine the current activation state with this ioctl, a D-channel
protocol stack should instead process messages from the management pseudo
channel associated with the D-channel.

typedef struct isdn_activation_status {
isdn_interface_t type;
enum isdn_activation_state activation;

} isdn_activation_status_t;
typedef enum isdn_activation_state {

ISDN_OFF = 0, /* Interface is powered down */
ISDN_UNPLUGGED, /* Power but no-physical connection */
ISDN_DEACTIVATED_REQ, /* Pending Deactivation, NT Only */
ISDN_DEACTIVATED, /* Activation is permitted */
ISDN_ACTIVATE_REQ, /* Attempting to activate */
ISDN_ACTIVATED, /* Interface is activated */

} isdn_activation_state_t;

The type field should be set to ISDN_TYPE_SELF. The device specific interface
type will be returned in the type field.

The isdn_activation_status_t structure contains the interface type and the
current activation state. type is the interface type and should be set by the caller to
ISDN_TYPE_SELF.

ISDN_INTERFACE_STATUS
The ISDN_INTERFACE_STATUS ioctl retrieves the status and statistics of an ISDN
interface. The requesting channel must own the interface whose status is being
requested or the ioctl will fail. fd is the file descriptor for an ISDN interface
management device. arg is a pointer to a struct isdn_interface_info. If the
interface field is set to ISDN_TYPE_SELF, it will be changed in the returned
structure to reflect the proper device-specific interface of the requesting fd.

typedef struct isdn_interface_info {
isdn_interface_t interface;
enum isdn_activation_state activation;
unsigned int ph_ai; /* Physical: Activation Ind */
unsigned int ph_di; /* Physical: Deactivation Ind */
unsigned int mph_ai; /* Management: Activation Ind */
unsigned int mph_di; /* Management: Deactivation Ind */
unsigned int mph_ei1; /* Management: Error 1 Indication */
unsigned int mph_ei2; /* Management: Error 2 Indication */
unsigned int mph_ii_c; /* Management: Info Ind, connection */
unsigned int mph_ii_d; /* Management: Info Ind, disconn. */

} isdn_interface_info_t;

isdnio(7I)

288 man pages section 7: Device and Network Interfaces • Last Revised 7 Apr 1998

ISDN_CHANNEL_STATUS
The ISDN_CHANNEL_STATUS ioctl retrieves the status and statistics of an ISDN
channel. The requesting channel must own the channel whose status is being
requested or the ioctl will fail. fd is any file descriptor. arg is a pointer to a struct
isdn_channel_info. If the interface field is set to ISDN_CHAN_SELF, it will
be changed in the returned structure to reflect the proper device-specific channel of
the requesting fd.

typedef struct isdn_channel_info {
isdn_chan_t channel;
enum isdn_iostate iostate;
struct isdn_io_stats {
ulong_t packets; /* packets transmitted or received */
ulong_t octets; /* octets transmitted or received */
ulong_t errors; /* errors packets transmitted or received */
} transmit, receive;

} isdn_channel_info_t;

ISDN_PARAM_SET
fd is the file descriptor for a management device. arg is a pointer to a struct
isdn_param. This command allows the setting of various ISDN physical layer
parameters such as timers. This command uses the same arguments as the
ISDN_PARAM_GET command.

ISDN_PARAM_GET
fd is the file descriptor for a management device. arg is a pointer to a struct
isdn_param This command provides for querying the value of a particular ISDN
physical layer parameter.

typedef enum {
ISDN_PARAM_NONE = 0,
ISDN_PARAM_NT_T101, /* NT Timer, 5-30 s, in milliseconds */
ISDN_PARAM_NT_T102, /* NT Timer, 25-100 ms, in milliseconds */
ISDN_PARAM_TE_T103, /* TE Timer, 5-30 s, in milliseconds */
ISDN_PARAM_TE_T104, /* TE Timer, 500-1000 ms, in milliseconds */
ISDN_PARAM_MAINT, /* Manage the TE Maintenance Channel */
ISDN_PARAM_ASMB, /* Modify Activation State Machine Behavior */
ISDN_PARAM_POWER, /* Take the interface online or offline */
ISDN_PARAM_PAUSE, /* Paused if == 1, else not paused == 0 */

} isdn_param_tag_t;
enum isdn_param_asmb {

ISDN_PARAM_TE_ASMB_CCITT88, /* 1988 bluebook */
ISDN_PARAM_TE_ASMB_CTS2, /* Conformance Test Suite 2 */

};
typedef struct isdn_param {

isdn_param_tag_t tag;
union {
unsigned int us; /* micro seconds */
unsigned int ms; /* Timer value in ms */
unsigned int flag; /* Boolean */
enum isdn_param_asmb asmb;
enum isdn_param_maint maint;
struct {

isdnio(7I)

Device and Network Interfaces 289

isdn_chan_t channel; /* Channel to Pause */
int paused; /* TRUE or FALSE */

} pause;
unsigned int reserved[2]; /* reserved, set to zero */
} value;

} isdn_param_t;

ISDN_PARAM_POWER
If an implementation provides power on and off functions, then power should be
on by default. If flag is ISDN_PARAM_POWER_OFF then a TE interface is forced
into state F0, NT interfaces are forced into state G0. If flag is
ISDN_PARAM_POWER_ON then a TE interface will immediately transition to state F3
when the TE D-channel is opened. If flag is one, an NT interface will transition to
state G1 when the NT D-channel is opened.

Implementations that do not provide ISDN_POWER return failure with errno set to
ENXIO.ISDN_POWER is different from ISDN_PH_ACTIVATE_REQ since CCITT
specification requires that if a BRI-TE interface device has power, then it permits
activation.

ISDN_PARAM_NT_T101
This parameter accesses the NT timer value T1. The CCITT recommendations
specify that timer T1 has a value from 5 to 30 seconds. Other standards may differ.

ISDN_PARAM_NT_T102
This parameter accesses the NT timer value T2. The CCITT recommendations
specify that timer T2 has a value from 25 to 100 milliseconds. Other standards may
differ.

ISDN_PARAM_TE_T103
This parameter accesses the TE timer value T3. The CCITT recommendations
specify that timer T3 has a value from 5 to 30 seconds. Other standards may differ.

ISDN_PARAM_TE_T104
This parameter accesses the TE timer value T4. The CTS2 specifies that timer T4 is
either not used or has a value from 500 to 1000 milliseconds. Other standards may
differ. CTS2 requires that timer T309 be implemented if T4 is not available.

ISDN_PARAM_MAINT
This parameter sets the multi-framing mode of a BRI-TE interface. For normal
operation this parameter should be set to ISDN_PARAM_MAINT_ECHO. Other uses
of this parameter are dependent on the definition and use of the BRI interface S and
Q channels.

ISDN_PARAM_ASMB
There are a few differences in the BRI-TE interface activation state machine
standards. This parameter allows the selection of the appropriate standard. At this
time, only ISDN_PARAM_TE_ASMB_CCITT88 and ISDN_PARAM_TE_ASMB_CTS2
are available.

isdnio(7I)

290 man pages section 7: Device and Network Interfaces • Last Revised 7 Apr 1998

ISDN_PARAM_PAUSE
This parameter allows a management device to pause the IO on a B-channel.
pause.channel is set to indicate which channel is to be paused or un-paused.
pause.paused is set to zero to un-pause and one to pause. fd is associated with an
ISDN interface management device. arg is a pointer to a struct isdn_param.

ISDN_SET_LOOPBACK
fd is the file descriptor for an ISDN interface’s management device. arg is a pointer
to an isdn_loopback_request_t structure.

typedef enum {
ISDN_LOOPBACK_LOCAL,
ISDN_LOOPBACK_REMOTE,

} isdn_loopback_type_t;
typedef enum {

ISDN_LOOPBACK_B1 = 0x1,
ISDN_LOOPBACK_B2 = 0x2,

ISDN_LOOPBACK_D = 0x4,
ISDN_LOOPBACK_E_ZERO = 0x8,
ISDN_LOOPBACK_S = 0x10,
ISDN_LOOPBACK_Q = 0x20,

} isdn_loopback_chan_t;
typedef struct isdn_loopback_request {

isdn_loopback_type_t type;
int channels;

} isdn_loopback_request_t;

An application can receive D-channel data during D-Channel loopback but cannot
transmit data. The field type is the bitwise OR of at least one of the following
values:

ISDN_LOOPBACK_B1 (0x1) /* loopback on B1-channel */
ISDN_LOOPBACK_B2 (0x2) /* loopback on B2-channel */
ISDN_LOOPBACK_D (0x4) /* loopback on D-channel */
ISDN_LOOPBACK_E_ZERO (0x8) /* force E-channel to Zero if */

/* fd is for NT interface */
ISDN_LOOPBACK_S (0x10) /* loopback on S-channel */

ISDN_LOOPBACK_Q (0x20) /* loopback on Q-channel */

ISDN_RESET_LOOPBACK
arg is a pointer to an isdn_loopback_request_t structure.
ISDN_RESET_LOOPBACK turns off the selected loopback modes.

The isdn_format_t type is meant to be a complete description of the various data
modes and rates available on an ISDN interface. Several macros are available for
setting the format fields. The isdn_format_t structure is shown below:

/* ISDN channel data format */
typedef enum {

ISDN_MODE_NOTSPEC, /* Not specified */
ISDN_MODE_HDLC, /* HDLC framing and error checking */
ISDN_MODE_TRANSPARENT /* Transparent mode */

} isdn_mode_t;

isdnio(7I)

ISDN Data Format

Device and Network Interfaces 291

/* Audio encoding types (from audioio.h) */

#define AUDIO_ENCODING_NONE (0) /* no encoding*/
#define AUDIO_ENCODING_ULAW (1) /* mu-law */
#define AUDIO_ENCODING_ALAW (2) /* A-law */
#define AUDIO_ENCODING_LINEAR (3) /* Linear PCM */
typedef struct isdn_format {

isdn_mode_t mode;
unsigned int sample_rate; /* sample frames/sec*/
unsigned int channels; /* # interleaved chans */
unsigned int precision; /* bits per sample */
unsigned int encoding; /* data encoding */

} isdn_format_t;
/*
* These macros set the fields pointed
* to by the macro argument (isdn_format_t*)fp in preparation
* for the ISDN_SET_FORMAT ioctl.
*/
ISDN_SET_FORMAT_BRI_D(fp) /* BRI D-channel */
ISDN_SET_FORMAT_PRI_D(fp) /* PRI D-channel */
ISDN_SET_FORMAT_HDLC_B64(fp) /* BRI B-ch @ 56kbps */
ISDN_SET_FORMAT_HDLC_B56(fp) /* BRI B-ch @ 64kbps */
ISDN_SET_FORMAT_VOICE_ULAW(fp) /* BRI B-ch voice */
ISDN_SET_FORMAT_VOICE_ALAW(fp) /* BRI B-ch voice */

ISDN_SET_FORMAT_BRI_H(fp) /* BRI H-channel */

Every STREAMS stream that carries data to or from the ISDN serial interfaces is
classified as a channel-stream datapath. A possible ISDN channel-stream datapath
device name for a TE could be /dev/isdn/0/te/b1.

On some hardware implementations, it is possible to route the data from hardware
channel to hardware channel completely within the chip or controller. This is classified
as a channel-channel datapath. There does not need to be any open file descriptor for
either channel in this configuration. Only when data enters the host and utilizes a
STREAMS stream is this classified as an ISDN channel-stream datapath.

A management stream is a STREAMS stream that exists solely for control purposes
and is not intended to carry data to or from the ISDN serial interfaces. A possible
management device name for a TE could be /dev/isdn/0/te/mgt.

The following ioctls describe operations on individual channels and the connection of
multiple channels.

ISDN_SET_FORMAT
fd is a data channel, the management pseudo-channel associated with the data
channel, or the management channel associated with the data channel’s interface or
controller. arg is a pointer to a struct isdn_format_req. The
ISDN_SET_FORMAT ioctl sets the format of an ISDN channel-stream datapath. It
may be issued on both an open ISDN channel-stream datapath Stream or an ISDN
Management Stream. Note that an open(2) call for a channel-stream datapath will
fail if an ISDN_SET_FORMAT has never been issued after a reset, as the mode for all

isdnio(7I)

ISDN Datapath
Types

ISDN
Management

Stream

Channel
Management

IOCTLS

292 man pages section 7: Device and Network Interfaces • Last Revised 7 Apr 1998

channel-stream datapaths is initially biased to ISDN_MODE_NOTSPEC. arg is a
pointer to an ISDN format type (isdn_format_req_t*).

typedef struct isdn_format_req {
isdn_chan_t channel;
isdn_format_t format; /* data format */
int reserved[4]; /* future use - must be 0 */

} isdn_format_req_t;

If there is not an open channel-stream datapath for a requested channel, the default
format of that channel will be set for a subsequent open(2).

To modify the format of an open STREAM, the driver will disconnect the hardware
channel, flush the internal hardware queues, set the new default configuration, and
finally reconnect the data path using the newly specified format. Upon taking effect,
all state information will be reset to initial conditions, as if a channel was just
opened. It is suggested that the user flush the interface as well as consult the
hardware specific documentation to insure data integrity.

If a user desires to connect more than one B channel, such as an H-channel, the
B-channel with the smallest offset should be specified, then the precision should be
specified multiples of 8. For an H-channel the precision value would be 16. The
user should subsequently open the base B-channel. If any of the sequential
B-channels are busy the open will fail, otherwise all of the B-channels that are to be
used in conjunction will be marked as busy.

The returned failure codes and their descriptions are listed below:

EPERM /* No permission for intented operation */
EINVAL /* Invalid format request */

EIO /* Set format attempt failed. */

ISDN_SET_CHANNEL
The ISDN_SET_CHANNEL ioctl sets up a data connection within an ISDN controller.
The ISDN_SET_CHANNEL ioctl can only be issued from an ISDN management
stream to establish or modify channel-channel datapaths. The ioctl parameter arg is
a pointer to an ISDN connection request (isdn_conn_req_t*). Once a data path is
established, data flow is started as soon as the path endpoints become active. Upon
taking effect, all state information is reset to initial conditions, as if a channel was
just opened.

The isdn_conn_req_t structure is shown below. The five fields include the
receive and transmit ISDN channels, the number of directions of the data path, as
well as the data format. The reserved field must always be set to zero.

/* Number of directions for data flow */
typedef enum {

ISDN_PATH_NOCHANGE = 0, /* Invalid value */
ISDN_PATH_DISCONNECT, /* Disconnect data path */
ISDN_PATH_ONEWAY, /* One way data path */

isdnio(7I)

Device and Network Interfaces 293

ISDN_PATH_TWOWAY, /* Bi-directional data path */
} isdn_path_t;
typedef struct isdn_conn_req {

isdn_chan_t from;
isdn_chan_t to;
isdn_path_t dir; /* uni/bi-directional or disconnect */
isdn_format_t format; /* data format */
int reserved[4]; /* future use - must be 0 */

} isdn_conn_req_t;

To specify a read-only, write-only, or read-write path, or to disconnect a path, the
dir field should be set to ISDN_PATH_ONEWAY, ISDN_PATH_TWOWAY , and
ISDN_PATH_DISCONNECT respectively. To modify the format of a channel-channel
datapath, a user must disconnect the channel and then reconnect with the desired
format.

The returned failure codes and their descriptions are listed below:

EPERM /* No permission for intented operation */
EBUSY /* Connection in use */
EINVAL /* Invalid connection request */

EIO /* Connection attempt failed */

ISDN_GET_FORMAT
The ISDN_GET_FORMAT ioctl gets the ISDN data format of the channel-stream
datapath described by fd. arg is a pointer to an ISDN data format request type
(isdn_format_req_t*). ISDN_GET_FORMAT can be issued on any channel to
retrieve the format of any channel it owns. For example, if issued on the TE
management channel, the format of any other te channel can be retrieved.

ISDN_GETCONFIG
The ISDN_GETCONFIG ioctl is used to get the current connection status of all ISDN
channels associated with a particular management STREAM. ISDN_GETCONFIG
also retrieves a hardware identifier and the generic interface type. arg is an ISDN
connection table pointer (isdn_conn_tab_t*). The isdn_conn_tab_t structure
is shown below:

typedef struct isdn_conn_tab {
char name[ISDN_ID_SIZE]; /* identification string */
isdn_interface_t type;
int maxpaths; /* size in entries of app’s array int npaths; */

/* number of valid entries returned by driver */
isdn_conn_req_t *paths; /* connection table in app’s memory */

} isdn_conn_tab_t;

The table contains a string which is the interface’s unique identification string. The
second element of this table contains the ISDN transmit and receive connections
and configuration for all possible data paths for each type of ISDN controller
hardware. Entries that are not connected will have a value of ISDN_NO_CHAN in the
from and to fields. The number of entries will always be ISDN_MAX_CHANS, and
can be referenced in the hardware specific implementation documentation. An

isdnio(7I)

294 man pages section 7: Device and Network Interfaces • Last Revised 7 Apr 1998

isdn_conn_tab_t structure is allocated on a per controller basis.

getmsg(2), ioctl(2), open(2), poll(2), read(2), write(2), audio(7I), dbri(7D),
streamio(7I)

ISDN, An Introduction – William Stallings, Macmillan Publishing Company. ISBN
0-02-415471-7

isdnio(7I)

SEE ALSO

Device and Network Interfaces 295

isp – ISP SCSI Host Bus Adapter Driver

QLGC,isp@sbus-slot,10000

SUNW,isptwo@pci-slot

The ISP Host Bus Adapter is a SCSA compliant nexus driver that supports the Qlogic
ISP1000 SCSI and the ISP1040B SCSI chips. The ISP1000 chip works on SBus and the
ISP1040B chip works on PCI bus. The ISP is an intelligent SCSI Host Bus Adapter chip
that reduces the amount of CPU overhead used in a SCSI transfer.

The isp driver supports the standard functions provided by the SCSA interface. The
driver supports tagged and untagged queuing, fast and wide SCSI, and auto request
sense, but does not support linked commands. The PCI version ISP Host bus adapter
based on ISP1040B also supports Fast-20 scsi devices.

The isp driver can be configured by defining properties in isp.conf which override
the global SCSI settings. Supported properties are scsi-options,
target<n>-scsi-options, scsi-reset-delay, scsi-watchdog-tick,
scsi-tag-age-limit, scsi-initiator-id, and scsi-selection-timeout.

target<n>-scsi-options overrides the scsi-options property value for
target<n>. <n> is a hex value that can vary from 0 to f. Refer to
scsi_hba_attach(9F) for details.

Both the ISP1000 and ISP1040B support only certain SCSI selection timeout values.
The valid values are 25, 50, 75, 100, 250, 500, 750 and 1000. These properties are in
units of milliseconds.

EXAMPLE 1 SCSI Options

Create a file called /kernel/drv/isp.conf and add this line:

scsi-options=0x78;

This will disable tagged queuing, fast SCSI, and Wide mode for all isp instances. The
following will disable an option for one specific ISP (refer to driver.conf(4)):

name="isp" parent="/iommu@f,e0000000/sbus@f,e0001000"
reg=1,0x10000,0x450
target1-scsi-options=0x58

scsi-options=0x178 scsi-initiator-id=6;

Note that the default initiator ID in OBP is 7 and that the change to ID 6 will occur at
attach time. It may be preferable to change the initiator ID in OBP.

The above would set scsi-options for target 1 to 0x58 and for all other targets on
this SCSI bus to 0x178.

The physical pathname of the parent can be determined using the /devices tree or
following the link of the logical device name:

isp(7D)

NAME

Sbus

PCI

DESCRIPTION

CONFIGURATION

EXAMPLES

296 man pages section 7: Device and Network Interfaces • Last Revised 12 Jan 1998

EXAMPLE 1 SCSI Options (Continued)

example# ls -l /dev/rdsk/c2t0d0s0
lrwxrwxrwx 1 root root 76 Aug 22 13:29 /dev/rdsk/c2t0d0s0 ->

../../devices/iommu@f,e0000000/sbus@f,e0001000/QLGC,isp@1,10000/sd@0,0:a,raw

Determine the register property values using the output of prtconf(1M) with the -v
option:

QLGC,isp, instance #0
...
Register Specifications:

Bus Type=0x1, Address=0x10000, Size=450

EXAMPLE 2 ISP Properties

The isp driver exports properties indicating per target the negotiated transfer speed
(target<n>-sync-speed), whether tagged queuing has been enabled
(target<n>-TQ), and whether the wide data transfer has been negotiated
(target<n>-wide). The sync-speed property value is the data transfer rate in
KB/sec. The target-TQ and target-wide properties have no value. The existence
of these properties indicate that tagged queuing or wide transfer has been enabled.
Refer to prtconf(1M) (verbose option) for viewing the isp properties.

QLGC,isp, instance #2
Driver software properties:

name <target0-TQ> length <0> -- <no value>.
name <target0-wide> length <0> -- <no value>.
name <target0-sync-speed> length <4>

value <0x000028f5>.
name <scsi-options> length <4>

value <0x000003f8>.
name <scsi-watchdog-tick> length <4>

value <0x0000000a>.
name <scsi-tag-age-limit> length <4>

value <0x00000008>.
name <scsi-reset-delay> length <4>

value <0x00000bb8>.

EXAMPLE 3 PCI Bus

To achieve the same setting of SCSI-options as in instance #0 above on a PCI
machine, create a file called /kernel/drv/isp.conf and add the following entries.

name="isp" parent="/pci@1f,2000/pci@1"
unit-address="4"
scsi-options=0x178

target3-scsi-options=0x58 scsi-initiator-id=6;

The physical pathname of the parent can be determined using the /devices tree or
following the link of the logical device name:

isp(7D)

Device and Network Interfaces 297

EXAMPLE 3 PCI Bus (Continued)

To set scsi-options more specifically per device type, add the following line in the
/kernel/drv/isp.conf file:

device-type-scsi-options-list =
"SEAGATE ST32550W", "seagate-scsi-options" ;

seagate-scsi-options = 0x58;

All device which are of this specific disk type will have scsi-options set to 0x58.

scsi-options specified per target ID has the highest precedence, followed by
scsi-options per device type. Global (for all isp instances) scsi-options per
bus has the lowest precedence.

The system needs to be rebooted before the specified scsi-options take effect.

EXAMPLE 4 Driver Capabilities

The target driver needs to set capabilities in the isp driver in order to enable some
driver features. The target driver can query and modify these capabilities:
synchronous, tagged-qing, wide-xfer, auto-rqsense, qfull-retries,
qfull-retry-interval. All other capabilities can only be queried.

By default, tagged-qing, auto-rqsense, and wide-xfer capabilities are disabled,
while disconnect, synchronous, and untagged-qing are enabled. These
capabilities can only have binary values (0 or 1). The default values for
qfull-retries and qfull-retry-interval are both 10. The qfull-retries
capability is a uchar_t (0 to 255) while qfull-retry-interval is a ushort_t (0
to 65535).

The target driver needs to enable tagged-qing and wide-xfer explicitly. The
untagged-qing capability is always enabled and its value cannot be modified,
because isp can queue commands even when tagged-qing is disabled.

Whenever there is a conflict between the value of scsi-options and a capability, the
value set in scsi-options prevails. Only whom != 0 is supported in the
scsi_ifsetcap(9F) call.

Refer to scsi_ifsetcap(9F) and scsi_ifgetcap(9F) for details.

/kernel/drv/isp ELF Kernel Module

/kernel/drv/isp.conf Configuration file

See attributes(5) for descriptions of the following attributes:

isp(7D)

FILES

ATTRIBUTES

298 man pages section 7: Device and Network Interfaces • Last Revised 12 Jan 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

prtconf(1M), driver.conf(4), attributes(5), scsi_abort(9F),
scsi_hba_attach(9F), scsi_ifgetcap(9F), scsi_reset(9F),
scsi_transport(9F), scsi_device(9S), scsi_extended_sense(9S),
scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

QLogic Corporation, ISP1000 Firmware Interface Specification

QLogic Corporation, ISP1020 Firmware Interface Specification

QLogic Corporation, ISP1000 Technical Manual

QLogic Corporation, ISP1020a/1040a Technical Manual

QLogic Corporation, Differences between the ISP1020a/1040a and the ISP1020B/1040B -
Application Note

The messages described below may appear on the system console as well as being
logged.

The first set of messages may be displayed while the isp driver is first trying to
attach. All of these messages mean that the isp driver was unable to attach. These
messages are preceded by "isp<number>", where "<number>" is the instance number
of the ISP Host Bus Adapter.

Device in slave-only slot, unused
The SBus device has been placed in a slave-only slot and will not be accessible;
move to non-slave-only SBus slot.

Device is using a hilevel intr, unused
The device was configured with an interrupt level that cannot be used with this
isp driver. Check the device.

Failed to alloc soft state
Driver was unable to allocate space for the internal state structure. Driver did not
attach to device; SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to device;
SCSI devices will be inaccessible.

Unable to map registers
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device; SCSI devices will be inaccessible.

isp(7D)

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 299

Cannot add intr
Driver was not able to add the interrupt routine to the kernel. Driver did not attach
to device; SCSI devices will be inaccessible.

Unable to attach
Driver was unable to attach to the hardware for some reason that may be printed.
Driver did not attach to device; SCSI devices will be inaccessible.

The next set of messages can be displayed at any time. They will be printed with the
full device pathname followed by the shorter form described above.

Firmware should be < 0x<number> bytes
Firmware size exceeded allocated space and will not download firmware. This
could mean that the firmware was corrupted somehow. Check the isp driver.

Firmware checksum incorrect
Firmware has an invalid checksum and will not be downloaded.

Chip reset timeout
ISP chip failed to reset in the time allocated; may be bad hardware.

Stop firmware failed
Stopping the firmware failed; may be bad hardware.

Load ram failed
Unable to download new firmware into the ISP chip.

DMA setup failed
The DMA setup failed in the host adapter driver on a scsi_pkt. This will return
TRAN_BADPKT to a SCSA target driver.

Bad request pkt
The ISP Firmware rejected the packet as being set up incorrectly. This will cause the
isp driver to call the target completion routine with the reason of CMD_TRAN_ERR
set in the scsi_pkt. Check the target driver for correctly setting up the packet.

Bad request pkt header
The ISP Firmware rejected the packet as being set up incorrectly. This will cause the
isp driver to call the target completion routine with the reason of CMD_TRAN_ERR
set in the scsi_pkt. Check the target driver for correctly setting up the packet.

Polled command timeout on <number>.<number>
A polled command experienced a timeout. The target device, as noted by the target
lun (<number>.<number>) information, may not be responding correctly to the
command, or the ISP chip may be hung. This will cause an error recovery to be
initiated in the isp driver. This could mean a bad device or cabling.

SCSI Cable/Connection problem

Hardware/Firmware error
The ISP chip encountered a firmware error of some kind. The problem is probably
due to a faulty scsi cable or improper cable connection. This error will cause the
isp driver to do error recovery by resetting the chip.

isp(7D)

300 man pages section 7: Device and Network Interfaces • Last Revised 12 Jan 1998

Received unexpected SCSI Reset
The ISP chip received an unexpected SCSI Reset and has initiated its own internal
error recovery, which will return all the scsi_pkt with reason set to CMD_RESET.

Fatal timeout on target <number>.<number>
The isp driver found a command that had not completed in the correct amount of
time; this will cause error recovery by the isp driver. The device that experienced
the timeout was at target lun (<number>.<number>).

Fatal error, resetting interface
This is an indication that the isp driver is doing error recovery. This will cause all
outstanding commands that have been transported to the isp driver to be
completed via the scsi_pkt completion routine in the target driver with reason of
CMD_RESET and status of STAT_BUS_RESET set in the scsi_pkt.

isp(7D)

Device and Network Interfaces 301

kb – keyboard STREAMS module

#include <sys/types.h>

#include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/vuid_event.h>

#include <sys/kbio.h>

#include <sys/kbd.h>

ioctl(fd, I_PUSH, "kb");

The kb STREAMS module processes byte streams generated by a keyboard attached to
a CPU serial port. Definitions for altering keyboard translation and reading events
from the keyboard are contained in <sys/kbio.h> and <sys/kbd.h>.

The kb STREAMS module utilizes a set of keyboard tables to recognize which keys
have been typed. Each translation table is an array of 128 16-bit words (unsigned
shorts). If a table entry is less than 0x100, the entry is treated as an ISO 8859/1
character. Higher values indicate special characters that invoke more complicated
actions.

The keyboard can be in one of the following translation modes:

TR_NONE
Keyboard translation is turned off and up/down key codes are reported.

TR_ASCII
ISO 8859/1 codes are reported.

TR_EVENT
firm_events are reported.

TR_UNTRANS_EVENT
firm_events containing unencoded keystation codes are reported for all input
events within the window system.

All instances of the kb module share seven translation tables that convert raw
keystation codes to event values. The tables are:

Unshifted Used when a key is depressed and no shifts are in effect.

Shifted Used when a key is depressed and a Shift key is held down.

Caps Lock Used when a key is depressed and Caps Lock is in effect.

Alt Graph Used when a key is depressed and the Alt Graph key is held
down.

Num Lock Used when a key is depressed and Num Lock is in effect.

kb(7M)

NAME

SYNOPSIS

DESCRIPTION

Keyboard
Translation Mode

Keyboard
Translation-Table

Entries

302 man pages section 7: Device and Network Interfaces • Last Revised 14 May 1999

Controlled Used when a key is depressed and the Control key is held down.
(Regardless of whether a Shift key or the Alt Graph is being held
down, or whether Caps Lock or Num Lock is in effect).

Key Up Used when a key is released.

Each key on the keyboard has a key station code that represents a number from 0
to 127. The number is used as an index into the translation table that is currently in
effect. If the corresponding entry in the translation table is a value from 0 to 255, the
value is treated as an ISO 8859/1 character, and the character is the result of the
translation.

If the entry in the translation table is higher than 255, it is a special entry. Special entry
values are classified according to the value of the high-order bits. The high-order value
for each class is defined as a constant, as shown below. When added to the constant,
the value of the low-order bits distinguish between keys within each class:

SHIFTKEYS 0x100
A shift key. The value of the particular shift key is added to determine which shift
mask to apply:

CAPSLOCK 0 Caps Lock key.

SHIFTLOCK 1 “Shift Lock” key.

LEFTSHIFT 2 Left-hand Shift key.

RIGHTSHIFT 3 Right-hand Shift key.

LEFTCTRL 4 Left-hand (or only) Control key.

RIGHTCTRL 5 Right-hand Control key.

ALTGRAPH 9 Alt Graph key.

ALT 10 Alternate or Alt key.

NUMLOCK 11 Num Lock key.

BUCKYBITS 0x200
Used to toggle mode-key-up/down status without altering the value of an
accompanying ISO 8859/1 character. The actual bit-position value, minus 7, is
added.

METABIT 0 The Meta key was pressed along with the key. This is the only
user-accessible bucky bit. It is ORed in as the 0x80 bit; since this
bit is a legitimate bit in a character, the only way to distinguish
between, for example, 0xA0 as META+0x20 and 0xA0 as an
8-bit character is to watch for META key up and META key
down events and keep track of whether the META key was
down.

SYSTEMBIT 1 The System key was pressed. This is a place holder to indicate
which key is the system-abort key.

kb(7M)

Device and Network Interfaces 303

FUNNY 0x300
Performs various functions depending on the value of the low 4 bits:

NOP 0x300 Does nothing.

OOPS 0x301 Exists, but is undefined.

HOLE 0x302 There is no key in this position on the keyboard, and the
position-code should not be used.

RESET 0x306 Keyboard reset.

ERROR 0x307 The keyboard driver detected an internal error.

IDLE 0x308 The keyboard is idle (no keys down).

COMPOSE 0x309 The COMPOSE key; the next two keys should comprise a
two-character COMPOSE key sequence.

NONL 0x30A Used only in the Num Lock table; indicates that this key is not
affected by the Num Lock state, so that the translation table to
use to translate this key should be the one that would have been
used had Num Lock not been in effect.

0x30B — 0x30F Reserved for non-parameterized functions.

FA_CLASS 0x400
A floating accent or “dead key.” When this key is pressed, the next key generates an
event for an accented character; for example, “floating accent grave” followed by
the “a” key generates an event with the ISO 8859/1 code for the “a with grave
accent” character. The low-order bits indicate which accent; the codes for the
individual “floating accents” are as follows:

FA_UMLAUT 0x400 umlaut

FA_CFLEX 0x401 circumflex

FA_TILDE 0x402 tilde

FA_CEDILLA 0x403 cedilla

FA_ACUTE 0x404 acute accent

FA_GRAVE 0x405 grave accent

STRING 0x500
The low-order bits index a table of strings. When a key with a STRING entry is
depressed, the characters in the null-terminated string for that key are sent,
character-by-character. The maximum length is defined as:

KTAB_STRLEN 10 Individual string numbers are defined as:

HOMEARROW
0x00

kb(7M)

304 man pages section 7: Device and Network Interfaces • Last Revised 14 May 1999

UPARROW
0x01

DOWNARROW
0x02

LEFTARROW
0x03

RIGHTARROW
0x04

String numbers 0x05 — 0x0F are available for custom entries.

FUNCKEYS 0x600
There are 64 keys reserved for function keys. The actual positions are usually on the
left/right/top/bottom of the keyboard.

The next-to-lowest 4 bits indicate the group of function keys:

LEFTFUNC 0x600

RIGHTFUNC 0x610

TOPFUNC 0x610 0x610

BOTTOMFUNC 0x630 The low 4 bits indicate the function key
number within the group:

LF(n) (LEFTFUNC+(n)-1)

RF(n) (RIGHTFUNC+(n)-1)

TF(n) (TOPFUNC+(n)-1)

BF(n) (BOTTOMFUNC+(n)-1)

PADKEYS 0x700
A “numeric keypad key.” These entries should appear only in the Num Lock
translation table; when Num Lock is in effect, these events will be generated by
pressing keys on the right-hand keypad. The low-order bits indicate which key. The
codes for the individual keys are:

PADEQUAL 0x700 “=” key

PADSLASH 0x701 “/” key

PADSTAR 0x702 “*” key

PADMINUS 0x703 “-” key

PADSEP 0x704 “,” key

PAD7 0x705 “7” key

PAD8 0x706 “8” key

kb(7M)

Device and Network Interfaces 305

PAD9 0x707 “9” key

PADPLUS 0x708 “+” key

PAD4 0x709 “4” key

PAD5 0x70A “5” key

PAD6 0x70B “6” key

PAD1 0x70C “1” key

PAD2 0x70D “2” key

PAD3 0x70E “3” key

PAD0 0x70F “0” key

PADDOT 0x710 “.” key

PADENTER 0x711 “Enter” key

When a function key is pressed in TR_ASCII mode, the following escape sequence is
sent:

ESC[0 9z

where ESC is a single escape character and “0 . .. 9” indicates the decimal
representation of the function-key value. For example, function key R1 sends the
sequence:

ESC[208z

because the decimal value of RF(1) is 208. In TR_EVENT mode, if there is a VUID event
code for the function key in question, an event with that event code is generated;
otherwise, individual events for the characters of the escape sequence are generated.

When started, the kb STREAMS module is in the compatibility mode. When the
keyboard is in the TR_EVENT translation mode, ISO 8859/1 characters from the upper
half of the character set (that is, characters with the eighth bit set) , are presented as
events with codes in the ISO_FIRST range (as defined in <<sys/vuid_event.h>>).
For backwards compatibility with older versions of the keyboard driver, the event
code is ISO_FIRST plus the character value. When compatibility mode is turned off,
ISO 8859/1 characters are presented as events with codes equal to the character code.

The following ioctl() requests set and retrieve the current translation mode of a
keyboard:

KIOCTRANS Pointer to an int. The translation mode is set to the value in the
int pointed to by the argument.

KIOCGTRANS Pointer to an int. The current translation mode is stored in the
int pointed to by the argument.

kb(7M)

Keyboard
Compatibility

Mode

DESCRIPTION

306 man pages section 7: Device and Network Interfaces • Last Revised 14 May 1999

ioctl() requests for changing and retrieving entries from the keyboard translation
table use the kiockeymap structure:

struct kiockeymap {
int kio_tablemask; /* Translation table (one of: 0, CAPSMASK,

* SHIFTMASK, CTRLMASK, UPMASK,
* ALTGRAPHMASK, NUMLOCKMASK)
*/

#define KIOCABORT1 –1 /* Special “mask”: abort1 keystation */
#define KIOCABORT2 –2 /* Special “mask”: abort2 keystation */

uchar_t kio_station; /* Physical keyboard key station (0-127) */
ushort_t kio_entry; /* Translation table station’s entry */
char kio_string[10]; /* Value for STRING entries (null terminated) */

};

KIOCSKEY Pointer to a kiockeymap structure. The translation table entry
referred to by the values in that structure is changed. The
kio_tablemask request specifies which of the following
translation tables contains the entry to be modified:

UPMASK 0x0080 “Key Up” translation
table.

NUMLOCKMASK 0x0800 “Num Lock” translation
table.

CTRLMASK 0x0030 “Controlled” translation
table.

ALTGRAPHMASK 0x0200 “Alt Graph” translation
table.

SHIFTMASK 0x000E “Shifted” translation
table.

CAPSMASK 0x0001 “Caps Lock” translation
table.

(No shift keys pressed or locked) “Unshifted” translation
table.

The kio_station request specifies the keystation code for the entry to be modified.
The value of kio_entry is stored in the entry in question. If kio_entry is between
STRING and STRING+15, the string contained in kio_string is copied to the
appropriate string table entry. This call may return EINVAL if there are invalid
arguments.

Special values of kio_tablemask can affect the two step “break to the PROM
monitor” sequence. The usual sequence is L1-a or Stop-. If kio_tablemask is
KIOCABORT1, then the value of kio_station is set to be the first keystation in the
sequence. If kio_tablemask, is KIOCABORT2 then the value of kio_station is set

kb(7M)

Device and Network Interfaces 307

to be the second keystation in the sequence. An attempt to change the "break to the
PROM monitor" sequence without having superuser permission results in an EPERM
error.

KIOCGKEY The argument is a pointer to a kiockeymap structure. The current
value of the keyboard translation table entry specified by
kio_tablemask and kio_station is stored in the structure
pointed to by the argument. This call may return EINVAL if there
are invalid arguments.

KIOCTYPE The argument is a pointer to an int. A code indicating the type of
the keyboard is stored in the int pointed to by the argument:

KB_SUN3 Sun Type 3 keyboard

KB_SUN4 Sun Type 4 keyboard

KB_ASCII ASCII terminal masquerading as keyboard

KB_PC Type 101 PC keyboard

KB_DEFAULT Stored in the int pointed to by the argument if
the keyboard type is unknown. In case of error,
-1 is stored in the int pointed to by the
argument.

KIOCLAYOUT The argument is a pointer to an int. On a Sun Type 4 keyboard,
the layout code specified by the keyboard’s DIP switches is stored
in the int pointed to by the argument.

KIOCCMD The argument is a pointer to an int. The command specified by
the value of the int pointed to by the argument is sent to the
keyboard. The commands that can be sent are:

Commands to the Sun Type 3 and Sun Type 4 keyboards:

KBD_CMD_RESET Reset keyboard as if power-up.

KBD_CMD_BELL Turn on the bell.

KBD_CMD_NOBELL Turn off the bell.

KBD_CMD_CLICK Turn on the click annunciator.

KBD_CMD_NOCLICK Turn off the click annunciator.
Commands to the Sun Type 4 keyboard:

KBD_CMD_SETLED Set keyboard LEDs.

KBD_CMD_GETLAYOUT Request that keyboard indicate
layout.

Inappropriate commands for particular keyboard types are ignored. Since there is no
reliable way to get the state of the bell or click (because the keyboard cannot be

kb(7M)

308 man pages section 7: Device and Network Interfaces • Last Revised 14 May 1999

queried and a process could do writes to the appropriate serial driver —
circumventing this ioctl() request) an equivalent ioctl() to query its state is not
provided.

KIOCSLED The argument is a pointer to an char. On the Sun Type 4
keyboard, the LEDs are set to the value specified in that char. The
values for the four LEDs are:

LED_CAPS_LOCK “Caps Lock” light.

LED_COMPOSE “Compose” light.

LED_SCROLL_LOCK “Scroll Lock” light.

LED_NUM_LOCK “Num Lock” light.

On some Japanese layouts, the value for the fifth LED is:

LED_KANA “Kana” light.

KIOCGLED Pointer to a char. The current state of the LEDs is stored in the
char pointed to by the argument.

KIOCSCOMPAT Pointer to an int. “Compatibility mode” is turned on if the int
has a value of 1, and is turned off if the int has a value of 0.

KIOCGCOMPAT Pointer to an int. The current state of “compatibility mode” is
stored in the int pointed to by the argument.

The following ioctl() request allows the default effect of the keyboard abort
sequence to be changed.

KIOCSKABORTEN
Pointer to an int. The keyboard abort sequence effect (typically L1-A or Stop-A on
the keyboard on SPARC systems, F1–A on IA systems, and BREAK on the serial
console device) is enabled if the int has a value of KIOCABORTENABLE(1). If the
value is KIOCABORTDISABLE(0) , the keyboard abort sequence effect is disabled.
If the value is KIOCABORTALTERNATE(2), the Alternate Break sequence is in
effect and is defined by the serial console drivers zs(7D) se(7D) and asy(7D). Any
other value of the parameter for this ioctl() is treated as enable. The Alternate
Break sequence is applicable to the serial console devices only. When the Alternate
Break sequence is in effect, binary protocols including PPP, SLIP, file transfer and
others should not be run over the console serial port.

This ioctl()will be active and retain state even if there is no physical keyboard in
the system. The default effect (enable) causes the operating system to suspend and
enter the kernel debugger (if present) or the system prom (on most systems with
OpenBoot proms). The default effect is enabled on most systems, but may be
different on server systems with key switches in the ’secure’ position. On these
systems, the effect is always disabled when the key switch is in the ’secure’
position. This ioctl()returns EPERM if the caller is not the superuser.

kb(7M)

Device and Network Interfaces 309

These ioctl() requests are supported for compatibility with the system keyboard
device /dev/kbd.

KIOCSDIRECT
Has no effect.

KIOCGDIRECT
Always returns 1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

kbd(1), loadkeys(1), kadb(1M), keytables(4), attributes(5), zs(7D), se(7D),
asy(7D) termio(7I)

Many of the keyboards released after Sun Type 4 keyboard also report themselves as
Sun Type 4 keyboard.

kb(7M)

ATTRIBUTES

SEE ALSO

NOTES

310 man pages section 7: Device and Network Interfaces • Last Revised 14 May 1999

kdmouse – built-in mouse device interface

The kdmouse driver supports machines with built-in PS/2 mouse interfaces. It allows
applications to obtain information about the mouse’s movements and the status of its
buttons.

Programs are able to read directly from the device. The data returned corresponds to
the byte sequences as defined in the IBM PS/2 Technical Reference Manual.

/dev/kdmouse device file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), vuidmice(7M)

IBM PS/2 Technical Reference Manual.

kdmouse(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 311

kstat – kernel statistics driver

The kstat driver is the mechanism used by the kstat(3KSTAT) library to extract
kernel statistics. This is NOT a public interface.

/dev/kstat kernel statistics driver

kstat(3KSTAT), kstat(9S)

kstat(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

312 man pages section 7: Device and Network Interfaces • Last Revised 26 May 1994

ksyms – kernel symbols

/dev/ksyms

The file /dev/ksyms is a character special file that allows read-only access to an ELF
format image containing two sections: a symbol table and a corresponding string
table. The contents of the symbol table reflect the symbol state of the currently running
kernel. You can determine the size of the image with the fstat() system call. The
recommended method for accessing the /dev/ksyms file is by using the ELF access
library. See elf(3ELF) for details. If you are not familiar with ELF format, see
a.out(4).

/dev/ksyms is an executable for the processor on which you are accessing it. It
contains ELF program headers which describe the text and data segment(s) in kernel
memory. Since /dev/ksyms has no text or data, the fields specific to file attributes are
initialized to NULL. The remaining fields describe the text or data segment(s) in kernel
memory.

Symbol table The SYMTAB section contains the symbol table entries
present in the currently running kernel. This section is
ordered as defined by the ELF definition with
locally-defined symbols first, followed by
globally-defined symbols. Within symbol type, the
symbols are ordered by kernel module load time. For
example, the kernel file symbols are first, followed by
the first module’s symbols, and so on, ending with the
symbols from the last module loaded.

The section header index (st_shndx) field of each
symbol entry in the symbol table is set to SHN_ABS,
because any necessary symbol relocations are
performed by the kernel link editor at module load
time.

String table The STRTAB section contains the symbol name strings
that the symbol table entries reference.

kernel(1M), stat(2), elf(3ELF), kvm_open(3KVM), a.out(4), mem(7D)

The kernel is dynamically configured. It loads kernel modules when necessary.
Because of this aspect of the system, the symbol information present in the running
system can vary from time to time, as kernel modules are loaded and unloaded.

When you open the /dev/ksyms file, you have access to an ELF image which
represents a snapshot of the state of the kernel symbol information at that instant in
time. While the /dev/ksyms file remains open, kernel module autounloading is
disabled, so that you are protected from the possibility of acquiring stale symbol data.
Note that new modules can still be loaded, however. If kernel modules are loaded
while you have the /dev/ksyms file open, the snapshot held by you will not be
updated. In order to have access to the symbol information of the newly loaded

ksyms(7D)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

WARNINGS

Device and Network Interfaces 313

modules, you must first close and then reopen the /dev/ksyms file. Be aware that the
size of the /dev/ksyms file will have changed. You will need to use the fstat()
function (see stat(2)) to determine the new size of the file.

Avoid keeping the /dev/ksyms file open for extended periods of time, either by
using kvm_open(3KVM) of the default namelist file or with a direct open. There are
two reasons why you should not hold /dev/ksyms open. First, the system’s ability to
dynamically configure itself is partially disabled by the locking down of loaded
modules. Second, the snapshot of symbol information held by you will not reflect the
symbol information of modules loaded after your initial open of /dev/ksyms.

Note that the ksyms driver is a loadable module, and that the kernel driver modules
are only loaded during an open system call. Thus it is possible to run stat(2) on the
/dev/ksyms file without causing the ksyms driver to be loaded. In this case, the file
size returned is UNKNOWN_SIZE. A solution for this behavior is to first open the
/dev/ksyms file, causing the ksyms driver to be loaded (if necessary). You can then
use the file descriptor from this open in a fstat() system call to get the file’s size.

The kernel virtual memory access library (libkvm) routines use /dev/ksyms as the
default namelist file. See kvm_open(3KVM) for details.

ksyms(7D)

NOTES

314 man pages section 7: Device and Network Interfaces • Last Revised 11 Dec 2000

ldterm – standard STREAMS terminal line discipline module

#include <sys/stream.h>

#include <sys/termios.h>

int ioctl(fd,I_PUSH,"ldterm");

The ldterm STREAMS module provides most of the termio(7I) terminal interface.
The vis module does not perform the low-level device control functions specified by
flags in the c_cflag word of the termio/termios structure, or by the IGNBRK,
IGNPAR, PARMRK, or INPCK flags in the c_iflag word of the termio/termios
structure. Those functions must be performed by the driver or by modules pushed
below the ldterm module. The ldterm module performs all other
termio/termios functions, though some may require the cooperation of the driver
or modules pushed below ldterm and may not be performed in some cases. These
include the IXOFF flag in the c_iflag word and the delays specified in the c_oflag
word.

The ldterm module also handles single and multi-byte characters from various
codesets including both Extended Unix Code (EUC) and non-EUC codesets.

The remainder of this section describes the processing of various STREAMS messages
on the read- and write-side.

Various types of STREAMS messages are processed as follows:

M_BREAK Depending on the state of the BRKINT flag, either an interrupt
signal is generated or the message is treated as if it were an
M_DATA message containing a single ASCII NUL character when
this message is received.

M_DATA This message is normally processed using the standard termio
input processing. If the ICANON flag is set, a single input record
(‘‘line’’) is accumulated in an internal buffer and sent upstream
when a line-terminating character is received. If the ICANON flag is
not set, other input processing is performed and the processed
data are passed upstream.

If output is to be stopped or started as a result of the arrival of
characters (usually CNTRL-Q and CNTRL-S), M_STOP and
M_START messages are sent downstream. If the IXOFF flag is set
and input is to be stopped or started as a result of flow-control
considerations, M_STOPI and M_STARTI messages are sent
downstream.

M_DATA messages are sent downstream, as necessary, to perform
echoing.

If a signal is to be generated, an M_FLUSH message with a flag byte
of FLUSHR is placed on the read queue. If the signal is also to flush

ldterm(7M)

NAME

SYNOPSIS

DESCRIPTION

Read-side
Behavior

Device and Network Interfaces 315

output, an M_FLUSH message with a flag byte of FLUSHW is sent
downstream.

All other messages are passed upstream unchanged.

Various types of STREAMS messages are processed as follows:

M_FLUSH The write queue of the module is flushed of all its data messages
and the message is passed downstream.

M_IOCTL The function of this ioctl is performed and the message is
passed downstream in most cases. The TCFLSH and TCXONC
ioctls can be performed entirely in the ldterm module, so the
reply is sent upstream and the message is not passed downstream.

M_DATA If the OPOST flag is set, or both the XCASE and ICANON flags are
set, output processing is performed and the processed message is
passed downstream along with any M_DELAY messages generated.
Otherwise, the message is passed downstream without change.

M_CTL If the size of the data buffer associated with the message is the size
of struct iocblk, ldterm will perform functional negotiation
to determine where the termio(7I) processing is to be done. If the
command field of the iocblk structure (ioc_cmd) is set to
MC_NO_CANON, the input canonical processing normally
performed on M_DATA messages is disabled and those messages
are passed upstream unmodified. (This is for the use of modules or
drivers that perform their own input processing, such as a
pseudo-terminal in TIOCREMOTE mode connected to a program
that performs this processing). If the command is MC_DO_CANON,
all input processing is enabled. If the command is
MC_PART_CANON, then an M_DATA message containing a termios
structure is expected to be attached to the original M_CTL message.
The ldterm module will examine the iflag, oflag, and lflag
fields of the termios structure and from that point on, will
process only those flags that have not been turned ON. If none of
the above commands are found, the message is ignored. In any
case, the message is passed upstream.

M_FLUSH The read queue of the module is flushed of all its data messages
and all data in the record being accumulated are also flushed. The
message is passed upstream.

M_IOCACK The data contained within the message, which is to be returned to
the process, are augmented if necessary, and the message is passed
upstream.

All other messages are passed downstream unchanged.

The ldterm module processes the following TRANSPARENT ioctls. All others are
passed downstream.

ldterm(7M)

Write-side
Behavior

IOCTLS

316 man pages section 7: Device and Network Interfaces • Last Revised 7 Jun1999

TCGETS/TCGETA
The message is passed downstream. If an acknowledgment is seen, the data
provided by the driver and modules downstream are augmented and the
acknowledgement is passed upstream.

TCSETS/TCSETSW/TCSETSF/TCSETA/TCSETAW/TCSETAF
The parameters that control the behavior of the ldterm module are changed. If a
mode change requires options at the stream head to be changed, an M_SETOPTS
message is sent upstream. If the ICANON flag is turned on or off, the read mode at
the stream head is changed to message-nondiscard or byte-stream mode,
respectively. If the TOSTOP flag is turned on or off, the tostop mode at the stream
head is turned on or off, respectively. In any case, ldterm passes the ioctl on
downstream for possible additional processing.

TCFLSH
If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is sent
downstream and placed on the read queue. If the argument is 1, the write queue is
flushed of all its data messages and an M_FLUSH message with a flag byte of
FLUSHW is sent upstream and downstream. If the argument is 2, the write queue is
flushed of all its data messages and an M_FLUSH message with a flag byte of
FLUSHRW is sent downstream and placed on the read queue.

TCXONC
If the argument is 0 and output is not already stopped, an M_STOP message is sent
downstream. If the argument is 1 and output is stopped, an M_START message is
sent downstream. If the argument is 2 and input is not already stopped, an
M_STOPI message is sent downstream. If the argument is 3 and input is stopped,
an M_STARTI message is sent downstream.

TCSBRK
The message is passed downstream, so the driver has a chance to drain the data
and then send an M_IOCACK message upstream.

EUC_WSET
This call takes a pointer to an eucioc structure, and uses it to set the EUC line
discipline’s local definition for the code set widths to be used for subsequent
operations. Within the stream, the line discipline may optionally notify other
modules of this setting using M_CTL messages. When this call is received and the
euciocstructure contains valid data, the line discipline changes into EUC handling
mode once the euciocdata is completely transferred to an internal data structure.

EUC_WGET
This call takes a pointer to an eucioc structure, and returns in it the EUC code set
widths currently in use by the EUC line discipline. If the current codeset of the line
discipline is not an EUC one, the result is meaningless.

termios(3C), console(7D), termio(7I)

STREAMS Programming Guide

ldterm(7M)

SEE ALSO

Device and Network Interfaces 317

le, lebuffer, ledma – Am7990 (LANCE) Ethernet device driver

/dev/le

The Am7990 (“LANCE”) Ethernet driver is a multi-threaded, loadable, clonable,
STREAMS hardware driver supporting the connectionless Data Link Provider
Interface, dlpi(7P) over a LANCE Ethernet controller. The motherboard and add-in
SBus LANCE controllers of several varieties are supported. Multiple LANCE
controllers installed within the system are supported by the driver. The le driver
provides basic support for the LANCE hardware. Functions include chip initialization,
frame transmit and receive, multicast and promiscuous support, and error recovery
and reporting.

The cloning character-special device /dev/le is used to access all LANCE controllers
installed within the system.

The lebuffer and ledma device drivers are bus nexus drivers which cooperate with
the le leaf driver in supporting the LANCE hardware functions over several distinct
slave-only and DVMA LANCE -based Ethernet controllers. The lebuffer and ledma
bus nexi drivers are not directly accessible to the user.

The le driver is a “style 2” Data Link Service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. Valid DLPI primitives are defined
in <sys/dlpi.h>. Refer to dlpi(7P) for more information. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device (ppa). The ppa ID is interpreted as an unsigned long data type
and indicates the corresponding device instance (unit) number. An error
(DL_ERROR_ACK) is returned by the driver if the ppa field value does not correspond
to a valid device instance number for this system. The device is initialized on first
attach and de-initialized (stopped) on last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� The minimum SDU is 0.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

� The sap length value is −2 meaning the physical address component is followed
immediately by a 2 byte sap component within the DLSAP address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so the QOS
fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

le(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

le and DLPI

318 man pages section 7: Device and Network Interfaces • Last Revised 23 Aug 1994

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The le driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for
the sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

If the user selects a sap with a value of 0, the receiver will be in “802.3 mode”. All
frames received from the media having a “type” field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open Streams which are bound to
sap value 0. If more than one Stream is in “802.3 mode” then the frame will be
duplicated and routed up multiple Streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ if the sap value
is 0, and if the destination type field is in the range [0-1500]. If either is true, the
driver computes the length of the message, not including initial M_PROTO mblk
(message block), of all subsequent DL_UNITDATA_REQ messages and transmits 802.3
frames that have this value in the MAC frame header length field.

The le driver DLSAP address format consists of the 6 byte physical (Ethernet) address
component followed immediately by the 2 byte sap (type) component producing an 8
byte DLSAP address. Applications should not hardcode to this particular
implementation-specific DLSAP address format but use information returned in the
DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap/physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the le driver. The le driver will route received
Ethernet frames up all those open and bound streams having a sap which matches the
Ethernet type as DL_UNITDATA_IND messages. Received Ethernet frames are
duplicated and routed up multiple open streams if necessary. The DLSAP address
contained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set the driver additionally
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables/disables reception of all
(“promiscuous mode”) frames on the media including frames generated by the local
host.

le(7D)

le Primitives

Device and Network Interfaces 319

When used with the DL_PROMISC_SAP flag set this enables/disables reception of all
sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set this
enables/disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of the other sap and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process which
originally opened this stream must be superuser. Otherwise EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams
attached to this device when this primitive is successful on this stream. Once changed,
all streams subsequently opened and attached to this device will obtain this new
physical address. Once changed, the physical address will remain until this primitive
is used to change the physical address again or the system is rebooted, whichever
comes first.

/dev/le le special character device.

/kernel/drv/options.conf System wide default device driver
properties

netstat(1M), driver.conf(4), dlpi(7P)

SPARCstation 10 Twisted-Pair Ethernet Link Test

Twisted-Pair Ethernet Link Test

le%d: msg too big: %d
The message length exceeded ETHERMAX.

le%d: Babble error − sent a packet longer than 1518 bytes
While transmitting a packet, the LANCE chip has noticed that the packet’s length
exceeds the maximum allowed for Ethernet. This error indicates a kernel bug.

le%d: No carrier − transceiver cable problem?
The LANCE chip has lost input to its carrier detect pin while trying to transmit a
packet.

le%d: Memory Error!
The LANCE chip timed out while trying to acquire the bus for a DVMA transfer.

If you are using twisted pair Ethernet (TPE), you need to be aware of the link test
feature. The IEEE 10Base-T specification states that the link test should always be
enabled at the host and the hub. Complications may arise because:

1. Some older hubs do not provide link pulses
2. Some hubs are configured to not send link pulses

le(7D)

FILES

SEE ALSO

DIAGNOSTICS

NOTES

320 man pages section 7: Device and Network Interfaces • Last Revised 23 Aug 1994

Under either of these two conditions the host translates the lack of link pulses into a
link failure unless it is programmed to ignore link pulses. To program your system to
ignore link pulses (also known as disabling the link test) do the following at the
OpenBoot PROM prompt:

<#0> OK SETENV TPE-LINK-TEST? FALSE

TPE-LINK-TEST? = FALSEThe above command will work for
SPARCstation-10, SPARCstation-20 and SPARCclassic systems that come
with built in twisted pair Ethernet ports. For other systems and for add-on boards
with twisted pair Ethernet refer to the documentation that came with the system or
board for information on disabling the link test.

SPARCstation-10, SPARCstation-20 and SPARCclassic systems come with a
choice of built in AUI (using an adapter cable) and TPE ports. In Solaris 2.2 an
auto-selection scheme was implemented in the le driver that will switch between AUI
and TPE depending on which interface is active. Auto-selection uses the presence or
absence of the link test on the TPE interface as one indication of whether that interface
is active. In the special case where you wish to use TPE with the link-test disabled you
should manually override auto-selection so that the system will use only the twisted
pair port.

This override can be performed by defining the cable-selection property in the
options.conf file to force the system to use TPE or AUI as appropriate. The
example below sets the cable selection to TPE.

example# cd /kernel/drv

example# echo ’cable-selection="tpe";’ >> options.confNote that the standard
options.conf file contains important information; the only change to the file should
be the addition of the cable-selection property. Be careful to type this line exactly as
shown above, ensuring that you append to the existing file, and include the
terminating semi-colon. Alternatively, you can use a text editor to append the
following line to the end of the file:

cable-selection="tpe";Please refer to the SPARCstation 10 Twisted-Pair Ethernet Link
Test (801-2481-10), Twisted-Pair Ethernet Link Test (801-6184-10) and the
driver.conf(4) man page for details of the syntax of driver configuration files.

le(7D)

Device and Network Interfaces 321

llc1 – Logical Link Control Protocol Class 1 Driver

#include <sys/stropts.h>

#include <sys/ethernet.h>

#include <sys/dlpi.h>

#include <sys/llc1.h>

The llc1 driver is a multi-threaded, loadable, clonable, STREAMS multiplexing
driver supporting the connectionless Data Link Provider Interface, dlpi(7P),
implementing IEEE 802.2 Logical Link Control Protocol Class 1 over a STREAM to a
MAC level driver. Multiple MAC level interfaces installed within the system can be
supported by the driver. The llc1 driver provides basic support for the LLC1
protocol. Functions provided include frame transmit and receive, XID, and TEST,
multicast support, and error recovery and reporting.

The cloning, character-special device, /dev/llc1, is used to access all LLC1
controllers configured under llc1.

The llc1 driver is a “Style 2” Data Link Service provider. All messages of types
M_PROTO and M_PCPROTO are interpreted as DLPI primitives. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device (ppa). The ppa ID is interpreted as an unsigned long and indicates
the corresponding device instance (unit) number. An error (DL_ERROR_ACK) is
returned by the driver if the ppa field value does not correspond to a valid device
instance number for this system.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum Service Data UNIT (SDU) is derived from the MAC layer linked
below the driver. In the case of an Ethernet driver, the SDU will be 1497.

� The minimum SDU is 0.

� The MAC type is DL_CSMACD or DL_TPR as determined by the driver linked under
llc1. If the driver reports that it is DL_ETHER, it will be changed to
DL_CSMACD; otherwise the type is the same as the MAC type.

� The sap length value is −1, meaning the physical address component is followed
immediately by a 1-octet sap component within the DLSAP address.

� The service mode is DL_CLDLS.

� The MAC type is DL_CSMACD or DL_TPR as determined by the driver linked under
llc1. If the driver reports that it is DL_ETHER, it will be changed to
DL_CSMACD; otherwise the type is the same as the MAC type.

� The dlsap address length is 7.

� No optional quality of service (QOS) support is included at present, so the QOS
fields should be initialized to 0.

llc1(7D)

NAME

SYNOPSIS

DESCRIPTION

322 man pages section 7: Device and Network Interfaces • Last Revised 13 Feb 1997

� The DLPI version is DL_VERSION_2.

� The provider style is DL_STYLE2.

� The broadcast address value is the broadcast address returned from the lower level
driver.

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular Service Access Point (SAP) with the stream. The llc1 driver interprets the
sap field within the DL_BIND_REQ as an IEEE 802.2 “SAP,” therefore valid values for
the sap field are in the [0-0xFF] range with only even values being legal.

The llc1 driver DLSAP address format consists of the 6-octet physical (e.g., Ethernet)
address component followed immediately by the 1-octet sap (type) component
producing a 7-octet DLSAP address. Applications should not hard-code to this
particular implementation-specific DLSAP address format, but use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP
addresses. The sap length, full DLSAP length, and sap/physical ordering are
included within the DL_INFO_ACK. The physical address length can be computed by
subtracting the absolute value of the sap length from the full DLSAP address length
or by issuing the DL_PHYS_ADDR_REQ to obtain the current physical address
associated with the stream.

Once in the DL_BOUND state, the user may transmit frames on the LAN by sending
DL_UNITDATA_REQ messages to the llc1 driver. The llc1 driver will route received
frames up all open and bound streams having a sap which matches the IEEE 802.2
DSAP as DL_UNITDATA_IND messages. Received frames are duplicated and routed
up multiple open streams if necessary. The DLSAP address contained within the
DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the sap (type)
and physical (Ethernet) components.

In addition to the mandatory, connectionless DLPI message set, the driver additionally
supports the following primitives:

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable/disable
reception of specific multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any driver state that is valid while still being
attached to the ppa.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet physical address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6-octet physical address
currently associated (attached) to this stream. Once changed, all streams subsequently
opened and attached to this device will obtain this new physical address. Once
changed, the physical address will remain set until this primitive is used to change the
physical address again or the system is rebooted, whichever occurs first.

llc1(7D)

Device and Network Interfaces 323

The DL_XID_REQ/DL_TEST_REQ primitives provide the means for a user to issue an
LLC XID or TEST request message. A response to one of these messages will be in the
form of a DL_XID_CON/DL_TEST_CON message.

The DL_XID_RES/DL_TEST_RES primitives provide a way for the user to respond to
the receipt of an XID or TEST message that was received as a
DL_XID_IND/DL_TEST_IND message.

XID and TEST will be automatically processed by llc1 if the
DL_AUTO_XID/DL_AUTO_TEST bits are set in the DL_BIND_REQ.

/dev/llc1 cloning, character-special device

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), dlpi(7P)

llc1(7D)

FILES

ATTRIBUTES

SEE ALSO

324 man pages section 7: Device and Network Interfaces • Last Revised 13 Feb 1997

llc2 – Class II logical link control driver

The llc2 logical link control driver interfaces network software (NetBIOS, SNA, OSI,
and so on) running under the Solaris operating environment to a physical LAN
network controlled by one of the supported communications adapters. The llc2
driver, which appears as a STREAMS driver to the network software, resides in the
kernel and is accessed by standard UNIX STREAMS functions.

This version of the llc2 driver includes support for both connectionless and
connection-oriented logical link control class II (llc2) operations for Ethernet, Token
Ring, and FDDI adapters when accessed through the appropriate Solaris MAC layer
driver. The Data Link Provider Interface (DLPI) to the llc2 driver enables multiple
and different protocol stacks, (including NetBIOS and SNA), to operate
simultaneously over one or more local area networks.

To start the llc2 driver by default, rename file /etc/llc2/llc2_start.default
to /etc/llc2/llc2_start. This allows the /etc/rc2.d/S40llc2 script to build
up the configuration file for each ppa interface in /etc/llc2/default/llc2.* and
start llc2 on each interface. To verify the configuration files, manually run
/usr/lib/llc2/llc2_autoconfig.

For more information on the llc2 driver, see the IEEE standard 802.2 Logical Link
Control.

You can obtain LLC2 statistics or reset the statistics counter to zero using the
ILD_LLC2 ioctl. The ILD_LLC2 ioctl has a number of subcommands. The following
retrieve LLC2 statistics:

Name Function

LLC2_GET_STA_STATS Get station statistics

LLC2_GET_SAP_STATS Get SAP statistics

LLC2_GET_CON_STATS Get connection statistics

The structure used depends on the subcommand sent.

The LLC2_GET_STA_STATS command retrieves statistics on a particular Physical
Point of Attachment (PPA).

When sending the LLC2_GET_STA_STATS command, the llc2GetStaStats structure is
used:

typedef struct llc2GetStaStats {
uint_t ppa;
uint_t cmd;
uchar_t clearFlag;
uchar_t state;
ushort_t numSaps;

llc2(7D)

NAME

DESCRIPTION

OBTAINING LLC2
STATISTICS

LLC2_GET_STA_STATS

Device and Network Interfaces 325

uchar_t saps[LLC2_MAX_SAPS];
uint_t nullSapXidCmdRcvd;
uint_t nullSapXidRspSent;
uint_t nullSapTestCmdRcvd;
uint_t nullSapTestRspSent;
uint_t outOfState;
uint_t allocFail;
uint_t protocolError;

} llc2GetStaStats_t;

The members of the structure are:

Member Description

cmd LLC2_GET_STA_STATS

clearFlag Clear counters flag. Set this to 0 to retreive statistics and
to 1 to reset all counters to 0.

state Station component state. Possible values are ?????

numSaps Number of active SAPs in the saps array

saps An array of active SAP values

nullSapXidCmdRcvd Number of NULL SAP XID commands received

nullSapXidRspSent Number of NULL SAP XID responses sent

nullSapTestCmdRcvd Number of NULL SAP TEST commands received

nullSapTestRspSent Number of NULL SAP TEST responses sent

outOfState Number of invalid events received

allocFail Number of buffer allocation failures

protocolError Number of protocol errors

The LLC2_GET_SAP_STATS command retrieves statistics related to a particular SAP.
When sending the LLC2_GET_SAP_STATS command, the llc2GetSapStats structure is
used:

typedef struct llc2GetSapStats {
uint_t ppa;
uint_t cmd;
uchar_t sap;
uchar_t clearFlag;
uchar_t state;
uint_t numCons;
ushort_t cons[LLC2_MAX_CONS];
uint_t xidCmdSent;
uint_t xidCmdRcvd;
uint_t xidRspSent;
uint_t xidRspRcvd;

llc2(7D)

LLC2_GET_SAP_STATS

326 man pages section 7: Device and Network Interfaces • Last Revised 12 Aug 1999

uint_t testCmdSent;
uint_t testCmdRcvd;
uint_t testRspSent;
uint_t testRspRcvd;
uint_t uiSent;
uint_t uiRcvd;
uint_t outOfState;
uint_t allocFail;
uint_t protocolError;

} llc2GetSapStats_t;

The members are:

Member Description

ppa Physical Point of Attachment number

cmd LLC2_GET_SAP_STATS

sap SAP value

clearFlag Clear counters flag. Set this to 0 to retreive statistics and to 1 to
reset all counters to 0.

state SAP component state

numCons Number of active connections in the cons array

cons Array of active connection indexes

xidCmdSent Number of XID commands sent

xidCmdRcvd Number of XID responses received

xidRspSent Number of XID responses sent

xidRspRcvd Number of XID responses received

testCmdSent Number of TEST commands sent

testCmdRcvd Number of TEST commands received

testRspSent Number of TEST responses sent

testRspRcvd Number of TEST responses received

uiSent Number of UI frames sent

uiRcvd Number of UI frames received

outOfState Number of invalid events received

allocFail Number of buffer allocation failures

protocolError Number of protocol errors

llc2(7D)

Device and Network Interfaces 327

The LLC2_GET_CON_STATS command retrieves statistics related to a particular
connection component. When sending the LLC2_GET_CON_STATS command, the
llc2GetConStats structure is used:

typedef struct llc2GetConStats {
uint_t ppa;
uint_t cmd;
uchar_t sap;
ushort_t con;
uchar_t clearFlag;
uchar_t stateOldest;
uchar_t stateOlder;
uchar_t stateOld;
uchar_t state;
ushort_t sid;
dlsap_t rem;
ushort_t flag;
uchar_t dataFlag;
uchar_t k;
uchar_t vs;
uchar_t vr;
uchar_t nrRcvd;
ushort_t retryCount;
uint_t numToBeAcked;
uint_t numToResend;
uint_t macOutSave;
uint_t macOutDump;
uchar_t timerOn;
uint_t iSent;
uint_t iRcvd;
uint_t frmrSent;
uint_t frmrRcvd;
uint_t rrSent;
uint_t rrRcvd;
uint_t rnrSent;
uint_t rnrRcvd;
uint_t rejSent;
uint_t rejRcvd;
uint_t sabmeSent;
uint_t sabmeRcvd;
uint_t uaSent;
uint_t uaRcvd;
uint_t discSent;
uint_t outOfState;
uint_t allocFail;
uint_t protocolError;
uint_t localBusy;
uint_t remoteBusy;
uint_t maxRetryFail;
uint_t ackTimerExp;
uint_t pollTimerExp;
uint_t rejTimerExp;
uint_t remBusyTimerExp;
uint_t inactTimerExp;
uint_t sendAckTimerExp;

} llc2GetConStats_t;

llc2(7D)

LLC2_GET_CON_STATS

328 man pages section 7: Device and Network Interfaces • Last Revised 12 Aug 1999

The members of the structure are:

Member Description

ppa Physical Point of Attachment number

cmd LLC2_GET_CON_STATS

sap SAP value

con Connection index

clearFlag Clear counters flag. Set this to 0 to retreive statistics
and to 1 to reset all counters to 0.

stateOldest, stateOlder, stateOld, state The four previous dlpi states of the connection

sid SAP value and connection index

dlsap_t rem Structure containing the remote MAC address and
SAP

flag Connection component processing flag

dataFlag DATA_FLAG

k transmit window size

vs Sequence number of the next I-frame to send

vr Sequence number of the next I-frame expected

nrRcvd Sequence number of the last I-frame acknowledged
by the remote node

retryCount Number of timer expirations

numToBeAcked Number of outbound I-frames to be acknowledged

numToResend Number of outbound I-frames to be re-sent

macOutSave Number of outbound I-frames held by the MAC
driver to be saved on return to LLC2

macOutDump Number of outbound I-frames held by the MAC
driver to be dumped on return to LLC2

timerOn Timer activity flag

iSent Number of I-frames sent

iRcvd Number of I-frames received

frmrSent Number of frame rejects sent

frmrRcvd Number of frame rejects received

llc2(7D)

Device and Network Interfaces 329

Member Description

rrSent Number of RRs sent

rrRcvd Number of RRs received

rnrRcvd Number of RNRs received

rejSent Number of rejects sent

rejRcvd Number of rejects received

sabmeSent Number of SABMEs sent

sabmeRcvd Number of SABMEs received

uaSent Number of UAs sent

uaRcvd Number of UAs received

discSent Number of DISCs sent

outOfState Number of invalid events received

allocFail Number of buffer allocation failures

protocolError Number of protocol errors

localBusy Number of times in a local busy state

remoteBusy Number of times in a remote busy state

maxRetryFail Number of failures due to reaching maxRetry

ackTimerExp Number of ack timer expirations

pollTimerExp Number of P-timer expirations

rejTimerExp Number of reject timer expirations

remBusyTimerExp Number of remote busy timer expirations

inactTimerExp Number of inactivity timer expirations

sendAckTimerExp Number of send ack timer expirations

/dev/llc2 Clone device used to access the driver
/etc/llc2/default/llc2.? configuration files
(One file per ppa interface.)

See attributes(5) for a description of the following attribute:

llc2(7D)

FILES

ATTRIBUTES

330 man pages section 7: Device and Network Interfaces • Last Revised 12 Aug 1999

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWllc

llc2_autoconfig(1), llc2_config(1), llc2(4)

llc2(7D)

SEE ALSO

Device and Network Interfaces 331

lockstat – kernel lock statistics driver

The lockstat driver is the mechanism used by the lockstat(1M) command to
extract kernel lock statistics. This is not a public interface.

/dev/lockstat kernel lock statistics driver

lockstat(1M)

lockstat(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

332 man pages section 7: Device and Network Interfaces • Last Revised 7 May 1997

lofi – Loopback file driver

The lofi file driver exports a file as a block device. Reads and writes to the block
device are translated to reads and writes on the underlying file. This is useful when
the file contains a file system image. Exporting it as a block device through the lofi
file driver allows normal system utilities to operate on the image through the block
device (like fstyp(1M)fsck(1M), and mount(1M). This is useful for accessing
CD-ROM and FAT floppy images. See lofiadm(1M) for examples.

File block device entries are contained in /dev/lofi, while /dev/rlofi contains
the character (or raw) device entries. Entries are in the form of decimal numbers which
are assigned through lofiadm(1M). When created, these device entries are owned by
root, in group sys, and have permissions 0600. While ownership, group, and
permission settings can be altered, there are possible ramifications. See lofiadm(1M)
for more information.

/dev/lofictl
Master control device

/dev/lofi/n
Block device for file n

/dev/rlofi/n
Character device for file n

/kernel/drv/lofi
32–bit driver

/kernel/drv/lofi.conf
Driver configuration file. (Should not be altered.)

/kernel/drv/sparcv9/lofi
64–bit driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr, SUNWcarx.u

lofiadm(1M), fsck(1M), fstyp(1M), mount(1M), newfs(1M), attributes(5),
lofs(7FS)

Just as you would not directly access a disk device that has mounted file systems, you
should not access a file associated with a block device except through the lofi file
driver.

For compatability purposes, a raw device is also exported along with the block device.
For example, newfs(1M) requires one.

lofi(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

NOTES

Device and Network Interfaces 333

lofs – loopback virtual file system

#include <sys/param.h>

#include <sys/mount.h>

int mount (const char* dir, const char* virtual, int mflag, lofs, NULL,
0);

The loopback file system device allows new, virtual file systems to be created, which
provide access to existing files using alternate pathnames. Once the virtual file system
is created, other file systems can be mounted within it, without affecting the original
file system. However, file systems which are subsequently mounted onto the original
file system are visible to the virtual file system, unless or until the corresponding
mount point in the virtual file system is covered by a file system mounted there.

virtual is the mount point for the virtual file system. dir is the pathname of the existing
file system. mflag specifies the mount options; the MS_DATA bit in mflag must be set. If
the MS_RDONLY bit in mflag is not set, accesses to the loop back file system are the
same as for the underlying file system. Otherwise, all accesses in the loopback file
system will be read-only. All other mount(2) options are inherited from the underlying
file systems.

A loopback mount of ’/’ onto /tmp/newroot allows the entire file system hierarchy
to appear as if it were duplicated under /tmp/newroot, including any file systems
mounted from remote NFS servers. All files would then be accessible either from a
pathname relative to ’/’ or from a pathname relative to /tmp/newroot until such
time as a file system is mounted in /tmp/newroot, or any of its subdirectories.

Loopback mounts of ’/’ can be performed in conjunction with the chroot(2) system
call, to provide a complete virtual file system to a process or family of processes.

Recursive traversal of loopback mount points is not allowed. After the loopback
mount of /tmp/newroot, the file /tmp/newroot/tmp/newroot does not contain
yet another file system hierarchy; rather, it appears just as /tmp/newroot did before
the loopback mount was performed (for example, as an empty directory).

lofs file systems are mounted using:

mount-F lofs /tmp /mnt

lofiadm(1M), mount(1M), chroot(2), mount(2), sysfs(2), vfstab(4), lofi(7D)

Loopback mounts must be used with care; the potential for confusing users and
applications is enormous. A loopback mount entry in /etc/vfstab must be placed
after the mount points of both directories it depends on. This is most easily
accomplished by making the loopback mount entry the last in /etc/vfstab.

Files can be modified on a read-only loopback mounted file system, and a loopback
mounted file system can be unmounted even if there is an open regular file on that file
system. The loopback file system works by shadowing directories of the underlying
file system. Because no other file types are shadowed, the loopback file system can not

lofs(7FS)

NAME

SYNOPSIS

DESCRIPTION

Examples

SEE ALSO

WARNINGS

BUGS

334 man pages section 7: Device and Network Interfaces • Last Revised 10 Apr 2001

enforce read-only access to non-directory files located on a read-only mounted
loopback file system. Thus, write access to regular files located on a loopback mounted
file system is determined by the underlying file system. In addition, the loopback file
system can not correctly determine whether a loopback mounted file system can be
unmounted or not. It can only detect when a directory is active or not, not when a file
within a directory is active. Thus, a loopback mounted file system may be unmounted
if there are no active directories on the file system, even if there are open files on the
file system.

lofs(7FS)

Device and Network Interfaces 335

log – interface to STREAMS error logging and event tracing

#include <sys/strlog.h>

#include <sys/log.h>

log is a STREAMS software device driver that provides an interface for console
logging and for the STREAMS error logging and event tracing processes (see
strerr(1M), and strace(1M)). log presents two separate interfaces: a function call
interface in the kernel through which STREAMS drivers and modules submit log
messages; and a set of ioctl(2) requests and STREAMS messages for interaction with
a user level console logger, an error logger, a trace logger, or processes that need to
submit their own log messages.

log messages are generated within the kernel by calls to the function strlog():

strlog(short mid,
short sid,
char level,
ushort_t flags,
char *fmt,
unsigned arg1 . . .

);

Required definitions are contained in <sys/strlog.h>, <sys/log.h>, and
<sys/syslog.h>. mid is the STREAMS module id number for the module or driver
submitting the log message. sid is an internal sub-id number usually used to identify
a particular minor device of a driver. level is a tracing level that allows for selective
screening out of low priority messages from the tracer. flags are any combination of
SL_ERROR (the message is for the error logger), SL_TRACE (the message is for the
tracer), SL_CONSOLE (the message is for the console logger), SL_FATAL (advisory
notification of a fatal error), and SL_NOTIFY (request that a copy of the message be
mailed to the system administrator). fmt is a printf(3C) style format string, except
that %s, %e, %E, %g, and %G conversion specifications are not handled. Up to
NLOGARGS (in this release, three) numeric or character arguments can be provided.

log is implemented as a cloneable device, it clones itself without intervention from
the system clone device. Each open of /dev/log obtains a separate stream to log. In
order to receive log messages, a process must first notify log whether it is an error
logger, trace logger, or console logger using a STREAMS I_STR ioctl call (see
below). For the console logger, the I_STR ioctl has an ic_cmd field of I_CONSLOG,
with no accompanying data. For the error logger, the I_STR ioctl has an ic_cmd
field of I_ERRLOG, with no accompanying data. For the trace logger, the ioctl has an
ic_cmd field of I_TRCLOG, and must be accompanied by a data buffer containing an
array of one or more struct trace_ids elements.

struct trace_ids {
short ti_mid;
short ti_sid;
char ti_level;

};

log(7D)

NAME

SYNOPSIS

DESCRIPTION

Kernel Interface

User Interface

336 man pages section 7: Device and Network Interfaces • Last Revised 11 Mar 1998

Each trace_ids structure specifies a mid, sid, and level from which messages will be
accepted. strlog(9F) will accept messages whose mid and sid exactly match those in
the trace_ids structure, and whose level is less than or equal to the level given in
the trace_ids structure. A value of −1 in any of the fields of the trace_ids
structure indicates that any value is accepted for that field.

Once the logger process has identified itself using the ioctl call, log will begin
sending up messages subject to the restrictions noted above. These messages are
obtained using the getmsg(2) function. The control part of this message contains a
log_ctl structure, which specifies the mid, sid, level, flags, time in ticks since boot that
the message was submitted, the corresponding time in seconds since Jan. 1, 1970, a
sequence number, and a priority. The time in seconds since 1970 is provided so that
the date and time of the message can be easily computed, and the time in ticks since
boot is provided so that the relative timing of log messages can be determined.

struct log_ctl {
short mid;
short sid;
char level; /* level of message for tracing */
short flags; /* message disposition */

#if defined(_LP64) || defined(_I32LPx)
clock32_t ltime; /* time in machine ticks since boot */
time32_t ttime; /* time in seconds since 1970 */

#else
clock_t ltime;
time_t ttime;

#endif
int seq_no; /* sequence number */
int pri; /* priority = (facility|level) */

};

The priority consists of a priority code and a facility code, found in
<sys/syslog.h>. If SL_CONSOLE is set in flags, the priority code is set as follows: If
SL_WARN is set, the priority code is set to LOG_WARNING; If SL_FATAL is set, the
priority code is set to LOG_CRIT; If SL_ERROR is set, the priority code is set to
LOG_ERR; If SL_NOTE is set, the priority code is set to LOG_NOTICE; If SL_TRACE is
set, the priority code is set to LOG_DEBUG; If only SL_CONSOLE is set, the priority code
is set to LOG_INFO. Messages originating from the kernel have the facility code set to
LOG_KERN. Most messages originating from user processes will have the facility code
set to LOG_USER.

Different sequence numbers are maintained for the error and trace logging streams,
and are provided so that gaps in the sequence of messages can be determined (during
times of high message traffic some messages may not be delivered by the logger to
avoid hogging system resources). The data part of the message contains the
unexpanded text of the format string (null terminated), followed by NLOGARGS words
for the arguments to the format string, aligned on the first word boundary following
the format string.

log(7D)

Device and Network Interfaces 337

A process may also send a message of the same structure to log, even if it is not an
error or trace logger. The only fields of the log_ctl structure in the control part of the
message that are accepted are the level, flags, and pri fields; all other fields are filled in
by log before being forwarded to the appropriate logger. The data portion must
contain a null terminated format string, and any arguments (up to NLOGARGS) must
be packed, 32-bits each, on the next 32-bit boundary following the end of the format
string.

ENXIO is returned for I_TRCLOG ioctls without any trace_ids structures, or for any
unrecognized ioctl calls. The driver silently ignores incorrectly formatted log
messages sent to the driver by a user process (no error results).

Processes that wish to write a message to the console logger may direct their output to
/dev/conslog, using either write(2) or putmsg(2).

The following driver configuration properties may be defined in the log.conf file.

msgid=1 If msgid=1, each message will be preceded by a message ID as
described in syslogd(1M).

msgid=0 If msgid=0, message IDs will not be generated. This property is
unstable and may be removed in a future release.

EXAMPLE 1 I_ERRLOG registration.

struct strioctl ioc;
ioc.ic_cmd = I_ERRLOG;
ioc.ic_timout = 0; /* default timeout (15 secs.) */
ioc.ic_len = 0;
ioc.ic_dp = NULL;
ioctl(log, I_STR, &ioc);

EXAMPLE 2 I_TRCLOG registration.

struct trace_ids tid[2];
tid[0].ti_mid = 2;
tid[0].ti_sid = 0;
tid[0].ti_level = 1;
tid[1].ti_mid = 1002;
tid[1].ti_sid = −1; /* any sub-id will be allowed */
tid[1].ti_level = −1; /* any level will be allowed */
ioc.ic_cmd = I_TRCLOG;
ioc.ic_timout = 0;
ioc.ic_len = 2 * sizeof(struct trace_ids);
ioc.ic_dp = (char *)tid;
ioctl(log, I_STR, &ioc);

Example of submitting a log message (no arguments):

struct strbuf ctl, dat;
struct log_ctl lc;
char *message = "Don’t forget to pick up some milk

on the way home";
ctl.len = ctl.maxlen = sizeof(lc);

log(7D)

Driver
Configuration

EXAMPLES

338 man pages section 7: Device and Network Interfaces • Last Revised 11 Mar 1998

EXAMPLE 2 I_TRCLOG registration. (Continued)

ctl.buf = (char *)&lc;
dat.len = dat.maxlen = strlen(message);
dat.buf = message;
lc.level = 0;
lc.flags = SL_ERROR|SL_NOTIFY;
putmsg(log, &ctl, &dat, 0);

/dev/log Log driver.

/dev/conslog Write only instance of the log driver, for console
logging.

/kernel/drv/log.conf Log configuration file.

strace(1M), strerr(1M), intro(3), getmsg(2), ioctl(2), putmsg(2), write(2),
printf(3C), strlog(9F)

STREAMS Programming Guide

log(7D)

FILES

SEE ALSO

Device and Network Interfaces 339

logi – LOGITECH Bus Mouse device interface

/dev/logi

The logi driver supports the LOGITECH Bus Mouse. It allows applications to obtain
information about the mouse’s movements and the status of its buttons. The data is
read in the Five Byte Packed Binary Format, also called MSC format.

/dev/logi

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5)

logi(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

340 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

lp – driver for parallel port

include <sys/bpp_io.h>

fd = open("/dev/lpn", flags);

The lp driver provides the interface to the parallel ports used by printers for IA based
systems. The lp driver is implemented as a STREAMS device.

BPPIOC_TESTIO Test transfer readiness. This command checks to see if a
read or write transfer would succeed based on pin
status. If a transfer would succeed, 0 is returned. If a
transfer would fail, −1 is returned, and errno is set to
EIO. The error status can be retrieved using the
BPPIOC_GETERR ioctl() call.

BPPIOC_GETERR Get last error status. The argument is a pointer to a
struct bpp_error_status. See below for a
description of the elements of this structure. This
structure indicates the status of all the appropriate
status bits at the time of the most recent error condition
during a read(2) or write(2) call, or the status of the
bits at the most recent BPPIOC_TESTIO ioctl(2) call.
The application can check transfer readiness without
attempting another transfer using the BPPIOC_TESTIO
ioctl().

This structure and symbols are defined in the include file <sys/bpp_io.h>:

struct bpp_error_status {
char timeout_occurred; /* Not use */
char bus_error; /* Not use */
uchar_t pin_status; /* Status of pins which could cause an error */

};

/* Values for pin_status field */
#define BPP_ERR_ERR 0x01 /* Error pin active */
#define BPP_SLCT_ERR 0x02 /* Select pin active */

#define BPP_PE_ERR 0x04 /* Paper empty pin active */

Note: Other pin statuses are defined in <sys/bpp_io.h>, but BPP_ERR_ERR,
BPP_SLCT_ERR and BPP_PE_ERR are the only ones valid for the IA lp driver.

EIO A BPPIOC_TESTIO ioctl() call is attempted while a condition
exists that would prevent a transfer (such as a peripheral error).

EINVAL An ioctl() is attempted with an invalid value in the command
argument.

/platform/i86pc/kernel/drv/lp.conf
configuration file for lp driver

See attributes(5) for descriptions of the following attributes:

lp(7D)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

Error Pins
Structure

ERRORS

FILES

ATTRIBUTES

Device and Network Interfaces 341

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

sysbus(4), attributes(5), streamio(7I)

A read operation on a bi-directional parallel port is not supported.

lp(7D)

SEE ALSO

NOTES

342 man pages section 7: Device and Network Interfaces • Last Revised 21 May 1997

ltem – ANSI Layered Console Driver

#include <sys/types.h>

#include <fcntl.h>

#include <visual.h>

#include <sys/ltem.h>

The ltem driver provides a general-purpose ANSI interface to the system console
device. ltem is a layered device driver which on one side provides the kernel with a
consistent interface to the system console device (and therefore to the console
framebuffer) and on the other side uses ioctls to send data to the framebuffer driver
(see visual_io(7I)).

The following ioctl(2) calls are supported:

VIS_CONS_MODE_CHANGE Notifies ltem that the resolution of the underlying
framebuffer has been changed. ltem will stop console
output, notify the framebuffer (by passing this ioctl on),
reset the terminal emulator (using the VIS_DEVFINI
and VIS_DEVINIT ioctls), and allow console output
again.

/dev/ltem/* ANSI console layered driver

ioctl(2), visual_io(7I)

ltem(7D)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

FILES

SEE ALSO

Device and Network Interfaces 343

m64 – PGX, PGX24, and PGX64 frame buffers device driver

The m64 driver is the Sun PGX graphics accelerator device driver.

/dev/fbs/m64\fIn Device special file

m64config(1M)

m64(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

344 man pages section 7: Device and Network Interfaces • Last Revised 05 Feb 2001

md – user configurable pseudo device driver

md is a user configurable pseudo device driver that provides disk concatenation,
striping, mirroring, RAID5 metadevices, trans metadevices, and hot spare utilities.

The block devices access the disk using the system’s normal buffering mechanism and
are read and written without regard to physical disk records. There is also a ‘‘raw’’
device which provides for direct transmission between the disk and the user’s read or
write buffer. A single read or write call usually results in one I/O operation; raw I/O
is therefore considerably more efficient when many bytes are transmitted. The names
of the block devices are found in /dev/md/dsk; the names of the raw devices are
found in /dev/md/rdsk. Metadevices have the appearance of whole disks; there are
no slices (partitions).

I/O requests (such as lseek (2)) to the metadevices must have an offset that is a
multiple of 512 bytes (DEV_BSIZE), or the driver returns an EINVAL error. If the
transfer length is not a multiple of 512 bytes, the tranfer count is rounded up by the
driver.

The md pseudo device drivers support all disk devices on all Solaris 2.4 or later Solaris
systems.

This section provides a list of the ioctls supported by the metadisk driver.

The following ioctls are valid when issued to the raw metadevice, such as
/dev/md/rdsk/d0. See dkio(7) for additional information.

DKIOCGGEOM This ioctl is used to get the disk geometry. The metadisk driver fills
in the dkg_nhead, dkg_nsect, dkg_rpm,
dkg_write_reinstruct and dkg_read_reinstruct from the
first component of the metadevice (at metainit time). dkg_ncyl
is calculated using the size of the metadevice (reported by
metastat) divided by (dkg_nhead * dkg_nsect). The total size is
always a multiple of (dkg_nhead * dkg_nsect). If the first
component of a metadevice does not start on cylinder number 0,
then the dkg_ncyl is increased by one cylinder; because
DKIOCGVTOC reports the metadevice as starting on cylinder 1.
The side effect here is that it looks like cylinder 0 is not being used,
but all the arithmetic works out correctly. If the metadevice is not
set up, then ENXIO is returned.

DKIOCINFO When issued to the administrative device or metadevice, this ioctl
sets dki_unit to the unit number of the metadevice, dki_ctype
to a value of DKC_MD, and dki_partition to 0, because there
are no slices.

DKIOCGVTOC This ioctl returns the current vtoc. If one has not been written, then
a default vtoc is returned. v_nparts is always 1.
v_part[0].p_start is 0 if the first component of the
metadevice starts on cylinder 0. Otherwise, the p_start field is

md(7D)

NAME

DESCRIPTION

IOCTLS

Device and Network Interfaces 345

the starting sector of cylinder 1. v_part[0].p_size is the same
as the total size reported by metastat.

DKIOCSVTOC This ioctl stores the vtoc in the metadevice state database so it is
persistent across reboots.

The informative log messages include:

md: dnum: Hotspared device dev with dev

The first device name listed has been hot spare replaced with the second device name
listed.

md: dnum: Hotspared device dev(num,num) with dev(num,num)

The first device number listed has been hot spare replaced with the second device
number listed.

md: Could not load misc /dev

The named misc module is not loadable. It is possibly missing, or something else has
been copied over it.

md: dnum: no mem for property dev

Memory could not be allocated in the prop_op entry point.

md: db: Parsing error on ’dev’

Set command in /etc/system for the mddb.bootlist <number> is not in the
correct format. metadb -p can be run to put the correct set commands into the
/etc/system file.

md: dnum: dev(num,num) needs maintenance
md: dnum: dev needs maintenance

An I/O or open error has occurred on a device within a mirror causing a component
in the mirror to change to the Maintenance state.

md: dnum: dev(num,num) last erred md: dnum: dev last erred

An I/O or open error has occurred on a device within a mirror and the data is not
replicated elsewhere in the mirror. This is causing the component in the mirror to
change to the Last Erred state.

