
man pages section 3: Extended
Library Functions

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816–0217–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011030@2471

Contents

Preface 13

Extended Library Functions 19

aclcheck(3SEC) 20

aclsort(3SEC) 22

acltomode(3SEC) 23

acltotext(3SEC) 24

acos(3M) 26

acosh(3M) 27

asin(3M) 28

atan2(3M) 29

atan(3M) 30

au_open(3BSM) 31

au_preselect(3BSM) 32

au_to(3BSM) 34

au_user_mask(3BSM) 38

bgets(3GEN) 39

bufsplit(3GEN) 41

cbrt(3M) 42

ceil(3M) 43

config_admin(3CFGADM) 44

ConnectToServer(3DMI) 52

copylist(3GEN) 53

copysign(3M) 54

cos(3M) 55

3

cosh(3M) 56

cpc(3CPC) 57

cpc_access(3CPC) 60

cpc_bind_event(3CPC) 61

cpc_count_usr_events(3CPC) 67

cpc_event(3CPC) 69

cpc_event_diff(3CPC) 71

cpc_getcpuver(3CPC) 73

cpc_pctx_bind_event(3CPC) 75

cpc_seterrfn(3CPC) 77

cpc_shared_open(3CPC) 79

cpc_strtoevent(3CPC) 81

cpc_version(3CPC) 84

demangle(3EXT) 85

devid_get(3DEVID) 86

di_binding_name(3DEVINFO) 90

di_child_node(3DEVINFO) 92

di_devfs_path(3DEVINFO) 94

di_init(3DEVINFO) 95

di_minor_devt(3DEVINFO) 98

di_minor_next(3DEVINFO) 99

di_prom_init(3DEVINFO) 100

di_prom_prop_data(3DEVINFO) 101

di_prom_prop_lookup_bytes(3DEVINFO) 103

di_prop_bytes(3DEVINFO) 105

di_prop_lookup_bytes(3DEVINFO) 108

di_prop_next(3DEVINFO) 110

DisconnectToServer(3DMI) 111

di_walk_minor(3DEVINFO) 112

di_walk_node(3DEVINFO) 113

DmiAddComponent(3DMI) 114

DmiAddRow(3DMI) 118

dmi_error(3DMI) 123

DmiGetConfig(3DMI) 124

DmiListAttributes(3DMI) 127

DmiRegisterCi(3DMI) 133

ea_error(3EXACCT) 135

4 man pages section 3: Extended Library Functions • December 2001 (Beta)

ea_open(3EXACCT) 136

ea_pack_object(3EXACCT) 138

ea_set_item(3EXACCT) 142

elf32_checksum(3ELF) 144

elf32_fsize(3ELF) 145

elf32_getehdr(3ELF) 146

elf32_getphdr(3ELF) 148

elf32_getshdr(3ELF) 150

elf32_xlatetof(3ELF) 152

elf(3ELF) 154

elf_begin(3ELF) 160

elf_cntl(3ELF) 165

elf_errmsg(3ELF) 167

elf_fill(3ELF) 168

elf_flagdata(3ELF) 169

elf_getarhdr(3ELF) 171

elf_getarsym(3ELF) 173

elf_getbase(3ELF) 174

elf_getdata(3ELF) 175

elf_getident(3ELF) 180

elf_getscn(3ELF) 182

elf_hash(3ELF) 184

elf_kind(3ELF) 185

elf_rawfile(3ELF) 186

elf_strptr(3ELF) 188

elf_update(3ELF) 189

elf_version(3ELF) 193

erf(3M) 194

exp(3M) 195

expm1(3M) 196

fabs(3M) 197

floor(3M) 198

fmod(3M) 199

freeDmiString(3DMI) 200

gelf(3ELF) 201

getacinfo(3BSM) 206

getauclassent(3BSM) 208

Contents 5

getauditflags(3BSM) 210

getauevent(3BSM) 211

getauthattr(3SECDB) 213

getauusernam(3BSM) 216

getddent(3BSM) 218

getdmapent(3BSM) 220

getexecattr(3SECDB) 222

getfauditflags(3BSM) 226

getprofattr(3SECDB) 227

getprojent(3PROJECT) 229

getuserattr(3SECDB) 233

gmatch(3GEN) 235

hypot(3M) 236

ilogb(3M) 237

isencrypt(3GEN) 238

isnan(3M) 239

j0(3M) 240

kstat(3EXT) 241

kstat(3KSTAT) 243

kstat_chain_update(3KSTAT) 249

kstat_lookup(3KSTAT) 250

kstat_open(3KSTAT) 251

kstat_read(3KSTAT) 252

kva_match(3SECDB) 253

kvm_getu(3KVM) 254

kvm_nextproc(3KVM) 256

kvm_nlist(3KVM) 258

kvm_open(3KVM) 259

kvm_read(3KVM) 261

ld_support(3EXT) 263

lgamma(3M) 264

libdevinfo(3DEVINFO) 266

libnvpair(3NVPAIR) 269

libpicl(3PICL) 270

libpicltree(3PICLTREE) 273

libtnfctl(3TNF) 276

log10(3M) 281

6 man pages section 3: Extended Library Functions • December 2001 (Beta)

log1p(3M) 282

log(3M) 283

logb(3M) 284

maillock(3MAIL) 285

matherr(3M) 287

m_create_layout(3LAYOUT) 293

md5(3EXT) 295

m_destroy_layout(3LAYOUT) 297

media_findname(3VOLMGT) 298

media_getattr(3VOLMGT) 300

media_getid(3VOLMGT) 302

m_getvalues_layout(3LAYOUT) 303

mkdirp(3GEN) 304

mp(3MP) 306

m_setvalues_layout(3LAYOUT) 308

m_transform_layout(3LAYOUT) 309

m_wtransform_layout(3LAYOUT) 314

newDmiOctetString(3DMI) 320

newDmiString(3DMI) 321

nextafter(3M) 322

nlist(3ELF) 323

NOTE(3EXT) 324

nvlist_add_boolean(3NVPAIR) 326

nvlist_alloc(3NVPAIR) 328

nvlist_lookup_boolean(3NVPAIR) 333

nvlist_next_nvpair(3NVPAIR) 335

nvlist_remove(3NVPAIR) 337

nvpair_value_byte(3NVPAIR) 338

p2open(3GEN) 340

pam(3PAM) 342

pam_acct_mgmt(3PAM) 345

pam_authenticate(3PAM) 346

pam_chauthtok(3PAM) 348

pam_getenv(3PAM) 350

pam_getenvlist(3PAM) 351

pam_get_user(3PAM) 352

pam_open_session(3PAM) 354

Contents 7

pam_putenv(3PAM) 356

pam_setcred(3PAM) 358

pam_set_data(3PAM) 360

pam_set_item(3PAM) 362

pam_sm(3PAM) 364

pam_sm_acct_mgmt(3PAM) 368

pam_sm_authenticate(3PAM) 370

pam_sm_chauthtok(3PAM) 372

pam_sm_open_session(3PAM) 375

pam_sm_setcred(3PAM) 377

pam_start(3PAM) 379

pam_strerror(3PAM) 382

pathfind(3GEN) 383

pctx_capture(3CPC) 385

pctx_set_events(3CPC) 387

picld_log(3PICLTREE) 390

picld_plugin_register(3PICLTREE) 391

picl_get_first_prop(3PICL) 393

picl_get_next_by_row(3PICL) 395

picl_get_prop_by_name(3PICL) 397

picl_get_propinfo(3PICL) 398

picl_get_propinfo_by_name(3PICL) 399

picl_get_propval(3PICL) 400

picl_get_root(3PICL) 402

picl_initialize(3PICL) 403

picl_set_propval(3PICL) 404

picl_shutdown(3PICL) 406

picl_strerror(3PICL) 407

picl_wait(3PICL) 408

picl_walk_tree_by_class(3PICL) 409

pow(3M) 410

printDmiAttributeValues(3DMI) 412

printDmiDataUnion(3DMI) 413

printDmiString(3DMI) 414

project(3EXT) 415

project_walk(3PROJECT) 417

ptree_add_node(3PICLTREE) 419

8 man pages section 3: Extended Library Functions • December 2001 (Beta)

ptree_add_prop(3PICLTREE) 420

ptree_create_and_add_node(3PICLTREE) 421

ptree_create_and_add_prop(3PICLTREE) 422

ptree_create_node(3PICLTREE) 423

ptree_create_prop(3PICLTREE) 424

ptree_create_table(3PICLTREE) 426

ptree_find_node(3PICLTREE) 427

ptree_get_first_prop(3PICLTREE) 428

ptree_get_next_by_row(3PICLTREE) 429

ptree_get_node_by_path(3PICLTREE) 430

ptree_get_prop_by_name(3PICLTREE) 432

ptree_get_propinfo(3PICLTREE) 433

ptree_get_propinfo_by_name(3PICLTREE) 434

ptree_get_propval(3PICLTREE) 435

ptree_get_root(3PICLTREE) 436

ptree_init_propinfo(3PICLTREE) 437

ptree_post_event(3PICLTREE) 438

ptree_register_handler(3PICLTREE) 439

ptree_unregister_handler(3PICLTREE) 440

ptree_update_propval(3PICLTREE) 441

ptree_walk_tree_by_class(3PICLTREE) 442

read_vtoc(3EXT) 443

reg_ci_callback(3DMI) 444

regexpr(3GEN) 445

remainder(3M) 448

rint(3M) 449

rsm_create_localmemory_handle(3RSM) 450

rsm_get_controller(3RSM) 452

rsm_get_interconnect_topology(3RSM) 454

rsm_get_segmentid_range(3RSM) 456

rsm_intr_signal_post(3RSM) 458

rsm_memseg_export_create(3RSM) 460

rsm_memseg_export_publish(3RSM) 463

rsm_memseg_get_pollfd(3RSM) 466

rsm_memseg_import_connect(3RSM) 467

rsm_memseg_import_get(3RSM) 469

rsm_memseg_import_init_barrier(3RSM) 471

Contents 9

rsm_memseg_import_map(3RSM) 472

rsm_memseg_import_open_barrier(3RSM) 474

rsm_memseg_import_put(3RSM) 476

rsm_memseg_import_putv(3RSM) 478

rsm_memseg_import_set_mode(3RSM) 480

rtld_audit(3EXT) 481

rtld_db(3EXT) 482

scalb(3M) 484

scalbn(3M) 485

sendfile(3EXT) 486

sendfilev(3EXT) 489

setproject(3PROJECT) 492

significand(3M) 494

sin(3M) 495

sinh(3M) 496

sqrt(3M) 497

SSAAgentIsAlive(3SNMP) 498

SSAOidCmp(3SNMP) 501

SSAStringCpy(3SNMP) 503

strccpy(3GEN) 504

strfind(3GEN) 506

sysevent_free(3SYSEVENT) 507

sysevent_get_attr_list(3SYSEVENT) 508

sysevent_get_class_name(3SYSEVENT) 509

sysevent_get_vendor_name(3SYSEVENT) 511

sysevent_post_event(3SYSEVENT) 513

tan(3M) 515

tanh(3M) 516

tnfctl_buffer_alloc(3TNF) 517

tnfctl_close(3TNF) 519

tnfctl_indirect_open(3TNF) 521

tnfctl_internal_open(3TNF) 524

tnfctl_kernel_open(3TNF) 526

tnfctl_pid_open(3TNF) 527

tnfctl_probe_apply(3TNF) 532

tnfctl_probe_state_get(3TNF) 535

tnfctl_register_funcs(3TNF) 539

10 man pages section 3: Extended Library Functions • December 2001 (Beta)

tnfctl_strerror(3TNF) 540

tnfctl_trace_attrs_get(3TNF) 541

tnfctl_trace_state_set(3TNF) 543

TNF_DECLARE_RECORD(3TNF) 545

TNF_PROBE(3TNF) 548

tnf_process_disable(3TNF) 553

tracing(3TNF) 555

volmgt_acquire(3VOLMGT) 559

volmgt_check(3VOLMGT) 562

volmgt_feature_enabled(3VOLMGT) 564

volmgt_inuse(3VOLMGT) 565

volmgt_ownspath(3VOLMGT) 566

volmgt_release(3VOLMGT) 567

volmgt_root(3VOLMGT) 568

volmgt_running(3VOLMGT) 569

volmgt_symname(3VOLMGT) 570

wsreg_add_child_component(3WSREG) 572

wsreg_add_compatible_version(3WSREG) 574

wsreg_add_dependent_component(3WSREG) 576

wsreg_add_display_name(3WSREG) 578

wsreg_add_required_component(3WSREG) 580

wsreg_can_access_registry(3WSREG) 582

wsreg_clone_component(3WSREG) 584

wsreg_components_equal(3WSREG) 585

wsreg_create_component(3WSREG) 586

wsreg_get(3WSREG) 587

wsreg_initialize(3WSREG) 588

wsreg_query_create(3WSREG) 589

wsreg_query_set_id(3WSREG) 590

wsreg_query_set_instance(3WSREG) 591

wsreg_query_set_location(3WSREG) 592

wsreg_query_set_unique_name(3WSREG) 593

wsreg_query_set_version(3WSREG) 594

wsreg_register(3WSREG) 595

wsreg_set_data(3WSREG) 597

wsreg_set_id(3WSREG) 599

wsreg_set_instance(3WSREG) 600

Contents 11

wsreg_set_location(3WSREG) 602

wsreg_set_parent(3WSREG) 603

wsreg_set_type(3WSREG) 604

wsreg_set_uninstaller(3WSREG) 605

wsreg_set_unique_name(3WSREG) 606

wsreg_set_vendor(3WSREG) 607

wsreg_set_version(3WSREG) 608

wsreg_unregister(3WSREG) 609

y0(3M) 612

Index 613

12 man pages section 3: Extended Library Functions • December 2001 (Beta)

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

13

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

14 man pages section 3: Extended Library Functions • December 2001 (Beta)

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 15

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

16 man pages section 3: Extended Library Functions • December 2001 (Beta)

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 17

18 man pages section 3: Extended Library Functions • December 2001 (Beta)

Extended Library Functions

19

aclcheck – check the validity of an ACL

cc [flag ...] file ... -lsec [library ...]

#include <sys/acl.h>

int aclcheck(aclent_t *aclbufp, int nentries, int *which);

The aclcheck() function checks the validity of an ACL pointed to by aclbufp. The
nentries argument is the number of entries contained in the buffer. The which
parameter returns the index of the first entry that is invalid.

The function verifies that an ACL pointed to by aclbufp is valid according to the
following rules:

� There must be exactly one GROUP_OBJ ACL entry.

� There must be exactly one USER_OBJ ACL entry.

� There must be exactly one OTHER_OBJ ACL entry.

� If there are any GROUP ACL entries, then the group ID in each group ACL entry
must be unique.

� If there are any USER ACL entries, then the user ID in each user ACL entry must be
unique.

� If there are any GROUP or USER ACL entries, then there must be exactly one
CLASS_OBJ (ACL mask) entry.

� If there are any default ACL entries, then the following apply:

� There must be exactly one default GROUP_OBJ ACL entry.

� There must be exactly one default OTHER_OBJ ACL entry.

� There must be exactly one default USER_OBJ ACL entry.

� If there are any DEF_GROUP entries, then the group ID in each DEF_GROUP ACL
entry must be unique.

� If there are any DEF_USER entries, then the user ID in each DEF_USER ACL
entry must be unique.

� If there are any DEF_GROUP or DEF_USER entries, then there must be exactly
one DEF_CLASS_OBJ (default ACL mask) entry.

� If any of the above rules are violated, then the function fails with errno set to
EINVAL.

If the ACL is valid, alcheck() will return 0. Otherwise errno is set to EINVAL and
return code is set to one of the following:

GRP_ERROR There is more than one GROUP_OBJ or
DEF_GROUP_OBJ ACL entry.

USER_ERROR There is more than one USER_OBJ or DEF_USER_OBJ
ACL entry.

aclcheck(3SEC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

20 man pages section 3: Extended Library Functions • Last Revised 31 Jul 1998

CLASS_ERROR There is more than one CLASS_OBJ (ACL mask) or
DEF_CLASS_OBJ (default ACL mask) entry.

OTHER_ERROR There is more than one OTHER_OBJ or
DEF_OTHER_OBJ ACL entry.

DUPLICATE_ERROR Duplicate entries of USER, GROUP, DEF_USER, or
DEF_GROUP.

ENTRY_ERROR The entry type is invalid.

MISS_ERROR Missing an entry. The which parameter returns −1 in
this case.

MEM_ERROR The system cannot allocate any memory. The which
parameter returns −1 in this case.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

acl(2), aclsort(3SEC)

aclcheck(3SEC)

ATTRIBUTES

SEE ALSO

Extended Library Functions 21

aclsort – sort an ACL

cc [flag ...] file ... -lsec [library ...]

#include <sys/acl.h>

int aclsort(int nentries, int calclass, aclent_t *aclbufp);

The aclbufp argument points to a buffer containing ACL entries. The nentries argument
specifies the number of ACL entries in the buffer. The calclass argument, if non-zero,
indicates that the CLASS_OBJ (ACL mask) permissions should be recalculated. The
union of the permission bits associated with all ACL entries in the buffer other than
CLASS_OBJ, OTHER_OBJ, and USER_OBJ is calculated. The result is copied to the
permission bits associated with the CLASS_OBJ entry.

The aclsort() function sorts the contents of the ACL buffer as follows:

� Entries will be in the order USER_OBJ, USER, GROUP_OBJ, GROUP, CLASS_OBJ
(ACL mask), OTHER_OBJ, DEF_USER_OBJ, DEF_USER, DEF_GROUP_OBJ,
DEF_GROUP, DEF_CLASS_OBJ (default ACL mask), and DEF_OTHER_OBJ.

� Entries of type USER, GROUP, DEF_USER, and DEF_GROUP will be sorted in
increasing order by ID.

The aclsort() function will succeed if all of the following are true:

� There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_OBJ (ACL
mask), and OTHER_OBJ.

� There is exactly one entry each of type DEF_USER_OBJ, DEF_GROUP_OBJ,
DEF_CLASS_OBJ (default ACL mask), and DEF_OTHER_OBJ if there are any
default entries.

� Entries of type USER, GROUP, DEF_USER, or DEF_GROUP may not contain duplicate
entries. A duplicate entry is one of the same type containing the same numeric ID.

Upon successful completion, the the function returns 0. Otherwise, it returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

acl(2), aclcheck(3SEC)

aclsort(3SEC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

22 man pages section 3: Extended Library Functions • Last Revised 10 Feb 1999

acltomode, aclfrommode – convert an ACL to or from permission bits

cc [flag ...] file ... -lsec [library ...]
#include <sys/types.h>

#include <sys/acl.h>

int acltomode(aclent_t *aclbufp, int nentries, mode_t *modep);

int aclfrommode(aclent_t *aclbufp, int nentries, mode_t *modep);

The acltomode() function converts an ACL pointed to by aclbufp into the permission
bits buffer pointed to by modep. If the USER_OBJ ACL entry, GROUP_OBJ ACL entry, or
the OTHER_OBJ ACL entry cannot be found in the ACL buffer, then the function fails
with errno set to EINVAL.

The USER_OBJ ACL entry permission bits are copied to the file owner permission bits
in the permission bits buffer. The OTHER_OBJ ACL entry permission bits are copied to
the file other permission bits in the permission bits buffer. If there is a CLASS_OBJ
(ACL mask) entry, then the CLASS_OBJ ACL entry permission bits are intersected
(bitwise AND) with the GROUP_OBJ ACL entry permission bits and the result is
copied to the file group permission bits in the permission bits buffer. Otherwise, the
GROUP_OWNER ACL entry permission bits are copied to the file group permission bits
in the permission bits buffer.

The aclfrommode() function converts the permission bits pointed to by modep into
an ACL pointed to by aclbufp. If the USER_OBJ ACL entry, GROUP_OBJ ACL entry, or
the OTHER_OBJ ACL entry cannot be found in the ACL buffer, then the function fails
with errno set to EINVAL.

The file owner permission bits from the permission bits buffer are copied to the
USER_OBJ ACL entry. The file other permission bits from the permission bits buffer
are copied to the OTHER_OBJ ACL entry. The file group permissions bits from the
permission bits buffer are copied to the CLASS_OBJ (ACL mask) entry, if available,
and to the GROUP_OBJ ACL entry.

The nentries argument represents the number of ACL entries in the buffer pointed to
by aclbufp.

Upon successful completion, the function returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

acl(2)

acltomode(3SEC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 23

acltotext, aclfromtext – convert internal representation to or from external
representation

cc [flag ...] file ... -lsec [library ...]

#include <sys/acl.h>

char *acltotext(aclent_t *aclbufp, int aclcnt);

aclent_t *aclfromtext(char *acltextp, int *aclcnt);

The acltotext() function converts an internal ACL representation pointed to by
aclbufp into an external ACL representation. The space for the external text string is
obtained using malloc(3C). The caller is responsible for freeing the space upon
completion..

The aclfromtext() function converts an external ACL representation pointed to by
acltextp into an internal ACL representation. The space for the list of ACL entries is
obtained using malloc(3C). The caller is responsible for freeing the space upon
completion. The aclcnt argument indicates the number of ACL entries found.

An external ACL representation is defined as follows:

<acl_entry>[,<acl_entry>] . . .

Each <acl_entry> contains one ACL entry. The external representation of an ACL entry
contains two or three colon-separated fields. The first field contains the ACL entry tag
type. The entry type keywords are defined as:

user This ACL entry with no UID specified in the ACL entry ID field
specifies the access granted to the owner of the object. Otherwise,
this ACL entry specifies the access granted to a specific user-name
or user-id number.

group This ACL entry with no GID specified in the ACL entry ID field
specifies the access granted to the owning group of the object.
Otherwise, this ACL entry specifies the access granted to a specific
group-name or group-id number.

other This ACL entry specifies the access granted to any user or group
that does not match any other ACL entry.

mask This ACL entry specifies the maximum access granted to user or
group entries.

default:user This ACL entry with no uid specified in the ACL entry ID field
specifies the default access granted to the owner of the object.
Otherwise, this ACL entry specifies the default access granted to a
specific user-name or user-ID number.

default:group This ACL entry with no gid specified in the ACL entry ID field
specifies the default access granted to the owning group of the

acltotext(3SEC)

NAME

SYNOPSIS

DESCRIPTION

24 man pages section 3: Extended Library Functions • Last Revised 10 Feb 1999

object. Otherwise, this ACL entry specifies the default access
granted to a specific group-name or group-ID number.

default:other This ACL entry specifies the default access for other entry.

default:mask This ACL entry specifies the default access for mask entry.

The second field contains the ACL entry ID, as follows:

uid This field specifies a user-name, or user-ID if there is no user-name
associated with the user-ID number.

gid This field specifies a group-name, or group-ID if there is no
group-name associated with the group-ID number.

empty This field is used by the user and group ACL entry types.

The third field contains the following symbolic discretionary access permissions:

r read permission

w write permission

x execute/search permission

− no access

Upon successful completion, the acltotext() function returns a pointer to a text
string. Otherwise, it returns NULL.

Upon successful completion, the aclfromtext() function returns a pointer to a list
of ACL entries. Otherwise, it returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

acl(2), malloc(3C)

acltotext(3SEC)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 25

acos – arc cosine function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double acos(double x);

The acos() function computes the principal value of the arc cosine of x. The value of
x should be in the range [−1,1].

Upon successful completion, acos() returns the arc cosine of x, in the range [0,pi]
radians. If the value of x is not in the range [−1,1], and is not ±Inf or NaN, either 0.0 or
NaN is returned and errno is set to EDOM.

If x is NaN, NaN is returned. If x is ±Inf, either 0.0 is returned and errno is set to
EDOM, or NaN is returned and errno may be set to EDOM.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The acos() function will fail if:

EDOM The value x is not ±Inf or NaN and is not in the range [−1,1].

The acos() function may fail if:

EDOM The value x is ±Inf.

An application wishing to check for error situations should set errno to 0 before
calling acos(). If errno is non-zero on return, or the value NaN is returned, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cos(3M), isnan(3M), matherr(3M), attributes(5), standards(5)

acos(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

26 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

acosh, asinh, atanh – inverse hyperbolic functions

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double acosh(double x);

double asinh(double x);

double atanh(double x);

The acosh(), asinh() and atanh() functions compute the inverse hyperbolic
cosine, sine, and tangent of their argument, respectively.

The acosh(), asinh() and atanh() functions return the inverse hyperbolic cosine,
sine, and tangent of their argument, respectively.

The acosh() function returns NaN and sets errno to EDOM when its argument is less
than 1.0.

The atanh() function returns NaN and sets errno to EDOM when its argument has
absolute value greater than 1.0.

The atanh() function returns ±Inf and sets errno to ERANGE when its argument is
±1.0.

If x is NaN, the asinh(), acosh() and atanh() functions return NaN.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The acosh() function will fail if:

EDOM The x argument is less than 1.0.

The atanh() function will fail if:

EDOM The x argument has an absolute value greater than 1.0.

ERANGE The x argument has an absolute value equal to 1.0

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cosh(3M), matherr(3M), sinh(3M), tanh(3M), attributes(5), standards(5)

acosh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 27

asin – arc sine function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double asin(double x);

The asin() function computes the principal value of the arc sine of x. The value of x
should be in the range [−1,1].

Upon successful completion, asin() returns the arc sine of x, in the range
[−pi/2,pi/2] radians. If the value of x is not in the range [−1,1] and is not ±Inf or NaN,
either 0.0 or NaN is returned and errno is set to EDOM.

If x is NaN, NaN is returned.

If x is ±Inf, either 0.0 is returned and errno is set to EDOM or NaN is returned and
errno may be set to EDOM.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The asin() function will fail if:

EDOM The value x is not ±Inf or NaN and is not in the range [−1,1].

The asin() function may fail if:

EDOM The value of x is ±Inf.

An application wishing to check for error situations should set errno to 0, then call
asin(). If errno is non-zero on return, or the return value is NaN, an error has
occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), matherr(3M), sin(3M), attributes(5), standards(5)

asin(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

28 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

atan2 – arc tangent function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double atan2(double y, double x);

The atan2() function computes the principal value of the arc tangent of y/x, using
the signs of both arguments to determine the quadrant of the return value.

Upon successful completion, atan2() returns the arc tangent of y/x in the range
[−pi,pi] radians. If both arguments are 0.0, 0.0 is returned and errno may be set to
EDOM.

If x or y is NaN, NaN is returned.

In IEEE 754 mode atan2() handles the following exceptional arguments in the spirit
of ANSI/IEEE Std 754-1985.

atan2(±0, x) returns ±0 for x > 0 or x = +0;
atan2(±0, x) returns ±pi for x < 0 or x = −0;
atan2(y, ±0) returns pi/2 for y > 0;
atan2(y, ±0) returns −pi/2 for y < 0;
atan2(±y, Inf) returns ±0 for finite y > 0;
atan2(±Inf, x) returns ±pi/2 for finite x;
atan2(±y, −Inf) returns ±pi for finite y > 0;
atan2(±Inf, Inf) returns ±pi/4;
atan2(±Inf, −Inf) returns ±3pi/4.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The atan2() function may fail if:

EDOM Both arguments are 0.0.

An application wishing to check for error situations should set errno to 0 before
calling atan2(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atan(3M), isnan(3M), matherr(3M), tan(3M), attributes(5), standards(5)

atan2(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 29

atan – arc tangent function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double atan(double x);

The atan() function computes the principal value of the arc tangent of x.

Upon successful completion, atan() returns the arc tangent of x in the range
[−pi/2,pi/2] radians.

If x is NaN, NaN is returned.

If x is ±Inf, ±pi/2 is returned.

No errors will occur.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atan2(3M), isnan(3M), tan(3M), attributes(5)

atan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

30 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

au_open, au_close, au_write – construct and write audit records

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int au_close(int d, int keep, short event);

int au_open(void);

int au_write(int d, token_t *m);

au_open() returns an audit record descriptor to which audit tokens can be written
using au_write(). The audit record descriptor is an integer value that identifies a
storage area where audit records are accumulated.

au_close() terminates the life of an audit record d of type event started by
au_open(). If the keep parameter is zero, the data contained therein is discarded and
the memory used is given up by calling free(3C). Otherwise, the additional
parameters are used to create a header token. Depending on the audit policy
information obtained by auditon(2), additional tokens such as sequence and trailer
tokens may be added to the record. au_close() finally writes the record to the audit
trail by calling audit(2).

au_write() adds the audit token pointed to by m to the audit record identified by
the descriptor d. After this call is made the audit token is no longer available to the
caller.

A successful invocation of au_write() and au_close() will return a 0.

A successful invocation of au_open() returns an audit record descriptor. au_open()
returns −1 if a descriptor could not be allocated. au_write() returns −1 if d is not a
valid descriptor or if audit(2) experienced an error. errno is set to indicate the error.
au_write() will return −1 if d is an invalid descriptor or if m is an invalid token.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bsmconv(1M), audit(2), auditon(2), au_preselect(3BSM), au_to(3BSM),
free(3C), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_open(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 31

au_preselect – preselect an audit event

cc [flag ...] file... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int au_preselect(au_event_t event, au_mask_t *mask_p, int sorf, int
flag);

au_preselect() determines whether or not the audit event event is preselected
against the binary preselection mask pointed to by mask_p (usually obtained by a call
to getaudit(2)). au_preselect() looks up the classes associated with event in
audit_event(4) and compares them with the classes in mask_p. If the classes
associated with event match the classes in the specified portions of the binary
preselection mask pointed to by mask_p, the event is said to be preselected.

sorf indicates whether the comparison is made with the success portion, the failure
portion or both portions of the mask pointed to by mask_p.

The following are the valid values of sorf:

AU_PRS_SUCCESS Compare the event class with the success portion of the
preselection mask.

AU_PRS_FAILURE Compare the event class with the failure portion of the
preselection mask.

AU_PRS_BOTH Compare the event class with both the success and
failure portions of the preselection mask.

flag tells au_preselect() how to read the audit_event(4) database. Upon initial
invocation, au_preselect() reads the audit_event(4) database and allocates
space in an internal cache for each entry with malloc(3C). In subsequent invocations,
the value of flag determines where au_preselect() obtains audit event information.
The following are the valid values of flag:

AU_PRS_REREAD Get audit event information by searching the
audit_event(4) database.

AU_PRS_USECACHE Get audit event information from internal cache created
upon the initial invocation. This option is much faster.

au_preselect() returns:

0 event is not preselected.

1 event is preselected.

−1 An error occurred. au_preselect() couldn’t allocate memory or
couldn’t find event in the audit_event(4) database.

/etc/security/audit_class maps audit class number to audit class
names and descriptions

au_preselect(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

32 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

/etc/security/audit_event maps audit even number to audit event
names and associates

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

bsmconv(1M), getaudit(2), au_open(3BSM), getauclassent(3BSM),
getauevent(3BSM), malloc(3C), audit_class(4), audit_event(4),
attributes(5)

au_preselect() is normally called prior to constructing and writing an audit
record. If the event is not preselected, the overhead of constructing and writing the
record can be saved.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_preselect(3BSM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 33

au_to, au_to_arg, au_to_attr, au_to_data, au_to_groups, au_to_in_addr, au_to_ipc,
au_to_ipc_perm, au_to_iport, au_to_me, au_to_new_in_addr, au_to_new_process,
au_to_new_socket, au_to_new_subject, au_to_opaque, au_to_path, au_to_process,
au_to_return, au_to_socket, au_to_subject, au_to_text – create audit record tokens

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/types.h>
#include <sys/vnode.h>
#include <netinet/in.h>

#include <bsm/libbsm.h>

token_t *au_to_arg(char n, char *text, u_long v);

token_t *au_to_attr(struct vattr *attr);

token_t *au_to_cmd(u_long argc, char **argv, char **envp);

token_t *au_to_data(char unit_print, char unit_type, char unit_count,
char *p);

token_t *au_to_groups(int *groups);

token_t *au_to_in_addr(struct inaddr *internet_addr);

token_t *au_to_new_in_addr(struct inaddr *internet_addr);

token_t *au_to_iport(u_short_t iport);

token_t *au_to_ipc(int id);

token_t *au_to_ipc_perm(struct ipc_perm *perm);

token_t *au_to_iport(u_short_t iport);

token_t *au_to_me(void);

token_t *au_to_newgroups(int n, int *groups);

token_t *au_to_opaque(char *data, short bytes);

token_t *au_to_path(char *path);

token_t *au_to_process(au_id_t auid, uid_t euid, gid_t egid, uid_t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid);

token_t *au_to_new_process(au_id_t auid, uid_t euid, gid_t egid,
uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t
*tid);

token_t *au_to_return(char number, uint_t value);

token_t *au_to_socket(struct socket *so);

token_t *au_to_new_socket(struct socket *so);

token_t *au_to_subject(au_id_t auid, uid_t euid, gid_t egid, uid_t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid);

au_to(3BSM)

NAME

SYNOPSIS

34 man pages section 3: Extended Library Functions • Last Revised 18 Aug 1999

token_t *au_to_new_subject(au_id_t auid, uid_t euid, gid_t egid,
uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t
*tid);

token_t *au_to_text(char *text);

The au_to_arg() function formats the data in v into an ‘‘argument token.’’ The n
argument indicates the argument number. The text argument is a null terminated
string describing the argument.

The au_to_attr() function formats the data pointed to by attr into a ‘‘vnode
attribute token.’’

The au_to_data() function formats the data pointed to by p into an ‘‘arbitrary data
token.’’ The unit_print parameter determines the preferred display base of the data
and is one of AUP_BINARY, AUP_OCTAL, AUP_DECIMAL, AUP_HEX, or AUP_STRING.
The unit_type parameter defines the basic unit of data and is one of AUR_BYTE,
AUR_CHAR, AUR_SHORT, AUR_INT, or AUR_LONG. The unit_count parameter specifies
the number of basic data units to be used and must be positive.

The au_to_groups() function formats the array of 16 integers pointed to by groups
into a ‘‘groups token.’’

The au_to_in_addr() function formats the data pointed to by internet_addr into an
‘‘internet address token.’’

The au_to_new_in_addr() function formats the data pointed to by internet_addr
into an ‘‘internet address token.’’ The internet_addr is one containing an IPv6 IP
address.

The au_to_ipc() function formats the data in the id parameter into an ‘‘interprocess
communications ID token.’’

The au_to_ipc_perm() function formats the data pointed to by perm into an
‘‘interprocess communications permission token.’’

The au_to_iport() function formats the data pointed to by iport into an ‘‘ip port
address token.’’

The au_to_me() function collects audit information from the current process and
creates a ‘‘subject token’’ by calling au_to_subject().

The au_to_newgroups() function formats the array of n integers pointed to by
groups into a ‘‘newgroups token.’’

The au_to_subject() function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), an rgid (real group ID), a pid
(process ID), an sid (audit session ID), an tid (audit terminal ID), into a ‘‘subject token.’’

au_to(3BSM)

DESCRIPTION

Extended Library Functions 35

The au_to_new_subject() function formats an auid (audit user ID), an euid
(effective user ID), an egid (effective group ID), a ruid (real user ID), an rgid (real group
ID), a pid (process ID), an sid (audit session ID), an tid (audit terminal ID), into a
‘‘subject token.’’ The audit terminal ID is one that contains an IPv6 IP address.

The au_to_opaque() function formats the bytes bytes pointed to by data into an
‘‘opaque token.’’ The value of size must be positive.

The au_to_path() function formats the path name pointed to by path into a ‘‘path
token.’’

The au_to_process() function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), a rgid (real group ID), a pid
(process ID), an sid (audit session ID), and a tid (audit terminal ID), into a ‘‘process
token.’’ A process token should be used when the process is the object of an action (ie.
when the process is the receiver of a signal).

The au_to_new_process() function formats an auid (audit user ID), an euid
(effective user ID), an egid (effective group ID), a ruid (real user ID), a rgid (real group
ID), a pid (process ID), an sid (audit session ID), and a tid (audit terminal ID), into a
‘‘process token.’’ A process token should be used when the process is the object of an
action (ie. when the process is the receiver of a signal). The audit terminal ID is one
that contains an IPv6 IP address.

The au_to_return() function formats an error number number and a return value
value into a ‘‘return value token.’’

The au_to_socket() function format the data pointed to by so into a ‘‘socket
token.’’

The au_to_new_socket() function format the data pointed to by so into a ‘‘socket
token.’’ The socket contains IPv6 IP addresses.

The au_to_text() function formats the null-terminated string pointed to by text
into a ‘‘text token.’’

These functions return NULL if memory cannot be allocated to put the resultant token
into, or if an error in the input is detected.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

bsmconv(1M), au_open(3BSM), attributes(5)

au_to(3BSM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

36 man pages section 3: Extended Library Functions • Last Revised 18 Aug 1999

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_to(3BSM)

NOTES

Extended Library Functions 37

au_user_mask – get user’s binary preselection mask

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int au_user_mask(char *username, au_mask_t *mask_p);

au_user_mask() reads the default, system wide audit classes from
audit_control(4), combines them with the per-user audit classes from the
audit_user(4) database, and updates the binary preselection mask pointed to by
mask_p with the combined value.

The audit flags in the flags field of the audit_control(4) database and the
always-audit-flags and never-audit-flags from the audit_user(4) database represent
binary audit classes. These fields are combined by au_preselect(3BSM) as follows:

mask = (flags + always-audit-flags) − never-audit-flags

au_user_mask() only fails if both the both the audit_control(4) and the
audit_user(4) database entries could not be retrieved. This allows for flexible
configurations.

au_user_mask() returns:

0 Success.

−1 Failure. Both the audit_control(4) and the audit_user(4) database
entries could not be retrieved.

/etc/security/audit_control contains default parameters read by the
audit daemon, auditd(1M)

/etc/security/audit_user stores per-user audit event mask

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

login(1), bsmconv(1M), getaudit(2), setaudit(2), au_preselect(3BSM),
getacinfo(3BSM), getauusernam(3BSM), audit_control(4), audit_user(4),
attributes(5)

au_user_mask() should be called by programs like login(1) which set a process’s
preselection mask with setaudit(2). getaudit(2) should be used to obtain audit
characteristics for the current process.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_user_mask(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

38 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

bgets – read stream up to next delimiter

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *bgets(char *buffer, size_t count, FILE *stream, const char
*breakstring);

The bgets() function reads characters from stream into buffer until either count is
exhausted or one of the characters in breakstring is encountered in the stream. The read
data is terminated with a null byte (’\0’) and a pointer to the trailing null is returned.
If a breakstring character is encountered, the last non-null is the delimiter character that
terminated the scan.

Note that, except for the fact that the returned value points to the end of the read
string rather than to the beginning, the call

bgets(buffer, sizeof buffer, stream, "\n");

is identical to

fgets (buffer, sizeof buffer, stream);

There is always enough room reserved in the buffer for the trailing null character.

If breakstring is a null pointer, the value of breakstring from the previous call is used. If
breakstring is null at the first call, no characters will be used to delimit the string.

NULL is returned on error or end-of-file. Reporting the condition is delayed to the next
call if any characters were read but not yet returned.

EXAMPLE 1 Example of the bgets() function.

The following example prints the name of the first user encountered in
/etc/passswd, including a trailing ":"

#include <stdio.h>
#include<libgen.h>

int main()
{

char buffer[8];
FILE *fp;

if ((fp = fopen("/etc/passwd","r")) == NULL) {
perror("/etc/passwd");
return 1;

}
if (bgets(buffer, 8, fp, ":") == NULL) {

perror("bgets");
return 1;

}
(void) puts(buffer);
return 0;

}

bgets(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

Extended Library Functions 39

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gets(3C), attributes(5)

When compiling multithread applications, the _REENTRANT flag must be defined on
the compile line. This flag should only be used in multithreaded applications.

bgets(3GEN)

ATTRIBUTES

SEE ALSO

NOTES

40 man pages section 3: Extended Library Functions • Last Revised 9 May 2001

bufsplit – split buffer into fields

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

size_t bufsplit(char *buf, size_t n, char **a);

bufsplit() examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by TABs or
NEWLINEs.

To change the characters used to separate fields, call bufsplit() with buf pointing to
the string of characters, and n and a set to zero. For example, to use colon (:), period
(.), and comma (,), as separators along with TAB and NEWLINE:

bufsplit (":.,\t\n", 0, (char**)0);

The number of fields assigned in the array a. If buf is zero, the return value is zero and
the array is unchanged. Otherwise the value is at least one. The remainder of the
elements in the array are assigned the address of the null byte at the end of the buffer.

EXAMPLE 1 Example of bufsplit() function.

/*
* set a[0] = "This", a[1] = "is", a[2] = "a",
* a[3] = "test"
*/

bufsplit("This\tis\ta\ttest\n", 4, a);

bufsplit() changes the delimiters to null bytes in buf.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

bufsplit(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

NOTES

ATTRIBUTES

SEE ALSO

Extended Library Functions 41

cbrt – cube root function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double cbrt(double x);

The cbrt() function computes the cube root of x.

On successful completion, cbrt() returns the cube root of x. If x is NaN, cbrt()
returns NaN.

No errors will occur.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

cbrt(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

42 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

ceil – ceiling value function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double ceil(double x);

The ceil() function computes the smallest integral value not less than x.

Upon successful completion, ceil() returns the smallest integral value not less than
x, expressed as a type double.

If x is NaN, NaN is returned.

If x is ±Inf or ±0, x is returned.

No errors will occur.

The integral value returned by ceil() as a double may not be expressible as an int
or long int. The return value should be tested before assigning it to an integer type
to avoid the undefined results of an integer overflow.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

floor(3M), isnan(3M), attributes(5)

ceil(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 43

config_admin, config_change_state, config_private_func, config_test, config_stat,
config_list, config_list_ext, config_ap_id_cmp, config_unload_libs, config_strerror –
configuration administration interface

cc [flag] file -lcfgadm [library...]

#include <config_admin.h>

cfga_err_t config_change_state(cfga_cmd_t state_change_cmd, int
num_ap_ids, char * const *ap_ids, const char *options, struct
cfga_confirm *confp, struct cfga_msg *msgp, char **errstring,
cfga_flags_t flags);

cfga_err_t config_private_func(const char *function, int num_ap_ids,
char * const *ap_ids, const char *options, struct cfga_confirm
*confp, struct cfga_msg *msgp, char **errstring, cfga_flags_t
flags);

cfga_err_t config_test(int num_ap_ids, char * const *ap_ids, const
char *options, struct cfga_msg *msgp, char **errstring,
cfga_flags_t flags);

cfga_err_t config_list_ext(int num_ap_ids, char * const *ap_ids,
struct cfga_list_data **ap_id_list, int *nlist, const char *options,
const char *listops, char **errstring, cfga_flags_t flags);

int config_ap_id_cmp(const cfga_ap_id_t ap_id1, const cfga_ap_id_t
ap_id2);

void config_unload_libs(void);

const char *config_strerror(cfga_err_t cfgerrnum);

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err_t config_stat(int num_ap_ids, char * const *ap_ids, struct
cfga_stat_data *buf, const char *options, char **errstring);

cfga_err_t config_list(struct cfga_stat_data **ap_id_list, int *nlist,
const char *options, char **errstring);

The config_admin library is a generic interface that is used for dynamic
configuration, (DR). Each piece of hardware that supports DR must supply a
hardware-specific plugin library that contains the entry points listed in this subsection.
The generic library will locate and link to the appropriate library to effect DR
operations. The interfaces specified in this subsection are really "hidden" from users of
the generic libraries. It is, however, necessary that writers of the hardware-specific
plug in libraries know what these interfaces are.

cfga_err_t cfga_change_state(cfga_cmd_t state_change_cmd, const char
*ap_id, const char *options, struct cfga_confirm *confp, struct
cfga_msg *msgp, char **errstring, cfga_flags_t flags);

config_admin(3CFGADM)

NAME

SYNOPSIS

Deprecated
Interfaces

HARDWARE
DEPENDENT

LIBRARY
SYNOPSIS

44 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2001

cfga_err_t cfga_private_func(const char *function, const char *ap_id,
const char *options, struct cfga_confirm *confp, struct cfga_msg
*msgp, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_test(const char *ap_id, const char *options, struct
cfga_msg *msgp, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_list_ext(const char *ap_id, struct cfga_list_data
**ap_id_list, int *nlist, const char *options, const char *listopts,
char **errstring, cfga_flags_t flags);

cfga_err_t cfga_help(struct cfga_msg *msgp, const char *options,
cfga_flags_t flags);

int cfga_ap_id_cmp(const cfga_ap_id_t ap_id1, const cfga_ap_id_t
ap_id2);

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err_t cfga_stat(const char *ap_id, struct cfga_stat_data *buf,
const char *options, char **errstring);

cfga_err_t cfga_list(const char *ap_id, struct cfga_stat_data
**ap_id_list, int *nlist, const char *options, char **errstring);

The config_*() functions provide a hardware independent interface to
hardware-specific system configuration administration functions. The cfga_*()
functions are provided by hardware-specific libraries that are dynamically loaded to
handle configuration administration functions in a hardware-specific manner.

The libcfgadm library is used to provide the services of the cfgadm(1M) command.
The hardware-specific libraries are located in
/usr/platform/${machine}/lib/cfgadm,
/usr/platform/${arch}/lib/cfgadm, and /usr/lib/cfgadm. The
hardware-specific library names are derived from the driver name or from class names
in device tree nodes that identify attachment points.

The config_change_state() function performs operations that change the state of
the system configuration. The state_change_cmd argument can be one of the following:
CFGA_CMD_INSERT, CFGA_CMD_REMOVE, CFGA_CMD_DISCONNECT,
CFGA_CMD_CONNECT, CFGA_CMD_CONFIGURE, or CFGA_CMD_UNCONFIGURE. The
state_change_cmd CFGA_CMD_INSERT is used to prepare for manual insertion or to
activate automatic hardware insertion of an occupant. The state_change_cmd
CFGA_CMD_REMOVE is used to prepare for manual removal or activate automatic
hardware removal of an occupant. The state_change_cmd CFGA_CMD_DISCONNECT is
used to disable normal communication to or from an occupant in a receptacle. The
state_change_cmd CFGA_CMD_CONNECT is used to enable communication to or from an
occupant in a receptacle. The state_change_cmd CFGA_CMD_CONFIGURE is used to
bring the hardware resources contained on, or attached to, an occupant into the realm
of Solaris, allowing use of the occupant’s hardware resources by the system. The
state_change_cmd CFGA_CMD_UNCONFIGURE is used to remove the hardware resources

config_admin(3CFGADM)

Deprecated
Interfaces

DESCRIPTION

Extended Library Functions 45

contained on, or attached to, an occupant from the realm of Solaris, disallowing
further use of the occupant’s hardware resources by the system.

The flags argument may contain one or both of the defined flags, CFGA_FLAG_FORCE
and CFGA_FLAG_VERBOSE. If the CFGA_FLAG_FORCE flag is asserted certain safety
checks will be overridden. For example, this may not allow an occupant in the failed
condition to be configured, but might allow an occupant in the failing condition to be
configured. Acceptance of a force is hardware dependent. If the
CFGA_FLAG_VERBOSE flag is asserted hardware-specific details relating to the
operation are output utilizing the cfga_msg mechanism.

The config_private_func() function invokes private hardware-specific functions.

The config_test() function is used to initiate testing of the specified attachment
point.

The num_ap_ids argument specifies the number of ap_ids in the ap_ids array. The ap_ids
argument points to an array of ap_ids.

The ap_id argument points to a single ap_id.

The function and options strings conform to the getsubopt(3C) syntax convention and
are used to supply hardware-specific function or option information. No generic
hardware-independent functions or options are defined.

The cfga_confirm structure referenced by confp provides a call-back interface to get
permission to proceed should the requested operation require, for example, a
noticeable service interruption. The cfga_confirm structure includes the following
members:

int (*confirm)(void *appdata_ptr, const char *message);
void *appdata_ptr;

The confirm() function is called with two arguments: the generic pointer appdata_ptr
and the message detailing what requires confirmation. The generic pointer appdata_ptr
is set to the value passed in in the cfga_confirm structure member appdata_ptr
and can be used in a graphical user interface to relate the confirm function call to the
config_* call. The confirm function should return 1 to allow the operation to
proceed and 0 otherwise.

The cfga_msg structure referenced by msgp provides a call-back interface to output
messages from a hardware-specific library. In the presence of the
CFGA_FLAG_VERBOSE flag, these messages can be informational; otherwise they are
restricted to error messages. The cfga_msg structure includes the following members:

void (*message_routine)(void *appdata_ptr, const char *message);
void *appdata_ptr;

The message_routine() function is called with two arguments: the generic pointer
appdata_ptr and the message. The generic pointer appdata_ptr is set to the value passed

config_admin(3CFGADM)

46 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2001

in in the cfga_confirm structure member appdata_ptr and can be used in a
graphical user interface to relate the message_routine() function call to the
config_*() call. The messages must be in the native language specified by the
LC_MESSAGES locale category; see setlocale(3C).

For some generic errors a hardware-specific error message can be returned. The
storage for the error message string, including the terminating null character, is
allocated by the config_* functions using malloc(3C) and a pointer to this storage
returned through errstring. If errstring is NULL no error message will be generated or
returned. If errstring is not NULL and no error message is generated, the pointer
referenced by errstring will be set to NULL. It is the responsibility of the function
calling config_*() to deallocate the returned storage using free(3C). The error
messages must be in the native language specified by the LC_MESSAGES locale
category; see setlocale(3C).

The config_list_ext() function provides the listing interface. When supplied
with a list of ap_ids through the first two arguments, it returns an array of
cfga_list_data_t structures for each attachment point specified. If the first two
arguments are 0 and NULL respectively, then all attachment points in the device tree
will be listed. Additionally, dynamic expansion of an attachment point to list dynamic
attachment points may also be requested by passing the CFGA_FLAG_LIST_ALL flag
through the flags argument. Storage for the returned array of stat structures is
allocated by the config_list_ext() function using malloc(3C). This storage must
be freed by the caller of config_list_ext() by using free(3C).

The cfga_list_data structure includes the following members:

cfga_log_ext_t ap_log_id; /* Attachment point logical id */
cfga_phys_ext_t ap_phys_id; /* Attachment point physical id */
cfga_class_t ap_class; /* Attachment point class */
cfga_stat_t ap_r_state; /* Receptacle state */
cfga_stat_t ap_o_state; /* Occupant state */
cfga_cond_t ap_cond; /* Attachment point condition */
cfga_busy_t ap_busy; /* Busy indicator */
time_t ap_status_time; /* Attachment point last change*/
cfga_info_t ap_info; /* Miscellaneous information */

cfga_type_t ap_type; /* Occupant type */

The types are defined as follows:

typedef char cfga_log_ext_t[CFGA_LOG_EXT_LEN];
typedef char cfga_phys_ext_t[CFGA_PHYS_EXT_LEN];
typedef char cfga_class_t[CFGA_CLASS_LEN];
typedef char cfga_info_t[CFGA_INFO_LEN];
typedef char cfga_type_t[CFGA_TYPE_LEN];
typedef enum cfga_cond_t;
typedef enum cfga_stat_t;
typedef enum cfga_busy_t;

typedef int cfga_flags_t;

The listopts argument to config_list_ext() conforms to the getsubopt (3C)
syntax and is used to pass listing sub-options. Currently, only the sub-option

config_admin(3CFGADM)

Extended Library Functions 47

class=class_name is supported. This list option restricts the listing to attachment
points of class class_name.

The listopts argument to cfga_list_ext() is reserved for future use.
Hardware-specific libraries should ignore this argument if it is NULL. If listopts is not
NULL and is not supported by the hardware-specific library, an appropriate error code
should be returned.

The ap_log_id and the ap_phys_id members give the hardware-specific logical
and physical names of the attachment point. The ap_busy memberd indicates activity
is present that may result in changes to state or condition. The ap_status_time
member provides the time at which either the ap_r_state, ap_o_state, or
ap_cond field of the attachment point last changed. The ap_info member is
available for the hardware-specific code to provide additional information about the
attachment point. The ap_class member contains the attachment point class (if any)
for an attachment point. The ap_class member is filled in by the generic library. If
the ap_log_id and ap_phys_id members are not filled in by the hardware-specific
library, the generic library will fill in these members using a generic format. The
remaining members are the responsibility of the corresponding hardware-tospecific
library.

The ap_log_id, ap_phys_id, ap_info, ap_class, and ap_type members are
fixed-length strings. If the actual string is shorter than the size of the member, it will
be null-terminated. Because of this, programs should not rely on there being a
terminating null character. When printing these fields, the following format is
suggested:

printf("%.*s", sizeof(p->ap_log_id), p->ap_log_id);

The config_stat(), config_list(), cfga_stat(), and cfga_list()
functions and the cfga_stat_data data structure are deprecated interfaces and are
provided solely for backward compatibility. Use of these interfaces is strongly
discouraged.

The config_ap_id_cmp function performs a hardware dependent comparison on
two ap_ids, returning an equal to, less than or greater than indication in the manner of
strcmp(3C). Each argument is either a cfga_ap_id_t or can be a null-terminated
string. This function can be used when sorting lists of ap_ids, for example with
qsort(3C), or when selecting entries from the result of a config_list function call.

The config_unload_libs function unlinks all previously loaded hardware-specific
libraries.

The config_strerror function can be used to map an error return value to an error
message string. See RETURN VALUES. The returned string should not be overwritten.
config_strerror returns NULL if cfgerrnum is out-of-range.

config_admin(3CFGADM)

48 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2001

The cfga_help function can be used request that a hardware-specific library output
it’s localized help message.

The config_*() and cfga_*() functions return the following values. Additional
error information may be returned through errstring if the return code is not CFGA_OK.
See DESCRIPTION for details.

CFGA_BUSY The command was not completed due to an
element of the system configuration
administration system being busy.

CFGA_ATTR_INVAL No attachment points with the specified
attributes exists

CFGA_ERROR An error occurred during the processing of
the requested operation. This error code
includes validation of the command
arguments by the hardware-specific code.

CFGA_INSUFFICIENT_CONDITION Operation failed due to attachment point
condition.

CFGA_INVAL The system configuration administration
operation requested is not supported on the
specified attachment point.

CFGA_LIB_ERROR A procedural error occurred in the library,
including failure to obtain process resources
such as memory and file descriptors.

CFGA_NACK The command was not completed due to a
negative acknowledgement from the
confp->confirm function.

CFGA_NO_LIB A hardware-specific library could not be
located using the supplied ap_id.

CFGA_NOTSUPP System configuration administration is not
supported on the specified attachment
point.

CFGA_OK The command completed as requested.

CFGA_OPNOTSUPP System configuration administration
operation is not supported on this
attachment point.

CFGA_PRIV The caller does not have the required
process privileges. For example, if
configuration administration is performed
through a device driver, the permissions on
the device node would be used to control
access.

config_admin(3CFGADM)

RETURN VALUES

Extended Library Functions 49

CFGA_SYSTEM_BUSY The command required a service
interruption and was not completed due to
a part of the system that could not be
quiesced.

Many of the errors returned by the system configuration administration functions are
hardware-specific. The strings returned in errstring may include the following:

attachment point ap_id not known
The attachment point detailed in the error message does not exist.

unknown hardware option option for operation
An unknown option was encountered in the options string.

hardware option option requires a value
An option in the options string should have been of the form option=value.

listing option list_option requires a value
An option in the listopts string should have been of the form option=value.

hardware option option does not require a value
An option in the options string should have been a simple option.

attachment point ap_id is not configured
A config_change_state command to CFGA_CMD_UNCONFIGURE an occupant was
made to an attachment point whose occupant was not in the
CFGA_STAT_CONFIGURED state.

attachment point ap_id is not unconfigured
A config_change_state command requiring an unconfigured occupant was made to
an attachment point whose occupant was not in the CFGA_STAT_UNCONFIGURED
state.

attachment point ap_id condition not satisfactory
A config_change_state command was made to an attachment point whose condition
prevented the operation.

attachment point ap_id in condition condition cannot be used
A config_change_state operation with force indicated was directed to an attachment
point whose condition fails the hardware dependent test.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu, SUNWkvm

MT-Level Safe

config_admin(3CFGADM)

ERRORS

ATTRIBUTES

50 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2001

cfgadm(1M), devinfo(1M), dlopen(3DL), dlsym(3DL), free(3C), getsubopt(3C),
malloc(3C), qsort(3C), setlocale(3C), strcmp(3C), libcfgadm(3LIB),
attributes(5)

Applications using this library should be aware that the underlying implementation
may use system services which alter the contents of the external variable errno and
may use file descriptor resources.

The following code shows the intended error processing when config_*() returns a
value other than CFGA_OK:

void
emit_error(int cfgerrnum, char *estrp)
{

const char *ep;
ep = config_strerror(cfgerrnum);
if (ep == NULL)

ep = gettext("configuration administration unknown error");
if (estrp != NULL && *estrp != ’\0’) {

(void) fprintf(stderr, "%s: %s\n", ep, estrp);
} else {

(void) fprintf(stderr, "%s\n", ep);
}
if (estrp != NULL)

free((void *)estrp);

}

Reference should be made to the Hardware Specific Guide for details of System
Configuration Administration support.

config_admin(3CFGADM)

SEE ALSO

NOTES

Extended Library Functions 51

ConnectToServer – connect to a DMI service provider

cc [flag ...] file ... -ldmici -ldmimi [library ...]

#include <dmi/api.hh>

bool_t ConnectToServer(ConnectI *argp, DmiRpcHandle *dmi_rpc_handle);

The ConnectToServer() function enables a management application or a
component instrumentation to connect to a DMI service provider.

The argp parameter is an input parameter that uses the following data structure:

struct ConnectIN {
char *host;
const char *nettype;
ServerType servertype;
RpcType rpctype;

}

The host member indicates the host on which the service provider is running. The
default is localhost.

The nettype member specifies the type of transport RPC uses. The default is netpath.

The servertype member indicates whether the connecting process is a management
application or a component instrumentation.

The rpctype member specifies the type of RPC, either ONC or DCE. Only ONC is
supported in the Solaris 7 release.

The dmi_rpc_handle parameter is the output parameter that returns DMI RPC handle.

The ConnectToServer() function returns TRUE if successful, otherwise FALSE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Safe

DisconnectToServer(3DMI),attributes(5)

ConnectToServer(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

52 man pages section 3: Extended Library Functions • Last Revised 4 Aug 1998

copylist – copy a file into memory

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *copylist(const char *filenm, off_t *szptr);

The copylist() function copies a list of items from a file into freshly allocated
memory, replacing new-lines with null characters. It expects two arguments: a pointer
filenm to the name of the file to be copied, and a pointer szptr to a variable where the
size of the file will be stored.

Upon success, copylist() returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc(), or reading the file.

The copylist() function has a transitional interface for 64-bit file offsets. See
lf64(5).

EXAMPLE 1 Example of copylist() function.

/* read "file" into buf */
off_t size;
char *buf;
buf = copylist("file", &size);
if (buf) {

for (i=0; i<size; i++)
if (buf[i])

putchar(buf[i]);
else

putchar(’\n’);
}

} else {
fprintf(stderr, "%s: Copy failed for "file".\n", argv[0]);
exit (1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

malloc(3C), attributes(5), lf64(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

copylist(3GEN)

NAME

SYNOPSIS

DESCRIPTION

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 53

copysign – return magnitude of first argument and sign of second argument

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double copysign(double x, double y);

The copysign() function returns a value with the magnitude of x and the sign of y.
It produces a NaN with the sign of y if x is a NaN.

The copysign() function returns a value with the magnitude of x and the sign of y.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

copysign(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

54 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

cos – cosine function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double cos(double x);

The cos() function computes the cosine of x, measured in radians.

Upon successful completion, cos() returns the cosine of x.

If x is NaN or ±Inf, NaN is returned.

No errors will occur.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

acos(3M), isnan(3M), sin(3M), tan(3M), attributes(5)

cos(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 55

cosh – hyperbolic cosine function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double cosh(double x);

The cosh() function computes the hyperbolic cosine of x.

Upon successful completion, cosh() returns the hyperbolic cosine of x.

If the result would cause an overflow, HUGE_VAL is returned and errno is set to
ERANGE.

If x is NaN, NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The cosh() function will fail if:

ERANGE The result would cause an overflow.

An application wishing to check for error situations should set errno to 0 before
calling cosh(). If errno is non-zero on return, or the returned value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

acosh(3M), isnan(3M), matherr(3M), sinh(3M), tanh(3M), attributes(5),
standards(5)

cosh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

56 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

cpc – hardware performance counters

The UltraSPARC and Pentium microprocessor families contain hardware performance
counters that allow the measurement of many different hardware events related to
CPU behavior, including instruction and data cache misses as well as various internal
states of the processor. More recent processors allow a variety of events to be captured.
The counters can be configured to count user events or system events, or both. The
two processor families currently share the restriction that only two event types can be
measured simultaneously.

UltraSPARC III and Pentium II processors are able to generate an interrupt on counter
overflow, allowing the counters to be used for various forms of profiling.

This manual page describes a set of APIs that allow Solaris applications to use these
counters. Applications can measure their own behavior, the behavior of other
applications, or the behavior of the whole system.

There are two principal models for using these performance counters. Some users of
these statistics wish to observe system-wide behavior; others wish to view the
performance counters as part of the register set exported by each LWP. On a machine
performing more than one activity, these two models are in conflict because the
counters represent a critical hardware resource that cannot simultaneously be both
shared and private.

To fully support the two-level threads model in Solaris, it would be necessary to
virtualize the performance counters to each thread. This version of the library does not
allow per-thread data to be captured unless bound threads are used. Even without
bound threads, however, the counters can still be used to assess aggregate program
behavior.

Although some events are common to all processors, it is apparent that the counters
expose a great deal of the specific implementation details of the processor architecture.
For this reason, events are specified by name using a string-based hardware event
specification language. The values of the tokens in the language vary from processor
model to processor model, and can only be interpreted with reference to the relevant
hardware documentation. The functions provided to specify the strings use
environment variables or arguments so that the names do not have to be compiled in
applications, thus extending their longevity and portability across platforms and
processor generations.

The following configuration interfaces are provided:

cpc_version(3CPC) check the version the application was compiled with
against the version of the library

cpc_getcpuver(3CPC) determine the performance counter version of the
current CPU

cpc_getcciname(3CPC) return the corresponding printable string to describe
that interface

cpc(3CPC)

NAME

DESCRIPTION

Shared counters or
private counters?

Generic or specific
events?

Configuration
Interfaces

Extended Library Functions 57

cpc_getnpic(3CPC) return the number of valid counter registers in the
cpc_event(3CPC) data structure

cpc_getcpuref(3CPC) return a reference to the corresponding processor
documentation

Performance counters can be present in hardware but not acccessible because either
some of the necessary system software components are not available or not installed,
or the counters may be in use by other processes. The cpc_access(3CPC) function
determines the accessibility of the counters and should be invoked before any attempt
to program the counters.

Events are specified using a getsubopt(3C)-style language for both the events and
the additional control bits that determine what causes the counters to increment. The
cpc_strtoevent() function translates a string to an event specification which can
then be used to program the counters.The cpc_eventtostr() function returns the
canonical form of the string that corresponds to a particular event. The
cpc_getusage(3CPC) function returns a string that specifies the syntax of the string,
while cpc_walk_names(3CPC) allows the caller to apply a function to each possible
event supported on the relevant processor.

Each processor on the system possesses its own set of performance counter registers.
For a single process, it is often desirable to maintain the illusion that the counters are
an intrinsic part of that process (whichever processors it runs on), since this allows the
events to be directly attributed to the process without having to make passive all other
activity on the system.

To achieve this behavior, the library associates performance counter context with each
LWP in the process; the context consists of a small amount of kernel memory to hold
the counter values when the LWP is not running, and some simple kernel functions to
save and restore those counter values from and to the hardware registers when the
LWP performs a normal context switch. A process can only observe and manipulate its
own copy of the performance counter control and data registers.

Though applications can be modified to instrument themselves as demonstrated
above, it is frequently useful to be able to examine the behavior of an existing
application without changing the source code. A separate library, libpctx, provides a
simple set of interfaces that use the facilities of proc(4) to control a target process, and
together with functions in libcpc, allow truss-like tools to be constructed to
measure the performance counters in other applications. An example of one such
application is cputrack(1).

The functions in libpctx are independent of those in libcpc. These functions
manage a process using an event-loop paradigm — that is, the execution of certain
system calls by the controlled process cause the library to stop the controlled process
and execute callback functions in the context of the controlling process. These handlers
can perform various operations on the target process using APIs in libpctx and
libcpc that consume pctx_t handles.

cpc(3CPC)

Performance
Counter Access

Programming
events

Performance
counter context

Performance
Counters In Other

Processes

58 man pages section 3: Extended Library Functions • Last Revised 18 Mar 2001

cputrack(1), cpustat(1M), cpc_access(3CPC), cpc_bind_event(3CPC),
cpc_count_usr_events(3CPC), cpc_pctx_bind_event(3CPC),
cpc_event(3CPC), cpc_event_diff(3CPC), cpc_getcpuver(3CPC),
cpc_seterrfn(3CPC), cpc_shared_bind_event(3CPC),
cpc_strtoevent(3CPC), cpc_version(3CPC), pctx_capture(3CPC),
pctx_set_events(3CPC), proc(4).

cpc(3CPC)

SEE ALSO

Extended Library Functions 59

cpc_access – test access CPU performance counters

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_access(void);

Access to CPU performance counters is possible only on systems where the
appropriate hardware exists and is correctly configured. The cpc_access() function
must be used to determine if the hardware exists and is accessible on the platform
before any of the interfaces that use the counters are invoked.

When the hardware is available, access to the per-process counters is always allowed
to the process itself, and allowed to other processes mediated using the existing
security mechanisms of /proc.

Upon successful completion, cpc_access() returns 0. Otherwise, it returns −1 and
sets errno to indicate the error.

By default, two common errno values are decoded and cause the library to print an
error message using its reporting mechanism. See cpc_seterrfn(3CPC) for a
description of how this behavior can be modified.

The cpc_access() function will fail if:

EAGAIN Another process may be sampling system-wide CPU statistics.

ENOSYS CPU performance counters are inaccessible on this machine. This
error can occur when the machine supports CPU performance
counters, but some software components are missing. Check to see
that all CPU Performance Counter packages have been correctly
installed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

cpc(3CPC), cpc_seterrfn(3CPC), proc(4), attributes(5)

cpc_access(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

60 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

cpc_bind_event, cpc_take_sample, cpc_rele – use CPU performance counters on lwps

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_bind_event(cpc_event_t *event, int flags);

int cpc_take_sample(cpc_event_t *event);

int cpc_rele(void);

Once the events to be sampled have been selected using, for example,
cpc_strtoevent(3CPC), the event selections can be bound to the calling LWP using
cpc_bind_event(). If cpc_bind_event() returns successfully, the system has
associated performance counter context with the calling LWP. The context allows the
system to virtualize the hardware counters to that specific LWP, and the counters are
enabled.

Two flags are defined that can be passed into the routine to allow the behavior of the
interface to be modified, as described below.

Counter values can be sampled at any time by calling cpc_take_sample(), and
dereferencing the fields of the ce_pic[] array returned. The ce_hrt field contains the
timestamp at which the kernel last sampled the counters.

To immediately remove the performance counter context on an LWP, the cpc_rele()
interface should be used. Otherwise, the context will be destroyed after the LWP or
process exits.

The caller should take steps to ensure that the counters are sampled often enough to
avoid the 32-bit counters wrapping. The events most prone to wrap are those that
count processor clock cycles. If such an event is of interest, sampling should occur
frequently so that less than 4 billion clock cycles can occur between samples.
Practically speaking, this is only likely to be a problem for otherwise idle systems, or
when processes are bound to processors, since normal context switching behavior will
otherwise hide this problem.

Upon successful completion, cpc_bind_event() and cpc_take_sample() return
0. Otherwise, these functions return −1, and set errno to indicate the error.

The cpc_bind_event() and cpc_take_sample() functions will fail if:

EFAULT The event argument specifies a bad address.

ENOTSUP The caller has attempted an operation that is illegal or not
supported on the current platform, such as attempting to specify
signal delivery on counter overflow on a CPU that doesn’t
generate an interrupt on counter overflow.

EAGAIN Another process may be sampling system-wide CPU statistics. For
cpc_bind_event(), this implies that no new contexts can be
created. For cpc_take_sample(), this implies that the

cpc_bind_event(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 61

performance counter context has been invalidated and must be
released with cpc_rele(). Robust programs should be coded to
expect this behavior and recover from it by releasing the now
invalid context by calling cpc_rele() sleeping for a while, then
attempting to bind and sample the event once more.

EINVAL The cpc_take_sample() function has been invoked before the
context is bound.

Prior to calling cpc_bind_event(), applications should call cpc_access(3CPC) to
determine if the counters are accessible on the system.

EXAMPLE 1 Use hardware performance counters to measure events in a process.

The example below shows how a standalone program can be instrumented with the
libcpc routines to use hardware performance counters to measure events in a
process. The program performs 20 iterations of a computation, measuring the counter
values for each iteration. By default, the example makes the counters measure external
cache references and external cache hits; these options are only appropriate for
UltraSPARC processors. By setting the PERFEVENTS environment variable to other
strings (a list of which can be gleaned from the -h flag of the cpustat or cputrack
utilities), other events can be counted. The error() routine below is assumed to be a
user-provided routine analogous to the familiar printf(3C) routine from the C
library but which also performs an exit(2) after printing the message.

#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <libcpc.h>
int
main(int argc, char *argv[])
{
int cpuver, iter;
char *setting = NULL;
cpc_event_t event;

if (cpc_version(CPC_VER_CURRENT) != CPC_VER_CURRENT)
error("application:library cpc version mismatch!");

if ((cpuver = cpc_getcpuver()) == -1)
error("no performance counter hardware!");

if ((setting = getenv("PERFEVENTS")) == NULL)
setting = "pic0=EC_ref,pic1=EC_hit";

if (cpc_strtoevent(cpuver, setting, &event) != 0)
error("can’t measure ’%s’ on this processor", setting);

setting = cpc_eventtostr(&event);

if (cpc_access() == -1)
error("can’t access perf counters: %s", strerror(errno));

cpc_bind_event(3CPC)

USAGE

EXAMPLES

62 man pages section 3: Extended Library Functions • Last Revised 20 Mar 2001

EXAMPLE 1 Use hardware performance counters to measure events in a process.
(Continued)

if (cpc_bind_event(&event, 0) == -1)
error("can’t bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {
cpc_event_t before, after;

if (cpc_take_sample(&before) == -1)
break;

/* ==> Computation to be measured goes here <== */

if (cpc_take_sample(&after) == -1)
break;

(void) printf("%3d: %" PRId64 " %" PRId64 "\n", iter,
after.ce_pic[0] - before.ce_pic[0],
after.ce_pic[1] - before.ce_pic[1]);

}

if (iter != 20)
error("can’t sample ’%s’: %s", setting, strerror(errno));

free(setting);
return (0);

}

EXAMPLE 2 Write a signal handler to catch overflow signals.

This example builds on Example 1, but demonstrates how to write the signal handler
to catch overflow signals. The counters are preset so that counter zero is 1000 counts
short of overflowing, while counter one is set to zero. After 1000 counts on counter
zero, the signal handler will be invoked.

First the signal handler:

#definePRESET0 (UINT64_MAX - 999ull)
#definePRESET1 0
void
emt_handler(int sig, siginfo_t *sip, void *arg)
{
ucontext_t *uap = arg;
cpc_event_t sample;

if (sig != SIGEMT || sip->si_code != EMT_CPCOVF) {
psignal(sig, "example");
psiginfo(sip, "example");
return;

}

(void) printf("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\n",
_lwp_self(), (void *)sip->si_addr,
(void *)uap->uc_mcontext.gregs[PC],
(void *)uap->uc_mcontext.gregs[USP]);

cpc_bind_event(3CPC)

Extended Library Functions 63

EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)

if (cpc_take_sample(&sample) == -1)
error("can’t sample: %s", strerror(errno));

(void) printf("0x%" PRIx64 " 0x%" PRIx64 "\n",
sample.ce_pic[0], sample.ce_pic[1]);

(void) fflush(stdout);

sample.ce_pic[0] = PRESET0;
sample.ce_pic[1] = PRESET1;
if (cpc_bind_event(&sample, CPC_BIND_EMT_OVF) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));
}

and second the setup code (this can be placed after the code that selects the event to be
measured):

struct sigaction act;
cpc_event_t event;
...
act.sa_sigaction = emt_handler;
bzero(&act.sa_mask, sizeof (act.sa_mask));
act.sa_flags = SA_RESTART|SA_SIGINFO;
if (sigaction(SIGEMT, &act, NULL) == -1)

error("sigaction: %s", strerror(errno));
event.ce_pic[0] = PRESET0;
event.ce_pic[1] = PRESET1;
if (cpc_bind_event(&event, CPC_BIND_EMT_OVF) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {
/* ==> Computation to be measured goes here <== */

}

cpc_bind_event(NULL, 0); /* done */

Note that a more general version of the signal handler would use write(2) directly
instead of depending on the signal-unsafe semantics of stderr and stdout. Most
real signal handlers will probably do more with the samples than just print them out.

Sometimes, even the overhead of performing a system call will be too disruptive to the
events being measured. Once a call to cpc_bind_event() has been issued, it is
possible to directly access the performance hardware registers from within the
application. If the performance counter context is active, then the counters will count
on behalf of the current LWP.

rd %pic, %rN ! All UltraSPARC
wr %rN, %pic ! (ditto, but see text)

rdpmc ! Pentium II only

cpc_bind_event(3CPC)

NOTES

SPARC

IA

64 man pages section 3: Extended Library Functions • Last Revised 20 Mar 2001

If the counter context is not active or has been invalidated, the %pic register (SPARC),
and the rdpmc instruction (Pentium) will become unavailable.

Note that the two 32-bit UltraSPARC performance counters are kept in the single
64-bit %pic register so a couple of additional instructions are required to separate the
values. Also note that when the %pcr register bit has been set that configures the %pic
register as readable by an application, it is also writable. Any values written will be
preserved by the context switching mechanism.

Pentium II processors support the non-privileged rdpmc instruction which requires
[5] that the counter of interest be specified in %ecx, and returns a 40-bit value in the
%edx:%eax register pair. There is no non-privileged access mechanism for Pentium I
processors.

As described above, when counting events, some processors allow their counter
registers to silently overflow. More recent CPUs such as UltraSPARC III and Pentium
II, however, are capable of generating an interrupt when the hardware counter
overflows. Some processors offer more control over when interrupts will actually be
generated. For example, they might allow the interrupt to be programmed to occur
when only one of the counters overflows. See cpc_strtoevent(3CPC) for the
syntax.

The most obvious use for this facility is to ensure that the full 64-bit counter values are
maintained without repeated sampling. However, current hardware does not record
which counter overflowed. A more subtle use for this facility is to preset the counter to
a value to a little less than the maximum value, then use the resulting interrupt to
catch the counter overflow associated with that event. The overflow can then be used
as an indication of the frequency of the occurrence of that event.

Note that the interrupt generated by the processor may not be particularly precise.
That is, the particular instruction that caused the counter overflow may be earlier in
the instruction stream than is indicated by the program counter value in the ucontext.

When cpc_bind_event() is called with the CPC_BIND_EMT_OVF flag set, then as
before, the control registers and counters are preset from the 64-bit values contained in
event. However, when the flag is set, the kernel arranges to send the calling process a
SIGEMT signal when the overflow occurs, with the si_code field of the
corresponding siginfo structure set to EMT_CPCOVF, and the si_addr field is the
program counter value at the time the overflow interrupt was delivered. Counting,
and thus the subsequent delivery of the signal on overflow is disabled until the next
call to cpc_bind_event(). Even in a multithreaded process, during execution of the
signal handler, the thread behaves as if it is temporarily bound to the running LWP.

Different processors have different counter ranges available, though all processors
supported by Solaris allow at least 31 bits to be specified as a counter preset value;
thus portable preset values lie in the range UINT64_MAX to
UINT64_MAX−INT32_MAX.

cpc_bind_event(3CPC)

Handling counter
overflow

Extended Library Functions 65

The appropriate preset value will often need to be determined experimentally.
Typically, it will depend on the event being measured, as well as the desire to
minimize the impact of the act of measurement on the event being measured; less
frequent interrupts and samples lead to less perturbation of the system.

If the processor cannot detect counter overflow, this call will fail (ENOTSUP).
Specifying a null event unbinds the context from the underlying LWP and disables
signal delivery. Currently, only user events can be measured using this technique. See
Example 2, above.

By default, the library binds the performance counter context to the current LWP only.
If the CPC_BIND_LWP_INHERIT flag is set, then any subsequent LWPs created by that
LWP will automatically inherit the same performance counter context. The counters
will be initialized to 0 as if a cpc_bind_event() had just been issued. This
automatic inheritance behavior can be useful when dealing with multithreaded
programs to determine aggregate statistics for the program as a whole.

If the CPC_BIND_EMT_OVF flag is also set, the process will immediately dispatch a
SIGEMT signal to the freshly created LWP so that it can preset its counters
appropriately on the new LWP. This initialization condition can be detected using
cpc_take_sample() to check that both ce_pic[] values are set to UINT64_MAX.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

cpustat(1), cpc(3CPC), cpc_access(3CPC), cpc_strtoevent(3CPC),
attributes(5)

cpc_bind_event(3CPC)

Inheriting events
onto multiple

LWPs

ATTRIBUTES

SEE ALSO

66 man pages section 3: Extended Library Functions • Last Revised 20 Mar 2001

cpc_count_usr_events, cpc_count_sys_events – enable and disable performance
counters

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_count_usr_events(int enable);

int cpc_count_sys_events(int enable);

In certain applications, it can be useful to explicitly enable and disable performance
counters at different times so that the performance of a critical algorithm can be
examined. The cpc_count_usr_events() function can be used to control whether
events are counted on behalf of the application running in user mode, while
cpc_count_sys_events() can be used to control whether events are counted on
behalf of the application while it is running in the kernel, without otherwise
disturbing the binding of events to the invoking LWP. If the enable argument is
non-zero, counting of events is enabled, otherwise they are disabled.

Upon successful completion, cpc_count_usr_events() and
cpc_count_sys_events() return 0. Otherwise, the functions return −1 and set
errno to indicate the error.

The cpc_count_usr_events() and cpc_count_sys_events() functions will
fail if:

EAGAIN The associated performance counter context has been invalidated
by another process.

EINVAL No performance counter context has been created, or an attempt
was made to enable system events while delivering counter
overflow signals.