The warning log messages include:

md: dnum: not configurable, check /kernel/drv/md.conf

This error occurs when the number of metadevices as specified by the nmd parameter
in the /kernel/drv/md.conf file is lower than the number of configured
metadevices on the system. It can also occur if the md_nsets parameter for disksets is

md(7D)

Notice Log
Messages

Warning Log
Messages

346 man pages section 7: Device and Network Interfaces • Last Revised 20 September 2000

lower than the number of configured disksets on the system. To fix this problem,
examine the md.conf file and increase the value of either nmd or md_nsets as
needed.

md: State database is stale

This error message comes when there are not enough usable replicas for the state
database to be able to update records in the database. All accesses to the metadevice
driver will fail. To fix this problem, more replicas need to be added or inaccessible
replicas need to be deleted.

md: dnum: read error on devmd: dnum: write error on dev

A read or write error has occurred on the specified submirror, at the specified device
name. This happens if any read or write errors occur on a submirror.

md: dnum: read error on dev(num,num)md: dnum: write error on dev(num,num)

A read or write error has occurred on the specified submirror, at the specified device
number. This happens if any read or write errors occur on a submirror.

md: State database commit failed
md: State database delete failed

These messages occur when there have been device errors on components where the
state database replicas reside. These errors only occur when more than half of the
replicas have had device errors returned to them. For instance, if you have three
components with state database replicas and two of the components report errors,
then these errors may occur. The state database commit or delete is retried
periodically. If a replica is added, then the commit or delete will finish and the system
will be operational. Otherwise the system will timeout and panic.

md: dnum: Cannot load dev driver

Underlying named driver module is not loadable (for example, sd, id, xy, or a
third-party driver). This could indicate that the driver module has been removed.

md: Open error of hotspare devmd: Open error of hotspare dev(num,num)

Named hotspare is not openable, or underlying driver is not loadable.

The panic log messages include:

md: dnum: Unknown close typemd: dnum: Unknown open type

Metadevice is being opened/closed with an unknown open type (OTYP).

md: State database problem

Failed metadevice state database commit or delete has been retried the default 100
times.

/dev/md/dsk/dn block device (where n is the device number)

/dev/md/rdsk/dn raw device (where n is the device number)

md(7D)

Panic Log
Messages

FILES

Device and Network Interfaces 347

/dev/md/setname/dsk/dn block device (where setname is the name of
the diskset and n is the device number)

/dev/md/setname/rdsk/dn raw device (where setname is the name of
the diskset and n is the device number)

/dev/md/admin administrative device

/kernel/drv/md driver module

/kernel/drv/md.conf driver configuration file

/kernel/misc/md_stripe stripe driver misc module

/kernel/misc/md_mirror mirror driver misc module

/kernel/misc/md_hotspares hotspares driver misc module

/kernel/misc/md_trans metatrans driver for UFS logging

/kernel/misc/md_raid RAID5 driver misc module

metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M),
metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M),
metaroot(1M), metastat(1M), metasync(1M), metattach(1M), dkio(7I),
md.tab(4), md.cf(4), mddb.cf(4)

Solaris Volume Manager Administration Guide

md(7D)

SEE ALSO

348 man pages section 7: Device and Network Interfaces • Last Revised 20 September 2000

mediator – support for HA configurations consisting of two strings of drives

Beginning with a prior version, Solaris Volume Manager provided support for
high-availability (HA) configurations consisting of two hosts that share at least three
strings of drives and that run software enabling exclusive access to the data on those
drives from one host. (Note: Volume Manager, by itself, does not actually provide a
high-availability environment. The diskset feature is an enabler for HA
configurations.)

Volume Manager provides support for a low-end HA solution consisting of two hosts
that share only two strings of drives. The hosts in this type of configuration, referred
to as mediators, run a special daemon, rpc.metamedd(1M). The mediator hosts take
on additional responsibilities to ensure that data is available in the case of host or
drive failures.

In a mediator configuration, two hosts are physically connected to two strings of
drives. This configuration can survive the failure of a single host or a single string of
drives, without administrative intervention. If both a host and a string of drives fail
(multiple failures), the integrity of the data cannot be guaranteed. At this point,
administrative intervention is required to make the data accessible.

The following definitions pertain to a mediator configuration:

diskset A set of drives containing metadevices and hot spares
that can be shared exclusively (but not concurrently) by
two hosts.

Volume Manager state
database

A replicated database that stores metadevice
configuration and state information.

mediator host A host that runs the rpc.metamedd(1M) daemon and
that has been added to a diskset. The mediator host
participates in checking the state database and the
mediator quorum.

mediator quorum The condition achieved when the number of accessible
mediator hosts is equal to half+1 the total number of
configured mediator hosts. Because it is expected that
there will be two mediator hosts, this number will
normally be 2 ([(2/2) + 1] = 2.)

replica A single copy of the Volume Manager metadevice state
database.

replica quorum The condition achieved when the number of accessible
replicas is equal to half+1 the total number of
configured replicas. For example, if a system is
configured with ten replicas, the quorum is met when
six are accessible ([(10/2) + 1 = 6]).

mediator(7D)

NAME

DESCRIPTION

Device and Network Interfaces 349

A mediator host running the rpc.metamedd(1M) daemon keeps track of replica
updates. As long as the following conditions are met, access to data occurs without
any administrative intervention:

� The replica quorum is not met.
� Half of the replicas is still accessible.
� The mediator quorum is met.

The following conditions describe the operation of mediator hosts:

1. If the replica quorum is met, access to the diskset is granted. At this point no
mediator host is involved.

2. If the replica quorum is not met, half of the replicas is accessible, the mediator
quorum is met, and the replica and mediator data match, access to the diskset is
granted. The mediator host contributes the deciding vote.

3. If the replica quorum is not met, half of the replicas is accessible, the mediator
quorum is not met, half of the mediator hosts is accessible, and the replica and
mediator data match, the system prompts you to grant or deny access to the
diskset.

4. If the replica quorum is not met, half of the replicas is accessible, the mediator
quorum is met, and the replica and mediator data do not match, access to the
diskset is read-only. You can delete replicas, release the diskset, and retake the
diskset to gain read-write access to the data in the diskset.

5. In all other cases, the diskset access is read-only. You can delete replicas, release
the diskset, and retake the diskset to gain read-write access to the data in the
diskset.

The metaset(1M) command administers disksets and mediator hosts. The following
options to the metaset command pertain only to administering mediator hosts.

-a -m mediator_host_list Adds mediator hosts to the named set. A
mediator_host_list is the nodename of the mediator host
to be added and up to 2 other aliases for the mediator
host. The nodename and aliases for each mediator host
are separated by commas. Up to 2 mediator hosts can
be specified for the named diskset.

-d -m mediator_host_list Deletes mediator hosts from the named diskset.
Mediator hosts are deleted from the diskset by
specifying the nodename of mediator host to delete.

-q Displays an enumerated list of tags pertaining to
‘‘tagged data’’ that may be encountered during a take
of the ownership of a diskset.

-t [-f] -y Takes ownership of a diskset safely, unless -f is used,
in which case the take is unconditional. If metaset
finds that another host owns the set, this host will not
be allowed to take ownership of the set. If the set is not

mediator(7D)

350 man pages section 7: Device and Network Interfaces • Last Revised 20 September 2000

owned by any other host, all the disks within the set
will be owned by the host on which metaset was
executed. The metadevice state database is read in and
the shared metadevices contained in the set become
accessible. The -t option will take a diskset that has
stale databases. When the databases are stale, metaset
will exit with code 66, and a message will be printed.
At that point, the only operations permitted are the
addition and deletion of replicas. Once the addition or
deletion of the replicas has been completed, the diskset
should be released and retaken to gain full access to the
data. If mediator hosts have been configured, some
additional exit codes are possible. If half of the replicas
and half of the mediator hosts are operating properly,
the take will exit with code 3. At this point, you can
add or delete replicas, or use the -y option on a
subsequent take. If the take operation encounters
‘‘tagged data,’’ the take operation will exit with code 2.
You can then run the metaset command with the -q
option to see an enumerated list of tags.

-t [-f] -u tagnumber Once a tag has been selected, a subsequent take with
-u tagnumber can be executed to select the data
associated with the given tagnumber.

metaset(1M), md(7D), rpc.metamedd(1M), rpc.metad(1M)

Sun Cluster documentation, Solaris Volume Manager Administration Guide

Diskset administration, including the addition and deletion of hosts and drives,
requires all hosts in the set to be accessible from the network.

mediator(7D)

SEE ALSO

NOTES

Device and Network Interfaces 351

mem, kmem – physical or virtual memory

/dev/mem

/dev/kmem

The file /dev/mem is a special file that is an image of the physical memory of the
computer. The file /dev/kmem is a special file that is an image of the kernel virtual
memory of the computer. Either may be used, for example, to examine, and even patch
the system.

Byte addresses in /dev/mem are interpreted as physical memory addresses. Byte
addresses in /dev/kmem are interpreted as kernel virtual memory addresses.
References to non-existent locations cause errors to be returned.

The file /dev/kmem accesses up to 4GB of kernel virtual memory. The file /dev/mem
accesses physical memory; the size of the file is equal to the amount of physical
memory in the computer. This can be larger than 4GB; in which case, memory beyond
4GB can be accessed using a series of read(2) and write(2) commands or a
combination of llseek(2) and read(2) and write(2).

EFAULT Bad address. This error can occur when trying to: write(2) a
read-only location, read(2) a write-only location, or read(2) or
write(2) a non-existent or unimplemented location.

ENXIO This error results from attempting to mmap(2) a non-existent
physical (mem) or virtual (kmem) memory address.

/dev/mem File containing image of physical memory of computer.

/dev/kmem File containing image of kernel virtual memory of computer.

llseek(2), mmap(2), read(2), write(2)

Some of /dev/kmem cannot be read because of write-only addresses or unequipped
memory addresses.

mem(7D)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

FILES

SEE ALSO

NOTES

352 man pages section 7: Device and Network Interfaces • Last Revised 18 Mar 1994

mhd – multihost disk control operations

#include <sys/mhd.h>

The mhd ioctl(2) control access rights of a multihost disk, using disk reservations on
the disk device.

The stability level of this interface (see attributes(5)) is Evolving, thus, use of this
interface should be limited and users of the interface will find that it is subject to
change.

The mhd ioctls fall into two major categories:

• ioctls
for
non-shared
multihost
disks,
and

• ioctls
for
shared
multihost
disks.

One ioctl, MHIOCENFAILFAST, is applicable to both non-shared and shared multihost
disks. It is described after the first two categories.

All the ioctls require root privilege.

For all of the ioctls, the caller should obtain the file descriptor for the device by calling
open(2) with the O_NDELAY flag; without the O_NDELAY flag, the open may fail due
to another host already having a conflicting reservation on the device. Some of the
ioctls below permit the caller to forcibly clear a conflicting reservation held by another
host, however, in order to call the ioctl, the caller must first obtain the open file
descriptor.

Non-shared multihost disks ioctls consist of MHIOCTKOWN, MHIOCRELEASE,
HIOCSTATUS, and MHIOCQRESERVE. These ioctl requests control the access rights of
non-shared multihost disks. A non-shared multihost disk is one that supports
serialized, mutually exclusive I/O mastery by the connected hosts. This is in contrast
to the shared-disk model, in which concurrent access is allowed from more than one
host (see below).

A non-shared multihost disk can be in one of two states:

� exclusive access state, where only one connected host has I/O access, or

� non-exclusive access state, where all connected hosts have I/O access. An external
hardware reset can cause the disk to enter the non-exclusive access state.

mhd(7i)

NAME

SYNOPSIS

DESCRIPTION

Non-shared
multihost disks

Device and Network Interfaces 353

Each multihost disk driver views the machine on which it’s running as the "local host";
each views all other machines as "remote hosts". For each I/O or ioctl request, the
requesting host is the local host.

Note that the non-shared ioctls are designed to work with SCSI-2 disks. The SCSI-2
RESERVE/RELEASE command set is the underlying hardware facility in the device
that supports the non-shared ioctls.

The function prototypes for the non-shared ioctls are:

ioctl(fd, MHIOCTKOWN, (struct mhioctkown *)tkown);
ioctl(fd, MHIOCRELEASE);
ioctl(fd, MHIOCSTATUS);
ioctl(fd, MHIOCQRESERVE);

MHIOCTKOWN Forcefully acquires exclusive access rights to the multihost disk for
the local host. Revokes all access rights to the multihost disk from
remote hosts. Causes the disk to enter the exclusive access state.

Implementation Note: Reservations (exclusive access rights)
broken via random resets should be reinstated by the driver upon
their detection, for example, in the automatic probe function
described below.

MHIOCRELEASE Relinquishes exclusive access rights to the multihost disk for the
local host. On suc- cess, causes the disk to enter the non- exclusive
access state.

MHIOCSTATUS Probes a multihost disk to determine whether the local host has
access rights to the disk. Returns 0 if the local host has access to
the disk, 1 if it doesn’t, and -1 with errno set to EIO if the probe
failed for some other reason.

MHIOCQRESERVE Issues, simply and only, a SCSI-2 Reserve command. If the attempt
to reserve fails due to the SCSI error Reservation Conflict (which
implies that some other host has the device reserved), then the
ioctl will return –1 with errno set to EACCES. The
MHIOCQRESERVE ioctl does NOT issue a bus device reset or bus
reset prior to attempting the SCSI-2 reserve command. It also does
not take care of re-instating reservations that disappear due to bus
resets or bus device resets; if that behavior is desired, then the
caller can call MHIOCTKOWN after the MHIOCQRESERVE has
returned success. If the device does not support the SCSI-2 Reserve
command, then the ioctl returns –1 with errno set to ENOTSUP.
The MHIOCQRESERVE ioctl is intended to be used by
high-availability or clustering software for a "quorum" disk, hence,
the "Q" in the name of the ioctl.

Shared multihost disks ioctls control access to shared multihost disks. The ioctls are
merely a veneer on the SCSI-3 Persistent Reservation facility. Therefore, the underlying

mhd(7i)

Shared Multihost
Disks

354 man pages section 7: Device and Network Interfaces • Last Revised 31 Jan 1999

semantic model is not described in detail here, see instead the SCSI-3 standard. The
SCSI-3 Persistent Reservations support the concept of a group of hosts all sharing
access to a disk.

The function prototypes and descriptions for the shared multihost ioctls are as follows:

ioctl(fd, MHIOCGRP_INKEYS, (mhioc_inkeys_t) *k);
Issues the SCSI-3 command Persistent Reserve In Read Keys to the device. On
input, the field k->li should be initialized by the caller with k->li.listsize
reflecting how big of an array the caller has allocated for the k->li.list field and
with k->li.listlen == 0. On return, the field k->li.listlen is updated to
indicate the number of reservation keys the device currently has: if this value is
larger than k->li.listsize then that indicates that the caller should have
passed a bigger k->li.list array with a bigger k->li.listsize. The number
of array elements actually written by the callee into k->li.list is the minimum
of k->li.listlen and k->li.listsize. The field k->generation is updated
with the generation information returned by the SCSI-3 Read Keys query. If the
device does not support SCSI-3 Persistent Reservations, then this ioctl returns –1
with errno set to ENOTSUP.

ioctl(fd, MHIOCGRP_INRESVS, (mhioc_inresvs_t) *r);
Issues the SCSI-3 command Persistent Reserve In Read Reservations to the device.
Remarks similar to MHIOCGRP_INKEYS apply to the array manipulation. If the
device does not support SCSI-3 Persistent Reservations, then this ioctl returns –1
with errno set to ENOTSUP.

ioctl(fd, MHIOCGRP_REGISTER, (mhioc_register_t) *r);
Issues the SCSI-3 command Persistent Reserve Out Register. The fields of structure
r are all inputs; none of the fields are modified by the ioctl. The field r->aptpl
should be set to true to specify that registrations and reservations should persist
across device power failures, or to false to specify that registrations and
reservations should be cleared upon device power failure; true is the recommended
setting. The field r->oldkey is the key that the caller believes the device may
already have for this host initiator; if the caller believes that that this host initiator is
not already registered with this device, it should pass the special key of all zeros. To
achieve the effect of unregistering with the device, the caller should pass its current
key for the r->oldkey field and an r->newkey field containing the special key of
all zeros. If the device returns the SCSI error code Reservation Conflict, this ioctl
returns –1 with errno set to EACCES.

ioctl(fd, MHIOCGRP_RESERVE, (mhioc_resv_desc_t) *r);
Issues the SCSI-3 command Persistent Reserve Out Reserve. The fields of structure r
are all inputs; none of the fields are modified by the ioctl. If the device returns the
SCSI error code Reservation Conflict, this ioctl returns –1 with errno set to
EACCES.

ioctl(fd, MHIOCGRP_PREEMPTANDABORT, (mhioc_preemptandabort_t) *r);
Issues the SCSI-3 command Persistent Reserve Out Preempt-And-Abort. The fields
of structure r are all inputs; inputs; none of the fields are modified by the ioctl. The
key of the victim host is specified by the field r->victim_key. The field

mhd(7i)

Device and Network Interfaces 355

r->resvdesc supplies the preempter’s key and the reservation that it is
requesting as part of the SCSI-3 Preempt-And-Abort command. If the device
returns the SCSI error code Reservation Conflict, this ioctl returns –1 with errno
set to EACCES.

ioctl(fd, MHIOCGRP_PREEMPT, (mhioc_preemptandabort_t) *r);
Similar to MHIOCGRP_PREEMPTANDABORT, but instead issues the SCSI-3 command
Persistent Reserve Out Preempt.

ioctl(fd, MHIOCGRP_CLEAR, (mhioc_resv_key_t) *r);
Issues the SCSI-3 command Persistent Reserve Out Clear. The input parameter r is
the reservation key of the caller, which should have been already registered with
the device, by an earlier call to MHIOCGRP_REGISTER.

For each device, the non-shared ioctls should not be mixed with the Persistent Reserve
Out shared ioctls, and vice-versa, otherwise, the underlying device is likely to return
errors, because SCSI does not permit SCSI-2 reservations to be mixed with SCSI-3
reservations on a single device. It is, however, legitimate to call the Persistent Reserve
In ioctls, because these are query only. Issuing the MHIOCGRP_INKEYS ioctl is the
recommended way for a caller to determine if the device supports SCSI-3 Persistent
Reservations (the ioctl will return –1 with errno set to ENOTSUP if the device does
not).

The MHIOCENFAILFAST ioctl is applicable for both non-shared and shared disks, and
may be used with either the non-shared or shared ioctls.

ioctl(fd, MHIOENFAILFAST, (unsigned int *) millisecs);
Enables or disables the failfast option in the multihost disk driver and enables or
disables automatic probing of a multihost disk, described below. The argument is
an unsigned integer specifying the number of milliseconds to wait between
executions of the automatic probe function. An argument of zero disables the
failfast option and disables automatic probing. If the MHIOCENFAILFAST ioctl is
never called, the effect is defined to be that both the failfast option and automatic
probing are disabled.

The MHIOCENFAILFAST ioctl sets up a timeout in the driver to periodically schedule
automatic probes of the disk. The automatic probe function works in this manner: The
driver is scheduled to probe the multihost disk every n milliseconds, rounded up to
the next integral multiple of the system clock’s resolution. If

1. the local host no longer has access rights to the multihost disk, and

2. access rights were expected to be held by the local host,

then the driver immediately panics the machine, in order to comply with the failfast
model.

If the driver makes this discovery outside the timeout function, especially during a
read or write operation, it is imperative that it panic the system then as well.

Each request returns –1 on failure and sets errno to indicate the error.

mhd(7i)

MHIOCENFAILFAST
Ioctl

Automatic Probing

RETURN VALUES

356 man pages section 7: Device and Network Interfaces • Last Revised 31 Jan 1999

EPERM Caller is not root.

EACCES Access rights were denied.

EIO The multihost disk or controller was unable to successfully
complete the requested operation.

EOPNOTSUP The multihost disk does not support the operation. For example, it
does not support the SCSI-2 Reserve/Release command set, or the
SCSI-3 Persistent Reservation command set.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhea

Stability Evolving

ioctl(2), open(2), attributes(5)open(2)

The ioctls for shared multihost disks and the MHIOCQRESERVE ioctl are currently
implemented only for SPARC and only for the following disk device drivers: sd(7D),
ssd(7D).

mhd(7i)

ATTRIBUTES

SEE ALSO

NOTES

Device and Network Interfaces 357

mixer – audio mixer audio personality module interface

#include <sys/mixer.h>

The audio mixer extends the audio(7I) interface, allowing more then one process to
play or record audio at the same time. Understanding the audio(7I) interface
thoroughly is a prerequisite to understanding the mixer(7I) interface.

It is possible to disable the mixing function and return to 100% backward
compatibility with the audio(7I) interface. These two modes of operation are referred
to as the mixer mode and the compatible mode. This is done by using either the
mixerctl(1) or sdtaudiocontrol(1) applications, or by editing the audio
driver.conf file and then unloading and reloading the driver.

The audio mixer supports multi-stream Codecs. Examples of these Codecs are the
Crystal Semiconductor 4410/4422 and the Aureal 8820/8830. These devices have DSP
engines that provide sample rate conversion and other features. Each play/record
channel is mapped to an individual channel straight into the Codec. The audio
mixer does not perform sample rate or encoding conversion. (See below). However,
the programming interfaces remain the same and applications cannot distinguish
between multi-stream Codec and traditional Codec.

An application can use the audio_info_t structure to set the size of the play/record
buffers. As with the audio(7i) interface, the audio mixer does not support changing
of the play buffer. (The audio driver takes sound samples as they are needed,
regardless of how many are delivered with each write.)

The audio mixer does support changing of the record buffer. When captured by the
audio driver, buffer size bytes are sent to the application to read.

See the audio(7I) manual page for a brief discussion of audio formats. To mix the
various audio streams, the audio mixer must convert all audio formats to a common
format. The following describes how the audio mixer deals with these different
components.

When /dev/audio is opened, the initial sample rate is 8KHz, as defined in
audio(7I).

In mixer mode, the audio mixer always configures the Codec for the highest
possible sample rate for both play and record. This ensures that none of the audio
streams require compute-intensive low pass filtering. The result is that high sample
rate audio streams are not degraded by filtering.

Sample rate conversion can be a compute-intensive operation, depending on the
number of channels and a device’s sample rate. For example, an 8KHz signal can be
easily converted to 48KHz, requiring a low cost up sampling by 6. However,
converting from 44.1KHz to 48KHz is compute intensive because it must be up
sampled by 160 and then down sampled by 147. (This is only done using integer
multipliers.)

mixer(7I)

NAME

SYNOPSIS

OVERVIEW

Backward
Compatibility

Multi-Stream
Codecs

Buffer Size

AUDIO
FORMATS

Sample Rate

358 man pages section 7: Device and Network Interfaces • Last Revised 26 January 2000

Applications can greatly reduce the impact of sample rate conversion by carefully
picking the sample rate. Applications should always use the highest sample rate the
device supports. An application can also do its own sample rate conversion (to take
advantage of floating point and accelerated instruction) or use small integers for up
and down sampling.

In compatible mode, the audio mixer programs the Codec to the sample rate set
by the application to avoid incurring any sample rate conversion overhead. If the
Codec cannot support different play and record sample rates, the AUDIO_SETINFO
ioctl(2) will fail.

When /dev/audio is opened, initial encoding and precision is 8-bit -Law (as in the
Greek letter mu) . (As defined in audio(7I.))

In mixer mode, the audio mixer supports formats in the following precisions:

Encoding Precision Channels

Signed Linear PCM 16-bit Mono or Stereo

Signed Linear PCM 8-bit Mono or Stereo

-Law 8-bit Mono or Stereo

A-Law 8-bit Mono or Stereo

The audio mixer converts all audio streams to 16–bit Linear PCM before mixing.
After mixing, conversion is made to the best possible Codec format. The conversion
process is not compute intensive and audio applications can choose the encoding
format the best meets its needs.

In compatibility mode, the audio mixer sets the Codec to the encoding and
precision set by the application. If the Codec cannot support different play and record
encodings or precisions, the AUDIO_SETINFO ioctl(2) will fail.

When /dev/audio is opened, the number of initial channels is 1, left channel mono.
(As defined in audio(7I)). Most Codecs play or record mono audio on the left channel.

In mixer mode, the audio mixer sets the Codec to the maximum number of
channels supported. If a mono signal is played or recorded, it is mixed on the first
(usually the left) channel only. Silence is mixed on the remaining channels.

In compatible mode, the audio mixer sets the Codec to the number of channels set
by the application. If the Codec cannot support a different number of play and record
channels, the AUDIO_SETINFO ioctl(2) will fail.

The device /dev/audio is a device driver that dispatches audio requests to the
appropriate underlying audio personality module. The audio driver is implemented as
a STREAMS driver. To record audio input, applications open(2) the /dev/audio

mixer(7I)

Encodings and
Precision

Channels

DESCRIPTION

Device and Network Interfaces 359

device and read data from it using the read(2) system call. Similarly, sound data is
queued to the audio output port by using the write(2) system call. Device
configuration is performed using the ioctl(2) interface.

In mixer mode, the the audio device is no longer treated as an exclusive resource.
Each process may open the audio device once unless the process has made an
AUDIO_MIXER_MULTIPLE_OPEN ioctl(2). See below for details.

Each open() will complete as long as there are channels available to be allocated. If
no channels are available to be allocated:

� if either the O_NDELAY or O_NONBLOCK flags are set in the open() oflag argument,
–1 is immediately returned, with errno set to EBUSY.

� if neither the O_NDELAY nor the O_NONBLOCK flags are set, then open() hangs
until a channel becomes available or a signal is delivered to the process. In this
case, a –1 is returned with errno set to EINTR.

Upon the initial open() of the audio channel, the audio mixer sets the data format
of the audio channel to the default state of 8-bit, 8Khz, mono -Law data. If the audio
device does not support this configuration, it informs the audio mixer of the initial
configuration. Audio applications should explicitly set the encoding characteristics to
match the audio data requirements, and not depend on the default configuration. See
the audio(7I) manual page for details on how the audio mixer behaves when in
compatible mode.

The read(2) system call copies data from the system buffers to the application.
Ordinarily, read() blocks until the user buffer is filled. The I_NREAD ioctl (see
streamio(7I)) may be used to determine the amount of data that may be read
without blocking. The device may also be set to a non-blocking mode, where read()
completes immediately but may return fewer bytes than requested. See the read(2)
manual page for a complete description of this behavior.

When the audio device is opened with read access, the device driver immediately
starts buffering audio input data. Because this consumes system resources, processes
that do not record audio data should open the device write-only (O_WRONLY).

The transfer of input data to STREAMS buffers may be paused (or resumed) by using
the AUDIO_SETINFO ioctl to set (or clear) the record.pause flag in the
audio_info_t information structure. (See audio(7)). All unread input data in the
STREAMS queue may be discarded by using the I_FLUSH STREAMS ioctl (see
streamio(7I)). When changing record parameters, the input stream should first be
paused and flushed before the change. Otherwise, subsequent reads may return
samples in the old format, followed by samples in the new format.

Input data accumulates in STREAMS buffers rapidly. For 8-bit, 8 KHz, mono -Law
data, it accumulates at 8000 bytes per second . If a device is configured for 16-bit linear
or higher sample rates, it accumulates even faster. If the application that consumes the
data is unable to meet the input data rate, the STREAMS queue may become full.
When this happens, the record.error flag is set in the audio_info_t information

mixer(7I)

Opening the
Audio Device

Recording Audio
Data

360 man pages section 7: Device and Network Interfaces • Last Revised 26 January 2000

structure and input sampling ceases until there is room for additional data, resulting
in a data stream discontinuity. To prevent this, audio recording applications should
open the audio device when they are ready to begin reading data and not at the start
of extensive initialization.

The write(2) system call copies data from an application’s buffer to the STREAMS
output queue. Ordinarily, write() blocks until the entire user buffer is transferred.
The device may alternatively be set to a non-blocking mode, in which case write()
completes immediately, but may transfer fewer bytes than requested. (See the
write(2) manual page for a complete description of this behavior).

Although write() returns when the data is successfully queued, the actual
completion of audio output may take considerably longer. The AUDIO_DRAIN ioctl
may be issued to allow an application to block until all of the queued output data has
been played. Alternatively, a process may request asynchronous notification of output
completion by writing a zero-length buffer (end-of-file record) to the output stream.
When such a buffer has been processed, the play.eof flag in the audio_info_t
information structure (see below) is incremented.

The final close(2) of the audio device file descriptor hangs until all of the process’
remaining audio output has drained. If a signal interrupts the close(), or if the
process exits without closing the audio device, any remaining data queued for audio
output is flushed and the audio device is closed immediately.

The conversion of output data may be paused (or resumed) by using the
AUDIO_SETINFO ioctl to set (or clear) the play.pause flag in the audio_info_t
structure. Queued output data may be discarded by using the I_FLUSH STREAMS
ioctl. (See streamio(7I).)

Output data will be played from the STREAMS buffers at a default rate of 8000 bytes
per second for -Law, A-Law, or 8–bit PCM dat. (And at a faster rate for 16-bit linear
data or higher sampling rates). If the output queue becomes empty, the play.error flag
is set in the audio_info_t structure and output is stopped until additional data is
queued. If an application attempts to write a number of bytes that is not a multiple of
the current sample frame size, an error will be generated and the bad data will be
thrown away. Additional writes are allowed.

The I_SETSIG STREAMS ioctl (see streamio(7I)) enables asynchronous
notification through the SIGPOLL signal of input and output ready conditions. The
O_NONBLOCK flag may be set using the F_SETFL fcntl(2) to enable non-blocking
read() and write() requests. This is normally sufficient for applications to maintain
a background audio stream.

The /dev/audioctl pseudo-device enables an application to modify characteristics
of the audio device while it is being used by an unrelated process. Any number of
processes may open /dev/audioctl pseudo device simultaneously. However,
read() and write() system calls are ignored.

mixer(7I)

Playing Audio
Data

Asynchronous I/O

Audio Control
Pseudo-Device

Device and Network Interfaces 361

Note: The audio control device name is constructed by appending the letters "ctl" to
the path name of the audio device.

Applications that open the audio control pseudo-device may request asynchronous
notification of changes in the state of the audio device by setting the S_MSG flag in an
I_SETSIG STREAMS ioctl. (See streamio(7I)). Such processes receive a SIGPOLL
signal when any of the following events occur:

� AUDIO_SETINFO, AUDIO_MIXERCTL_SETINFO,
AUDIO_MIXERCTL_SET_CHINFO, or AUDIO_MIXERCTL_SET_MODE ioctl () has
altered the device state.

� Iinput overflow or output underflow has occurred.

� End-of-file record (zero-length buffer) has been processed on output.

� open() or close() of /dev/audio has altered the device state.

� External event (such as speakerbox volume control) has altered the device state.

The audio mixer implements all the ioctl()s defined in audio(7I) and uses the
audio_prinfo_t, audio_info_t, and audio_device_t structures. See the
audio(7I) manual page for details on these ioctl()s and structures. The audio
mixer also uses the data structures described below.

The state of the audio device may be polled or modified using the
AUDIO_MIXERCTL_GETINFO and AUDIO_MIXERCTL_SETINFO ioctl commands.

typedef struct am_control {
audio_info_t dev_info; /* the audio device’s state */
int8_t ch_open[1]; /* variable sized array of open chs */

} am_control_t;

See CODE EXAMPLES for sample code on how to use this structure and the related
macroAUDIO_MIXER_CTL_STRUCT_SIZE(num_ch).

The following structure is used by the AUDIO_MIXER_GET_SAMPLE_RATES ioctl to
get a list of all the supported sample rates.

typedef struct am_sample_rates {
uint_t type; /* play or capture */
uint_t flags;
uint_t num_samp_rates; /* number of elements in samp_rates[] */
uint_t samp_rates[1]; /* variable sized array of sample rates */

} am_sample_rates_t;
#define AUDIO_PLAY 0 /* type */
#define AUDIO_RECORD 1

#define MIXER_SR_LIMITS 0x00000001 /* flags */

See CODE EXAMPLES for example code on how to use this structure and the related
macroAUDIO_MIXER_SAMP_RATES_STRUCT_SIZE(num_srs).

mixer(7I)

Audio Status
Change

Notification

IOCTLS

Audio Mixer
Control Structure

Audio Mixer
Sample Rates

Structure

362 man pages section 7: Device and Network Interfaces • Last Revised 26 January 2000

When in mixer mode the audio_info_t structure’s sw_features_enabled field will
have AM_MIXER set. When in compatibility mode, the AM_MIXER bit will be
cleared.

The defines for the sw_features and the sw_features_enabled fields are:

#define AM_MIXER 0x00000001 /* mixer is present/enabled */

All of the streamio(7I) ioctl commands may be issued for the /dev/audio and
/dev/audioctl devices. I_SETSIG ioctl may be issued for /dev/audioctl to
enable the notification of audio status changes as described above.

Except for AUDIO_MIXER_GET_SAMPLE_RATE, AUDIO_MIXERCTL_GET_MODE, and
AUDIO_MIXERCTL_SET_MODE, these ioctl()s are valid only in mixer mode. Using
them in compatible mode will cause an EINVAL error to be returned.

AUDIO_MIXER_MULTIPLE_OPEN
The argument is ignored. This command allows an individual process to open
/dev/audio more then once for play or record. This feature is useful for mixing
panels that may be controlling multiple audio streams.

AUDIO_MIXER_SINGLE_OPEN
The argument is ignored. This command returns /dev/audio back to an exclusive
access device on per process basis after an AUDIO_MIXER_MULTIPLE_OPEN
ioctl() has been executed. This ioctl() will fail if more than one play or record
stream is open.

AUDIO_MIXER_GET_SAMPLE_RATES
The argument is a pointer to an am_sample_rates_t structure. This command
gets a list of supported sample rates for either play or record for the audio
mixer’s current mode. It is legal for the supported sample rates to be different for
mixer mode vs compatible mode. The type field must be set to either
AUDIO_PLAY or AUDIO_RECORD to get a list of either play or record sample rates,
respectively. Setting both or neither is an error. The num_samp_rates field is set to
the number of sample rates that the samp_rates[] array may hold. When the
ioctl returns, num_samp_rates will be set either to the number of sample rates
in the array samp_rates[], or the total number of sample rates available if there
are more then the array can hold. In the former case, there are num_samp_rates
valid sample rates in the array. In the later case, all the elements of the array have
valid sample rates, but there are more available. The size of the array should be
increased to get all available sample rates. If the flags field has
MIXER_SR_LIMITS flag set, the return sample rates are the lowest and the highest
rates possible, with all sample rates in-between being legal. Some Codecs that have
DSP engines on them have this capability.

AUDIO_MIXERCTL_GETINFO
The argument is a pointer to an am_control_t structure. This command gets
device and channel state information. The dev_info field contains the state of the
hardware device. It provides a convenient way to determine the hardware’s state.

mixer(7I)

Audio Info
Structure

Streamio IOCTLS

Audio Mixer
IOCTLS

Device and Network Interfaces 363

The ch_open array is used to specify which channels are open and which are
closed. Open channels are non-zero, closed channels are set to zero, (where the
channel number corresponds to the array index). The number of elements in the
ch_open array may change over time and a macro is provided to allocate the
correct amount of space. The MACROS section below provides more information.

AUDIO_MIXERCTL_SETINFO
The argument is a pointer to an am_control_t structure. This command sets the
device state but cannot modify any channel’s state. The dev_info field is used to
set the device state. However, there are several limitations. Only the gain, balance,
port and pause for play and record and monitor_gain and output_muted fields may be
modified. (Modifying other fields would interfere with how the audio mixer
programs the audio device.) The ch_open array is not used when setting the audio
device and may be set to a size of one.

AUDIO_MIXERCTL_GET_CHINFO
The argument is a pointer to an audio_channel_t structure. This command gets
a channel’s state information. To enable the audio mixer to determine channel
information, set the ch_number field before making the ioctl() call. The info_size
field must be set to the size of the audio_info_t structure. The *info field must
point to an audio_info_t structure. When the ioctl() returns, the pid field
should be checked. If it is set to 0, the remaining data in the audio_channel_t
structure is invalid because the channel has not been allocated. The dev_type field
describes the type of channel; the *info pointer points to a buffer where the
audio_info_t structure for the audio channel is populated.

AUDIO_MIXERCTL_SET_CHINFO
The argument is a pointer to an audio_channel_t structure. This command sets
a channel’s state information. To enable the audio mixer to determine which
channel to set, set the ch_number field before making the ioctl() call. The info_size
field must be set to the size of the audio_info_t structure. The *info field must
point to an audio_info_t structure. When the ioctl() returns, the pid will
contain the process ID of the process that has the channel open and dev_type will
contain the type of the device. If pid is 0 (zero), then the channel is not open. The
*info pointer points to an audio_info_t structure which is used to program the
state of the channel.

AUDIO_MIXERCTL_GET_MODE
The argument is a pointer to an integer that contains the audio mixer mode
when it returns. It will be set to either AM_MIXER_MODE for mixer mode or
AM_COMPAT_MODE for compatibility mode.

AUDIO_MIXERCTL_SET_MODE
The argument is a pointer to an integer that contains the audio mixer mode to
be set. It must be set to either AM_MIXER_MODE or AM_COMPAT_MODE. The audio
mixer may be set to mixer mode at any time, but can only be set to compatible
mode when there is a single read/write open within one process, or a single read
process and a single write process. Otherwise the ioctl() will fail. Because the
Codec is being reprogrammed to a different data format, there may be brief pause

mixer(7I)

364 man pages section 7: Device and Network Interfaces • Last Revised 26 January 2000

or burst of noise when the mode changes. This can be eliminated by pausing the
input and output or by closing all streams before changing modes. The
mixerctl(1) command may be used to change the audio mixer’s mode.

The following macro is used to determine how large an am_control_t structure is
when it points to an audio_info_t structure.

AUDIO_MIXER_CTL_STRUCT_SIZE(num_ch)

Where num_ch is the number of channels the device supports. The number of
channels can be determined using the AUDIO_GET_NUM_CHS ioctl().

This macro is used when allocating an am_sample_rates_t structure.

AUDIO_MIXER_SAMP_RATES_STRUCT_SIZE(num_srs)

Where num_srs is the number of samples rates requested.

The following examples illustrate how these new data structures and ioctls can be
used.

The following code demonstrates how to use the audio support and the audio
mixer ioctl()s to get state information on /dev/audio.

audio_channel_t ch;
audio_info_t info;
am_control_t *ctl;
int num;
err = ioctl(audio_fd, AUDIO_GET_NUM_CHS, &num);

ctl = (am_control_t *)malloc(AUDIO_MIXER_CTL_STRUCT_SIZE(num));

err = ioctl(audio_fd, AUDIO_MIXERCTL_GETINFO, ctl);

ch.info = &info;
ch.info_size = sizeof (audio_info_t);

for (i = 0; i < num; i++) {
if (ctl->ch_open[i] != 0) {
ch.ch_number = i;
if (ioctl(audio_fd, AUDIO_MIXERCTL_GET_CHINFO, &ch) < 0) {

printf("Channel #%d isn’t an audio/audioctl device", i);
} else {

printf("Ch# %d, PID = %d, Type = %d\n", i, ch.pid, ch.dev_type);
}
}

}

The following code demonstrates how to use the
AUDIO_MIXER_GET_SAMPLE_RATES ioctl to get the number of supported play
sample rates. It also shows how to deal with allocating a samp_rates[] array that is
too small.

mixer(7I)

MACROS

CODE EXAMPLES

Example 1

Example 2

Device and Network Interfaces 365

#define LARGE_NUMBER 10000;
am_sample_rates_t *sr;
int num;
for (num = 4; num < LARGE_NUMBER; num += 2) {

sr = (am_sample_rates_t *)malloc(AUDIO_MIXER_SAMP_RATES_STRUCT_SIZE(num));

sr->num_samp_rates = num;
sr->type = AUDIO_PLAY;

err = ioctl(audio_fd, AUDIO_MIXER_GET_SAMPLE_RATES, sr);

if (sr->num_samp_rates <= num) {
break;

}

free(sr);
}

(void) printf("Supported play sample rates:\n");
for (i = 0; i < sr->num_samp_rates; i++) {

(void) printf(" %d\n", sr->samp_rates[i]);
}

An open() will fail if:

EBUSY The requested play or record access is busy and either the
O_NDELAY or O_NONBLOCK flag was set in the open() request.

ENOMEM Memory was not available to be allocated for the channel.

EINTR The requested play or record access is busy and a signal
interrupted the open() request.

EIO There has been an error opening the device. An error message is
printed on the console explaining the failure.

An ioctl() will fail if:

EBUSY The parameter changes requested in the AUDIO_SETINFO ioctl
could not be made because another process has the device open
and is using a different format.

EINTR The ioctl() was interrupted by a signal.

EINVAL The parameter changes requested in the AUDIO_SETINFO ioctl
are invalid or are not supported by the device.

EIO There has been an error with the ioctl(). An error message is
printed on the console explaining the failure.

ENOMEM The ioctl() failed because memory couldn’t be allocated.

EPERM The audio mixer is in compatible mode and one of the new
ioctl()s was used. They are supported only in mixer mode.

mixer(7I)

ERRORS

366 man pages section 7: Device and Network Interfaces • Last Revised 26 January 2000

The physical audio device names are system dependent and are rarely used by
programmers. The programmer should use the generic device names listed below.

/dev/audio symbolic link to the system’s primary audio device

/dev/audioctl symbolic link to the control device for /dev/audio

/dev/sound/0 first audio device in the system

/dev/sound/0ctl audio control device for /dev/sound/0

/dev/sound/x additional audio devices

/dev/sound/xctl audio control device for /dev/sound/x

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWaudd, SUNWauddx, SUNWaudh

Stability Level Evolving

mixerctl(1), close(2), fcntl(2), ioctl(2), open(2), poll(2), read(2), write(2),
system(4), audiocs(7D), usb_ac(7D), audio_support(7I), streamio(7I)

Due to a feature of the STREAMS implementation, programs that are terminated or
exit without closing the audio device may hang for a short period while audio output
drains. In general, programs that produce audio output should catch the SIGINT
signal and flush the output stream before exiting.

mixer(7I)

FILES

ATTRIBUTES

SEE ALSO

BUGS

Device and Network Interfaces 367

msglog – message output collection from system startup or background applications

/dev/msglog

Output from system startup (“rc”) scripts is directed to /dev/msglog, which
dispatches it appropriately.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Stable

syslogd(1M), syslog(3C), attributes(5), sysmsg(7D)

In the current version of Solaris, /dev/msglog is an alias for /dev/sysmsg. In future
versions of Solaris, writes to /dev/msglog may be directed into a more general
logging mechanism such as syslogd(1M).

syslog(3C) provides a more general logging mechanism than /dev/msglog and
should be used in preference to /dev/msglog whenever possible.

msglog(7D)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

368 man pages section 7: Device and Network Interfaces • Last Revised 13 Oct 1998

msm – Microsoft Bus Mouse device interface

The msm driver supports the Microsoft Bus Mouse. It allows applications to obtain
information about the mouse’s movements and the status of its buttons. The data is
read in the Five Byte Packed Binary Format, also called MSC format.

/dev/msm

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5)

msm(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 369

mt – tape interface

The files rmt/* refer to tape controllers and associated tape drives.

The labelit(1M) command requires these magnetic tape file names to work correctly
with the tape controllers. No other tape controller commands require these file names.

/dev/rmt/*

labelit(1M)

mt(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

370 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

mtio – general magnetic tape interface

#include <sys/types.h>
#include <sys/ioctl.h>

#include <sys/mtio.h>

1/2”, 1/4”, 4mm, and 8mm magnetic tape drives all share the same general character
device interface.

There are two types of tape records: data records and end-of-file (EOF) records. EOF
records are also known as tape marks and file marks. A record is separated by
interrecord (or tape) gaps on a tape.

End-of-recorded-media (EOM) is indicated by two EOF marks on 1/2” tape; by one
EOF mark on 1/4”, 4mm, and 8mm cartridge tapes.

Data bytes are recorded in parallel onto the 9-track tape. Since it is a variable-length
tape device, the number of bytes in a physical record may vary.

The recording formats available (check specific tape drive) are 800 BPI, 1600 BPI, 6250
BPI, and data compression. Actual storage capacity is a function of the recording
format and the length of the tape reel. For example, using a 2400 foot tape, 20 Mbyte
can be stored using 800 BPI, 40 Mbyte using 1600 BPI, 140 Mbyte using 6250 BPI, or up
to 700 Mbyte using data compression.

Data is recorded serially onto 1/4” cartridge tape. The number of bytes per record is
determined by the physical record size of the device. The I/O request size must be a
multiple of the physical record size of the device. For QIC-11, QIC-24, and QIC-150
tape drives, the block size is 512 bytes.

The records are recorded on tracks in a serpentine motion. As one track is completed,
the drive switches to the next and begins writing in the opposite direction, eliminating
the wasted motion of rewinding. Each file, including the last, ends with one file mark.

Storage capacity is based on the number of tracks the drive is capable of recording. For
example, 4-track drives can only record 20 Mbyte of data on a 450 foot tape; 9-track
drives can record up to 45 Mbyte of data on a tape of the same length. QIC-11 is the
only tape format available for 4-track tape drives. In contrast, 9-track tape drives can
use either QIC-24 or QIC-11. Storage capacity is not appreciably affected by using
either format. QIC-24 is preferable to QIC-11 because it records a reference signal to
mark the position of the first track on the tape, and each block has a unique block
number.

The QIC-150 tape drives require DC-6150 (or equivalent) tape cartridges for writing.
However, they can read other tape cartridges in QIC-11, QIC-24, or QIC-120 tape
formats.

mtio(7I)

NAME

SYNOPSIS

DESCRIPTION

1/2” Reel Tape

1/4” Cartridge Tape

Device and Network Interfaces 371

Data is recorded serially onto 8mm helical scan cartridge tape. Since it is a
variable-length tape device, the number of bytes in a physical record may vary. The
recording formats available (check specific tape drive) are standard 2Gbyte, 5Gbyte,
and compressed format.

Data is recorded either in Digital Data Storage (DDS) tape format or in Digital Data
Storage, Data Compressed (DDS-DC) tape format. Since it is a variable-length tape
device, the number of bytes in a physical record may vary. The recording formats
available are standard 2Gbyte and compressed format.

Persistent error handling is a modification of the current error handling behaviors,
BSD and SVR4. With persistent error handling enabled, all tape operations after an
error or exception will return immediately with an error. Persistent error handling can
be most useful with asynchronous tape operations that use the aioread(3AIO) and
aiowrite(3AIO) functions.

To enable persistent error handling, the ioctl MTIOCPERSISTENT must be issued. If
this ioctl succeeds, then persistent error handling is enabled and changes the current
error behavior. This ioctl will fail if the device driver does not support persistent error
handling.

With persistent error handling enabled, all tape operations after an exception or error
will return with the same error as the first command that failed; the operations will
not be executed. An exception is some event that might stop normal tape operations,
such as an End Of File (EOF) mark or an End Of Tape (EOT) mark. An example of an
error is a media error. The MTIOCLRERR ioctl must be issued to allow normal tape
operations to continue and to clear the error.

Disabling persistent error handling returns the error behavior to normal SVR4 error
handling, and will not occur until all outstanding operations are completed.
Applications should wait for all outstanding operations to complete before disabling
persistent error handling. Closing the device will also disable persistent error handling
and clear any errors or exceptions.

The Read Operation and Write Operation subsections contain more pertinent
information reguarding persistent error handling.

The read(2) function reads the next record on the tape. The record size is passed back
as the number of bytes read, provided it is not greater than the number requested.
When a tape mark or end of data is read, a zero byte count is returned; all successive
reads after the zero read will return an error and errno will be set to EIO. To move to
the next file, an MTFSF ioctl can be issued before or after the read causing the error.
This error handling behavior is different from the older BSD behavior, where another
read will fetch the first record of the next tape file. If the BSD behavior is required,
device names containing the letter b (for BSD behavior) in the final component should
be used. If persistent error handling was enabled with either the BSD or SVR4 tape
device behavior, all operations after this read error will return EIO errors until the
MTIOCLRERR ioctl is issued. An MTFSF ioctl can then he issued.

mtio(7I)

8mm Cartridge
Tape

4mm DAT Tape

Persistent Error
Handling

Read Operation

372 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 1997

Two successful successive reads that both return zero byte counts indicate EOM on the
tape. No further reading should be performed past the EOM.

Fixed-length I/O tape devices require the number of bytes read to be a multiple of the
physical record size. For example, 1/4” cartridge tape devices only read multiples of
512 bytes. If the blocking factor is greater than 64,512 bytes (minphys limit),
fixed-length I/O tape devices read multiple records.

Most tape devices which support variable-length I/O operations may read a range of
1 to 65,535 bytes. If the record size exceeds 65,535 bytes, the driver reads multiple
records to satisfy the request. These multiple records are limited to 65,534 bytes.
Newer variable-length tape drivers may relax the above limitation and allow
applications to read record sizes larger than 65,534. Refer to the specific tape driver
man page for details.

Reading past logical EOT is transparent to the user. A read operation should never hit
physical EOT.

Read requests that are lesser than a physical tape record are not allowed. Appropriate
error is returned.

The write(2) function writes the next record on the tape. The record has the same
length as the given buffer.

Writing is allowed on 1/4” tape at either the beginning of tape or after the last written
file on the tape. With the Exabyte 8200, data may be appended only at the beginning
of tape, before a filemark, or after the last written file on the tape.

Writing is not so restricted on 1/2”, 4mm, and the other 8mm cartridge tape drives.
Care should be used when appending files onto 1/2” reel tape devices, since an extra
file mark is appended after the last file to mark the EOM. This extra file mark must be
overwritten to prevent the creation of a null file. To facilitate write append operations,
a space to the EOM ioctl is provided. Care should be taken when overwriting records;
the erase head is just forward of the write head and any following records will also be
erased.

Fixed-length I/O tape devices require the number of bytes written to be a multiple of
the physical record size. For example, 1/4” cartridge tape devices only write multiples
of 512 bytes.

Fixed-length I/O tape devices write multiple records if the blocking factor is greater
than 64,512 bytes (minphys limit). These multiple writes are limited to 64,512 bytes.
For example, if a write request is issued for 65,536 bytes using a 1/4” cartridge tape,
two writes are issued; the first for 64,512 bytes and the second for 1024 bytes.

Most tape devices which support variable-length I/O operations may write a range of
1 to 65,535 bytes. If the record size exceeds 65,535 bytes, the driver writes multiple
records to satisfy the request. These multiple records are limited to 65,534 bytes. As an
example, if a write request for 65,540 bytes is issued, two records are written; one for

mtio(7I)

Write Operation

Device and Network Interfaces 373

65,534 bytes followed by another record for 6 bytes. Newer variable-length tape
drivers may relax the above limitation and allow applications to write record sizes
larger than 65,534. Refer to the specific tape driver man page for details.

When logical EOT is encountered during a write, that write operation completes and
the number of bytes successfully transferred is returned (note that a ’short write’ may
have occurred and not all the requested bytes would have been transferred. The actual
amount of data written will depend on the type of device being used). The next write
will return a zero byte count. A third write will successfully transfer some bytes (as
indicated by the returned byte count, which again could be a short write); the fourth
will transfer zero bytes, and so on, until the physical EOT is reached and all writes will
fail with EIO.

When logical EOT is encountered with persistent error handling enabled, the current
write may complete or be a short write. The next write will return a zero byte count.
At this point an application should act appropriately for end of tape cleanup or issue
yet another write, which will return the error ENOSPC. After clearing the exception
with MTIOCLRERR, the next write will succeed (possibly short), followed by another
zero byte write count, and then another ENOSPC error.

Allowing writes after LEOT has been encountered enables the flushing of buffers.
However, it is strongly recommended to terminate the writing and close the file as
soon as possible.

Seeks are ignored in tape I/O.

Magnetic tapes are rewound when closed, except when the “no-rewind” devices have
been specified. The names of no-rewind device files use the letter n as the end of the
final component. The no-rewind version of /dev/rmt/0l is /dev/rmt/0ln. In case
of error for a no-rewind device, the next open rewinds the device.

If the driver was opened for reading and a no-rewind device has been specified, the
close advances the tape past the next filemark (unless the current file position is at
EOM), leaving the tape correctly positioned to read the first record of the next file.
However, if the tape is at the first record of a file it doesn’t advance again to the first
record of the next file. These semantics are different from the older BSD behavior. If
BSD behavior is required where no implicit space operation is executed on close, the
non-rewind device name containing the letter b (for BSD behavior) in the final
component should be specified.

If data was written, a file mark is automatically written by the driver upon close. If the
rewinding device was specified, the tape will be rewound after the file mark is written.
If the user wrote a file mark prior to closing, then no file mark is written upon close. If
a file positioning ioctl, like rewind, is issued after writing, a file mark is written before
repositioning the tape.

All buffers are flushed on closing a tape device. Hence, it is strongly recommended
that the application wait for all buffers to be flushed before closing the device. This can
be done by writing a filemark via MTWEOF, even with a zero count.

mtio(7I)

Close Operation

374 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 1997

Note that for 1/2” reel tape devices, two file marks are written to mark the EOM
before rewinding or performing a file positioning ioctl. If the user wrote a file mark
before closing a 1/2” reel tape device, the driver will always write a file mark before
closing to insure that the end of recorded media is marked properly. If the
non-rewinding device was specified, two file marks are written and the tape is left
positioned between the two so that the second one is overwritten on a subsequent
open(2) and write(2).

If no data was written and the driver was opened for WRITE-ONLY access, one or two
file marks are written, thus creating a null file.

After closing the device, persistent error handling will be disabled and any error or
exception will be cleared.

Not all devices support all ioctls. The driver returns an ENOTTY error on
unsupported ioctls.

The following structure definitions for magnetic tape ioctl commands are from
<sys/mtio.h>.

The minor device byte structure is::

15 7 6 5 4 3 2 1 0
__
Unit # BSD Reserved Density Density No rewind Unit #

Bits 7-15 behavior Select Select on Close Bits 0-1

/*
* Layout of minor device byte:
*/
#define MTUNIT(dev) (((minor(dev) & 0xff80) >> 5) +
(minor(dev) & 0x3))
#define MT_NOREWIND (1 <<2)
#define MT_DENSITY_MASK (3 <<3)
#define MT_DENSITY1 (0 <<3) /* Lowest density/format */
#define MT_DENSITY2 (1 <<3)
#define MT_DENSITY3 (2 <<3)
#define MT_DENSITY4 (3 <<3) /* Highest density/format */
#define MTMINOR(unit) (((unit & 0x7fc) << 5) + (unit & 0x3))
#define MT_BSD (1 <<6) /* BSD behavior on close */

/* Structure for MTIOCTOP − magnetic tape operation command */

struct mtop {
short mt_op; /* operation */
daddr_t mt_count; /* number of operations */

};

The following operations of MTIOCTOP ioctl are supported:

MTWEOF write an end-of-file record

MTFSF forward space over file mark

mtio(7I)

IOCTLS

Device and Network Interfaces 375

MTBSF backward space over file mark (1/2", 8mm only)

MTFSR forward space to inter-record gap

MTBSR backward space to inter-record gap

MTREW rewind

MTOFFL rewind and take the drive off-line

MTNOP no operation, sets status only

MTRETEN retension the tape (cartridge tape only)

MTERASE erase the entire tape and rewind

MTEOM position to EOM

MTNBSF backward space file to beginning of file

MTSRSZ set record size

MTGRSZ get record size

MTLOAD load the next tape cartridge into the tape drive

/* structure for MTIOCGET − magnetic tape get status command */

struct mtget {
short mt_type; /* type of magtape device */

/* the following two registers are device dependent */
short mt_dsreg; /* “drive status” register */
short mt_erreg; /* “error” register */

/* optional error info. */
daddr_t mt_resid; /* residual count */
daddr_t mt_fileno; /* file number of current position */
daddr_t mt_blkno; /* block number of current position */
ushort_t mt_flags;
short mt_bf; /* optimum blocking factor */

};
/* structure for MTIOCGETDRIVETYPE − get tape config data command */
struct mtdrivetype_request {

int size;
struct mtdrivetype *mtdtp;

};
struct mtdrivetype {

char name[64]; /* Name, for debug */
char vid[25]; /* Vendor id and product id */
char type; /* Drive type for driver */
int bsize; /* Block size */
int options; /* Drive options */
int max_rretries; /* Max read retries */
int max_wretries; /* Max write retries */
uchar_t densities[MT_NDENSITIES]; /* density codes,low->hi */
uchar_t default_density; /* Default density chosen */
uchar_t speeds[MT_NSPEEDS]; /* speed codes, low->hi */

};

mtio(7I)

376 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 1997

The MTWEOF ioctl is used for writing file marks to tape. Not only does this signify the
end of a file, but also usually has the side effect of flushing all buffers in the tape drive
to the tape medium. A zero count MTWEOF will just flush all the buffers and will not
write any file marks. Because a successful completion of this tape operation will
guarantee that all tape data has been written to the tape medium, it is recommended
that this tape operation be issued before closing a tape device.

When spacing forward over a record (either data or EOF), the tape head is positioned
in the tape gap between the record just skipped and the next record. When spacing
forward over file marks (EOF records), the tape head is positioned in the tape gap
between the next EOF record and the record that follows it.

When spacing backward over a record (either data or EOF), the tape head is
positioned in the tape gap immediately preceding the tape record where the tape head
is currently positioned. When spacing backward over file marks (EOF records), the
tape head is positioned in the tape gap preceding the EOF. Thus the next read would
fetch the EOF.

Record skipping does not go past a file mark; file skipping does not go past the EOM.
After an MTFSR <huge number> command, the driver leaves the tape logically
positioned before the EOF. A related feature is that EOFs remain pending until the tape
is closed. For example, a program which first reads all the records of a file up to and
including the EOF and then performs an MTFSF command will leave the tape
positioned just after that same EOF, rather than skipping the next file.

The MTNBSF and MTFSF operations are inverses. Thus, an “ MTFSF −1” is equivalent to
an “ MTNBSF 1”. An “ MTNBSF 0” is the same as “ MTFSF 0”; both position the tape
device at the beginning of the current file.

MTBSF moves the tape backwards by file marks. The tape position will end on the
beginning of the tape side of the desired file mark. An “ MTBSF 0” will position the
tape at the end of the current file, before the filemark.

MTBSR and MTFSR operations perform much like space file operations, except that
they move by records instead of files. Variable-length I/O devices (1/2” reel, for
example) space actual records; fixed-length I/O devices space physical records
(blocks). 1/4” cartridge tape, for example, spaces 512 byte physical records. The status
ioctl residual count contains the number of files or records not skipped.

MTOFFL rewinds and, if appropriate, takes the device off-line by unloading the tape. It
is recommended that the device be closed after offlining and then re-opened after a
tape has been inserted to facilitate portability to other platforms and other operating
systems. Attempting to re-open the device with no tape will result in an error unless
the O_NDELAY flag is used. (See open(2).)

The MTRETEN retension ioctl applies only to 1/4” cartridge tape devices. It is used to
restore tape tension, improving the tape’s soft error rate after extensive start-stop
operations or long-term storage.

mtio(7I)

Device and Network Interfaces 377

MTERASE rewinds the tape, erases it completely, and returns to the beginning of tape.
Erasing may take a long time depending on the device and/or tapes. For time details,
refer to the the drive specific manual.

MTEOM positions the tape at a location just after the last file written on the tape. For
1/4” cartridge and 8mm tape, this is after the last file mark on the tape. For 1/2” reel
tape, this is just after the first file mark but before the second (and last) file mark on
the tape. Additional files can then be appended onto the tape from that point.

Note the difference between MTBSF (backspace over file mark) and MTNBSF
(backspace file to beginning of file). The former moves the tape backward until it
crosses an EOF mark, leaving the tape positioned before the file mark. The latter leaves
the tape positioned after the file mark. Hence, "MTNBSF n" is equivalent to "MTBSF
(n+1)" followed by "MTFSF 1". The 1/4” cartridge tape devices do not support MTBSF.

MTSRSZ and MTGRSZ are used to set and get fixed record lengths. The MTSRSZ ioctl
allows variable length and fixed length tape drives that support multiple record sizes
to set the record length. The mt_count field of the mtop struct is used to pass the
record size to/from the st driver. A value of 0 indicates variable record size. The
MTSRSZ ioctl makes a variable-length tape device behave like a fixed-length tape
device. Refer to the specific tape driver man page for details.

MTLOAD loads the next tape cartridge into the tape drive. This is generally only used
with stacker and tower type tape drives which handle multiple tapes per tape drive. A
tape device without a tape inserted can be opened with the O_NDELAY flag, in order to
execute this operation.

The MTIOCGET get status ioctl call returns the drive ID (mt_type), sense key error
(mt_erreg), file number (mt_fileno), optimum blocking factor (mt_bf) and record number
(mt_blkno) of the last error. The residual count (mt_resid) is set to the number of bytes
not transferred or files/records not spaced. The flags word (mt_flags) contains
information such as whether the device is SCSI, whether it is a reel device, and
whether the device supports absolute file positioning.

The MTIOCGETDRIVETYPE get drivetype ioctl call returns the name of the tape drive
as defined in st.conf (name), Vendor ID and model (product), ID (vid), type of tape
device (type), block size (bsize), drive options (options), maximum read retry count
(max_rretries), maximum write retry count (max_wretries), densities supported by the
drive (densities), and default density of the tape drive (default_density).

MTIOCPERSISTENT enables/disables persistent error handling

MTIOCPERSISTENTSTATUS queries for persistent error handling

MTIOCLRERR clears persistent error handling

MTIOCGUARANTEEDORDER checks whether driver guarantees order of
I/O’s

mtio(7I)

Persistent Error
Handling IOCTLs

and Asynchronous
Tape Operations

378 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 1997

The MTIOCPERSISTENT ioctl enables or disables persistent error handling. It takes as
an argument a pointer to an integer that turns it either on or off. If the ioctl succeeds,
the desired operation was successful. It will wait for all outstanding I/O’s to complete
before changing the persistent error handling status. For example,

int on = 1;
ioctl(fd, MTIOCPERSISTENT, &on);
int off = 0;

ioctl(fd, MTIOCPERSISTENT, &off);

The MTIOCPERSISTENTSTATUS ioctl enables or disables persistent error handling. It
takes as an argument a pointer to an integer inserted by the driver. The integer can be
either 1 if persistent error handling is ’on’, or 0 if persistent error handling is ’off’. It
will not wait for outstanding I/O’s. For example,

int query;

ioctl(fd, MTIOCPERSISTENTSTATUS, &query);

The MTIOCLRERR ioctl clears persistent error handling and allows tape operations to
continual normally. This ioctl requires no argument and will always succeed, even if
persistent error handling has not been enabled. It will wait for any outstanding I/O’s
before it clears the error.

The MTIOCGUARANTEEDORDER ioctl is used to determine whether the driver
guarantees the order of I/O’s. It takes no argument. If the ioctl succeeds, the driver
will support guaranteed order. If the driver does not support guaranteed order, then it
should not be used for asynchronous I/O with libaio. It will wait for any
outstanding I/O’s before it returns. For example,

ioctl(fd, MTIOCGUARANTEEDORDER)

See the Persistent Error Handling subsection above for more information on
persistent error handling.

MTIOCSTATE This ioctl blocks until the state of the drive, inserted or ejected, is
changed. The argument is a pointer to a mtio_state, enum,
whose possible enumerations are listed below. The initial value
should be either the last reported state of the drive, or
MTIO_NONE. Upon return, the enum pointed to by the argument is
updated with the current state of the drive.

enum mtio_state {
MTIO_NONE /* Return tape’s current state */
MTIO_EJECTED /* Tape state is “ejected” */
MTIO_INSERTED /* Tape state is “inserted” */

;

When using asynchronous operations, most ioctls will wait for all outstanding
commands to complete before they are executed.

mtio(7I)

Asynchronous and
State Change

IOCTLS

Device and Network Interfaces 379

MTIOCRESERVE reserve the tape drive

MTIOCRELEASE revert back to the default behavior of
reserve on open/release on close

MTIOCFORCERESERVE reserve the tape unit by breaking
reservation held by another host

The MTIOCRESERVE ioctl reserves the tape drive such that it does not release the tape
drive at close. This changes the default behavior of releasing the device upon close.
Reserving the tape drive that is already reserved has no effect. For example,

ioctl(fd, MTIOCRESERVE);

The MTIOCRELEASE ioctl reverts back to the default behavior of reserve on
open/release on close operation, and a release will occur during the next close.
Releasing the tape drive that is already released has no effect. For example,

ioctl(fd, MTIOCRELEASE);

The MTIOCFORCERESERVE ioctl breaks a reservation held by another host,
interrupting any I/O in progress by that other host, and then reserves the tape unit.
This ioctl can be executed only with super-user privileges. It is recommended to open
the tape device in O_NDELAY mode when this ioctl needs to be executed, otherwise the
open will fail if another host indeed has it reserved. For example,

ioctl(fd, MTIOCFORCERESERVE);

MTIOCSHORTFMK enables/disable support for writing short
filemarks. This is specific to Exabyte drives.

MTIOCREADIGNOREILI enables/disable supress incorrect length
indicator support during reads

MTIOCREADIGNOREEOFS enables/disable support for reading past
two EOF marks which otherwise indicate
End-Of-recording-Media (EOM) in the case
of 1/2" reel tape drives

The MTIOCSHORTFMK ioctl enables or disables support for short filemarks. This ioctl is
only applicable to Exabyte drives which support short filemarks. As an argument, it
takes a pointer to an integer. If 0 (zero) is the specified integer, then long filemarks will
be written. If 1 is the specified integer, then short filemarks will be written. The
specified tape bahavior will be in effect until the device is closed.

For example:

int on = 1;
int off = 0;
/* enable short filemarks */

mtio(7I)

IOCTLS for
Multi-initiator
Configurations

IOCTLS for
Handling Tape
Configuration

Options

380 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 1997

ioctl(fd, MTIOSHORTFMK, &on);
/* disable short filemarks */

ioctl(fd, MTIOCSHORTFMK, &off);

Tape drives which do not support short filemarks will return an errno of ENOTTY.

The MTIOCREADIGNOREILI ioctl enables or disables the suppress incorrect length
indicator (SILI) support during reads. As an argument, it takes a pointer to an integer.
If 0 (zero) is the specified integer, SILI will not be used during reads and incorrect
length indicator will not be supressed. If 1 is the specified integer, SILI will be used
during reads and incorrect length indicator will be supressed. The specified tape
bahavior will be in effect until the device is closed.

For example:

int on = 1;
int off = 0;
ioctl(fd, MTIOREADIGNOREILI, &on);

ioctl(fd, MTIOREADIGNOREILI, &off);

The MTIOCREADIGNOREEOFS ioctl enables or disables support for reading past
double EOF marks which otherwise indicate End-Of-recorded-media (EOM) in the
case of 1/2" reel tape drives. As an argument, it takes a pointer to an integer. If 0 (zero)
is the specified integer, then double EOF marks indicate End-Of-recodred-media
(EOD). If 1 is the specified integer, the double EOF marks no longer indicate EOM,
thus allowing applications to read past two EOF marks. In this case it is the
responsibility of the application to detect end-of-recorded-media (EOM). The specified
tape bahavior will be in effect until the device is closed.

For example:

int on = 1;
int off = 0;
ioctl(fd, MTIOREADIGNOREEOFS, &on);

ioctl(fd, MTIOREADIGNOREEOFS, &off);

Tape drives other than 1/2" reel tapes will return an errno of ENOTTY.

EXAMPLE 1 Tape Positioning and Tape Drives

Suppose you have written three files to the non-rewinding 1/2” tape device,
/dev/rmt/0ln, and that you want to go back and dd(1M) the second file off the
tape. The commands to do this are:

mt -F /dev/rmt/0lbn bsf 3
mt -F /dev/rmt/0lbn fsf 1

dd if=/dev/rmt/0ln

To accomplish the same tape positioning in a C program, followed by a get status ioctl:

mtio(7I)

EXAMPLES

Device and Network Interfaces 381

EXAMPLE 1 Tape Positioning and Tape Drives (Continued)

struct mtop mt_command;
struct mtget mt_status;
mt_command.mt_op = MTBSF;
mt_command.mt_count = 3;
ioctl(fd, MTIOCTOP, &mt_command);
mt_command.mt_op = MTFSF;
mt_command.mt_count = 1;
ioctl(fd, MTIOCTOP, &mt_command);

ioctl(fd, MTIOCGET, (char *)&mt_status);

or

mt_command.mt_op = MTNBSF;
mt_command.mt_count = 2;
ioctl(fd, MTIOCTOP, &mt_command);

ioctl(fd, MTIOCGET, (char *)&mt_status);

To get information about the tape drive:

struct mtdrivetype mtdt;
struct mtdrivetype_request mtreq;
mtreq.size = sizeof(struct mtdrivetype);
mtreq.mtdtp = &mtdt;

ioctl(fd, MTIOCGETDRIVETYPE, &mtreq);

/dev/rmt/<unit number><density>[<BSD behavior>][<no rewind>]

Where density can be l, m, h, u/c (low, medium, high, ultra/compressed,
respectively), the BSD behavior option is b, and the no rewind option is n.

For example, /dev/rmt/0hbn specifies unit 0, high density, BSD behavior and no
rewind.

mt(1), tar(1), dd(1M), open(2), read(2), write(2), aioread(3AIO),
aiowrite(3AIO), ar(3HEAD), st(7D)

1/4 Inch Tape Drive Tutorial

mtio(7I)

FILES

SEE ALSO

382 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 1997

ncrs – SCSI host bus adapter driver

scsi@unit-address

The ncrs host bus adapter driver is a SCSA-compliant nexus driver that supports the
LSI Logic (formerly Symbios Logic or NCR) 53C810, 53C810A, 53C815, 53C820,
53C825, 53C825A, 53C860, 53C875, 53C875J, 53C876, and 53C895 SCSI (Small
Computer Systems Interface) chips.

The ncrs driver supports standard functions provided by the SCSA interface,
including tagged and untagged queuing, Wide/Fast/Ultra/Ultra2 SCSI, and auto
request sense. The ncrs driver does not support linked commands.

� The LSI BIOS and the Solaris fdisk program may be incompatible. To avoid
problems, you should create an entry in the FDISK partition table using the DOS
version of FDISK (or equivalent utility) before installing the Solaris software. To
ensure your system will reboot following Solaris installation, create a DOS
partition at least 1–cylinder in size that starts at cylinder 0.

� Add-in cards containing 53C815, 53C820, 53C825, or 53C825A controllers must be
used in bus-mastering PCI slots. PCI slots on dual PCI slot motherboards are
generally bus-master capable. However, motherboards that contain three or more
PCI slots, or motherboards that feature several embedded PCI controllers may
contain PCI slots that are not bus-master capable.

� PCI motherboards that feature LSI Logic SDMS BIOS and an embedded 53C810 or
53C810A controller may not be compatible with 53C82x add-in cards equipped
with LSI Logic SDMS BIOs. To prevent conflicts, it may be necessary to upgrade
the motherboard BIOS, the add-in card, or both.

� Early PCI systems that are equipped with an 53C810 motherboard chip may
contain unconnected interrupt pins. These systems cannot be used with Solaris
software.

� Wide-to–narrow target connections are not supported by Solaris software; as a
result, you should not attempt to connect wide targets to narrow connectors on any
of the supported devices.

� If your adapter supports the LSI Logic SCSI configuration utility, the value of the
host SCSI ID (found under the Adapter Setup menu) must be set to 7. (You can
access the Symbios Logic SCSI configuration utility using Control-C.)

� If you experience problems with old target devices, add the following to the
/kernel/drv/ncrs.conf file:

targetn-scsi-options = 0x0;

where n is the ID of the failing target.

� If you are using a Conner 1080S narrow SCSI drive, the system may display the
following warnings:

WARNING: /pci@0,0/pci1000,f@d (ncrs0):
invalid reselection (0,0)

ncrs(7D)

NAME

SYNOPSIS

DESCRIPTION

Known Problems
and Limitations

Device and Network Interfaces 383

WARNING: /pci@0,0/pci1000,f@d/sd@0,0 (sd0);
SCSI transport failed: ’reset: retrying command’

To supress these warnings, disable tagged queuing in the ncrs.conf file.

� Pentium motherboards (Intel NX chipset) using P90 or slower processors may
cause the ncrs driver to hang. If this occurs, the following messages are displayed
on the console:

WARNING: /pci@0,0/pci1000,3@6 (ncrs0)
Unexpected DMA state:active dstat=c0<DMA-FIFO-empty,
master-data-parity-error>

This is an unrecoverable state and the system will not install using the ncrs driver.

� The ncrs driver supports the 53C875 chipset Revision 4, or later versions only.
Pre-release versions of the chip are not supported.

� On rare occasions, use of an SDT7000/SDT9000 tape drive may result in the
following message being displayed on the console:

Unexpected DMA state: ACTIVE. dstat=81<DMA-FIFO-empty,
illegal-instruction>

After the above message is displayed, the system and tape drive will recover and
remain usable.

The ncrs host bus adapter driver is configured by defining the properties found in
ncrs.conf. Properties in the ncrs.conf file that can be modified by the user
include: scsi-options, target<n>-scsi-options, scsi-reset-delay,
scsi-tag-age-limit, scsi-watchdog-tick, scsi-initiator-id, and
ncrs-iomap. Properties in the ncrs.conf file override global SCSI settings.

The property target<n>-scsi-options overrides the scsi-options property
value for target<n>, where <n> can vary from decimal 0 to 15. The ncrs driver
supports the following SCSI options: SCSI_OPTIONS_DR(0x8),
SCSI_OPTIONS_SYNC(0x20), SCSI_OPTIONS_TAG(0x80),
SCSI_OPTIONS_FAST(0x100), SCSI_OPTIONS_WIDE(0x200),
SCSI_OPTIONS_FAST20(0x400), and SCSI_OPTIONS_FAST40(0x800).

After periodic interval scsi-watchdog-tick, the ncrs driver searches through all
current and disconnected commands for timeouts.

The scsi-tag-age-limit property represents the number of times that the ncrs
driver attempts to allocate a tag ID that is currently in use after going through all tag
IDs in a circular fashion. When encountering the same tag ID used
scsi-tag-age-limit times, no additional commands are submitted to the target
until all outstanding commands complete or timeout.

The ncrs-iomap property enables the driver to utilize IO mapping (rather than
memory mapping) of registers.

Refer to scsi_hba_attach(9F) for details.

ncrs(7D)

DRIVER
CONFIGURATION

384 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

EXAMPLE 1 A sample ncrs configuration file

Create a file called /kernel/drv/ncrs.conf, then add the following line:

scsi-options=0x78;

The above example disables tagged queuing, Fast/Ultra SCSI, and wide mode for all
ncrs instances.

The following example disables an option for one specific ncrs device. See
driver.conf(4) and pci(4) for more details.

name="ncrs" parent="/pci@1f,4000"
unit-address="3"
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

In the example, the default initiator ID in OBP is 7; the change to ID 6 will occur at
attach time. The scsi-options property is set for target 1 to 0x58 and all other
targets set to 0x178. Note that it may be preferable to change the initiator ID in OBP.

The physical path name of the parent can be determined using the /devices tree or
by following the link of the logical device name:

ls -l /dev/rdsk/c0t0d0s0
lrwxrwxrwx 1 root root 45 May 16 10:08 /dev/rdsk/c0t0d0s0 ->

. . / . . /devices/pci@1f,4000/scsi@3/sd@0,0:a,raw

In the example above, the parent is /pci@1f,4000 and the unit-address is the
number bound to the scsi@3 node.

To set scsi-options more specifically per target, do the following:

target1-scsi-options=0x78;
device-type-scsi-options-list =
"SEAGATE ST32550W", "seagate-scsi-options" ;
seagate-scsi-options = 0x58;
scsi-options=0x3f8;

With the exception of one specific disk type that has scsi-options set to 0x58, the
example above sets scsi-options for target 1 to 0x78 and all other targets to
0x3f8.

The scsi-options properties that are specified per target ID have the highest
precedence, followed by scsi-options per device type. Global scsi-options (for
all ncrs instances) per bus have the lowest precedence.

To turn on IO mapping for all ncrs cards in the system, do the following:

ncrs-iomap=1;

The above action will noticeably slow the performance of the driver. You must reboot
the system for the specified scsi-options to take effect.

ncrs(7D)

EXAMPLES

Device and Network Interfaces 385

To enable some driver features, the target driver must set capabilities in the ncrs
driver. The following capabilities can be queried and modified by the target driver:
synchronous, tagged-qing, wide-xfer, auto-rqsense, qfull-retries, and
qfull-retry-interval. All other capabilities are query only.

The tagged-qing, auto-rqsense, wide-xfer, disconnect, and Ultra/Ultra2
synchronous capabilities are enabled by default, and can be assigned binary (0 or 1)
values only. The default value for qfull-retries is 10, while the default value for
qfull-retry-interval is 100. The qfull-retries capability is a uchar_t (0 to
255), while qfull-retry-interval is a ushort_t (0 to 65535).

If a conflict exists between the value of scsi-options and a capability, the value set
in scsi-options prevails. Only whom != 0 is supported in the
scsi_ifsetcap(9F) call. Refer to scsi_ifsetcap(9F) and scsi_ifgetcap(9F) for
details.

The ncrs host bus adapter driver also supports hotplugging of targets using the
cfgadm tool. Hotplug operations on the SCSI bus that hosts the root partition should
not be performed. See the cfgadm(1M) man page for more information.

/kernel/drv/ncrs ELF kernel module

/kernel/drv/ncrs.conf Optional configuration file

See attributes(5) for descriptions of the following attribute:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems with Symbios
53C810, 53C810A, 53C815, 53C820, 53C825,
53C825A, 53C860, 53C875, 53C875J, 53C876,
and 53C895 SCSI I/O processors.

prtconf(1M), driver.conf(4), pci(4), attributes(5), scsi_abort(9F),
scsi_hba_attach(9F), scsi_ifgetcap(9F), scsi_ifsetcap(9F),
scsi_reset(9F), scsi_sync_pkt(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

Symbios Logic Inc., SYM53C895 PCI-Ultra2 SCSI I/O Processor With LVDlink

Symbios Logic Inc., SYM53C875 PCI-SCSI I/O Processor With Fast-20

Symbios Logic Inc., SYM53C825A PCI-SCSI I/O Processor

Symbios Logic Inc., SYM53C810A PCI-SCSI I/O Processor

ncrs(7D)

Driver Capabilities

FILES

ATTRIBUTES

SEE ALSO

386 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

The messages described below are logged and may also appear on the system console.

Device is using a hilevel intr

The device was configured with an interrupt level that cannot be used with this ncrs
driver. Check the PCI device.

map setup failed

The driver was unable to map device registers; check for bad hardware. Driver did not
attach to device; SCSI devices will be inaccessible.

glm_script_alloc failed

The driver was unable to load the SCRIPTS for the SCSI processor; check for bad
hardware. Driver did not attach to device; SCSI devices will be inaccessible.

cannot map configuration space

The driver was unable to map in the configuration registers. Check for bad hardware.
SCSI devices will be inaccessible

attach failed

The driver was unable to attach; usually preceded by another warning that indicates
why attach failed. These can be considered hardware failures.

SCSI bus DATA IN phase parity error

The driver detected parity errors on the SCSI bus.

SCSI bus MESSAGE IN phase parity error

The driver detected parity errors on the SCSI bus.

SCSI bus STATUS phase parity error

The driver detected parity errors on the SCSI bus.

Unexpected bus free

Target disconnected from the bus without notice. Check for bad hardware.

Disconnected command timeout for Target <id>.<lun>

A timeout occurred while target id/lun was disconnected. This is usually a target
firmware problem. For tagged queuing targets, <n> commands were outstanding
when the timeout was detected.

Disconnected tagged cmd(s) (<n>) timeout for Target <id>.<lun>

A timeout occurred while target id/lun was disconnected. This is usually a target
firmware problem. For tagged queuing targets, <n> commands were outstanding
when the timeout was detected.

ncrs(7D)

DIAGNOSTICS

Device and Network Interfaces 387

Connected command timeout for Target <id>.<lun>

This is usually a SCSI bus problem. Check cables and termination.

Target <id> reducing sync. transfer rate

A data transfer hang or DATA-IN phase parity error was detected. The driver attempts
to eliminate this problem by reducing the data transfer rate.

Target <id> reverting to async. mode

A second data transfer hang was detected for this target. The driver attempts to
eliminate this problem by reducing the data transfer rate.

Target <id> disabled wide SCSI mode

A second data phase hang was detected for this target. The driver attempts to
eliminate this problem by disabling wide SCSI mode.

auto request sense failed

An attempt to start an auto request packet failed. Another auto request packet may
already be in transport.

invalid reselection (<id>.<lun>)

A reselection failed; target accepted abort or reset, but still tries to reconnect. Check
for bad hardware.

invalid intcode

The SCRIPTS processor generated an invalid SCRIPTS interrupt. Check for bad
hardware.

The ncrs hardware (53C875) supports Wide, Fast, and Ultra SCSI mode. The
maximum SCSI bandwidth is 40 MB/sec.

The ncrs hardware (53C895) supports Wide, Fast, Ultra and Ultra2 SCSI mode using a
LVD bus. The maximum SCSI bandwidth is 80 MB/second.

The ncrs driver exports properties indicating the negotiated transfer speed per target
(target<n>-sync-speed), whether wide bus is supported (target<n>-wide) for
that particular target (target<n>-scsi-options), and whether tagged queuing has
been enabled (target<n>-TQ). The sync-speed property value indicates the data
transfer rate in KB/sec. The target<n>-TQ and the target<n>-wide property
have value 1 (to indicate that the corresponding capability is enabled for that target),
or 0 (to indicate that the capability is disabled for that targe). See prtconf(1M)
(verbose option) for details on viewing the ncrs properties.

scsi, instance #0
Driver properties:

name <target6-TQ> length <4>
value <0x00000000>.

ncrs(7D)

NOTES

388 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

name <target6-wide> length <4>
value <0x00000000>.

name <target6-sync-speed> length <4>
value <0x00002710>.

name <target1-TQ> length <4>
value <0x00000001>.

name <target1-wide> length <4>
value <0x00000000>.

name <target1-sync-speed> length <4>
value <0x00002710>.

name <target0-TQ> length <4>
value <0x00000001>.

name <target0-wide> length <4>
value <0x00000001>.

name <target0-sync-speed> length <4>
value <0x00009c40>.

name <scsi-options> length <4>
value <0x000007f8>.

name <scsi-watchdog-tick> length <4>
value <0x0000000a>.

name <scsi-tag-age-limit> length <4>
value <0x00000002>.

name <scsi-reset-delay> length <4>
value <0x00000bb8>.

name <latency-timer> length <4>
value <0x00000088>.

name <cache-line-size> length <4>
value <0x00000010>.

ncrs(7D)

Device and Network Interfaces 389

null – the null file, also called the null device

/dev/null

Data written on the null special file, /dev/null, is discarded.

Reads from a null special file always return 0 bytes.

Mapping a null special file creates an address reservation of a length equal to the
length of the mapping, and rounded up to the nearest page size as returned by
sysconf(3C). No resources are consumed by the reservation. Mappings can be placed
in the resulting address range via subsequent calls to mmap with the -MAP_FIXED
option set.

/dev/null

mmap(2), sysconf(3C)

null(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

390 man pages section 7: Device and Network Interfaces • Last Revised 4 April 2001

ocf_escr1 – Sun external serial smart card terminal driver

The ocf_escr1 driver is an OpenCard Framework (OCF)-compliant card terminal
driver for the Sun external serial smart card reader.

The ocf_escr1 driver is part of the OCF framework stack and is started by the OCF
startup script. The Sun serial smart card reader requires a host serial port and is
accessed through the character-special devices. The reader is powered from the
keyboard port.

/usr/share/lib/smartcard/scmrsr3.jar
Java-archived driver class files

/dev/cua/x
Asynchronous serial line using port x

ports(1M), smartcard(1M), smartcard(5)

ocf_escr1(7D)

NAME

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

FILES

SEE ALSO

Device and Network Interfaces 391

ocf_ibutton – iButton Smart Card terminal driver

The ocf_ibutton smart card terminal driver is an OpenCard Framework
(OCF)-compliant terminal driver for the Dallas Semiconductor iButton reader.

The ocf_ibutton smart card terminal driver is part of the OCF framework stack and
is started by the OCF startup script. The iButton reader requires a host serial port and
is accessed through the character-special devices.

/usr/share/lib/smartcard/ibutton.jar
Java-archived driver class files

/dev/cua/x
Asynchronous serial line using port x

ports(1M), smartcard(1M), smartcard(5)

ocf_ibutton(7D)

NAME

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

FILES

SEE ALSO

392 man pages section 7: Device and Network Interfaces • Last Revised 8 Jul 1999

ocf_iscr1 – I2C smart card card terminal driver

The ocf_iscr1 I2C smart card card terminal driver is an OpenCard Framework
(OCF)-compliant terminal driver for SCM Microsystems Smart Transporter chips that
feature the I2C bus interface.

The ocf_iscr1 I2C driver is part of the OCF framework stack and is started by the
OCF server deamon. The smart card reader requires the
/platform/sun4u/kernel/drv/sparcv9/scmi2c Solaris hardware device driver
to be installed and present to work. The smart card reader driver also requires device
node /dev/scmi2cn, where n is the nth SCM I2C card terminal reader installed.

/usr/share/lib/smartcard/scmiscr.jar
Java-archived driver class files

/usr/share/lib/smartcard/smartos.jar
SCM Microsystems SmartOS Java-archived driver class file

/dev/scmi2cn
SCM Microsystems Smart Transporter chip device node

/platform/sun4u/kernel/drv/sparcv9/scmi2c
SCM Microsystems Smart Transporter chip kernel module

smartcard(1M), smartcard(5)

ocf_iscr1(7D)

NAME

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

FILES

SEE ALSO

Device and Network Interfaces 393

ohci – OpenHCI host controller driver

usb@unit-address

The ohci driver is a USBA (Solaris USB Architecture) compliant nexus driver that
supports the Open Host Controller Interface Specification 1.0a, an industry standard
developed by Compaq, Microsoft, and National Semiconductor.

The ohci driver supports bulk, interrupt, control and isochronous transfers. It
supports the nexus device control interface.

/kernel/drv/ohci
32 bit ELF kernel module

/kernel/drv/sparcv9/ohci
64 bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based SPARC systems

Availability SUNWusb, SUNWusbx

hid(7D), hubd(7D), uhci(7D), scsa2usb(7D), hid(7D), usba(7D)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

Open Host Controller Interface Specification for USB 1.0a

System Administration Guide: Basic Administration

All host controller errors are passed to the client drivers. Root errors are documented
in hubd(7D).

In addition to being logged, the following messages may appear on the system
console. All messages are formatted in the following manner:

WARNING: <device path> <ohci<instance number>>: Error message...

Unrecoverable USB Hardware Error.

There was an unrecoverable USB hardware error reported by the OHCI Controller.
Please reboot the system. If this problem persists, contact your system vendor.

No SOF interrupts.

The USB hardware error is not generating Start Of Frame interrupts. Please reboot
the system. If this problem persists, contact your system vendor.

ohci(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

394 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

openprom – PROM monitor configuration interface

#include <sys/fcntl.h>

#include <sys/types.h>

#include <sys/openpromio.h>

open("/dev/openprom", mode);

The internal encoding of the configuration information stored in EEPROM or NVRAM
varies from model to model, and on some systems the encoding is “hidden” by the
firmware. The openprom driver provides a consistent interface that allows a user or
program to inspect and modify that configuration, using ioctl(2) requests. These
requests are defined in <sys/openpromio.h>:

struct openpromio {
uint_t oprom_size; /* real size of following data */
union {

char b[1]; /* NB: Adjacent, Null terminated */
int i;

} opio_u;
};
#define oprom_array opio_u.b /* property name/value array */
#define oprom_node opio_u.i /* nodeid from navigation config-ops */
#define oprom_len opio_u.i /* property len from OPROMGETPROPLEN */
#define OPROMMAXPARAM 32768 /* max size of array (advisory) */

For all ioctl(2) requests, the third parameter is a pointer to a struct openpromio.
All property names and values are null-terminated strings; the value of a numeric
option is its ASCII representation.

For the raw ioctl(2) operations shown below that explicitly or implicitly specify a
nodeid, an error may be returned. This is due to the removal of the node from the
firmware device tree by a Dynamic Reconfiguration operation. Programs should
decide if the appropriate response is to restart the scanning operation from the
beginning or terminate, informing the user that the tree has changed.

OPROMGETOPT This ioctl takes the null-terminated name of a property
in the oprom_array and returns its null-terminated value
(overlaying its name). oprom_size should be set to the
size of oprom_array; on return it will contain the size of
the returned value. If the named property does not
exist, or if there is not enough space to hold its value,
then oprom_size will be set to zero. See BUGS below.

OPROMSETOPT This ioctl takes two adjacent strings in oprom_array; the
null-terminated property name followed by the
null-terminated value.

openprom(7D)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

Device and Network Interfaces 395

OPROMSETOPT2 This ioctl is similar to OPROMSETOPT, except that it
uses the difference between the actual user array size
and the length of the property name plus its null
terminator.

OPROMNXTOPT This ioctl is used to retrieve properties sequentially.
The null-terminated name of a property is placed into
oprom_array and on return it is replaced with the
null-terminated name of the next property in the
sequence, with oprom_size set to its length. A null string
on input means return the name of the first property;
an oprom_size of zero on output means there are no
more properties.

OPROMNXT
OPROMCHILD
OPROMGETPROP
OPROMNXTPROP These ioctls provide an interface to the raw config_ops

operations in the PROM monitor. One can use them to
traverse the system device tree; see prtconf(1M).

OPROMGETPROPLEN This ioctl provides an interface to the property length
raw config op. It takes the name of a property in the
buffer, and returns an integer in the buffer. It returns
the integer -1 if the property does not exist; 0 if the
property exists, but has no value (a boolean property);
or a positive integer which is the length of the property
as reported by the PROM monitor. See BUGS below.

OPROMGETVERSION This ioctl returns an arbitrary and platform-dependent
NULL-terminated string in oprom_array, representing
the underlying version of the firmware.

EAGAIN There are too many opens of the /dev/openprom device.

EFAULT A bad address has been passed to an ioctl(2) routine.

EINVAL The size value was invalid, or (for OPROMSETOPT) the property
does not exist, or an invalid ioctl is being issued, or the ioctl is not
supported by the firmware, or the nodeid specified does not exist
in the firmware device tree.

ENOMEM The kernel could not allocate space to copy the user’s structure.

EPERM Attempts have been made to write to a read-only entity, or read
from a write only entity.

ENXIO Attempting to open a non-existent device.

openprom(7D)

ERRORS

396 man pages section 7: Device and Network Interfaces • Last Revised 13 Jan 1997

EXAMPLE 1 oprom_array Data Allocation and Reuse

The following example shows how the oprom_array is allocated and reused for data
returned by the driver.

/*
* This program opens the openprom device and prints the platform
* name (root node name property) and the prom version.
*
* NOTE: /dev/openprom is readable only by user ’root’ or group ’sys’.
*/
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/openpromio.h>
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)
#define MAXNAMESZ 32 /* Maximum property *name* size */
#define BUFSZ 1024 /* A Handly default buffer size */
#define MAXVALSZ (BUFSZ - sizeof (int))
static char *promdev = "/dev/openprom";
/*
* Allocate an openpromio structure big enough to contain
* a bufsize’d oprom_array. Zero out the structure and
* set the oprom_size field to bufsize.
*/
static struct openpromio *
opp_zalloc(size_t bufsize)
{

struct openpromio *opp;
opp = malloc(sizeof (struct openpromio) + bufsize);
(void) memset(opp, 0, sizeof (struct openpromio) + bufsize);
opp->oprom_size = bufsize;
return (opp);

}
/*
* Free a ’struct openpromio’ allocated by opp_zalloc
*/
static void
opp_free(struct openpromio *opp)
{

free(opp);
}
/*
* Get the peer node of the given node. The root node is the peer of zero.
* After changing nodes, property lookups apply to that node. The driver
* ’remembers’ what node you are in.
*/
static int
peer(int nodeid, int fd)
{

struct openpromio *opp;
int i;
opp = opp_zalloc(sizeof (int));

openprom(7D)

EXAMPLES

Device and Network Interfaces 397

EXAMPLE 1 oprom_array Data Allocation and Reuse (Continued)

opp->oprom_node = nodeid;
if (ioctl(fd, OPROMNEXT, opp) < 0) {

perror("OPROMNEXT");
exit(1);

}
i = opp->oprom_node;
opp_free(opp);
return(i);

}
int
main(void)
{

struct openpromio *opp;
int fd, proplen;
size_t buflen;
if ((fd = open(promdev, O_RDONLY)) < 0) {

fprintf(stderr, "Cannot open openprom device\n");
exit(1);

}
/*
* Get and print the length and value of the
* root node ’name’ property
*/
(void) peer(0, fd); /* Navigate to the root node */
/*
* Allocate an openpromio structure sized big enough to
* take the string "name" as input and return the int-sized
* length of the ’name’ property.
* Then, get the length of the ’name’ property.
*/
buflen = max(sizeof (int), strlen("name") + 1);
opp = opp_zalloc(buflen);
(void) strcpy(opp->oprom_array, "name");
if (ioctl(fd, OPROMGETPROPLEN, opp) < 0) {

perror("OPROMGETPROPLEN");
/* exit(1); */
proplen = 0; /* down-rev driver? */

} else
proplen = opp->oprom_len;

opp_free(opp);
if (proplen == -1) {

printf("’name’ property does not exist!\n");
exit (1);

}
/*
* Allocate an openpromio structure sized big enough
* to take the string ’name’ as input and to return
* ’proplen + 1’ bytes. Then, get the value of the
* ’name’ property. Note how we make sure to size the
* array at least one byte more than the returned length
* to guarantee NULL termination.
*/
buflen = (proplen ? proplen + 1 : MAXVALSZ);
buflen = max(buflen, strlen("name") + 1);

openprom(7D)

398 man pages section 7: Device and Network Interfaces • Last Revised 13 Jan 1997

EXAMPLE 1 oprom_array Data Allocation and Reuse (Continued)

opp = opp_zalloc(buflen);
(void) strcpy(opp->oprom_array, "name");
if (ioctl(fd, OPROMGETPROP, opp) < 0) {

perror("OPROMGETPROP");
exit(1);

}
if (opp->oprom_size != 0)

printf("Platform name <%s> property len <%d>\n",
opp->oprom_array, proplen);

opp_free(opp);
/*
* Allocate an openpromio structure assumed to be
* big enough to get the ’prom version string’.
* Get and print the prom version.
*/
opp_zalloc(MAXVALSZ);
opp->oprom_size = MAXVALSZ;
if (ioctl(fd, OPROMGETVERSION, opp) < 0) {

perror("OPROMGETVERSION");
exit(1);

}
printf("Prom version <%s>\n", opp->oprom_array);
opp_free(opp);
(void) close(fd);
return (0);

}

/dev/openprom PROM monitor configuration interface

eeprom(1M), monitor(1M), prtconf(1M), ioctl(2), mem(7D)

There should be separate return values for non-existent properties as opposed to not
enough space for the value.

An attempt to set a property to an illegal value results in the PROM setting it to some
legal value, with no error being returned. An OPROMGETOPT should be performed
after an OPROMSETOPT to verify that the set worked.

Some PROMS lie about the property length of some string properties, omitting the
NULL terminator from the property length. The openprom driver attempts to
transparently compensate for these bugs when returning property values by NULL
terminating an extra character in the user buffer if space is available in the user buffer.
This extra character is excluded from the oprom_size field returned from
OPROMGETPROP and OPROMGETOPT and excluded in the oprom_len field returned from
OPROMGETPROPLEN but is returned in the user buffer from the calls that return data, if
the user buffer is allocated at least one byte larger than the property length.

openprom(7D)

FILES

SEE ALSO

BUGS

Device and Network Interfaces 399

pcata – PCMCIA ATA card device driver

pcata@socket#:a -u

pcata@socket#:a -u,raw

The PCMCIA ATA card device driver supports PCMCIA ATA disk and flash cards that
follow the following standards:

� PC card 2.01 compliance (MBR+fdisk table required for all platforms).
� PC card ATA 2.01 compliance.
� PC card services 2.1 compliance.

The driver supports standard PCMCIA ATA cards that contain a Card Information
Structure (CIS). For PCMCIA, nodes are created in /devices that include the socket
number as one component of the device name referred to by the node. However, the
names in /dev, /dev/dsk, and /dev/rdsk follow the current conventions for ATA
devices, which do not encode the socket number in any part of the name. For example,
you may have the following:

Platform /devices name /dev/dsk name

IA /devices/isa/pcic@1,3e0
/disk@0:a

/dev/dsk/c1d0s0

SPARC /devices/iommu@f,e0000000
/sbus@f,e0001000
/SUNW, pcmcia@3,0
/disk@0:a

/dev/dsk/c1d0s0

If a PC Card ATA device is recognized, the pcata driver is automatically loaded, IRQs
allocated, devices nodes created, and special files created (if they do not already exist).

� vold does not support pcata. File systems must be mounted manually.

� You need to umount the file system before removing the disk.

� The ufs file systems on removable media (PC Card ATA) should have one of the
onerror={panic, lock, umount} mount options set.

Configuration topics include initial installation and configuration, identifying an
unrecognized device, special files and hot-plugging.

1. Install the Solaris software.
2. Boot the system.
3. Insert the PC card ATA device.

If you insert a PC card ATA device and it is not recognized (no special files created),
use the prtconf command to identify the problem.

1. Run the prtconf -D command to see if your pcata card is recognized. (A
recognized device will appear at the end of the prtconf output. For example:

pcata(7D)

NAME

SYNOPSIS

DESCRIPTION

PRECONFIGURATION

Known Problems
and Limitations

CONFIGURATION

Initial Installation
and Configuration

Identifying an
Unrecognized

Device

400 man pages section 7: Device and Network Interfaces • Last Revised 20 Oct 2000

prtconf -D
. . .
pcic, instance #0 (driver name: pcic)

. . .

disk, instance #0

2. If pcata does not appear in the prtconf output, there is a problem with the PC
card adapter configuration or with the hardware. Check to see whether the
problem is with the card or the adapter by trying to use the card on another
machine and by seeing if it works on the same machine using DOS.

For PC card devices, nodes are created in /devices that include the socket number as
one component of a device name that the node refers to. However, the /prtc/dev
names and the names in /dev/dsk and /dev/rdsk do follow the current convention
for ATA devices, which do not encode the socket number in any part of the name.

� If you want to remove the disk, you must unmount the file system.

� Use the mkfs_pcfs(1M) command to create a pcfs file system:

mkfs -F pcfs /dev/rdsk/c#d#p0:d

� To mount a pcfs file system, type:

mount -F pcfs /dev/dsk/c#d#p0:c /mnt

� If you want to create a ufs file system, use the newfs command and type:

newfs /dev/rdsk/c#d#s#

� To mount a ufs file system, type:

mount -F ufs /dev/dsk/c#d#s# /mnt

� To create a Solaris partition, run the format command and go to the Partition
menu. For more information, see the format(1M) man page.

/kernel/drv/pcata pcata driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsdpr

format(1M), mount(1M), newfs(1M), pcmcia(4), attributes(5), pcfs(7FS)

pcata(7D)

Special Files

Hot-Plugging

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 401

pcelx – 3COM EtherLink III PCMCIA Ethernet Adapter

network@<socket>:pcelx<socket>

The pcelx driver supports the 3COM EtherLink III PCMCIA PC Card as a standard
Ethernet type of device conforming to the DLPI interface specification. The driver
supports the hot-plugging of the PC Card.

The PPA (Physical Point of Attachment) is defined by the socket number the PC Card
is inserted in. This means that for IP use, the PC Card should always be plugged into
the same socket that the network interface was initially brought up on or else a
network reconfiguration should be done to take down the old interface and bring up
the new one.

The 3C589, 3C589B, and 3C589C versions of the PC Card are supported on the IA
platform. The 3C589B and 3C589C are supported on the SPARC platform.

� For IBM ThinkPad 760E series systems and systems using the TI PCI1130
PCI-to-CardBus chip (such as the Dell Latitude XPi CD) only: Before bringing the
system onto the network, put the PC Card into 8-bit mode by creating a file called
/kernel/drv/pcelx.conf containing force-8bit=1;.

� It is not possible to boot or install the Solaris software using a 3Com EtherLink III
PC Card device.

� If the 3Com PC Card device is recognized, the pcelx driver is automatically
loaded, ports and IRQs allocated, and special files created (if they don’t already
exist). No manual configuration of the hardware is necessary or possible.

Network services are automatically started when the system is booted. These services
are not started when a network interface is added or shut down after the system has
been brought up.

Configuration procedures include initial installation and configuration, identifying an
unrecognized card and configuring two or more cards.

For initial installation and configuration, do the following steps:

1. Install the Solaris software.
2. Boot the system.
3. Insert the 3Com EtherLink III PC Card device.

If you insert a 3C589 card and it is not recognized (no special files created), use the
prtconf command and attempt to identify the problem:

1. Become root.

2. Run the prtconf -D command to see if your 3C589 card is recognized. A
recognized device will appear in the prtconf output. For example:

prtconf -D
. . .
pcic, instance #0 (driver name: pcic)

pcelx(7D)

NAME

SYNOPSIS

DESCRIPTION

PRECONFIGURATION

Known Problems
and Limitations

CONFIGURATION

Initial Installation
and Configuration

Identifying an
Unrecognized

Card

402 man pages section 7: Device and Network Interfaces • Last Revised 20 Oct 2000

. . .

network, instance #0 (driver name: pcelx)

3. If pcelx does not appear in the prtconf output, there is a problem with the PC
Card adapter configuration or with the hardware. You can determine whether the
problem is with the card or the adapter by attempting to use the card on another
machine or by using it on the same machine using DOS.

Because the 3C589 card is not supported during Solaris installation, you must update
network configuration files before it can be used as a network interface:

1. Create a /etc/hostname.pcelx# file (where # is a socket number) to specify the
host name to be associated with this interface.

2. Add an IP address for the new host name to the /etc/inet/hosts file.

3. Ensure that the associated network is listed in /etc/inet/netmasks.

4. Ensure that the Name Service Switch /etc/nssswitch.conf configuration file
includes the network and local services you need.

5. Reboot the system.

Device naming in /dev follows standard LAN device naming with the exception that
the PPA (physical point of attachment) unit number is the socket where the card
resides, not the instance. For the pcelx driver, /dev/pcelx0 (or PPA 0 of
/dev/pcelx) is the card in socket 0, while a card in socket 1 is /dev/pcelx1 (or
PPA 1 of /dev/pcelx).

If you remove the 3C589 card, any information you send is discarded, and no error
messages are given.

When you reinsert the card in the same socket, the device operates normally. The
behavior is similar to temporarily disconnecting the device from the network.

/kernel/drv/pcelx pcelx driver

/dev/pcelx DLPI Style 2 device

/dev/pcelxn DLPI Style 1 device where: n is the PCMCIA physical
socket number.

pcmcia(4)

pcelx(7D)

Configuring Two
or More Cards

Special Files

Hot Plugging

FILES

SEE ALSO

Device and Network Interfaces 403

pcfs – DOS formatted file system

#include <sys/param.h>
#include <sys/mount.h>

#include <sys/fs/pc_fs.h>

int mount(const char *spec, const char *dir, int mflag, "pcfs",
structpcfs_args, struct *pc_argp, sizeof (struct pcfs_args));

pcfs is a file system type that enables direct access to files on DOS formatted disks
from within the SunOS operating system.

Once mounted, pcfs provides standard SunOS file operations and semantics. Using
pcfs, you can create, delete, read, and write files on a DOS formatted disk. You can
also create and delete directories and list files in a directory.

pcfs supports FAT12 (floppies) and FAT16 and FAT32 file systems.

The pcfs file system contained on the block special file identified by spec is mounted
on the directory identified by dir. spec and dir are pointers to pathnames. mflag
specifies the mount options. The MS_DATA bit in mflag must be set. Mounting a pcfs
file system requires a pointer to a structure containing mount flags and local timezone
information, *pc_argp:

struct pcfs_args {
int timezone; /* seconds west of Greenwich */
int daylight; /* type of dst correction */
int flags;
};

The information required in the timezone and daylight members of this structure
is described in ctime(3C). flags can contain the PCFS_MNT_FOLDCASE flag. Fold
names read from the file system to lowercase.

Use the following command to mount pcfs from diskette:

mount -F pcfs device-special directory-name

You can use:

mount directory-name

if the following line is in your /etc/vfstab file:

device-special - directory-namepcfs − no rw

Use the following command to mount pcfs from non-diskette media:

mount -F pcfs device-special:logical-drive directory-name

You can use:

mount directory-name

if the following line is in your /etc/vfstab file:

device-special:logical_drive − directory-name pcfs − no rw

pcfs(7FS)

NAME

SYNOPSIS

DESCRIPTION

Mounting File
Systems

404 man pages section 7: Device and Network Interfaces • Last Revised 10 Apr 2001

device-special specifies the special block device file for the diskette (/dev/disketteN)
or the entire hard disk (/dev/dsk/cNtNdNp0 for a SCSI disk, and
/dev/dsk/cNdNp0 for IDE disks) or the PCMCIA pseudo-floppy memory card
(/dev/dsk/cNtNdNsN).

logical-drive specifies either the DOS logical drive letter (c through z) or a drive
number (1 through 24). Drive letter c is equivalent to drive number 1 and represents
the Primary DOS partition on the disk; drive letters d through z are equivalent to
drive numbers 2 through 24, and represent DOS drives within the Extended DOS
partition. Note that device-special and logical-drive must be separated by a colon.

directory-name specifies the location where the file system is mounted.

For example, to mount the Primary DOS partition from a SCSI hard disk, use:

mount -F pcfs /dev/dsk/cNtNdNp0:c /pcfs/c

To mount the first logical drive in the Extended DOS partition from an IDE hard disk,
use:

mount -F pcfs /dev/dsk/cNdNp0:d /pcfs/d

To mount a DOS diskette in the first floppy drive when Volume Management is not
running (see vold(1M)) use:

mount -F pcfs /dev/diskette /pcfs/a

If Volume Management is running, run volcheck(1) to automatically mount the
floppy and some removable disks.

To mount a PCMCIA pseudo-floppy memory card, with Volume Management not
running (or not managing the PCMCIA media), use:

mount -F pcfs /dev/dsk/cNtNdNsN /pcfs

Files and directories created through pcfs must comply with either the DOS short file
name convention or the long file name convention introduced with Windows 95. The
DOS short file name convention is of the form filename[.ext], where filename generally
consists of from one to eight upper-case characters, while the optional ext consists of
from one to three upper-case characters.

The long file name convention is much closer to Solaris file names. A long file name
can consist of any characters valid in a short file name, lowercase letters, non-leading
spaces, the characters +,;=[], any number of periods, and can be up to 255 characters
long. Long file names have an associated short file name for systems that do not
support long file names (including earlier releases of Solaris). The short file name is
not visible if the system recognizes long file names. pcfs generates a unique short
name automatically when creating a long file name.

Given a long file name such as This is a really long filename.TXT, the short
file name will generally be of the form THISIS~N.TXT, where N is a number. The

pcfs(7FS)

Conventions

Device and Network Interfaces 405

long file name will probably get the short name THISIS~1.TXT, or THISIS~2.TXT if
THISIS~1.TXT already exits (or THISIS~3.TXT if both exist, and so forth). If you
use pcfs file systems on systems that do not support long file names, you may want
to continue following the short file name conventions. See EXAMPLES.

When creating a file name, pcfs creates a short file name if it fits the DOS short file
name format, otherwise it creates a long file name. This is because long file names take
more directory space. Because the root directory of a pcfs file system is fixed size,
long file names in the root directory should be avoided if possible.

When displaying file names, pcfs shows them exactly as they are on the media. This
means that short names are displayed as uppercase and long file names retain their
case. Earlier versions of pcfs folded all names to lowercase, which can be forced with
the PCFS_MNT_FOLDCASE mount option. All file name searches within pcfs,
however, are treated as if they were uppercase, so readme.txt and ReAdMe.TxT
refer to the same file.

To format a diskette or a PCMCIA pseudo-floppy memory card in DOS format in the
SunOS system, use either the fdformat -d or the DOS FORMAT command.

On IA systems, hard drives may contain an fdisk partition reserved for the Solaris
boot utilities. These partitions are special instances of pcfs. You can mount an IA boot
partition with the command:

mount -F pcfs device-special:boot directory-name

or you can use:

mount directory-name

if the following line is in your /etc/vfstab file:

device-special:boot − directory-name pcfs − no rw

device-special specifies the special block device file for the entire hard disk
(/dev/dsk/cNtNdNp0)

directory-name specifies the location where the file system is mounted.

All files on a boot partition are owned by super-user. Only the super-user may create,
delete, or modify files on a boot partition.

EXAMPLE 1 Sample Displays of File Names

If you copy a file financial.data from a UNIX file system to pcfs, it displays as
financial.data in pcfs, but may show up as FINANC~1.DAT in systems that do
not support long file names.

The following are legal long file names. They are also illegal short file names:

test.sh.orig

pcfs(7FS)

Boot Partitions

EXAMPLES

406 man pages section 7: Device and Network Interfaces • Last Revised 10 Apr 2001

EXAMPLE 1 Sample Displays of File Names (Continued)

data+
.login

Other systems that do not support long file names may see:

TESTSH~1.ORI
DATA~1
LOGIN~1

The short file name is generated from the initial characters of the long file name, so
differentiate names in the first few characters. For example, these names:

WorkReport.January.Data
WorkReport.February.Data
WorkReport.March.Data

result in these short names, which are not distinguishable:

WORKRE~1.DAT
WORKRE~2.DAT
WORKRE~13.DAT

These names, however:

January.WorkReport.Data
February.WorkReport.Data
March.WorkReport.Data

result in the more descriptive short names:

JANUAR~1.DAT
FEBRUA~1.DAT
MARCHW~1.DAT

/usr/lib/fs/pcfs/mount pcfs mount command

/usr/kernel/fs/pcfs 32-bit kernel module

/usr/kernel/fs/sparcv9/pcfs 64-bit kernel module

chgrp(1), chown(1), dos2unix(1), eject(1), fdformat(1), unix2dos(1),
volcheck(1), mount(1M), mount_pcfs(1M), vold(1M), ctime(3C), vfstab(4),
pcmem(7D)

pcfs(7FS)

FILES

SEE ALSO

Device and Network Interfaces 407

Do not physically eject a DOS floppy while the device is mounted as pcfs. If Volume
Management is managing a device, use the eject(1) command before physically
removing media.

When mounting pcfs on a hard disk, make sure the first block on that device contains
a valid fdisk partition table.

Because pcfs has no provision for handling owner-IDs or group-IDs on files,
chown(1) or chgrp(1) may generate various errors. This is a limitation of pcfs, but it
should not cause problems other than error messages.

Only the following characters are allowed in pcfs short file names and extensions:

0-9
A-Z
$#&@!%()-{}<>‘_^~|’

SunOS and DOS use different character sets and have different requirements for the
text file format. Use the dos2unix(1) and unix2dos(1) commands to convert files
between them.

pcfs offers a convenient transportation vehicle for files between Sun workstations
and PCs. Because the DOS disk format was designed for use under DOS, it does not
operate efficiently under the SunOS system and should not be used as the format for a
regular local storage. Instead, use ufs for local storage within the SunOS system.

Although long file names can contain spaces (just as in UNIX file names), some
utilities may be confused by them.

This implementation of pcfs conforms to the behavior exhibited by Windows 95
version 4.00.950.

pcfs should handle the disk change condition in the same way that DOS does, so you
do not need to unmount the file system to change floppies.

When listing or searching a directory, pcfs does not include files with the hidden or
system bits set.

pcfs(7FS)

WARNINGS

NOTES

BUGS

408 man pages section 7: Device and Network Interfaces • Last Revised 10 Apr 2001

pcic – Intel i82365SL PC Card Interface Controller

The Intel i82365SL PC Card interface controller provides one or more PCMCIA PC
card sockets. The pcic driver implements a PCMCIA bus nexus driver.

The driver provides basic support for the Intel 82365SL and compatible chips. The
chips that have been tested are:

� Intel 82365SL
� Cirrus Logic PD6710/PD6720/PD6722
� Vadem VG365/VG465/VG468/VG469
� Toshiba PCIC and ToPIC
� Ricoh RF5C366
� Texas Instruments PCI1130/PCI1131/PCI1031

While most systems using one of the above chips will work, some systems will not be
supported due to hardware designs options that may not be software detectable. Note
that systems with CardBus interfaces are only supported in the non-legacy mode.
Systems that only initialize the bridge to legacy mode and do not configure the PCI
memory will not be supported.

Direct access to the PCMCIA hardware is not supported. All device access must be
through the Card Services interface of the DDI.

� Install your add-in PC Card adapter prior to the Solaris installation.

� Some systems have their built-in PC Card adapter disabled by default. Enable it
prior to Solaris installation.

� Requirements for a system depend on the combination of devices to be used. A
typical two-socket system needs at least 8 Kbytes of address space, 16 bytes of I/O
space, and three free IRQs. Following are general guidelines:

Address
space

At least 8 Kbytes are required with 4 Kbytes per socket in the 640K-1MB range
(not necessarily contiguous); if there are three sockets, at least 12 Kbytes are
needed.

I/O space At least 8 and preferably 16 bytes per socket.

IRQs One per socket, plus an IRQ for the pcic device driver itself.

There is one driver configuration property defined in the pcic.conf file.

interrupt-priorities=11; This property must be defined and must not
be modified from the default value.

To perform initial installation and configuration, do the following steps:

1. Consult the Configuration Assistant for address space, I/O space, and IRQs
already used by system devices.

pcic(7D)

NAME

DESCRIPTION

PRECONFIGURATION

CONFIGURATION

Initial Installation
and Configuration

Device and Network Interfaces 409

2. Insert the PC Card adapter.

3. Install the Solaris software.

4. Reboot the system.

To add PC card support to a previously installed system, do the following:

1. Become root.

2. Do a reconfiguration reboot to reallocate resources:

touch /reconfigure

reboot

3. Insert the PC Card adapter and turn on the machine.

4. Boot the system so that the PC Card device driver begins running with the new
resources allocated.

To allocate the IRQs, do the following:

1. Boot with the Configuration Assistant so you can review the resource usage.

2. Select View/Edit Devices from the Device Tasks menu, and review the list of
devices to see how many IRQs are being used. (There are 16 IRQs, from 0-15.
Several IRQs are already assigned. For example, IRQ 3 is reserved for the second
serial port, COM2, and IRQ 7 is reserved for the parallel port.)

3. If your system has an unused COM2 or parallel port, delete the device to free the
IRQ resource for a PC Card. To do this, select the serial port device using IRQ 3 or
the parallel port using IRQ 7, and choose Delete Device. Next, choose Continue to
return to the Device Tasks menu, then save the configuration.

4. Boot the Solaris software.

/kernel/drv/pcic pcic driver

/kernel/drv/pcic.conf pcic configuration file

pcmcia(4), stp4020(7D)

pcic(7D)

Adding PC Card
Support to a

Previously
Installed System

Allocating IRQs

FILES

SEE ALSO

410 man pages section 7: Device and Network Interfaces • Last Revised 20 Oct 2000

pckt – STREAMS Packet Mode module

int ioctl(fd, I_PUSH, "pckt");

pckt is a STREAMS module that may be used with a pseudo terminal to packetize
certain messages. The pckt module should be pushed (see I_PUSH on streamio(7I))
onto the master side of a pseudo terminal.

Packetizing is performed by prefixing a message with an M_PROTO message. The
original message type is stored in the 1 byte data portion of the M_PROTO message.

On the read-side, only the M_PROTO, M_PCPROTO, M_STOP, M_START, M_STOPI,
M_STARTI, M_IOCTL, M_DATA, M_FLUSH, and M_READ messages are packetized. All
other message types are passed upstream unmodified.

Since all unread state information is held in the master’s stream head read queue,
flushing of this queue is disabled.

On the write-side, all messages are sent down unmodified.

With this module in place, all reads from the master side of the pseudo terminal
should be performed with the getmsg(2) or getpmsg() function. The control part of
the message contains the message type. The data part contains the actual data
associated with that message type. The onus is on the application to separate the data
into its component parts.

getmsg(2), ioctl(2), ldterm(7M), ptem(7M), streamio(7I), termio(7I)

STREAMS Programming Guide

pckt(7M)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Device and Network Interfaces 411

pcmem – PCMCIA memory card nexus driver

The pcmem driver identifies the type of memory card in the system and will allow
future support of other memory device types.

The PCMCIA memory card nexus driver supports PCMCIA memory card client
drivers. There are no user-configurable options for this driver.

/kernel/drv/pcmem pcmem driver

pcram(7D)

pcmem(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

412 man pages section 7: Device and Network Interfaces • Last Revised 20 Mar 1995

pcn – AMD PCnet Ethernet controller device driver

/dev/pcn

The pcn Ethernet driver is a multi-threaded, loadable, clonable driver for the AMD
PCnet family of Ethernet controllers that use the Generic LAN Driver (GLD) facility to
implement the required STREAMS and Data Link Provider (see dlpi(7P)) interfaces.

This driver supports a number of integrated motherboards and add-in adapters based
on the AMD PCnet-ISA, PCnet-PCI, and PCnet-32 controller chips. The pcn driver
functions include controller initialization, frame transmit and receive, functional
addresses, promiscuous and multicast support, and error recovery and reporting.

The cloning character-special device, /dev/pcn, is used to access all PCnet devices
installed in the system.

The pcn driver uses the Solaris GLD module which handles all the STREAMS and
DLPI specific functions of the driver. It is a style 2 DLPI driver and therefore supports
only the connectionless mode of data transfer. Thus, a DLPI user should issue a
DL_ATTACH_REQ primitive to select the device to be used. Valid DLPI primitives are
defined in <sys/dlpi.h>. Refer to dlpi(7P) for more information.

The device is initialized on the first attach and de-initialized (stopped) on the last
detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to a
DL_INFO_REQ from the user are:

� Maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� Minimum SDU is 0.

� DLSAP address length is 8.

� MAC type is DL_ETHER.

� sap length value is −2, meaning the physical address component is followed
immediately by a 2-byte sap component within the DLSAP address.

� Service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present, accordingly,
the QOS fields are 0.

� Provider style is DL_STYLE2.

� Version is DL_VERSION_2.

� Broadcast address value is the Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular Service Access Point (SAP) with the stream.

� Occasional data corruption has occurred when pcn and pcscsi drivers in HP
Vectra XU 5/90 and Compaq Deskpro XL systems are used under high network

pcn(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
pcn and DLPI

Known Problems
and Limitations

Device and Network Interfaces 413

and SCSI loads. These drivers do not perform well in a production server. A
possible workaround is to disable the pcn device with the system BIOS and use a
separate add-in network interface.

� The Solaris pcn driver does not support IRQ 4.

/dev/pcn Character special device

/kernel/drv/pcn.conf Configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), standards(5), dlpi(7P), streamio(7I)

Writing Device Drivers

STREAMS Programming Guide

pcn(7D)

FILES

ATTRIBUTES

SEE ALSO

414 man pages section 7: Device and Network Interfaces • Last Revised 20 Oct 2000

pcram – PCMCIA RAM memory card device driver

memory@<socket>/pcram@<technology>,0:c

memory@<socket>/pcram@<technology>,0:c,raw

The PCMCIA RAM memory card device driver supports disk-like I/O access to any
standard PCMCIA static random access memory (SRAM) card and dynamic random
access memory (DRAM) card. The driver supports standard PCMCIA SRAM/DRAM
cards that contain a Card Information Structure (CIS). RAM card densities in the
512Kilobytes to 64Mbyte range are supported.

If a PC card memory device is recognized, the pcram device driver is automatically
loaded, the physical address allocated, and special files created (if they do not already
exist).

The Solaris pcmem driver is not capable of handling "combo" memory cards with
multiple types of memory on them (for example, combined SRAM and nonvolatile
FLASH). Inserting such a card into a system running the Solaris software may cause a
system panic.

Because the PC card memory device is designed as a pseudo-floppy diskette type, the
only utility that can be used for formatting is fdformat(1).

Configuration topics include initial installation and configuration, identifying an
unrecognized device, special files, using PC card memory devices, and hot-plugging.

1. Install the Solaris software.
2. Boot the system.
3. Insert the card.

If you insert a memory device and it is not recognized (no special files created), use
the prtconf command.

1. Become root.

2. Run the prtconf -D command to display the configuration recognized by the
system. A recognized device will appear in the prtconf output. For example:

prtconf -D
. . .
pcic, instance #0 (driver name: pcic)

. . .
memory, instance #0 (driver name: pcmem)

pcram, instance #0 (driver name: pcram)

3. If your memory device does not appear at the end of the prtconf output, it is not
supported and cannot be used with the pcram driver.

The special files created for PC card memory devices act like disks and have names in
the form /dev/dsk/c#t#d#p# or /dev/dsk/c#t#d#s#. Abbreviations used in the
names are:

pcram(7D)

NAME

SYNOPSIS

DESCRIPTION

PRECONFIGURATION

Known Problems
and Limitations

CONFIGURATION

Initial Installation
and Configuration

Identifying an
Unrecognized

Device

Special Files

Device and Network Interfaces 415

� c# Controller #

� t# Card technology type #, defined as follows:

0 Null--no device
1 ROM
2 OTPROM (One Time PROM)
3 UV EPROM
4 EEPROM
5 Flash EPROM
6 SRAM
7 DRAM

� d# Device region of type #, usually zero

� p# fdisk partition #

� s# Solaris slice #

Note – A device name can be specified either by a partition name (p#) or a slice name
(s#), but not both.

Since the Solaris Volume Management software recognizes PC Card memory devices,
no special vold configuration is required. If you do not want to use vold to manage
your PC card memory devices, comment out the use pcmem line in the
/etc/vold.conf file. To comment out a line, insert a # character at the beginning of
the line.

PC Card memory devices do not need to have file systems on them, though typically,
before using a new PC Card memory card, you will want to create a file system on it.
DOS PCFS is the best format to use. (You can use virtually any file system format on a
PC card memory card, but most other file system formats are platform-dependent,
making them unsuitable for moving data between different types of machines. See
"Using a PCMCIA Memory Card" in the OpenWindows Advanced User’s Guide.)

Note – If you want to redirect the output of a tar command (or dd or cpio) to a PC
card memory device, first create a file system on the card, using the fdformat(1)
command without arguments. The card must be reformatted before it can be written
on again.

If a memory card is removed while in use, the device driver returns errors until the
memory card is inserted into the appropriate socket. Close and reopen the device with
the card reinserted, and the memory card will work.

� If you remove the card while in use as a file system, unmount the file system using
the umount command. Then reinsert the card and remount the file system using
the mount command.

� If you remove the card and interrupt a tar or cpio process, stop the process,
reinsert the card, and restart the process.

/kernel/drv/pcram pcram driver

pcram(7D)

Using PC Card
Memory Devices

Hot-Plugging

FILES

416 man pages section 7: Device and Network Interfaces • Last Revised 23 Oct 2000

/dev/dsk/cntndnsn block files

/dev/rdsk/cntndnsn raw fileswhere:

cn controller n

tn technology type n

0x1ROM,0x2OTPROM,0x3EPROM,

0x4EEPROM,0x5FLASH,0x6SRAM,

0x7DRAM

dn technology region in type n

sn slice n

fdformat(1), pcmcia(4), dkio(7I), pcmem(7D)

pcram(7D)

SEE ALSO

Device and Network Interfaces 417

pcscsi – low-level module for the AMD PCscsi, PCscsi II, PCnet-SCSI, and Qlogic
QLA510 PCI-to-SCSI bus adapters

pcscsi@ioaddr,0

The pcscsi module provides low-level interface functions between the common
disk/tape I/O subsystem and the Am53C974 (PCscsi), Am53C974A (PCscsi II),
Am79C974 (PCnet-SCSI) (SCSI device only), and the Qlogic QLA510 SCSI controllers.

The pcscsi module can be configured for disk and streaming tape support for one
host bus adapter device. Each host bus adapter device must be the sole initiator on a
SCSI bus. Auto-configuration code determines if the adapter is present on the PCI bus,
what its configuration is, and what types of devices are attached to it.

For PCI devices, configuration is done through the PCI BIOS. Configuration settings
can be accessed through a CMOS utility.

The net component of the PCnet-SCSI host bus adapter requires the Solaris pcn(7D)
driver. See AMD PCnet Ethernet (PCnet-PCI, PCnet-PCI II, PCnet-Fast for information
on Ethernet configuration capabilities.

Occasional data corruption has occurred when pcn and pcscsi drivers in HP Vectra
XU 5/90 and Compaq Deskpro XL systems are used under high network and SCSI
loads. These drivers do not perform well in a production server. A possible
workaround is to disable the pcn device with the system BIOS and use a separate
add-in network interface.

The SCSI tagged queuing option is not supported.

The driver attempts to initialize itself in accordance with the PCI BIOS configuration
settings..

There are no user-configurable options; information found in the pcscsi.conf
configuration file is used by the I/O subsystem only.

/kernel/drv/pcscsi.conf Configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

driver.conf(4), sysbus(4), attributes(5)

pcscsi(7D)

NAME

SYNOPSIS

DESCRIPTION

PRECONFIGURATION

Known Problems
and Limitations

CONFIGURATION

FILES

ATTRIBUTES

SEE ALSO

418 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

pcser – PCMCIA serial card device driver

serial@<socket>:pcser

serial@<socket>:pcser,cu

The pcser PCMCIA serial card device driver supports asynchronous serial I/O access
to any PCMCIA card that that complies with Revision 2.1 of the PCMCIA standard
and which represents an 8250-type UART interface.

If a PC card modem or serial device is recognized, the pcser device driver is
automatically loaded, ports and IRQs allocated, and special files created (if they don’t
already exist).

Configuration steps include initial installation and configuration, identifying an
unrecognized device and misidentifying a recognized device, .

1. Install the Solaris software.
2. Boot the system.
3. Insert the modem or serial device.

If you insert a PC card modem or serial device and it is not recognized (that is, no
special files are created under /dev/cua or /dev/term), use the prtconf command
to find the problem:

1. Become root.

2. Run the prtconf -D command to see if your modem or serial device is
recognized. An unrecognized device will appear at the end of the prtconf output.
For example:

prtconf -D
. . .
pcic, instance #0 (driver name: pcic)

. . .

pccard111.222 (driver not attached)

3. If your device is not recognized, use the add_drv command to add the name of
your device as another known alias for pcser devices. For example, type the
following at the command line:

add_drv -i’"pccard111.222"’ pcser

Note – Include the double quotes in single quotes to keep the shell from stripping
out the double quotes. Use the identification string listed in the prtconf output. Use
the entire string in the add_drv command. See add_drv(1M).

1. Run the prtconf -D command to see if your modem or serial device is
erroneously recognized as a memory card. If the device is incorrectly recognized as
a memory card, the output of the prtconf command could show:

prtconf -D

. . .
pcic, instance #0 (driver name: pcic)

pcser(7D)

NAME

SYNOPSIS

DESCRIPTION

PRECONFIGURATION

CONFIGURATION

Initial Installation
and Configuration

Identifying an
Unrecognized

Device

Misidentifying a
Recognized Device

Device and Network Interfaces 419

. . .
memory, instance #0 (driver name: pcmem)

pcram, instance #0 (driver name: pcram)

2. Use the Configuration Assistant to identify the memory resource conflict, and add
correct information for the device on the View/Edit Devices menu. Typically, the
problem may be a resource conflict between device memory settings. A PC Card
adapter chip that is not fully supported may also be the cause of the problem.

3. To work properly with the Solaris operating environment, all devices must be
accounted for, even those the Solaris environment does not support. The
Configuration Assistant software accounts for all devices in your system.

When adding a new serial port or modem to the system, you often need to edit
configuration files so that applications can use the new communications port. For
example, the /etc/uucp/devices file needs to be updated to use UUCP and PPP.
See “Overview of UUCP” in System Administration Guide, Volume 3.

The serial devices in /dev/term and /dev/cua are named by socket number. A card
inserted in socket 0 is pc0, and socket 1 is pc1.

If a PC Card modem or serial device is unplugged while in use, the device driver
returns errors until the card is replaced in the socket.

The device must be closed and reopened with the card reinserted before the device
begins working again. The restart process depends on the application. For example, a
tip session automatically exits when a card in use is unplugged. To restart the
system, you must restart the tip session.

/kernel/drv/pcser pcser driver

/dev/term/pcn dial-in devices

/dev/cua/pcn dial-out devices where: n is the PCMCIA physical
socket number.

cu(1C), tip(1), uucp(1C), autopush(1M), pcmciad(1M), ports(1M), ioctl(2),
open(2), pcmcia(4), termio(7I), ldterm(7M), ttcompat(7M)

pcser: socket n soft silo overflow
The driver’s character input ring buffer overflowed before it could be serviced.

pcser: socket n unable to get CIS information
The CIS on the card has incorrect information or is in an incorrect format. This
message usually indicates a non-compliant card.

pcser(7D)

Additional
Configuration

Special Files

Hot Plugging

FILES

SEE ALSO

DIAGNOSTICS

420 man pages section 7: Device and Network Interfaces • Last Revised 23 Oct 2000

pf_key – security association database

#include <sys/types.h>
#include <sys/socket.h>

#include <net/pfkeyv2.h>

int socket(PF_KEY,SOCK_RAW,PF_KEY_V2);

Keying information for IPsec security services is maintained in security association
databases (SADBs). The security associations (SAs) are used to protect both inbound
and outbound packets.

A user process (or possibly multiple co-operating processes) maintains SADBs by
sending messages over a special kind of socket. This is analogous to the method
described in route(7P). Only a superuser may access an SADB.

SunOS applications that use PF_KEY include ipseckey(1M) and in.iked(1M).

The operating system may spontaneously emit messages in response to external
events, such as a request for a new SA for an outbound datagram, or to report the
expiration of an existing SA.

One opens the channel for passing SADB control messages by using the socket call
shown in the SYNOPSIS section above. More than one key socket can be open per
system.

Messages are formed by a small base header, followed by a number, zero or more, of
extension messages, some of which require additional data following them. The base
message and all extensions must be eight-byte aligned. An example message is the
GET message, which requires the base header, the SA extension, and the
ADDRESS_DST extension.

Messages include:

#define SADB_GETSPI /* Get a new SPI value from the system. */
#define SADB_UPDATE /* Update an SA. */
#define SADB_ADD /* Add a fully-formed SA. */
#define SADB_DELETE /* Delete an SA. */
#define SADB_GET /* Get an SA */
#define SADB_ACQUIRE /* Kernel needs a new SA. */
#define SADB_REGISTER /* Register to receive ACQUIRE messages. */
#define SADB_EXPIRE /* SA has expired. */
#define SADB_FLUSH /* Flush all SAs. */
#define SADB_DUMP /* Get all SAs. (Unreliable) */
#define SADB_X_PROMISC /* Listen promiscuously */
#define SADB_X_INVERSE_ACQUIRE /* Query kernel policy,

get an ACQUIRE in return. */

The base message header consists of:

struct sadb_msg {
uint8_t sadb_msg_version; /* Set to PF_KEY_V2, for compatibility */
uint8_t sadb_msg_type; /* Message type */

pf_key(7P)

NAME

SYNOPSIS

DESCRIPTION

Messages

Device and Network Interfaces 421

uint8_t sadb_msg_errno; /* Why message failed */
uint8_t sadb_msg_satype; /* Which security service */
uint16_t sadb_msg_len; /* Length in 8-byte units */
uint16_t sadb_msg_reserved; /* Zero out */

#define sadb_x_msg_diagnostic sadb_msg_reserved
/* Extended diagnostics for errors */

uint32_t sadb_msg_seq; /* For message originator */
uint32_t sadb_msg_pid; /* Identify originator */

};

Extension types include:

#define SADB_EXT_SA /* SA information */
#define SADB_EXT_LIFETIME_HARD /* Hard lifetime */
#define SADB_EXT_LIFETIME_SOFT /* Soft lifetime */
#define SADB_EXT_ADDRESS_SRC /* Source address */
#define SADB_EXT_ADDRESS_DST /* Destination address */
#define SADB_EXT_ADDRESS_PROXY /* Proxy address */
#define SADB_EXT_KEY_AUTH /* Authentication key */
#define SADB_EXT_KEY_ENCRYPT /* Encryption key */
#define SADB_EXT_IDENTITY_SRC /* Source certificate ID */
#define SADB_EXT_IDENTITY_DST /* Destination certificate ID */
#define SADB_EXT_SENSITIVITY /* Sensitivity information */
#define SADB_EXT_PROPOSAL /* Security proposal */
#define SADB_EXT_SUPPORTED_AUTH /* Supported authentication algorithms */
#define SADB_EXT_SUPPORTED_ENCRYPT /* Supported encryption algorithms */
#define SADB_EXT_SPIRANGE /* Range of possible SPIs *
#define SADB_X_EXT_EREG /* Register for extended ACQUIRE */
#define SADB_X_EXT_EPROP /* Extended ACQUIRE proposals */

#define SADB_X_EXT_KM_COOKIE /* Indicates which KM derived SA. */

Extension headers include:

Generic Extension Header

struct sadb_ext {
uint16_t sadb_ext_len; /* In 64-bit words, inclusive */
uint16_t sadb_ext_type; /* 0 is reserved */

};

Security Association Information Extension

struct sadb_sa {
uint16_t sadb_sa_len;
uint16_t sadb_sa_exttype; /* ASSOCIATION */
uint32_t sadb_sa_spi;
uint8_t sadb_sa_replay;
uint8_t sadb_sa_state;
uint8_t sadb_sa_auth;
uint8_t sadb_sa_encrypt;
uint32_t sadb_sa_flags;

};

pf_key(7P)

422 man pages section 7: Device and Network Interfaces • Last Revised 18 Sep 2001

Lifetime Extension

struct sadb_lifetime {
uint16_t sadb_lifetime_len;
uint16_t sadb_lifetime_exttype; /* SOFT, HARD, CURRENT */
uint32_t sadb_lifetime_allocations;
uint64_t sadb_lifetime_bytes;
uint64_t sadb_lifetime_addtime;
uint64_t sadb_lifetime_usetime;

};

Address Extension

struct sadb_address {
uint16_t sadb_address_len;
uint16_t sadb_address_exttype; /* SRC, DST, PROXY */
uint8_t sadb_address_proto; /* Proto for ports... */
uint8_t sadb_address_prefixlen; /* Prefix length. */
uint16_t sadb_address_reserved; /* Padding */

/* Followed by a sockaddr structure.*/

};

Keying Material Extension

struct sadb_key {
uint16_t sadb_key_len;
uint16_t sadb_key_exttype; /* AUTH, ENCRYPT */
uint16_t sadb_key_bits;
uint16_t sadb_key_reserved;

/* Followed by actual key(s) in canonical (outbound proc.) order. */

};

Indentity Extension

struct sadb_ident {
uint16_t sadb_ident_len;
uint16_t sadb_ident_exttype; /* SRC, DST, PROXY */
uint16_t sadb_ident_type; /* FQDN, USER_FQDN, etc. */
uint16_t sadb_ident_reserved; /* Padding */
uint64_t sadb_ident_id; /* For userid, etc. */

/* Followed by an identity null-terminate C string if present. */

};

Sensitivity/Integrity Extension

struct sadb_sens {
uint16_t sadb_sens_len;
uint16_t sadb_sens_exttype; /* SENSITIVITY */
uint32_t sadb_sens_dpd;
uint8_t sadb_sens_sens_level;
uint8_t sadb_sens_sens_len; /* 64-bit words */
uint8_t sadb_sens_integ_level;
uint8_t sadb_sens_integ_len; /* 64-bit words */

pf_key(7P)

Device and Network Interfaces 423

uint32_t sadb_sens_reserved;
/*
* followed by two uint64_t arrays
* uint64_t sadb_sens_bitmap[sens_bitmap_len];
* uint64_t integ_bitmap[integ_bitmap_len];
*/

};

Proposal Extension

struct sadb_prop {
uint16_t sadb_prop_len;
uint16_t sadb_prop_len;
uint16_t sadb_prop_exttype; /* PROPOSAL, X_EPROP */
union {

struct {
uint8_t sadb_prop_lenres_replay;
uint8_t sadb_prop_lenres_eres;
uint16_t sadb_prop_lenres_numecombs;

} sadb_prop_lenres;
struct {

uint8_t sadb_prop_oldres_replay;
uint8_t sadb_prop_oldres_reserved[3];

} sadb_prop_oldres;
} sadb_prop_u;

#define sadb_prop_replay sadb_prop_u.sadb_prop_lenres.sadb_prop_lenres_replay
#define sadb_prop_reserved \

sadb_prop_u.sadb_prop_oldres.sadb_prop_oldres_reserved
#define sadb_x_prop_ereserved \

sadb_prop_u.sadb_prop_lenres.sadb_prop_lenres_eres
#define sadb_x_prop_numecombs \

sadb_prop_u.sadb_prop_lenres.sadb_prop_lenres_numecombs \

/* Followed by sadb_comb[] array or sadb_ecomb[] array. */
};

};

Combination Instance for a Proposal

struct sadb_comb {
uint8_t sadb_comb_auth;
uint8_t sadb_comb_encrypt;
uint16_t sadb_comb_flags;
uint16_t sadb_comb_auth_minbits;
uint16_t sadb_comb_auth_maxbits;
uint16_t sadb_comb_encrypt_minbits;
uint16_t sadb_comb_encrypt_maxbits;
uint32_t sadb_comb_reserved;
uint32_t sadb_comb_soft_allocations;
uint32_t sadb_comb_hard_allocations;
uint64_t sadb_comb_soft_bytes;
uint64_t sadb_comb_hard_bytes;

pf_key(7P)

424 man pages section 7: Device and Network Interfaces • Last Revised 18 Sep 2001

uint64_t sadb_comb_soft_addtime;
uint64_t sadb_comb_hard_addtime;
uint64_t sadb_comb_soft_usetime;
uint64_t sadb_comb_hard_usetime;

};

Extended Combination

struct sadb_x_ecomb {
uint8_t sadb_x_ecomb_numalgs;
uint8_t sadb_x_ecomb_reserved;
uint16_t sadb_x_ecomb_flags; /* E.g. PFS? */
uint32_t sadb_x_ecomb_reserved2;
uint32_t sadb_x_ecomb_soft_allocations;
uint32_t sadb_x_ecomb_hard_allocations;
uint64_t sadb_x_ecomb_soft_bytes;
uint64_t sadb_x_ecomb_hard_bytes;
uint64_t sadb_x_ecomb_soft_addtime;
uint64_t sadb_x_ecomb_hard_addtime;
uint64_t sadb_x_ecomb_soft_usetime;
uint64_t sadb_x_ecomb_hard_usetime;

};

Extended Combination Algorithm Descriptors

struct sadb_x_algdesc {
uint8_t sadb_x_algdesc_satype; /* ESP, AH, etc. */
uint8_t sadb_x_algdesc_algtype; /* AUTH, CRYPT, COMPRESS */
uint8_t sadb_x_algdesc_alg; /* DES, 3DES, MD5, etc. */
uint8_t sadb_x_algdesc_reserved;
uint16_t sadb_x_algdesc_minbits; /* Bit strengths. */
uint16_t sadb_x_algdesc_maxbits;
/* XXX Any other junk here? */

};

Extended Register

struct sadb_x_ereg {
uint16_t sadb_x_ereg_len;
uint16_t sadb_x_ereg_exttype; /* X_EREG */
uint8_t sadb_x_ereg_satypes[4]; /* Array of SA types, 0-terminated.

|};

Key Management Cookie

struct sadb_x_kmc {
uint16_t sadb_x_kmc_len;
uint16_t sadb_x_kmc_exttype; /* X_KM_COOKIE */
uint32_t sadb_x_kmc_proto; /* KM protocol */
uint32_t sadb_x_kmc_cookie; /* KMP-specific */
uint32_t sadb_x_kmc_reserved; /* Reserved; must be zero */

};

pf_key(7P)

Device and Network Interfaces 425

Supported Algorithms Extension

struct sadb_supported {
uint16_t sadb_supported_len;
uint16_t sadb_supported_exttype;
uint32_t sadb_supported_reserved;

};

Algorithm Instance

struct sadb_alg {
uint8_t sadb_alg_id; /* Algorithm type. */
uint8_t sadb_alg_ivlen; /* IV len, in bits */
uint16_t sadb_alg_minbits; /* Min. key len (in bits) */
uint16_t sadb_alg_maxbits; /* Max. key length */
uint16_t sadb_alg_reserved;

};

SPI Extension Range

struct sadb_spirange {
uint16_t sadb_spirange_len;
uint16_t sadb_spirange_exttype; /* SPI_RANGE */
uint32_t sadb_spirange_min
uint32_t sadb_spirange_max;
uint32_t sadb_spirange_reserved;

};

Each message has a behavior. A behavior is defined as where the initial message
travels, for example, user to kernel, and what subsequent actions are expected to take
place. Contents of messages are illustrated as:

<base, REQUIRED EXTENSION, REQ., (OPTIONAL EXTENSION), (OPT)>

The SA extension is sometimes used only for its SPI field. If all other fields must be
ignored, this is represented by SA(*).

The lifetime extensions are represented with one to three letters after the word
lifetime, representing (H)ARD, (S)OFT, and (C)URRENT.

The address extensions are represented with one to three letters after the word
"address," representing (S)RC, (D)ST, (P)ROXY.

Note that when an error occurs, only the base header is sent. Typical errors include:

EINVAL Various message improprieties, including SPI ranges that are
malformed, weak keys, and others. If EINVAL is returned, an
application should look at the sadb_x_msg_diagnostic field of
the sadb_msg structure. It contains one of many possible causes

pf_key(7P)

Message Use and
Behavior

426 man pages section 7: Device and Network Interfaces • Last Revised 18 Sep 2001

for EINVAL. See net/pfkeyv2.h for values, all of the form
SADB_X_DIAGNOSTIC_.

ENOMEM Needed memory was not available.

ENSGSIZ Message exceeds the maximum length allowed.

EEXIST SA (that is being added or created with GETSPI) already exists.

ESRCH SA could not be found.

The following are examples of message use and behavior:

SADB_GETSPI

Send a SADB_GETSPI message from a user process to the kernel.

<base, address, SPI range>

The kernel returns the SADB_GETSPI message to all listening processes.

<base, SA(*), address (SD)>

SADB_UPDATE

Send a SADB_UPDATE message from a user process to the kernel.

<base, SA, (lifetime(HS),) address(SD), (address(P), key (AE),

(identity(SD),) (sensitivity)>c

The kernel returns the SADB_UPDATE message to all listening processes.

<base, SA(*), address (SD)>

SADB_ADD

Send a SADB_ADD message from a user process to the kernel.

<base, SA, (lifetime(HS),) address(SD), (address(P),) key (AE),

(identity(SD),) (sensitivity)>

The kernel returns the SADB_ADD message to all listening processes.

<base, SA, (lifetime(HS),) address (SD),

(identity (SD),) (sensitivity)>

SADB_DELETE

Send a SADB_DELETE message from a user process to the kernel.

<base, SA (*), address (SD)>

pf_key(7P)

Device and Network Interfaces 427

The kernel returns the SADB_DELETE message to all listening processes.

<base, SA (*), address (SD)>

SADB_GET

Send a SADB_GET message from a user process to the kernel.

<base, SA (*), address (SD)>

The kernel returns the SADB_GET message to the socket that sent the SADB_GET
message.

<base, SA , (lifetime (HSC),) address SD), (address (P),) key (AE),

(identity (SD),) (sensitivity)>

SADB_ACQUIRE

The kernel sends a SADB_ACQUIRE message to registered sockets. Note that any
GETSPI, ADD, or UPDATE calls in reaction to an ACQUIRE must fill in the
sadb_msg_seq of those messages with the one in the ACQUIRE message. The address
(SD) extensions must have the port fields filled in with the port numbers of the session
requiring keys if appropriate.

<base, address (SD), (address(P)), (identity(SD),)

(sensitivity,) proposal>

Extended ACQUIRE will have a slightly different format. The sadb_msg_satype
field is 0, and the extension contains the desired combination(s) of security protocols.

<base, address (SD), (address(P)), (identity(SD),)

(sensitivity,) eprop>

If key management fails, send an SADB_ACQUIRE to indicate failure.

<base>

SADB_X_INVERSE_ACQUIRE

For inbound Key Management processing, a Key Management application may wish
to consult the kernel for its policy. The application should send to the kernel:

<base, address (SD)>

The kernel returns a message similar to a kernel-generated extended ACQUIRE:

<base, address (SD), (address(P)), (identity(SD),)

(sensitivity,) eprop>

pf_key(7P)

428 man pages section 7: Device and Network Interfaces • Last Revised 18 Sep 2001

SADB_REGISTER

Send a SADB_REGISTER message from a user process to the kernel.

<base>

The kernel returns the SADB_REGISTER message to registered sockets, with algorithm
types supported by the kernel being indicated in the supported algorithms field. Note
that this message may arrive asynchronously due to an algorithm being loaded or
unloaded into a dynamically linked kernel.

<base, supported>

There is also the extended REGISTER, which will allow this process to receive
extended ACQUIREs.

<base, ereg>

Which returns a series of SADB_REGISTER replies (one for each security protocol
registered) from the kernel.

SADB_EXPIRE

The kernel sends a SADB_EXPIRE message to all listeners when the soft lmit of a
security association has been expired.

<base, SA, lifetime (C and one of HS), address (SD)>

SADB_FLUSH

Send a SADB_FLUSH message from a user process to the kernel.

<base>

The kernel returns the SADB_FLUSH message to all listening sockets.

<base>

SADB_DUMP

Send a SADB_DUMP message from a user process to the kernel.

<base>

Several SADB_DUMP messages will return from the kernel to the sending socket.

<base, SA, (lifetime (HSC),) address (SD), (address (P),) key (AE),

(identity (SD),) sensitivity)>

pf_key(7P)

Device and Network Interfaces 429

To mark the end of a dump a single base header arrives with its sadb_mdg_seq set to
0.

<base>

SADB_X_PROMISC

Send a SADB_X_PROMISC message from a user process to the kernel.

<base>

The kernel returns the SADB_X_PROMISC message to all listening processes.

<base>

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx (64-bit)

Interface Stability Evolving

in.iked(1M), ipseckey(1M), ipsec(7P), ipsecah(7P), ipsecesp(7P), route(7P)

McDonald, D.L., Metz, C.W., and Phan, B.G., RFC 2367, PF_KEY Key Management API,
Version 2, The Internet Society, July 1998.

Time-based lifetimes may not expire with exact precision in seconds because kernel
load may affect the aging of SA’s.

pf_key(7P)

ATTRIBUTES

SEE ALSO

NOTES

430 man pages section 7: Device and Network Interfaces • Last Revised 18 Sep 2001

pfmod – STREAMS Packet Filter Module

#include <sys/pfmod.h>

ioctl(fd, IPUSH, "pfmod");

pfmod is a STREAMS module that subjects messages arriving on its read queue to a
packet filter and passes only those messages that the filter accepts on to its upstream
neighbor. Such filtering can be very useful for user-level protocol implementations and
for networking monitoring programs that wish to view only specific types of events.

pfmod applies the current packet filter to all M_DATA and M_PROTO messages arriving
on its read queue. The module prepares these messages for examination by first
skipping over all leading M_PROTO message blocks to arrive at the beginning of the
message’s data portion. If there is no data portion, pfmod accepts the message and
passes it along to its upstream neighbor. Otherwise, the module ensures that the part
of the message’s data that the packet filter might examine lies in contiguous memory,
calling the pullupmsg(9F) utility routine if necessary to force contiguity. (Note: this
action destroys any sharing relationships that the subject message might have had
with other messages.) Finally, it applies the packet filter to the message’s data, passing
the entire message upstream to the next module if the filter accepts, and discarding the
message otherwise. See PACKET FILTERS below for details on how the filter works.

If there is no packet filter yet in effect, the module acts as if the filter exists but does
nothing, implying that all incoming messages are accepted. The IOCTLS section below
describes how to associate a packet filter with an instance of pfmod.

pfmod passes all other messages through unaltered to its upper neighbor.

pfmod intercepts M_IOCTL messages for the ioctl described below. The module passes
all other messages through unaltered to its lower neighbor.

pfmod responds to the following ioctl.

PFIOCSETF This ioctl directs the module to replace its current packet filter, if
any, with the filter specified by the struct packetfilt pointer
named by its final argument. This structure is defined in
<sys/pfmod.h> as:

struct packetfilt {
uchar_t Pf_Priority; /* priority of filter */
uchar_t Pf_FilterLen; /* length of filter cmd list */
ushort_t Pf_Filter[ENMAXFILTERS]; /* filter command list */

};

The Pf_Priority field is included only for compatibility with other packet filter
implementations and is otherwise ignored. The packet filter itself is specified in the
Pf_Filter array as a sequence of two-byte commands, with the Pf_FilterLen
field giving the number of commands in the sequence. This implementation restricts

pfmod(7M)

NAME

SYNOPSIS

DESCRIPTION

Read-side
Behavior

Write-side
Behavior

IOCTLS

Device and Network Interfaces 431

the maximum number of commands in a filter (ENMAXFILTERS) to 255. The next
section describes the available commands and their semantics.

A packet filter consists of the filter command list length (in units of ushort_ts), and
the filter command list itself. (The priority field mentioned above is ignored in this
implementation.) Each filter command list specifies a sequence of actions that operate
on an internal stack of ushort_ts (“shortwords”). Each shortword of the command
list specifies one of the actions ENF_PUSHLIT, ENF_PUSHZERO, ENF_PUSHONE,
ENF_PUSHFFFF, ENF_PUSHFF00, ENF_PUSH00FF, or ENF_PUSHWORD+n, which
respectively push the next shortword of the command list, zero, one, 0xFFFF, 0xFF00,
0x00FF, or shortword n of the subject message on the stack, and a binary operator from
the set {ENF_EQ, ENF_NEQ, ENF_LT, ENF_LE, ENF_GT, ENF_GE, ENF_AND, ENF_OR,
ENF_XOR} which then operates on the top two elements of the stack and replaces them
with its result. When both an action and operator are specified in the same shortword,
the action is performed followed by the operation.

The binary operator can also be from the set {ENF_COR, ENF_CAND, ENF_CNOR,
ENF_CNAND}. These are “short-circuit” operators, in that they terminate the execution
of the filter immediately if the condition they are checking for is found, and continue
otherwise. All pop two elements from the stack and compare them for equality;
ENF_CAND returns false if the result is false; ENF_COR returns true if the result is true;
ENF_CNAND returns true if the result is false; ENF_CNOR returns false if the result is
true. Unlike the other binary operators, these four do not leave a result on the stack,
even if they continue.

The short-circuit operators should be used when possible, to reduce the amount of
time spent evaluating filters. When they are used, you should also arrange the order of
the tests so that the filter will succeed or fail as soon as possible; for example, checking
the IP destination field of a UDP packet is more likely to indicate failure than the
packet type field.

The special action ENF_NOPUSH and the special operator ENF_NOP can be used to only
perform the binary operation or to only push a value on the stack. Since both are
(conveniently) defined to be zero, indicating only an action actually specifies the
action followed by ENF_NOP, and indicating only an operation actually specifies
ENF_NOPUSH followed by the operation.

After executing the filter command list, a non-zero value (true) left on top of the stack
(or an empty stack) causes the incoming packet to be accepted and a zero value (false)
causes the packet to be rejected. (If the filter exits as the result of a short-circuit
operator, the top-of-stack value is ignored.) Specifying an undefined operation or
action in the command list or performing an illegal operation or action (such as
pushing a shortword offset past the end of the packet or executing a binary operator
with fewer than two shortwords on the stack) causes a filter to reject the packet.

pfmod(7M)

PACKET FILTERS

432 man pages section 7: Device and Network Interfaces • Last Revised 18 Sep 1992

EXAMPLE 1

The packet filter module is not dependent on any particular device driver or module
but is commonly used with datalink drivers such as the Ethernet driver. If the
underlying datalink driver supports the Data Link Provider Interface (DLPI) message
set, the appropriate STREAMS DLPI messages must be issued to attach the stream to a
particular hardware device and bind a datalink address to the stream before the
underlying driver will route received packets upstream. Refer to the DLPI Version 2
specification for details on this interface.

The reverse ARP daemon program may use code similar to the following fragment to
construct a filter that rejects all but RARP packets. That is, is accepts only packets
whose Ethernet type field has the value ETHERTYPE_REVARP.

struct ether_header eh; /* used only for offset values */
struct packetfilt pf;
register ushort_t *fwp = pf.Pf_Filter;
ushort_t offset;
int fd;
/*
* Push packet filter streams module.
*/
if (ioctl(fd, I_PUSH, "pfmod") < 0)

syserr("pfmod");

/*
* Set up filter. Offset is the displacement of the Ethernet
* type field from the beginning of the packet in units of
* ushort_ts.
*/
offset = ((uint_t) &eh.ether_type - (uint_t) &eh.ether_dhost) /

sizeof (us_short);
*fwp++ = ENF_PUSHWORD + offset;
*fwp++ = ENF_PUSHLIT;
*fwp++ = htons(ETHERTYPE_REVARP);
*fwp++ = ENF_EQ;

pf.Pf_FilterLen = fwp - &pf.Pf_Filter[0];

This filter can be abbreviated by taking advantage of the ability to combine actions
and operations:

*fwp++ = ENF_PUSHWORD + offset;
*fwp++ = ENF_PUSHLIT | ENF_EQ;

*fwp++ = htons(ETHERTYPE_REVARP);

bufmod(7M), dlpi(7P), le(7D), pullupmsg(9F)

pfmod(7M)

EXAMPLES

SEE ALSO

Device and Network Interfaces 433

pipemod – STREAMS pipe flushing module

The typical stream is composed of a stream head connected to modules and
terminated by a driver. Some stream configurations such as pipes and FIFOs do not
have a driver and hence certain features commonly supported by the driver need to be
provided by other means. Flushing is one such feature, and it is provided by the
pipemod module.

Pipes and FIFOs in their simplest configurations only have stream heads. A write side
is connected to a read side. This remains true when modules are pushed. The twist
occurs at a point known as the mid-point. When an M_FLUSH message is passed from
a write queue to a read queue the FLUSHR and/or FLUSHW bits have to be switched.
The mid-point of a pipe is not always easily detectable, especially if there are
numerous modules pushed on either end of the pipe. In that case there needs to be a
mechanism to intercept all message passing through the stream. If the message is an
M_FLUSH message and it is at the mid-point, the flush bits need to be switched. This
bit switching is handled by the pipemod module.

pipemod should be pushed onto a pipe or FIFO where flushing of any kind will take
place. The pipemod module can be pushed on either end of the pipe. The only
requirement is that it is pushed onto an end that previously did not have modules on
it. That is, pipemod must be the first module pushed onto a pipe so that it is at the
mid-point of the pipe itself.

The pipemod module handles only M_FLUSH messages. All other messages are passed
on to the next module using the putnext() utility routine. If an M_FLUSH message is
passed to pipemod and the FLUSHR and FLUSHW bits are set, the message is not
processed but is passed to the next module using the putnext() routine. If only the
FLUSHR bit is set, the FLUSHR bit is turned off and the FLUSHW bit is set. The message
is then passed on to the next module using putnext(). Similarly, if the FLUSHW bit is
the only bit set in the M_FLUSH message, the FLUSHW bit is turned off and the FLUSHR
bit is turned on. The message is then passed to the next module on the stream.

The pipemod module can be pushed on any stream that desires the bit switching. It
must be pushed onto a pipe or FIFO if any form of flushing must take place.

STREAMS Programming Guide

pipemod(7M)

NAME

DESCRIPTION

SEE ALSO

434 man pages section 7: Device and Network Interfaces • Last Revised 21 Aug 1992

pln – SPARCstorage Array SCSI Host Bus Adapter Driver

pln@SUNW,pln@a0000800,200611b9

The pln Host Bus Adapter (HBA) driver is a SCSA compliant nexus driver which
supports the SPARC Storage Array. The SPARC Storage Array is a disk array device
which supports multiple disk drives. The drives are located on several SCSI busses
within the SPARC Storage Array. A SPARC microprocessor controls the SPARC
Storage Array. Non-volatile RAM is used as a disk cache. The SPARC Storage Array
interfaces to the host system using Fibre Channel. An SBus card called the SOC card
(see soc(7D)) connects the Fibre Channel to the host system.

The pln driver interfaces with the SOC device driver, soc(7D), and the SPARC
Storage Array SCSI target driver, ssd(7D).

The pln driver supports the standard functions provided by the SCSA interface. The
driver supports tagged and untagged queuing and auto request sense.

/kernel/drv/pln ELF kernel module

/kernel/drv/pln.conf configuration file

prtconf(1M), ssaadm(1M), driver.conf(4), soc(7D), ssd(7D)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

The messages described below may appear on the system console and in the system
log.

This following messages indicate the pln driver was unable to attach to the device.
These messages are preceded by "pln%d", where "%d" is the instance number of the
pln controller.

Failed to alloc soft state
Driver was unable to allocate space for the internal state structure. Driver did not
attach to device. SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to device.
SCSI devices will be inaccessible.

Unable to attach
Driver was unable to attach to the hardware for some reason that may be printed.
SCSI devices will be inaccessible.

pln(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 435

pm – Power Management driver

/dev/pm

The Power Management (pm) driver provides an interface for applications to
configure devices within the system for Power Management. The interface is provided
through ioctl(2) commands. The pm driver may be accessed using /dev/pm.

The Power Management framework model allows the system to be viewed as a
collection of devices. Each device is a collection of components that comprise the
smallest power manageable units. The device driver controls the definition of a
device’s power manageable components.

A component can either be busy or idle at the current power level. Normally, the Power
Management framework takes an idle component to the next lower power level. The
Power Management framework uses two factors to determine this transition: the
component must have been idle for at least the threshold time, and the device to
which the component belongs must satisfy any dependency requirements. A
dependency occurs when a device requires another device to be power managed
before it can be power managed. Dependencies occur on a per device basis: when a
dependency exists, no components of a device may be managed unless all the devices
it depends upon are first power managed.

Using the commands below, an application may take control of the Power
Management of a device from the Power Management framework driver and manage
the transition of device power levels directly.

All of the ioctl commands in this section are obsolete and will be removed in a future
release. See the NEW IOCTLS section of this man page for new commands.

For this set of ioctl commands, arg (see ioctl(2)) points to a structure of type
pm_request defined in <sys/pm.h>:

typedef struct {
char *who; /* device to configure */
int select; /* selects the component or dependent of the device */
int level; /* power level or threshold value */
char *dependent; /* holds name of dependent */
int size; /* size of dependent buffer */

} pm_request;

The fields should contain the following data:

who Pointer to the name of the device to be configured. This may be the
name of a device special file or any trailing substring of the
physical path to the device.

select Non−negative integer specifying the component or dependent
being configured. The numbering starts at zero.

pm(7D)

NAME

SYNOPSIS

DESCRIPTION

Power
Management

Framework

OBSOLETE
IOCTLS

436 man pages section 7: Device and Network Interfaces • Last Revised 20 Sep 1999

level Non−negative integer specifying the threshold value in seconds or
the desired power level.

dependent Pointer to a buffer which contains the name of a device on which
this device has a dependency. It uses the same format as the who
field.

size Size of the dependent buffer.

Not all fields are used in each command.

PM_DISABLE_AUTOPM
The device named by who is disabled from being power managed by framework.
The caller will power manage the device directly using the commands below. If this
command is not successfully executed, subsequent PM_SET_CUR_PWR calls will
fail. This command is obsolete and will be removed in a future release. Use
PM_DIRECT_PM instead.

Error codes:

EBUSY Device already disabled from being power managed by
framework.

EPERM Caller is neither superuser nor owner of the device.

PM_GET_NORM_PWR
The normal power level of the component select of the device named by who is
returned. The normal power level of the component is the power level to which the
component will be set when it becomes busy again. This command is obsolete and
will be removed in a future release. Use PM_GET_FULL_POWER instead.

Error codes:

EINVAL Device component out of range.

EIO Device has no power−manageable components.

PM_GET_CUR_PWR
The current power level of component select of the device named by who is
returned. This command is obsolete and will be removed in a future release. Please
use PM_GET_CURRENT_POWER instead.

Error codes:

EINVAL Device component out of range.

EAGAIN Device component level is not currently known.

PM_SET_CUR_PWR
Component select of the device named by who is brought to power level level. If
select is not 0 and component 0 of the device is at power level 0, component 0 is
brought to its normal power level. Each component of each device which depends
on this device is brought to its normal power level. Each component of each
ancestor of each device affected is brought to its normal power level. This

pm(7D)

Device and Network Interfaces 437

command is obsolete and will be removed in a future release. Use
PM_SET_CURRENT_POWER instead.

Error codes:

EINVAL Device component out of range, or power level < 0.

EIO Failed to power device or its ancestors or its dependents or their
ancestors.

EPERM Caller is neither superuser nor owner of the device.

PM_REENABLE_AUTOPM
The device named by who is re-enabled for Power Management by the framework.
By default, all configured devices are power managed by the framework. This
command is obsolete and will be removed in a future release. Use
PM_RELEASE_DIRECT_PM instead.

Error codes:

EINVAL Device already being power managed by the framework.

EPERM Caller is neither super-user nor owner of the device.

The ioctl commands in this section replace the obsolete commands listed above and
take a pointer to a different structure and support more complete functionality.

For this set of ioctl commands, arg (see ioctl(2)) points to a structure of type pm_req
defined in <sys/pm.h>:

typedef struct pm_req {
char *physpath; /* physical path of device to configure */

/* see libdevinfo(3) */
int component; /* the component of the device */
int value; /* power level, threshold value, or count */
void *data; /* command-dependent variable sized data */
size_t datasize; /* size of data buffer */

} pm_req_t;

The fields should contain the following data:

physpath Pointer to the physical path of a device. See libdevinfo(3). For
example, for the device /devices/pseudo/pm@0:pm the
physpath value would be /pseudo/pm@0.

component Non-negative integer specifying which component is being
configured. The numbering starts at zero.

value Non-negative integer specifying the threshold value in seconds or
the desired power level, or the number of levels being specified.

data Pointer to a buffer which contains or receives variable-sized data,
such as the name of a device upon which this device has a
dependency.

pm(7D)

NEW IOCTLS

438 man pages section 7: Device and Network Interfaces • Last Revised 20 Sep 1999

size Size of the data buffer.

Not all fields are used in each command.

PM_DIRECT_PM
The device named by physpath is disabled from being power managed by the
framework. The caller will power manage the device directly using the
PM_DIRECT_NOTIFY, PM_GET_TIME_IDLE and PM_GET_CURRENT_POWER,
PM_GET_FULL_POWER and PM_SET_CURRENT_POWER commands. If the device
needs to have its power level changed either because its driver calls
pm_raise_power(9F), pm_lower_power(9F), or pm_power_has_changed(9F)
or because the device is the parent of another device that is changing power level or
a device that this device depends on is changing power level, then the power level
change of the device will be blocked and the caller will be notified as described
below for the PM_DIRECT_NOTIFY command.

Error codes:

EBUSY Device already disabled for Power Management by framework.

EPERM Caller is neither superuser nor effective group ID of 0.

PM_RELEASE_DIRECT_PM
The device named by physpath (which must have been the target of a
PM_DIRECT_PM command) is re-enabled for Power Management by the
framework.

Error codes:

EINVAL Device component out of range.

PM_DIRECT_NOTIFY PM_DIRECT_NOTIFY_WAIT
These commands allow the process that is directly power managing a device to be
notified of events that could change the power level of the device. When such an
event occurs, this command returns information about the event.

arg (see ioctl(2)) points to a structure of type pm_state_change defined in
<sys/pm.h>:

typedef struct pm_state_change {
char *physpath; /* device which has changed state */
int component; /* which component changed state */

#if defined(_BIG_ENDIAN)
ushort_t flags; /* PSC_EVENT_LOST, PSC_ALL_LOWEST */
ushort_t event; /* type of event */

#else
ushort_t event; /* type of event *
ushort_t flags; /* PSC_EVENT_LOST, PSC_ALL_LOWEST */

#endif
time_t timestamp; /* time of state change */+
int old_level; /* power level changing from */
int new_level; /* power level changing to */
size_t size; /* size of buffer physpath points to */

} pm_state_change_t;When an event occurs, the struct pointed to by arg is filled in.

pm(7D)

Device and Network Interfaces 439

If the event type is PSC_PENDING_CHANGE, then the information in the rest of the
struct describes an action that the framework would have taken if the device were
not directly power managed by the caller. The caller is responsible for completing
the indicated level changes using PM_SET_CURRENT_POWER below.

An event type of PSC_HAS_CHANGED indicates that the driver for the directly
power managed device has called pm_power_has_changed(9F) due to the device
changing power on its own. It is provided to allow the caller to track the power
state of the device.

The system keeps events in a circular buffer. If the buffer overflow, the oldest events
are lost and when the event that next follows a lost event is retrieved it will have
PSC_EVENT_LOST set in flags.

PM_DIRECT_NOTIFY returns EWOULDBLOCK if no event is pending, and
PM_DIRECT_NOTIFY_WAIT blocks until an event is available.

pm also supports the poll(2) interface. When an event is pending a poll(2) call
that includes a file descriptor for /dev/pm and that has POLLIN or POLLRDNORM
set in its event mask will return.

PM_SET_CURRENT_POWER
Component component of the device named by physpath (which must contain the
physical path of a device against which the process has issued a PM_DIRECT_PM
command) is set to power level value. If all components of the device named by
physpath were at level 0, value is non-zero and some device has a dependency on
this device, then all components of that device will be brought to full power before
this command returns. Similarly, if the parent of the target device is powered off,
then it will be brought up as needed before this command returns. When
PM_SET_CURRENT_POWER is issued against a device, the resulting power
change is included in the event list for PM_DIRECT_NOTIFY.

Error codes:

EINVAL Device component out of range, or power level < 0.

EIO Failed to power device or its ancestors or the devices on which
this device has dependency or their ancestors. Note that this
may not indicate a failure, the device driver may have rejected
the command as inappropriate because the component has
become busy.

EPERM Caller has not previously issued a successful PM_DIRECT_PM
command against this device.

PM_GET_FULL_POWER
The highest supported power level of component component of the device named by
physpath is returned.

pm(7D)

440 man pages section 7: Device and Network Interfaces • Last Revised 20 Sep 1999

PM_GET_CURRENT_POWER
The current power level of component component of the device named by physpath is
returned.

Error codes:

EAGAIN Device component power level is not currently known.

PM_GET_TIME_IDLE
PM_GET_TIME_IDLE returns the number of seconds that component component of
the device named by physpath has been idle. If the device is not idle, then 0 is
returned.

Note that because the state of the device may change between the time the process
issues the PM_GET_TIME_IDLE command and the time the process issues a
PM_SET_CURRENT_POWER command to reduce the power level of an idle
component, the process must be prepared to deal with a PM_SET_CURRENT_POWER
command returning failure because the driver has rejected the command as
inappropriate because the device component has become busy. This can be
differentiated from other types of failures by issuing the PM_GET_TIME_IDLE
command again to see if the component has become busy.

Upon error, the commands will return −1, and set errno. In addition to the error codes
listed above by command, the following error codes are common to all commands:

EFAULT Bad address passed in as argument.

ENODEV Device is not power manageable, or device is not configured.

ENXIO Too many opens attempted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Unstable (Interfaces under OBSOLETE
IOCTLS are obsolete.)

pmconfig(1M), intro(2), ioctl(2), power.conf(4), attributes(5), attach(9E),
detach(9E), power(9E), ddi_dev_is_needed(9F), pm_busy_component(9F),
pm_create_components(9F),
pm_destroy_components(9F),pm_idle_component(9F), pm_lower_power(9F),
pm_power_has_changed(9F), pm_raise_power(9F),

Writing Device Drivers

pm(7D)

ERRORS

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 441

poll – driver for fast poll on many file descriptors

#include <sys/devpoll.h>
int fd = open("/dev/poll", O_RDWR);
ssize_t n = write(int fd, struct pollfd buf[], int bufsize);
int n = ioctl(int fd, DP_POLL, struct pollcall* arg);

int n = ioctl(int fd, DP_ISPOLLED, struct pollfd* pfd);

fd Open file descriptor that refers to the /dev/poll driver.

path /dev/poll

buf Array of pollfd structures.

bufsize Size of buf in bytes.

arg Pointer to pollcall structure.

pfd Pointer to pollfd structure.

The /dev/poll driver is a special driver that enables you to monitor multiple sets of
polled file descriptors. By using the /dev/poll driver, you can efficiently poll large
numbers of file descriptors. Access to the /dev/poll driver is provided through
open(2), write(2), and ioctl(2) system calls.

Writing an array of pollfd struct to the /dev/poll driver has the effect of adding
these file descriptors to the monitored poll file descriptor set represented by the fd.
To monitor multiple file descriptor sets, open the /dev/poll driver multiple times.
Each fd corresponds to one set. For each pollfd struct entry (defined in
sys/poll.h):

struct pollfd {
int fd;
short events;
short revents;

}

The fd field specifies the file descriptor being polled. The events field indicates the
interested poll events on the file descriptor. If a pollfd array contains multiple
pollfd entries with the same fd field, the "events" field in each pollfd entry is
OR’ed. A special POLLREMOVE event in the events field of the pollfd structure
removes the fd from the monitored set. The revents field is not used. Write returns
the number of bytes written successfully or -1 when write fails.

The DP_POLL ioctl is used to retrieve returned poll events occured on the polled
file descriptors in the monitored set represented by fd. arg is a pointer to the devpoll
structures which are defined as follows:

struct dvpoll {
struct pollfd* dp_fds;
int dp_nfds;
int dp_timeout;

}

The dp_fds points to a buffer that holds an array of returned pollfd structures. The
dp_nfds field specifies the size of the buffer in terms of the number of pollfd entries

poll(7d)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

442 man pages section 7: Device and Network Interfaces • Last Revised 15 May 2001

it contains. The dp_nfds field also indicates the maximum number of file descriptors
from which poll information can be obtained. If there is no interested events on any
of the polled file descriptors, the DP_POLL ioctl call will wait dp_timeout
milliseconds before returning. If dp_timeout is 0, the ioctl call returns immediately.
If dp_timeout is -1, the call blocks until an interested poll events is available or
the call is interrupted. Upon return, if the ioctl call has failed, -1 is returned. The
memory content pointed by dp_fds is not modified. A return value 0 means the ioctl
is timed out. In this case, the memory content pointed by dp_fds is not modified. If
the call is successful, it returns the number of valid pollfd entries in the array
pointed by dp_fds; the contents of the rest of the buffer is undefined. For each valid
pollfd entry, the fd field indicates the file desciptor on which the polled events
happened. The events field is the user specified poll events. The revents field
contains the events occurred. –1 is returned if the call fails.

DP_ISPOLLED ioctl allows you to query if a file descriptor is already in the monitored
set represented by fd. The fd field of the pollfd structure indicates the file
descriptor of interest. The DP_ISPOLLED ioctl returns 1 if the file descriptor is in the
set. The events field contains the currently polled events. The revents field
contains 0. The ioctl returns 0 if the file descriptor is not in the set. The pollfd
structure pointed by pfd is not modified. The ioctl returns a -1 if the call fails.

The following example shows how /dev/poll may be used.

{
...
/*
* open the driver
*/
if ((wfd = open("/dev/poll", O_RDWR)) < 0) {

exit(-1);
}
pollfd = (struct pollfd*)malloc(sizeof(struct pollfd) * MAXBUF);
if (pollfd == NULL) {

close(wfd);
exit(-1);

}
/*
* initialize buffer
*/
for (i = 0; i < MAXBUF; i++) {

pollfd[i].fd = fds[i];
pollfd[i].events = POLLIN;
pollfd[i].revents = 0;

}
if (write(wfd, &pollfd[0], sizeof(struct pollfd) * MAXBUF) !=

sizeof(struct pollfd) * MAXBUF) {
perror("failed to write all pollfds");
close (wfd);
free(pollfd);
exit(-1);

}
/*
* read from the devpoll driver

poll(7d)

EXAMPLES

Device and Network Interfaces 443

*/
dopoll.dp_timeout = -1;
dopoll.dp_nfds = MAXBUF;
dopoll.dp_fds = pollfd;
result = ioctl(wfd, DP_POLL, &dopoll);
if (result < 0) {

perror("/dev/poll ioctl DP_POLL failed");
close (wfd);
free(pollfd);
exit(-1);

}
for (i = 0; i < result; i++) {

read(dopoll.dp_fds[i].fd, rbuf, STRLEN);
}

...

}

The following example is part of a test program which shows how DP_ISPOLLED()
ioctl may be used.

{
...

loopcnt = 0;
while (loopcnt < ITERATION) {

rn = random();
rn %= RANGE;
if (write(fds[rn], TESTSTRING, strlen(TESTSTRING)) !=

strlen(TESTSTRING)) {
perror("write to fifo failed.");
close (wfd);
free(pollfd);
error = 1;
goto out1;

}
dpfd.fd = fds[rn];
dpfd.events = 0;
dpfd.revents = 0;
result = ioctl(wfd, DP_ISPOLLED, &dpfd);
if (result < 0) {

perror("/dev/poll ioctl DP_ISPOLLED failed");
printf("errno = %d\n", errno);
close (wfd);
free(pollfd);
error = 1;
goto out1;

}
if (result != 1) {

printf("DP_ISPOLLED returned incorrect result: %d.\n",
result);

close (wfd);
free(pollfd);
error = 1;
goto out1;

}
if (dpfd.fd != fds[rn]) {

printf("DP_ISPOLLED returned wrong fd %d, expect %d\n",

poll(7d)

444 man pages section 7: Device and Network Interfaces • Last Revised 15 May 2001

dpfd.fd, fds[rn]);
close (wfd);
free(pollfd);
error = 1;
goto out1;

}
if (dpfd.revents != POLLIN) {

printf("DP_ISPOLLED returned unexpected revents %d\n",
dpfd.revents);

close (wfd);
free(pollfd);
error = 1;
goto out1;

}
if (read(dpfd.fd, rbuf, strlen(TESTSTRING)) !=

strlen(TESTSTRING)) {
perror("read from fifo failed");
close (wfd);
free(pollfd);
error = 1;
goto out1;

}
loopcnt++;

}

EACCES A process does not have permission to access the content cached in
/dev/poll.

EINTR A signal was caught during the execution of the ioctl(2)
function.

EFAULT The request argument requires a data transfer to or from a buffer
pointed to by arg, but arg points to an illegal address.

EINVAL The request or arg parameter is not valid for this device.

ENXIO The O_NONBLOCK flag is set, the named file is a FIFO, the
O_WRONLY flag is set, and no process has the file open for reading;
or the named file is a character special or block special file and the
device associated with this special file does not exist.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, Intel

Availability SUNWcarx.u, SUNWcsxu (64-bit Solaris)

SUNWcsr, SUNWcsu (32-bit Solaris on Intel)

SUNWhea (header files)

Interface Stability Evolving

poll(7d)

ERRORS

ATTRIBUTES

Device and Network Interfaces 445

MT-Level Safe

open(2), poll(2), write(2), attributes(5)

The /dev/poll API is particularly beneficial to applications that poll a large number
of file descriptors repeatedly. Applications will exhibit the best performance gain if the
polled file descriptor list rarely change.

When using the /dev/poll driver, you should remove a closed file descriptor from a
monitored poll set. Failure to do so may result in a POLLNVAL revents being
returned for the closed file descriptor. When a file descriptor is closed but not removed
from the monitored set, and is reused in subsequent open of a different device, you
will be polling the device associated with the reused file descriptor. In a multithreaded
application, careful coordination among threads doing close and DP_POLL ioctl is
recommended for consistent results.

The /dev/poll driver caches a list of polled file descriptors, which are specific to a
process. Therefore, the /dev/poll file descriptor of a process will be inherited by its
child process, just like any other file descriptors. But the child process will have very
limited access through this inherited /dev/poll file descriptor. Any attempt to write
or do ioctl by the child process will result in an EACCES error. The child process
should close the inherited /dev/poll file descriptor and open its own if desired.

The /dev/poll driver does not yet support polling. Polling on a /dev/poll file
descriptor will result in POLLERR being returned in the revents field of pollfd
structure.

poll(7d)

SEE ALSO

NOTES

446 man pages section 7: Device and Network Interfaces • Last Revised 15 May 2001

prnio – generic printer interface

#include <sys/prnio.h>

The prnio generic printer interface defines ioctl commands and data structures for
printer device drivers.

prnio defines and provides facilities for five basic phases of the printing process:

� Identification — Retrieve device information/attributes
� Setup — Set device attributes
� Transfer — Transfer data to or from the device
� Cleanup — Transfer phase conclusion
� Abort — Transfer phase interruption

During the Identification phase, the application retrieves a set of device capabilities
and additional information using the PRNIOC_GET_IFCAP, PRNIOC_GET_STATUS,
PRNIOC_GET_TIMEOUTS, PRNIOC_GET_IFINFO and PRNIOC_GET_1284_DEVID
commands.

During the Setup phase the application sets some interface attributes and probably
resets the printer as described in the PRNIOC_SET_IFCAP, PRNIOC_SET_TIMEOUTS
and PRNIOC_RESET sections.

During the Transfer phase, data is transferred in a forward (host to peripheral) or
reverse direction (peripheral to host). Transfer is accomplished using write(2) and
read(2) system calls. For prnio compliant printer drivers, forward transfer support is
mandatory, while reverse transfer support is optional. Applications can also use
PRNIOC_GET_STATUS and PRNIOC_GET_1284_STATUS commands during the
transfer to monitor the device state.

The Cleanup phase is accomplished by closing the device using close(2). Device
drivers supporting prnio may set non-zero error code as appropriate. Applications
should explicitly close(2) a device before exiting and check errno value.

The Abort phase is accomplished by interrupting the write(2) and read(2) system
calls. The application can perform some additional cleanup during the Abort phase as
described in PRNIOC_GET_IFCAP section.

PRNIOC_GET_IFCAP
Application can retrieve printer interface capabilities using this command. The
ioctl(2) argument is a pointer to uint_t, a bit field representing a set of
properties and services provided by a printer driver. Set bit means supported
capability. The following values are defined:

PRN_BIDI - If this bit is set, the device is capable of bi-directional operation;
otherwise the interface is unidirectional (forward) only.
PRN_HOTPLUG - If this bit is set, the interface allows device hot-plugging.

prnio(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

Device and Network Interfaces 447

PRN_1284_DEVID - If this bit is set, the device is capable of returning 1284 device
ID (see PRNIOC_GET_1284_DEVID.)
PRN_1284_STATUS - If this bit is set, the device driver can return device status
lines (see PRNIOC_GET_1284_STATUS). Some devices support this ioctl in
unidirectional mode only.
PRN_TIMEOUTS - If this bit is set the peripheral may stall during the transfer phase
and the driver can timeout and return from the write(2) and read(2) returning the
number of bytes that have been transferred. If PRN_TIMEOUTS is set, the driver
supports this functionality and the timeout values can be retrieved and modified
via the PRNIOC_GET_TIMEOUTS and PRNIOC_SET_TIMEOUTS ioctls. Otherwise,
applications can implement their own timeouts and abort phase.
PRN_STREAMS - This bit impacts the application abort phase behaviour. If the
device claimed PRN_STREAMS capability, the application must issue an I_FLUSH
ioctl(2) before close(2) to dismiss the untransferred data. Only STREAMS
drivers can support this capability.

PRNIOC_SET_IFCAP
This ioctl can be used to change interface capabilities. The argument is a pointer to
uint_t bit field that is described in detail in the PRNIOC_GET_IFCAP section.
Capabilities should be set one at a time; otherwise the command will return
EINVAL. The following capabilities can be changed by this ioctl:

PRN_BIDI - When this capability is set, the interface operates in a bidirectional
mode, otherwise in forward-only mode. Devices that support only one mode will
not return error; applications should use PRNIOC_GET_IFCAP to check if the mode
was successfully changed. Because some capabilities may be altered as a side effect
of changing other capabilities, this command should be followed by
PRNIOC_GET_IFCAP.

PRNIOC_GET_IFINFO
This command can be used to retrieve printer interface info string, which is an
arbitrary format string usually describing the bus type. The argument is a pointer
to struct prn_interface_info as described below.

struct prn_interface_info {
uint_t if_len; /* length of buffer */
uint_t if_rlen; /* actual info length */
char *if_data; /* buffer address */

};

The application allocates a buffer and sets if_data and if_len values to its address
and length, respectively. The driver returns the string to this buffer and sets if_len to
its length. If if_len is less that if_rlen, the driver must return the first if_len
bytes of the string. The application may then repeat the command with a bigger buffer.

Although prnio does not limit the contents of the interface info string, some values
are recommended and defined in <sys/prnio.h> by the following macros:

prnio(7I)

448 man pages section 7: Device and Network Interfaces • Last Revised 23 Feb 2001

PRN_PARALLEL - Centronics or IEEE 1284 compatible devices
PRN_SERIAL - EIA-232/EIA-485 serial ports
PRN_USB - Universal Serial Bus printers
PRN_1394 - IEEE 1394 peripherals.
Printer interface info string is for information only: no implications should be made
from its value.

PRNIOC_RESET Some applications may want to reset the printer state
during Setup and/or Cleanup phase using
PRNIOC_RESET command. Reset semantics are
device-specific, and in general, applications using this
command should be aware of the printer type.

Each prnio compliant driver is required to accept
this request, although performed actions are
completely driver-dependent. More information on
the PRNIOC_RESET implementation for the particular
driver is available in the corresponding man page
and printer manual.

PRNIOC_GET_1284_DEVID This command can be used to retrieve printer device
ID as defined by IEEE 1284-1994.The ioctl(2)
argument is a pointer to struct
prn_1284_device_id as described below.

struct prn_1284_device_id {
uint_t id_len; /* length of buffer */
uint_t id_rlen; /* actual ID length */
char *id_data; /* buffer address */

};

For convenience, the two-byte length field is not considered part of device ID string
and is not returned in the user buffer. Instead, id_rlen value shall be set to (length -
2) by the driver, where length is the ID length field value. If buffer length is less than
id_rlen, the driver returns the first id_len bytes of the ID.

The printer driver must return the most up-to-date value of the device ID.

PRNIOC_GET_STATUS This command can be used by applications to retrieve
current device status. The argument is a pointer to
uint_t, where the status word is returned. Status is a
combination of the following bits:

PRN_ONLINE - For devices that support PRN_HOTPLUG capability, this bit is set when
the device is online, otherwise the device is offline. Devices without PRN_HOTPLUG
support should always have this bit set.
PRN_READY - This bit indicates if the device is ready to receive/send data.
Applications may use this bit for an outbound flow control

prnio(7I)

Device and Network Interfaces 449

PRNIOC_GET_1284_STATUS
Devices that support PRN_1284_STATUS capability accept this ioctl to retrieve the
device status lines defined in IEEE 1284 for use in Compatibility mode. The
following bits may be set by the driver:

PRN_1284_NOFAULT - Device is not in error state
PRN_1284_SELECT - Device is selected
PRN_1284_PE - Paper error
PRN_1284_BUSY - Device is busy

PRNIOC_GET_TIMEOUTS
This command retrieves current transfer timeout values for the driver. The
argument is a pointer to struct prn_timeouts as described below.

struct prn_timeouts {
uint_t tmo_forward; /* forward transfer timeout */
uint_t tmo_reverse; /* reverse transfer timeout */

};

tmo_forward and tmo_reverse define forward and reverse transfer timeouts in
seconds. This command is only valid for drivers that support PRN_TIMEOUTS
capability.

PRNIOC_SET_TIMEOUTS This command sets current transfer timeout values for
the driver. The argument is a pointer to struct
prn_timeouts. See PRNIOC_GET_TIMEOUTS for
description of this structure. This command is only
valid for drivers that support PRN_TIMEOUTS
capability.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, i386

Interface Stability Evolving

ioctl(2), read(2), write(2), ecpp(7D), usbprn(7D), lp(7D)

IEEE Std 1284-1994

prnio(7I)

ATTRIBUTES

SEE ALSO

450 man pages section 7: Device and Network Interfaces • Last Revised 23 Feb 2001

ptem – STREAMS Pseudo Terminal Emulation module

int ioctl(fd, I_PUSH, "ptem");

ptem is a STREAMS module that, when used in conjunction with a line discipline and
pseudo terminal driver, emulates a terminal.