EXAMPLE 1 Use cpc_count_usr_events() to minimize code needed by application.

In this example, the routine cpc_count_usr_events() is used to minimize the
amount of code that needs to be added to the application. The cputrack(1) command
can be used in conjunction with these interfaces to provide event programming,
sampling, and reporting facilities.

If the application is instrumented in this way and then started by cputrack with the
nouser flag set in the event specification, counting of user events will only be enabled
around the critical code section of interest. If the program is run normally, no harm
will ensue.

int have_counters = 0;
int
main(int argc, char *argv[])
{

if (cpc_version(CPC_VER_CURRENT) == CPC_VER_CURRENT &&
cpc_getcpuver() != -1 && cpc_access() == 0)
have_counters = 1;

cpc_count_usr_events(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 67

EXAMPLE 1 Use cpc_count_usr_events() to minimize code needed by application.
(Continued)

/* ... other application code */

if (have_counters)
(void) cpc_count_usr_events(1);

/* ==> Code to be measured goes here <== */

if (have_counters)
(void) cpc_count_usr_events(0);

/* ... other application code */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

cputrack(1), cpc(3CPC), cpc_access(3CPC), cpc_version(3CPC),
cpc_getcpuver(3CPC), cpc_bind_event(3CPC), cpc_pctx_bind_event(3CPC),
attributes(5)

cpc_count_usr_events(3CPC)

ATTRIBUTES

SEE ALSO

68 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

cpc_event – data structure to describe CPU performance counters

#include <libcpc.h>

The libcpc interfaces manipulate CPU performance counters using the
cpc_event_t data structure. This structure contains several fields that are common
to all processors, and some that are processor-dependent. These structures can be
declared by a consumer of the API, thus the size and offsets of the fields and the entire
data structure are fixed per processor for any particular version of the library. See
cpc_version(3CPC) for details of library versioning.

For UltraSPARC, the structure contains the following members:

typedef struct {
int ce_cpuver;
hrtime_t ce_hrt;
uint64_t ce_tick;
uint64_t ce_pic[2];
uint64_t ce_pcr;

} cpc_event_t;

For Pentium, the structure contains the following members:

typedef struct {
int ce_cpuver;
hrtime_t ce_hrt;
uint64_t ce_tsc;
uint64_t ce_pic[2];
uint32_t ce_pes[2];

#define ce_cesr ce_pes[0]
} cpc_event_t;

The APIs are used to manipulate the highly processor-dependent control registers (the
ce_pcr, ce_cesr, and ce_pes fields); the programmer is strongly advised not to
reference those fields directly in portable code. The ce_pic array elements contain
64-bit accumulated counter values. The hardware registers are virtualized to 64-bit
quantities even though the underlying hardware only supports 32-bits (UltraSPARC)
or 40-bits (Pentium) before overflow.

The ce_hrt field is a high resolution timestamp taken at the time the counters were
sampled by the kernel. This uses the same timebase as gethrtime(3C).

On SPARC V9 machines, the number of cycles spent running on the processor is
computed from samples of the processor-dependent %tick register, and placed in the
ce_tick field. On Pentium processors, the processor-dependent time-stamp counter
register is similarly sampled and placed in the ce_tsc field.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

cpc_event(3CPC)

NAME

SYNOPSIS

DESCRIPTION

SPARC

IA

ATTRIBUTES

Extended Library Functions 69

Availability SUNWcpcu

gethrtime(3C), cpc(3CPC), cpc_version(3CPC), attributes(5).

cpc_event(3CPC)

SEE ALSO

70 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

cpc_event_diff, cpc_event_accum – simple difference and accumulate operations

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

void cpc_event_accum(cpc_event_t *accum, cpc_event_t *event);

void cpc_event_diff(cpc_event_t *diff, cpc_event_t *after,
cpc_event_t *before);

The cpc_event_accum() and cpc_event_diff() functions perform common
accumulate and difference operations on cpc_event(3CPC) data structures. Use of
these functions increases program portability, since structure members are not
referenced directly .

The cpc_event_accum() function adds the ce_pic fields of event into the
corresponding fields of accum. The ce_hrt field of accum is set to the later of the times
in event and accum.

SPARC:

The function adds the contents of the ce_tick field of event into the corresponding
field of accum.

IA:

The function adds the contents of the ce_tsc field of event into the corresponding
field of accum.

The cpc_event_diff() function places the difference between the ce_pic fields of
after and before and places them in the corresponding field of diff. The ce_hrt field of
diff is set to the ce_hrt field of after.

SPARC:

Additionally, the function computes the difference between the ce_tick fields of after
and before, and places it in the corresponding field of diff.

IA:

Additionally, the function computes the difference between the ce_tsc fields of after
and before, and places it in the corresponding field of diff.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

cpc_event_diff(3CPC)

NAME

SYNOPSIS

DESCRIPTION

cpc_event_accum()

cpc_event_diff()

ATTRIBUTES

Extended Library Functions 71

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

cpc(3CPC), cpc_event(3CPC), attributes(5).

cpc_event_diff(3CPC)

SEE ALSO

72 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

cpc_getcpuver, cpc_getcciname, cpc_getcpuref, cpc_getusage, cpc_getnpic,
cpc_walk_names – determine CPU performance counter configuration

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_getcpuver(void);

const char *cpc_getcciname(int cpuver);

const char *cpc_getcpuref(int cpuver);

const char *cpc_getusage(int cpuver);

uint_t cpc_getnpic(int cpuver);

void cpc_walk_names(int cpuver, int regno, void *arg, void
(*action)(void *arg, int regno, const char *name, uint8_t bits));

The cpc_getcpuver() function returns an abstract integer that corresponds to the
distinguished version of the underlying processor. The library distinguishes between
processors solely on the basis of their support for performance counters, so the version
returned should not be interpreted in any other way. The set of values returned by the
library is unique across all processor implementations.

The cpc_getcpuver() function returns −1 if the library cannot support CPU
performance counters on the current architecture. This may be because the processor
has no such counter hardware, or because the library is unable to recognize it. Either
way, such a return value indicates that the configuration functions described on this
manual page cannot be used.

The cpc_getcciname() function returns a printable description of the processor
performance counter interfacesfor example, the string UltraSPARC I&II. Note that
this name should not be assumed to be the same as the name the manufacturer might
otherwise ascribe to the processor. It simply names the performance counter interfaces
as understood by the library, and thus names the set of performance counter events
that can be described by that interface. If the cpuver argument is unrecognized, the
function returns NULL.

The cpc_getcpuref() function returns a string that describes a reference work that
should be consulted to (allow a human to) understand the semantics of the
performance counter events that are known to the library. If the cpuver argument is
unrecognized, the function returns NULL.

The cpc_getusage() function returns a compact description of the
getsubopt()-oriented syntax that is consumed by cpc_strtoevent(3CPC). It is
returned as a space-separated set of tokens to allow the caller to wrap lines at
convenient boundaries. If the cpuver argument is unrecognized, the function returns
NULL.

The cpc_getnpic() function returns the number of valid fields in the ce_pic[]
array of a cpc_event_t data structure.

cpc_getcpuver(3CPC)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 73

The library maintains a list of events that it believes the processor capable of
measuring, along with the bit patterns that must be set in the corresponding control
register, and which counter the result will appear in. The cpc_walk_names()
function calls the action() function on each element of the list so that an application
can print appropriate help on the set of events known to the library. The arg parameter
is passed uninterpreted from the caller on each invocation of the action() function.

If the parameters specify an invalid or unknown CPU or register number, the function
silently returns without invoking the action function.

Prior to calling any of these functions, applications should call cpc_access(3CPC) to
determine if the counters are accessible on the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

cpc(3CPC), cpc_access(3CPC), attributes(5).

Only SPARC processors are described by the SPARC version of the library, and only
Intel processors are described by the Intel version of the library.

cpc_getcpuver(3CPC)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

74 man pages section 3: Extended Library Functions • Last Revised 18 Mar 2001

cpc_pctx_bind_event, cpc_pctx_take_sample, cpc_pctx_rele, cpc_pctx_invalidate –
access CPU performance counters in other processes

cc [flag...] file... −lcpc −lpctx [library...]
#include <libpctx.h>

#include <libcpc.h>

int cpc_pctx_bind_event(pctx_t *pctx, id_t lwpid, cpc_event_t *event,
int flags);

int cpc_pctx_take_sample(pctx_t *pctx, id_t lwpid, cpc_event_t
*event);

int cpc_pctx_rele(pctx_t *pctx, id_t lwpid);

int cpc_pctx_invalidate(pctx_t *pctx, id_t lwpid);

These functions are designed to be run in the context of an event handler created
using the libpctx(3LIB) family of functions that allow the caller, also known as the
controlling process, to manipulate the performance counters in the context of a controlled
process. The controlled process is described by the pctx argument, which must be
obtained from an invocation of pctx_capture(3CPC) or pctx_create(3CPC) and
passed to the functions described on this page in the context of an event handler.

The semantics of the functions cpc_pctx_bind_event(),
cpc_pctx_take_sample(), and cpc_pctx_rele() are directly analogous to those
of cpc_bind_event(), cpc_take_sample(), and cpc_rele() described on the
cpc_bind_event(3CPC) manual page.

The cpc_pctx_invalidate() function allows the performance context to be
invalidated in an LWP in the controlled process.

These functions return 0 on success. On failure, they return −1 and set errno to
indicate the error.

The cpc_pctx_bind_event(), cpc_pctx_take_sample(), and
cpc_pctx_rele() functions return the same errno values the analogous functions
described on the cpc_bind_event(3CPC) manual page. In addition, these function
may fail if:

ESRCH The value of the lwpid argument is invalid in the context of the
controlled process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Availability SUNWcpcu (32-bit)

cpc_pctx_bind_event(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 75

ATTRIBUTE TYPE ATTRIBUTE VALUE

SUNWcpcux (64-bit)

Interface Stability Evolving

cpc(3CPC), cpc_bind_event(3CPC), pctx_capture(3CPC),
pctx_create(3CPC), attributes(5).

The capability to create and analyze overflow events in other processes is not
available, though it may be made available in a future version of this API. In the
current implementation, the flags field must be specified as 0.

cpc_pctx_bind_event(3CPC)

SEE ALSO

NOTES

76 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

cpc_seterrfn – control libcpc error reporting

cc [flag...] file... −lcpc [library...]#include <libcpc.h>

typedef void(cpc_errfn_t)(const char *fn, const char *fmt, va_list
ap);

void cpc_seterrfn(cpc_errfn_t *errfn);

For the convenience of programmers instrumenting their code, several libcpc
functions automatically emit to stderr error messages that attempt to provide a more
detailed explanation of their error return values. While this can be useful for simple
programs, some applications may wish to report their errors differently—for example,
to a window or to a log file.

The cpc_seterrfn() function allows the caller to provide an alternate function for
reporting errors; the type signature is shown above. The fn argument is passed the
library function name that detected the error, the format string fmt and argument
pointer ap can be passed directly to vsnprintf(3C) or similar varargs-based routine
for formatting.

The default printing routine can be restored by calling the routine with an errfn
argument of NULL.

EXAMPLE 1 Debugging example.

This example produces error messages only when debugging the program containing
it, or when the cpc_strtoevent() function is reporting an error when parsing an
event specification

int debugging;
void
myapp_errfn(const char *fn, const char *fmt, va_list ap)
{

if (strcmp(fn, "strtoevent") != 0 && !debugging)
return;

(void) fprintf(stderr, "myapp: cpc_%s(): ", fn);
(void) vfprintf(stderr, fmt, ap);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

cpc_seterrfn(3CPC)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

Extended Library Functions 77

cpc(3CPC), vsnprintf(3C), attributes(5).

cpc_seterrfn(3CPC)

SEE ALSO

78 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

cpc_shared_open, cpc_shared_bind_event, cpc_shared_take_sample, cpc_shared_rele,
cpc_shared_close – use CPU performance counters on processors

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_shared_open(void);

int cpc_shared_bind_event(int fd, cpc_event_t *event, int flags);

int cpc_shared_take_sample(int fd, cpc_event_t *event);

int cpc_shared_rele(int fd);

void cpc_shared_close(int fd);

The cpc_shared_open() function allows the caller to access the hardware counters
in such a way that the performance of the currently bound CPU can be measured. The
function returns a file descriptor if successful. Only one such open can be active at a
time on any CPU.

The cpc_shared_bind_event(), cpc_shared_take_sample(), and
cpc_shared_rele() functions are directly analogous to the corresponding
cpc_bind_event(), cpc_take_sample(), and cpc_rele() functions described
on the cpc_bind_event(3CPC)manual page, except that they operate on the
counters of a particular processor.

If a thread wishes to access the counters using this interface, it must do so using a
thread bound to an lwp, (see the THR_BOUND flag to thr_create(3THR)), that has in
turn bound itself to a processor using processor_bind(2).

Unlike the cpc_bind_event(3CPC) family of functions, no counter context is
attached to those lwps, so the performance counter samples from the processors
reflects the system-wide usage, instead of per-lwp usage.

The first successful invocation of cpc_shared_open() will immediately
invalidate all existing performance counter context on the system, and prevent all
subsequent attempts to bind counter context to lwps from succeeding anywhere on
the system until the last caller invokes cpc_shared_close().

This is because it is impossible to simultaneously use the counters to accurately
measure per-lwp and system-wide events, so there is an exclusive interlock between
these uses.

Access to the shared counters is mediated by file permissions on a cpc pseudo device.
As shipped, only the superuser is allowed to access the shared device; this is because
doing so prevents use of the counters on a per-lwp basis to any other users.

The CPC_BIND_LWP_INHERIT and CPC_BIND_EMT_OVF flags are invalid for the
shared interface.

cpc_shared_open(3CPC)

NAME

SYNOPSIS

DESCRIPTION

USAGE

Extended Library Functions 79

On success, the functions (apart from cpc_shared_close()) return 0. On failure, the
functions return –1 and set errno, to indicate the reason.

ENXIO The current machine either has no performance counters, or has
been configured to disallow access to them system-wide.

EACCES The caller does not have appropriate privilege to access the CPU
performance counters system-wide.

EAGAIN For cpc_shared_open(), this value implies that the counters on the
bound cpu are busy because they are already being used to
measure system-wide events by some other caller.

EAGAIN Otherwise, this return value implies that the counters are not
available because the thread has been unbound from the processor
it was bound to at open time. Robust programs should be coded to
expect this behavior, and should invoke cpc_shared_close(),
before retrying the operation.

EINVAL The counters cannot be accessed on the current CPU because the
calling thread is not bound to that CPU using
processor_bind(2).

EFAULT The event argument specifies a bad address.

ENOTSUP The caller has attempted an operation that is illegal or not
supported on the current platform.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

processor_bind(2), cpc(3CPC), cpc_bind_event(3CPC), thr_create(3THR),
attributes(5)

cpc_shared_open(3CPC)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

80 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

cpc_strtoevent, cpc_eventtostr – translate strings to and from events

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_strtoevent(int cpuver, const char *spec, cpc_event_t *event);

char *cpc_eventtostr(cpc_event_t *event);

The cpc_strtoevent() function translates an event specification to the appropriate
collection of control bits in a cpc_event_t structure pointed to by the event
argument. The event specification is a getsubopt(3C)–style string that describes the
event and any attributes that the processor can apply to the event or events. If
successful, the funciton returns 0, the ce_cpuver field and the ISA-dependent control
registers of event are initialized appropriately, and the rest of the cpc_event_t
structure is initialized to 0.

The cpc_eventtostr() function takes an event and constructs a compact canonical
string representation for that event.

Upon successful completion, cpc_strtoevent() returns 0. If the string cannot be
decoded, a non-zero value is returned and a message is printed using the library’s
error-reporting mechanism (see cpc_seterrfn(3CPC)).

Upon successful completion, cpc_eventtostr() returns a pointer to a string. The
string returned must be freed by the caller using free(3C). If cpc_eventtostr() a
null pointer is returned.

The event selection syntax used is processor architecture-dependent. The supported
processor families allow variations on how events are counted as well as what events
can be counted. This information is available in compact form from the
cpc_getusage() function (see cpc_getcpuver(3CPC)), but is explained in further
detail below.

On UltraSPARC processors, the syntax for setting options is as follows:

pic0=<eventspec>,pic1=<eventspec> [,sys] [,nouser]

This syntax, which reflects the simplicity of the options available using the %pcr
register, forces both counter events to be selected. By default only user events are
counted; however, the sys keyword allows system (kernel) events to be counted as
well. User event counting can be disabled by specifying the nouser keyword.

The keywords pic0 and pic1 may be omitted; they can be used to resolve
ambiguities if they exist.

On Pentium processors, the syntax for setting counter options is as follows:

pic0=<eventspec>,pic1=<eventspec> [,sys[[0|1]]] [,nouser[[0|1]]]
[,noedge[[0|1]]] [,pc[[0|1]]]

cpc_strtoevent(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

UltraSPARC

Pentium I

Extended Library Functions 81

The syntax and semantics are the same as UltraSPARC, except that is possible to
specify whether a particular counter counts user or system events. If unspecified, the
specification is presumed to apply to both counters.

There are some additional keywords. The noedge keyword specifies that the counter
should count clocks (duration) instead of events. The pc keyword allows the external
pin control pins to be set high (defaults to low). When the pin control register is set
high, the external pin will be asserted when the associated register overflows. When
the pin control register is set low, the external pin will be asserted when the counter
has been incremented. The electrical effect of driving the pin is dependent uptoon how
the motherboard manufacturer has chosen to connect it, if it is connected at all.

For Pentium II processors, the syntax is substantially more complex, reflecting the
complex configuration options available:

pic0=<eventspec>,pic1=<eventspec> [,sys[[0|1]]]
[,nouser[[0|1]]] [,noedge[[0|1]]] [,pc[[0|1]]] [,inv[[0|1]]] [,int[[0|1]]]
[,cmask[0|1]=<maskspec>] [,umask[0|1]=<maskspec>]

This syntax is a straightforward extension of the earlier syntax. The additional inv,
int, cmask0, cmask1, umask0, and umask1 keywords allow extended counting
semantics. The mask specification is a number between 0 and 255, expressed in
hexadecimal, octal or decimal notation.

EXAMPLE 1 SPARC Example.

cpc_event_t event;
char *setting = "pic0=EC_ref,pic1=EC_hit"; /* UltraSPARC-specific */

if (cpc_strtoevent(cpuver, setting, &event) != 0)
/* can’t measure ’setting’ on this processor */

else

setting = cpc_eventtostr(&event);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

cpc(3CPC), cpc_getcpuver(3CPC), cpc_seterrfn(3CPC), free(3C),
getsubopt(3C), attributes(5)

cpc_strtoevent(3CPC)

Pentium II

SPARC

ATTRIBUTES

SEE ALSO

82 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

These functions are provided as a convenience only. As new processors are usually
released asynchronously with software, the library allows the pic0 and pic1
keywords to interpret numeric values specified directly in hexadecimal, octal, or
decimal.

cpc_strtoevent(3CPC)

NOTES

Extended Library Functions 83

cpc_version – coordinate CPC library and application versions

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

uint_t cpc_version(uint_t version);

The cpc_version() function takes an interface version as an argument and returns
an interface version as a result. Usually, the argument will be the value of
CPC_VER_CURRENT bound to the application when it was compiled.

If the version requested is still supported by the implementation, cpc_version()
returns the requested version number and the application can use the facilities of the
library on that platform. If the implementation cannot support the version needed by
the application, cpc_version() returns CPC_VER_NONE, indicating that the
application will at least need to be recompiled to operate correctly on the new
platform, and may require further changes.

If version is CPC_VER_NONE, cpc_version() returns the most current version of the
library.

EXAMPLE 1 Protect an application from using an incompatible library.

The following lines of code protect an application from using an incompatible library:

if (cpc_version(CPC_VER_CURRENT) == CPC_VER_NONE) {
/* version mismatch - library cannot translate */
exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

cpc(3CPC), attributes(5)

The version number is used only to express incompatible semantic changes in the
performance counter interfaces on the given platform within a single instruction set
architecture, for example, when a new set of performance counter registers are added
to an existing processor family that cannot be specified in the existing cpc_event_t
data structure.

cpc_version(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

84 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

demangle, cplus_demangle – decode a C++ encoded symbol name

cc [flag ...] file[library ...] -ldemangle

#include <demangle.h>

int cplus_demangle(const char *symbol, char *prototype, size_t size);

The cplus_demangle() function decodes (demangles) a C++ linker symbol name
(mangled name) into a (partial) C++ prototype, if possible. C++ mangled names may
not have enough information to form a complete prototype.

The symbol string argument points to the input mangled name.

The prototype argument points to a user-specified output string buffer, of size bytes.

The cplus_demangle() function operates on mangled names generated by
SPARCompilers C++ 3.0.1, 4.0.1, 4.1 and 4.2.

The cplus_demangle() function improves and replaces the demangle() function.

Refer to the CC.1, dem.1, and c++filt.1 manual pages in the
/opt/SUNWspro/man/man1 directory. These pages are only available with the
SPROcc package.

The cplus_demangle() function returns the following values:

0 The symbol argument is a valid mangled name and
prototype contains a (partial) prototype for the symbol.

DEMANGLE_ENAME The symbol argument is not a valid mangled name and
the content of prototype is a copy of the symbol.

DEMANGLE_ESPACE The prototype output buffer is too small to contain the
prototype (or the symbol), and the content of prototype
is undefined.

demangle(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 85

devid_get, devid_compare, devid_deviceid_to_nmlist, devid_free, devid_free_nmlist,
devid_get_minor_name, devid_sizeof, devid_str_decode, devid_str_free,
devid_str_encode, devid_valid – device ID interfaces for user applications

cc [flag ...] file ... -ldevid [library ...]

#include <devid.h>

int devid_get(int fd, ddi_devid_t *retdevid);

void devid_free(ddi_devid_t devid);

int devid_get_minor_name(int fd, char **retminor_name);

int devid_deviceid_to_nmlist(char *search_path, ddi_devid_t devid,
char *minor_name, devid_nmlist_t **retlist);

void devid_free_nmlist(devid_nmlist_t *list);

int devid_compare(ddi_devid_t devid1, ddi_devid_t devid2);

size_t devid_sizeof(ddi_devid_t devid);

int devid_valid(ddi_devid_t devid);

char *devid_str_encode(ddi_devid_t devid, char *minor_name);

int devid_str_decode(char *devidstr, ddi_devid_t *retdevid, char
**retminor_name);

void devid_str_free(char *str);

These functions provide unique identifiers (device IDs) for devices. Applications and
device drivers use these functions to identify and locate devices, independent of the
device’s physical connection or its logical device name or number.

The devid_get() function returns in retdevid the device ID for the device associated
with the open file descriptor fd, which refers to any device. It returns an error if the
device does not have an associated device ID. The caller must free the memory
allocated for retdevid using the devid_free() function.

The devid_free() function frees the space that was allocated for the returned devid
by devid_get() and devid_str_decode().

The devid_get_minor_name() function returns the minor name, in retminor_name,
for the device associated with the open file descriptor fd. This name is specific to the
particular minor number, but is "instance number" specific. The caller of this function
must free the memory allocated for the returned retminor_name string using
devid_str_free().

The devid_deviceid_to_nmlist() function returns an array of devid_nmlist
structures, where each entry matches the devid and minor_name passed in. If the
minor_name specified is one of the special values (DEVID_MINOR_NAME_ALL,
DEVID_MINOR_NAME_ALL_CHR, or DEVID_MINOR_NAME_ALL_BLK) , then all minor
names associated with devid which also meet the special minor_name filtering

devid_get(3DEVID)

NAME

SYNOPSIS

DESCRIPTION

86 man pages section 3: Extended Library Functions • Last Revised 8 Nov 2000

requirements are returned. The devid_nmlist structure contains the device name and
device number. The last entry of the array contains a null pointer for the devname and
NODEV for the device number. This function traverses the file tree, starting at
search_path. For each device with a matching device ID and minor name tuple, a
device name and device number are added to the retlist. If no matches are found, an
error is returned. The caller of this function must free the memory allocated for the
returned array with the devid_free_nmlist() function. This function may take a
long time to complete if called with the device ID of an unattached device.

The devid_free_nmlist() function frees the memory allocated by the
devid_deviceid_to_nmlist() function.

The devid_compare() function compares two device IDs and determines both
equality and sort order. The function returns an integer greater than 0 if the device ID
pointed to by devid1 is greater than the device ID pointed to by devid2. It returns 0 if
the device ID pointed to by devid1 is equal to the device ID pointed to by devid2. It
returns an integer less than 0 if the device ID pointed to by devid1 is less than the
device ID pointed to by devid2. This function is the only valid mechanism to determine
the equality of two devids. This function may indicate equality for arguments which
by simple inspection appear different.

The devid_sizeof() function returns the size of devid in bytes.

The devid_valid() function validates the format of a devid. It returns 1 if the format
is valid, and 0 if invalid. This check may not be as complete as the corresponding
kernel function ddi_devid_valid() (see ddi_devid_compare(9F)).

The devid_str_encode() function encodes a devid and minor_name into a
null-terminated ASCII string, returning a pointer to that string. If both a devid and a
minor_name are non-null, a ’/’ is used to separate the devid from the minor_name in the
encoded string. If minor_name is null, only the devid is encoded. If the devid is null then
the special string "id0" is returned. Note that you cannot compare the returned string
against another string with strcmp(3C) to determine devid equality. The string
returned must be freed by calling devid_str_free().

The devid_str_decode() function takes a string previously produced by the
devid_str_encode() or ddi_devid_str_encode() (see
ddi_devid_compare(9F)) function and decodes the contained device ID and minor
name, allocating and returning pointers to the extracted parts via the retdevid and
retminor_name arguments. If the special devidstr "id0" was specified, the returned
device ID and minor name will both be null. A non-null returned devid must be freed
by the caller by the devid_free() function. A non-null returned minor name must
be freed by calling devid_str_free().

The devid_str_free() function frees the character string returned by
devid_str_encode() and the retminor_name argument returned by
devid_str_decode().

devid_get(3DEVID)

Extended Library Functions 87

Upon successful completion, the devid_get(), devid_get_minor_name(),
devid_str_decode(), and devid_deviceid_to_nmlist() functions return 0.
Otherwise, they return −1.

The devid_compare() function returns the following values:

−1 The device ID pointed to by devid1 is less than the device ID pointed to by
devid2.

0 The device ID pointed to by devid1 is equal to the device ID pointed to by
devid2.

1 The device ID pointed to by devid1 is greater than the device ID pointed to
by devid2.

The devid_sizeof() function returns the size of devid in bytes. If devid is null, the
number of bytes that must be allocated and initialized to determine the size of a
complete device ID is returned.

The devid_valid() function returns 1 if the devid is valid and 0 if the devid is
invalid.

The devid_str_encode() function returns NULL to indicate failure. Failure may be
caused by attempting to encode an invalid string. If the return value is non-null, the
caller must free the returned string by using the devid_str_free() function.

EXAMPLE 1 Using devid_get(), devid_get_minor_name(), and
devid_str_encode()

The following example shows the proper use of devid_get(),
devid_get_minor_name(), and devid_str_encode() to free the space allocated
for devid, minor_name and encoded devid.

int fd;
ddi_devid_t devid;
char *minor_name, *devidstr;
if ((fd = open("/dev/dsk/c0t3d0s0", O_RDONLY|O_NDELAY)) < 0) {

...
}
if (devid_get(fd, &devid) != 0) {

...
}
if (devid_get_minor_name(fd, &minor_name) != 0) {

...
}
if ((devidstr = devid_str_encode(devid, minor_name)) == 0) {

...
}
printf("devid %s\
", devidstr);
devid_str_free(devidstr);
devid_free(devid);
devid_str_free(minor_name);

devid_get(3DEVID)

RETURN VALUES

EXAMPLES

88 man pages section 3: Extended Library Functions • Last Revised 8 Nov 2000

EXAMPLE 1 Using devid_get(), devid_get_minor_name(), and
devid_str_encode() (Continued)

EXAMPLE 2 Using devid_deviceid_to_nmlist() and devid_free_nmlist()

The following example shows the proper use of devid_deviceid_to_nmlist()
and devid_free_nmlist():

devid_nmlist_t *list = NULL;
int err;
if (devid_deviceid_to_nmlist("/dev/rdsk", devid,

minor_name, &list))
return (-1);

/* loop through list and process device names and numbers */
devid_free_nmlist(list);

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT−Safe

Interface Stability Stable

free(3C), libdevid(3LIB), attributes(5), ddi_devid_compare(9F)

devid_get(3DEVID)

ATTRIBUTES

SEE ALSO

Extended Library Functions 89

di_binding_name, di_bus_addr, di_compatible_names, di_devid, di_driver_name,
di_driver_ops, di_instance, di_nodeid, di_node_name – return libdevinfo node
information

#include <libdevinfo.h>

char *di_binding_name(di_node_t node);

char *di_bus_addr(di_node_t node);

int di_compatible_names(di_node_t node, char **names);

ddi_devid_t di_devid(di_node_t node);

char *di_driver_name(di_node_t node);

uint_t di_driver_ops(di_node_t node);

int di_instance(di_node_t node);

int di_nodeid(di_node_t node);

char *di_node_name(di_node_t node);

These functions extract information associated with a device node.

The following parameter descriptions apply to all interfaces:

node A handle to a device node.

The following parameter description applies only to di_compatible_names():

names The address of a pointer.

di_binding_name()
The di_binding_name() function returns a pointer to the binding name. The
binding name is the name used by the system to select a driver for the device.

di_bus_addr()
The di_bus_addr() function returns a pointer to a null-terminated string
containing the assigned bus address for the device. NULL is returned if a bus
address has not been assigned to the device. A zero-length string may be returned
and is considered a valid bus address.

di_compatible_names()
The return value of di_compatible_names() is the number of compatible
names. names is updated to point to a buffer contained within the snapshot. The
buffer contains a concatenation of null-terminated strings, for example:

<name1>⁄0<name2>⁄0...<namen>⁄0

See the discussion of generic names in Writing Device Drivers for a description of
how compatible names are used by Solaris to achieve driver binding for the node.

di_binding_name(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

90 man pages section 3: Extended Library Functions • Last Revised 8 Nov 2000

di_devid()
The di_devid() function returns the device ID for node, if it is registered.
Otherwise, a null pointer is returned. Interfaces in the libdevid(3LIB) library may
be used to manipulate the handle to the device id.

This function is obsolete and may be removed from a future Solaris release.
Applications should use the “devid” property instead.

di_driver_name()
The di_driver_name() function returns the name of the driver bound to the
node. A null pointer is returned if node is not bound to any driver.

di_driver_ops()
The di_driver_ops() function returns a bit array of device driver entry points
that are supported by the driver bound to this node. Possible bit fields supported by
the driver are DI_CB_OPS, DI_BUS_OPS, DI_STREAM_OPS.

di_instance()
The di_instance() function returns the instance number of the device. A value
of -1 indicates an instance number has not been assigned to the device by the
system.

di_nodeid()
The di_nodeid() function returns the type of device, which may be one of the
following possible values: DI_PSEUDO_NODEID, DI_PROM_NODEID, and
DI_SID_NODEID. Devices of type DI_PROM_NODEID may have additional
properties that are defined by the PROM. See di_prom_prop_data(3DEVINFO)
and di_prom_prop_lookup_bytes(3DEVINFO).

di_node_name()
The di_node_name() function returns a pointer to a null-terminated string
containing the node name.

See di_init(3DEVINFO) for an example showing typical use of these functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving (di_devid() is obsolete)

di_init(3DEVINFO), di_prom_init(3DEVINFO),
di_prom_prop_data(3DEVINFO), di_prom_prop_lookup_bytes(3DEVINFO),
libdevinfo(3DEVINFO), libdevid(3LIB), attributes(5)

Writing Device Drivers

di_binding_name(3DEVINFO)

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 91

di_child_node, di_parent_node, di_sibling_node, di_drv_first_node, di_drv_next_node
– libdevinfo node traversal functions

#include <libdevinfo.h>

di_node_t di_child_node(di_node_t node);

di_node_t di_parent_node(di_node_t node);

di_node_t di_sibling_node(di_node_t node);

di_node_t di_drv_first_node(const char *drv_name, di_node_t root);

di_node_t di_drv_next_node(di_node_t node);

The kernel device configuration data may be viewed in two ways, either as a tree of
device configuration nodes or as a list of nodes associated with each driver. In the tree
view, each node may contain references to its parent, the next sibling in a list of
siblings, and the first child of a list of children. In the per-driver view, each node
contains a reference to the next node associated with the same driver.

Both views are captured in the snapshot, and the interfaces are provided for node
access.

di_child_node() obtains a handle to the first child of node. DI_NODE_NIL is
returned and errno is set to ENXIO or ENOTSUP, if no child node exists in the
snapshot.

di_parent_node() obtains a handle to the parent node of node. DI_NODE_NIL is
returned and errno is set to ENXIO or ENOTSUP, if no parent node exists in the
snapshot.

di_sibling_node() obtains a handle to the next sibling node of node. A
DI_NODE_NIL is returned and errno is set to ENXIO or ENOTSUP, if no next sibling
node exists in the snapshot.

di_drv_first_node() obtains a handle to the first node associated with the driver
specified by drv_name. If there is no such driver, DI_NODE_NIL is returned with
errno is set to EINVAL. If the driver exists, but there is no node associated with this
driver, DI_NODE_NIL is returned and errno is set to ENXIO or ENOTSUP.

di_drv_next_node() returns a handle to the next node bound to the same driver.
DI_NODE_NIL is returned if no more nodes exist.

The following parameter descriptions apply to di_child_node(),
di_drv_next_node(), di_parent_node(), and di_sibling_node():

node A handle to any node in the snapshot.

The following parameter descriptions apply to di_drv_first_node():

drv_name The name of the driver of interest.

di_child_node(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

92 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

root The handle of the root node for the snapshot returned by
di_init().

Upon successful completion, a handle is returned. Otherwise, DI_NODE_NIL is
returned and errno is set to indicate the error.

These functions set errno as listed for the following conditions:

EINVAL The argument is invalid.

ENXIO The requested node does not exist.

ENOTSUP The node was not found in the snapshot, but it may exist in the
kernel. This error may occur if the snapshot contains a partial
device tree.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

libdevinfo(3DEVINFO),attributes(5)

Writing Device Drivers

di_child_node(3DEVINFO)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 93

di_devfs_path, di_devfs_path_free – generate and free physical path names

#include <libdevinfo.h>

char *di_devfs_path(di_node_t node);

void di_devfs_path_free(char *path_buf);

di_devfs_path() generates the physical path of the device node. The caller is
responsible for freeing the memory allocated to store the physical path by calling
di_devfs_path_free().

di_devfs_path_free() frees memory that was allocated by di_devfs_path().

The parameter descriptions for di_devfs_path() are as follows:

node Handle to a device node in the snapshot.

The parameter descriptions for di_devfs_path_free() are as follows:

path_buf Pointer returned by di_devfs_path().

di_devfs_path() returns a pointer to the string containing the physical path of
node.

EINVAL node is not a valid handle.

di_devfs_path() also return any error code from malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

malloc(3C),libdevinfo(3DEVINFO),attributes(5)

Writing Device Drivers

di_devfs_path(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

94 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_init, di_fini – create and destroy a snapshot of kernel device tree

#include <libdevinfo.h>

di_node_t di_init(const char *phys_path, uint_t flags);

void di_fini(di_node_t root);

di_init() creates a snapshot of the kernel device tree and returns a handle of the
root node. The caller specifies the contents of the snapshot by providing flag and
phys_path.

di_fini() destroys the snapshot of the kernel device tree and frees the associated
memory. All handles associated with this snapshot become invalid after the call to
di_fini().

phys_path Physical path of the root node of the snapshot. See
di_devfs_path(3DEVINFO).

flags Snapshot content specification. The possible values may be a
bitwise OR of the following:

DINFOSUBTREE Include subtree.

DINFOPROP Include properties.

DINFOMINOR Include minor data.

DINFOCPYALL Include all of above. If flags is 0, the snapshot
contains only a single node without properties or minor nodes.

root Handle obtained by calling di_init().

Upon success, a handle is returned. Otherwise, DI_NODE_NIL is returned and errno
is set to indicate the error.

di_init() may set errno to any error code that may also be set by open(2),
ioctl(2) or mmap(2). The most common error codes include:

EACCESS Insufficient privilege for accessing device configuration data.

ENXIO Either the device named by phys_path is not present in the system,
or the devinfo(7D) driver is not installed properly.

EINVAL Either phys_path is incorrectly formed or the flags argument is
invalid.

EXAMPLE 1 Using the libdevinfo() Interfaces To Print All Device Tree Node Names

The following is an example using the libdevinfo() interfaces to print all device
tree node names:

/*
* Code to print all device tree node names
*/

di_init(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

di_init()

di_fini()

di_init()

ERRORS

EXAMPLES

Extended Library Functions 95

EXAMPLE 1 Using the libdevinfo() Interfaces To Print All Device Tree Node Names
(Continued)

#include <stdio.h>
#include <libdevinfo.h>

int
prt_nodename(di_node_t node, void *arg)
{

printf("%s\n", di_node_name(node));
return (DI_WALK_CONTINUE);

}

main()
{

di_node_t root_node;
if((root_node = di_init("/", DINFOSUBTREE)) == DI_NODE_NIL) {

fprintf(stderr, "di_init() failed\n");
exit(1);

}
di_walk_node(root_node, DI_WALK_CLDFIRST, NULL, prt_nodename);
di_fini(root_node);

}

EXAMPLE 2 Using the libdevinfo() Interfaces To Print The Physical Path Of SCSI Disks

The following example uses the libdevinfo()interfaces to print the physical path of
SCSI disks:

/*
* Code to print physical path of scsi disks
*/

#include <stdio.h>
#include <libdevinfo.h>
#define DISK_DRIVER "sd" /* driver name */

void
prt_diskinfo(di_node_t node)
{

int instance;
char *phys_path;

/*
* If the device node exports no minor nodes,
* there is no physical disk.
*/
if (di_minor_next(node, DI_MINOR_NIL) == DI_MINOR_NIL) {

return;
}

instance = di_instance(node);
phys_path = di_devfs_path(node);
printf("%s%d: %s\n", DISK_DRIVER, instance, phys_path);
di_devfs_path_free(phys_path);

}

di_init(3DEVINFO)

96 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

EXAMPLE 2 Using the libdevinfo() Interfaces To Print The Physical Path Of SCSI
Disks (Continued)

void
walk_disknodes(di_node_t node)
{

node = di_drv_first_node(DISK_DRIVER, node);
while (node != DI_NODE_NIL) {

prt_diskinfo(node);
node = di_drv_next_node(node);

}
}

main()
{

di_node_t root_node;
if ((root_node = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {

fprintf(stderr, "di_init() failed\n");
exit(1);

}
walk_disknodes(root_node);
di_fini(root_node);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

open(2), ioctl(2), mmap(2),libdevinfo(3DEVINFO),attributes(5)

Writing Device Drivers

di_init(3DEVINFO)

ATTRIBUTES

SEE ALSO

Extended Library Functions 97

di_minor_devt, di_minor_name, di_minor_nodetype, di_minor_spectype – return
libdevinfo minor node information

#include <libdevinfo.h>

dev_t di_minor_devt(di_minor_t minor);

char *di_minor_name(di_minor_t minor);

char *di_minor_nodetype(di_minor_t minor);

int di_minor_spectype(di_minor_t minor);

These interfaces are used to return libdevinfo minor node information.

minor A handle to minor data node.

di_minor_name()
di_minor_name() returns the minor name. See ddi_create_minor_node(9F)
for a description of the name parameter.

di_minor_devt()
The function di_minor_devt() returns the dev_t value of the minor node that is
specified by SYS V ABI. See getmajor(9F), getminor(9F), and
ddi_create_minor_node(9F) for more information.

di_minor_spectype()
di_minor_spectype() returns the spec_type of the file, either S_IFCHR or
S_IFBLK. See ddi_create_minor_node(9F) for a description of the spec_type
parameter.

di_minor_nodetype()
di_minor_nodetype() returns the minor node_type of the minor node. See
ddi_create_minor_node(9F) for a description of the node_type parameter.

No error codes are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

attributes(5), ddi_create_minor_node(9F), getmajor(9F), 99getminor(9F)

Writing Device Drivers

di_minor_devt(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

98 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_minor_next – libdevinfo minor node traversal functions

#include <libdevinfo.h>

di_minor_t di_minor_next(di_node_t node, di_minor_t minor);

di_minor_next() returns a handle to the next minor node for the device node node.
If minor is DI_MINOR_NIL, a handle to the first minor node is returned.

node Device node with which the minor node is associated.

minor Handle to the current minor node or DI_MINOR_NIL.

Upon successful completion, a handle to the next minor node is returned. Otherwise,
DI_MINOR_NIL is returned and errno is set to indicate the error.

errno is set as listed for the following conditions:

EINVAL Invalid argument.

ENXIO End of minor node list.

ENOTSUP Minor node information is not available in snapshot.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

libdevinfo(3DEVINFO),attributes(5)

Writing Device Drivers

di_minor_next(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 99

di_prom_init, di_prom_fini – create and destroy a handle to the PROM device
information

#include <libdevinfo.h>

di_prom_handle_t di_prom_init();

void di_prom_fini(di_prom_handle_t ph);

For device nodes whose nodeid value is DI_PROM_NODEID (see
di_nodeid(3DEVINFO)), additional properties may be retrieved from the PROM.
di_prom_init() returns a handle that is used to retrieve such properties. This
handle is passed to di_prom_prop_lookup_bytes(3DEVINFO) and
di_prom_prop_next(3DEVINFO). di_prom_fini() destroys the handle and all
handles to PROM device information obtained from that handle.

ph Handle to prom returned by di_prom_init().

Upon successful completion, a handle is returned. Otherwise, DI_PROM_HANDLE_NIL
is returned and errno is set to indicate the error.

di_prom_init() sets errno to any error code that may also be set by
openprom(7D) or malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

di_nodeid(3DEVINFO),di_prom_prop_next(3DEVINFO),di_prom_prop_lookup_bytes(3DEVINF

di_prom_init(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

di_prom_init()

ERRORS

ATTRIBUTES

SEE ALSO

100 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_prom_prop_data, di_prom_prop_next, di_prom_prop_name – access PROM device
information

#include <libdevinfo.h>

di_prom_prop_t di_prom_prop_next(di_prom_handle_t ph, di_node_t
node, di_prom_prop_t prom_prop);

char *di_prom_prop_name(di_prom_prop_t prom_prop);

int di_prom_prop_data(di_prom_prop_t prom_prop, uchar_t
**prop_data);

di_prom_prop_next() obtains a handle to the next property on the PROM property
list associated with node. If prom_prop is DI_PROM_PROP_NIL, the first property
associated with node is returned.

di_prom_prop_name() returns the name of the prom_prop property.

di_prom_prop_data() returns the value of the prom_prop property. The return
value is a non-negative integer specifying the size in number of bytes in prop_data.

All memory allocated by these functions is managed by the library and must not be
freed by the caller.

prom_prop Handle to a PROM property.

prop_data Address of a pointer.

ph PROM handle

node Handle to a device node in the snapshot of kernel device tree.

di_prom_prop_data() returns the number of bytes in prop_data and prop_data is
updated to point to a byte array containing the property value. If 0 is returned, the
property is a boolean property, and the existence of this property indicates the value is
true.

di_prom_prop_name() returns a pointer to a string that contains the name of
prom_prop.

di_prom_prop_next() returns a handle to the next PROM property.
DI_PROM_PROP_NIL is returned if no additional properties exist.

See openprom(7D) for a description of possible errors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

di_prom_prop_data(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

All Interfaces

di_prom_prop_data()

di_prom_prop_next()

di_prom_prop_data()

di_prom_prop_name()

di_prom_prop_next()

ERRORS

ATTRIBUTES

Extended Library Functions 101

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

attributes(5),openprom(7D)

Writing Device Drivers

di_prom_prop_data(3DEVINFO)

SEE ALSO

102 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_prom_prop_lookup_bytes, di_prom_prop_lookup_ints,
di_prom_prop_lookup_strings – search for a PROM property

#include <libdevinfo.h>

int di_prom_prop_lookup_bytes(di_prom_handle_t ph, di_node_t node,
const char *prop_name, uchar_t **prop_data);

int di_prom_prop_lookup_ints(di_prom_handle_t ph, di_node_t node,
const char *prop_name, int **prop_data);

int di_prom_prop_lookup_strings(di_prom_handle_t ph, di_node_t
node, const char *prop_name, char **prop_data);

These functions are used for returning the value of a known PROM property name
and value type. These functions will update the prop_data pointer to reference memory
that contains the property value. All memory allocated by these functions is managed
by the library and must not be freed by the caller.

The following parameter descriptions apply to all interfaces:

node Handle to device node in snapshot created by
di_init(3DEVINFO).

ph Handle returned by di_prom_init(3DEVINFO).

prop_name Name of the property being searched.

The following parameter description applies to di_prom_prop_lookup_bytes()
only:

prop_data The address of a pointer to an array of unsigned characters.

The following parameter description applies to di_prom_prop_lookup_ints()
only:

prop_data The address of a pointer to an integer.

The following parameter description applies to
di_prom_prop_lookup_strings() only:

prop_data The address of pointer to a buffer.

If the property is found, the number of entries in prop_data is returned. If the property
is a boolean type, 0 is returned, and the existence of this property indicates the value
is true. Otherwise, -1 is returned with errno set to indicate the error condition.

For di_prom_prop_lookup_bytes(), the number of entries is the number of
unsigned characters contained in the buffer pointed to by prop_data.

For di_prom_prop_lookup_ints(), the number of entries is the number of
integers contained in the buffer pointed to by prop_data.

di_prom_prop_lookup_bytes(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

Extended Library Functions 103

For di_prom_prop_lookup_strings(), the number of entries is the number of
null-terminated strings contained in the buffer. The strings are stored in a
concatenated format in the buffer.

These functions set errno as listed for the following conditions:

EINVAL Invalid argument.

ENXIO The property does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

di_init(3DEVINFO),di_prom_prop_next(3DEVINFO),libdevinfo(3DEVINFO),attributes(5),op

Writing Device Drivers

di_prom_prop_lookup_bytes(3DEVINFO)

ERRORS

ATTRIBUTES

SEE ALSO

104 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_prop_bytes, di_prop_devt, di_prop_ints, di_prop_name, di_prop_strings,
di_prop_type, di_prop_int64 – access property values and attributes

#include <libdevinfo.h>

int di_prop_bytes(di_prop_t prop, uchar_t **prop_data);

dev_t di_prop_devt(di_prop_t prop);

int di_prop_ints(di_prop_t prop, int **prop_data);

int di_prop_int64(di_prop_t prop, int64_t **prop_data);

char *di_prop_name(di_prop_t prop);

int di_prop_strings(di_prop_t prop, char **prop_data);

int di_prop_type(di_prop_t prop);

These interfaces are used to access information associated with property values and
attributes.

All memory allocated by these functions is managed by the library and must not be
freed by the caller.

The di_prop_name() function returns the name of the property.

The di_prop_type() function returns the type of the property. The type determines
the appropriate interface to access property values. The following is a list of possible
types:

DI_PROP_TYPE_BOOLEAN There is no interface to call since there is no
property data associated with boolean
properties. The existence of the property
defines a TRUE value.

DI_PROP_TYPE_INT Use di_prop_ints() to access property
data.

DI_PROP_TYPE_INT64 Use di_prop_int64() to access property
data.

DI_PROP_TYPE_STRING Use di_prop_strings() to access
property data.

DI_PROP_TYPE_BYTE Use di_prop_bytes() to access property
data.

DI_PROP_TYPE_UNKNOWN Use di_prop_bytes() to access property
data. Since the type of property is
unknown, the caller is responsible for
interpreting the contents of the data.

DI_PROP_TYPE_UNDEF_IT The property has been undefined by the
driver. No property data is available.

di_prop_bytes(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 105

The di_prop_devt() function returns the dev_t with which this property is
associated. If the value is DDI_DEV_T_NONE, the property is not associated with any
specific minor node.

The di_prop_bytes() function returns the property data as a series of unsigned
characters.

The di_prop_ints() function returns the property data as a series of integers.

The di_prop_int64() function returns the property data as a series of 64–bit
integers.

The di_prop_strings() function returns the property data as a concatenation of
null-terminated strings.

prop Handle to a property returned by di_prop_next(3DEVINFO).

prop_data The address of a pointer to an unsigned character.

prop_data The address of a pointer to an integer.

prop_data The address of a pointer to a 64–bit integer.

prop_data The address of pointer to a character.

Upon successful completion, these interfaces return a non-negative value, indicating
the number of entries in the property value buffer. See
di_prom_prop_lookup_bytes(3DEVINFO) for a description of the return values.
Otherwise, -1 is returned and errno is set to indicate the error condition.

The di_prop_devt() function returns the dev_t value associated with the property.

The di_prop_name() function returns a pointer to a string containing the name of
the property.

The di_prop_type() function may return one of various types described in the
DESCRIPTION section.

These functions set errno as listed for the following conditions:

EINVAL Invalid argument. For example, the property type does not match
the interface.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

di_prop_bytes(3DEVINFO)

All Interfaces

di_prop_bytes

di_prop_ints

di_prop_int64

di_prop_strings

di_prop_bytes,
di_prop_ints,

di_prop_int64,
di_prop_strings

di_prop_devt

di_prop_name

di_prop_type

ERRORS

ATTRIBUTES

106 man pages section 3: Extended Library Functions • Last Revised 27 Mar 2001

di_prom_prop_lookup_bytes(3DEVINFO), di_prop_next(3DEVINFO),
libdevinfo(3DEVINFO), attributes(5)

Writing Device Drivers

di_prop_bytes(3DEVINFO)

SEE ALSO

Extended Library Functions 107

di_prop_lookup_bytes, di_prop_lookup_ints, di_prop_lookup_int64,
di_prop_lookup_strings – search for a property

#include <libdevinfo.h>

int di_prop_lookup_bytes(dev_t dev, di_node_t node, const char
*prop_name, uchar_t **prop_data);

int di_prop_lookup_ints(dev_t dev, di_node_t node, const char
*prop_name, int **prop_data);

int di_prop_lookup_int64(dev_t dev, di_node_t node, const char
*prop_name, int64_t **prop_data);

int di_prop_lookup_strings(dev_t dev, di_node_t node, const char
*prop_name, char **prop_data);

These functions are used for returning the value of a known property name type and
dev_t value.

All memory allocated by these functions is managed by the library and must not be
freed by the caller.

dev dev_t of minor node with which the property is associated.
DDI_DEV_T_ANY is a wild card that matches all dev_t’s,
including DDI_DEV_T_NONE.

node Handle to the device node with which the property is associated.

prop_name Name of the property for which to search.

prop_data Address to a pointer to an array of unsigned characters containing
the property data.

prop_data Address to a pointer to an array of integers containing the
property data.

prop_data Address to a pointer to an array of 64–bit integers containing the
property data.

prop_data Address to a pointer to a buffer containing a concatenation of
null-terminated strings containing the property data.

If the property is found, the number of entries in prop_data is returned. If the property
is a boolean type, 0 is returned, and the existence of this property indicates the value
is true. Otherwise, -1 is returned with errno set to indicate the error condition.

These functions set errno as listed for the following conditions:

EINVAL Invalid argument.

ENOTSUP The snapshot contains no property information.

ENXIO The property does not exist; try
di_prom_prop_lookup_*().

di_prop_lookup_bytes(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

All Interfaces

di_prop_lookup_bytes

di_prop_lookup_ints

di_prop_lookup_int64

di_prop_lookup_strings

RETURN VALUES

ERRORS

108 man pages section 3: Extended Library Functions • Last Revised 26 Mar 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

di_init(3DEVINFO),di_prom_prop_lookup_bytes(3DEVINFO),libdevinfo(3DEVINFO),
attributes(5)

Writing Device Drivers

di_prop_lookup_bytes(3DEVINFO)

ATTRIBUTES

SEE ALSO

Extended Library Functions 109

di_prop_next – libdevinfo property traversal function

#include <libdevinfo.h>

di_prop_t di_prop_next(di_node_t node, di_prop_t prop);

The function di_prop_next() returns a handle to the next property on the property
list. If prop is DI_PROP_NIL, the handle to the first property is returned.

node Handle to a device node.

prop Handle to a property.

Upon successful completion, di_prop_next() returns a handle. Otherwise
DI_PROP_NIL is returned, and errno is set to indicate the error condition.

The di_prop_next() functions sets errno as listed for the following conditions:

EINVAL Invalid argument.

ENOTSUP Snapshot does not contain property information.

ENXIO There are no more properties.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

di_init(3DEVINFO),libdevinfo(3DEVINFO),attributes(5)

Writing Device Drivers

di_prop_next(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

110 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

DisconnectToServer – disconnect from a DMI service provider

cc [flag ...] file ... -ldmici -ldmimi [library ...]

#include <dmi/api.hh>

bool_t DisconnectToServer(DmiRpcHandle *dmi_rpc_handle);

The DisconnectToServer() function disconnects a management application or a
component instrumentation from a DMI service provider.

The ConnectToServer() function returns TRUE if successful, otherwise FALSE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Safe

ConnectToServer(3DMI),attributes(5)

DisconnectToServer(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 111

di_walk_minor – traverse libdevinfo minor nodes

#include <libdevinfo.h>

int di_walk_minor(di_node_t root, const char *minor_nodetype, uint_t
flag, void *arg, int (*minor_callback)di_node_t node, di_minor_t
minor, void *arg);

di_walk_minor() visits all minor nodes attached to device nodes in a subtree
rooted at root. For each minor node that matches minor_nodetype, the caller-supplied
function minor_callback() is invoked. The walk terminates immediately when
minor_callback() returns DI_WALK_TERMINATE.

root Root of subtree to visit.

minor_nodetype A character string specifying the minor data type, which may be
one of the types defined by the Solaris DDI framework, for
example, DDI_NT_BLOCK. NULL matches all minor_node types. See
ddi_create_minor_node(9F).

flag Specify 0. Reserved for future use.

arg Pointer to caller– specific user data.

node The device node with which to the minor node is associated.

minor The minor node visited.

arg Pointer to caller–specific data.

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The allowed return values are:

DI_WALK_CONTINUE Continue to visit subsequent minor data nodes.

DI_WALK_TERMINATE Terminate the walk immediately.

EINVAL Invalid argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

di_minor_nodetype(3DEVINFO),libdevinfo(3DEVINFO),attributes(5)ddi_create_minor_no

Writing Device Drivers

di_walk_minor(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

di_walk_minor

minor_callback

di_walk_minor

minor_callback

di_walk_minor

ATTRIBUTES

SEE ALSO

112 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_walk_node – traverse libdevinfo device nodes

#include <libdevinfo.h>

int di_walk_node(di_node_t root, uint_t flag, void *arg, int
(*node_callback)di_node_t node, void *arg);

di_walk_node() visits all nodes in the subtree rooted at root. For each node found,
the caller-supplied function node_callback() is invoked. The return value of
node_callback() specifies subsequent walking behavior.

root Handle to the root node of the subtree to visit.

flag Specifies walking order, either DI_WALK_CLDFIRST (depth first) or
DI_WALK_SIBFIRST (breadth first). DI_WALK_CLDFIRST is the default.

arg Pointer to caller–specific data.

node The node being visited.

arg Pointer to caller–specific data.

0 is returned upon success. Otherwise, -1 is returned, and errno is set to indicate the
error.

The allowed return values are:

DI_WALK_CONTINUE Continue walking.

DI_WALK_PRUNESIB Continue walking, but skip siblings and their child
nodes.

DI_WALK_PRUNECHILD Continue walking, but skip subtree rooted at current
node .

DI_WALK_TERMINATE Terminate the walk immediately.

EINVAL Invalid argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

di_init(3DEVINFO),libdevinfo(3DEVINFO),attributes(5)

Writing Device Drivers

di_walk_node(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

di_walk_node

node_callback

di_walk_node

node_callback

di_walk_node

ATTRIBUTES

SEE ALSO

Extended Library Functions 113

DmiAddComponent, DmiAddGroup, DmiAddLanguage, DmiDeleteComponent,
DmiDeleteGroup, DmiDeleteLanguage – Management Interface database
administration functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <dmi/server.h>

#include <dmi/miapi.h>

bool_t DmiAddComponent(DmiAddComponentIN argin, DmiAddComponentOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiAddGroup(DmiAddGroupIN argin, DmiAddGroupOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiAddLanguage(DmiAddLanguageIN argin,
DmiAddLanguageOUT*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteComponent(DmiDeleteComponentIN argin,
DmiDeleteComponentOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteGroup(DmiDeleteGroupIN argin, DmiDeleteGroupOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteLanguage(DmiDeleteLanguageIN argin,
DmiDeleteLanguageOUT *result, DmiRpcHandle *dmi_rpc_handle);

The database administration functions add a new component to the database or add a
new language mapping for an existing component. You may also remove an existing
component, remove a specific language mapping, or remove a group from a
component.

The DmiAddComponent() function adds a new component to the DMI database. It
takes the name of a file, or the address of memory block containing MIF data, checks
the data for adherence to the DMI MIF grammar, and installs the MIF in the database.
The procedure returns a unique component ID for the newly installed component. The
argin parameter is an instance of a DmiAddComponentIN structure containing the
following members:

DmiHandle_t handle; /* an open session handle */
DmiFileDataList_t *fileData; /* MIF data for component */

The result parameter is a pointer to a DmiAddComponentOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiId_t compId; /* SP-allocated component ID */
DmiStringList_t *errors; /* installation error messages */

The DmiAddLanguage() function adds a new language mapping for an existing
component in the database. It takes the name of a file, or the address of memory block
containing translated MIF data, checks the data for adherence to the DMI MIF
grammar, and installs the language MIF in the database. The argin parameter is an
instance of a DmiAddLanguageIN structure containing the following members:

DmiAddComponent(3DMI)

NAME

SYNOPSIS

DESCRIPTION

114 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DmiHandle_t handle; /* an open session handle */
DmiFileDataList_t *fileData; /* language mapping file */
DmiId_t compId; /* component to access */

The result parameter is a pointer to a DmiAddLanguageOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiStringList_t *errors; /* installation error messages */

The DmiAddGroup() function adds a new group to an existing component in the
database. It takes the name of a file, or the address of memory block containing the
group’s MIF data, checks the data for adherence to the DMI MIF grammar, and installs
the group MIF in the database. The argin parameter is an instance of a
DmiAddGroupIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiFileDataList_t *fileData; /* MIF file data for group */
DmiId_t compId; /* component to access */

The result parameter is a pointer to a DmiAddGroupOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiId_t groupId; /* SP-allocated group ID */
DmiStringList_t *errors; /* installation error messages */

The DmiDeleteComponent() function removes an existing component from the
database. The argin parameter is an instance of a DmiDeleteComponentIN structure
containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiId_t compId; /* component to delete */

The result parameter is a pointer to a DmiDeleteComponentOUT structure containing
the following members:

DmiErrorStatus_t error_status;

The DmiDeleteLanguage() function removes a specific language mapping for a
component. You specify the language string and component ID. The argin parameter is
an instance of a DmiDeleteLanguageIN structure containing the following
members:

DmiHandle_t handle; /* an open session handle */
DmiString_t *language; /* language to delete */
DmiId_t compId; /* component to access */

The result parameter is a pointer to a DmiDeleteLanguageOUT structure containing
the following members:

DmiErrorStatus_t error_status;

DmiAddComponent(3DMI)

Extended Library Functions 115

The DmiDeleteGroup() function removes a group from a component. The caller
specifies the component and group IDs. The argin parameter is an instance of a
DmiDeleteGroupIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiId_t compId; /* component containing group */
DmiId_t groupId; /* group to delete */

The result parameter is a pointer to a DmiDeleteGroupOUT structure containing the
following members:

DmiErrorStatus_t error_status;

The DmiAddComponent() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_FILE_ERROR
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE

The DmiAddGroup() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE

The DmiAddLanguage() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE

The DmiDeleteComponent() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

DmiAddComponent(3DMI)

RETURN VALUES

116 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

THe DmiDeleteGroup() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

The DmiDeleteLanguage() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsasdk

MT-level Unsafe

attributes(5)

DmiAddComponent(3DMI)

ATTRIBUTES

SEE ALSO

Extended Library Functions 117

DmiAddRow, DmiDeleteRow, DmiGetAttribute, DmiGetMultiple, DmiSetAttribute,
DmiSetMultiple – Management Interface operation functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <server.h>

#include <miapi.h>

bool_t DmiAddRow(DmiAddRowIN argin, DmiAddRowOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteRow(DmiDeleteRowIN argin, DmiDeleteRowOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiGetAttribute(DmiGetAttributeIN argin, DmiGetAttributeOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiGetMultiple(DmiGetMultipleIN argin, DmiGetMultipleOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiSetAttribute(DmiSetAttributeIN argin, DmiSetAttributeOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiSetMultiple(DmiSetMultipleIN argin, DmiSetMultipleOUT
*result, DmiRpcHandle *dmi_rpc_handle);

The operation functions provide a method for retrieving a single value from the
Service Provider and for setting a single attribute value. In addition, you may also
retrieve attribute values from the Service Provider. You may perform a set operation
on an attribute or a list of attributes and add or delete a row from an existing table.

The DmiAddRow() function adds a row to an existing table. The rowData parameter
contains the full data, including key attribute values, for a row. It is an error for the
key list to specify an existing table row. The argin parameter is an instance of a
DmiAddRowIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRowData_t *rowData; /* Attribute values to set */

The result parameter is a pointer to a DmiAddRowOUT structure containing the
following members:

DmiErrorStatus_t error_status;

DmiDeleteRow() function removes a row from an existing table. The key list must
specify valid keys for a table row. The argin parameter is an instance of a
DmiDeleteRowIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRowData_t *rowData; /* Row to delete */

The result parameter is a pointer to a DmiDeleteRowOUT structure containing the
following members:

DmiErrorStatus_t error_status;

DmiAddRow(3DMI)

NAME

SYNOPSIS

DESCRIPTION

118 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

The DmiGetAttribute() function provides a simple method for retrieving a single
attribute value from the Service Provider. The compId, groupId, attribId, and
keyList identify the desired attribute. The resulting attribute value is returned in a
newly allocated DmiDataUnion structure. The address of this structure is returned
through the value parameter. The argin parameter is an instance of a
DmiListComponentsIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiId_t compId; /* Component to access */
DmiId_t groupId; /* Group within component */
DmiId_t attribId; /* Attribute within a group */
DmiAttributeValues_t *keyList; /* Keylist to specify a table row */

The result parameter is a pointer to a DmiGetAttributeOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiDataUnion_t *value; /* Attribute value returned */

The DmiGetMultiple() function retrieves attribute values from the Service
Provider. This procedure may get the value for an individual attribute, or for multiple
attributes across groups, components, or rows of a table.

The DmiSetAttribute() function provides a simple method for setting a single
attribute value. The compId, groupId, attribId, and keyList identify the desired
attribute. The setMode parameter defines the procedure call as a Set, Reserve, or
Release operation. The new attribute value is contained in the DmiDataUnion
structure whose address is passed in the value parameter. The argin parameter is an
instance of a DmiSetAttributeIN structure containing the following members:

DmiHandle_t handle;
DmiId_t compId;
DmiId_t groupId;
DmiId_t attribId;
DmiAttributeValues_t *keyList;
DmiSetMode_t setMode;
DmiDataUnion_t *value;

The result parameter is a pointer to a DmiSetAttributeOUT structure containing the
following members:

DmiErrorStatus_t error_status;

The DmiSetMultiple() function performs a set operation on an attribute or list of
attributes. Set operations include actually setting the value, testing and reserving the
attribute for future setting, or releasing the set reserve. These variations on the set
operation are specified by the parameter setMode. The argin parameter is an instance
of a DmiSetMultipleIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiSetMode_t setMode; /* set, reserve, or release */
DmiMultiRowData_t *rowData; /* Attribute values to set */

DmiAddRow(3DMI)

Extended Library Functions 119

The result parameter is a pointer to a DmiSetMultipleOUT structure containing the
following members:

DmiErrorStatus_t error_status;

The rowData array describes the attributes to set, and contains the new attribute
values. Each element of rowData specifies a component, group, key list (for table
accesses), and attribute list to set. No data is returned from this function.

The DmiAddRow() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_VALUE_UNKNOWN
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_VALUE_UNKNOWN
DMIERR_UNABLE_TO_ADD_ROW

The DmiDeleteRow() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_VALUE_UNKNOWN
DMIERR_UNABLE_TO_DELETE_ROW

The DmiGetAttribute() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND

DmiAddRow(3DMI)

RETURN VALUES

120 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

The DmiGetMultiple() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_RPC_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

The DmiSetAttribute() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

The DmiSetMultiple() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_SET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

DmiAddRow(3DMI)

Extended Library Functions 121

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

attributes(5)

DmiAddRow(3DMI)

ATTRIBUTES

SEE ALSO

122 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

dmi_error – print error in string form

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/dmi_error.hh>

void dmi_error(DmiErrorStatus_t error_status);

For the given error_status, the dmi_error() function prints the corresponding error
in string form. The function prints "unknown dmi errors" if error_status is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

dmi_error(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 123

DmiGetConfig, DmiGetVersion, DmiRegister, DmiSetConfig, DmiUnregister –
Management Interface initialization functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <server.h>

#include <miapi.h>

bool_t DmiGetConfig(DmiGetConfigIN argin, DmiGetConfigOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiGetVersion(DmiGetVersionIN argin, DmiGetVersionOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiRegister(DmiRegisterIN argin, DmiRegisterOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiSetConfig(DmiSetConfigIN argin, DmiSetConfigOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiUnregister(DmiUnregisterIN argin, DmiUnregisterOUT
*result, DmiRpcHandle *dmi_rpc_handle);

The Management Interface initialization functions enable you to register management
applications to the Service Provider. You may also retrieve information about the
Service Provider, get and set session configuration information for your session.

The DmiGetConfig() function retrieves the per-session configuration information.
The configuration information consists of a string describing the current language
being used for the session. The argin parameter is an instance of a DmiGetConfigIN
structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiGetConfigOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiString_t *language; /* current session language */

The DmiGetVersion() function retrieves information about the Service Provider.
The management application uses the DmiGetVersion() procedure to determine the
DMI specification level supported by the Service Provider. This procedure also returns
the service provided description string, and may contain version information about
the Service Provider implementation. The argin parameter is an instance of a
DmiGetVersionIN structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiGetVersionOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiString_t *dmiSpecLevel; /* DMI specification version */
DmiString_t *description; /* OS specific DMI SP version */

DmiGetConfig(3DMI)

NAME

SYNOPSIS

DESCRIPTION

124 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DmiFileTypeList_t *fileTypes; /* file types for MIF installation */

The DmiRegister() function provides the management application with a unique
per-session handle. The Service Provider uses this procedure to initialize to an internal
state for subsequent procedure calls made by the application. This procedure must be
the first command executed by the management application. argin is an instance of a
DmiRegisterIN structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiRegisterOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiHandle_t *handle; /* an open session handle */

The DmiSetConfig() function sets the per-session configuration information. The
configuration information consists of a string describing the language required by the
management application. The argin parameter is an instance of a DmiSetConfigIN
structure containing the following member:

DmiHandle_t handle; /* an open session handle */
DmiString_t *language; /* current language required */

The result parameter is a pointer to a DmiSetConfigOUT structure containing the
following member:

DmiErrorStatus_t error_status;

The DmiUnregister() function is used by the Service Provider to perform
end-of-session cleanup actions. On return from this function, the session handle is no
longer valid. This function must be the last DMI command executed by the
management application. The argin parameter is an instance of a DmiUnregisterIN
structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiUnregisterOUT structure containing the
following members:

DmiErrorStatus_t error_status;

The DmiGetConfig() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE

The DmiGetVersion() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_SP_INACTIVE

DmiGetConfig(3DMI)

RETURN VALUES

Extended Library Functions 125

The DmiRegister() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_SP_INACTIVE

The DmiSetConfig() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ILLEGAL_TO_SET

The DmiUnRegister() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

attributes(5)

DmiGetConfig(3DMI)

ATTRIBUTES

SEE ALSO

126 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DmiListAttributes, DmiListClassNames, DmiListComponents,
DmiListComponentsByClass, DmiListGroups, DmiListLanguages – Management
Interface listing functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <server.h>

#include <miapi.h>

bool_t DmiListAttributes(DmiListAttributesIN argin,
DmiListAttributesOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListClassNames(DmiListClassNamesIN argin,
DmiListClassNamesOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListComponents(DmiListComponentsIN argin,
DmiListComponentsOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListComponentsByClass(DmiListComponentsByClassIN argin,
DmiListComponentsByClassOUT *result, DmiRpcHandle
*dmi_rpc_handle);

bool_t DmiListGroups(DmiListGroupsIN argin, DmiListGroupsOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListLanguages(DmiListLanguagesIN argin,
DmiListLanguagesOUT *result, DmiRpcHandle *dmi_rpc_handle);

The listing functions enables you to retrieve the names and the description of
components in a system. You may also list components by class that match a specified
criteria. The listing functions retrieve the set of language mappings installed for a
specified component, retrieve class name strings for all groups in a component,
retrieve a list of groups within a component, and retrieve the properties for one or
more attributes in a group.

The DmiListComponents() function retrieves the name and (optionally) the
description of components in a system. Use this to interrogate a system to determine
what components are installed. The argin parameter is an instance of a
DmiListComponentsIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiRequestMode_t requestMode; /* Unique, first, or next */
DmiUnsigned_t maxCount; /* maximum number to return,

0 for all */
DmiBoolean_t getPragma; /* get optional pragma string */
DmiBoolean_t getDescription; /* get optional component

description */
DmiId_t compId; /* component ID to start with */

The result parameter is a pointer to a DmiListComponentsOUT structure containing
the following members:

DmiErrorStatus_t error_status;
DmiComponentList_t *reply; /* list of components */

DmiListAttributes(3DMI)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 127

An enumeration accesses a specific component or may be used to sequentially access
all components in a system. The caller may choose not to retrieve the component
description by setting the value getDescription to false. The caller may choose not
to retrieve the pragma string by setting the value of gutta-percha to false. The
maxCount, requestMode, and compId parameters allow the caller to control the
information returned by the Service Provider. When the requestMode is
DMI_UNIQUE, compId specifies the first component requested (or only component if
maxCount is one). When the requestMode is DMI_NEXT, compId specifies the
component just before the one requested. When requestMode is DMI_FIRST,
compId is unused.

To control the amount of information returned, the caller sets maxCount to something
other than zero. The service provider must honor this limit on the amount of
information returned. When maxCount is 0 the service provider returns information
for all components, subject to the constraints imposed by requestMode and compId.

The DmiListComponentsByClass() function lists components that match specified
criteria. Use this function to determine if a component contains a certain group or a
certain row in a table. A filter condition may be that a component contains a specified
group class name or that it contains a specific row in a specific group. As with
DmiListComponents(), the description and pragma strings are optional return
values. argin is an instance of a DmiListComponentsByClassIN structure
containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiRequestMode_t requestMode; /* Unique, first or next */
DmiUnsigned_t maxCount; /* maximum number to return,

or 0 for all */
DmiBoolean_t getPragma; /* get the optional pragma

string */
DmiBoolean_t getDescription; /* get optional component

description */
DmiId_t compId; /* component ID to start with */
DmiString_t *className; /* group class name string

to match*/
DmiAttributeValues_t *keyList; /* group row keys to match */

The result parameter is a pointer to a DmiListComponentsbyClassOUT structure
containing the following members:

DmiErrorStatus_t error_status;
DmiComponentList_t *reply; /* list of components */

The DmiListLanguages() function retrieves the set of language mappings installed
for the specified component. The argin parameter is an instance of a
DmiListLanguagesIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiUnsigned_t maxCount; /* maximum number to return,

or 0 for all */
DmiId_t compId; /* Component to access */

DmiListAttributes(3DMI)

128 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

The result parameter is a pointer to a DmiListLanguagesOUT structure containing
the following members:

DmiErrorStatus_t error_status;
DmiStringList_t *reply; /* List of language strings */

The DmiListClassNames() function retrieves the class name strings for all groups
in a component. This enables the management application to easily determine if a
component contains a specific group, or groups. The argin parameter is an instance of
a DmiListClassNamesIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiUnsigned_t maxCount; /* maximum number to return,

or 0 for all */
DmiId_t compId; /* Component to access */

The result parameter is a pointer to a DmiListClassNamesOUT structure containing
the following members:

DmiErrorStatus_t error_status;
DmiClassNameList_t *reply; /* List of class names and

group IDs */

The DmiListGroups() function retrieves a list of groups within a component. With
this function you can access a specific group or sequentially access all groups in a
component. All enumerations of groups occur within the specified component and do
not span components. The argin parameter is an instance of a DmiListGroupsIN
structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRequestMode_t requestMode; /* Unique, first or next group */
DmiUnsigned_t maxCount; /* Maximum number to return,

or 0 for all */
DmiBoolean_t getPragma; /* Get the optional pragma string */
DmiBoolean_t getDescription; /* Get optional group description */
DmiId_t compId; /* Component to access */
DmiId_t groupId; /* Group to start with, refer to

requestMode */

The result parameter is a pointer to a DmiListGroupsOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiGroupList_t *reply;

The caller may choose not to retrieve the group description by setting the value
getDescription to false. The caller may choose not to retrieve the pragma string by
setting the value of getPragma to false. The maxCount, requestMode, and
groupId parameters allow the caller to control the information returned by the
Service Provider. When the requestMode is DMI_UNIQUE, groupId specifies the
first group requested (or only group if maxCount is one). When the requestMode is
DMI_NEXT, groupId specifies the group just before the one requested. When
requestMode is DMI_FIRST, groupId is unused. To control the amount of
information returned, the caller sets maxCount to something other than zero. The

DmiListAttributes(3DMI)

Extended Library Functions 129

service provider must honor this limit on the amount of information returned. When
maxCount is zero the service provider returns information for all groups, subject to
the constraints imposed by requestMode and groupId.

The DmiListAttributes() function retrieves the properties for one or more
attributes in a group. All enumerations of attributes occur within the specified group,
and do not span groups. The argin parameter is an instance of a
DmiListAttributesIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRequestMode_t requestMode; /* Unique, first or next group */
DmiUnsigned_t maxCount; /* Maximum number to return,

or 0 for all */
DmiBoolean_t getPragma; /* Get the optional pragma string */
DmiBoolean_t getDescription; /* Get optional group description */
DmiId_t compId; /* Component to access */
DmiId_t groupId; /* Group to access */
DmiId_t attribId; /* Attribute to start with, refer

to requestMode */

The result parameter is a pointer to a DmiListAttributesOUT structure containing
the following members:

DmiErrorStatus_t error_status;
DmiAttributeList_t *reply; /* List of attrbutes */

You may choose not to retrieve the description string by setting the value of
getDescription to false. Likewise, you may choose not to retrieve the pragma
string by setting the value of getPragma to false. The maxCount, requestMode, and
attribId parameters allow you to control the information returned by the Service
Provider. When the requestMode is DMI_UNIQUE, attribId specifies the first
attribute requested (or only attribute if maxCount is one). When the requestMode is
DMI_NEXT, attribId specifies the attribute just before the one requested. When
requestMode is DMI_FIRST, attribId is unused. To control the amount of
information returned, the caller sets maxCount to something other than zero. The
Service Provider must honor this limit on the amount of information returned. When
maxCount is zero the service provider returns information for all attributes, subject to
the constraints imposed by requestMode and attribId.

The DmiListAttributes() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListClassNames() function returns the following possible values:

DmiListAttributes(3DMI)

RETURN VALUES

130 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListComponents() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListComponentsByClass() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListGroups() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListLanguages() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

DmiListAttributes(3DMI)

ATTRIBUTES

Extended Library Functions 131

attributes(5)

DmiListAttributes(3DMI)

SEE ALSO

132 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DmiRegisterCi, DmiUnRegisterCi, DmiOriginateEvent – Service Provider functions for
components

cc [flag ...] file ... -lci -ldmi -lnsl -lrwtool [library ...]
#include <server.h>

#include <ciapi.h>

extern bool_t DmiRegisterCi(DmiRegisterCiIN argin,
DmiRegisterCiOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiUnregisterCi(DmiUnregisterCiIN argin, DmiUnregisterCiOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiOriginateEvent(DmiOriginateEventIN argin,
DmiOriginateEventOUT *result, DmiRpcHandle *dmi_rpc_handle);

These three functions provide component communication with the DMI through the
Component Interface (CI).

Component instrumentation code may register with the Service Provider to override
its current mechanism for the registered attributes. Instead of manipulating the data in
the MIF database or invoking programs, the Service Provider calls the entry points
provided in the registration call. Once the component unregisters, the Service Provider
returns to a normal method of processing requests for the data as defined in the MIF.
Component instrumentation can temporarily interrupt normal processing to perform
special functions.

Registering attributes through the direct interface overrides atttributes that are already
being served through the direct interface. RPC is used for communication from the
Service Provider to the component instrumentation.

For all three functions, argin is the parameter passed to initiate an RPC call, result is the
result of the RPC call, and dmi_rpc_handle is an open session RPC handle.

The DmiRegisterCi() function registers a callable interface for components that
have resident instrumentation code and/or to get the version of the Service Provider.

The DmiUnRegisterCi() function communicates to the Service Provider to remove
a direct component instrumentation interface from the Service Provider table of
registered interfaces.

The DmiOriginateEvent() function originates an event for filtering and delivery.
Any necessary indication filtering is performed by this function (or by subsequent
processing) before the event is forwarded to the management applications.

A component ID value of zero (0) specifies the event was generated by something that
has not been installed as a component, and has no component ID.