The ptem module must be pushed (see I_PUSH, streamio(7I)) onto the slave side of
a pseudo terminal STREAM, before the ldterm(7M) module is pushed.

On the write-side, the TCSETA, TCSETAF, TCSETAW, TCGETA, TCSETS, TCSETSW,
TCSETSF, TCGETS, TCSBRK, JWINSIZE, TIOCGWINSZ, and TIOCSWINSZ termio
ioctl(2) messages are processed and acknowledged. If remote mode is not in effect,
ptem handles the TIOCSTI ioctl by copying the argument bytes into an M_DATA
message and passing it back up the read side. Regardless of the remote mode setting,
ptem acknowledges the ioctl and passes a copy of it downstream for possible further
processing. A hang up (that is, stty 0) is converted to a zero length M_DATA message
and passed downstream. Termio cflags and window row and column information
are stored locally one per stream. M_DELAY messages are discarded. All other
messages are passed downstream unmodified.

On the read-side all messages are passed upstream unmodified with the following
exceptions. All M_READ and M_DELAY messages are freed in both directions. A
TCSBRK ioctl is converted to an M_BREAK message and passed upstream and an
acknowledgement is returned downstream. A TIOCSIGNAL ioctl is converted into an
M_PCSIG message, and passed upstream and an acknowledgement is returned
downstream. Finally a TIOCREMOTE ioctl is converted into an M_CTL message,
acknowledged, and passed upstream; the resulting mode is retained for use in
subsequent TIOCSTI parsing.

<sys/ptem.h>

stty(1), ioctl(2), ldterm(7M), pckt(7M), streamio(7I), termio(7I)

STREAMS Programming Guide

ptem(7M)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

Device and Network Interfaces 451

ptm – STREAMS pseudo-tty master driver

The pseudo-tty subsystem simulates a terminal connection, where the master side
represents the terminal and the slave represents the user process’s special device end
point. In order to use the pseudo-tty subsystem, a node for the master side driver
/dev/ptmx and N number of nodes for the slave driver must be installed. See
pts(7D). The master device is set up as a cloned device where its major device
number is the major for the clone device and its minor device number is the major for
the ptm driver. There are no nodes in the file system for master devices. The master
pseudo driver is opened using the open(2) system call with /dev/ptmx as the device
parameter. The clone open finds the next available minor device for the ptm major
device.

A master device is available only if it and its corresponding slave device are not
already open. When the master device is opened, the corresponding slave device is
automatically locked out. Only one open is allowed on a master device. Multiple
opens are allowed on the slave device. After both the master and slave have been
opened, the user has two file descriptors which are the end points of a full duplex
connection composed of two streams which are automatically connected at the master
and slave drivers. The user may then push modules onto either side of the stream pair.

The master and slave drivers pass all messages to their adjacent queues. Only the
M_FLUSH needs some processing. Because the read queue of one side is connected to
the write queue of the other, the FLUSHR flag is changed to the FLUSHW flag and vice
versa. When the master device is closed an M_HANGUP message is sent to the slave
device which will render the device unusable. The process on the slave side gets the
errno EIO when attempting to write on that stream but it will be able to read any data
remaining on the stream head read queue. When all the data has been read, read()
returns 0 indicating that the stream can no longer be used. On the last close of the
slave device, a 0-length message is sent to the master device. When the application on
the master side issues a read() or getmsg() and 0 is returned, the user of the master
device decides whether to issue a close() that dismantles the pseudo-terminal
subsystem. If the master device is not closed, the pseudo-tty subsystem will be
available to another user to open the slave device.

If O_NONBLOCK or O_NDELAY is set, read on the master side returns −1 with errno set
to EAGAIN if no data is available, and write returns −1 with errno set to EAGAIN if
there is internal flow control.

The master driver supports the ISPTM and UNLKPT ioctls that are used by the
functions grantpt(3C), unlockpt(3C) and ptsname(3C). The ioctl ISPTM
determines whether the file descriptor is that of an open master device. On success, it
returns the 0. The ioctl UNLKPT unlocks the master and slave devices. It returns 0 on
success. On failure, the errno is set to EINVAL indicating that the master device is not
open.

/dev/ptmx master clone device

/dev/pts/M slave devices (M = 0 -> N-1)

ptm(7D)

NAME

DESCRIPTION

IOCTLS

FILES

452 man pages section 7: Device and Network Interfaces • Last Revised 5 Feb 1997

grantpt(3C), ptsname(3C), unlockpt(3C), pckt(7M), pts(7D)

STREAMS Programming Guide

ptm(7D)

SEE ALSO

Device and Network Interfaces 453

pts – STREAMS pseudo-tty slave driver

The pseudo-tty subsystem simulates a terminal connection, where the master side
represents the terminal and the slave represents the user process’s special device end
point. In order to use the pseudo-tty subsystem, a node for the master side driver
/dev/ptmx and N nodes for the slave driver (N is determined at installation time)
must be installed. The names of the slave devices are /dev/pts/M where M has the
values 0 through N-1. When the master device is opened, the corresponding slave
device is automatically locked out. No user may open that slave device until its
permissions are adjusted and the device unlocked by calling functions grantpt(3C)
and unlockpt(3C). The user can then invoke the open system call with the name that
is returned by the ptsname(3C) function. See the example below.

Only one open is allowed on a master device. Multiple opens are allowed on the slave
device. After both the master and slave have been opened, the user has two file
descriptors which are end points of a full duplex connection composed of two streams
automatically connected at the master and slave drivers. The user may then push
modules onto either side of the stream pair. The user needs to push the ptem(7M) and
ldterm(7M) modules onto the slave side of the pseudo-terminal subsystem to get
terminal semantics.

The master and slave drivers pass all messages to their adjacent queues. Only the
M_FLUSH needs some processing. Because the read queue of one side is connected to
the write queue of the other, the FLUSHR flag is changed to the FLUSHW flag and vice
versa. When the master device is closed an M_HANGUP message is sent to the slave
device which will render the device unusable. The process on the slave side gets the
errno EIO when attempting to write on that stream but it will be able to read any data
remaining on the stream head read queue. When all the data has been read, read
returns 0 indicating that the stream can no longer be used. On the last close of the
slave device, a 0-length message is sent to the master device. When the application on
the master side issues a read() or getmsg() and 0 is returned, the user of the master
device decides whether to issue a close() that dismantles the pseudo-terminal
subsystem. If the master device is not closed, the pseudo-tty subsystem will be
available to another user to open the slave device. Since 0-length messages are used to
indicate that the process on the slave side has closed and should be interpreted that
way by the process on the master side, applications on the slave side should not write
0-length messages. If that occurs, the write returns 0, and the 0-length message is
discarded by the ptem module.

The standard STREAMS system calls can access the pseudo-tty devices. The slave
devices support the O_NDELAY and O_NONBLOCK flags.

EXAMPLE 1

int fdm fds;
char *slavename;
extern char *ptsname();

fdm = open("/dev/ptmx", O_RDWR); /* open master */

pts(7D)

NAME

DESCRIPTION

EXAMPLES

454 man pages section 7: Device and Network Interfaces • Last Revised 21 Aug 1992

EXAMPLE 1 (Continued)

grantpt(fdm); /* change permission of slave */
unlockpt(fdm); /* unlock slave */
slavename = ptsname(fdm); /* get name of slave */
fds = open(slavename, O_RDWR); /* open slave */
ioctl(fds, I_PUSH, "ptem"); /* push ptem */

ioctl(fds, I_PUSH, "ldterm"); /* push ldterm*/

/dev/ptmx master clone device

/dev/pts/M slave devices (M = 0 -> N-1)

grantpt(3C), ptsname(3C), unlockpt(3C), ldterm(7M), ptm(7D), ptem(7M)

STREAMS Programming Guide

pts(7D)

FILES

SEE ALSO

Device and Network Interfaces 455

pty – pseudo-terminal driver

The pty driver provides support for a pair of devices collectively known as a
pseudo-terminal. The two devices comprising a pseudo-terminal are known as a
controller and a slave. The slave device distinguishes between the B0 baud rate and
other baud rates specified in the c_cflag word of the termios structure, and the
CLOCAL flag in that word. It does not support any of the other termio(7I) device
control functions specified by flags in the c_cflag word of the termios structure
and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of the
termios structure, as these functions apply only to asynchronous serial ports. All
other termio(7I) functions must be performed by STREAMS modules pushed atop
the driver; when a slave device is opened, the ldterm(7M) and ttcompat(7M)
STREAMS modules are automatically pushed on top of the stream, providing the
standard termio(7I) interface.

Instead of having a hardware interface and associated hardware that supports the
terminal functions, the functions are implemented by another process manipulating
the controller device of the pseudo-terminal.

The controller and the slave devices of the pseudo-terminal are tightly connected. Any
data written on the controller device is given to the slave device as input, as though it
had been received from a hardware interface. Any data written on the slave terminal
can be read from the controller device (rather than being transmitted from a UAR).

By default, 48 pseudo-terminal pairs are configured as follows:

/dev/pty[p-r][0-9a-f] controller devices

/dev/tty[p-r][0-9a-f] slave devices

The standard set of termio ioctls are supported by the slave device. None of the
bits in the c_cflag word have any effect on the pseudo-terminal, except that if the
baud rate is set to B0, it will appear to the process on the controller device as if the last
process on the slave device had closed the line; thus, setting the baud rate to B0 has
the effect of ‘‘hanging up’’ the pseudo-terminal, just as it has the effect of ‘‘hanging
up’’ a real terminal.

There is no notion of ‘‘parity’’ on a pseudo-terminal, so none of the flags in the
c_iflag word that control the processing of parity errors have any effect. Similarly,
there is no notion of a ‘‘break’’, so none of the flags that control the processing of
breaks, and none of the ioctls that generate breaks, have any effect.

Input flow control is automatically performed; a process that attempts to write to the
controller device will be blocked if too much unconsumed data is buffered on the slave
device. The input flow control provided by the IXOFF flag in the c_iflag word is not
supported.

The delays specified in the c_oflag word are not supported.

pty(7D)

NAME

DESCRIPTION

IOCTLS

456 man pages section 7: Device and Network Interfaces • Last Revised 8 Aug 1994

As there are no modems involved in a pseudo-terminal, the ioctls that return or
alter the state of modem control lines are silently ignored.

A few special ioctls are provided on the controller devices of pseudo-terminals to
provide the functionality needed by applications programs to emulate real hardware
interfaces:

TIOCSTOP The argument is ignored. Output to the pseudo-terminal is
suspended, as if a STOP character had been typed.

TIOCSTART The argument is ignored. Output to the pseudo-terminal is
restarted, as if a START character had been typed.

TIOCPKT The argument is a pointer to an int. If the value of the int is
non-zero, packet mode is enabled; if the value of the int is zero,
packet mode is disabled. When a pseudo-terminal is in packet
mode, each subsequent read(2) from the controller device will
return data written on the slave device preceded by a zero byte
(symbolically defined as TIOCPKT_DATA), or a single byte
reflecting control status information. In the latter case, the byte is
an inclusive-or of zero or more of the bits:

TIOCPKT_FLUSHREAD whenever the read queue for the
terminal is flushed.

TIOCPKT_FLUSHWRITE whenever the write queue for the
terminal is flushed.

TIOCPKT_STOP whenever output to the terminal is
stopped using ^S.

TIOCPKT_START whenever output to the terminal is
restarted.

TIOCPKT_DOSTOP whenever XON/XOFF flow control
is enabled after being disabled; it is
considered ‘‘enabled’’ when the
IXON flag in the c_iflag word is
set, the VSTOP member of the c_cc
array is ^S and the VSTART
member of the c_cc array is ^Q.

TIOCPKT_NOSTOP whenever XON/XOFF flow control
is disabled after being enabled.

TIOCREMOTE The argument is a pointer to an int. If the value of the int is
non-zero, remote mode is enabled; if the value of the int is zero,
remote mode is disabled. This mode can be enabled or disabled
independently of packet mode. When a pseudo-terminal is in
remote mode, input to the slave device of the pseudo-terminal is
flow controlled and not input edited (regardless of the mode the
slave side of the pseudo-terminal). Each write to the controller

pty(7D)

Device and Network Interfaces 457

device produces a record boundary for the process reading the
slave device. In normal usage, a write of data is like the data typed
as a line on the terminal; a write of 0 bytes is like typing an EOF
character. Note: this means that a process writing to a
pseudo-terminal controller in remote mode must keep track of line
boundaries, and write only one line at a time to the controller. If,
for example, it were to buffer up several NEWLINE characters and
write them to the controller with one write(), it would appear to
a process reading from the slave as if a single line containing
several NEWLINE characters had been typed (as if, for example, a
user had typed the LNEXT character before typing all but the last
of those NEWLINE characters). Remote mode can be used when
doing remote line editing in a window manager, or whenever flow
controlled input is required.

EXAMPLE 1

#include <fcntl.h>
#include <sys/termios.h>

int fdm fds;
fdm = open("/dev/ptyp0, O_RDWR); /* open master */

fds = open("/dev/ttyp0, O_RDWR); /* open slave */

/dev/pty[p-z][0-9a-f] pseudo-terminal controller devices

/dev/tty[p-z][0-9a-f] pseudo-terminal slave devices

rlogin(1), rlogind(1M), ldterm(7M), termio(7I), ttcompat(7M),

It is apparently not possible to send an EOT by writing zero bytes in TIOCREMOTE
mode.

pty(7D)

EXAMPLES

FILES

SEE ALSO

NOTES

458 man pages section 7: Device and Network Interfaces • Last Revised 8 Aug 1994

qfe – SUNW,qfe Quad Fast-Ethernet device driver

/dev/qfe

The SUNW,qfe Quad Fast-Ethernet driver is a multi-threaded, loadable, clonable,
STREAMS hardware driver supporting the connectionless Data Link Provider
Interface, dlpi(7P), over a SUNW,qfe Quad Fast-Ethernet controller. Multiple
SUNW,qfe controllers installed within the system are supported by the driver. The
qfe driver provides basic support for the SUNW,qfe hardware. It is used to handle the
SUNW,qfe device. Functions include chip initialization, frame transit and receive,
multicast and promiscuous support, and error recovery and reporting.

The SUNW,qfe device provides a 100Base-TX networking interface. There are two
types of SUNW,qfe device: one supporting Sbus and the other supporting the PCI bus
interface. The Sbus SUNW,qfe device uses Sun’s FEPS ASIC, which provides the Sbus
interface and MAC functions. The PCI SUNW,qfe device uses Sun’s PFEX ASIC to
provide the PCI interface and MAC functions. Both connect with the 100Base-TX
on-board transceiver, which connects to a RJ45 connector to provide the Physical
layer functions and external connection.

The 100Base-TX standard specifies an “auto-negotiation” protocol to automatically
select the mode and speed of operation. The internal transceiver is capable of doing
auto-negotiation with the remote-end of the link (link partner) and receives the
capabilities of the remote end. It selects the Highest Common Denominator mode
of operation based on the priorities. It also supports forced-mode of operation
where the driver can select the mode of operation.

The cloning character-special device /dev/qfe is used to access all SUNW,qfe
controllers installed within the system.

The qfe driver is a “style 2” data link service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. Valid DLPI primitives are defined
in <sys/dlpi.h>. Refer to dlpi(7P) for more information. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device (ppa). The ppa ID is interpreted as an unsigned long data type
and indicates the corresponding device instance (unit) number. The driver returns an
error (DL_ERROR_ACK) if the ppa field value does not correspond to a valid device
instance number for this system. The device is initialized on first attach and
de-initialized (stopped) at last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum SDU is 1500 (ETHERMTU - defined in <sys/ethernet.h>).

� The minimum SDU is 0.

� The dlsap address length is 8.

� The MAC type is DL_ETHER.

qfe(7d)

NAME

SYNOPSIS

DESCRIPTION

SUNW,qfe

APPLICATION
PROGRAMMING

INTERFACE
qfe and DLPI

Device and Network Interfaces 459

� The sap length values is −2 meaning the physical address component is followed
immediately by a 2 byte sap component within the DLSAP address.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so the QOS
fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular service access pointer SAP with the stream. The qfe driver interprets the sap
field within the DL_BIND_REQ as an Ethernet “type” therefore valid values for the
sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

If the user selects a sap with a value of 0, the receiver will be in “802.3 mode”. All
frames received from the media having a “type” field in the range [0-1500] are
assumed to be 802.3 frames and are routed up all open streams which are bound to
sap value 0. If more than one stream is in “802.3 mode” then the frame will be
duplicated and routed up multiple streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the sap field of the DL_BIND_REQ if the sap value
is 0, and if the destination type field is in the range [0-1500]. If either is true, the
driver computes the length of the message, not including initial M_PROTO mblk
(message block), of all subsequent DL_UNITDATA_REQ messages and transmits 802.3
frames that have this value in the MAC frame header length field.

The qfe driver DLSAP address format consists of the 6 byte physical (Ethernet)
address component followed immediately by the 2 byte sap (type) component
producing an 8 byte DLSAP address. Applications should not hardcode to this
particular implementation-specific DLSAP address format but use information
returned in the DL_INFO_ACK primitive to compose and decompose DLSAP
addresses. The sap length, full DLSAP length, and sap/physical ordering are included
within the DL_INFO_ACK. The physical address length can be computed by
subtracting the sap length from the full DLSAP address length or by issuing the
DL_PHYS_ADDR_REQ to obtain the current physical address associated with the
stream.

Once in the DL_BOUND state, the user may transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the qfe driver. The qfe driver will route received
Ethernet frames up all those open and bound streams having a sap which matches the
Ethernet type as DL_UNITDATA_IND messages. Received Ethernet frames are
duplicated and routed up multiple open streams if necessary. The DLSAP address
contained within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists
of both the sap (type) and physical (Ethernet) components.

qfe(7d)

460 man pages section 7: Device and Network Interfaces • Last Revised 6 May 1998

In addition to the mandatory connectionless DLPI message set the driver also
supports the following primitives.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable or disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. The
driver accepts these primitives in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables or disables reception of all
frames on the media (“promiscuous mode”), including frames generated by the local
host.

When used with the DL_PROMISC_SAP flag set this enables or disables reception of all
sap (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set this
enables or disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of the other sap and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the 6 octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address
currently associated (attached) to this stream. The credentials of the process which
originally opened this stream must be root. Otherwise EPERM is returned in the
DL_ERROR_ACK. This primitive is destructive in that it affects all other current and
future streams attached to this device. An M_ERROR is sent up all other streams
attached to this device when this primitive is successful on this stream. Once changed,
all streams subsequently opened and attached to this device will obtain this new
physical address. Once changed, the physical address will remain until this primitive
is used to change the physical address again or the system is rebooted, whichever
comes first.

By default, the qfe driver performs “auto-negotiation” to select the mode and speed
of the link.

The link can be in one of the four following modes:

� 100 Mbps, full-duplex
� 100 Mbps, half-duplex
� 10 Mbps, full-duplex
� 10 Mbps, half-duplex

These speeds and modes are described in the 100Base-TX standard.

The auto−negotiation protocol automatically selects:

� Operation mode (half-duplex or full-duplex)
� Speed (100 Mbps or 10 Mbps)

qfe(7d)

qfe Primitives

qfe Driver

Device and Network Interfaces 461

The auto−negotiation protocol does the following:

� Gets all the modes of operation supported by the Link Partner

� Advertises its capabilities to the Link Partner

� Selects the highest common denominator mode of operation based on the
priorities.

� The highest priority is given to the 100 Mbps, full-duplex; lowest priority is given
to 10 Mbps, half-duplex.

The 100Base-TX transceiver is capable of all of the operating speeds and modes listed
above. By default, auto-negotiation is used to select the speed and the mode of the link
and the common mode of operation with the link partner.

Sometimes, the user may want to select the speed and mode of the link. The
SUNW,qfe device supports programmable "IPG" (Inter-Packet Gap) parameters ipg1
and ipg2. By default, the driver sets ipg1 to 8 byte-times and ipg2 to 4
byte-times (which are the standard values). Sometimes, the user may want to alter
these values depending on whether the driver supports 10 Mbps or 100 Mpbs and
accordingly, IPG will be set to 9.6 or 0.96 microseconds.

The qfe driver provides for setting and getting various parameters for the SUNW,qfe
device. The parameter list includes:

� current transceiver status
� current link status
� inter-packet gap
� local transceiver capabilities
� link partner capabilities

The local transceiver has two sets of capabilities: one set reflects the capabilities of the
hardware, which are read-only (RO) parameters, and the second set, which reflects the
values chosen by the user, is used in speed selection. There are read/write (RW)
capabilities. At boot time, these two sets of capabilities will be the same. The Link
Partner capabilities are also read-only parameters because the current default value of
these parameters can only be read and cannot be modified.

/dev/qfe qfe special character device

/kernel/drv/qfe.conf system wide default device driver properties

ndd(1M), netstat(1M), driver.conf(4), dlpi(7P), le(7D)

qfe(7d)

qfe Parameter
List

FILES

SEE ALSO

462 man pages section 7: Device and Network Interfaces • Last Revised 6 May 1998

qlc – ISP2200 Family Fibre Channel host bus adapter driver

SUNW,qlc@pci-slot

The qlc host bus adapter driver is a Sun Fibre Channel transport layer-compliant
nexus driver for the Qlogic ISP2200/ISP2200A/ISP 2202 adapters. These adapters
support Fibre Channel SCSI and IP Protocols, FC-AL public loop profile,
point-to-point fabric connection and Fibre Channel service classes two and three.

The qlc driver interfaces with the Sun Fibre Channel transport layer to support the
standard functions provided by the SCSA interface. It supports auto request sense and
tagged queueing by default. The driver requires that all devices have unique hard
addresses in private loop configurations. Devices with conflicting hard addresses will
not be accessible.

/kernel/drv/qlc
ELF kernel module

/kernel/drv/sparcv9/qlc
64-bit ELF kernel module

/kernel/drv/qlc.conf
Driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWqlc

prtconf(1M), driver.conf(4), fcp(7D), fp(7D)

Writing Device Drivers

ANSI X3.230:1994, Fibre Channel Physical Signaling (FC-PH)

Project 1134-D, Fibre Channel Generic Services (FC-GS-2)

ANSI X3.269-1996, Fibre Channel Arbitrated Loop (FC-AL)

ANSI X3.270-1996, Fibre Channel Protocol for SCSI (FCP-SCSI)

ANSI X3.270-1996, SCSI-3 Architecture Model (SAM)

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA)

Fabric Loop Attachment (FC-FLA)

ISP2200 Firmware Interface Specification, QLogic Corporation

qlc(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 463

quotactl – manipulate disk quotas

#include <sys/fs/ufs_quota.h>

int ioctl(int fd, Q_QUOTACTL, struct quotcl *qp)

This ioctl() call manipulates disk quotas. fd is the file descriptor returned by the
open() system call after opening the quotas file (located in the root directory of the
filesystem running quotas.) Q_QUOTACTL is defined in
/usr/include/sys/fs/ufs_quota.h. qp is the address of the quotctl structure
which is defined as

struct quotctl {
int op;
uid_t uid;
caddr_t addr;

};

op indicates an operation to be applied to the user ID uid. (See below.) addr is the
address of an optional, command specific, data structure which is copied in or out of
the system. The interpretation of addr is given with each value of op below.

Q_QUOTAON Turn on quotas for a file system. addr points to the full pathname
of the quotas file. uid is ignored. It is recommended that uid have
the value of 0. This call is restricted to the super-user.

Q_QUOTAOFF Turn off quotas for a file system. addr and uid are ignored. It is
recommended that addr have the value of NULL and uid have the
value of 0. This call is restricted to the super-user.

Q_GETQUOTA Get disk quota limits and current usage for user uid. addr is a
pointer to a dqblk structure (defined in
<sys/fs/ufs_quota.h>). Only the super-user may get the
quotas of a user other than himself.

Q_SETQUOTA Set disk quota limits and current usage for user uid. addr is a
pointer to a dqblk structure (defined in sys/fs/ufs_quota.h).
This call is restricted to the super-user.

Q_SETQLIM Set disk quota limits for user uid. addr is a pointer to a dqblk
structure (defined in sys/fs/ufs_quota.h). This call is
restricted to the super-user.

Q_SYNC Update the on-disk copy of quota usages for this file system. addr
and uid are ignored.

Q_ALLSYNC Update the on-disk copy of quota usages for all file systems with
active quotas. addr and uid are ignored.

This ioctl() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

quotactl(7I)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

464 man pages section 7: Device and Network Interfaces • Last Revised 14 Sep 1995

EFAULT addr is invalid.

EINVAL The kernel has not been compiled with the QUOTA option. op is
invalid.

ENOENT The quotas file specified by addr does not exist.

EPERM The call is privileged and the caller was not the super-user.

ESRCH No disk quota is found for the indicated user. Quotas have not
been turned on for this file system.

EUSERS The quota table is full.

If op is Q_QUOTAON, ioctl() may set errno to:

EACCES The quota file pointed to by addr exists but is not a regular file. The
quota file pointed to by addr exists but is not on the file system
pointed to by special.

EIO Internal I/O error while attempting to read the quotas file
pointed to by addr.

/usr/include/sys/fs/ufs_quota.h
quota-related structure/function definitions and defines

quota(1M), quotacheck(1M), quotaon(1M), getrlimit(2), mount(2)

There should be some way to integrate this call with the resource limit interface
provided by setrlimit() and getrlimit(2).

This call is incompatible with Melbourne quotas.

quotactl(7I)

ERRORS

FILES

SEE ALSO

BUGS

Device and Network Interfaces 465

random, urandom – Strong random number generator device

/dev/random

/dev/urandom

The /dev/random and /dev/urandom files are special files that are a source for
random bytes generated by the kernel random number generator device. The
/dev/random and /dev/urandom files are suitable for applications requiring high
quality random numbers for cryptographic purposes.

The generator device produces random numbers from data and devices available to
the kernel and estimates the amount of randomness (or "entropy”) collected from
these sources. The entropy level determines the amount of high quality random
numbers that are produced at a given time.

Applications retrieve random bytes by reading /dev/random or /dev/urandom. The
/dev/random interface returns random bytes only when sufficient amount of entropy
has been collected. If there is no entropy to produce the requested number of bytes,
/dev/random blocks until more entropy can be obtained. Non-blocking I/O mode
can be used to disable the blocking behavior. The /dev/random interface also
supports poll(2). Note that using poll(2) will not increase the speed at which
random numbers can be read.

Bytes retrieved from /dev/random provide the highest quality random numbers
produced by the generator, and can be used to generate long term keys and other high
value keying material.

The /dev/urandom interface returns bytes regardless of the amount of entropy
available. It does not block on a read request due to lack of entropy. While bytes
produced by the /dev/urandom interface are of lower quality than bytes produced
by /dev/random, they are nonetheless suitable for less demanding and shorter term
cryptographic uses such as short term session keys, paddings, and challenge strings.

Data can be written to /dev/random and /dev/urandom. Data written to either
special file is added to the generator’s internal state. Data that is difficult to predict by
other users may contribute randomness to the generator state and help improve the
quality of future generated random numbers.

By default, write access is restricted to the super-user. An administrator may change
the default read/write restriction by changing the permissions on the appropriate
special files.

EAGAIN O_NDELAY or O_NONBLOCK was set and no random bytes are
available for reading from /dev/random.

EINTR A signal was caught while reading and no data was transferred.

random(7D)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

466 man pages section 7: Device and Network Interfaces • Last Revised 01 Mar 2001

/dev/random

/dev/urandom

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx (64-bit)

Interface Stability Evolving

poll(2), attributes(5)

An implementation of the /dev/random and /dev/urandom kernel-based random
number generator first appeared in Linux 1.3.30.

A /dev/random interface for Solaris first appeared as part of the CryptoRand
implementation.

random(7D)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Device and Network Interfaces 467

rns_smt – Rockwell Station Management driver

/dev/rns_smt

On the Rockwell FDDI adapter boards, the rns_smt driver implements the FDDI
Station Management protocol (SMT). The Station Management protocol includes
Connection Management, Ring Management and all frame services. The rns_snt
driver is a loadable, clonable STREAMS driver that can support multiple instances of
the FDDI interface, as well as multiple application layer clients.

The cloning character-oriented devices /dev/rns_smt are used to access the
rns_snt driver that supports Rockwell FDDI adapters. The /dev/rns_smt device is
an interface used only for Station Management applications, such as those that gather
MIB statistics or other Station information.

The SMT driver supports DLPI and SPI interfaces. All M_PROTO and M_PCPROTO type
messages are interpreted as DLPI or SPI. SPI (SMT provider interface) is a Rockwell
proprietary interface that is used during communication between the SMT and related
applications. rns_smt is a "style 2" data link service provider, which means that an
explicit DL_ATTACH_REQ is required to associate the opened stream with a particular
device or physical point of attachment (PPA).

/dev/rns_smt interface used for Station Management
applications

/kernel/drv/rns_smt.conf configuration file

rns_smt(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

468 man pages section 7: Device and Network Interfaces • Last Revised 10 Apr 1996

route – kernel packet forwarding database

#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>

#include <net/route.h>

int socket(PF_ROUTE, SOCK_RAW, int protocol);

UNIX provides some packet routing facilities. The kernel maintains a routing
information database, which is used in selecting the appropriate network interface
when transmitting packets.

A user process (or possibly multiple co-operating processes) maintains this database
by sending messages over a special kind of socket. This supplants fixed size
ioctl(2)’s specified in routing(7P). Routing table changes may only be carried out
by the superuser.

The operating system may spontaneously emit routing messages in response to
external events, such as receipt of a re-direct, or failure to locate a suitable route for a
request. The message types are described in greater detail below.

Routing database entries come in two flavors: entries for a specific host, or entries for
all hosts on a generic subnetwork (as specified by a bit mask and value under the
mask). The effect of wildcard or default route may be achieved by using a mask of all
zeros, and there may be hierarchical routes.

When the system is booted and addresses are assigned to the network interfaces, the
internet protocol family installs a routing table entry for each interface when it is
ready for traffic. Normally the protocol specifies the route through each interface as a
direct connection to the destination host or network. If the route is direct, the transport
layer of a protocol family usually requests the packet be sent to the same host
specified in the packet. Otherwise, the interface is requested to address the packet to
the gateway listed in the routing entry, that is, the packet is forwarded.

When routing a packet, the kernel attempts to find the most specific route matching
the destination. If no entry is found, the destination is declared to be unreachable, and
a routing-miss message is generated if there are any listeners on the routing control
socket (described below). If there are two different mask and value-under-the-mask
pairs that match, the more specific is the one with more bits in the mask. A route to a
host is regarded as being supplied with a mask of as many ones as there are bits in the
destination.

A wildcard routing entry is specified with a zero destination address value, and a
mask of all zeroes. Wildcard routes are used when the system fails to find other routes
matching the destination. The combination of wildcard routes and routing redirects
can provide an economical mechanism for routing traffic.

route(7P)

NAME

SYNOPSIS

DESCRIPTION

Device and Network Interfaces 469

One opens the channel for passing routing control messages by using the socket call
shown in the SYNOPSIS section above. There can be more than one routing socket
open per system.

Messages are formed by a header followed by a small number of sockaddrs, whose
length depend on the address family. sockaddrs are interpreted by position. An
example of a type of message with three addresses might be a CIDR prefix route:
Destination, Netmask, and Gateway. The interpretation of which addresses are present
is given by a bit mask within the header, and the sequence is least significant to most
significant bit within the vector.

Any messages sent to the kernel are returned, and copies are sent to all interested
listeners. The kernel provides the process ID of the sender, and the sender may use an
additional sequence field to distinguish between outstanding messages. However,
message replies may be lost when kernel buffers are exhausted.

The protocol parameter specifies which messages an application listening on the
routing socket is interested in seeing, based on the the address family of the
sockaddrs present. Currently, you can specify AF_INET and AF_INET6 to filter the
messages seen by the listener, or alternatively, you can specify AF_UNSPEC to indicate
that the listener is interested in all routing messages.

The kernel may reject certain messages, and will indicate this by filling in the
rtm_errno field of the rt_msghdr struct (see below). The following codes may be
returned:

EEXIST If requested to duplicate an existing entry

ESRCH If requested to delete a non-existent entry

ENOBUFS If insufficient resources were available to install a new route.

In the current implementation, all routing processes run locally, and the values for
rtm_errno are available through the normal errno mechanism, even if the routing
reply message is lost.

A process may avoid the expense of reading replies to its own messages by issuing a
setsockopt(3SOCKET) call indicating that the SO_USELOOPBACK option at the
SOL_SOCKET level is to be turned off. A process may ignore all messages from the
routing socket by doing a shutdown(3SOCKET) system call for further input.

If a route is in use when it is deleted, the routing entry is marked down and removed
from the routing table, but the resources associated with it are not reclaimed until all
references to it are released.

User processes can obtain information about the routing entry to a specific destination
by using a RTM_GET message.

Messages include:

route(7P)

Messages

470 man pages section 7: Device and Network Interfaces • Last Revised 9 Nov 1999

#define RTM_ADD 0x1 /* Add Route */
#define RTM_DELETE 0x2 /* Delete Route */
#define RTM_CHANGE 0x3 /* Change Metrics, Flags, or Gateway */
#define RTM_GET 0x4 /* Report Information */
#define RTM_LOSING 0x5 /* Kernel Suspects Partitioning */
#define RTM_REDIRECT 0x6 /* Told to use different route */
#define RTM_MISS 0x7 /* Lookup failed on this address */
#define RTM_LOCK 0x8 /* fix specified metrics */
#define RTM_OLDADD 0x9 /* caused by SIOCADDRT */
#define RTM_OLDDEL 0xa /* caused by SIOCDELRT */
#define RTM_RESOLVE 0xb /* request to resolve dst to LL addr */
#define RTM_NEWADDR 0xc /* address being added to iface */
#define RTM_DELADDR 0xd /* address being removed from iface */
#define RTM_IFINFO 0xe /* iface going up/down etc. */

A message header consists of:

struct rt_msghdr {
ushort_t rtm_msglen; /* to skip over non-understood messages */
uchar_t rtm_version; /* future binary compatibility */
uchar_t rtm_type; /* message type */
ushort_t rtm_index; /* index for associated ifp */
pid_t rtm_pid; /* identify sender */
int rtm_addrs; /* bitmask identifying sockaddrs in msg */
int rtm_seq; /* for sender to identify action */
int rtm_errno; /* why failed */
int rtm_flags; /* flags, incl kern & message, e.g., DONE */
int rtm_use; /* from rtentry */
uint_t rtm_inits; /* which values we are initializing */

struct rt_metrics rtm_rmx; /* metrics themselves */
};

where

struct rt_metrics {
uint32_t rmx_locks; /* Kernel must leave these values alone */
uint32_t rmx_mtu; /* MTU for this path */
uint32_t rmx_hopcount; /* max hops expected */
uint32_t rmx_expire; /* lifetime for route, e.g., redirect */
uint32_t rmx_recvpipe; /* inbound delay-bandwidth product */
uint32_t rmx_sendpipe; /* outbound delay-bandwidth product */
uint32_t rmx_ssthresh; /* outbound gateway buffer limit */
uint32_t rmx_rtt; /* estimated round trip time */
uint32_t rmx_rttvar; /* estimated rtt variance */
uint32_t rmx_pksent; /* packets sent using this route */
};

/* Flags include the values */

#define RTF_UP 0x1 /* route usable */
#define RTF_GATEWAY 0x2 /* destination is a gateway */
#define RTF_HOST 0x4 /* host entry (net otherwise) */
#define RTF_REJECT 0x8 /* host or net unreachable */
#define RTF_DYNAMIC 0x10 /* created dynamically(by redirect) */
#define RTF_MODIFIED 0x20 /* modified dynamically(by redirect) */
#define RTF_DONE 0x40 /* message confirmed */

route(7P)

Device and Network Interfaces 471

#define RTF_MASK 0x80 /* subnet mask present */
#define RTF_CLONING 0x100 /* generate new routes on use */
#define RTF_XRESOLVE 0x200 /* external daemon resolves name */
#define RTF_LLINFO 0x400 /* generated by ARP */
#define RTF_STATIC 0x800 /* manually added */
#define RTF_BLACKHOLE 0x1000 /* just discard pkts (during updates) */
#define RTF_PRIVATE 0x2000 /* do not advertise this route */
#define RTF_PROTO2 0x4000 /* protocol specific routing flag #2 */
#define RTF_PROTO1 0x8000 /* protocol specific routing flag #1 */

/* Specifiers for metric values in rmx_locks and rtm_inits are */

#define RTV_MTU 0x1 /* init or lock _mtu */
#define RTV_HOPCOUNT 0x2 /* init or lock _hopcount */
#define RTV_EXPIRE 0x4 /* init or lock _expire */
#define RTV_RPIPE 0x8 /* init or lock _recvpipe */
#define RTV_SPIPE 0x10 /* init or lock _sendpipe */
#define RTV_SSTHRESH 0x20 /* init or lock _ssthresh */
#define RTV_RTT 0x40 /* init or lock _rtt */
#define RTV_RTTVAR 0x80 /* init or lock _rttvar */

/* Specifiers for which addresses are present in the messages are */

#define RTA_DST 0x1 /* destination sockaddr present */
#define RTA_GATEWAY 0x2 /* gateway sockaddr present */
#define RTA_NETMASK 0x4 /* netmask sockaddr present */
#define RTA_GENMASK 0x8 /* cloning mask sockaddr present */
#define RTA_IFP 0x10 /* interface name sockaddr present */
#define RTA_IFA 0x20 /* interface addr sockaddr present */
#define RTA_AUTHOR 0x40 /* sockaddr for author of redirect */
#define RTA_BRD 0x80 /* for NEWADDR, broadcast or p-p dest addr */

ioctl(2), setsockopt(3SOCKET), shutdown(3SOCKET), routing(7P)

Some of the metrics may not be implemented and return zero. The implemented
metrics are set in rtm_inits.

route(7P)

SEE ALSO

NOTES

472 man pages section 7: Device and Network Interfaces • Last Revised 9 Nov 1999

routing – system support for packet network routing

The network facilities provide general packet routing. The routing interface
described here can be used to maintain the system’s IPv4 routing table. It has been
maintained for compatibility with older applications. The recommended interface for
maintaining the system’s routing tables is the routing socket, described at route(7P).
The routing socket can be used to manipulate both the IPv4 and IPv6 routing tables of
the system. Routing table maintenance may be implemented in applications processes.

A simple set of data structures compose a “routing table” used in selecting the
appropriate network interface when transmitting packets. This table contains a single
entry for each route to a specific network or host. The routing table was designed to
support routing for the Internet Protocol (IP), but its implementation is protocol
independent and thus it may serve other protocols as well. User programs may
manipulate this data base with the aid of two ioctl(2) commands, SIOCADDRT and
SIOCDELRT. These commands allow the addition and deletion of a single routing
table entry, respectively. Routing table manipulations may only be carried out by
privileged user.

A routing table entry has the following form, as defined in
/usr/include/net/route.h:

struct rtentry {
unit_t rt_hash; /* to speed lookups */
struct sockaddr rt_dst; /* key */
struct sockaddr rt_gateway; /* value */
short rt_flags; /* up/down?, host/net */
short rt_refcnt; /* # held references */
unit_t rt_use; /* raw # packets forwarded */

/*
* The kernel does not use this field, and without it the structure is
* datamodel independent.
*/
#if !defined(_KERNEL)

struct ifnet *rt_ifp; /* the answer: interface to use */
#endif /* !defined(_KERNEL) */

};

with rt_flags defined from:

#define RTF_UP 0x1 /* route usable */
#define RTF_GATEWAY 0x2 /* destination is a gateway */

#define RTF_HOST 0x4 /* host entry (net otherwise) */

There are three types of routing table entries: those for a specific host, those for all
hosts on a specific network, and those for any destination not matched by entries of
the first two types, called a wildcard route. Each network interface installs a routing
table entry when it is initialized. Normally the interface specifies if the route through it
is a “direct” connection to the destination host or network. If the route is direct, the
transport layer of a protocol family usually requests the packet be sent to the same

routing(7P)

NAME

DESCRIPTION

Device and Network Interfaces 473

host specified in the packet. Otherwise, the interface may be requested to address the
packet to an entity different from the eventual recipient; essentially, the packet is
forwarded.

Routing table entries installed by a user process may not specify the hash, reference
count, use, or interface fields; these are filled in by the routing routines. If a route is in
use when it is deleted, meaning its rt_refcnt is non-zero, the resources associated
with it will not be reclaimed until all references to it are removed.

User processes read the routing tables through the /dev/ip device.

The rt_use field contains the number of packets sent along the route. This value is used
to select among multiple routes to the same destination. When multiple routes to the
same destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard
routes are used only when the system fails to find a route to the destination host and
network. The combination of wildcard routes and routing redirects can provide an
economical mechanism for routing traffic.

EEXIST A request was made to duplicate an existing entry.

ESRCH A request was made to delete a non-existent entry.

ENOBUFS Insufficient resources were available to install a new
route.

ENOMEM Insufficient resources were available to install a new
route.

ENETUNREACH The gateway is not directly reachable. For example, it
does not match the destination/subnet on any of the
network interfaces.

/dev/ip IP device driver

route(1M), ioctl(2), route(7P)

routing(7P)

ERRORS

FILES

SEE ALSO

474 man pages section 7: Device and Network Interfaces • Last Revised 9 Nov 1999

sad – STREAMS Administrative Driver

#include <sys/types.h>

#include <sys/conf.h>

#include <sys/sad.h>

#include <sys/stropts.h>

int ioctl(int fildes, int command, int arg);

The STREAMS Administrative Driver provides an interface for applications to
perform administrative operations on STREAMS modules and drivers. The interface is
provided through ioctl(2) commands. Privileged operations may access the sad
driver using /dev/sad/admin. Unprivileged operations may access the sad driver
using /dev/sad/user.

The fildes argument is an open file descriptor that refers to the sad driver. The
command argument determines the control function to be performed as described
below. The arg argument represents additional information that is needed by this
command. The type of arg depends upon the command, but it is generally an integer
or a pointer to a command-specific data structure.

The autopush facility (see autopush(1M)) allows one to configure a list of modules to
be automatically pushed on a stream when a driver is first opened. Autopush is
controlled by the following commands:

SAD_SAP Allows the administrator to configure the given device’s autopush
information. arg points to a strapush structure, which contains
the following members:

unit_t ap_cmd;
major_t sap_major;
minor_t sap_minor;
minor_t sap_lastminor;
unit_t sap_npush;

unit_t sap_list [MAXAPUSH] [FMNAMESZ + 1];

The sap_cmd field indicates the type of configuration being done.
It may take on one of the following values:

SAP_ONE Configure one minor device of a driver.

SAP_RANGE Configure a range of minor devices of a driver.

SAP_ALL Configure all minor devices of a driver.

SAP_CLEAR Undo configuration information for a driver.

The sap_major field is the major device number of the device to
be configured. The sap_minor field is the minor device number
of the device to be configured. The sap_lastminor field is used

sad(7D)

NAME

SYNOPSIS

DESCRIPTION

COMMAND
FUNCTIONS

Device and Network Interfaces 475

only with the SAP_RANGE command, which configures a range of
minor devices between sap_minor and sap_lastminor,
inclusive. The minor fields have no meaning for the SAP_ALL
command. The sap_npush field indicates the number of modules
to be automatically pushed when the device is opened. It must be
less than or equal to MAXAPUSH , defined in sad.h. It must also
be less than or equal to NSTRPUSH, the maximum number of
modules that can be pushed on a stream, defined in the kernel
master file. The field sap_list is an array of NULL-terminated
module names to be pushed in the order in which they appear in
the list.

When using the SAP_CLEAR command, the user sets only
sap_major and sap_minor. This will undo the configuration
information for any of the other commands. If a previous entry
was configured as SAP_ALL, sap_minor should be set to zero. If
a previous entry was configured as SAP_RANGE , sap_minor
should be set to the lowest minor device number in the range
configured.

On failure, errno is set to the following value:

EFAULT arg points outside the allocated address space.

EINVAL The major device number is invalid, the
number of modules is invalid, or the list of
module names is invalid.

ENOSTR The major device number does not represent a
STREAMS driver.

EEXIST The major-minor device pair is already
configured.

ERANGE The command is SAP_RANGE and
sap_lastminor is not greater than
sap_minor, or the command is SAP_CLEAR
and sap_minor is not equal to the first minor
in the range.

ENODEV The command is SAP_CLEAR and the device is
not configured for autopush.

ENOSR An internal autopush data structure cannot be
allocated.

SAD_GAP Allows any user to query the sad driver to get the autopush
configuration information for a given device. arg points to a
strapush structure as described in the previous command.

sad(7D)

476 man pages section 7: Device and Network Interfaces • Last Revised 16 Apr 1997

The user should set the sap_major and sap_minor fields of the
strapush structure to the major and minor device numbers,
respectively, of the device in question. On return, the strapush
structure will be filled in with the entire information used to
configure the device. Unused entries in the module list will be
zero-filled.

On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL The major device number is invalid.

ENOSTR The major device number does not represent a
STREAMS driver.

ENODEV The device is not configured for autopush.

SAD_VML Allows any user to validate a list of modules (that is, to see if they
are installed on the system). arg is a pointer to a str_list
structure with the following members:

int sl_nmods;

struct str_mlist *sl_modlist;The str_mlist structure has
the following member:

char l_name[FMNAMESZ+1];

sl_nmods indicates the number of entries the user has allocated
in the array and sl_modlist points to the array of module
names. The return value is 0 if the list is valid, 1 if the list contains
an invalid module name, or −1 on failure. On failure, errno is set
to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL The sl_nmods field of the str_list
structure is less than or equal to zero.

intro(2), ioctl(2), open(2)

STREAMS Programming Guide

Unless otherwise specified, the return value from ioctl() is 0 upon success and −1
upon failure with errno set as indicated.

sad(7D)

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 477

sbpro – Sound Blaster Pro, Sound Blaster 16, and Sound Blaster AWE32 audio device
driver

sbpro:sound,sbpro

sbpro:sound,sbproctl

The Creative Labs Sound Blaster family of audio cards comprises DMA-capable ISA
bus plug-in cards that provide 8 and 16 bit mono and stereo digitized sound recording
and playback over a wide range of sampling rates. Each card includes a digital sound
processor and mixing capability. Some of the cards also support more advanced audio
features such as FM synthesis, advanced signal processing, advanced wave effects,
and MIDI capability; however, the sbpro driver does not currently support those
advanced features. The features and interfaces supported by the Solaris sbpro driver
are described here and in audio(7I).

Some Sound Blaster cards support optional non-audio capabilities such as SCSI
interfaces and CD-ROM interfaces. These interfaces are not supported by the sbpro
driver. The Sound Blaster 16 optional SCSI-2 interface is supported by the aic(7D)
driver.

The sbpro driver also supports certain Sound Blaster-compatible audio devices,
including some based on the ESS688 audio chip.

In addition, the driver supports some devices based on the Analog Devices AD1847
and AD1848, and Crystal Semiconductor CS4231 chips. Any CS4231-based devices
supported by this driver are programmed in AD1848 compatibility mode. There is no
special support in this driver for the more advanced CS4231 features. This family of
devices will be referred to as the "AD184x family."

The Sound Blaster device is treated as an exclusive resource, meaning that only one
process may open the device at a time. Since the Sound Blaster hardware does not
support simultaneous sound input and output, the sbpro driver does not allow the
simultaneous access of the device by two processes, even if one tries to open it
read-only and the other write-only.

The sbpro driver will return "SUNW,sbpro" or "SUNW,sb16" in the name field of
the audio_device structure. The version field will contain the version number of the
card’s DSP chip, and the config field will be set to "SBPRO" or "SB16". The AWE32 is
currently identified as an SB16. In all subjects covered in this man page, , the Sound
Blaster AWE32 behaves the same as the Sound Blaster 16.

The Sound Blaster Pro handles 8-bit samples. In mono mode, audio data may be
sampled at rates from 4,000 to 44,100 samples per second. In stereo mode, samples
may be handled at the rates of 11,025 and 22,050 samples per second. The SB-16 can
sample 8-bit or 16-bit mono or stereo data in the range of 5,000 to 44,100 Hz. Devices
in the AD184x family can handle sample rates up to 48,000 Hz.

The Sound Blaster Pro hardware handles 8-bit linear samples in excess-128 format.
The Sound Blaster 16 handles that format as well as 16-bit linear samples in two’s

sbpro(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

Audio Data
Formats

478 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

complement format. The sbpro driver will generate and accept data in these formats
if AUDIO_ENCODING_LINEAR is selected in the encoding field of the audio information
structure. 16 bit precision is not available on the Sound Blaster Pro. The sbpro driver
will also accept and generate mu−law format data (as in the Greek letter mu) if the
encoding field is set to AUDIO_ENCODING_ULAW. In this case, driver software
performs the translation between linear and mu-law formats. mu-law encoding is
designed to provide an improved signal-to-noise ratio at low amplitude levels. To
achieve best results when using mu-law encoding, the audio record volume should be
set so that typical amplitude levels lie within approximately three-fourths of the full
dynamic range. Devices in the AD184x family support both mu-law and A-law in
hardware, and the driver allows either of those encodings to be selected.

The Sound Blaster hardware does not support multiple output devices, so the play.port
field of the audio information structure only supports AUDIO_HEADPHONE. Output
volume is controlled by software. The volume control thumbwheel on the back of the
card should be turned all the way up to maximum; otherwise no sound may be
audible.

The record.port field of the audio information structure allows selection of which audio
source is used for recording, and may be set to one of AUDIO_MICROPHONE,
AUDIO_LINE_IN, or AUDIO_CD. These select input from the microphone jack,
line-level input jack, or internal CD input, respectively. The microphone input is
treated as a mono source by the hardware, although the microphone jack is a stereo
jack. If your microphone has a mono plug, you should convert it to a stereo plug using
an appropriate adapter. Line and CD are stereo sources. When recording in mono
mode, both stereo channels are mixed before recording.

Note – Many audio devices come with a software utility that allows you to select the
IRQ and DMA settings. Often, this utility does not record parameters in nonvolatile
memory but in a configuration file used by DOS to set the card’s configuration at each
reboot. This type of configuration file is not used by the Solaris software and does not
affect the operation of the card with the Solaris operating environment.

� Output volume is controlled by software. If you do not hear sound, turn the
volume thumbwheel on the back of the card to the maximum volume setting.

� Line-in and aux jacks typically require line level voltages, such as output from a
tape or CD player line-out jack or from a powered (battery-operated) microphone.
Mic jacks typically require lower voltages. Consult the manufacturer’s
documentation for your device requirements.

� The Sound Blaster Pro card cannot share IRQ settings with any other card installed
in your system. If the hardware-jumpered IRQ setting conflicts with any other
device, change the IRQ on the Sound Blaster card to one listed under Supported
Settings. The most common conflicts occur with the LPT1 parallel port or a
network card.

� For Sound Blaster 16 cards that have an on-board SCSI subsystem, the audio
subsystem needs its own I/O (port) address and an IRQ, distinct from those of the
SCSI subsystem.

sbpro(7D)

Audio Ports

PRECONFIGURATION

Device and Network Interfaces 479

Note – Default settings differ slightly between the SB Pro, SB Pro-2 and SB 16, SB
AWE32, SB Vibra 16 cards. Only the 0x220 and 0x240 settings are supported for SB Pro
and SB Pro-2 while additional addresses are supported for the SB 16, SB AWE32, and
SB Vibra 16 cards.

If your card supports Plug and Play, your device resources are configured
automatically. Use the following settings for devices that don’t support Plug and Play.
Defaults settings are shown in italics.

� IRQ Level: 2, 5, 7, 10
� I/O Address: 0x220, 0x240, 0x260, 0x280
� 8-bit DMA Channel: 0, 1, 3
� 16-bit DMA Channel: 5, 6, 7

Settings for the Compaq Deskpro XL and Turtle Beach Tropez Card are provided
below. For each device, the sbpro driver automatically chooses an unused DMA
channel and IRQ line.

� Compaq Deskpro XL Business Audio With Built-in AD1847 Chip — I/O Address:
0x530, 0x604, 0xE80, 0xF40

Note – The sbpro support for the AD1848 and compatibles uses one DMA channel
for both play and record; simultaneous play/record is not supported.

� Turtle Beach Tropez Card With CS4231 Chip — I/O Address: 0x530 (The MWSS
I/O address on the Turtle Beach Tropez card is 0x530 at power-up. It can only be
changed by software after the system is booted, a function that the Solaris
operating environment does not perform. Therefore, the Tropez card is only
supported at I/O address 0x530).

Note – The Tropez card comes with a software utility for selecting the IRQ, DMA,
and MWSS compatibility I/O address settings used by the card. However, that
utility does not record those parameters in nonvolatile memory, but in a
configuration file used by DOS to set the card’s configuration at each reboot. This
type of configuration file is not used by the Solaris software and does not affect the
operation of the card with the Solaris operating environment.

� Any Crystal Semiconductor CS4231-based devices supported by this driver are
programmed in AD1848-compatibility mode. This driver does not include support
for advanced CS4231 features; in particular, simultaneous play/record.

� The Sound Blaster card cannot share IRQ settings with any other card installed in
your system. The most common conflicts occur with the LPT1 parallel port or a
network card.

� Some devices can detect that the IRQ is in use by another device in the system. If
this occurs, the driver prints an error message:

sbpro: MWSS_AD184x IRQ 7 is ’in use.’

To correct this, change the IRQ setting of either the audio device or the conflicting
device. (Some devices are not able to detect such a conflict. The driver will try to

sbpro(7D)

Supported Settings

Known Problems
and Limitations

480 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

use the card, but that will likely result in the system hanging when the card is first
used. Thus, it is important to check that the IRQ that does not conflict with another
device.)

� Although the sbpro driver supports A-law encoding on AD1848 and compatible
devices, audiotool does not and produces an error message if you select A-law
encoding. Use audioplay(1) to play A-law encoded audio files, or use
audioconvert(1) to convert the A-law sample into a format that audiotool will
accept, such as 16-bit linear. User-written applications can select A-law format
using the sbpro driver on AD1848 and compatible devices.

Note – Some Compaq Deskpro XL Business Audio system units with built-in AD184x
chip have the headphone jack wired with its left and right channels reversed. As a
result, left and right output is reversed. The line-out jack at the back of the unit works
as expected. For optimum sound quality, use external microphone and speakers and
not the ones built into the keyboard.

� Non-Plug and Play Sound Blaster 16, Sound Blaster Vibra 16, and Sound Blaster
AWE32 cards are recognized as Sound Blaster 16 cards.

� The ISA version IBM Token Ring and compatible adapters will not work in a
system that contains a Sound Blaster card that is configured at the default I/O port
address (0x220). If possible, move the Sound Blaster card to port address 0x240;
otherwise, remove the Sound Blaster device from the system.

/dev/audio Linked to s/dev/sound/0

/dev/audioctl Linked to /dev/sound/0ctl

/dev/sound/0 First audio device in the system

/dev/sound/0ctl Audio control for first audio device

/usr/share/audio Audio files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

audioconvert(1), ioctl(2), attributes(5), aic(7D), audio(7I), streamio(7I)

Creative Labs, Inc. Sound Blaster Pro User Reference Manual

The current driver implementation does not support the A-law encoding mode for
Sound Blaster and compatible devices.

The conversion of mu-law to 8-bit linear format for Sound Blaster and compatible
devices can cause a loss of precision, resulting in poor sound quality in cases where
the original recording level was well below normal. If this occurs while using the

sbpro(7D)

FILES

ATTRIBUTES

SEE ALSO

BUGS

Device and Network Interfaces 481

Sound Blaster 16 card, audioconvert(1) can be used to convert the original mu-law
data to 16-bit linear format before play. This will preserve all the precision from the
original mu-law sample.

sbpro(7D)

482 man pages section 7: Device and Network Interfaces • Last Revised 16 January 2001

scman – SUNW,scman Sun Fire 15000 management network device driver

/dev/scman

The scman (7D) network device driver is a loadable, clonable, STREAMS hardware
driver that supports the dlpi connectionless data link provider interface over the
SUNW,scman network controller. The scman controller provides a highly available,
secure communication channel between the Sun Fire 15000 system controller and
dynamic system domains.

The scman driver provides basic support for the SUNW,scman controller. Driver
functions include network initialization, frame transit and receive, multicast and
promiscuous support, and error recovery and reporting.

The scman controller is physically located in the Sun Fire 15000 system controller and
connects to SUNWdman controllers found in each active dynamic system domain in a
Sun Fire 15000 chassis. See dman(7D). All links are point-to-point and are internal to
the Sun Fire 15000 chassis. Traffic between the system controller and the dynamic
system domains is not accessible by any third party; for example, another system
domain within the Sun Fire 15000 chassis. All system domains are accessible through
the scman controller.

The link layer frame format is identical to that used by Ethernet (sys/ethernet.h).

The /dev/scman cloning character-special device is used to access the SUNW,scman
controller installed on the system.

The scman driver is a style 2 data link provider interface. All M_PROTO and
M_PCPROTO type messages are interpreted as DLPI primitives. Valid DLPI primitives
are defined in sys/dlpi.h. Refer to dlpi(7P) for more information. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device or physical point of attachment (PPA).

The PPA ID is interpreted as an unsigned long data type and indicates the
corresponding device instance (unit) number. The only valid unit number is 0. An
error (DL_ERROR_ACK) is returned by the driver if the PPA field value does not
correspond to a valid device instance number for this system. The device is initialized
on the first attach and deinitialized (stopped) upon the last detach.

The values returned by the scman driver in the DL_INFO_ACK primitive in response
to the DL_INFO_REQ from the user are:

� Maximum service data units (SDU) are 1500.

� Minimum SDU is 0.

� Data link service access point (DLSAP) address length is 8.

� Media access control (MAC) type is DL_ETHER.

� Service access point (SAP) length value is -2, meaning the physical address
component is followed immediately by a two-byte SAP component within the

scman(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE
DLPI

Device and Network Interfaces 483

DLSAP address.

� Service mode is DL_CLDLS.

� Optional quality of service (QOS) support is not included; the QOS fields are 0.

� Provider style is DL_STYLE2.

� Version is DL_VERSION_2.

� Broadcast address value is Ethernet/IEEE broadcast address (0xFFFFFF).

Once in the DL_ATTACHED state, you can transmit DL_BIND_REQ to associate a
particular SAP with the stream. The scman driver interprets the SAP field within the
DL_BIND_REQ as an Ethernet type; as a result, valid values for the SAP field are in the
0 through 0xFFFF range. Only one Ethernet type can be bound to the stream at any
time.

If you select the SAP with a value of 0, the receiver will be in 802.3 mode. All frames
received from the media having a type field in the range from 0 through 1500 are
assumed to be 802.3 frames and are routed up all open streams that are bound to SAP
value 0. If more than one stream is in 802.3 mode, then the frame is duplicated and
routed up multiple streams as DL_UNITDATA_IND messages.

In transmission, the driver checks the DL_BIND_REQ SAP field to determine if the SAP
value is 0 and the destination type field is in the range from 0 through 1500. If either is
true, the driver computes the length of the message, not including the initial M_PROTO
message block (mblk), of all subsequent DL_UNITDATA_REQ messages and transmits
802.3 frames that have this value in the MAC frame header length field.

The scman driver DLSAP address format consists of the six-byte physical (Ethernet)
address component followed immediately by the two-byte SAP (type) component
producing an eight-byte DLSAP address. Applications should not be hard-coded to this
implementation-specific DLSAP address format, but instead use information returned
in the DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The SAP
length, full DLSAP length, and SAP physical ordering are included within the
DL_INFO_ACK. The physical address length can be computed by subtracting the SAP
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

Once in the DL_BOUND state, you can transmit frames on the Ethernet by sending
DL_UNITDATA_REQ messages to the scman driver. The scman driver routes received
Ethernet frames as DL_UNITDATA_IND messages up all open and bound streams
having a SAP matching the Ethernet type. Received Ethernet frames are duplicated
and routed up multiple open streams, if necessary. The DLSAP address contained
within the DL_UNITDATA_REQ and DL_UNITDATA_IND messages consists of both the
SAP (type) and physical (Ethernet) components.

In addition to the mandatory connectionless DLPI message set, the scman driver
supports the following primitives.

scman(7D)

PRIMITIVES

484 man pages section 7: Device and Network Interfaces • Last Revised 10 Sep 2000

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable or disable
reception of individual multicast group addresses. A set of multicast addresses may be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives with the
DL_PROMISC_PHYS flag set in the dl_level field enables or disables reception of all
promiscuous mode frames on the media, including frames generated by the local host.
When used with the DL_PROMISC_SAP flag set, this enables or disables reception of
all SAP (Ethernet type) values. When used with the DL_PROMISC_MULTI flag set, this
enables or disables reception of all multicast group addresses. The effect of each is
always on a per-stream basis and independent of other SAP and physical level
configurations on this stream or other streams.

The DL_PHYS_ADDR_REQ primitive returns the six-octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive is not supported.

The scman driver operates at 10 Mbps, full-duplex.

The scman driver allows you to set and get various parameters for the SUNW,scman
device. The parameter list includes current transceiver status, current link status,
interpacket gap, local transceiver capabilities, and link partner capabilities.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sun Fire 15000 servers

Availability SUNWscdvr

The scman driver utilizes the following files:

/dev/scman
Special character device

/platform/sun4u/kernel/drv/scman.conf
System-wide default device driver properties

ndd(1M), netstat(1M), driver.conf(4), dman(7D), eri(7D),

dlpi(7P)

scman(7D)

scman DRIVER

PARAMETER
LIST

ATTRIBUTES

FILES

SEE ALSO

Device and Network Interfaces 485

scmi2c – Smart Transporter chip device driver

The scmi2c Smart Transporter device driver is a kernel-loadable Solaris device driver
for the Sun Microsystems Smart Transporter chip that features Sun Smartcard internal
reader support using the I2C bus interface.

dev/scmi2cn
SCM Microsystems Smart Transporter chip device node

/platform/sun4u/kernel/drv/sparcv9/scmi2c
SCM Microsystems Smart Transporter chip kernel module

smartcard(1M), smartcard(5), ocf_iscr1(7D)

scmi2c(7d)

NAME

DESCRIPTION

FILES

SEE ALSO

486 man pages section 7: Device and Network Interfaces • Last Revised 3 April 2000

sc_nct – NetraCT-40/60 system management controller (SMC) I2C nexus driver

type=ddi_pseudo;name=nct-ds80ch11-smc

The sc_nct driver is an I2C nexus driver used specifically for the Dallas
Semiconductor DS80CH11 microController on the NetraCT-40/60 platform. The driver
communicates with the system controller board, power supply, fan tray, and other
devices on the I2C bus.

SUNW,UltraSPARC-IIe-NetraCT-4032 bit ELF kernel module

SUNW,UltraSPARC-IIe-NetraCT-6032 bit ELF kernel module

/kernel/drv/sparcv9/sc_nct64 bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC (NetraCT series only)

Availability SUNWcti2x.u

Writing Device Drivers

sc_nct(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 487

scsa2usb – SCSI to USB bridge driver

storage@unit-address

The scsa2usb driver is a USBA (Solaris USB architecture) compliant nexus driver
that supports the USB Bulk Only Mass Storage Specification 1.0 and USB
Control/Bulk/Interrupt (CBI) Transport 1.0. It supports bus-powered and
self-powered USB mass storage devices. This nexus driver is a USB client driver. The
scsa2usb driver only supports disk devices that utilize the above two transports.

The scsa2usb nexus driver maps SCSA target driver requests to USBA client driver
requests.

The scsa2usb driver creates a child device info node for each logical unit (LUN) on
the mass storage device. The standard Solaris SCSI disk driver is attached to those
nodes. Refer to sd(7D).

This driver supports multiple LUN devices and creates a separate child device info
node for each LUN. All child LUN nodes attach to sd(7D).

The mass storage device can be managed by rmformat(1). With or without Volume
Manager, you can mount, eject, hot remove and hot insert a mass storage device, as
the following sections explain.

Mass storage devices are managed by Volume Manager. vold(1M) creates a device
nickname which can be listed with eject(1). The device is mounted using
volrmmount(1) under /rmdisk/label.

See volrmmount(1M) to unmount the device and eject(1) to eject the media. If the
device is ejected while it is mounted, vold(1M) unmounts the device before ejecting it.
It also kills any active applications that are accessing the device.

Hot removing a mass storage device with vold(1M) will fail with a console warning.
To hot remove or insert a USB storage device, first stop vold(1M) by issuing the
command /etc/init.d/volmgt stop. After the device has been removed or
inserted, restart vold(1M) by issuing the command /etc/init.d/volmgt start.

You can also permanently disable vold for removable devices by commenting out the
rmscsi line in vold.conf. See the System Administration Guide, Volume I and Solaris
Common Desktop Environment: User’s Guide for details on how to manage a removable
device with CDE and Removable Media Manager. See dtfile.1X under CDE for
information on how to use Removable Media Manager.

Use mount(1M) to mount the device and umount(1M) to unmount the device. Use
eject(1) to eject the media. No vold nicknames can be used. (vold.1m is disabled.)

Removing the storage device while it is being accessed or mounted will fail with a
console warning. To hot remove the storage device from the system, unmount the file
system, then kill all applications accessing the device. Next, hot remove the device. A
storage device can be hot inserted at any time.

scsa2usb(7D)

NAME

SYNOPSIS

DESCRIPTION

Using Volume
Management

Using mount(1M)
and umount(1M)

488 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

For a comprehensive listing of (non-bootable) USB mass-storage devices that are
compatible with this driver, see www.sun.com/io_technologies/storagesolutions.html.

Block special file names are located in /dev/dsk; raw file names are located in
/dev/rdsk. Input/output requests to the devices must follow the same restrictions as
those for SCSI disks. Refer to sd(7D).

Refer to dkio(7I) and cdio(7I).

Refer to sd(7D).

The device special files for the USB mass storage device are created like those for a
SCSI disk. Refer to sd(7D).

/dev/dsk/cntndnsn
Block files

/dev/rdsk/cntndnsn
Raw files

/vol/dev/aliases/zip0
Symbolic link to the character device for the media in Zip drive 0

/vol/dev/aliases/jaz0
Symbolic link to the character device for the media in Jaz drive 0

/vol/dev/aliases/rmdisk0
Symbolic link to the character device for the media in removable drive 0. This is a
generic removable media device

/kernel/drv/scsa2usb
32-bit ELF kernel module

/kernel/drv/sparcv9/scsa2usb
64-bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

eject(1), rmformat(1), volrmmount(1), cfgadm_scsi(1M), fdisk(1M),
mount(1M), umount(1M), vold(1M), dtfile.1X, scsi(4), ohci(7D), sd(7D),
uhci(7D), usba(7D), usb_mid(7D), pcfs(7FS), dkio(7I)

Writing Device Drivers

System Administration Guide, Volume I

scsa2usb(7D)

DEVICE SPECIAL
FILES

IOCTLS

ERRORS

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 489

Solaris Common Desktop Environment: User’s Guide

Universal Serial Bus Specification 1.1

Universal Serial Bus Mass Storage Class Specification Overview 1.0

Universal Serial Bus Mass Storage Class Bulk-Only Transport 1.0

Universal Serial Bus Mass Storage Class Control/Bulk/Interrupt (CBI) Transport 1.0

System Administration Guide: Basic Administration

Refer to sd(7D).

In addition to being logged, the following messages may appear on the system
console. All messages are formatted in the following manner:

Warning: <device path> (scsa2usb<instance number>): Error Message...

Cannot access device. Please reconnect <name>.

There was an error in accessing the mass-storage device during reconnect. Please
reconnect the device.

Device reported incorrect luns (adjusting to 1).

The mass-storage device reported that it supports invalid number of LUNs. The driver
has adjusted the number of LUNs supported to 1.

Device is busy and cannot be suspended.

Please close files, unmount and eject.

The system wide suspend failed because the mass-storage device is busy. Close the
device, unmount the file system and eject the media before retrying the suspend.

Device is not identical to the previous one on this port.

Please disconnect and reconnect.

Another USB device has been inserted on the port that housed a mass-storage device.
Please disconnect the USB device and reconnect the mass-storage device back into its
port.

Disconnected device was busy, please reconnect.

Disconnection of the mass-storage device failed because the device is busy. Please
reconnect the device.

Reinserted device is accessible again.

The mass-storage device that was hot-removed from its USB slot has been re-inserted
again to the same slot. It is available for access.

Syncing not supported.

scsa2usb(7D)

DIAGNOSTICS

490 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

System panic. A file system is mounted on the mass-storage media. Syncing is not
supported by scsa2usb driver.

The Zip 100 drive does not comply with Universal Serial Bus Specification 1.0 and
cannot be power managed. Power Management support for Zip 100 has been
disabled.

If the system panics while a UFS file system is mounted on the mass storage media, no
syncing will take place for the mass-storage device. (Syncing is not supported by the
scsa2usb driver.) As a result, the file system on the media will not be consistent on
reboot.

If a PCFS file system is mounted, no syncing is needed and the filesystem will be
consistent on reboot.

If a mass-storage device is busy, system suspend cannot proceed and the system will
immediately resume again.

Attempts to remove a mass-storage device from the system will fail. The failure will be
logged to the console. An attempt to replace the removed device with some other USB
device will also fail. To successfully remove a USB mass-storage device you must
"close" all references to it.

An Iomega Zip 100Mb disk cannot be formatted on an Iomega Zip250 drive. See the
Iomega web site at http://www.iomega.com for details.

Concurrent I/O to devices with multiple LUNs on the same device is not supported.

Some USB CD-RW devices may perform inadequately at their advertised speeds. To
compensate, use USB CD-RW devices at lower speeds (2X versus 4X). See cdrw(1)
for details.

This driver also supports CBI devices that do not use USB interrupt pipe for status
completion.

scsa2usb(7D)

NOTES

Device and Network Interfaces 491

scsi_vhci – SCSI virtual host controller interconnect driver

The scsi_vhci driver is a SCSA compliant pseudo nexus driver that supports
multipath services for fibre channel attached SCSI-3 devices. This driver introduces a
fundamental restructuring of the Solaris device tree to enable a multipath device to be
represented as single device instance rather than as an instance per physical path as in
earlier Solaris versions.

The multipath SCSI target devices managed by this driver are identified and
represented by using SCSI-3 VPD page (0x83) as the device’s unit address.

Symbolic links in /dev/[r]dsk continue to adhere to the cNtNdNsN format. cN is
the logical controller number assigned to this driver instance. tN is the global unique
identifier (GUID) of the multipath target device (64/128 bits), represented as
hexadecimal numbers.

The following is an example of a system with a A5000 storage array:

...
/dev/rdsk/c4t200000203709C3F5d0s0 -> ../../devices/scsi_vhci/

ssd@g200000203709c3f5:a,raw
...
/dev/rdsk/c4t200000203709C3F5d0s7 -> ../../devices/scsi_vhci/

ssd@g200000203709c3f5:h,ra

...

The following is an example of a system with a T300 storage array:

...
/dev/rdsk/c1t60020F200000033939C2C2B60008D4AEd0s0 -> ../../devices/

scsi_vhci/ssd@g60020f200000033939a2c2b60008d4ae:a,raw
...
/dev/rdsk/c1t60020F200000033939A2C2B60008D4AEd0s7 -> ../../devices/

scsi_vhci/ssd@g60020f200000033939a2c2b60008d4ae:h,raw

The scsi_vhci driver receives naming and transport services from one or more
physical HBA devices. To support multi-pathing, a physical HBA driver must comply
with the multipathing services provided by this driver. Currently, the fcp(7D) fibre
channel SCSI protocol driver is the only driver to comply with the services provided
by the scsi_vhci driver.

Note – Enabling this feature on an upgraded implementation may result in a new
naming scheme for multipath devices under /dev and /devices. If this happens,
older links will be invalid and existing file systems will be unusable.

The scsi_vhci driver supports the standard functions provided by the SCSA
interface.

The scsi_vhci driver can be configured by defining properties in the
scsi_vhci.conf file. The scsi_vhci.conf file overrides the default settings. (See
driver.conf(4)).

scsi_vhci(7D)

NAME

DESCRIPTION

CONFIGURATION

492 man pages section 7: Device and Network Interfaces • Last Revised 26 Feb 2001

The scsi_vhci driver supports the following properties:

PROPERTY NAME DEFAULT POSSIBLE VALUES

mpxio-disable no yes or no

load-balance round robin none or round-robin

The mpxio-disable property determines if the HBA driver instance is attached to
the mpxio framework. By default, HBA drivers register themselves with the mpxio
framework. If the mpxio-disable property is set to value “yes,” the device tree
space continues to work in the current way, that is, SCSI target devices are created
under the physical parent node. The mpxio-disable property comprises a system
wide enable/disable. To coexist with other multipath solutions, certain SCSI HBA
drivers must enable/disable the mpxio functionality on a HBA instance basis. The
HBA driver implementation manages this using properties configurable through the
driver.conf file. Please refer to the corresponding HBA driver man page for
information on how to disable mpxio on a HBA driver instance basis.

By default, the load balance property is ON. You can globally disable it by setting
the load balance string property to “none” through the driver.conf file. The
scsi_vhci driver supports a simple round robin automatic path selection model.

Setting load balance to “round-robin” enables paths in ONLINE state to be selected
for I/O in a round robin fashion.

A sample configuration file follows:

...
mpxio Global enable/disable configuration
possible values are mpxio-disable="no" or mpxio-disable="yes"
#
mpxio-disable="no";
#
Load Balancing global configuration
possible values are load-balance="none" or load-balance="round-robin"
#
load-balance="round-robin";

#

Sample prtconf(1M) (verbose option) output of scsi_vhci properties is shown
below:

scsi_vhci, instance #0
System properties:

...
name <mpxio disable> length <3>

value ’no’
name <load balance> length <12>

value ’round-robin’

...

scsi_vhci(7D)

Device and Network Interfaces 493

/kernel/drv/scsi_vhci
64-bit ELF kernel module

/kernel/drv/sparcv9/scsi_vhci
Access system console

/kernel/drv/scsi_vhci.conf
Driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWmdi, SUNWmdix (64 bit)

eeprom(1M), prtconf(1M), attributes(5), fcp(7D), fctl(7D), fp(7D), ssd(7D),
qlc(9F), scsi_abort(9F), scsi_ifgetcap(9F), scsi_pkt(9S), scsi_reset(9F),
scsi_transport(9F), scsi_inquiry(9S), scsi_extended_sense(9S)

Writing Device Drivers

Small Computer System Interface-3 (SCSI-3)

scsi_vhci(7D)

FILES

ATTRIBUTES

SEE ALSO

494 man pages section 7: Device and Network Interfaces • Last Revised 26 Feb 2001

sd – SCSI disk and ATAPI/SCSI CD-ROM device driver

sd@target,lun:partition

The sd SCSI and SCSI/ATAPI driver supports embedded SCSI-2 and CCS-compatible
SCSI disk and CD-ROM drives, ATAPI 2.6 (SFF-8020i)-compliant CD-ROM drives,
SFF-8090–compliant SCSI/ATAPI DVD-ROM drives, IOMEGA SCSI/ATAPI ZIP
drives, and SCSI JAZ drives.

To determine the disk drive type, use the SCSI/ATAPI inquiry command and read the
volume label stored on block 0 of the drive. (The volume label describes the disk
geometry and partitioning and must be present for the disk to be mounted by the
system.) A volume label is not required for removable, rewritable or read-only media.

The sd driver supports embedded SCSI-2 and CCS-compatible SCSI disk and
CD-ROM drives, ATAPI 2.6 (SFF-8020i)-compliant CD-ROM drives,
SFF-8090-compliant SCSI/ATAPI DVD-ROM drives, IOMEGA SCSI/ATAPI ZIP
drives, and SCSI JAZ drives.

The IA BIOS legacy requires a master boot record (MBR) and fdisk table in the first
physical sector of the bootable media. If the IA hard disk contains a Solaris disk label,
it is located in the second 512-byte sector of the FDISK partition.

Block-files access the disk using normal buffering mechanism and are read-from and
written-to without regard to physical disk records. A "raw" interface enables direct
transmission between the disk and the user’s read or write buffer. A single read or
write call usually results in a single I/O operation; raw I/O is therefore more
efficient when many bytes are transmitted. Block files names are found in /dev/dsk;
raw file names are found in /dev/rdsk.

I/O requests to the raw device must be aligned on a 512-byte (DEV_BSIZE) boundary
and all I/O request lengths must be in multiples of 512 bytes. Requests that do not
meet these requirements will trigger an EINVAL error. There are no alignment or
length restrictions on I/O requests to the block device.

A CD-ROM disk is single-sided and contains approximately 640 megabytes of data or
74 minutes of audio. When the CD-ROM is opened, the eject button is disabled to
prevent manual removal of the disk until the last close() is called. No volume label
is required for a CD-ROM. The disk geometry and partitioning information are
constant and never change. If the CD-ROM contains data recorded in a Solaris-aware
file system format, it can be mounted using the appropriate Solaris file system
support.

DVD-ROM media can be single or double-sided and can be recorded upon using a
single or double layer structure. Double-layer media provides parallel or opposite
track paths. A DVD-ROM can hold from between 4.5 Gbytes and 17 Gbytes of data,
depending on the layer structure used for recording and if the DVD-ROM is single or
double-sided.

sd(7D)

NAME

SYNOPSIS

SPARC

IA Only

DEVICE SPECIAL
FILES

CD-ROM DRIVE
SUPPORT

DVD-ROM
DRIVE SUPPORT

Device and Network Interfaces 495

When the DVD-ROM is opened, the eject button is disabled to prevent the manual
removal of a disk until the last close() is called. No volume label is required for a
DVD-ROM. If the DVD-ROM contains data recorded in a Solaris-aware file system
format, it can be mounted using the appropriate Solaris file system support.

ZIP/JAZ media provide varied data capacity points; a single JAZ drive can store up to
2 GBytes of data, while a ZIP-250 can store up to 250MBytes of data. ZIP/JAZ drives
can be read-from or written-to using the appropriate drive.

When a ZIP/JAZ drive is opened, the eject button is disabled to prevent the manual
removal of a disk until the last close() is called. No volume label is required for a
ZIP/JAZ drive. If the ZIP/JAZ drive contains data recorded in a Solaris-aware file
system format, it can be mounted using the appropriate Solaris file system support.

Each device maintains I/O statistics for the device and for partitions allocated for that
device. For each device/partition, the driver accumulates reads, writes, bytes read,
and bytes written. The driver also initiates hi-resolution time stamps at queue entry
and exit points to enable monitoring of residence time and cumulative
residence-length product for each queue.

Not all device drivers make per-partition IO statistics available for reporting. sd and
ssd(7D) per-partition statistics are enabled by default but may disabled in their
configuration files.

Refer to dkio(7I), and cdio(7I)

EACCES Permission denied

EBUSY The partition was opened exclusively by another thread

EFAULT The argument features a bad address

EINVAL Invalid argument. EIO. An I/O error occurred. Refer to notes for details
on copy –protected DVD-ROM media

ENOTTY The device does not support the requested ioctl function

ENXIO During opening, the device did not exist. During close, the drive unlock
failed

EROFS The device is read-only

EAGAIN Resource temporarily unavailable

EINTR A signal was caught during the execution of the ioctl() function

ENOMEM Insufficient memory

EPERM Insufficent access permission

The sd driver can be configured by defining properties in the sd.conf file. The sd
driver supports the following properties:

sd(7D)

ZIP/JAZ DRIVE
SUPPORT

DEVICE
STATISTICS

SUPPORT

IOCTLS

ERRORS

CONFIGURATION

496 man pages section 7: Device and Network Interfaces • Last Revised 24 May 2001

enable-partition-kstats
The default value is 1, which causes partition IO statistics to be maintained. Set this
value to zero to prevent the driver from recording partition statistics. This slightly
reduces the CPU overhead for IO, mimimizes the amount of sar(1) data collected
and makes these statistics unavailable for reporting by iostat(1M) even though
the -p/ -P option is specified. Regardless of this setting, disk IO statistics are
always maintained.

qfull-retries
The supplied value is passed as the qfull-retries capability value of the HBA
driver. See scsi_ifsetcap(9F) for details.

qfull-retry-interval
The supplied value is passed as the qfull-retry interval capability value of
the HBA driver. See scsi_ifsetcap(9F) for details.

allow-bus-device-reset
The default value is 1, which allows resetting to occur. Set this value to 0 (zero) to
prevent the sd driver from calling scsi_reset(9F) with a second argument of
RESET_TARGET when in error-recovery mode. This scsi_reset(9F) call may
prompt the HBA driver to send a SCSI Bus Device Reset message. The
scsi_reset(9F) call with a second argument of RESET_TARGET may result from
an explicit request via the USCSICMD ioctl. Some high-availability multi-initiator
systems may wish to prohibit the Bus Device Reset message; to do this, set the
allow-bus-device-reset property to 0.

sd.conf driver configuration file

/dev/dsk/cntndnsn block files

/dev/rdsk/cntndnsn raw files

Where:

cn controller n

tn SCSI target id n (0-6)

dn SCSI LUN n (0-7 normally; some HBAs support LUNs
to 15 or 32. See the specific manpage for details)

sn partition n (0-7)

/dev/rdsk/cntndnpn raw files

Where:

pn Where n=0 the node corresponds to the entire disk.

sar(1), fdisk(1M),format(1M), iostat(1M), close(2), ioctl(2), lseek(2),
read(2), write(2), driver.conf(4), scsi(4), filesystem(5), pcfs(7FS),
hsfs(7FS), cdio(7I), dkio(7I), scsi_ifsetcap(9F), scsi_reset(9F)

ANSI Small Computer System Interface-2 (SCSI-2)

sd(7D)

FILES

IA Only

SEE ALSO

Device and Network Interfaces 497

ATA Packet Interface for CD-ROMs, SFF-8020i

Mt.Fuji Commands for CD and DVD, SFF8090v3

Error for Command:’<command name>’
Error Level: Fatal
Requested Block: <n>
Error Block: <m>
Vendor:’<vendorname>’
Serial Number:’<serial number>’
Sense Key:<sense key name>

ASC: 0x<a> (<ASC name>), ASCQ: 0x, FRU: 0x<c>

The command indicated by <command name> failed. The Requested Block is the
block where the transfer started and the Error Block is the block that caused the error.
Sense Key, ASC, and ASCQ information is returned by the target in response to a
request sense command.

Caddy not inserted in drive

The drive is not ready because no caddy has been inserted.

Check Condition on REQUEST SENSE

A REQUEST SENSE command completed with a check condition. The original
command will be retried a number of times.

Label says <m> blocks Drive says <n> blocks

There is a discrepancy between the label and what the drive returned on the READ
CAPACITY command.

Not enough sense information

The request sense data was less than expected.

Request Sense couldn’t get sense data

The REQUEST SENSE command did not transfer any data.

Reservation Conflict

The drive was reserved by another initiator.

SCSI transport failed: reason ’xxxx’: {retrying|giving up}

The host adapter has failed to transport a command to the target for the reason stated.
The driver will either retry the command or, ultimately, give up.

Unhandled Sense Key<n>

The REQUEST SENSE data included an invalid sense.

Unit not ready. Additional sense code 0x

sd(7D)

DIAGNOSTICS

498 man pages section 7: Device and Network Interfaces • Last Revised 24 May 2001

<n> The drive is not ready.

Can’t do switch back to mode 1

A failure to switch back to read mode 1.

Corrupt label - bad geometry

The disk label is corrupted.

Corrupt label - label checksum failed

The disk label is corrupted.

Corrupt label - wrong magic number

The disk label is corrupted.

Device busy too long

The drive returned busy during a number of retries.

Disk not responding to selection

The drive was probably powered down or died

Failed to handle UA

A retry on a Unit Attention condition failed.

I/O to invalid geometry

The geometry of the drive could not be established.

Incomplete read/write - retrying/giving up

There was a residue after the command completed normally.

No bp for direct access device format geometry

A bp with consistent memory could not be allocated.

No bp for disk label

A bp with consistent memory could not be allocated.

No bp for fdisk

A bp with consistent memory could not be allocated.

No bp for rigid disk geometry

A bp with consistent memory could not be allocated.

No mem for property

Free memory pool exhausted.

sd(7D)

Device and Network Interfaces 499

No memory for direct access device format geometry

Free memory pool exhausted.

No memory for disk label

Free memory pool exhausted.

No memory for rigid disk geometry

The disk label is corrupted.

No resources for dumping

A packet could not be allocated during dumping.

Offline

Drive went offline; probably powered down.

Requeue of command fails

Driver attempted to retry a command and experienced a transport error.

sdrestart transport failed()

Driver attempted to retry a command and experienced a transport error.

Transfer length not modulo

Illegal request size.

Transport of request sense fails()

Driver attempted to submit a request sense command and failed.

Transport rejected()

Host adapter driver was unable to accept a command.

Unable to read label

Failure to read disk label.

Unit does not respond to selection

Drive went offline; probably powered down.

DVD-ROM media containing DVD-Video data may follow/adhere to the requirements
of content scrambling system or copy protection scheme. Reading of copy-protected
sector will cause I/O error. Users are advised to use the appropriate playback software
to view video contents on DVD-ROM media containing DVD-Video data.

sd(7D)

NOTES

500 man pages section 7: Device and Network Interfaces • Last Revised 24 May 2001

se – Siemens 82532 ESCC serial communications driver

se@bus_address:port_name[,cu]

The se module is a loadable STREAMS driver that provides basic support for the
82532 ESCC hardware and basic asynchronous and synchronous communication
support. This manual page describes the asynchronous protocol interface; for
information on the synchronous interface, please see the se_hdlc(7D) manual page.

Note – This module is affected by the setting of specific eeprom variables. For
information on parameters that are persistent across reboots, see the eeprom(1M) man
page.

The platform specific device bus address for the se module is bus_address. The se
module’s port_name is a single letter (a-z).

The Siemens 82532 provides two serial input/output channels capable of supporting a
variety of communication protocols. A typical system will use one of these devices to
implement two serial ports (port_name), usually configured for RS-423 (which also
supports most RS-232 equipment). The Siemens 82532 uses 64 character input and
output FIFOs to reduce system overhead. When receiving characters, the CPU is
notified when 32 characters have arrived (one-half of receive buffer is full) or no
character has arrived in the time it would take to receive four characters at the current
baud rate.

When sending characters, the Siemens 82532 places the first 64 characters to be sent
into its output FIFO and then notifies the CPU when it is half empty (32 characters
left). Because the se module waits for the Siemens 82532 to transmit the remaining
characters within its output FIFO before making requested changes, delays may occur
when the port’s attributes are being modified.

The se module implements CTS/RTS flow control in hardware. To prevent data
overruns, remove CTS/RTS flow control responsibility from the CPU during periods
of high system load.

In async mode (obtained by opening /dev/cua/[a-z], /dev/term/[a-z] or
/dev/tty[a-z]), the driver supports the termio(7I) device control functions
specified by flags in the c_cflag word of the termios structure, and by the
IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word. All other
termio(7I) functions must be performed by STREAMS modules pushed atop the
driver. When a device is opened, the ldterm(7M) and ttcompat(7M) STREAMS
modules are automatically pushed on top of the stream, providing the standard
termio interface.

Each of the following are valid name space entries: /dev/cua/[a-z],
/dev/term/[a-z], and /dev/tty[a-z]. The number of entries used in this name
space are machine dependent. The /dev/tty[a-z] device names exist only if the
SunOS 4.x Binary Compatibility Package is installed. The /dev/tty[a-z] device names

se(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

Device and Network Interfaces 501

are created by the ucblinks command, which is available only with the SunOS 4.x
Binary Compatibility Package.

You can connect a single tty line to a modem for incoming and outgoing calls using a
special feature controlled by the minor device number. By accessing character-special
devices with names of the form /dev/cua/[a-z], it is possible to open a port without
the Carrier Detect signal being asserted, either through hardware or an equivalent
software mechanism. These devices are commonly known as dial-out lines.

After a /dev/cua/[a-z] line is opened, the corresponding tty line cannot be opened
until the /dev/cua/[a-z] line is closed. A blocking open will wait until the
/dev/cua/[a-z] line is closed (which will drop Data Terminal Ready and
Carrier Detect) and carrier is detected again. A non-blocking open will return an
error. If the tty line has been opened successfully (usually only when carrier is
recognized on the modem), the corresponding /dev/cua/[a-z] line cannot be opened.
This allows a modem to be attached to a device, (for example, /dev/term/ [a-z]
renamed from /dev/tty[a-z]) and used for dial-in (by enabling the line for login in
/etc/inittab) and dial-out (by tip(1) or uucp(1C)) as /dev/cua/[a-z] when no
one is logged in on the line.

The se module supports the standard set of termio ioctl() calls.

Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls.

The state of the DCD, CTS, RTS, and DTR interface signals can be queried through the
use of the TIOCM_CAR, TIOCM_CTS, TIOCM_RTS, and TIOCM_DTR arguments to the
TIOCMGET ioctl command, respectively. Due to hardware limitations, only the RTS
and DTR signals may be set through their respective arguments to the TIOCMSET,
TIOCMBIS, and TIOCMBIC ioctl commands.

The input and output line speeds may be set to all baud rates supported by termio.
Input and output line speeds cannot be set independently; when you set the output
speed, the input speed is automatically set to the same speed.

When using baud rates over 100,000 baud, the software changes the line driver
configuration to handle the higher data rates. This action decreases the theoretical
maximum cable length from 70 meters to 30 meters.

When the se module is used to service the serial console port, it supports a BREAK
condition that allows the system to enter the debugger or the monitor. The BREAK
condition is generated by hardware and it is usually enabled by default. A BREAK
condition originating from erroneous electrical signals cannot be distinguished from
one deliberately sent by remote DCE. Due to the risk of incorrect sequence
interpretation, binary protocols such as PPP, SLIP and others should not be run over
the serial console port when the Alternate Break sequence is in effect. By default, the
Alternate Break sequence is a three character sequence: carriage return, tilde and
control-B (CR ~ CTRL-B), but may be changed by the driver. For information on
breaking (entering the debugger or monitor), see kadb(1) and kb(7M.)

se(7D)

IOCTLS

502 man pages section 7: Device and Network Interfaces • Last Revised 12 Jun 2001

An open() will fail under the following conditions:

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device is
already open, or the dial-in device is being opened with a no-delay
open and the dial-out device is already open.

EBUSY The port is in use by another serial protocol.

EBUSY The unit has been marked as exclusive-use by another process
with a TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

/dev/cua/[a-z] dial-out tty lines

/dev/term/[a-z] dial-in tty lines

/dev/tty[a-z] binary compatibility package device names

/dev/se_hdlc[0-9] synchronous devices - see se_hdlc(7D).

/dev/se_hdlc synchronous control clone device

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

tip(1), kadb(1), ucblinks(1B), cu(1C), uucp(1C), eeprom(1M), ports(1M),
ioctl(2), open(2), attributes(5),zs(7D), zsh(7D), se_hdlc(7D), termio(7I),
ldterm(7M), ttcompat(7M), kb(7M)

sen : fifo overrun The Siemens 82532 internal FIFO received more data
than it could handle. This indicates that Solaris was not
servicing data interrupts fast enough and suggests a
system with too many interrupts or a data line with a
data rate that is too high.

sen : buffer overrun The se module was unable to store data it removed
from the Siemens 82532 FIFO. The user process is not
reading data fast enough, and suggests an overloaded
system. If possible, the application should enable flow
control (either CTSRTS or XONXOFF) to allow the
driver to backpressure the remote system when the
local buffers fill up.

se(7D)

ERRORS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 503

se_hdlc – on-board high-performance serial HDLC interface

se@bus_address:port_number[, hdlc]

The se_hdlc devices are a synchronous hdlc-framing interface for the se serial
devices. Both built-in serial ports (port_number) on platforms which have the se serial
devices, support synchronous data transfer at a maximum rate of 384 kbps. bus_address
is the platform specific se device bus address. port_number is a single digit number
(0-9).

The se_hdlcn devices provide a data path which supports the transfer of data via
read(2) and write(2) system calls, as well as ioctl(2) calls. Data path opens are
exclusive in order to protect against injection or diversion of data by another process.

The se_hdlc device provides a separate control path for use by programs that need
to configure or monitor a connection independent of any exclusive access restrictions
imposed by data path opens. Up to three control paths may be active on a particular
serial channel at any one time. Control path accesses are restricted to ioctl(2) calls
only; no data transfer is possible.