The DmiRegisterCi() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_HANDLE

DmiRegisterCi(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 133

DMIERR_OUT_OF_MEMORY
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_DATABASE_CORRUPT
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_DMI_LEVEL

The DmiUnRegisterCi() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_SP_INACTIVE
DMIERR_UNKNOWN_CI_REGISTRY

The DmiOriginateEvent() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_SP_INACTIVE
DMIERR_UNKNOWN_CI_REGISTRY

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

attributes(5)

DmiRegisterCi(3DMI)

ATTRIBUTES

SEE ALSO

134 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

ea_error – error interface to extended accounting library

cc [flag ...] file ... -lexacct [library ...]
#include <exacct.h>

int ea_error(void);

The ea_error() function returns the error value of the last failure recorded by the
invocation of one of the functions of the extended accounting library, libexacct.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), libexacct(3LIB), attributes(5)

ea_error(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 135

ea_open, ea_close – open or close exacct files

cc [flag...] file ... -lexacct [library...]
#include <exacct.h>

int *ea_open(ea_file_t *efp, char *name, char *creator, int aflags, int
oflags, mode_t mode);

int ea_close(ea_file_t *efp);

The ea_open() function provides structured access to exacct files. The aflags
argument contains the appropriate exacct flags necessary to describe the file. The
oflags and mode arguments contain the appropriate flags and mode to open the file; see
<fcntl.h>. If ea_open() is invoked with EO_HEAD specified in aflags, the resulting
file is opened with the object cursor located at the first object of the file. If ea_open()
is invoked with EO_TAIL specified in aflags, the resulting file is opened with the object
cursor positioned beyond the last object in the file.

The ea_close() function closes an open exacct file.

Upon successful completion, ea_open() and ea_close() return 0. Otherwise they
return −1 and call ea_error(3EXACCT) to return the extended accounting error
value describing the error.

The ea_open() and ea_close() functions may fail if:

EXR_SYSCALL_FAIL A system call invoked by the function failed. The
errno variable contains the error value set by the
underlying call.

The ea_open() function may fail if:

EXR_CORRUPT_FILE The file referred to by name is not a valid exacct file.

EXR_NO_CREATOR In the case of file creation, the creator argument was
NULL. In the case of opening an existing file, a creator
argument was specified and does not match the creator
item of the exacct file.

EXR_UNKN_VERSION The file referred to by name uses an exacct file version
that cannot be processed by this library.

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application
writers can develop their own format suited to the needs of their application.

EXAMPLE 1 Open and close exacct file.

The following example opens the extended accounting data file for processes. The
exacct file is then closed.

#include <exacct.h>

ea_open(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

EXAMPLES

136 man pages section 3: Extended Library Functions • Last Revised 11 Jan 2000

EXAMPLE 1 Open and close exacct file. (Continued)

ea_file_t ef;
if (ea_open(&ef, "/var/adm/exacct/proc", NULL, EO_HEAD,

O_RDONLY, 0) == -1)
exit(1);

(void) ea_close(ef);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ea_error(3EXACCT), ea_pack_object(3EXACCT), ea_set_item(3EXACCT),
libexacct(3LIB), attributes(5)

ea_open(3EXACCT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 137

ea_pack_object, ea_unpack_object, ea_get_creator, ea_get_hostname, ea_next_object,
ea_previous_object, ea_get_object, ea_write_object – construct, read, and write
extended accounting records

cc [flag ...] file ... -lexacct [library ...]
#include <exacct.h>

size_t ea_pack_object(ea_object_t *obj, void *buf, size_t bufsize);

ea_object_type_t ea_unpack_object(ea_object_t **objp, int flag,
void *buf, size_t bufsize);

const char *ea_get_creator(ea_file_t *ef);

const char *ea_get_hostname(ea_file_t *ef);

ea_object_type_t ea_next_object(ea_file_t *ef, ea_object_t *obj);

ea_object_type_t ea_previous_object(ea_file_t *ef, ea_object_t
*obj);

ea_object_type_t ea_get_object(ea_file_t *ef, ea_object_t *obj);

int ea_write_object(ea_file_t *ef, ea_object_t *obj);

The ea_pack_object() function converts exacct objects from their in-memory
representation to their file representation. It is passed an object pointer that points to
the top of an exacct object hierarchy representing one or more exacct records. It
returns the size of the buffer required to contain the packed buffer representing the
object hierarchy.

The ea_unpack_object() function reverses the packing process performed by
ea_pack_object(). A packed buffer passed to ea_unpack_object() is unpacked
into the original hierarchy of objects. If the unpack operation fails (presumably due to
a corrupted or incomplete buffer), it returns −1; otherwise, the object type of the first
object in the hierarchy is returned. If ea_unpack_object() is invoked with flag
equal to EUP_ALLOC, it allocates memory for the variable length data in the included
objects. Otherwise, with flag equal to EUP_NOALLOC, it sets the variable length data
pointers within the unpacked object structures to point within the buffer indicated by
buf. In both cases, ea_unpack_object() allocates all the necessary exacct objects
to represent the unpacked record. The resulting object hierarchy can be freed using
ea_free_object(3EXACCT) with the same flag value.

The ea_get_creator() function returns a pointer to a string representing the
recorded creator of the exacct file. The ea_get_hostname() function returns a
pointer to a string representing the recorded hostname on which the exacct file was
created. These functions will return NULL if their respective field was not recorded in
the exacct file header.

The ea_next_object() function reads the basic fields into the ea_object_t
indicated by obj from the exacct file referred to by ef, and rewinds to the head of the

ea_pack_object(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

138 man pages section 3: Extended Library Functions • Last Revised 10 Dec 1999

record. If the read object is corrupted, ea_next_object() returns −1 and records the
extended accounting error code.

The ea_previous_object() function skips back one object in the file and reads its
basic fields into the indicated ea_object_t. If the read object is corrupted,
ea_previous_object() returns −1 and records the extended accounting error code.

The ea_get_object() function reads the value fields into the ea_object_t
indicated by obj, allocating memory as necessary, and advances to the head of the next
record. Once a record group object is retrieved using ea_get_object(), a call to
ea_next_object() will track through the objects within the record group. If the
read object is corrupted, ea_get_object() returns −1 and records the extended
accounting error code.

The ea_write_object() function appends the given object to the open exacct file
indicated by ef. If the write fails, ea_write_object() returns −1 and sets the
extended accounting error code to indicate the error.

The ea_pack_object() function returns the number of bytes associated with the
exacct object being operated upon. If the returned size exceeds bufsize, the pack
operation will not complete.

The ea_get_object() function returns 1 if the object was retrieved successfully.
Otherwise, it returns 0 and sets errno to indicate the error. If the error occured during
the execution of read(2), errno will be unchanged.

The ea_next_object() function returns the ea_object_type of the next exacct
object in the file. It returns −1 if the exacct file is corrupted.

The ea_unpack_object() function returns the ea_object_type of the first
exacct object unpacked from the buffer. It returns −1 if the exacct file is corrupted.

The ea_write_object() function returns 0 on success and −1 on failure.

In the case of failure, these functions will set an extended accounting error code
reflecting one of the errors decsribed below. The extended account error code can be
retrieved using ea_error(3EXACCT).

These functions may fail if:

EXR_SYSCALL_FAIL A system call invoked by the function failed. The
errno variable contains the error value set by the
underlying call.

EXR_CORRUPT_FILE The file referred to by name is not a valid exacct file,
or is unparsable, and therefore appears corrupted. This
error is also used by ea_unpack_buffer() to
indicate a corrupted buffer.

EXR_NO_MEMORY A memory allocation required to complete the
operation failed.

ea_pack_object(3EXACCT)

RETURN VALUES

ERRORS

Extended Library Functions 139

EXR_EOF The end of the file has been reached. In the case of
ea_previous_record(), the previous record could
not be reached, either because the head of the file was
encountered or because the previous record could not
be skipped over.

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application
writers can develop their own format suited to the needs of their application.

EXAMPLE 1 Open and close exacct file.

The following example opens the extended accounting data file for processes. The
exacct file is then closed.

#include <stdio.h>
#include <exacct.h>

ea_file_t ef;
ea_object_t obj;

...

ea_open(&ef, "foo", O_RDONLY, ...);

while (ea_next_object(&ef, &obj) != -1) {
if (ea_get_object(&ef, &obj) == -1) {

(void) fprintf(stderr, "unrecognized exacct object");
break;

}

if (obj.eo_type == EO_ITEM) {
/* handle item */

} else {
/* handle group */

}
}

ea_close(&ef);

EXAMPLE 2 Construct an exacct file consisting of a single object containing the current
process ID.

#include <sys/types.h>
#include <unistd.h>
#include <exacct.h>

...

ea_file_t ef;
ea_object_t obj;
pid_t my_pid;

ea_open(&ef, "foo", O_CREAT | O_WRONLY, ...);

ea_pack_object(3EXACCT)

USAGE

EXAMPLES

140 man pages section 3: Extended Library Functions • Last Revised 10 Dec 1999

EXAMPLE 2 Construct an exacct file consisting of a single object containing the current
process ID. (Continued)

my_pid = getpid();
ea_set_item(&obj, EXD_UINT32 | EXC_DEFAULT | EXT_PROC_PID, &ny_pid, 0);
(void) ea_write_object(&ef, &obj);

ea_close(&ef);

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), ea_error(3EXACCT), ea_open(3EXACCT), ea_set_item(3EXACCT),
libexacct(3LIB), attributes(5)

ea_pack_object(3EXACCT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 141

ea_set_item, ea_set_group, ea_match_object_catalog, ea_attach_to_object,
ea_attach_to_group, ea_free_item, ea_free_object – open or close exacct files

cc [flag...] file ... -lexacct [library...]
#include <exacct.h>

int ea_set_item(ea_object_t *obj, ea_catalog_t tag, void *value,
size_tvalsize);

int ea_set_group(ea_object_t *obj, ea_catalog_t tag);

int ea_match_object_catalog(ea_object_t *obj, ea_catalog_t
catmask);

void ea_attach_to_object(ea_object_t *head_obj, ea_object_t *obj);

void ea_attach_to_group(ea_object_t *group_obj, ea_object_t *obj);

void ea_free_item(ea_object_t *obj, int flag);

void ea_free_object(ea_object_t *obj, int flag);

The ea_set_item() function assigns the given exacct object to be a data item with
value set according to the remaining arguments. For buffer-based data values, no copy
is taken. The ea_set_group() function assigns the given exacct object to be a
record group with 0 elements.

The ea_match_object_catalog() function returns TRUE if the exacct object
specified by obj has a catalog tag that matches the mask specified by catmask.

The ea_attach_to_object() function attaches an object to the given object. The
ea_attach_to_group() function attaches a chain of objects as member items of the
given group. Objects are inserted into the list of any previously attached objects.

The ea_free_item() function frees the value fields in the ea_object_t indicated
by obj, if EUP_ALLOC is specified. The object itself is not freed. The
ea_free_object() function frees the specified object and any attached hierarchy of
objects. If the flag argument is set to EUP_ALLOC, ea_free_object() will also free
any variable-length data in the object hierarchy; if set to EUP_NOALLOC,
ea_free_object() will not free variable-length data. In particular, these flags
should correspond to those specified in calls to ea_unpack_object(3EXACCT).

The ea_set_item() and ea_set_group() functions return 0 if the object was
assigned successfuly. Otherwise these functions return −1 and set the extended
accounting error code appropriately.

The ea_match_object_catalog() function returns 0 if the object’s catalog tag
does not match the given mask, and 1 if there is a match.

The ea_set_item(), ea_set_group(), and ea_match_object_catalog()
functions may fail if:

ea_set_item(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

142 man pages section 3: Extended Library Functions • Last Revised 10 Dec 1999

EXR_SYSCALL_FAIL A system call invoked by the function failed. The
errno variable contains the error value set by the
underlying call.

EXR_NO_MEMORY A memory allocation required to complete the
operation failed.

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application
writers can develop their own format suited to the needs of their application.

EXAMPLE 1 Open and close exacct file.

Construct an exacct file consisting of a single object containing the current process ID.

#include <sys/types.h>
>#include <unistd.h>
#include <exacct.h>

...

ea_file_t ef;
ea_object_t obj;
pid_t my_pid;

my_pid = getpid();
ea_set_item(&obj, EXD_UINT32 | EXC_DEFAULT | EXT_PROC_PID, &my_pid, 0);

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), ea_error(3EXACCT), ea_open(3EXACCT), ea_pack_object(3EXACCT),
libexacct(3LIB), attributes(5)

ea_set_item(3EXACCT)

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 143

elf32_checksum, elf64_checksum – return checksum of elf image

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

long elf32_checksum(Elf *elf);

long elf64_checksum(Elf *elf);

The elf32_checksum() function returns a simple checksum of selected sections of
the image identified by elf. The value is typically used as the .dynamic tag
DT_CHECKSUM, recorded in dynamic executables and shared objects.

Selected sections of the image are used to calcluate the checksum in order that its
value is not affected by utilities such as strip(1).

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_version(3ELF), gelf(3ELF), libelf(3LIB), attributes(5)

elf32_checksum(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

144 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf32_fsize, elf64_fsize – return the size of an object file type

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

size_t elf32_fsize(Elf_Type type, size_t count, unsigned ver);

size_t elf64_fsize(Elf_Type type, size_t count, unsigned ver);

elf32_fsize() gives the size in bytes of the 32-bit file representation of count data
objects with the given type. The library uses version ver to calculate the size. See
elf(3ELF) and elf_version(3ELF).

Constant values are available for the sizes of fundamental types:

Elf_Type File Size Memory Size
ELF_T_ADDR ELF32_FSZ_ADDR sizeof(Elf32_Addr)
ELF_T_BYTE 1 sizeof(unsigned char)
ELF_T_HALF ELF32_FSZ_HALF sizeof(Elf32_Half)
ELT_T_OFF ELF32_FSZ_OFF sizeof(Elf32_Off)
ELF_T_SWORD ELF32_FSZ_SWORD sizeof(Elf32_Sword)
ELF_T_WORD ELF32_FSZ_WORD sizeof(Elf32_Word)

elf32_fsize() returns 0 if the value of type or ver is unknown. See
elf32_xlatetof(3ELF) for a list of the type values.

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_version(3ELF), libelf(3LIB),
attributes(5)

elf32_fsize(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 145

elf32_getehdr, elf32_newehdr, elf64_getehdr, elf64_newehdr – retrieve class-dependent
object file header

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf32_Ehdr *elf32_getehdr(Elf *elf);

Elf32_Ehdr *elf32_newehdr(Elf *elf);

Elf64_Ehdr *elf64_getehdr(Elf *elf);

Elf64_Ehdr *elf64_newehdr(Elf *elf);

For a 32-bit class file, elf32_getehdr() returns a pointer to an ELF header, if one is
available for the ELF descriptor elf. If no header exists for the descriptor,
elf32_newehdr() allocates a clean one, but it otherwise behaves the same as
elf32_getehdr(). It does not allocate a new header if one exists already. If no
header exists for elf32_getehdr(), one cannot be created for
elf32_newehdr(), a system error occurs, the file is not a 32-bit class file, or elf is
null, both functions return a null pointer.

For the 64−bit class, replace 32 with 64 as appropriate.

The header includes the following members:

unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

elf32_newehdr() automatically sets the ELF_F_DIRTY bit. See
elf_flagdata(3ELF). A program may use elf_getident() to inspect the
identification bytes from a file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf32_getehdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

146 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf(3ELF), elf_begin(3ELF), elf_flagdata(3ELF), elf_getident(3ELF),
libelf(3LIB), attributes(5)

elf32_getehdr(3ELF)

SEE ALSO

Extended Library Functions 147

elf32_getphdr, elf32_newphdr, elf64_getphdr, elf64_newphdr – retrieve
class-dependent program header table

cc [flag ...] file... -lelf [library ...]

#include <libelf.h>

Elf32_Phdr *elf32_getphdr(Elf *elf);

Elf32_Phdr *elf32_newphdr(Elf *elf, size_t count);

Elf64_Phdr *elf64_getphdr(Elf *elf);

Elf64_Phdr *elf64_newphdr(Elf *elf, size_t count);

For a 32-bit class file, elf32_getphdr() returns a pointer to the program execution
header table, if one is available for the ELF descriptor elf.

elf32_newphdr() allocates a new table with count entries, regardless of whether one
existed previously, and sets the ELF_F_DIRTY bit for the table. See
elf_flagdata(3ELF). Specifying a zero count deletes an existing table. Note this
behavior differs from that of elf32_newehdr() allowing a program to replace or
delete the program header table, changing its size if necessary. See
elf32_getehdr(3ELF).

If no program header table exists, the file is not a 32-bit class file, an error occurs, or elf
is NULL, both functions return a null pointer. Additionally, elf32_newphdr()
returns a null pointer if count is 0.

The table is an array of Elf32_Phdr structures, each of which includes the following
members:

Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

The Elf64_Phdr structures include the following members:

Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
Elf64_Xword p_filesz;
Elf64_Xword p_memsz;
Elf64_Xword p_align;

For the 64−bit class, replace 32 with 64 as appropriate.

elf32_getphdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

148 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

The ELF header’s e_phnum member tells how many entries the program header table
has. See elf32_getehdr(3ELF). A program may inspect this value to determine the
size of an existing table; elf32_newphdr() automatically sets the member’s value to
count. If the program is building a new file, it is responsible for creating the file’s ELF
header before creating the program header table.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_flagdata(3ELF),
libelf(3LIB), attributes(5)

elf32_getphdr(3ELF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 149

elf32_getshdr, elf64_getshdr – retrieve class-dependent section header

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf32_Shdr *elf32_getshdr(Elf_Scn *scn);

Elf64_Shdr *elf64_getshdr(Elf_Scn *scn);

For a 32-bit class file, elf32_getshdr() returns a pointer to a section header for the
section descriptor scn. Otherwise, the file is not a 32-bit class file, scn was NULL, or an
error occurred; elf32_getshdr() then returns NULL.

The elf32_getshdr header includes the following members:

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

while the elf64_getshdr header includes the following members:

Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;

For the 64−bit class, replace 32 with 64 as appropriate.

If the program is building a new file, it is responsible for creating the file’s ELF header
before creating sections.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf32_getshdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

150 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf(3ELF), elf_flagdata(3ELF), elf_getscn(3ELF), elf_strptr(3ELF),
libelf(3LIB), attributes(5)

elf32_getshdr(3ELF)

SEE ALSO

Extended Library Functions 151

elf32_xlatetof, elf32_xlatetom, elf64_xlatetof, elf64_xlatetom – class-dependent data
translation

cc [flag ...] file... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf32_xlatetof(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf32_xlatetom(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf64_xlatetof(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf64_xlatetom(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

elf32_xlatetom() translates various data structures from their 32-bit class file
representations to their memory representations; elf32_xlatetof() provides the
inverse. This conversion is particularly important for cross development
environments. src is a pointer to the source buffer that holds the original data; dst is a
pointer to a destination buffer that will hold the translated copy. encode gives the byte
encoding in which the file objects are to be represented and must have one of the
encoding values defined for the ELF header’s e_ident[EI_DATA] entry (see
elf_getident(3ELF)). If the data can be translated, the functions return dst.
Otherwise, they return NULL because an error occurred, such as incompatible types,
destination buffer overflow, etc.

elf_getdata(3ELF) describes the Elf_Data descriptor, which the translation
routines use as follows:

d_buf Both the source and destination must have valid buffer pointers.

d_type This member’s value specifies the type of the data to which d_buf
points and the type of data to be created in the destination. The
program supplies a d_type value in the source; the library sets
the destination’s d_type to the same value. These values are
summarized below.

d_size This member holds the total size, in bytes, of the memory occupied
by the source data and the size allocated for the destination data. If
the destination buffer is not large enough, the routines do not
change its original contents. The translation routines reset the
destination’s d_size member to the actual size required, after the
translation occurs. The source and destination sizes may differ.

d_version This member holds the version number of the objects (desired) in
the buffer. The source and destination versions are independent.

elf32_xlatetof(3ELF)

NAME

SYNOPSIS

DESCRIPTION

152 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

Translation routines allow the source and destination buffers to coincide. That is,
dst→d_buf may equal src→d_buf. Other cases where the source and destination
buffers overlap give undefined behavior.

Elf_Type 32-Bit Memory Type
ELF_T_ADDR Elf32_Addr
ELF_T_BYTE unsigned char
ELF_T_DYN Elf32_Dyn
ELF_T_EHDR Elf32_Ehdr
ELF_T_HALF Elf32_Half
ELT_T_OFF Elf32_Off
ELF_T_PHDR Elf32_Phdr
ELF_T_REL Elf32_Rel
ELF_T_RELA Elf32_Rela
ELF_T_SHDR Elf32_Shdr
ELF_T_SWORD Elf32_Sword
ELF_T_SYM Elf32_Sym
ELF_T_WORD Elf32_Word

Translating buffers of type ELF_T_BYTE does not change the byte order.

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_fsize(3ELF), elf_getdata(3ELF), elf_getident(3ELF),
libelf(3LIB), attributes(5)

elf32_xlatetof(3ELF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 153

elf – object file access library

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Functions in the ELF access library let a program manipulate ELF (Executable and
Linking Format) object files, archive files, and archive members. The header provides
type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF descriptor.
That is, when the program starts working with a file, elf_begin(3ELF) creates an
ELF descriptor through which the program manipulates the structures and
information in the file. These ELF descriptors can be used both to read and to write
files. After the program establishes an ELF descriptor for a file, it may then obtain
section descriptors to manipulate the sections of the file (see elf_getscn(3ELF)).
Sections hold the bulk of an object file’s real information, such as text, data, the symbol
table, and so on. A section descriptor ‘‘belongs’’ to a particular ELF descriptor, just as a
section belongs to a file. Finally, data descriptors are available through section
descriptors, allowing the program to manipulate the information associated with a
section. A data descriptor ‘‘belongs’’ to a section descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a data
descriptor is associated with one section descriptor, which is associated with one ELF
descriptor, which is associated with one file. Although descriptors are private, they
give access to data that may be shared. Consider programs that combine input files,
using incoming data to create or update another file. Such a program might get data
descriptors for an input and an output section. It then could update the output
descriptor to reuse the input descriptor’s data. That is, the descriptors are distinct, but
they could share the associated data bytes. This sharing avoids the space overhead for
duplicate buffers and the performance overhead for copying data unnecessarily.

ELF provides a framework in which to define a family of object files, supporting
multiple processors and architectures. An important distinction among object files is
the class, or capacity, of the file. The 32-bit class supports architectures in which a
32-bit object can represent addresses, file sizes, and so on, as in the following:

Name Purpose

Elf32_Addr Unsigned address

Elf32_Half Unsigned medium integer

Elf32_Off Unsigned file offset

Elf32_Sword Signed large integer

Elf32_Word Unsigned large integer

unsigned char Unsigned small integer

elf(3ELF)

NAME

SYNOPSIS

DESCRIPTION

File Classes

154 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2001

The 64−bit class works the same as the 32−bit class, substituting 64 for 32 as necessary.
Other classes will be defined as necessary, to support larger (or smaller) machines.
Some library services deal only with data objects for a specific class, while others are
class-independent. To make this distinction clear, library function names reflect their
status, as described below.

Conceptually, two parallel sets of objects support cross compilation environments.
One set corresponds to file contents, while the other set corresponds to the native
memory image of the program manipulating the file. Type definitions supplied by the
headers work on the native machine, which may have different data encodings (size,
byte order, and so on) than the target machine. Although native memory objects
should be at least as big as the file objects (to avoid information loss), they may be
bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations. Some
library routines convert data automatically, while others leave conversion as the
program’s responsibility. Either way, programs that create object files must write
file-typed objects to those files; programs that read object files must take a similar
view. See elf32_xlatetof(3ELF) and elf32_fsize(3ELF) for more information.

Programs may translate data explicitly, taking full control over the object file layout
and semantics. If the program prefers not to have and exercise complete control, the
library provides a higher-level interface that hides many object file details.
elf_begin() and related functions let a program deal with the native memory
types, converting between memory objects and their file equivalents automatically
when reading or writing an object file.

Object file versions allow ELF to adapt to new requirements. Three independent versions
can be important to a program. First, an application program knows about a particular
version by virtue of being compiled with certain headers. Second, the access library
similarly is compiled with header files that control what versions it understands.
Third, an ELF object file holds a value identifying its version, determined by the ELF
version known by the file’s creator. Ideally, all three versions would be the same, but
they may differ.

If a program’s version is newer than the access library, the program might use
information unknown to the library. Translation routines might not work properly,
leading to undefined behavior. This condition merits installing a new library.

The library’s version might be newer than the program’s and the file’s. The library
understands old versions, thus avoiding compatibility problems in this case.

Finally, a file’s version might be newer than either the program or the library
understands. The program might or might not be able to process the file properly,
depending on whether the file has extra information and whether that information can
be safely ignored. Again, the safe alternative is to install a new library that
understands the file’s version.

elf(3ELF)

Data
Representation

ELF Versions

Extended Library Functions 155

To accommodate these differences, a program must use elf_version(3ELF) to pass
its version to the library, thus establishing the working version for the process. Using
this, the library accepts data from and presents data to the program in the proper
representations. When the library reads object files, it uses each file’s version to
interpret the data. When writing files or converting memory types to the file
equivalents, the library uses the program’s working version for the file data.

As mentioned above, elf_begin() and related routines provide a higher-level
interface to ELF files, performing input and output on behalf of the application
program. These routines assume a program can hold entire files in memory, without
explicitly using temporary files. When reading a file, the library routines bring the
data into memory and perform subsequent operations on the memory copy. Programs
that wish to read or write large object files with this model must execute on a machine
with a large process virtual address space. If the underlying operating system limits
the number of open files, a program can use elf_cntl(3ELF) to retrieve all necessary
data from the file, allowing the program to close the file descriptor and reuse it.

Although the elf_begin() interfaces are convenient and efficient for many
programs, they might be inappropriate for some. In those cases, an application may
invoke the elf32_xlatetom(3ELF) or elf32_xlatetof(3ELF) data translation
routines directly. These routines perform no input or output, leaving that as the
application’s responsibility. By assuming a larger share of the job, an application
controls its input and output model.

Names associated with the library take several forms.

elf_name These class-independent names perform some service,
name, for the program.

elf32_name Service names with an embedded class, 32 here,
indicate they work only for the designated class of files.

Elf_Type Data types can be class-independent as well,
distinguished by Type.

Elf32_Type Class-dependent data types have an embedded class
name, 32 here.

ELF_C_CMD Several functions take commands that control their
actions. These values are members of the Elf_Cmd
enumeration; they range from zero through
ELF_C_NUM−1.

ELF_F_FLAG Several functions take flags that control library status
and/or actions. Flags are bits that may be combined.

ELF32_FSZ_TYPE These constants give the file sizes in bytes of the basic
ELF types for the 32-bit class of files. See
elf32_fsize() for more information.

elf(3ELF)

System Services

Library Names

156 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2001

ELF_K_KIND The function elf_kind() identifies the KIND of file
associated with an ELF descriptor. These values are
members of the Elf_Kind enumeration; they range
from zero through ELF_K_NUM−1.

ELF_T_TYPE When a service function, such as elf32_xlatetom()
or elf32_xlatetof(), deals with multiple types,
names of this form specify the desired TYPE. Thus, for
example, ELF_T_EHDR is directly related to
Elf32_Ehdr. These values are members of the
Elf_Type enumeration; they range from zero through
ELF_T_NUM−1.

EXAMPLE 1 An interpretation of elf file.

The basic interpretation of an ELF file consists of:

� opening an ELF object file
� obtaining an ELF descriptor
� analyzing the file using the descriptor.

The following example opens the file, obtains the ELF descriptor, and prints out the
names of each section in the file.

#include <fcntl.h>
#include <stdio.h>
#include <libelf.h>
#include <stdlib.h>
#include <string.h>
static void failure(void);
void
main(int argc, char ** argv)
{

Elf32_Shdr * shdr;
Elf32_Ehdr * ehdr;
Elf * elf;
Elf_Scn * scn;
Elf_Data * data;
int fd;
unsigned int cnt;

/* Open the input file */
if ((fd = open(argv[1], O_RDONLY)) == -1)

exit(1);

/* Obtain the ELF descriptor */
(void) elf_version(EV_CURRENT);
if ((elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL)

failure();

/* Obtain the .shstrtab data buffer */
if (((ehdr = elf32_getehdr(elf)) == NULL) ||

((scn = elf_getscn(elf, ehdr->e_shstrndx)) == NULL) ||
((data = elf_getdata(scn, NULL)) == NULL))

elf(3ELF)

EXAMPLES

Extended Library Functions 157

EXAMPLE 1 An interpretation of elf file. (Continued)

failure();

/* Traverse input filename, printing each section */
for (cnt = 1, scn = NULL; scn = elf_nextscn(elf, scn); cnt++) {

if ((shdr = elf32_getshdr(scn)) == NULL)
failure();

(void) printf("[%d] %s\n", cnt,
(char *)data->d_buf + shdr->sh_name);

}
} /* end main */

static void
failure()
{

(void) fprintf(stderr, "%s\n", elf_errmsg(elf_errno()));
exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar(3HEAD), elf32_checksum(3ELF), elf32_fsize(3ELF),
elf32_getshdr(3ELF), elf32_xlatetof(3ELF), elf_begin(3ELF),
elf_cntl(3ELF), elf_errmsg(3ELF), elf_fill(3ELF), elf_getarhdr(3ELF),
elf_getarsym(3ELF), elf_getbase(3ELF), elf_getdata(3ELF),
elf_getident(3ELF), elf_getscn(3ELF), elf_hash(3ELF), elf_kind(3ELF),
elf_memory(3ELF), elf_rawfile(3ELF), elf_strptr(3ELF), elf_update(3ELF),
elf_version(3ELF), gelf(3ELF), libelf(3LIB), attributes(5), lfcompile(5)

ANSI C Programmer’s Guide

a.out(4)

Information in the ELF headers is separated into common parts and processor-specific
parts. A program can make a processor’s information available by including the
appropriate header: <sys/elf_NAME.h> where NAME matches the processor name
as used in the ELF file header.

Name Processor

M32 AT&T WE 32100

elf(3ELF)

ATTRIBUTES

SEE ALSO

SPARC only

NOTES

158 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2001

Name Processor

SPARC SPARC

386 Intel 80386, 80486, Pentium

Other processors will be added to the table as necessary.

To illustrate, a program could use the following code to ‘‘see’’ the processor-specific
information for the SPARC based system.

#include <libelf.h>
#include <sys/elf_SPARC.h>

Without the <sys/elf_SPARC.h> definition, only the common ELF information
would be visible.

A program could use the following code to ‘‘see’’ the processor-specific information
for the Intel 80386:

#include <libelf.h>
#include <sys/elf_386.h>

Without the <sys/elf_386.h> definition, only the common ELF information would
be visible.

Although reading the objects is rather straightforward, writing/updating them can
corrupt the shared offsets among sections. Upon creation, relationships are established
among the sections that must be maintained even if the object’s size is changed.

elf(3ELF)

Extended Library Functions 159

elf_begin, elf_end, elf_memory, elf_next, elf_rand – process ELF object files

cc [flag...] file ... -lelf [library ...]

#include <libelf.h>

Elf *elf_begin(int fildes, Elf_Cmd cmd, Elf *ref);

int elf_end(Elf *elf);

Elf *elf_memory(char *image, size_tsz);

Elf_Cmd elf_next(Elf *elf);

size_t elf_rand(Elf *elf, size_t offset);

elf_begin(), elf_end(), elf_memory(), elf_next(), and elf_rand() work
together to process Executable and Linking Format (ELF) object files, either
individually or as members of archives. After obtaining an ELF descriptor from
elf_begin() or elf_memory(), the program may read an existing file, update an
existing file, or create a new file. fildes is an open file descriptor that elf_begin()
uses for reading or writing. elf is an ELF descriptor previously returned from
elf_begin(). The initial file offset (see lseek(2)) is unconstrained, and the resulting
file offset is undefined.

cmd may have the following values:

ELF_C_NULL When a program sets cmd to this value, elf_begin() returns a
null pointer, without opening a new descriptor. ref is ignored for
this command. See the examples below for more information.

ELF_C_READ When a program wishes to examine the contents of an existing file,
it should set cmd to this value. Depending on the value of ref, this
command examines archive members or entire files. Three cases
can occur.

First, if ref is a null pointer, elf_begin() allocates a new ELF
descriptor and prepares to process the entire file. If the file being
read is an archive, elf_begin() also prepares the resulting
descriptor to examine the initial archive member on the next call to
elf_begin(), as if the program had used elf_next() or
elf_rand() to ‘‘move’’ to the initial member.

Second, if ref is a non-null descriptor associated with an archive
file, elf_begin() lets a program obtain a separate ELF descriptor
associated with an individual member. The program should have
used elf_next() or elf_rand() to position ref appropriately
(except for the initial member, which elf_begin() prepares; see
the example below). In this case, fildes should be the same file
descriptor used for the parent archive.

Finally, if ref is a non-null ELF descriptor that is not an archive,
elf_begin() increments the number of activations for the

elf_begin(3ELF)

NAME

SYNOPSIS

DESCRIPTION

160 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

descriptor and returns ref, without allocating a new descriptor and
without changing the descriptor’s read/write permissions. To
terminate the descriptor for ref, the program must call elf_end()
once for each activation. See the examples below for more
information.

ELF_C_RDWR This command duplicates the actions of ELF_C_READ and
additionally allows the program to update the file image (see
elf_update(3ELF)). That is, using ELF_C_READ gives a
read-only view of the file, while ELF_C_RDWR lets the program
read and write the file. ELF_C_RDWR is not valid for archive
members. If ref is non-null, it must have been created with the
ELF_C_RDWR command.

ELF_C_WRITE If the program wishes to ignore previous file contents, presumably
to create a new file, it should set cmd to this value. ref is ignored for
this command.

elf_begin() ‘‘works’’ on all files (including files with zero bytes), providing it can
allocate memory for its internal structures and read any necessary information from
the file. Programs reading object files thus may call elf_kind(3ELF) or
elf32_getehdr(3ELF) to determine the file type (only object files have an ELF
header). If the file is an archive with no more members to process, or an error occurs,
elf_begin() returns a null pointer. Otherwise, the return value is a non-null ELF
descriptor.

Before the first call to elf_begin(), a program must call elf_version() to
coordinate versions.

elf_end() is used to terminate an ELF descriptor, elf, and to deallocate data
associated with the descriptor. Until the program terminates a descriptor, the data
remain allocated. A null pointer is allowed as an argument, to simplify error handling.
If the program wishes to write data associated with the ELF descriptor to the file, it
must use elf_update() before calling elf_end().

Calling elf_end() removes one activation and returns the remaining activation
count. The library does not terminate the descriptor until the activation count reaches
0. Consequently, a 0 return value indicates the ELF descriptor is no longer valid.

elf_memory() returns a pointer to an ELF descriptor, the ELF image has read
operations enabled (ELF_C_READ). image is a pointer to an image of the Elf file
mapped into memory, sz is the size of the ELF image. An ELF image that is mapped in
with elf_memory() may be read and modified, but the ELF image size may not be
changed.

elf_next() provides sequential access to the next archive member. That is, having
an ELF descriptor, elf, associated with an archive member, elf_next() prepares the
containing archive to access the following member when the program calls
elf_begin(). After successfully positioning an archive for the next member,

elf_begin(3ELF)

Extended Library Functions 161

elf_next() returns the value ELF_C_READ. Otherwise, the open file was not an
archive, elf was NULL, or an error occurred, and the return value is ELF_C_NULL. In
either case, the return value may be passed as an argument to elf_begin(),
specifying the appropriate action.

elf_rand() provides random archive processing, preparing elf to access an arbitrary
archive member. elf must be a descriptor for the archive itself, not a member within the
archive. offset gives the byte offset from the beginning of the archive to the archive
header of the desired member. See elf_getarsym(3ELF) for more information about
archive member offsets. When elf_rand() works, it returns offset. Otherwise, it
returns 0, because an error occurred, elf was NULL, or the file was not an archive (no
archive member can have a zero offset). A program may mix random and sequential
archive processing.

When processing a file, the library decides when to read or write the file, depending
on the program’s requests. Normally, the library assumes the file descriptor remains
usable for the life of the ELF descriptor. If, however, a program must process many
files simultaneously and the underlying operating system limits the number of open
files, the program can use elf_cntl() to let it reuse file descriptors. After calling
elf_cntl() with appropriate arguments, the program may close the file descriptor
without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf_end()
terminates the descriptor’s last activation. After the descriptors have been terminated,
the storage is released; attempting to reference such data gives undefined behavior.
Consequently, a program that deals with multiple input (or output) files must keep the
ELF descriptors active until it finishes with them.

EXAMPLE 1 A sample program of calling the elf_begin() function.

A prototype for reading a file appears on the next page. If the file is a simple object
file, the program executes the loop one time, receiving a null descriptor in the second
iteration. In this case, both elf and arf will have the same value, the activation count
will be 2, and the program calls elf_end() twice to terminate the descriptor. If the
file is an archive, the loop processes each archive member in turn, ignoring those that
are not object files.

if (elf_version(EV_CURRENT) == EV_NONE)
{

/* library out of date */
/* recover from error */

}
cmd = ELF_C_READ;
arf = elf_begin(fildes, cmd, (Elf *)0);
while ((elf = elf_begin(fildes, cmd, arf)) != 0)
{

if ((ehdr = elf32_getehdr(elf)) != 0)
{

/* process the file . . . */
}
cmd = elf_next(elf);

elf_begin(3ELF)

System Services

EXAMPLES

162 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

EXAMPLE 1 A sample program of calling the elf_begin() function. (Continued)

elf_end(elf);
}
elf_end(arf);

Alternatively, the next example illustrates random archive processing. After
identifying the file as an archive, the program repeatedly processes archive members
of interest. For clarity, this example omits error checking and ignores simple object
files. Additionally, this fragment preserves the ELF descriptors for all archive
members, because it does not call elf_end() to terminate them.

elf_version(EV_CURRENT);
arf = elf_begin(fildes, ELF_C_READ, (Elf *)0);
if (elf_kind(arf) != ELF_K_AR)
{

/* not an archive */
}
/* initial processing */
/* set offset = . . . for desired member header */
while (elf_rand(arf, offset) == offset)
{

if ((elf = elf_begin(fildes, ELF_C_READ, arf)) == 0)
break;

if ((ehdr = elf32_getehdr(elf)) != 0)
{

/* process archive member . . . */
}
/* set offset = . . . for desired member header */

}

An archive starts with a ‘‘magic string’’ that has SARMAG bytes; the initial archive
member follows immediately. An application could thus provide the following
function to rewind an archive (the function returns −1 for errors and 0 otherwise).

#include <ar.h>
#include <libelf.h>
int
rewindelf(Elf *elf)
{

if (elf_rand(elf, (size_t)SARMAG) == SARMAG)
return 0;

return −1;
}

The following outline shows how one might create a new ELF file. This example is
simplified to show the overall flow.

elf_version(EV_CURRENT);
fildes = open("path/name", O_RDWR|O_TRUNC|O_CREAT, 0666);
if ((elf = elf_begin(fildes, ELF_C_WRITE, (Elf *)0)) == 0)

return;
ehdr = elf32_newehdr(elf);
phdr = elf32_newphdr(elf, count);
scn = elf_newscn(elf);

elf_begin(3ELF)

Extended Library Functions 163

EXAMPLE 1 A sample program of calling the elf_begin() function. (Continued)

shdr = elf32_getshdr(scn);
data = elf_newdata(scn);
elf_update(elf, ELF_C_WRITE);
elf_end(elf);

Finally, the following outline shows how one might update an existing ELF file. Again,
this example is simplified to show the overall flow.

elf_version(EV_CURRENT);
fildes = open("path/name", O_RDWR);
elf = elf_begin(fildes, ELF_C_RDWR, (Elf *)0);
/* add new or delete old information */
. . .
/* ensure that the memory image of the file is complete */
elf_update(elf, ELF_C_NULL);
elf_update(elf, ELF_C_WRITE); /* update file */
elf_end(elf);

Notice that both file creation examples open the file with write and read permissions.
On systems that support mmap(2), the library uses it to enhance performance, and
mmap(2) requires a readable file descriptor. Although the library can use a write-only
file descriptor, the application will not obtain the performance advantages of mmap(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

creat(2), lseek(2), mmap(2), open(2), ar(3HEAD), elf(3ELF),
elf32_getehdr(3ELF), elf_cntl(3ELF), elf_getarhdr(3ELF),
elf_getarsym(3ELF), elf_getbase(3ELF), elf_getdata(3ELF),
elf_getscn(3ELF), elf_kind(3ELF), elf_rawfile(3ELF), elf_update(3ELF),
elf_version(3ELF), libelf(3LIB), attributes(5)

elf_begin(3ELF)

ATTRIBUTES

SEE ALSO

164 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_cntl – control an elf file descriptor

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

int elf_cntl(Elf *elf, Elf_Cmd cmd);

elf_cntl() instructs the library to modify its behavior with respect to an ELF
descriptor, elf. As elf_begin(3ELF) describes, an ELF descriptor can have multiple
activations, and multiple ELF descriptors may share a single file descriptor. Generally,
elf_cntl() commands apply to all activations of elf. Moreover, if the ELF descriptor
is associated with an archive file, descriptors for members within the archive will also
be affected as described below. Unless stated otherwise, operations on archive
members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values:

ELF_C_FDDONE This value tells the library not to use the file descriptor associated
with elf. A program should use this command when it has
requested all the information it cares to use and wishes to avoid
the overhead of reading the rest of the file. The memory for all
completed operations remains valid, but later file operations, such
as the initial elf_getdata() for a section, will fail if the data are
not in memory already.

ELF_C_FDREAD This command is similar to ELF_C_FDDONE, except it forces the
library to read the rest of the file. A program should use this
command when it must close the file descriptor but has not yet
read everything it needs from the file. After elf_cntl()
completes the ELF_C_FDREAD command, future operations, such
as elf_getdata(), will use the memory version of the file
without needing to use the file descriptor.

If elf_cntl() succeeds, it returns 0. Otherwise elf was NULL or an error occurred,
and the function returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_begin(3ELF), elf_getdata(3ELF), elf_rawfile(3ELF),
libelf(3LIB), attributes(5)

If the program wishes to use the ‘‘raw’’ operations (see elf_rawdata(), which
elf_getdata(3ELF) describes, and elf_rawfile(3ELF)) after disabling the file

elf_cntl(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 165

descriptor with ELF_C_FDDONE or ELF_C_FDREAD, it must execute the raw
operations explicitly beforehand. Otherwise, the raw file operations will fail. Calling
elf_rawfile() makes the entire image available, thus supporting subsequent
elf_rawdata() calls.

elf_cntl(3ELF)

166 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_errmsg, elf_errno – error handling

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

const char *elf_errmsg(int err);

int elf_errno(void);

If an ELF library function fails, a program can call elf_errno() to retrieve the
library’s internal error number. As a side effect, this function resets the internal error
number to 0, which indicates no error.

The elf_errmsg() function takes an error number, err, and returns a null-terminated
error message (with no trailing new-line) that describes the problem. A zero err
retrieves a message for the most recent error. If no error has occurred, the return value
is a null pointer (not a pointer to the null string). Using err of −1 also retrieves the
most recent error, except it guarantees a non-null return value, even when no error has
occurred. If no message is available for the given number, elf_errmsg() returns a
pointer to an appropriate message. This function does not have the side effect of
clearing the internal error number.

EXAMPLE 1 A sample program of calling the elf_errmsg() function.

The following fragment clears the internal error number and checks it later for errors.
Unless an error occurs after the first call to elf_errno(), the next call will return 0.

(void)elf_errno();
/* processing . . . */
while (more_to_do)
{

if ((err = elf_errno()) != 0)
{

/* print msg */
msg = elf_errmsg(err);

}
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), libelf(3LIB), attributes(5)

elf_errmsg(3ELF)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 167

elf_fill – set fill byte

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

void elf_fill(int fill);

Alignment constraints for ELF files sometimes require the presence of ‘‘holes.’’ For
example, if the data for one section are required to begin on an eight-byte boundary,
but the preceding section is too ‘‘short,’’ the library must fill the intervening bytes.
These bytes are set to the fill character. The library uses zero bytes unless the
application supplies a value. See elf_getdata(3ELF) for more information about
these holes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_flagdata(3ELF), elf_getdata(3ELF), elf_update(3ELF),
libelf(3LIB), attributes(5)

An application can assume control of the object file organization by setting the
ELF_F_LAYOUT bit (see elf_flagdata(3ELF)). When this is done, the library does
not fill holes.

elf_fill(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

168 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr, elf_flagscn, elf_flagshdr –
manipulate flags

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_flagdata(Elf_Data *data, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagehdr(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagelf(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagphdr(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagscn(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagshdr(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);

These functions manipulate the flags associated with various structures of an ELF file.
Given an ELF descriptor (elf), a data descriptor (data), or a section descriptor (scn), the
functions may set or clear the associated status bits, returning the updated bits. A null
descriptor is allowed, to simplify error handling; all functions return 0 for this
degenerate case.

cmd may have the following values:

ELF_C_CLR The functions clear the bits that are asserted in flags. Only the
non-zero bits in flags are cleared; zero bits do not change the status
of the descriptor.

ELF_C_SET The functions set the bits that are asserted in flags. Only the
non-zero bits in flags are set; zero bits do not change the status of
the descriptor.

Descriptions of the defined flags bits appear below:

ELF_F_DIRTY When the program intends to write an ELF file, this flag asserts the
associated information needs to be written to the file. Thus, for
example, a program that wished to update the ELF header of an
existing file would call elf_flagehdr() with this bit set in flags
and cmd equal to ELF_C_SET. A later call to elf_update()
would write the marked header to the file.

ELF_F_LAYOUT Normally, the library decides how to arrange an output file. That
is, it automatically decides where to place sections, how to align
them in the file, etc. If this bit is set for an ELF descriptor, the
program assumes responsibility for determining all file positions.
This bit is meaningful only for elf_flagelf() and applies to the
entire file associated with the descriptor.

When a flag bit is set for an item, it affects all the subitems as well. Thus, for example,
if the program sets the ELF_F_DIRTY bit with elf_flagelf(), the entire logical file
is ‘‘dirty.’’

elf_flagdata(3ELF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 169

EXAMPLE 1 A sample display of calling the elf_flagdata() function.

The following fragment shows how one might mark the ELF header to be written to
the output file:

/* dirty ehdr . . . */
ehdr = elf32_getehdr(elf);
elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_getdata(3ELF), elf_update(3ELF),
attributes(5)

elf_flagdata(3ELF)

EXAMPLES

ATTRIBUTES

SEE ALSO

170 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_getarhdr – retrieve archive member header

cc [flag ...] file ... -lelf [library...]

#include <libelf.h>

Elf_Arhdr *elf_getarhdr(Elf *elf);

elf_getarhdr() returns a pointer to an archive member header, if one is available
for the ELF descriptor elf. Otherwise, no archive member header exists, an error
occurred, or elf was null; elf_getarhdr() then returns a null value. The header
includes the following members.

char *ar_name;
time_t ar_date;
uid_t ar_uid;
gid_t ar_gid;
mode_t ar_mode;
off_t ar_size;
char *ar_rawname;

An archive member name, available through ar_name, is a null-terminated string,
with the ar format control characters removed. The ar_rawname member holds a
null-terminated string that represents the original name bytes in the file, including the
terminating slash and trailing blanks as specified in the archive format.

In addition to ‘‘regular’’ archive members, the archive format defines some special
members. All special member names begin with a slash (/), distinguishing them from
regular members (whose names may not contain a slash). These special members have
the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive
member. A program may access the archive symbol table through
elf_getarsym(). The information in the symbol table is useful for
random archive processing (see elf_rand() on elf_begin(3ELF)).

// This member, if present, holds a string table for long archive member
names. An archive member’s header contains a 16-byte area for the name,
which may be exceeded in some file systems. The library automatically
retrieves long member names from the string table, setting ar_name to the
appropriate value.

Under some error conditions, a member’s name might not be available. Although this
causes the library to set ar_name to a null pointer, the ar_rawname member will be
set as usual.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

elf_getarhdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Extended Library Functions 171

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ar(3HEAD), elf(3ELF), elf_begin(3ELF), elf_getarsym(3ELF), libelf(3LIB),
attributes(5)

elf_getarhdr(3ELF)

SEE ALSO

172 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_getarsym – retrieve archive symbol table

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Arsym *elf_getarsym(Elf *elf, size_t *ptr);

The elf_getarsym() function returns a pointer to the archive symbol table, if one is
available for the ELF descriptor elf. Otherwise, the archive doesn’t have a symbol
table, an error occurred, or elf was null; elf_getarsym() then returns a null value.
The symbol table is an array of structures that include the following members.

char *as_name;
size_t as_off;
unsigned long as_hash;

These members have the following semantics:

as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the
member’s header. The archive member residing at the given offset
defines the associated symbol. Values in as_off may be passed as
arguments to elf_rand(). See elf_begin(3ELF) to access the
desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash().

If ptr is non-null, the library stores the number of table entries in the location to which
ptr points. This value is set to 0 when the return value is NULL. The table’s last entry,
which is included in the count, has a null as_name, a zero value for as_off, and
~0UL for as_hash.

The hash value returned is guaranteed not to be the bit pattern of all ones (~0UL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar(3HEAD), elf(3ELF), elf_begin(3ELF), elf_getarhdr(3ELF),
elf_hash(3ELF), libelf(3LIB), attributes(5)

elf_getarsym(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 173

elf_getbase – get the base offset for an object file

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

off_t elf_getbase(Elf *elf);

The elf_getbase() function returns the file offset of the first byte of the file or
archive member associated with elf, if it is known or obtainable, and −1 otherwise. A
null elf is allowed, to simplify error handling; the return value in this case is −1. The
base offset of an archive member is the beginning of the member’s information, not the
beginning of the archive member header.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar(3HEAD), elf(3ELF), elf_begin(3ELF), libelf(3LIB), attributes(5)

elf_getbase(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

174 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_getdata, elf_newdata, elf_rawdata – get section data

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf_getdata(Elf_Scn *scn, Elf_Data *data);

Elf_Data *elf_newdata(Elf_Scn *scn);

Elf_Data *elf_rawdata(Elf_Scn *scn, Elf_Data *data);

These functions access and manipulate the data associated with a section descriptor,
scn. When reading an existing file, a section will have a single data buffer associated
with it. A program may build a new section in pieces, however, composing the new
data from multiple data buffers. For this reason, the data for a section should be
viewed as a list of buffers, each of which is available through a data descriptor.

The elf_getdata() function lets a program step through a section’s data list. If the
incoming data descriptor, data, is null, the function returns the first buffer associated
with the section. Otherwise, data should be a data descriptor associated with scn, and
the function gives the program access to the next data element for the section. If scn is
null or an error occurs, elf_getdata() returns a null pointer.

The elf_getdata() function translates the data from file representations into
memory representations (see elf32_xlatetof(3ELF)) and presents objects with
memory data types to the program, based on the file’s class (see elf(3ELF)). The
working library version (see elf_version(3ELF)) specifies what version of the
memory structures the program wishes elf_getdata() to present.

The elf_newdata() function creates a new data descriptor for a section, appending
it to any data elements already associated with the section. As described below, the
new data descriptor appears empty, indicating the element holds no data. For
convenience, the descriptor’s type (d_type below) is set to ELF_T_BYTE, and the
version (d_version below) is set to the working version. The program is responsible
for setting (or changing) the descriptor members as needed. This function implicitly
sets the ELF_F_DIRTY bit for the section’s data (see elf_flagdata(3ELF)). If scn is
null or an error occurs, elf_newdata() returns a null pointer.

The elf_rawdata() function differs from elf_getdata() by returning only
uninterpreted bytes, regardless of the section type. This function typically should be
used only to retrieve a section image from a file being read, and then only when a
program must avoid the automatic data translation described below. Moreover, a
program may not close or disable (see elf_cntl(3ELF)) the file descriptor associated
with elf before the initial raw operation, because elf_rawdata() might read the data
from the file to ensure it doesn’t interfere with elf_getdata(). See
elf_rawfile(3ELF) for a related facility that applies to the entire file. When
elf_getdata() provides the right translation, its use is recommended over
elf_rawdata(). If scn is null or an error occurs, elf_rawdata() returns a null
pointer.

elf_getdata(3ELF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 175

The Elf_Data structure includes the following members:

void *d_buf;
Elf_Type d_type;
size_t d_size;
off_t d_off;
size_t d_align;
unsigned d_version;

These members are available for direct manipulation by the program. Descriptions
appear below.

d_buf A pointer to the data buffer resides here. A data element with no
data has a null pointer.

d_type This member’s value specifies the type of the data to which d_buf
points. A section’s type determines how to interpret the section
contents, as summarized below.

d_size This member holds the total size, in bytes, of the memory occupied
by the data. This may differ from the size as represented in the file.
The size will be zero if no data exist. (See the discussion of
SHT_NOBITS below for more information.)

d_off This member gives the offset, within the section, at which the
buffer resides. This offset is relative to the file’s section, not the
memory object’s.

d_align This member holds the buffer’s required alignment, from the
beginning of the section. That is, d_off will be a multiple of this
member’s value. For example, if this member’s value is 4, the
beginning of the buffer will be four-byte aligned within the
section. Moreover, the entire section will be aligned to the
maximum of its constituents, thus ensuring appropriate alignment
for a buffer within the section and within the file.

d_version This member holds the version number of the objects in the buffer.
When the library originally read the data from the object file, it
used the working version to control the translation to memory
objects.

As mentioned above, data buffers within a section have explicit alignment constraints.
Consequently, adjacent buffers sometimes will not abut, causing ‘‘holes’’ within a
section. Programs that create output files have two ways of dealing with these holes.

First, the program can use elf_fill() to tell the library how to set the intervening
bytes. When the library must generate gaps in the file, it uses the fill byte to initialize
the data there. The library’s initial fill value is 0, and elf_fill() lets the application
change that.

elf_getdata(3ELF)

Data Alignment

176 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

Second, the application can generate its own data buffers to occupy the gaps, filling
the gaps with values appropriate for the section being created. A program might even
use different fill values for different sections. For example, it could set text sections’
bytes to no-operation instructions, while filling data section holes with zero. Using this
technique, the library finds no holes to fill, because the application eliminated them.

The elf_getdata() function interprets sections’ data according to the section type,
as noted in the section header available through elf32_getshdr(). The following
table shows the section types and how the library represents them with memory data
types for the 32-bit file class. Other classes would have similar tables. By implication,
the memory data types control translation by elf32_xlatetof(3ELF)

Section Type Elf_Type 32-bit Type

SHT_DYNAMIC ELF_T_DYN Elf32_Dyn

SHT_DYNSYM ELF_T_SYM Elf32_Sym

SHT_FINI_ARRAY ELF_T_ADDR Elf32_Addr

SHT_GROUP ELF_T_WORD Elf32_Word

SHT_HASH ELF_T_WORD Elf32_Word

SHT_INIT_ARRAY ELF_T_ADDR Elf32_Addr

SHT_NOBITS ELF_T_BYTE unsigned char

SHT_NOTE ELF_T_NOTE unsigned char

SHT_NULL none none

SHT_PREINIT_ARRAY ELF_T_ADDR Elf32_Addr

SHT_PROGBITS ELF_T_BYTE unsigned char

SHT_REL ELF_T_REL Elf32_Rel

SHT_RELA ELF_T_RELA Elf32_Rela

SHT_STRTAB ELF_T_BYTE unsigned char

SHT_SYMTAB ELF_T_SYM Elf32_Sym

SHT_SUNW_comdat ELF_T_BYTE unsigned char

SHT_SUNW_move ELF_T_MOVE Elf32_Move (sparc)

SHT_SUNW_move ELF_T_MOVEP Elf32_Move (ia32)

SHT_SUNW_syminfo ELF_T_SYMINFO Elf32_Syminfo

SHT_SUNW_verdef ELF_T_VDEF Elf32_Verdef

SHT_SUNW_verneed ELF_T_VNEED Elf32_Verneed

elf_getdata(3ELF)

Section and
Memory Types

Extended Library Functions 177

Section Type Elf_Type 32-bit Type

SHT_SUNW_versym ELF_T_HALF Elf32_Versym

other ELF_T_BYTE unsigned char

The elf_rawdata() function creates a buffer with type ELF_T_BYTE.

As mentioned above, the program’s working version controls what structures the
library creates for the application. The library similarly interprets section types
according to the versions. If a section type belongs to a version newer than the
application’s working version, the library does not translate the section data. Because
the application cannot know the data format in this case, the library presents an
untranslated buffer of type ELF_T_BYTE, just as it would for an unrecognized section
type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even
when the section header indicates a non-zero size. elf_getdata() and
elf_rawdata() work on such a section, setting the data structure to have a null
buffer pointer and the type indicated above. Although no data are present, the d_size
value is set to the size from the section header. When a program is creating a new
section of type SHT_NOBITS, it should use elf_newdata() to add data buffers to the
section. These empty data buffers should have the d_size members set to the desired
size and the d_buf members set to NULL.

EXAMPLE 1 A sample program of calling elf_getdata().

The following fragment obtains the string table that holds section names (ignoring
error checking). See elf_strptr(3ELF) for a variation of string table handling.

ehdr = elf32_getehdr(elf);
scn = elf_getscn(elf, (size_t)ehdr->e_shstrndx);
shdr = elf32_getshdr(scn);
if (shdr->sh_type != SHT_STRTAB)
{
/* not a string table */
}
data = 0;
if ((data = elf_getdata(scn, data)) == 0 || data->d_size == 0)
{
/* error or no data */
}

The e_shstrndx member in an ELF header holds the section table index of the string
table. The program gets a section descriptor for that section, verifies it is a string table,
and then retrieves the data. When this fragment finishes, data->d_buf points at the
first byte of the string table, and data->d_size holds the string table’s size in bytes.

See attributes(5) for descriptions of the following attributes:

elf_getdata(3ELF)

EXAMPLES

ATTRIBUTES

178 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf64_getehdr(3ELF),
elf32_getshdr(3ELF), elf64_getshdr(3ELF), elf32_xlatetof(3ELF),
elf64_xlatetof(3ELF), elf_cntl(3ELF), elf_fill(3ELF),
elf_flagdata(3ELF), elf_getscn(3ELF), elf_rawfile(3ELF),
elf_strptr(3ELF), elf_version(3ELF), libelf(3LIB), attributes(5)

elf_getdata(3ELF)

SEE ALSO

Extended Library Functions 179

elf_getident – retrieve file identification data

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_getident(Elf *elf, size_t *ptr);

As elf(3ELF) explains, ELF provides a framework for various classes of files, where
basic objects may have 32 bits, 64 bits, etc. To accommodate these differences, without
forcing the larger sizes on smaller machines, the initial bytes in an ELF file hold
identification information common to all file classes. Every ELF header’s e_ident has
EI_NIDENT bytes with the following interpretation:

e_ident Index Value Purpose

EI_MAG0 ELFMAG0 File identification

EI_MAG1 ELFMAG1

EI_MAG2 ELFMAG2

EI_MAG3 ELFMAG3

EI_CLASS ELFCLASSNONE File class

ELFCLASS32

ELFCLASS64

EI_DATA ELFDATANONE Data encoding

ELFDATA2LSB

ELFDATA2MSB

EI_VERSION EV_CURRENT File version

7-15 0 Unused, set to zero

Other kinds of files (see elf_kind(3ELF)) also may have identification data, though
they would not conform to e_ident.

elf_getident() returns a pointer to the file’s ‘‘initial bytes.’’ If the library
recognizes the file, a conversion from the file image to the memory image may occur.
In any case, the identification bytes are guaranteed not to have been modified, though

elf_getident(3ELF)

NAME

SYNOPSIS

DESCRIPTION

180 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

the size of the unmodified area depends on the file type. If ptr is non-null, the library
stores the number of identification bytes in the location to which ptr points. If no data
are present, elf is null, or an error occurs, the return value is a null pointer, with 0
stored through ptr, if ptr is non-null.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_kind(3ELF),
elf_rawfile(3ELF), libelf(3LIB), attributes(5)

elf_getident(3ELF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 181

elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn – get section information

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Scn *elf_getscn(Elf *elf, size_t index);

size_t elf_ndxscn(Elf_Scn *scn);

Elf_Scn *elf_newscn(Elf *elf);

Elf_Scn *elf_nextscn(Elf *elf, Elf_Scn *scn);

These functions provide indexed and sequential access to the sections associated with
the ELF descriptor elf. If the program is building a new file, it is responsible for
creating the file’s ELF header before creating sections; see elf32_getehdr(3ELF).

The elf_getscn() function returns a section descriptor, given an index into the file’s
section header table. Note that the first ‘‘real’’ section has an index of 1. Although a
program can get a section descriptor for the section whose index is 0 (SHN_UNDEF, the
undefined section), the section has no data and the section header is ‘‘empty’’ (though
present). If the specified section does not exist, an error occurs, or elf is NULL,
elf_getscn() returns a null pointer.

The elf_newscn() function creates a new section and appends it to the list for elf.
Because the SHN_UNDEF section is required and not ‘‘interesting’’ to applications, the
library creates it automatically. Thus the first call to elf_newscn() for an ELF
descriptor with no existing sections returns a descriptor for section 1. If an error occurs
or elf is NULL, elf_newscn() returns a null pointer.

After creating a new section descriptor, the program can use elf32_getshdr() to
retrieve the newly created, ‘‘clean’’ section header. The new section descriptor will
have no associated data (see elf_getdata(3ELF)). When creating a new section in
this way, the library updates the e_shnum member of the ELF header and sets the
ELF_F_DIRTY bit for the section (see elf_flagdata(3ELF)). If the program is
building a new file, it is responsible for creating the file’s ELF header (see
elf32_getehdr(3ELF)) before creating new sections.

The elf_nextscn() function takes an existing section descriptor, scn, and returns a
section descriptor for the next higher section. One may use a null scn to obtain a
section descriptor for the section whose index is 1 (skipping the section whose index is
SHN_UNDEF). If no further sections are present or an error occurs, elf_nextscn()
returns a null pointer.

The elf_ndxscn() function takes an existing section descriptor, scn, and returns its
section table index. If scn is null or an error occurs, elf_ndxscn() returns
SHN_UNDEF.

elf_getscn(3ELF)

NAME

SYNOPSIS

DESCRIPTION

182 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

EXAMPLE 1 A sample of calling elf_getscn() function.

An example of sequential access appears below. Each pass through the loop processes
the next section in the file; the loop terminates when all sections have been processed.

scn = 0;
while ((scn = elf_nextscn(elf, scn)) != 0)
{

/* process section */
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf32_getshdr(3ELF), elf_begin(3ELF),
elf_flagdata(3ELF), elf_getdata(3ELF), libelf(3LIB), attributes(5)

elf_getscn(3ELF)

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 183

elf_hash – compute hash value

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned long elf_hash(const char *name);

The elf_hash() function computes a hash value, given a null terminated string,
name. The returned hash value, h, can be used as a bucket index, typically after
computing h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash()
uses unsigned arithmetic to avoid possible differences in various machines’ signed
arithmetic. Although name is shown as char* above, elf_hash() treats it as
unsigned char* to avoid sign extension differences. Using char* eliminates type
conflicts with expressions such as elf_hash(name).

ELF files’ symbol hash tables are computed using this function (see
elf_getdata(3ELF) and elf32_xlatetof(3ELF)). The hash value returned is
guaranteed not to be the bit pattern of all ones (~0UL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_getdata(3ELF), libelf(3LIB),
attributes(5)

elf_hash(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

184 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_kind – determine file type

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Kind elf_kind(Elf *elf);

This function returns a value identifying the kind of file associated with an ELF
descriptor (elf). Defined values are below:

ELF_K_AR The file is an archive [see ar(3HEAD)]. An ELF descriptor may
also be associated with an archive member, not the archive itself,
and then elf_kind() identifies the member’s type.

ELF_K_COFF The file is a COFF object file. elf_begin(3ELF) describes the
library’s handling for COFF files.

ELF_K_ELF The file is an ELF file. The program may use elf_getident() to
determine the class. Other functions, such as elf32_getehdr(),
are available to retrieve other file information.

ELF_K_NONE This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf should be
a value previously returned by elf_begin(). A null pointer is allowed, to simplify
error handling, and causes elf_kind() to return ELF_K_NONE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar(3HEAD), elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF),
elf_getident(3ELF), libelf(3LIB), attributes(5)

elf_kind(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 185

elf_rawfile – retrieve uninterpreted file contents

cc [flag...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_rawfile(Elf *elf, size_t *ptr);

The elf_rawfile() function returns a pointer to an uninterpreted byte image of the
file. This function should be used only to retrieve a file being read. For example, a
program might use elf_rawfile() to retrieve the bytes for an archive member.

A program may not close or disable (see elf_cntl(3ELF)) the file descriptor
associated with elf before the initial call to elf_rawfile() , because
elf_rawfile() might have to read the data from the file if it does not already have
the original bytes in memory. Generally, this function is more efficient for unknown
file types than for object files. The library implicitly translates object files in memory,
while it leaves unknown files unmodified. Thus, asking for the uninterpreted image of
an object file may create a duplicate copy in memory.

elf_rawdata() is a related function, providing access to sections within a file. See
elf_getdata(3ELF).

If ptr is non-null, the library also stores the file’s size, in bytes, in the location to which
ptr points. If no data are present, elf is null, or an error occurs, the return value is a null
pointer, with 0 stored through ptr, if ptr is non-null.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_cntl(3ELF),
elf_getdata(3ELF), elf_getident(3ELF), elf_kind(3ELF), libelf(3LIB),
attributes(5)

A program that uses elf_rawfile() and that also interprets the same file as an
object file potentially has two copies of the bytes in memory. If such a program
requests the raw image first, before it asks for translated information (through such
functions as elf32_getehdr(), elf_getdata(), and so on), the library ‘‘freezes’’
its original memory copy for the raw image. It then uses this frozen copy as the source
for creating translated objects, without reading the file again. Consequently, the
application should view the raw file image returned by elf_rawfile() as a
read-only buffer, unless it wants to alter its own view of data subsequently translated.
In any case, the application may alter the translated objects without changing bytes
visible in the raw image.

elf_rawfile(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

186 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

Multiple calls to elf_rawfile() with the same ELF descriptor return the same
value; the library does not create duplicate copies of the file.

elf_rawfile(3ELF)

Extended Library Functions 187

elf_strptr – make a string pointer

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_strptr(Elf *elf, size_t section, size_t offset);

The elf_strptr() function converts a string section offset to a string pointer. elf
identifies the file in which the string section resides, and section identifies the section
table index for the strings. elf_strptr() normally returns a pointer to a string, but
it returns a null pointer when elf is null, section is invalid or is not a section of type
SHT_STRTAB, the section data cannot be obtained, offset is invalid, or an error occurs.

EXAMPLE 1 A sample program of calling elf_strptr() function.

A prototype for retrieving section names appears below. The file header specifies the
section name string table in the e_shstrndx member. The following code loops
through the sections, printing their names.

/* handle the error */
if ((ehdr = elf32_getehdr(elf)) == 0) {

return;
}
ndx = ehdr->e_shstrndx;
scn = 0;
while ((scn = elf_nextscn(elf, scn)) != 0) {

char *name = 0;
if ((shdr = elf32_getshdr(scn)) != 0)

name = elf_strptr(elf, ndx, (size_t)shdr->sh_name);
printf("’%s’\n", name? name: "(null)");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getshdr(3ELF), elf32_xlatetof(3ELF), elf_getdata(3ELF),
libelf(3LIB), attributes(5)

A program may call elf_getdata() to retrieve an entire string table section. For
some applications, that would be both more efficient and more convenient than using
elf_strptr().

elf_strptr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

188 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_update – update an ELF descriptor

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

off_t elf_update(Elf *elf, Elf_Cmd cmd);

The elf_update() function causes the library to examine the information associated
with an ELF descriptor, elf, and to recalculate the structural data needed to generate
the file’s image.

The cmd argument can have the following values:

ELF_C_NULL This value tells elf_update() to recalculate various values,
updating only the ELF descriptor’s memory structures. Any
modified structures are flagged with the ELF_F_DIRTY bit. A
program thus can update the structural information and then
reexamine them without changing the file associated with the ELF
descriptor. Because this does not change the file, the ELF
descriptor may allow reading, writing, or both reading and writing
(see elf_begin (3ELF)).

ELF_C_WRITE If cmd has this value, elf_update() duplicates its ELF_C_NULL
actions and also writes any ‘‘dirty’’ information associated with
the ELF descriptor to the file. That is, when a program has used
elf_getdata(3ELF) or the elf_flagdata(3ELF) facilities to
supply new (or update existing) information for an ELF descriptor,
those data will be examined, coordinated, translated if necessary
(see elf32_xlatetof(3ELF)), and written to the file. When
portions of the file are written, any ELF_F_DIRTY bits are reset,
indicating those items no longer need to be written to the file (see
elf_flagdata(3ELF)). The sections’ data are written in the order
of their section header entries, and the section header table is
written to the end of the file. When the ELF descriptor was created
with elf_begin(), it must have allowed writing the file. That is,
the elf_begin() command must have been either ELF_C_RDWR
or ELF_C_WRITE.

If elf_update() succeeds, it returns the total size of the file image (not the memory
image), in bytes. Otherwise an error occurred, and the function returns −1.

When updating the internal structures, elf_update() sets some members itself.
Members listed below are the application’s responsibility and retain the values given
by the program.

The following table shows ELF Header members:

Member Notes

elf_update(3ELF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 189

e_ident[EI_DATA] Library controls other e_ident values

e_type

e_machine

e_version

e_entry

e_phoff Only when ELF_F_LAYOUT asserted

e_shoff Only when ELF_F_LAYOUT asserted

e_flags

e_shstrndx

The following table shows the Program Header members:

Member Notes

p_type The application controls all

p_offset program header entries

p_vaddr

p_paddr

p_filesz

p_memsz

p_flags

p_align

The following table shows the Section Header members:

Member Notes

sh_name

sh_type

sh_flags

elf_update(3ELF)

190 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

sh_addr

sh_offset Only when ELF_F_LAYOUT asserted

sh_size Only when ELF_F_LAYOUT asserted

sh_link

sh_info

sh_addralign Only when ELF_F_LAYOUT asserted

sh_entsize

The following table shows the Data Descriptor members:

Member Notes

d_buf

d_type

d_size

d_off Only when ELF_F_LAYOUT asserted

d_align

d_version

Note that the program is responsible for two particularly important members (among
others) in the ELF header. The e_version member controls the version of data
structures written to the file. If the version is EV_NONE, the library uses its own
internal version. The e_ident[EI_DATA] entry controls the data encoding used in
the file. As a special case, the value may be ELFDATANONE to request the native data
encoding for the host machine. An error occurs in this case if the native encoding
doesn’t match a file encoding known by the library.

Further note that the program is responsible for the sh_entsize section header
member. Although the library sets it for sections with known types, it cannot reliably
know the correct value for all sections. Consequently, the library relies on the program
to provide the values for unknown section types. If the entry size is unknown or not
applicable, the value should be set to 0.

When deciding how to build the output file, elf_update() obeys the alignments of
individual data buffers to create output sections. A section’s most strictly aligned data
buffer controls the section’s alignment. The library also inserts padding between
buffers, as necessary, to ensure the proper alignment of each buffer.

elf_update(3ELF)

Extended Library Functions 191

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_fsize(3ELF), elf32_getehdr(3ELF), elf32_getshdr(3ELF),
elf32_xlatetof(3ELF), elf_begin(3ELF), elf_flagdata(3ELF),
elf_getdata(3ELF), libelf(3LIB), attributes(5)

As mentioned above, the ELF_C_WRITE command translates data as necessary, before
writing them to the file. This translation is not always transparent to the application
program. If a program has obtained pointers to data associated with a file (for
example, see elf32_getehdr(3ELF) and elf_getdata(3ELF)), the program should
reestablish the pointers after calling elf_update().

elf_update(3ELF)

ATTRIBUTES

SEE ALSO

NOTES

192 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_version – coordinate ELF library and application versions

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_version(unsigned ver);

As elf(3ELF) explains, the program, the library, and an object file have independent
notions of the latest ELF version. elf_version() lets a program query the ELF
library’s internal version. It further lets the program specify what memory types it uses
by giving its own working version, ver, to the library. Every program that uses the ELF
library must coordinate versions as described below.

The header <libelf.h> supplies the version to the program with the macro
EV_CURRENT. If the library’s internal version (the highest version known to the
library) is lower than that known by the program itself, the library may lack semantic
knowledge assumed by the program. Accordingly, elf_version() will not accept a
working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version() to return the library’s internal
version, without altering the working version. If ver is a version known to the library,
elf_version() returns the previous (or initial) working version number. Otherwise,
the working version remains unchanged and elf_version() returns EV_NONE.

EXAMPLE 1 A sample display of using the elf_version() function.

The following excerpt from an application program protects itself from using an older
library:

if (elf_version(EV_CURRENT) == EV_NONE) {
/* library out of date */
/* recover from error */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_begin(3ELF), libelf(3LIB),
attributes(5)

The working version should be the same for all operations on a particular ELF
descriptor. Changing the version between operations on a descriptor will probably not
give the expected results.

elf_version(3ELF)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 193

erf, erfc – error and complementary error functions

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double erf(double x);

double erfc(double x);

The erf() function computes the error function of x, defined as:

The erfc() function computes 1.0 − erf(x).

Upon successful completion, erf() and erfc() return the value of the error function
and complementary error function, respectively.

If x is NaN, NaN is returned.

No errors will occur.

The erfc() function is provided because of the extreme loss of relative accuracy if
erf(x) is called for large x and the result subtracted from 1.0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), attributes(5)

erf(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

194 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

exp – exponential function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double exp(double x);

The exp() function computes the exponential of x, defined as ex.

Upon successful completion, exp() returns the exponential of x.

If the correct value would cause overflow, exp() returns HUGE_VAL and sets errno
to ERANGE.

If the correct value would cause underflow to zero, exp() returns 0 and may set
errno to ERANGE.

If x is NaN, NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The exp() function will fail if:

ERANGE The result overflows.

The exp() function may fail if:

ERANGE The result underflows.

An application wishing to check for error situations should set errno to 0 before
calling exp(). If errno is non-zero on return, or the return value is NaN an error has
occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), log(3M), matherr(3M), mp(3MP), attributes(5), standards(5)

Prior to Solaris 2.6, there was a conflict between the pow function in this library and
the pow function in the libmp library. This conflict was resolved by prepending mp_
to all functions in the libmp library. See mp(3MP) for details.

exp(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 195

expm1 – computes exponential functions

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double expm1(double x);

The expm1() function computes ex−1.0.

If x is NaN, then the function returns NaN.

If x is positive infinity, expm1() returns positive infinity.

If x is negative infinity, expm1() returns −1.0.

If the value overflows, expm1() returns HUGE_VAL.

No errors will occur.

The value of expm1(x) may be more accurate than exp(x)−1.0 for small values of x.

The expm1() and log1p(3M) functions are useful for financial calculations of
((1+x)n−1)/x, namely:

expm1(n * log1p(x)) / x

when x is very small (for example, when performing calculations with a small daily
interest rate). These functions also simplify writing accurate inverse hyperbolic
functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exp(3M), ilogb(3M), log1p(3M), attributes(5)

expm1(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

196 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

fabs – absolute value function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double fabs(double x);

The fabs() function computes the absolute value of x, |x|.

Upon successful completion, fabs() returns the absolute value of x.

If x is NaN, NaN is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), attributes(5)

fabs(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 197

floor – floor function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double floor(double x);

The floor() function computes the largest integral value not greater than x.

Upon successful completion, floor() returns the largest integral value not greater
than x, expressed as a double.

If x is NaN, NaN is returned.

If x is ±Inf or ±0, x is returned.

No errors will occur.

The integral value returned by floor() as a double might not be expressible as an
int or long int. The return value should be tested before assigning it to an integer
type to avoid the undefined results of an integer overflow.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ceil(3M), isnan(3M), attributes(5)

floor(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

198 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

fmod – floating-point remainder value function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double fmod(double x, double y);

The fmod() function returns the floating-point remainder of the division of x by y.

The fmod() function returns the value x − i * y, for some integer i such that, if y is
non-zero, the result has the same sign as x and magnitude less than the magnitude of
y.

If x or y is NaN, NaN is returned. If y is 0, NaN is returned and errno is set to EDOM.
If x is ±Inf, NaN is returned. If y is non-zero, fmod(±0,y) returns the value of x. If x is
not ±Inf, fmod(x,±Inf) returns the value of x.

The fmod() function may fail if:

EDOM y is 0.

No other errors will occur.

Portable applications should not call fmod() with y equal to 0, because the result is
implementation-dependent. The application should verify y is non-zero before calling
fmod().

An application wishing to check for error situations should set errno to 0 before
calling fmod(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), attributes(5)

fmod(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 199

freeDmiString – free dynamic memory allocated for input DmiString structure

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void freeDmiString(DmiString_t *dstr);

The freeDmiString() function frees dynamic memory allocated for the input
DmiString structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

newDmiString(3DMI), libdmi(3LIB), attributes(5)

freeDmiString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

200 man pages section 3: Extended Library Functions • Last Revised 12 Oct 1998

gelf, gelf_checksum, gelf_fsize, gelf_getclass, gelf_getdyn, gelf_getehdr, gelf_getphdr,
gelf_getrel, gelf_getrela, gelf_getshdr, gelf_getsym, gelf_getsyminfo, gelf_newehdr,
gelf_newphdr, gelf_update_dyn, gelf_update_ehdr, gelf_update_phdr,
gelf_update_rel, gelf_update_rela, gelf_update_shdr, gelf_update_sym,
gelf_update_syminfo, gelf_xlatetof, gelf_xslatetom – generic class-independent ELF
interface

cc [flag ...] file ... −lelf [library ...]

#include <gelf.h>

long gelf_checksum(Elf *elf);

int gelf_getclass(Elf *elf);

size_t gelf_fsize(Elf *elf, Elf_Type type, size_t cnt, unsigned ver);

GElf_Ehdr *gelf_getehdr(Elf *elf, GElf_Ehdr *dst);

int gelf_update_ehdr(Elf *elf, GElf_Ehdr *src);

unsigned long gelf_newehdr(Elf *elf, int class);

GElf_Phdr *gelf_getphdr(Elf *elf, int ndx, GElf_Phdr *dst);

int gelf_update_phdr(Elf *elf, int ndx, GElf_Phdr *src);

unsigned long gelf_newphdr(Elf *elf, size_t phnum);

GElf_Shdr *gelf_getshdr(Elf_Scn *scn, GElf_Shdr *dst);

int gelf_update_shdr(Elf_Scn *scn, GElf_Shdr *src);

Elf_Data *gelf_xlatetof(Elf *elf, Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *gelf_xlatetom(Elf *elf, Elf_Data *dst, const Elf_Data *src,
unsigned encode);

GElf_Sym *gelf_getsym(Elf_Data *data, int ndx, GElf_Sym *dst);

int gelf_update_sym(Elf_Data *dest, int ndx, GElf_Sym *src);

GElf_Dyn *gelf_getdyn(Elf_Data *src, int ndx, GElf_Dyn *dst);

int gelf_update_dyn(Elf_Data *src, int ndx, GElf_Dyn *src);

GElf_Rela *gelf_getrela(Elf_Data *src, int ndx, GElf_Rela *dst);

int gelf_update_rela(Elf_Data *dst, int ndx, GElf_Rela *src);

GElf_Rel *gelf_getrel(Elf_Data *src, int ndx, GElf_Rel *dst);

int gelf_update_rel(Elf_Data *dst, int ndx, GElf_Rel *src);

GElf_Syminfo *gelf_getsyminfo(Elf_Data *src, int ndx, GElf_Syminfo
*dst);

int gelf_update_syminfo(Elf_Data *dst, int ndx, GElf_Syminfo *src);

gelf(3ELF)

NAME

SYNOPSIS

Extended Library Functions 201

GElf_Move *gelf_getmove(Elf_Data *src, int ndx, GElf_Move *dst);

int gelf_update_move(Elf_Data *dst, int ndx, GElf_Move *src);

GElf is a generic, ELF class-independent API, for manipulating ELF object files. GElf
provides a single, common interface for handling 32–bit and 64–bit ELF format object
files. GElf is a translation layer between the application and the class-dependent parts
of the ELF library. Thus, the application can use GElf, which in turn, will call the
corresponding elf32_ or elf64_ functions on behalf of the application. The data
structures returned are all large enough to hold 32–bit and 64–bit data.

GElf provides a simple, class-independent layer of indirection over the
class-dependent ELF32 and ELF64 APIs. GElf is stateless, and may be used along
side the ELF32 and ELF64 API’s.

GElf always returns a copy of the underlying ELF32 or ELF64 structure, and
therefore the programming practice of using the address of an ELF header as the base
offset for the ELF’s mapping into memory should be avoided. Also, data accessed by
type-casting the Elf_Data buffer to a class-dependent type and treating it like an
array, for example, a symbol table, will not work under GElf, and the gelf_get
functions must be used instead. See the EXAMPLE section.

Programs which create or modify ELF files using libelf(3LIB) need to perform an
extra step when using GElf. Modifications to GElf values must be explicitly flushed
to the underlying ELF32 or ELF64 structures by way of the gelf_update_
interfaces. Use of elf_update or elf_flagelf and the like remains the same.

The sizes of versioning structures remains the same between ELF32 and ELF64. The
GElf API only defines types for versioning, rather than a functional API. The
processing of versioning information will stay the same in the GElf environment as it
was in the class-dependent ELF environment.

gelf_checksum() An analog to elf32_checksum(3ELF) and
elf64_checksum(3ELF).

gelf_getclass() Returns one of the constants ELFCLASS32,
ELFCLASS64 or ELFCLASSNONE.

gelf_fsize() An analog to elf32_fsize(3ELF) and
elf64_fsize(3ELF).

gelf_getehdr() An analog to elf32_getehdr(3ELF) and
elf64_getehdr(3ELF). dst points to the location
where the GElf_Ehdr header will be stored.

gelf_update_ehdr() Copies the contents of the GElf_Ehdr ELF header to
the underlying Elf32_Ehdr or Elf64_Ehdr
structure.

gelf_newehdr() An analog to elf32_newehdr(3ELF) and
elf64_newehdr(3ELF).

gelf(3ELF)

DESCRIPTION

List of Functions

202 man pages section 3: Extended Library Functions • Last Revised 11 July 2001

gelf_getphdr() An analog toelf32_getphdr(3ELF) and
elf64_getphdr(3ELF). dst points to the location
where the GElf_Phdr program header will be stored.

gelf_update_phdr() Copies of the contents of GElf_Phdr program header
to underlying the Elf32_Phdr or Elf64_Phdr
structure.

gelf_newphdr() An analog to elf32_newphdr(3ELF) and
elf64_newphdr(3ELF).

gelf_getshdr() An analog to elf32_getshdr(3ELF) and
elf64_getshdr(3ELF). dst points to the location
where the GElf_Shdr section header will be stored.

gelf_update_shdr() Copies of the contents of GElf_Shdr section header to
underlying the Elf32_Shdr or Elf64_Shdr
structure.

gelf_xlatetof() An analog to elf32_xlatetof(3ELF) and
elf64_xlatetof(3ELF)

gelf_xlatetom() An analog to elf32_xlatetom(3ELF) and
elf64_xlatetom(3ELF)

gelf_getsym() Retrieves the Elf32_Sym or Elf64_Sym information
from the symbol table at the given index. dst points to
the location where the GElf_Sym symbol entry will be
stored.

gelf_update_sym() Copies the GElf_Sym information back into the
underlying Elf32_Sym or Elf64_Sym structure at the
given index.

gelf_getdyn() Retrieves the Elf32_Dyn or Elf64_Dyn information
from the dynamic table at the given index. dst points
to the location where the GElf_Dyn dynamic entry
will be stored.

gelf_update_dyn() Copies the GElf_Dyn information back into the
underlying Elf32_Dyn or Elf64_Dyn structure at the
given index.

gelf_getrela() Retrieves the Elf32_Rela or Elf64_Rela
information from the relocation table at the given
index. dst points to the location where the
GElf_Rela relocation entry will be stored.

gelf_update_rela() Copies the GElf_Rela information back into the
underlying Elf32_Rela or Elf64_Rela structure at
the given index.

gelf(3ELF)

Extended Library Functions 203

gelf_getrel() Retrieves the Elf32_Rel or Elf64_Rel information
from the relocation table at the given index. dst points
to the location where the GElf_Rel relocation entry
will be stored.

gelf_update_rel() Copies the GElf_Rel information back into the
underlying Elf32_Rel or Elf64_Rel structure at the
given index.

gelf_getsyminfo() Retrieves the Elf32_Syminfo or Elf64_Syminfo
information from the relocation table at the given
index. dst points to the location where the
GElf_Syminfo symbol information entry will be
stored.

gelf_update_syminfo() Copies the GElf_Syminfo information back into the
underlying Elf32_Syminfo or Elf64_Syminfo
structure at the given index.

gelf_getmove() Retrieves the Elf32_Move or Elf64_Move
information from the move table at the given index.
dst points to the location where the GElf_Move move
entry will be stored.

gelf_update_move() Copies the GElf_Move information back into the
underlying Elf32_Move or Elf64_Move structure at
the given index.

Upon failure, all GElf functions return 0 and set elf_errno. See elf_errno(3ELF)

EXAMPLE 1 Printing the ELF Symbol Table

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <libelf.h>
#include <gelf.h>

void
main(int argc, char **argv)
{

Elf *elf;
Elf_Scn *scn = NULL;
GElf_Shdr shdr;
Elf_Data *data;
int fd, ii, count;

elf_version(EV_CURRENT);

fd = open(argv[1], O_RDONLY);
elf = elf_begin(fd, ELF_C_READ, NULL);

while ((scn = elf_nextscn(elf, scn)) != NULL) {

gelf(3ELF)

RETURN VALUES

EXAMPLES

204 man pages section 3: Extended Library Functions • Last Revised 11 July 2001

EXAMPLE 1 Printing the ELF Symbol Table (Continued)

gelf_getshdr(scn, &shdr);
if (shdr.sh_type == SHT_SYMTAB) {

/* found a symbol table, go print it. */
break;

}
}

data = elf_getdata(scn, NULL);
count = shdr.sh_size / shdr.sh_entsize;

/* print the symbol names */
for (ii = 0; ii < count; ++ii) {

GElf_Sym sym;
gelf_getsym(data, ii, &sym);
printf("%s\n", elf_strptr(elf, shdr.sh_link, sym.st_name));

}
elf_end(elf);
close(fd);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Safe

elf(3ELF), elf32_checksum(3ELF), elf32_fsize(3ELF), elf32_getehdr(3ELF),
elf32_getphdr(3ELF), elf32_getshdr(3ELF), elf32_newehdr(3ELF),
elf32_newphdr(3ELF), elf32_xlatetof(3ELF), elf32_xlatetom(3ELF),
elf_errno(3ELF), libelf(3LIB), attributes(5)

gelf(3ELF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 205

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – get audit control file
information

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4) The parameter len specifies the
length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control contains default parameters read by the
audit daemon, auditd(1M)

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 on failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 on EOF.

getacdir() returns:

getacinfo(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

206 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 if the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 if the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

audit_warn(1M), bsmconv(1M), inetd(1M), audit_control(4), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getacinfo(3BSM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 207

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;

char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

getauclassent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

208 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam. The two functions, getauclassent_r()
and getauclassnam_r() have the same functionality as the unsafe functions, but
have a slightly different function call interface in order to make them MT-Safe.

bsmconv(1M), audit_class(4), audit_event(4), attributes(5)

All information is contained in a static area, so it must be copied if it is to be saved.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getauclassent(3BSM)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 209

getauditflags, getauditflagsbin, getauditflagschar – convert audit flag specifications

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

int getauditflagsbin(char *auditstring, au_mask_t *masks);

int getauditflagschar(char *auditstring, au_mask_t *masks, int
verbose);

getauditflagsbin() converts the character representation of audit values pointed
to by auditstring into au_mask_t fields pointed to by masks. These fields indicate
which events are to be audited when they succeed and which are to be audited when
they fail. The character string syntax is described in audit_control(4).

getauditflagschar() converts the au_mask_t fields pointed to by masks into a
string pointed to by auditstring. If verbose is zero, the short (2-character) flag names are
used. If verbose is non-zero, the long flag names are used. auditstring should be large
enough to contain the ASCII representation of the events.

auditstring contains a series of event names, each one identifying a single audit class,
separated by commas. The au_mask_t fields pointed to by masks correspond to
binary values defined in <bsm/audit.h>, which is read by <bsm/libbsm.h>.

getauditflagsbin() and getauditflagschar(): −1 is returned on error and 0
on success.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

bsmconv(1M), audit.log(4), audit_control(4), attributes(5)

This is not a very extensible interface.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getauditflags(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

BUGS

NOTES

210 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – get audit_event entry

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 211

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an struct au_event_ent
structure defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number
char *ae_name;
char *ae_desc*;

au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

bsmconv(1M), getauclassent(3BSM), getpwnam(3C), audit_class(4),
audit_event(4), passwd(4), attributes(5)

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, so it must be copied if it is to be saved.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getauevent(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

212 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char name; /* name of the authorization */
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char short_desc; /* short description */
char long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a

getauthattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 213

match is not found from the default authorizations and default profiles,
chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the key word grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

com.sun.printer.postscript com.sun.printer.postscript Yes

com.sun.printer.postscript com.sun.printer.* Yes

com.sun.printer.grant com.sun.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

getauthattr(3SECDB)

RETURN VALUES

USAGE

214 man pages section 3: Extended Library Functions • Last Revised 7 Mar 2000

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
auth_attr(4), nsswitch.conf(4), prof_attr(4), user_attr(4), attributes(5),
rbac(5)

getauthattr(3SECDB)

WARNINGS

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 215

getauusernam, getauuserent, setauuser, endauuser – get audit_user entry

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_user_ent *getauusernam(const char *name);

struct au_user_ent *getauuserent(void);

void setauuser(void);

void endauuser(void);

struct au_user_ent *getauusernam_r(au_user_ent_t * u, const char
*name);

struct au_user_ent *getauuserent_r(au_user_ent_t *u);

The getauuserent(), getauusernam(), getauuserent_r(), and
getauusernam_r() functions each return an audit_user entry. Entries can come
from any of the sources specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getauusernam() and getauusernam_r() functions search for an
audit_user entry with a given login name name.

The getauuserent() and getauuserent_r() functions enumerate audit_user
entries; successive calls to these functions will return either successive audit_user
entries or NULL.

The setauuser() function “rewinds” to the beginning of the enumeration of
audit_user entries. Calls to getauusernam() and getauusernam_r() may leave
the enumeration in an indeterminate state, so setauuser() should be called before
the first call to getauuserent() or getauuserent_r().

The endauuser() function may be called to indicate that audit_user processing is
complete; the system may then close any open audit_user file, deallocate storage,
and so forth.

The getauuserent_r() and getauusernam_r() functions both take an argument
u, which is a pointer to an au_user_ent. This is the pointer that is returned on
successful function calls.

The internal representation of an audit_user entry is an au_user_ent structure
defined in <bsm/libbsm.h> with the following members:

char *au_name;
au_mask_t au_always;

au_mask_t au_never;

getauusernam(3BSM)

NAME

SYNOPSIS

DESCRIPTION

216 man pages section 3: Extended Library Functions • Last Revised 12 Aug 1999

The getauusernam() function returns a pointer to a struct au_user_ent if it
successfully locates the requested entry; otherwise it returns NULL.

The getauuserent() function returns a pointer to a struct au_user_ent if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

The functionality described in this manual page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

/etc/security/audit_user stores per-user audit event mask

/etc/passwd stores user-id to username mappings

/etc/security/audit_user stores per-user audit event mask

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

bsmconv(1M), getpwnam(3C), audit_user(4), nsswitch.conf(4), passwd(4),
attributes(5)

All information for the getauuserent() and getauusernam() functions is
contained in a static area, so it must be copied if it is to be saved.

The getauusernam() and getauuserent() functions are not MT-safe. The
getauusernam_r() and getauuserent_r() functions provide the same
functionality with interfaces that are MT-Safe.

getauusernam(3BSM)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 217

getddent, getddnam, setddent, endddent, setddfile – get device_deallocate entry

cc [flag…] file… -lbsm [library…]

#include <bsm/devices.h>

devdealloc_t *getddent(void);

devdealloc_t *getddnam(char *name);

void setddent(void);

void endddent(void);

void setddfile(char *file);

The getddent() and getddnam() functions each return a device_deallocate
entry. The getddent() function enumerates all device_deallocate entries.
Successive calls to this function return either successive device_deallocate entries
or NULL. The getddnam() function searches for a device_deallocate entry with a
given device name.

The internal representation of a device_deallocate entry is a devdealloc_t
structure defined in <bsm/devices.h> with the following members:

char *dd_devname; /* device allocation name */
char *dd_logout; /* deallocation action on user logout */

char *dd_boot; /* deallocation action on system boot */

The setddent() function “rewinds” to the beginning of the enumeration of
device_deallocate entries. Calls to getddnam() may leave the enumeration in an
indeterminate state, so setddent() should be called before the first call to
getddent().

The endddent() function can be called to indicate that device_deallocate
processing is complete. The library can then close any opendevice_deallocate file,
deallocate any internal storage, and so forth.

The setddfile() function changes the pathname used by the other functions for
opening the device_deallocate file, allowing use of device_deallocate files
other than the default file, /etc/security/device_deallocate.

The getddent() function returns a pointer to a devdealloc_t if it successfully
enumerates an entry. Otherwise it returns NULL, indicating the end of the
enumeration.

The getddnam() function returns a pointer to a devdealloc_t if it successfully
locates the requested entry. Otherwise it returns NULL.

/etc/security/device_deallocate
Administrative file defining parameters for device deallocation.

See attributes(5) for descriptions of the following attributes:

getddent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

218 man pages section 3: Extended Library Functions • Last Revised 11 Jan 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

free(3C), attributes(5)

The getddent() and getddnam() functions allocate memory for the pointers they
return. This memory can be deallocated with the free(3C) function.

getddent(3BSM)

SEE ALSO

NOTES

Extended Library Functions 219

getdmapent, getdmapnam, getdmaptype, getdmaptdev, setdmapent, enddmapent,
setdmapfile – get device_maps entry

cc [flag…] file… -lbsm [library…]

#include <bsm/devices.h>

devmap_t *getdmapent(void);

devmap_t *getdmapnam(char *name);

devmap_t *getdmapdev(char *name);

devmap_t *getdmaptype(char *type);

void setdmapent(void);

void enddmapent(void);

void setdmapfile(char *file);

The getdmapent(), getdmapnam(), getdmapdev(), and getdmaptype()
functions each return a device_deallocate entry. The getdmapent() function
enumerates all device_maps entries. The getdmaptype() function enumerates
device_maps entries with a given device type. Successive calls to these functions
return either successive device_maps entries or NULL. The getdmapnam() function
searches for a device_maps entry with a given device allocation name. The
getdmapdev() function searches for a device_maps entry containing a given device
special file.

The internal representation of a device_maps entry is a devmap_t structure defined
in <bsm/devices.h> with the following members:

char *dmap_devname; /* device allocation name */
char *dmap_devtype; /* generic device type */

char *dmap_devlist; /* list of associated device special files */

The setdmapent() function “rewinds” to the beginning of the enumeration of
device_maps entries. Calls to getdmapnam() may leave the enumeration in an
indeterminate state, so setdmapent() should be called before the first call to
getdmapent() or getdmaptype().

The enddmapent() function can be called to indicate that device_maps processing
is complete. The library can then close any open device_maps file, deallocate any
internal storage, and so forth.

The setdmapfile() function changes the pathname used by the other functions for
opening the device_maps file, allowing use of device_maps files other than the
default file, /etc/security/device_maps.

The getdmapent() and getdmaptype() functions return a pointer to a devmap_t
if they successfully enumerate an entry. Otherwise they return NULL, indicating the
end of the enumeration.

getdmapent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

220 man pages section 3: Extended Library Functions • Last Revised 11 Jan 2001

The getdmapnam() function returns a pointer to a devmap_t if it successfully locates
the requested entry. Otherwise it returns NULL.

/etc/security/device_maps
Administrative file defining the mapping of device special files to allocatable device
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

allocate(1), free(3C), device_maps(4), attributes(5)

The getdmapent(), getdmapnam(), getdmapdev(), and getdmaptype()
functions allocate memory for the pointers they return. This memory can be
deallocated with the free(3C) function.

getdmapent(3BSM)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 221

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

getexecattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

222 man pages section 3: Extended Library Functions • Last Revised 13 Mar 2000

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

getexecattr(3SECDB)

RETURN VALUES

USAGE

Extended Library Functions 223

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecattr(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

224 man pages section 3: Extended Library Functions • Last Revised 13 Mar 2000

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

getexecattr(3SECDB)

SEE ALSO

Extended Library Functions 225

getfauditflags – generates the process audit state

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

int getfauditflags(au_mask_t *usremasks, au_mask_t *usrdmasks,
au_mask_t *lastmasks);

getfauditflags() generates a process audit state by combining the audit masks
passed as parameters with the system audit masks specified in the
audit_control(4) file. getfauditflags() obtains the system audit value by
calling getacflg() (see getacinfo(3BSM)).

usremasks points to au_mask_t fields which contains two values. The first value
defines which events are always to be audited when they succeed. The second value
defines which events are always to be audited when they fail.

usrdmasks also points to au_mask_t fields which contains two values. The first value
defines which events are never to be audited when they succeed. The second value
defines which events are never to be audited when they fail.

The structures pointed to by usremasks and usrdmasks may be obtained from the
audit_user(4) file by calling getauusernam() which returns a pointer to a
strucure containing all audit_user(4) fields for a user.

The output of this function is stored in lastmasks which is a pointer of type au_mask_t
as well. The first value defines which events are to be audited when they succeed and
the second defines which events are to be audited when they fail.

Both usremasks and usrdmasks override the values in the system audit values.

−1 is returned on error and 0 on success.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

bsmconv(1M), getacinfo(3BSM), getauditflags(3BSM), getauusernam(3BSM),
audit.log(4), audit_control(4), audit_user(4), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getfauditflags(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

226 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist
– get profile description and attributes

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <prof.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry.
Entries can come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam()
function searches for a prof_attr entry with a given name. Successive calls to these
functions return either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined
in <prof_attr.h> with the following members:

char name; /* Name of the profile */
char res1; /* Reserved for future use */
char res2; /* Reserved for future use */
char desc; /* Description/Purpose of the profile */

kva_t attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr()
and getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of
prof_attr entries. Calls to getprofnam() can leave the enumeration in an
indeterminate state. Therefore, setprofattr() should be called before the first call
to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing
is complete; the system may then close any open prof_attr file, deallocate storage,
and so forth.

The getproflist() function searches for the list of sub-profiles found in the given
profname and allocates memory to store this list in proflist. The given profname will be
included in the list of sub-profiles. The profcnt argument indicates the number of items
currently valid in proflist. Memory allocated by getproflist() should be freed
using the free_proflist() function.

getprofattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 227

The free_proflist() function frees memory allocated by the getproflist()
function. The profcnt argument specifies the number of items to free from the proflist
argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore
unknown key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_profattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB),
prof_attr(4)

getprofattr(3SECDB)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

228 man pages section 3: Extended Library Functions • Last Revised 13 Mar 2000

getprojent, getprojbyname, getprojbyid, getdefaultproj, inproj, getprojidbyname,
setprojent, endprojent, fgetprojent – project database entry functions

cc [flag...] file... −lproject [library...]

#include <project.h>

struct project *getprojent(struct project *proj, void *buffer, size_t
bufsize);

struct project *getprojbyname(const char *name, struct project
*proj, void *buffer, size_t bufsize);

struct project *getprojbyid(projid_t projid, struct project *proj,
void *buffer, size_t bufsize);

struct project *getdefaultproj(const char *username, struct
project *proj, void *buffer, size_t bufsize);

int inproj(const char *username, const char *projname, void *buffer,
size_t bufsize);

projid_t getprojidbyname(const char *name);

void setprojent(void);

void endprojent(void);

struct project *fgetprojent(FILE *f, struct project *proj, void
*buffer, size_t bufsize);

These functions are used to obtain entries describing user projects. Entries can come
from any of the sources for a project specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The setprojent(), getprojent(), and endprojent() functions are used to
enumerate project entries from the database.

The setprojent() function effectively rewinds the project database to allow
repeated searches. It sets (or resets) the enumeration to the beginning of the set of
project entries. This function should be called before the first call to getprojent().

The getprojent() function returns a pointer to a structure containing the
broken-out fields of an entry in the project database. When first called,
getprojent() returns a pointer to a project structure containing the first project
structure in the project database. Successive calls can be used to read the entire
database.

The endprojent() function closes the project database and deallocates resources
when processing is complete. It is permissible, though possibly less efficient, for the
process to call more project functions after calling endprojent().

The getprojbyname() function searches the project database for an entry with the
project name specified by the character string name.

getprojent(3PROJECT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 229

The getprojbyid() function searches the project database for an entry with the
(numeric) project ID specified by projid.

The getdefaultproj() function first looks up the project key word in the
user_attr database used to define user attributes in restricted Solaris environments.
If the database is available and the keyword is present, the function looks up the
named project, returning NULL if it cannot be found or if the user is not a member of
the named project. If absent, the function looks for a match in the project database for
the special project user.username. If no match is found, the function looks at the
default group entry of the passwd database for the user, and looks for a match in the
project database for the special name group.groupname, where groupname is the default
group associated with the password entry corresponding to the given username. If no
match is found, the function returns NULL. A special project entry called ’default’ can
be looked up and used as a last resort. By convention, machines with no entry for
default do not allow access to non-root users without a default project. On successful
lookup, this function returns a pointer to the valid project structure.

The inproj() function checks if the user specified by username is able to use the
project specified by projname. This function returns 1 if the user belongs to the list of
project’s users, if there is a project’s group that contains the specified user, or if project
is a user’s default project; otherwise it returns 0.

The getprojidbyname() function searches the project database for an entry with
the project name specified by the character string name. This function returns the
project ID if the requested entry is found; otherwise it returns −1.

The fgetprojent() function, unlike the other functions described above, does not
use nsswitch.conf; it reads and parses the next line from the stream f, which is
assumed to have the format of the project(4) file. This function returns the same
values as getprojent().

The getprojent(), getprojbyname(), getprojbyid(), getdefaultproj(),
and inproj() functions are reentrant interfaces for operations with the project
database. These functions use buffers supplied by the caller to store returned results
and are safe for use in both single-threaded and multithreaded applications.

Reentrant interfaces require the additional arguments proj, buffer, and bufsize. The proj
argument must be a pointer to a struct project structure allocated by the caller.
On successful completion, the function returns the project entry in this structure.
Storage referenced by the project structure is allocated from the memory provided
with the buffer argument, which is bufsize bytes in size.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. The setprojent() function can be
used in a multithreaded application but resets the enumeration position for all
threads. If multiple threads interleave calls to getprojent(), the threads will
enumerate disjoint subsets of the project database. The inproj(),

getprojent(3PROJECT)

230 man pages section 3: Extended Library Functions • Last Revised 6 Jun 2001

getprojbyname(), getprojbyid(), and getdefaultproj() functions leave the
enumeration position in an indeterminate state.

Project entries are represented by the struct project structure defined in
<project.h>.

struct project {
char *pj_name; /* name of the project */
projid_t pj_projid; /* numerical project id */
char *pj_comment; /* project comment */
char **pj_users; /* vector of pointers to project

user names */
char **pj_groups; /* vector of pointers to project

group names */
char *pj_attr; /* project attributes */

};

The getprojbyname() and getprojbyid() functions each return a pointer to a
struct project if they successfully locate the requested entry; otherwise they
return NULL.

The getprojent() function returns a pointer to a struct project if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

The getprojidbyname() function returns the project ID if the requsted entry is
found; otherwise it returns −1 and sets errno to indicate the error.

When the pointer returned by the reentrant functions getprojbyname(),
getprojbyid(), and getprojent() is non-null, it is always equal to the proj
pointer that was supplied by the caller.

Upon failure, NULL is returned and errno is set to indicate the error.

The getprojent(), getprojbyname(), getprojbyid(), inproj(),
getprojidbyname(), fgetprojent(), and getdefaultproj() functions will
fail if:

EINTR A signal was caught during the operation.

EIO An I/O error has occurred.

EMFILE There are OPEN_MAX file descriptors currently open in the calling
process.

ENFILE The maximum allowable number of files is currently open in the
system.

ERANGE Insufficient storage was supplied by buffer and bufsize to contain
the data to be referenced by the resulting project structure.

When compiling multithreaded applications, see intro(3), Notes On Multithreaded
Applications.

getprojent(3PROJECT)

RETURN VALUES

ERRORS

USAGE

Extended Library Functions 231

Applications that use the interfaces described on this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at runtime.

Use of the enumeration interface getprojent() is discouraged. Enumeration is
supported for the project file, NIS, and LDAP but in general is not efficient. The
semantics of enumeration are discussed further in nsswitch.conf(4).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See "Reentrant Interfaces" in Description

intro(3), sysconf(3C), nsswitch.conf(4), project(4), attributes(5)

getprojent(3PROJECT)

ATTRIBUTES

SEE ALSO

232 man pages section 3: Extended Library Functions • Last Revised 6 Jun 2001

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr – get
user_attr entry

cc [flag...] file...– lsecdb – lsocket – lnsl – lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user id uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The free_userattr() function releases memory allocated by the getusernam()
and getuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

getuserattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 233

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

getuserattr(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

234 man pages section 3: Extended Library Functions • Last Revised 12 Aug 1999

gmatch – shell global pattern matching

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int gmatch(const char *str, const char *pattern);

gmatch() checks whether the null-terminated string str matches the null-terminated
pattern string pattern. See the sh(1), section File Name Generation, for a
discussion of pattern matching. A backslash (\) is used as an escape character in
pattern strings.

gmatch() returns non-zero if the pattern matches the string, zero if the pattern does
not.

EXAMPLE 1 Examples of gmatch() function.

In the following example, gmatch() returns non-zero (true) for all strings with “a” or
“-” as their last character.

char *s;
gmatch (s, "*[a\-]")

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sh(1), attributes(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

gmatch(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 235

hypot – Euclidean distance function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double hypot(double x, double y);

The hypot() function computes the length of the hypotenuse of a right-angled
triangle:

Upon successful completion, hypot() returns the length of the hypotenuse of a right
angled triangle with sides of length x and y.

If the result would cause overflow, HUGE_VAL is returned and errno may be set to
ERANGE.

If x or y is NaN, NaN is returned.

The hypot() function may fail if:

ERANGE The result overflows.

The hypot() function takes precautions against underflow and overflow during
intermediate steps of the computation.

An application wishing to check for error situations should set errno to 0 before
calling hypot(). If errno is non-zero on return, or the return value is HUGE_VAL or
NaN, an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), sqrt(3M), attributes(5)

hypot(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

236 man pages section 3: Extended Library Functions • Last Revised 26 Jul 2001

ilogb – returns an unbiased exponent

cc [flag ...] file ... -lm [library ...]

#include <math.h>

int ilogb(double x);

The ilogb() function returns the exponent part of x. Formally, the return value is the
integral part of logr|x| as a signed integral value, for non-zero finite x, where r is the
radix of the machine’s floating point arithmetic.

Upon successful completion, ilogb() returns the exponent part of x.

If x is 0, ilogb() returns −INT_MAX.

If x is NaN or ±Inf, ilogb() returns INT_MAX.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

logb(3M), attributes(5)

ilogb(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 237

isencrypt – determine whether a buffer of characters is encrypted

cc [flag…] [file…] -lgen [library…]

#include<libgen.h>

int isencrypt(const char *fbuf, size_t ninbuf);

isencrypt() uses heuristics to determine whether a buffer of characters is
encrypted. It requires two arguments: a pointer to an array of characters and the
number of characters in the buffer.

isencrypt() assumes that the file is not encrypted if all the characters in the first
block are ASCII characters. If there are non-ASCII characters in the first ninbuf
characters, and if the setlocale() LC_CTYPE category is set to C or ascii,
isencrypt() assumes that the buffer is encrypted

If the LC_CTYPE category is set to a value other than C or ascii, then isencrypt()
uses a combination of heuristics to determine if the buffer is encrypted. If ninbuf has at
least 64 characters, a chi-square test is used to determine if the bytes in the buffer have
a uniform distribution; if it does, then isencrypt() assumes the buffer is encrypted.
If the buffer has less than 64 characters, a check is made for null characters and a
terminating new-line to determine whether the buffer is encrypted.

If the buffer is encrypted, 1 is returned; otherwise, zero is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

setlocale(3C), attributes(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

isencrypt(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

238 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

isnan – test for NaN

cc [flag ...] file ... -lm [library ...]

#include <math.h>

int isnan(double x);

The isnan() function tests whether x is NaN.

The isnan() function returns non-zero if x is NaN. Otherwise, 0 is returned.

On systems not supporting NaN, isnan() always returns 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

isnan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 239

j0, j1, jn – Bessel functions of the first kind

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double j0(double x);

double j1(double x);

double jn(int n, double x);

The j0(), j1() and jn() functions compute Bessel functions of x of the first kind of
orders 0, 1 and n respectively.

Upon successful completion, j0(), j1() and jn() return the relevant Bessel value of
x of the first kind.

If the x argument is too large in magnitude, 0 is returned and errno may be set to
ERANGE.

If x is NaN, NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The j0(), j1() and jn() functions may fail if:

ERANGE The value of x was too large in magnitude.

An application wishing to check for error situations should set errno to 0 before
calling j0(), j1() or jn(). If errno is non-zero on return, or the return value is
NaN, an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), matherr(3M), y0(3M), attributes(5), standards(5)

j0(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

240 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

kstat – Perl tied hash interface to the kstat facility

use Sun::Solaris::Kstat;

Sun::Solaris::Kstat->new();
Sun::Solaris::Kstat->update();

Sun::Solaris::Kstat->{module}{instance}{name}{statistic}

Kernel statistics are categorized using a 3-part key consisting of the module, the
instance, and the statistic name. For example, CPU information can be found under
cpu_stat:0:cpu_stat0, as in the above example. The method
Sun::Solaris::Kstat->new() creates a new 3-layer tree of Perl hashes with the
same structure; that is, the statistic for CPU 0 can be accessed as
$ks->{cpu_stat}{0}{cpu_stat0}. The fourth and lowest layer is a tied hash
used to hold the individual statistics values for a particular system resource.

For performance reasons, the creation of a Sun::Solaris::Kstat object is not
accompanied by a following read of all possible statistics. Instead, the 3-layer structure
described above is created, but reads of a statistic’s values are done only when
referenced. For example, accessing $ks->{cpu_stat}{0}{cpu_stat0}{syscall}
will read in all the statistics for CPU 0, including user, system, and wait times, and the
other CPU statistics, as well as the number of system call entries. Once you have
accessed a lowest level statistics value, calling $ks->update will automatically
update all the individual values of any statistics you have accessed.

Note that there are two values of the lowest-level hash that can be read without
causing the full set of statistics to be read from the kernel. These are "class", which is
the kstat class of the statistics, and "crtime", which is the time that the kstat was
created. See kstat(3KSTAT) for full details of these fields.

new() Create a new kstat statistics hierarchy and return a reference to the
top-level hash. Use it like any normal hash to access the statistics.

update() Update all the statistics that have been accessed so far. In scalar
context, update() returns 1 if the kstat structure has changed,
and 0 otherwise. In list context, update() returns references to
two arrays: the first holds the keys of any kstats that have been
added, and the second holds the keys of any kstats that have been
deleted. Each key will be returned in the form
"module:instance:name".

EXAMPLE 1 Sun::Solaris::Kstat example

use Sun::Solaris::Kstat;

my $kstat = Sun::Solaris::Kstat->new();
my ($usr1, $sys1, $wio1, $idle1) =

@{$kstat->{cpu_stat}{0}{cpu_stat0}}{qw(user kernel wait idle)};
print("usr sys wio idle\n");
while (1) {

sleep 5;
if ($kstat->update()) {

kstat(3EXT)

NAME

SYNOPSIS

DESCRIPTION

Methods

EXAMPLES

Extended Library Functions 241

EXAMPLE 1 Sun::Solaris::Kstat example (Continued)

print("Configuration changed\n");
}
my ($usr2, $sys2, $wio2, $idle2) =

@{$kstat->{cpu_stat}{0}{cpu_stat0}}{qw(user kernel wait idle)};
printf(" %.2d %.2d %.2d %.2d\n",

($usr2 - $usr1) / 5, ($sys2 - $sys1) / 5,
($wio2 - $wio1) / 5, ($idle2 - $idle1) / 5);

$usr1 = $usr2;
$sys1 = $sys2;
$wio1 = $wio2;
$idle1 = $idle2;

}

perl(1), kstat(1M), kstat(3KSTAT), kstat_chain_update(3KSTAT),
kstat_close(3KSTAT), kstat_open(3KSTAT), kstat_read(3KSTAT)

As the statistics are stored in a tied hash, taking additional references of members of
the hash, such as

my $ref = \$ks->{cpu_stat}{0}{cpu_stat0}{syscall};
print("$$ref\n");

will be recorded as a hold on that statistic’s value, preventing it from being updated
by refresh(). Copy the values explicitly if persistence is necessary.

Several of the statistics provided by the kstat facility are stored as 64-bit integer
values. Perl 5 does not yet internally support 64-bit integers, so these values are
approximated in this module. There are two classes of 64-bit value to be dealt with:

64-bit intervals and times These are the crtime and snaptime fields of all the
statistics hashes, and the wtime, wlentime,
wlastupdate, rtime, rlentime and rlastupdate
fields of the kstat I/O statistics structures. These are
measured by the kstat facility in nanoseconds,
meaning that a 32-bit value would represent
approximately 4 seconds. The alternative is to store the
values as floating-point numbers, which offer
approximately 53 bits of precision on present hardware.
64-bit intervals and timers as floating point values
expressed in seconds, meaning that time-related kstats
are being rounded to approximately microsecond
resolution.

64-bit counters It is not useful to store these values as 32-bit values. As
noted above, floating-point values offer 53 bits of
precision. Accordingly, all 64-bit counters are stored as
floating-point values.

kstat(3EXT)

SEE ALSO

NOTES

242 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

kstat – kernel statistics facility

The kstat facility is a general-purpose mechanism for providing kernel statistics to
users.

The kernel maintains a linked list of statistics structures, or kstats. Each kstat has a
common header section and a type-specific data section. The header section is defined
by the kstat_t structure:

typedef intkid_t; /* unique kstat id */

typedef struct kstat {
/*
* Fields relevant to both kernel and user
*/
hrtime_t ks_crtime; /* creation time */
struct kstat *ks_next; /* kstat chain linkage */
kid_t ks_kid; /* unique kstat ID */
char ks_module[KSTAT_STRLEN]; /* module name */
uchar_t ks_resv; /* reserved */
int ks_instance; /* module’s instance */
char ks_name[KSTAT_STRLEN]; /* kstat name */
uchar_t ks_type; /* kstat data type */
char ks_class[KSTAT_STRLEN]; /* kstat class */
uchar_t ks_flags; /* kstat flags */
void *ks_data; /* kstat type-specific data */
uint_t ks_ndata; /* # of data records */
size_t ks_data_size; /* size of kstat data section */
hrtime_t ks_snaptime; /* time of last data snapshot */

/*
* Fields relevant to kernel only
*/
int(*ks_update)(struct kstat *, int);
void *ks_private;
int(*ks_snapshot)(struct kstat *, void *, int);
void *ks_lock;

} kstat_t;

The fields that are of significance to the user are:

ks_crtime The time the kstat was created. This allows you to compute the
rates of various counters since the kstat was created; "rate since
boot" is replaced by the more general concept of "rate since kstat
creation". All times associated with kstats (such as creation time,
last snapshot time, kstat_timer_t and kstat_io_t
timestamps, and the like) are 64-bit nanosecond values. The
accuracy of kstat timestamps is machine dependent, but the
precision (units) is the same across all platforms. See
gethrtime(3C) for general information about high-resolution
timestamps.

ks_next kstats are stored as a linked list, or chain. ks_next points to the
next kstat in the chain.

kstat(3KSTAT)

NAME

DESCRIPTION

The kstat model

kstat header

Extended Library Functions 243

ks_kid A unique identifier for the kstat.

ks_module,
ks_instance contain the name and instance of the the module that created the

kstat. In cases where there can only be one instance,
ks_instance is 0.

ks_name gives a meaningful name to a kstat. The full kstat namespace is
<ks_module,ks_instance,ks_name>, so the name only need be
unique within a module.

ks_type The type of data in this kstat. kstat data types are discussed below.

ks_class Each kstat can be characterized as belonging to some broad class
of statistics, such as disk, tape, net, vm, and streams. This field can
be used as a filter to extract related kstats. The following values are
currently in use: disk, tape, controller, net, rpc, vm, kvm,
hat, streams, kmem, kmem_cache, kstat, and misc. (The kstat
class encompasses things like kstat_types.)

ks_data,
ks_ndata,
ks_data_size ks_data is a pointer to the kstat’s data section. The type of data

stored there depends on ks_type. ks_ndata indicates the
number of data records. Only some kstat types support multiple
data records. Currently, KSTAT_TYPE_RAW, KSTAT_TYPE_NAMED
and KSTAT_TYPE_TIMER kstats support multiple data records.
KSTAT_TYPE_INTR and KSTAT_TYPE_IO kstats support only one
data record. ks_data_size is the total size of the data section, in
bytes.

ks_snaptime The timestamp for the last data snapshot. This allows you to
compute activity rates:

rate = (new_count - old_count) / (new_snaptime - old_snaptime);

The following types of kstats are currently available:

#define KSTAT_TYPE_RAW 0 /* can be anything */
#define KSTAT_TYPE_NAMED 1 /* name/value pairs */
#define KSTAT_TYPE_INTR 2 /* interrupt statistics */
#define KSTAT_TYPE_IO 3 /* I/O statistics */

#define KSTAT_TYPE_TIMER 4 /* event timers */

To get a list of all kstat types currently supported in the system, tools can read out the
standard system kstat kstat_types (full name spec is <‘‘unix’’, 0, ‘‘kstat_types’’>). This is
a KSTAT_TYPE_NAMED kstat in which the name field describes the type of kstat, and
the value field is the kstat type number (for example, KSTAT_TYPE_IO is type 3 -- see
above).

KSTAT_TYPE_RAW raw data

kstat(3KSTAT)

kstat data types

Raw kstat

244 man pages section 3: Extended Library Functions • Last Revised 9 Oct 2001

The "raw" kstat type is just treated as an array of bytes. This is generally used to
export well-known structures, like sysinfo.

KSTAT_TYPE_NAMED A list of arbitrary name=value statistics.

typedef struct kstat_named {
charname[KSTAT_STRLEN]; /* name of counter */
uchar_tdata_type; /* data type */
union {

charc[16]; /* enough for 128-bit ints */
struct {

union {
char *ptr; /* NULL-terminated string */

} addr;
uint32_t len; /* length of string */

} string;
int32_ti32;
uint32_tui32;
int64_ti64;
uint64_tui64;

/* These structure members are obsolete */

int32_t l;
uint32_t ul;
int64_t ll;
uint64_t ull;

} value; /* value of counter */
} kstat_named_t;
#define KSTAT_DATA_CHAR 0 /* char[16] */
#define KSTAT_DATA_INT32 1
#define KSTAT_DATA_UINT32 2
#define KSTAT_DATA_INT64 3
#define KSTAT_DATA_UINT64 4
#define KSTAT_DATA_STRING 9 /* arbitrary-length string */

/* These types are obsolete */

#define KSTAT_DATA_LONG 1
#define KSTAT_DATA_ULONG 2
#define KSTAT_DATA_LONGLONG 3
#define KSTAT_DATA_ULONGLONG 4
#define KSTAT_DATA_FLOAT 5

#define KSTAT_DATA_DOUBLE 6

Some devices need to publish strings that exceed the maximum value for
KSTAT_DATA_CHAR in length; KSTAT_DATA_STRING is a data type that allows
arbitrary-length strings to be associated with a named kstat. The macros below are the
supported means to read the pointer to the string and its length.

#define KSTAT_NAMED_STR_PTR(knptr) ((knptr)->value.string.addr.ptr)
#define KSTAT_NAMED_STR_BUFLEN(knptr) ((knptr)->value.string.len)

kstat(3KSTAT)

Name=value kstat

Extended Library Functions 245

KSTAT_NAMED_STR_BUFLEN() returns the number of bytes required to store the
string pointed to by KSTAT_NAMED_STR_PTR(); that is,
strlen(KSTAT_NAMED_STR_PTR()) + 1.

KSTAT_TYPE_INTR Interrupt statistics.

An interrupt is a hard interrupt (sourced from the hardware device itself), a soft
interrupt (induced by the system via the use of some system interrupt source), a
watchdog interrupt (induced by a periodic timer call), spurious (an interrupt entry
point was entered but there was no interrupt to service), or multiple service (an
interrupt was detected and serviced just prior to returning from any of the other
types).

#define KSTAT_INTR_HARD 0
#define KSTAT_INTR_SOFT 1
#define KSTAT_INTR_WATCHDOG 2
#define KSTAT_INTR_SPURIOUS 3
#define KSTAT_INTR_MULTSVC 4
#define KSTAT_NUM_INTRS 5

typedef struct kstat_intr {
uint_t intrs[KSTAT_NUM_INTRS]; /* interrupt counters */

} kstat_intr_t;

KSTAT_TYPE_TIMER Event timer statistics.

These provide basic counting and timing information for any type of event.

typedef struct kstat_timer {
char name[KSTAT_STRLEN]; /* event name */
uchar_t resv; /* reserved */
u_longlong_t num_events; /* number of events */
hrtime_t elapsed_time; /* cumulative elapsed time */
hrtime_t min_time; /* shortest event duration */
hrtime_t max_time; /* longest event duration */
hrtime_t start_time; /* previous event start time */
hrtime_t stop_time; /* previous event stop time */

} kstat_timer_t;

KSTAT_TYPE_IO I/O statistics.

typedef struct kstat_io {
/*
* Basic counters.
*/

u_longlong_t nread; /* number of bytes read */
u_longlong_t nwritten; /* number of bytes written */
uint_t reads; /* number of read operations */
uint_t writes; /* number of write operations */
/*
* Accumulated time and queue length statistics.
*

kstat(3KSTAT)

Interrupt kstat

Event timer kstat

I/O kstat

246 man pages section 3: Extended Library Functions • Last Revised 9 Oct 2001

* Time statistics are kept as a running sum of "active" time.
* Queue length statistics are kept as a running sum of the
* product of queue length and elapsed time at that length --
* that is, a Riemann sum for queue length integrated against time.
* ^

* | _________
* 8 | i4 |
* | | |
* Queue 6 | |
* Length | _________ | |
* 4 | i2 |_______| |
* | | i3 |
* 2_______| |
* | i1 |
* |_______________________________|
* Time-> t1 t2 t3 t4

*
* At each change of state (entry or exit from the queue),
* we add the elapsed time (since the previous state change)
* to the active time if the queue length was non-zero during
* that interval; and we add the product of the elapsed time
* times the queue length to the running length*time sum.
*
* This method is generalizable to measuring residency
* in any defined system: instead of queue lengths, think
* of "outstanding RPC calls to server X".
*
* A large number of I/O subsystems have at least two basic
* "lists" of transactions they manage: one for transactions
* that have been accepted for processing but for which processing
* has yet to begin, and one for transactions which are actively
* being processed (but not done). For this reason, two cumulative
* time statistics are defined here: pre-service (wait) time,
* and service (run) time.
*
* The units of cumulative busy time are accumulated nanoseconds.
* The units of cumulative length*time products are elapsed time
* times queue length.
*/
hrtime_t wtime; /* cumulative wait (pre-service) time */
hrtime_t wlentime; /* cumulative wait length*time product*/
hrtime_t wlastupdate; /* last time wait queue changed */
hrtime_t rtime; /* cumulative run (service) time */
hrtime_t rlentime; /* cumulative run length*time product */
hrtime_t rlastupdate; /* last time run queue changed */

kstat(3KSTAT)

Extended Library Functions 247

uint_t wcnt; /* count of elements in wait state */
uint_t rcnt; /* count of elements in run state */
} kstat_io_t;

The kstat library, libkstat, defines the user interface (API) to the system’s kstat
facility.

You begin by opening libkstat with kstat_open(3KSTAT), which returns a pointer to
a fully initialized kstat control structure. This is your ticket to subsequent libkstat
operations:

typedef struct kstat_ctl {
kid_t kc_chain_id; /* current kstat chain ID */
kstat_t *kc_chain; /* pointer to kstat chain */
int kc_kd; /* /dev/kstat descriptor */

} kstat_ctl_t;

Only the first two fields, kc_chain_id and kc_chain, are of interest to libkstat
clients. (kc_kd is the descriptor for /dev/kstat, the kernel statistics driver. libkstat
functions are built on top of /dev/kstat ioctl(2) primitives. Direct interaction with
/dev/kstat is strongly discouraged, since it is not a public interface.)

kc_chain points to your copy of the kstat chain. You typically walk the chain to find
and process a certain kind of kstat. For example, to display all I/O kstats:

kstat_ctl_t *kc;
kstat_t *ksp;
kstat_io_t kio;

kc = kstat_open();
for (ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {

if (ksp->ks_type == KSTAT_TYPE_IO) {
kstat_read(kc, ksp, &kio);

my_io_display(kio);
}

}

kc_chain_id is the kstat chain ID, or KCID, of your copy of the kstat chain. See
kstat_chain_update(3KSTAT) for an explanation of KCIDs.

/dev/kstat kernel statistics driver

/usr/include/kstat.h

/usr/include/sys/kstat.h

ioctl(2), gethrtime(3C), getloadavg(3C), kstat_chain_update(3KSTAT),
kstat_close(3KSTAT), kstat_data_lookup(3KSTAT), kstat_lookup(3KSTAT),
kstat_open(3KSTAT), kstat_read(3KSTAT), kstat_write(3KSTAT)

kstat(3KSTAT)

Using libkstat

FILES

SEE ALSO

248 man pages section 3: Extended Library Functions • Last Revised 9 Oct 2001

kstat_chain_update – update the kstat header chain

cc [flag ...] file ... -lkstat [library ...]

#include <kstat.h>

kid_t kstat_chain_update(kstat_ctl_t *kc);

The kstat_chain_update() function brings the user’s kstat header chain in sync
with that of the kernel. The kstat chain is a linked list of kstat headers (kstat_t’s)
pointed to by kc->kc_chain, which is initialized by kstat_open(3KSTAT). This
chain constitutes a list of all kstats currently in the system.

During normal operation, the kernel creates new kstats and delete old ones as various
device instances are added and removed, thereby causing the user’s copy of the kstat
chain to become out of date. The kstat_chain_update() function detects this
condition by comparing the kernel’s current kstat chain ID(KCID), which is
incremented every time the kstat chain changes, to the user’s KCID,
kc->kc_chain_id. If the KCIDs match, kstat_chain_update() does nothing.
Otherwise, it deletes any invalid kstat headers from the user’s kstat chain, adds any
new ones, and sets kc->kc_chain_id to the new KCID. All other kstat headers in the
user’s kstat chain are unmodified.

The kstat_chain_update() function returns the new KCID if the kstat chain has
changed, 0 if it hasn’t, or −1 on failure.

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kstat(3KSTAT), kstat_close(3KSTAT), kstat_data_lookup(3KSTAT),
kstat_lookup(3KSTAT), kstat_open(3KSTAT), kstat_read(3KSTAT),
kstat_write(3KSTAT), attributes(5)

kstat_chain_update(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 249

kstat_lookup, kstat_data_lookup – find a kstat by name

cc [flag ...] file ... -lkstat [library ...]

#include <kstat.h>

kstat_t *kstat_lookup(kstat_ctl_t *kc, char *ks_module, int
ks_instance, char *ks_name);

void *kstat_data_lookup(kstat_t *ksp, char *name);

The kstat_lookup() function traverses the kstat chain, kc->kc_chain, searching for a
kstat with the same ks_module, ks_instance, and ks_name fields; this triplet uniquely
identifies a kstat. If ks_module is NULL, ks_instance is -1, or ks_name is NULL, then those
fields will be ignored in the search. For example, kstat_lookup(kc, NULL, -1,
"foo") will simply find the first kstat with name "foo".

The kstat_data_lookup() function searches the kstat’s data section for the record
with the specified name. This operation is valid only for kstat types which have named
data records. Currently, only the KSTAT_TYPE_NAMED and KSTAT_TYPE_TIMER
kstats have named data records.

The kstat_lookup() function returns a pointer to the requested kstat if it is found,
or NULL if it is not.

The kstat_data_lookup() function returns a pointer to the requested data record
if it is found. If the requested record is not found, or if the kstat type is invalid,
kstat_data_lookup() returns NULL.

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kstat(3KSTAT), kstat_chain_update(3KSTAT), kstat_close(3KSTAT),
kstat_open(3KSTAT), kstat_read(3KSTAT), kstat_write(3KSTAT),
attributes(5)

kstat_lookup(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

250 man pages section 3: Extended Library Functions • Last Revised 27 Jun 2000

kstat_open, kstat_close – initialize kernel statistics facility

cc[flag ...] file ... -lkstat [library ...]

#include <kstat.h>

kstat_ctl_t *kstat_open(void);

int kstat_close(kstat_ctl_t *kc);

The kstat_open() function initializes a kstat control structure, which provides
access to the kernel statistics library. It returns a pointer to this structure, which must
be supplied as the kc argument in subsequent libkstat function calls.

The kstat_close() function frees all resources that were associated with kc. This is
done automatically on exit(2) and execve() (see exec(2)).

The kstat_open() function returns a pointer to a kstat control structure. On failure,
it returns NULL and no resources are allocated.

The kstat_close() function returns 0 on success and −1 on failure.

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kstat(3KSTAT), kstat_chain_update(3KSTAT), kstat_data_lookup(3KSTAT),
kstat_lookup(3KSTAT), kstat_read(3KSTAT), kstat_write(3KSTAT),
attributes(5)

kstat_open(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 251

kstat_read, kstat_write – read or write kstat data

cc [flag ...] file ... -lkstat [library ...]

#include <kstat.h>

kid_t kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

kid_t kstat_write(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

The kstat_read() function gets data from the kernel for the kstat pointed to by ksp.
ksp->ks_data is automatically allocated (or reallocated) to be large enough to hold all of
the data. ksp->ks_ndata is set to the number of data fields, ksp->ks_data_size is set to the
total size of the data, and ksp->ks_snaptime is set to the high-resolution time at which
the data snapshot was taken. If buf is non-NULL, the data is copied from ksp->ks_data
into buf.

The kstat_write() function writes data from buf, or from ksp->ks_data if buf is
NULL, to the corresponding kstat in the kernel. Only the superuser can use
kstat_write().

On success, kstat_read() and kstat_write() return the current kstat chain ID
(KCID). On failure, they return −1.

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kstat(3KSTAT), kstat_chain_update(3KSTAT), kstat_close(3KSTAT),
kstat_data_lookup(3KSTAT), kstat_lookup(3KSTAT), kstat_open(3KSTAT),
attributes(5)

kstat_read(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

252 man pages section 3: Extended Library Functions • Last Revised 27 Jun 2000

kva_match – look up a key in a key-value array

cc [flag...] file...– lsecdb [library...]

#include <secdb.h>

char *kva_match(kva_t *kva, char *key);

The kva_match() function searches a kva_t structure, which is part of the
authattr_t, execattr_t, profattr_t, or userattr_t structures. The function
takes two arguments: a pointer to a key value array, and a key. If the key is in the
array, the function returns a pointer to the first corresponding value that matches that
key. Otherwise, the function returns NULL.

Upon successful completion, the function returns a pointer to the value sought.
Otherwise, it returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB)

The kva_match() function returns a pointer to data that already exists in the
key-value array. It does not allocate its own memory for this pointer but obtains it
from the key-value array that is passed as its first argument.

kva_match(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 253

kvm_getu, kvm_getcmd – get the u-area or invocation arguments for a process

#include <kvm.h>
#include <sys/param.h>
#include <sys/user.h>

#include <sys/proc.h>

struct user *kvm_getu(kvm_t *kd, struct proc *proc);

int kvm_getcmd(kvm_t *kd, struct proc *proc, struct user *u, char
***arg, char ***env);

The kvm_getu() function reads the u-area of the process specified by proc to an area
of static storage associated with kd and returns a pointer to it. Subsequent calls to
kvm_getu() will overwrite this static area.

The kd argument is a pointer to a kernel descriptor returned by kvm_open(3KVM).
The proc argument is a pointer to a copy in the current process’ address space of a
proc structure, obtained, for instance, by a prior kvm_nextproc(3KVM) call.

The kvm_getcmd() function constructs a list of string pointers that represent the
command arguments and environment that were used to initiate the process specified
by proc.

The kd argument is a pointer to a kernel descriptor returned by kvm_open(3KVM).
The u argument is a pointer to a copy in the current process’ address space of a user
structure, obtained, for instance, by a prior kvm_getu() call. If arg is not NULL, the
command line arguments are formed into a null-terminated array of string pointers.
The address of the first such pointer is returned in arg. If env is not NULL, then the
environment is formed into a null-terminated array of string pointers. The address of
the first of these is returned in env.

The pointers returned in arg and env refer to data allocated by malloc(3C) and
should be freed by a call to free() when no longer needed. See malloc(3C) Both the
string pointers and the strings themselves are deallocated when freed.

Since the environment and command line arguments may have been modified by the
user process, there is no guarantee that it will be possible to reconstruct the original
command at all. Thus, kvm_getcmd() will make the best attempt possible, returning
−1 if the user process data is unrecognizable.

On success, kvm_getu() returns a pointer to a copy of the u-area of the process
specified by proc. On failure, it returns NULL.

The kvm_getcmd() function returns 0 on success and −1 on failure.

See attributes(5) for descriptions of the following attributes:

kvm_getu(3KVM)

NAME

SYNOPSIS

kvm_getu()

kvm_getcmd()

RETURN VALUES

ATTRIBUTES

254 man pages section 3: Extended Library Functions • Last Revised 26 Jan 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kvm_nextproc(3KVM), kvm_open(3KVM), kvm_read(3KVM), malloc(3C),
libkvm(3LIB), attributes (5)

If kvm_getcmd() returns −1, the caller still has the option of using the command line
fragment that is stored in the u-area.

On systems that support both 32-bit and 64-bit processes, the 64-bit implementation of
libkvm ensures that the arg and env pointer arrays for kvm_getcmd() are translated
to the same form as if they were 64-bit processes. Applications that wish to access the
raw 32-bit stack directly can use kvm_uread(). See kvm_read(3KVM).

kvm_getu(3KVM)

SEE ALSO

NOTES

Extended Library Functions 255

kvm_nextproc, kvm_getproc, kvm_setproc – read system process structures

#include <kvm.h>
#include <sys/param.h>
#include <sys/time.h>

#include <sys/proc.h>

struct proc *kvm_nextproc(kvm_t *kd);

int kvm_setproc(kvm_t *kd);

struct proc *kvm_getproc(kvm_t *kd, pid_t pid);

The kvm_nextproc() function may be used to sequentially read all of the system
process structures from the kernel identified by kd (see kvm_open(3KVM)). Each call
to kvm_nextproc() returns a pointer to the static memory area that contains a copy
of the next valid process table entry. There is no guarantee that the data will remain
valid across calls to kvm_nextproc(), kvm_setproc(), or kvm_getproc().
Therefore, if the process structure must be saved, it should be copied to non-volatile
storage.

For performance reasons, many implementations will cache a set of system process
structures. Since the system state is liable to change between calls to
kvm_nextproc(), and since the cache may contain obsolete information, there is no
guarantee that every process structure returned refers to an active process, nor is it
certain that all processes will be reported.

The kvm_setproc() function rewinds the process list, enabling kvm_nextproc()
to rescan from the beginning of the system process table. This function will always
flush the process structure cache, allowing an application to re-scan the process table
of a running system.

The kvm_getproc() function locates the proc structure of the process specified by
pid and returns a pointer to it. This function does not interact with the process table
pointer manipulated by kvm_nextproc(); however, the restrictions regarding the
validity of the data still apply.

On success, kvm_nextproc() returns a pointer to a copy of the next valid process
table entry. On failure, it returns NULL.

On success, kvm_getproc() returns a pointer to the proc structure of the process
specified by pid. On failure, it returns NULL.

The kvm_setproc() function returns 0 on success −1 on failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kvm_nextproc(3KVM)

NAME

SYNOPSIS

kvm_nextproc()

kvm_setproc()

kvm_getproc()

RETURN VALUES

ATTRIBUTES

256 man pages section 3: Extended Library Functions • Last Revised 22 Sep 1997

kvm_getu(3KVM), kvm_open(3KVM), kvm_read(3KVM), attributes(5)

kvm_nextproc(3KVM)

SEE ALSO

Extended Library Functions 257

kvm_nlist – get entries from kernel symbol table

#include <kvm.h>

#include <nlist.h>

int kvm_nlist(kvm_t *kd, struct nlist *nl);

kvm_nlist() examines the symbol table from the kernel image identified by kd (see
kvm_open(3KVM)) and selectively extracts a list of values and puts them in the array
of nlist structures pointed to by nl. The name list pointed to by nl consists of an
array of structures containing names, types and values. The n_name field of each such
structure is taken to be a pointer to a character string representing a symbol name. The
list is terminated by an entry with a NULL pointer (or a pointer to a null string) in the
n_name field. For each entry in nl, if the named symbol is present in the kernel symbol
table, its value and type are placed in the n_value and n_type fields. If a symbol cannot
be located, the corresponding n_type field of nl is set to zero.

kvm_nlist() returns the value of nlist(3UCB) or nlist(3ELF), depending on the
library used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

nlist(3UCB), nlist(3ELF), kvm_open(3KVM), kvm_read(3KVM), attributes(5)

kvm_nlist(3KVM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

258 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

kvm_open, kvm_close – specify a kernel to examine

#include <kvm.h>

#include <fcntl.h>

kvm_t *kvm_open(char *namelist, char *corefile, char *swapfile, int flag,
char *errstr);

int kvm_close(kvm_t *kd);

The kvm_open() function initializes a set of file descriptors to be used in subsequent
calls to kernel virtual memory (VM) routines. It returns a pointer to a kernel identifier
that must be used as the kd argument in subsequent kernel VM function calls.

The namelist argument specifies an unstripped executable file whose symbol table will
be used to locate various offsets in corefile. If namelist is NULL, the symbol table of the
currently running kernel is used to determine offsets in the core image. In this case, it
is up to the implementation to select an appropriate way to resolve symbolic
references, for instance, using /dev/ksyms as a default namelist file.

The corefile argument specifies a file that contains an image of physical memory, for
instance, a kernel crash dump file (see savecore(1M)) or the special device
/dev/mem. If corefile is NULL, the currently running kernel is accessed, using
/dev/mem and /dev/kmem.

The swapfile argument specifies a file that represents the swap device. If both corefile
and swapfile are NULL, the swap device of the currently running kernel is accessed.
Otherwise, if swapfile is NULL, kvm_open() may succeed but subsequent
kvm_getu(3KVM) function calls may fail if the desired information is swapped out.

The flag function is used to specify read or write access for corefile and may have one of
the following values:

O_RDONLY open for reading

O_RDWR open for reading and writing

The errstr argument is used to control error reporting. If it is a null pointer, no error
messages will be printed. If it is non-null, it is assumed to be the address of a string
that will be used to prefix error messages generated by kvm_open. Errors are printed
to stderr. A useful value to supply for errstr would be argv[0]. This has the effect
of printing the process name in front of any error messages.

Applications using libkvm are dependent on the underlying data model of the kernel
image, that is, whether it is a 32−bit or 64−bit kernel.

The data model of these applications must match the data model of the kernel in order
to correctly interpret the size and offsets of kernel data structures. For example, a
32−bit application that uses the 32−bit version of the libkvm interfaces will fail to
open a 64−bit kernel image. Similarly, a 64−bit application that uses the 64−bit version
of the libkvm interfaces will fail to open a 32−bit kernel image.

kvm_open(3KVM)

NAME

SYNOPSIS

kvm_open()

Extended Library Functions 259

The kvm_close() function closes all file descriptors that were associated with kd.
These files are also closed on exit(2) and execve() (see exec(2)). kvm_close()
also resets the proc pointer associated with kvm_nextproc(3KVM) and flushes any
cached kernel data.

The kvm_open() function returns a non-null value suitable for use with subsequent
kernel VM function calls. On failure, it returns NULL and no files are opened.

The kvm_close() function returns 0 on success −1 on failure.

/dev/kmem

/dev/ksyms

/dev/mem

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

savecore(1M), exec(2), exit(2), pathconf(2), getloadavg(3C), kstat(3KSTAT),
kvm_getu(3KVM), kvm_nextproc(3KVM), kvm_nlist(3KVM), kvm_read(3KVM),
sysconf(3C), libkvm(3LIB), proc(4), attributes(5), lfcompile(5)

Kernel core dumps should be examined on the platform on which they were created.
While a 32-bit application running on a 64-bit kernel can examine a 32-bit core dump,
a 64-bit application running on a 64-bit kernel cannot examine a kernel core dump
from the 32-bit system.

Applications using libkvm are likely to be platform- and release-dependent.

On 32-bit systems, applications that use libkvm to access the running kernel must be
32-bit applications. On systems that support both 32-bit and 64-bit applications,
applications that use the libkvm interfaces to access the running kernel must
themselves be 64-bit applications.

Most of the traditional uses of libkvm have been superseded by more stable
interfaces that allow the same information to be extracted more efficiently, yet
independent of the kernel data model. For examples, see sysconf(3C), proc(4),
kstat(3KSTAT), getloadavg(3C), and pathconf(2).

kvm_open(3KVM)

kvm_close()

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

260 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2001

kvm_read, kvm_write, kvm_uread, kvm_uwrite, kvm_kread, kvm_kwrite – copy data
to or from a kernel image or running system

#include <kvm.h>

ssize_t kvm_read(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_write(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_kread(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_kwrite(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_uread(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_uwrite(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

The kvm_kread() function transfers data from the kernel address space to the
address space of the process. nbytes bytes of data are copied from the kernel virtual
address given by addr to the buffer pointed to by buf.

The kvm_kwrite() function is like kvm_kread(), except that the direction of the
transfer is reversed. To use this function, the kvm_open(3KVM) call that returned kd
must have specified write access.

The kvm_uread() function transfers data from the address space of the processes
specified in the most recent kvm_getu(3KVM) call. nbytes bytes of data are copied
from the user virtual address given by addr to the buffer pointed to by buf.

The kvm_uwrite() function is like kvm_uread(), except that the direction of the
transfer is reversed. To use this function, the kvm_open(3KVM) call that returned kd
must have specified write access. The address is resolved in the address space of the
process specified in the most recent kvm_getu(3KVM) call.

The kvm_read() function transfers data from the kernel image specified by kd (see
kvm_open(3KVM)) to the address space of the process. nbytes bytes of data are copied
from the kernel virtual address given by addr to the buffer pointed to by buf.

The kvm_write() function is like kvm_read(), except that the direction of data
transfer is reversed. To use this function, the kvm_open(3KVM) call that returned kd
must have specified write access. If a user virtual address is given, it is resolved in the
address space of the process specified in the most recent kvm_getu(3KVM) call.

The use of kvm_read() and kvm_write() is strongly discouraged. On some
platforms, there is considerable ambiguity over which address space is to be accessed
by these functions, possibly leading to unexpected results. The kvm_kread(),

kvm_read(3KVM)

NAME

SYNOPSIS

kvm_kread()

kvm_kwrite()

kvm_uread()

kvm_uwrite()

kvm_read()

kvm_write()

USAGE

Extended Library Functions 261

kvm_kwrite(), kvm_uread(), and kvm_uwrite() functions are much more
clearly defined in this respect.

On success, these functions return the number of bytes actually transferred. On failure,
they return −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kvm_getu(3KVM), kvm_nlist(3KVM), kvm_open(3KVM), attributes(5)

kvm_read(3KVM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

262 man pages section 3: Extended Library Functions • Last Revised 22 Sep 1997

ld_support, ld_atexit, ld_atexit64, ld_file, ld_file64, ld_section, ld_section64, ld_start,
ld_start64 – link-editor support functions

void ld_atexit(int status);

void ld_atexit64(int status);

void ld_file(const char *name, const Elf_Kind kind, int flags, Elf
*elf);

void ld_file64(const char *name, const Elf_Kind kind, int flags, Elf
*elf);

void ld_section(const char *name, Elf32_Shdr shdr, Elf32_Word sndx,
Elf_Data *data, Elf *elf);

void ld_section64(const char *name, Elf64_Shdr shdr, Elf64_Word
sndx, Elf_Data *data, Elf *elf);

void ld_start(const char *name, const Elf32_Half type, const char
*caller);

void ld_start64(const char *name, const Elf64_Half type, const char
*caller);

A link-editor support library is a user-created shared object offering one or more of
these interfaces that are called by the link-editor ld(1) at various stages of the
link-editing process. See the Linker and Libraries Guide for a full description of the
link-editor support mechanism.

ld(1)

Linker and Libraries Guide

ld_support(3EXT)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Extended Library Functions 263

lgamma, lgamma_r, gamma, gamma_r – log gamma function

cc [flag ...] file ... -lm [library ...]
#include <math.h>

extern int signgam;

double lgamma(double x);

double gamma(double x);

double lgamma_r(double x, int *signgamp);

double gamma_r(double x, int *signgamp);

The lgamma(), gamma(), lgamma_r(), and gamma_r() functions return

where

for x > 0 and

for x < 1.

The lgamma() and gamma() functions use the external integer signgam to return the
sign of |~(x) while lgamma_r() and gamma_r() use the user-allocated space
addressed by signgamp.

In the case of lgamma(), do not use the expression signgam*exp(lgamma(x)) to
compute

Instead compute lgamma() first:

lg = lgamma(x); g = signgam*exp(lg);

lgamma(3M)

NAME

SYNOPSIS

DESCRIPTION

IDIOSYNCRASIES

264 man pages section 3: Extended Library Functions • Last Revised 26 Jul 2000

only after lgamma() has returned can signgam be correct. Note that |~(x) must
overflow when x is large enough, underflow when -x is large enough, and generate a
division by 0 exception at the singularities x a nonpositive integer.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
various Standards.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

matherr(3M), attributes(5), standards(5)

Although lgamma_r() is not mentioned by POSIX 1003.1c, it was added to complete
the functionality provided by similar thread-safe functions.

The gamma() function is currently maintained for compatibility with SVID3 (see
standards(5)). It and the gamma_r() function may be removed from a future
release. The lgamma() and lgamma_r() functions should be used instead.

When compiling multi-thread applications, the _REENTRANT flag must be defined on
the compile line. This flag should only be used in multi-thread applications.

The lgamma() function is unsafe in multithreaded applications. The lgamma_r()
function should be used instead.

lgamma(3M)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 265

libdevinfo – library of device information functions

cc [flag ...] file ...-ldevinfo [library ...]

#include <libdevinfo.h>

The libdevinfo library contains a set of interfaces for accessing device configuration
data.

Device configuration data is organized as a tree of device nodes, defined as
di_node_t in the libdevinfo interfaces. Each di_node_t represents a physical or
logical (pseudo) device. Three types of data are associated with device nodes:

� data defined for all device nodes (attributes)
� properties specific to each device
� minor node data

All device nodes have a set of common attributes, such as a node name, an instance
number, and a driver binding name. Common device node attributes are accessed by
calling interfaces listed on the di_binding_name(3DEVINFO) man page. Each
device node also has a physical path, which is accessed by calling
di_devfs_path(3DEVINFO).

Properties provide device specific information for device configuration and usage.
Properties may be defined by software (di_prop_t) or by firmware
(di_prom_prop_t). One way to access each di_prop_t is to make successive calls
to di_prop_next(3DEVINFO) until DI_PROP_NIL is returned. For each
di_prop_t, use interfaces on the di_prop_bytes(3DEVINFO) man page to obtain
property names and values. Another way to access these properties is to call
di_prop_lookup_bytes(3DEVINFO) to find the value of a property with a given
name. Accessing a di_prom_prop_t is similar to accessing a di_prop_t, except that
the interface names start with di_prom_prop and additional calls to
di_prom_init(3DEVINFO) and di_prom_fini(3DEVINFO) are required.

Minor nodes contain information exported by the device for creating special files for
the device. Each device node has 0 or more minor nodes associated with it. A list
minor nodes (di_minor_t) may be obtained by making successive calls to
di_minor_next(3DEVINFO) until DI_MINOR_NIL is returned. For each minor node,
di_minor_devt(3DEVINFO) and related interfaces are called to get minor node
data.

Using libdevinfo involves three steps:

� Creating a snapshot of the device tree
� Traversing the device tree to get information of interest
� Destroying the snapshot of the device tree

A snapshot of the device tree is created by calling di_init(3DEVINFO) and
destroyed by calling di_fini(3DEVINFO). An application can specify the data to be
included in the snapshot (full or partial tree, include or exclude properties and minor

libdevinfo(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

266 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

nodes) and get a handle to the root of the device tree. See di_init(3DEVINFO) for
details. The application then traverses the device tree in the snapshot to obtain device
configuration data.

The device tree is normally traversed through parent-child-sibling linkage. Each
device node contains references to its parent, its next sibling, and the first of its
children. Given the di_node_t returned from di_init(3DEVINFO), one can find all
children by first calling di_child_node(3DEVINFO), followed by successive calls to
di_sibling_node(3DEVINFO), until DI_NODE_NIL is returned. By following this
procedure recursively, an application can visit all device nodes contained in the
snapshot. Two interfaces, di_walk_node(3DEVINFO) and
di_walk_minor(3DEVINFO), are provided to facilitate device tree traversal. The
di_walk_node(3DEVINFO) interface visits all device nodes and executes a
user-supplied callback function for each node visited. The
di_walk_minor(3DEVINFO) does the same for each minor node in the device tree.

An alternative way to traverse the device tree is through the per-driver device node
linkage. Device nodes contain a reference to the next device node bound to the same
driver. Given the di_node_t returned from di_init(3DEVINFO), an application
can find all device nodes bound to a driver by first calling
di_drv_first_node(3DEVINFO), followed by successive calls to
di_drv_next_node(3DEVINFO) until DI_NODE_NIL is returned. Note that
traversing the per-driver device node list works only when the snapshot includes all
device nodes.

See libdevinfo(3LIB) for a complete list of libdevinfo interfaces. See
di_init(3DEVINFO) for examples of libdevinfo usage. See Writing Device Drivers
for details of Solaris device configuration.

EXAMPLE 1 Information Accessible Through libdevinfo Interfaces

The following example illustrates the kind of information accessible through
libdevinfo interfaces for a device node representing a hard disk (sd2):

Attributes
node name: sd
instance: 2
physical path: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@2,0

Properties
target=2
lun=0

Minor nodes
(disk partition /dev/dsk/c0t2d0s0)

name: a
dev_t: 0x0080010 (32/16)
spectype: IF_BLK (block special)

(disk partition /dev/rdsk/c0t2d0s2)
name: c,raw
dev_t: 0x0080012 (32/18)
spectype: IF_CHR (character special)

libdevinfo(3DEVINFO)

EXAMPLES

Extended Library Functions 267

EXAMPLE 1 Information Accessible Through libdevinfo Interfaces (Continued)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Interface Stability Evolving

devlinks(1M), prtconf(1M), di_binding_name(3DEVINFO),
di_child_node(3DEVINFO), di_devfs_path(3DEVINFO),
di_drv_first_node(3DEVINFO), di_drv_next_node(3DEVINFO),
di_fini(3DEVINFO), di_init(3DEVINFO), di_minor_devt(3DEVINFO),
di_minor_next(3DEVINFO), di_prom_fini(3DEVINFO),
di_prom_init(3DEVINFO), di_prop_bytes(3DEVINFO),
di_prop_lookup_bytes(3DEVINFO), di_prop_next(3DEVINFO),
di_sibling_node(3DEVINFO), di_walk_minor(3DEVINFO),
di_walk_node(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

libdevinfo(3DEVINFO)

ATTRIBUTES

SEE ALSO

268 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

libnvpair – library of name-value pair functions

cc [flag ...] file ...-lnvpair [library ...]

#include <libnvpair.h>

The libnvpair library exports a set of functions for managing name-value pairs.

The library defines two opaque handles:

nvpair_t handle to a name-value pair

nvlist_t handle to a list of name-value pairs

The library supports the following operations:

� Allocate and free an nvlist_t.
� Add and remove an nvpair_t from a list.
� Search nvlist_t for a specified name pair.
� Pack an nvlist_t into a contiguous buffer.
� Expand a packed nvlist into a searchable nvlist_t.

See libnvpair(3LIB) for a complete list of libnvpair functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), attributes(5)

libnvpair(3NVPAIR)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 269

libpicl – PICL interface library

cc [flag . . .] file . . . -lpicl [library . . .]

#include <picl.h>

The PICL interface is the platform-independent interface for clients to access the
platform information. The set of functions and data structures of this interface are
defined in the <picl.h> header.

The information published through PICL is organized in a tree, where each node is an
instance of a well-defined PICL class. The functions in the PICL interface allow the
clients to access the properties of the nodes.

The name of the base PICL class is picl, which defines a basic set of properties that
all nodes in the tree must possess. The following table shows the property set of a
picl class node.

Property Name Property Value

name The name of the node

_class The PICL class name of the node

_parent Node handle of the parent node

_child Node handle of the first child node

_peer Node handle of the next peer node

Property names with a a leading underscore (’_’) are reserved for use by the PICL
framework. The property names _class, _parent, _child, and _peer are reserved
names of the PICL framework, and are used to refer to a node’s parent, child, and peer
nodes, respectively. A client shall access a reserved property by their names only as
they do not have an associated handle. The property name is not a reserved property,
but a mandatory property for all nodes.

Properties are classified into different types. Properties of type integer,
unsigned-integer, and float have integer, unsigned integer, and floating-point values,
respectively. A table property type has the handle to a table as its value. A table is a
matrix of properties. A reference property type has a handle to a node in the tree as
its value. A reference property may be used to establish an association between any
two nodes in the tree. A timestamp property type has the value of time in seconds
since Epoch. A bytearray property type has an array of bytes as its value. A
charstring property type has a nul (’\0’) terminated sequence of ASCII characters.
The size of a property specifies the size of its value in bytes. A void property type
denotes a property that exists but has no value.

The following table lists the different PICL property types enumerated in
picl_prop_type_t.

libpicl(3PICL)

NAME

SYNOPSIS

DESCRIPTION

270 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

Property Type Property Value

PICL_PTYPE_VOID None

PICL_PTYPE_INT Is an integer

PICL_PTYPE_UNSIGNED_INT Is an unsigned integer

PICL_PTYPE_FLOAT Is a floating-point number

PICL_PTYPE_REFERENCE Is a PICL node handle

Reference properties may be used by plug-ins to publish properties in nodes of
different classes. To make these property names unique, their names must be prefixed
by _picl_class_name_, where picl_class_name is the class name of the node referenced by
the property. Valid PICL class names are combinations of uppercase and lowercase
letters ’a’ through ’z’, digits ’0’ through ’9’, and ’-’ (minus) characters. The string that
follows the ’_picl_class_name_’ portion of a reference property name may be used to
indicate a specific property in the referenced class, when applicable.

The information about a node’s property that can be accessed by PICL clients is
defined by the picl_propinfo_t structure.

typedef struct {
picl_prop_type_t type; /* property type */
unsigned int accessmode; /* read, write */
size_t size; /* item size or string size */
char name[PICL_PROPNAMELEN_MAX];

} picl_propinfo_t;

The type member specifies the property value type and the accessmode specifies
the allowable access to the property. The plug-in module that adds the property to the
PICL tree also sets the access mode of that property. The volatile nature of a property
created by the plug-in is not visible to the PICL clients. The size member specifies the
number of bytes occupied by the property’s value. The maximum allowable size of
property value is PICL_PROPSIZE_MAX, which is set to 512KB.

The plug-in module may publish a property granting a combination of the following
access modes to the clients:

#define PICL_READ 0x1 /* read permission */
#define PICL_WRITE 0x2 /* write permission */

The maximum length of the name of any property is specified by
PICL_PROPNAMELEN_MAX.

The maximum length of a PICL class name is specified by
PICL_CLASSNAMELEN_MAX.

See attributes(5) for descriptions of the following attributes:

libpicl(3PICL)

Reference Property
Naming

Convention

Property
Information

Property Access
Modes

Property Names

Class Names

ATTRIBUTES

Extended Library Functions 271

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3LIB), attributes(5)

libpicl(3PICL)

SEE ALSO

272 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

libpicltree – PTree and Plug-in Registration interface library

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

The PTree interface is the set of functions and data structures to access and manipulate
the PICL tree. The daemon and the plug-in modules use the PTree interface.

The Plug-in Registration interface is used by the plug-in modules to register
themselves with the daemon.