When used in synchronous modes, the SAB 82532 ESCC supports several options for
clock sourcing and data encolding. Both the transmit and receive clock sources can be
set to be the external Transmit clock (TRxC), external Receive Clock (RTxC), the
internal Baud Rate Generator (BRG), or the output of the ESCC ’s Digital Phase-Lock
Loop (DPLL).

The BRG is a programmable divisor that derives a clock frequency from the PCLK
input signal to the ESCC. The programmed baud rate is translated into a floating point
(6-bit mantissa, 4–bit exponent) number time constant that is stored in the ESCC.

A local loopback mode is available, primarily for use by syncloop(1M) for testing
purposes, and should not be confused with SDLC loop mode, which is not supported
on this interface. Also, an auto-echo feature may be selected that causes all incoming
data to be routed to the transmit data line, allowing the port to act as the remote end
of a digital loop. Neither of these options should be selected casually, or left in use
when not needed.

The se driver keeps running totals of various hardware generated events for each
channel. These include numbers of packets and characters sent and received, abort
conditions detected by the receiver, receive CRC errors, transmit underruns, receive
overruns, input errors and output errors, and message block allocation failures. Input
errors are logged whenever an incoming message must be discarded, such as when an
abort or CRC error is detected, a receive overrun occurs, or when no message block is
available to store incoming data. Output errors are logged when the data must be
discarded due to underruns, CTS drops during transmission, CTS timeouts, or
excessive watchdog timeouts caused by a cable break.

The se driver supports the following ioctl() commands.

se_hdlc(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

IOCTLS

504 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

S_IOCGETMODE Return a struct scc_mode containing parameters
currently in use. These include the transmit and receive
clock sources, boolean loopback and NRZI mode flags
and the integer baud rate.

S_IOCSETMODE The argument is a struct scc_mode from which the
ESCC channel will be programmed.

S_IOCGETSTATS Return a struct sl_stats containing the current
totals of hardware-generated events. These include
numbers of packets and characters sent and received
by the driver, aborts and CRC errors detected, transmit
underruns, and receive overruns.

S_IOCCLRSTATS Clear the hardware statistics for this channel.

S_IOCGETSPEED Returns the currently set baud rate as an integer. This
may not reflect the actual data transfer rate if external
clocks are used.

S_IOCGETMCTL Returns the current state of the CTS and DCD
incoming modem interface signals as an integer.

The following structures are used with se hdlc ioctl() commands:

struct scc_mode {
char sm_txclock; /* transmit clock sources */
char sm_rxclock; /* receive clock sources */
char sm_iflags; /* data and clock inversion flags (non-zsh) */
uchar_t sm_config; /* boolean configuration options */
int sm_baudrate; /* real baud rate */
int sm_retval; /* reason codes for ioctl failures */
};
struct sl_stats {
long ipack; /* input packets */
long opack; /* output packets */
long ichar; /* input bytes */
long ochar; /* output bytes */
long abort; /* abort received */
long crc; /* CRC error */
long cts; /* CTS timeouts */
long dcd; /* Carrier drops */
long overrun; /* receive overrun */
long underrun; /* transmit underrun */
long ierror; /* input error */
long oerror; /* output error */
long nobuffers; /* receive side memory allocation failure */

};

An open() will fail if a STREAMS message block cannot be allocated or under the
following conditions:

ENXIO The unit being opened does not exist.

se_hdlc(7D)

ERRORS

Device and Network Interfaces 505

EBUSY The device is in use by another serial protocol.

An ioctl() will fail under the following conditions:

EINVAL An attempt was made to select an invalid clocking source.

EINVAL The baud rate specified for use with the baud rate generator
would translate to a null time constant in the ESCC’s registers.

/dev/se_hdlc[0-1],
/dev/se_hdlc

character-special devices

/usr/include/sys/ser_sync.h header file specifying synchronous serial
communication definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

syncinit(1M), syncloop(1M), syncstat(1M), ioctl(2), open(2), read(2),
write(2), attributes(5), se(7D), zsh(7D)

Siemens ESCC2 SAB 82532 Enhanced Serial Communication Controller User’s Manual

se_hdlc clone open failed, no memory, rq=nnn
A kernel memory allocation failed for one of the private data structures. The value
of nnn is the address of the read queue passed to open(2).

se_hdlc: clone device must be attached before use!
An operation was attempted through a control path before that path had been
attached to a particular serial channel.

se_hdlcn: not initialized, can’t send message
An M_DATA message was passed to the driver for a channel that had not been
programmed at least once since the driver was loaded. The ESCC’s registers were
in an unknown state. The S_IOCSETMODE ioctl command performs the
programming operation.

sen hdlc_start: Invalid message type d on write queue
driver received an invalid message type from streams.

se_hdlcn: transmit hung
The transmitter was not successfully restarted after the watchdog timer expired.
This is usually caused by a bad or disconnected cable.

se_hdlc(7D)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

506 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

ses – SCSI enclosure services device driver

ses@target,lun

The ses device driver is an interface to SCSI enclosure services devices. These devices
sense and monitor the physical conditions within an enclosure as well as allow access
to the status reporting and configuration features of the enclosure (such as indicator
LEDs on the enclosure.)

ioctl(9E) calls may be issued to ses to determine the state of the enclosure and to
set parameters on the enclosure services device.

No ses driver properties are defined. Use the ses.conf file to configure the ses
driver.

The following is an example of the ses.conf file format:

#
Copyright (c) 1996, by Sun Microsystems, Inc.
All rights reserved.
#
#
#ident "@(#)ses.conf 1.1 97/02/10 SMI"
#

name="ses" parent="sf"
target=15;

name="ses" parent="SUNW,pln" port=0 target=15;
name="ses" parent="SUNW,pln" port=1 target=15;
name="ses" parent="SUNW,pln" port=2 target=15;
name="ses" parent="SUNW,pln" port=3 target=15;
name="ses" parent="SUNW,pln" port=4 target=15;
name="ses" parent="SUNW,pln" port=5 target=15;

name="ses" class="scsi"

target=15 lun=0;

The SES driver currently supports the SES, SAFTE and SEN enclosure service chipsets.
SEN and SAFTE protocols are translated internally in the driver into SES compliant
data structures. This enables the SES driver to work seamlessly with different
protocols and eliminates the need to enhance user applications.

SESIOC_GETNOBJ
Returns an unsigned integer that represents the number of SES data structures in
the enclosure services chip.

SESIOC_GETOBJMAP
Returns a size array containing ses_object elements communicated through
SESIOC_GETNOBJ(). ses_object is defined in sesio.h.

ses(7D)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

IOCTLS

Device and Network Interfaces 507

SESIOC_INIT
Instructs the device to perform a self-diagnostic test. Currently SES & SEN devices
always return success.

SESIOC_GETENCSTAT
Returns an unsigned character that represents status enclosure as defined by Table
25 in Section 7.1.2 of the SES specification NCITS 305-199x.

SESIOC_GETOBJSTAT
This ioctl is passed an ses_objarg containing the obj_id you want to set, then
fills in the remaining fields according to element status page of the SES
specification.

SESIOC_SETOBJSTAT
Sets options in the control field. You set control field options by filling out all fields
in ses_objarg. Field definitions are presented in Section 7.2.2 of the SES
specification.

/kernel/drv/ses.conf driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

ssaadm(1M), driver.conf(4), attributes(5), esp(7D), isp(7D), ioctl(9E)

ses(7D)

FILES

ATTRIBUTES

SEE ALSO

508 man pages section 7: Device and Network Interfaces • Last Revised 22 May 2001

sesio – enclosure services device driver interface

#include<sys/sesio.h>

The ses device driver provides the following ioctls as a means to access SCSI
enclosure services devices.

The ses driver supports the following ioctls:

SES_IOCTL_GETSTATE This ioctl obtains enclosure state in the ses_ioctl
structure.

SES_IOCTL_SETSTATE This ioctl is used to set parameters on the enclosure
services device. The ses_ioctl structure is used to
pass information into the driver.

EIO The ses driver was unable to obtain data from the enclosure
services device or the data transfer could not be completed.

ENOTTY The ses driver does not support the requested ioctl function.

ENXIO The enclosure services device does not exist.

EFAULT The user specified a bad data length.

The ses_ioctl structure has the following fields:

uint32_t; /* Size of buffer that follows */
uint8_t page_code: /* Page to be read/written */
uint8_t reserved[3]; /* Reserved; Set to 0 */

unit8t buffer[1]; /* Size arbitrary, user specifies */

EXAMPLE 1 Using the SES_IOCTL_GETSTATE ioctl

The following example uses the SES_IOCTL_GETSTATE ioctl to recover 20 bytes of
page 4 from a previously opened device.

char abuf[30];
struct ses_ioctl *sesp;
int status;
sesp = (ses_ioctl *)abuf;
sesp->size = 20;
sesp->page_code = 4;

status = ioctl(fd, SES_IOCTL_GETSTATE, abuf);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

ses(7D), ioctl(9E)

sesio(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

ERRORS

STRUCTURES

EXAMPLES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 509

sf – SOC+ FC-AL FCP Driver

sf@port,0

The sf driver is a SCSA compliant nexus driver which supports the Fibre Channel
Protocol for SCSI on Private Fibre Channel Arbitrated loops. An SBus card called the
SOC+ card (see socal(7D)) connects the Fibre Channel loop to the host system.

The sf driver interfaces with the SOC+ device driver, socal(7D), the SCSI disk target
driver, ssd(7D), and the SCSI-3 Enclosure Services driver, ses(7D). It only supports
SCSI devices of type disk and ses.

The sf driver supports the standard functions provided by the SCSA interface. The
driver supports auto request sense and tagged queueing by default.

The driver requires that all devices have unique hard addresses defined by switch
settings in hardware. Devices with conflicting hard addresses will not be accessible.

/platform/architecture/kernel/drv/sf
ELF kernel module

/platform/architecture/kernel/drv/sf.conf
sf driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

luxadm(1M), prtconf(1M), driver.conf(4), socal(7D), ssd(7D)

Writing Device Drivers

ANSI X3.272-1996, Fibre Channel Arbitrated Loop (FC-AL)

ANSI X3.269-1996, Fibre Channel Protocol for SCSI (FCP)

ANSI X3.270-1996, SCSI-3 Architecture Model (SAM)

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA)

In addition to being logged, the messages below may display on the system console.

The first set of messages indicate that the attachment was unsuccessful, and will only
display while the sf driver is initially attempting to attach. Each message is preceded
by sf%d , where %d is the instance number of the sf device.

sf(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

510 man pages section 7: Device and Network Interfaces • Last Revised 27 Mar 1997

Failed to alloc soft state
Driver was unable to allocate space for the internal state structure. Driver did not
attach to device, SCSI devices will be inaccessible.

Bad soft state
Driver requested an invalid internal state structure. Driver did not attach to device,
SCSI devices will be inaccessible.

Failed to obtain transport handle
Driver was unable to obtain a transport handle to communicate with the socal
driver. Driver did not attach to device, SCSI devices will be inaccessible

Failed to allocate command/response pool
Driver was unable to allocate space for commands and responses. Driver did not
attach to device, SCSI devices will be inaccessible.

Failed to allocate kmem cache
Driver was unable to allocate space for the packet cache. Driver did not attach to
device, SCSI devices will be inaccessible.

Failed to allocate dma handle for
Driver was unable to allocate a dma handle for the loop map. Driver did not attach
to device, SCSI devices will be inaccessible.

Failed to allocate lilp map
Driver was unable to allocate space for the loop map. Driver did not attach to
device, SCSI devices will be inaccessible.

Failed to bind dma handle for
Driver was unable to bind a dma handle for the loop map. Driver did not attach to
device, SCSI devices will be inaccessible.

Failed to attach
Driver was unable to attach for some reason that may be printed. Driver did not
attach to device, SCSI devices will be inaccessible.

The next set of messages may display at any time. The full device pathname, followed
by the shorter form described above, will precede the message.

Invalid lilp map
The driver did not obtain a valid lilp map from the socal driver. SCSI device will be
inaccessible.

Target t, AL-PA x and hard
The device with a switch setting t has an AL-PA x which does not match its hard
address y. The device will not be accessible.

Duplicate switch settings
The driver detected devices with the same switch setting. All such devices will be
inaccessible.

WWN changed on target t
The World Wide Name (WWN) has changed on the device with switch setting t.

sf(7D)

Device and Network Interfaces 511

Target t, unknown device type
The driver does not know the device type reported by the device with switch
setting t.

sf(7D)

512 man pages section 7: Device and Network Interfaces • Last Revised 27 Mar 1997

sgen – Generic SCSI device driver

#include <sys/scsi/targets/sgendef.h>

sgen@target,lun:<devtype>

The sgen driver exports the uscsi(7I) interfaces to user processes. The sgen driver
can be configured to bind to SCSI devices for which no system driver is available.
Examples of such devices include SCSI scanners and SCSI processor devices.

Typically, drivers which export the uscsi(7I) interface unconditionally require that
the user present superuser credentials. The sgen driver does not, and relies on the
filesystem permissions on its device special file to govern who may access that device.
By default, access is restricted and device nodes created by the sgen driver are
readable and writable by the superuser exclusively.

It is important to understand that SCSI devices coexisting on the same SCSI bus may
potentially interact with each other. This may result from firmware bugs in SCSI
devices, or may be made to happen programmatically by sending appropriate SCSI
commands to a device. Potentially, any application controlling a device via the sgen
driver can introduce data integrity or security problems in that device or any other
device sharing the same SCSI bus.

Granting unprivileged users access to an sgen-controlled SCSI device may create
other problems. It may be possible for a user to instruct a target device to gather data
from another target device on the same bus. It may also be possible for malicious users
to install new firmware onto a device to which they are granted access. In
environments where security is a concern but user access to devices controlled by the
sgen driver is nontheless desired, it is recommended that the devices be separated
onto a dedicated SCSI bus to mitigate the risk of data corruption and security
violations.

The sgen driver is configurable via the sgen.conf file. In addition to standard SCSI
device configuration directives (see scsi(4)), administrators can set several additional
properties for the sgen driver.

By default, the sgen driver will not claim or bind to any devices on the system. To do
so, it must be configured by the administrator using the inquiry-config-list
and/or the device-type-config-list properties.

As with other SCSI drivers, the sgen.conf configuration file enumerates the targets
sgen should use. See scsi(4) for more details. For each target enumerated in the
sgen.conf file, the sgen driver sends a SCSI INQUIRY command to gather
information about the device present at that target. The inquiry-config-list
property specifies that the sgen driver should bind to a particular device returning a
particular set of inquiry data. The device-type-config-list specifies that the
sgen driver should bind to every device that is of a particular SCSI device type. When
examining the device, the sgen driver tests to see if it matches an entry in the

sgen(7D)

NAME

SYNOPSIS

DESCRIPTION

SECURITY AND
DATA

INTEGRITY

CONFIGURATION

Device and Network Interfaces 513

device-type-config-list or the inquiry-config-list. For more detail on
these two properties, see the PROPERTIES section.

When a match against the INQUIRY data presented by a device is made, the sgen
driver attaches to that device and creates a device node and link in the /devices and
/dev hierarchies. See the FILES section for more information about how these files are
named.

It is important for the administrator to ensure that devices claimed by the sgen driver
do not conflict with existing target drivers on the system. For example, if the sgen
driver is configured to bind to a direct access device, the standard sd.conf file will
usually cause sd to claim the device as well. This can cause unpredictable results. In
general, the uscsi(7I) interface exported by sd(7D) or st(7D) should be used to gain
access to direct access and sequential devices.

The sgen driver is disabled by default. The sgen.conf file is shipped with all of the
’name="sgen" class="scsi" target=...’ entries commented out to shorten
boot time and to prevent the driver from consuming kernel resources. To use the sgen
driver effectively on desktop systems, simply uncomment all of the name="sgen"
lines in sgen.conf file. On larger systems with many SCSI controllers, carefully edit
the sgen.conf file so that sgen binds only where needed. Refer to driver.conf(4)
for further details.

inquiry-config-list
The inquiry-config-list property is a list of pairs of strings that enumerates a
list of specific devices to which the sgen driver will bind. Each pair of strings is
referred to as <vendorid, productid> in the discussion below.

vendorid
is used to match the Vendor ID reported by the device. The SCSI specification limits
Vendor IDs to eight characters. Correspondingly, the length of this string should not
exceed eight characters. As a special case, "*" may be used as a wildcard which
matches any Vendor ID. This is useful in situations where more than one vendor
produces a particular model of a product. vendorid is matched against the Vendor
ID reported by the device in a case-insensitive manner.

productid
is used to match the product ID reported by the device. The SCSI specification
limits product IDs to sixteen characters (unused characters are filled with the
whitespace characters). Correspondingly, the length of productid should not
exceed sixteen characters. When examining the product ID of the device, sgen
examines the length l of productid and performs a match against only the first l
characters in the device’s product ID. productid is matched against the product
ID reported by the device in a case-insensitive manner.

For example, to match some fictitious devices from ACME corp, the
inquiry-config-list can be configured as follows:

sgen(7D)

PROPERTIES

514 man pages section 7: Device and Network Interfaces • Last Revised 29 Sep 1999

inquiry-config-list = "ACME", "UltraToast 3000",

"ACME", "UltraToast 4000",

"ACME", "UltraToast 5000";

To match "UltraToast 4000" devices, regardless of vendor, inquiry-config-list is
modified as follows:

inquiry-config-list = "*", "UltraToast 4000";

To match every device from ACME in the "UltraToast" series (i.e UltraToast 3000, 4000,
5000, ...), inquiry-config-list is modified as follows:

inquiry-config-list = "ACME" "UltraToast";

Whitespace characters are significant when specifying productid. For example, a
productid of "UltraToast 1000" is fifteen characters in length. If a device reported its
ID as "UltraToast 10000", the sgen driver would bind to it because only the first fifteen
characters are considered significant when matching. To remedy this situation, specify
productid as "UltraToast 1000 ", (note trailing space). This forces the sgen driver to
consider all sixteen characters in the product ID to be significant.

device-type-config-list
The device-type-config-list property is a list of strings that enumerate a list
of device types to which the sgen driver will bind. The valid device types
correspond to those defined by the SCSI-3 SPC Draft Standard, Rev. 11a. These types
are:

Type Name Inquiry Type ID

direct 0x00

sequential 0x01

printer 0x02

processor 0x03

worm 0x04

rodirect 0x05

scanner 0x06

optical 0x07

sgen(7D)

Device and Network Interfaces 515

Type Name Inquiry Type ID

changer 0x08

comm 0x09

prepress1 0x0a

prepress2 0x0b

array_ctrl 0x0c

ses 0x0d

rbc 0x0e

ocrw 0x0f

bridge 0x10

type_unknown 0x1f

Alternately, you can specify device types by INQUIRY type ID. To do this, specify
type_0x<typenum> in the sgen-config-list. Case is not significant when
specifying device type names.

sgen-diag
The sgen-diag property sets the diagnostic output level. This property can be set
globally and/or per target/lun pair. sgen-diag is an integer property, and can be
set to 0, 1, 2 or 3. Illegal values will silently default to 0. The meaning of each
diagnostic level is as follows:

0 No error reporting [default]

1 Report driver configuration information, unusual conditions, and indicate when
sense data has been returned from the device.

2 Trace the entry into and exit from routines inside the driver, and provide
extended diagnostic data. No error reporting [default].

3 Provide detailed output about command characteristics, driver state, and the
contents of each CDB passed to the driver.

In ascending order, each level includes the diagnostics that the previous level reports.
See the IOCTLS section for more infomation on the SGEN_IOC_DIAG ioctl.

sgen.conf
Driver configuration file. See CONFIGURATION for more details.

/dev/scsi/<devtype>/cntndn
The sgen driver categorizes each device in a separate directory by its SCSI device
type. The files inside the directory are named according to their controller number,
target ID and LUN as follows:

sgen(7D)

FILES

516 man pages section 7: Device and Network Interfaces • Last Revised 29 Sep 1999

cn is the controller number, tn is the SCSI target id and dn is the SCSI LUN

This is analogous to the {controller;target;device} naming scheme, and the
controller numbers correspond to the same controller numbers which are used for
naming disks. For example, /dev/dsk/c0t0d0s0 and
/dev/scsi/scanner/c0t5d0 are both connected to controller c0.

The sgen driver exports the uscsi(7I) interface for each device it manages. This
allows a user process to talk directly to a SCSI device for which there is no other driver
installed in the system. Additionally, the sgen driver supports the following ioctls:

SGEN_IOC_READY
Send a TEST UNIT READY command to the device and return 0 upon success,
non-zero upon failure. This ioctl accepts no arguments.

SGEN_IOC_DIAG
Change the level of diagnostic reporting provided by the driver. This ioctl accepts a
single integer argument between 0 and 3. The levels have the same meaning as in
the sgen-diag property discussed in PROPERTIES above.

EBUSY The device was opened by another thread or process. The driver
maintains a strict exclusive-open policy for each device.

ENXIO During opening, the device did not respond to a TEST UNIT
READY SCSI command.

ENOTTY Indicates that the device does not support the requested ioctl
function.

Here is an example of how sgen can be configured to bind to scanner devices on the
system:

device-type-config-list = "scanner";

The administrator should subsequently uncomment the appropriate
name="sgen"... lines for the SCSI target ID to which the scanner corresponds. In
this example, the scanner is at target 4.

name= "sgen" class= "scsi" target=4 lun=0;

If it is expected that the scanner will be moved from target to target over time, or that
more scanners might be added in the future, it is recommended that all of the
name="sgen"... lines be uncommented, so that sgen checks all of the targets on the
bus.

For large systems where boot times are a concern, it is recommended that the
parent="" property be used to specify which SCSI bus sgen should examine.

driver.conf(4), scsi(4), sd(7D), st(7D), uscsi(7I)

sgen(7D)

IOCTLS

ERRORS

EXAMPLES

SEE ALSO

Device and Network Interfaces 517

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

SCSI-3 SPC Draft Standard, Rev. 11a

sgen(7D)

518 man pages section 7: Device and Network Interfaces • Last Revised 29 Sep 1999

sk98sol – SysKonnect Gigabit Ethernet SK-98xx device driver

/dev/skge

/kernel/drv/sk98sol

The sk98sol driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface (DLPI), over a
SysKonnect Gigabit Ethernet adapter (SK-98xx series). The driver supports multiple
installed SysKonnect SK-98xx adapters. Functions include chip initialization, frame
transmit and receive, multicast and promiscuous support, and error recovery and
reporting.

The driver provides the /dev/skge cloning character-special device as well as
per-adapter character-special devices /dev/skgex, where x represents the device
instance number.

The sk98sol driver is a Style 1 and Style 2 Data Link Service (DLS) provider. All
M_PROTO and M_PCPROTO type messages are interpreted as DLPI primitives. Valid
DLPI primitives are defined in <sys/dlpi.h>. See dlpi(7P).

An explicit DL_ATTACH_REQ message by the user is required to associate the opened
Stream with a particular device (ppa). This is unnecessary and invalid for DLPI Style 1.
The ppa ID is interpreted as an unsigned long data type and indicates the
corresponding device instance (unit) number. An error (DL_ERROR_ACK) is returned
by the driver if the ppa field value does not correspond to a valid device instance
number for the system.

The device is initialized on first attach and de-initialized (stopped) upon last detach.
Valid device numbers for all detected adapters are displayed on the console at driver
startup time and are written to the /var/adm/messages log file.

The values returned in the DL_INFO_ACK primitive in response to the DL_INFO_REQ
request are:

� Maximum SDU is 1500 (9000 if JumboFrames are enabled).

� Minimum SDU is 0.

� DLSAP address length is 8 bytes.

� MAC type is DL_CSMACD.

� SAP length value is –2, meaning the physical address component is followed
immediately by a 2-byte SAP component within the DLSAP address.

� Service mode is DL_CLDLS.

� Optional quality of service (QOS) support is not included; as a result, the QOS field
values are 0.

� Provider style is DL_STYLE2.

� Version is DL_VERSION_2.

sk98sol(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

sk98sol and DLPI

Device and Network Interfaces 519

Parameters are set in the /kernel/drv/sk98sol.conf configuration file, which is
created during installation. See driver.conf(4). You can edit the
/kernel/drv/sk98sol.conf file to reflect your settings and reboot the system to
use the new parameter values. If the file exists prior to driver installation, the new
parameter values will be used as soon as the driver is installed.

String parameter values must be surrounded with double quotes ("), while integer
parameter values are not. Parameter names and values are case sensitive and you
should use them exactly as shown.

The parameters discussed in this section can be set for each port on the adapter.

In each of the following descriptions, ? represents port A or B.

AutoNegotiation_?

Type: String

Values: On, Off, Sense

Default: Sense (for SK-984x fiber adapters).

Default: On (for SK-982x copper adapters.)

The Sense value automatically detects whether the link partner supports
autonegotiation. If your link partner is configured to half duplex with autonegotiation
turned off, set the AutoNegotiation_? and DuplexCapabilities_? parameters manually. Do
not set the AutoNegotiation_? parameter value to Sense, as it will fail.

Do not use Sense for 1000Base-T (copper) adapters. If Sense is selected, it will be
mapped to On automatically.

DuplexCapabilities_?

Type: String

Values: Half, Full, Both

Default: Both

Set the DuplexCapabilities_? parameter only if the AutoNegotiation_? parameter is set to
the On or Off values. If AutoNegotiation_? is set to On, all three AutoNegotiation_?
values are possible; however, if set to Off, only the Full and Half values are
allowed.

Use the DuplexCapabilities_? parameter if your link partner does not support all
possible combinations.

sk98sol(7D)

OPTIONS

Per-Port
Parameters

520 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

FlowControl_?

Type: String

Values: Sym, SymOrRem, LocSend, None

Default: SymOrRem

Use the FlowControl_? parameter to set the flow control capabilities reported by the
port during autonegotiation:

Sym Symetric flow control, where both link partners are allowed to
send PAUSE frames.

SymOrRem SymetricOrRemote flow control, where both link partners or only
the remote partner are allowed to send PAUSE frames.

LocSend LocalSend flow control, where only the local link partner is
allowed to send PAUSE frames.

None No flow control, where no link partner is allowed to send PAUSE
frames.

The FlowControl_? parameter is ignored if AutoNegotiation_? is set to "Off."

Role_?

Type: String

Values: Auto, Master, Slave

Default: Auto

Use the Role_? parameter only for the SK-9821 and SK-9822 adapters.

1000Base-T communication between two ports requires one port to act as the master
(and provide timing information) and the other as slave. Normally, this is negotiated
between the two ports during link establishment. If this fails, use the Role_? parameter
to force the master and slave roles on the ports. If AutoNegotiation_? is set to "Off,"
then the Role_? parameter must be set manually.

PreferredPort

Type: String

Values: A, B

Default: A

sk98sol(7D)

Per-Adapter
Parameters

Device and Network Interfaces 521

Use the PreferredPort parameter to force the preferred port to A or B (on two-port
NICs). The preferred port is the port selected if both ports are detected as fully
functional.

RlmtMode

Type: integer

Values: 1, 2, 3

Default: 1

RLMT (Redundant Link Management Technology) provides three modes to determine
if a port is available for use.

1. Check link state only: use the link state reported by the adapter hardware for each
individual port.

2. Check other port: RLMT sends test frames from one port to another and checks if
they are received. The ports must be connected to the network that allow LLC test
frames to be exchanged (that is, networks without routers between the ports).

3. Check other port and segmentation: RLMT checks the other port and also requests
information from the Gigabit Ethernet switch next to each port to determine if the
network is segmented between the ports. Only use this mode if you have Gigabit
Ethernet switches installed and configured to use the Spanning Tree protocol.

Note that modes 2 and 3 are meant to operate in configurations where a network path
exists between the ports on a single adapter. They are not designed to work in
networks where adapters are connected back-to-back.

JumboFrames

Type: String

Values: Off, On

Default: Off

To enable support for JumboFrames (frames with a length of up to 9014 bytes), set
JumboFrames to "On." Because longer frames reduce operating system overhead,
JumboFrames increases network throughput.

For full JumboFrames support, the maximum transfer unit (MTU) size used by TCP/IP
must also be changed by using the ifconfig(1M) command. To do this, remove the
comment sign (#) before the ifconfig line in the /etc/rcS.d/S50sk98sol file.
You should also ensure that the adapter device number (skge0) matches the attach

sk98sol(7D)

522 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

number displayed during system startup. The MTU must be set to 9000, not including
the 14 bytes of MAC address header.

JumboFrames can only be used if all equipment in your subnetwork supports them;
currently many switches do not support JumboFrames). Devices without Jumbo
Support will drop the longer frames (and might report them as error frames). If you
experience problems with this, connect two SK-98xx adapters (with JumboFrames
enabled) back-to-back.)

CopyThreshold

Type: Integer

Values: 0–1500

Default: 1500

During transmit, the driver relies on the frame’s physical memory address to tell the
hardware where to find the frame data. Setting up the DMA address can take time on
Solaris; it may be more convenient to copy the frame data to a buffer that you have set
up in advance. All frames with a length less than or equal to the CopyThreshold
parameter value are copied into buffers; for longer frames, the real DMA setup is
done. By default (without JumboFrames support), all frames are copied. You can
experiment with this parameter to find out if your system performs better with only
smaller frames copied.

To use more complex syntax for setting different parameters on multiple adapters, see
driver.conf(4). For example:

name="sk98sol" parent="/pci@1f,4000" unit-address="2"
AutoNegotiation_A="Off";
name="sk98sol" parent="/pci@1f,2000" unit-address="2"
AutoNegotiation_B="Sense";

If multiple NICs are installed in the system, the following message may appear on the
console and in the /var/adm/messages log file:

Allocation of descriptor memory failed

You can avoid this message by tuning the lomempages kernel parameter. By default,
the value of this parameter is 36 pages. Each SK-98xx adapter requires a determined
number of pages, so increase the value of the lomempages parameter in increments of
ten pages until all NICs in the system run correctly.

To modify the value of this parameter to 46 pages, append the set lomempages=46
line to the /etc/system file and reboot the system.

sk98sol(7D)

DIAGNOSTICS

Device and Network Interfaces 523

/dev/skge Character special device

/dev/skgex Per-adapter character special device, where
x is the adapter ppa

/kernel/drv/sk98sol ELF kernel module

/kernel/drv/sparcv9/sk98sol ELF kernel module (64-bit SPARC version)

/kernel/drv/sk98sol.conf Driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA, SPARC

ifconfig(1M), netstat(1M), driver.conf(4), attributes(5), dlpi(7P).

sk98sol.txt driver README file — Included in the driver package; also available
from www.syskonnect.com.

sk98sol(7D)

FILES

ATTRIBUTES

SEE ALSO

524 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

skfp – SysKonnect FDDI PCI device driver

/dev/skfp

The skfp FDDI driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface (DLPI) over a
SysKonnect FDDI PCI adapter. The driver supports multiple installed SysKonnect
FDDI PCI adapters. Functions include chip initialization, frame transit and receive,
multicast and promiscuous support, and error recovery and reporting.

The skfp driver supports all SysKonnect SK-NET FDDI PCI adapters (SK-55xx
(32-bit) and SK-58xx (64-bit) series) on 32-bit systems, and the SK-58xx series on 64-bit
systems.

The skfp driver provides the /dev/skfp cloning character-special device that
accesses all SK-NET FDDI PCI adapters using Data Link Service (DLS) Style 2. It also
provides per-adapter character-special devices /dev/skfpx, (where x represents the
device instance number) that access a special NIC using DLS Style 1.

The skfp driver is a Style 1 and Style 2 DLS provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPI primitives. Valid DLPI primitives are defined in
<sys/dlpi.h>. See dlpi(7P).

An explicit DL_ATTACH_REQ message by the user is required to associate the opened
Stream with a particular device (ppa). This is unnecessary and invalid for DLPI Style 1.
The ppa ID is interpreted as an unsigned long data type and indicates the
corresponding device instance (unit) number. An error (DL_ERROR_ACK) is returned
by the driver if the ppa field value does not correspond to a valid device instance
number for the system.

The device is initialized on first attach and de-initialized (stopped) upon last detach.
Valid device numbers for all detected adapters are displayed on the console at driver
startup time and written to the /var/adm/messages log file.

The values returned in the DL_INFO_ACK primitive in response to the DL_INFO_REQ
request are:

� Maximum SDU is 4470.

� Minimum SDU is 0.

� DSLAP address length is 8 bytes.

� MAC type is DL_FDDI.

� SAP length value is –2, meaning the physical address component is followed
immediately by a 2-byte SAP component within the DLSAP address.

� Service mode is DL_CLDLS.

� Optional quality of service (QOS) support is not included; as a result, the QOS field
values are 0.

� Provider style is DL_STYLE2.

skfp(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

skfp and DLPI

Device and Network Interfaces 525

� Version is DL_VERSION_2.

Options are not required for normal operation. In special cases, FDDI Station
Management (SMT) parameters can be modified by using the /usr/bin/smtpara
utility (see the driver README files). The smtpara utility should be used only by
those very familiar with FDDI.

If multiple NICs are installed in the system, the following message may appear on the
console and in the /var/adm/messages log file:

skfp: DMA memory allocation failed !

You can avoid this message by tuning the lomempages kernel parameter. By default,
the value of this parameter is 36 pages. Each SK-FDDI PCI adapter requires nine
pages, so increase the value of the lomempages parameter in increments of nine
pages until all NICs in the system run correctly.

To modify the value of this parameter to 45 pages, you can, for example, append the
set lomempages=45 line to the /etc/system file and reboot the system.

/dev/skfp Character special device

/dev/skfpx Per-adapter character special device, where
x is the adapter ppa

/kernel/drv/skfp ELF kernel module

/kernel/drv/sparcv9/skfpx ELF kernel module (64-bit SPARC version)

/kernel/drv/skfp.conf Driver configuration file

/usr/bin/smtpara SMT parameter utility

/etc/fddi.cfg smtpara configuration file

<sys/dlpi.h> DLPI definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA, SPARC

ifconfig(1M), netstat(1M), attributes(5), dlpi(7P)

skfp.txt (32-bit driver) and skfpx.txt (64-bit driver) README files — Included
in the driver package or available from www.syskonnect.com.

skfp(7D)

OPTIONS

DIAGNOSTICS

FILES

ATTRIBUTES

SEE ALSO

526 man pages section 7: Device and Network Interfaces • Last Revised 7 Sep 2000

slp – Service Location Protocol

The Service Location Protocol (“SLP”) is a dynamic service discovery protocol that
runs on top of the Internet Protocol (“IP”). The protocol is specified by the IETF
standard-track documents RFC 2165, RFC 2608, RFC 2609; the API is documented in
RFC 2614. .

There are two components to the SLP technology. The first is a daemon, slpd(1M),
which coordinates SLP operations. The second is a software library, slp_api(3slp),
through which processes access a public API. Both components are configured by
means of the SLP configuration file, slp.conf(4).

The SLP API is useful for two types of processes:

Client Applications Services and service information can be requested from the
API. Clients do not need to know the location of a required
service, only the type of service, and optionally, the service
characteristics. SLP will supply the location and other
information to the client through the API.

Server Processes Programs that offer network services use the SLP API to
advertise their location as well as other service information.
The advertisement can optionally include attributes describing
the service. Advertisements are accompanied by a lifetime;
when the lifetime expires, the advertisement is flushed, unless
it is refreshed prior to expiration.

API libraries are available for both the C and Java languages.

SLP provides the following additional features:

� slpd(1M) can be configured to function as a transparent directory agent. This
feature makes SLP scalable to the enterprise. System administrators can configure
directory agents to achieve a number of different strategies for scalability.

� SLP service advertising and discovery is performed in scopes. Unless otherwise
configured, all discovery and all advertisements are in the scope default. In the case
of a larger network, scopes can be used to group services and client systems so that
users will only find those services which are physically near them, belong to their
department, or satisfy the specified criteria. Administrators can configure these
scopes to achieve different service provider strategies.

� Services may be registered by proxy through a serialized registration file. This is an
alternative to registering services through the API. See slpd.reg(4) for more
information.

See attributes(5) for descriptions of the following attributes:

slp(7P)

NAME

DESCRIPTION

ATTRIBUTES

Device and Network Interfaces 527

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

CSI CSI-enabled

Interface Stability Standard

MT-Level MT-Safe

slpd(1m), slp_api(3slp), slp.conf(4), slpd.reg(4), attributes(5)

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location Protocol,
Version 2, The Internet Society, June 1999.

Guttman, E., Perkins, C., and Kempf, J., RFC 2609, Service Templates and Service:
Schemes, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The Internet Society,
June 1999.

Veizades, J., Guttman, E., Perkins, C., and Kaplan, S., RFC 2165, Service Location
Protocol, Network Working Group, 1997.

slp(7P)

SEE ALSO

528 man pages section 7: Device and Network Interfaces • Last Revised 17 Nov 1999

soc – Serial Optical Controller (SOC) device driver

soc@sbus-slot,0

The Fibre Channel Host Bus Adapter is an SBus card which implements two full
duplex Fibre Channel interfaces. Each Fibre Channel interface supports a point to
point interface to another Fibre Channel device.

The soc device driver is a nexus driver. The soc driver implements portions of the
FC-2 and FC-4 layers of the Fibre Channel.

/kernel/drv/soc ELF Kernel Module

sbus(4), pln(7D), ssd(7D)

Writing Device Drivers

The messages described below are some that may appear on system console, as well as
being logged.

On the console these messages are preceded by

soc%d: port %awhere %d is the instance number of the soc controller and %a is the port
on the host adapter.

Fibre Channel is ONLINE
The Fibre Channel is now online to the device.

Fibre Channel is OFFLINE
The Fibre Channel connection is now offline.

INCORRECT WWN: Found: xxxx,xxxxxxxx Expected: yyyy,yyyyyyyy
This message means that the soc re-logged into a device after the Fibre Channel
connection went offline and back online and the World Wide Name of the device is
now different. This probably means the cable has been plugged into another device.

attach failed: unable to map eeprom
Driver was unable to map device memory; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to map XRAM
Driver was unable to map device memory; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to map registers
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to access status register
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

soc(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 529

attach failed: unable to install interrupt handler
Driver was not able to add the interrupt routine to the kernel. Driver did not attach
to device, devices will be inaccessible.

attach failed: could not alloc offline packet structure
Driver was unable to allocate space for the internal state structure. Driver did not
attach to device, devices will be inaccessible.

soc(7D)

530 man pages section 7: Device and Network Interfaces • Last Revised 6 Apr 1995

socal – Serial Optical Controller for Fibre Channel Arbitrated Loop (SOC+) device
driver

socal@sbus-slot,0

The Fibre Channel Host Bus Adapter is an SBus card which implements two full
duplex Fibre Channel interfaces. Each Fibre Channel interface can connect to a Fibre
Channel Arbitrated Loop (FC-AL).

The socal device driver is a nexus driver and implements portions of the FC-2 and
FC-4 layers of FC-AL.

/kernel/drv/socal ELF Kernel Module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

sbus(4), sf(7D), ssd(7D)

Writing Device Drivers

ANSI X3.230-1994, Fibre Channel Physical and Signalling Interface (FC-PH)

ANSI X3.272-1996, Fibre Channel Arbitrated Loop (FC-AL)

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA)

The messages described below may appear on system console in addition to being
logged.

On the console, these messages are preceded by:

socal%d: port %awhere %d is the instance number of the socal controller and %a is
the port on the host adapter.

Fibre Channel Loop is ONLINE
The Fibre Channel loop is now online.

Fibre Channel Loop is OFFLINE
The Fibre Channel loop is now offline.

attach failed: device in slave-only slot.
Move soc+ card to another slot.

attach failed: bad soft state.
Driver did not attach, devices will be inaccessible.

attach failed: unable to alloc xport struct.
Driver did not attach, devices will be inaccessible.

socal(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 531

attach failed: unable to map eeprom
Driver was unable to map device memory; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to map XRAM
Driver was unable to map device memory; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to map registers
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to access status register
Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to install interrupt handler
Driver was not able to add the interrupt routine to the kernel. Driver did not attach
to device, devices will be inaccessible.

attach failed: unable to access host adapter XRAM
Driver was unable to access device RAM; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to write host adapter XRAM
Driver was unable to write device RAM; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: read/write mismatch in XRAM
Driver was unable to verify device RAM; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

socal(7D)

532 man pages section 7: Device and Network Interfaces • Last Revised 9 May 1997

sockio – ioctls that operate directly on sockets

#include <sys/sockio.h>

The ioctls listed in this manual page apply directly to sockets, independent of any
underlying protocol. The setsockopt() call (see getsockopt(3SOCKET)) is the
primary method for operating on sockets, rather than on the underlying protocol or
network interface. ioctls for a specific network interface or protocol are documented
in the manual page for that interface or protocol.

SIOCSPGRP The argument is a pointer to an int. Set the process-group ID that
will subsequently receive SIGIO or SIGURG signals for the socket
referred to by the descriptor passed to ioctl to the value of that
int. The argument must be either positive (in which case it must
be a process ID) or negative (in which case it must be a process
group).

SIOCGPGRP The argument is a pointer to an int. Set the value of that int to
the process-group ID that is receiving SIGIO or SIGURG signals
for the socket referred to by the descriptor passed to ioctl.

SIOCCATMARK The argument is a pointer to an int. Set the value of that int to 1
if the read pointer for the socket referred to by the descriptor
passed to ioctl points to a mark in the data stream for an
out-of-band message. Set the value of that int to 0 if the read
pointer for the socket referred to by the descriptor passed to
ioctl does not point to a mark in the data stream for an
out-of-band message.

ioctl(2), getsockopt(3SOCKET)

sockio(7I)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Device and Network Interfaces 533

sppptun – PPP tunneling pseudo-driver

/dev/sppptun

The /dev/sppptun pseudo-driver provides an interface for tunneling PPP sessions.
This interface provides PPP over Ethernet (PPPoE) service with Solaris PPP.

/dev/sppptun Solaris PPP tunneling device driver.

pppoec(1M), pppoed(1M), sppptun(1M)

RFC 2516 — A Method for Transmitting PPP Over Ethernet (PPPoE). Mamakos, et. al.
February 1999.

sppptun(7M)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

534 man pages section 7: Device and Network Interfaces • Last Revised 2001

spwr – SMC EtherPower II 10/100 (9432) Ethernet device driver

/dev/spwr

The spwr Ethernet driver is a multi-threaded, loadable, clonable, STREAMS hardware
driver supporting the connectionless Data Link Provider Interface, dlpi(7P), over
SMC EtherPower II 10/100 controllers. Multiple EtherPower II controllers installed
within the system are supported by the driver. The spwr driver provides basic
support for the SMC EtherPower II hardware. Functions include chip initialization,
frame transmit and receive, multicast support, and error recovery and reporting.

The cloning character-special device /dev/spwr is used to access all SMC EtherPower
II devices installed within the system.

The spwr driver is dependent on /kernel/misc/gld, a loadable kernel module that
provides the spwr driver with the DLPI and STREAMS functionality required of a
LAN driver. See gld(7d) for more details on the primitives supported by the driver.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum SDU is 1500 (ETHERMTU).

� The minimum SDU is 0. The spwr driver will pad to the mandatory 60-octet
minimum packet size.

� The DLSAP address length is 8.

� The MAC type is DL_ETHER.

� The SAP length value is –2, meaning the physical address component is followed
immediately by a 2-byte SAP component within the DLSAP address.

� The broadcast address value is Ethernet/IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

/dev/spwr
Character special device.

/kernel/drv/spwr.conf
Driver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), dlpi(7P), gld(7D)

spwr(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 535

ssd – driver for SPARCstorage Array and Fibre Channel Arbitrated Loop disk devices

ssd@port,target:partition

This driver handles both SCSI-2 disks in the SPARCstorage Array and Fibre Channel
Arbitrated Loop (FC-AL) disks on Private loops.

The specific type of each disk is determined by the SCSI inquiry command and
reading the volume label stored on block 0 of the drive. The volume label describes the
disk geometry and partitioning; it must be present or the disk cannot be mounted by
the system.

The block-files access the disk using the system’s normal buffering mechanism and are
read and written without regard to physical disk records. There is also a “raw”
interface that provides for direct transmission between the disk and the user’s read or
write buffer. A single read or write call usually results in one I/O operation; raw I/O
is therefore considerably more efficient when many bytes are transmitted. The names
of the block files are found in /dev/dsk; the names of the raw files are found in
/dev/rdsk.

I/O requests (such as lseek(2)) to the SCSI disk must have an offset that is a multiple
of 512 bytes (DEV_BSIZE), or the driver returns an EINVAL error. If the transfer length
is not a multiple of 512 bytes, the transfer count is rounded up by the driver.

Partition 0 is normally used for the root file system on a disk, partition 1 as a paging
area (for example, swap), and partition 2 for backing up the entire disk. Partition 2
normally maps the entire disk and may also be used as the mount point for secondary
disks in the system. The rest of the disk is normally partition 6. For the primary disk,
the user file system is located here.

Each device also has error statistics associated with it. These must include counters for
hard errors, soft errors and transport errors. Other data may be implemented as
required.

Each device maintains I/O statistics for the device and for partitions allocated for that
device. For each device/partition, the driver accumulates reads, writes, bytes read,
and bytes written. The driver also initiates hi-resolution time stamps at queue entry
and exit points to enable monitoring of residence time and cumulative
residence-length product for each queue.

Not all device drivers make per-partition IO statistics available for reporting. ssd and
sd(7D) per-partition statistics are enabled by default but may disabled in their
configuration files.

Refer to dkio(7I).

EACCES Permission denied.

EBUSY The partition was opened exclusively by another thread.

EFAULT The argument was a bad address.

ssd(7D)

NAME

SYNOPSIS

DESCRIPTION

DEVICE
STATISTICS

SUPPORT

IOCTLS

ERRORS

536 man pages section 7: Device and Network Interfaces • Last Revised 21 Feb 2001

EINVAL Invalid argument.

EIO An I/O error occurred.

ENOTTY The device does not support the requested ioctl function.

ENXIO When returned during open(2), this error indicates the device
does not exist.

EROFS The device is a read-only device.

The ssd driver can be configured by defining properties in the ssd.conf file. The
ssd driver supports the following properties:

enable-partition-kstats
The default value is 1, which causes partition IO statistics to be maintained. Set this
value to zero to prevent the driver from recording partition statistics. This slightly
reduces the CPU overhead for IO, mimimizes the amount of sar(1) data collected
and makes these statistics unavailable for reporting by iostat(1M) even though
the -p/ -P option is specified. Regardless of this setting, disk IO statistics are
always maintained.

ssd.conf driver configuration file

/dev/dsk/cntndnsn block files

/dev/rdsk/cntndnsn raw files

where, for the SPARCstorage Array:

cn is the controller number on the system. Each SPARCstorage Array will
have a unique controller number

tn port number within the SPARCstorage Array n

dn SCSI target n

sn partition n

and for all FC-AL disks:

cn is the controller number on the system.

tn 7-bit disk loop identifier, such as switch setting

dn SCSI lun n

sn partition n (0-7)

sar(1), format(1M), iostat(1M), ioctl(2), lseek(2), open(2), read(2), write(2),
driver.conf(4), cdio(7I), dkio(7I)

ANSI Small Computer System Interface-2 (SCSI-2)

SPARCstorage Array User’s Guide

ssd(7D)

CONFIGURATION

FILES

SEE ALSO

Device and Network Interfaces 537

ANSI X3.272-1996, Fibre Channel Arbitrated Loop (FC-AL)

Fibre Channel - Private Loop SCSI Direct Attach (FC-PLDA)

Error for command ’<command name>’ Error Level: Fatal Requested Block <n>,
Error Block: <m>, Sense Key: <sense key name>, Vendor ’<vendor name>’:

ASC = 0x<a> (<ASC name>), ASCQ = 0x, FRU = 0x<c>

The command indicated by <command name> failed. The Requested Block is the
block where the transfer started and the Error Block is the block that caused the error.
Sense Key, ASC, and ASCQ information is returned by the target in response to a
request sense command.

Check Condition on REQUEST SENSE

A REQUEST SENSE command completed with a check condition. The original
command will be retried a number of times.

Label says <m> blocks Drive says <n> blocks

There is a discrepancy between the label and what the drive returned on the READ
CAPACITY command.

Not enough sense information

The request sense data was less than expected.

Request Sense couldn’t get sense data

The REQUEST SENSE command did not transfer any data.

Reservation Conflict

The drive was reserved by another initiator.

SCSI transport failed: reason ’xxxx’ : {retrying|giving up}

The host adapter has failed to transport a command to the target for the reason stated.
The driver will either retry the command or, ultimately, give up.

Unhandled Sense Key <n>

The REQUEST SENSE data included an invalid sense key.

Unit not Ready. Additional sense code 0x<n>

The drive is not ready.

corrupt label - bad geometry

The disk label is corrupted.

corrupt label - label checksum failed

The disk label is corrupted.

ssd(7D)

DIAGNOSTICS

538 man pages section 7: Device and Network Interfaces • Last Revised 21 Feb 2001

corrupt label - wrong magic number

The disk label is corrupted.

device busy too long

The drive returned busy during a number of retries.

disk not responding to selection

The drive was probably powered down or died.

i/o to invalid geometry

The geometry of the drive could not be established.

incomplete read/write - retrying/giving up

There was a residue after the command completed normally.

logical unit not ready

The drive is not ready.

no bp for disk label

A bp with consistent memory could not be allocated.

no mem for property

Free memory pool exhausted.

no memory for disk label

Free memory pool exhausted.

no resources for dumping

A packet could not be allocated during dumping.

offline

Drive went offline; probably powered down.

requeue of command fails<n>

Driver attempted to retry a command and experienced a transport error.

ssdrestart transport failed <n>

Driver attempted to retry a command and experienced a transport error.

transfer length not modulo <n>

Illegal request size.

transport rejected <n>

ssd(7D)

Device and Network Interfaces 539

Host adapter driver was unable to accept a command.

unable to read label

Failure to read disk label.

unit does not respond to selection

Drive went offline; probably powered down.

ssd(7D)

540 man pages section 7: Device and Network Interfaces • Last Revised 21 Feb 2001

st – driver for SCSI tape devices

st@target,lun:[l,m,h,c,u][b][n]

The st device driver is an interface to various SCSI tape devices. Supported tape
devices include 1/4” Tandberg 2.5 Gigabyte QIC tape drive, 1/4” Archive Viper
QIC-150 streaming tape drive, 1/4” Emulex MT-02 tape controller, HP-88780 1/2” tape
drive, Exabyte EXB-8200/8500/8505/8505XL 8mm cartridge tape, and the Archive
Python 4 mm DAT tape subsystem. st provides a standard interface to these various
devices; see mtio(7I) for details.

The driver can be opened with either rewind on close or no rewind on close options. It
can also be opened with the O_NDELAY (see open(2)) option when there is no tape
inserted in the drive. A maximum of four tape formats per device are supported (see
FILES below). The tape format is specified using the device name. (Tape format is also
referred to as tape density).

The driver reserves the tape drive upon open and releases it at close for use in
multi-initiator environments. Refer to the MTIOCRESERVE and MTIOCRELEASE ioctls
in mtio(7I) for information about how to allow a tape drive to remain reserved upon
close. See the flag options below for information about disabling this feature.

If the tape drive is opened in O_NDELAY mode, no reservation will occur during the
open, as per the POSIX standard (see standards(5)). However, before the first tape
operation or I/O occurs, a reservation will occur to provide reserve/release
functionality.

The st driver now supports persistent errors (see mtio(7I) and asynchronous tape
operations (see mtio(7I), aioread(3AIO), and aiowrite(3AIO)).

If the driver is opened for reading in a different format than the tape is written in, the
driver overrides the user-selected format. For example, if a 1/4” cartridge tape is
written in QIC-24 format and opened for reading in QIC-150, the driver will detect a
read failure on the first read and automatically switch to QIC-24 to read the data.

Note that if the low density format is used, no indication is given that the driver has
overridden the user-selected format. Other formats issue a warning message to inform
the user of an overridden format selection. Some devices automatically perform this
function and do not require driver support (1/2” reel tape drive, for example).

Writing from the beginning of tape is performed in the user-specified format. The
original tape format is used for appending onto previously written tapes.

The st tape driver has a built-in configuration table for all Sun supported tape drives.
To support the addition of third party tape devices or to override a built-in
configuration, device information can be supplied in st.conf as global properties
that apply to each node, or as properties that are applicable to one node only. The st
driver looks for the property called “tape-config-list.” The value of this property is a
list of triplets, where each triplet consists of three strings.

st(7D)

NAME

SYNOPSIS

DESCRIPTION

Persistent Errors
and Asynchronous

Tape Operation
Read Operation

Write Operation

Tape Configuration

Device and Network Interfaces 541

The formal syntax is:

tape-config-list = <triplet> [, <triplet> *];

where

<triplet> := <vid+pid>, <pretty print>, <data-property-name>

and

<data-property-name> = <version>, <type>, <bsize>,
<options>, <number of densities>,
<density> [, <density>*], <default-density>;

A semicolon (;) is used to terminate a prototype devinfo node specification.
Individual elements listed within the specification should not be separated by a
semicolon. (Refer to driver.conf(4) for more information.)

<vid+pid> is the string that is returned by the tape device on a SCSI inquiry
command. This string may contain any character in the range 0x20-0x7e. Characters
such as “ " ” (double quote) or “ ’ ” (single quote), which are not permitted in property
value strings, are represented by their octal equivalent (for example, \042 and \047).
Trailing spaces may be truncated.

<pretty print> is used to report the device on the console. This string may have
zero length, in which case the <vid+pid> will be used to report the device.

<data-property-name> is the name of the property which contains all the tape
configuration values (such as <type>, <bsize>, etc.) corresponding for the tape
drive for the specified <vid+pid>.

<version> is a version number and should be 1. In the future, higher version
numbers may be used to allow for changes in the syntax of the
<data-property-name> value list.

<type> is a type field. Valid types are defined in /usr/include/sys/mtio.h. For
third party tape configuration, the following generic types are recommended:

MT_ISQIC 0x32

MT_ISREEL 0x33

MT_ISDAT 0x34

MT_IS8MM 0x35

MT_ISOTHER 0x36

<bsize> is the preferred block size of the tape device. The value should be 0 for
variable block size devices.

st(7D)

542 man pages section 7: Device and Network Interfaces • Last Revised 12 August 1999

<options> is a bit pattern representing the devices, as defined in
/usr/include/sys/scsi/targets/stdef.h. Valid flags for tape configuration
are:

ST_VARIABLE 0x0001

ST_QIC 0x0002

ST_REEL 0x0004

ST_BSF 0x0008

ST_BSR 0x0010

ST_LONG_ERASE 0x0020

ST_AUTODEN_OVERRIDE 0x0040

ST_NOBUF 0x0080

ST_KNOWS_EOD 0x0200

ST_UNLOADABLE 0x0400

ST_SOFT_ERROR_REPORTING 0x0800

ST_LONG_TIMEOUTS 0x1000

ST_NO_RECSIZE_LIMIT 0x8000

ST_MODE_SEL_COMP 0x10000

ST_NO_RESERVE_RELEASE 0x20000

ST_READ_IGNORE_ILI 0x40000

ST_READ_IGNORE_EOFS 0x80000

ST_SHORT_FILEMARKS 0x100000

ST_EJECT_TAPE_ON_CHANGER_FAILURE 0x200000

ST_RETRY_ON_RECOVERED_DEFERRED_ERROR0x400000

ST_VARIABLE
The flag indicates the tape device supports variable length record sizes.

ST_QIC
The flag indicates a Quarter Inch Cartridge (QIC) tape device.

ST_REEL
The flag indicates a 1/2−inch reel tape device.

ST_BSF
If flag is set, the device supports backspace over EOF marks (bsf - see mt(1)).

st(7D)

Device and Network Interfaces 543

ST_BSR
If flag is set, the tape device supports the backspace record operation (bsr - see
mt(1)). If the device does not support bsr, the st driver emulates the action by
rewinding the tape and using the forward space record (fsf) operation to forward
the tape to the correct file. The driver then uses forward space record (fsr - see
mt(1)) to forward the tape to the correct record.

ST_LONG_ERASE
The flag indicates the tape device needs a longer time than normal to erase.

ST_AUTODEN_OVERRIDE
The auto-density override flag. The device is capable of determining the tape
density automatically without issuing a “mode-select”/“mode-sense command.”

ST_NOBUF
The flag disables the device’s ability to perform buffered writes. A buffered write
occurs when the device acknowledges the completion of a write request after the
data has been written to the device’s buffer, but before all of the data has been
written to the tape.

ST_KNOWS_EOD
If flag is set, the device can determine when EOD (End of Data) has been reached.
When this flag is set, the st driver uses fast file skipping. Otherwise, file skipping
happens one file at a time.

ST_UNLOADABLE
The flag indicates the device will not complain if the st driver is unloaded and
loaded again (see modload(1M) and modunload(1M)). That is, the driver will
return the correct inquiry string.

ST_SOFT_ERROR_REPORTING
The flag indicates the tape device will perform a “request sense” or “log sense”
command when the device is closed. Currently, only Exabyte and DAT drives
support this feature.

ST_LONG_TIMEOUTS
The flag indicates the tape device requires timeouts that are five times longer than
usual for normal operation.

ST_BUFFERED_WRITES
This option is obsolete; if specified, it is ignored. Installations which previously
used this feature should refer to the documentation on asynchronous I/O:
aioread(3AIO) and aiowrite(3AIO).

ST_NO_RECSIZE_LIMIT (SPARC Only)
The flag applies to variable-length tape devices. If this flag is set, the record size is
not limited to a 64 Kbyte record size. The record size is only limited by the smaller
of either the record size supported by the device or the maximum DMA transfer
size of the system. (Refer to Large Record Sizes and WARNINGS.)

st(7D)

544 man pages section 7: Device and Network Interfaces • Last Revised 12 August 1999

ST_MODE_SEL_COMP
If the ST_MODE_SEL_COMP flag is set, the driver determines which of the two mode
pages the device supports for selecting or deselecting compression. It first tries the
Data Compression mode page (0x0F); if this fails, it tries the Device Configuration
mode page (0x10). Some devices, however, may need a specific density code for
selecting or deselecting compression. Please refer to the device specific SCSI
manual. When the flag is set, compression will be enabled only if the "c" or "u"
device is used. For any other device densities, compression will be disabled.

ST_NO_RESERVE_RELEASE
The ST_NO_RESERVE_RELEASE flag disables the use of reserve on open and
release on close. If an attempt to use a ioctl of MTRESERVE or MTRELEASE on a
drive with this flag set, it will return an error of ENOTTY (inappropriate ioctl for
device).

ST_READ_IGNORE_ILI
The ST_READ_IGNORE_ILI flag is applicable only to variable block devices which
support the SILI bit option. The ST_READ_IGNORE_ILI flag indicates that SILI
(supress incorrect length indicator) bit will be set during reads. When this flag is
set, short reads (requested read size is less than the record size on the tape) will be
successful and the number of bytes transferred will be equal to the record size on
the tape. The tape will be positioned at the start of the next record skipping over
the extra data (the remaining data has been has been lost). Long reads (requested
read size is more than the record size on the tape) will see a large performance gain
when this flag is set, due to overhead reduction. When this flag is not set, short
reads will return an error of ENOMEM.

ST_READ_IGNORE_EOFS
The ST_READ_IGNORE_EOFS flag is applicable only to 1/2" Reel Tape drives and
when performing consecutive reads only. It should not be used for any other tape
command. Usually End-of-recorded-media (EOM) is indicated by two EOF marks
on 1/2" tape and application cannot read past EOM. When this flag is set, two EOF
marks no longer indicate EOM allowing applications to read past two EOF marks.
In this case it is the responsibility of the application to detect
end-of-recorded-media (EOM). When this flag is set, tape operations (like MTEOM)
which positions the tape at end-of-recorded-media will fail since detection of
end-of-recorded-media (EOM) is to be handled by the application. This flag should
be used when backup applications have embedded double filemarks between files.

ST_SHORT_FILEMARKS
The ST_SHORT_FILEMARKS flag is applicable only to EXABYTE 8mm tape drives
which supports short filemarks. When this flag is set, short filemarks will be used
for writing filemarks. Short filemarks could lead to tape incompatible with some
otherwise compatible device. By default long filemarks will be used for writing
filemarks.

st(7D)

Device and Network Interfaces 545

ST_EJECT_TAPE_ON_CHANGER_FAILURE
If ST_EJECT_TAPE_ON_CHANGER_FAILURE flag is set, the tape will be ejected
automatically if the tape cartridge is trapped in the medium due to positioning
problems of the medium changer.

The following ASC/ASCQ keys are defined to the reasons for causing tape ejection
if ST_EJECT_TAPE_ON_CHANGER_FAILURE option is set to 0x200000:

Sense ASC/ASCQ Description

Key

4 15/01 Mechanical Failure

4 44/00 Internal Target Failure

2 53/00 Media Load or Eject Failed

4 53/00 Media Load or Eject Failed

4 53/01 Unload Tape Failure

ST_RETRY_ON_RECOVERED_DEFERRED_ERROR
If ST_RETRY_ON_RECOVERED_DEFERRED_ERROR flag is set, the st driver will
retry the last write if this cmd caused a check condition with error code 0x71 and
sense code 0x01. Some tape drives, notably the IBM 3090, require this option.

<number of densities> is the number of densities specified. Each tape drive can
support up to four densities. The value entered should therefore be between 1 and 4;
if less than 4, the remaining densities will be assigned a value of 0x0.

<density> is a single-byte hexadecimal number. It can either be found in the device
specification manual or be obtained from the device vendor.

<default-density> has a value between 0 and (<number of densities> - 1).

Each device maintains I/O statistics both for the device and for each partition
allocated on that device. For each device/partition, the driver accumulates reads,
writes, bytes read, and bytes written. The driver also takes hi-resolution time stamps
at queue entry and exit points, which facilitates monitoring the residence time and
cumulative residence-length product for each queue.

Each device also has error statistics associated with it. These must include counters for
hard errors, soft errors and transport errors. Other data may be implemented as
required.

The behavior of SCSI tape positioning ioctls is the same across all devices which
support them. (Refer to mtio(7I).) However, not all devices support all ioctls. The
driver returns an ENOTTY error on unsupported ioctls.

st(7D)

Device Statistics
Support

IOCTLS

546 man pages section 7: Device and Network Interfaces • Last Revised 12 August 1999

The retension ioctl only applies to 1/4” cartridge tape devices. It is used to restore tape
tension, thus improving the tape’s soft error rate after extensive start-stop operations
or long-term storage.

In order to increase performance of variable-length tape devices (particularly when
they are used to read/write small record sizes), two operations in the MTIOCTOP ioctl,
MTSRSZ and MTGRSZ, can be used to set and get fixed record lengths. The ioctl also
works with fixed-length tape drives which allow multiple record sizes. The min/max
limits of record size allowed on a driver are found by using a SCSI-2 READ BLOCK
LIMITS command to the device. If this command fails, the default min/max record
sizes allowed are 1 byte and 63k bytes. An application that needs to use a different
record size opens the device, sets the size with the MTSRSZ ioctl, and then continues
with I/O. The scope of the change in record size remains until the device is closed.
The next open to the device resets the record size to the default record size (retrieved
from st.conf).

Note that the error status is reset by the MTIOCGET get status ioctl call or by the next
read, write, or other ioctl operation. If no error has occurred (sense key is 0), the
current file and record position is returned.

EACCES The driver is opened for write access and the tape is
write-protected or the tape unit is reserved by another
host.

EBUSY The tape drive is in use by another process. Only one
process can use the tape drive at a time. The driver will
allow a grace period for the other process to finish
before reporting this error.

EINVAL The number of bytes read or written is not a multiple
of the physical record size (fixed-length tape devices
only).

EIO During opening, the tape device is not ready because
either no tape is in the drive, or the drive is not on-line.
Once open, this error is returned if the requested I/O
transfer could not be completed.

ENOTTY This indicates that the tape device does not support the
requested ioctl function.

ENXIO During opening, the tape device does not exist.

ENOMEM This indicates that the record size on the tape drive is
more than the requested size during read operation.

EXAMPLE 1 Global tape-config list property

The following is an example of a global tape-config-list property:

tape-config-list =
"Magic DAT", "Magic 4mm Helical Scan", "magic-data";

st(7D)

ERRORS

EXAMPLES

Device and Network Interfaces 547

EXAMPLE 1 Global tape-config list property (Continued)

magic-data = 1,0x34,1024,0x1639,4,0,0x8c,0x8c,0x8c,3;

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"
target=1 lun=0;

name="st" class="scsi"
target=2 lun=0;
.
.
.

name="st" class="scsi"

target=6 lun=0;

EXAMPLE 2 Tape-config-list property applicable to target 2 only

The following is an example of a tape-config-list property applicable to target 2 only:

name="st" class="scsi"
target=0 lun=0;

name="st" class="scsi"
target=1 lun=0;

name="st" class="scsi"
target=2 lun=0
tape-config-list =
"Magic DAT", "Magic 4mm Helical Scan", "magic-data"
magic-data = 1,0x34,1024,0x1639,4,0,0x8c,0x8c,0x8c,3;

name="st" class="scsi"
target=3 lun=0;

.

.

.
name="st" class="scsi"

target=6 lun=0;

To support applications such as seismic programs that require large record sizes, the
flag ST_NO_RECSIZE_LIMIT must be set in drive option in the configuration entry. A
SCSI tape drive that needs to transfer large records should OR this flag with other
flags in the ’options’ field in st.conf. (Refer to Tape Configuration.) By default,
this flag is set for the built-in config entries of Archive DAT and Exabyte drives.

If this flag is set, the st driver issues a SCSI-2 READ BLOCK LIMITS command to the
device to determine the maximum record size allowed by it. If the command fails, st
continues to use the maximum record sizes mentioned in the mtio(7I) man page.

If the command succeeds, st restricts the maximum transfer size of a variable-length
device to the minimum of that record size and the maximum DMA size that the host
adapter can handle. Fixed-length devices are bound by the maximum DMA size

st(7D)

Large Record Sizes

548 man pages section 7: Device and Network Interfaces • Last Revised 12 August 1999

allocated by the machine. Note that tapes created with a large record size may not be
readable by earlier releases or on other platforms.

(Refer to the WARNINGS section for more information.)

The Emulex drives have only a physical end of tape (PEOT); thus it is not possible to
write past EOT. All other drives have a logical end of tape (LEOT) before PEOT to
guarantee flushing the data onto the tape. The amount of storage between LEOT and
PEOT varies from less than 1 Mbyte to about 20 Mbyte, depending on the tape drive.

If EOT is encountered while writing an Emulex, no error is reported but the number of
bytes transferred is 0 and no further writing is allowed. On all other drives, the first
write that encounters EOT will return a short count or 0. If a short count is returned,
then the next write will return 0. After a zero count is returned, the next write returns
a full count or short count. A following write returns 0 again. It is important that the
number and size of trailer records be kept as small as possible to prevent data loss.
Therefore, writing after EOT is not recommended.

Reading past EOT is transparent to the user. Reading is stopped only by reading
EOF’s. For 1/2” reel devices, it is possible to read off the end of the reel if one reads
past the two file marks which mark the end of recorded media.

/kernel/drv/st.conf
driver configuration file

/usr/include/sys/mtio.h
structures and definitions for mag tape io control commands

/usr/include/sys/scsi/targets/stdef.h
definitions for SCSI tape drives

/dev/rmt/[0− 127][l,m,h,u,c][b][n]
where l,m,h,u,c specifies the density (low, medium, high, ultra/compressed), b
the optional BSD behavior (see mtio(7I)), and n the optional no rewind behavior.
For example, /dev/rmt/0lbn specifies unit 0, low density, BSD behavior, and no
rewind.

For 1/2” reel tape devices (HP-88780), the densities are:

l 800 BPI density

m 1600 BPI density

h 6250 BPI density

c data compression

(not supported on all modules)

For 8mm tape devices (Exabyte 8200/8500/8505):

st(7D)

EOT Handling

FILES

Device and Network Interfaces 549

l Standard 2 Gbyte format

m 5 Gbyte format (8500, 8505 only)

h,c 5 Gbyte compressed format (8505 only)

For 4mm DAT tape devices (Archive Python):

l Standard format

m,h,c data compression

For all QIC (other than QIC-24) tape devices:

l,m,h,c density of the tape cartridge type

(not all devices can read and

write all formats)

For QIC-24 tape devices (Emulex MT−02):

l QIC-11 Format

m,h,c QIC-24 Format

mt(1), modload(1M), modunload(1M), open(2), read(2), write(2), aioread(3AIO),
aiowrite(3AIO), kstat(3KSTAT), driver.conf(4), scsi(4), standards(5),
esp(7D), isp(7D), mtio(7I), ioctl(9E)

The st driver diagnostics may be printed to the console or messages file.

Each diagnostic is dependent on the value of the system variable st_error_level.
st_error_level may be set in the /etc/system file. The default setting for
st_error_level is 4 (SCSI_ERR_RETRYABLE) which is suitable for most
configurations since only actual fault diagnostics are printed. Settings range from
values 0 (SCSI_ERR_ALL) which is most verbose, to 6 (SCSI_ERR_NONE) which is
least verbose. See stdef.h for the full list of error-levels. SCSI_ERR_ALL level the
amount of diagnostic information is likely to be excessive and unnecessary.

The ST driver diagnostics are described below:

Error for Command: <scsi_cmd_name()> Error Level:<error_class>
Requested Block: <blkno> Error Block: <err_blkno>
Vendor: <name>: Serial Number: <inq_serial>
Sense Key: <es_key> ASC: 0x<es_add_code> (scsi_asc_ascq_name()>), ASCQ:

st(7D)

SEE ALSO

DIAGNOSTICS

550 man pages section 7: Device and Network Interfaces • Last Revised 12 August 1999

0x<es_qual_code>, FRU: 0x<ex_fru_code>

where <error_class> may be any one of the following: "All", "Unknown",
"Informational","Recovered", "Retryable", "Fatal"

The command indicated by <scsi_cmd_name> failed. Requested Block represents the
block where the transfer started. Error Block represents the block that caused the error.
Sense Key, ASC, ASCQ and FRU information is returned by the target in response to a
request sense command. See SCSI protocol documentation for description of Sense
Key, ASC, ASCQ, FRU.

Write/read: not modulo <n> block size

The request size for fixed record size devices must be a multiple of the specified block
size.

Recovery by resets failed

After a transport error, the driver attempted to recover by issuing a device reset and
then a bus reset if device reset failed. These recoveries failed.

Periodic head cleaning required

The driver reported that periodic head cleaning is now required. This diagnostic is
generated either due to a threshold number of retries, or due to the device
communicating to the driver that head cleaning is required.

Soft error rate (<n>%) during writing/reading was too high

The soft error rate has exceeded the threshold specified by the vendor.

SCSI transport failed: reason ’xxxx’: {retrying|giving up}

The Host Bus Adapter (HBA) has failed to transport a command to the target for the
reason stated. The driver will either retry the command or, ultimately, give up.

Tape not inserted in drive

A media access command was attempted while there was no tape inserted into the
specified drive. In this case, the drive returns sense key of DRIVE NOT READY.

Transport rejected

The Host Bus Adapter (HBA) driver is not accepting commands after failing to
successfully transport a scsi packet to the target. The actual status received by the st
driver from the underlying HBA driver was either TRAN_FATAL_ERROR or
TRAN_BADPKT.

Retrying command

The st driver failed to complete a command. However the command is retryable and
will be retried.

Giving up

st(7D)

Device and Network Interfaces 551

The st driver has exhausted retries or otherwise is unable to retry the command and
so is giving up.

No target struct for st%d

The st driver failed to obtain state information because the requested state structure
was not allocated. The specified device was probably not attached.

File mark detected

The operation detected an end of file mark. (File marks signify the end of a file on the
tape media).

End-of-media detected

The operation reached the end of the tape media.

Exabyte soft error reporting failed. DAT soft error reporting failed

The st driver was unable to determine if the soft error threshold had been exceeded
because it did not successfully read the data it requires or did not obtain enough data.
This data is retrieved using the log sense command.

Log sense parameter code does not make sense

The log sense command retrieves hardware statistics that are stored on the drive (for
example, soft error counts and retries.) If the data retrieved from the drive is invalid,
this message is printed and the data is not used.

Restoring tape position at fileno=%x, blkno=%lx....

The st driver is positioning to the specified file and block. This occurs on an open.

Failed to restore the last <file/block> position:

In this state, tape will be loaded at BOT during next open

The st driver could not position to the specified location and will revert to the
beginning of the tape when the next open is attempted.

Device does not support compression

The compression facility of the device was requested. However the device does not
have a hardware compression capability.

DAT soft error reset failed

After DAT soft error reporting, the counters within the device that accumulate this
sense data need to be re-set. This operation failed.

Errors after pkt alloc (b_flags=0x%x, b_error=0x%x)

Memory allocation for a scsi packet failed.

Incorrect length indicator set

st(7D)

552 man pages section 7: Device and Network Interfaces • Last Revised 12 August 1999

The drive reported the length of data requested in a READ operation, was incorrect.
Incorrect Length Indicator (ILI) is a very commonly used facility in SCSI tape protocol
and should not be seen as an error per-se. Applications typically probe a new tape
with a read of any length, using the returned length to the read system call for future
reads. Along with this operation, an underlying ILI error is received. ILI errors are
therefore informational only and are masked at the default st_error_level.

Data property (%s) has no value
Data property (%s) incomplete

Version # for data property (%s) greater than 1

These diagnostics indicate problems in retrieving the values of the various property
settings. The st driver is in the process of setting the property/parameter values for
the tape drive using information from either the built-in table within the driver or
from uncommented entries in the st.conf file. The effect on the system may be that
the tape drive may be set with default or generic driver settings which may not be
appropriate for the actual type of tape drive being used.

st_attach-RESUME: tape failure tape position will be lost

On a resume after a power management suspend, the previously known tape position
is no longer valid. This can occur if the tape was changed while the system was in
power management suspend. The operation will not be retried.

Write Data Buffering has been deprecated. Your applications should
continue to work normally. However, they should be ported to use

Asynchronous I/O.

Indicates that buffering has been removed from Solaris.

Cannot detach: fileno=%x, blkno=%lx

The st driver cannot unload because the tape is not positioned at BOT (beginning of
tape). May indicate hardware problems with the tape drive.

Variable record length I/O

Fixed record length (%d byte blocks) I/O

Tape-drives can use either Fixed or Variable record length. If the drive uses Fixed
length records, then the built in property table or the st.conf file will contain a
non-zero record-length property. Most DAT, Exabyte and DLT drives support Variable
record lengths. Many QIC format tape drives have historically been of Fixed record
length.

Command will be retried

un_ncmds: %d can’t retry cmd

These diagnostics are only seen with tape drives with the
ST_RETRY_ON_RECOVERED_DEFERRED_ERROR bit set. See stdef.h for
explanation of the specific usage of this setting.

st(7D)

Device and Network Interfaces 553

Effective with Solaris 2.4, the ST_NO_RECSIZE_LIMIT flag is set for the built-in
config entries of the Archive DAT and Exabyte drivers by default. (Refer to Large
Record Sizes.) Tapes written with large block sizes prior to Solaris 2.4 may cause
some applications to fail if the number of bytes returned by a read request is less than
the requested block size (for example, asking for 128 Kbytes and receiving less than 64
Kbytes).

The ST_NO_RECSIZE_LIMIT flag can be disabled in the config entry for the device as
a work-around. (Refer to Tape Configuration.) This action disables the ability to
read and write with large block sizes and allows the reading of tapes written prior to
Solaris 2.4 with large block sizes.

(Refer to mtio(7I) for a description of maximum record sizes.)

Tape devices that do not return a BUSY status during tape loading prevent user
commands from being held until the device is ready. The user must delay issuing any
tape operations until the tape device is ready. This is not a problem for tape devices
supplied by Sun Microsystems.

Tape devices that do not report a blank check error at the end of recorded media may
cause file positioning operations to fail. Some tape drives, for example, mistakenly
report media error instead of blank check error.

st(7D)

WARNINGS

BUGS

554 man pages section 7: Device and Network Interfaces • Last Revised 12 August 1999

stc – Serial Parallel Communications driver for SBus

The SPC/S SBus communications board consists of eight asynchronous serial ports
and one IBM PS/2-compatible parallel port. The stc driver supports up to eight SPC/S
boards in an SBus system. Each serial port has full modem control: the CD, DTR, DSR,
RTS, and CTS modem control lines are provided, and flow control is supported in
hardware for either RTS/CTS hardware flow control or DC1/DC3 software flow
control.

The parallel port is unidirectional, with support for the ACK, STROBE, BUSY, PAPER
OUT, SELECT, and ERROR interface signals. Both the serial and parallel ports support
those termio(7I) device control functions specified by flags in the c_cflag word of
the termios(3C) structure. In addition, the serial ports support the IGNPAR, PARMRK,
INPCK, IXON, IXANY, and IXOFF flags in the c_iflag word of the termios(3C)
structure. The latter c_iflag functions are performed by the stc driver for the serial
ports.

Since the parallel port is a unidirectional, output-only port, no input termios(3C)
(c_iflag) parameters apply to it. Trying to execute a nonsensical ioctl() on the
parallel port is not recommended.

All other termios(3C) functions are performed by STREAMS modules pushed on top
of the driver. When an stc device is opened, the ldterm(7M) and ttcompat(7M)
STREAMS modules are automatically pushed on top of the stream if they are specified
in the /etc/iu.ap file (the default condition), providing the standard termio(7I)
interface.

The device names of the form /dev/term/n or /dev/ttyyn specify the serial I/O
ports provided on the SPC/S board, conventionally as incoming lines. The device
names of the form /dev/cua/n or /dev/ttyzn specify the serial I/O ports provided
on the SPC/S board, conventionally as outgoing lines. The device names of the form
/dev/printers/n or /dev/stclpn specify the parallel port, and the device name
of the form /dev/stcn specify a special control port per board.

To allow a single tty line to be connected to a modem and used for both incoming and
outgoing calls, a special feature, controlled by the minor device number, has been
added. Minor device numbers in the range 128-191 correspond to the same physical
lines as those in the range 0-63 (that is, the same line as the minor device number
minus 128).

A dial-in line has a minor device in the range 0-63 and is conventionally named
/dev/term/n, where n is a number that indicates which dial-in line it is (so that
/dev/term/0 is the first dial-in line). The dial-out line corresponding to that dial-in
line has a minor device number 128 greater than the minor device number of the
dial-in line and is conventionally named /dev/cua/n, where n is the number of the
dial-in line. These devices will also have the compatibility names /dev/ttyzn.

The /dev/cua/n lines are special in that they can be opened even when there is no
carrier on the line. Once a /dev/cua/n line is opened, the corresponding

stc(7D)

NAME

DESCRIPTION

Device and Network Interfaces 555

/dev/term/n line cannot be opened until the /dev/cua/n line is closed; a blocking
open will wait until the /dev/cua/n line is closed (which will drop DTR, after which
DCD will usually drop as well) and carrier is detected again, and a non-blocking open
will return an error. If the /dev/term/ n line has been opened successfully (usually
only when carrier is recognized on the modem) the corresponding /dev/cua/n line
cannot be opened. This allows a modem to be attached to /dev/term/0, for example,
and used for dial-in, by enabling the line for login (using pmadm(1M)) and also used
for dial-out (by tip(1) or uucp(1C)) as /dev/cua/0 when nobody is logged in on the
line.

The parallel port is given the name /dev/stclpn, where n is the SPC/S unit number
(see Minor Numbers, below).

The control port, named /dev/stcn, where n is the SPC/S, is available. An ioctl()
is provided for this special file which allow the collection of statistics maintained on
serial port performance.

The characters o p u u | u l l l correspond to the bits in the minor number. They are
mnemonic indicators of the function of the corresponding bit.

o set if this device is an outgoing serial line

p set if this is a parallel port device

u device unit number

l device line number if this is the parallel port line, ’p’ should be 1 and ’lll’
should be all 0’s if this is the control line, both ’p’ and ’lll’ should be set to
all 1’s

The standard set of termio ioctl() calls is supported by the stc driver on both the
serial and parallel ports.

If the CRTSCTS flag in the c_cflag is set and if CTS is high, output will be
transmitted; if CTS is low, output will be frozen. If the CRTSCTS flag is clear, the state
of CTS has no effect. Breaks can be generated by the TCSBRK, TIOCSBRK and
TIOCCBRK ioctl() calls. The modem control lines TIOCM_CAR, TIOCM_CTS,
TIOCM_RTS, TIOCM_DSR and TIOCM_DTR are provided for the serial ports, although
the TIOCMGET ioctl() call will not return the state of the TIOCM_RTS or
TIOCM_DSR lines, which are output-only signals.

The serial port input and output line speeds may be set to any of the speeds supported
by termio(7I).

The stc driver supports two additional ioctl()s. STC_SPPC(struct
ppc_params_t *) sets parallel port parameters, and STC_GPPC(struct
ppc_params_t *) gets parallel port parameters. Both are valid until changed or
until a close().

struct ppc_params_t {
uint_t flags; /* driver status flag */

stc(7D)

Minor Numbers

IOCTLS

DEVICE-SPECIFIC
IOCTLS

556 man pages section 7: Device and Network Interfaces • Last Revised 17 Mar 1998

uint_t state; /* status of the printer interface */
uint_t strobe_w; /* strobe width, in microseconds */
uint_t data_setup; /* data setup time, in microseconds */
uint_t ack_timeout; /* ACK timeout in secs */
uint_t error_timeout; /* PAPER OUT, etc... timeout in secs */
uint_t busy_timeout; /* BUSY timeout in seconds */

};

The possible values for flags defined in /usr/include/sys/stcio.h are:

PP_PAPER_OUT honor PAPER OUT from port; returned HIGH means PAPER OUT.

PP_ERROR honor ERROR from port; returned HIGH means ERROR.

PP_BUSY honor BUSY from port; returned HIGH means BUSY.

PP_SELECT honor SELECT from port; returned HIGH means OFFLINE.

PP_MSG print console message on every error scan.

PP_SIGNAL send a PP_SIGTYPE (SIGURG) to the process if printer error.

The state field contains the current status of the printer interface. It is analogous to the
bit order of flags, but contains the status the driver maintains, masked by the flags that
are set. The result of shifting state PP_SHIFT bits to the left is the actual state of the
hardware.

The STC_SPPC and STC_GPPC ioctl() calls are understood only by the parallel
port. STC_GSTATS(struct stc_stats_t *) gets or resets driver performance
statistics on serial ports.

struct stc_stats_t {
uint_t cmd; /* command */
uint_t qpunt; /* punting in stc_drainsilo() */
uint_t drain_timer; /* posted a timer in stc_drainsilo() */
uint_t no_canput; /* canput() failed in stc_drainsilo() */
uint_t no_rcv_drain; /* can’t call stc_drainsilo() in stc_rcv() */
uint_t stc_drain; /* STC_DRAIN flag set on this line */
uint_t stc_break; /* BREAK requested on XMIT via stc_ioctl() */
uint_t stc_sbreak; /* start BREAK requested via stc_ioctl() */
uint_t stc_ebreak; /* end BREAK requested via stc_ioctl() */
uint_t set_modem; /* set modem control lines in stc_ioctl() */
uint_t get_modem; /* get modem control lines in stc_ioctl() */
uint_t ioc_error; /* bad ioctl() */
uint_t set_params; /* call to stc_param() */
uint_t no_start; /* can’t run in stc_start(); already there */
uint_t xmit_int; /* transmit interrupts */
uint_t rcv_int; /* receive interrupts */
uint_t rcvex_int; /* receive exception interrupts */
uint_t modem_int; /* modem change interrupts */
uint_t xmit_cc; /* characters transmitted */
uint_t rcv_cc; /* characters received */
uint_t break_cnt; /* BREAKs received */
uint_t bufcall; /* times we couldn’t get STREAMS buffer */
uint_t canwait; /* stc_drainsilo() called w/pending timer */

stc(7D)

Device and Network Interfaces 557

uint_t reserved; /* this field is meaningless */

};

The STC_GSTATS ioctl() works only on the SPC/S control port. The possible cmd
values, defined in /usr/include/sys/stcio.h, are STAT_CLEAR, which clears the
line statistics, and STAT_GET, which gets the line statistics.

Several methods may be used to enable or disable soft carrier on a particular serial line.
The non-programmatic method is to edit the
/platform/platform/kernel/drv/stc.conf file. For this change to take effect, the
machine must be rebooted. See the next section, SETTING DEFAULT LINE
PARAMETERS, for more information on this method. From within an application
program, you can enable or disable the recognition of carrier on a particular line by
issuing the TIOCGSOFTCAR ioctl() to the driver.

The default mode of operation for the DTR signal is to assert it on the first open() of a
serial line and, if HUPCL is set, to de-assert it on the last close(). To change the
operation of this feature, issue the set on the
/platform/platform/kernel/drv/stc.conf parameter flags field bit
DTR_ASSERT.

Many default parameters of the serial and parallel ports can be changed using the
/platform/platform/kernel/drv/stc.conf file. The format of a line in the
stc.conf file is:

device_tag=token[=value][:token[=value]]

For serial ports, the device_tag is stc_n, where n is between 0 and the maximum
number of serial ports used by the driver. The token and parameters that follow it
apply to both the /dev/term/n entries and /dev/cua/n entries.

For parallel ports, the device_tag is stc_pn, where n is between 0 and the number of
parallel ports driven by stc.

The token[=value] specifies a token, and if the token takes a value, the value to assigned.
Tokens that don’t take a value are considered boolean. If boolean tokens don’t appear
in the stc.conf file, they will be cleared by the driver. If these tokens appear in the
stc.conf file, they will be set by the driver.

Tokens that take parameters must have a parameter specified in the token=value
couplet in the stc.conf file. If no parameter or an invalid parameter is specified, the
driver will ignore the token and revert to using the driver’s default value.

Valid boolean tokens for serial ports are:

stc(7D)

SOFTCAR, DTR
and CTS/RTS

FLOW CONTROL

SETTING
DEFAULT LINE
PARAMETERS

Tokens for Serial
Ports

558 man pages section 7: Device and Network Interfaces • Last Revised 17 Mar 1998

soft_carrier- Defaullt value, enables the soft carrier on the specified
line. When the soft carrier is set, transitions on the
carrier detect line will be ignored. Use drt_assert to
clear this value.

dtr_assert- Causes the DTR to be asserted on the next open of the
port.

dtr_force- Causes DTR to be continuously asserted. It overrides
any other DTR operations and ioctl() calls.

dtr_close- Use alternate semantics when dealing with DTR in
close. If this is clear, DTR will drop on the close of the
port. If this is set, DTR will not drop on close() if
TS_SOFTCAR (see termiox(7I)) is set in the t_flags.

cflow_flush- Flush any data being held off by remote flow control on
close().

cflow_msg- Display a message on the console if data transmission
is stalled due to remote flow control blocking the
transfer in close().

instantflow- If transmission is stopped by software flow control and
the flow control is disabled via an ioctl() call, the
transmitter will be enabled immediately.

Valid tokens requiring values are:

drain_size- The size of STREAMS buffers allocated when passing
data from the receive interrupt handler upstream.

hiwater, lowwater- The high water and low water thresholds in the receive
interrupt handler 1024 byte buffer.

rtpr- The inter-character receive timer.

rxfifo- The UART receive fifo threshold.

For serial ports, the value-carrying tokens have the following defaults and ranges:

token default value min value max value

hiwater 1010 bytes 2 bytes 1022 bytes

lowwater 512 bytes 2 bytes hiwater minus 2 bytes

drain_size 64 bytes 4 bytes 1024 bytes

rtpr 18 millisecs 1 millisecs 255 millisecs

rxfifo 4 bytes 1 bytes 8 bytes

stc(7D)

Device and Network Interfaces 559

Valid boolean tokens for parallel ports are

paper_out- If set, the PAPER OUT signal from the port is
monitored. If clear, the signal is ignored.

error- Monitor the ERROR signal from the port. Ignore the
signal if clear.

busy- Monitor the BUSY signal from the port. Ignore the
signal if clear.

select- Monitor the SELECT, or ON LINE, signal from the port.
Ignore the signal if clear.

pp_message- If this token is clear, a console message will be printed
when any of the above four enabled conditions are
detected, and another when the condition is cleared. If
set, a console message will be printed every 60 seconds
until the condition is cleared.

pp_signal- If this token is set, the parallel port’s controlling
process will get a PP_SIGTYPE signal whenever one of
the above four conditions is detected. PP_SIGTYPE is
defined in stcio.h, which is available to the user.

Valid tokens requiring parameters for the parallel ports are

ack_timeout- The amount of time in seconds to wait for an ACK from
the port after asserting STROBE and transferring a byte
of data.

error_timeout- Amount of time in seconds to wait for an error to go
away.

busy_timeout- The amount of time in seconds to wait for a BUSY
signal to clear, or zero for an infinite BUSY timeout.

data_setup- The amount of time in microseconds between placing
data ont the parallel lines and asserting the STROBE.

strobe_width- width of the STROBE pulse, in microseconds.

For value-carrying tokens for parallel ports:

token default value min value max value

strobe_width 2 microsecs 1 microsecs 30 microsecs

data_setup 2 microsecs 0 microsecs 30 microsecs

ack_timeout 60 seconds 5 seconds 7200 seconds

errror_timeout 5 seconds 1 seconds 480 seconds

stc(7D)

Tokens for Parallel
Ports

560 man pages section 7: Device and Network Interfaces • Last Revised 17 Mar 1998

token default value min value max value

busy_timeout 10 seconds 0 seconds 7200 seconds

The default values of certain parallel port parameters that govern data transfer
between the SPC/S board and the device attached to the parallel port will usually
work well with most devices; however, some devices don’t strictly adhere to the IBM
PS/2-compatible (Centronics-compatible) data transfer and device control/status protocol,
and may require modification of one or more of the default parallel port parameters.
Some printers, for example, have non-standard timing on their SELECT line, which
manifests itself if you start sending data to the printer and then take it off line; when
you put it back on line, the printer will not assert it’s SELECT line until after the next
character is sent to the printer. Since the stc driver will not send data to the device if
it’s SELECT line is de-asserted, a deadlock condition occurs. To remedy this situation,
you can change the default signal list that the stc driver monitors on the parallel port
by removing the SELECT signal from the list. This can be done either through the
/platform/platform/kernel/drv/stc.conf configuration file or
programmatically through the STC_SPPC ioctl() call.

If you try to unload the driver, and one or more of the ports on one or more of the
SPC/S boards is in use (for example, open()) by a process, the driver will not be
unloaded, and all lines on all SPC/S boards, with the exception of the control ports, will
be marked with an open inhibit flag to prevent further opens until the driver is
successfully unloaded.

An open() will fail with errno set to:

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened and the dial-in device is
already open, the dial-in device is being opened with a no-delay
open and the dial-out device is already open or the unit has been
marked as exclusive-use by another process with a TIOCEXCL
ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

EPERM The control port for the board was opened by a process whose uid
was not root.

An ioctl() will fail with errno set to:

ENOSR A STREAMS data block could not be allocated to return data to the
caller.

EINVAL An invalid value was passed as the data argument to the ioctl()
call or an invalid argument or op-field was passed in one of the
driver-specific ioctl()’s.

stc(7D)

PARALLEL PORT
PARAMETERS

LOADABLE
ISSUES

ERRORS

Device and Network Interfaces 561

EPERM An STC_GSTATS ioctl() was requested by a process whose uid
was not root.

ENOTTY An unrecognized ioctl() command was received.

The stc driver uses the following files:

/dev/term/[00-3f]

/dev/ttyy[00-3f]
Hardwired and dial-in tty lines

/dev/cua/[00-3f]

/dev/ttyz[00-3f]
Dial-out tty lines

/dev/printers/[0-7]

/dev/stclp[0-7]
Parallel port lines

/dev/stc[0-7]
Control port

/platform/platform/kernel/drv/stc.conf
Driver configuration file

/usr/include/sys/stcio.h
Header file with ioctl()s supported by this driver

tip(1), uucp(1C), pmadm(1M), termios(3C), ldterm(7M), termio(7I), termiox(7I),
ttcompat(7M), allocb(9F), bufcall(9F), kmem_zalloc (9F)

All diagnostic messages from the driver appear on the system console. There are three
severity levels of messages displayed:

FATAL The device driver does not get loaded, and any SPC/S boards
installed in the system are inaccessible. Fatal errors usually occur
during the modload process.

ERROR Some condition has disrupted the normal operation of the board
and/or device driver. There may be data loss. This class of
message mayindicate an impending hardware failure.