The plug-in modules create the nodes and properties of the tree. At the time of
creating a property, the plug-ins specify the property information in the
ptree_propinfo_t structure defined as:

typedef struct {
int version; /* version */
picl_propinfo_t piclinfo; /* info to clients */
int (*read)(ptree_rarg_t *arg, void *buf);

/* read access function for */
/* volatile prop */

int (*write)(ptree_warg_t *arg, const void *buf);
/* write access function for */
/* volatile prop */

} ptree_propinfo_t;

See libpicl(3PICL) for more information on PICL tree nodes and properties.

The maximum size of a property value cannot exceed PICL_PROPSIZE_MAX. It is
currently set to 512KB.

In addition to PICL_READ and PICL_WRITE property access modes, the plug-in
modules specify whether a property is volatile or not by setting the bit
PICL_VOLATILE.

#define PICL_VOLATILE 0x4

For a volatile property, the plug-in module provides the access functions to read
and/or write the property in the ptree_propinfo_t argument passed when
creating the property.

The daemon invokes the access functions of volatile properties when clients access
their values. Two arguments are passed to the read access functions. The first
argument is a pointer to ptree_rarg_t, which contains the handle of the node, the
handle of the accessed property and the credentials of the caller. The second argument
is a pointer to the buffer where the value is to be copied.

typedef struct {
picl_nodehdl_t nodeh;
picl_prophdl_t proph;
door_cred_t cred;

} ptree_rarg_t;

The prototype of the read access function for volatile property is:

libpicltree(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

Volatile Properties

Extended Library Functions 273

int read(ptree_rarg_t *rarg, void *buf);

The read function returns PICL_SUCCESS to indicate successful completion.

Similarly, when a write access is performed on a volatile property, the daemon invokes
the write access function provided by the plug-in for that property and passes it two
arguments. The first argument is a pointer to ptree_warg_t, which contains the
handle to the node, the handle of the accessed property and the credentials of the
caller. The second argument is a pointer to the buffer containing the value to be
written.

typedef struct {
picl_nodehdl_t nodeh;
picl_prophdl_t proph;
door_cred_t cred;

} ptree_warg_t;

The prototype of the write access function for volatile property is:

int write(ptree_warg_t *warg, const void *buf);

The write function returns PICL_SUCCESS to indicate successful completion.

For all volatile properties, the ’size’ of the property must be specified to be the
maximum possible size of the value. The maximum size of the value cannot exceed
PICL_PROPSIZE_MAX. This allows a client to allocate a sufficiently large buffer before
retrieving a volatile property’s value

Plug-in modules are shared objects that are located in well-known directories for the
daemon to locate and load them. Plug-in module’s are located in the one of the
following plug-in directories depending on the plaform-specific nature of the data
they collect and publish.

/usr/platform/picl/plugins/‘uname -i‘/
/usr/platform/picl/plugins/‘uname -m‘/
/usr/lib/picl/plugins/

A plug-in module may specify its dependency on another plug-in module using the
-l linker option. The plug-ins are loaded by the PICL daemon using dlopen(3DL)
according to the specified dependencies. Each plug-in module must define a .init
section, which is executed when the plug-in module is loaded, to register themselves
with the daemon. See picld_plugin_register(3PICLTREE) for more information
on plug-in registration.

The plug-in modules may use the picld_log(3PICLTREE) function to log their
messages to the system log file.

See attributes(5) for descriptions of the following attributes:

libpicltree(3PICLTREE)

Plug-in Modules

ATTRIBUTES

274 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), libpicltree(3LIB), picld_log(3PICLTREE),
picld_plugin_register(3PICLTREE), attributes(5)

libpicltree(3PICLTREE)

SEE ALSO

Extended Library Functions 275

libtnfctl – library for TNF probe control in a process or the kernel

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

The libtnfctl library provides an API to control TNF ("Trace Normal Form") probes
within a process or the kernel. See tracing(3TNF) for an overview of the Solaris
tracing architecture. The client of libtnfctl controls probes in one of four modes:

internal mode The target is the controlling process itself; that is, the client
controls its own probes.

direct mode The target is a separate process; a client can either exec(2) a
program or attach to a running process for probe control. The
libtnfctl library uses proc(4) on the target process for probe
and process control in this mode, and additionally provides basic
process control features.

indirect mode The target is a separate process, but the controlling process is
already using proc(4) to control the target, and hence libtnfctl
cannot use those interfaces directly. Use this mode to control
probes from within a debugger. In this mode, the client must
provide a set of functions that libtnfctl can use to query and
update the target process.

kernel mode The target is the Solaris kernel.

A process is controlled "externally" if it is being controlled in either direct mode or
indirect mode. Alternatively, a process is controlled "internally" when it uses internal
mode to control its own probes.

There can be only one client at a time doing probe control on a given process.
Therefore, it is not possible for a process to be controlled internally while it is being
controlled externally. It is also not possible to have a process controlled by multiple
external processes. Similarly, there can be only one process at a time doing kernel
probe control. Note, however, that while a given target may only be controlled by one
libtnfctl client, a single client may control an arbitrary number of targets. That is,
it is possible for a process to simultaneously control its own probes, probes in other
processes, and probes in the kernel.

The following tables denotes the modes applicable to all libtnfctl interfaces (INT =
internal mode; D = direct mode; IND = indirect mode; K = kernel mode).

These interfaces create handles in the specified modes:

tnfctl_internal_open() INT

tnfctl_exec_open() D

tnfctl_pid_open() D

libtnfctl(3TNF)

NAME

SYNOPSIS

DESCRIPTION

276 man pages section 3: Extended Library Functions • Last Revised 11 Feb 1999

tnfctl_indirect_open() IND

tnfctl_kernel_open() K

These interfaces are used with the specified modes:

tnfctl_continue() D

tnfctl_probe_connect() INT D IND

tnfctl_probe_disconnect_all () INT D IND

tnfctl_trace_attrs_get() INT D IND K

tnfctl_buffer_alloc() INT D IND K

tnfctl_register_funcs() INT D IND K

tnfctl_probe_apply() INT D IND K

tnfctl_probe_apply_ids() INT D IND K

tnfctl_probe_state_get () INT D IND K

tnfctl_probe_enable() INT D IND K

tnfctl_probe_disable() INT D IND K

tnfctl_probe_trace() INT D IND K

tnfctl_probe_untrace() INT D IND K

tnfctl_check_libs() INT D IND K

tnfctl_close() INT D IND K

tnfctl_strerror() INT D IND K

tnfctl_buffer_dealloc() K

tnfctl_trace_state_set() K

tnfctl_filter_state_set() K

tnfctl_filter_list_get() K

tnfctl_filter_list_add() K

tnfctl_filter_list_delete() K

When using libtnfctl, the first task is to create a handle for controlling probes. The
tnfctl_internal_open() function creates an internal mode handle for controlling
probes in the same process, as described above. The tnfctl_pid_open() and
tnfctl_exec_open() functions create handles in direct mode. The
tnfctl_indirect_open() function creates an indirect mode handle, and the

libtnfctl(3TNF)

Extended Library Functions 277

tnfctl_kernel_open() function creates a kernel mode handle. A handle is
required for use in nearly all other libtnfctl functions. The tnfctl_close()
function releases the resources associated with a handle.

The tnfctl_continue() function is used in direct mode to resume execution of the
target process.

The tnfctl_buffer_alloc() function allocates a trace file or, in kernel mode, a
trace buffer.

The tnfctl_probe_apply() and tnfctl_probe_apply_ids() functions call a
specified function for each probe or for a designated set of probes.

The tnfctl_register_funcs() function registers functions to be called whenever
new probes are seen or probes have disappeared, providing an opportunity to do
one-time processing for each probe.

The tnfctl_check_libs() function is used primarily in indirect mode to check
whether any new probes have appeared, that is, they have been made available by
dlopen(3DL), or have disappeared, that is, they have disassociated from the process
by dlclose(3DL).

The tnfctl_probe_enable() and tnfctl_probe_disable() functions control
whether the probe, when hit, will be ignored.

The tnfctl_probe_trace() and tnfctl_probe_untrace() functions control
whether an enabled probe, when hit, will cause an entry to be made in the trace file.

The tnfctl_probe_connect() and tnfctl_probe_disconnect_all()
functions control which functions, if any, are called when an enabled probe is hit.

The tnfctl_probe_state_get() function returns information about the status of a
probe, such as whether it is currently enabled.

The tnfctl_trace_attrs_get() function returns information about the tracing
session, such as the size of the trace buffer or trace file.

The tnfctl_strerror() function maps a tnfctl error code to a string, for
reporting purposes.

The remaining functions apply only to kernel mode.

The tnfctl_trace_state_set() function controls the master switch for kernel
tracing. See prex(1) for more details.

The tnfctl_filter_state_set(), tnfctl_filter_list_get(),
tnfctl_filter_list_add(), and tnfctl_filter_list_delete() functions
allow a set of processes to be specified for which probes will not be ignored when hit.
This prevents kernel activity caused by uninteresting processes from cluttering up the
kernel’s trace buffer.

libtnfctl(3TNF)

278 man pages section 3: Extended Library Functions • Last Revised 11 Feb 1999

The tnfctl_buffer_dealloc() function deallocates the kernel’s internal trace
buffer.

Upon successful completion, these functions returnTNFCTL_ERR_NONE.

The error codes for libtnfctl are:

TNFCTL_ERR_ACCES Permission denied.

TNFCTL_ERR_NOTARGET The target process completed.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_SIZETOOSMALL The requested trace size is too small.

TNFCTL_ERR_SIZETOOBIG The requested trace size is too big.

TNFCTL_ERR_BADARG Bad input argument.

TNFCTL_ERR_NOTDYNAMIC The target is not a dynamic executable.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so not linked in target.

TNFCTL_ERR_BUFBROKEN Tracing is broken in the target.

TNFCTL_ERR_BUFEXISTS A buffer already exists.

TNFCTL_ERR_NOBUF No buffer exists.

TNFCTL_ERR_BADDEALLOC Cannot deallocate buffer.

TNFCTL_ERR_NOPROCESS No such target process exists.

TNFCTL_ERR_FILENOTFOUND File not found.

TNFCTL_ERR_BUSY Cannot attach to process or kernel because
it is already tracing.

TNFCTL_ERR_INVALIDPROBE Probe no longer valid.

TNFCTL_ERR_USR1 Error code reserved for user.

TNFCTL_ERR_USR2 Error code reserved for user.

TNFCTL_ERR_USR3 Error code reserved for user.

TNFCTL_ERR_USR4 Error code reserved for user.

TNFCTL_ERR_USR5 Error code reserved for user.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

libtnfctl(3TNF)

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 279

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

prex(1), exec(2), dlclose(3DL), dlopen(3DL), TNF_PROBE(3TNF),
tnfctl_buffer_alloc(3TNF), tnfctl_buffer_dealloc(3TNF),
tnfctl_check_libs(3TNF), tnfctl_close(3TNF), tnfctl_continue(3TNF),
tnfctl_internal_open(3TNF), tnfctl_exec_open(3TNF),
tnfctl_filter_list_add(3TNF), tnfctl_filter_list_delete(3TNF),
tnfctl_filter_list_get(3TNF), tnfctl_filter_state_set(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_pid_open(3TNF),
tnfctl_probe_apply(3TNF), tnfctl_probe_apply_ids(3TNF),
tnfctl_probe_connect(3TNF), tnfctl_probe_disable(3TNF),
tnfctl_probe_enable(3TNF), tnfctl_probe_state_get(3TNF),
tnfctl_probe_trace(3TNF), tnfctl_probe_untrace(3TNF),
tnfctl_indirect_open(3TNF), tnfctl_register_funcs(3TNF),
tnfctl_strerror(3TNF), tnfctl_trace_attrs_get(3TNF),
tnfctl_trace_state_set(3TNF), libtnfctl(3LIB), proc(4), attributes(5)

Linker and Libraries Guide

This API is MT-Safe. Multiple threads may concurrently operate on independent
tnfctl handles, which is the typical behavior expected. The libtnfctl library does
not support multiple threads operating on the same tnfctl handle. If this is desired,
it is the client’s responsibility to implement locking to ensure that two threads that use
the same tnfctl handle are not simultaneously in a libtnfctl interface.

libtnfctl(3TNF)

SEE ALSO

NOTES

280 man pages section 3: Extended Library Functions • Last Revised 11 Feb 1999

log10 – base 10 logarithm function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double log10(double x);

The log10() function computes the base 10 logarithm of x, log10(x). The value of x
must be positive.

Upon successful completion, log10() returns the base 10 logarithm of x.

If x is NaN, NaN is returned. If x is less than 0, -HUGE_VAL or NaN is returned, and
errno is set to EDOM. If x is 0, -HUGE_VAL is returned and errno may be set to
ERANGE.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The log10() function will fail if:

EDOM The value of x is negative.

The log10() function may fail if:

ERANGE The value of x is 0.

No other errors will occur.

An application wishing to check for error situations should set errno to 0 before
calling log10(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), log(3M), matherr(3M), pow(3M), attributes(5), standards(5)

log10(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 281

log1p – compute natural logarithm

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double log1p(double x);

The log1p() function computes loge(1.0 + x). The value of x must be greater than
−1.0.

Upon successful completion, log1p() returns the natural logarithm of 1.0 + x.

If x is NaN, log1p() returns NaN.

If x is less than −1.0, log1p() returns -HUGE_VAL or NaN and sets errno to EDOM.

If x is −1.0, log1p() returns -HUGE_VAL and may set errno to ERANGE.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The log1p() function will fail if:

EDOM The value of x is less than −1.0.

The log1p() function may fail and set errno to:

ERANGE The value of x is −1.0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

log(3M), matherr(3M), attributes(5), standards(5)

log1p(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

282 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

log – natural logarithm function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double log(double x);

The log() function computes the natural logarithm of x, loge(x). The value of x must
be positive.

Upon successful completion, log() returns the natural logarithm of x.

If x is NaN, NaN is returned.

If x is less than 0, -HUGE_VAL or NaN is returned and errno is set to EDOM.

If x is 0, -HUGE_VAL is returned and errno may be set to ERANGE.

In IEEE 754 mode (the -Xlibmieee cc compilation option), if x is Inf or a quiet NaN,
x is returned; if x is a signaling NaN, a quiet NaN is returned and the invalid
operation exception is raised; if x is 1, 0 is returned; for all other positive x, a
normalized number is returned and the inexact exception is raised.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The log() function will fail if:

EDOM The value of x is negative.

The log() function may fail if:

ERANGE The value of x is 0.

No other errors will occur.

An application wishing to check for error situations should set errno to 0 before
calling log(). If errno is non-zero on return, or the return value is NaN, an error has
occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exp(3M), isnan(3M), log10(3M), log1p(3M), matherr(3M), attributes(5),
standards(5)

log(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 283

logb – radix-independent exponent

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double logb(double x);

The logb() function computes the exponent of x, which is the integral part of logr

| x |, as a signed floating point value, for non-zero x, where r is the radix of the
machine’s floating-point arithmetic.

Upon successful completion, logb() returns the exponent of x.

If x is 0.0, logb() returns -HUGE_VAL and sets errno to EDOM.

If x is ±Inf, logb() returns +Inf.

If x is NaN, logb() returns NaN.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
various Standards.

The logb() function will fail if:

EDOM The x argument is 0.0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ilogb(3M), matherr(3M), attributes(5)

logb(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

284 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

maillock, mailunlock, touchlock – functions to manage lockfile(s) for user’s mailbox

cc [flag ...] file ... -lmail [library ...]

#include <maillock.h>

int maillock(const char *user, int retrycnt);

void mailunlock(void);

void touchlock(void);

The maillock() function attempts to create a lockfile for the user’s mailfile. If a
lockfile already exists, and it has not been modified in the last 5 minutes, maillock()
will remove the lockfile and set its own lockfile.

It is crucial that programs locking mail files refresh their locks at least every three
minutes to maintain the lock. Refresh the lockfile by calling the touchlock()
function with no arguments.

The algorithm used to determine the age of the lockfile takes into account clock drift
between machines using a network file system. A zero is written into the lockfile so
that the lock will be respected by systems running the standard version of System V.

If the lockfile has been modified in the last 5 minutes the process will sleep until the
lock is available. The sleep algorithm is to sleep for 5 seconds times the attempt
number. That is, the first sleep will be for 5 seconds, the next sleep will be for 10
seconds, etc. until the number of attempts reaches retrycnt.

When the lockfile is no longer needed, it should be removed by calling
mailunlock().

The user argument is the login name of the user for whose mailbox the lockfile will be
created. maillock() assumes that user’s mailfiles are in the ‘‘standard’’ place as
defined in <maillock.h>.

Upon successful completion, .maillock() returns 0. Otherwise it returns −1.

/var/mail/* user mailbox files

/var/mail/*.lock user mailbox lockfiles

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

libmail(3LIB),attributes(5)

The mailunlock() function will only remove the lockfile created from the most
previous call to maillock(). Calling maillock() for different users without

maillock(3MAIL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 285

intervening calls to mailunlock() will cause the initially created lockfile(s) to
remain, potentially blocking subsequent message delivery until the current process
finally terminates.

maillock(3MAIL)

286 man pages section 3: Extended Library Functions • Last Revised 29 Mar 1999

matherr – math library exception-handling function

#include <math.h>

int matherr(struct exception *exc);

The The System V Interface Definition, Third Edition (SVID3) specifies that certain
libm functions call matherr() when exceptions are detected. Users may define their
own mechanisms for handling exceptions, by including a function named matherr()
in their programs. The matherr() function is of the form described above. When an
exception occurs, a pointer to the exception structure exc will be passed to the
user-supplied matherr() function. This structure, which is defined in the <math.h>
header file, is as follows:

struct exception {
int type;
char *name;
double arg1, arg2, retval;

};

The type member is an integer describing the type of exception that has occurred,
from the following list of constants (defined in the header file):

DOMAIN argument domain exception

SING argument singularity

OVERFLOW overflow range exception

UNDERFLOW underflow range exception

TLOSS total loss of significance

PLOSS partial loss of significance

Note that both TLOSS and PLOSS reflect limitations of particular algorithms for
trigonometric functions that suffer abrupt declines in accuracy at definite boundaries.
Since the implementation does not suffer such abrupt declines, PLOSS is never
signaled. TLOSS is signaled for Bessel functions only to satisfy SVID3 requirements.

The name member points to a string containing the name of the function that incurred
the exception. The arg1 and arg2 members are the arguments with which the
function was invoked. retval is set to the default value that will be returned by the
function unless the user’s matherr() sets it to a different value.

If the user’s matherr() function returns non-zero, no exception message will be
printed, and errno will not be set.

When an application is built as a SVID3 conforming application (see standards(5)),
if matherr() is not supplied by the user, the default matherr exception-handling
mechanisms, summarized in the table below, will be invoked upon exception:

matherr(3M)

NAME

SYNOPSIS

DESCRIPTION

SVID3
STANDARD

CONFORMANCE

Extended Library Functions 287

DOMAIN 0.0 is usually returned, errno is set to EDOM, and a message is
usually printed on standard error.

SING The largest finite single-precision number, HUGE of appropriate
sign is returned, errno is set to EDOM, and a message is printed on
standard error.

OVERFLOW The largest finite single-precision number, HUGE of appropriate
sign is usually returned, errno is set to ERANGE.

UNDERFLOW 0.0 is returned, and errno is set to ERANGE.

TLOSS 0.0 is returned, errno is set to ERANGE, and a message is printed
on standard error.

In general, errno is not a reliable error indicator in that it may be unexpectedly set by
a function in a handler for an asynchronous signal.

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE

IEEE Exception Invalid
Operation

Division by
Zero

Overflow Underflow −

fp_exception_type fp_invalid fp_division fp_overflow fp_underflow −

ACOS, ASIN (|x| >
1):

Md, 0.0 − − − −

ACOSH (x < 1),
ATANH (|x| > 1):

NaN − − − −

ATAN2 (0,0): Md, 0.0 − − − −

COSH, SINH: − − ±HUGE − −

EXP: − − +HUGE 0.0 −

FMOD (x,0): x − − − −

HYPOT: − − +HUGE − −

J0, J1, JN (|x| >
X_TLOSS):

− − − − Mt, 0.0

LGAMMA:

usual cases − − +HUGE − −

(x = 0 or −integer) − Ms, +HUGE − − −

LOG, LOG10:

(x < 0) Md, −HUGE − − − −

matherr(3M)

SVID3 ERROR
HANDLING

PROCEDURES
(compile with cc

\-Xt)

288 man pages section 3: Extended Library Functions • Last Revised 23 Sep 1997

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

(x = 0) − Ms, −HUGE − − −

POW:

usual cases − − ±HUGE ±0.0 −

(x < 0) ** (y not an
integer)

Md, 0.0 − − − −

0 ** 0 Md, 0.0 − − − −

0 ** (y < 0) Md, 0.0 − − −

REMAINDER (x,0): NaN − − − −

SCALB: − − ±HUGE_VAL ±0.0 −

SQRT (x < 0): Md, 0.0 − − − −

Y0, Y1, YN:

(x < 0) Md, −HUGE − − − −

(x = 0) − Md, −HUGE − − −

(x > X_TLOSS) − − − − Mt, 0.0

Md Message is printed (DOMAIN error).

Ms Message is printed (SING error).

Mt Message is printed (TLOSS error).

NaN IEEE NaN result and invalid operation exception.

HUGE Maximum finite single-precision floating-point number.

HUGE_VAL IEEE ∞ result and division-by-zero exception.

X_TLOSS The value X_TLOSS is defined in <values.h>.

The interaction of IEEE arithmetic and matherr() is not defined when executing
under IEEE rounding modes other than the default round to nearest: matherr() is
not always called on overflow or underflow, and the matherr() may return results
that differ from those in this table.

The X/Open System Interfaces and Headers (XSH) Issue 3 and later revisions of that
specification no longer sanctions the use of the matherr() interface. The following
table summarizes the values returned in the exceptional cases. In general, XSH
dictates that as long as one of the input argument(s) is a NaN, NaN shall be returned.
In particular, pow(NaN,0) = NaN.

matherr(3M)

Abbreviations

X/OPEN
COMMON

APPLICATION
ENVIRONMENT

(CAE)
SPECIFICATIONS
CONFORMANCE

Extended Library Functions 289

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE

ACOS,
ASIN (|x|
> 1):

0.0 − − − −

ATAN2 (0,0): 0.0 − − − −

COSH,
SINH:

− − {±HUGE_VAL} − −

EXP: − − {+HUGE_VAL} {0.0} −

FMOD (x,0): {NaN} − − − −

HYPOT: − − {+HUGE_VAL} − −

J0, J1,
JN (|x| >
X_TLOSS):

− − − − {0.0}

LGAMMA:

usual cases − − {+HUGE_VAL} − −

(x = 0 or
−integer)

− +HUGE_VAL − − −

LOG,
LOG10:

(x < 0) -HUGE_VAL − − − −

(x = 0) − -HUGE_VAL − − −

POW:

usual cases − − ±HUGE_VAL ±0.0 −

(x < 0) ** (y
not an
integer)

0.0 − − − −

0 ** 0 {1.0} − − − −

0 ** (y < 0) {-HUGE_VAL} − − − −

SQRT (x <
0):

0.0 − − − −

Y0, Y1, YN:

(x < 0) {-HUGE_VAL} − − − −

(x = 0) − {-HUGE_VAL} − − −

matherr(3M)

CAE
SPECIFICATION

ERROR
HANDLING

PROCEDURES
(compile with cc

-Xa)

290 man pages section 3: Extended Library Functions • Last Revised 23 Sep 1997

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

(x >
X_TLOSS)

− − − − 0.0

{...} errno is not to be relied upon in all braced cases.

NaN IEEE NaN result and invalid operation exception.

HUGE_VALIEEE ∞ result and division-by-zero exception.

X_TLOSSThe value X_TLOSS is defined in <values.h>.

The ANSI/ISO-C standard covers a small subset of the CAE specification.

The following table summarizes the values returned in the exceptional cases.

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW

errno EDOM EDOM ERANGE ERANGE

ACOS,
ASIN (|x| > 1):

0.0 − − −

ATAN2 (0,0): 0.0 − − −

EXP: − − +HUGE_VAL 0.0

FMOD (x,0): NaN − − −

LOG, LOG10:

(x < 0) -HUGE_VAL − − −

(x = 0) − -HUGE_VAL − −

POW:

usual cases − − ±HUGE_VAL ±0.0

(x < 0) ** (y not
an integer)

0.0 − − −

0 ** (y < 0) -HUGE_VAL − − −

SQRT (x < 0): 0.0 − − −

NaN IEEE NaN result and invalid operation exception.

HUGE_VAL IEEE ∞ result and division-by-zero

matherr(3M)

Abbreviations

ANSI/ISO-C
STANDARD

CONFORMANCE

ANSI/ISO-C
ERROR

HANDLING
PROCEDURES

(compile with cc
-Xc)

ABBREVIATIONS

Extended Library Functions 291

EXAMPLE 1 Example of matherr() function

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int
matherr(struct exception *x) {

switch (x−>type) {
case DOMAIN:

/* change sqrt to return sqrt(−arg1), not NaN */
if (!strcmp(x−>name, "sqrt")) {
x−>retval = sqrt(−x−>arg1);
return (0); /* print message and set errno */
} /* FALLTHRU */
case SING:
/* all other domain or sing exceptions, print message and */
/* abort */
fprintf(stderr, "domain exception in %s\n", x−>name);
abort();
break;
}
return (0); /* all other exceptions, execute default procedure */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5), standards(5)

matherr(3M)

EXAMPLES

ATTRIBUTES

SEE ALSO

292 man pages section 3: Extended Library Functions • Last Revised 23 Sep 1997

m_create_layout – initialize a layout object

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

LayoutObject m_create_layout(const AttrObject attrobj, const char*
modifier);

The m_create_layout() function creates a LayoutObject associated with the
locale identified by attrobj.

The LayoutObject is an opaque object containing all the data and methods
necessary to perform the layout operations on context-dependent or directional
characters of the locale identified by the attrobj. The memory for the LayoutObject is
allocated by m_create_layout(). The LayoutObject created has default layout
values. If the modifier argument is not NULL, the layout values specified by the modifier
overwrite the default layout values associated with the locale. Internal states
maintained by the layout transformation function across transformations are set to
their initial values.

The attrobj argument is or may be an amalgam of many opaque objects. A locale object
is just one example of the type of object that can be attached to an attribute object. The
attrobj argument specifies a name that is usually associated with a locale category. If
attrobj is NULL, the created LayoutObject is associated with the current locale as set
by the setlocale(3C) function.

The modifier argument announces a set of layout values when the LayoutObject is
created.

Upon successful completion, the m_create_layout() function returns a
LayoutObject for use in subsequent calls to m_*_layout() functions. Otherwise
the m_create_layout() function returns (LayoutObject) 0 and sets errno to
indicate the error.

The m_create_layout() function may fail if:

EBADF The attribute object is invalid or the locale asssociated with the
attribute object is not available.

EINVAL The modifier string has a syntax error or it contains unknown
layout values.

EMFILE There are {OPEN_MAX} file descriptors currently open in the
calling process.

ENOMEM Insufficient storage space is available.

See attributes(5) for descriptions of the following attributes:

m_create_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 293

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

setlocale(3C), attributes(5)

m_create_layout(3LAYOUT)

SEE ALSO

294 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

md5, md5_calc, MD5Init, MD5Update, MD5Final – MD5 digest functions

cc [flag ...] file ... -lmd5 [library ...]

#include <md5.h>

void md5_calc(unsigned char *output, unsigned char *input, unsigned
int inlen);

void MD5Init(MD5_CTX *context);

void MD5Update(MD5_CTX *context, unsigned char *input, unsigned int
inlen);

void MD5Final(unsigned char *output, MD5_CTX *context);

These functions implement the MD5 message-digest algorith, which takes as input a
message of arbitrary length and produces as output a 128-bit "fingerprint" or "message
digest" of the input. It is intended for digital signature applications, where large file
must be "compressed" in a secure manner before being encrypted with a private
(secret) key under a public-key cryptosystem such as RSA.

The md5_calc() function computes an MD5 digest on a single message block. The
inlen-byte block is pointed to by input, and the 16-byte MD5 digest is written to output.

The MD5Init(), MD5Update(), and MD5Final() functions allow an MD5 digest to
be computed over multiple message blocks; between blocks, the state of the MD5
computation is held in an MD5 context structure, allocated by the caller. A complete
digest computation consists of one call to MD5Init(), one or more calls to
MD5Update(), and one call to MD5Final(), in that order.

The MD5Init() function initializes the MD5 context structure pointed to by context.

The MD5Update() function computes a partial MD5 digest on the inlen-byte message
block pointed to by input, and updates the MD5 context structure pointed to by context
accordingly.

The MD5Final() function generates the final MD5 digest, using the MD5 context
structure pointed to by context; the 16-byte MD5 digest is written to output. After
calling MD5Final(), the state of the context structure is undefined; it must be
reinitialized with MD5Init() before being used again.

These functions do not return a value.

EXAMPLE 1 Authenticate a message found in multiple buffers

The following is a sample function that must authenticate a message that is found in
multiple buffers. The calling function provides an authentication buffer that will
contain the result of the MD5 digest.

int
AuthenticateMsg(unsigned char *auth_buffer, struct iovec

*messageIov, unsigned int num_buffers)

md5(3EXT)

NAME

SYNOPSIS

DESCRIPTION

md5_calc()

MD5Init(),
MD5Update(),
MD5Final()

RETURN VALUES

EXAMPLES

Extended Library Functions 295

EXAMPLE 1 Authenticate a message found in multiple buffers (Continued)

{
MD5_CTX md5_ context;
unsigned int i;

MD5Init(&md5_context);

for(i=0, i<num_buffers; i++
{

MD5Update(&md5_context, messageIov->iov_base,
messageIov->iov_len);

messageIov += sizeof(struct iovec);
}

MD5Final(auth_buffer, &md5_context);

return 0;

}

EXAMPLE 2 Use md5_calc() to generate the MD5 digest

Since the buffer to be computed is contiguous, the md5_calc() function can be used
to generate the MD5 digest.

int AuthenticateMsg(unsigned char *auth_buffer, unsigned
char *buffer, unsigned int length)

{
md5_calc(buffer, auth_buffer, length);

return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

libmd5(3LIB)

Rivest, R., The MD5 Message-Digest Algorithm, RFC 1321, April 1992.

md5(3EXT)

ATTRIBUTES

SEE ALSO

296 man pages section 3: Extended Library Functions • Last Revised 20 Sep 2001

m_destroy_layout – destroy a layout object

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_destroy_layout(const LayoutObject layoutobject);

The m_destroy_layout() function destroys a LayoutObject by deallocating the
layout object and all the associated resources previously allocated by the
m_create_layout(3LAYOUT) function.

Upon successful completion, 0 is returned. Otherwise −1 is returned and errno is set
to indicate the error.

The m_destroy_layout() function may fail if:

EBADF The attribute object is erroneous.

EFAULT Errors occurred while processing the request.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_create_layout(3LAYOUT), attributes(5)

m_destroy_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 297

media_findname – convert a supplied name into an absolute pathname that can be
used to access removable media

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

char *media_findname(char *start);

media_findname() converts the supplied start string into an absolute pathname that
can then be used to access a particular piece of media.

The start parameter can be one of the following types of specifications:

/dev/ . . . An absolute pathname in /dev, such as
/dev/rdiskette0, in which case a copy of that string
is returned (see NOTES on this page).

/vol/ . . . An absolute Volume Management pathname, such as
/vol/dev/aliases/floppy0 or /vol/dsk/fred.
If this supplied pathname is not a symbolic link, then a
copy of that pathname is returned. If the supplied
pathname is a symbolic link then it is dereferenced and
a copy of that dereferenced pathname is returned.

volume_name The Volume Management volume name for a particular
volume, such as fred (see fdformat(1) for a
description of how to label floppies). In this case a
pathname in the Volume Management namespace is
returned.

volmgt_symname The Volume Management symbolic name for a device,
such as floppy0 or cdrom2 (see volfs(7FS) for more
information on Volume Management symbolic names),
in which case a pathname in the Volume Management
namespace is returned.

media_type The Volume Management generic media type name.
For example, floppy or cdrom. In this case
media_findname() looks for the first piece of media
that matches that media type, starting at 0 (zero) and
continuing on until a match is found (or some fairly
large maximum number is reached). In this case, if a
match is found, a copy of the pathname to the volume
found is returned.

Upon successful completion media_findname() returns a pointer to the pathname
found. In the case of an error a null pointer is returned.

For cases where the supplied start parameter is an absolute pathname,
media_findname() can fail, returning a null string pointer, if an lstat(2) of that
supplied pathname fails. Also, if the supplied absolute pathname is a symbolic link,

media_findname(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

298 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

media_findname() can fail if a readlink(2) of that symbolic link fails, or if a
stat(2) of the pathname pointed to by that symbolic link fails, or if any of the
following is true:

ENXIO The specified absolute pathname was not a character special
device, and it was not a directory with a character special device in
it.

EXAMPLE 1 Sample programs of the media_findname() function.

The following example attempts to find what the Volume Management pathname is to
a piece of media called fred. Notice that a volmgt_check() is done first (see the
NOTES section on this page).

(void) volmgt_check(NULL);
if ((nm = media_findname("fred")) != NULL) {

(void) printf("media named \"fred\" is at \"%s\"\n", nm);
} else {

(void) printf("media named \"fred\" not found\n");
}

This example looks for whatever volume is in the first floppy drive, letting
media_findname() call volmgt_check() if and only if no floppy is currently
known to be the first floppy drive.

if ((nm = media_findname("floppy0")) != NULL) {
(void) printf("path to floppy0 is \"%s\"\n", nm);

} else {
(void) printf("nothing in floppy0\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Unsafe

cc(1B), fdformat(1), vold(1M), lstat(2), readlink(2), stat(2), free(3C),
malloc(3C), volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT),
volmgt_root(3VOLMGT), volmgt_running(3VOLMGT),
volmgt_symname(3VOLMGT), attributes(5), volfs(7FS)

If media_findname() cannot find a match for the supplied name, it performs a
volmgt_check(3VOLMGT) and tries again, so it can be more efficient to perform
volmgt_check() before calling media_findname().

Upon success media_findname() returns a pointer to string which has been
allocated; this should be freed when no longer in use (see free(3C)).

media_findname(3VOLMGT)

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 299

media_getattr, media_setattr – get and set media attributes

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

char *media_getattr(char *vol_path, char *attr);

int media_setattr(char *vol_path, char *attr, char *value);

media_setattr() and media_getattr() respectively set and get attribute-value
pairs (called properties) on a per-volume basis.

Volume Management supports system properties and user properties. System
properties are ones that Volume Management predefines. Some of these system
properties are writable, but only by the user that owns the volume being specified,
and some system properties are read only:

Attribute Writable Value Description

s-access RO "seq", "rand" sequential or random access

s-density RO "low", "medium",
"high"

media density

s-parts RO comma separated
list of slice
numbers

list of partitions on this volume

s-location RO pathname Volume Management pathname to
media

s-mejectable RO "true", "false" whether or not media is manually
ejectable

s-rmoneject R/W "true", "false" should media access points be
removed from database upon ejection

s-enxio R/W "true", "false" if set return ENXIO when media
access attempted

Properties can also be defined by the user. In this case the value can be any string the
user wishes.

Upon successful completion media_getattr() returns a pointer to the value
corresponding to the specified attribute. A null pointer is returned if the specified
volume doesn’t exist, if the specified attribute for that volume doesn’t exist, if the
specified attribute is boolean and its value is false, or if malloc(3C) fails to allocate
space for the return value.

media_setattr() returns 1 upon success, and 0 upon failure.

media_getattr(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

300 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

Both media_getattr() and media_setattr() can fail returning a null pointer if
an open(2) of the specified vol_path fails, if an fstat(2) of that pathname fails, or if
that pathname is not a block or character special device.

media_getattr() can also fail if the specified attribute was not found, and
media_setattr() can also fail if the caller doesn’t have permission to set the
attribute, either because it’s is a system attribute, or because the caller doesn’t own the
specified volume.

Additionally, either routine can fail returning the following error values:

ENXIO The Volume Management daemon, vold, is not running

EINTR The routine was interrupted by the user before finishing

EXAMPLE 1 Using media_getattr()

The following example checks to see if the volume called fred that Volume
Management is managing can be ejected by means of software, or if it can only be
manually ejected:

if (media_getattr("/vol/rdsk/fred", "s-mejectable") != NULL) {
(void) printf("\"fred\" must be manually ejected\n");

} else {
(void) printf("software can eject \"fred\"\n");

}

This example shows setting the s-enxio property for the floppy volume currently in the
first floppy drive:

int res;
if ((res = media_setattr("/vol/dev/aliases/floppy0", "s-enxio",

"true")) == 0) {
(void) printf("can’t set s-enxio flag for floppy0\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), lstat(2), open(2), readlink(2), stat(2), free(3C), malloc(3C),
media_findname(3VOLMGT), volmgt_check(3VOLMGT),
volmgt_inuse(3VOLMGT), volmgt_root(3VOLMGT),
volmgt_running(3VOLMGT), volmgt_symname(3VOLMGT), attributes(5)

Upon success media_getattr() returns a pointer to a string which has been
allocated, and should be freed when no longer in use (see free(3C)).

media_getattr(3VOLMGT)

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 301

media_getid – return the id of a piece of media

cc [flag ...] file ...−lvolgmt [library ...]

#include <volmgt.h>

ulonglong_t media_getid(char *vol_path);

media_getid() returns the id of a piece of media. Volume Management must be
running. See volmgt_running(3VOLMGT).

vol_path Path to the block or character special device.

media_getid() returns the id of the volume. This value is unique for each volume. If
media_getid() returns 0, the path provided is not valid, for example, it is a block
or char device.

EXAMPLE 1 Using media_getid()

The following example first checks if Volume Management is running, then checks the
volume management name space for path, and then returns the id for the piece of
media.

char *path;

...

if (volmgt_running()) {
if (volmgt_ownspath(path)) {

(void) printf("id of %s is %lld\n",
path, media_getid(path));

}
}

If a program using media_getid() does not check whether or not Volume
Management is running, then any NULL return value will be ambiguous, as it could
mean that either Volume Management does not have path in its name space, or Volume
Management is not running.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Commitment Level Public

volmgt_ownspath(3VOLMGT),volmgt_running(3VOLMGT),attributes(5)

media_getid(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

302 man pages section 3: Extended Library Functions • Last Revised 29 Apr1998

m_getvalues_layout – query layout values of a LayoutObject

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_getvalues_layout(const LayoutObject layout_object, LayoutValues
values, int *index_returned);

The m_getvalues_layout() function queries the current setting of layout values
within a LayoutObject.

The layout_object argument specifies a LayoutObject returned by the
m_create_layout(3LAYOUT) function.

The values argument specifies the list of layout values that are to be queried. Each
value element of a LayoutValueRec must point to a location where the layout value
is stored. That is, if the layout value is of type T, the argument must be of type T*. The
values are queried from the LayoutObject and represent its current state.

It is the user’s responsibility to manage the space allocation for the layout values
queried. If the layout value name has QueryValueSize OR-ed to it, instead of the
value of the layout value, only its size is returned. The caller can use this option to
determine the amount of memory needed to be allocated for the layout values
queried.

Upon successful completion, the m_getvalues_layout() function returns 0. If any
value cannot be queried, the index of the value causing the error is returned in
index_returned, −1 is returned and errno is set to indicate the error.

The m_getvalues_layout() function may fail if:

EINVAL The layout value specified by index_returned is unknown, its value
is invalid, or the layout_object argument is invalid. In the case of an
invalid layout_object argument, the value returned in index_returned
is −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_create_layout(3LAYOUT), attributes(5)

m_getvalues_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 303

mkdirp, rmdirp – create or remove directories in a path

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int mkdirp(const char *path, mode_t mode);

int rmdirp(char *dir, char *dir1);

The mkdirp() function creates all the missing directories in path with mode. See
chmod(2) for the values of mode.

The rmdirp() function removes directories in path dir. This removal begins at the
end of the path and moves backward toward the root as far as possible. If an error
occurs, the remaining path is stored in dir1.

If path already exists or if a needed directory cannot be created, mkdirp() returns −1
and sets errno to one of the error values listed for mkdir(2). It returns zero if all the
directories are created.

The rmdirp() function returns 0 if it is able to remove every directory in the path. It
returns −2 if a ‘‘.’’ or ‘‘..’’ is in the path and −3 if an attempt is made to remove the
current directory. Otherwise it returns−1.

EXAMPLE 1 Example of creating scratch directories.

The following example creates scratch directories.

/* create scratch directories */
if(mkdirp("/tmp/sub1/sub2/sub3", 0755) == −1) {

fprintf(stderr, "cannot create directory");
exit(1);

}
chdir("/tmp/sub1/sub2/sub3");
.
.
.
/* cleanup */
chdir("/tmp");

rmdirp("sub1/sub2/sub3");

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

chmod(2), mkdir(2), rmdir(2), malloc(3C), attributes(5)

mkdirp() uses malloc(3C) to allocate temporary space for the string.

mkdirp(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

304 man pages section 3: Extended Library Functions • Last Revised 5 Nov 1998

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

mkdirp(3GEN)

Extended Library Functions 305

mp, mp_madd, mp_msub, mp_mult, mp_mdiv, mp_mcmp, mp_min, mp_mout,
mp_pow, mp_gcd, mp_rpow, mp_itom, mp_xtom, mp_mtox, mp_mfree – multiple
precision integer arithmetic

cc [flag ...] file ... -lmp [library ...]

#include <mp.h>

void mp_madd(MINT *a, MINT *b, MINT *c);

void mp_msub(MINT *a, MINT *b, MINT *c);

void mp_mult(MINT *a, MINT *b, MINT *c);

void mp_mdiv(MINT *a, MINT *b, MINT *q, MINT *r);

int mp_mcmp(MINT *a, MINT *b);

int mp_min(MINT *a);

void mp_mout(MINT *a);

void mp_pow(MINT *a, MINT *b, MINT *c, MINT *d);

void mp_gcd(MINT *a, MINT *b, MINT *c);

void mp_rpow(MINT *a, short n, MINT *b);

int mp_msqrt(MINT *a, MINT *b, MINT *r);

void mp_sdiv(MINT *a, short n, MINT *q, short *r);

MINT * mp_itom(short n);

MINT * mp_xtom(char *a);

char * mp_mtox(MINT *a);

void mp_mfree(MINT *a);

These routines perform arithmetic on integers of arbitrary length. The integers are
stored using the defined type MINT. Pointers to a MINT should be initialized using the
function mp_itom(n), which sets the initial value to n. Alternatively, mp_xtom(a)
may be used to initialize a MINT from a string of hexadecimal digits. mp_mfree(a)
may be used to release the storage allocated by the mp_itom(a) and mp_xtom(a)
routines.

The mp_madd(a,b,c), mp_msub(a,b,c) and mp_mult(a,b,c) functions assign to their third
arguments the sum, difference, and product, respectively, of their first two arguments.
The mp_mdiv(a,b,q,r) function assigns the quotient and remainder, respectively, to its
third and fourth arguments. The mp_sdiv(a,n,q,r) function is similar to
mp_mdiv(a,b,q,r) except that the divisor is an ordinary integer. The mp_msqrt(a,b,r)
function produces the square root and remainder of its first argument. The
mp_mcmp(a,b) function compares the values of its arguments and returns 0 if the two
values are equal, a value greater than 0 if the first argument is greater than the second,
and a value less than 0 if the second argument is greater than the first. The
mp_rpow(a,n,b) function raises a to the nth power and assigns this value to b. The

mp(3MP)

NAME

SYNOPSIS

DESCRIPTION

306 man pages section 3: Extended Library Functions • Last Revised 25 Mar 1997

mp_pow(a,b ,c,d) function raises a to the bth power, reduces the result modulo c and
assigns this value to d. The mp_min(a) and mp_mout(a) functions perform decimal
input and output. The mp_gcd(a,b,c) function finds the greatest common divisor of the
first two arguments, returning it in the third argument. The mp_mtox(a) function
provides the inverse of mp_xtom(a). To release the storage allocated by mp_mtox(a)
use free() (see malloc(3C)).

Use the -lmp loader option to obtain access to these functions.

/usr/lib/libmp.a

/usr/lib/libmp.so

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

exp(3M), malloc(3C), libmp(3LIB), attributes(5)

Illegal operations and running out of memory produce messages and core images.

The function pow() exists in both libmp and libm with widely differing semantics.
This is why libmp.so.2 exists. libmp.so.1 exists solely for reasons of backward
compatibility, and should not be used otherwise. Use the mp_*() functions instead.
See libmp(3LIB).

mp(3MP)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

Extended Library Functions 307

m_setvalues_layout – set layout values of a LayoutObject

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_setvalues_layout(LayoutObject layout_object, const LayoutValues
values, int *index_returned);

The m_setvalues_layout() function changes the layout values of a LayoutObject.

The layout_object argument specifies a LayoutObject returned by the
m_create_layout(3LAYOUT) function.

The values argument specifies the list of layout values that are to be changed. The
values are written into the LayoutObject and may affect the behavior of subsequent
layout functions. Some layout values do alter internal states maintained by a
LayoutObject.

The m_setvalues_layout() function can be implemented as a macro that
evaluates the first argument twice.

Upon successful completion, the requested layout values are set and 0 is returned.
Otherwise −1 is returned and errno is set to indicate the error. If any value cannot be
set, none of the layout values are changed and the (zero-based) index of the first value
causing the error is returned in index_returned.

The m_setvalues_layout() function may fail if:

EINVAL The layout value specified by index_returned is unknown, its value
is invalid, or the layout_object argument is invalid.

EMFILE There are {OPEN_MAX} file descriptors currently open in the
calling process.

Do not use expressions with side effects such as auto-increment or auto-decrement
within the first argument to the m_setvalues_layout() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_create_layout(3LAYOUT), attributes(5)

m_setvalues_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

308 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

m_transform_layout – layout transformation

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_transform_layout(LayoutObject layout_object, const char *InpBuf,
const size_t ImpSize, const void *OutBuf, size_t *Outsize, size_t
*InpToOut, size_t *OutToInp, unsigned char *Property, size_t
*InpBufIndex);

The m_transform_layout() function performs layout transformations (reordering,
shaping, cell determination) or provides additional information needed for layout
transformation (such as the expected size of the transformed layout, the nesting level
of different segments in the text and cross-references between the locations of the
corresponding elements before and after the layout transformation). Both the input
text and output text are character strings.

The m_transform_layout() function transforms the input text in InpBuf according
to the current layout values in layout_object. Any layout value whose value type is
LayoutTextDescriptor describes the attributes of the InpBuf and OutBuf
arguments. If the attributes are the same for both InpBuf and OutBuf, a null
transformation is performed with respect to that specific layout value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not be
NULL, unless there is a need to reset the internal state.

The InpSize argument is the number of bytes within InpBuf to be processed by the
transformation. Its value will not change after return from the transformation. InpSize
set to −1 indicates that the text in InpBuf is delimited by a null code element. If InpSize
is not set to −1, it is possible to have some null elements in the input buffer. This might
be used, for example, for a “one shot” transformation of several strings, separated by
nulls.

Output of this function may be one or more of the following depending on the setting
of the arguments:

OutBuf Any transformed data is stored in OutBuf, converted to
ShapeCharset.

Outsize The number of bytes in OutBuf.

InpToOut A cross-reference from each InpBuf code element to the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

OutToInp A cross-reference to each InpBuf code element from the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

m_transform_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 309

Property A weighted value that represents peculiar input string
transformation properties with different connotations as explained
below. If this argument is not a null pointer, it represents an array
of values with the same number of elements as the source
substring text before the transformation. Each byte will contain
relevant “property” information of the corresponding element in
InpBuf starting from the element pointed by InpBufIndex. The four
rightmost bits of each “property” byte will contain information for
bidirectional environments (when ActiveDirectional is True)
and they will mean “NestingLevels.” The possible value from 0
to 15 represents the nesting level of the corresponding element in
the InpBuf starting from the element pointed by InpBufIndex. If
ActiveDirectional is false the content of NestingLevel bits
will be ignored. The leftmost bit of each “property” byte will
contain a “new cell indicator” for composed character
environments, and will have a value of either 1 (for an element in
InpBuf that is transformed to the beginning of a new cell) or 0 (for
the “zero-length” composing character elements, when these are
grouped into the same presentation cell with a non-composing
character). Here again, each element of “property” pertains to the
elements in the InpBuf starting from the element pointed by
InpBufIndex. (Remember that this is not necessarily the beginning
of InpBuf). If none of the transformation properties is required, the
argument Property can be NULL. The use of “property” can be
enhanced in the future to pertain to other possible usage in other
environments.

The InpBufIndex argument is an offset value to the location of the transformed text.
When m_transform_layout() is called, InpBufIndex contains the offset to the
element in InpBuf that will be transformed first. (Note that this is not necessarily the
first element in InpBuf). At the return from the transformation, InpBufIndex contains
the offset to the first element in the InpBuf that has not been transformed. If the entire
substring has been transformed successfully, InpBufIndex will be incremented by the
amount defined by InpSize.

Each of these output arguments may be NULL to specify that no output is desired for
the specific argument, but at least one of them should be set to a non-null value to
perform any significant work.

The layout object maintains a directional state that keeps track of directional changes,
based on the last segment transformed. The directional state is maintained across calls
to the layout transformation functions and allows stream data to be processed with the
layout functions. The directional state is reset to its initial state whenever any of the
layout values TypeOfText, Orientation, or ImplicitAlg is modified by means
of a call to m_setvalues_layout().

The layout_object argument specifies a LayoutObject returned by the
m_create_layout() function.

m_transform_layout(3LAYOUT)

310 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

The OutBuf argument contains the transformed data. This argument can be specified
as a null pointer to indicate that no transformed data is required.

The encoding of the OutBuf argument depends on the ShapeCharset layout value
defined in layout_object. If the ActiveShapeEditing layout value is not set (False),
the encoding of OutBuf is guaranteed to be the same as the codeset of the locale
associated with the LayoutObject defined by layout_object.

On input, the OutSize argument specifies the size of the output buffer in number of
bytes. The output buffer should be large enough to contain the transformed result;
otherwise, only a partial transformation is performed. If the ActiveShapeEditing
layout value is set (True) the OutBuf should be allocated to contain at least the InpSize
multiplied by ShapeCharsetSize.

On return, the OutSize argument is modified to the actual number of bytes placed in
OutBuf.

When the OutSize argument is specified as zero, the function calculates the size of an
output buffer large enough to contain the transformed text, and the result is returned
in this field. The content of the buffers specified by InpBuf and OutBuf, and the value
of InpBufIndex, remain unchanged. If OutSize = NULL, the EINVAL error condition
should be returned.

If the InpToOut argument is not a null pointer, it points to an array of values with the
same number of bytes in InpBuf starting with the one pointed by InpBufIndex and up
to the end of the substring in the buffer. On output, the nth value in InpToOut
corresponds to the nth byte in InpBuf. This value is the index (in units of bytes) in
OutBuf that identifies the transformed ShapeCharset element of the nth byte in
InpBuf. In the case of multibyte encoding, the index points (for each of the bytes of a
code element in the InpBuf) to the first byte of the transformed code element in the
OutBuf.

InpToOut may be specified as NULL if no index array from InpBuf to OutBuf is desired.

If the OutToInp argument is not a null pointer, it points to an array of values with the
same number of bytes as contained in OutBuf. On output, the nth value in OutToInp
corresponds to the nth byte in OutBuf This value is the index in InpBuf, starting with
the byte pointed to by InpBufIndex, that identifies the logical code element of the nth
byte in OutBuf. In the case of multibyte encoding, the index will point for each of the
bytes of a transformed code element in the OutBuf to the first byte of the code element
in the InpBuf.

OutToInp may be specified as NULL if no index array from OutBuf to InpBuf is desired.

To perform shaping of a text string without reordering of code elements, the
layout_object should be set with input and output layout value TypeOfText set to
TEXT_VISUAL and both in and out of Orientation set to the same value.

m_transform_layout(3LAYOUT)

Extended Library Functions 311

If successful, the m_transform_layout() function returns 0. If unsuccessful, the
returned value is −1 and the errno is set to indicate the source of error. When the size
of OutBuf is not large enough to contain the entire transformed text, the input text
state at the end of the uncompleted transformation is saved internally and the error
condition E2BIG is returned in errno.

The m_transform_layout() function may fail if:

E2BIG The output buffer is full and the source text is not entirely
processed.

EBADF The layout values are set to a meaningless combination or the
layout object is not valid.

EILSEQ Transformation stopped due to an input code element that cannot
be shaped or is invalid. The InpBufIndex argument is set to indicate
the code element causing the error. The suspect code element is
either a valid code element but cannot be shaped into the
ShapeCharset layout value, or is an invalid code element not
defined by the codeset of the locale of layout_object. The mbtowc()
and wctomb() functions, when used in the same locale as the
LayoutObject, can be used to determine if the code element is
valid.

EINVAL Transformation stopped due to an incomplete composite sequence
at the end of the input buffer, or OutSize contains NULL.

ERANGE More than 15 embedding levels are in source text or InpBuf contain
unbalanced directional layout information (push/pop) or an
incomplete composite sequence has been detected in the input
buffer at the beginning of the string pointed to by InpBufIndex.

An incomplete composite sequence at the end of the input buffer is
not always detectable. Sometimes, the fact that the sequence is
incomplete will only be detected when additional character
elements belonging to the composite sequence are found at the
beginning of the next input buffer.

A LayoutObject will have a meaningful combination of default layout values.
Whoever chooses to change the default layout values is responsible for making sure
that the combination of layout values is meaningful. Otherwise, the result of
m_transform_layout() might be unpredictable or implementation-specific with
errno set to EBADF.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_transform_layout(3LAYOUT)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

312 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

attributes(5)

m_transform_layout(3LAYOUT)

SEE ALSO

Extended Library Functions 313

m_wtransform_layout – layout transformation for wide character strings

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_wtransform_layout(LayoutObject layout_object, const wchar_t
*InpBuf, const size_t ImpSize, const void *OutBuf, size_t
*Outsize, size_t *InpToOut, size_t *OutToInp, unsignedchar
*Property, size_t *InpBufIndex);

The m_wtransform_layout() function performs layout transformations
(reordering, shaping, cell determination) or provides additional information needed
for layout transformation (such as the expected size of the transformed layout, the
nesting level of different segments in the text and cross-references between the
locations of the corresponding elements before and after the layout transformation).
Both the input text and output text are wide character strings.

The m_wtransform_layout() function transforms the input text in InpBuf
according to the current layout values in layout_object. Any layout value whose value
type is LayoutTextDescriptor describes the attributes of the InpBuf and OutBuf
arguments. If the attributes are the same for both InpBuf and OutBuf, a null
transformation is performed with respect to that specific layout value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not be
NULL, unless there is a need to reset the internal state.

The InpSize argument is the number of bytes within InpBuf to be processed by the
transformation. Its value will not change after return from the transformation. InpSize
set to −1 indicates that the text in InpBuf is delimited by a null code element. If InpSize
is not set to −1, it is possible to have some null elements in the input buffer. This might
be used, for example, for a “one shot” transformation of several strings, separated by
nulls.

Output of this function may be one or more of the following depending on the setting
of the arguments:

OutBuf Any transformed data is stored in OutBuf, converted to
ShapeCharset.

Outsize The number of wide characters in OutBuf.

InpToOut A cross-reference from each InpBuf code element to the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

OutToInp A cross-reference to each InpBuf code element from the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

m_wtransform_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

314 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

Property A weighted value that represents peculiar input string
transformation properties with different connotations as explained
below. If this argument is not a nullpointer, it represents an array
of values with the same number of elements as the source
substring text before the transformation. Each byte will contain
relevant “property” information of the corresponding element in
InpBuf starting from the element pointed by InpBufIndex. The four
rightmost bits of each “property” byte will contain information for
bidirectional environments (when ActiveDirectional is True)
and they will mean “NestingLevels.” The possible value from 0
to 15 represents the nesting level of the corresponding element in
the InpBuf starting from the element pointed by InpBufIndex. If
ActiveDirectional is false the content of NestingLevel bits
will be ignored. The leftmost bit of each “property” byte will
contain a “new cell indicator” for composed character
environments, and will have a value of either 1 (for an element in
InpBuf that is transformed to the beginning of a new cell) or 0 (for
the “zero-length” composing character elements, when these are
grouped into the same presentation cell with a non- composing
character). Here again, each element of “property” pertains to the
elements in the InpBuf starting from the element pointed by
InpBufIndex. (Remember that this is not necessarily the beginning
of InpBuf). If none of the transformation properties is required, the
argument Property can be NULL. The use of “property” can be
enhanced in the future to pertain to other possible usage in other
environments.

The InpBufIndex argument is an offset value to the location of the transformed text.
When m_wtransform_layout() is called, InpBufIndex contains the offset to the
element in InpBuf that will be transformed first. (Note that this is not necessarily the
first element in InpBuf). At the return from the transformation, InpBufIndex contains
the offset to the first element in the InpBuf that has not been transformed. If the entire
substring has been transformed successfully, InpBufIndex will be incremented by the
amount defined by InpSize.

Each of these output arguments may be null to specify that no output is desired for
the specific argument, but at least one of them should be set to a non-null value to
perform any significant work.

In addition to the possible outputs above, layout_object maintains a directional state
across calls to the transform functions. The directional state is reset to its initial state
whenever any of the layout values TypeOfText, Orientation, or ImplicitAlg is
modified by means of a call to m_setvalues_layout().

The layout_object argument specifies a LayoutObject returned by the
m_create_layout() function.

m_wtransform_layout(3LAYOUT)

Extended Library Functions 315

The OutBuf argument contains the transformed data. This argument can be specified
as a null pointer to indicate that no transformed data is required.

The encoding of the OutBuf argument depends on the ShapeCharset layout value
defined in layout_object. If the ActiveShapeEditing layout value is not set (False),
the encoding of OutBuf is guaranteed to be the same as the codeset of the locale
associated with the LayoutObject defined by layout_object.

On input, the OutSize argument specifies the size of the output buffer in number of
wide characters. The output buffer should be large enough to contain the transformed
result; otherwise, only a partial transformation is performed. If the
ActiveShapeEditing layout value is set (True) the OutBuf should be allocated to
contain at least the InpSize multiplied by ShapeCharsetSize.

On return, the OutSize argument is modified to the actual number of code elements in
OutBuf.

When the OutSize argument is specified as zero, the function calculates the size of an
output buffer large enough to contain the transformed text, and the result is returned
in this field. The content of the buffers specified by InpBuf and OutBuf, and the value
of InpBufIndex, remain unchanged. If OutSize = NULL, the EINVAL error condition
should be returned.

If the InpToOut argument is not a null pointer, it points to an array of values with the
same number of wide characters in InpBuf starting with the one pointed by
InpBufIndex and up to the end of the substring in the buffer. On output, the nth value
in InpToOut corresponds to the nth byte in InpBuf. This value is the index (in units of
wide characters) in OutBuf that identifies the transformed ShapeCharset element of
the nth byte in InpBuf.

InpToOut may be specified as NULL if no index array from InpBuf to OutBuf is desired.

If the OutToInp argument is not a null pointer, it points to an array of values with the
same number of wide characters as contained in OutBuf. On output, the nth value in
OutToInp corresponds to the nth byte in OutBuf. This value is the index in InpBuf,
starting with wide character byte pointed to by InpBufIndex, that identifies the logical
code element of the nth wide character in OutBuf.

OutToInp may be specified as NULL if no index array from OutBuf to InpBuf is desired.

To perform shaping of a text string without reordering of code elements, the
layout_object should be set with input and output layout value TypeOfText set to
TEXT_VISUAL and both in and out of Orientation set to the same value.

If successful, the m_wtransform_layout() function returns 0. If unsuccessful, the
returned value is −1 and the errno is set to indicate the source of error. When the size
of OutBuf is not large enough to contain the entire transformed text, the input text
state at the end of the uncompleted transformation is saved internally and the error
condition E2BIG is returned in errno.

m_wtransform_layout(3LAYOUT)

RETURN VALUES

316 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

The m_wtransform_layout() function may fail if:

E2BIG The output buffer is full and the source text is not entirely
processed.

EBADF The layout values are set to a meaningless combination or the
layout object is not valid.

EILSEQ Transformation stopped due to an input code element that cannot
be shaped or is invalid. The InpBufIndex argument is set to indicate
the code element causing the error. The suspect code element is
either a valid code element but cannot be shaped into the
ShapeCharset layout value, or is an invalid code element not
defined by the codeset of the locale of layout_object. The mbtowc()
and wctomb() functions, when used in the same locale as the
LayoutObject, can be used to determine if the code element is
valid.

EINVAL Transformation stopped due to an incomplete composite sequence
at the end of the input buffer, or OutSize contains NULL.

ERANGE More than 15 embedding levels are in source text or InpBuf contain
unbalanced directional layout information (push/pop) or an
incomplete composite sequence has been detected in the input
buffer at the beginning of the string pointed to by InpBufIndex.

An incomplete composite sequence at the end of the input buffer is
not always detectable. Sometimes the fact that the sequence is
incomplete will only be detected when additional character
elements belonging to the composite sequence are found at the
beginning of the next input buffer.

A LayoutObject will have a meaningful combination of default layout values.
Whoever chooses to change the default layout values is responsible for making sure
that the combination of layout values is meaningful. Otherwise, the result of
m_wtransform_layout() might be unpredictable or implementation-specific with
errno set to EBADF.

EXAMPLE 1 Shaping and reordering input string into output buffer

The following example illustrated what the different arguments of
m_wtransform_layout() look like when a string in InpBuf is shaped and reordered
into OutBuf. Upper-case letters in the example represent left-to-right letters while
lower-case letters represent right-to-left letters. xyz represents the shapes of cde.

Position: 0123456789
InpBuf: AB cde 12z

Position: 0123456789
OutBuf: AB 12 zyxZ

Position: 0123456789

m_wtransform_layout(3LAYOUT)

ERRORS

USAGE

EXAMPLES

Extended Library Functions 317

EXAMPLE 1 Shaping and reordering input string into output buffer (Continued)

OutToInp: 0127865439

Position: 0123456789
Property.NestLevel: 0001111220

Property.CelBdry: 1111111111

The values (encoded in bianry) returned in the Property argument define the
directionality of each code element in the source text as defined by the type of
algorithm used within the layout_object. Whlie the algorithm may be implementation
dependent, the resulting values and levels are defined such as to allow a single
method to be used in determining the directionality of the sourece text. The base rules
are:

� Odd levels are always RTL.

� Even levels are always LTR.

� The Orientation layout value setting determines the initial level (0 or 1) used.

Within a Property array each increment in the level indicates the corresponding code
elements should be presented in the opposite direction. Callers of this function should
realize that the Property values for certain code elements is dependent on the context
of the given character and the layout values: Orientation and ImplicitAlg.
Callers should not assume that a given code element always has the same Property
value in all cases.

EXAMPLE 2 Algorithm to handle nesting

The following is an example of a standard presentation algorithm that handles nesting
correctly. The goal of this algorithm is ultimately to return to a zero nest level. Note
that more efficient algorithms do exist; the following is provided for clarity rather than
for efficiency.

1. Search for the highest next level in the string.

2. Reverse all surrounding code elements of the same level. Reduce the nest level of
these code elements by 1.

3. Repeat 1 and 2 until all code elements are of level 0.

The following shows the progression of the example from above:

Position: 0123456789 0123456789 0123456789
InpBuf: AB cde 12Z AB cde 21Z AB 12 edcZ
Property.NestLevel: 0001111220 0001111110 0000000000

Property.CellBdry: 1111111111 1111111111 1111111111

See attributes(5) for descriptions of the following attributes:

m_wtransform_layout(3LAYOUT)

ATTRIBUTES

318 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

m_wtransform_layout(3LAYOUT)

SEE ALSO

Extended Library Functions 319

newDmiOctetString – create DmiOctetString in dynamic memory

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

DmiOctetString_t *newDmiOctetString(DmiOctetString_t *str);

The newDmiOctetString() function creates a DmiOctetString in dynamic
memory and returns a pointer to the newly created DmiOctetString. The function
returns NULL if no memory is available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

newDmiOctetString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

320 man pages section 3: Extended Library Functions • Last Revised 12 Oct 1998

newDmiString – create DmiString in dynamic memory

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

DmiString_t *newDmiString(char *str);

The newDmiString() function creates a DmiString in dynamic memory and
returns a pointer to the newly created DmiString. The function returns NULL if no
memory is available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

freeDmiString(3DMI), libdmi(3LIB), attributes(5)

newDmiString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 321

nextafter – next representable double-precision floating-point number

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double nextafter(double x, double y);

The nextafter() function computes the next representable double-precision
floating-point value following x in the direction of y. Thus, if y is less than x,
nextafter() returns the largest representable floating-point number less than x.

The nextafter() function returns the next representable double-precision
floating-point value following x in the direction of y.

If x or y is NaN, then nextafter() returns NaN.

If x is finite and the correct function value would overflow, nextafter() returns
±HUGE_VAL (according to the sign of x) and sets errno to ERANGE.

The nextafter() function will fail if:

ERANGE The correct value would overflow.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5),

nextafter(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

322 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

nlist – get entries from name list

cc [flag...] file ... -lelf [library ...]

#include <nlist.h>

int nlist(const char *filename, struct nlist *nl);

nlist() examines the name list in the executable file whose name is pointed to by
filename, and selectively extracts a list of values and puts them in the array of nlist()
structures pointed to by nl. The name list nl consists of an array of structures
containing names of variables, types, and values. The list is terminated with a null
name, that is, a null string is in the name position of the structure. Each variable name
is looked up in the name list of the file. If the name is found, the type, value, storage
class, and section number of the name are inserted in the other fields. The type field
may be set to 0 if the file was not compiled with the -g option to cc(1B).

nlist() will always return the information for an external symbol of a given name if
the name exists in the file. If an external symbol does not exist, and there is more than
one symbol with the specified name in the file (such as static symbols defined in
separate files), the values returned will be for the last occurrence of that name in the
file. If the name is not found, all fields in the structure except n_name are set to 0.

This function is useful for examining the system name list kept in the file
/dev/ksyms. In this way programs can obtain system addresses that are up to date.

All value entries are set to 0 if the file cannot be read or if it does not contain a valid
name list.

nlist() returns 0 on success, −1 on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Safe

cc(1B), elf(3ELF), kvm_nlist(3KVM), kvm_open(3KVM), libelf(3LIB), a.out(4),
attributes(5), ksyms(7D), mem(7D)

nlist(3ELF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 323

NOTE, _NOTE – annotate source code with info for tools

#include <note.h>

NOTE(NoteInfo);

or

#include<sys/note.h>

_NOTE(NoteInfo);

These macros are used to embed information for tools in program source. A use of one
of these macros is called an “annotation”. A tool may define a set of such annotations
which can then be used to provide the tool with information that would otherwise be
unavailable from the source code.

Annotations should, in general, provide documentation useful to the human reader. If
information is of no use to a human trying to understand the code but is necessary for
proper operation of a tool, use another mechanism for conveying that information to
the tool (one which does not involve adding to the source code), so as not to detract
from the readability of the source. The following is an example of an annotation which
provides information of use to a tool and to the human reader (in this case, which data
are protected by a particular lock, an annotation defined by the static lock analysis tool
lock_lint).

NOTE(MUTEX_PROTECTS_DATA(foo_lock, foo_list Foo))

Such annotations do not represent executable code; they are neither statements nor
declarations. They should not be followed by a semicolon. If a compiler or tool that
analyzes C source does not understand this annotation scheme, then the tool will
ignore the annotations. (For such tools, NOTE(x) expands to nothing.)

Annotations may only be placed at particular places in the source. These places are
where the following C constructs would be allowed:

� a top-level declaration (that is, a declaration not within a function or other
construct)

� a declaration or statement within a block (including the block which defines a
function)

� a member of a struct or union.

Annotations are not allowed in any other place. For example, the following are illegal:

x = y + NOTE(...) z ;

typedef NOTE(...) unsigned int uint ;

While NOTE and _NOTE may be used in the places described above, a particular type
of annotation may only be allowed in a subset of those places. For example, a
particular annotation may not be allowed inside a struct or union definition.

NOTE(3EXT)

NAME

SYNOPSIS

DESCRIPTION

324 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

Ordinarily, NOTE should be used rather than _NOTE, since use of _NOTE technically
makes a program non-portable. However, it may be inconvenient to use NOTE for this
purpose in existing code if NOTE is already heavily used for another purpose. In this
case one should use a different macro and write a header file similar to
/usr/include/note.h which maps that macro to _NOTE in the same manner. For
example, the following makes FOO such a macro:

#ifndef _FOO_H
#define _FOO_H
#define FOO _NOTE
#include <sys/note.h>

#endif

Public header files which span projects should use _NOTE rather than NOTE, since
NOTE may already be used by a program which needs to include such a header file.

The actual NoteInfo used in an annotation should be specified by a tool that deals with
program source (see the documentation for the tool to determine which annotations, if
any, it understands).

NoteInfo must have one of the following forms:

NoteName
NoteName(Args)

where NoteName is simply an identifier which indicates the type of annotation, and
Args is something defined by the tool that specifies the particular NoteName. The
general restrictions on Args are that it be compatible with an ANSI C tokenizer and
that unquoted parentheses be balanced (so that the end of the annotation can be
determined without intimate knowledge of any particular annotation).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

note(4), attributes(5)

NOTE(3EXT)

NOTE vs _NOTE

NoteInfo Argument

ATTRIBUTES

SEE ALSO

Extended Library Functions 325

nvlist_add_boolean, nvlist_add_byte, nvlist_add_int16, nvlist_add_uint16,
nvlist_add_int32, nvlist_add_uint32, nvlist_add_int64, nvlist_add_uint64,
nvlist_add_string, nvlist_add_byte_array, nvlist_add_int16_array,
nvlist_add_uint16_array, nvlist_add_int32_array, nvlist_add_uint32_array,
nvlist_add_int64_array, nvlist_add_uint64_array, nvlist_add_string_array – add new
name-value pair to nvlist_t

cc [flag ...] file ...-lnvpair [library ...]

#include <libnvpair.h>

int nvlist_add_boolean(nvlist_t *nvl, char *name);

int nvlist_add_byte(nvlist_t *nvl, char *name, uchar_t val);

int nvlist_add_int16(nvlist_t *nvl, char *name, int16_t val);

int nvlist_add_uint16(nvlist_t *nvl, char *name, uint16_t val);

int nvlist_add_int32(nvlist_t *nvl, char *name, int32_t val);

int nvlist_add_uint32(nvlist_t *nvl, char *name, uint32_t val);

int nvlist_add_int64(nvlist_t *nvl, char *name, int64_t val);

int nvlist_add_uint64(nvlist_t *nvl, char *name, uint64_t val);

int nvlist_add_string(nvlist_t *nvl, char *name, char *val);

int nvlist_add_byte_array(nvlist_t *nvl, char *name, uchar_t *val,
uint_t nelem);

int nvlist_add_int16_array(nvlist_t *nvl, char *name, int16_t *val,
uint_t nelem);

int nvlist_add_uint16_array(nvlist_t *nvl, char *name, uint16_t
*val, uint_t nelem);

int nvlist_add_int32_array(nvlist_t *nvl, char *name, int32_t *val,
uint_t nelem);

int nvlist_add_uint32_array(nvlist_t *nvl, char *name, uint32_t
*val, uint_t nelem);

int nvlist_add_int64_array(nvlist_t *nvl, char *name, int64_t *val,
uint_t nelem);

int nvlist_add_uint64_array(nvlist_t *nvl, char *name, uint64_t
*val, uint_t nelem);

int nvlist_add_string_array(nvlist_t *nvl, char *name, char **val,
uint_t nelem);

nvl The nvlist_t (name-value pair list) to be processed.

name Name of the nvpair (name-value pair).

nelem Number of elements in value (that is, array size).

nvlist_add_boolean(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

326 man pages section 3: Extended Library Functions • Last Revised 10 Apr 2001

val Value or starting address of the array value.

These functions add a new name-value pair to an nvlist_t. The uniqueness of
nvpair name and data types follows the nvflag argument specified for
nvlist_alloc(). See nvlist_alloc(3NVPAIR).

If NV_UNIQUE_NAME was specified for nvflag, existing nvpairs with matching names
are removed before the new nvpair is added.

If NV_UNIQUE_NAME_TYPE was specified for nvflag, existing nvpairs with matching
names and data types are removed before the new nvpair is added.

If neither was specified for nvflag, the new nvpair is unconditionally added at the
end of the list. The library preserves the order of the name-value pairs across packing,
unpacking, and duplication.

These functions return 0 on success and an error value on failure.

These functions will fail if:

EINVAL There is an invalid argument.

ENOMEM There is insufficient memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3NVPAIR), attributes(5)

nvlist_add_boolean(3NVPAIR)

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 327

nvlist_alloc, nvlist_free, nvlist_size, nvlist_pack, nvlist_unpack, nvlist_dup – manage a
name-value pair list

cc [flag ...] file ...-lnvpair [library ...]

#include <libnvpair.h>

int nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int flag);

void nvlist_free(nvlist_t *nvl);

int nvlist_size(nvlist_t *nvl, size_t *size, int encoding);

int nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int
encoding, int flag);

int nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int
flag);

int nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int flag);

nvlp Address of a pointer to nvlist_t.

nvflag Specify bit fields defining nvlist properties:

NV_UNIQUE_NAME The nvpair names are unique.

NV_UNIQUE_NAME_TYPE Name-data type combination is
unique

flag Specify 0. Reserved for future use.

nvl The nvlist_t to be processed.

size Pointer to buffer to contain the encoded size.

bufp Address of buffer to pack nvlist into. Must be 8-byte aligned. If
NULL, library will allocate memory.

buf Buffer containing packed nvlist.

buflen Size of buffer bufp or buf points to.

encoding Encoding method for packing.

The nvlist_alloc() function allocates a new name-value pair list and updates nvlp
to point to the handle. The argument nvflag specifies nvlist properties to remain
persistent across packing, unpacking, and duplication.

The nvlist_free() function frees a name-value pair list.

The nvlist_size() function returns the minimum size of a contiguous buffer large
enough to pack nvl. The encoding parameter specifies the method of encoding when
packing nvl. Supported encoding methods are:

NV_ENCODE_NATIVE Straight bcopy() as described in bcopy(3C).

nvlist_alloc(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

328 man pages section 3: Extended Library Functions • Last Revised 21 Aug 2001

NV_ENCODE_XDR Use XDR encoding, suitable for sending to another
host.

The nvlist_pack() function packs nvl into contiguous memory starting at *bufp.
The encoding parameter specifies the method of encoding (see above).

� If *bufp is not NULL, *bufp is expected to be a caller-allocated buffer of size *buflen.

� If *bufp is NULL, the library will allocate memory and update *bufp to point to the
memory and update *buflen to contain the size of the allocated memory.

The nvlist_unpack() function takes a buffer with a packed nvlist_t and
unpacks it into a searchable nvlist_t. The library allocates memory for nvlist_t.
The caller is responsible for freeing the memory by calling nvlist_free().

The nvlist_dup() function makes a copy of nvl and updates nvlp to point to the
copy.

These functions return 0 on success and an error value on failure.

All five functions will fail if:

EINVAL There is an invalid argument.

The nvlist_alloc(), nvlist_dup(), nvlist_pack(), and nvlist_unpack()
functions will fail if:

ENOMEM There is insufficient memory.

The nvlist_pack() and nvlist_unpack() functions will fail if:

EFAULT An encode/decode error occurs.

ENOTSUP An encode/decode method is not supported.

/*
* Program to read or create an nvlist.
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <libnvpair.h>

/* generate a packed nvlist */
static int
create_packed_nvlist(char **buf, uint_t *buflen, int encode)
{

uchar_t bytes[] = {0xaa, 0xbb, 0xcc, 0xdd};
int16_t int16[] = {0, 1, 2};
int32_t int32[] = {3, 4, 5};
uint64_t uint64[] = {0x100000007, 0x100000008, 0x100000009};
char *strs[] = {"child0", "child1", "child2"};
int err;

nvlist_alloc(3NVPAIR)

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 329

nvlist_t *nvl;

err = nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0); /* allocate list */
if (err) {

(void) printf("nvlist_alloc() failed\
");

return (err);
}

/* add a value of each type */
if ((nvlist_add_boolean(nvl, "bool") != 0) ||

(nvlist_add_byte(nvl, "byte", bytes[0]) != 0) ||
(nvlist_add_int16(nvl, "int16", int16[0]) != 0) ||
(nvlist_add_int32(nvl, "int32", int32[0]) != 0) ||
(nvlist_add_uint64(nvl, "uint64", uint64[0]) != 0) ||
(nvlist_add_string(nvl, "string", strs[0]) != 0) ||
(nvlist_add_byte_array(nvl, "byte_array", bytes, 4) != 0) ||
(nvlist_add_int16_array(nvl, "int16_array", int16, 3) != 0) ||
(nvlist_add_int32_array(nvl, "int32_array", int32, 3) != 0) ||
(nvlist_add_uint64_array(nvl, "uint64_array", uint64, 3) != 0) ||
(nvlist_add_string_array(nvl, "string_array", strs, 3) != 0)) {
nvlist_free(nvl);
return (-1);

}

err = nvlist_size(nvl, buflen, encode);
if (err) {

(void) printf("nvlist_size: %s\
", strerror(err));

return (err);
}

/* pack into contig. memory */
err = nvlist_pack(nvl, buf, buflen, encode, 0);
if (err)

(void) printf("nvlist_pack: %s\
", strerror(err));

/* free the original list */
nvlist_free(nvl);
return (err);

}

/* read a packed nvlist from file or create a packed nvlist */
static int
get_nvlist_buf(char *file, char **buf, size_t *buflen) {

int fd, rv;
struct stat sbuf;

if (file == NULL)
return (create_packed_nvlist(buf, buflen, NV_ENCODE_NATIVE));

/* read from file */
fd = open(file, O_RDONLY);
if (fd == -1) {

(void) printf("cannot open file %s\

nvlist_alloc(3NVPAIR)

330 man pages section 3: Extended Library Functions • Last Revised 21 Aug 2001

", file);
return (-1);

}
(void) fstat(fd, &sbuf);
*buflen = sbuf.st_size;
*buf = malloc(*buflen);
if (*buf == NULL) {

(void) printf("out of memory\
");

return (-1);
}
rv = read(fd, *buf, *buflen);
(void) close(fd);
return (rv);

}

/* selectively print nvpairs */
static void
nvlist_lookup_and_print(nvlist_t *nvl)
{

char **str_val;
int i, int_val;
uint_t nval;

if (nvlist_lookup_int32(nvl, "int32", &int_val) == 0)
(void) printf("int32 = %d\

", int_val);
if (nvlist_lookup_string_array(nvl, "string_array", &str_val, &nval)

== 0) {
(void) printf("string_array =");
for (i = 0; i < nval; i++)

(void) printf(" %s", str_val[i]);
(void) printf("\

");
}

}

void
main(int argc, char *argv[])
{

int c, err;
char *file = NULL, *buf = NULL;
size_t buflen;
nvlist_t *nvl = NULL;

while ((c = getopt(argc, argv, "r:")) != EOF)
switch (c) {
case ’r’:

file = optarg;
break;

default:
(void) printf("Usage: %s [-r file]", argv[0]);
return;

}

if (get_nvlist_buf(file, &buf, &buflen) != 0) {
(void) printf("cannot get packed nvlist buffer\

nvlist_alloc(3NVPAIR)

Extended Library Functions 331

");
return;

}

/* unpack into an nvlist_t */
err = nvlist_unpack(buf, buflen, &nvl, 0);
if (err) {

(void) printf("nvlist_unpack(): %s\
", strerror(err));

return;
}

/* selectively print out attributes */
nvlist_lookup_and_print(nvl);
return;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3NVPAIR), attributes(5)

nvlist_alloc(3NVPAIR)

ATTRIBUTES

SEE ALSO

332 man pages section 3: Extended Library Functions • Last Revised 21 Aug 2001

nvlist_lookup_boolean, nvlist_lookup_byte, nvlist_lookup_int16,
nvlist_lookup_uint16, nvlist_lookup_int32, nvlist_lookup_uint32, nvlist_lookup_int64,
nvlist_lookup_uint64, nvlist_lookup_string, nvlist_lookup_byte_array,
nvlist_lookup_int16_array, nvlist_lookup_uint16_array, nvlist_lookup_int32_array,
nvlist_lookup_uint32_array, nvlist_lookup_int64_array, nvlist_lookup_uint64_array,
nvlist_lookup_string_array – match name and type indicated by the interface name
and retrieve data value

cc [flag ...] file ...-lnvpair [library ...]

#include <libnvpair.h>

int nvlist_lookup_boolean(nvlist_t *nvl, char *name);

int nvlist_lookup_byte(nvlist_t *nvl, char *name, uchar_t *val);

int nvlist_lookup_int16(nvlist_t *nvl, char *name, int16_t *val);

int nvlist_lookup_uint16(nvlist_t *nvl, char *name, uint16_t *val);

int nvlist_lookup_int32(nvlist_t *nvl, char *name, int32_t *val);

int nvlist_lookup_uint32(nvlist_t *nvl, char *name, uint32_t *val);

int nvlist_lookup_int64(nvlist_t *nvl, char *name, int64_t *val);

int nvlist_lookup_uint64(nvlist_t *nvl, char *name, uint64_t *val);

int nvlist_lookup_string(nvlist_t *nvl, char *name, char **val);

int nvlist_lookup_byte_array(nvlist_t *nvl, char *name, uchar_t
**val, uint_t *nelem);

int nvlist_lookup_int16_array(nvlist_t *nvl, char *name, int16_t
**val, uint_t *nelem);

int nvlist_lookup_uint16_array(nvlist_t *nvl, char *name, uint16_t
**val, uint_t *nelem);

int nvlist_lookup_int32_array(nvlist_t *nvl, char *name, int32_t
**val, uint_t *nelem);

int nvlist_lookup_uint32_array(nvlist_t *nvl, char *name, uint32_t
**val, uint_t *nelem);

int nvlist_lookup_int64_array(nvlist_t *nvl, char *name, int64_t
**val, uint_t *nelem);

int nvlist_lookup_uint64_array(nvlist_t *nvl, char *name, uint64_t
**val, uint_t *nelem);

int nvlist_lookup_string_array(nvlist_t *nvl, char *name, char
***val, uint_t *nelem);

nvl The nvlist_t to be processed.

name Name of the name-value pair to search.

nvlist_lookup_boolean(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 333

nelem Address to store the number of elements in value.

val Address to store the starting address of the value.

These functions find the nvpair (name-value pair) that matches the name and type as
indicated by the interface name. If one is found, nelem and val are modified to contain
the number of elements in value and the starting address of data, respectively.

These functions work for nvlists (lists of name-value pairs) allocated with
NV_UNIQUE_NAME or NV_UNIQUE_NAME_TYPE specified in nvlist_alloc(). (See
nv_list_alloc(3NVPAIR).) If this is not the case, the function returns ENOTSUP
because the list potentially contains multiple nvpairs with the same name and type.

All memory required for storing the array elements, including string value, are
managed by the library. References to such data remain valid until nvlist_free() is
called on nvl.

Upon successful completion, 0 is returned. Otherwise, –1 is returned and errno is set
to indicate the error.

These functions will fail if:

EINVAL There is an invalid argument.

ENOENT No matching name-value pair is found

ENOTSUP An encode/decode method is not supported.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3NVPAIR), attributes(5)

nvlist_lookup_boolean(3NVPAIR)

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

334 man pages section 3: Extended Library Functions • Last Revised 26 September 2000

nvlist_next_nvpair, nvpair_name, nvpair_type – return data regarding name-value
pairs

cc [flag ...] file ...-lnvpair [library ...]

#include <libnvpair.h>

nvpair_t *nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvpair);

char *nvpair_name(nvpair_t *nvpair);

data_type_t nvpair_type(nvpair_t *nvpair);

nvl The nvlist_t to be processed.

nvpair Handle to a name-value pair.

The nvlist_next_nvpair() function returns a handle to the next nvpair in the
list following nvpair. If nvpair is NULL, the first pair is returned. If nvpair is the
last pair in the nvlist, NULL is returned.

The nvpair_name() function returns a string containing the name of nvpair.

The nvpair_type() function retrieves the value of the nvpair in the form of
enumerated type data_type_t. This is used to determine the appropriate
nvpair_*() function to call for retrieving the value.

Upon successful completion, nvpair_name() returns a string containing the name of
the name-value pair.

Upon successful completion, nvpair_type() returns an enumerated data type
data_type_t. Possible values for data_type_t are as follows:

DATA_TYPE_BOOLEAN
DATA_TYPE_BYTE
DATA_TYPE_INT16
DATA_TYPE_UINT16
DATA_TYPE_INT32
DATA_TYPE_UINT32
DATA_TYPE_INT64
DATA_TYPE_UINT64
DATA_TYPE_STRING
DATA_TYPE_BYTE_ARRAY
DATA_TYPE_INT16_ARRAY
DATA_TYPE_UINT16_ARRAY
DATA_TYPE_INT32_ARRAY
DATA_TYPE_UINT32_ARRAY
DATA_TYPE_INT64_ARRAY
DATA_TYPE_UINT64_ARRAY
DATA_TYPE_STRING_ARRAY

Upon reaching the end of a list, nvlist_next_pair() returns NULL. Otherwise, the
function returns a handle to next nvpair in the list.

No errors are defined.

nvlist_next_nvpair(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 335

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3NVPAIR), attributes(5)

nvlist_next_nvpair(3NVPAIR)

ATTRIBUTES

SEE ALSO

336 man pages section 3: Extended Library Functions • Last Revised 16 Aug 2001

nvlist_remove, nvlist_remove_all – remove name-value pairs

cc [flag ...] file ...-lnvpair [library ...]

#include <libnvpair.h>

void nvlist_remove(nvlist_t *nvl, char *name, data_type_t type);

void nvlist_remove_all(nvlist_t *nvl, char *name);

nvl The nvlist_t to be processed.

name Name of the name-value pair to be removed.

type Data type of the nvpair to be removed.

The nvlist_remove() function removes the first occurrence of nvpair that
matches the name and the type.

The nvlist_remove_all() function removes all occurrences of nvpair that match
the name, regardless of type.

No return values are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3NVPAIR), attributes(5)

nvlist_remove(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 337

nvpair_value_byte, nvpair_value_int16, nvpair_value_uint16, nvpair_value_int32,
nvpair_value_uint32, nvpair_value_int64, nvpair_value_uint64, nvpair_value_string,
nvpair_value_byte_array, nvpair_value_int16_array, nvpair_value_uint16_array,
nvpair_value_int32_array, nvpair_value_uint32_array, nvpair_value_int64_array,
nvpair_value_uint64_array, nvpair_value_string_array – retrieve value from a
name-value pair

cc [flag ...] file ...-lnvpair [library ...]

#include <libnvpair.h>

int nvpair_value_byte(nvpair_t *nvpair, uchar_t *val);

int nvpair_value_int16(nvpair_t *nvpair, int16_t *val);

int nvpair_value_uint16(nvpair_t *nvpair, uint16_t *val);

int nvpair_value_int32(nvpair_t *nvpair, int32_t *val);

int nvpair_value_uint32(nvpair_t *nvpair, uint32_t *val);

int nvpair_value_int64(nvpair_t *nvpair, int64_t *val);

int nvpair_value_uint64(nvpair_t *nvpair, uint64_t *val);

int nvpair_value_string(nvpair_t *nvpair, char **val);

int nvpair_value_byte_array(nvpair_t *nvpair, uchar_t **val, uint_t
*nelem);

int nvpair_value_int16_array(nvpair_t *nvpair, int16_t **val,
uint_t *nelem);

int nvpair_value_uint16_array(nvpair_t *nvpair, uint16_t **val,
uint_t *nelem);

int nvpair_value_int32_array(nvpair_t *nvpair, int32_t **val,
uint_t *nelem);

int nvpair_value_uint32_array(nvpair_t *nvpair, uint32_t **val,
uint_t *nelem);

int nvpair_value_int64_array(nvpair_t *nvpair, int64_t **val,
uint_t *nelem);

int nvpair_value_uint64_array(nvpair_t *nvpair, uint64_t **val,
uint_t *nelem);

int nvpair_value_string_array(nvpair_t *nvpair, char ***val, uint_t
*nelem);

nvpair Name-value pair to be processed.

nelem Address to store the number of elements in value.

val Address to store the value or the starting address of the array
value.

nvpair_value_byte(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

338 man pages section 3: Extended Library Functions • Last Revised 10 Apr 2001

These functions retrieve the value of nvpair. The data type of nvpair must match the
interface name for the call to be successful.

There is no nvpair_value_boolean(); the existence of the name implies the value
is true.

For array data types, including string, the memory containing the data is managed by
the library and references to the value remains valid until nvlist_free() is called
on the nvlist_t from which nvpair is obtained. See nvlist_free(3NVPAIR).

These functions return 0 on success and an error value on failure.

These functions will fail if:

EINVAL Either one of the arguments is NULL or the type of nvpair does not
match the function name.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), attributes(5)

nvpair_value_byte(3NVPAIR)

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 339

p2open, p2close – open, close pipes to and from a command

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int p2open(const char *cmd, FILE *fp[2]);

int p2close(FILE *fp[2]);

p2open() forks and execs a shell running the command line pointed to by cmd. On
return, fp[0] points to a FILE pointer to write the command’s standard input and
fp[1] points to a FILE pointer to read from the command’s standard output. In this
way the program has control over the input and output of the command.

The function returns 0 if successful; otherwise, it returns −1.

p2close() is used to close the file pointers that p2open() opened. It waits for the
process to terminate and returns the process status. It returns 0 if successful;
otherwise, it returns −1.

A common problem is having too few file descriptors. p2close() returns −1 if the
two file pointers are not from the same p2open().

EXAMPLE 1 Example of file descriptors.

#include <stdio.h>
#include <libgen.h>

main(argc,argv)
int argc;
char **argv;
{

FILE *fp[2];
pid_t pid;
char buf[16];

pid=p2open("/usr/bin/cat", fp);
if (pid == −1) {
fprintf(stderr, "p2open failed\n");
exit(1);

}
write(fileno(fp[0]),"This is a test\n", 16);
if(read(fileno(fp[1]), buf, 16) <=0)

fprintf(stderr, "p2open failed\n");
else

write(1, buf, 16);
(void)p2close(fp);

}

See attributes(5) for descriptions of the following attributes:

p2open(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

340 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

fclose(3C), popen(3C), setbuf(3C), attributes(5)

Buffered writes on fp[0] can make it appear that the command is not listening.
Judiciously placed fflush() calls or unbuffering fp[0] can be a big help; see
fclose(3C).

Many commands use buffered output when connected to a pipe. That, too, can make it
appear as if things are not working.

Usage is not the same as for popen(), although it is closely related.

p2open(3GEN)

SEE ALSO

NOTES

Extended Library Functions 341

pam – PAM (Pluggable Authentication Module)

#include <security/pam_appl.h>

cc [flag...] file ... -lpam [library ...]

The PAM framework, libpam, consists of an interface library and multiple
authentication service modules. The PAM interface library is the layer implementing
the Application Programming Interface (API). The authentication service modules are
a set of dynamically loadable objects invoked by the PAM API to provide a particular
type of user authentication. PAM gives system administrators the flexibility of
choosing any authentication service available on the system to perform authentication.
This framework also allows new authentication service modules to be plugged in and
made available without modifying the applications.

The PAM library interface consists of six categories of functions, the names for which
all start with the prefix pam_.

The first category contains functions for establishing and terminating an
authentication activity, which are pam_start(3PAM) and pam_end(3PAM). The
functions pam_set_data(3PAM) and pam_get_data(3PAM) maintain module
specific data. The functions pam_set_item(3PAM) and pam_get_item(3PAM)
maintain state information. pam_strerror(3PAM) is the function that returns error
status information.

The second category contains the functions that authenticate an individual user and
set the credentials of the user, pam_authenticate(3PAM) and
pam_setcred(3PAM).

The third category of PAM interfaces is account management. The function
pam_acct_mgmt(3PAM) checks for password aging and access-hour restrictions.

Category four contains the functions that perform session management after access to
the system has been granted. See pam_open_session(3PAM) and
pam_close_session(3PAM)

The fifth category consists of the function that changes authentication tokens,
pam_chauthtok(3PAM). An authentication token is the object used to verify the
identity of the user. In UNIX, an authentication token is a user’s password.

The sixth category of functions can be used to set values for PAM environment
variables. See pam_putenv(3PAM), pam_getenv(3PAM), and
pam_getenvlist(3PAM).

The pam_*() interfaces are implemented through the library libpam. For each of
the categories listed above, excluding categories one and six, dynamically loadable
shared modules exist that provides the appropriate service layer functionality upon
demand. The functional entry points in the service layer start with the pam_sm_
prefix. The only difference between the pam_sm_*() interfaces and their
corresponding pam_ interfaces is that all the pam_sm_*() interfaces require extra

pam(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Interface Overview

342 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

parameters to pass service−specific options to the shared modules. Refer to
pam_sm(3PAM) for an overview of the PAM service module APIs.

A sequence of calls sharing a common set of state information is referred to as an
authentication transaction. An authentication transaction begins with a call to
pam_start(). pam_start() allocates space, performs various initialization
activities, and assigns a PAM authentication handle to be used for subsequent calls to
the library.

After initiating an authentication transaction, applications can invoke
pam_authenticate() to authenticate a particular user, and pam_acct_mgmt() to
perform system entry management. For example, the application may want to
determine if the user’s password has expired.

If the user has been successfully authenticated, the application calls pam_setcred()
to set any user credentials associated with the authentication service. Within one
authentication transaction (between pam_start() and pam_end()), all calls to the
PAM interface should be made with the same authentication handle returned by
pam_start(). This is necessary because certain service modules may store
module-specific data in a handle that is intended for use by other modules. For
example, during the call to pam_authenticate(), service modules may store data
in the handle that is intended for use by pam_setcred().

To perform session management, applications call pam_open_session().
Specifically, the system may want to store the total time for the session. The function
pam_close_session() closes the current session.

When necessary, applications can call pam_get_item() and pam_set_item() to
access and to update specific authentication information. Such information may
include the current username.

To terminate an authentication transaction, the application simply calls pam_end(),
which frees previously allocated space used to store authentication information.

The authentication service in PAM does not communicate directly with the user;
instead it relies on the application to perform all such interactions. The application
passes a pointer to the function, conv(), along with any associated application data
pointers, through a pam_conv structure to the authentication service when it initiates
an authentication transaction, via a call to pam_start(). The service will then use the
function, conv(), to prompt the user for data, output error messages, and display text
information. Refer to pam_start(3PAM) for more information.

The PAM architecture enables authentication by multiple authentication services
through stacking. System entry applications, such as login(1), stack multiple service
modules to authenticate users with multiple authentication services. The order in
which authentication service modules are stacked is specified in the configuration file,
pam.conf(4). A system administrator determines this ordering, and also determines
whether the same password can be used for all authentication services.

pam(3PAM)

Stateful Interface

Application−Authentication
Service Interactive

Interface

Stacking Multiple
Schemes

Extended Library Functions 343

The authentication library, /usr/lib/libpam.so.1, implements the framework
interface. Various authentication services are implemented by their own loadable
modules whose paths are specified through the pam.conf(4) file.

The PAM functions may return one of the following generic values, or one of the
values defined in the specific man pages:

PAM_SUCCESS The function returned successfully.

PAM_OPEN_ERR dlopen() failed when dynamically loading a service
module.

PAM_SYMBOL_ERR Symbol not found.

PAM_SERVICE_ERR Error in service module.

PAM_SYSTEM_ERR System error.

PAM_BUF_ERR Memory buffer error.

PAM_CONV_ERR Conversation failure.

PAM_PERM_DENIED Permission denied.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

login(1), pam_authenticate(3PAM), pam_chauthtok(3PAM),
pam_open_session(3PAM), pam_set_item(3PAM), pam_setcred(3PAM),
pam_sm(3PAM), pam_start(3PAM), pam_strerror(3PAM), pam.conf(4),
attributes(5)

The interfaces in libpam() are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam(3PAM)

Administrative
Interface

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

344 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_acct_mgmt – perform PAM account validation procedures

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_acct_mgmt(pam_handle_t *pamh, int flags);

The pam_acct_mgmt() function is called to determine if the current user’s account is
valid. It checks for password and account expiration, and verifies access hour
restrictions. This function is typically called after the user has been authenticated with
pam_authenticate(3PAM).

The pamh argument is an authentication handle obtained by a prior call to
pam_start(). The following flags may be set in the flags field:

PAM_SILENT The account management service should
not generate any messages.

PAM_DISALLOW_NULL_AUTHTOK The account management service should
return PAM_NEW_AUTHTOK_REQD if
the user has a null authentication token.

Upon successful completion, PAM_SUCCESS is returned. In addition to the error return
values described in pam(3PAM), the following values may be returned:

PAM_USER_UNKNOWN User not known to underlying account
management module.

PAM_AUTH_ERR Authentication failure.

PAM_NEW_AUTHTOK_REQD New authentication token required. This is
normally returned if the machine security
policies require that the password should be
changed because the password is NULL or
has aged.

PAM_ACCT_EXPIRED User account has expired.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_start(3PAM), libpam(3LIB),
attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_acct_mgmt(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 345

pam_authenticate – perform authentication within the PAM framework

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_authenticate(pam_handle_t *pamh, int flags);

The pam_authenticate() function is called to authenticate the current user. The
user is usually required to enter a password or similar authentication token depending
upon the authentication service configured within the system. The user in question
should have been specified by a prior call to pam_start() or pam_set_item().

The following flags may be set in the flags field:

PAM_SILENT Authentication service should not generate
any messages.

PAM_DISALLOW_NULL_AUTHTOK The authentication service should return
PAM_AUTH_ERROR if the user has a null
authentication token.

Upon successful completion, PAM_SUCCESS is returned. In addition to the error return
values described in pam(3PAM), the following values may be returned:

PAM_AUTH_ERR Authentication failure.

PAM_CRED_INSUFFICIENT Cannot access authentication data due to
insufficient credentials.

PAM_AUTHINFO_UNAVAIL Underlying authentication service cannot
retrieve authentication information.

PAM_USER_UNKNOWN User not known to the underlying
authentication module.

PAM_MAXTRIES An authentication service has maintained a
retry count which has been reached. No
further retries should be attempted.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_open_session(3PAM), pam_set_item(3PAM),
pam_setcred(3PAM), pam_start(3PAM), libpam(3LIB), attributes(5)

In the case of authentication failures due to an incorrect username or password, it is
the responsibility of the application to retry pam_authenticate() and to maintain

pam_authenticate(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

346 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

the retry count. An authentication service module may implement an internal retry
count and return an error PAM_MAXTRIES if the module does not want the application
to retry.

If the PAM framework cannot load the authentication module, then it will return
PAM_ABORT. This indicates a serious failure, and the application should not attempt to
retry the authentication.

For security reasons, the location of authentication failures is hidden from the user.
Thus, if several authentication services are stacked and a single service fails,
pam_authenticate() requires that the user re-authenticate each of the services.

A null authentication token in the authentication database will result in successful
authentication unless PAM_DISALLOW_NULL_AUTHTOK was specified. In such cases,
there will be no prompt to the user to enter an authentication token.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_authenticate(3PAM)

Extended Library Functions 347

pam_chauthtok – perform password related functions within the PAM framework

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_chauthtok(pam_handle_t *pamh, const intflags);

The pam_chauthtok() function is called to change the authentication token
associated with a particular user referenced by the authentication handle pamh.

The following flag may be passed in to pam_chauthtok():

PAM_SILENT The password service should not generate
any messages.

PAM_CHANGE_EXPIRED_AUTHTOK The password service should only update
those passwords that have aged. If this flag
is not passed, all password services should
update their passwords.

Upon successful completion of the call, the authentication token of the user will be
changed in accordance with the password service configured in the system through
pam.conf(4).

Upon successful completion, PAM_SUCCESS is returned. In addition to the error return
values described in pam(3PAM), the following values may be returned:

PAM_PERM_DENIED No permission.

PAM_AUTHTOK_ERR Authentication token manipulation error.

PAM_AUTHTOK_RECOVERY_ERR Authentication information cannot be
recovered.

PAM_AUTHTOK_LOCK_BUSY Authentication token lock busy.

PAM_AUTHTOK_DISABLE_AGING Authentication token aging disabled.

PAM_USER_UNKNOWN User unknown to password service.

PAM_TRY_AGAIN Preliminary check by password service
failed.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

login(1), passwd(1), pam(3PAM), pam_authenticate(3PAM), pam_start(3PAM),
attributes

pam_chauthtok(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

348 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

The flag PAM_CHANGE_EXPIRED_AUTHTOK is typically used by a login application
which has determined that the user’s password has aged or expired. Before allowing
the user to login, the login application may invoke pam_chauthtok() with this flag
to allow the user to update the password. Typically, applications such as passwd(1)
should not use this flag.

The pam_chauthtok() functions performs a preliminary check before attempting to
update passwords. This check is performed for each password module in the stack as
listed in pam.conf(4). The check may include pinging remote name services to
determine if they are available. If pam_chauthtok() returns PAM_TRY_AGAIN, then
the check has failed, and passwords are not updated.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_chauthtok(3PAM)

NOTES

Extended Library Functions 349

pam_getenv – returns the value for a PAM environment name

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

char *pam_getenv(pam_handle_t *pamh, const char *name);

The pam_getenv() function searches the PAM handle pamh for a value associated
with name. If a value is present, pam_getenv() makes a copy of the value and
returns a pointer to the copy back to the calling application. If no such entry exists,
pam_getenv() returns NULL. It is the responsibility of the calling application to free
the memory returned by pam_getenv().

If successful, pam_getenv() returns a copy of the value associated with name in the
PAM handle; otherwise, it returns a NULL pointer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_getenvlist(3PAM), pam_putenv(3PAM), libpam(3LIB),
attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_getenv(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

350 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_getenvlist – returns a list of all the PAM environment variables

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

char **pam_getenvlist(pam_handle_t *pamh);

The pam_getenvlist() function returns a list of all the PAM environment variables
stored in the PAM handle pamh. The list is returned as a null-terminated array of
pointers to strings. Each string contains a single PAM environment variable of the
form name=value. The list returned is a duplicate copy of all the environment variables
stored in pamh. It is the responsibility of the calling application to free the memory
returned by pam_getenvlist().

If successful, pam_getenvlist() returns in a null-terminated array a copy of all the
PAM environment variables stored in pamh. Otherwise, pam_getenvlist() returns
a null pointer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_getenv(3PAM), pam_putenv(3PAM), libpam(3LIB),
attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_getenvlist(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 351

pam_get_user – PAM routine to retrieve user name

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_get_user(pam_handle_t *pamh, char **user, const char
*prompt);

The pam_get_user() function is used by PAM service modules to retrieve the
current user name from the PAM handle. If the user name has not been set with
pam_start() or pam_set_item(), the PAM conversation function will be used to
prompt the user for the user name with the string "prompt". If prompt is NULL, then
pam_get_item() is called and the value of PAM_USER_PROMPT is used for
prompting. If the value of PAM_USER_PROMPT is NULL, the following default prompt
is used:

Please enter user name:

After the user name is gathered by the conversation function, pam_set_item() is
called to set the value of PAM_USER. By convention, applications that need to prompt
for a user name should call pam_set_item() and set the value of
PAM_USER_PROMPT before calling pam_authenticate(). The service module’s
pam_sm_authenticate() function will then call pam_get_user() to prompt for
the user name.

Note that certain PAM service modules, such as a smart card module, may override
the value of PAM_USER_PROMPT and pass in their own prompt. Applications that call
pam_authenticate() multiple times should set the value of PAM_USER to NULL
with pam_set_item() before calling pam_authenticate(), if they want the user
to be prompted for a new user name each time. The value of user retrieved by
pam_get_user() should not be modified or freed. The item will be released by
pam_end().

Upon success, pam_get_user() returns PAM_SUCCESS; otherwise it returns an error
code. Refer to pam(3PAM) for information on error related return values.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_end(3PAM), pam_get_item(3PAM),
pam_set_item(3PAM), pam_sm(3PAM), pam_sm_authenticate(3PAM),
pam_start(3PAM), attributes(5)

pam_get_user(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

352 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_get_user(3PAM)

NOTES

Extended Library Functions 353

pam_open_session, pam_close_session – perform PAM session creation and
termination operations

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_open_session(pam_handle_t *pamh, int flags);

int pam_close_session(pam_handle_t *pamh, int flags);

The pam_open_session() function is called after a user has been successfully
authenticated. See pam_authenticate(3PAM) and pam_acct_mgmt(3PAM). It is
used to notify the session modules that a new session has been initiated. All programs
that use the pam(3PAM) library should invoke pam_open_session() when
beginning a new session. Upon termination of this activity, pam_close_session()
should be invoked to inform pam(3PAM) that the session has terminated.

The pamh argument is an authentication handle obtained by a prior call to
pam_start(). The following flag may be set in the flags field for
pam_open_session() and pam_close_session():

PAM_SILENT The session service should not generate any messages.

Upon successful completion, PAM_SUCCESS is returned. In addition to the return
values defined in pam(3PAM), the following value may be returned on error:

PAM_SESSION_ERR Cannot make or remove an entry for the specified
session.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

getutxent(3C), pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_start(3PAM), attributes(5)

In many instances, the pam_open_session() and pam_close_session() calls
may be made by different processes. For example, in UNIX the login process opens a
session, while the init process closes the session. In this case, UTMP/WTMP entries
may be used to link the call to pam_close_session() with an earlier call to
pam_open_session(). This is possible because UTMP/WTMP entries are uniquely
identified by a combination of attributes, including the user login name and device
name, which are accessible through the PAM handle, pamh. The call to
pam_open_session() should precede UTMP/WTMP entry management, and the
call to pam_close_session() should follow UTMP/WTMP exit management.

pam_open_session(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

354 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_open_session(3PAM)

Extended Library Functions 355

pam_putenv – change or add a value to the PAM environment

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_putenv(pam_handle_t *pamh, const char *name_value);

The pam_putenv() function sets the value of the PAM environment variable name
equal to value either by altering an existing PAM variable or by creating a new one.

The name_value argument points to a string of the form name=value. A call to
pam_putenv() does not immediately change the environment. All name_value pairs
are stored in the PAM handle pamh. An application such as login(1) may make a call
to pam_getenv(3PAM) or pam_getenvlist(3PAM) to retrieve the PAM
environment variables saved in the PAM handle and set them in the environment if
appropriate. login will not set PAM environment values which overwrite the values
for SHELL, HOME, LOGNAME, MAIL, CDPATH, IFS, and PATH. Nor will login set PAM
environment values which overwrite any value that begins with LD_.

If name_value equals NAME=, then the value associated with NAME in the PAM handle
will be set to an empty value. If name_value equals NAME, then the environment
variable NAME will be removed from the PAM handle.

The pam_putenv() function may return one of the following values:

PAM_SUCCESS The function returned successfully.

PAM_OPEN_ERR dlopen() failed when dynamically loading a service
module.

PAM_SYMBOL_ERR Symbol not found.

PAM_SERVICE_ERR Error in service module.

PAM_SYSTEM_ERR System error.

PAM_BUF_ERR Memory buffer error.

PAM_CONV_ERR Conversation failure.

PAM_PERM_DENIED Permission denied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

dlopen(3DL), pam(3PAM), pam_getenv(3PAM), pam_getenvlist(3PAM),
libpam(3LIB), attributes(5)

pam_putenv(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

356 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_putenv(3PAM)

NOTES

Extended Library Functions 357

pam_setcred – modify/delete user credentials for an authentication service

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_setcred(pam_handle_t *pamh, int flags);

The pam_setcred() function is used to establish, modify, or delete user credentials.
It is typically called after the user has been authenticated and after a session has been
opened. See pam_authenticate(3PAM), pam_acct_mgmt(3PAM), and
pam_open_session(3PAM).

The user is specified by a prior call to pam_start() or pam_set_item(), and is
referenced by the authentication handle, pamh. The following flags may be set in the
flags field. Note that the first four flags are mutually exclusive:

PAM_ESTABLISH_CRED Set user credentials for an authentication
service.

PAM_DELETE_CRED Delete user credentials associated with an
authentication service.

PAM_REINITIALIZE_CRED Reinitialize user credentials.

PAM_REFRESH_CRED Extend lifetime of user credentials.

PAM_SILENT Authentication service should not generate
any messages.

If no flag is set, PAM_ESTABLISH_CRED is used as the default.

Upon success, pam_setcred() returns PAM_SUCCESS. In addition to the error return
values described in pam(3PAM) the following values may be returned upon error:

PAM_CRED_UNAVAIL Underlying authentication service can not
retrieve user credentials unavailable.

PAM_CRED_EXPIRED User credentials expired.

PAM_USER_UNKNOWN User unknown to underlying authentication
service.

PAM_CRED_ERR Failure setting user credentials.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam_setcred(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

358 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_open_session(3PAM), pam_set_item(3PAM), pam_start(3PAM),
libpam(3LIB), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_setcred(3PAM)

SEE ALSO

NOTES

Extended Library Functions 359

pam_set_data, pam_get_data – PAM routines to maintain module specific state

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_set_data(pam_handle_t *pamh, const char *module_data_name,
void *data, void (*cleanup) (pam_handle_t *pamh, void *data, int
pam_end_status));

int pam_get_data(const pam_handle_t *pamh, const char
*module_data_name, const void **data);

The pam_set_data() and pam_get_data() functions allow PAM service modules
to access and update module specific information as needed. These functions should
not be used by applications.

The pam_set_data() function stores module specific data within the PAM handle
pamh. The module_data_name argument uniquely identifies the data, and the data
argument represents the actual data. The module_data_name argument should be
unique across all services.

The cleanup function frees up any memory used by the data after it is no longer
needed, and is invoked by pam_end(). The cleanup function takes as its arguments a
pointer to the PAM handle, pamh, a pointer to the actual data, data, and a status code,
pam_end_status. The status code determines exactly what state information needs to be
purged.

If pam_set_data() is called and module data already exists from a prior call to
pam_set_data() under the same module_data_name, then the existing data is replaced
by the new data, and the existing cleanup function is replaced by the new cleanup
function.

The pam_get_data() function retrieves module-specific data stored in the PAM
handle, pamh, identified by the unique name, module_data_name. The data argument is
assigned the address of the requested data. The data retrieved by pam_get_data()
should not be modified or freed. The data will be released by pam_end().

In addition to the return values listed in pam(3PAM), the following value may also be
returned:

PAM_NO_MODULE_DATA No module specific data is present.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam_set_data(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

360 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam(3PAM), pam_end(3PAM), libpam(3LIB), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_set_data(3PAM)

SEE ALSO

NOTES

Extended Library Functions 361

pam_set_item, pam_get_item – authentication information routines for PAM

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_set_item(pam_handle_t *pamh, int item_type, const void
*item);

int pam_get_item(const pam_handle_t *pamh, int item_type, void
**item);

The pam_get_item() and pam_set_item() functions allow applications and PAM
service modules to access and to update PAM information as needed. The information
is specified by item_type, and can be one of the following:

PAM_SERVICE The service name.

PAM_USER The user name.

PAM_AUTHTOK The user authentication token.

PAM_OLDAUTHTOK The old user authentication token.

PAM_TTY The tty name.

PAM_RHOST The remote host name.

PAM_RUSER The remote user name.

PAM_CONV The pam_conv structure.

PAM_USER_PROMPT The default prompt used by pam_get_user().

For security reasons, the item_type PAM_AUTHTOK and PAM_OLDAUTHTOK are available
only to the module providers. The authentication module, account module, and
session management module should treat PAM_AUTHTOK as the current authentication
token and ignore PAM_OLDAUTHTOK. The password management module should treat
PAM_OLDAUTHTOK as the current authentication token and PAM_AUTHTOK as the new
authentication token.

The pam_set_item() function is passed the authentication handle, pamh, returned
by pam_start(), a pointer to the object, item, and its type, item_type. If successful,
pam_set_item() copies the item to an internal storage area allocated by the
authentication module and returns PAM_SUCCESS. An item that had been previously
set will be overwritten by the new value.

The pam_get_item() function is passed the authentication handle, pamh, returned
by pam_start(), an item_type, and the address of the pointer, item, which is assigned
the address of the requested object. The object data is valid until modified by a
subsequent call to pam_set_item() for the same item_type, or unless it is modified
by any of the underlying service modules. If the item has not been previously set,
pam_get_item() returns a null pointer. An item retrieved by pam_get_item()
should not be modified or freed. The item will be released by pam_end().

pam_set_item(3PAM)

NAME

SYNOPSIS

DESCRIPTION

362 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

Upon success, pam_get_item() returns PAM_SUCCESS; otherwise it returns an error
code. Refer to pam(3PAM) for information on error related return values.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_chauthtok(3PAM), pam_get_user(3PAM), pam_open_session(3PAM),
pam_setcred(3PAM), pam_start(3PAM), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_set_item(3PAM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 363

pam_sm – PAM Service Module APIs

#include <security/pam_appl.h>
#include <security/pam_modules.h>

cc [flag ...] file ... -lpam [library ...]

PAM gives system administrators the flexibility of choosing any authentication service
available on the system to perform authentication. The framework also allows new
authentication service modules to be plugged in and made available without
modifying the applications.

The PAM framework, libpam, consists of an interface library and multiple
authentication service modules. The PAM interface library is the layer implementing
the Application Programming Interface (API). The authentication service modules are
a set of dynamically loadable objects invoked by the PAM API to provide a particular
type of user authentication.

This manual page gives an overview of the PAM APIs for the service modules.

The PAM service module interface consists of functions which can be grouped into
four categories. The names for all the authentication library functions start with
pam_sm. The only difference between the pam_*() interfaces and their corresponding
pam_sm_*() interfaces is that all the pam_sm_*() interfaces require extra parameters
to pass service-specific options to the shared modules. They are otherwise identical.

The first category contains functions to authenticate an individual user,
pam_sm_authenticate(3PAM), and to set the credentials of the user,
pam_sm_setcred(3PAM). These back-end functions implement the functionality of
pam_authenticate(3PAM) and pam_setcred(3PAM) respectively.

The second category contains the function to do account management:
pam_sm_acct_mgmt(3PAM). This includes checking for password aging and
access-hour restrictions. This back-end function implements the functionality of
pam_acct_mgmt(3PAM).

The third category contains the functions pam_sm_open_session(3PAM) and
pam_sm_close_session(3PAM) to perform session management after access to the
system has been granted. These back-end functions implement the functionality of
pam_open_session(3PAM) and pam_close_session(3PAM), respectively.

The fourth category consists a function to change authentication tokens
pam_sm_chauthtok(3PAM). This back-end function implements the functionality of
pam_chauthtok(3PAM).

A sequence of calls sharing a common set of state information is referred to as an
authentication transaction. An authentication transaction begins with a call to
pam_start(). pam_start() allocates space, performs various initialization
activities, and assigns an authentication handle to be used for subsequent calls to the

pam_sm(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Interface Overview

Stateful Interface

364 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

library. Note that the service modules do not get called or initialized when
pam_start() is called. The modules are loaded and the symbols resolved upon first
use of that function.

The PAM handle keeps certain information about the transaction that can be accessed
through the pam_get_item() API. Though the modules can also use
pam_set_item() to change any of the item information, it is recommended that
nothing be changed except PAM_AUTHTOK and PAM_OLDAUTHTOK.

If the modules want to store any module specific state information then they can use
the pam_set_data(3PAM) function to store that information with the PAM handle.
The data should be stored with a name which is unique across all modules and
module types. For example, SUNW_PAM_UNIX_AUTH_userid can be used as a name
by the UNIX module to store information about the state of user’s authentication.
Some modules use this technique to share data across two different module types.

Also, during the call to pam_authenticate(), the UNIX module may store the
authentication status (success or reason for failure) in the handle, using a unique name
such as SUNW_SECURE_RPC_DATA. This information is intended for use by
pam_setcred().

During the call to pam_acct_mgmt(), the account modules may store data in the
handle to indicate which passwords have aged. This information is intended for use
by pam_chauthtok().

The module can also store a cleanup function associated with the data. The PAM
framework calls this cleanup function, when the application calls pam_end() to close
the transaction.

The PAM service modules do not communicate directly with the user; instead they
rely on the application to perform all such interactions. The application passes a
pointer to the function, conv(), along with any associated application data pointers,
through the pam_conv structure when it initiates an authentication transaction (via a
call to pam_start(). The service module will then use the function, conv(), to
prompt the user for data, output error messages, and display text information. Refer to
pam_start(3PAM) for more information. The modules are responsible for the
localization of all messages to the user.

By convention, applications that need to prompt for a user name should call
pam_set_item() and set the value of PAM_USER_PROMPT before calling
pam_authenticate(). The service module’s pam_sm_authenticate() function
will then call pam_get_user() to prompt for the user name. Note that certain PAM
service modules (such as a smart card module) may override the value of
PAM_USER_PROMPT and pass in their own prompt.

Though the PAM framework enforces no rules about the module’s names, location,
options and such, there are certain conventions that all module providers are expected
to follow.

pam_sm(3PAM)

Interaction with
the User

CONVENTIONS

Extended Library Functions 365

By convention, the modules should be located in the /usr/lib/security directory.
Additional modules may be located in /opt/<pkg>/lib.

By convention, the modules are named
pam_<service_name>_<module_type>.so.1. If the given module implements
more than one module type (for example, pam_unix.so.1 module), then the
module_type suffix should be dropped.

For every such module, there should be a corresponding manual page in section 5
which should describe the module_type it supports, the functionality of the module,
along with the options it supports. The dependencies should be clearly identified to
the system administrator. For example, it should be made clear whether this module is
a stand-alone module or depends upon the presence of some other module. One
should also specify whether this module should come before or after some other
module in the stack.

By convention, the modules should support the following options:

debug Syslog debugging information at LOG_DEBUG level. Be
careful as to not log any sensitive information such as
passwords.

nowarn Turn off warning messages such as "password is about
to expire."

In addition, it is recommended that the auth and the password module support the
following options:

use_first_pass Instead of prompting the user for the password, use the
user’s initial password (entered when the user was
authenticated to the first authentication module in the
stack) for authentication. If the passwords do not
match, or if no password has been entered, return
failure and do not prompt the user for a password.
Support for this scheme allows the user to type only
one password for multiple schemes.

try_first_pass Instead of prompting the user for the password, use the
user’s initial password (entered when the user was
authenticated to the first authentication module in the
stack) for authentication. If the passwords do not
match, or if no password has been entered, prompt the
user for a password after identifying which type of
password (ie. UNIX, etc.) is being requested. Support
for this scheme allows the user to try to use only one
password for multiple schemes, and type multiple
passwords only if necessary.

If an unsupported option is passed to the modules, it should syslog the error at
LOG_ERR level.

pam_sm(3PAM)

366 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

The permission bits on the service module should be set such that it is not writable by
either "group" or "other." The PAM framework will not load the module if the above
permission rules are not followed.

If there are any errors, the modules should log them using syslog(3C) at the
LOG_ERR level.

The PAM service module functions may return any of the PAM error numbers
specified in the specific man pages. It can also return a PAM_IGNORE error number to
mean that the PAM framework should ignore this module regardless of whether it is
required, optional or sufficient. This error number is normally returned when the
module does not want to deal with the given user at all.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_chauthtok(3PAM),
pam_get_user(3PAM), pam_open_session(3PAM), pam_setcred(3PAM),
pam_set_item(3PAM), pam_sm_authenticate(3PAM),
pam_sm_chauthtok(3PAM), pam_sm_open_session(3PAM),
pam_sm_setcred(3PAM), pam_start(3PAM), pam_strerror(3PAM), syslog(3C),
pam.conf(4), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_sm(3PAM)

ERROR
LOGGING

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 367

pam_sm_acct_mgmt – service provider implementation for pam_acct_mgmt

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_acct_mgmt(pam_handle_t *pamh, int flags, int argc, const
char **argv);

In response to a call to pam_acct_mgmt(3PAM), the PAM framework calls
pam_sm_acct_mgmt() from the modules listed in the pam.conf(4) file. The account
management provider supplies the back-end functionality for this interface function.
Applications should not call this API directly.

The pam_sm_acct_mgmt() function determines whether or not the current user’s
account and password are valid. This includes checking for password and account
expiration, and valid login times. The user in question is specified by a prior call to
pam_start(), and is referenced by the authentication handle, pamh, which is passed
as the first argument to pam_sm_acct_mgmt(). The following flags may be set in the
flags field:

PAM_SILENT The account management service should
not generate any messages.

PAM_DISALLOW_NULL_AUTHTOK The account management service should
return PAM_NEW_AUTHTOK_REQD if
the user has a null authentication token.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the account management service. Please refer to the
specific module man pages for the various available options. If an unknown option is
passed to the module, an error should be logged through syslog(3C) and the option
ignored.

If an account management module determines that the user password has aged or
expired, it should save this information as state in the authentication handle, pamh,
using pam_set_data(). pam_chauthok() uses this information to determine
which passwords have expired.

If there are no restrictions to logging in, PAM_SUCCESS is returned. The following
error values may also be returned upon error:

PAM_USER_UNKNOWN User not known to underlying
authentication module.

PAM_NEW_AUTHTOK_REQD New authentication token required.

PAM_ACCT_EXPIRED User account has expired.

PAM_PERM_DENIED User denied access to account at this time.

pam_sm_acct_mgmt(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

368 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

PAM_IGNORE Ignore underlying account module
regardless of whether the control flag is
required, optional or sufficient.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_acct_mgmt(3PAM), pam_set_data(3PAM), pam_start(3PAM),
syslog(3C), libpam(3LIB), pam.conf(4), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_sm_acct_mgmt(3PAM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 369

pam_sm_authenticate – service provider implementation for pam_authenticate

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_authenticate(pam_handle_t *pamh, int flags, int argc,
const char **argv);

In response to a call to pam_authenticate(3PAM), the PAM framework calls
pam_sm_authenticate() from the modules listed in the pam.conf(4) file. The
authentication provider supplies the back-end functionality for this interface function.

The pam_sm_authenticate() function is called to verify the identity of the current
user. The user is usually required to enter a password or similar authentication token
depending upon the authentication scheme configured within the system. The user in
question is specified by a prior call to pam_start(), and is referenced by the
authentication handle pamh.

If the user is unknown to the authentication service, the service module should mask
this error and continue to prompt the user for a password. It should then return the
error, PAM_USER_UNKNOWN.

The following flag may be passed in to pam_sm_authenticate():

PAM_SILENT The authentication service should not
generate any messages.

PAM_DISALLOW_NULL_AUTHTOK The authentication service should return

PAM_AUTH_ERROR The user has a null authentication token.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the authentication service. Please refer to the specific
module man pages for the various available options. If any unknown option is passed
in, the module should log the error and ignore the option.

Before returning, pam_sm_authenticate() should call pam_get_item() and
retrieve PAM_AUTHTOK. If it has not been set before and the value is NULL,
pam_sm_authenticate() should set it to the password entered by the user using
pam_set_item().

An authentication module may save the authentication status (success or reason for
failure) as state in the authentication handle using pam_set_data(3PAM). This
information is intended for use by pam_setcred().

Upon successful completion, PAM_SUCCESS must be returned. In addition, the
following values may be returned:

PAM_MAXTRIES Maximum number of authentication
attempts exceeded.

pam_sm_authenticate(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

370 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

PAM_AUTH_ERR Authentication failure.

PAM_CRED_INSUFFICIENT Cannot access authentication data due to
insufficient credentials.

PAM_AUTHINFO_UNAVAIL Underlying authentication service can not
retrieve authentication information.

PAM_USER_UNKNOWN User not known to underlying
authentication module.

PAM_IGNORE Ignore underlying authentication module
regardless of whether the control flag is
required,optional, or sufficient1.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_get_item(3PAM),
pam_set_data(3PAM), pam_set_item(3PAM), pam_setcred(3PAM),
pam_start(3PAM), libpam(3LIB), pam.conf(4), attributes(5)

Modules should not retry the authentication in the event of a failure. Applications
handle authentication retries and maintain the retry count. To limit the number of
retries, the module can return a PAM_MAXTRIES error.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_sm_authenticate(3PAM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 371

pam_sm_chauthtok – service provider implementation for pam_chauthtok

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_chauthtok(pam_handle_t *pamh, int flags, int argc, const
char **argv);

In response to a call to pam_chauthtok() the PAM framework calls
pam_sm_chauthtok(3PAM) from the modules listed in the pam.conf(4) file. The
password management provider supplies the back-end functionality for this interface
function.

The pam_sm_chauthtok() function changes the authentication token associated
with a particular user referenced by the authentication handle pamh.

The following flag may be passed to pam_chauthtok():

PAM_SILENT The password service should not generate
any messages.

PAM_CHANGE_EXPIRED_AUTHTOK The password service should only update
those passwords that have aged. If this flag
is not passed, the password service should
update all passwords.

PAM_PRELIM_CHECK The password service should only perform
preliminary checks. No passwords should
be updated.

PAM_UPDATE_AUTHTOK The password service should update
passwords.

Note that PAM_PRELIM_CHECK and PAM_UPDATE_AUTHTOK cannot be set at the same
time.

Upon successful completion of the call, the authentication token of the user will be
ready for change or will be changed, depending upon the flag, in accordance with the
authentication scheme configured within the system.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). The argv argument specifies the module options,
which are interpreted and processed by the password management service. Please
refer to the specific module man pages for the various available options.

It is the responsibility of pam_sm_chauthtok() to determine if the new password
meets certain strength requirements. pam_sm_chauthtok() may continue to
re-prompt the user (for a limited number of times) for a new password until the
password entered meets the strength requirements.

pam_sm_chauthtok(3PAM)

NAME

SYNOPSIS

DESCRIPTION

372 man pages section 3: Extended Library Functions • Last Revised 19 Mar 1999

Before returning, pam_sm_chauthtok() should call pam_get_item() and retrieve
both PAM_AUTHTOK and PAM_OLDAUTHTOK. If both are NULL,
pam_sm_chauthtok() should set them to the new and old passwords as entered by
the user.

Upon successful completion, PAM_SUCCESS must be returned. The following values
may also be returned:

PAM_PERM_DENIED No permission.

PAM_AUTHTOK_ERR Authentication token manipulation error.

PAM_AUTHTOK_RECOVERY_ERR Old authentication token cannot be
recovered.

PAM_AUTHTOK_LOCK_BUSY Authentication token lock busy.

PAM_AUTHTOK_DISABLE_AGING Authentication token aging disabled.

PAM_USER_UNKNOWN User unknown to password service.

PAM_TRY_AGAIN Preliminary check by password service
failed.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

ping(1M), pam(3PAM), pam_chauthtok(3PAM), pam_get_data(3PAM),
pam_get_item(3PAM), pam_set_data(3PAM), libpam(3LIB), pam.conf(4),
attributes(5)

The PAM framework invokes the password services twice. The first time the modules
are invoked with the flag, PAM_PRELIM_CHECK. During this stage, the password
modules should only perform preliminary checks. For example, they may ping
remote name services to see if they are ready for updates. If a password module
detects a transient error such as a remote name service temporarily down, it should
return PAM_TRY_AGAIN to the PAM framework, which will immediately return the
error back to the application. If all password modules pass the preliminary check, the
PAM framework invokes the password services again with the flag,
PAM_UPDATE_AUTHTOK. During this stage, each password module should proceed to
update the appropriate password. Any error will again be reported back to
application.

If a service module receives the flag PAM_CHANGE_EXPIRED_AUTHTOK, it should
check whether the password has aged or expired. If the password has aged or expired,

pam_sm_chauthtok(3PAM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 373

then the service module should proceed to update the password. If the status indicates
that the password has not yet aged or expired, then the password module should
return PAM_IGNORE.

If a user’s password has aged or expired, a PAM account module could save this
information as state in the authentication handle, pamh, using pam_set_data(). The
related password management module could retrieve this information using
pam_get_data() to determine whether or not it should prompt the user to update
the password for this particular module.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_sm_chauthtok(3PAM)

374 man pages section 3: Extended Library Functions • Last Revised 19 Mar 1999

pam_sm_open_session, pam_sm_close_session – service provider implementation for
pam_open_session and pam_close_session

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_open_session(pam_handle_t *pamh, int flags, int argc,
const char **argv);

int pam_sm_close_session(pam_handle_t *pamh, int flags, int argc,
const char **argv);

In response to a call to pam_open_session(3PAM) and
pam_close_session(3PAM), the PAM framework calls pam_sm_open_session()
and pam_sm_close_session(), respectively from the modules listed in the
pam.conf(4) file. The session management provider supplies the back-end
functionality for this interface function.

The pam_sm_open_session() function is called to initiate session management.
Thepam_sm_close_session() function is invoked when a session has terminated.
The argument pamh is an authentication handle. The following flag may be set in the
flags field:

PAM_SILENT Session service should not generate any messages.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the session management service. If an unknown option
is passed in, an error should be logged through syslog(3C) and the option ignored.

Upon successful completion, PAM_SUCCESS should be returned. The following values
may also be returned upon error:

PAM_SESSION_ERR Cannot make or remove an entry for the specified
session.

PAM_IGNORE Ignore underlying session module regardless of
whether the control flag is required, optional or sufficient.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_open_session(3PAM), syslog(3C), libpam(3LIB), pam.conf(4),
attributes(5)

pam_sm_open_session(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 375

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_sm_open_session(3PAM)

NOTES

376 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_sm_setcred – service provider implementation for pam_setcred

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_setcred(pam_handle_t *pamh, int flags, int argc, const
char **argv);

In response to a call to pam_setcred(3PAM), the PAM framework calls
pam_sm_setcred() from the modules listed in the pam.conf(4) file. The
authentication provider supplies the back-end functionality for this interface function.

The pam_sm_setcred() function is called to set the credentials of the current user
associated with the authentication handle, pamh. The following flags may be set in the
flags field. Note that the first four flags are mutually exclusive:

PAM_ESTABLISH_CRED Set user credentials for the authentication
service.

PAM_DELETE_CRED Delete user credentials associated with the
authentication service.

PAM_REINITIALIZE_CRED Reinitialize user credentials.

PAM_REFRESH_CRED Extend lifetime of user credentials.

PAM_SILENT Authentication service should not generate
messages

If no flag is set, PAM_ESTABLISH _CRED is used as the default.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the authentication service. If an unknown option is
passed to the module, an error should be logged and the option ignored.

If the PAM_SILENT flag is not set, then pam_sm_setcred() should print any failure
status from the corresponding pam_sm_authenticate() function using the
conversation function.

The authentication status (success or reason for failure) is saved as module-specific
state in the authentication handle by the authentication module. The status should be
retrieved using pam_get_data(), and used to determine if user credentials should
be set.

Upon successful completion, PAM_SUCCESS should be returned. The following values
may also be returned upon error:

PAM_CRED_UNAVAIL Underlying authentication service can not
retrieve user credentials.

PAM_CRED_EXPIRED User credentials have expired.

pam_sm_setcred(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 377

PAM_USER_UNKNOWN User unknown to the authentication service.

PAM_CRED_ERR Failure in setting user credentials.

PAM_IGNORE Ignore underlying authentication module
regardless of whether the control flag is
required,optional, or sufficient.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_get_data(3PAM)
pam_setcred(3PAM), pam_sm_authenticate(3PAM), libpam(3LIB),
pam.conf(4), attributes(5)

The pam_sm_setcred() function is passed the same module options that are used
by pam_sm_authenticate().

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_sm_setcred(3PAM)

ATTRIBUTES

SEE ALSO

NOTES

378 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_start, pam_end – authentication transaction routines for PAM

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_start(const char *service, const char *user, const struct
pam_conv *pam_conv, pam_handle_t **pamh);

int pam_end(pam_handle_t *pamh, int status);

The pam_start() function is called to initiate an authentication transaction.
pam_start() takes as arguments the name of the current service, service, the name of
the user to be authenticated, user, the address of the conversation structure, pam_conv,
and the address of a variable to be assigned the authentication handle pamh. Upon
successful completion, pamh refers to a PAM handle for use with subsequent calls to
the authentication library.

The pam_conv structure contains the address of the conversation function provided by
the application. The underlying PAM service module invokes this function to output
information to and retrieve input from the user. The pam_conv structure has the
following entries:

struct pam_conv {
int (*conv)(); /* Conversation function */
void *appdata_ptr; /* Application data */

};

int conv(int num_msg, const struct pam_message **msg,
struct pam_response **resp, void *appdata_ptr);

The conv() function is called by a service module to hold a PAM conversation with
the application or user. For window applications, the application can create a new
pop-up window to be used by the interaction.

The num_msg parameter is the number of messages associated with the call. The
parameter msg is a pointer to an array of length num_msg of the pam_message structure.

The pam_message structure is used to pass prompt, error message, or any text
information from the authentication service to the application or user. It is the
responsibility of the PAM service modules to localize the messages. The memory used
by pam_message has to be allocated and freed by the PAM modules. The
pam_message structure has the following entries:

struct pam_message{
int msg_style;
char *msg;

};

The message style, msg_style, can be set to one of the following values:

PAM_PROMPT_ECHO_OFF Prompt user, disabling echoing of response.

PAM_PROMPT_ECHO_ON Prompt user, enabling echoing of response.

pam_start(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 379

PAM_ERROR_MSG Print error message.

PAM_TEXT_INFO Print general text information.

PAM_MSG_NOCONF Print general text information without user
acknowledgment.

PAM_CONV_INTERRUPT Return from the conversation function.

The maximum size of the message and the response string is PAM_MAX_MSG_SIZE as
defined in <security/pam.appl.h>.

The structure pam_response is used by the authentication service to get the user’s
response back from the application or user. The storage used by pam_response has to be
allocated by the application and freed by the PAM modules. The pam_response structure
has the following entries:

struct pam_response{
char *resp;
int resp_retcode; /* currently not used, */

/* should be set to 0 */
};

It is the responsibility of the conversation function to strip off NEWLINE characters
for PAM_PROMPT_ECHO_OFF and PAM_PROMPT_ECHO_ON message styles, and to add
NEWLINE characters (if appropriate) for PAM_ERROR_MSG and PAM_TEXT_INFO
message styles.

The appdata_ptr argument is an application data pointer which is passed by the
application to the PAM service modules. Since the PAM modules pass it back through
the conversation function, the applications can use this pointer to point to any
application-specific data.

The pam_end() function is called to terminate the authentication transaction
identified by pamh and to free any storage area allocated by the authentication
module. The argument, status, is passed to the cleanup(|) function stored within
the pam handle, and is used to determine what module-specific state must be purged.
A cleanup function is attached to the handle by the underlying PAM modules through
a call to pam_set_data(3PAM) to free module-specific data.

Refer to pam(3PAM) for information on error related return values.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam_start(3PAM)

RETURN VALUES

ATTRIBUTES

380 man pages section 3: Extended Library Functions • Last Revised 19 Sep 2001

libpam(3LIB), pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_chauthtok(3PAM), pam_open_session(3PAM), pam_setcred(3PAM),
pam_set_data(3PAM), pam_strerror(3PAM), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_start(3PAM)

SEE ALSO

NOTES

Extended Library Functions 381

pam_strerror – get PAM error message string

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

const char *pam_strerror(pam_handle_t*pamh, int errnum);

The pam_strerror() function maps the PAM error number in errnum to a PAM
error message string, and returns a pointer to that string. The application should not
free or modify the string returned.

The pamh argument is the PAM handle obtained by a prior call to pam_start(). If
pam_start() returns an error, a null PAM handle should be passed.

The pam_strerror() function returns NULL if errnum is out-of-range.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_start(3PAM), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_strerror(3PAM)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

382 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pathfind – search for named file in named directories

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *pathfind(const char *path, const char *name, const char
*mode);

The pathfind() function searches the directories named in path for the file name. The
directories named in path are separated by colons (:). The mode argument is a string of
option letters chosen from the set [rwxfbcdpugks]:

Letter Meaning

r readable

w writable

x executable

f normal file

b block special

c character special

d directory

p FIFO (pipe)

u set user ID bit

g set group ID bit

k sticky bit

s size non-zero

Options read, write, and execute are checked relative to the real (not the effective) user
ID and group ID of the current process.

If name begins with a slash, it is treated as an absolute path name, and path is ignored.

An empty path member is treated as the current directory. A slash (/) character is not
prepended at the occurrence of the first match; rather, the unadorned name is returned.

EXAMPLE 1 Example of finding the ls command using the PATH environment variable.

To find the ls command using the PATH environment variable:

pathfind (getenv ("PATH"), "ls", "rx")

pathfind(3GEN)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

Extended Library Functions 383

The pathfind() function returns a (char *) value containing static, thread-specific
data that will be overwritten upon the next call from the same thread.

If the file name with all characteristics specified by mode is found in any of the
directories specified by path, then pathfind() returns a pointer to a string containing
the member of path, followed by a slash character (/), followed by name.

If no match is found, pathname() returns a null pointer, ((char *) 0).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sh(1), test(1), access(2), mknod(2), stat(2), getenv(3C), attributes(5)

The string pointed to by the returned pointer is stored in an area that is reused on
subsequent calls to pathfind(). The string should not be deallocated by the caller.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreadedapplications.

pathfind(3GEN)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

384 man pages section 3: Extended Library Functions • Last Revised 10 Mar 1999

pctx_capture, pctx_create, pctx_run, pctx_release – process context library

cc [flag...] file... −lpctx [library...]

#include <libpctx.h>

typedef void (pctx_errfn_t)(const char *fn, const char *fmt,
va_list ap);

pctx_t *pctx_create(const char *filename, char *const *argv, void
*arg, int verbose, pctx_errfn_t *errfn);

pctx_t *pctx_capture(pid_t pid, void *arg, int verbose, pctx_errfn_t
*errfn);

int pctx_run(pctx_t *pctx, uint_t sample, uint_t nsamples, int
(*tick)(pctx *, pid_t, id_t, void *));

void pctx_release(pctx_t *pctx);

This family of functions allows a controlling process (the process that invokes them) to
create or capture controlled processes. The functions allow the occurrence of various
events of interest in the controlled process to cause the controlled process to be
stopped, and to cause callback routines to be invoked in the controlling process.

There are two ways a process can be acquired by the process context functions. First, a
named application can be invoked with the usual argv[] array using pctx_create(),
which forks the caller and execs the application in the child. Alternatively, an existing
process can be captured by its process ID using pctx_capture().

Both functions accept a pointer to an opaque handle, arg; this is saved and treated as a
caller-private handle that is passed to the other functions in the library. Both functions
accept a pointer to a fork(3C)-like error routine errfn; a default version is provided if
NULL is specified.

A freshly-created process is created stopped; similarly, a process that has been
successfully captured is stopped by the act of capturing it, thereby allowing the caller
to specify the handlers that should be called when various events occur in the
controlled process. The set of handlers is listed on the pctx_set_events(3CPC)
manual page.

Once the callback handlers have been set with pctx_set_events(), the application
can be set running using pctx_run(). This function starts the event handling loop; it
returns only when either the process has exited, the number of time samples has
expired, or an error has occurred (for example, if the controlling process is not
privileged, and the controlled process has exec-ed a setuid program).

Every sample milliseconds the process is stopped and the tick() routine is called so
that, for example, the performance counters can be sampled by the caller. No periodic
sampling is performed if sample is 0.

pctx_capture(3CPC)

NAME

SYNOPSIS

DESCRIPTION

pctx_create()
and

pctx_capture()

pctx_run()

Extended Library Functions 385

Once pctx_run() has returned, the process can be released and the underlying
storage freed using pctx_release(). Releasing the process will either allow the
controlled process to continue (in the case of an existing captured process and its
children) or kill the process (if it and its children were created using
pctx_create()).

Upon successful completion, pctx_capture() and pctx_create() return a valid
handle. Otherwise, the functions print a diagnostic message and return NULL.

Upon successful completion, pctx_run() returns 0 with the controlled process either
stopped or exited (if the controlled process has invoked exit(2).) If an error has
occurred (for example, if the controlled process has exec–ed a set-ID executable, if
certain callbacks have returned error indications, or if the process was unable to
respond to proc(4) requests) an error message is printed and the function returns −1.

Within an event handler in the controlling process, the controlled process can be made
to perform various system calls on its behalf. No system calls are directly supported in
this version of the API, though system calls are executed by the cpc_pctx family of
interfaces in libcpc such as cpc_pctx_bind_event(3CPC). A specially created
agent LWP is used to execute these system calls in the controlled process. See proc(4)
for more details.

While executing the event handler functions, the library arranges for the signals
SIGTERM, SIGQUIT, SIGABRT, and SIGINT to be blocked to reduce the likelihood of
a keyboard signal killing the controlling process prematurely, thereby leaving the
controlled process permanently stopped while the agent LWP is still alive inside the
controlled process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

fork(2), cpc(3CPC), pctx_set_events(3CPC), proc(4), attributes(5).

pctx_capture(3CPC)

pctx_release()

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

386 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

pctx_set_events – associate callbacks with process events

cc [flag...] file... −lpctx [library...]
#include <libpctx.h>

typedef enum {
PCTX_NULL_EVENT = 0,
PCTX_SYSC_EXEC_EVENT,
PCTX_SYSC_FORK_EVENT,
PCTX_SYSC_EXIT_EVENT,
PCTX_SYSC_LWP_CREATE_EVENT,
PCTX_INIT_LWP_EVENT,
PCTX_FINI_LWP_EVENT,
PCTX_SYSC_LWP_EXIT_EVENT

} pctx_event_t;

typedef int pctx_sysc_execfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
char *cmd, void *arg);

typedef void pctx_sysc_forkfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
pid_t child, void *arg);

typedef void pctx_sysc_exitfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_sysc_lwp_createfn_t(pctx_t *pctx, pid_t pid, id_t
lwpid, void *arg);

typedef int pctx_init_lwpfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_fini_lwpfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_sysc_lwp_exitfn_t(pctx_t *pctx, pid_t pid, id_t
lwpid, void *arg);

int pctx_set_events(pctx_t *pctx, ...);

The pctx_set_events() function allows the caller (the controlling process) to
express interest in various events in the controlled process. See pctx_capture(3CPC)
for information about how the controlling process is able to create, capture and
manipulate the controlled process.

The pctx_set_events() function takes a pctx_t handle, followed by a variable
length list of pairs of pctx_event_t tags and their corresponding handlers,
terminated by a PCTX_NULL_EVENT tag.

Most of the events correspond closely to various classes of system calls, though two
additional pseudo-events (init_lwp and fini_lwp) are provided to allow callers to
perform various housekeeping tasks. The init_lwp handler is called as soon as the
library identifies a new LWP, while fini_lwp is called just before the LWP disappears.
Thus the classic "hello world" program would see an init_lwp event, a fini_lwp event

pctx_set_events(3CPC)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 387

and (process) exit event, in that order. The table below displays the interactions
between the states of the controlled process and the handlers executed by users of the
library.

System Calls and pctx Handlers

System call Handler Comments

exec(2), execve(2) fini_lwp Invoked serially on all lwps in the process.

exec Only invoked if the exec() system call
succeeded.

init_lwp If the exec succeeds, only invoked on lwp 1. If the
exec fails, invoked serially on all lwps in the
process.

fork(2), vfork(2),
fork1(2)

fork Only invoked if the fork() system call
succeeded.

exit(2) fini_lwp Invoked on all lwps in the process.

exit Invoked on the exiting lwp.

_lwp_create(2) init_lwp Only if the corresponding _lwp_create()
system call succeeded.

lwp_create

_lwp_exit(2) fini_lwp

lwp_exit

Each of the handlers is passed the caller’s opaque handle, a pctx_t handle, the pid,
and lwpid of the process and lwp generating the event. The lwp_exit, and (process)
exit events are delivered before the underlying system calls begin, while the exec,
fork, and lwp_create events are only delivered after the relevant system calls complete
successfully. The exec handler is passed a string that describes the command being
executed. Catching the fork event causes the calling process to fork(2), then capture
the child of the controlled process using pctx_capture() before handing control to
the fork handler. The process is released on return from the handler.

Upon successful completiion, pctx_set_events() returns 0. Otherwise, the function
returns –1.

EXAMPLE 1 HandleExec example.

This example captures an existing process whose process identifier is pid, and arranges
to call the HandleExec routine when the process performs an exec(2).

static void
HandleExec(pctx_t *pctx, pid_t pid, id_t lwpid, char *cmd, void *arg)

pctx_set_events(3CPC)

RETURN VALUES

EXAMPLES

388 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

EXAMPLE 1 HandleExec example. (Continued)

{
(void) printf("pid %d execed ’%s’\n", (int)pid, cmd);

}
int
main()
{

...
pctx = pctx_capture(pid, NULL, 1, NULL);
(void) pctx_set_events(pctx,

PCTX_SYSC_EXEC_EVENT, HandleExec,
...
PCTX_NULL_EVENT);

(void) pctx_run(pctx, 0, 0, NULL);
pctx_release(pctx);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Availability SUNWcpcu (32-bit)

SUNWcpcux (64-bit)

Interface Stability Evolving

exec(2), exit(2), fork(2), vfork(2), fork1(2), _lwp_create(2), _lwp_exit(2),
cpc(3CPC), proc(4), attributes(5).

pctx_set_events(3CPC)

ATTRIBUTES

SEE ALSO

Extended Library Functions 389

picld_log – log a message in system log

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

void picld_log(const char *msg);

The picld_log() function logs the message specified in msg to the system log file
using syslog(3C). This function is used by the PICL daemon and the plug-in
modules to log messages to inform users of any error or warning conditions.

This function does not return a value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

syslog(3C), attributes(5)

picld_log(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

390 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picld_plugin_register – register plug-in with the daemon

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int picld_plugin_register(picld_plugin_reg_t *regp);

The picld_plugin_register() function is the function used by a plug-in module
to register itself with the PICL daemon upon initialization. The plug-in provides its
name and the entry points of the initialization and cleanup routines in the regp
argument.

typedef struct {
int version; /* PICLD_PLUGIN_VERSION */
int critical; /* is plug-in critical? */
char *name; /* name of the plugin module */
void (*plugin_init)(void); /* init/reinit function */
void (*plugin_fini)(void); /* fini/cleanup function */

} picld_plugin_reg_t;

The plug-in module also specifies whether it is a critical module for the proper system
operation. The critical field in the registration information is set to
PICLD_PLUGIN_NON_CRITICAL by plug-in modules that are not critical to system
operation, and is set to PICLD_PLUGIN_CRITICAL by plug-in modules that are
critical to the system operation. An environment control plug-in module is an example
for a PICLD_PLUGIN_CRITICAL type of plug-in module.

The PICL daemon saves the information passed during registration in regp in the order
in which the plug-ins registered.

Upon initialization, the PICL daemon invokes the plugin_init() routine of each of
the registered plug-in modules in the order in which they registered. In their
plugin_init() routines, the plug-in modules collect the platform configuration
data and add it to the PICL tree using PICLTREE interfaces (3PICLTREE).

On reinitialization, the PICL daemon invokes the plugin_fini() routines of the
registered plug-in modules in the reverse order of registration. Then, the
plugin_init() entry points are invoked again in the order in which the plug-ins
registered.

Upon successful completion, 0 is returned. On failure, a negative value is returned.

PICL_NOTSUPPORTED Version not supported

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picld_plugin_register(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 391

libpicltree(3PICLTREE), attributes(5)

picld_plugin_register(3PICLTREE)

SEE ALSO

392 man pages section 3: Extended Library Functions • Last Revised 19 Sep 2001

picl_get_first_prop, picl_get_next_prop – get a property handle of a node

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_get_first_prop(picl_nodehdl_t nodeh, piclprop_hdl_t
*proph);

int picl_get_next_prop(picl_prophdl_t proph, picl_prophdl_t
*nextprop);

The picl_get_first_prop() function gets the handle of the first property of the
node specified by nodeh and copies it into the location given by proph.

The picl_get_next_prop() function gets the handle of the next property after the
one specified by proph from the property list of the node, and copies it into the location
specified by nextprop.

If there are no more properties, this function returns PICL_ENDOFLIST.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_ENDOFLIST is returned to indicate that there are no more properties.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_NOTPROP Not a property

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

PICL_ENDOFLIST End of list

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_first_prop(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 393

picl_get_prop_by_name(3PICL), attributes(5)

picl_get_first_prop(3PICL)

SEE ALSO

394 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_get_next_by_row, picl_get_next_by_col – access a table property

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_get_next_by_row(picl_prophdl_t proph, picl_prophdl_t
*colh);

int picl_get_next_by_col(picl_prophdl_t proph, picl_prophdl_t
*colh);

The picl_get_next_by_row() function copies the handle of the property that is in
the next column of the table and on the same row as the property proph. The handle is
copied into the location given by rowh.

The picl_get_next_by_col() function copies the handle of the property that is in
the next row of the table and on the same column as the property proph. The handle is
copied into the location given by colh.

If there are no more rows or columns, this function returns the value
PICL_ENDOFLIST.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTTABLE Not a table

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

PICL_ENDOFLIST General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_next_by_row(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 395

picl_get_propval(3PICL), attributes(5)

picl_get_next_by_row(3PICL)

SEE ALSO

396 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_get_prop_by_name – get the handle of the property by name

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_get_prop_by_name(picl_nodehdl_t nodeh, char *name,
picl_prophdl_t *proph);

The picl_get_prop_by_name() function gets the handle of the property of node
nodeh whose name is specified in name. The handle is copied into the location specified
by proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PROPNOTFOUND is returned if the property of the specified name does not exist.

PICL_RESERVEDNAME is returned if the property name specified is one of the
reserved property names.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_PROPNOTFOUND Property not found

PICL_RESERVEDNAME Reserved property name specified

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

picl_get_prop_by_name(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 397

picl_get_propinfo – get the information about a property

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_get_propinfo(picl_prophdl_t proph, picl_propinfo_t
*pinfo);

The picl_get_propinfo() function gets the information about the property
specified by handle proph and copies it into the location specified by pinfo. The
property information includes the property type, access mode, size, and the name of
the property as described on libpicl(3PICL) manual page.

The maximum size of a property value is specified by PICL_PROPSIZE_MAX. It is
currently set to 512KB.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTPROP Not a property

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specifie

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), picl_get_propval(3PICL),
picl_get_propval_by_name(3PICL), attributes(5)

picl_get_propinfo(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

398 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_get_propinfo_by_name – get property information and handle of named property

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_get_propinfo_by_name(picl_nodehdl_t nodeh, const char
*pname, picl_propinfo_t *pinfo, picl_prophdl_t *proph);

The picl_get_propinfo_by_name() function copies the property information of
the property specified by pname in the node nodeh into the location given by pinfo. The
handle of the property is returned in the location proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PROPNOTFOUND is returned if the property of the specified name does not exist.

PICL_RESERVEDNAME is returned if the property name specified is one of the
reserved property names.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_PROPNOTFOUND Property not found

PICL_RESERVEDNAME Reserved property name specified

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_propinfo(3PICL), picl_get_prop_by_name(3PICL), attributes(5)

picl_get_propinfo_by_name(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 399

picl_get_propval, picl_get_propval_by_name – get the value of a property

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_get_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int picl_get_propval_by_name(picl_nodehdl_t nodeh, char *propname,
void *valbuf, size_t nbytes);

The picl_get_propval() function copies the value of the property specified by the
handle proph into the buffer location given by valbuf. The size of the buffer valbuf in
bytes is specified in nbytes.

The picl_get_propval_by_name() function gets the value of property named
propname of the node specified by handle nodeh. The value is copied into the buffer
location given by valbuf. The size of the buffer valbuf in bytes is specified in nbytes.

The picl_get_propval_by_name() function is used to get a reserved property’s
value. An example of a reserved property is "_parent". Please refer to
libpicl(3PICL) for a complete list of reserved property names.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PROPNOTFOUND is returned if the property of the specified name does not exist.

PICL_PERMDENIED is returned if the client does not have sufficient permission to
access the property.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_PERMDENIED Insufficient permission

PICL_VALUETOOBIG Value too big for buffer

PICL_NOTPROP Not a property

PICL_PROPNOTFOUND Property node found

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

picl_get_propval(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

400 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), picl_get_propinfo(3PICL), attributes(5)

picl_get_propval(3PICL)

ATTRIBUTES

SEE ALSO

Extended Library Functions 401

picl_get_root – get the root handle of the PICL tree

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_get_root(picl_nodehdl_t *nodehandle);

The picl_get_root() function gets the handle of the root node of the PICL tree and
copies it into the location given by nodehandle.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_initialize(3PICL), picl_shutdown(3PICL), attributes(5)

picl_get_root(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

402 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_initialize – initiate a session with the PICL daemon

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_initialize(void);

The picl_initialize() function opens the daemon door file and initiates a session
with the PICL daemon running on the system.

Upon successful completion, 0 is returned. On failure, this function returns a
non-negative integer, PICL_FAILURE.

PICL_NOTSUPPORTED Version not supported

PICL_FAILURE General system failure

PICL_NORESPONSE Daemon not responding

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_shutdown(3PICL), attributes(5)

picl_initialize(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 403

picl_set_propval, picl_set_propval_by_name – set the value of a property to the
specified value

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_set_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int picl_set_propval_by_name(picl_nodehdl_t nodeh, const char
*pname, void *valbuf, size_t nbytes);

The picl_set_propval() function sets the value of the property specified by the
handle proph to the value contained in the buffer valbuf. The argument nbytes specifies
the size of the buffer valbuf.

The picl_set_propval_by_name() function sets the value of the property named
pname of the node specified by the handle nodeh to the value contained in the buffer
valbuf. The argument nbytes specifies the size of the buffer valbuf.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PERMDENIED is returned if the client does not have sufficient permission to
access the property.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_PERMDENIED Insufficient permission

PICL_NOTWRITABLE Property is read-only

PICL_VALUETOOBIG Value too big

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

picl_set_propval(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

404 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

picl_set_propval(3PICL)

SEE ALSO

Extended Library Functions 405

picl_shutdown – shutdown the session with the PICL daemon

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

void picl_shutdown(void);

The picl_shutdown() function terminates the session with the PICL daemon and
frees up any resources allocated.

The picl_shutdown() function does not return a value.

PICL_NOTINITIALIZED Session not initialized

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_initialize(3PICL), attributes(5)

picl_shutdown(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

406 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_strerror – get error message string

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

char *picl_strerror(int errnum);

The picl_strerror() function maps the error number in errnum to an error
message string, and returns a pointer to that string. The returned string should not be
overwritten.

The picl_strerror() function returns NULL if errnum is out-of-range.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), attributes(5)

picl_strerror(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 407

picl_wait – wait for PICL tree to refresh

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_wait(int to_secs);

The picl_wait() function blocks the calling thread until the PICL tree is refreshed.
The to_secs argument specifies the timeout for the call in number of seconds. A value
of −1 for to_secs specifies no timeout.

The picl_wait() function returns 0 to indicate that PICL tree has refreshed.
Otherwise, a non-negative integer is returned to indicate error.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_TIMEDOUT Timed out waiting for refresh

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

picl_wait(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

408 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_walk_tree_by_class – walk subtree by class

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

int picl_walk_tree_by_class(picl_nodehdl_t rooth, const char
*classname, void *c_args, int (*callback)(picl_nodehdl_t nodeh, void
*c_args));

The picl_walk_tree_by_class() function visits all the nodes of the subtree
under the node specified by rooth. The PICL class name of the visited node is
compared with the class name specified by classname. If the class names match, then
the callback function specified by callback is called with the matching node handle and
the argument provided in c_args. If the class name specified in classname is NULL, then
the callback function is invoked for all the nodes.

The return value from the callback function is used to determine whether to continue
or terminate the tree walk. The callback function returns PICL_WALK_CONTINUE or
PICL_WALK_TERMINATE to continue or terminate the tree walk.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_propval_by_name(3PICL), attributes(5)

picl_walk_tree_by_class(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 409

pow – power function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double pow(double x, double y);

The pow() function computes the value of x raised to the power y, xy. If x is negative,
y must be an integer value.

Upon successful completion, pow() returns the value of x raised to the power y.

If x is 0 and y is 0, 1.0 is returned.

If y is NaN, or y is non-zero and x is NaN, NaN is returned. If y is 0.0 and x is NaN,
NaN is returned.

If x is 0.0 and y is negative, -HUGE_VAL is returned and errno may be set to EDOM or
ERANGE.

If the correct value would cause overflow, ±HUGE_VAL is returned, and errno is set to
ERANGE.

If the correct value would cause underflow to 0, 0 is returned and errno may be set to
ERANGE.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The pow() function will fail if:

EDOM The value of x is negative and y is non-integral.

ERANGE The value to be returned would have caused overflow.

The pow() function may fail if:

EDOM The value of x is 0.0 and y is negative.