ADVISORY The device driver has detected a condition that may be of interest,
usually a transient condition that clears itself.

The following messages can be generated during initialization of the driver or board.

stc_attach: can’t allocate memory for unit structs
FATAL. kmem_zalloc() failed to allocate memory for the driver’s internal data
structures.

stc(7D)

FILES

SEE ALSO

DIAGNOSTICS

Messages During
Initialization Of

Driver/Board

562 man pages section 7: Device and Network Interfaces • Last Revised 17 Mar 1998

stc_attach: board revision undeterminable
FATAL. The driver did not get a hardware revision level from the board’s onboard
FCode PROM.

stc_attach: board revision 0x%x not supported by driver.
FATAL. This revision of the board is not supported by the driver.

stc_attach: oscillator revision undeterminable
FATAL. The driver did not get an oscillator revision level from the board’s onboard
FCode PROM.

stc_attach: weird oscillator revision (0x%x), assuming 10Mhz
ADVISORY. The board’s onboard FCode PROM returned an unanticipated
baud-rate oscillator value, so the driver assumes that a 10Mhz oscillator is installed.

stc_attach: error initializing stc%d
FATAL. An error occured while trying to initialize the board; perhaps a memory
access failed.

stc_attach: bad number of interrupts: %d
FATAL. An incorrect number of interrupts was read from the board’s onboard
FCode PROM.

stc_attach: bad number of register sets: %d
FATAL. An incorrect number of register sets was read from the board’s onboard
FCode PROM.

stc_init: stc%d GIVR was not 0x0ff, was: 0x%x
FATAL. Either the cd-180 8-channel UART failed to initialize properly or a memory
fault occured while trying to access the chip.

cd180_init: stc%d GIVR was not 0x0ff, was: 0x%x
FATAL. Either the cd-180 8-channel UART failed to initialize properly or a memory
fault occured while trying to access the chip.

stc%d: board revision: 0x%x should be updated
ADVISORY. Two versions of the FCode PROM on the SPC/S card, V1.0 (0x4) and
V1.1 (0x5), have been released. The V1.1 PROM fixes some incompatabilities
between the V1.0 FCode PROM on the SPC/S and the V2.0 OpenBOOT PROM on
your system. An SPC/S card in a system running Solaris 2.X. requires a V1.1
PROM.

stc%d: system boot PROM revision V%d.%d should be updated
ADVISORY. Your system’s BOOT PROM should be updated to at least V1.3 because
prior versions of the BOOT PROM did not correctly map the SBus interrupt levels
that the SPC/S uses.

SET_CCR: CCR timeout
ERROR. The cd-180’s CCR register did not return to zero within the specified timeout
period after it was issued a command

stc(7D)

Messages Related
To The Serial Port

Device and Network Interfaces 563

PUTSILO: unit %d line %d soft silo overflow
ERROR. The driver’s internal receive data silo for the enunciated line has
overflowed because the system has not gotten around to pulling data out of the
silo. Make sure you are using the correct flow control and that all data in the silo is
flushed. This message frequently appears becasue of a hardware crosstalk problem
that was fixed in later releases of the board.

stc_rcvex: unit %d line %d receiver overrun, char: 0x%x
ERROR. The driver could not get around to service the cd-180 receive data interrupt
before the cd-180’s receive data FIFO filled up. This message frequently appears
becasue of a hardware crosstalk problem that was fixed in later releases of the
board.

stc_drainsilo: unit %d line %d can’t allocate streams buffer
ERROR. The driver could not get a STREAMS message buffer from bufcall(9F).
All data in the driver’s receive data silo is flushed.

stc_drainsilo: unit %d line %d punting put retries
ERROR. After trying several times to send data down the stream from the driver to
the application and finding the path blocked, the driver gives up. All data in the
driver’s receive data silo is flushed.

stc_modem: unit %d line %d interesting modem control
ADVISORY. The cd-180 posted a modem control line change interrupt, but upon
examination by the driver, no modem control lines had changed state since the last
time a scan was conducted. If you see this problem frequently, it is likely that your
data cables are either too long or picking up induced noise.

ppc_stat: unit %d PAPER OUT
ADVISORY. The device connected to the parallel port on the enumerated BOARD has
signalled that it is out of paper (PAPER OUT line asserted).

ppc_stat: unit %d PAPER OUT condition cleared
ADVISORY. The previously-detected PAPER OUT condition has been cleared by the
device connected to the parallel port on the enumerated board (PAPER OUT line
de-asserted).

ppc_stat: unit %d OFFLINE
ADVISORY. The device connected to the parallel port on the enumerated board has
signaled that it is offline (SLCT line de-asserted).

ppc_stat: unit %d OFFLINE condition cleared
ADVISORY. The previously-detected off line condition has been cleared by the
device connected to the parallel port on the enumerated board (SLCT line asserted).

ppc_stat: unit %d ERROR
ADVISORY. The device connected to the parallel port on the enumerated board has
signalled that it has encountered an error of some sort (ERROR line asserted).

ppc_stat: unit %d ERROR condition cleared
ADVISORY. The previously-detected error condition has been cleared by the device
connected to the parallel port on the enumerated board (ERROR line de-asserted).

stc(7D)

Messages Related
To The Parallel

Port

564 man pages section 7: Device and Network Interfaces • Last Revised 17 Mar 1998

ppc_acktimeout: unit %d ACK timeout
ERROR. The ACK line from the device connected to the parallel port did not assert
itself within the configurable timeout period. Check to be sure that the device is
connected and powered on.

ppc_acktimeout: unit %d BUSY timeout
ERROR. The BUSY line from the device connected to the parallel port did not
de-assert itself within the configurable timeout period. Check to be sure that the
device is connected and powered on.

ppc_int: unit %d stray interrupt
ADVISORY. The parallel port controller (ppc) chip generated an interrupt while the
device was closed. This was unexpected, and if you see it frequently, your parallel
cable may be picking up induced noise, causing the ppc to generate an unwanted
interrupt; or this could indicate an internal problem in the ppc.

ppc_acktimeout: unit %d can’t get pointer to read q
ERROR. The driver’s internal ppc data structure became corrupted.

ppc_acktimeout: unit %d can’t send M_ERROR message
ERROR. The driver can’t send an M_ERROR STREAMS message to the application.

ppc_signal: unit %d can’t get pointer to read q
ERROR. The driver’s internal ppc data structure became corrupted.

ppc_signal: unit %d can’t send M_PCSIG(PP_SIGTYPE 0x%x) message
ERROR. The driver can’t send an M_PCSIG STREAMS message to the application
(which could cause a signal to be posted).

stc_wput: unit %d trying to M_STARTI on ppc or control device
ADVISORY. An M_STARTI STREAMS message was sent to the parallel port or the
board control device, which should only happen if an application explicitly sends
this message.

stc_wput: unit %d line %d unknown message: 0x%x
ADVISORY. An unknown STREAMS message was sent to the driver. Check your
application coding.

stc_start: unit %d line %d unknown message: 0x%x
ADVISORY. An unknown STREAMS message was sent to the driver. Check your
application coding.

stc_ioctl: unit %d line %d can’t allocate streams buffer for ioctl
ERROR. The driver could not get a STREAMS message buffer from bufcall() for
the requested ioctl(); theioctl() will not be executed.

stc_ioctl: unit %d line %d can’t allocate STC_DCONTROL block
ERROR. The driver could not allocate a data block from allocb(9F) for the
STC_DCONTROL return value; the ioctl() does not get executed.

stc_ioctl: unit %d line %d can’t allocate STC_GPPC block
ERROR. The driver could not allocate a data block from allocb() for the
STC_GPPC return value; the ioctl() does not get executed.

stc(7D)

Messages Related
To STREAMS

Processing

Messages Related
To Serial Port

Control

Device and Network Interfaces 565

stc_ioctl: unit %d line %d can’t allocate TIOCMGET block
ERROR. The driver could not allocate a data block from allocb() for the
TIOCMGET return value; the ioctl() does not get executed.

stc_vdcmd: unit %d cd-180 firmware revision: 0x%x
ADVISORY. This message displays the firmware revision level of the cd-180 when
the driver is first loaded.

stc(7D)

566 man pages section 7: Device and Network Interfaces • Last Revised 17 Mar 1998

stp4020 – STP 4020 PCMCIA Adapter

The STP 4020 PCMCIA Adapter provides for two PCMCIA PC Card sockets. The
stp4020 adapter driver provides an interface between the PCMCIA sockets and the
PCMCIA nexus. The driver supports the Sun PCMCIA Interface/Sbus card.

Direct access to the PCMCIA hardware is not supported. The driver exists solely to
support the PCMCIA nexus.

/kernel/drv/stp4020 stp4020 driver.

pcmcia(4)

stp4020(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

Device and Network Interfaces 567

streamio – STREAMS ioctl commands

#include <sys/types.h>
#include <stropts.h>

#include <sys/conf.h>

int ioctl(int fildes, int command, ... /*arg*/);

STREAMS (see intro(3)) ioctl commands are a subset of the ioctl(2) commands
and perform a variety of control functions on streams.

The fildes argument is an open file descriptor that refers to a stream. The command
argument determines the control function to be performed as described below. The arg
argument represents additional information that is needed by this command. The type
of arg depends upon the command, but it is generally an integer or a pointer to a
command-specific data structure. The command and arg arguments are interpreted by
the STREAM head. Certain combinations of these arguments may be passed to a
module or driver in the stream.

Since these STREAMS commands are ioctls, they are subject to the errors described
in ioctl(2). In addition to those errors, the call will fail with errno set to EINVAL,
without processing a control function, if the STREAM referenced by fildes is linked
below a multiplexor, or if command is not a valid value for a stream.

Also, as described in ioctl(2), STREAMS modules and drivers can detect errors. In
this case, the module or driver sends an error message to the STREAM head
containing an error value. This causes subsequent calls to fail with errno set to this
value.

The following ioctl commands, with error values indicated, are applicable to all
STREAMS files:

I_PUSH Pushes the module whose name is pointed to by arg onto the top
of the current stream, just below the STREAM head. If the
STREAM is a pipe, the module will be inserted between the stream
heads of both ends of the pipe. It then calls the open routine of the
newly-pushed module. On failure, errno is set to one of the
following values:

EINVAL Invalid module name.

EFAULT arg points outside the allocated address space.

ENXIO Open routine of new module failed.

ENXIO Hangup received on fildes.

I_POP Removes the module just below the STREAM head of the
STREAM pointed to by fildes. To remove a module from a pipe
requires that the module was pushed on the side it is being
removed from. arg should be 0 in an I_POP request. On failure,
errno is set to one of the following values:

streamio(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

568 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

EINVAL No module present in the stream.

ENXIO Hangup received on fildes.

EPERM Attempt to pop through an anchor by an
unpriviledged process.

I_ANCHOR Positions the stream anchor to be at the STREAMS module directly
below the STREAM head. Once this has been done, only a
privileged process may pop modules below the anchor on the
stream. arg must be 0 in an I_ANCHOR request. On failure, errno
is set to the following value:

EINVAL Request to put an anchor on a pipe.

I_LOOK Retrieves the name of the module just below the STREAM head of
the STREAM pointed to by fildes, and places it in a null terminated
character string pointed at by arg. The buffer pointed to by arg
should be at least FMNAMESZ+1 bytes long. This requires the
declaration #include <sys/conf.h>. On failure, errno is set
to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL No module present in stream.

I_FLUSH This request flushes all input and/or output queues, depending on
the value of arg. Legal arg values are:

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the read
queue of the STREAM head on either end is flushed depending on
the value of arg.

If FLUSHR is set and fildes is a pipe, the read queue for that end of
the pipe is flushed and the write queue for the other end is
flushed. If fildes is a FIFO, both queues are flushed.

If FLUSHW is set and fildes is a pipe and the other end of the pipe
exists, the read queue for the other end of the pipe is flushed and
the write queue for this end is flushed. If fildes is a FIFO, both
queues of the FIFO are flushed.

If FLUSHRW is set, all read queues are flushed, that is, the read
queue for the FIFO and the read queue on both ends of the pipe
are flushed.

streamio(7I)

Device and Network Interfaces 569

Correct flush handling of a pipe or FIFO with modules pushed is
achieved via the pipemod module. This module should be the first
module pushed onto a pipe so that it is at the midpoint of the pipe
itself.

On failure, errno is set to one of the following values:

ENOSR Unable to allocate buffers for flush message
due to insufficient STREAMS memory
resources.

EINVAL Invalid arg value.

ENXIO Hangup received on fildes.

I_FLUSHBAND Flushes a particular band of messages. arg points to a bandinfo
structure that has the following members:

unsigned char bi_pri;
int bi_flag;

The bi_flag field may be one of FLUSHR, FLUSHW, or FLUSHRW
as described earlier.

I_SETSIG Informs the STREAM head that the user wishes the kernel to issue
the SIGPOLL signal (see signal(3C)) when a particular event has
occurred on the STREAM associated with fildes. I_SETSIG
supports an asynchronous processing capability in STREAMS. The
value of arg is a bitmask that specifies the events for which the
user should be signaled. It is the bitwise OR of any combination of
the following constants:

S_INPUT Any message other than an M_PCPROTO has
arrived on a STREAM head read queue. This
event is maintained for compatibility with
previous releases. This event is triggered even
if the message is of zero length.

S_RDNORM An ordinary (non-priority) message has
arrived on a STREAM head read queue. This
event is triggered even if the message is of zero
length.

S_RDBAND A priority band message (band > 0) has arrived
on a stream head read queue. This event is
triggered even if the message is of zero length.

S_HIPRI A high priority message is present on the
STREAM head read queue. This event is
triggered even if the message is of zero length.

S_OUTPUT The write queue just below the STREAM head
is no longer full. This notifies the user that

streamio(7I)

570 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

there is room on the queue for sending (or
writing) data downstream.

S_WRNORM This event is the same as S_OUTPUT.

S_WRBAND A priority band greater than 0 of a queue
downstream exists and is writable. This
notifies the user that there is room on the
queue for sending (or writing) priority data
downstream.

S_MSG A STREAMS signal message that contains the
SIGPOLL signal has reached the front of the
STREAM head read queue.

S_ERROR An M_ERROR message has reached the
STREAM head.

S_HANGUP An M_HANGUP message has reached the
STREAM head.

S_BANDURG When used in conjunction with S_RDBAND,
SIGURG is generated instead of SIGPOLL
when a priority message reaches the front of
the stream head read queue.

A user process may choose to be signaled only of high priority
messages by setting the arg bitmask to the value S_HIPRI.

Processes that wish to receive SIGPOLL signals must explicitly
register to receive them using I_SETSIG. If several processes
register to receive this signal for the same event on the same
stream, each process will be signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered
and will not receive further SIGPOLL signals. On failure, errno is
set to one of the following values:

EINVAL arg value is invalid or arg is zero and process is
not registered to receive the SIGPOLL signal.

EAGAIN Allocation of a data structure to store the
signal request failed.

I_GETSIG Returns the events for which the calling process is currently
registered to be sent a SIGPOLL signal. The events are returned as
a bitmask pointed to by arg, where the events are those specified in
the description of I_SETSIG above. On failure, errno is set to one
of the following values:

EINVAL Process not registered to receive the SIGPOLL
signal.

streamio(7I)

Device and Network Interfaces 571

EFAULT arg points outside the allocated address space.

I_FIND Compares the names of all modules currently present in the
STREAM to the name pointed to by arg, and returns 1 if the named
module is present in the stream. It returns 0 if the named module
is not present. On failure, errno is set to one of the following
values:

EFAULT arg points outside the allocated address space.

EINVAL arg does not contain a valid module name.

I_PEEK Allows a user to retrieve the information in the first message on
the STREAM head read queue without taking the message off the
queue. I_PEEK is analogous to getmsg(2) except that it does not
remove the message from the queue. arg points to a strpeek
structure, which contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuf structures
(see getmsg(2)) must be set to the number of bytes of control
information and/or data information, respectively, to retrieve.
flags may be set to RS_HIPRI or 0. If RS_HIPRI is set, I_PEEK
will look for a high priority message on the STREAM head read
queue. Otherwise, I_PEEK will look for the first message on the
STREAM head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no
message was found on the STREAM head read queue. It does not
wait for a message to arrive. On return, ctlbuf specifies
information in the control buffer, databuf specifies information in
the data buffer, and flags contains the value RS_HIPRI or 0. On
failure, errno is set to the following value:

EFAULT arg points, or the buffer area specified in
ctlbuf or databuf is, outside the allocated
address space.

EBADMSG Queued message to be read is not valid for
I_PEEK.

EINVAL Illegal value for flags.

I_SRDOPT Sets the read mode (see read(2)) using the value of the argument
arg. Legal arg values are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

streamio(7I)

572 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

In addition, the STREAM head’s treatment of control messages
may be changed by setting the following flags in arg:

RPROTNORM Reject read() with EBADMSG if a control
message is at the front of the STREAM head
read queue.

RPROTDAT Deliver the control portion of a message as
data when a user issues read(). This is the
default behavior.

RPROTDIS Discard the control portion of a message,
delivering any data portion, when a user issues
a read().

On failure, errno is set to the following value:

EINVAL arg is not one of the above legal values, or arg
is the bitwise inclusive OR of RMSGD and
RMSGN.

I_GRDOPT Returns the current read mode setting in an int pointed to by the
argument arg. Read modes are described in read(). On failure,
errno is set to the following value:

EFAULT arg points outside the allocated address space.

I_NREAD Counts the number of data bytes in data blocks in the first message
on the STREAM head read queue, and places this value in the
location pointed to by arg. The return value for the command is the
number of messages on the STREAM head read queue. For
example, if zero is returned in arg, but the ioctl return value is
greater than zero, this indicates that a zero-length message is next
on the queue. On failure, errno is set to the following value:

EFAULT arg points outside the allocated address space.

I_FDINSERT Creates a message from specified buffer(s), adds information about
another STREAM and sends the message downstream. The
message contains a control part and an optional data part. The
data and control parts to be sent are distinguished by placement in
separate buffers, as described below.

The arg argument points to a strfdinsert structure, which
contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
t_uscalar_t flags;
int fildes;
int offset;

The len member in the ctlbuf strbuf structure (see
putmsg(2)) must be set to the size of a t_uscalar_t plus the

streamio(7I)

Device and Network Interfaces 573

number of bytes of control information to be sent with the
message. The fildes member specifies the file descriptor of the
other STREAM, and the offset member, which must be suitably
aligned for use as a t_uscalar_t, specifies the offset from the
start of the control buffer where I_FDINSERT will store a
t_uscalar_t whose interpretation is specific to the STREAM
end. The len member in the databuf strbuf structure must be
set to the number of bytes of data information to be sent with the
message, or to 0 if no data part is to be sent.

The flags member specifies the type of message to be created. A
normal message is created if flags is set to 0, and a high-priority
message is created if flags is set to RS_HIPRI. For non-priority
messages, I_FDINSERT will block if the STREAM write queue is
full due to internal flow control conditions. For priority messages,
I_FDINSERT does not block on this condition. For non-priority
messages, I_FDINSERT does not block when the write queue is
full and O_NDELAY or O_NONBLOCK is set. Instead, it fails and sets
errno to EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks in the
STREAM, regardless of priority or whether O_NDELAY or
O_NONBLOCK has been specified. No partial message is sent.

The ioctl() function with the I_FDINSERT command will fail if:

EAGAIN A non-priority message is specified, the
O_NDELAY or O_NONBLOCK flag is set, and the
STREAM write queue is full due to internal
flow control conditions.

ENOSR Buffers can not be allocated for the message
that is to be created.

EFAULT The arg argument points, or the buffer area
specified in ctlbuf or databuf is, outside the
allocated address space.

EINVAL One of the following: The fildes member of
the strfdinsert structure is not a valid,
open STREAM file descriptor; the size of a
t_uscalar_t plus offset is greater than the
len member for the buffer specified through
ctlptr; the offset member does not specify
a properly-aligned location in the data buffer;
or an undefined value is stored in flags.

streamio(7I)

574 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

ENXIO Hangup received on the fildes argument of
the ioctl call or the fildes member of the
strfdinsert structure.

ERANGE The len field for the buffer specified through
databuf does not fall within the range
specified by the maximum and minimum
packet sizes of the topmost STREAM module;
or the len member for the buffer specified
through databuf is larger than the maximum
configured size of the data part of a message;
or the len member for the buffer specified
through ctlbuf is larger than the maximum
configured size of the control part of a
message.

I_FDINSERT can also fail if an error message was received by the
STREAM head of the STREAM corresponding to the fildes
member of the strfdinsert structure. In this case, errno will be
set to the value in the message.

I_STR Constructs an internal STREAMS ioctl message from the data
pointed to by arg, and sends that message downstream.

This mechanism is provided to send user ioctl requests to
downstream modules and drivers. It allows information to be sent
with the ioctl, and will return to the user any information sent
upstream by the downstream recipient. I_STR blocks until the
system responds with either a positive or negative
acknowledgement message, or until the request "times out" after
some period of time. If the request times out, it fails with errno
set to ETIME.

To send requests downstream, arg must point to a strioctl
structure which contains the following members:

int ic_cmd;
int ic_timout;
int ic_len;
char *ic_dp;

ic_cmd is the internal ioctl command intended for a
downstream module or driver and ic_timout is the number of
seconds (-1 = infinite, 0 = use default, >0 = as specified) an I_STR
request will wait for acknowledgement before timing out. ic_len
is the number of bytes in the data argument and ic_dp is a
pointer to the data argument. The ic_len field has two uses: on
input, it contains the length of the data argument passed in, and on
return from the command, it contains the number of bytes being
returned to the user (the buffer pointed to by ic_dp should be

streamio(7I)

Device and Network Interfaces 575

large enough to contain the maximum amount of data that any
module or the driver in the STREAM can return).

At most one I_STR can be active on a stream. Further I_STR calls
will block until the active I_STR completes via a positive or
negative acknowlegment, a timeout, or an error condition at the
STREAM head. By setting the ic_timout field to 0, the user is
requesting STREAMS to provide the "DEFAULT" timeout. The
default timeout is specific to the STREAMS implementation and
may vary depending on which release of Solaris you are using. For
Solaris 8 (and earlier versions), the default timeout is fifteen
seconds. The O_NDELAY and O_NONBLOCK (see open(2)) flags have
no effect on this call.

The STREAM head will convert the information pointed to by the
strioctl structure to an internal ioctl command message and
send it downstream. On failure, errno is set to one of the
following values:

ENOSR Unable to allocate buffers for the ioctl
message due to insufficient STREAMS memory
resources.

EFAULT Either arg points outside the allocated address
space, or the buffer area specified by ic_dp
and ic_len (separately for data sent and data
returned) is outside the allocated address
space.

EINVAL ic_len is less than 0 or ic_len is larger than
the maximum configured size of the data part
of a message or ic_timout is less than -1.

ENXIO Hangup received on fildes.

ETIME A downstream ioctl timed out before
acknowledgement was received.

An I_STR can also fail while waiting for an acknowledgement if a
message indicating an error or a hangup is received at the
STREAM head. In addition, an error code can be returned in the
positive or negative acknowledgement message, in the event the
ioctl command sent downstream fails. For these cases, I_STR will
fail with errno set to the value in the message.

I_SWROPT Sets the write mode using the value of the argument arg. Legal bit
settings for arg are:

SNDZERO Send a zero-length message downstream when
a write of 0 bytes occurs.

streamio(7I)

576 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

To not send a zero-length message when a write of 0 bytes occurs,
this bit must not be set in arg.

On failure, errno may be set to the following value:

EINVAL arg is not the above legal value.

I_GWROPT Returns the current write mode setting, as described above, in the
int that is pointed to by the argument arg.

I_SENDFD Requests the STREAM associated with fildes to send a message,
containing a file pointer, to the stream head at the other end of a
STREAM pipe. The file pointer corresponds to arg, which must be
an open file descriptor.

I_SENDFD converts arg into the corresponding system file pointer.
It allocates a message block and inserts the file pointer in the block.
The user id and group id associated with the sending process are
also inserted. This message is placed directly on the read queue
(see intro(3)) of the STREAM head at the other end of the
STREAM pipe to which it is connected. On failure, errno is set to
one of the following values:

EAGAIN The sending STREAM is unable to allocate a
message block to contain the file pointer.

EAGAIN The read queue of the receiving STREAM head
is full and cannot accept the message sent by
I_SENDFD.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes is not connected to a STREAM pipe.

ENXIO Hangup received on fildes.

I_RECVFD Retrieves the file descriptor associated with the message sent by an
I_SENDFD ioctl over a STREAM pipe. arg is a pointer to a data
buffer large enough to hold an strrecvfd data structure
containing the following members:

int fd;
uid_t uid;
gif_t gif;

fd is an integer file descriptor. uid and gid are the user id and
group id, respectively, of the sending stream.

If O_NDELAY and O_NONBLOCK are clear (see open(2)), I_RECVFD
will block until a message is present at the STREAM head. If
O_NDELAY or O_NONBLOCK is set, I_RECVFD will fail with errno
set to EAGAIN if no message is present at the STREAM head.

streamio(7I)

Device and Network Interfaces 577

If the message at the STREAM head is a message sent by an
I_SENDFD, a new user file descriptor is allocated for the file
pointer contained in the message. The new file descriptor is placed
in the fd field of the strrecvfd structure. The structure is copied
into the user data buffer pointed to by arg. On failure, errno is set
to one of the following values:

EAGAIN A message is not present at the STREAM head
read queue, and the O_NDELAY or
O_NONBLOCK flag is set.

EBADMSG The message at the STREAM head read queue
is not a message containing a passed file
descriptor.

EFAULT arg points outside the allocated address space.

EMFILE NOFILES file descriptors are currently open.

ENXIO Hangup received on fildes.

EOVERFLOW uid or gid is too large to be stored in the
structure pointed to by arg.

I_LIST Allows the user to list all the module names on the stream, up to
and including the topmost driver name. If arg is NULL, the return
value is the number of modules, including the driver, that are on
the STREAM pointed to by fildes. This allows the user to allocate
enough space for the module names. If arg is non-null, it should
point to an str_list structure that has the following members:

int sl_nmods;
struct str_mlist *sl_modlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+1];

The sl_nmods member indicates the number of entries the
process has allocated in the array. Upon return, the sl_modlist
member of the str_list structure contains the list of module
names, and the number of entries that have been filled into the
sl_modlist array is found in the sl_nmods member (the
number includes the number of modules including the driver). The
return value from ioctl() is 0. The entries are filled in starting at
the top of the STREAM and continuing downstream until either
the end of the STREAM is reached, or the number of requested
modules (sl_nmods) is satisfied. On failure, errno may be set to
one of the following values:

EINVAL The sl_nmods member is less than 1.

EAGAIN Unable to allocate buffers

streamio(7I)

578 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

I_ATMARK Allows the user to see if the current message on the stream head
read queue is ‘‘marked’’ by some module downstream. arg
determines how the checking is done when there may be multiple
marked messages on the STREAM head read queue. It may take
the following values:

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on
the queue.

The return value is 1 if the mark condition is satisfied and 0
otherwise. On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_CKBAND Check if the message of a given priority band exists on the stream
head read queue. This returns 1 if a message of a given priority
exists, 0 if not, or −1 on error. arg should be an integer containing
the value of the priority band in question. On failure, errno is set
to the following value:

EINVAL Invalid arg value.

I_GETBAND Returns the priority band of the first message on the STREAM
head read queue in the integer referenced by arg. On failure,
errno is set to the following value:

ENODATA No message on the STREAM head read queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority band in
question. The return value is 0 if the priority band arg is flow
controlled, 1 if the band is writable, or −1 on error. On failure,
errno is set to the following value:

EINVAL Invalid arg value.

I_SETCLTIME Allows the user to set the time the STREAM head will delay when
a stream is closing and there are data on the write queues. Before
closing each module and driver, the STREAM head will delay for
the specified amount of time to allow the data to drain. Note,
however, that the module or driver may itself delay in its close
routine; this delay is independent of the STREAM head’s delay
and is not settable. If, after the delay, data are still present, data
will be flushed. arg is the number of milliseconds to delay,
rounded up to the nearest legal value on the system. The default is
fifteen seconds. On failure, errno is set to the following value:

EINVAL Invalid arg value.

I_GETCLTIME Returns the close time delay in the integer pointed by arg.

I_SERROPT Sets the error mode using the value of the argument arg.

streamio(7I)

Device and Network Interfaces 579

Normally STREAM head errors are persistent; once they are set
due to an M_ERROR or M_HANGUP, the error condition will remain
until the STREAM is closed. This option can be used to set the
STREAM head into non-persistent error mode i.e. once the error
has been returned in response to a read(2), getmsg(2), ioctl(2),
write(2), or putmsg(2) call the error condition will be cleared.
The error mode can be controlled independently for read and
write side errors. Legal arg values are either none or one of:

RERRNORM Persistent read errors, the default.

RERRNONPERSIST Non-persistent read errors.

OR’ed with either none or one of:

WERRNORM Persistent write errors, the default.

WERRNONPERSIST Non-persistent write errors.

When no value is specified e.g. for
the read side error behavior then
the behavior for that side will be
left unchanged.

On failure, errno is set to the following value:

EINVAL arg is not one of the above legal values.

I_GERROPT Returns the current error mode setting in an int pointed to by the
argument arg. Error modes are described above for I_SERROPT.
On failure,errno is set to the following value:

EFAULT arg points outside the allocated address space.

The following four commands are used for connecting and disconnecting multiplexed
STREAMS configurations.

I_LINK Connects two streams, where fildes is the file descriptor of the
stream connected to the multiplexing driver, and arg is the file
descriptor of the STREAM connected to another driver. The
STREAM designated by arg gets connected below the multiplexing
driver. I_LINK requires the multiplexing driver to send an
acknowledgement message to the STREAM head regarding the
linking operation. This call returns a multiplexor ID number (an
identifier used to disconnect the multiplexor, see I_UNLINK) on
success, and -1 on failure. On failure, errno is set to one of the
following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message
was received at STREAM head.

streamio(7I)

580 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

EAGAIN Temporarily unable to allocate storage to
perform the I_LINK.

ENOSR Unable to allocate storage to perform the
I_LINK due to insufficient STREAMS memory
resources.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes STREAM does not support multiplexing.

EINVAL arg is not a stream, or is already linked under a
multiplexor.

EINVAL The specified link operation would cause a
‘‘cycle’’ in the resulting configuration; that is, a
driver would be linked into the multiplexing
configuration in more than one place.

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_LINK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error
or a hangup is received at the STREAM head of fildes. In addition,
an error code can be returned in the positive or negative
acknowledgement message. For these cases, I_LINK will fail with
errno set to the value in the message.

I_UNLINK Disconnects the two streams specified by fildes and arg. fildes is the
file descriptor of the STREAM connected to the multiplexing
driver. arg is the multiplexor ID number that was returned by the
I_LINK. If arg is -1, then all streams that were linked to fildes are
disconnected. As in I_LINK, this command requires the
multiplexing driver to acknowledge the unlink. On failure, errno
is set to one of the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message
was received at STREAM head.

ENOSR Unable to allocate storage to perform the
I_UNLINK due to insufficient STREAMS
memory resources.

EINVAL arg is an invalid multiplexor ID number or
fildes is not the STREAM on which the I_LINK
that returned arg was performed.

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_UNLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message indicating an

streamio(7I)

Device and Network Interfaces 581

error or a hangup is received at the STREAM head of fildes. In
addition, an error code can be returned in the positive or negative
acknowledgement message. For these cases, I_UNLINK will fail
with errno set to the value in the message.

I_PLINK Connects two streams, where fildes is the file descriptor of the
stream connected to the multiplexing driver, and arg is the file
descriptor of the STREAM connected to another driver. The
STREAM designated by arg gets connected via a persistent link
below the multiplexing driver. I_PLINK requires the multiplexing
driver to send an acknowledgement message to the STREAM head
regarding the linking operation. This call creates a persistent link
that continues to exist even if the file descriptor fildes associated
with the upper STREAM to the multiplexing driver is closed. This
call returns a multiplexor ID number (an identifier that may be
used to disconnect the multiplexor, see I_PUNLINK) on success,
and -1 on failure. On failure, errno is set to one of the following
values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message
was received at the STREAM head.

EAGAIN Unable to allocate STREAMS storage to
perform the I_PLINK.

EBADF arg is not a valid, open file descriptor.

EINVAL fildes does not support multiplexing.

EINVAL arg is not a STREAM or is already linked under
a multiplexor.

EINVAL The specified link operation would cause a
‘‘cycle’’ in the resulting configuration; that is, if
a driver would be linked into the multiplexing
configuration in more than one place.

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_PLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message indicating an
error on a hangup is received at the STREAM head of fildes. In
addition, an error code can be returned in the positive or negative
acknowledgement message. For these cases, I_PLINK will fail
with errno set to the value in the message.

I_PUNLINK Disconnects the two streams specified by fildes and arg that are
connected with a persistent link. fildes is the file descriptor of the
STREAM connected to the multiplexing driver. arg is the
multiplexor ID number that was returned by I_PLINK when a

streamio(7I)

582 man pages section 7: Device and Network Interfaces • Last Revised 19 Apr 1999

STREAM was linked below the multiplexing driver. If arg is
MUXID_ALL then all streams that are persistent links to fildes are
disconnected. As in I_PLINK, this command requires the
multiplexing driver to acknowledge the unlink. On failure, errno
is set to one of the following values:

ENXIO Hangup received on fildes.

ETIME Time out before acknowledgement message
was received at the STREAM head.

EAGAIN Unable to allocate buffers for the
acknowledgement message.

EINVAL Invalid multiplexor ID number.

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_PUNLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request if a message indicating an
error or a hangup is received at the STREAM head of fildes. In
addition, an error code can be returned in the positive or negative
acknowledgement message. For these cases, I_PUNLINK will fail
with errno set to the value in the message.

Unless specified otherwise above, the return value from ioctl() is 0 upon success
and −1 upon failure, with errno set as indicated.

intro(3), close(2), fcntl(2), getmsg(2), ioctl(2), open(2), poll(2), putmsg(2),
read(2), write(2), signal(3C), signal(3HEAD),

STREAMS Programming Guide

streamio(7I)

RETURN VALUES

SEE ALSO

Device and Network Interfaces 583

su – asynchronous serial port driver

#include <fcntl.h>
#include <sys/termios.h>
open("/dev/tty[a-z]", _mode);
open("/dev/term[a-z]", _mode);
open("/dev/cua[a-z]", _mode);

The su module is a loadable STREAMS driver that provides basic support for
standard UARTS that use Intel-8250, National Semiconductor-16450/16550 hardware
and Southbridge 1535D (16550 compatable) Super I/O hardware. The module also
provides keyboard and mouse I/O support for Sun machines using those same Intel,
National Semiconductor and Southbridge chipsets. The su driver provides basic
asynchronous communication support for serial ports. Both the serial devices and
keyboard/mouse devices will have streams built with appropriate modules pushed
atop the su driver by means of either the autopush(1M) or dacf.conf(4) facilities,
depending on the OS revision and architecture in use.

The su module supports those termio(7I) device control functions specified by flags
in the c_cflag word of the termios structure, and by the IGNBRK, IGNPAR,
PARMRK, or INPCK flags in the c_iflag word of the termios structure. All other
termio(7I) functions must be performed by STREAMS modules pushed atop the
driver. When a device is opened, the ldterm(7M) and ttcompat(7M) STREAMS
modules are automatically pushed on top of the stream, providing the standard
termio(7I) interface.

The character-special devices /dev/ttya and /dev/ttyb are used to access the two
standard serial ports. The su module supports up to ten serial ports, including the
standard ports. The tty[a-z] devices have minor device numbers in the range 00-03,
and may be assigned names of the form /dev/ttyd_n_, where _n_ denotes the line to
be accessed. These device names are typically used to provide a logical access point
for a _dial-in_ line that is used with a modem.

To allow a single tty line to be connected to a modem and used for incoming and
outgoing calls, a special feature is available that is controlled by the minor device
number. By accessing character-special devices with names of the form /dev/cua_n,
it is possible to open a port without the Carrier Detect signal being asserted,
either through hardware or an equivalent software mechanism. These devices are
commonly known as _dial-out_ lines.

Once a /dev/cua_n_ line is opened, the corresponding tty, or ttyd line cannot be
opened until the /dev/cua_n_ line is closed. A blocking open will wait until the
/dev/cua_n_ line is closed (which will drop Data Terminal Ready, after which
Carrier Detect will usually drop as well) and carrier is detected again. A
non-blocking open will return an error. If the /dev/ttyd_n_ line has been opened
successfully (usually only when carrier is recognized on the modem), the
corresponding /dev/cua_n_ line cannot be opened. This allows a modem to be
attached to a device, (for example, /dev/ttyd0, which is renamed from

su(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

584 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 2001

/dev/tty00) and used for dial-in (by enabling the line for login in /etc/inittab)
or dial-out (by tip(1) or uucp(1C)) as /dev/cua0 when no one is logged in on the
line.

The standard set of termio ioctl() calls are supported by su.

Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls.

The input and output line speeds may be set to any of the following baud rates: 0, 50,
75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600 or
115200. The speeds cannot be set independently; for example, when the output speed
is set, the input speed is automatically set to the same speed.

When the su module is used to service the serial console port, it supports a BREAK
condition that allows the system to enter the debugger or the monitor. The BREAK
condition is generated by hardware and it is usually enabled by default.

A BREAK condition originating from erroneous electrical signals cannot be
distinguished from one deliberately sent by remote DCE. The Alternate Break
sequence can be used as a remedy against this. Due to a risk of incorrect sequence
interpretation, binary protocols such as PPP, SLIP, and others should not be run over
the serial console port when Alternate Break sequence is in effect. By default, the
Alternate Break sequence is a three character sequence: carriage return, tilde and
control-B (CR ~ CTRL-B), but may be changed by the driver. For more information on
breaking (entering the debugger or monitor), see kbd(1) and kb(7M).

An open() will fail under the following conditions:

ENXIO The unit being opened does not exist.

EBUSY The dial-out device is being opened while the dial-in device is
already open, or the dial-in device is being opened with a no-delay
open and the dial-out device is already open.

EBUSY The unit has been marked as exclusive-use by another process
with a TIOCEXCL ioctl() call.

/dev/cua/[a-z] dial-out tty lines

/dev/term/[a-z] dial-in tty lines

/dev/tty[a-z] binary compatibility package device names

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

su(7D)

IOCTLS

ERRORS

FILES

ATTRIBUTES

Device and Network Interfaces 585

strconf(1), kbd(1), tip(1),uucp(1C), autopush(1M), ioctl(2), open(2),
termios(3C), dacf.conf(4), attributes(5), kb(7M), ldterm(7M),
ttcompat(7M), termio(7I)

su(7D)

SEE ALSO

586 man pages section 7: Device and Network Interfaces • Last Revised 14 Jan 2001

sxp – Rockwell 2200 SNAP Streams Driver

/dev/sxp

The sxp (also known as the SNAP) driver is a loadable, clonable, STREAMS driver
that supports the connectionless Data Link Provider Interface (dlpi(7P)) over one or
more FDDI adapters (Rockwell 2200 Series). The cloning character-special devices
(/dev/sxp, /dev/snap, /dev/llc, /dev/mac) are used to access the 2200 Series
adapter(s). The /dev/sxp device is equivalent to /dev/snap. /dev/sxp is used so
that the name SXP will show up in ifconfig. All messages transmitted on a SNAP
device have the 802.2 LLC and Sub-Network Access Protocol (SNAP) and the FDDI
MAC headers (RFC -1188) prepended. For an LLC device, the LLC and MAC headers
are prepended, and for a MAC device only the MAC header is prepended. Received
FDDI frames are delivered to the appropriate open device. In response to a
DL_INFO_REQ, the SNAP driver returns the following values in the DL_INFO_ACK
primitive:

� The maximum SDU is 4500.

� The minimum SDU is 0.

� The DLSAP address length is 8 (always true in the Solaris environment).

� The address offset is 0 (prior to being attached).

� The MAC type is DL_FDDI.

� The sap length value is −2, which indicates that within the DLSAP address, the
physical address component is followed immediately by a 2-byte service access
point (SAP) component.

� The service mode is DL_CLDLS.

� The quality of service (QOS) fields are 0, because optional QOS is not supported.

� The provider style is DL_STYLE2.

� The broadcast address value is the IEEE broadcast address
(FF:FF:FF:FF:FF:FF).

Because the SNAP driver is a "style 2" Data Link Service provider, an explicit
DL_ATTACH_REQ message from the user is required to associate the opened stream
with a particular network device (that is, ppa). The dl_ppa field within the
DL_ATTACH_REQ indicates the instance (unit) number of the network device. If no
currently attached ppa has the same instance number and there are no unattached ppas
available, the driver returns an error (DL_ERROR_ACK). Once in the DL_ATTACHED
state, a DL_BIND_REQ is required to associate a particular SAP with the stream.

Once in the DL_ATTACHED state, a DL_BIND_REQ is required to associate a particular
Service Access Point (SAP) with the stream. For the sap field within the
DL_BIND_REQ, valid values are in the range [0-0xFFFF]. Values for 0-0xFF will give
LLC 802.2 service without SNAP encapsulation, unless a later
DL_HIERARCHIAL_BIND DL_SUBS_BIND_REQ is made. Values from 0x100-0xFFFF
will give LLC 802.2 with SNAP encapsulation without the need for a

sxp(7D)

NAME

SYNOPSIS

DESCRIPTION

Device and Network Interfaces 587

DL_SUBS_BIND_REQ. Note that DL_HIERARCHIAL_BIND class
DL_SUBS_BIND_REQs are only supported on streams bound to the 0xAA SAP. After
successful completion of the DL_BIND_REQ, the ppa is initialized and the stream is
ready for use. In addition to the DL_HIERARCHIAL_BIND class of
DL_SUBS_BUD_REQ, the DL_PEER_BIND class can be used to bind multiple SAP s
with a stream.

Frames may be transmitted on the FDDI ring by sending DL_UNITDATA_REQ
messages to the SNAP driver. The DLSAP address contained within the
DL_UNITDATA_REQ must consist of both the SAP and physical (FDDI) components.
For a SNAP device, the SAP portion of the DLSAP address is placed in the EtherType
field of the 802.2 SNAP header. The DSAP and SSAP fields of the 802.2 LLC header are
both set to the value 170, indicating a SNAP message and a MAC frame_type of
LLC. For an LLC device, the SAP portion of the DLSAP address is placed in the DSAP
field of the 802.2 LLC header. The SSAP field is set to the SAP bound to the stream.
The MAC frame_type is LLC. For a MAC device, the SAP portion of the DLSAP
address is placed in the frame_control field of the MAC header. Received FDDI
frames are routed up the correct stream(s) as DL_UNITDATA_IND messages
(containing the DLSAP address). The stream(s) are found by:

1. Comparing the EtherType field of the SNAP header with the bound SAP of all of
the SNAP streams

2. Comparing the DSAP field of the LLC header with the bound SAP of all the LLC
streams

3. Comparing the frame_control field of the MAC header with the bound SAP of
all the MAC streams.

If necessary, messages are duplicated. In addition to the mandatory connectionless
DLPI message set, the driver also supports the following primitives:
DL_ENABMULTI_REQ, DL_DISABMULTI_REQ, DL_PROMISCON_REQ,
DL_PROMISCOFF_REQ, DL_PHYS_ADDR_REQ.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable or disable
reception of individual multicast group addresses. Using these primitives, a set of
multicast group addresses may be iteratively created and modified on a per-stream
basis. These primitives are accepted by the driver in any state following a successful
DL_ATTACH_REQ. The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives
(with the DL_PROMISC_PHYS flag set in the dl_levelfield) enable or disable
reception of all (promiscuous mode) frames on the media, including frames generated
by the local host. When used with the DL_PROMISC_SAP flag (set), this enables or
disables reception of all sap values. When used with the DL_PROMISC_MULTI flag
(set), this enables or disables reception of all multicast group addresses. The affect of
each primitive is always on a per-stream basis, and is independent of the other sap
and physical level configurations on this stream (or other streams). In the
DL_PHYS_ADDR_ACK message, the DL_PHYS_ADDR_REQ primitive returns the 6-octet
FDDI address (in canonical form) currently associated with the stream. This primitive
is valid only in states following a successful DL_ATTACH_REQ. The driver also

sxp(7D)

588 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

supports the following ioctls (I/O controls): DLIOCRAW, SL_RAW,
SL_DATA_ENABLE, SL_DATA_DISABLE, and DRV_CONFIG. As defined by Solaris,
the DLIOCRAW ioctl puts the stream into raw mode, which causes the driver to send
the full MAC -level packet up the stream in an M_DATA message, instead of
transforming it to the DL_UNITDATA_IND form. On this stream, the driver will also
accept formatted M_DATA messages for transmission. To disable raw mode, the stream
must be closed. The DLIOCRAW ioctl requires no arguments. As defined by Rockwell,
the SL_RAW ioctl puts the stream into raw mode, similar to the DLIOCRAW ioctl except
that the frame-type field of the MAC header is considered to be a long word instead of
a byte, preserving alignment. The SL_RAW ioctl requires no arguments. As defined by
Rockwell, the SL_DATA_ENABLE and SL_DATA_DISABLE ioctls enable or disable the
transmission of data on the stream. By default, transmission is enabled. The
SL_DATA_ENABLE and SL_DATA_DISABLE ioctls require no arguments.

/dev/sxp SXP special character device

kernel/drv/sys_core SXP loadable module

kernel/drv/sxp.conf SXP configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5), dlpi(7P), rns_smt(7D)

sxp(7D)

FILES

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 589

symhisl – symhisl SCSI Host Bus Adapter Driver

scsi@unit-address

The symhisl host bus adapter driver is a SCSA-compliant nexus driver that supports
the LSI Logic SYM21002 (SYM53C896), SYM22910 (SYM53C896), SYM53C895A,
SYM53C896, SYM53C1010-33, and SYM53C1010-66 SCSI controller chips.

The symhisl driver supports the standard functions provided by the SCSA interface,
including tagged and untagged queuing, Wide, Fast, Ultra, Ultra2, and Ultra3 SCSI,
and auto request sense. The symhisl driver does not support linked commands.

You configure the symhisl driver by defining properties in the symhisl.conf file.
Properties in the symhisl.conf file override the global SCSI settings. The driver
supports the following user-modifiable properties:

scsi-options
target<n>-scsi-options
scsi-reset-delay
scsi-watchdog-tick
scsi-initiator-id
symFlags

target<n>-scsi-options overrides the scsi-options property value for
target<n>. <n> can vary from hex 0 to f. symhisl supports the following
scsi-options: SCSI_OPTIONS_DR, SCSI_OPTIONS_SYNC, SCSI_OPTIONS_FAST,
SCSI_OPTIONS_ULTRA, SCSI_OPTIONS_ULTRA2, SCSI_OPTIONS_TAG, and
SCSI_OPTIONS_WIDE.

SCSI_OPTIONS_PARITY is supported for the scsi-options setting only and
disables host adapter parity checking.

After periodic interval scsi-watchdog-tick (seconds), the symhisl driver
searches through all current and disconnected commands for timeouts.

symFlags is a driver-specific bit-mask you can use to enable or disable driver
properties.

bit 0 When set, the driver will not reset the SCSI bus at initialization.
Certain CD-ROM, tape, and other devices will not work properly
when this bit is set. The default state for this bit is cleared.

bit 1 When set, the driver will not export the DMI ioctl interface. Set
this bit only if you want to disable the ioctl interface for security
reasons. The default state for this bit is cleared.

bit 2 When set, the driver disables 64-bit addressing capability. When
clear, the driver enables 64-bit addressing capability. The default
state for this bit is cleared.

symhisl(7D)

NAME

SYNOPSIS

DESCRIPTION

CONFIGURATION

590 man pages section 7: Device and Network Interfaces • Last Revised 13 Sep 2001

bit 3 When set, the driver disables SCSI domain validation for all
devices on any adapters controlled by the driver.

Refer to scsi_hba_attach(9F) for more information on driver configuration.

Edit the file /kernel/drv/symhisl.conf and add the following line:

scsi-options=0x78;

This disables tagged queuing, Fast, Ultra, and Ultra2 SCSI and wide mode for all
symhisl instances.

The following example disables an option for one specific symhisl instance (refer to
driver.conf(4) and pci(4) for more details):

name="symhisl" parent="/pci@1f,4000"
unit-address="3"
target1-scsi-options=0x58
scsi-options=0x178 scsi-initiator-id=6;

Note that the initiator ID can only be changed for symhisl adapters that do not use
the LSI Logic Boot ROM Configuration Utility. For adapters that can use the LSI Logic
Boot ROM Configuration Utility, scsi-initiator-id has no effect.

The example above sets scsi-options for target 1 to 0x58 and all other targets on
this SCSI bus to 0x178.

The physical path name of the parent can be determined using the /devices tree or
following the link of the logical device name:

ls –l /dev/rdsk/c0t0d0s0
lrwxrwxrwx 1 root root 45 May 16 10:08 /dev/rdsk/c0t0d0s0 ->

. . / . . /devices/pci@1f,4000/scsi@3/sd@0,0:a,raw

In this case, the parent is /pci@1f,4000 and the unit-address is the number bound to
the scsi@3 node.

scsi-options specified per target ID have the highest precedence, followed by
scsi-options per device type. Global scsi-options (for all symhisl instances)
per bus have the lowest precedence.

The system must be rebooted for the specified scsi-options to take effect.

The target driver sets capabilities in the symhisl driver to enable some driver
features. The target driver can query and modify the following capabilities:
disconnect, synchronous, wide-xfer, tagged-qing, and auto-rqsense. All
other capabilities are query only.

By default, tagged-qing capabilities are disabled, while disconnect,
synchronous, wide-xfer, auto-rqsense, and untagged-qing are enabled.
These capabilities can only have binary values (0 or 1).

symhisl(7D)

EXAMPLES

Driver Capabilities

Device and Network Interfaces 591

The target driver must enable tagged-qing explicitly. The untagged-qing
capability is always enabled and its value cannot be modified.

If a conflict exists between the value of scsi-options and a capability, the value set
in scsi-options prevails. Only whom != 0 is supported in the
scsi_ifsetcap(9F) call. Refer to scsi_ifsetcap(9F) and scsi_ifgetcap(9F) for
details.

/kernel/drv/symhisl ELF kernel module

/kernel/drv/symhisl.confConfiguration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems with LSI Logic
SYM21002, SYM22910, SYM53C895A,
SYM53C896, SYM53C1010-33, and
SYM53C1010-66 SCSI I/O processors.

prtconf(1M), driver.conf(4), pci(4), attributes(5), scsi_abort(9F),
scsi_hba_attach(9F), scsi_ifgetcap(9F), scsi_ifsetcap(9F),
scsi_reset(9F), scsi_sync_pkt(9F), scsi_transport(9F), scsi_device(9S),
scsi_extended_sense(9S), scsi_inquiry(9S), scsi_pkt(9S)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2),

LSI Logic Corporation, SYM53C896 PCI-SCSI I/O Processor

LSI Logic Corporation, SYM53C895A PCI-SCSI I/O Processor

LSI Logic Corporation, SYM53C1010 PCI-SCSI I/O Processor

The symhisl SYM53C895A and SYM53C896 (SYM21002 and SYM22910) hardware
and software support Wide, Fast, SCSI Ultra, and Ultra2 synchronous speeds.
SYM53C1010-33 and SYM53C1010-66 also support Ultra3 synchronous speeds. The
maximum SCSI bandwidth for Ultra2 transfers is 80 Mbytes/sec and 160 Mbytes/sec
for Ultra3.

symhisl(7D)

FILES

ATTRIBUTES

SEE ALSO

NOTES

592 man pages section 7: Device and Network Interfaces • Last Revised 13 Sep 2001

sysmsg – system message routing to console devices

/dev/sysmsg

The file /dev/sysmsg routes output to a variable set of console devices. Writes to
/dev/sysmsg are always directed to the system console /dev/console, and are in
addition directed to a set of auxiliary console devices managed by consadm(1M).

Only root has permission to write to this device.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Stable

consadm(1M), syslogd(1M) , attributes(5), console(7D)

sysmsg(7D)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Device and Network Interfaces 593

tcp, TCP – Internet Transmission Control Protocol

#include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

s = socket(AF_INET6, SOCK_STREAM, 0);

t = t_open("/dev/tcp", O_RDWR);

t = t_open("/dev/tcp6", O_RDWR);

TCP is the virtual circuit protocol of the Internet protocol family. It provides reliable,
flow-controlled, in order, two-way transmission of data. It is a byte-stream protocol
layered above the Internet Protocol (IP), or the Internet Protocol Version 6 (IPv6), the
Internet protocol family’s internetwork datagram delivery protocol.

Programs can access TCP using the socket interface as a SOCK_STREAM socket type, or
using the Transport Level Interface (TLI) where it supports the connection-oriented
(T_COTS_ORD) service type.

TCP uses IP’s host-level addressing and adds its own per-host collection of “port
addresses.” The endpoints of a TCP connection are identified by the combination of an
IP or IPv6 address and a TCP port number. Although other protocols, such as the User
Datagram Protocol (UDP), may use the same host and port address format, the port
space of these protocols is distinct. See inet(7P) and inet6(7p) for details on the
common aspects of addressing in the Internet protocol family.

Sockets utilizing TCP are either “active” or “passive.” Active sockets initiate
connections to passive sockets. Both types of sockets must have their local IP or IPv6
address and TCP port number bound with the bind(3SOCKET) system call after the
socket is created. By default, TCP sockets are active. A passive socket is created by
calling the listen(3SOCKET) system call after binding the socket with bind(). This
establishes a queueing parameter for the passive socket. After this, connections to the
passive socket can be received with the accept(3SOCKET) system call. Active sockets
use the connect(3SOCKET) call after binding to initiate connections.

By using the special value INADDR_ANY with IP, or the unspecified address (all zeroes)
with IPv6, the local IP address can be left unspecified in the bind() call by either
active or passive TCP sockets. This feature is usually used if the local address is either
unknown or irrelevant. If left unspecified, the local IP or IPv6 address will be bound at
connection time to the address of the network interface used to service the connection.

Once a connection has been established, data can be exchanged using the read(2) and
write(2) system calls.

Under most circumstances, TCP sends data when it is presented. When outstanding
data has not yet been acknowledged, TCP gathers small amounts of output to be sent
in a single packet once an acknowledgement has been received. For a small number of

tcp(7P)

NAME

SYNOPSIS

DESCRIPTION

594 man pages section 7: Device and Network Interfaces • Last Revised 24 Sep 2001

clients, such as window systems that send a stream of mouse events which receive no
replies, this packetization may cause significant delays. To circumvent this problem,
TCP provides a socket-level boolean option, TCP_NODELAY. TCP_NODELAY is defined
in <netinet/tcp.h>, and is set with setsockopt(3SOCKET) and tested with
getsockopt(3SOCKET). The option level for the setsockopt() call is the protocol
number for TCP, available from getprotobyname(3SOCKET).

Another socket level option, SO_RCVBUF, can be used to control the window that
TCP advertises to the peer. IP level options may also be used with TCP. See ip(7P) and
ip6(7p).

TCP provides an urgent data mechanism, which may be invoked using the
out-of-band provisions of send(3SOCKET). The caller may mark one byte as “urgent”
with the MSG_OOB flag to send(3SOCKET). This sets an “urgent pointer” pointing to
this byte in the TCP stream. The receiver on the other side of the stream is notified of
the urgent data by a SIGURG signal. The SIOCATMARK ioctl(2) request returns a
value indicating whether the stream is at the urgent mark. Because the system never
returns data across the urgent mark in a single read(2) call, it is possible to advance to
the urgent data in a simple loop which reads data, testing the socket with the
SIOCATMARK ioctl() request, until it reaches the mark.

Incoming connection requests that include an IP source route option are noted, and
the reverse source route is used in responding.

A checksum over all data helps TCP implement reliability. Using a window-based
flow control mechanism that makes use of positive acknowledgements, sequence
numbers, and a retransmission strategy, TCP can usually recover when datagrams are
damaged, delayed, duplicated or delivered out of order by the underlying
communication medium.

If the local TCP receives no acknowledgements from its peer for a period of time, as
would be the case if the remote machine crashed, the connection is closed and an error
is returned to the user. If the remote machine reboots or otherwise loses state
information about a TCP connection, the connection is aborted and an error is
returned to the user.

SunOS supports TCP Extensions for High Performance (RFC 1323) which includes the
window scale and time stamp options, and Protection Against Wrap Around Sequence
Numbers (PAWS). SunOS also supports Selective Acknowledgment (SACK)
capabilities (RFC 2018) and Explicit Congestion Notification (ECN) mechanism (RFC
3168).

Turn on the window scale option in one of the following ways:

� An application can set SO_SNDBUF or SO_RCVBUF size in the setsockopt()
option to be larger than 64K. This must be done before the program calls listen()
or connect(), because the window scale option is negotiated when the
connection is established. Once the connection has been made, it is too late to
increase the send or receive window beyond the default TCP limit of 64K.

tcp(7P)

Device and Network Interfaces 595

� For all applications, use ndd(1M) to modify the configuration parameter
tcp_wscale_always. If tcp_wscale_always is set to 1, the window scale
option will always be set when connecting to a remote system. If
tcp_wscale_always is 0, the window scale option will be set only if the user
has requested a send or receive window larger than 64K. The default value of
tcp_wscale_always is 0.

� Regardless of the value of tcp_wscale_always, the window scale option will
always be included in a connect acknowledgement if the connecting system has
used the option.

Turn on SACK capabilities in the following way:

� Use ndd to modify the configuration parameter tcp_sack_permitted. If
tcp_sack_permitted is set to 0, TCP will not accept SACK or send out SACK
information. If tcp_sack_permitted is set to 1, TCP will not initiate a
connection with SACK permitted option in the SYN segment, but will respond with
SACK permitted option in the SYN|ACK segment if an incoming connection request
has the SACK permitted option. This means that TCP will only accept SACK
information if the other side of the connection also accepts SACK information. If
tcp_sack_permitted is set to 2, it will both initiate and accept connections with
SACK information. The default for tcp_sack_permitted is 2 (active enabled).

Turn on TCP ECN mechanism in the following way:

� Use ndd to modify the configuration parameter tcp_ecn_permitted. If
tcp_ecn_permitted is set to 0, TCP will not negotiate with a peer that supports
ECN mechanism. If tcp_ecn_permitted is set to 1 when initiating a connection,
TCP will not tell a peer that it supports ECN mechanism. However, it will tell a
peer that it supports ECN mechanism when accepting a new incoming connection
request if the peer indicates that it supports ECN mechanism in the SYN segment.
If tcp_ecn_permitted is set to 2, in addition to negotiating with a peer on ECN
mechanism when accepting connections, TCP will indicate in the outgoing SYN
segment that it supports ECN mechanism when TCP makes active outgoing
connections. The default for tcp_ecn_permitted is 1.

Turn on the time stamp option in the following way:

� Use ndd to modify the configuration parameter tcp_tstamp_always. If
tcp_tstamp_always is 1, the time stamp option will always be set when
connecting to a remote machine. If tcp_tstamp_always is 0, the timestamp
option will not be set when connecting to a remote system. The default for
tcp_tstamp_always is 0.

� Regardless of the value of tcp_tstamp_always, the time stamp option will
always be included in a connect acknowledgement (and all succeeding packets) if
the connecting system has used the time stamp option.

Use the following procedure to turn on the time stamp option only when the window
scale option is in effect:

tcp(7P)

596 man pages section 7: Device and Network Interfaces • Last Revised 24 Sep 2001

� Use ndd to modify the configuration parameter tcp_tstamp_if_wscale. Setting
tcp_tstamp_if_wscale to 1 will cause the time stamp option to be set when
connecting to a remote system, if the window scale option has been set. If
tcp_tstamp_if_wscale is 0, the time stamp option will not be set when
connecting to a remote system. The default for tcp_tstamp_if_wscale is 1.

Protection Against Wrap Around Sequence Numbers (PAWS) is always used when the
time stamp option is set.

SunOS also supports multiple methods of generating initial sequence numbers. One of
these methods is the improved technique suggested in RFC 1948. We HIGHLY
recommend that you set sequence number generation parameters to be as close to boot
time as possible. This prevents sequence number problems on connections that use the
same connection-ID as ones that used a different sequence number generation. The
/etc/init.d/inetinit script contains commands which configure initial sequence
number generation. The script reads the value contained in the configuration file
/etc/default/inetinit to determine which method to use.

The /etc/default/inetinit file is an unstable interface, and may change in
future releases.

TCP may be configured to report some information on connections that terminate by
means of an RST packet. By default, no logging is done. If the ndd(1M) parameter
tcp_trace is set to 1, then trace data is collected for all new connections established after
that time.

The trace data consists of the TCP headers and IP source and destination addresses of
the last few packets sent in each direction before RST occurred. Those packets are
logged in a series of strlog(9F) calls. This trace facility has a very low overhead, and
so is superior to such utilities as snoop(1M) for non-intrusive debugging for
connections terminating by means of an RST.

ndd(1M), ioctl(2), read(2), write(2), accept(3SOCKET), bind(3SOCKET),
connect(3SOCKET), getprotobyname(3SOCKET), getsockopt(3SOCKET),
listen(3SOCKET), send(3SOCKET), inet(7P), inet6(7P), ip(7P), ip6(7P)

Ramakrishnan, K., Floyd, S., Black, D., RFC 3168, The Addition of Explicit Congestion
Notification (ECN) to IP, September 2001.

Mathias, M. and Hahdavi, J. Pittsburgh Supercomputing Center; Ford, S. Lawrence
Berkeley National Laboratory; Romanow, A. Sun Microsystems, Inc. RFC 2018, TCP
Selective Acknowledgement Options, October 1996.

Bellovin, S., RFC 1948, Defending Against Sequence Number Attacks, May 1996.

Jacobson, V., Braden, R., and Borman, D., RFC 1323, TCP Extensions for High
Performance, May 1992.

tcp(7P)

SEE ALSO

Device and Network Interfaces 597

Postel, Jon, RFC 793, Transmission Control Protocol - DARPA Internet Program Protocol
Specification, Network Information Center, SRI International, Menlo Park, CA.,
September 1981.

A socket operation may fail if:

EISCONN A connect() operation was attempted on a socket on
which a connect() operation had already been
performed.

ETIMEDOUT A connection was dropped due to excessive
retransmissions.

ECONNRESET The remote peer forced the connection to be closed
(usually because the remote machine has lost state
information about the connection due to a crash).

ECONNREFUSED The remote peer actively refused connection
establishment (usually because no process is listening
to the port).

EADDRINUSE A bind() operation was attempted on a socket with a
network address/port pair that has already been
bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted on a socket with a
network address for which no network interface exists.

EACCES A bind() operation was attempted with a “reserved”
port number and the effective user ID of the process
was not the privileged user.

ENOBUFS The system ran out of memory for internal data
structures.

tcp(7P)

DIAGNOSTICS

598 man pages section 7: Device and Network Interfaces • Last Revised 24 Sep 2001

tcx – 24-bit SBus color memory frame buffer

SUNW,tcx@sbus-slot,offset:tcxX

tcx is a 8/24-bit color frame buffer and graphics accelerator, with 8-bit colormap and
overlay/enable planes. It provides the standard frame buffer interface defined in
fbio(7I). sbus-slot is the Sbus slot number. (See sbus(4) for more information.) offset is
the device offset. X is the kernel-assigned device number.

tcx has two control planes which define how the underlying pixel is displayed. The
display modes are 8-bit (8 bits taken from low-order 8 bits of pixel) through a
colormap; 24-bit through a gamma-correction table; 24-bit through the colormap; or
24-bit direct. The colormap is shared by both 24-bit and 8-bit modes.

The tcx has registers and memory that may be mapped with mmap(2).

There is an 8-bit only version of tcx which operates the same as the 24-bit version,
except that the 24-bit-related mappings can not be made.

tcx accepts the following ioctl(2) calls, defined in <sys/fbio.h> and
<sys/visual_io.h>, and implemented as described in fbio(7I).

FBIOGATTR FBIOGCURSOR

FBIOGTYPE FBIOSCURPOS

FBIOPUTCMAP FBIOGCURPOS

FBIOGETCMAP FBIOGCURMAX

FBIOSATTR FBIOGXINFO

FBIOSVIDEO FBIOMONINFO

FBIOGVIDEO FBIOVRTOFFSET

FBIOVERTICAL VIS_GETIDENTIFIER

FBIOSCURSOR

VIS_GETIDENTIFIER returns "SUNW,tcx".

Emulation mode (FBIOGATTR, FBIOSATTR) may be either FBTYPE_SUN3COLOR or
FBTYPE_MEMCOLOR. Set emulation mode to 21 (FBTYPE_LASTPLUSONE) to turn
emulation off. Changes to emulation mode (via FBIOSATTR) take place immediately.
Emulation may be turned off manually by setting emu_type field of the fbsattr
structure to 21. Emulation mode is reset to default on reboot.

FBIOPUTCMAP returns immediately, although the actual colormap update may be
delayed until the next vertical retrace. If vertical retrace is currently in progress, the
new colormap takes effect immediately.

tcx(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

IOCTLS

Device and Network Interfaces 599

FBIOGETCMAP returns immediately with the currently-loaded colormap, unless a
colormap write is pending (see above), in which case it waits until the colormap is
updated before returning. This may be used to synchronize software with colormap
updates.

The size and linebytes values returned by FBIOGATTR, FBIOGTYPE and
FBIOGXINFO are the sizes of the 8-bit framebuffer. The proper way to compute the
size of a framebuffer mapping is:

size=linebytes*height*bytes_per_pixel

The information returned in the dev_specific field by the FBIOGATTR ioctl is as
follows:

dev_specific[0] is the tcx capabilities mask:

Name Hex Value Meaning

STIP_ALIGN 0xf stipple alignment constraint

C_PLANES 0xf0 # of control planes

BLIT_WIDTH 0xf00 maximum blit width

BLIT_HEIGHT 0xf000 maximum blit height

STIP_ROP 0x10000 stipple-with-rop supported

BLIT_ROP 0x20000 blit-with-rop supported

24_BIT 0x40000 24-bit support

HW_CURSOR 0x80000 hardware cursor

PLANE_MASK 0x100000 plane mask support for 8-bit stipple

dev_specific[1] is the kernel address for 8-bit mapping. This is useful only to
other device drivers, and should not be used outside the kernel.

/dev/fbs/tcx device special file

/dev/fb default frame buffer

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARCstation 4, SPARCstation 5

ioctl(2), mmap(2), sbus(4), attributes(5), fbio(7I)

tcx(7D)

FILES

ATTRIBUTES

SEE ALSO

600 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

termio – general terminal interface

#include <termio.h>

ioctl(int fildes, int request, struct termio *arg);

ioctl(int fildes, int request, int arg);

#include <termios.h>

ioctl(int fildes, int request, struct termios *arg);

This release supports a general interface for asynchronous communications ports that
is hardware-independent. The user interface to this functionality is using function calls
(the preferred interface) described in termios(3C) or ioctl commands described in
this section. This section also discusses the common features of the terminal subsystem
which are relevant with both user interfaces.

When a terminal file is opened, it normally causes the process to wait until a
connection is established. In practice, users’ programs seldom open terminal files; they
are opened by the system and become a user’s standard input, output, and error files.
The first terminal file opened by the session leader that is not already associated with
a session becomes the controlling terminal for that session. The controlling terminal
plays a special role in handling quit and interrupt signals, as discussed below. The
controlling terminal is inherited by a child process during a fork(2). A process can
break this association by changing its session using setsid() (see getsid(2)).

A terminal associated with one of these files ordinarily operates in full-duplex mode.
Characters may be typed at any time, even while output is occurring, and are only lost
when the character input buffers of the system become completely full, which is rare.
For example, the number of characters in the line discipline buffer may exceed {
MAX_CANON} and IMAXBEL (see below) is not set, or the user may accumulate {
MAX_INPUT} number of input characters that have not yet been read by some
program. When the input limit is reached, all the characters saved in the buffer up to
that point are thrown away without notice.

A control terminal will distinguish one of the process groups in the session associated
with it to be the foreground process group. All other process groups in the session are
designated as background process groups. This foreground process group plays a
special role in handling signal-generating input characters, as discussed below. By
default, when a controlling terminal is allocated, the controlling process’s process
group is assigned as foreground process group.

Background process groups in the controlling process’s session are subject to a job
control line discipline when they attempt to access their controlling terminal. Process
groups can be sent signals that will cause them to stop, unless they have made other
arrangements. An exception is made for members of orphaned process groups.

The operating system will not normally send SIGTSTP, SIGTTIN, or SIGTTOU signals
to a process that is a member of an orphaned process group.

termio(7I)

NAME

SYNOPSIS

DESCRIPTION

Session
Management (Job

Control)

Device and Network Interfaces 601

These are process groups which do not have a member with a parent in another
process group that is in the same session and therefore shares the same controlling
terminal. When a member’s orphaned process group attempts to access its controlling
terminal, errors will be returned. since there is no process to continue it if it should
stop.

If a member of a background process group attempts to read its controlling terminal,
its process group will be sent a SIGTTIN signal, which will normally cause the
members of that process group to stop. If, however, the process is ignoring or holding
SIGTTIN, or is a member of an orphaned process group, the read will fail with errno
set to EIO, and no signal will be sent.

If a member of a background process group attempts to write its controlling terminal
and the TOSTOP bit is set in the c_lflag field, its process group will be sent a
SIGTTOU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding SIGTTOU, the write will succeed.
If the process is not ignoring or holding SIGTTOU and is a member of an orphaned
process group, the write will fail with errno set to EIO, and no signal will be sent.

If TOSTOP is set and a member of a background process group attempts to ioctl its
controlling terminal, and that ioctl will modify terminal parameters (for example,
TCSETA, TCSETAW, TCSETAF, or TIOCSPGRP), its process group will be sent a
SIGTTOU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding SIGTTOU, the ioctl will succeed. If
the process is not ignoring or holding SIGTTOU and is a member of an orphaned
process group, the write will fail with errno set to EIO, and no signal will be sent.

Normally, terminal input is processed in units of lines. A line is delimited by a newline
(ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character.
This means that a program attempting to read will be suspended until an entire line
has been typed. Also, no matter how many characters are requested in the read call, at
most one line will be returned. It is not necessary, however, to read a whole line at
once; any number of characters may be requested in a read, even one, without losing
information.

During input, erase and kill processing is normally done. The ERASE character (by
default, the character DEL) erases the last character typed. The WERASE character
(the character Control-w) erases the last “word” typed in the current input line (but
not any preceding spaces or tabs). A “word” is defined as a sequence of non-blank
characters, with tabs counted as blanks. Neither ERASE nor WERASE will erase
beyond the beginning of the line. The KILL character (by default, the character NAK)
kiills (deletes) the entire input line, and optionally outputs a newline character. All
these characters operate on a key stroke basis, independent of any backspacing or
tabbing that may have been done. The REPRINT character (the character Control-r)
prints a newline followed by all characters that have not been read. Reprinting also
occurs automatically if characters that would normally be erased from the screen are
fouled by program output. The characters are reprinted as if they were being echoed;
consequencely, if ECHO is not set, they are not printed.

termio(7I)

Canonical Mode
Input Processing

602 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

The ERASE and KILL characters may be entered literally by preceding them with the
‘\’ (escape) character. In this case, the escape character is not read. The erase and kill
characters may be changed.

In non-canonical mode input processing, input characters are not assembled into lines,
and erase and kill processing does not occur. The MIN and TIME values are used to
determine how to process the characters received.

MIN represents the minimum number of characters that should be received when the
read is satisfied (that is, when the characters are returned to the user). TIME is a timer
of 0.10-second granularity that is used to timeout bursty and short-term data
transmissions. The four possible values for MIN and TIME and their interactions are
described below.

Case A: MIN > 0, TIME > 0 In this case, TIME serves as an
intercharacter timer and is activated after
the first character is received. Since it is an
intercharacter timer, it is reset after a
character is received. The interaction
between MIN and TIME is as follows: as
soon as one character is received, the
intercharacter timer is started. If MIN
characters are received before the
intercharacter timer expires (note that the
timer is reset upon receipt of each
character), the read is satisfied. If the timer
expires before MIN characters are received,
the characters received to that point are
returned to the user. Note that if TIME
expires, at least one character will be
returned because the timer would not have
been enabled unless a character was
received. In this case (MIN > 0, TIME > 0),
the read sleeps until the MIN and TIME
mechanisms are activated by the receipt of
the first character. If the number of
characters read is less than the number of
characters available, the timer is not
reactivated and the subsequent read is
satisfied immediately.

Case B: MIN > 0, TIME = 0 In this case, since the value of TIME is zero,
the timer plays no role and only MIN is
significant. A pending read is not satisfied
until MIN characters are received (the
pending read sleeps until MIN characters
are received). A program that uses this case

termio(7I)

Non-canonical
Mode Input

Processing

Device and Network Interfaces 603

to read record based terminal I/O may
block indefinitely in the read operation.

Case C: MIN = 0, TIME > 0 In this case, since MIN = 0, TIME no longer
represents an intercharacter timer: it now
serves as a read timer that is activated as
soon as a read is done. A read is satisfied
as soon as a single character is received or
the read timer expires. Note that, in this
case, if the timer expires, no character is
returned. If the timer does not expire, the
only way the read can be satisfied is if a
character is received. In this case, the read
will not block indefinitely waiting for a
character; if no character is received within
TIME *.10 seconds after the read is initiated,
the read returns with zero characters.

Case D: MIN = 0, TIME = 0 In this case, return is immediate. The
minimum of either the number of
characters requested or the number of
characters currently available is returned
without waiting for more characters to be
input.

Some points to note about MIN and TIME :

� In the following explanations, note that the interactions of MIN and TIME are not
symmetric. For example, when MIN > 0 and TIME = 0, TIME has no effect.
However, in the opposite case, where MIN = 0 and TIME > 0, both MIN and TIME
play a role in that MIN is satisfied with the receipt of a single character.

� Also note that in case A (MIN > 0, TIME > 0), TIME represents an intercharacter
timer, whereas in case C (MIN = 0, TIME > 0), TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B,
where MIN > 0, exist to handle burst mode activity (for example, file transfer
programs), where a program would like to process at least MIN characters at a time.
In case A, the intercharacter timer is activated by a user as a safety measure; in case B,
the timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are readily
adaptable to screen-based applications that need to know if a character is present in
the input queue before refreshing the screen. In case C, the read is timed, whereas in
case D, it is not.

Another important note is that MIN is always just a minimum. It does not denote a
record length. For example, if a program does a read of 20 bytes, MIN is 10, and 25
characters are present, then 20 characters will be returned to the user.

termio(7I)

Comparing
Different Cases of

MIN, TIME
Interaction

604 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

When one or more characters are written, they are transmitted to the terminal as soon
as previously written characters have finished typing. Input characters are echoed as
they are typed if echoing has been enabled. If a process produces characters more
rapidly than they can be typed, it will be suspended when its output queue exceeds
some limit. When the queue is drained down to some threshold, the program is
resumed.

Certain characters have special functions on input. These functions and their default
character values are summarized as follows:

INTR (Control-c or ASCII ETX) generates a SIGINT signal. SIGINT is
sent to all foreground processes associated with the controlling
terminal. Normally, each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to receive
a trap to an agreed upon location. (See signal(3HEAD)).

QUIT (Control-| or ASCII FS) generates a SIGQUIT signal. Its treatment
is identical to the interrupt signal except that, unless a receiving
process has made other arrangements, it will not only be
terminated but a core image file (called core) will be created in
the current working directory.

ERASE (DEL) erases the preceding character. It does not erase beyond the
start of a line, as delimited by a NL, EOF, EOL, or EOL2 character.

WERASE (Control-w or ASCII ETX) erases the preceding “word”. It does not
erase beyond the start of a line, as delimited by a NL, EOF, EOL, or
EOL2 character.

KILL (Control-u or ASCII NAK) deletes the entire line, as delimited by a
NL, EOF, EOL, or EOL2 character.

REPRINT (Control-r or ASCII DC2) reprints all characters, preceded by a
newline, that have not been read.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file
from a terminal. When received, all the characters waiting to be
read are immediately passed to the program, without waiting for a
newline, and the EOF is discarded. Thus, if no characters are
waiting (that is, the EOF occurred at the beginning of a line) zero
characters are passed back, which is the standard end-of-file
indication. Unless escaped, the EOF character is not echoed.
Because EOT is the default EOF character, this prevents terminals
that respond to EOT from hanging up.

NL (ASCII LF) is the normal line delimiter. It cannot be changed or
escaped.

EOL (ASCII NULL) is an additional line delimiter, like NL . It is not
normally used.

EOL2 is another additional line delimiter.

termio(7I)

Writing Characters

Special Characters

Device and Network Interfaces 605

SWTCH (Control-z or ASCII EM) is used only when shl layers is invoked.

SUSP (Control-z or ASCII SUB) generates a SIGTSTP signal. SIGTSTP
stops all processes in the foreground process group for that
terminal.

DSUSP (Control-y or ASCII EM). It generates a SIGTSTP signal as SUSP
does, but the signal is sent when a process in the foreground
process group attempts to read the DSUSP character, rather than
when it is typed.

STOP (Control-s or ASCII DC3) can be used to suspend output
temporarily. It is useful with CRT terminals to prevent output from
disappearing before it can be read. While output is suspended,
STOP characters are ignored and not read.

START (Control-q or ASCII DC1) is used to resume output. Output has
been suspended by a STOP character. While output is not
suspended, START characters are ignored and not read.

DISCARD (Control-o or ASCII SI) causes subsequent output to be discarded.
Output is discarded until another DISCARD character is typed,
more input arrives, or the condition is cleared by a program.

LNEXT (Control-v or ASCII SYN) causes the special meaning of the next
character to be ignored. This works for all the special characters
mentioned above. It allows characters to be input that would
otherwise be interpreted by the system (for example KILL, QUIT).
The character values for INTR, QUIT, ERASE, WERASE, KILL,
REPRINT, EOF, EOL, EOL2, SWTCH, SUSP, DSUSP, STOP, START,
DISCARD, and LNEXT may be changed to suit individual tastes. If
the value of a special control character is _POSIX_VDISABLE (0),
the function of that special control character is disabled. The
ERASE, KILL, and EOF characters may be escaped by a preceding
backslash (‘ \’) character, in which case no special function is done.
Any of the special characters may be preceded by the LNEXT
character, in which case no special function is done.

When a modem disconnect is detected, a SIGHUP signal is sent to the terminal’s
controlling process. Unless other arrangements have been made, these signals cause
the process to terminate. If SIGHUP is ignored or caught, any subsequent read returns
with an end-of-file indication until the terminal is closed.

If the controlling process is not in the foreground process group of the terminal, a
SIGTSTP is sent to the terminal’s foreground process group. Unless other
arrangements have been made, these signals cause the processes to stop.

Processes in background process groups that attempt to access the controlling terminal
after modem disconnect while the terminal is still allocated to the session will receive

termio(7I)

Modem
Disconnect

606 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

appropriate SIGTTOU and SIGTTIN signals. Unless other arrangements have been
made, this signal causes the processes to stop.

The controlling terminal will remain in this state until it is reinitialized with a
successful open by the controlling process, or deallocated by the controlling process.

The parameters that control the behavior of devices and modules providing the
termios interface are specified by the termios structure defined by termios.h.
Several ioctl(2) system calls that fetch or change these parameters use this structure
that contains the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */

cc_t c_cc[NCCS]; /* control chars */

The special control characters are defined by the array c_cc. The symbolic name NCCS
is the size of the Control-character array and is also defined by <termios.h>. The
relative positions, subscript names, and typical default values for each function are as
follows:

Relative Position Subscript Name Typical Default Value

0 VINTR ETX

1 VQUIT FS

2 VERASE DEL

3 VKILL NAK

4 VEOF EOT

5 VEOL NUL

6 VEOL2 NUL

7 VWSTCH NUL

8 VSTART NUL

9 VSTOP DC3

10 VSUSP SUB

11 VDSUSP EM

12 VREPRINT DC2

13 VDISCARD SI

14 VWERASE ETB

termio(7I)

Terminal
Parameters

Device and Network Interfaces 607

Relative Position Subscript Name Typical Default Value

15 VLNEXT SYN

16-19 Reserved

The c_iflag field describes the basic terminal input control:

IGNBRK Ignore break condition.

BRKINT Signal interrupt on break.

IGNPAR Ignore characters with parity errors.

PARMRK Mark parity errors.

INPCK Enable input parity check.

ISTRIP Strip character.

INLCR Map NL to CR on input.

IGNCR Ignore CR.

ICRNL Map CR to NL on input.

IUCLC Map upper-case to lower-case on input.

IXON Enable start/stop output control.

IXANY Enable any character to restart output.

IXOFF Enable start/stop input control.

IMAXBEL Echo BEL on input line too long.

If IGNBRK is set, a break condition (a character framing error with data all zeros)
detected on input is ignored, that is, not put on the input queue and therefore not read
by any process. If IGNBRK is not set and BRKINT is set, the break condition shall flush
the input and output queues and if the terminal is the controlling terminal of a
foreground process group, the break condition generates a single SIGINT signal to
that foreground process group. If neither IGNBRK nor BRKINT is set, a break condition
is read as a single \0 (ASCII NULL) character, or if PARMRK is set, as \377, \0, \0.

If IGNPAR is set, a byte with framing or parity errors (other than break) is ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other
than break) is given to the application as the three-character sequence: \377, \0, X,
where X is the data of the byte received in error. To avoid ambiguity in this case, if
ISTRIP is not set, a valid character of \377 is given to the application as \377, \377. If
neither IGNPAR nor PARMRK is set, a framing or parity error (other than break) is given
to the application as a single \0 (ASCII NULr) character.

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity
checking is disabled. This allows output parity generation without input parity errors.

termio(7I)

Input Modes

608 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

Note that whether input parity checking is enabled or disabled is independent of
whether parity detection is enabled or disabled. If parity detection is enabled but
input parity checking is disabled, the hardware to which the terminal is connected will
recognize the parity bit, but the terminal special file will not check whether this is set
correctly or not.

If ISTRIP is set, valid input characters are first stripped to seven bits, otherwise all
eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is
set, a received CR character is ignored (not read). Otherwise, if ICRNL is set, a received
CR character is translated into a NL character.

If IUCLC is set, a received upper case, alphabetic character is translated into the
corresponding lower case character.

If IXON is set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output. The STOP and
START characters will not be read, but will merely perform flow control functions. If
IXANY is set, any input character restarts output that has been suspended.

If IXOFF is set, the system transmits a STOP character when the input queue is nearly
full, and a START character when enough input has been read so that the input queue
is nearly empty again.

If IMAXBEL is set, the ASCII BEL character is echoed if the input stream overflows.
Further input is not stored, but any input already present in the input stream is not
disturbed. If IMAXBEL is not set, no BEL character is echoed, and all input present in
the input queue is discarded if the input stream overflows.

The c_oflag field specifies the system treatment of output:

OPOST Post-process output.

OLCUC Map lower case to upper on output.

ONLCR Map NL to CR-NL on output.

OCRNL Map CR to NL on output.

ONOCR No CR output at column 0.

ONLRET NL performs CR function.

OFILL Use fill characters for delay.

OFDEL Fill is DEL, else NULL.

NLDLY Select newline delays:

NL0
NL1

termio(7I)

Output Modes

Device and Network Interfaces 609

CRDLY Select carriage-return delays:

CR0
CR1
CR2
CR3

TABDLY Select horizontal tab delays or tab expansion:

TAB0

TAB1

TAB2

TAB3 Expand tabs to spaces

XTABS Expand tabs to spaces

BSDLY Select backspace delays:

BS0
BS1

VTDLY Select vertical tab delays:

VT0
VT1

FFDLY Select form feed delays:

FF0
FF1

If OPOST is set, output characters are post-processed as indicated by the remaining
flags; otherwise, characters are transmitted without change.

If OLCUC is set, a lower case alphabetic character is transmitted as the corresponding
upper case character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL
is set, the CR character is transmitted as the NL character. If ONOCR is set, no CR
character is transmitted when at column 0 (first position). If ONRET is set, the NL
character is assumed to do the carriage-return function; the column pointer is set to 0
and the delays specified for CR are used. Otherwise, the NL character is assumed to
do just the line-feed function; the column pointer remains unchanged. The column
pointer is also set to 0 if the CR character is actually transmitted.

termio(7I)

610 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0
indicates no delay. If OFILL is set, fill characters are transmitted for delay instead of a
timed delay. This is useful for high baud rate terminals that need only a minimal
delay. If OFDEL is set, the fill character is DEL ; otherwise it is NULL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are
used instead of the newline delays. If OFILL is set, two fill characters are transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is
about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1
transmits two fill characters, and type 2 transmits four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is
about 0.10 seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILL
is set, two fill characters are transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is
transmitted.

The actual delays depend on line speed and system load.

The c_cflag field describes the hardware control of the terminal:

CBAUD Baud rate:

B0 Hang up

B50 50 baud

B75 75 baud

B110 110 baud

B134 134 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

B4800 4800 baud

B9600 9600 baud

termio(7I)

Control Modes

Device and Network Interfaces 611

B19200 19200 baud

EXTA External A

B38400 38400 baud

EXTB External B

B57600 57600 baud

B76800 76800 baud

B115200 115200 baud

B153600 153600 baud

B230400 230400 baud

B307200 307200 baud

B460800 460800 baud

CSIZE Character size:

CS5 5 bits

CS6 6 bits

CS7 7 bits

CS8 8 bits

CSTOPB Send two stop bits, else one

CREAD Enable receiver

PARENB Parity enable

PARODD Odd parity, else even

HUPCL Hang up on last close

CLOCAL Local line, else dial-up

CIBAUD Input baud rate, if different from output rate

PAREXT Extended parity for mark and space parity

CRTSXOFF Enable inbound hardware flow control

CRTSCTS Enable outbound hardware flow control

CBAUDEXT Bit to indicate output speed > B38400

CIBAUDEXT Bit to indicate input speed > B38400

The CBAUD bits together with the CBAUDEXT bit specify the output baud rate. To
retrieve the output speed from the termios structure pointed to by termios_p see
the following code segment.

termio(7I)

612 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

speed_t ospeed;
if (termios_p->c_cflag & CBAUDEXT)

ospeed = (termios_p->c_cflag & CBAUD) + CBAUD + 1;
else

ospeed = termios_p->c_cflag & CBAUD;

To store the output speed in the termios structure pointed to by termios_p see the
following code segment.

speed_t ospeed;
if (ospeed > CBAUD) {

termios_p->c_cflag |= CBAUDEXT;
ospeed -= (CBAUD + 1);

} else
termios_p->c_cflag &= ~CBAUDEXT;

termios_p->c_cflag =

(termios_p->c_cflag & ~CBAUD) | (ospeed & CBAUD);

The zero baud rate, B0, is used to hang up the connection. If B0 is specified, the
data-terminal-ready signal is not asserted. Normally, this disconnects the line.

If the CIBAUDEXT or CIBAUD bits are not zero, they specify the input baud rate, with
the CBAUDEXT and CBAUD bits specifying the output baud rate; otherwise, the output
and input baud rates are both specified by the CBAUDEXT and CBAUD bits. The values
for the CIBAUD bits are the same as the values for the CBAUD bits, shifted left IBSHIFT
bits. For any particular hardware, impossible speed changes are ignored. To retrieve
the input speed in the termios structure pointed to by termios_p see the following
code segment.

speed_t ispeed;
if (termios_p->c_cflag & CIBAUDEXT)

ispeed = ((termios_p->c_cflag & CIBAUD) >> IBSHIFT)
+ (CIBAUD >> IBSHIFT) + 1;

else

ispeed = (termios_p->c_cflag & CIBAUD) >> IBSHIFT;

To store the input speed in the termios structure pointed to by termios_p see the
following code segment.

speed_t ispeed;
if (ispeed == 0) {

ispeed = termios_p->c_cflag & CBAUD;
if (termios_p->c_cflag & CBAUDEXT)

ispeed += (CBAUD + 1);
}
if ((ispeed << IBSHIFT) > CIBAUD) {

termios_p->c_cflag |= CIBAUDEXT;
ispeed -= ((CIBAUD >> IBSHIFT) + 1);

} else
termios_p->c_cflag &= ~CIBAUDEXT;
termios_p->c_cflag =
(termios_p->c_cflag & ~CIBAUD) |

termio(7I)

Device and Network Interfaces 613

((ispeed << IBSHIFT) & CIBAUD);

The CSIZE bits specify the character size in bits for both transmission and reception.
This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are used;
otherwise, one stop bit is used. For example, at 110 baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled, and a parity bit is added
to each character. If parity is enabled, the PARODD flag specifies odd parity if set;
otherwise, even parity is used.

If CREAD is set, the receiver is enabled. Otherwise, no characters are received.

If HUPCL is set, the line is disconnected when the last process with the line open closes
it or terminates. That is, the data-terminal-ready signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem
control; otherwise, modem control is assumed.

If CRTSXOFF is set, inbound hardware flow control is enabled.

If CRTSCTS is set, outbound hardware flow control is enabled.

The four possible combinations for the state of CRTSCTS and CRTSXOFF bits and their
interactions are described below.

Case A: CRTSCTS off, CRTSXOFF off. In this case the hardware flow control
is disabled.

Case B: CRTSCTS on, CRTSXOFF off. In this case only outbound hardware
flow control is enabled. The state of CTS signal is used to do
outbound flow control. It is expected that output will be
suspended if CTS is low and resumed when CTS is high.

Case C: CRTSCTS off, CRTSXOFF on. In this case only inbound hardware
flow control is enabled. The state of RTS signal is used to do
inbound flow control. It is expected that input will be suspended if
RTS is low and resumed when RTS is high.

Case D: CRTSCTS on, CRTSXOFF on. In this case both inbound and
outbound hardware flow control are enabled. Uses the state of CTS
signal to do outbound flow control and RTS signal to do inbound
flow control.

The c_lflag field of the argument structure is used by the line discipline to control
terminal functions. The basic line discipline provides the following:

ISIG Enable signals.

ICANON Canonical input (erase and kill processing).

XCASE Canonical upper/lower presentation.

termio(7I)

Local Modes

614 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

ECHO Enable echo.

ECHOE Echo erase character as BS-SP-BS &.

ECHOK Echo NL after kill character.

ECHONL Echo NL .

NOFLSH Disable flush after interrupt or quit.

TOSTOP Send SIGTTOU for background output.

ECHOCTL Echo control characters as char, delete as ^?.

ECHOPRT Echo erase character as character erased.

ECHOKE BS-SP-BS erase entire line on line kill.

FLUSHO Output is being flushed.

PENDIN Retype pending input at next read or input character.

IEXTEN Enable extended (implementation-defined) functions.

If ISIG is set, each input character is checked against the special control characters
INTR, QUIT, SWTCH, SUSP, STATUS, and DSUSP . If an input character matches one
of these control characters, the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus, these special input functions are possible
only if ISIG is set.

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit
functions, and the assembly of input characters into lines delimited by NL-c, EOF,
EOL, and EOL . If ICANON is not set, read requests are satisfied directly from the input
queue. A read is not satisfied until at least MIN characters have been received or the
timeout value TIME has expired between characters. This allows fast bursts of input to
be read efficiently while still allowing single character input. The time value represents
tenths of seconds.

If XCASE is set and ICANON is set, an upper case letter is accepted on input if preceded
by a backslash (‘\’) character, and is output preceded by a backslash (‘\’)
character. In this mode, the following escape sequences are generated on output and
accepted on input:

FOR: USE:

‘ \’

| \!

≈ \^

{ \(

} \)

termio(7I)

Device and Network Interfaces 615

FOR: USE:

\ \\

For example, input A as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible.

� If ECHO and ECHOE are set, and ECHOPRT is not set, the ERASE and WERASE
characters are echoed as one or more ASCII BS SP BS, which clears the last
character(s) from a CRT screen.

� If ECHO, ECHOPRT, and IEXTEN are set, the first ERASE and WERASE character in
a sequence echoes as a ‘\’ (backslash), followed by the characters being erased.
Subsequent ERASE and WERASE characters echo the characters being erased, in
reverse order. The next non-erase character causes a ‘/’ (slash) to be typed before it
is echoed. ECHOPRT should be used for hard copy terminals.

� If ECHOKE and IEXTEN are set, the kill character is echoed by erasing each
character on the line from the screen (using the mechanism selected by ECHOE and
ECHOPRa).