ERANGE The correct value would cause underflow.

An application wishing to check for error situations should set errno to 0 before
calling pow(). If errno is non-zero on return, or the return value is NaN, an error has
occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pow(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

410 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

exp(3M), isnan(3M), matherr(3M), attributes(5), standards(5)

pow(3M)

SEE ALSO

Extended Library Functions 411

printDmiAttributeValues – print data in input DmiAttributeValues list

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void printDmiAttributeValues(DmiAttributeValues_t *values);

The printDmiAttributeValues() function prints the data in the input
DmiAttributeValues list. The function prints "unknown data" for those values that
contain invalid data.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

printDmiAttributeValues(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

412 man pages section 3: Extended Library Functions • Last Revised 12 Oct 1998

printDmiDataUnion – print data in input data union

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void printDmiDataUnion(DmiDataUnion_t *data);

The printDmiDataUnion() function prints the data in the input data union. The
output depends on the type of DMI data in the union.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

printDmiDataUnion(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 413

printDmiString – print a DmiString

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void printDmiString(DmiString_t *dstr);

The printDmiString() function prints a DmiString.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

newDmiString(3DMI), libdmi(3LIB), attributes(5)

printDmiString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

414 man pages section 3: Extended Library Functions • Last Revised 12 Oct 1998

project – access project files from Perl

use Sun::Solaris::Project qw(:ALL);

my ($name, $projid, $comment, $users, $groups, $attr) = getprojent();
($name, $projid, $comment, $users, $groups, $attr) = getprojbyname("proj");

my $proj = getdefaultproj("root");

This module provides perl access to the project file library as documented in
getprojent(3PROJECT). The interface is similar to the standard perl getxxx()
functions such as getpwent() and gethostent(). For detailed descriptions of the
individual functions, refer to the getprojent(3PROJECT) and project(4) manual
pages.

PROJNAME_MAX maximum length of a project name

getprojent()
Returns the next entry from the projects file. When called in a scalar context,
getprojent() returns just the name of the project, or undef when the end of the
file is reached. When called in a list context, getprojent() returns a 6-element
list consisting of ($name, $projid, $comment, \@users, \@groups, $attr) .
\@users and \@groups are returned as references to arrays containing the
appropriate user or project lists. On end of file, undef is returned.

setprojent()
Rewinds the project database to the beginning of the file.

endprojent()
Closes the project file.

getprojid()
Returns the current numeric project ID.

getprojbyname($name)
Searches the project database for an entry with the specified name, returning undef
if it cannot be found or a 6-element list as returned by getprojent() if it can be
found.

getprojbyid($id)
Searches the project database for an entry with the specified ID, returning undef if
it cannot be found or a 6-element list as returned by getprojent() if it can be
found.

getdefaultproj($user)
Returns the default project entry for the specified user in the same format as
getprojent(), or undef if the user cannot be found. For full details of the
lookup process, see the manual page for getdefaultproj(3PROJECT).

fgetprojent($filehandle)
Returns the next project entry from $filehandle, which is a perl file handle, and
must refer to a previously opened file in project(4) format. Return values are the
same as for getprojent().

project(3EXT)

NAME

SYNOPSIS

DESCRIPTION

CONSTANTS

FUNCTIONS

Extended Library Functions 415

inproj($user, $project)
Checks to see if the specified user is able to use the project. Returns TRUE if the
user can use the project and FALSE otherwise.

getprojidbyname($project)
Searches the project database for the specified project and returns the project ID if it
is found. If not found, undef is returned.

By default nothing is exported from this namespace. The following tags can be used to
selectively import constants and functions defined in this namespace:

:LIBCALLS PROJNAME_MAX, getprojent(), setprojent(),
endprojent(), getprojbyname(), getprojbyid(),
getdefaultproj(), fgetprojent(), inproj(),
getprojidbyname(), getprojid()

:ALL :LIBCALLS

EXAMPLE 1 Get the record for the default project and print its list of attributes.

use Sun::Solaris::Project qw(:ALL);
my ($name, $projid, $comment, $users, $groups, $attr) =
getprojbyname("default");
die("Can’t find default project\n") if (! defined($name));
print("Project $name:\n");
print(" Project id: $projid\n");
print(" Comment: $comment\n");
print(" Users: @$users\n");
print(" Groups: @$groups\n");

print(" Attributes: $attr\n");

perl(1), getdefaultproj(3PROJECT), getprojent(3PROJECT), project(4)

project(3EXT)

EXPORTS

EXAMPLES

SEE ALSO

416 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2000

project_walk – visit active project IDs on current system

cc [flag ...] file... -lproject [library ...]

#include <project.h>

int project_walk(int (*callback)(const projid_t project, void
*walk_data), void *init_data);

The project_walk() function provides a mechanism for the application author to
examine all active projects on the current system. The callback function provided by the
application is given the ID of an active project at each invocation and can use the
walk_data to record its own state. The callback function should return non-zero if it
encounters an error condition or attempts to terminate the walk prematurely;
otherwise the callback function should return 0.

Upon successful completion, project_walk() returns 0. It returns −1 if the callback
function returned a non-zero value or if the walk encountered an error, in which case
errno is set to indicate the error.

The project_walk() function will fail if:

ENOMEM There is insufficient memory available to set up the initial data for
the walk.

Other returned error values are presumably caused by the callback function.

EXAMPLE 1 Count the number of projects available on the system.

The following example counts the number of projects available on the system.

#include <sys/types.h>
#include <project.h>
#include <stdio.h>

typedef struct wdata {
uint_t count;

} wdata_t;

wdata_t total_count;

int
simple_callback(const projid_t p, void *pvt)
{

wdata_t *w = (wdata_t *)pvt;
w->count++;
return (0);

}

...

total_count.count = 0;
errno = 0;
if (n=project_walk(simple_callback, &total_count)) >= 0)

(void) printf("count = %u\n", total_count.count);

project_walk(3PROJECT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 417

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

getprojid(2), settaskid(2), attributes(5)

project_walk(3PROJECT)

ATTRIBUTES

SEE ALSO

418 man pages section 3: Extended Library Functions • Last Revised 10 April 2001

ptree_add_node, ptree_delete_node – add or delete node to or from tree

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_add_node(picl_nodehdl_t parh, picl_nodehdl_t chdh);

int ptree_delete_node(ptree_delete_node nodeh);

The ptree_add_node() function adds the node specified by handle chdh as a child
node to the node specified by the handle parh. PICL_CANTPARENT is if the child node
already has a parent.

The ptree_delete_node() function deletes the node specified by handle nodeh and
all its descendant nodes from the tree.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTNODE Node a node

PICL_CANTPARENT Already has a parent

PICL_TREEBUSY PICL tree is busy

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

ptree_add_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 419

ptree_add_prop, ptree_delete_prop – add or delete a property

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_add_prop(picl_nodehdl_t nodeh, picl_prophdl_t proph);

int proph(picl_prophdl_t proph);

The ptree_add_prop() function adds the property specified by the handle proph to
the list of properties of the node specified by handle nodeh.

The ptree_delete_prop() function deletes the property from the property list of
the node. For a table property, the entire table is deleted.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTTABLE Not a table

PICL_NOTPROP Not a property

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPEXISTS Property already exists

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_create_prop(3PICLTREE), attributes(5)

ptree_add_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

420 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_create_and_add_node – create and add node to tree and return node handle

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_create_and_add_node(picl_nodehdl_t parh, const char
*name, const char *classname, picl_nodehdl_t *nodeh);

The ptree_create_and_add_node() function creates a node with the name and
PICL class specified by name and classname respectively. It then adds the node as a a
child to the node specified by parh. The handle of the new node is returned in nodeh.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDARG Invalid argument

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTSUPPORTED Property version not supported

PICL_CANTDESTROY Attempting to destroy before delete

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_create_node(3PICLTREE), ptree_add_node(3PICLTREE), attributes(5)

ptree_create_and_add_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 421

ptree_create_and_add_prop – create and add property to node and return property
handle

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_create_and_add_prop(picl_nodehdl_t nodeh,
ptree_propinfo_t *infop, void *vbuf, picl_prophdl_t *proph);

The ptree_create_and_add_prop() function creates a property using the the
property information specified in infop and the value buffer vbuf and adds the property
to the node specified by nodeh. If proph is not NULL, the handle of the property added
to the node is returned in proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTSUPPORTED Property version not supported

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTPROP Not a property

PICL_NOTTABLE Not a table

PICL_PROPEXISTS Property already exists

PICL_RESERVEDNAME Property name is reserved

PICL_INVREFERENCE Invalid reference property value

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_create_prop(3PICLTREE), ptree_add_prop(3PICLTREE), attributes(5)

ptree_create_and_add_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

422 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_create_node, ptree_destroy_node – create or destroy a node

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_create_node(char *name, char *clname, picl_nodehdl_t
*nodeh);

int ptree_destroy_node(picl_nodehdl_t nodeh);

The ptree_create_node() function creates a node and sets the "name" property
value to the string specified in name and the "class" property value to the string
specified in clname. The handle of the new node is copied into the location given by
nodeh.

The ptree_destroy_node() function destroys the node specified by nodeh and
frees up any allocated space. The node to be destroyed must have been previously
deleted by ptree_delete_node (see ptree_add_node(3PICLTREE)). Otherwise,
PICL_CANTDESTROY is returned.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDARG Invalid argument

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTSUPPORTED Property version not supported

PICL_CANTDESTROY Attempting to destroy before delete

PICL_TREEBUSY PICL tree is busy

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_add_node(3PICLTREE), attributes(5)

ptree_create_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 423

ptree_create_prop, ptree_destroy_prop – create or destroy a property

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_create_prop(ptree_propinfo_t *pinfo, void *valbuf,
picl_prophdl_t *proph);

int ptree_destroy_prop(picl_prophdl_t proph);

The ptree_create_prop() function creates a property using the information
specified in pinfo, which includes the name, type, access mode, and size of the
property, as well as the read access function for a volatile property. The value of the
property is specified in the buffer valbuf, which may be NULL for volatile properties.
The handle of the property created is copied into the location given by proph. See
libpicltree(3PICLTREE) for more information on the structure of
ptree_propinfo_t structure.

The ptree_destroy_prop() function destroys the property specified by the handle
proph. For a table property, the entire table is destroyed. The property to be destroyed
must have been previously deleted.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTSUPPORTED Property version not supported

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTPROP Not a property

PICL_CANTDESTROY Attempting to destroy before delete

PICL_RESERVEDNAME Property name is reserved

PICL_INVREFERENCE Invalid reference property value

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_create_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

424 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

libpicltree(3PICLTREE), ptree_add_prop(3PICLTREE), attributes(5)

ptree_create_prop(3PICLTREE)

SEE ALSO

Extended Library Functions 425

ptree_create_table, ptree_add_row_to_table – create a table object

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_create_table(picl_prophdl_t *tbl_hdl);

int ptree_add_row_to_table(picl_prophdl_t tbl_hdl, int nprops,
picl_prophdl_t *proph);

The ptree_create_table() function creates a table object and returns the handle
of the table in tbl_hdl.

The ptree_add_row_to_table() function adds a row of properties to the table
specified by tbl_hdl. The handles of the properties of the row are specified in the proph
array and nprops specifies the number of handles in the array. The number of columns
in the table is determined from the first row added to the table. If extra column values
are specified in subsequent rows, they are ignored. The row is appended to the end of
the table.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDARG Invalid argument

PICL_NOTPROP Not a property

PICL_NOTTABLE Not a table

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

ptree_create_table(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

426 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_find_node – find node with given property and value

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_find_node(picl_nodehdl_t rooth, char *pname,
picl_prop_type_t ptype, void *pval, size_t valsize, picl_nodehdl_t
*retnodeh);

The ptree_find_node() function visits the nodes in the subtree under the node
specified by rooth. The handle of the node that has the property whose name, type,
and value matches the name, type, and value specified in pname, ptype, and pval
respectively, is returned in the location given by retnodeh. The argument valsize gives
the size of the value in pval. The first valsize number of bytes of the property value is
compared with pval.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NODENOTFOUND is returned if there is no node that matches the property
criteria can be found.

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_get_prop_by_name(3PICLTREE), ptree_get_propinfo(3PICLTREE),
ptree_get_propval(3PICLTREE), ptree_get_propval_by_name(3PICLTREE),
attributes(5)

ptree_find_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 427

ptree_get_first_prop, ptree_get_next_prop – get a property handle of the node

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_first_prop(picl_nodehdl_t nodeh, picl_prophdl_t
*proph);

int ptree_get_next_prop(picl_prophdl_t proph, picl_prophdl_t
*nextproph);

The ptree_get_first_prop() function gets the handle of the first property of the
node specified by nodeh and copies it into the location specified by proph.

The ptree_get_next_prop() function gets the handle of the next property after
the one specified by proph from the list of properties of the node and copies it into the
location specified by nextproph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_ENDOFLIST End of list

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_get_prop_by_name(3PICLTREE), attributes(5)

ptree_get_first_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

428 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_get_next_by_row, ptree_get_next_by_col – access a table property

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_next_by_row(picl_prophdl_t proph, picl_prophdl_t
*rowh);

int ptree_get_next_by_col(picl_prophdl_t proph, picl_prophdl_t
*colh);

The ptree_get_next_by_row() function copies the handle of the property that is
in the next column of the table and on the same row as the property proph. The handle
is copied into the location given by rowh.

The ptree_get_next_by_col() function copies the handle of the property that is
in the next row of the table and on the same column as the property proph. The handle
is copied into the location given by colh.

If there are no more rows or columns, this function returns the value
PICL_ENDOFLIST.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTTABLE Not a table

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_ENDOFLIST End of list

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_create_table(3PICLTREE), attributes(5)

ptree_get_next_by_row(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 429

ptree_get_node_by_path – get handle of node specified by PICL tree path

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_node_by_path(const char *ptreepath, picl_nodehdl_t
*nodeh);

The ptree_get_node_by_path() function copies the handle of the node in the
PICL tree specified by the path given in ptreepath into the location nodeh.

The syntax of a PICL tree path is:

[def_propname:]/[def_propval[match_cond] ...]

where def_propname prefix is a shorthand notation to specify the name of the property
whose value is specified in def_propval, and the match_cond expression specifies the
matching criteria for that node in the form of one or more pairs of property names and
values such as

[@address][?prop_name[=prop_val] ...]

where ’@’ is a shorthand notation to refer to the device address, which is followed by
the device addres value address. The address value is matched with the value of the
property "bus-addr" if it exists. If no "bus-addr" property exists, then it is matched
with the value of the property "UnitAddress". Use the ’?’ notation to limit explicitly
the comparison to "bus-addr" or "UnitAddress" property. The expression following ’?’
specifies matching property name and value pairs, where prop_name gives the
property name and prop_val gives the property value for non PICL_PTYPE_VOID
properties. The values for properties of type PICL_PTYPE_TABLE,
PICL_PTYPE_BYTEARRAY, and PICL_PTYPE_REFERENCE cannot be specified in the
match_cond expression.

A "_class" property value of "picl" may be used to match nodes of all PICL classes.

All valid paths must start at the root node denoted by ’/’.

If no prefix is specified for the path, then the prefix defaults to the "name" property.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTNODE is returned if there is no node corresponding to the specified path.

PICL_INVALIDARG Invalid argument

PICL_NOTNODE Not a node

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ptree_get_node_by_path(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

430 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_get_propval_by_name(3PICLTREE), attributes(5)

ptree_get_node_by_path(3PICLTREE)

SEE ALSO

Extended Library Functions 431

ptree_get_prop_by_name – get a property handle by name

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_prop_by_name(picl_nodehdl_t nodeh, char *name,
picl_prophdl_t *proph);

The ptree_get_prop_by_name() function gets the handle of the property, whose
name is specified in name, of the node specified by the handle nodeh. The property
handle is copied into the location specified by proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_RESERVEDNAME is returned if the name specified is a PICL reserved name
property. Reserved name properties do not have an associated property handle. Use
ptree_get_propval_by_name(3PICLTREE) to get the value of a reserved property.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTNODE Not a node

PICL_RESERVEDNAME Property name is reserved

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_get_first_prop(3PICLTREE),
ptree_get_propval_by_name(3PICLTREE), attributes(5)

ptree_get_prop_by_name(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

432 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_get_propinfo – get property information

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_propinfo(picl_prophdl_t proph, ptree_propinfo_t
*pi);

The ptree_get_propinfo() function gets the information about the property
specified by handle proph and copies it into the location specified by pi. See
libpicltree(3PICLTREE) for more information about ptree_propinfo_t
structure.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_NOTPROP Not a property

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicltree(3PICLTREE), ptree_create_prop(3PICLTREE), attributes(5)

ptree_get_propinfo(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 433

ptree_get_propinfo_by_name – get property information and handle of named
property

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_propinfo_by_name(picl_nodehdl_t nodeh, const char
*pname, ptree_propinfo_t *pinfo, picl_prophdl_t *proph);

The ptree_get_propinfo_by_name() function copies the property information of
the property specified by pname in the node nodeh into the location given by pinfo. The
handle of the property is returned in the location proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTNODE Not a node

PICL_PROPNOTFOUND Property not found

PICL_RESERVEDNAME Reserved property name specified

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_propinfo(3PICLTREE), picl_get_prop_by_name(3PICLTREE),
attributes(5)

ptree_get_propinfo_by_name(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

434 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_get_propval, ptree_get_propval_by_name – get the value of a property

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int ptree_get_propval_by_name(picl_nodehdl_t nodeh, void *name,
void *valbuf, size_t nbytes);

The ptree_get_propval() function gets the value of the property specified by the
handle proph and copies it into the buffer specified by valbuf. The size of the buffer
valbuf is specifed in nbytes.

The ptree_get_propval_by_name() function gets the value of the property,
whose name is specified by name, from the node specified by handle nodeh. The value
is copied into the buffer specified by valbuf. The size of the buffer is specified by nbytes.

For volatile properties, the read access function provided by the plug-in publishing the
property is invoked.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_VALUETOOBIG Value too big

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_update_propval(3PICLTREE), attributes(5)

ptree_get_propval(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 435

ptree_get_root – get the root node handle

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_get_root(picl_nodehdl_t *nodeh);

The ptree_get_root() function copies the handle of the root node of the PICL tree
into the location specified by nodeh.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_INVALIDARG Invalid argument

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicltree(3PICLTREE), ptree_create_node(3PICLTREE), attributes(5)

ptree_get_root(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

436 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_init_propinfo – initialize ptree_propinfo_t structure

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_init_propinfo(ptree_propinfo_t *infop, int version, int
ptype, int pmode, size_t psize, char *pname, int
(*readfn)(ptree_rarg_t *, void *), int (*writefn)(ptree_warg_t *,
const void *));

The ptree_init_propinfo() function initializes a ptree_propinfo_t property
information structure given by location infop with the values provided by the
arguments.

The version argument specifies the version of the ptree_propinfo_t structure.
PTREE_PROPINFO_VERSION gives the current version. The arguments ptype, pmode,
psize, and pname specify the property’s PICL type, access mode, size, and name. The
maximum size of a property name is defined by PICL_PROPNAMELEN_MAX. The
arguments readfn and writefn specify a volatile property’s read and write access
functions. For non-volatile properties, these are set to NULL.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_INVALIDARG Invalid argument

PICL_NOTSUPPORTED Property version not supported

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_get_propinfo(3PICLTREE), attributes(5)

ptree_init_propinfo(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 437

ptree_post_event – post a PICL event

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_post_event(const char *ename, const void *earg, size_t
size, void (*completion_handler)(char *ename, void *earg, size_t
size));

The ptree_post_event() function posts the specified event and its arguments to
the PICL framework. The argument ename specifies a pointer to a string containing the
name of the PICL event. The arguments earg and size specify a pointer to a buffer
containing the event arguments and size of that buffer, respectively. The argument
completion_handler specifies the completion handler to be called after the event has
been dispatched to all handlers. A NULL value for a completion handler indicates that
no handler should be called. The PICL framework invokes the completion handler of
an event with the ename, earg, and size arguments specified at the time of the posting of
the event.

PICL events are dispatched in the order in which they were posted. They are
dispatched by executing the handlers registered for that event. The handlers are
invoked in the order in which they were registered.

New events will not begin execution until all previous events have finished execution.
Specifically, an event posted from an event handler will not begin execution until the
current event has finished execution.

The caller may not reuse or reclaim the resources associated with the event name and
arguments until the invocation of the completion handler. The completion handlers
are normally used to reclaim any resources allocated for the posting of an event.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error, the event is not posted, and the completion handler is
not invoked..

PICL_INVALIDARG Invalid argument

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_register_handler(3PICLTREE),
ptree_unregister_handler(3PICLTREE), attributes(5)

ptree_post_event(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

438 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_register_handler – register a handler for the event

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_register_handler(const char *ename, void
(*evt_handler)(const char *ename, const void *earg, size_t size,
void *cookie), void *cookie);

The ptree_register_handler() function registers an event handler for a PICL
event. The argument ename specifies the name of the PICL event for which to register
the handler. The argument evt_handler specifies the event handler function. The
argument cookie is a pointer to caller-specific data to be passed as an argument to the
event handler when it is invoked.

The event handler function must be defined as

void evt_handler(const char *ename, const void *earg, \
size_t size, void *cookie)

where, ename, earg, size, and cookie are the arguments passed to the event handler when
it is invoked. The argument ename is the PICL event name for which the handler is
invoked. The arguments earg and size gives the pointer to the event argument buffer
and its size, respectively. The argument cookie is the pointer to the caller specific data
registered with the handler. The arguments ename and earg point to buffers that are
transient and shall not be modified by the event handler or reused after the event
handler finishes execution.

The PICL framework invokes the event handlers in the order in which they were
registered when dispatching an event. If the event handler execution order is required
to be the same as the plug-in dependency order, then a plug-in should register its
handlers from its init function. The handlers that do not have any ordering
dependencies on other plug-in handlers can be registered at any time.

The registered handler may be called at any time after this function is called.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error and the handler is not registered.

PICL_INVALIDARG Invalid argument

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_unregister_handler(3PICLTREE), attributes(5)

ptree_register_handler(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 439

ptree_unregister_handler – unregister the event handler for the event

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

void ptree_register_handler(const char *ename, void
(*evt_handler)(const char *ename, const void *earg, size_t size,
void *cookie), void *cookie);

The ptree_unregister_handler() function unregisters the event handler for the
specified event. The argument ename specifies the name of the PICL event for which to
unregister the handler. The argument evt_handler specifies the event handler function.
The argument cookie is the pointer to the caller-specific data given at the time of
registration of the handler.

If the handler being unregistered is currently executing, then this function will block
until its completion. Because of this, locks acquired by the handlers should not be held
across the call to ptree_unregister_handler() or a deadlock may result.

The ptree_unregister_handler() function must not be invoked from the
handler that is being unregistered.

This function does not return a value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_register_handler(3PICLTREE), attributes(5)

ptree_unregister_handler(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

440 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_update_propval, ptree_update_propval_by_name – update a property value

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_update_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int ptree_update_propval_by_name(picl_nodehdl_t nodeh, char *name,
void *valbuf, size_t nbytes);

The ptree_update_propval() function updates the value of the property specified
by proph with the value specified in the buffer valbuf. The size of the buffer valbuf is
specified in nbytes.

The ptree_update_propval_by_name() function updates the value of the
property, whose name is specified by name, of the node specified by handle nodeh. The
new value is specified in the buffer valbuf, whose size is specified in nbytes.

For volatile properties, the write access function provided by the plug-in publishing
the property is invoked.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_VALUETOOBIG Value too big

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_get_propval(3PICLTREE), attributes(5)

ptree_update_propval(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 441

ptree_walk_tree_by_class – walk subtree by class

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

int ptree_walk_tree_by_class(picl_nodehdl_t rooth, const char
*classname, void *c_args, int (*callback)(picl_nodehdl_t nodeh, void
*c_args));

The ptree_walk_tree_by_class() function visits all the nodes of the subtree
under the node specified by rooth. The PICL class name of the visited node is
compared with the class name specified by classname. If the class names match, the
callback function specified by callback is called with the matching node handle and the
argument provided in c_args. If the class name specified in classname is NULL, then the
callback function is invoked for all the nodes.

The return value from the callback function is used to determine whether to continue
or terminate the tree walk. The callback function returns PICL_WALK_CONTINUE or
PICL_WALK_TERMINATE to continue or terminate the tree walk.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_get_propval_by_name(3PICLTREE), attributes(5)

ptree_walk_tree_by_class(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

442 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

read_vtoc, write_vtoc – read and write a disk’s VTOC

cc [flag ...] file ... -ladm [library ...]

#include <sys/vtoc.h>

int read_vtoc(int fd, struct vtoc *vtoc);

int write_vtoc(int fd, struct vtoc *vtoc);

The read_vtoc() function returns the VTOC (volume table of contents) structure
that is stored on the disk associated with the open file descriptor fd.

The write_vtoc() function stores the VTOC structure on the disk associated with
the open file descriptor fd.

The fd argument refers to any slice on a raw disk.

Upon successful completion, read_vtoc() returns a positive number indicating the
slice index associated with the open file descriptor. Otherwise, it returns a negative
number indicating one of the following errors:

VT_EIO An I/O error occurred.

VT_ERROR An unknown error occurred.

Upon successful completion, write_vtoc() returns 0. Otherwise, it returns a
negative number indicating one of the following errors:

VT_EIO An I/O error occurred.

VT_ERROR An unknown error occurred.

VT_EINVAL The VTOC contains an incorrect field.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

fmthard(1M), format(1M), prtvtoc(1M), ioctl(2), attributes(5), dkio(7I)

The write_vtoc() function cannot write a VTOC on an unlabeled disk. Use
format(1M) for this purpose.

read_vtoc(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

BUGS

Extended Library Functions 443

reg_ci_callback – provide a component instrumentation with a transient program
number

cc [flag ...] file ... -ldmici [library ...]

#include <dmi/ci_callback_svc.hh>

u_long reg_ci_callback();

The reg_ci_callback() function provides a component instrumentation with a
transient program number. The instrumentation uses this number to register its RPC
service provider. The prognum member of the DmiRegisterInfo structure is
populated with the return value of this function

Upon successful completion, the reg_ci_callback() function returns a transient
program number of type u_long.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unafe

attributes(5)

reg_ci_callback(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

444 man pages section 3: Extended Library Functions • Last Revised 13 Jul 1998

regexpr, compile, step, advance – regular expression compile and match routines

cc [flag…] [file…] -lgen [library…]

#include <regexpr.h>

char *compile(char *instring, char *expbuf, const char *endbuf);

int step(const char *string, const char *expbuf);

int advance(const char *string, const char *expbuf);

extern char *loc1, loc2, locs;

extern int nbra, regerrno, reglength;

extern char *braslist[], *braelist[];

These routines are used to compile regular expressions and match the compiled
expressions against lines. The regular expressions compiled are in the form used by
ed(1).

The parameter instring is a null-terminated string representing the regular expression.

The parameter expbuf points to the place where the compiled regular expression is to
be placed. If expbuf is NULL, compile() uses malloc(3C) to allocate the space for the
compiled regular expression. If an error occurs, this space is freed. It is the user’s
responsibility to free unneeded space after the compiled regular expression is no
longer needed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. This argument is ignored if expbuf is NULL. If the
compiled expression cannot fit in (endbuf−expbuf) bytes, compile() returns NULL and
regerrno (see below) is set to 50.

The parameter string is a pointer to a string of characters to be checked for a match.
This string should be null-terminated.

The parameter expbuf is the compiled regular expression obtained by a call of the
function compile().

The function step() returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match, two external
character pointers are set as a side effect to the call to step(). The variables set in
step() are loc1 and loc2. loc1 is a pointer to the first character that matched the
regular expression. The variable loc2 points to the character after the last character
that matches the regular expression. Thus if the regular expression matches the entire
line, loc1 points to the first character of string and loc2 points to the null at the end
of string.

regexpr(3GEN)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 445

The purpose of step() is to step through the string argument until a match is found
or until the end of string is reached. If the regular expression begins with ^, step()
tries to match the regular expression at the beginning of the string only.

The advance() function is similar to step(); but, it only sets the variable loc2 and
always restricts matches to the beginning of the string.

If one is looking for successive matches in the same string of characters, locs should
be set equal to loc2, and step() should be called with string equal to loc2. locs is
used by commands like ed and sed so that global substitutions like s/y*//g do not
loop forever, and is NULL by default.

The external variable nbra is used to determine the number of subexpressions in the
compiled regular expression. braslist and braelist are arrays of character
pointers that point to the start and end of the nbra subexpressions in the matched
string. For example, after calling step() or advance() with string sabcdefg and
regular expression \(abcdef\), braslist[0] will point at a and braelist[0]
will point at g. These arrays are used by commands like ed and sed for substitute
replacement patterns that contain the \n notation for subexpressions.

Note that it is not necessary to use the external variables regerrno, nbra, loc1,
loc2 locs, braelist, and braslist if one is only checking whether or not a string
matches a regular expression.

EXAMPLE 1 The following is similar to the regular expression code from grep:

#include<regexpr.h>
. . .
if(compile(*argv, (char *)0, (char *)0) == (char *)0)

regerr(regerrno);
. . .
if (step(linebuf, expbuf))

succeed();

If compile() succeeds, it returns a non-NULL pointer whose value depends on
expbuf. If expbuf is non-NULL, compile() returns a pointer to the byte after the last
byte in the compiled regular expression. The length of the compiled regular expression
is stored in reglength. Otherwise, compile() returns a pointer to the space
allocated by malloc(3C).

The functions step() and advance() return non-zero if the given string matches the
regular expression, and zero if the expressions do not match.

If an error is detected when compiling the regular expression, a NULL pointer is
returned from compile() and regerrno is set to one of the non-zero error numbers
indicated below:

regexpr(3GEN)

EXAMPLES

RETURN VALUES

ERRORS

446 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

ERROR MEANING

11 Range endpoint too large.

16 Bad Number.

25 "\digit" out or range.

36 Illegal or missing delimiter.

41 No remembered string search.

42 \(~\) imbalance.

43 Too many \(.

44 More than 2 numbers given in \]&~\}.

45 } expected after \.

46 First number exceeds second in \{~\}.

49 [] imbalance.

50 Regular expression overflow.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ed(1), grep(1), sed(1), malloc(3C), attributes(5), regexp(5)

When compiling multi-threaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multi-threaded applications.

regexpr(3GEN)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 447

remainder – remainder function

#include <math.h>

double remainder(double x, double y);

The remainder() function returns the floating point remainder r = x − ny when y is
non-zero. The value n is the integral value nearest the exact value x/y. When | n −
x/y | = ½, the value n is chosen to be even.

The behavior of remainder() is independent of the rounding mode.

The remainder() function returns the floating point remainder r = x − ny when y is
non-zero.

When y is 0, remainder() returns NaN. and sets errno to EDOM.

If the value of x is ±Inf, remainder() returns NaN and sets errno to EDOM.

If x or y is NaN, then the function returns NaN.

The remainder() function will fail if:

EDOM The y argument is 0 or the x argument is positive or negative
infinity.

The remainder() function computes the remainder x REM y required by ANSI/IEEE
754 (IEC 559).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fmod(3M), attributes(5)

remainder(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

448 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

rint – round-to-nearest integral value

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double rint(double x);

The rint() function returns the integral value (represented as a double) nearest x in
the direction of the current IEEE754 rounding mode.

If the current rounding mode rounds toward negative infinity, then rint() is
identical to floor(3M). If the current rounding mode rounds toward positive infinity,
then rint() is identical to ceil(3M).

Upon successful completion, the rint() function returns the integer (represented as a
double precision number) nearest x in the direction of the current IEEE754 rounding
mode.

When x is ±Inf, rint() returns x.

If the value of x is NaN, NaN is returned.

No errors will occur.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ceil(3M), floor(3M), isnan(3M), attributes(5)

rint(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 449

rsm_create_localmemory_handle, rsm_free_localmemory_handle – create or free local
memory handle

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_create_localmemory_handle(rsmapi_controller_handle_t
handle, rsm_localmemory_handle_t *l_handle, caddr_t local_vaddr,
size_t length);

int rsm_free_localmemory_handle(rsmapi_controller_handle_t handle,
rsm_localmemory_handle_t l_handle);

The rsm_create_localmemory_handle() and
rsm_free_localmemory_handle() functions are supporting functions for
rsm_memseg_import_putv(3RSM) and rsm_memseg_import_getv(3RSM).

The rsm_create_localmemory_handle() function creates a local memory handle
to be used in the I/O vector component of a scatter-gather list of subsequent
rsm_memseg_import_putv() and rsm_memseg_import_getv() calls. The handle
argument specifies the controller handle obtained from
rsm_get_controller(3RSM). The l_handle argument is a pointer to the location for
the function to return the local memory handle. The local_vaddr argument specifies the
local virtual address; it should be aligned at a page boundary. The length argument
specifies the length of memory spanned by the handle.

The rsm_free_localmemory_handle() function unlocks the memory range for
the local handle specified by l_handle and releases the associated system resources. The
handle argument specifies the controller handle. All handles created by a process are
freed when the process exits, but the process should call
rsm_free_localmemory_handle() as soon as possible to free the system
resources.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_create_localmemory_handle() and
rsm_free_localmemory_handle() functions can return the following errors:

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

RSMERR_BAD_LOCALMEM_HNDL Invalid local memory handle.

The rsm_create_localmemory_handle() function can return the following
errors:

RSMERR_BAD_LENGTH Invalid length.

RSMERR_BAD_ADDRESS Invalid address.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

rsm_create_localmemory_handle(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

450 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_putv(3RSM), attributes(5)

rsm_create_localmemory_handle(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 451

rsm_get_controller, rsm_get_controller_attr, rsm_release_controller – get or release a
controller handle

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_get_controller(char *name, rsmapi_controller_handle_t
*controller);

int rsm_get_controller_attr(rsmapi_controller_handle_t chdl,
rsmapi_controller_attr_t *attr);

int rsm_release_controller(rsmapi_controller_handle_t chdl);

The controller functions provide mechanisms for obtaining access to a controller,
determining the characteristics of the controller, and releasing the controller.

The rsm_get_controller() function acquires a controller handle through the
controller argument. The name argument is the specific controller instance (for example,
"sci0" or "loopback"). This controller handle is used for subsequent RSMAPI calls.

The rsm_get_controller_attr() function obtains a controller’s attributes
through the attr argument. The chdl argument is the controller handle obtained by the
rsm_get_controller() call. The attribute structure is defined in the <rsmapi>
header.

The rsm_release_controller() function releases the resources associated with
the controller identified by the controller handle chdl, obtained by calling
rsm_get_controller(). Each rsm_release_controller() call must have a
corresponding rsm_get_controller() call. It is illegal to access a controller or
segments exported or imported using a released controller.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_get_controller(), rsm_get_controller_attr(), and
rsm_release_controller() functions can return the following errors:

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

The rsm_get_controller() and rsm_get_controller_attr() functions can
return the following errors:

RSMERR_BAD_ADDR Bad address.

The rsm_get_controller() function can return the following errors:

RSMERR_CTLR_NOT_PRESENT Controller not present.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_BAD_LIBRARY_VERSION Invalid library version.

rsm_get_controller(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

452 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_export_create(3RSM), rsm_memseg_import_connect(3RSM),
attributes(5)

rsm_get_controller(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 453

rsm_get_interconnect_topology, rsm_free_interconnect_topology – get or free
interconnect topology

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_get_interconnect_topology(rsm_topology_t **topology_data);

void rsm_free_interconnect_topology(rsm_topology_t *topology_data);

The rsm_get_interconnect_topology(3RSM) and
rsm_free_interconnect_topology(3RSM) functions provide for access to the
interconnect controller and connection data. The key interconnect data required for
export and import operations includes the respective cluster nodeids and the
controller names. To facilitate applications in the establishment of proper and efficient
export and import policies, a delineation of the interconnect topology is provided by
this interface. The data provided includes local nodeid, local controller name, its
hardware address, and remote connection specification for each local controller. An
application component exporting memory can thus find the set of existing local
controllers and correctly assign controllers for the creation and publishing of
segments. Exported segments may also be efficiently distributed over the set of
controllers consistent with the hardware interconnect and application software. An
application component which is to import memory must be informed of the segment
id(s) and controller(s) used in the exporting of memory, this needs to be done using
some out-of-band mechanism. The topology data structures are defined in the
<rsmapi.h> header.

The rsm_get_interconnect_topology() returns a pointer to the topology data
in a location specified by the topology_data argument.

The rsm_free_interconnect_topology() frees the resources allocated by
rsm_get_interconnect_topology().

Upon successful completion, rsm_get_interconnect_topology() returns 0.
Otherwise, an error value is returned to indicate the error.

The rsm_get_interconnect_topology() function can return the following
errors:

RSMERR_BAD_TOPOLOGY_PTR Invalid topology pointer.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_BAD_ADDR Bad address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

rsm_get_interconnect_topology(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

454 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

MT-Level MT-Safe

attributes(5)

rsm_get_interconnect_topology(3RSM)

SEE ALSO

Extended Library Functions 455

rsm_get_segmentid_range – get segment ID range

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_get_segmentid_range(const char *appid, rsm_segment_id_t
*baseid, uint_t *length);

RSM segment IDs can be either specified by the application or generated by the
system using the rsm_memseg_export_publish(3RSM) function. Applications that
specify segment IDs require a reserved range of segment IDs that they can use. This
can be achieved by using rsm_get_segmentid_range() and by reserving a range
of segment IDs in the segment ID configuration file, /etc/rsm/rsm.segmentid.
The rsm_get_segmentid_range() function can be used by applications to obtain
the segment ID range reserved for them. The appid argument is a null-terminated
string that identifies the application. The baseid argument points to the location where
the starting segment ID of the reserved range is returned. The length argument points
to the location where the number of reserved segment IDs is returned.

The application can use any value starting at baseid and less than baseid+length. The
application should use an offset within the range of reserved segment IDs to obtain a
segment ID such that if the baseid or length is modified, it will still be within its
reserved range.

It is the responsibility of the system administrator to make sure that the segment ID
ranges are properly administered (such that they are non-overlapping, the file on
various nodes of the cluster have identical entries, and so forth.) Entries in the
/etc/rsm/rsm.segmentid file are of the form:

#keyword appid baseid length

reserve SUNWfoo 0x600000 1000

The fields in the file are separated by tabs or blanks. The first string is a keyword
"reserve", followed by the application identifier (a string without spaces), the baseid
(the starting segment ID of the reserved range in hexadecimal), and the length (the
number of segmentids reserved). Comment lines contain a "#" in the first column. The
file should not contain blank or empty lines. Segment IDs reserved for the system are
defined in the </usr/include/rsm/rsm_common.h> header and cannot be used
by the applications.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_get_segmentid_range() function can return the following errors:

RSMERR_BAD_ADDR The address passed is invalid.

RSMERR_BAD_APPID The appid is not defined in configuration file.

RSMERR_BAD_CONF The configuration file is not present or not readable, or
the configuration file format is incorrect.

rsm_get_segmentid_range(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

456 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

MT-Level MT-Safe

rsm_memseg_export_publish(3RSM), attributes(5)

rsm_get_segmentid_range(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 457

rsm_intr_signal_post, rsm_intr_signal_wait – signal or wait for an event

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_intr_signal_post(void *memseg, uint_t flags);

int rsm_intr_signal_wait(void *memseg, int timeout);

The rsm_intr_signal_post() and rsm_intr_signal_wait() functions are
event functions that allow synchronization between importer processes and exporter
processes. A process may block to wait for an event occurance by calling
rsm_intr_signal_wait(). A process can signal a waiting process when an event
occurs by calling rsm_intr_signal_post().

The rsm_intr_signal_post() function signals an event occurance. Either an
import segment handle (rsm_memseg_import_handle_t) or an export segment
handle (rsm_memseg_export_handle_t) may be type cast to a void pointer for the
memseg argument. If memseg refers to an import handle, the exporting process is
signalled. If memseg refers to an export handle, all importers of that segment are
signalled. The flags argument may be set to RSM_SIGPOST_NO_ACCUMULATE; this will
cause this event to be discarded if an event is already pending for the target segment.

The rsm_intr_signal_wait() function allows a process to block and wait for an
event occurance. Either an import segment handle
(rsm_memseg_import_handle_t) or an export segment handle
(rsm_memseg_export_handle_t) may be type cast to a void pointer for the memseg
argument. The process blocks for up to timeout milliseconds for an event to occur; if
the timeout value is -1, the process blocks until an event occurs or until interrupted.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_intr_signal_post() and rsm_intr_signal_wait() functions can
return the following error:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

The rsm_intr_signal_post() function can return the following error:

RSMERR_REMOTE_NODE_UNREACHABL Remote node not reachable.

The rsm_intr_signal_wait() function can return the following errors:

RSMERR_TIMEOUT Timer expired.

RSMERR_INTERRUPTED Wait interrupted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

rsm_intr_signal_post(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

458 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_get_pollfd(3RSM), attributes(5)

rsm_intr_signal_post(3RSM)

SEE ALSO

Extended Library Functions 459

rsm_memseg_export_create, rsm_memseg_export_destroy,
rsm_memseg_export_rebind – resource allocation and management functions for
export memory segments

cc [flags...] file... -lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_export_create(rsmapi_controller_handle_t controller,
rsm_memseg_export_handle_t *memseg, void *vaddr, size_t length,
uint_t flags);

int rsm_memseg_export_destroy(rsm_memseg_export_handle_t memseg);

int rsm_memseg_export_rebind(rsm_memseg_export_handle_t memseg,
void *vaddr, offset_t off, size_t length);

The rsm_memseg_export_create(), rsm_memseg_export_destroy(), and
rsm_memseg_export_rebind() functions provide for allocation and management
of resources supporting export memory segments. Exporting a memory segment
involves the application allocating memory in its virtual address space through the
System V shared memory interface or normal operating system memory allocation
functions. This is followed by the calls to create the export segment and bind physical
pages to back to allocated virtual address space.

The rsm_memseg_export_create() creates a new memory segment. Physical
memory pages are allocated and are associated with the segment. The segment
lifetime is the same as the lifetime of the creating process or until a destroy operation
is performed. The controller argument is the controller handle obtained from a prior
call to rsm_get_controller(3RSM). The export memory segment handle is
obtained through the memseg argument for use in subsequent operations. The vaddr
argument specifies the process virtual address for the segment. It must be aligned
according to the controller page size attribute. The length argument specifies the size of
the segment in bytes and must be in multiples of the controller page size. The flags
argument is a bitmask of flags. The RSM_ALLOW_REBIND flag indicates that unbind
and rebind is allowed on the segment during its lifetime. The RSM_LOCK_OPS flag
indicates that this segment can be used for lock operations.

The rsm_memseg_export_destroy() function deallocates the physical memory
pages associated with the segment and disconnects all importers of the segment. The
memseg argument is the export memory segment handle obtained by a call to
rsm_memseg_export_create().

The rsm_memseg_export_rebind() function releases the current backing pages
associated with the segment and allocates new physical memory pages. This operation
is transparent to the importers of the segment. It is the responsibility of the application
to prevent data access to the export segment until the rebind operation has completed.
Segment data access during rebind does not cause a system failure but data content
results are undefined. The memseg argument is the export segment handle pointer
obtained from rsm_memseg_export_create(). The vaddr argument must be

rsm_memseg_export_create(3RSM)

NAME

SYNOPSIS

DESCRIPTION

460 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

aligned with respect to the page size attribute of the controller. The length argument
modulo controller page size must be 0. The off argument is currently unused.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_export_create(), rsm_memseg_export_destroy(), and
rsm_memseg_export_rebind() functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

The rsm_memseg_export_create() and rsm_memseg_export_rebind()
functions can return the following errors:

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

RSMERR_CTLR_NOT_PRESENT Controller not present.

RSMERR_BAD_LENGTH Length zero or length exceeds controller
limits.

RSMERR_BAD_ADDR Invalid address.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_PERM_DENIED Permission denied.

RSMERR_NOT_CREATOR Not creator of segment.

RSMERR_REBIND_NOT_ALLOWED Rebind not allowed.

The rsm_memseg_export_create() function can return the following errors:

RSMERR_BAD_MEM_ALIGNMENT The address is not aligned on a page
boundary.

The rsm_memseg_export_rebind() function can return the following errors:

RSMERR_INTERRUPTED The operation was interrupted by a signal.

The rsm_memseg_export_destroy() function can return the following errors:

RSMERR_POLLFD_IN_USE Poll file descriptor in use.

Exporting a memory segment involves the application allocating memory in its virtual
address space through the System V Shared Memory interface or other normal
operating system memory allocation methods such as valloc() (see malloc(3C)) or
mmap(2). Memory for a file mapped with mmap() must be mapped MAP_PRIVATE.

See attributes(5) for descriptions of the following attributes:

rsm_memseg_export_create(3RSM)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Extended Library Functions 461

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

MT-Level MT-Safe

rsm_get_controller(3RSM), rsm_memseg_export_publish(3RSM),
attributes(5)

rsm_memseg_export_create(3RSM)

SEE ALSO

462 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rsm_memseg_export_publish, rsm_memseg_export_unpublish,
rsm_memseg_export_republish – allow or disallow a memory segment to be imported
by other nodes

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_export_publish(rsm_memseg_export_handle_t memseg,
rsm_memseg_id_t *segment_id, rsmapi_access_entry_t access_list[],
uint_t access_list_length);

int rsm_memseg_export_unpublish(rsm_memseg_export_handle_t
memseg);

int rsm_memseg_export_republish(rsm_memseg_export_handle_t
memseg, rsmapi_access_entry_t access_list[], uint_t
access_list_length);

The rsm_memseg_export_publish(), rsm_memseg_export_unpublish(), and
rsm_memseg_export_republish() functions allow or disallow a memory
segment to be imported by other nodes.

The rsm_memseg_export_publish(3RSM) function allows the export segment
specified by the memseg argument to be imported by other nodes. It also assigns a
unique segment identifier to the segment and defines the access control list for the
segment. The segment_id argument is a pointer to an identifier which is unique on the
publishing node. It is the responsibility of the application to manage the assignment of
unique segment identifiers. The identifier can be optionally initialized to 0, in which
case the system will return a unique segment identifier value. The access_list argument
is composed of pairs of nodeid and access permissions. For each nodeid specified in
the list, the associated read/write permissions are provided by three octal digits for
owner, group, and other, as for Solaris file permissions. In the access control each octal
digit may have the following values:

2 write access

4 read only access

6 read and write access

An access permissions value of 0624 specifies: (1) an importer with the same uid as the
exporter has read and write access; (2) an importer with the same gid as the exporter
has write access only; and (3) all other importers have read access only. When an
access control list is provided, nodes not included in the list will be prevented from
importing the segment. However, if the access list is NULL (this will require the length
access_list_length to be specified as 0 as well), then no nodes will be excluded from
importing and the access permissions on all nodes will equal the owner-group-other
file creation permissions of the exporting process. Corresponding to the access_list
argument, the access_list_length argument specifies the number of entries in the
access_list array.

rsm_memseg_export_publish(3RSM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 463

The rsm_memseg_export_unpublish() function disallows the export segment
specified by memseg from being imported. All the existing import connections are
forcibly disconnected.

The rsm_memseg_export_republish() function changes the access control list for
the exported and published segment. Although the current import connections remain
unaffected by this call, new connections are constrained by the new access list.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_export_publish(), rsm_memseg_export_unpublish(), and
rsm_memseg_export_republish() functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_NOT_CREATOR Not creator of segment.

The rsm_memseg_export_publish() and rsm_memseg_export_republish()
functions can return the following errors, with the exception that only
rsm_memseg_export_publish() can return the errors related to the segment
identifier:

RSMERR_SEGID_IN_USE Segment identifier in use.

RSMERR_RESERVED_SEGID Segment identifier reserved.

RSMERR_BAD_SEGID Invalid segment identifier.

RSMERR_BAD_ACL Invalid access control list.

RSMERR_SEG_ALREADY_PUBLISHED Segment already published.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_LOCKS_NOT_SUPPORTED Locks not supported.

RSMERR_BAD_ADDR Bad address.

The rsm_memseg_export_republish() and
rsm_memseg_export_unpublish() functions can return the following errors:

RSMERR_SEG_NOT_PUBLISHED Segment not published.

RSMERR_INTERRUPTED The operation was interrupted by a signal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

rsm_memseg_export_publish(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

464 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

MT-Level MT-Safe

rsm_memseg_export_create(3RSM), attributes(5)

rsm_memseg_export_publish(3RSM)

SEE ALSO

Extended Library Functions 465

rsm_memseg_get_pollfd, rsm_memseg_release_pollfd – get or release a poll descriptor

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_get_pollfd(void *memseg, struct pollfd *fd);

int rsm_memseg_release_pollfd(void *memseg);

The rsm_memseg_get_pollfd() and rsm_memseg_release_pollfd()
functions provide an alternative to rsm_intr_signal_wait(3RSM); the waiting
process may multiplex event waiting using the poll(2) function after first obtaining a
poll descriptor using rsm_memseg_get_pollfd(). The descriptor may
subsequently be released using rsm_memseg_release_pollfd().

As a result of a call rsm_memseg_get_pollfd(), the specified pollfd structure is
initialized with a descriptor for the specified segment (memseg) and the event
generated by rsm_intr_signal_post(3RSM). Either an export segment handle or
an import segment handle may be type cast to a void pointer. The pollfd argument may
subsequently be used with the poll(2) function to wait for the event. If memseg
references an export segment, the segment must be currently published. If memseg
references an import segment, the segment must be connected.

The rsm_memseg_reslease_pollfd() function decrements the reference count of
the pollfd structure associated with the specified segment. A segment unpublish,
destroy or unmap operation will fail if the reference count is non-zero.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_get_pollfd() and rsm_memseg_release_pollfd() function
can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

poll(2), rsm_intr_signal_post(3RSM), attributes(5)

rsm_memseg_get_pollfd(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

466 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rsm_memseg_import_connect, rsm_memseg_import_disconnect – create or break
logical commection between import and export segments

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_connect(rsmapi_controller_handle_t controller,
rsm_node_id_t nodeid, rsm_memseg_id_t segment_id,
rsm_permission_t perm, rsm_memseg_import_handle_t *memseg);

int rsm_memseg_import_disconnect(rsm_memseg_import_handle_t
memseg);

The rsm_memseg_import_connect() function provides a means of creating an
import segment called memseg and establishing a logical connection with an export
segment identified by the segment_id on the node specified by node_id. The controller
specified by controller must have a physical connection with the controller (see
rsm_get_interconnect_topology(3RSM)) used while exporting the segment
identified by segment_id on node specified by node_id. The perm argument specifies the
mode of access that the importer is requesting for this connection. In the connection
process, the mode of access and the importers userid and groupid are compared with
the access permissions specified by the exporter. If the request mode is not valid, the
connection request is denied. The perm argument is limited to the following octal
values:

0400 read mode

0200 write mode

0600 read/write mode

The rsm_memseg_import_disconnect() function breaks the logical connection
between the import segment and the exported segment and deallocates the resources
associated with the import segment handle memseg.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_connect() and rsm_memseg_import_disconnect()
functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

The rsm_memseg_import_connect() function can return the following errors:

RSMERR_BAD_CTLR_HNDL
Invalid controller handle.

RSMERR_CTLR_NOT_PRESENT
Controller not present.

RSMERR_PERM_DENIED
Permission denied.

rsm_memseg_import_connect(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 467

RSMERR_INSUFFICIENT_MEM
Insufficient memory.

RSMERR_INSUFFICIENT_RESOURCES
Insufficient resources.

RSMERR_SEG_NOT_PUBLISHED_TO_NODE
Segment not published to node.

RSMERR_SEG_NOT_PUBLISHED
Segment not published at all.

RSMERR_BAD_ADDR
Bad address.

RSMERR_REMOTE_NODE_UNREACHABLE
Remote not not reachable.

RSMERR_INTERRUPTED
Connection interrupted.

The rsm_memseg_import_disconnect() function can return the following errors:

RSMERR_SEG_STILL_MAPPED Segment still mapped, need to unmap
before disconnect.

RSMERR_POLLFD_IN_USE Poll file descriptor in use.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_map(3RSM), attributes(5)

rsm_memseg_import_connect(3RSM)

ATTRIBUTES

SEE ALSO

468 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rsm_memseg_import_get, rsm_memseg_import_get8, rsm_memseg_import_get16,
rsm_memseg_import_get32, rsm_memseg_import_get64 – read from a segment

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_get(rsm_memseg_import_handle_t im_memseg,
off_t offset, void *dest_addr, size_t length);

int rsm_memseg_import_get8(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint8_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get16(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint16_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get32(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint32_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get64(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint64_t *datap, ulong_t rep_cnt);

When using interconnects that allow memory mapping (see
rsm_memseg_import_map(3RSM)), standard CPU memory operations may be used
for accessing memory of a segment. If a mapping is not provided, then explicitly
calling these functions facilitates reading from a segment. Depending on the attributes
of the extension library of the specific interconnect, these functions may involve
performing an implicit mapping before performing the data transfer. Applications can
be made interconnect-independent with respect to segment reads by using these
functions. The data access error detection is performed through the use of barriers (see
rsm_memseg_import_open_barrier(3RSM)). The default barrier operation mode
is RSM_BARRIER_MODE_IMPLICIT, meaning that around every get operation open
and close barrier are performed automatically. Alternatively, explicit error handling
may be set up for these functions (see rsm_memseg_import_set_mode(3RSM)). In
either case the barrier should be initialized prior to using these functions using
rsm_memseg_import_init_barrier(3RSM).

The rsm_memseg_import_get() function copies length bytes from the imported
segment im_memseg beginning at location offset from the start of the segment to a local
memory buffer pointed to by dest_addr.

The rsm_memseg_import_get8() function copies rep_cnt number of 8-bit quantities
from successive locations starting from offset in the imported segment to successive
local memory locations pointed to by datap.

The rsm_memseg_import_get16() functions copies rep_cnt number of 16-bit
quantities from successive locations starting from offset in the imported segment to
successive local memory locations pointed to by datap. The offset must be aligned at
half-word address boundary.

rsm_memseg_import_get(3RSM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 469

The rsm_memseg_import_get32() function copies rep_cnt number of 32-bit
quantities from successive locations starting from offset in the imported segment to
successive local memory locations pointed to by datap. The offset must be aligned at
word address boundary.

The rsm_memseg_import_get64() function copies rep_cnt number of -bit
quantities from successive locations starting from offset in the imported segment to
successive local memory locations pointed to by datap. The offset must be aligned at
double-word address boundary.

The data transfer functions that transfer small quantities of data (that is, 8-, 16-, 32-,
and 64-bit quantities) perform byte swapping prior to the data transfer, in the event
that the source and destination have incompatible endian characteristics.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

These functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_ADDR Bad address.

RSMERR_BAD_MEM_ALIGNMENT Invalid memory alignment for pointer.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_PERM_DENIED Permission denied.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized.

RSMERR_BARRIER_FAILURE I/O completion error.

RSMERR_CONN_ABORTED Connection aborted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_open_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_get(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

470 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rsm_memseg_import_init_barrier, rsm_memseg_import_destroy_barrier – create or
destroy barrier for imported segment

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_init_barrier(rsm_memseg_import_handle_t
memseg, rsm_barrier_type_t type, rsmapi_barrier_t *barrier);

int rsm_memseg_import_destroy_barrier(rsmapi_barrier_t *barrier);

The rsm_memseg_import_init_barrier() function creates a barrier for the
imported segment specified by memseg. The barrier type is specified by the type
argument. Currently, only RSM_BAR_DEFAULT is supported as a barrier type. A
handle to the barrier is obtained through the barrier argument and is used in
subsequent barrier calls.

The rsm_memseg_import_destroy_barrier() function deallocates all the
resources associated with the barrier.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_init_barrier() and
rsm_memseg_import_destroy_barrier() functions can return the following
errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer.

The rsm_memseg_import_init_barrier() function can return the following
errors:

RSMERR_INSUFFICIENT_MEM Insufficient memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_open_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_init_barrier(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 471

rsm_memseg_import_map, rsm_memseg_import_unmap – map or unmap imported
segment

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_map(rsm_memseg_import_handle_t
im_memseg,void **address, rsm_attribute_t attr, rsm_permission_t
perm, off_t offset, size_t length);

int rsm_memseg_import_unmap(rsm_memseg_import_handle_t
im_memseg);

The rsm_memseg_import_map() and rsm_memseg_import_unmap() functions
provide for mapping and unmapping operations on imported segments. The mapping
operations are only available for native architecture interconnects such as Dolphin-SCI
or Wildcat. Mapping a segment allows that segment to be accessed by CPU memory
operations, saving the overhead of calling the memory access primitives described on
the rsm_memseg_import_get(3RSM) and rsm_memseg_import_put(3RSM)
manual pages.

The rsm_memseg_import_map() function maps an import segment into caller’s
address space for the segment to be accessed by CPU memory operations. The
im_memseg argument represents the import segment that is being mapped. The
location where the process’s address space is mapped to the segment is pointed to by
the address argument. The attr argiment can be one fo the following:

RSM_MAP_NONE The system will choose available virtual address to map and
return its value in the address argument.

RSM_MAP_FIXED The import segment should be mapped at the requested virtual
address specified in the address argument.

The perm argument determines whether read, write or a combination of accesses are
permitted to the data being mapped. It can be either RSM_PERM_READ,
RSM_PERM_WRITE, or RSM_PERM_RDWR.

The offset argument is the byte offset location from the base of the segment being
mapped to address. The length argument indicates the number of bytes from offset to be
mapped.

The rsm_memseg_import_unmap() function unmaps a previously mapped import
segment.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_map() and rsm_memseg_import_unmap() functions
can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

rsm_memseg_import_map(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

472 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

The rsm_memseg_import_map() function can return the following errors:

RSMERR_BAD_ADDR Invalid address.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_BAD_MEM_ALIGNMENT The address is not aligned on a page
boundary.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_PERMS Invalid permissions.

RSMERR_CONN_ABORTED Connection aborted.

RSMERR_MAP_FAILED Map failure.

RSMERR_SEG_ALREADY_MAPPED Segment already mapped.

RSMERR_SEG_NOT_CONNECTED Segment not connected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_connect(3RSM), rsm_memseg_import_get(3RSM),
rsm_memseg_import_put(3RSM), rsm_memseg_get_pollfd(3RSM),
attributes(5)

rsm_memseg_import_map(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 473

rsm_memseg_import_open_barrier, rsm_memseg_import_order_barrier,
rsm_memseg_import_close_barrier – remote memory access error detection functions

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_open_barrier(rsmapi_barrier_t *barrier);

int rsm_memseg_import_order_barrier(rsmapi_barrier_t *barrier);

int rsm_memseg_import_close_barrier(rsmapi_barrier_t *barrier);

The rsm_memseg_import_open_barrier() and
rsm_memseg_import_close_barrier() functions provide a means of remote
memory access error detection when the barrier mode is set to
RSM_BARRIER_MODE_EXPLICIT. Open and close barrier operations define a
span-of-time interval for error detection. A successful close barrier guarantees that
remote memory access covered between the open barrier and close barrier have
completed successfully. Any individual failures which may have occured between the
open barrier and close barrier occur without any notification and the failure is not
reported until the close barrier.

The rsm_memseg_import_order_barrier() function imposes the order-of-write
completion whereby, with an order barrier, the write operations issued before the
order barrier are all completed before the operations after the order barrier. Effectively,
with the order barrier call, all writes within one barrier scope are ordered with respect
to those in another barrier scope.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_open_barrier(),
rsm_memseg_import_order_barrier(), and
rsm_memseg_import_close_barrier() functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer.

The rsm_memseg_close_barrier() and rsm_memseg_order_barrier()
functions can return the following errors:

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized.

RSMERR_BARRIER_NOT_OPENED Barrier not opened.

RSMERR_BARRIER_FAILURE Memory access error.

RSMERR_CONN_ABORTED Connection aborted.

See attributes(5) for descriptions of the following attributes:

rsm_memseg_import_open_barrier(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

474 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_open_barrier(3RSM)

SEE ALSO

Extended Library Functions 475

rsm_memseg_import_put, rsm_memseg_import_put8, rsm_memseg_import_put16,
rsm_memseg_import_put32, rsm_memseg_import_put64 – write to a segment

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_put(rsm_memseg_import_handle_t im_memseg,
off_t offset, void *src_addr, size_t length);

int rsm_memseg_import_put8(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint8_t datap, ulong_t rep_cnt);

int rsm_memseg_import_put16(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint16_t datap, ulong_t rep_cnt);

int rsm_memseg_import_put32(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint32_t datap, ulong_t rep_cnt);

int rsm_memseg_import_put64(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint64_t datap, ulong_t rep_cnt);

When using interconnects that allow memory mapping (see
rsm_memseg_import_map(3RSM)), standard CPU memory operations may be used
for accessing memory of a segment. If, however, a mapping is not provided, then
explicitly calling these functions facilitates writing to a segment. Depending on the
attributes of the extension library for the interconnect, these functions may involve
doing an implicit mapping before performing the data transfer. Applications can be
made interconnect-independent with respect to segment writes by using these
functions. The data access error detection is performed through the use of barriers (see
rsm_memseg_import_open_barrier(3RSM)). The default barrier operation mode
is RSM_BARRIER_MODE_IMPLICIT, which means that around every put operation
open and close barrier operations are performed automatically. Explicit error handling
may also be set up for these functions (see rsm_memseg_import_set_mode(3RSM)).

The rsm_memseg_import_put() function copies length bytes from local memory
with start address src_addr to the imported segment im_memseg beginning at location
offset from the start of the segment.

The rsm_memseg_import_put8() function copies rep_cnt number of 8-bit quantities
from successive local memory locations pointed to by datap to successive locations
starting from offset in the imported segment.

The rsm_memseg_import_put16() function copies rep_cnt number of 16-bit
quantities from successive local memory locations pointed to by datap to successive
locations starting from offset in the imported segment. The offset must be aligned at
half-word address boundary.

The rsm_memseg_import_put32() function copies rep_cnt number of 32-bit
quantities from successive local memory locations pointed to by datap to successive
locations starting from offset in the imported segment. The offset must be aligned at
word address boundary.

rsm_memseg_import_put(3RSM)

NAME

SYNOPSIS

DESCRIPTION

476 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

The rsm_memseg_import_put64() function copies rep_cnt number of 64-bit
quantities from successive local memory locations pointed to by datap to successive
locations starting from offset in the imported segment. The offset must be aligned at
double-word address boundary.

The data transfer functions that transfer small quantities of data (that is, 8-, 16-, 32-,
and 64-bit quantities) perform byte swapping prior to the data transfer, in the event
that the source and destination have incompatible endian characteristics.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

These functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_ADDR Bad address.

RSMERR_BAD_MEM_ALIGNMENT Invalid memory alignment for pointer.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_PERM_DENIED Permission denied.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized.

RSMERR_BARRIER_FAILURE I/O completion error.

RSMERR_CONN_ABORTED Connection aborted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_get(3RSM), rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_open_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_put(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 477

rsm_memseg_import_putv, rsm_memseg_import_getv – write to a segment using a
list of I/O requests

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_putv(rsm_scat_gath_t *sg_io);

int rsm_memseg_import_getv(rsm_scat_gath_t *sg_io);

The rsm_memseg_import_putv() and rsm_memseg_import_getv() functions
provide for using a list of I/O requests rather than a single source and destination
address as is done for thersm_memseg_import_put(3RSM) and
rsm_memseg_import_get(3RSM) functions.

The I/O vector component of the scatter-gather list (sg_io), allows specifying local
virtual addresses or local_memory_handles. When a local address range is used
repeatedly, it is efficient to use a handle because allocated system resources (that is,
locked down local memory) are maintained until the handle is freed. The supporting
functions for handles are rsm_create_localmemory_handle(3RSM) and
rsm_free_localmemory_handle(3RSM).

Virtual addresses or handles may be gathered into the vector for writing to a single
remote segment, or a read from a single remote segment may be scattered to the vector
of virtual addresses or handles.

Implicit mapping is supported for the scatter-gather type of access. The attributes of
the extension library for the specific interconnect are used to determine whether
mapping is necessary before any scatter-gather access. If mapping of the imported
segment is a prerequisite for scatter-gather access and the mapping has not already
been performed, an implicit mapping is performed for the imported segment. The I/O
for the vector is then initiated.

I/O for the entire vector is initiated before returning. The barrier mode attribute of the
import segment determines if the I/O has completed before the function returns. A
barrier mode attribute setting of IMPLICIT guarantees that the transfer of data is
completed in the order as entered in the I/O vector. An implicit barrier open and close
surrounds each list entry. If an error is detected, I/O for the vector is terminated and
the function returns immediately. The residual count indicates the number of entries
for which the I/O either did not complete or was not initiated.

Optionally, the scatter-gather list allows support for an implicit signal post after the
I/O for the entire vector has completed. This alleviates the need to do an explicit
signal post after ever I/O transfer operation. The means of enabling the implicit signal
post involves setting the flags field within the scatter-gather list to
RSM_IMPLICIT_SIGPOST. The flags field may also be set to
RSM_SIG_POST_NO_ACCUMULATE, which will be passed on to the signal post
operation when RSM_IMPLICIT_SIGPOST is set.

rsm_memseg_import_putv(3RSM)

NAME

SYNOPSIS

DESCRIPTION

478 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_putv() and rsm_memseg_import_getv() functions
can return the following errors:

RSMERR_BAD_SGIO Invalid scatter-gather structure pointer.

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_BAD_ADDR Bad address.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_INTERRUPTED The operation was interrupted by a signal.

RSMERR_PERM_DENIED Permission denied.

RSMERR_BARRIER_FAILURE I/O completion error.

RSMERR_REMOTE_NODE_UNREACHABLE Remote node not reachable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_create_localmemory_handle(3RSM),
rsm_free_localmemory_handle(3RSM), attributes(5)

rsm_memseg_import_putv(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 479

rsm_memseg_import_set_mode, rsm_memseg_import_get_mode – set or get mode for
barrier scoping

cc [flags...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_set_mode(rsm_memseg_import_handle_t memseg,
rsm_barrier_mode_t mode);

int rsm_memseg_import_get_mode(rsm_memseg_import_handle_t memseg,
rsm_barrier_mode_t *mode);

The rsm_memseg_import_set_mode() function provides support for optional
explicit barrier scoping in the functions described on the
rsm_memseg_import_get(3RSM) and rsm_memseg_import_put(3RSM) manual
pages.. The two valid barrier modes are RSM_BARRIER_MODE_EXPLICIT and
RSM_BARRIER_MODE_IMPLICIT. By default, the barrier mode is set to
RSM_BARRIER_MODE_IMPLICIT. When the mode is
RSM_BARRIER_MODE_IMPLICIT, an implicit barrier open and barrier close is applied
to the put operation. Irrespective of the mode set, the barrier must be initialized using
the rsm_memseg_import_init_barrier(3RSM) function before any barrier
operations, either implicit or explicit, are used.

The rsm_memseg_import_get_mode() function obtains the current value of the
mode used for barrier scoping in put functions.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_set_mode() and rsm_memseg_import_get_mode()
functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_get(3RSM), rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_put(3RSM), attributes(5)

rsm_memseg_import_set_mode(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

480 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rtld_audit, la_activity, la_i86_pltenter, la_objsearch, la_objopen, la_pltexit, la_pltexit64,
la_preinit, la_sparcv8_pltenter, la_sparcv9_pltenter, la_symbind32, la_symbind64,
la_version – runtime linker auditing functions

void la_activity(uintptr_t *cookie, uint_t flag);

uintptr_t la_i86_pltenter(Elf32_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, La_i86_regs *regs, uint_t *flags);

char *la_objsearch(const char *name, uintptr_t *cookie, uint_t flag);

uint_t la_objopen(Link_map *lmp, Lmid_t lmid, uintptr_t *cookie);

uintptr_t la_pltexit(Elf32_Sym *sym, uint_t ndx, uintptr_t *refcook,
uintptr_t *defcook, uintptr_t retval);

uintptr_t la_pltexit64(Elf64_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, uintptr_t retval, const char
*sym_name);

void la_preinit(uintptr_t *cookie);

uintptr_t la_sparcv8_pltenter(Elf32_Sym *sym, uint_t ndx,
uintptr_t *refcook, uintptr_t *defcook, La_sparcv8_regs *regs,
uint_t *flags);

uintptr_t la_sparcv9_pltenter(Elf64_Sym *sym, uint_t ndx,
uintptr_t *refcook, uintptr_t *defcook, La_sparcv8_regs *regs,
uint_t *flags, const char *sym_name);

uintptr_t la_symbind32(Elf32_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, uint_t *flags);

uintptr_t la_symbind64(Elf64_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, uint_t *flags, const char *sym_name);

uint_t la_version(uint_t version);

A runtime linker auditing library is a user-created shared object offering one or more
of these interfaces that are called by the runtime linker ld.so.1(1) during process
execution. See the Linker and Libraries Guide for a full description of the link auditing
mechanism.

ld.so.1(1)

Linker and Libraries Guide

rtld_audit(3EXT)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Extended Library Functions 481

rtld_db, rd_delete, rd_errstr, rd_event_addr, rd_event_enable, rd_event_getmsg,
rd_init, rd_loadobj_iter, rd_log, rd_new, rd_objpad_enable, rd_plt_resolution, rd_reset
– runtime linker debugging functions

cc [flag ...] file ... -lrtld_db [library ...]
#include <proc_service.h>

#include <rtld_db.h>

void rd_delete(struct rd_agent *rdap);

char *rd_errstr(rd_err_e rderr);

rd_err_e rd_event_addr(rd_agent *rdap, rd_notify_t *notify);

rd_err_e rd_event_enable(struct rd_agent *rdap, int onoff);

rd_err_e rd_event_getmsg(struct rd_agent *rdap, rd_event_msg_t
*msg);

rd_err_e rd_init(int version);

typedef int rl_iter_f(const rd_loadobj_t *, void *);

rd_err_e rd_loadobj_iter(rd_agent_t *rap, rl_iter_f *cb, void
*clnt_data);

void rd_log(const int onoff);

rd_agent_t *rd_new(struct ps_prochandle *php, uint_t flag);

rd_err_e rd_objpad_enable(struct rd_agent *rdap, size_t padsize);

rd_err_e rd_plt_resolution(rd_agent *rdap, paddr_t pc, lwpid_t
lwpid, paddr_t plt_base, rd_plt_info_t *rpi);

rd_err_e rd_reset(struct rd_agent *rdap);

The librtld_db library provides support for monitoring and manipulating runtime
linking aspects of a program. There are at least two processes involved, the controlling
process and one or more target processes. The controlling process is the librtld_db
client that links with librtld_db and uses librtld_db to inspect or modify
runtime linking aspects of one or more target processes. See the Linker and Libraries
Guide for a full description of the runtime linker debugger interface mechanism.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

ld.so.1(1), librtld_db(3LIB), libthread_db(3THR), attributes(5)

rtld_db(3EXT)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

482 man pages section 3: Extended Library Functions • Last Revised 14 Aug 2001

Linker and Libraries Guide

rtld_db(3EXT)

Extended Library Functions 483

scalb – load exponent of a radix-independent floating-point number

#include <math.h>

double scalb(double x, double n);

The scalb() function computes x * rn, where r is the radix of the machine’s floating
point arithmetic. When r is 2, scalb() is equivalent to ldexp(3C).

Upon successful completion, the scalb() function returns x * rn.

If the correct value would overflow, scalb() returns ±HUGE_VAL (according to the
sign of x) and sets errno to ERANGE.

If the correct value would underflow to 0.0, scalb() returns 0 and sets errno to
ERANGE.

The scalb() function returns x when x is ±Inf.

If x or n is NaN, then scalb() returns NaN.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The scalb() function will fail if:

ERANGE The correct value would overflow or underflow.

An application wishing to check for error situations should set errno to 0 before
calling scalb(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ldexp(3C), matherr(3M), attributes(5)

scalb(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

484 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

scalbn – load exponent of a radix-independent floating-point number

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double scalbn(double x, int n);

The scalbn() function computes x * rn, where r is the radix of the machine’s floating
point arithmetic.

Upon successful completion, the scalbn() function returns x * rn.

If the correct value would overflow, scalbn() returns ±HUGE_VAL (according to the
sign of x).

The scalbn() function returns x when x is ±Inf.

If x is NaN, then scalbn() returns NaN.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

scalbn(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 485

sendfile – send files over sockets or copy files to files

cc [flag ...] file ... -lsendfile [library ...]
#include <sys/sendfile.h>

ssize_t sendfile(int out_fd, int in_fd, off_t *off, size_t len);

The sendfile() function copies data from out_fd to in_fd starting at offset off and of
length len bytes. The in_fd argument should be a file descriptor to a regular file opened
for reading. See open(2). The out_fd argument should be a file descriptor to a regular
file opened for writing or to a connected AF_INET or AF_INET6 socket of
SOCK_STREAM type. See socket(3SOCKET). The off argument is a pointer to a
variable holding the input file pointer position from which the data will be read. After
sendfile() has completed, the variable will be set to the offset of the byte following
the last byte that was read. The sendfile() function does not modify the current file
pointer of in_fd, but does modify the file pointer for out_fd if it is a regular file.

The sendfile() function can also be used to send buffers by pointing in_fd to
SFV_FD_SELF.

Upon successful completion, sendfile() returns the total number of bytes written to
out_fd and also updates the offset to point to the byte that follows the last byte read.
Otherwise, it returns –1, and errno is set to indicate an error.

The sendfile() function will fail if:

EAFNOSUPPORT The implementation does not support the specified address family
for socket.

EAGAIN Mandatory file or record locking is set on either the file descriptor
or output file descriptor if it points at regular files. O_NDELAY or
O_NONBLOCK is set, and there is a blocking record lock. An attempt
has been made to write to a stream that cannot accept data with
the O_NDELAY or the O_NONBLOCK flag set.

EBADF The out_fd or in_fd argument is either not a valid file descriptor,
out_fd is not opened for writing. or in_fd is not opened for reading.

EINVAL The offset cannot be represented by the off_t structure, or the
length is negative when cast to ssize_t.

EIO An I/O error occurred while accessing the file system.

ENOTCONN The socket is not connected.

EOPNOTSUPP The socket type is not supported.

EPIPE The out_fd argument is no longer connected to the peer endpoint.

The sendfile() function has a transitional interface for 64-bit file offsets. See
lf64(5).

sendfile(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

486 man pages section 3: Extended Library Functions • Last Revised 20 Apr 2001

EXAMPLE 1 Sending a Buffer Over a Socket

The following example demonstrates how to send the buffer buf over a socket. At the
end, it prints the number of bytes transferred over the socket from the buffer. It
assumes that addr will be filled up appropriately, depending upon where to send the
buffer.

int tfd;
off_t baddr;
struct sockaddr_in sin;
char buf[64 * 1024];
in_addr_t addr;

tfd = socket(AF_INET, SOCK_STREAM, 0);
if (tfd == -1) {

perror("socket");
exit(1);

}

sin.sin_family = AF_INET;
sin.sin_addr = addr; /* Fill in the appropriate address. */
sin.sin_port = htons(2345);
if (connect(tfd, (struct sockaddr *)&sin, sizeof(sin))<0) {

perror("connect");
exit(1);

}

baddr = (off_t)buf;
len = sendfile(tfd, SFV_FD_SELF, &baddr, len);

if (len == -1) {
perror("sendfile");
exit(1);

}

printf("Transfered %d bytes from buffer to socket0 len);

EXAMPLE 2 Transferring Files to Sockets

The following program demonstrates a transfer of files to sockets:

int ffd, tfd;
off_t off;
struct sockaddr_in sin;
in_addr_t addr;
int len;
struct stat stat_buf;

ffd = open("file", O_RDONLY);
if (ffd == -1) {

perror("open");
exit(1);

}

tfd = socket(AF_INET, SOCK_STREAM, 0);
if (tfd == -1) {

sendfile(3EXT)

EXAMPLES

Extended Library Functions 487

EXAMPLE 2 Transferring Files to Sockets (Continued)

perror("socket");
exit(1);

}

sin.sin_family = AF_INET;
sin.sin_addr = addr; /* Fill in the appropriate address. */
sin.sin_port = htons(2345);
if (connect(tfd, (struct sockaddr *) &sin, sizeof(sin)) <0) {

perror("connect");
exit(1);

}

if (fstat(ffd, &stat_buf) == -1) {
perror("fstat");
exit(1);

}

len = sendfile(tfd, ffd, &off, stat_buf.st_size);

if (len == -1) {
perror("sendfile");
exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl(32 –bit)

SUNWcslx (64–bit)

Interface Stability Evolving

MT-Level MT-Safe

/usr/lib/libsendfile.so.1 shared object file

open(2), socket(3SOCKET), attributes(5), lf64(5)

sendfile(3EXT)

ATTRIBUTES

FILES

SEE ALSO

488 man pages section 3: Extended Library Functions • Last Revised 20 Apr 2001

sendfilev – send a file

cc -flag ... file ...-lsendfile [-library]

#include <sys/sendfile.h>

ssize_t sendfilev(int fildes, const struct sendfilevec *vec, int
sfvcnt, size_t *xferred);

The sendfilev() function attempts to write data from the sfvcnt buffers specified
by the members of vec array: vec[0], vec[1], ... , vec[sfvcnt–1]. fildes is a
file descriptor to a regular file or to a AF_NCA, AF_INET, or AF_INET6 family type
SOCK_STREAM socket that is open for writing.

This function is analogous to the writev() system call. See writev(2). However,
instead of sending out chunks of data, sendfilev() can read input data from data
buffers or file descriptors.

The following is the sendfilevec structure:

typedef struct sendfilevec {
int sfv_fd; /* input fd */
uint_t sfv_flag; /* Flags. see below */
off_t sfv_off; /* offset to start reading from */
size_t sfv_len; /* amount of data */

} sendfilevec_t;

#define SFV_FD_SELF (-2)

To send a file, open the file for reading. Point sfv_fd to the file descriptor returned as
a result. See open(2). sfv_off should contain the offset within the file. sfv_len
should have the length of the file to be transferred.

The xferred parameter is updated to record the total number of bytes written to
out_fd.

The sfv_flag field is reserved and should be set to zero.

To send data directly from the address space of the process, set sfv_fd to
SFV_FD_SELF. sfv_off should point to the data, with sfv_len containing the
length of the buffer.