� If ECHOK is set, and ECHOKE is not set, the NL character is echoed after the kill
character to emphasize that the line is deleted. Note that a ‘\’ (escape) character or
an LNEXT character preceding the erase or kill character removes any special
function.

� If ECHONL is set, the NL character is echoed even if ECHO is not set. This is useful
for terminals set to local echo (so called half-duplex).

If ECHOCTL and IEXTEN are set, all control characters (characters with codes between
0 and 37 octal) other than ASCII TAB, ASCII NL, the START character, and the STOP
character, ASCII CR, and ASCII BS are echoed as ^ X, where X is the character given
by adding 100 octal to the code of the control character (so that the character with octal
code 1 is echoed as ^ A), and the ASCII DEL character, with code 177 octal, is echoed
as ^ ?.

If NOFLSH is set, the normal flush of the input and output queues associated with the
INTR, QUIT, and SUSP characters is not done. This bit should be set when restarting
system calls that read from or write to a terminal (see sigaction(2)).

If TOSTOP and IEXTEN are set, the signal SIGTTOU is sent to a process that tries to
write to its controlling terminal if it is not in the foreground process group for that
terminal. This signal normally stops the process. Otherwise, the output generated by
that process is output to the current output stream. Processes that are blocking or
ignoring SIGTTOU signals are excepted and allowed to produce output, if any.

termio(7I)

616 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

If FLUSHO and IEXTEN are set, data written to the terminal is discarded. This bit is set
when the FLUSH character is typed. A program can cancel the effect of typing the
FLUSH character by clearing FLUSHO.

If PENDIN and IEXTEN are set, any input that has not yet been read is reprinted when
the next character arrives as input. PENDIN is then automatically cleared.

If IEXTEN is set, the following implementation-defined functions are enabled: special
characters (WERASE, REPRINT, DISCARD, and LNEXT) and local flags (TOSTOP,
ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, and PENDIN).

The MIN and TIME values were described previously, in the subsection,
Non-canonical Mode Input Processing. The initial value of MIN is 1, and the
initial value of TIME is 0.

The number of lines and columns on the terminal’s display is specified in the
winsize structure defined by sys/termios.h and includes the following members:

unsigned short ws_row; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel; /* horizontal size, in pixels */

unsigned short ws_ypixel; /* vertical size, in pixels */

The SunOS/SVR4 termio structure is used by some ioctls; it is defined by
sys/termio.h and includes the following members:

unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */

unsigned char c_cc[NCC]; /* control chars */

The special control characters are defined by the array c_cc. The symbolic name NCC
is the size of the Control-character array and is also defined by termio.h. The
relative positions, subscript names, and typical default values for each function are as
follows:

Relative Positions Subscript Names Typical Default Values

0 VINTR EXT

1 VQUIT FS

2 VERASE DEL

3 VKILL NAK

4 VEOF EOT

termio(7I)

Minimum and
Timeout

Terminal Size

Termio Structure

Device and Network Interfaces 617

Relative Positions Subscript Names Typical Default Values

5 VEOL NUL

6 VEOL2 NUL

7 Reserved

The MIN values is stored in the VMIN element of the c_cc array; the TIME value is
stored in the VTIME element of the c_cc array. The VMIN element is the same element
as the VEOF element; the VTIME element is the same element as the VEOL element.

The calls that use the termio structure only affect the flags and control characters that
can be stored in the termio structure; all other flags and control characters are
unaffected.

On special files representing serial ports, modem control lines can be read. Control
lines (if the underlying hardware supports it) may also be changed. Status lines are
read-only. The following modem control and status lines may be supported by a
device; they are defined by sys/termios.h:

TIOCM_LE line enable

TIOCM_DTR data terminal ready

TIOCM_RTS request to send

TIOCM_ST secondary transmit

TIOCM_SR secondary receive

TIOCM_CTS clear to send

TIOCM_CAR carrier detect

TIOCM_RNG ring

TIOCM_DSR data set ready

TIOCM_CD is a synonym for TIOCM_CAR, and TIOCM_RI is a synonym for
TIOCM_RNG. Not all of these are necessarily supported by any particular device; check
the manual page for the device in question.

The software carrier mode can be enabled or disabled using the TIOCSSOFTCAR
ioctl. If the software carrier flag for a line is off, the line pays attention to the
hardware carrier detect (DCD) signal. The tty device associated with the line cannot
be opened until DCD is asserted. If the software carrier flag is on, the line behaves as if
DCD is always asserted.

The software carrier flag is usually turned on for locally connected terminals or other
devices, and is off for lines with modems.

termio(7I)

Modem Lines

618 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

To be able to issue the TIOCGSOFTCAR and TIOCSSOFTCAR ioctl calls, the tty line
should be opened with O_NDELAY so that the open(2) will not wait for the carrier.

The initial termios values upon driver open is configurable. This is accomplished by
setting the “ttymodes” property in the file /kernel/drv/options.conf. Since this
property is assigned during system initialization, any change to the “ttymodes”
property will not take effect until the next reboot. The string value assigned to this
property should be in the same format as the output of the stty(1) command with the
-g option.

If this property is undefined, the following termios modes are in effect. The initial
input control value is BRKINT, ICRNL, IXON, IMAXBEL. The initial output control
value is OPOST, ONLCR, TAB3. The initial hardware control value is B9600, CS8,
CREAD. The initial line-discipline control value is ISIG, ICANON, IEXTEN, ECHO,
ECHOK, ECHOE, ECHOKE, ECHOCTL.

The ioctls supported by devices and STREAMS modules providing the
termios(3C) interface are listed below. Some calls may not be supported by all
devices or modules. The functionality provided by these calls is also available through
the preferred function call interface specified on termios.

TCGETS The argument is a pointer to a termios structure. The current
terminal parameters are fetched and stored into that structure.

TCSETS The argument is a pointer to a termios structure. The current
terminal parameters are set from the values stored in that
structure. The change is immediate.

TCSETSW The argument is a pointer to a termios structure. The current
terminal parameters are set from the values stored in that
structure. The change occurs after all characters queued for output
have been transmitted. This form should be used when changing
parameters that affect output.

TCSETSF The argument is a pointer to a termios structure. The current
terminal parameters are set from the values stored in that
structure. The change occurs after all characters queued for output
have been transmitted; all characters queued for input are
discarded and then the change occurs.

TCGETA The argument is a pointer to a termio structure. The current
terminal parameters are fetched, and those parameters that can be
stored in a termio structure are stored into that structure.

TCSETA The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change is immediate.

TCSETAW The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change occurs after all

termio(7I)

Default Values

IOCTLS

Device and Network Interfaces 619

characters queued for output have been transmitted. This form
should be used when changing parameters that affect output.

TCSETAF The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted; all characters
queued for input are discarded and then the change occurs.

TCSBRK The argument is an int value. Wait for the output to drain. If the
argument is 0, then send a break (zero valued bits for 0.25
seconds).

TCXONC Start/stop control. The argument is an int value. If the argument
is 0, suspend output; if 1, restart suspended output; if 2, suspend
input; if 3, restart suspended input.

TCFLSH The argument is an int value. If the argument is 0, flush the input
queue; if 1, flush the output queue; if 2, flush both the input and
output queues.

TIOCGPGRP The argument is a pointer to a pid_t. Set the value of that pid_t
to the process group ID of the foreground process group
associated with the terminal. See termios(3C) for a description of
TCGETPGRP.

TIOCSPGRP The argument is a pointer to a pid_t. Associate the process group
whose process group ID is specified by the value of that pid_t
with the terminal. The new process group value must be in the
range of valid process group ID values. Otherwise, the error
EPERM is returned. See termios(3C) for a description of
TCSETPGRP.

TIOCGSID The argument is a pointer to a pid_t. The session ID of the
terminal is fetched and stored in the pid_t.

TIOCGWINSZ The argument is a pointer to a winsize structure. The terminal
driver’s notion of the terminal size is stored into that structure.

TIOCSWINSZ The argument is a pointer to a winsize structure. The terminal
driver’s notion of the terminal size is set from the values specified
in that structure. If the new sizes are different from the old sizes, a
SIGWINCH signal is set to the process group of the terminal.

TIOCMBIS The argument is a pointer to an int whose value is a mask
containing modem control lines to be turned on. The control lines
whose bits are set in the argument are turned on; no other control
lines are affected.

termio(7I)

620 man pages section 7: Device and Network Interfaces • Last Revised 26 Jan 2001

TIOCMBIC The argument is a pointer to an int whose value is a mask
containing modem control lines to be turned off. The control lines
whose bits are set in the argument are turned off; no other control
lines are affected.

TIOCMGET The argument is a pointer to an int. The current state of the
modem status lines is fetched and stored in the int pointed to by
the argument.

TIOCMSET The argument is a pointer to an int containing a new set of
modem control lines. The modem control lines are turned on or
off, depending on whether the bit for that mode is set or clear.

TIOCSPPS The argument is a pointer to an int that determines whether
pulse-per-second event handling is to be enabled (non-zero) or
disabled (zero). If a one-pulse-per-second reference clock is
attached to the serial line’s data carrier detect input, the local
system clock will be calibrated to it. A clock with a high error, that
is, a deviation of more than 25 microseconds per tick, is ignored.

TIOCGPPS The argument is a pointer to an int, in which the state of the even
handling is returned. The int is set to a non-zero value if
pulse-per-second (PPS) handling has been enabled. Otherwise, it is
set to zero.

TIOCGSOFTCAR The argument is a pointer to an int whose value is 1 or 0,
depending on whether the software carrier detect is turned on or
off.

TIOCSSOFTCAR The argument is a pointer to an int whose value is 1 or 0. The
value of the integer should be 0 to turn off software carrier, or 1 to
turn it on.

TIOCGPPSEV The argument is a pointer to a struct ppsclockev. This
structure contains the following members:

struct timeval tv;

uint32_t serial;“tv” is the system clock timestamp when the
event (pulse on the DCD pin) occurred. “serial” is the ordinal of
the event, which each consecutive event being assigned the next
ordinal. The first event registered gets a “serial” value of 1. The
TIOCGPPSEV returns the last event registered; multiple calls will
persistently return the same event until a new one is registered. In
addition to time stamping and saving the event, if it is of
one-second period and of consistently high accuracy, the local
system clock will automatically calibrate to it.

Files in or under /dev

stty(1), fork(2), getsid(2), ioctl(2), setsid(2), sigaction(2), signal(3C),
termios(3C), signal(3HEAD), streamio(7I)

termio(7I)

FILES

SEE ALSO

Device and Network Interfaces 621

termiox – extended general terminal interface

The extended general terminal interface supplements the termio(7I) general terminal
interface by adding support for asynchronous hardware flow control, isochronous
flow control and clock modes, and local implementations of additional asynchronous
features. Some systems may not support all of these capabilities because of either
hardware or software limitations. Other systems may not permit certain functions to
be disabled. In these cases the appropriate bits will be ignored. See
<sys/termiox.h> for your system to find out which capabilities are supported.

Hardware flow control supplements the termio(7I) IXON, IXOFF, and IXANY
character flow control. Character flow control occurs when one device controls the
data transfer of another device by the insertion of control characters in the data stream
between devices. Hardware flow control occurs when one device controls the data
transfer of another device using electrical control signals on wires (circuits) of the
asynchronous interface. Isochronous hardware flow control occurs when one device
controls the data transfer of another device by asserting or removing the transmit
clock signals of that device. Character flow control and hardware flow control may be
simultaneously set.

In asynchronous, full duplex applications, the use of the Electronic Industries
Association’s EIA-232-D Request To Send (RTS) and Clear To Send (CTS) circuits is the
preferred method of hardware flow control. An interface to other hardware flow
control methods is included to provide a standard interface to these existing methods.

The EIA-232-D standard specified only unidirectional hardware flow control - the Data
Circuit-terminating Equipment or Data Communications Equipment (DCE) indicates
to the Data Terminal Equipment (DTE) to stop transmitting data. The termiox
interface allows both unidirectional and bidirectional hardware flow control; when
bidirectional flow control is enabled, either the DCE or DTE can indicate to each other
to stop transmitting data across the interface. Note: It is assumed that the
asynchronous port is configured as a DTE. If the connected device is also a DTE and
not a DCE, then DTE to DTE (for example, terminal or printer connected to computer)
hardware flow control is possible by using a null modem to interconnect the
appropriate data and control circuits.

Isochronous communication is a variation of asynchronous communication whereby
two communicating devices may provide transmit and/or receive clock signals to one
another. Incoming clock signals can be taken from the baud rate generator on the local
isochronous port controller, from CCITT V.24 circuit 114, Transmitter Signal Element
Timing - DCE source (EIA-232-D pin 15), or from CCITT V.24 circuit 115, Receiver
Signal Element Timing - DCE source (EIA-232-D pin 17). Outgoing clock signals can be
sent on CCITT V.24 circuit 113, Transmitter Signal Element Timing - DTE source
(EIA-232-D pin 24), on CCITT V.24 circuit 128, Receiver Signal Element Timing - DTE
source (no EIA-232-D pin), or not sent at all.

termiox(7I)

NAME

DESCRIPTION

Hardware Flow
Control Modes

Clock Modes

622 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

In terms of clock modes, traditional asynchronous communication is implemented
simply by using the local baud rate generator as the incoming transmit and receive
clock source and not outputting any clock signals.

The parameters that control the behavior of devices providing the termiox interface
are specified by the termiox structure defined in the <sys/termiox.h> header.
Several ioctl(2) system calls that fetch or change these parameters use this structure:

#define NFF 5
struct termiox {

unsigned short x_hflag; /* hardware flow control modes */
unsigned short x_cflag; /* clock modes */
unsigned short x_rflag[NFF]; /* reserved modes */
unsigned short x_sflag; /* spare local modes */

};

The x_hflag field describes hardware flow control modes:

RTSXOFF 0000001 Enable RTS hardware flow control on input.

CTSXON 0000002 Enable CTS hardware flow control on output.

DTRXOFF 0000004 Enable DTR hardware flow control on input.

CDXON 0000010 Enable CD hardware flow control on output.

ISXOFF 0000020 Enable isochronous hardware flow control on input

The EIA-232-D DTR and CD circuits are used to establish a connection between two
systems. The RTS circuit is also used to establish a connection with a modem. Thus,
both DTR and RTS are activated when an asynchronous port is opened. If DTR is used
for hardware flow control, then RTS must be used for connectivity. If CD is used for
hardware flow control, then CTS must be used for connectivity. Thus, RTS and DTR
(or CTS and CD) cannot both be used for hardware flow control at the same time.
Other mutual exclusions may apply, such as the simultaneous setting of the
termio(7I) HUPCL and the termiox DTRXOFF bits, which use the DTE ready line for
different functions.

Variations of different hardware flow control methods may be selected by setting the
the appropriate bits. For example, bidirectional RTS/CTS flow control is selected by
setting both the RTSXOFF and CTSXON bits and bidirectional DTR/CTS flow control is
selected by setting both the DTRXOFF and CTSXON. Modem control or unidirectional
CTS hardware flow control is selected by setting only the CTSXON bit.

As previously mentioned, it is assumed that the local asynchronous port (for example,
computer) is configured as a DTE. If the connected device (for example, printer) is also
a DTE, it is assumed that the device is connected to the computer’s asynchronous port
using a null modem that swaps control circuits (typically RTS and CTS). The
connected DTE drives RTS and the null modem swaps RTS and CTS so that the

termiox(7I)

Terminal
Parameters

Device and Network Interfaces 623

remote RTS is received as CTS by the local DTE. In the case that CTSXON is set for
hardware flow control, printer’s lowering of its RTS would cause CTS seen by the
computer to be lowered. Output to the printer is suspended until the printer’s raising
of its RTS, which would cause CTS seen by the computer to be raised.

If RTSXOFF is set, the Request To Send (RTS) circuit (line) will be raised, and if the
asynchronous port needs to have its input stopped, it will lower the Request To Send
(RTS) line. If the RTS line is lowered, it is assumed that the connected device will stop
its output until RTS is raised.

If CTSXON is set, output will occur only if the Clear To Send (CTS) circuit (line) is
raised by the connected device. If the CTS line is lowered by the connected device,
output is suspended until CTS is raised.

If DTRXOFF is set, the DTE Ready (DTR) circuit (line) will be raised, and if the
asynchronous port needs to have its input stopped, it will lower the DTE Ready (DTR)
line. If the DTR line is lowered, it is assumed that the connected device will stop its
output until DTR is raised.

If CDXON is set, output will occur only if the Received Line Signal Detector (CD) circuit
(line) is raised by the connected device. If the CD line is lowered by the connected
device, output is suspended until CD is raised.

If ISXOFF is set, and if the isochronous port needs to have its input stopped, it will
stop the outgoing clock signal. It is assumed that the connected device is using this
clock signal to create its output. Transit and receive clock sources are programmed
using the x_cflag fields. If the port is not programmed for external clock generation,
ISXOFF is ignored. Output isochronous flow control is supported by appropriate
clock source programming using the x_cflag field and enabled at the remote
connected device.

The x_cflag field specifies the system treatment of clock modes.

XMTCLK 0000007 Transmit clock source:

XCIBRG 0000000 Get transmit clock from internal baud rate
generator.

XCTSET 0000001 Get transmit clock from transmitter signal element
timing (DCE source) lead, CCITT V.24 circuit 114,
EIA-232-D pin 15.

XCRSET 0000002 Get transmit clock from receiver signal element
timing (DCE source) lead, CCITT V.24 circuit 115,
EIA-232-D pin 17.

RCVCLK 0000070 Receive clock source:

RCIBRG 0000000 Get receive clock from internal baud rate
generator.

termiox(7I)

624 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

RCTSET 0000010 Get receive clock from transmitter signal element
timing (DCE source) lead, CCITT V.24 circuit 114,
EIA-232-D pin 15.

RCRSET 0000020 Get receive clock from receiver signal element
timing (DCE source) lead, CCITT V.24 circuit 115,
EIA-232-D pin 17.

TSETCLK 0000700 Transmitter signal element timing (DTE source)
lead, CCITT V.24 circuit 113, EIA-232-D pin 24,
clock source:

TSETCOFF 0000000 TSET clock not provided.

TSETCRBRG 0000100 Output receive baud rate generator on circuit 113.

TSETCTBRG 0000200 Output transmit baud rate generator on circuit 113

TSETCTSET 0000300 Output transmitter signal element timing (DCE
source) on circuit 113.

TSETCRSET 0000400 Output receiver signal element timing (DCE
source) on circuit 113.

RSETCLK 0007000 Receiver signal element timing (DTE source) lead,
CCITT V.24 circuit 128, no EIA-232-D pin, clock
source:

RSETCOFF 0000000 RSET clock not provided.

RSETCRBRG 0001000 Output receive baud rate generator on circuit 128.

RSETCTBRG 0002000 Output transmit baud rate generator on circuit 128.

RSETCTSET 0003000 Output transmitter signal element timing (DCE
source) on circuit 128.

RSETCRSET 0004000 Output receiver signal element timing (DCE) on
circuit 128.

If the XMTCLK field has a value of XCIBRG the transmit clock is taken from the
hardware internal baud rate generator, as in normal asynchronous transmission. If
XMTCLK = XCTSET the transmit clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If XMTCLK = XCRSET the transmit clock is taken from the
Receiver Signal Element Timing (DCE source) circuit.

If the RCVCLK field has a value of RCIBRG the receive clock is taken from the
hardware Internal Baud Rate Generator, as in normal asynchronous transmission. If
RCVCLK = RCTSET the receive clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If RCVCLK = RCRSET the receive clock is taken from the
Receiver Signal Element Timing (DCE source) circuit.

termiox(7I)

Device and Network Interfaces 625

If the TSETCLK field has a value of TSETCOFF the Transmitter Signal Element Timing
(DTE source) circuit is not driven. If TSETCLK = TSETCRBRG the Transmitter Signal
Element Timing (DTE source) circuit is driven by the Receive Baud Rate Generator. If
TSETCLK = TSETCTBRG the Transmitter Signal Element Timing (DTE source) circuit is
driven by the Transmit Baud Rate Generator. If TSETCLK = TSETCTSET the
Transmitter Signal Element Timing (DTE source) circuit is driven by the Transmitter
Signal Element Timing (DCE source). If TSETCLK = TSETCRBRG the Transmitter Signal
Element Timing (DTE source) circuit is driven by the Receiver Signal Element Timing
(DCE source).

If the RSETCLK field has a value of RSETCOFF the Receiver Signal Element Timing
(DTE source) circuit is not driven. If RSETCLK = RSETCRBRG the Receiver Signal
Element Timing (DTE source) circuit is driven by the Receive Baud Rate Generator. If
RSETCLK = RSETCTBRG the Receiver Signal Element Timing (DTE source) circuit is
driven by the Transmit Baud Rate Generator. If RSETCLK = RSETCTSET the Receiver
Signal Element Timing (DTE source) circuit is driven by the Transmitter Signal
Element Timing (DCE source). If RSETCLK = RSETCRBRG the Receiver Signal Element
Timing (DTE source) circuit is driven by the Receiver Signal Element Timing (DCE
source).

The x_rflag is reserved for future interface definitions and should not be used by
any implementations. The x_sflag may be used by local implementations wishing to
customize their terminal interface using the termiox ioctl system calls.

The ioctl(2) system calls have the form:

ioctl (fildes, command, arg) struct termiox * arg; The commands using this form are:

TCGETX The argument is a pointer to a termiox structure. The current
terminal parameters are fetched and stored into that structure.

TCSETX The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that
structure. The change is immediate.

TCSETXW The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that
structure. The change occurs after all characters queued for output
have been transmitted. This form should be used when changing
parameters that will affect output.

TCSETXF The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that
structure. The change occurs after all characters queued for output
have been transmitted; all characters queued for input are
discarded and then the change occurs.

/dev/*

termiox(7I)

IOCTLS

FILES

626 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

stty(1), ioctl(2), termio(7I)

The termiox(7I) system call is provided for compatibility with previous releases and
its use is discouraged. Instead, the termio(7I) system call is recommended. See
termio(7I) for usage information.

termiox(7I)

SEE ALSO

NOTES

Device and Network Interfaces 627

ticlts, ticots, ticotsord – loopback transport providers

#include <sys/ticlts.h>

#include <sys/ticots.h>

#include <sys/ticotsord.h>

The devices known as ticlts, ticots, and ticotsord are ‘‘loopback transport
providers,’’ that is, stand-alone networks at the transport level. Loopback transport
providers are transport providers in every sense except one: only one host (the local
machine) is ‘‘connected to’’ a loopback network. Loopback transports present a TPI
(STREAMS-level) interface to application processes and are intended to be accessed
via the TLI (application-level) interface. They are implemented as clone devices and
support address spaces consisting of ‘‘flex-addresses,’’ that is, arbitrary sequences of
octets of length > 0, represented by a netbuf structure.

ticlts is a datagram-mode transport provider. It offers (connectionless) service of
type T_CLTS. Its default address size is TCL_DEFAULTADDRSZ. ticlts prints the
following error messages (see t_rcvuderr(3NSL)):

TCL_BADADDR bad address specification

TCL_BADOPT bad option specification

TCL_NOPEER bound

TCL_PEERBADSTATE peer in wrong state

ticots is a virtual circuit-mode transport provider. It offers (connection-oriented)
service of type T_COTS. Its default address size is TCO_DEFAULTADDRSZ. ticots
prints the following disconnect messages (see t_rcvdis(3NSL)):

TCO_NOPEER no listener on destination address

TCO_PEERNOROOMONQ peer has no room on connect queue

TCO_PEERBADSTATE peer in wrong state

TCO_PEERINITIATED peer-initiated disconnect

TCO_PROVIDERINITIATED provider-initiated disconnect

ticotsord is a virtual circuit-mode transport provider, offering service of type
T_COTS_ORD (connection-oriented service with orderly release). Its default address
size is TCOO_DEFAULTADDRSZ. ticotsord prints the following disconnect messages
(see t_rcvdis(3NSL)):

TCOO_NOPEER no listener on destination address

TCOO_PEERNOROOMONQ peer has no room on connect queue

TCOO_PEERBADSTATE peer in wrong state

TCOO_PEERINITIATED provider-initiated disconnect

ticlts(7D)

NAME

SYNOPSIS

DESCRIPTION

628 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

TCOO_PROVIDERINITIATED peer-initiated disconnect

Loopback transports support a local IPC mechanism through the TLI interface.
Applications implemented in a transport provider-independent manner on a
client-server model using this IPC are transparently transportable to networked
environments.

Transport provider-independent applications must not include the headers listed in
the synopsis section above. In particular, the options are (like all transport provider
options) provider dependent.

ticlts and ticots support the same service types (T_CLTS and T_COTS)
supported by the OSI transport-level model.

ticotsord supports the same service type (T_COTSORD) supported by the TCP/IP
model.

/dev/ticlts

/dev/ticots

/dev/ticotsord

t_rcvdis(3NSL), t_rcvuderr(3NSL)

ticlts(7D)

USAGE

FILES

SEE ALSO

Device and Network Interfaces 629

timod – Transport Interface cooperating STREAMS module

#include <sys/stropts.h>

ioctl(fildes, I_STR, &my_strioctl);

timod is a STREAMS module for use with the Transport Interface (“TI”) functions of
the Network Services library. The timod module converts a set of ioctl(2) calls into
STREAMS messages that may be consumed by a transport protocol provider that
supports the Transport Interface. This allows a user to initiate certain TI functions as
atomic operations.

The timod module must be pushed onto only a stream terminated by a transport
protocol provider that supports the TI.

All STREAMS messages, with the exception of the message types generated from the
ioctl commands described below, will be transparently passed to the neighboring
module or driver. The messages generated from the following ioctl commands are
recognized and processed by the timod module. The format of the ioctl call is:

#include <sys/stropts.h>
-
-

struct strioctl my_strioctl;
-
-

strioctl.ic_cmd = cmd;
strioctl.ic_timout = INFTIM;
strioctl.ic_len = size;
strioctl.ic_dp = (char *)buf
ioctl(fildes, I_STR, &my_strioctl);

On issuance, size is the size of the appropriate TI message to be sent to the transport
provider and on return size is the size of the appropriate TI message from the
transport provider in response to the issued TI message. buf is a pointer to a buffer
large enough to hold the contents of the appropriate TI messages. The TI message
types are defined in <sys/tihdr.h>. The possible values for the cmd field are:

TI_BIND Bind an address to the underlying transport protocol provider. The
message issued to the TI_BIND ioctl is equivalent to the TI
message type T_BIND_REQ and the message returned by the
successful completion of the ioctl is equivalent to the TI message
type T_BIND_ACK.

TI_UNBIND Unbind an address from the underlying transport protocol
provider. The message issued to the TI_UNBIND ioctl is equivalent
to the TI message type T_UNBIND_REQ and the message returned
by the successful completion of the ioctl is equivalent to the TI
message type T_OK_ACK.

TI_GETINFO Get the TI protocol specific information from the transport
protocol provider. The message issued to the TI_GETINFO ioctl is

timod(7M)

NAME

SYNOPSIS

DESCRIPTION

630 man pages section 7: Device and Network Interfaces • Last Revised 26 Mar 1993

equivalent to the TI message type T_INFO_REQ and the message
returned by the successful completion of the ioctl is equivalent
to the TI message type T_INFO_ACK.

TI_OPTMGMT Get, set, or negotiate protocol specific options with the transport
protocol provider. The message issued to the TI_OPTMGMT ioctl is
equivalent to the TI message type T_OPTMGMT_REQ and the
message returned by the successful completion of the ioctl is
equivalent to the TI message type T_OPTMGMT_ACK.

<sys/timod.h> ioctl definitions

<sys/tiuser.h> TLI interface declaration and structure file

<sys/tihdr.h> TPI declarations and user-level code

<sys/errno.h> system error messages file. Please see errno(3C).

intro(3), ioctl(2), errno(3C), tirdwr(7M)

STREAMS Programming Guide

If the ioctl returns with a value greater than 0, the lower 8 bits of the return value
will be one of the TI error codes as defined in <sys/tiuser.h>. If the TI error is of
type TSYSERR, then the next 8 bits of the return value will contain an error as defined
in <sys/errno.h> (see intro(3)).

timod(7M)

FILES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 631

tirdwr – Transport Interface read/write interface STREAMS module

int ioctl(fd, I_PUSH, "tirdwr");

tirdwr is a STREAMS module that provides an alternate interface to a transport
provider which supports the Transport Interface (“TI”) functions of the Network
Services library (see Section 3N). This alternate interface allows a user to communicate
with the transport protocol provider using the read(2) and write(2) system calls. The
putmsg(2) and getmsg(2) system calls may also be used. However, putmsg and
getmsg can only transfer data messages between user and stream; control portions
are disallowed.

The tirdwr module must only be pushed (see I_PUSH in streamio(7I)) onto a
stream terminated by a transport protocol provider which supports the TI. After the
tirdwr module has been pushed onto a stream, none of the TI functions can be used.
Subsequent calls to TI functions cause an error on the stream. Once the error is
detected, subsequent system calls on the stream return an error with errno set to
EPROTO.

The following are the actions taken by the tirdwr module when pushed on the
stream, popped (see I_POP in streamio(7I)) off the stream, or when data passes
through it.

push When the module is pushed onto a stream, it checks any existing
data destined for the user to ensure that only regular data
messages are present. It ignores any messages on the stream that
relate to process management, such as messages that generate
signals to the user processes associated with the stream. If any
other messages are present, the I_PUSH will return an error with
errno set to EPROTO.

write The module takes the following actions on data that originated
from a write system call:

� All messages with the exception of messages that contain
control portions (see the putmsg and getmsg system calls) are
transparently passed onto the module’s downstream neighbor.

� Any zero length data messages are freed by the module and
they will not be passed onto the module’s downstream
neighbor.

� Any messages with control portions generate an error, and any
further system calls associated with the stream fails with
errno set to EPROTO.

read The module takes the following actions on data that originated
from the transport protocol provider.

All messages with the exception of those that contain control
portions (see the putmsg and getmsg system calls) are

tirdwr(7M)

NAME

SYNOPSIS

DESCRIPTION

632 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

transparently passed onto the module’s upstream neighbor. The
action taken on messages with control portions will be as follows:

� Any data messages with control portions have the control
portions removed from the message before to passing the
message on to the upstream neighbor.

� Messages that represent an orderly release indication from the
transport provider generate a zero length data message,
indicating the end of file, which will be sent to the reader of the
stream. The orderly release message itself is freed by the
module.

� Messages that represent an abortive disconnect indication from
the transport provider cause all further write and putmsg
system calls to fail with errno set to ENXIO. All further read
and getmsg system calls return zero length data (indicating
end of file) once all previous data has been read.

� With the exception of the above rules, all other messages with
control portions generate an error and all further system calls
associated with the stream will fail with errno set to EPROTO.

Any zero length data messages are freed by the module and they
are not passed onto the module’s upstream neighbor.

pop When the module is popped off the stream or the stream is closed,
the module takes the following action:

� If an orderly release indication has been previously received,
then an orderly release request will be sent to the remote side
of the transport connection.

intro(3), getmsg(2), putmsg(2), read(2), write(2), intro(3), streamio(7I),
timod(7M)

STREAMS Programming Guide

tirdwr(7M)

SEE ALSO

Device and Network Interfaces 633

tmpfs – memory based file system

#include <sys/mount.h>

mount (special, directory, MS_DATA, "tmpfs", NULL, 0);

tmpfs is a memory based file system which uses kernel resources relating to the VM
system and page cache as a file system. Once mounted, a tmpfs file system provides
standard file operations and semantics. tmpfs is so named because files and
directories are not preserved across reboot or unmounts, all files residing on a tmpfs
file system that is unmounted will be lost.

tmpfs file systems can be mounted with the command:

mount -F tmpfs swap directory

Alternatively, to mount a tmpfs file system on /tmp at multi-user startup time
(maximizing possible performance improvements), add the following line to
/etc/vfstab:

swap −/tmp tmpfs − yes −

tmpfs is designed as a performance enhancement which is achieved by caching the
writes to files residing on a tmpfs file system. Performance improvements are most
noticeable when a large number of short lived files are written and accessed on a
tmpfs file system. Large compilations with tmpfs mounted on /tmp are a good
example of this.

Users of tmpfs should be aware of some constraints involved in mounting a tmpfs
file system. The resources used by tmpfs are the same as those used when commands
are executed (for example, swap space allocation). This means that large sized tmpfs
files can affect the amount of space left over for programs to execute. Likewise,
programs requiring large amounts of memory use up the space available to tmpfs.
Users running into this constraint (for example, running out of space on tmpfs) can
allocate more swap space by using the swap(1M) command.

Another constraint is that the number of files available in a tmpfs file system is
calculated based on the physical memory of the machine and not the size of the swap
device/partition. If you have too many files, tmpfs will print a warning message and
you will be unable to create new files. You cannot increase this limit by adding swap
space.

Normal file system writes are scheduled to be written to a permanent storage medium
along with all control information associated with the file (for example, modification
time, file permissions). tmpfs control information resides only in memory and never
needs to be written to permanent storage. File data remains in core until memory
demands are sufficient to cause pages associated with tmpfs to be reused at which
time they are copied out to swap.

tmpfs(7FS)

NAME

SYNOPSIS

DESCRIPTION

634 man pages section 7: Device and Network Interfaces • Last Revised 9 Oct 1990

An additional mount option can be specified to control the size of an individual
tmpfs file system.

df(1M), mount(1M), mount_tmpfs(1M), swap(1M), mmap(2), mount(2), umount(2),
vfstab(4)

System Administration Guide: Basic Administration

If tmpfs runs out of space, one of the following messages will display in the console.

directory: File system full, swap space limit exceeded
This message appears because a page could not be allocated while writing to a file.
This can occur if tmpfs is attempting to write more than it is allowed, or if
currently executing programs are using a lot of memory. To make more space
available, remove unnecessary files, exit from some programs, or allocate more
swap space using swap(1M).

directory: File system full, memory allocation failed
tmpfs ran out of physical memory while attempting to create a new file or
directory. Remove unnecessary files or directories or install more physical memory.

Files and directories on a tmpfs file system are not preserved across reboots or
unmounts. Command scripts or programs which count on this will not work as
expected.

Compilers do not necessarily use /tmp to write intermediate files therefore missing
some significant performance benefits. This can be remedied by setting the
environment variable TMPDIR to /tmp. Compilers use the value in this environment
variable as the name of the directory to store intermediate files.

swap to a tmpfs file is not supported.

df(1M) output is of limited accuracy since a tmpfs file system size is not static and
the space available to tmpfs is dependent on the swap space demands of the entire
system.

tmpfs(7FS)

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

Device and Network Interfaces 635

tpf – Platform Specific Module (PSM) for Tricord Systems Enterprise Server Models
ES3000, ES4000 and ES5000.

tpf provides the platform dependent functions for Solaris IA MP support. These
functions adhere to the PSMI Specifications. (Platform Specific Module Interface
Specifications.) Tricord Systems Enterprise Servers are Intel APIC based MP platforms
which run from 1 to 12 Intel processors. The tpf psm supports dynamic interrupt
distribution across all processors in an MP configuration.

The psm is automatically invoked on an ESxxxx platform at system boot time.

/kernel/mach/tpf MP module.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5)

tpf(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

636 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

ttcompat – V7, 4BSD and XENIX STREAMS compatibility module

#define BSD_COMP
#include <sys/stropts.h>
#include <sys/ioctl.h>

ioctl(fd, I_PUSH, "ttcompat");

ttcompat is a STREAMS module that translates the ioctl calls supported by the
older Version 7, 4BSD, and XENIX terminal drivers into the ioctl calls supported
by the termio interface (see termio(7I)). All other messages pass through this
module unchanged; the behavior of read and write calls is unchanged, as is the
behavior of ioctl calls other than the ones supported by ttcompat.

This module can be automatically pushed onto a stream using the autopush
mechanism when a terminal device is opened; it does not have to be explicitly pushed
onto a stream. This module requires that the termios interface be supported by the
modules and the application can push the driver downstream. The TCGETS,
TCSETS, and TCSETSF ioctl calls must be supported. If any information set or
fetched by those ioctl calls is not supported by the modules and driver downstream,
some of the V7/4BSD/XENIX functions may not be supported. For example, if the
CBAUD bits in the c_cflag field are not supported, the functions provided by the
sg_ispeed and sg_ospeed fields of the sgttyb structure (see below) will not be
supported. If the TCFLSH ioctl is not supported, the function provided by the
TIOCFLUSH ioctl will not be supported. If the TCXONC ioctl is not supported, the
functions provided by the TIOCSTOP and TIOCSTART ioctl calls will not be
supported. If the TIOCMBIS and TIOCMBIC ioctl calls are not supported, the
functions provided by the TIOCSDTR and TIOCCDTR ioctl calls will not be
supported.

The basic ioctl calls use the sgttyb structure defined by <sys/ttold.h>
(included by <sys/ioctl.h>):

struct sgttyb {
char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
int sg_flags;

};

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the
device. If the speed set on the device is over B38400, then it is reported as B38400 for
compatibility reasons. If it is set to B38400 and the current speed is over B38400, the
change is ignored. See TIOCGETP and TIOCSETP below. The sg_erase and
sg_kill fields of the argument structure specify the erase and kill characters
respectively, and reflect the values in the VERASE and VKILL members of the c_cc
field of the termios structure.

ttcompat(7M)

NAME

SYNOPSIS

DESCRIPTION

Device and Network Interfaces 637

The sg_flags field of the argument structure contains several flags that determine
the system’s treatment of the terminal. They are mapped into flags in fields of the
terminal state, represented by the termios structure.

Delay type 0 (NL0, TAB0, CR0, FF0, BS0) is always mapped into the equivalent delay
type 0 in the c_oflag field of the termios structure. Other delay mappings are
performed as follows:

sg_flags c_oflag

BS1 BS1

FF1 VT1

CR1 CR2

CR2 CR3

CR3 CR0 (not supported)

TAB1 TAB1

TAB2 TAB2

XTABS TAB3

NL1 ONLRET|CR1

NL2 NL1

NL3 NL0 (not supported)

If previous TIOCLSET or TIOCLBIS ioctl calls have not selected LITOUT or PASS8
mode, and if RAW mode is not selected, the ISTRIP flag is set in the c_iflag field of
the termios structure, and the EVENP and ODDP flags control the parity of characters
sent to the terminal and accepted from the terminal, as follows:

0 (neither EVENP nor ODDP) Parity is not to be generated on output or checked
on input. The character size is set to CS8 and the
PARENB flag is cleared in the c_cflag field of the
termios structure.

EVENP Even parity characters are to be generated on output
and accepted on input. The INPCK flag is set in the
c_iflag field of the termios structure, the
character size is set to CS7 and the PARENB flag is
set in the c_iflag field of the termios structure.

ODDP Odd parity characters are to be generated on output
and accepted on input. The INPCK flag is set in the
c_iflag, the character size is set to CS7 and the

ttcompat(7M)

638 man pages section 7: Device and Network Interfaces • Last Revised 2 Oct 2001

PARENB and PARODD flags are set in the c_iflag
field of the termios structure.

EVENP|ODDP or ANYP Even parity characters are to be generated on output
and characters of either parity are to be accepted on
input. The INPCK flag is cleared in the c_iflag
field, the character size is set to CS7 and the PARENB
flag is set in the c_iflag field of the termios
structure.

The RAW flag disables all output processing (the OPOST flag in the c_oflag field, and
the XCASE and IEXTEN flags in the c_iflag field are cleared in the termios structure)
and input processing (all flags in the c_iflag field other than the IXOFF and IXANY
flags are cleared in the termios structure). Eight bits of data, with no parity bit are
accepted on input and generated on output; the character size is set to CS8 and the
PARENB and PARODD flags are cleared in the c_cflag field of the termios structure.
The signal-generating and line-editing control characters are disabled by clearing the
ISIG and ICANON flags in the c_iflag field of the termios structure.

The CRMOD flag turns input carriage return characters into linefeed characters, and
output linefeed characters to be sent as a carriage return followed by a linefeed. The
ICRNL flag in the c_iflag field, and the OPOST and ONLCR flags in the c_oflag
field, are set in the termios structure.

The LCASE flag maps upper-case letters in the ASCII character set to their lower-case
equivalents on input (the IUCLC flag is set in the c_iflag field), and maps lower-case
letters in the ASCII character set to their upper-case equivalents on output (the OLCUC
flag is set in the c_oflag field). Escape sequences are accepted on input, and
generated on output, to handle certain ASCII characters not supported by older
terminals (the XCASE flag is set in the c_lflag field).

Other flags are directly mapped to flags in the termios structure:

sg_flags Flags in termios structure

CBREAK Complement of ICANON in c_lflag field

ECHO ECHO in c_lflag field

TANDEM IXOFF in c_iflag field

Another structure associated with each terminal specifies characters that are special in
both the old Version 7 and the newer 4BSD terminal interfaces. The following
structure is defined by <sys/ttold.h>:

struct tchars {
char t_intrc; /* interrupt */
char t_quitc; /* quit */
char t_startc; /* start output */

ttcompat(7M)

Device and Network Interfaces 639

char t_stopc; /* stop output */
char t_eofc; /* end-of-file */
char t_brkc; /* input delimiter (like nl) */

};

XENIX defines the tchar structure as tc. The characters are mapped to members of
the c_cc field of the termios structure as follows:

tchars c_cc index
t_intrc VINTR
t_quitc VQUIT
t_startc VSTART
t_stopc VSTOP
t_eofc VEOF

t_brkc VEOL

Also associated with each terminal is a local flag word (TIOCLSET and TIOCLGET),
specifying flags supported by the new 4BSD terminal interface. Most of these flags are
directly mapped to flags in the termios structure:

Local flags Flags in termios structure

LCRTBS Not supported

LPRTERA ECHOPRT in the c_lflag field

LCRTERA ECHOE in the c_lflag field

LTILDE Not supported

LMDMBUF Not supported

LTOSTOP TOSTOP in the c_lflag field

LFLUSHO FLUSHO in the c_lflag field

LNOHANG CLOCAL in the c_cflag field

LCRTKIL ECHOKE in the c_lflag field

LPASS8 CS8 in the c_cflag field

LCTLECH CTLECH in the c_lflag field

LPENDIN PENDIN in the c_lflag field

LDECCTQ Complement of IXANY in the c_iflag field

LNOFLSH NOFLSH in the c_lflag field

Each flag has a corresponding equivalent sg_flags value. The sg_flags definitions
omit the leading "L”; for example, TIOCSETP with sg_flags set to TOSTOP is
equivalent to TIOCLSET with LTOSTOP.

ttcompat(7M)

640 man pages section 7: Device and Network Interfaces • Last Revised 2 Oct 2001

Another structure associated with each terminal is the ltchars structure which
defines control characters for the new 4BSD terminal interface. Its structure is:

struct ltchars {
char t_suspc; /* stop process signal */
char t_dsuspc; /* delayed stop process signal */
char t_rprntc; /* reprint line */
char t_flushc; /*flush output (toggles) */
char t_werasc; /* word erase */
char t_lnextc; /* literal next character */

};

The characters are mapped to members of the c_cc field of the termios structure as
follows:

ltchars c_cc index

t_suspc VSUS

t_dsuspc VDSUSP

t_rprntc VREPRINT

t_flushc VDISCARD

t_werasc VWERASE

t_lnextc VLNEXT

ttcompat responds to the following ioctl calls. All others are passed to the module
below.

TIOCGETP The argument is a pointer to an sgttyb structure. The current
terminal state is fetched; the appropriate characters in the terminal
state are stored in that structure, as are the input and output
speeds. If the speed is over B38400, then B38400 is returned. The
values of the flags in the sg_flags field are derived from the
flags in the terminal state and stored in the structure.

TIOCEXCL Set ‘‘exclusive-use’’ mode; no further opens are permitted until the
file has been closed.

TIOCNXCL Turn off ‘‘exclusive-use’’ mode.

TIOCSETP The argument is a pointer to an sgttyb structure. The appropriate
characters and input and output speeds in the terminal state are
set from the values in that structure, and the flags in the terminal
state are set to match the values of the flags in the sg_flags field
of that structure. The state is changed with a TCSETSF ioctl so
that the interface delays until output is quiescent, then throws
away any unread characters, before changing the modes. If the
current device speed is over B38400 for either input or output

ttcompat(7M)

IOCTLS

Device and Network Interfaces 641

speed, and B38400 is specified through this interface for that
speed, the actual device speed is not changed. If the device speed
is B38400 or lower or if some speed other than B38400 is specified,
then the actual speed specified is set.

TIOCSETN The argument is a pointer to an sgttyb structure. The terminal
state is changed as TIOCSETP would change it, but a TCSETS
ioctl is used, so that the interface neither delays nor discards
input.

TIOCHPCL The argument is ignored. The HUPCL flag is set in the c_cflag
word of the terminal state.

TIOCFLUSH The argument is a pointer to an int variable. If its value is zero,
all characters waiting in input or output queues are flushed.
Otherwise, the value of the int is treated as the logical OR of the
FREAD and FWRITE flags defined by <sys/file.h>. If the FREAD
bit is set, all characters waiting in input queues are flushed, and if
the FWRITE bit is set, all characters waiting in output queues are
flushed.

TIOCSBRK The argument is ignored. The break bit is set for the device. (This
is not supported by ttcompat. The underlying driver must
support TIOCSBRK.)

TIOCCBRK The argument is ignored. The break bit is cleared for the device.
(This is not supported by ttcompat. The underlying driver must
support TIOCCBRK.)

TIOCSDTR The argument is ignored. The Data Terminal Ready bit is set for
the device.

TIOCCDTR The argument is ignored. The Data Terminal Ready bit is cleared
for the device.

TIOCSTOP The argument is ignored. Output is stopped as if the STOP
character had been typed.

TIOCSTART The argument is ignored. Output is restarted as if the START
character had been typed.

TIOCGETC The argument is a pointer to a tchars structure. The current
terminal state is fetched, and the appropriate characters in the
terminal state are stored in that structure.

TIOCSETC The argument is a pointer to a tchars structure. The values of the
appropriate characters in the terminal state are set from the
characters in that structure.

TIOCLGET The argument is a pointer to an int. The current terminal state is
fetched, and the values of the local flags are derived from the flags
in the terminal state and stored in the int pointed to by the
argument.

ttcompat(7M)

642 man pages section 7: Device and Network Interfaces • Last Revised 2 Oct 2001

TIOCLBIS The argument is a pointer to an int whose value is a mask
containing flags to be set in the local flags word. The current
terminal state is fetched, and the values of the local flags are
derived from the flags in the terminal state; the specified flags are
set, and the flags in the terminal state are set to match the new
value of the local flags word.

TIOCLBIC The argument is a pointer to an int whose value is a mask
containing flags to be cleared in the local flags word. The current
terminal state is fetched, and the values of the local flags are
derived from the flags in the terminal state; the specified flags are
cleared, and the flags in the terminal state are set to match the new
value of the local flags word.

TIOCLSET The argument is a pointer to an int containing a new set of local
flags. The flags in the terminal state are set to match the new value
of the local flags word. (This ioctl was added because
sg_flags was once a 16 bit value. The local modes controlled by
TIOCLSET are equivalent to the modes controlled by TIOCSETP
and sg_flags.)

TIOCGLTC The argument is a pointer to an ltchars structure. The values of
the appropriate characters in the terminal state are stored in that
structure.

TIOCSLTC The argument is a pointer to an ltchars structure. The values of
the appropriate characters in the terminal state are set from the
characters in that structure.

FIORDCHK Returns the number of immediately readable characters. The
argument is ignored. (This ioctl is handled in the stream head, not
in the ttcompat module.)

FIONREAD Returns the number of immediately readable characters in the int
pointed to by the argument. (This ioctl is handled in the stream
head, not in the ttcompat module.)

The following ioctls are returned as successful for the sake of compatibility. However,
nothing significant is done (that is, the state of the terminal is not changed in any way,
and no message is passed through to the underlying tty driver).

TIOCSETD LDOPEN
TIOCGETD LDCLOSE
DIOCSETP LDCHG
DIOCSETP LDSETT

DIOCGETP LDGETT

The following old ioctls are not supported by ttcompat, but are supported by
Solaris tty drivers. As with all ioctl not otherwise listed in this documentation, these
are passed through to the underlying driver and are handled there.

ttcompat(7M)

Device and Network Interfaces 643

TIOCREMOTE

TIOCGWINSZ TIOCSWINSZ

The following ioctls are not supported by ttcompat, and are generally not
supported by Solaris tty drivers. They are passed through, and the tty drivers
return EINVAL.

LDSMAP TIOCNOTTY
LDGMAP TIOCOUTQ

LDNMAP

(Note: LDSMAP, LDGMAP, and LDNMAP are defined in <sys/termios.h>.)

ioctl(2), termios(3C), ldterm(7M), termio(7I)

ttcompat(7M)

SEE ALSO

644 man pages section 7: Device and Network Interfaces • Last Revised 2 Oct 2001

tty – controlling terminal interface

The file /dev/tty is, in each process, a synonym for the control terminal associated
with the process group of that process, if any. It is useful for programs or shell
sequences that wish to be sure of writing messages on the terminal no matter how
output has been redirected. It can also be used for programs that demand the name of
a file for output, when typed output is desired and it is tiresome to find out what
terminal is currently in use.

/dev/tty

/dev/tty*

ports(1M), console(7D)

tty(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

Device and Network Interfaces 645

ttymux – Serial I/O multiplexing STREAMS device driver

multiplexer@0,0:input

multiplexer@0,0:output

ttymux is a STREAMS multiplexer driver that connects multiple serial devices to the
system console. Using this driver, input from multiple physical devices can be
multiplexed onto a single input stream for the system console. Output written to the
console can be distributed to multiple physical devices to provide redundant console
interfaces to a system. Input and output can be multiplexed to or from a separate list
of devices.

ttymux is a STREAM’s multiplexer for serial drivers (such as se(7D)) that comply
with the Solaris terminal subsystem interface.

Currently, multiplexer interfaces are provided for system console I/O only and not for
general serial I/O multiplexing. Multiplexer interfaces are currently not available for
all platforms. Please see NOTES.

/kernel/drv/sparcv9/ttymux64– bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC (NetraCT series only)

se(7D), termio(7I)

Writing Device Drivers

Successful loading of this driver and its services depends on the EEPROM or NVRAM
settings in effect at the most recent system reboot. Without the platform firmware
support, this feature cannot be enabled. Currently, this support is provided only on a
NetraCT product family.

Use caution when enabling this feature to perform console input multiplexing,
particularly during super-user login. Because no security measures are enabled when
the driver is in operation, you must clearly understand the security implications
involved in using this feature and take appropriate measures to provide maximum
protection to the host. This can include such steps as enabling input to physically
secured console devices only.

The ttymux driver does not handle the behavioral differences in control
characteristics of different terminal types (for example, an ESCAPE sequence.) As a
result, multiple terminal types are not supported simultaneously. Please refer to the
platform user guide for more information.

ttymux(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

NOTES

646 man pages section 7: Device and Network Interfaces • Last Revised 20 Jul 2001

tun, TUN – tunneling STREAMS module

strmod/tun

strmod/atun

tun and atun are STREAMS modules that implement an IP-in-IP tunneling
mechanism. IPv6-in-IPv4 and IPv4-in-IPv4 tunnels are supported.

Tunnels are configured as point-to-point interfaces. Ipv4-in-Ipv4 allows IPv4 packets
to be encapsulated within IPv4 packets. IPv6-in-IPv4 tunnels allow IPv6 packets to be
encapsulated within IPv4 packets. Both the tunnel source and the tunnel destination
are required to configure these type of tunnels. Configured tunnels support
encapsulated multicast packets. See ifconfig(1M) for examples of these tunnel
configurations.

The atun module is used to configure automatic tunnels. It supports IPv6 packets
encapsulated within IPv4 packets. An IPv4 address is required for the tunnel source of
these interfaces and the IPv4 compatible IPv6 source address must match this address.
IPv6 packets using this interface must have IPv4 compatible source and destination
addresses. Automatic tunnels are not point-to-point, and they do not allow multicast
packets to be sent. If the destination of an automatic tunnel is a router, the packets will
not be forwarded.

� Network startup scripts look at /etc/hostname.ip.* to find the available
tunneling interfaces.

� The same tunnel source address (tsrc) and destination address (tdst) is be used
for all instances (luns) of a specific interface.

� Tunnels do not support snooping. Instead, a filter made up of the combination of
addresses can be used on the physical interface to capture relevant packets.

� If there is a tunnel set up between two multicast routers, then multicast routing
should be configured to use the tunnel, rather than a special multicast routing
virtual interface.

The tunnel module is architected to be plumbed between two instances of IP.

The following ioctl() calls may be used to configure a tunneling interface. The
ioctl()s are defined in <sys/sockio.h>. This structure is defined in
<net/if.h>.

/* currently tunnels only support IPv4 or IPv6 */
enum ifta_proto {

IFTAP_INVALID,
IFTAP_IPV4,
IFTAP_IPV6

};

#define IFTUN_SECINFOLEN 8
#define IFTUN_VERSION 1

/* tunnel configuration structure */

tun(7M)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTEFACEIOCTLS

Device and Network Interfaces 647

struct iftun_req {
char ifta_lifr_name[LIFNAMSIZ]; /* if name */
struct sockaddr_storage ifta_saddr; /* source address */
struct sockaddr_storage ifta_daddr; /* destination address */
uint_t ifta_flags; /* See below */

/* IP version information is read only */
enum ifta_proto ifta_upper; /* IP version above tunnel */
enum ifta_proto ifta_lower; /* IP versin below tunnel */
uint_t ifta_vers; /* Version number */
uint32_t ifta_secinfo[IFTUN_SECINFOLEN]; /* Security prefs. */

};
/* These flags are set to indicate which members are valid */

#define IFTUN_SRC 0x01
#define IFTUN_DST 0x02

#define IFTUN_SECURITY 0x04

The ifta_vers field indicates what IPsec request structure is overlayed on top of
ifta_secinfo. The current value of IFTUN_VERSION implies an overlay of
ipsec_req_t. See ipsec(7P).

SIOCSTUNPARAM Set tunnel parameters. This ioctl() allows the
tunnel’s source or destination address to be set. The
IFTUN_SRC bit set in ta_flags indicates that the
tunnel should bound to the source address supplied in
ta_saddr. The source must be a valid configured
interface IP address. The IFTUN_DST bit set in
ta_flags indicates that the tunnel should bound to
the destination address supplied in ta_daddr. The
destination address must be reachable.

SIOCGTUNPARAM Get tunnel parameters. Valid fields are indicated by the
returned value of ta_flags bitmask. The version of IP
plumbed above or below the tunnel may be
determined by inspecting ta_upper and ta_lower
by comparing the members against the mutually
exclusive defined values IFTAP_INVALID,
IFTAP_IPV4, and IFTAP_IPV6. Currently, only
IFTAP_IPV4 is supported, as IP is currently version 4.

The tunnel module is a DLPI style 2 service provider. All M_PROTO and M_PCPROTO
type messages are interpreted as DLPIprimitives. Valid DLPI primitives are defined in
<sys/dlpi.h>. Refer to dlpi(7P) for more information. An explicit
DL_ATTACH_REQ message by the user is required to associate the opened stream with
a particular device (ppa). The ppa indicates the corresponding device instance (unit)
number. The device is initialized on first attach and deinitialized (stopped) on last
detach.

The values returned by the module in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

tun(7M)

Tunnels and DLPI

648 man pages section 7: Device and Network Interfaces • Last Revised 28 M ar 2001

� The maximum SDU is usually 4196 ("ip_max_mtu - size of IP header").

� The minimum SDU is 1.

� The dlsap address length is 0 for configured tunnels and non-zero for automatic
tunnels.

� The MAC type is DL_OTHER.

� The sap length value is 0.

� The service mode is DL_CLDLS.

� No optional quality of service (QOS) support is included at present so the QOS
fields are 0.

� The provider style is DL_STYLE2.

� The version is DL_VERSION_2.

� The broadcast address value is 0

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The tunneling module
interprets the sap field within the DL_BIND_REQ as an IP "type" therefore the valid
value for the sap field is IP_DL_SAP.

Once in the DL_BOUND state, the user may transmit packets through the tunnel by
sending DL_UNITDATA_REQ messages to the tunnel module. Configured tunnels will
encapsulate the packet with the appropriate IP header using the source and
destination specified by tsrc and tdst parameters of ifconfig(1M). The tunnel
module will decapsulate received packets and route them to the first open and bound
stream having a sap, tsrc and tdst which matches the the configured information.
Packets are routed to exactly one open stream and not duplicated.

The module does not support additional primitives. DL_ERROR_ACK with the
dl_error set to DL_UNSUPPORTED will be returned in the case that an unsupported
DLPI primitive is encountered.

A tunnel creates what appears to be a physical interface to IP. It can be "trusted" as a
physical link only so far as the underlying security protocols, if used, can be trusted. If
the security associations (see ipsec(7P) are securely set up then the tunnel can be
trusted in that packets that come off the tunnel came from the peer specified in the
tunnel destination. If this trust exists, per-interface IP forwarding can be used to create
a Virtual Private Network (“VPN”). See ip(7P).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr (32-bit)

SUNWcarx (64-bit)

tun(7M)

SECURITY
CONSIDERATIONS

ATTRIBUTES

Device and Network Interfaces 649

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ifconfig(1M).attributes(5),ip(7P),ipsec(7P)

System Administration Guide: IP Services

Gilligan, R. and Nordmark, E., RFC 1933, Transition Mechanisms for IPv6 Hosts and
Routers, The Internet Society, 1996.

tun(7M)

SEE ALSO

650 man pages section 7: Device and Network Interfaces • Last Revised 28 M ar 2001

uata – IDE Host Bus Adapter Driver

ide@unit-address

The uata host bus adapter driver is a nexus driver that supports the ide interface on
SPARC platforms. The driver supports ultra DMA mode-4 (ATA66). The driver also
attempts to set the disk and ATAPI CD-ROM drive to maximum supported speed for
the device.

Currently, the uata driver supports IDE controllers CMD646U and Acer Southbridge
M5229.

The uata driver supports two channels concurrently with two devices connected per
channel. The devices are logically numbered from 0 to 3:

0 Master disk on primary channel

1 Slave disk on primary channel

2 Master disk on secondary channel

3 Slave disk on secondary channel

/kernel/drv/uata

prtconf(1M), driver.conf(4), attributes(5)

Writing Device Drivers

X3T10 ATA-4 specifications

In addition to being logged, the following messages may appear on the system
console:

ddi_get_iblock_cookie failed
The driver could not obtain the interrupt cookie; the attach may fail.

Drive not ready before set_features
Indicates a fatal problem; the drives are not ready to be programmed and features
cannot be set. (During the driver initialization process, the driver must set the
features for the drive, including dma and pio.)

Interrupt not seen after set_features
Indicates a fatal problem with the drive; features could not be set.

ata_controller - set features failed
Indicates a fatal problem with the drive; features could not be set.

? target <number> lun 0
Displayed at boot up time to indicate that the target <number> was identified,
where <number> is a decimal value.

uata(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 651

resid
Residual number of bytes in data transfer and the I/O operation could not be
finished completely.

ghd_timer_newstate: HBA reset failed
Generally indicates a fatal condition; I/O operation could not be completed
following reset of the channel.

timeout: <message> chno =<number> target=<number>
A timeout occured because of <message> on device (target=<number>) on
channel (chno =<number). Where <message> could be either early abort, early
timeout, abort request, abort device, reset target or reset bus.

ata_controller - Drive not ready before command <number>
The drive did not respond before issuing the command <number> to the controller;
command <number> will not be issued to the drive. (<number> is the hexadecimal
opcode for the sleep or standby commands, which are issued when the drive
transitions between power management states.)

ata_controller - Command <number> failed
Command <number> failed on the drive. (<number> is the hexadecimal opcode for
the sleep or standby commands, which are issued when the drive transitions
between power management states.)

ata_controller - Command <number> returned error
Command <number> returned error. (<number> is the hexadecimal opcode for the
sleep or standby commands, which are issued when the drive transitions between
power management states.)

ata_controller - Cannot take drive <number> to sleep
The disk will not transition to sleep state. (Indicates that the driver could not set the
device to sleep mode while performing power management functions.)

ata_controller - Cannot reset secondary/primary channel
The disk will not transition from sleep to active state.

ata_controller - Unsupported Controller Vendor 0x13d0, Device
0x43f1, Revision 0x034

An unsupported ata controller was found on the system and prints <ID>, device
id and revision of the controller, where <ID> represents the hexidecimal vendor ID.

These messages are informational and indicate that a timeout occured for a I/O
request. The uata driver recovers from these states automatically unless there is a
fatal error.

uata(7D)

652 man pages section 7: Device and Network Interfaces • Last Revised 5 Sep 2001

udfs – universal disk format file system

The udfs file system is a file system type that allows user access to files on Universal
Disk Format (UDF) disks from within the Solaris operating environment. Once
mounted, a udfs file system provides standard Solaris file system operations and
semantics. That is, users can read files, write files, and list files in a directory on a UDF
device and applications can use standard UNIX system calls on these files and
directories.

Because udfs is a platform-independent file system, the same media can be written to
and read from by any operating system or vendor.

udfs file systems are mounted using:

mount-F udfs -o rw/ro device-special

Use:

mount /udfs

if the /udfs and device special file /dev/dsk/c0t6d0s0 are valid and the following
line (or similar line) appears in your /etc/vfstab file:

/dev/dsk/c0t6d0s0 - /udfs udfs - no ro

The udfs file system provides read-only support for ROM, RAM, and
sequentially–recordable media and read-write support on RAM media.

The udfs file system also supports regular files, directories, and symbolic links, as
well as device nodes such as block, character, FIFO, and Socket.

mount(1M), mount_udfs(1M), vfstab(4)

Invalid characters such as “NULL” and "/” and invalid file names such as "." and ".."
will be translated according to the following rule:

Replace the invalid character with an “_," then append the file name with # followed
by a 4 digit hex representation of the 16-bit CRC of the original FileIdentifier.
For example, the file name ".." will become "__#4C05"

udfs(7FS)

NAME

DESCRIPTION

Mounting File
Systems

SEE ALSO

NOTES

Device and Network Interfaces 653

udp, UDP – Internet User Datagram Protocol

#include <sys/socket.h>

#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

s = socket(AF_INET6, SOCK_DGRAM, 0);

t = t_open("/dev/udp", O_RDWR);

t = t_open("/dev/udp6", O_RDWR);

UDP is a simple datagram protocol which is layered directly above the Internet
Protocol (“IP”) or the Internet Protocol Version 6 (“IPv6”). Programs may access UDP
using the socket interface, where it supports the SOCK_DGRAM socket type, or using
the Transport Level Interface (“TLI”), where it supports the connectionless (T_CLTS)
service type.

Within the socket interface, UDP is normally used with the sendto(), sendmsg(),
recvfrom(), and recvmsg() calls (see send(3SOCKET) and recv(3SOCKET)). If
the connect(3SOCKET) call is used to fix the destination for future packets, then the
recv(3SOCKET) or read(2) and send(3SOCKET) or write(2) calls may be used.

UDP address formats are identical to those used by the Transmission Control Protocol
(“TCP”). Like TCP, UDP uses a port number along with an IPor IPv6 address to
identify the endpoint of communication. The UDP port number space is separate from
the TCP port number space, that is, a UDP port may not be “connected” to a TCP port.
The bind(3SOCKET) call can be used to set the local address and port number of a
UDP socket. The local IP or IPv6 address may be left unspecified in the bind() call by
using the special value INADDR_ANY for IP, or the unspecified address (all zeroes) for
IPv6. If the bind() call is not done, a local IP or IPv6 address and port number will be
assigned to the endpoint when the first packet is sent. Broadcast packets may be sent,
assuming the underlying network supports this, by using a reserved “broadcast
address.” This address is network interface dependent. Broadcasts may only be sent
by the privileged user.

IPv6 does not support broadcast addresses; their function is supported by IPv6
multicast addresses.

Options at the IP level may be used with UDP; see ip(7P) or ip6(7p).

There are a variety of ways that a UDP packet can be lost or corrupted, including a
failure of the underlying communication mechanism. UDP implements a checksum
over the data portion of the packet. If the checksum of a received packet is in error, the
packet will be dropped with no indication given to the user. A queue of received
packets is provided for each UDP socket. This queue has a limited capacity. Arriving
datagrams which will not fit within its high-water capacity are silently discarded.

udp(7P)

NAME

SYNOPSIS

DESCRIPTION

654 man pages section 7: Device and Network Interfaces • Last Revised 4 Nov 1999

UDP processes Internet Control Message Protocol (“ICMP”) and Internet Control
Message Protocol Version 6 (“ICMP6”) error messages received in response to UDP
packets it has sent. See icmp(7P) and icmp6(7p).

ICMP “source quench” messages are ignored. ICMP “destination unreachable,” “time
exceeded” and “parameter problem” messages disconnect the socket from its peer so
that subsequent attempts to send packets using that socket will return an error. UDP
will not guarantee that packets are delivered in the order they were sent. As well,
duplicate packets may be generated in the communication process.

ICMP6 “destination unreachable” packets are ignored unless the enclosed code
indicates that the port is not in use on the target host, in which case, the application is
notified. ICMP6 “parameter problem” notifications are similarly passed upstream. All
other ICMP6 messages are ignored.

read(2), write(2), bind(3SOCKET), connect(3SOCKET), recv(3SOCKET),
send(3SOCKET), icmp(7P), icmp6(7P), inet(7P), inet6(7P), ip(7P), ip6(7P),
tcp(7P)

Postel, Jon, RFC 768, User Datagram Protocol, Network Information Center, SRI
International, Menlo Park, Calif., August 1980

A socket operation may fail if:

EISCONN A connect() operation was attempted on a socket on
which a connect() operation had already been
performed, and the socket could not be successfully
disconnected before making the new connection.

EISCONN A sendto() or sendmsg() operation specifying an
address to which the message should be sent was
attempted on a socket on which a connect()
operation had already been performed.

ENOTCONN A send() or write() operation, or a sendto() or
sendmsg() operation not specifying an address to
which the message should be sent, was attempted on a
socket on which a connect() operation had not
already been performed.

EADDRINUSE A bind() operation was attempted on a socket with a
network address/port pair that has already been
bound to another socket.

EADDRNOTAVAIL A bind() operation was attempted on a socket with a
network address for which no network interface exists.

EINVAL A sendmsg() operation with a non-NULL
msg_accrights was attempted.

udp(7P)

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 655

EACCES A bind() operation was attempted with a “reserved”
port number and the effective user ID of the process
was not the privileged user.

ENOBUFS The system ran out of memory for internal data
structures.

udp(7P)

656 man pages section 7: Device and Network Interfaces • Last Revised 4 Nov 1999

uhci – host controller driver

pcivid,pid@unit-address

The uhci host controller driver is a USBA (Solaris USB Architecture) compliant nexus
driver that supports the Universal Host Controller Interface Specification 1.1, an industry
standard developed by Intel. The uhci driver supports all USB tranfers, including
interrupt, control, isochronous and bulk.

The uhci driver supports the nexus device control interface.

/kernel/drv/uhci 32–bit ELF Kernel Module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based X86 systems

Availability SUNWusb

hubd(7D), usba(7D), usb_mid(7D)

Writing Device Drivers

Universal Host Controller Interface Specification for USB 1.1

Universal Serial Bus Specification 1.0 & 1.1

System Administration Guide: Basic Administration

None.

uhci(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 657

usba – Solaris USB Architecture (USBA)

USB provides a low-cost means for attaching peripheral devices, including
mass-storage devices, keyboards, mice, and printers, to a system. For complete
information on USB, go to the USB website at http://www.usb.org.

USB supports 126 hot-pluggable USB devices per USB bus. The maximum data
transfer rate is 12 Mbits per second (Mbps).

USB adheres to the Universal Serial Bus 1.1 specification and provides a transport layer
abstraction to USB client drivers.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

hid(7D), hubd(7D), ohci(7D), scsa2usb(7D), uhci(7D), usb_mid(7D), usbprn(7D),
usbms(7M)

Universal Serial Bus Specification 1.0 and 1.1.

System Administration Guide: Basic Administration

The messages described below may appear on the system console as well as being
logged. All messages are formatted in the following manner:

WARNING: Error message...

<name><number>: obsolete driver:

usb_pipe_policy is <version> expecting <actual_version>

The driver is using an older revision of USBA. The pipe policy revision used is older
and this driver is not supported on the current platform. <name><number> refer to the
driver name and its instance number, respectively.

No driver found for device <device_name> (interface <number>

node name=<node_name>)

The installed Solaris software does not contain a supported driver for this hardware.
<number> is the interface number.

No driver found for device <name>.

The installed Solaris software does not contain a supported driver for this hardware.
<name> could be the device path name or the device name.

Onlining <path name> failed (<number>).

usba(7D)

NAME

DESCRIPTION

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

658 man pages section 7: Device and Network Interfaces • Last Revised 28 Sep 2000

The USB device driver could not be brought online due to internal kernel errors.
<number> is return value returned due to the failure.

usba(7D)

Device and Network Interfaces 659

usb_ac – USB audio control driver

usb_ac@unit-address

The usb_ac driver is a USBA (Solaris USB Architecture) compliant client driver that
supports the USB Audio Class 1.0 specification.

The audio control driver is a new class driver and offers functionality similar to the
audiocs (sun4u) and audiots (Sun Blade 100) drivers which use the Solaris audio
mixer framework (mixer(7I)). Unlike the audiocs and audiots drivers, the USB
audio device may possess play-only or record-only capability.

Drivers corresponding to other USB audio interfaces, including the usb_as(7D) audio
streaming driver or the hid(7D) driver, are plumbed under the USB audio control
driver and do not directly interface with user applications.

The usb_ac driver supports USB audio class compliant devices with a feature unit.
For a list of recommended devices, visit: www.sun.com/io.

This interface is described in the mixer(7I) and audio(7I) man pages.

Applications that open /dev/audio may use the AUDIO_GETDEV ioctl() to
determine which audio device is being used. The USB audio driver returns the string
"USB Audio" in the name field of the audio_device structure. The version field
displays the version number and the config field displays the string "external."

The USB audio device provides support for an external speaker and microphone.

The configuration file /kernel/drv/usb_ac.conf is used to configure the USB
audio driver and determines whether the audio mixer is enabled or disabled. See the
mixer(7I) manual page for details. You can change the audio mixer mode at any time
by using the mixerctl(1) or sdtaudiocontrol(1) applications.

The USB audio device supports the audio data formats shown below. Please note that
at a minimum, the device must support a sampling frequency of 44100 Hz or 48000
Hz. In the table below, mode "M" indicates that mixer mode is enabled, while "C"
indicates that mixer mode is disabled or in compatibility mode.

Sample Rate Encoding Precision Channels Mode

8000 Hz u-Law or
A-Law

8 1 or 2 M and C

9600 Hz u-Law or
A-Law

8 1 or 2 M and C

11025 Hz u-law or A-law 8 1 or 2 M and C

16000 Hz u-law or A-law 8 1 or 2 M and C

18900 Hz u-law or A-law 8 1 or 2 M and C

usb_ac(7D)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAM

INTERFACEDriver Versions

Audio Mixer Mode

Audio Data
Formats

660 man pages section 7: Device and Network Interfaces • Last Revised 22 May 2001

22050 Hz u-law or A-law 8 1 or 2 M and C

32000 Hz u-law or A-law 8 1 or 2 M and C

33075 Hz u-law or A-law 8 1 or 2 M and C

37800 Hz u-law or A-law 8 1 or 2 M and C

44100 Hz u-law or A-law 8 1 or 2 M and C

48000 Hz u-law or A-law 8 1 or 2 M and C

8000 Hz linear 8 or 16 1 or 2 M and C

9600 Hz linear 8 or 16 1 or 2 M and C

11025 Hz linear 8 or 16 1 or 2 M and C

16000 Hz linear 8 or 16 1 or 2 M and C

18900 Hz linear 8 or 16 1 or 2 M and C

22050 Hz linear 8 or 16 1 or 2 M and C

32000 Hz linear 8 or 16 1 or 2 M and C

33075 Hz linear 8 or 16 1 or 2 M and C

37800 Hz linear 8 or 16 1 or 2 M and C

44100 Hz linear 8 or 16 1 or 2 M and C

48000 Hz linear 8 or 16 1 or 2 M and C

As described in the audio(7I) and mixer(7I) man pages, it is possible to request
asynchronous notification of changes in the state of an audio device.

If a device is hot-removed while it is active, all subsequent opens will return EIO. All
other errors are defined in the audio(7I) man page.

/kernel/drv/usb_ac
32 bit ELF kernel module.

/kernel/drv/sparcv9/usb_ac
64 bit ELF kernel module.

/kernel/drv/usb_ac.conf
USB audio driver configuration file.

/dev/audio
Symlink to the system’s primary audio device, not necessarily a USB audio device.

/dev/audioctl
/dev/audio control device.

usb_ac(7D)

Audio Status
Change

Notification
ERRORS

FILES

Device and Network Interfaces 661

/dev/sound/[0-N]
Represents the audio devices on the system and is not necessarily a USB audio
device.

/dev/sound/[0-N]ctl
/dev/sound audio control device.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWusb, SUNWusbx

Stability level Evolving

mixerctl(1), ioctl(2), attributes(5), ohci(7D), uhci(7D), usb_as(7D),
usb_mid(7D), audio(7I), mixer(7I), streamio(7I)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

Universal Serial Bus Device Class Definition for Audio Devices, Release 1.0

In addition to being logged, the following messages may appear on the system
console. All messages are formatted in the following manner:

Warning: <device path> (usb_ac<instance num>): Error Message...

Failure to plumb audio streams drivers.

The usb audio streaming driver or the hid driver could not be plumbed under the
audio control driver and the device is not usable.

Device was disconnected while open. Data may have been lost.

The device has been hot-removed or powered off while it was open and a possible
data transfer was in progress. The job will be aborted.

Cannot access device. Please reconnect <name>.

There was an error in accessing the device during reconnect. Please reconnect the
device.

Device is not identical to the previous one on this port.

Please disconnect and reconnect.

A USB audio device was hot-removed while open. A new device was hot-inserted
which is not identical to the original USB audio device. Please disconnect the USB
device and reconnect the device to the same port.

usb_ac(7D)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

662 man pages section 7: Device and Network Interfaces • Last Revised 22 May 2001

Busy device has been reconnected.

A device that was hot-removed from a USB port has been re-inserted again.

The USB audio device will be power managed if the device is idle.

USB audio devices do not have line out or port control.

If a USB audio device is hot-removed while active, it prints a console warning
message requesting you to put the device back in the same port and informing you
that there may be data loss. Hot-removal of an active audio device is strongly
discouraged.

Close all applications before hot-removing or hot-inserting a device. If an application
is open when a device is hot-removed, inserting the device in a different port will
create new /dev/sound links but /dev/audio will not be affected. Hotplugging an
active device is not recommended.

On slower IA machines and with higher frequence sample rates, you may encounter
some audio quality problems.

To make a USB audio device the primary audio device (for example: /dev/audio),
close all audio applications, disconnect all USB audio devices, modunload all other
audio drivers and then simply reconnect the USB audio device. This will cause
/dev/audio to point to the USB audio /dev/sound entry.

Most Solaris audio applications and 3rd party audio applications available on Solaris
work well with USB audio devices. For details of the application behavior with USB
audio devices, visit www.sun.com/io.

usb_ac(7D)

NOTES

Device and Network Interfaces 663

usb_as – USB audio streaming driver

usb_as@unit-address

The usb_as driver is a USBA (Solaris USB Architecture) compliant client driver that
supports the USB Audio Class 1.0 specification.

The usb_as driver processes audio data messages during play and record and sets
sample frequency, precision, encoding and other functions on request from the USB
audio control driver. See usb_ac(7D).

This driver is plumbed under the USB audio control driver and does not directly
interface with the user application.

/kernel/drv/usb_as
32 bit ELF kernel module

/kernel/drv/sparcv9/usb_as
64 bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWusb, SUNWusbx

Stability level Evolving

mixerctl(1), ioctl(2), attributes(5), ohci(7D), uhci(7D), usba(7D),
usb_ac(7D), usb_mid(7D), audio(7I), mixer(7I), streamio(7I)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

In addition to being logged, the following messages may appear on the system
console. All messages are formatted in the following manner:

Warning: <device path> (usb_as<instance num>): Error Message...

where <device path> is the physical path to the device in /devices direc tory.

No bandwidth available.

There is no bandwidth available for the isochronous pipe. As a result, no data will be
transferred during play and record.

Cannot access device. Please reconnect <name>.

usb_as(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

664 man pages section 7: Device and Network Interfaces • Last Revised 22 May 2001

There was an error in accessing the device during reconnect. Please reconnect the
device

Device is not identical to the previous one on this port.

Please disconnect and reconnect.

A USB audio streaming interface was hot-removed while open. A new device was
hot-inserted which is not identical to the original USB audio device. Please disconnect
the USB device and reconnect the device to the same port.

The USB audio streaming interface will be power managed if device is idle.

usb_as(7D)

NOTES

Device and Network Interfaces 665

usbkbm – keyboard STREAMS module for Sun USB Keyboard

open("/dev/kbd", O_RDWR)

The usbkbm STREAMS module processes byte streams generated by a keyboard
attached to a USB port. USB keyboard is a member of Human Interface Device (HID)
Class, and usbkbm only supports the keyboard protocol defined in the specification.
Definitions for altering keyboard translation and reading events from the keyboard are
in <sys/kbio.h> and <sys/kbd.h>.

The usbkbm STREAMS module adheres to the interfaces exported by kb(7M). Refer to
the DESCRIPTION section of kb(7M) for a discussion of the keyboard translation
modes and the IOCTL section for the supported ioctl() requests.

USB Keyboard usbkbm returns different values for the following ioctls than kb(7M):

KIOCTYPE This ioctl() returns a new keyboard type defined for the USB
keyboard. All types are listed below:

KB_SUN3 Sun Type 3 keyboard
KB_SUN4 Sun Type 4 keyboard
KB_ASCII ASCII terminal masquerading as keyboard
KB_PC Type 101 PC keyboard
KB_USB USB keyboard

The USB keyboard type is KB_USB; usbkbm will return KB_USB in response to the
KIOCTYPE ioctl.

KIOCLAYOUT The argument is a pointer to an int. The layout code specified by
the bCountryCode value returned in the HID descriptor is
returned in the int pointed to by the argument. The
countrycodes are defined in 6.2.1 of the HID 1.0 specifications.

KIOCCMD

KBD_CMD_CLICK/KBD_CMD_NOCLICK The kb(7M) indicates
that inappropriate
commands for
particular keyboards are
ignored. Because
clicking is not
supported on the USB
keyboard, usbkbm
ignores this command

KBD_CMD_SETLED Set keyboard LEDs.
Same as kb(7M).

KBD_CMD_GETLAYOUT The country codes
defined in 6.2.1 of the
HID 1.0 specification are
returned.

usbkbm(7M)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

666 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

KBD_CMD_BELL/KBD_CMD_NOBELL This command is
supported although the
USB keyboard does not
have a buzzer. The
request for the bell is
rerouted.

KBD_CMD_RESET There is no notion of
resetting the keyboard
as there is for the type4
keyboard. usbkbm
ignores this command
and does not return an
error.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

dumpkeys(1), kbd(1), loadkeys(1), keytables(4), attributes(5), hid(7D),
usba(7D), termio(7I), kb(7M)

STREAMS Programming Guide

System Administration Guide: Basic Administration

None

usbkbm(7M)

ATTRIBUTES

SEE ALSO

DIAGN0STICS

Device and Network Interfaces 667

usb_mid – USB Multi Interface Driver

device@unit-address

The usb_mid driver is a USBA (Solaris Universal Serial Bus Architecture) compliant
nexus driver that binds to device level nodes if no vendor or class specific driver is
available. The usb_mid driver attempts to bind drivers to each of its interfaces.

The usb_mid driver supports the nexus device control interface.

/kernel/drv/usb_mid 32-bit ELF kernel module

/kernel/drv/sparcv9/usb_mid 64-bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

hubd(7D), ohci(7D), usba(7D)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

System Administration Guide: Basic Administration

In addition to being logged, the following messages may appear on the system
console. All messages are formatted in the following manner:

Warning: <device path> (usb_mid<instance number>): Error Message...

Cannot access device. Please reconnect <device name>.

This device has been disconnected because a device other than the original one has
been inserted. The driver informs you of this fact by displaying the name of the
original device.

Device not identical to the previous one on this port.

Please disconnect and reconnect.

Same condition as described above; however in this case, the driver is unable to
identify the original device with a name string.

usb_mid(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

668 man pages section 7: Device and Network Interfaces • Last Revised 19 Sep 2000

usbms – USB mouse STREAMS module

#include <sys/vuid_event.h>

#include <sys/msio.h>

#include <sys/msreg.h>

The usbms STREAMS module processes byte streams generated by a USB mouse. A
USB mouse is a member of the Human Interface Device (HID) class and the usbms
module supports only the mouse boot protocol defined in the HID specification. The
usbms module must be pushed on top of the HID class driver (see hid(7D)). In the
VUID_FIRM_EVENT mode, the usbms module translates packets from the USB mouse
into Firm events. The Firm event structure is defined in <sys/vuid_event.h>. The
STREAMS module state is initially set to raw or VUID_NATIVE mode which performs
no message processing. See the HID 1.0 specification for the raw format of the mouse
packets. To initiate mouse protocol conversion to Firm events, change the state to
VUID_FIRM_EVENT.

VUIDGFORMAT This option returns the current state of the STREAMS module. The
state of the usbms STREAMS module may be either
VUID_NATIVE (no message processing) or VUID_FIRM_EVENT
(convert to Firm events).

VUIDSFORMAT The argument is a pointer to an int. Set the state of the STREAMS
module to the int pointed to by the argument.

typedef struct vuid_addr_probe {
short base; /* default vuid device addr directed too */
union {

short next; /* next addr for default when VUIDSADDR */
short current; /* current addr of default when VUIDGADDR */

} data;
} Vuid_addr_probe;

VUIDSADDR The argument is a pointer to a Vuid_addr_probe structure.
VUIDSADDR sets the virtual input device segment address
indicated by base to next.

If base does not equal VKEY_FIRST, ENODEV is returned.

VUIDGADDR The argument is a pointer to a Vuid_addr_probe structure.
Return the address of the virtual input device segment indicated
by base to current.

If base does not equal VKEY_FIRST, ENODEV is returned.

ioctl() requests for changing and retrieving mouse parameters use the Ms_parms
structure:

typedef struct {
int jitter_thresh;

usbms(7M)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

Device and Network Interfaces 669

int speed_law;
int speed_limit;

} Ms_parms;

jitter_thresh is the "jitter threshold" of the mouse. Motions fewer than
jitter_thresh units along both axes are accumulated and then sent up the stream
after 1/12 second.

speed_law indicates whether extremely large motions are to be ignored. If it is 1, a
"speed limit" is applied to mouse motions. Motions along either axis of more than
speed_limit units are discarded.

MSIOGETPARMS The argument is a pointer to a Ms_params structure. The usbms
module parameters are returned in the structure.

MSIOSETPARMS The argument is a pointer to a Ms_params structure. The usbms
module parameters are set according to the values in the structure.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Availability SUNWusb, SUNWusbx

ioctl(2), hid(7D), usba(7D)

STREAMS Programming Guide

System Administration Guide: Basic Administration

None

usbms(7M)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

670 man pages section 7: Device and Network Interfaces • Last Revised 10 Oct 2000

usbprn – USB printer class driver

#include <sys/usb/clients/printer/usb_printer.h>

#include <sys/ecppio.h>

usbprn@unit-address

The usbprn driver is a USBA (Solaris USB Architecture) compliant client driver that
supports the USB Printer Class 1.0 specification. The usbprn driver supports a subset
of the ecpp(7D) parallel port driver functionality. However, unlike the
STREAMS-based ecpp driver, usbprn is a character driver.

The usbprn driver supports all USB printer-class compliant printers; however the
following devices are recommended:

DEVICE NAME PRINTER CAPABILITY

Lexmark Optra E310 PostScript printer

Lexmark Optra M410 PostScript printer

Lexmark Optra T616 PostScript printer

Lexmark Optra W810 PostScript printer

Lexmark Optra Color45 PostScript printer

Xerox DocuPrint N2125 PostScript printer

The following USB parallel printer adapters are recommended:

ADAPTER NAMES PART NUMBER

Belkin F5U002

Entrega UP-6

The following parallel port printers are recommended with the above mentioned USB
parallel printer adapters:

DEVICE NAME PRINTER CAPABILITY

Hewlett Packard LaserJet 6MP PostScript printer

Lexmark Color 45 PostScript printer

Lexmark SC1275 PostScript printer

Sun SparcE PostScript printer

usbprn(7D)

NAME

SYNOPSIS

DESCRIPTION

Device and Network Interfaces 671

DEVICE NAME PRINTER CAPABILITY

Xerox N17 PostScript printer

The usbprn driver supports non-PostScript printers that utilize third-party PostScript
conversion packages such as GhostScript. Conversion packages can be obtained from
the Solaris 8 Software companion CD, available at
http://www.sun.com/software/solaris/binaries/package.html.

With certain minor exceptions (outlined in the Notes sections below), the usbprn
driver supports a subset of the ecpp(7D) ioctl interfaces:

Configuration variables are set to their default values each time the USB printer device
is attached. The write_timeout period (defined in the ECPPIOC_SETPARMS ioctl
description below) is set to 90 seconds. The mode is set to centronics mode
(ECPP_CENTRONICS). Parameters can be changed through the
ECPPIOC_SETPARMS ioctl and read through the ECPPIOC_GETPARMS ioctl. Each
time the USB printer device is opened, the device is marked as busy and all further
opens will return EBUSY. Once the device is open, applications can write to the device
and the driver can send data and obtain device id and status.

Note – Unlike the ecpp(7D) driver, usbprn resets configuration variables to their
default values with each attach(9E). (The ecpp(7D) driver resets configuration
variables with each open(2).)

A write(2) operation returns the number of bytes successfully written to the device. If
a failure occurs while a driver is transferring data to printer, the contents of the status
bits are captured at the time of the error and can be retrieved by the application
program using the ECPPIOC_GETERR ioctl(2) call. The captured status information
is overwritten each time an ECPPIOC_TESTIO ioctl(2) occurs.

The usbprn driver supports prnio(7I) interfaces. Note that the PRNIOC_RESET
command has no effect on USB printers.

The following ioctl(2) calls are supported for backward compatibility and are not
recommended for new applications.

ECPPIOC_GETPARMS
Gets current transfer parameters. The argument is a pointer to struct
ecpp_transfer_parms. If parameters are not configured after the device is
opened, the structure will be set to its default configuration.

Note – Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is
currently supported in usbprn.

usbprn(7D)

DEFAULT
OPERATION

WRITE
OPERATION

IOCTLS

672 man pages section 7: Device and Network Interfaces • Last Revised 5 Sep 2001

ECPPIOC_SETPARMS
Sets transfer parameters. The argument is a pointer to a struct
ecpp_transfer_parms. If a parameter is out of range, EINVAL is returned. If the
peripheral or host device cannot support the requested mode, EPROTONOSUPPORT
is returned.

The transfer parameters structure is defined in <sys/ecppio.h>:

struct ecpp_transfer_parms {
int write_timeout;
int mode;

};

The write_timeout field, which specifies how long the driver will take to
transfer 8192 bytes of data to the device, is set to a default value of 90 seconds. The
write_timeout field must be greater than one second and less than five minutes.
All other values are out of range.

Note – Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is
currently supported in usbprn. Also, the semantics of write_timeout in usbprn
differs from ecpp(7D). Refer to ecpp(7D) for information.

BPPIOC_TESTIO
Tests the transfer readiness of a print device and checks status bits to determine if a
write(2) will succeed. If status bits are set, a transfer will fail. If a transfer will
succeed, zero is returned. If a transfer fails, the driver returns EIO and the state of
the status bits are captured. The captured status can be retrieved using the
BPPIOC_GETERR ioctl(2) call. BPPIOC_TESTIO and BPPIOC_GETERR are
compatible to the ioctls specified in bpp(7D).

Note – Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is
currently supported in usbprn. Additionally, bus_error and
timeout_occurred fields are not used in the usbprn interface. (In ecpp(7D),
timeout_occurred is used.)

BPPIOC_GETERR
Get last error status. The argument is a pointer to a struct bpp_error_status.
This structure indicates the status of all the appropriate status bits at the time of the
most recent error condition during a write(2) call, or the status of the bits at the
most recent BPPIOC_TESTIO ioctl(2) call.

struct bpp_error_status {
char timeout_occurred; /* not used */
char bus_error; /* not used */
uchar_t pin_status; /* status of pins which

/* could cause error */
};

The pin_status field indicates possible error conditions. The error status structure
bpp_error_status is defined in the include file <sys/bpp_io.h>. The valid
bits for pin_status can be BPP_ERR_ERR, BPP_SLCT_ERR, and BPP_PE_ERR. A
set bit indicates that the associated pin is asserted.

usbprn(7D)

Device and Network Interfaces 673

Note – Unlike the ecpp(7D) driver, only the ECPP_CENTRONICS mode is
currently supported in usbprn. Additionally, the bus_error and
timeout_occurred fields are not used in the usbprn interface. (In ecpp(7D),
timeout_occurred is used.) Unlike ecpp(7D), the BPP_BUSY_ERR status bit is
not supported by USB printers.

ECPPIOC_GETDEVID
Gets the IEEE 1284 device ID from the peripheral. The argument is a pointer to a
struct ecpp_device_id. Applications should set mode to
ECPP_CENTRONICS. If another mode is used, the driver will return
EPROTONOSUPPORT. len is the length of the buffer pointed to by addr. rlen is the
actual length of the device ID string returned from the peripheral. If the returned
rlen is greater than len, the application should call ECPPIOC_GETDEVID a
second time with a buffer length equal to rlen.

The 1284 device ID stucture:

struct ecpp_device_id {
int mode; /* mode to use for reading device id */
int len; /* length of buffer */
int rlen; /* actual length of device id string */
char *addr; /* buffer address */

Note – Unlike ecpp(7D), only the ECPP_CENTRONICS mode is currently
supported in usbprn.

The read operation is not supported and returns EIO.

EBUSY The device has been opened and another open is
attempted. An attempt has been made to unload the
driver while one of the units is open.

EINVAL An unsupported IOCTL has been received. A
ECPPIOC_SETPARMS ioctl(2) is attempted with an
out of range value in the ecpp_transfer_parms
structure.

EIO The driver has received an unrecoverable device error,
or the device is not responding, or the device has
stalled when attempting an access. A write(2) or
ioctl(2) did not complete due to a peripheral access.
A read(2) system call has been issued.

ENXIO The driver has received an open(2) request for a unit
for which the attach failed.

ENODEV The driver has received an open(2) request for a device
that has been disconnected.

EPROTONOSUPPORT The driver has received a ECPPIOC_SETPARMS
ioctl(2) for a mode argument other than
ECPP_CENTRONICS in the ecpp_transfer_parms

usbprn(7D)

READ
OPERATION

ERRORS

674 man pages section 7: Device and Network Interfaces • Last Revised 5 Sep 2001

structure.

/kernel/drv/usbprn
32 bit ELF kernel module

/kernel/drv/sparcv9/usbprn
64 bit ELF kernel module

/dev/printers/n
Character special files

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Limited to PCI-based systems

Availability SUNWusb, SUNWusbx

printmgr(1M), bpp(7D), ecpp(7D), hubd(7D), ohci(7D), uhci(7D), usba(7D),
prnio(7I)

Writing Device Drivers

Universal Serial Bus Specification 1.0 and 1.1

USB Device Class Definition for Printing Devices 1.0

System Administration Guide: Basic Administration

In addition to being logged, the following messages may appear on the system
console. All messages are formatted in the following manner:

Warning: <device path> (usbprn<instance num>): Error Message...

Device was disconnected while open. Data may have been lost.
The device has been hot-removed or powered off while it was open and a possible
data transfer was in progress. The job may be aborted.

Cannot access device. Please reconnect <device name>.
There was an error in accessing the printer during reconnect. Please reconnect the
device.

Device is not identical to the previous one on this port. Please disconnect and
reconnect.

A USB printer was hot-removed while open. A new device was hot-inserted which
is not identical to the original USB printer. Please disconnect the USB device and
reconnect the printer to the same port.

usbprn(7D)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 675

Device has been reconnected, but data may have been lost.
The printer that was hot-removed from its USB port has been re-inserted again to
the same port. It is available for access but the job that was running prior to the
hot-removal may be lost.

The USB printer will be power managed if the device is closed.

If a printer is hot-removed before a job completes, the job is terminated and the driver
will return EIO. All subsequent opens will return ENODEV. If a printer is hot-removed,
an LP reconfiguration may not be needed if a printer is re-inserted on the same port. If
re-inserted on a different port, an LP reconfiguration may be required.

The USB Parallel Printer Adapter is not hotpluggable. The printer should be connected
to USB Parallel Printer Adapter before plugging the USB cable into host or hub port
and should be removed only after disconnecting the USB cable of USB Parallel Printer
Adapter from the host or hub port.

usbprn(7D)

NOTES

676 man pages section 7: Device and Network Interfaces • Last Revised 5 Sep 2001

uscsi – user SCSI command interface

#include <sys/scsi/impl/uscsi.h>

ioctl(int fildes, int request, struct uscsi_cmd *cmd);

The uscsi command is very powerful and somewhat dangerous; therefore it has
some permission restrictions. See WARNINGS for more details.

Drivers supporting this ioctl(2) provide a general interface allowing user-level
applications to cause individual SCSI commands to be directed to a particular SCSI or
ATAPI device under control of that driver. The uscsi command is supported by the
sd driver for SCSI disks and ATAPI CD-ROM drives, and by the st driver for SCSI
tape drives. uscsi may also be supported by other device drivers; see the specific
device driver manual page for complete information.

Applications must not assume that all Solaris disk device drivers support the uscsi
ioctl command. The SCSI command may include a data transfer to or from that device,
if appropriate for that command. Upon completion of the command, the user
application can determine how many bytes were transferred and the status returned
by the device. Also, optionally, if the command returns a Check Condition status, the
driver will automatically issue a Request Sense command and return the sense data
along with the original status. See the USCSI_RQENABLE flag below for this Request
Sense processing. The uscsi_cmd structure is defined in
<sys/scsi/impl/uscsi.h> and includes the following members:

int uscsi_flags; /* read, write, etc. see below */
short uscsi_status; /* resulting status */
short uscsi_timeout; /* Command Timeout */
caddr_t uscsi_cdb /* CDB to send to target */
caddr_t uscsi_bufaddr; /* i/o source/destination */
size_t uscsi_buflen; /* size of i/o to take place*/
size_t uscsi_resid; /* resid from i/o operation */
uchar_t uscsi_cdblen; /* # of valid CDB bytes */
uchar_t uscsi_rqlen; /* size of uscsi_rqbuf */
uchar_t uscsi_rqstatus; /* status of request sense cmd */
uchar_t uscsi_rqresid; /* resid of request sense cmd */
caddr_t uscsi_rqbuf; /* request sense buffer */

void *uscsi_reserved_5; /* Reserved for future use */

The fields of the uscsi_cmd structure have the following meanings:

uscsi_flags The I/O direction and other details of how to carry out
the SCSI command. Possible values are described
below.

uscsi_status The SCSI status byte returned by the device is returned
in this field.

uscsi_timeout Time in seconds to allow for completion of the
command.

uscsi(7I)

NAME

SYNOPSIS

DESCRIPTION

Device and Network Interfaces 677

uscsi_cdb A pointer to the SCSI CDB (command descriptor block)
to be transferred to the device in command phase.

uscsi_bufaddr The user buffer containing the data to be read from or
written to the device.

uscsi_buflen The length of uscsi_bufaddr.

uscsi_resid If a data transfer terminates without transferring the
entire requested amount, the remainder, or residue, is
returned in this field.

uscsi_cdblen The length of the SCSI CDB to be transferred to the
device in command phase.

uscsi_rqlen The length of uscsi_rqbuf, the application’s Request
Sense buffer.

uscsi_rqstatus The SCSI status byte returned for the Request Sense
command executed automatically by the driver in
response to a Check Condition status return.

uscsi_rqresid The residue, or untransferred data length, of the
Request Sense data transfer (the number of bytes, less
than or equal to uscsi_rqlen, which were not filled
with sense data).

uscsi_rqbuf Points to a buffer in application address space to which
the results of an automatic Request Sense command are
written.

uscsi_reserved_5 Reserved for future use.

The uscsi_flags field defines the following:

USCSI_WRITE /* send data to device */
USCSI_SILENT /* no error messages */
USCSI_DIAGNOSE /* fail if any error occurs */
USCSI_ISOLATE /* isolate from normal commands */
USCSI_READ /* get data from device */
USCSI_ASYNC /* set bus to asynchronous mode */
USCSI_SYNC /* return bus to sync mode if possible */
USCSI_RESET /* reset target */
USCSI_RESET_ALL /* reset all targets */
USCSI_RQENABLE /* enable request sense extensions */

USCSI_RENEGOT /* renegotiate wide/sync on next I/O */

The uscsi_flags bits have the following interpretation:

USCSI_WRITE Data will be written from the initiator to the target.

USCSI_SILENT The driver should not print any console error messages
or warnings regarding failures associated with this
SCSI command.

uscsi(7I)

678 man pages section 7: Device and Network Interfaces • Last Revised 24 May 2001

USCSI_DIAGNOSE The driver should not attempt any retries or other
recovery mechanisms if this SCSI command terminates
abnormally in any way.

USCSI_ISOLATE This SCSI command should not be executed with other
commands.

USCSI_READ Data will be read from the target to the initiator.

USCSI_ASYNC Set the SCSI bus to asynchronous mode before running
this command.

USCSI_SYNC Set the SCSI bus to synchronous mode before running
this command.

USCSI_RESET Send a SCSI Bus Device Reset Message to this target.

USCSI_RESET_ALL Cause a SCSI Bus Reset on the bus associated with this
target.

USCSI_RQENABLE Enable Request Sense extensions. If the user application
is prepared to receive sense data, this bit must be set,
the fields uscsi_rqbuf and uscsi_rqbuflen must
be non-zero, and the uscsi_rqbuf must point to
memory writable by the application.

USCSI_RENEGOT Tells USCSI to renegotiate wide mode and synchronous
transfer speed before the transmitted SCSI command is
executed. This flag in effects tells the target driver to
pass the FLAG_RENEGOTIATE_WIDE_SYNC flag in the
SCSI packet before passing the command to an adapter
driver for transport.

See the scsi_pkt(9S) flag
FLAG_RENEGOTIATE_WIDE_SYNC for more
information.

The ioctl supported by drivers providing the uscsi interface is:

USCSICMD The argument is a pointer to a uscsi_cmd structure. The SCSI
device addressed by that driver is selected, and given the SCSI
command addressed by uscsi_cdb. If this command requires a
data phase, the uscsi_buflen and uscsi_bufaddr fields must
be set appropriately; if data phase occurs, the uscsi_resid is
returned as the number of bytes not transferred. The status of the
command, as returned by the device, is returned in the
uscsi_status field. If the command terminates with Check
Condition status, and Request Sense is enabled, the sense data
itself is returned in uscsi_rqbuf. The uscsi_rqresid provides
the residue of the Request Sense data transfer.

EINVAL A parameter has an incorrect, or unsupported, value.

uscsi(7I)

IOCTLS

ERRORS

Device and Network Interfaces 679

EIO An error occurred during the execution of the command.

EPERM A process without root credentials tried to execute the USCSICMD
ioctl.

EFAULT The uscsi_cmd itself, the uscsi_cdb, the uscsi_buf, or the
uscsi_rqbuf point to an invalid address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhea

ioctl(2), attributes(5), sd(7D), st(7D)

ANSI Small Computer System Interface-2 (SCSI-2)

The uscsi command is very powerful, but somewhat dangerous, and so its use is
restricted to processes running as root, regardless of the file permissions on the device
node. The device driver code expects to own the device state, and uscsi commands
can change the state of the device and confuse the device driver. It is best to use
uscsi commands only with no side effects, and avoid commands such as Mode
Select, as they may cause damage to data stored on the drive or system panics. Also,
as the commands are not checked in any way by the device driver, any block may be
overwritten, and the block numbers are absolute block numbers on the drive
regardless of which slice number is used to send the command.

The uscsi interface is not recommended for very large data transfers (typically more
than 16MB). If the requested transfer size exceeds the maximum transfer size of the
DMA engine, it will not be broken up into multiple transfers and DMA errors may
result.

uscsi(7I)

ATTRIBUTES

SEE ALSO

WARNINGS

680 man pages section 7: Device and Network Interfaces • Last Revised 24 May 2001

usoc – universal serial optical controller for Fibre Channel arbitrated loop (SOC+)
device driver

The Fibre Channel adapter is an SBus card that implements two full duplex Fibre
Channel interfaces. Each interface can connect to a Fibre Channel arbitrated loop
(FC-AL). The usoc device driver is a nexus driver and implements portions of the FC-2
and FC-4 layers of FC-AL.

/kernel/drv/usoc
32–bit ELF kernel module

/kernel/drv/sparcv9/usoc
64–bit ELF kernel module

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Interface stability Unknown

Availability SUNWusoc

fctl(7D), sbus(4), fcp(7D), fp(7D), ssd(7D)

Writing Device Drivers

Fibre Channel Physical and Signaling Interface (FC-PH) ANSI X3.230: 1994

Fibre Channel Arbitrated Loop (FC-AL) ANSI X3.272-1996

Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA) NCITS TR-19:1998

Fabric Channel Loop Attachment (FC-FLA), NCITS TR-20:1998

The following messages are logged and may also appear on the system console. On
the console these messages are preceded by:

usoc%d:

where

usoc%d:

is the per-port instance number of the usoc controller.

Fibre Channel is ONLINE

The Fibre Channel loop is now online.

Fibre Channel Loop is ONLINE

usoc(7D)

NAME

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 681

The Fibre Channel loop is now online.

Fibre Channel Loop is OFFLINE

The Fibre Channel loop is now offline.

attach failed: device in slave-only slot.

Move soc+ card to another slot.

attach failed: alloc soft state.

Driver did not attach, devices will be inaccessible.

attach failed: bad soft state.

Driver did not attach, devices will be inaccessible.

attach failed: unable to map eeprom

Driver was unable to map device memory; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to map XRAM

Driver was unable to map device memory; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to map registers

Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to access status register

Driver was unable to map device registers; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to install interrupt handler

Driver was not able to add the interrupt routine to the kernel. Driver did not attach to
device, devices will be inaccessible.

attach failed: unable to access host adapter XRAM

Driver was unable to access device RAM; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: unable to write host adapter XRAM

Driver was unable to write device RAM; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

attach failed: read/write mismatch in XRAM

usoc(7D)

682 man pages section 7: Device and Network Interfaces • Last Revised 20 Jul 1999

Driver was unable to verify device RAM; check for bad hardware. Driver did not
attach to device, devices will be inaccessible.

usoc(7D)

Device and Network Interfaces 683

visual_io – Solaris VISUAL I/O control operations

#include <sys/visual_io.h>

The Solaris VISUAL environment defines a small set of ioctl()s for controlling
graphics and imaging devices.

One ioctl(), VIS_GETIDENTIFIER, is mandatory, and must be implemented in
device drivers for graphics devices using the Solaris VISUAL environment. The
VIS_GETIDENTIFIER ioctl() is defined to return a device identifier from the
device driver. This identifier must be a uniquely-defined string.

Two other sets of ioctl()ls exist. One set supports mouse tracking via hardware
cursor operations. These are optional, but if a graphics device has hardware cursor
support and implements these ioctl()s the mouse tracking performance will be
improved.

The other set supports the device being the system console device. These are optional,
but if a graphics device is to be used as the system console device, it must implement
these ioctl()s.

VIS_GETIDENTIFIER
This ioctl() returns an identifier string to uniquely identify a device used in the
Solaris VISUAL environment. This is a mandatory ioctl() and must return a
unique string. We suggest that the name be formed as
<companysymbol><devicetype>. For example, the cgsix driver returns SUNWcg6.

VIS_GETIDENTIFIER takes a vis_identifier structure as its parameter. This
structure has the form:

#define VIS_MAXNAMELEN 128
struct vis_identifier {

char name[VIS_MAXNAMELEN];

};

VIS_GETCURSOR
VIS_SETCURSOR

These ioctl()s fetch and set various cursor attributes, using the vis_cursor
structure.

struct vis_cursorpos {
short x; /* cursor x coordinate */
short y; /* cursor y coordinate */

};

struct vis_cursorcmap {
int version; /* version */
int reserved;
unsigned char *red; /* red color map elements */
unsigned char *green;/* green color map elements */
unsigned char *blue; /* blue color map elements */

};

visual_io(7I)

NAME

SYNOPSIS

DESCRIPTION

IOCTLS

684 man pages section 7: Device and Network Interfaces • Last Revised 6 Dec 1995

#define VIS_CURSOR_SETCURSOR 0x01 /* set cursor */
#define VIS_CURSOR_SETPOSITION 0x02 /* set cursor position */
#define VIS_CURSOR_SETHOTSPOT 0x04 /* set cursor hot spot */
#define VIS_CURSOR_SETCOLORMAP 0x08 /* set cursor colormap */
#define VIS_CURSOR_SETSHAPE 0x10 /* set cursor shape */
#define VIS_CURSOR_SETALL \

(VIS_CURSOR_SETCURSOR | VIS_CURSOR_SETPOSITION | \
VIS_CURSOR_SETHOTSPOT | VIS_CURSOR_SETCOLORMAP | \
VIS_CURSOR_SETSHAPE)

struct vis_cursor {
short set; /* what to set */
short enable; /* cursor on/off */
struct vis_cursorpos pos; /* cursor position */
struct vis_cursorpos hot; /* cursor hot spot */
struct vis_cursorcmap cmap; /* color map info */
struct vis_cursorpos size; /* cursor bitmap size */
char *image; /* cursor image bits */
char *mask; /* cursor mask bits */

};The vis_cursorcmap structure should contain pointers to two elements,
specifying the red, green, and blue values for foreground and background.

VIS_SETCURSORPOS
VIS_MOVECURSOR

These ioctl()s fetch and move the current cursor position, using the
vis_cursorpos structure.

The following set of ioctl()s are used by graphics drivers that are to be part of the
system console device. All of the ioctl()s must be implemented to be a console
device. In addition, if the system does not have a prom or the prom goes away during
boot, the special standalone ioctl()ls (listed below) must also be implemented.

The coordinate system for the console device places 0,0 at the upper left corner of the
device, with rows increasing toward the bottom of the device and columns increasing
from left to right.

VIS_PUTCMAP
VIS_GETCMAP

Set or get color map entries.

The argument is a pointer to a vis_cmap structure, which contains the following
fields:

struct vis_cmap {
int index;
int count;
uchar_t *red;
uchar_t *green;
uchar_t *blue;

}

visual_io(7I)

Console optional
ioctls

Device and Network Interfaces 685

index is the starting index in the color map where you want to start setting or
getting color map entries.

count is the number of color map entries to set or get. It also is the size of the red,
green, and blue color arrays.

*red, *green, and *blue are pointers to unsigned character arrays which contain
the color map info to set or where the color map info is placed on a get.

VIS_DEVINIT
Initializes the graphics driver as a console device.

The argument is a pointer to a vis_devinit structure. The graphics driver is
expected to allocate any local state information needed to be a console device and
fill in this structure.

struct vis_devinit {
int version;
screen_size_t width;
screen_size_t height;
screen_size_t linebytes;
unit_t size;
int depth;
short mode;

};

version is the version of this structure and should be set to VIS_CONS_REV.

width and height are the width and height of the device. If mode (see below) is
VIS_TEXT then width and height are the number of characters wide and high of
the device. If mode is VIS_PIXEL then width and height are the number of
pixels wide and high of the device.

linebytes is the number of bytes per line of the device.

size is the total size of the device in pixels.

depth is the pixel depth it bits of the device. Currently supported depths are: 1, 4,
8 and 24.

mode is the mode of the device. One of VIS_PIXEL (data to be displayed is in
bitmap format) or VIS_TEXT (data to be displayed is in ascii format).

VIS_DEVFINI
Tells the graphics driver that it is no longer the system console device. There is no
argument to this ioctl(). The driver is expected to free any locally kept state
information related to the console.

visual_io(7I)

686 man pages section 7: Device and Network Interfaces • Last Revised 6 Dec 1995

VIS_CONS_MODE_CHANGE
Tells the graphics driver that the framebuffer resolution has been reset by the user
program. The framebuffer is expected to reload any state information that it is
keeping.

The argument to this ioctl() is private to the user program and the device driver.
That is, the user program may wish to directly change the framebuffer mode and
then just use this ioctl() to notify the graphics driver or it may pass mode
change information along to the graphics driver and have it do the mode change.

VIS_CONSCURSOR
Describes the size and placement of the cursor on the screen. The graphics driver is
expected to display or hide the cursor at the indicated position.

The argument is a pointer to a vis_conscursor structure which contains the
following fields:

struct vis_conscursor {
int version;
screen_pos_t row;
screen_pos_t col;
screen_size_t width;
screen_size_t height
color_t fg_color;
color_t bg_color;
short action;

};

version is set to VIS_CURSOR_VERSION and should be check by the driver. If the
version does not match, the driver should reject this ioctl().

row and col are the first row and column (upper left corner of the cursor).

width and height are the width and height of the cursor.

If mode in the VIS_DEVINIT ioctl() was set to VIS_PIXEL, then col, row,
width and height are in pixels. If mode in the VIS_DEVINIT ioctl() was set to
VIS_TEXT, then col, row, width and height are in characters.

fg_color and bg_color are the foreground and background color map indexes
to use when the action (see below) is set to VIS_DISPLAY_CURSOR.

action is whether to display or hide the cursor. It is set to one of:
VIS_HIDE_CURSOR or VIS_DISPLAY_CURSOR.

VIS_CONSDISPLAY
Display data on the graphics device. The graphics driver is expected to display the
data contained in the vis_display structure at the specified position on the
console.

The vis_display structure contains the following fields:

visual_io(7I)

Device and Network Interfaces 687

struct vis_display {
int version;
screen_pos_t row;
screen_pos_t col;
screen_size_t width;
screen_size_t height;
uchar_t *data;
color_t fg_color;
color_t bg_color;

};

version is set to VIS_DISPLAY_VERSION and should be check by the driver. If
the version does not match, the driver should reject this ioctl().

row and col specify the starting row and column to display the data at. If mode in
the VIS_DEVINIT ioctl() was set to VIS_TEXT, row and col are defined to be a
character offset from the starting position of the console device. If mode in the
VIS_DEVINIT ioctl() was set to VIS_PIXEL, row and col are defined to be a
pixel offset from the starting position of the console device.

width and height specify the size of the data to be displayed. If mode in the
VIS_DEVINIT ioctl() was set to VIS_TEXT, width and height define the size
of data as a rectangle that is width characters wide and height characters high.
If mode in the VIS_DEVINIT ioctl() was set to VIS_PIXEL, width and height
define the size of data as a rectangle that is width pixels wide and height pixels
high.

*data is a pointer to the data to be displayed on the console device. If mode in the
VIS_DEVINIT ioctl() was set to VIS_TEXT, data is an array of ASCII
characters to be displayed on the console device. The driver must break these
characters up appropriately and display it in the retangle defined by row, col,
width, and height. If mode in the VIS_DEVINIT ioctl() was set to
VIS_PIXEL, data is an array of bitmap data to be displayed on the console device.
The driver must break this data up appropriately and display it in the retangle
defined by row, col, width, and height.

The fg_color and bg_color fields define the foreground and background color
map indexes to use when displaying the data. fb_color is used for "on" pixels
and bg_color is used for "off" pixels.

VIS_CONSCOPY
Copy data from one location on the device to another. The driver is expected to
copy the specified data. The source data should not be modified. Any modifications
to the source data should be as a side effect of the copy destination overlapping the
copy source.

The argument is a pointer to a vis_copy structure which contains the following
fields:

visual_io(7I)

688 man pages section 7: Device and Network Interfaces • Last Revised 6 Dec 1995

struct vis_copy {
int version
screen_pos_t s_row;
screen_pos_t s_col;
screen_pos_t e_row;
screen_pos_t e_col;
screen_pos_t t_row;
screen_pos_t t_col;
short direction;

};

version is set to VIS_COPY_VERSION and should be check by the driver. If the
version does not match, the driver should reject this ioctl().

s_row, s_col, e_row, and e_col define the source rectangle of the copy. s_row
and s_col are the upper left corner of the source rectangle. e_row and e_col are
the lower right corner of the source rectangle. If mode in the VIS_DEVINIT
ioctl() was set to VIS_TEXT, s_row, s_col, e_row, and e_col are defined to
be character offsets from the starting position of the console device. If mode in the
VIS_DEVINIT ioctl() was set to VIS_PIXEL, s_row, s_col, e_row, and
e_col are defined to be pixel offsets from the starting position of the console
device.

t_row and t_col define the upper left corner of the destination rectangle of the
copy. The entire rectangle is copied to this location. If mode in the VIS_DEVINIT
ioctl() was set to VIS_TEXT, t_row, and t_col are defined to be character
offsets from the starting position of the console device. If mode in the
VIS_DEVINIT ioctl() was set to VIS_PIXEL, t_row, and t_col are defined to
be pixel offsets from the starting position of the console device.

direction specifies which way to do the copy. If direction is
VIS_COPY_FORWARD the graphics driver should copy data from position (s_row,
s_col) in the source rectangle to position (t_row, t_col) in the destination
rectangle. If direction is VIS_COPY_BACKWARDS the graphics driver should copy
data from position (e_row, e_col) in the source rectangle to position
(t_row+(e_row-s_row), t_col+(e_col-s_col)), in the destination
rectangle.

The next set of console ioctl()s are used on systems which don’t have a prom.
Normally, standalones use the system prom to display characters on the system
console device. On systems without a prom, standalones use the kernel drivers to
display characters on the system console device. When implementing these ioctl()s,
you can not use any of the locking primitives or the copy routines from the DDI.
Furthermore other DDI services may or may not work and should be avoided.

VIS_STAND_CONSCURSOR
Should perform the same tasks as VIS_CONSCURSOR except that it must follow the
above restrictions. It takes in as an argument a vis_cursor structure.

visual_io(7I)

Device and Network Interfaces 689

VIS_STAND_CONSDISPLAY
Should perform the same tasks as VIS_CONSDISPLAY except that it must follow
the above restrictions. It takes in as an argument a vis_display structure.

VIS_STAND_CONSCOPY
Should perform the same tasks as VIS_CONSCOPY except that it must follow the
above restrictions. It takes in as an argument a vis_copy structure.

visual_io(7I)

690 man pages section 7: Device and Network Interfaces • Last Revised 6 Dec 1995

volfs – Volume Management file system

volfs is the Volume Management file system rooted at root_dir. The default location
for root-dir is /vol, but this can be overridden using the -d option of vold (see
vold(1M)). This file system is maintained by the Volume Management daemon, vold,
and will be considered to be /vol for this description.

Media can be accessed in a logical manner (no association with a particular piece of
hardware), or a physical manner (associated with a particular piece of hardware).

Logical names for media are referred to through /vol/dsk and /vol/rdsk.
/vol/dsk provides block access to random access devices. /vol/rdsk provides
character access to random access devices.

The /vol/rdsk and /vol/dsk directories are mirrors of one another. Any change to
one is reflected in the other immediately. The dev_t for a volume will be the same for
both the block and character device.

The default permissions for /vol are mode=0555, owner=root, group=sys. The
default permissions for /vol/dsk and /vol/rdsk are mode=01777, owner=root,
group=sys.

Physical references to media are obtained through /vol/dev. This hierarchy reflects
the structure of the /dev name space. The default permissions for all directories in the
/vol/dev hierarchy are mode=0555, owner=root, group=sys.

mkdir(2), rmdir(2), unlink(2) (rm), symlink(2) (ln -s), link(2) (ln), and
rename(2) (mv) are supported, subject to normal file and directory permissions.

The following system calls are not supported in the /vol filesystem: creat(2), only
when creating a file, and mknod(2).

If the media does not contain file systems that can be automatically mounted by
rmmount(1M), users can gain access to the media through the following /vol
locations:

Location State of Media

/vol/dev/diskette0/unnamed_floppy formatted unnamed floppy-block
device access

/vol/dev/rdiskette0/unnamed_floppy formatted unnamed floppy-raw device
access

/vol/dev/diskette0/unlabeled unlabeled floppy-block device access

/vol/dev/rdiskette0/unlabeled unlabeled floppy-raw device access

/vol/dev/dsk/c0t6/unnamed_cdrom CD-ROM-block device access

volfs(7FS)

NAME

DESCRIPTION

Device and Network Interfaces 691

Location State of Media

/vol/dev/rdsk/c0t6/unnamed_cdrom CD-ROM-raw device access

For more information on the location of CD-ROM and floppy media, see System
Administration Guide: Basic Administration or rmmount(1M).

Some media support the concept of a partition. If the label identifies partitions on the
media, the name of the media becomes a directory with partitions under it. Only valid
partitions are represented. Partitions cannot be moved out of a directory.

For example, if disk volume ’foo’ has three valid partitions, 0, 2, and 5, then:

/vol/dsk/foo/s0
/vol/dsk/foo/s2
/vol/dsk/foo/s5

for block access and

/vol/rdsk/foo/s0
/vol/rdsk/foo/s2
/vol/rdsk/foo/s5

for character access.

If a volume is relabeled to reflect different partitions, the name space changes to reflect
the new partition layout.

A format program can check to see if there are others with the volume open and not
allow the format to occur if it is. Volume Management, however, does not explicitly
prevent the rewriting of a label while others have the volume open. If a partition of a
volume is open, and the volume is relabeled to remove that partition, it will appear
exactly as if the volume were missing. A notify event will be generated and the user
may cancel the operation with volcancel(1), if desired.

volcancel(1), volcheck(1), volmissing(1) rmmount(1M), vold(1M),
rmmount.conf(4), vold.conf(4)

System Administration Guide: Basic Administration

volfs(7FS)

Partitions

SEE ALSO

692 man pages section 7: Device and Network Interfaces • Last Revised 8 Feb 1995

vuidmice, vuidm3p, vuidm4p, vuidm5p, vuid2ps2, vuid3ps2 – converts mouse
protocol to Firm Events

#include <sys/stream.h>

#include <sys/vuid_event.h>

int ioctl(fd, I_PUSH, vuidm3p);

int ioctl(fd, I_PUSH, vuidm4p);

int ioctl(fd, I_PUSH, vuidm5p);

int ioctl(fd, I_PUSH, vuid2ps2);

int ioctl(fd, I_PUSH, vuid3ps2);

The STREAMS modules vuidm3p, vuidm4p, vuidm5p, vuid2ps2, and vuid3ps2
convert mouse protocols to Firm events. The Firm event structure is described in
<sys/vuid_event.h>. Pushing a STREAMS module does not automatically enable
mouse protocol conversion to Firm events. The STREAMS module state is initially set
to raw or VUID_NATIVE mode which performs no message processing. The user will
need to change the state to VUID_FIRM_EVENT mode in order to initiate mouse
protocol conversion to Firm events. This can be accomplished by the following code:

int format;
format = VUID_FIRM_EVENT;

ioctl(fd, VUIDSFORMAT, &format);

The user can also query the state of the STREAMS module by using the VUIDGFORMAT
option.

int format;
int fd; /* file descriptor */
ioctl(fd, VUIDGFORMAT, &format);
if (format == VUID_NATIVE);

/* The state of the module is in raw mode.
* Message processing is not enabled.
*/

if (format == VUID_FIRM_EVENT);
/* Message processing is enabled.
* Mouse protocol conversion to Firm events

* are performed.

The remainder of this section describes the processing of STREAMS messages on the
read- and write-side.

M_DATA The messages coming in are queued and converted to Firm events.

M_FLUSH The read queue of the module is flushed of all its data messages
and all data in the record being accumulated are also flushed. The
message is passed upstream.

vuidmice(7M)

NAME

SYNOPSIS

DESCRIPTION

Read Side
Behavior

Device and Network Interfaces 693

M_IOCTL Messages sent downstream as a result of an ioctl(2) system call.
There are two valid ioctl options processed by the vuidmice
modules VUIDGFORMAT and VUIDSFORMAT.

VUIDGFORMAT This option returns the current state of the
STREAMS module. The state of the vuidmice
STREAMS module may either be
VUID_NATIVE (no message processing) or
VUID_FIRM_EVENT (convert to Firm events).

VUIDSFORMAT This option sets the state of the STREAMS
module to VUID_FIRM_EVENT. If the state of
the STREAMS module is already in
VUID_FIRM_EVENT then this option is
non-operational. It is not possible to set the
state back to VUID_NATIVE once the state
becomes VUID_FIRM_EVENT. To disable
message processing, pop the STREAMS
module out by calling ioctl(fd, 1I_POP,
vuid*).

M_FLUSH The write queue of the module is flushed of all its data messages
and the message is passed downstream.

Module Protocol Type Device

vuidm3p 3-Byte Protocol Microsoft 2 Button Serial
Mouse

/dev/tty*

vuidm4p 4-Byte Protocol Logitech 3 Button
Mouseman

/dev/tty*

vuidm5p Logitech 3 Button Bus Mouse Microsoft
Bus Mouse

/dev/logi/ dev/msm

vuid2ps2 PS/2 Protocol 2 Button PS/2 Compatible
Mouse

/dev/kdmouse

vuid3ps2 PS/2 Protocol 3 Button PS/2 Compatible
Mouse

/dev/kdmouse

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

attributes(5)

vuidmice(7M)

Write Side
Behavior

Mouse
Configurations

ATTRIBUTES

SEE ALSO

694 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

STREAMS Programming Guide

vuidmice(7M)

Device and Network Interfaces 695

wrsm – WCI Remote Shared Memory (WRSM) device driver

wci@<slot>,0:wrsm

wrsm@<instance>:ctrl

wrsm@ffff,0:admin

The wrsm driver is a nexus driver that manages WCI devices and wrsm controllers.

A WCI device on a WCI Interface Board (WIB) sits directly on the host backplane and
provides clustering communication between Solaris instances that are memory
transaction-based. The WCI replaces a schizo or CPU in Sun Fire servers and acts as a
memory controller on the system backplane. The wrsm driver programs registers on
the WCI to accept network read/write requests on certain exported cluster addresses
from incoming links. The registers translate the requests into local read/write bus
transactions that use local physical memory ranges that you specify. The driver
programs additional WCI registers to forward local system backplane read/write
transactions within a particular physical address range to a remote WCI. A WCI
device in the format wci@slot,0:wrsm appears in the device tree.

A wrsm controller is a pseudo device that manages a set of WCIs. A device entry in the
format wrsm@<instance>:ctrl appears in the device tree. A wrsm controller
presents a Sun proprietary protocol to clients, enabling them to set up the network and
to communicate through the WCIs. To configure a wrsm controller, you download a
configuration into the driver using the wrsmconf(1M) command or through other
external WCI network management software. Status information on each WCI and
wrsm controller is available by using the wrsmstat(1M) command.

The wrsm admin device is used internally by the driver to manage the I/O addresses
associated with remote memory. A device entry in the format wrsm@ffff,0:admin
appears in the device tree

/platform/sun4u/kernel/drv/sparcv9/wrsm
ELF kernel module

wrsmconf(1M), wrsmstat(1M)

Writing Device Drivers

The messages described below may appear on the system console as well as being
logged. These messages generally include the string wrsm%d, where %d is the instance
number of the wrsm device. The message context indicates whether the device is a
WCI or a wrsm controller. Some messages include the string wci %a, where %a is the
bus slot of the WCI device.

wrsm%d: unable to map register set %d

Driver was unable to map device registers; check for bad hardware. Driver did not
attach device, device will be inaccessible.

wrsm_detach:cf_remove_controller failed for wrsm%d

wrsm(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

696 man pages section 7: Device and Network Interfaces • Last Revised 17 Jan 2001

Driver did not detach device; device is inaccessible.

wrsm_detach:cf_remove_wci failed for wrsm%d

Driver did not detach device. This WCI is the last WCI in wrsm controller.

register_controller of wrsm%d failed with error %d

The wrsm controller could not register with the Sun proprietary protocol framework.
Communication is not possible through this controller.

wrsm%d, wci %a, SRAM CE ERROR, at address: 0x%x, syndrome: 0x%x

There was a correctable error in the WCI’s SRAM. This indicates that the memory on
this WCI module should be replaced.

wrsm%d, wci %a, SRAM UE ERROR, at address: 0x%x, syndrome: 0x%x

There was an uncorrectable error in the WCI’s SRAM. This indicates that the memory
on this WCI module should be replaced. In addition, attempts to access local memory
from remote nodes may fail.

wrsm(7D)

Device and Network Interfaces 697

wrsmd – WCI Remote Shared Memory (WRSM) DLPI driver

wrsmd

The wrsmd device driver is a pseudo driver that presents a type II DLPI interface. The
driver uses a Sun proprietary interface over the wrsm driver to provide IP-based
communication over the WCI network.

Before using DLPI over a WCI network, you must first configure the wrsm controller
on that network. See wrsmconf(1M) for more information. Each wrsmd device is
associated with a wrsm controller with a matching id.

/platform/sun4u/kernel/drv/sparcv9/wrsmd
ELF kernel module

wrsmconf(1M), wrsm(7D)

Writing Device Drivers

wrsmd(7D)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

698 man pages section 7: Device and Network Interfaces • Last Revised 17 Jan 2001

wscons – workstation console

#include <sys/strredir.h>

ioctl(fd, SRIOCSREDIR, target);

ioctl(fd, SRIOCISREDIR, target);

The wscons workstation console consists of a workstation keyboard and frame buffer
that act together to emulate an ASCII terminal. It includes a redirection facility that
allows I/O issued to the workstation console to be diverted to a STREAMS device,
enabling window systems to redirect output that would otherwise appear directly on
the frame buffer in corrupted form.

The wscons redirection facility maintains a list of devices that are designated as
redirection targets through the SRIOCSREDIR ioctl described below. Only the current
entry is active; when the active entry is closed, the most recent remaining entry
becomes active. The active entry acts as a proxy for the device being redirected and
handles all read(2), write(2), ioctl(2), and poll(2) calls issued against the
redirectee.

The ioctls described below control the redirection facility. In both cases, fd is a
descriptor for the device being redirected (or workstation console) and target is a
descriptor for a STREAMS device.

SRIOCSREDIR Designates target as the source and destination of I/O
ostensibly directed to the device denoted by fd.

SRIOCISREDIR Returns 1 if target names the device currently acting as
proxy for the device denoted by fd, and 0 if it is not.

On SPARC systems, the PROM monitor emulates an ANSI X3.64 terminal.

On IA systems, the Solaris console subsystem provides ANSI X3.64 emulation.

Note: The VT100 adheres the ANSI X3.64 standard. However, because the VT100
features nonstandard extensions to ANSI X3.64, it is incompatible with Sun terminal
emulators.

The SPARC console displays 34 lines of 80 ASCII characters per line. The IA console
displays 25 lines of 80 ASCII characters per line. Devices with smaller text capacities
may display less. On SPARC systems, the screen-#rows screen-#columns
should be set to 34 or 80 respectively, or text capacities will vary from those described
above. On SPARC systems, the screen-#rows and screen-#columns fields are
stored in NVRAM/EEPROM. See eeprom(1M) for more information. Both SPARC
and IA consoles offer scrolling, (x, y) cursor addressing ability, and a number of other
control functions.

The console cursor marks the current line and character position on the screen. ASCII
characters between 0x20 (space) and 0x7E (tilde) inclusive are printing characters.
When a print character is written to the console (and is not part of an escape

wscons(7D)

NAME

SYNOPSIS

DESCRIPTION

Redirection

ANSI Standard
Terminal

Emulation

Device and Network Interfaces 699

sequence), it is displayed at the current cursor position and the cursor moves one
position to the right on the current line.

On SPARC based systems, later PROM revisions have the full 8-bit ISO Latin-1 (ISO
8859-1) character set. Earlier PROM revisions display characters in the range 0xA0
through 0xFE as spaces.

When the cursor is at the right edge of the screen, it moves to the first character
position on the next line. When the cursor is at the screen’s right-bottom edge, the
line-feed function is performed (see CTRL-J below). The line-feed function scrolls the
screen up by one or more lines before moving the cursor to the first character position
on the next line.

The wscons console defines a number of control sequences that may occur during
input. When a control sequence is written to the console, it affects one of the control
functions described below. Control sequences are not displayed on screen.

A number of control sequences (or control character functions) are of the form:

CTRL-x

where x represents a singe character., such as CNTRL-J for a line feed.

Other ANSI control sequences are of the form:

ESC [params char

Note – Spaces are included only for readability; these characters must occur in the
given sequence without the intervening spaces.

ESC ASCII escape character (ESC, CTRL-[, 0x1B).

[Left square bracket ‘[’ (0x5B).

params Sequence of zero or more decimal numbers made up of
digits between 0 and 9, separated by semicolons.
Parameters are represented by n in the syntax
descriptions for escape sequence functions.

char Function character, which is different for each control
sequence and it represented by x in the syntax
descriptions for control character functions.

In the following examples of syntactically valid escape sequences, ESC represent the
single ASCII character, Escape:

ESC[m Select graphic rendition with default parameter

ESC[7m Select graphic rendition with reverse image

ESC[33;54H Set cursor position

wscons(7D)

Control Sequence
Syntax

700 man pages section 7: Device and Network Interfaces • Last Revised 22 Sep 2000

ESC[123;456;0;;3;B Move cursor down

Syntactically valid control characters and ANSI escape sequences that are not
currently interpreted by the console are ignored.

Each control function requires a specified number of parameters. If fewer parameters
are supplied, the remaining parameters (which certain exceptions that are noted
below) default to 1. For example, if more than the required number of parameters are
supplied, only the last n is used, where n is the number required by that particular
command character.

Parameters which are omitted or set to 0 are reset to the default value of 1 (with
certain exceptions). For example, the command character M requires one parameter.
ESC[;M, ESC[0M, ESC[M and ESC[23;15;32;1M are all equivalent to ESC[1M and
provide a parameter value of 1. Note that ESC[;5M (interpreted as ‘ESC[5M’) is not
equivalent to ESC[5;M (interpreted as ‘ESC[5;1M’) which is ultimately interpreted as
‘ESC[1M’).

The following paragraphs specify the ANSI control functions implemented by the
console. Each description provides:

� Control sequence syntax

� Hexadecimal equivalent of control characters where applicable

� Control function name and ANSI or Sun abbreviation (if any).

� Description of parameters required, if any

� Description of the control function

� Initial setting of the mode for functions that set a mode. To restore the initial
settings, use the SUNRESET escape sequence.

The wscons control character functions are:

Bell (BEL),
CTRL-G
0x7

Used for consoles that are not equipped with an audible bell. Current Sun
workstation models also flash the screen if the keyboard is not the console input
device.

Backspace (BS),
CTRL-H,
0x8

The cursor moves one position to the left on the current line. If it is already at the
left edge of the screen, no change takes place.

Tab (TAB),
CTRL-I,
0x9

wscons(7D)

ANSI Control
Functions

Control Character
Functions

Device and Network Interfaces 701

The cursor moves right on the current line to the next tab stop. The tab stops are
fixed at every multiple of eight columns. If the cursor is already at the right edge of
the screen, nothing change takes place. Otherwise, the cursor moves right a
minimum of one and a maximum of eight character positions.

Line-feed (LF),
CTRL-J,
0xA

The cursor, while remaining at the same character position on the line, moves down
one line. If the cursor is at the bottom line, the screen either scrolls up or wraps
around depending on the setting of an internal variable n (initially 1) . The internal
variable can be changed using the ESC[r control sequence. If n is greater than zero,
the entire screen (including the cursor) is scrolled up by n lines before executing the
line-feed. The top n lines scroll off the screen and are lost. New blank lines n scroll
onto the bottom of the screen. After scrolling, move the cursor down one line to
execute the line feed.

If n is zero, wrap-around mode is entered. The ESC [1 r exits back to scroll
mode. If a line-feed occurs on the bottom line in wrap mode, the cursor goes to the
same character position in the top line of the screen. During line-feeds, the line that
the cursor moves to is cleared and no scrolling occurs. Wrap-around mode is not
implemented in the window system.

On SPARC based systems, the speed at which the screen scrolls is dependent on the
amount of data waiting to be printed. Whenever a scroll occurs and the console is
in normal scroll mode (ESC [1 r), it scans the rest of the data awaiting printing to
see how many line-feeds occur in it. This scan stops when the console finds a
control character from the set {VT, FF, SO, SI, DLE, DC1, DC2, DC3, DC4, NAK, SYN,
ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} . At that point, the screen is scrolled by n
lines (n ≥ 1) and processing continues. The scanned text is processed normally and
fills in the newly created lines. As long as escape codes or other control characters
are not intermixed with the text, this results in faster scrolling

Reverse Line-feed,
CTRL-K,
0xB

While remaining at the same character position on the line, the cursor moves up
one line. If the cursor is already at the top line, no change takes place.

Form-feed (FF)
CTRL-L,
0xC

The cursor is positioned to the home position (upper-left corner) and the entire
screen is cleared.

Return (CR),
CTRL-M,
0xD

The cursor moves to the leftmost character position on the current line.

wscons(7D)

702 man pages section 7: Device and Network Interfaces • Last Revised 22 Sep 2000

The wscons escape sequence functions are:

Escape (ESC),
CTRL-[,
0x1B

The escape character. Escape initiates a multi-character control sequence.

Insert Character (ICH)
ESC[#@

Takes one parameter, n (default 1). Inserts n spaces at the current cursor position.
The current line, starting at the current cursor position inclusive, is shifted to the
right by n character positions to make room for the spaces. The rightmost n
character positions shift off the line and are lost. The position of the cursor is
unchanged.

Cursor Up (CUU),
ESC[#A

Takes one parameter, n (default 1). Moves the cursor up n lines. If the cursor is
fewer than n lines from the top of the screen, moves the cursor to the topmost line
on the screen. The character position of the cursor on the line is unchanged.

Cursor Down (CUD),
ESC[#B

Takes one parameter, (default 1). Moves the cursor down n lines. If the cursor is
fewer than n lines from the bottom of the screen, move the cursor to the last line on
the screen. The character position of the cursor on the line is unchanged.

Cursor Forward (CUF),
ESC[#C

Takes one parameter, n (default 1). Moves the cursor to the right by n character
positions on the current line. If the cursor is fewer than n positions from the right
edge of the screen, moves the cursor to the rightmost position on the current line.

Cursor Backward (CUB),
ESC[#D

Takes one parameter, n (default 1). Moves the cursor to the left by n character
positions on the current line. If the cursor is fewer than n positions from the left
edge of the screen, moves the cursor to the leftmost position on the current line.

Cursor Next Line (CNL),
ESC[#E

Takes one parameter, n (default 1). Positions the cursor at the leftmost character
position on the n-th line below the current line. If the current line is less than n lines
from the bottom of the screen, positions the cursor at the leftmost character position
on the bottom line.

Horizontal and Vertical Position (HVP),
ESC[#1;#2f

or

wscons(7D)

Escape Sequence
Functions

Device and Network Interfaces 703

Cursor Position (CUP),
ESC[#1;#2H

Takes two parameters, n1 and n2 (default 1, 1). Moves the cursor to the n2-th
character position on the n1-th line. Character positions are numbered from 1 at the
left edge of the screen; line positions are numbered from 1 at the top of the screen.
Hence, if both parameters are omitted, the default action moves the cursor to the
home position (upper left corner). If only one parameter is supplied, the cursor
moves to column 1 of the specified line.

Erase in Display (ED),
ESC[J

Takes no parameters. Erases from the current cursor position inclusive to the end of
the screen, that is, to the end of the current line and all lines below the current line.
The cursor position is unchanged.

Erase in Line (EL),
ESC[K

Takes no parameters. Erases from the current cursor position inclusive to the end of
the current line. The cursor position is unchanged.

Insert Line (IL),
ESC[#L

Takes one parameter, n (default 1). Makes room for n new lines starting at the
current line by scrolling down by n lines the portion of the screen from the current
line inclusive to the bottom. The n new lines at the cursor are filled with spaces; the
bottom n lines shift off the bottom of the screen and are lost. The position of the
cursor on the screen is unchanged.

Delete Line (DL),
ESC[#M

Takes one parameter, n (default 1). Deletes n lines beginning with the current line.
The portion of the screen from the current line inclusive to the bottom is scrolled
upward by n lines. The n new lines scrolling onto the bottom of the screen are filled
with spaces; the n old lines beginning at the cursor line are deleted. The position of
the cursor on the screen is unchanged.

Delete Character (DCH),
ESC[#P

Takes one parameter, n (default 1). Deletes n characters starting with the current
cursor position. Shifts the tail of the current line to the left by n character positions
from the current cursor position, inclusive, to the end of the line. Blanks are shifted
into the rightmost n character positions. The position of the cursor on the screen is
unchanged.

Select Graphic Rendition (SGR),
ESC[#m

Takes one parameter, n (default 0). Note that unlike most escape sequences, the
parameter defaults to zero if omitted. Invokes the graphic rendition specified by the
parameter. All following printing characters in the data stream are rendered

wscons(7D)

704 man pages section 7: Device and Network Interfaces • Last Revised 22 Sep 2000

according to the parameter until the next occurrence of this escape sequence in the
data stream. Currently only two graphic renditions are defined:

0 Normal rendition

7 Negative (reverse) image

Negative image displays characters as white-on-black if the screen mode is currently
black-on white, and vice-versa. Any non-zero value of n is currently equivalent to 7
and selects the negative image rendition.

On IA systems only, the following ISO 6429-1983 graphic rendition values support
color text:

30 black foreground

31 red foreground

32 green foreground

33 brown foreground

34 blue foreground

35 magenta foreground

36 cyan foreground

37 white foreground

40 black background

41 red background

42 green background

43 brown background

44 blue background

45 magenta background

46 cyan background

47 white background

Black On White (SUNBOW),
ESC[p

Takes no parameters. Sets the screen mode to black-on-white. If the screen mode is
already black-on-white, has no effect. In this mode spaces display as solid white,
other characters as black-on-white. The cursor is a solid black block. Characters
displayed in negative image rendition (see ‘Select Graphic Rendition’ above) is
white-on-black. This comprises the initial setting of the screen mode on reset.

White On Black (SUNWOB),
ESC[q

wscons(7D)

Device and Network Interfaces 705

Takes no parameters. Sets the screen mode to white-on-black. If the screen mode is
already white-on-black, has no effect. In this mode spaces display as solid black,
other characters as white-on-black. The cursor is a solid white block. Characters
displayed in negative image rendition (see ‘Select Graphic Rendition’ above) is
black-on-white in this mode. The initial setting of the screen mode on reset is black
on white.

ESC[#r
Set Scrolling (SUNSCRL)

Takes one parameter, n (default 0). Sets to n an internal register which determines
how many lines the screen scrolls up when a line-feed function is performed with
the cursor on the bottom line. A parameter of 2 or 3 introduces a small amount of
jump when a scroll occurs. A parameter of 34 clears the screen rather than scrolling.
The initial setting is 1 on reset.

A parameter of zero initiates wrap mode instead of scrolling. If a linefeed occurs on
the bottom line during wrap mode, the cursor goes to the same character position
in the top line of the screen. When a line feed occurs, the line that the cursor moves
to is cleared and no scrolling occurs. ESC [1 r exits back to scroll mode.

For more information, see the description of the Line-feed (CTRL-J) control
function above.

ESC[s
Reset terminal emulator (SUNRESET)

Takes no parameters. Resets all modes to default, restores current font from PROM.
Screen and cursor position are unchanged.

When there are no errors, the redirection ioctls have return values as described above.
Otherwise, they return −1 and set errno to indicate the error. If the target stream is in
an error state, errno is set accordingly.

If the target stream is in an error state, errno is set accordingly.

EBADF target does not denote an open file.

ENOSTR target does not denote a STREAMS device.

/dev/wscons Workstation console, accessedvia the redirection facility

/dev/systty Devices that must be opened for the SRIOCSREDIR
and SRIOCISREDIR ioctls.

/dev/syscon Access system console

/dev/console Access system console

See attributes(5) for descriptions of the following attributes:

wscons(7D)

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

706 man pages section 7: Device and Network Interfaces • Last Revised 22 Sep 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

cvcd(1M), eeprom(1M), ioctl(2), poll(2), read(2), write(2), cvc(7D),
console(7D)

The redirection ioctls block while there is I/O outstanding on the device instance
being redirected. If you try to redirect the workstation console while there is a
outstanding read, the workstation console will hang until the read completes.

The cvc facility supersedes the SunOS wscons facility and should not be used with
wscons.

wscons(7D)

SEE ALSO

WARNINGS

NOTES

Device and Network Interfaces 707

xmemfs – extended memory file system

#include <sys/mount.h>

mount(special_file, directory, MS_DATA, "xmemfs", dataptr, datalen);

The xmemfs file system is an extended memory file system that provides an efficient
mechanism for managing and accessing physical memory that exceeds 4 Gbytes in
size. Currently, the xmemfs file system is supported on IA32 architecture systems only.

The Physical Address Extension (PAE) is the xmemfs internal processor feature that
enables a 36–bit physical memory address that supports up to 64 Gbytes of physical
memory. Once mounted, the xmemfs file system provides standard file operations and
semantics on directories and regular files only. Because xmemfs does not allow
execute permissions to be set on regular files, execution of object files is prevented.

With xmemfs, the special_file argument, (typically the device on which file
systems reside), is ignored and serves only as a placeholder. File data and metadata in
xmemfs are always memory-resident. The dataptr argument must (at a minimum)
contain the required size specific option. See mount_xmemfs(1M) for more
information.

Because xmemfs is a memory-based file system, files and directories that are created
are not persistent across reboots or unmounts.

To mount the xmemfs file system, do the following: mount -F xmemfs -osize=4g
xmem directory

You can also mount a xmemfs file system on /xmem at multi-user startup time prior to
physical memory becoming fragmented. To do this, add the following line to your
/etc/vfstab file: xmem - /xmem xmemfs - yes largebsize,size=4g

The xmemfs file system is expressly designed for performance-driven applications (for
example, RDBMS) that require large amounts of physical memory. The xmemfs file
system provides file system semantics to manage and access extended memory spaces
that exceed 4 Gbytes. From an application perspective, extended memory under the
control of a mounted xmemfs file system is viewed as a single, large memory pool that
can be partitioned as needed through file creation. You can obtain windows into each
memory partition by using mmap(2).

Memory controlled by xmemfs can be partitioned by creating files of the required size
in the file system. The xmemfs file system allocates sufficient block-sized memory
pages for a file based on the file’s size. Files can be created using any standard file
utility, including mkfile(1M) and dd(1M). The xmemfs file system optimizes the
creation of large files that initially contain all zeroes by allocating memory pages for
the file ’hole’ that is created by writing beyond the end of file.

If sufficient xmemfs extended memory is available, an application can quickly create
an 8 Gbyte file in the xmemfs file system by using llseek(2) to offset 8GB-1 and then
write(2) a one-byte buffer containing zero. With xmemfs, you can share and protect

xmemfs(7FS)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

708 man pages section 7: Device and Network Interfaces • Last Revised 25 May 1999

partitioned memory by setting appropriate file permissions. To avoid wasting memory
resources, (especially with the -largebsize option specified), newly created
option-specified files should be a multiple of the block size of the xmemfs file system.
Creation of many small files is strongly discouraged. See statvfs(2) for information
on determining file system block sizes.

The xmemfs file system should only be used with performance-driven applications
that require quick access to large amounts of physical memory. Using xmemfs for
other applications may result in non-optimal use of system resources and possible
system performance degradation.

To maximize xmemfs ability to access a file’s extended memory partition, use mmap(2).
The initial mmap(2) call enables the system to assign a map size containing as much
memory as an application may actively access at any time. The map size is constrained
by the application’s virtual address space, (usually a maximum of 3 Gbytes on
machines with more than 4 Gbytes of physical memory). To access extended memory
that is not contained in the existing mapping, use mmap(2) with the -MAP_FIXED flag
to remap a window within the address range returned by the initial mmap call.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture i386

Interface Stability Evolving

df(1M), mount(1M), mount_xmemfs(1M), mmap(2), statvfs(2), mount(2),
umount(2), vfstab(4)

If the xmemfs file system runs out of space, the following message is displayed in the
console indicating that there is insufficient memory to satisfy a write(2) request:

directory: File system full, no memory

Files and directories on an xmemfs file system are not preserved across reboots or
unmounts.

xmemfs(7FS)

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

Device and Network Interfaces 709

zero – source of zeroes

A zero special file is a source of zeroed unnamed memory.

Reads from a zero special file always return a buffer full of zeroes. The file is of infinite
length.

Writes to a zero special file are always successful, but the data written is ignored.

Mapping a zero special file creates a zero-initialized unnamed memory object of a
length equal to the length of the mapping and rounded up to the nearest page size as
returned by sysconf. Multiple processes can share such a zero special file object
provided a common ancestor mapped the object MAP_SHARED.

/dev/zero

fork(2), mmap(2), sysconf(3C)

zero(7D)

NAME

DESCRIPTION

FILES

SEE ALSO

710 man pages section 7: Device and Network Interfaces • Last Revised 3 Jul 1990

zs – Zilog 8530 SCC serial communications driver

#include <fcntl.h>

#include <sys/termios.h>

open("/dev/term/n", mode);

open("/dev/ttyn", mode);

open("/dev/cua/n", mode);

The Zilog 8530 provides two serial input/output channels capable of supporting a
variety of communication protocols. A typical system uses two or more of these
devices to implement essential functions, including RS-423 ports (which also support
most RS-232 equipment), and the console keyboard and mouse devices.

The zs module is a loadable STREAMS driver that provides basic support for the
Zilog 8530 hardware and basic asynchronous communication support. The driver
supports the termio(7I) device control functions specified by flags in the c_cflag
word of the termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK
flags in the c_iflag word. All other termio(7I) functions must be performed by
STREAMS modules pushed atop the driver. When a device is opened, the
ldterm(7M) and ttcompat(7M) STREAMS modules are automatically pushed on top
of the stream, providing the standard termio(7I) interface.

The character-special devices /dev/term/a and /dev/term/b are used to access the
two serial ports on the CPU board.

Valid name space entries are /dev/cua/[a-z], /dev/term/[a-z] and /dev/tty[a-z].
The number of entries used in a name space are machine dependent.

The /dev/tty[n] device names only exist if the SunOS 4.x Binary Compatibility Package
is installed. The /dev/tty[n] device names are created by the ucblinks command,
which is available only with the SunOS 4.x Binary Compatibility Package.

To allow a single tty line to be connected to a modem and used for both incoming and
outgoing calls, a special feature is available that is controlled by the minor device
number. By accessing character-special devices with names of the form
/dev/cua/[n], it is possible to open a port without the Carrier Detect signal
being asserted, either through hardware or an equivalent software mechanism. These
devices are commonly known as dial-out lines.

Once a /dev/cua/[n] line is opened, the corresponding tty line cannot be opened
until the /dev/cua/n line is closed. A blocking open will wait until the
/dev/cua/[n] line is closed (which will drop Data Terminal Ready, and Carrier
Detect) and carrier is detected again. A non-blocking open will return an error. If the
tty line has been opened successfully (usually only when carrier is recognized on the
modem) , the corresponding /dev/cua/[n] line cannot be opened. This allows a
modem to be attached to /dev/term/[n] (renamed from /dev/tty[n]) and used for

zs(7D)

NAME

SYNOPSIS

DESCRIPTION

Device and Network Interfaces 711

dial-in (by enabling the line for login in /etc/inittab) and also used for dial-out
(by tip(1) or uucp(1C)) as /dev/cua/[n] when no one is logged in on the line.

Note – This module is affected by the setting of specific eeprom variables. For
information on parameters that are persistent across reboots, see the eeprom(1M) man
page.

The zs module supports the standard set of termio ioctl() calls.

If the CRTSCTS flag in the c_cflag field is set, output will be generated only if CTS is
high; if CTS is low, output will be frozen. If the CRTSCTS flag is clear, the state of CTS
has no effect.

If the CRTSXOFF flag in the c_cflag field is set, input will be received only if RTS is
high; if RTS is low, input will be frozen. If the CRTSXOFF flag is clear, the state of RTS
has no effect.

The termios CRTSCTS (respectively CRTSXOFF) flag and termiox CTSXON
(respectively RTSXOFF) can be used interchangeably.

Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls.

The state of the DCD, CTS, RTS, and DTR interface signals may be queried through
the use of the TIOCM_CAR, TIOCM_CTS, TIOCM_RTS, and TIOCM_DTR arguments to
the TIOCMGET ioctl command, respectively. Due to hardware limitations, only the
RTS and DTR signals may be set through their respective arguments to the TIOCMSET,
TIOCMBIS, and TIOCMBIC ioctl commands.

The input and output line speeds may be set to any of the speeds supported by
termio. The input and output line speeds cannot be set independently; for example,
when you set the the output speed, the input speed is automatically set to the same
speed.

When the driver is used to service the serial console port, it supports a BREAK
condition that allows the system to enter the debugger or the monitor. The BREAK
condition is generated by hardware and it is usually enabled by default. A BREAK
condition originating from erroneous electrical signals cannot be distinguished from
one deliberately sent by remote DCE. The Alternate Break sequence can be used to
remedy this.

Due to a risk of incorrect sequence interpretation, binary protocols such as PPP, SLIP,
and others should not be run over the serial console port when Alternate Break
sequence is in effect. By default, the Alternate Break sequence is three characters:
carriage return, tilde and control-B (CR ~ CTRL-B), but may be changed by the driver.
For more information on breaking (entering the debugger or monitor, see kbd(1) and
kb(7M).

An open will fail under the following conditions:

ENXIO The unit being opened does not exist.

zs(7D)

IOCTLS

ERRORS

712 man pages section 7: Device and Network Interfaces • Last Revised 11 Jun 2001

EBUSY The dial-out device is being opened and the dial-in device is
already open, or the dial-in device is being opened with a no-delay
open and the dial-out device is already open.

EBUSY The port is in use by another serial protocol.

EBUSY The unit has been marked as exclusive-use by another process
with a TIOCEXCL ioctl() call.

EINTR The open was interrupted by the delivery of a signal.

/dev/cua/[a-z] dial-out tty lines

/dev/term/[a-z] dial-in tty lines

/dev/tty[a-z] binary compatibility package device names

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

eeprom(1M), kadb(1M), tip(1), ucblinks(1B), cu(1C), uucp(1C), ports(1M),
ioctl(2), open(2), attributes(5), zsh(7D), termio(7I)ldterm(7M),
ttcompat(7M), kb(7M), ldterm(7M)

zsn : silo overflow.
The Zilog 8530 character input silo overflowed before it could be serviced.

zsn : ring buffer overflow.
The driver’s character input ring buffer overflowed before it could be serviced.

zs(7D)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

Device and Network Interfaces 713

zsh – On-board serial HDLC/SDLC interface

#include <fcntl.h>

open(/dev/zshn, mode);

open(/dev/zsh, mode);

The zsh module is a loadable STREAMS driver that implements the sending and
receiving of data packets as HDLC frames over synchronous serial lines. The module is
not a standalone driver, but instead depends upon the zs module for the hardware
support required by all on-board serial devices. When loaded this module acts as an
extension to the zs driver, providing access to an HDLC interface through
character-special devices.

The zshn devices provide what is known as a data path which supports the transfer
of data via read(2) and write(2) system calls, as well as ioctl(2) calls. Data path
opens are exclusive in order to protect against injection or diversion of data by another
process.

The zsh device provides a separate control path for use by programs that need to
configure or monitor a connection independent of any exclusive access restrictions
imposed by data path opens. Up to three control paths may be active on a particular
serial channel at any one time. Control path accesses are restricted to ioctl(2) calls
only; no data transfer is possible.

When used in synchronous modes, the Z8530 SCC supports several options for
clock sourcing and data encoding. Both the transmit and receive clock sources
can be set to be the external Transmit Clock (TRxC), external Receive Clock (RTxC), the
internal Baud Rate Generator (BRG), or the output of the SCC’s Digital Phase-Lock Loop
(DPLL).

The Baud Rate Generator is a programmable divisor that derives a clock frequency
from the PCLK input signal to the SCC. A programmed baud rate is translated into a
16-bit time constant that is stored in the SCC. When using the BRG as a clock source
the driver may answer a query of its current speed with a value different from the one
specified. This is because baud rates translate into time constants in discrete steps, and
reverse translation shows the change. If an exact baud rate is required that cannot be
obtained with the BRG, an external clock source must be selected.

Use of the DPLL option requires the selection of NRZI data encoding and the setting of
a non-zero value for the baud rate, because the DPLL uses the BRG as its reference
clock source.

A local loopback mode is available, primarily for use by the syncloop(1M)
utility for testing purposes, and should not be confused with SDLC loop mode, which
is not supported on this interface. Also, an auto-echo feature may be selected that
causes all incoming data to be routed to the transmit data line, allowing the port to act
as the remote end of a digital loop. Neither of these options should be selected
casually, or left in use when not needed.

zsh(7D)

NAME

SYNOPSIS

DESCRIPTION

714 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

The zsh driver keeps running totals of various hardware generated events for each
channel. These include numbers of packets and characters sent and received, abort
conditions detected by the receiver, receive CRC errors, transmit underruns, receive
overruns, input errors and output errors, and message block allocation failures. Input
errors are logged whenever an incoming message must be discarded, such as when an
abort or CRC error is detected, a receive overrun occurs, or when no message block is
available to store incoming data. Output errors are logged when the data must be
discarded due to underruns, CTS drops during transmission, CTS timeouts, or
excessive watchdog timeouts caused by a cable break.

The zsh driver supports several ioctl() commands, including:

S_IOCGETMODE Return a struct scc_mode containing parameters
currently in use. These include the transmit and receive
clock sources, boolean loopback and NRZI mode flags
and the integer baud rate.

S_IOCSETMODE The argument is a struct scc_mode from which the
SCC channel will be programmed.

S_IOCGETSTATS Return a struct sl_stats containing the current
totals of hardware-generated events. These include
numbers of packets and characters sent and received
by the driver, aborts and CRC errors detected, transmit
underruns, and receive overruns.

S_IOCCLRSTATS Clear the hardware statistics for this channel.

S_IOCGETSPEED Returns the currently set baud rate as an integer. This
may not reflect the actual data transfer rate if external
clocks are used.

S_IOCGETMCTL Returns the current state of the CTS and DCD incoming
modem interface signals as an integer.

The following structures are used with zsh ioctl() commands:

struct scc_mode {
char sm_txclock; /* transmit clock sources */
char sm_rxclock; /* receive clock sources */
char sm_iflags; /* data and clock inversion flags (non-zsh) */
uchar_t sm_config; /* boolean configuration options */
int sm_baudrate; /* real baud rate */
int sm_retval; /* reason codes for ioctl failures */

};
struct sl_stats {

long ipack; /* input packets */
long opack; /* output packets */
long ichar; /* input bytes */
long ochar; /* output bytes */
long abort; /* abort received */
long crc; /* CRC error */
long cts; /* CTS timeouts */
long dcd; /* Carrier drops */

zsh(7D)

IOCTLS

Device and Network Interfaces 715

long overrun; /* receive overrun */
long underrun; /* transmit underrun */
long ierror; /* input error */
long oerror; /* output error */
long nobuffers; /* receive side memory allocation failure */

};

An open() will fail if a STREAMS message block cannot be allocated, or:

ENXIO The unit being opened does not exist.

EBUSY The device is in use by another serial protocol.

An ioctl() will fail if:

EINVAL An attempt was made to select an invalid clocking source.

EINVAL The baud rate specified for use with the baud rate generator
would translate to a null time constant in the SCC’s registers.

/dev/zsh[0-1],/dev/zsh character-special devices

/usr/include/sys/ser_sync.h header file specifying synchronous serial
communication definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

syncinit(1M), syncloop(1M), syncstat(1M), ioctl(2), open(2), read(2),
write(2), attributes(5), zs(7D)

Refer to the Zilog Z8530 SCC Serial Communications Controller Technical Manual for
details of the SCC’s operation and capabilities.

zsh data open failed, no memory, rq=nnn

zsh clone open failed, no memory, rq=nnn
A kernel memory allocation failed for one of the private data structures. The value
of nnn is the address of the read queue passed to open(2).

zsh_open: can’t alloc message block
The open could not proceed because an initial STREAMS message block could not
be made available for incoming data.

zsh: clone device d must be attached before use!
An operation was attempted through a control path before that path had been
attached to a particular serial channel.

zsh(7D)

ERRORS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

716 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

zshn: invalid operation for clone dev.
An inappropriate STREAMS message type was passed through a control path. Only
M_IOCTL and M_PROTO message types are permitted.

zshn: not initialized, can’t send message
An M_DATA message was passed to the driver for a channel that had not been
programmed at least once since the driver was loaded. The SCC’s registers were in
an unknown state. The S_IOCSETMODE ioctl command performs the programming
operation.

zshn: transmit hung
The transmitter was not successfully restarted after the watchdog timer expired.

zsh(7D)

Device and Network Interfaces 717

zsh(7D)

718 man pages section 7: Device and Network Interfaces • Last Revised 1 Jan 1997

Index

Numbers and Symbols
1394 OpenHCI host controller driver —

hci1394, 214
24-bit UPA color frame buffer and graphics

accelerator — ffb, 188
3COM EtherLink III Ethernet device driver —

elx, 145
3COM EtherLink III PCMCIA Ethernet Adapter

— pcelx, 402
3Com Ethernet device driver — elxl, 147
4BSD compatibility module — ttcompat, 637

A
Acer Laboratories Inc. M5451 audio processor

interface — audiots, 56
Address Resolution Protocol, See ARP
adp — low-level module for controllers based

on Adaptec AIC-7870P and AIC-7880P SCSI
chips, 22

afb— Elite3D graphics accelerator driver, 24,
243

Am7990 (LANCE) Ethernet device driver
— le, 318
— lebuffer, 318
— ledma, 318

AMD PCnet Ethernet controller device driver —
pcn, 413

an I2O OS sepcific module that supports SCSA
interface
an I2O, 233

ANSI Layered Console Driver — ltem, 343
ANSI standard terminal emulation —

wscons, 699
arp — Address Resolution Protocol, 25
arp ioctl

SIOCDARP — delete arp entry, 25
SIOCGARP — get arp entry, 25
SIOCSARP — set arp entry, 25

asy — asynchronous serial port driver, 28
asynchronous serial port driver — asy, 28, 584
AT attachment disk driver — ata, 31
ata — AT attachment disk driver, 31
audio — audio device interface, 35
audio device

Sound Blaster 16/Pro/AWE32 — sbpro, 478
audiocs — Crystal Semiconductor 4231 Audio

driver, 46, 56
audiocs — Crystal Semiconductor 4231 audio

Interface
Audio Data Formats for the Multimedia 4231

Codec, 46
audiocs — Crystal Semiconductor 4231 Audio

driver
Audio Interfaces, 46, 56

audiocs — Crystal Semiconductor 4231 audio
Interface
Audio Status Change Notification, 48
Driver Version, 46
Sample Granularity, 48
Setting Audio Mixer Mode, 46

audio_support — audio device independent
driver interface, 54

719

audiots — Acer Laboratories Inc. M5451 audio
processor interface, 56
Audio Status Change Notification, 58
Driver Version, 56
Sample Granularity, 57

authsha1 — HMAC-SHA-1 Authentication
Algorithm Module for IPsec, 61

B
bbc_beep — Platform-dependent Beep driver

for BBC-based hardware, 62
bd — SunButtons and SunDials STREAMS

module, 63
bpp — bi-directional parallel port, 65
bufmod — STREAMS Buffer module, 70
built-in mouse device interface —

kdmouse, 311
bwtwo — black and white frame buffer, 74

C
cadp — SCSI host bus adapter driver, 76
cadp160 — SCSI host bus adapter driver, 75
cdio— CD-ROM control operations, 81
CD-ROM — ISO 9660 CD-ROM filesystem —

hsfs, 226
CDROM control operations —cdio, 81
ce — ce Gigabit-Ethernet device driver, 89

ce Primitives, 90
ce Gigabit-Ethernet device driver — ce, 89
cgfourteen — 24-bit color graphics device, 95
cgeight — 24-bit color memory frame

buffer, 93
cgfour — P4-bus 8-bit color memory frame

buffer, 94
cgfourteen — 24-bit color graphics device, 95
cgsix — accelerated 8-bit color frame buffer, 96
cgthree — 8-bit color memory frame buffer, 97
cgtwo — color graphics interface, 98
chs — IBM ServeRAID PCI host adapter

driver, 99
cmdk — common disk driver, 100
Cogent EM960/EM100 Ethernet controller

device driver — dnet, 133

color graphics interface
24-bit color memory frame buffer —

cgeight, 93
8-bit color memory frame buffer —

cgthree, 97
accelerated 8-bit color frame buffer —

cgsix, 96
standard frame buffer — cgtwo, 98
P4-bus 8-bit color memory frame buffer —

cgfour, 94
Sun color memory frame buffer — tcx, 599

common disk driver — cmdk, 100
connections, unique stream

line discipline — connld, 101
connld — line discipline for unique

connections, 101
console devices

sysmsg, 593
console

STREAMS-based console interface, 103
converts mouse protocol to Firm Events —

vuidmice, 693
vuid2ps2, 693
vuid3ps2, 693
vuidm3p, 693
vuidm4p, 693
vuidm5p, 693

core memory
image — mem, 352

cpr — suspend and resume module, 104
Crystal Semiconductor 4231 Audio driver —

audiocs, 46
cvc — virtual console driver, 106
cvcredir — virtual console redirection

driver, 107

D
dad — driver for IDE disk devices, 108

Device Statistics Support, 108
Data Link Provider Interface

— dlpi, 127
Davicom Fast Ethernet driver for Davicom

DM9102A — dmfe, 131
dbri — ISDN and audio interface, 111

720 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

dbri — Dual Basic Rate ISDN and audio
Interface
Audio Data Formats for BRI Interfeces, 112
Audio Data Formats for the Multimedia

Codec/SpeakerBox, 112
Audio Interfaces, 111
Audio Ports, 114
Audio Status Change Notification, 114
ISDN Interfaces, 111
Sample Granularity, 114

delete arp entry ioctl — SIOCDARP, 25
device interface

Microsoft Bus Mouse — msm, 369
devices

cgfourteen, 95
disk control operations — dkio, 118
disk driver

fd — floppy, 178
disk quotas — quotactl(), 464
dkio — disk control operations, 118
D-LINK Ethernet controller device driver —

dnet, 133
dlpi — Data Link Provider Interface, 127
dmfe — Davicom Fast Ethernet driver for

Davicom DM9102A, 131
dnet — DEC 21040/21140-based Ethernet

Controllers, 133
DOS

DOS formatted file system — pcfs, 404
dpt — DPT ServeRAID IV SCSI host bus

adapter and RAID adapter driver, 135
DPT ServeRAID IV SCSI host bus adapter and

RAID adapter driver — dpt, 135
Sun Enterprise 10000 and Sun Fire 15K dynamic

reconfiguration driver, 137
driver for fast poll on many file descriptors —

poll, 442
driver for IDE disk devices — dad, 108
driver for parallel port — lp, 341
driver for SPARC Storage Array disk devices —

ssd, 536
drivers for floppy disks and floppy disk

controllers — fd, 178
fdc, 178

drivers
SCSI tape devices — st, 541

Dual Basic Rate ISDN and audio Interface —
dbri, 111

E
ecpp — bi-directional parallel port, 139
Elite3D graphics accelerator driver — afb, 24
elx — 3COM ETHERLINK III Ethernet device

driver, 145
elx — 3COM EtherLink III Ethernet device

driver
elx Primitives, 145

elxl — 3Com Ethernet device driver, 147
eri — eri Fast-Ethernet device driver, 153
esp — ESP SCSI Host Bus Adapter Driver, 157
ESP SCSI Host Bus Adapter Driver — esp, 157
Ethernet device driver

SMC EtherPower II 10/100 (9432) Ethernet
device driver — spwr, 535

extended memory file system — xmemfs, 708

F
Fair share scheduler — FS, 190
FS — Fair share scheduler, 190
fas — FAS SCSI Host Bus Adapter Driver, 163
FAS SCSI Host Bus Adapter Driver — fas, 163
fbio — frame buffer control operations, 171
fcip — IP/ARP over Fibre Channel datagram

encapsulation driver, 173
fcp — Fibre Channel protocol driver, 176
fctl — Sun Fibre Channel transport library, 177
fd — drivers for floppy disks and floppy disk

controllers, 178
fdc — drivers for floppy disks and floppy disk

controllers, 178
FDGETCHANGE — get status of disk

changed, 184
fdio — disk control operations, 184
FDIOGCHAR — get floppy

characteristics, 184
FDIOGCHAR — set floppy characteristics, 184
FDKEJECT — eject floppy, 184
ffb — 24-bit UPA color frame buffer and

graphics accelerator, 188

Index 721

Sun Fibre Channel port driver — fp, 189
Fibre Channel protocol driver — fcp, 176
file system

quotactl() — disk quotas, 464
floppy disk driver — fd, 178
floppy disk control operations — fdio, 184
fp — Sun Fibre Channel port driver, 189
frame buffer

black and whirte frame buffer — bwtwo, 74
frame buffer control operations

— fbio, 171

G
ge — Gigabit-Ethernet device driver, 193

ge Primitives, 195
Gigabit-Ethernet device driver — ge, 193
general properties of Internet Protocol network

interfaces — if_tcp, 248
General purpose I/O driver for SuperIO —

gpio_87317, 212
general terminal interface — termio, 601
Generic LAN Driver — gld, 197
prnio — Generic printer interface, 447
Generic SCSI device driver – sgen, 513
gld — Generic LAN Driver, 197

FDDI SNAP processing, 198
Implemented DLPI Primitives, 199
Implemented ioctl Functions, 200
Network Statistics, 202
Style 1 and 2 Providers, 199
Token Ring SNAP processing, 198
Token Ring Source Routing, 198

glm — GLM SCSI Host Bus Adapter
Driver, 207

GLM SCSI Host Bus Adapter Driver —
glm, 207

gpio_87317— General purpose I/O driver for
SuperIO, 212

grbeep — Platform-dependent Beep driver for
SMBus-based hardware, 213

H
hci1394 — 1394 OpenHCI host controller

driver, 214
hdio — SMD and IPI disk control

operations, 215
— Human Interface Device (HID) class

driver, 217
High Sierra filesystem, See hsfs
HMAC-SHA-1 Authentication Algorithm

Module for IPsec — authsha1, 61
hme — SUNW,hme Fast-Ethernet device

driver, 219
hme Primitives, 221

hsfs
filesystem — hsfs, 226

hubd — USB hub driver, 229
Human Interface Device (HID) class driver —

hid, 217

I
I2C smart card card terminal driver —

ocf_iscr1, 393
IBM ServeRAID PCI host adapter driver —

chs, 99
iButton smart card terminal driver —

ocf_ibutton, 392
icmp — Internet Control Message

Protocol, 236
icmp6 — Internet Control Message Protocol for

Internet Protocol Version 6, 234
IDE Host Bus Adapter Driver — uata, 651
ieef — Intel Ethernet device driver, 241
if — general properties of Internet Protocol

network interfaces, 248
IFB graphics accelerator driver — ifb, 243
if_tcp — general properties of Internet Protocol

network interfaces, 248
Application Programming Interface, 248

inet — Internet protocol family, 258
inet6 — Internet protocol family for Internet

Protocol version 6, 255
Intel D100 Ethernet device driver — iprb, 272
Intel Ethernet device driver — ieef, 241
Intel i82365SL PC Card Interface Controller —

pcic, 409

722 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

Intel Ethernet device driver, Intel — iprb, 272
Internet Control Message Protocol —

icmp, 236, 267, 594, 654
Internet Control Message Protocol for Internet

Protocol Version 6 — icmp6, 234
Internet Protocol

to Ethernet addresses — arp, 25
Internet protocol family — inet, 258
Internet protocol family for Internet Protocol

version 6 — inet6, 255
Internet Protocol Security Architecture —

ipsec, 275
Internet Protocol Version 6 — ip6, 261
Internet Protocol Version 6— ip6, 261
I/O

data link provider interface — dlpi, 127
extended terminal interface — termiox, 622
ioctls that operate directly on sockets —

sockio, 533
STREAMS ioctl commands — streamio, 568

ioctls for sockets
SIOCDARP — delete arp entry, 25

ioctl’s for sockets
SIOCGARP — get arp entry, 25

ioctls for Internet socket descriptors
SIOCSARP — set arp entry, 25

ioctls for floppy
FDEJECT — eject floppy, 184
FDGETCHAGE — get status of disk

changed, 184
FDIOCHAR — get floppy

characteristics, 184
ioctls for sockets

SIOCADDRT — add route, 473
SIOCDELRT — delete route, 473

ioctl’s for terminals
TIOCPKT — set/clear packet mode

(pty), 457
TIOCREMOTE — remote input editing, 457
TIOCSTART — start output (like

control-Q), 457
TIOCSTOP — stop output (like

control-S), 457
ip — Internet Protocol, 267
ip6 — Internet Protocol Version 6, 261
IP/ARP over Fibre Channel datagram

encapsulation driver — fcip, 173

iprb — D100 Ethernet device driver, 272
ipsec — Internet Protocol Security

Architecture, 275
isdnio — generic ISDN interface, 282
ISO 9660 — ISO 9660 CD-ROM filesystem —

hsfs, 226
isp — ISP SCSI Host Bus Adapter Driver, 296
ISP SCSI Host Bus Adapter Driver — isp, 296
ISP2200 Family Fibre Channel host bus adapter

driver — qlc, 463

K
kb — keyboard STREAMS module, 302

Keyboard Compatibility Mode, 306
Keyboard Translation Mode, 302
Keyboard Translation-Table Entries, 302

kdmouse — built-in mouse device
interface, 311

kernel lock statistics driver — lockstat, 332
kernel packet forwarding database —

route, 469
kernel statistics driver — kstat, 312
kernel symbols — ksyms, 313
keyboard STREAMS module — kb, 302
keyboard STREAMS module for Sun USB

Keyboard — usbkbm, 666
kstat — kernel statistics driver, 312
kyms — kernel symbols, 313

L
LAN support module — gld, 197
ldterm — line discipline for STREAMS terminal

module, 315
le — Am7990 (LANCE) Ethernet device

driver, 318
lebuffer — Am7990 (LANCE) Ethernet device

driver, 318
ledma — Am7990 (LANCE) Ethernet device

driver, 318
line discipline for unique stream connections

—connld, 101
llc1 — Logical Link Control Protocol Class 1

Driver, 322

Index 723

lockstat — kernel lock statistics driver, 332
lofi — loopback file driver, 333
lofs — loopback virtual file system, 334
log — interface to STREAMS error logging and

event tracing, 336
logi — LOGITECH bus mouse device

interface, 340
Logical Link Control Protocol Class 1 Driver —

llc1, 322
LOGITECH Bus Mouse device interface —

logi, 340
loopback file driver — lofi, 333
loopback transport providers

— ticlts, 628
— ticots, 628
— ticotsord, 628

loopback virtual file system — lofs, 334
low-level module for controllers based on

Adaptec AIC-7870P and AIC-7880P SCSI
chips — adp, 22

low-level module for the AMD PCscsi, PCscsi II,
PCnet-SCSI, and Qlogic QLA510 PCI-to-SCSI
bus adapters — pcscsi, 418

lp — driver for parallel port, 341
ltem — ANSI Layered Console Driver, 343

M
m64 — frame buffers device driver, 344
magnetic tape interface

— mtio, 371
md — pseudo device driver for

metadevice, 345
mem— image of core memory, 352
memory based filesystem — tmpfs, 634
memory, core

image — mem, 352
memory, zeroed unnamed

source — zero, 710
message output collection

msglog, 368
mhd — multihost disk control operations, 353

Automatic Probing, 356
MHIOCENFAILFAST Ioctl, 356
Non-shared multihost disks:, 353
Shared Multihost Disks, 354

Microsoft Bus Mouse device interface —
msm, 369

mixer — audio mixer device interface, 358
monitor

PROM monitor configuration interface —
openprom, 395

monochrome frame buffer — bwtwo, 74
Mouse device interface

LOGITECH Bus Mouse device interface —
logi, 340

msglog
message output collection, 368

msm — Microsoft Bus Mouse device
interface, 369

mtio — general magnetic tape interface, 371
multihost disk control operations — mhd, 353

N
llc2— llc2 Class II logical link control

driver, 325, 383
ncrs — ncrs SCSI Host Bus Adapter Driver

Driver Configuration, 384
dman — Network device driver, 128, 483
Network device driver — dman, 128, 483
network packet routing device — routing, 473
null — null file, 390

O
ocf_escr1 — serial smart card terminal

driver, 391
ocf_ibutton — iButton smart card terminal

driver, 392
ocf_iscr1 — I2C smart card card terminal

driver, 393
ohci — OpenHCI host controller driver, 394
OpenHCI host controller driver — ohci, 394
openprom — PROM monitor configuration

interface, 395

P
packet routing device — routing, 473

724 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

packet routing ioctls
SIOCADDRT — add route, 473
SIOCDELRT — delete route, 473

parallel port, bi-directional — bpp, 65, 139
parallel port

driver for parallel port — lp, 341
pcata — PCMCIA ATA card device driver, 400
pcelx — 3COM EtherLink III PCMCIA Ethernet

Adapter, 402
pcfs — DOS formatted file system, 404
pcic — Intel i82365SL PC Card Interface

Controller, 409
pckt — STREAMS Packet Mode module, 411
PCMCIA ATA card device driver — pcata, 400
PCMCIA memory card nexus driver —

pcmem, 412
PCMCIA RAM memory card device driver —

pcram, 415
PCMCIA serial card device driver —

pcser, 419
pcmem — PCMCIA memory card nexus

driver, 412
pcn — AMD PCnet Ethernet controller device

driver, 413
pcram — PCMCIA RAM memory card device

driver, 415
pcscsi — low-level module for the AMD PCscsi,

PCscsi II, PCnet-SCSI, and Qlogic QLA510
PCI-to-SCSI bus adapters, 418

pcser — PCMCIA serial card device
driver, 419

pf_key — security association database, 421
pfmod — STREAMS packet filter module, 431
pipemod — STREAMS pipe flushing

module, 434
Platform-dependent Beep driver for BBC-based

hardware — bbc_beep, 62, 213
Platform Specific Module (PSM) for Tricord

Systems Enterprise Server Models ES3000,
ES4000 and ES5000 — tpf, 636

pln — SPARC Storage Array SCSI Host Bus
adapter driver, 435

PLN SCSI Host Bus Adapter driver — pln, 435
pm — Power Management Driver, 436
poll — driver for fast poll on many file

descriptors, 442
Power Management Driver — pm, 436

PPP tunneling pseudo-driver — sppptun, 534
PROM

monitor configuration interface —
openprom, 395

Pseudo Terminal Emulation module, STREAMS
— ptem, 451

pseudo-terminal driver — pty, 456
ptem — STREAMS Pseudo Terminal Emulation

module, 451
ptm — STREAMS Buffer module, 452
pts — STREAMS pseudo-tty slave driver, 454
pty — pseudo-terminal driver, 456

Q
qfe — SUNW,qfe Quad Fast-Ethernet device

driver, 459
qfe Primitives, 461

qlc — ISP2200 Family Fibre Channel host bus
adapter driver, 463

quotactl() — disk quotas, 464

R
random — strong random number generator

device, 466
remote input editing ioctl —

TIOCREMOTE, 457
WCI Remote Shared Memory (WRSM) DLPI

driver — wrsmd, 698
rns_smt — Rockwell Station Management

driver, 468
Rockwell 2200 SNAP Streams Driver —

sxp, 587
Rockwell Station Management driver —

rns_smt, 468
route — kernel packet forwarding

database, 469
Messages, 470

routing — local network packet routing, 473
routing ioctls

SIOCADDRT — add route, 473
SIOCDELRT — delete route, 473

Index 725

S
sbpro — Creative Labs Sound Blaster audio

device, 478
scsa2usb — SCSI to USB bridge host bus

adapter driver, 488
SCSI enclosure services device driver —

ses, 507
SCSI host bus adapter driver — cadp160, 75,

76, 325, 383
SCSI tape devices

driver — st, 541
SCSI to USB bridge host bus adapter driver —

scsa2usb, 488
SCSI virtual host controller interconnect driver

— scsi_vhci, 492
sd — SCSI disk and ATAPI/SCSI CD-ROM

device driver, 495
se — Siemens 82532 ESCC serial

communications driver, 501
security association database — pf_key, 421
serial communications driver — zs, 711
Serial Optical Controller device driver —

soc, 529
Serial Optical Controller for Fibre Channel

Arbitrated Loop (SOC+) device driver —
socal, 531

Serial Parallel Communications driver for SBus
— stc, 555

serial smart card terminal driver —
ocf_escr1, 391

Service Location Protocol — slp, 527
ses — SCSI enclosure services device

driver, 507
set/clear

packet mode (pty) ioctl — TIOCPKT, 457
sgen – Generic SCSI device driver, 513
Shared Memory (WRSM) device driver —

wrsm, 696
zsh — On-board serial HDLC interface, 504
Siemens 82532 ESCC serial communications

driver — se, 501
SIOCDARP — delete arp entry, 25
SIOCGARP — get arp entry, 25
SIOCSARP — set arp entry, 25
slp — Service Location Protocol, 527

SMC Ethernet device drivers
spwr — SMC EtherPower II 10/100 (9432)

Ethernet device driver, 535
SMC EtherPower 8432BT Ethernet controller

device driver — dnet, 133
SMC EtherPower II 10/100 (9432) Ethernet

device driver — spwr, 535
SMD and IPI disk control operations —

hdio, 215
soc — Serial Optical Controller Device

Driver, 529
socal — Serial Optical Controller for Fibre

Channel Arbitrated Loop (SOC+) device
driver, 531

sockio — ioctls that operate directly on
sockets, 533

sockets
ioctls that operate directly — sockio, 533

Solaris USB architecture — usba, 658
Solaris VISUAL I/O control operations, 684
Sound Blaster 16/Pro/AWE32 audio devices —

sbpro, 478
SPARCstorage Array

disk devices driver — ssd, 536
SCSI Host Bus Adapter driver — pln, 435

spwr — SMC EtherPower II 10/100 (9432)
Ethernet device driver, 535

ssd — driver for SPARC Storage Array disk
devices, 536

st — driver for SCSI tape devices, 541
start output (like control-Q) ioctl —

TIOCSTART, 457
stc — Serial Parallel Communications driver for

SBus, 555
stop output (like control-S) ioctl —

TIOCSTOP, 457
STP 4020 PCMCIA Adapter

STP 4020 PCMCIA Adapter, 567
stp4020 — STP 4020 PCMCIA Adapter, 567
STREAMS

interface to error logging — log, 336
interface to event tracing — log, 336
line discipline for unique stream connections

— connld, 101
loopback transport providers — ticlts, ticots,

ticotsord, 628

726 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

STREAMS (continued)
On-board serial HDLC interface —
se_hdlc, 504, 714
standard terminal line discipline module —

ldterm, 315
Transport Interface cooperating module —

timod, 630
Transport Interface read/write interface

module — tirdwr, 632
V7, 4BSD, XENIX compatibility module —

ttcompat, 637
STREAMS Administrative Driver — sad, 475
STREAMS Buffer module — bufmod, 70
STREAMS Buffer module — ptm, 452
STREAMS ioctl commands — streamio, 568
STREAMS module

SunButtons and SunDials — bd, 63
STREAMS Packet Filter Module — pfmod, 431
STREAMS Packet Mode module — pckt, 411
STREAMS pipe flushing module —

pipemod, 434
STREAMS Pseudo Terminal Emulation module

— ptem, 451
STREAMS pseudo-tty slave driver — pts, 454
STREAMS-based console interface

console, 103
STREAMS-based serial I/O multiplexer

interface
ttymux, 646

strong random number generator device —
random, 466

su — asynchronous serial port driver, 584
Sun Fibre Channel transport library — fctl, 177
SunButtons and SunDials STREAMS module —

bd, 63
eri Fast-Ethernet device driver — eri, 153
SUNW,hme Fast-Ethernet device driver —

hme, 219
SUNW,qfe Quad Fast-Ethernet device driver —

qfe, 459
suspend and resume module — cpr, 104
sxp — Rockwell 2200 SNAP Streams

Driver, 587
symhisl — SCSI Host Bus Adapter Driver, 590
SCSI Host Bus Adapter Driver — symhisl, 590
sysmsg

console devices, 593

sysmsg (continued)
system message routing, 593

system message routing
sysmsg, 593

T
tape interface — mt, 370
tape, magnetic interface

— mtio, 371
tcp — Internet Transmission Control

Protocol, 594
tcx — Sun low-range graphics accelerator with

color memory frame buffer, 599
terminal emulation, ANSI — wscons, 699
terminal interface

— termio, 601
terminal interface, extended

— termiox, 622
terminal parameters — termiox, 622
terminal, standard STREAMS

line discipline module — ldterm, 315
termio — general terminal interface, 601

Canonical mode input processing, 602
Comparison of the different cases of MIN,

TIME interaction, 604
Control Modes, 611
Default values, 619
Input modes, 608
Local modes, 614
Minimum and Timeout, 617
Modem disconnect, 606
Modem lines, 618
Non-canonical mode input processing, 603
Output modes, 609
Special Characters, 605
Terminal parameters, 607
Terminal size, 617
Termio structure, 617
Writing characters, 605

termiox — extended general terminal
interface, 622

ticlts — loopback transport provider, 628
ticots — loopback transport provider, 628
ticotsord — loopback transport provider, 628

Index 727

timod — Transport Interface cooperating
module, 630, 632

TIOCPKT — set/clear packet mode (pty), 457
TIOCREMOTE — remote input editing, 457
TIOCSTART — start output (like

control-Q), 457
TIOCSTOP — stop output (like control-S), 457
tmpfs — memory based filesystem, 634
tpf — Platform Specific Module (PSM) for

Tricord Systems Enterprise Server Models
ES3000, ES4000 and ES5000, 636

Transport Interface cooperating STREAMS
module — timod, 630

Transport Interface read/write interface
STREAMS module — timod, 632

ttcompat — V7, 4BSD and XENIX STREAMS
compatibility module, 637

tty — controlling terminal interface, 645
ttymux

STREAMS-based serial I/O multiplexer
interface, 646

U
uata — IDE Host Bus Adapter Driver, 651
udfs— universal disk format file system, 653
udp — Internet User Datagram Protocol, 654
universal disk

universal disk format file system —
udfs, 653

universal serial optical controller for Fibre
Channel arbitrated loop (SOC+) device
driver — usoc, 681

unnamed zeroed memory
source — zero, 710

audioens — Ensoniq 1371/1373 and Creative
Labs 5880 driver support, 50, 660, 664

USB hub driver — hubd, 229
USB mouse STREAMS module — usbms, 669
USB Multi Interface Driver — usb_mid, 668
usbprn — USB printer class driver, 671
usba — Solaris USB architecture, 658
usbkbm — keyboard STREAMS module for Sun

USB Keyboard, 666
usbkbm — keyboard STREAMS module for Sun

IOCTLS, 666

usb_mid — USB Multi Interface Driver, 668
usbms — USB mouse STREAMS module, 669
uscsi — user SCSI command interface, 677
user SCSI command interface — uscsi, 677
usoc— universal serial optical controller for

Fibre Channel arbitrated loop (SOC+) device
driver, 681

V
V7 compatibility module — ttcompat, 637
virtual console driver — cvc, 106
virtual console redirection driver —

cvcredir, 107
volfs — Volume Management file system, 691
Volume Management

file system — volfs, 691
vuid2ps2 — converts mouse protocol to Firm

Events, 693
vuid3ps2 — converts mouse protocol to Firm

Events, 693
vuidm3p — converts mouse protocol to Firm

Events, 693
vuidm4p — converts mouse protocol to Firm

Events, 693
vuidm5p — converts mouse protocol to Firm

Events, 693
vuidmice — converts mouse protocol to Firm

Events, 693

W
workstation console — wscons, 699
wrsm — Shared Memory (WRSM) device

driver, 696
wrsmd — WCI Remote Shared Memory

(WRSM) DLPI driver, 698

X
XENIX compatibility module — ttcompat, 637
xmemfs — extended memory file system, 708

728 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

Z
zero — source of zeroes, 710
Zilog 8530 SCC serial communications driver —

zs, 711
zs — zilog 8530 SCC serial communications

driver, 711
zsh — On-board serial HDLC interface, 714

Index 729

730 man pages section 7: Device and Network Interfaces • December 2001 (Beta)