The sendfilev() function supports the following parameters:

fildes A file descriptor to a regular file or to a AF_NCA, AF_INET, or AF_INET6
family type SOCK_STREAM socket that is open for writing. For AF_NCA, the
protocol type should be zero.

vec An array of SENDFILEVEC_T, as defined in the sendfilevec structure
above.

sfvcnt The number of members in vec.

xferred The total number of bytes written to out_fd.

sendfilev(3EXT)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

Extended Library Functions 489

Upon successful completion, sendfilev() returns total number of bytes written to
out_fd. Otherwise, it returns -1, and errno is set to indicate an error. xferred
contains the amount of data successfuly transferred, which can be used to discover the
error vector.

EAFNOSUPPORT The implementation does not support the specified address
family for socket.

EPROTOTYPE The socket type is not supported.

EBADF The fildes argument is not a valid descriptor open for writing or
an sfv_fd is invalid or not open for reading.

EACCES The process does not have appropriate privileges or one of the
files pointed by sfv_fd does not have appropriate permissions.

EPIPE The fildes argument is a socket that has been shut down for
writing.

EIO An I/O error occurred while accessing the file system.

EFAULT The vec argument points to an illegal address.

EFAULT The xferred argument points to an illegal address.

EINVAL The sfvcnt argument was less than or equal to 0. One of the
sfv_len in vec array was less than or equal to 0, or greater than
the file size. An sfv_fd is not seekable.

EAGAIN Mandatory file or record locking is set on either the file descriptor
or output file descriptor if it points at regular files. O_NDELAY or
O_NONBLOCK is set, and there is a blocking record lock. An
attempt has been made to write to a stream that cannot accept
data with the O_NDELAY or the O_NONBLOCK flag set.

The sendfilev() function has a transitional interface for 64-bit file offsets. See
lf64(5).

The following example sends 2 vectors, one of HEADER data and a file of length 100
over sockfd. sockfd is in a connected state, that is, socket(), accept(), and
bind() operation are complete.

#include <sys/sendfile.h>
.
.
.
int
main (int argc, char eargv[]){

int sockfd;
ssize_t ret;
size_t xfer;
struct sendfilevec vec[2];

.

.

.

sendfilev(3EXT)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

490 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2001

vec[0].sfv_fd = SFV_FD_SELF;
vec[0].sfv_flag = 0;
vec[0].sfv_off = "HEADER_DATA";
vec[0].sfv_len = strlen("HEADER_DATA");
vec[1].sfv_fd = open("input_file",....);
vec[1].sfv_flag = 0;
vec[1].sfv_off = 0;
vec[1].sfv_len = 100;

ret = sendfilev(sockfd, vec, 2, &xfer);
.
.
.

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl(32 –bit)

SUNWcslx (64–bit)

Interface Stability Evolving

MT-Level MT-Safe

open(2), writev(2), attributes(5)

sendfilev(3EXT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 491

setproject – place process in new project with attendant resource controls and
attributes

cc [flag ...] file... -lproject [library ...]

#include <project.h>

int setproject(const char *project_name, const char *user_name, uint_t
flags);

The setproject() function provides a simplified method for the association of a
user process with a project and its various resource management attributes, as stored
in the project(4) name service database.

If user_name is a valid member of the project specified by project_name, as determined
by inproj(3PROJECT), then setproject() will create a new task with
settaskid(2) and use setrctl(2) to associate various resource controls with the
process, task, and project. Controls not explicity specified in the project entry will be
preserved.

Upon successful completion, setproject() returns 0. If any of the attribute
assignments failed but the project assignment and task creation succeeded, then an
integer value corresponding to the offset into the key-value pair list of the failed
attribute assignment is returned. If the project assignment was not successful,
setproject() returns −1 and sets errno to indicate the error.

The setproject() function will fail if:

EACCES The invoking task was created with the TASK_FINAL flag.

EINVAL The project ID associated with the given project is not within the
range of valid project IDs.

EPERM The effective user of the calling process is not superuser.

ESRCH The specified user is not a valid user of the given project.

If setproject() returns an offset into the key-value pair list, the returned error
value is associated with setrctl(2).

The setproject() function recognizes a name-structured value pair for the
attributes in the project(4) database with the following format:

entity.control=(privilege,value,action,action,...),...

where privilege is one of BASIC or PRIVILEGED, value is a numeric value with
optional units, and action is one of none, deny, and signal/signum or
signal/SIGNAME. For instance, to set a series of progressively more assertive
control values on a project’s per-process CPU time, specify

process.max-cpu-time=(PRIVILEGED,1000s,signal/SIGXRES), \

(PRIVILEGED,1250, signal=SIGTERM),(PRIVILEGED,1500,signal=SIGKILL)

To prevent a task from exceeding a total of 128 LWPs, specify a resource control with

setproject(3PROJECT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

492 man pages section 3: Extended Library Functions • Last Revised 25 Aug 2001

task.max-lwps=(PRIVILEGED,128,deny)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

setrctl(2), settaskid(2), inproj(3PROJECT), project(4), attributes(5)

setproject(3PROJECT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 493

significand – significand function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double significand(double x);

The significand() function, along with the logb(3M) and scalb(3M) functions,
allows users to verify compliance to ANSI/IEEE Std 754-1985 by running certain test
vectors distributed by the University of California.

If x equals sig * 2n with 1 < sig < 2, then significand(x) returns sig for exercising
the fraction-part(F) test vector. significand(x) is not defined when x is either 0,
±Inf or NaN.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
various Standards.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

logb(3M), matherr(3M), scalb(3M), attributes(5)

significand(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

494 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

sin – sine function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double sin(double x);

The sin() function computes the sine of its argument x, measured in radians.

Upon successful completion, sin() returns the sine of x.

If x is NaN or ±Inf, NaN is returned.

No errors will occur.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

asin(3M), isnan(3M), attributes(5)

sin(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 495

sinh – hyperbolic sine function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double sinh(double x);

The sinh() function computes the hyperbolic sine of x.

Upon successful completion, sinh() returns the hyperbolic sine of x.

If the result would cause an overflow, ±HUGE_VAL is returned and errno is set to
ERANGE.

If x is NaN, NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The sinh() function will fail if:

ERANGE The result would cause overflow.

An application wishing to check for error situations should set errno to 0 before
calling sinh(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

asinh(3M), cosh(3M), isnan(3M), matherr(3M), tanh(3M), attributes(5),
standards(5)

sinh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

496 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

sqrt – square root function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double sqrt(double x);

The sqrt() function computes the square root of x.

Upon successful completion, sqrt() returns the square root of x.

If x is NaN, NaN is returned.

If x is negative, NaN is returned and errno is set to EDOM.

The sqrt() function will fail if:

EDOM The value of x is negative.

An application wishing to check for error situations should set errno to 0 before
calling sqrt(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), attributes(5)

sqrt(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 497

SSAAgentIsAlive, SSAGetTrapPort, SSARegSubtable, SSARegSubagent,
SSARegSubtree, SSASendTrap, SSASubagentOpen – Sun Solstice Enterprise Agent
registration and communication helper functions

cc [flag ...] file ... -lssagent -lssasnmp [library ..]

#include <impl.h>

extern int SSAAgentIsAlive(IPAddress *agent_addr, int *port, char
*community, struct timeval *timeout);

extern int SSAGetTrapPort();

extern int *SSARegSubagent(Agent* agent);

int SSARegSubtable(SSA_Table *table);

int SSARegSubtree(SSA_Subtree *subtree);

extern void SSASendTrap(char *name);

extern int SSASubagentOpen(int *num_of_retry, char *agent_name);

The SSAAgentIsAlive() function returns TRUE if the master agent is alive,
otherwise returns FALSE. The agent_addr parameter is the address of the agent. Specify
the security token in the community parameter. You can specify the maximum amount
of time to wait for a response with the timeout parameter.

The SSAGetTrapPort() function returns the port number used by the Master Agent
to communicate with the subagent.

The SSARegSubagent() function enables a subagent to register and unregister with
a Master Agent. The agent parameter is a pointer to an Agent structure containing the
following members:

int timeout; /* optional */
int agent_id; /* required */
int agent_status; /* required */
char *personal_file; /* optional */
char *config_file; /* optional */
char *executable; /* optional */
char *version_string; /* optional */
char *protocol; /* optional */
int process_id; /* optional */
char *name; /* optional */
int system_up_time; /* optional */
int watch_dog_time; /* optional */
Address address; /* required */
struct _Agent; /* reserved */

struct _Subtree; /* reserved */

The agent_id member is an integer value returned by the SSASubagentOpen()
function. After calling SSASubagentOpen(), you pass the agent_id in the
SSARegSubagent() call to register the subagent with the Master Agent.

SSAAgentIsAlive(3SNMP)

NAME

SYNOPSIS

DESCRIPTION

498 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

The following values are supported for agent_status:

SSA_OPER_STATUS_ACTIVE
SSA_OPER_STATUS_NOT_IN_SERVICE
SSA_OPER_STATUS_DESTROY

You pass SSA_OPER_STATUS_DESTROY as the value in a SSARegSubagent()
function call when you want to unregister the agent from the Master Agent.

Address has the same structure as sockaddr_in, that is a common UNIX structure
containing the following members:

short sin_family;
ushort_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

The SSARegSubtable() function registers a MIB table with the Master Agent. If this
function is successful, an index number is returned, otherwise 0 is returned. The table
parameter is a pointer to a SSA_Table structure containing the following members:

int regTblIndex; /* index value */
int regTblAgentID; /* current agent ID */
Oid regTblOID; /* Object ID of the table */
int regTblStartColumn; /* start column index */
int regTblEndColumn; /* end column index */
int regTblStartRow; /* start row index */
int regTblEndRow; /* end row index */
int regTblStatus; /* status */

The regTblStatus can have one of the following values:

SSA_OPER_STATUS_ACTIVE
SSA_OPER_STATUS_NOT_IN_SERVICE

The SSARegSubtree() function registers a MIB subtree with the master agent. If
successful this function returns an index number, otherwise 0 is returned. The subtree
parameter is a pointer to a SSA_Subtree structure containing the following
members:

int regTreeIndex; /* index value */
int regTreeAgentID; /* current agent ID */
Oid name; /* Object ID to register */
int regtreeStatus; /* status */

The regtreeStatus can have one of the following values:

SSA_OPER_STATUS_ACTIVE
SSA_OPER_STATUS_NOT_IN_SERVICE

The SSASendTrap() function instructs the Master Agent to send a trap notification,
based on the keyword passed with name. When your subagent MIB is compiled by
mibcodegen, it creates a lookup table of the trap notifications defined in the MIB. By
passing the name of the trap notification type as name, the subagent instructs the
Master Agent to construct the type of trap defined in the MIB.

SSAAgentIsAlive(3SNMP)

Extended Library Functions 499

The SSASubagentOpen() function initializes communication between the subagent
and the Master Agent. You must call this function before calling SSARegSubagent()
to register the subagent with the Master Agent. The SSASubagentOpen() function
returns a unique agent ID that is passed in the SSARegSubagent() call to register
the subagent. If 0 is returned as the agent ID, the attempt to initialize communication
with the Master Agent was unsuccessful. Since UDP is used to initialize
communication with the Master Agent, you may want to set the value of num_of_retry
to make multiple attempts.

The value for agent_name must be unique within the domain for which the Master
Agent is responsible.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5)

SSAAgentIsAlive(3SNMP)

ATTRIBUTES

SEE ALSO

500 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

SSAOidCmp, SSAOidCpy, SSAOidDup, SSAOidFree, SSAOidInit, SSAOidNew,
SSAOidString, SSAOidStrToOid, SSAOidZero – Sun Solstice Enterprise Agent OID
helper functions

cc [flag ...] file ... -lssasnmp [library ..]

#include <impl.h>

int SSAOidCmp(Oid *oid1, Oid *oid2);

int SSAOidCpy(Oid *oid1, Oid *oid2, char *error_label);

Oid *SSAOidDup(Oid *oid, char *error_label);

void SSAOidFree(Oid *oid);

int SSAOidInit(Oid *oid, Subid *subids, int len, char *error_label);

Oid *SSAOidNew();

char *SSAOidString(Oid *oid);

Oid *SSAOidStrToOid(char* name, char *error_label);

void SSAOidZero(Oid *oid);

The SSAOidCmp() function performs a comparison of the given OIDs. This function
returns:

0 if oid1 is equal to oid2

1 if oid1 is greater than oid2

−1 if oid1 is less than oid2

The SSAOidCpy() function makes a deep copy of oid2 to oid1. This function assumes
oid1 has been processed by the SSAOidZero() function. Memory is allocated inside
oid1 and the contents of oid2, not just the pointer, is copied to oid1. If an error is
encountered, an error message is stored in the error_label buffer.

The SSAOidDup() function returns a clone of oid, by using the deep copy. Error
information is stored in the error_label buffer.

The SSAOidFree() function frees the OID instance, with its content.

The SSAOidNew() function returns a new OID.

The SSAOidInit() function copies the Subid array from subids to the OID instance
with the specified length len. This function assumes that the OID instance has been
processed by the SSAOidZero() function or no memory is allocated inside the OID
instance. If an error is encountered, an error message is stored in the error_label buffer.

The SSAOidString() function returns a char pointer for the printable form of the
given oid.

SSAOidCmp(3SNMP)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 501

The SSAOidStrToOid() function returns a new OID instance from name. If an error
is encountered, an error message is stored in the error_label buffer.

The SSAOidZero() function frees the memory used by the OID object for buffers, but
not the OID instance itself.

The SSAOidNew() and SSAOidStrToOid() functions return 0 if an error is
detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5)

SSAOidCmp(3SNMP)

RETURN VALUES

ATTRIBUTES

SEE ALSO

502 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

SSAStringCpy, SSAStringInit, SSAStringToChar, SSAStringZero – Sun Solstice
Enterprise Agent string helper functions

cc [flag ...] file ... -lssasnmp [library ..]

#include <impl.h>

void *SSAStringZero(String *string);

int SSAStringInit(String *string, uchar_t *chars, int len, char
*error_label);

int SSAStringCpy(String *string1, String *string2, char *error_label);

char *SSAStringToChar(String string);

The SSAStringCpy() function makes a deep copy of string2 to string1. This function
assumes that string1 has been processed by the SSAStringZero() function. Memory
is allocated inside the string1 and the contents of string2, not just the pointer, is copied
to the string1. If an error is encountered, an error message is stored in the error_label
buffer.

The SSAStringInit() function copies the char array from chars to the string
instance with the specified length len. This function assumes that the string instance
has been processed by the SSAStringZero() function or no memory is allocated
inside the string instance. If an error is encountered, an error message is stored in the
error_label buffer.

The SSAStringToChar() function returns a temporary char array buffer for printing
purposes.

The SSAStringZero() function frees the memory inside of the String instance, but
not the string object itself.

The SSAStringInit() and SSAStringCpy() functions return 0 if successful and
−1 if error.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5)

SSAStringCpy(3SNMP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 503

strccpy, streadd, strcadd, strecpy – copy strings, compressing or expanding escape
codes

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *strccpy(char *output, const char *input);

char *strcadd(char *output, const char *input);

char *strecpy(char *output, const char *input, const char *exceptions);

char *streadd(char *output, const char *input, const char *exceptions);

strccpy() copies the input string, up to a null byte, to the output string, compressing
the C-language escape sequences (for example, \n, \001) to the equivalent character.
A null byte is appended to the output. The output argument must point to a space big
enough to accommodate the result. If it is as big as the space pointed to by input it is
guaranteed to be big enough. strccpy() returns the output argument.

strcadd() is identical to strccpy(), except that it returns the pointer to the null
byte that terminates the output.

strecpy() copies the input string, up to a null byte, to the output string, expanding
non-graphic characters to their equivalent C-language escape sequences (for example,
\n, \001). The output argument must point to a space big enough to accommodate the
result; four times the space pointed to by input is guaranteed to be big enough (each
character could become \ and 3 digits). Characters in the exceptions string are not
expanded. The exceptions argument may be zero, meaning all non-graphic characters
are expanded. strecpy() returns the output argument.

streadd() is identical to strecpy(), except that it returns the pointer to the null
byte that terminates the output.

EXAMPLE 1 Example of expanding and compressing escape codes.

/* expand all but newline and tab */
strecpy(output, input, "\n\t");

/* concatenate and compress several strings */
cp = strcadd(output, input1);
cp = strcadd(cp, input2);

cp = strcadd(cp, input3);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

strccpy(3GEN)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

504 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

string(3C), strfind(3GEN), attributes(5)

When compiling multi-thread applications, the _REENTRANT flag must be defined on
the compile line. This flag should only be used in multi-thread applications.

strccpy(3GEN)

SEE ALSO

NOTES

Extended Library Functions 505

strfind, strrspn, strtrns, str – string manipulations

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int strfind(const char *as1, const char *as2);

char *strrspn(const char *string, const char *tc);

char * strtrns(const char *string, const char *old, const char *new,
char *result);

The strfind() function returns the offset of the first occurrence of the second string,
as2, if it is a substring of string as1. If the second string is not a substring of the first
string strfind() returns −1.

The strrspn() function trims chartacters from a string. It searches from the end of
string for the first character that is not contained in tc. If such a character is found,
strrspn() returns a pointer to the next character; otherwise, it returns a pointer to
string.

The strtrns() function transforms string and copies it into result. Any character that
appears in old is replaced with the character in the same position in new. The new
result is returned.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

EXAMPLE 1 An example of the strfind() function.

/* find offset to substring "hello" within as1 */
i = strfind(as1, "hello");
/* trim junk from end of string */
s2 = strrspn(s1, "*?#$%");
*s2 = ’\0’;
/* transform lower case to upper case */
a1[] = "abcdefghijklmnopqrstuvwxyz";
a2[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
s2 = strtrns(s1, a1, a2, s2);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

string(3C), attributes(5)

strfind(3GEN)

NAME

SYNOPSIS

DESCRIPTION

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

506 man pages section 3: Extended Library Functions • Last Revised 20 Jan 1999

sysevent_free – free memory for sysevent handle

cc [flag ...] file ...-lsysevent [library ...]
#include <libsysevent.h>

void sysevent_free(sysevent_t *ev);

ev handle to event an event buffer

The sysevent_free() function deallocates memory associated with an event buffer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

attributes(5)

sysevent_free(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 507

sysevent_get_attr_list – get attribute list pointer

cc [flag ...] file ... -lsysevent -lnvpair [library ...]
#include <libsysevent.h>

#include <libnvpair.h>

int sysevent_get_attr_list(sysevent_t *ev, nvlist_t **attr_list);

ev handle to a system event

attr_list address of a pointer to attribute list (nvlist_t)

The sysevent_get_attr_list() function updates attr_list to point to a searchable
name-value pair list associated with the sysevent event, ev. The interface manages
the allocation of the attribute list, but it is up to the caller to free the list when it is no
longer needed with a call to nvlist_free(). See nvlist_alloc(3NVPAIR).

The sysevent_get_attr_list() function returns 0 if the attribute list for ev is
found to be valid. Otherwise it returns −1 and sets errno to indicate the error.

The sysevent_get_attr_list() function will fail if:

ENOMEM Insufficient memory available to allocate an nvlist.

EINVAL Invalid sysevent event attribute list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

syseventd(1M), nvlist_alloc(3NVPAIR),
nvlist_lookup_boolean(3NVPAIR), attributes(5)

sysevent_get_attr_list(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

508 man pages section 3: Extended Library Functions • Last Revised 12 Sep 2000

sysevent_get_class_name, sysevent_get_subclass_name, sysevent_get_event_id,
sysevent_get_size – get class name, subclass name, ID or buffer size of event

cc [flag ...] file ...-lsysevent [library ...]
#include <libsysevent.h>

char *sysevent_get_class_name(sysevent_t *ev);

char *sysevent_get_subclass_name(sysevent_t *ev);

void sysevent_get_event_id(sysevent_t *ev, sysevent_id_t *eid);

int sysevent_get_size(sysevent_t *ev);

eid pointer to sysevent_id_t structure

ev handle to event

The sysevent_get_class_name() and sysevent_get_subclass_name()
functions return, respectively, the class and subclass names for the provided event ev.

The sysevent_get_event_id() function returns the unique event identifier
associated with the sysevent handle, ev. The identifier is composed of a relative
timestamp issued at the time the event was generated and a sequence number to
ensure uniqueness.

typedef struct sysevent_id {
uint64_t eid_seq;
hrtime_t eid_ts;

} sysevent_id_t;

The sysevent_get_size() function returns the size of the event buffer, ev.

EXAMPLE 1 Parse sysevent header information.

The following example parses sysevent header information from an application’s
event handler.

hrtime_t last_ev_time;
unit64_t last_ev_seq;

void
event_handler(sysevent_t *ev)
{

sysevent_t *new_ev;
sysevent_id_t eid;

/* Filter on class and subclass */
if (strcmp(EC_PRIV, sysevent_get_class_name(ev)) != 0) {

return;
} else if (strcmp("ESC_MYSUBCLASS,

sysevent_get_subclass_name(ev)) != 0) {
return;

}

sysevent_get_class_name(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

EXAMPLES

Extended Library Functions 509

EXAMPLE 1 Parse sysevent header information. (Continued)

/*
* Check for replayed sysevent, time must
* be greater than previously recorded.
*/
sysevent_get_event_id(ev, &eid);
if (eid.eid_ts < last_ev_time ||

(eid.eid_ts == last_ev_time && eid.eid_seq <=
last_ev_seq)) {

return;
}

last_ev_time = eid.eid_ts;
last_ev_seq = eid.eid_seq;

/* Store event for later processing */
ev_sz = sysevent_get_size(ev):
new_ev (sysevent_t *)malloc(ev_sz);
bcopy(ev, new_ev, ev_sz);
queue_event(new_ev);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

attributes(5)

sysevent_get_class_name(3SYSEVENT)

ATTRIBUTES

SEE ALSO

510 man pages section 3: Extended Library Functions • Last Revised 12 Sep 2000

sysevent_get_vendor_name, sysevent_get_pub_name, sysevent_get_pid – get vendor
name, publisher name or processor ID of event

cc [flag ...] file ...-lsysevent [library ...]
#include <libsysevent.h>

char *sysevent_get_vendor_name(sysevent_t *ev);

char *sysevent_get_pub_name(sysevent_t *ev);

pid_t sysevent_get_pid(sysevent_t *ev);

ev handle to a system event object

The sysevent_get_pub_name() function returns the publisher name for the
sysevent handle, ev. The publisher name identifies the name of the publishing
application or kernel subsystem of the sysevent.

The sysevent_get_pid() function returns the process ID for the publishing
application or SE_KERN_PID for sysevents originating in the kernel. The publisher
name and PID are useful for implementing event acknowledgement.

The sysevent_get_vendor_name() function returns the vendor string for the
publishing application or kernel subsystem. A vendor string is the company’s stock
symbol that provided the application or kernel subsystem that generated the system
event. This information is useful for filtering sysevents for one or more vendors.

The interface manages the allocation of the vendor and publisher name strings, but it
is up to the caller to free the strings when they are no longer needed with a call to
free(). See malloc(3MALLOC).

EXAMPLE 1 Parse sysevent header information.

The following example parses sysevent header information from an application’s
event handler.

char *vendor;
char *pub;

void
event_handler(sysevent_t *ev)
{

if (strcmp(EC_PRIV, sysevent_get_class_name(ev)) != 0) {
return;

}

vendor = sysevent_get_vendor_name(ev);
if (strcmp("SUNW", vendor) != 0) {

free(vendor);
return;

}
pub = sysevent_get_pub_name(ev);
if (strcmp("test_daemon", pub) != 0) {

free(vendor);

sysevent_get_vendor_name(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

EXAMPLES

Extended Library Functions 511

EXAMPLE 1 Parse sysevent header information. (Continued)

free(pub);
return;

}
(void) kill(sysevent_get_pid(ev), SIGUSR1);
free(vendor);
free(pub);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

malloc(3MALLOC), attributes(5)

sysevent_get_vendor_name(3SYSEVENT)

ATTRIBUTES

SEE ALSO

512 man pages section 3: Extended Library Functions • Last Revised 12 Sep 2000

sysevent_post_event – post system event for applications

cc [flag ...] file ...-lsysevent -lnvpair [library ...]
#include <libsysevent.h>

#include <libnvpair.h>

int sysevent_post_event(char *class, char *subclass, char *vendor, char
*publisher, nvlist_t *attr_list, sysevent_id_t *eid);

attr_list pointer to an nvlist_t, listing the name-value attributes
associated with the event, or NULL if there are no such attributes
for this event

class pointer to a string defining the event class

eid pointer to a system unique identifier

publisher pointer to a string defining the event’s publisher nam

subclass pointer to a string defining the event subclass

vendor pointer to a string defining the vendor

The sysevent_post_event() function causes a system event of the specified class,
subclass, vendor, and publisher to be generated on behalf of the caller and queued for
delivery to the sysevent daemon syseventd(1M).

The vendor must be the company stock symbol of the event posting application. The
publisher should be the name of the application generating the event.

For example, all events posted by Sun applications begin with the company’s stock
symbol, "SUNW". The publisher is usually the name of the application generating the
system event. A system event generated by devfsadm(1M) has a publisher string of
devfsadm.

The publisher information is used by sysevent consumers to filter unwanted event
publishers.

Upon successful queuing of the system event, a unique identifier is assigned to eid.

The sysevent_post_event() function returns 0 if the system event has been
queued successfully for delivery. Otherwise it returns −1 and sets errno to indicate
the error.

The sysevent_post_event() function will fail if:

ENOMEM Insufficient resources to queue the system event.

EIO The syseventd daemon is not responding and events cannot be
queued or delivered at this time.

EINVAL Invalid argument.

EPERM Permission denied.

sysevent_post_event(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 513

EFAULT A copy error occurred.

EXAMPLE 1 Post a system event event with no attributes.

The following example posts a system event event with no attributes.

if (sysevent_post_event(EC_PRIV, "ESC_MYSUBCLASS", "SUNW", argv[0],
NULL) != 0) {

fprintf(stdout, "error logging system event\n");

}

EXAMPLE 2 Post a system event with two name-value pair attributes.

The following example posts a system event event with two name-value pair
attributes, an integer value and a string.

nvlist_t *attr_list;
uint32_t uint32_val = 0XFFFFFFFF;
char *string_val = "string value data";

if (nvlist_alloc(&attr_list, 0, 0) == 0) {
err = nvlist_add_uint32(attr_list, "uint32 data", uint32_val);
if (err == 0)

err = nvlist_add_string(attr_list, "str data",
str_value);

if (err == 0)
err = sysevent_post_event("EC_PRIV", "ESC_MYSUBCLASS",

"SUNW", argv[0], attr_list);
if (err != 0)

fprintf(stdout, "error logging system event\n");
nvlist_free(attr_list);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

devfsadm(1M), syseventd(1M), nvlist_add_boolean(3NVPAIR),
nvlist_alloc(3NVPAIR), attributes(5)

sysevent_post_event(3SYSEVENT)

EXAMPLES

ATTRIBUTES

SEE ALSO

514 man pages section 3: Extended Library Functions • Last Revised 12 Sep 2000

tan – tangent function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double tan(double x);

The tan() function computes the tangent of its argument x, measured in radians.

Upon successful completion, tan() returns the tangent of x.

If x is NaN or ±Inf, NaN is returned.

No errors will occur.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atan(3M), isnan(3M), attributes(5)

tan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 515

tanh – hyperbolic tangent function

cc [flag ...] file ... -lm [library ...]

#include <math.h>

double tanh(double x);

The tanh() function computes the hyperbolic tangent of x.

Upon successful completion, tanh() returns the hyperbolic tangent of x.

If x is NaN, NaN is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atanh(3M), isnan(3M), tan(3M), attributes(5)

tanh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

516 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

tnfctl_buffer_alloc, tnfctl_buffer_dealloc – allocate or deallocate a buffer for trace data

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_buffer_alloc(tnfctl_handle_t *hndl, const
char *trace_file_name, size_t trace_buffer_size);

tnfctl_buffer_dealloc(tnfctl_handle_t *hndl);

tnfctl_buffer_alloc() allocates a buffer to which trace events are logged. When
tracing a process using a tnfctl handle returned by tnfctl_pid_open(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF), and
tnfctl_internal_open(3TNF)), trace_file_name is the name of the trace file to
which trace events should be logged. It can be an absolute path specification or a
relative path specification. If it is relative, the current working directory of the process
that is calling tnfctl_buffer_alloc() is prefixed to trace_file_name. If the named
trace file already exists, it is overwritten. For kernel tracing, that is, for a tnfctl handle
returned by tnfctl_kernel_open(3TNF), trace events are logged to a trace buffer in
memory; therefore, trace_file_name is ignored. Use tnfxtract(1) to extract a kernel
buffer into a file.

trace_buffer_size is the size in bytes of the trace buffer that should be allocated. An error
is returned if an attempt is made to allocate a buffer when one already exists.
tnfctl_buffer_alloc() affects the trace attributes; use
tnfctl_trace_attrs_get(3TNF) to get the latest trace attributes after a buffer is
allocated.

tnfctl_buffer_dealloc() is used to deallocate a kernel trace buffer that is no
longer needed. hndl must be a kernel handle, returned by
tnfctl_kernel_open(3TNF). A process’s trace file cannot be deallocated using
tnfctl_buffer_dealloc(). Instead, once the trace file is no longer needed for
analysis and after the process being traced exits, use rm(1) to remove the trace file. Do
not remove the trace file while the process being traced is still alive.
tnfctl_buffer_dealloc () affects the trace attributes; use
tnfctl_trace_attrs_get(3TNF) to get the latest trace attributes after a buffer is
deallocated.

For a complete discussion of tnf tracing, see tracing(3TNF).

tnfctl_buffer_alloc() and tnfctl_buffer_dealloc() return
TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_buffer_alloc():

TNFCTL_ERR_BUFEXISTS A buffer already exists.

TNFCTL_ERR_ACCES Permission denied; could not create a trace
file.

tnfctl_buffer_alloc(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 517

TNFCTL_ERR_SIZETOOSMALL The trace_buffer_size requested is smaller
than the minimum trace buffer size needed.
Use trace_min_size of trace attributes in
tnfctl_trace_attrs_get(3TNF) to
determine the minimum size of the buffer.

TNFCTL_ERR_SIZETOOBIG The requested trace file size is too big.

TNFCTL_ERR_BADARG trace_file_name is NULL or the absolute path
name is longer than MAXPATHLEN.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_buffer_dealloc():

TNFCTL_ERR_BADARG hndl is not a kernel handle.

TNFCTL_ERR_NOBUF No buffer exists to deallocate.

TNFCTL_ERR_BADDEALLOC Cannot deallocate a trace buffer unless
tracing is stopped. Use
tnfctl_trace_state_set(3TNF) to stop
tracing.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), rm(1), tnfxtract(1), TNF_PROBE(3TNF), libtnfctl(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF),
tnfctl_internal_open(3TNF), tnfctl_kernel_open(3TNF),
tnfctl_pid_open(3TNF), tnfctl_trace_attrs_get(3TNF), tracing(3TNF),
attributes(5)

tnfctl_buffer_alloc(3TNF)

ATTRIBUTES

SEE ALSO

518 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_close – close a tnfctl handle

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_close(tnfctl_handle_t *hndl,
tnfctl_targ_op_t action);

tnfctl_close() is used to close a tnfctl handle and to free up the memory
associated with the handle. When the handle is closed, the tracing state and the states
of the probes are not changed. tnfctl_close() can be used to close handles in any
mode, that is, whether they were created by tnfctl_internal_open(3TNF),
tnfctl_pid_open(3TNF), tnfctl_exec_open(3TNF),
tnfctl_indirect_open(3TNF), or tnfctl_kernel_open(3TNF).

The action argument is only used in direct mode, that is, if hndl was created by
tnfctl_exec_open(3TNF) or tnfctl_pid_open(3TNF). In direct mode, action
specifies whether the process will proceed, be killed, or remain suspended. action may
have the following values:

TNFCTL_TARG_DEFAULT Kills the target process if hndl was created
with tnfctl_exec_open(3TNF), but lets
it continue if it was created with
tnfctl_pid_open(3TNF).

TNFCTL_TARG_KILL Kills the target process.

TNFCTL_TARG_RESUME Allows the target process to continue.

TNFCTL_TARG_SUSPEND Leaves the target process suspended. This is
not a job control suspend. It is possible to
attach to the process again with a debugger
or with the tnfctl_pid_open(3TNF)
interface. The target process can also be
continued with prun(1).

tnfctl_close() returns TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_close():

TNFCTL_ERR_BADARG A bad argument was sent in action.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

tnfctl_close(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 519

prex(1), prun(1), TNF_PROBE(3TNF), libtnfctl(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_pid_open(3TNF), tracing(3TNF),
attributes(5)

tnfctl_close(3TNF)

SEE ALSO

520 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_indirect_open, tnfctl_check_libs – control probes of another process where caller
provides /proc functionality

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_indirect_open(void *prochandle,
tnfctl_ind_config_t *config, tnfctl_handle_t **ret_val);

tnfctl_errcode_t tnfctl_check_libs(tnfctl_handle_t *hndl);

The interfaces tnfctl_indirect_open() and tnfctl_check_libs() are used to
control probes in another process where the libtnfctl(3TNF) client has already
opened proc(4) on the target process. An example of this is when the client is a
debugger. Since these clients already use /proc on the target, libtnfctl(3TNF)
cannot use /proc directly. Therefore, these clients must provide callback functions
that can be used to inspect and to update the target process. The target process must
load libtnfprobe.so.1 (defined in <tnf/tnfctl.h> as macro
TNFCTL_LIBTNFPROBE).

The first argument prochandle is a pointer to an opaque structure that is used in the
callback functions that inspect and update the target process. This structure should
encapsulate the state that the caller needs to use /proc on the target process (the
/proc file descriptor). The second argument, config, is a pointer to

typedef
struct tnfctl_ind_config {

int (*p_read)(void *prochandle, paddr_t addr, char *buf,
size_t size);

int (*p_write)(void *prochandle, paddr_t addr, char *buf,
size_t size);

pid_t (*p_getpid)(void *prochandle);
int (*p_obj_iter)(void *prochandle, tnfctl_ind_obj_f *func,

void *client_data);
} tnfctl_ind_config_t;

The first field p_read is the address of a function that can read size bytes at address
addr in the target image into the buffer buf. The function should return 0 upon
success.. The second field p_write is the address of a function that can write size bytes
at address addr in the target image from the buffer buf. The function should return 0
upon success. The third field p_getpid is the address of a function that should return
the process id of the target process (prochandle). The fourth field p_obj_iter is the
address of a function that iterates over all load objects and the executable by calling
the callback function func with client_data. If func returns 0, p_obj_iter should continue
processing link objects. If func returns any other value, p_obj_iter should stop calling
the callback function and return that value. p_obj_iter should return 0 if it iterates over
all load objects.

If a failure is returned by any of the functions in config, the error is propagated back as
PREX_ERR_INTERNAL by the libtnfctl interface that called it.

The definition of tnfctl_ind_obj_f is:

tnfctl_indirect_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 521

typedef int
tnfctl_ind_obj_f(void *prochandle,

const struct tnfctl_ind_obj_info *obj
void *client_data);

typedef struct tnfctl_ind_obj_info {
int objfd; /* -1 indicates fd not available */
paddr_t text_base; /* virtual addr of text segment */
paddr_t data_base; /* virtual addr of data segment */
const char *objname; /* null-term. pathname to loadobj */

} tnfctl_ind_obj_info_t;

objfd should be the file descriptor of the load object or executable. If it is −1, then
objname should be an absolute pathname to the load object or executable. If objfd is not
closed by libtnfctl, it should be closed by the load object iterator function. text_base
and data_base are the addresses where the text and data segments of the load object are
mapped in the target process.

Whenever the target process opens or closes a dynamic object, the set of available
probes may change. See dlopen(3DL) and dlclose(3DL). In indirect mode, call
tnfctl_check_libs() when such events occur to make libtnfctl aware of any
changes. In other modes this is unnecessary but harmless. It is also harmless to call
tnfctl_check_libs() when no such events have occurred.

tnfctl_indirect_open() and tnfctl_check_libs() return
TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_indirect_open():

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Internal tracing is being used.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not loaded in the
target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_check_libs():

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

tnfctl_indirect_open(3TNF)

RETURN VALUES

ERRORS

ATTRIBUTES

522 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

prex(1), TNF_PROBE(3TNF), dlclose(3DL), dlopen(3DL), libtnfctl(3TNF),
tnfctl_probe_enable(3TNF), tnfctl_probe_trace(3TNF), tracing(3TNF),
proc(4), attributes(5)

Linker and Libraries Guide

tnfctl_indirect_open() should only be called after the dynamic linker has
mapped in all the libraries (rtld sync point) and called only after the process is
stopped. Indirect process probe control assumes the target process is stopped
whenever any libtnfctl interface is used on it. For example, when used for indirect
process probe control, tnfctl_probe_enable(3TNF) and
tnfctl_probe_trace(3TNF) should be called only for a process that is stopped.

tnfctl_indirect_open(3TNF)

SEE ALSO

NOTES

Extended Library Functions 523

tnfctl_internal_open – create handle for internal process probe control

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_internal_open(tnfctl_handle_t **ret_val);

tnfctl_internal_open() returns in ret_val a pointer to an opaque handle that can
be used to control probes in the same process as the caller (internal process probe
control). The process must have libtnfprobe.so.1 loaded. Probes in libraries that
are brought in by dlopen(3DL) will be visible after the library has been opened.
Probes in libraries closed by a dlclose(3DL) will not be visible after the library has
been disassociated. See the NOTES section for more details.

tnfctl_internal_open() returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Another client is already tracing this
program (internally or externally).

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the
target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

ld(1), prex(1), TNF_PROBE(3TNF), dlopen(3DL), dlclose(3DL),
libtnfctl(3TNF), tracing(3TNF), attributes(5)

Linker and Libraries Guide

libtnfctl interposes on dlopen(3DL) and dlclose(3DL) in order to be notified of
libraries being dynamically opened and closed. This interposition is necessary for
internal process probe control to update its list of probes. In these interposition
functions, a lock is acquired to synchronize on traversal of the library list maintained
by the runtime linker. To avoid deadlocking on this lock,
tnfctl_internal_open() should not be called from within the init section of a
library that can be opened by dlopen(3DL).

Since interposition does not work as expected when a library is opened dynamically,
tnfctl_internal_open() should not be used if the client opened libtnfctl
through dlopen(3DL). In this case, the client program should be built with a static

tnfctl_internal_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

524 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

dependency on libtnfctl. Also, if the client program is explicitly linking in -ldl,
it should link -ltnfctl before -ldl .

Probes in filtered libraries (see ld(1)) will not be seen because the filtee (backing
library) is loaded lazily on the first symbol reference and not at process startup or
dlopen(3DL) time. A workaround is to call tnfctl_check_libs(3TNF) once the
caller is sure that the filtee has been loaded.

tnfctl_internal_open(3TNF)

Extended Library Functions 525

tnfctl_kernel_open – create handle for kernel probe control

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_kernel_open(tnfctl_handle_t **ret_val);

tnfctl_kernel_open() starts a kernel tracing session and returns in ret_val an
opaque handle that can be used to control tracing and probes in the kernel. Only one
kernel tracing session is possible at a time on a given machine. An error code of
TNFCTL_ERR_BUSY is returned if there is another process using kernel tracing. Use
the command

fuser -f /dev/tnfctlto print the process id of the process currently using kernel
tracing. Only a superuser may use tnfctl_kernel_open(). An error code of
TNFCTL_ERR_ACCES is returned if the caller does not have the necessary privileges.

tnfctl_kernel_open returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_ACCES Permission denied. Superuser privileges are
needed for kernel tracing.

TNFCTL_ERR_BUSY Another client is currently using kernel
tracing.

TNFCTL_ERR_ALLOCFAIL Memory allocation failed.

TNFCTL_ERR_FILENOTFOUND /dev/tnfctl not found.

TNFCTL_ERR_INTERNAL Some other failure occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), fuser(1M), TNF_PROBE(3TNF), libtnfctl(3TNF), tracing(3TNF),
tnf_kernel_probes (4), attributes(5)

tnfctl_kernel_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

526 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_pid_open, tnfctl_exec_open, tnfctl_continue – interfaces for direct probe and
process control for another process

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_pid_open(pid_t pid, tnfctl_handle_t
**ret_val);

tnfctl_errcode_t tnfctl_exec_open(const char *pgm_name, char *
const *argv, char * const *envp, const char *libnfprobe_path, const
char *ld_preload, tnfctl_handle_t **ret_val);

tnfctl_errcode_t tnfctl_continue(tnfctl_handle_t *hndl,
tnfctl_event_t *evt, tnfctl_handle_t **child_hndl);

tnfctl_pid_open(), tnfctl_exec_open(), and tnfctl_continue() are the
interfaces used to create handles to control probes in another process (direct process
probe control). Either tnfctl_pid_open() or tnfctl_exec_open() will return a
handle in ret_val that can be used for probe control. On return of these calls, the
process is stopped. tnfctl_continue() allows the process specified by hndl to
continue execution.

tnfctl_pid_open() attaches to a running process with process id of pid. The
process is stopped on return of this call. tnfctl_pid_open() returns an error
message if pid is the same as the calling process. See tnfctl_internal_open(3TNF)
for information on internal process probe control. A pointer to an opaque handle is
returned in ret_val, which can be used to control the process and the probes in the
process. The target process must have libtnfprobe.so.1 (defined in
<tnf/tnfctl.h> as macro TNFCTL_LIBTNFPROBE) linked in for probe control to
work.

tnfctl_exec_open() is used to exec(2) a program and obtain a probe control
handle. For probe control to work, the process image to be exec’d must load
libtnfprobe.so.1. The interface tnfctl_exec_open() makes it simple for the
library to be loaded at process start up time. pgm_name is the command to exec. If
pgm_name is not an absolute path, then the $PATH environment variable is used to find
the pgm_name. argv is a null-terminated argument pointer, that is, it is a
null-terminated array of pointers to null-terminated strings. These strings constitute
the argument list available to the new process image. argv must have at least one
member, and it should point to a string that is the same as pgm_name. See execve(2).
libnfprobe_path is an optional argument, and if set, it should be the path to the directory
that contains libtnfprobe.so.1. There is no need for a trailing "/" in this
argument. This argument is useful if libtnfprobe.so.1 is not installed in
/usr/lib. ld_preload is a space-separated list of libraries to preload into the target
program. This string should follow the syntax guidelines of the LD_PRELOAD
environment variable. See ld.so.1(1). The following illustrates how strings are
concatenated to form the LD_PRELOAD environment variable in the new process
image:

tnfctl_pid_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 527

<current value of $LD_PRELOAD> + <space> +
libtnfprobe_path + "/libtnfprobe.so.1" +<space> +
ld_preload

This option is useful for preloading interposition libraries that have probes in them.

envp is an optional argument, and if set, it is used for the environment of the target
program. It is a null-terminated array of pointers to null-terminated strings. These
strings constitute the environment of the new process image. See execve(2). If envp is
set, it overrides ld_preload. In this case, it is the caller’s responsibility to ensure that
libtnfprobe.so.1 is loaded into the target program. If envp is not set, the new
process image inherits the environment of the calling process, except for
LD_PRELOAD.

ret_val is the return argument which is the handle that can be used to control the
process and the probes within the process. Upon return, the process is stopped before
any user code, including .init sections, has been executed.

tnfctl_continue() is a blocking call and lets the target process referenced by hndl
continue running. It can only be used on handles returned by tnfctl_pid_open()
and tnfctl_exec_open() (direct process probe control). It returns when the target
stops; the reason that the process stopped is returned in evt. This call is interruptible
by signals. If it is interrupted, the process is stopped, and TNFCTL_EVENT_EINTR is
returned in evt. The client of this library will have to decide which signal implies a
stop to the target and catch that signal. Since a signal interrupts
tnfctl_continue(), it will return, and the caller can decide whether or not to call
tnfctl_continue() again.

tnfctl_continue() returns with an event of TNFCTL_EVENT_DLOPEN,
TNFCTL_EVENT_DLCLOSE, TNFCTL_EVENT_EXEC, TNFCTL_EVENT_FORK,
TNFCTL_EVENT_EXIT, or TNFCTL_EVENT_TARGGONE, respectively, when the target
program does a dlopen(3DL), dlclose(3DL), any flavor of exec(2), fork(2) (or
fork1(2)), exit(2), or terminates unexpectedly. If the target program did an exec(2),
then the client needs to call tnfctl_close(3TNF) on the current handle leaving the
target resumed, suspended, or killed (second argument to tnfctl_close(3TNF)). No
other libtnfctl interface call can be used on the existing handle. If the client wants
to control the exec’ed image, it should leave the old handle suspended, and use
tnfctl_pid_open() to reattach to the same process. This new handle can then be
used to control the exec’ed image. See EXAMPLES below for sample code. If the target
process did a fork(2) or fork1(2), and if control of the child process is not needed,
then child_hndl should be NULL. If control of the child process is needed, then
child_hndl should be set. If it is set, a pointer to a handle that can be used to control the
child process is returned in child_hndl. The child process is stopped at the end of the
fork() system call. See EXAMPLES for an example of this event.

tnfctl_pid_open(), tnfctl_exec_open(), and tnfctl_continue()
return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_pid_open():

tnfctl_pid_open(3TNF)

RETURN VALUES

ERRORS

528 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

TNFCTL_ERR_BADARG The pid specified is the same process. Use
tnfctl_internal_open(3TNF) instead.

TNFCTL_ERR_ACCES Permission denied. No privilege to connect
to a setuid process.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Another client is already using /proc to
control this process or internal tracing is
being used.

TNFCTL_ERR_NOTDYNAMIC The process is not a dynamic executable.

TNFCTL_ERR_NOPROCESS No such target process exists.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the
target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_exec_open():

TNFCTL_ERR_ACCES Permission denied.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_NOTDYNAMIC The target is not a dynamic executable.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the
target process.

TNFCTL_ERR_FILENOTFOUND The program is not found.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_continue():

TNFCTL_ERR_BADARG Bad input argument. hndl is not a direct
process probe control handle.

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_NOPROCESS No such target process exists.

EXAMPLE 1 Using tnfctl_pid_open()

These examples do not include any error-handling code. Only the initial example
includes the declaration of the variables that are used in all of the examples.

The following example shows how to preload libtnfprobe.so.1 from the normal
location and inherit the parent’s environment.

const char *pgm;
char * const *argv;
tnfctl_handle_t *hndl, *new_hndl, *child_hndl;
tnfctl_errcode_t err;

tnfctl_pid_open(3TNF)

EXAMPLES

Extended Library Functions 529

EXAMPLE 1 Using tnfctl_pid_open() (Continued)

char * const *envptr;
extern char **environ;
tnfctl_event_t evt;
int pid;

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
err = tnfctl_exec_open(pgm, argv, NULL, NULL, NULL, &hndl);

This example shows how to preload two user-supplied libraries libc_probe.so.1
and libthread_probe.so.1. They interpose on the corresponding libc.so and
libthread.so interfaces and have probes for function entry and exit.
libtnfprobe.so.1 is preloaded from the normal location and the parent’s
environment is inherited.

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
err = tnfctl_exec_open(pgm, argv, NULL, NULL,

"libc_probe.so.1 libthread_probe.so.1", &hndl);

This example preloads an interposition library libc_probe.so.1, and specifies a
different location from which to preload libtnfprobe.so.1.

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
err = tnfctl_exec_open(pgm, argv, NULL, "/opt/SUNWXXX/lib",

"libc_probe.so.1", &hndl);

To set up the environment explicitly for probe control to work, the target process must
link libtnfprobe.so.1. If using envp, it is the caller’s responsibility to do so.

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
/* envptr set up to caller’s needs */
err = tnfctl_exec_open(pgm, argv, envptr, NULL, NULL, &hndl);

Use this example to resume a process that does an exec(2) without controlling it.

err = tnfctl_continue(hndl, &evt, NULL);
switch (evt) {
case TNFCTL_EVENT_EXEC:

/* let target process continue without control */
err = tnfctl_close(hndl, TNFCTL_TARG_RESUME);
...
break;

}

Alternatively, use the next example to control a process that does an exec(2).

tnfctl_pid_open(3TNF)

530 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

EXAMPLE 1 Using tnfctl_pid_open() (Continued)

/*
* assume the pid variable has been set by calling
* tnfctl_trace_attrs_get()
*/
err = tnfctl_continue(hndl, &evt, NULL);
switch (evt) {
case TNFCTL_EVENT_EXEC:

/* suspend the target process */
err = tnfctl_close(hndl, TNFCTL_TARG_SUSPEND);
/* re-open the exec’ed image */
err = tnfctl_pid_open(pid, &new_hndl);
/* new_hndl now controls the exec’ed image */
...
break;

}

To let fork’ed children continue without control, use NULL as the last argument to
tnfctl_continue().

err = tnfctl_continue(hndl, &evt, NULL);

The next example is how to control child processes that fork(2) or fork1(2) create.

err = tnfctl_continue(hndl, &evt, &child_hndl);
switch (evt) {
case TNFCTL_EVENT_FORK:

/* spawn a new thread or process to control child_hndl */
...
break;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

ld(1), prex(1), proc(1), exec(2), execve(2), exit(2), fork(2), TNF_PROBE(3TNF),
dlclose(3DL), dlopen(3DL), libtnfctl(3TNF), tnfctl_close(3TNF),
tnfctl_internal_open(3TNF), tracing(3TNF) attributes(5)

Linker and Libraries Guide

After a tnfctl_continue() returns, a client should use
tnfctl_trace_attrs_get(3TNF) to check the trace_buf_state member of the
trace attributes and make sure that there is no internal error in the target.

tnfctl_pid_open(3TNF)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 531

tnfctl_probe_apply, tnfctl_probe_apply_ids – iterate over probes

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_probe_apply(tnfctl_handle_t *hndl,
tnfctl_probe_op_t probe_op, void *clientdata);

tnfctl_errcode_t tnfctl_probe_apply_ids(tnfctl_handle_t *hndl,
ulong_t probe_count, ulong_t *probe_ids, tnfctl_probe_op_t probe_op,
void *clientdata);

tnfctl_probe_apply() is used to iterate over the probes controlled by hndl. For
every probe, the probe_op function is called:

typedef tnfctl_errcode_t (*tnfctl_probe_op_t)(
tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl,
void *clientdata);

Several predefined functions are available for use as probe_op. These functions are
described in tnfctl_probe_state_get(3TNF).

The clientdata supplied in tnfctl_probe_apply() is passed in as the last argument
of probe_op. The probe_hndl in the probe operation function can be used to query or
change the state of the probe. See tnfctl_probe_state_get(3TNF). The probe_op
function should return TNFCTL_ERR_NONE upon success. It can also return an error
code, which will cause tnfctl_probe_apply() to stop processing the rest of the
probes and return with the same error code. Note that there are five (5) error codes
reserved that the client can use for its own semantics. See ERRORS.

The lifetime of probe_hndl is the same as the lifetime of hndl. It is good until hndl is
closed by tnfctl_close(3TNF). Do not confuse a probe_hndl with hndl. The
probe_hndl refers to a particular probe, while hndl refers to a process or the kernel. If
probe_hndl is used in another libtnfctl(3TNF) interface, and it references a probe in
a library that has been dynamically closed (see dlclose(3DL)), then the error code
TNFCTL_ERR_INVALIDPROBE will be returned by that interface.

tnfctl_probe_apply_ids() is very similar to tnfctl_probe_apply(). The
difference is that probe_op is called only for probes that match a probe id specified in
the array of integers referenced by probe_ids. The number of probe ids in the array
should be specified in probe_count. Use tnfctl_probe_state_get() to get the
probe_id that corresponds to the probe_handl.

tnfctl_probe_apply() and tnfctl_probe_apply_ids() return
TNFCTL_ERR_NONE upon success.

The following errors apply to both tnfctl_probe_apply() and
tnfctl_probe_apply_ids():

TNFCTL_ERR_INTERNAL An internal error occurred.

tnfctl_probe_apply(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

532 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

TNFCTL_ERR_USR1 Error code reserved for user.

TNFCTL_ERR_USR2 Error code reserved for user.

TNFCTL_ERR_USR3 Error code reserved for user.

TNFCTL_ERR_USR4 Error code reserved for user.

TNFCTL_ERR_USR5 Error code reserved for user.

tnfctl_probe_apply() and tnfctl_probe_apply_ids() also return any error
returned by the callback function probe_op.

The following errors apply only to tnfctl_probe_apply_ids():

TNFCTL_ERR_INVALIDPROBE The probe handle is no longer valid. For
example, the probe is in a library that has
been closed by dlclose(3DL).

EXAMPLE 1 Enabling Probes

To enable all probes:

tnfctl_probe_apply(hndl, tnfctl_probe_enable, NULL);

EXAMPLE 2 Disabling Probes

To disable the probes that match a certain pattern in the probe attribute string:

/* To disable all probes that contain the string "vm" */
tnfctl_probe_apply(hndl, select_disable, "vm");
static tnfctl_errcode_t
select_disable(tnfctl_handle_t *hndl, tnfctl_probe_t *probe_hndl,
void *client_data)
{

char *pattern = client_data;
tnfctl_probe_state_t probe_state;
tnfctl_probe_state_get(hndl, probe_hndl, &probe_state);
if (strstr(probe_state.attr_string, pattern)) {

tnfctl_probe_disable(hndl, probe_hndl, NULL);
}

}

Note that these examples do not have any error handling code.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT-Level MT-Safe

tnfctl_probe_apply(3TNF)

EXAMPLES

ATTRIBUTES

Extended Library Functions 533

prex(1), TNF_PROBE(3TNF), dlclose(3DL), dlopen(3DL), libtnfctl(3TNF),
tnfctl_close(3TNF), tnfctl_probe_state_get(3TNF), tracing(3TNF),
tnf_kernel_probes(4), attributes(5)

Linker and Libraries Guide

tnfctl_probe_apply(3TNF)

SEE ALSO

534 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_probe_state_get, tnfctl_probe_enable, tnfctl_probe_disable, tnfctl_probe_trace,
tnfctl_probe_untrace, tnfctl_probe_connect, tnfctl_probe_disconnect_all – interfaces to
query and to change the state of a probe

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_probe_state_get(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, tnfctl_probe_state_t *state);

tnfctl_errcode_t tnfctl_probe_enable(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_disable(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_trace(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_untrace(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_disconnect_all(tnfctl_handle_t
*hndl, tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_connect(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, const char *lib_base_name, const char
*func_name);

tnfctl_probe_state_get() returns the state of the probe specified by probe_hndl
in the process or kernel specified by hndl. The user will pass these in to an apply
iterator. The caller must also allocate state and pass in a pointer to it. The semantics of
the individual members of state are:

id The unique integer assigned to this probe. This number
does not change over the lifetime of this probe. A
probe_hndl can be obtained by using the calls
tnfctl_apply(), tanfctl_apply_ids(), or
tnfctl_register_funcs().

attr_string A string that consists of attribute value pairs separated
by semicolons. For the syntax of this string, see the
syntax of the detail argument of the
TNF_PROBE(3TNF) macro. The attributes name, slots,
keys, file, and line are defined for every probe.
Additional user-defined attributes can be added by
using the detail argument of the TNF_PROBE(3TNF)
macro. An example of attr_string follows:

"name pageout;slots vnode pages_pageout ;
keys vm pageio io;file vm.c;line 25;"

tnfctl_probe_state_get(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 535

enabled B_TRUE if the probe is enabled, or B_FALSE if the
probe is disabled. Probes are disabled by default. Use
tnfctl_probe_enable() or
tnfctl_probe_disable() to change this state.

traced B_TRUE if the probe is traced, or B_FALSE if the probe
is not traced. Probes in user processes are traced by
default. Kernel probes are untraced by default. Use
tnfctl_probe_trace() or
tnfctl_probe_untrace() to change this state.

new_probe B_TRUE if this is a new probe brought in since the last
change in libraries. See dlopen(3DL) or
dlclose(3DL). Otherwise, the value of new_probe
will be B_FALSE. This field is not meaningful for
kernel probe control.

obj_name The name of the shared object or executable in which
the probe is located. This string can be freed, so the
client should make a copy of the string if it needs to be
saved for use by other libtnfctl interfaces. In kernel
mode, this string is always NULL.

func_names A null-terminated array of pointers to strings that
contain the names of functions connected to this probe.
Whenever an enabled probe is encountered at runtime,
these functions are executed. This array also will be
freed by the library when the state of the probe
changes. Use tnfctl_probe_connect() or
tnfctl_probe_disconnect_all() to change this
state.

func_addrs A null-terminated array of pointers to addresses of
functions in the target image connected to this probe.
This array also will be freed by the library when the
state of the probe changes.

client_registered_data Data that was registered by the client for this probe by
the creator function in
tnfctl_register_funcs(3TNF).

tnfctl_probe_enable(), tnfctl_probe_disable(),
tnfctl_probe_trace(), tnfctl_probe_untrace(), and
tnfctl_probe_disconnect_all() ignore the last argument. This convenient
feature permits these functions to be used in the probe_op field of
tnfctl_probe_apply(3TNF) and tnfctl_probe_apply_ids(3TNF).
tnfctl_probe_enable() enables the probe specified by probe_hndl . This is the
master switch on a probe. A probe does not perform any action until it is enabled.

tnfctl_probe_disable() disables the probe specified by probe_hndl.

tnfctl_probe_state_get(3TNF)

536 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_probe_trace() turns on tracing for the probe specified by probe_hndl.
Probes emit a trace record only if the probe is traced.

tnfctl_probe_untrace() turns off tracing for the probe specified by probe_hndl.
This is useful if you want to connect probe functions to a probe without tracing it.

tnfctl_probe_connect() connects the function func_name which exists in the
library lib_base_name, to the probe specified by probe_hndl.
tnfctl_probe_connect() returns an error code if used on a kernel tnfctl handle.
lib_base_name is the base name (not a path) of the library. If it is NULL, and multiple
functions in the target process match func_name, one of the matching functions is
chosen arbitrarily. A probe function is a function that is in the target’s address space
and is written to a certain specification. The specification is not currently published.

tnf_probe_debug() is one function exported by libtnfprobe.so.1 and is the
debug function that prex(1) uses. When the debug function is executed, it prints out
the probe arguments and the value of the sunw%debug attribute of the probe to
stderr.

tnfctl_probe_disconnect_all() disconnects all probe functions from the probe
specified by probe_hndl.

Note that no libtnfctl call returns a probe handle (tnfctl_probe_t), yet each of
the routines described here takes a probe_hndl as an argument. These routines may be
used by passing them to one of the tnfctl_probe_apply(3TNF) iterators as the
"op" argument. Alternatively, probe handles may be obtained and saved by a user’s
"op" function, and they can be passed later as the probe_hndl argument when using any
of the functions described here.

tnfctl_probe_state_get(), tnfctl_probe_enable(),
tnfctl_probe_disable(), tnfctl_probe_trace(),
tnfctl_probe_untrace(), tnfctl_probe_disconnect_all() and
tnfctl_probe_connect() return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_probe_state_get():

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library
that the probe was in could have been
dynamically closed by dlclose(3DL).

The following error codes apply to tnfctl_probe_enable(),
tnfctl_probe_disable(), tnfctl_probe_trace(),
tnfctl_probe_untrace(), and tnfctl_probe_disconnect_all()

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library
that the probe was in could have been
dynamically closed by dlclose(3DL).

TNFCTL_ERR_BUFBROKEN Cannot do probe operations because tracing
is broken in the target.

tnfctl_probe_state_get(3TNF)

RETURN VALUES

ERRORS

Extended Library Functions 537

TNFCTL_ERR_NOBUF Cannot do probe operations until a buffer is
allocated. See
tnfctl_buffer_alloc(3TNF). This error
code does not apply to kernel probe control.

The following error codes apply to tnfctl_probe_connect():

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library
that the probe was in could have been
dynamically closed by dlclose(3DL).

TNFCTL_ERR_BADARG The handle is a kernel handle, or func_name
could not be found.

TNFCTL_ERR_BUFBROKEN Cannot do probe operations because tracing
is broken in the target.

TNFCTL_ERR_NOBUF Cannot do probe operations until a buffer is
allocated. See
tnfctl_buffer_alloc(3TNF).

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tnfctl_check_libs(3TNF),
tnfctl_continue(3TNF), tnfctl_probe_apply(3TNF),
tnfctl_probe_apply_ids(3TNF), tracing(3TNF), tnf_kernel_probes(4),
attributes(5)

tnfctl_probe_state_get(3TNF)

ATTRIBUTES

SEE ALSO

538 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_register_funcs – register callbacks for probe creation and destruction

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_register_funcs(tnfctl_handle_t *hndl,
void * (*create_func)(tnfctl_handle_t *, tnfctl_probe_t *), void
(*destroy_func)(void *));

The function tnfctl_register_funcs() is used to store client-specific data on a
per-probe basis. It registers a creator and a destructor function with hndl, either of
which can be NULL. The creator function is called for every probe that currently exists
in hndl. Every time a new probe is discovered, that is brought in by dlopen(3DL),
create_func is called.

The return value of the creator function is stored as part of the probe state and can be
retrieved by tnfctl_probe_state_get(3TNF) in the member field
client_registered_data.

destroy_func is called for every probe handle that is freed. This does not necessarily
happen at the time dlclose(3DL) frees the shared object. The probe handles are freed
only when hndl is closed by tnfctl_close(3TNF). If tnfctl_register_funcs()
is called a second time for the same hndl, then the previously registered destructor
function is called first for all of the probes.

tnfctl_register_funcs() returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), dlclose(3DL), dlopen(3DL), libtnfctl(3TNF),
tnfctl_close(3TNF), tnfctl_probe_state_get(3TNF), tracing(3TNF),
tnf_kernel_probes(4), attributes(5)

Linker and Libraries Guide

tnfctl_register_funcs(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 539

tnfctl_strerror – map a tnfctl error code to a string

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

const char * tnfctl_strerror(tnfctl_errcode_t errcode);

tnfctl_strerror() maps the error number in errcode to an error message string,
and it returns a pointer to that string. The returned string should not be overwritten or
freed.

tnfctl_strerror() returns the string "unknown libtnfctl.so error code" if the error
number is not within the legal range.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tracing(3TNF), attributes(5)

tnfctl_strerror(3TNF)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

540 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_trace_attrs_get – get the trace attributes from a tnfctl handle

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_trace_attrs_get(tnfctl_handle_t *hndl,
tnfctl_trace_attrs_t *attrs);

tnfctl_trace_attrs_get() returns the trace attributes associated with hndl in
attrs. The trace attributes can be changed by some of the other interfaces in
libtnfctl(3TNF). It is the client’s responsibility to use
tnfctl_trace_attrs_get() to get the new trace attributes after use of interfaces
that change them. Typically, a client will use tnfctl_trace_attrs_get() after a
call to tnfctl_continue(3TNF) in order to make sure that tracing is still working.
See the discussion of trace_buf_state that follows.

Trace attributes are represented by the struct tnfctl_trace_attrs structure
defined in <tnf/tnfctl.h>:

struct tnfctl_trace_attrs {
pid_t targ_pid; /* not kernel mode */
const char *trace_file_name; /* not kernel mode */
size_t trace_buf_size;
size_t trace_min_size;
tnfctl_bufstate_t

trace_buf_state;
boolean_t trace_state;
boolean_t filter_state; /* kernel mode only */
long pad;

};

The semantics of the individual members of attrs are:

targ_pid The process id of the target process. This is not valid
for kernel tracing.

trace_file_name The name of the trace file to which the target writes.
trace_file_name will be NULL if no trace file exists
or if kernel tracing is implemented. This pointer should
not be used after calling other libtnfctl interfaces.
The client should copy this string if it should be saved
for the use of other libtnfctl interfaces.

trace_buf_size The size of the trace buffer or file in bytes.

trace_min_size The minimum size in bytes of the trace buffer that can
be allocated by using the
tnfctl_buffer_alloc(3TNF) interface.

trace_buf_state The state of the trace buffer. TNFCTL_BUF_OK indicates
that a trace buffer has been allocated.
TNFCTL_BUF_NONE indicates that no buffer has been

tnfctl_trace_attrs_get(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 541

allocated. TNFCTL_BUF_BROKEN indicates that there is
an internal error in the target for tracing. The target
will continue to run correctly, but no trace records will
be written. To fix tracing, restart the process. For kernel
tracing, deallocate the existing buffer with
tnfctl_buffer_dealloc(3TNF) and allocate a new
one with tnfctl_buffer_alloc(3TNF).

trace_state The global tracing state of the target. Probes that are
enabled will not write out data unless this state is on.
This state is off by default for the kernel and can be
changed by tnfctl_trace_state_set(3TNF). For a
process, this state is on by default and can only be
changed by tnf_process_disable(3TNF) and
tnf_process_enable(3TNF).

filter_state The state of process filtering. For kernel probe control,
it is possible to select a set of processes for which
probes are enabled. See
tnfctl_filter_list_get(3TNF),
tnfctl_filter_list_add(3TNF), and
tnfctl_filter_list_delete(3TNF). No trace
output will be written when other processes traverse
these probe points. By default process filtering is off,
and all processes cause the generation of trace records
when they hit an enabled probe. Use
tnfctl_filter_state_set(3TNF) to change the
filter state.

tnfctl_trace_attrs_get() returns TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_trace_attrs_get()

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tnfctl_buffer_alloc(3TNF),
tnfctl_continue(3TNF), tnfctl_filter_list_get (3TNF),
tnf_process_disable(3TNF), tracing(3TNF), attributes(5)

tnfctl_trace_attrs_get(3TNF)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

542 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_trace_state_set, tnfctl_filter_state_set, tnfctl_filter_list_get, tnfctl_filter_list_add,
tnfctl_filter_list_delete – control kernel tracing and process filtering

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_trace_state_set(tnfctl_handle_t *hndl,
boolean_t trace_state);

tnfctl_errcode_t tnfctl_filter_state_set(tnfctl_handle_t *hndl,
boolean_t filter_state);

tnfctl_errcode_t tnfctl_filter_list_get(tnfctl_handle_t *hndl,
pid_t **pid_list, int *pid_count);

tnfctl_errcode_t tnfctl_filter_list_add(tnfctl_handle_t *hndl,
pid_t pid_to_add);

tnfctl_errcode_t tnfctl_filter_list_delete(tnfctl_handle_t *hndl,
pid_t pid_to_delete);

The interfaces to control kernel tracing and process filtering are used only with kernel
handles, handles created by tnfctl_kernel_open(3TNF). These interfaces are used
to change the tracing and filter states for kernel tracing.

tnfctl_trace_state_set() sets the kernel global tracing state to "on" if trace_state
is B_TRUE, or to "off" if trace_state is B_FALSE. For the kernel, trace_state is off by
default. Probes that are enabled will not write out data unless this state is on. Use
tnfctl_trace_attrs_get(3TNF) to retrieve the current tracing state.

tnfctl_filter_state_set() sets the kernel process filtering state to "on" if
filter_state is B_TRUE, or to "off" if filter_state is B_FALSE. filter_state is off by default.
If it is on, only probe points encountered by processes in the process filter set by
tnfctl_filter_list_add() will generate trace points. Use
tnfctl_trace_attrs_get(3TNF) to retrieve the current process filtering state.

tnfctl_filter_list_get() returns the process filter list as an array in pid_list.
The count of elements in the process filter list is returned in pid_count. The caller
should use free(3C) to free memory allocated for the array pid_list.

tnfctl_filter_list_add() adds pid_to_add to the process filter list. The process
filter list is maintained even when the process filtering state is off, but it has no effect
unless the process filtering state is on.

tnfctl_filter_list_delete() deletes pid_to_delete from the process filter list. It
returns an error if the process does not exist or is not in the filter list.

The interfaces tnfctl_trace_state_set(), tnfctl_filter_state_set(),
tnfctl_filter_list_add(), tnfctl_filter_list_delete(), and
tnfctl_filter_list_get() return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_trace_state_set:

tnfctl_trace_state_set(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 543

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOBUF Cannot turn on tracing without a buffer
being allocated.

TNFCTL_ERR_BUFBROKEN Tracing is broken in the target.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_state_set:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_add:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOPROCESS No such process exists.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_delete:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOPROCESS No such process exists.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_get:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), free(3C), libtnfctl(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_trace_attrs_get (3TNF),
tracing(3TNF), tnf_kernel_probes(4), attributes(5)

tnfctl_trace_state_set(3TNF)

ATTRIBUTES

SEE ALSO

544 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

TNF_DECLARE_RECORD, TNF_DEFINE_RECORD_1, TNF_DEFINE_RECORD_2,
TNF_DEFINE_RECORD_3, TNF_DEFINE_RECORD_4, TNF_DEFINE_RECORD_5 –
TNF type extension interface for probes

cc [flag ...] file ...[-ltnfprobe] [library ...]

#include <tnf/probe.h>

TNF_DECLARE_RECORD(c_type, tnf_type);

TNF_DEFINE_RECORD_1(c_type, tnf_type, tnf_member_type_1, c_member_name_1);

TNF_DEFINE_RECORD_2(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2);

TNF_DEFINE_RECORD_3(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3,
c_member_name_3);

TNF_DEFINE_RECORD_4(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3, c_member_name_3,
tnf_member_type_4, c_member_name_4);

TNF_DEFINE_RECORD_5(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3, c_member_name_3,
tnf_member_type_4, c_member_name_4, tnf_member_type_5,
c_member_name_5);

This macro interface is used to extend the TNF (Trace Normal Form) types that can be
used in TNF_PROBE(3TNF).

There should be only one TNF_DECLARE_RECORD and one TNF_DEFINE_RECORD per
new type being defined. The TNF_DECLARE_RECORD should precede the
TNF_DEFINE_RECORD. It can be in a header file that multiple source files share if
those source files need to use the tnf_type being defined. The TNF_DEFINE_RECORD
should only appear in one of the source files.

The TNF_DEFINE_RECORD macro interface defines a function as well as a couple of
data structures. Hence, this interface has to be used in a source file (.c or .cc file) at file
scope and not inside a function.

Note that there is no semicolon after the TNF_DEFINE_RECORD interface. Having one
will generate a compiler warning.

Compiling with the preprocessor option -DNPROBE (see cc(1B)), or with the
preprocessor control statement #define NPROBE ahead of the #include
<tnf/probe.h> statement, will stop the TNF type extension code from being
compiled into the program.

c_type must be a C struct type. It is the template from which the new tnf_type is being
created. Not all elements of the C struct need be provided in the TNF type being
defined.

TNF_DECLARE_RECORD(3TNF)

NAME

SYNOPSIS

DESCRIPTION

c_type

Extended Library Functions 545

tnf_type is the name being given to the newly created type. Use of this interface uses
the name space prefixed by tnf_type. So, if a new type called "xxx_type" is defined by a
library, then the library should not use "xxx_type" as a prefix in any other symbols it
defines. The policy on managing the type name space is the same as managing any
other name space in a library i.e., prefix any new TNF types by the unique prefix that
the rest of the symbols in the library use. This would prevent name space collisions
when linking multiple libraries that define new TNF types. For example, if a library
libpalloc.so uses the prefix "pal" for all symbols it defines, then it should also use the
prefix "pal" for all new TNF types being defined.

tnf_member_type_n is the TNF type of the nth provided member of the C structure.

tnf_member_name_n is the name of the nth provided member of the C structure.

EXAMPLE 1 Defining and using a TNF type.

This example shows how a new TNF type is defined and used in a probe. This code is
assumed to be part of a fictitious library called "libpalloc.so" which uses the prefix
"pal" for all it’s symbols.

#include <tnf/probe.h>
typedef struct pal_header {

long size;
char * descriptor;
struct pal_header *next;

} pal_header_t;
TNF_DECLARE_RECORD(pal_header_t, pal_tnf_header);
TNF_DEFINE_RECORD_2(pal_header_t, pal_tnf_header,

tnf_long, size,
tnf_string, descriptor)

/*
* Note: name space prefixed by pal_tnf_header should not be used by this
* client anymore.
*/
void
pal_free(pal_header_t *header_p)
{

int state;
TNF_PROBE_2(pal_free_start, "palloc pal_free",

"sunw%debug entering pal_free",
tnf_long, state_var, state,
pal_tnf_header, header_var, header_p);

. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

TNF_DECLARE_RECORD(3TNF)

tnf_type

tnf_member_type_n

tnf_member_name_n

EXAMPLES

ATTRIBUTES

546 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

prex(1), tnfdump(1), TNF_PROBE(3TNF), tnf_process_disable(3TNF),
attributes(5)

It is possible to make a tnf_type definition be recursive or mutually recursive e.g. a
structure that uses the "next" field to point to itself (a linked list). If such a structure is
sent in to a TNF_PROBE(3TNF), then the entire linked list will be logged to the trace
file (until the "next" field is NULL). But, if the list is circular, it will result in an infinite
loop. To break the recursion, either don’t include the "next" field in the tnf_type, or
define the type of the "next" member as tnf_opaque.

TNF_DECLARE_RECORD(3TNF)

SEE ALSO

NOTES

Extended Library Functions 547

TNF_PROBE, TNF_PROBE_0, TNF_PROBE_1, TNF_PROBE_2, TNF_PROBE_3,
TNF_PROBE_4, TNF_PROBE_5, TNF_PROBE_0_DEBUG, TNF_PROBE_1_DEBUG,
TNF_PROBE_2_DEBUG, TNF_PROBE_3_DEBUG, TNF_PROBE_4_DEBUG,
TNF_PROBE_5_DEBUG, TNF_DEBUG – probe insertion interface

cc [flag ...] [-DTNF_DEBUG] file ... [-ltnfprobe] [library ...]

#include <tnf/probe.h>

TNF_PROBE_0(name, keys, detail);

TNF_PROBE_1(name, keys, detail, arg_type_1, arg_name_1, arg_value_1);

TNF_PROBE_2(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2);

TNF_PROBE_3(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3);

TNF_PROBE_4(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4);

TNF_PROBE_5(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4, arg_type_5, arg_name_5, arg_value_5);

TNF_PROBE_0_DEBUG(name, keys, detail);

TNF_PROBE_1_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1);

TNF_PROBE_2_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2);

TNF_PROBE_3_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3);

TNF_PROBE_4_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4);

TNF_PROBE_5_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4, arg_type_5, arg_name_5, arg_value_5);

This macro interface is used to insert probes into C or C++ code for tracing. See
tracing(3TNF) for a discussion of the Solaris tracing architecture, including example
source code that uses it.

You can place probes anywhere in C and C++ programs including .init sections, .fini
sections, multi-threaded code, shared objects, and shared objects opened by
dlopen(3DL). Use probes to generate trace data for performance analysis or to write
debugging output to stderr. Probes are controlled at runtime by prex(1).

TNF_PROBE(3TNF)

NAME

SYNOPSIS

DESCRIPTION

548 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

The trace data is logged to a trace file in Trace Normal Form (TNF). The interface for
the user to specify the name and size of the trace file is described in prex(1). Think of
the trace file as the least recently used circular buffer. Once the file has been filled,
newer events will overwrite the older ones.

Use TNF_PROBE_0 through TNF_PROBE_5 to create production probes. These probes
are compiled in by default. Developers are encouraged to embed such probes
strategically, and to leave them compiled within production software. Such probes
facilitate on-site analysis of the software.

Use TNF_PROBE_0_DEBUG through TNF_PROBE_5_DEBUG to create debug probes.
These probes are compiled out by default. If you compile the program with the
preprocessor option -DTNF_DEBUG (see cc(1B)), or with the preprocessor control
statement #define TNF_DEBUG ahead of the #include <tnf/probe.h> statement,
the debug probes will be compiled into the program. When compiled in, debug probes
differ in only one way from the equivalent production probes. They contain an
additional "debug" attribute which may be used to distinguish them from production
probes at runtime, for example, when using prex(). Developers are encouraged to
embed any number of probes for debugging purposes. Disabled probes have such a
small runtime overhead that even large numbers of them do not make a significant
impact.

If you compile with the preprocessor option -DNPROBE (see cc(1B)), or place the
preprocessor control statement #define NPROBE ahead of the #include
<tnf/probe.h> statement, no probes will be compiled into the program.

The name of the probe should follow the syntax guidelines for identifiers in ANSI C.
The use of name declares it, hence no separate declaration is necessary. This is a block
scope declaration, so it does not affect the name space of the program.

keys is a string of space-separated keywords that specify the groups that the probe
belongs to. Semicolons, single quotation marks, and the equal character (=) are not
allowed in this string. If any of the groups are enabled, the probe is enabled. keys
cannot be a variable. It must be a string constant.

detail is a string that consists of <attribute> <value> pairs that are each separated by a
semicolon. The first word (up to the space) is considered to be the attribute and the
rest of the string (up to the semicolon) is considered the value. Single quotation marks
are used to denote a string value. Besides quotation marks, spaces separate multiple
values. The value is optional. Although semicolons or single quotation marks
generally are not allowed within either the attribute or the value, when text with
embedded spaces is meant to denote a single value, use single quotes surrounding this
text.

Use detail for one of two reasons. First, use detail to supply an attribute that a user can
type into prex(1) to select probes. For example, if a user defines an attribute called
color, then prex(1) can select probes based on the value of color. Second, use detail to
annotate a probe with a string that is written out to a trace file only once. prex(1) uses

TNF_PROBE(3TNF)

name

keys

detail

Extended Library Functions 549

spaces to tokenize the value when searching for a match. Spaces around the semicolon
delimiter are allowed. detail cannot be a variable; it must be a string constant. For
example, the detail string:

"XYZ%debug ’entering function A’; XYZ%exception ’no file’;

XYZ%func_entry; XYZ%color red blue"

consists of 4 units:

Attribute Value Values that prex matches on

XYZ%debug ’entering function A’ ’entering function A’

XYZ%exception ’no file’ ’no file’

XYZ%func_entry /.*/ (regular expression)

XYZ%color red blue red <or> blue

Attribute names must be prefixed by the vendor stock symbol followed by the ’%’
character. This avoids conflicts in the attribute name space. All attributes that do not
have a ’%’ character are reserved. The following attributes are predefined:

Attribute Semantics

name name of probe

keys keys of the probe (value is space− separated
tokens)

file file name of the probe

line line number of the probe

slots slot names of the probe event (arg_name_n)

object the executable or shared object that this probe
is in.

debug distinguishes debug probes from production
probes

This is the type of the nth argument. The following are predefined TNF types:

tnf Type Associated C type (and semantics)

tnf_int int

tnf_uint unsigned int

TNF_PROBE(3TNF)

arg_type_n

550 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnf Type Associated C type (and semantics)

tnf_long long

tnf_ulong unsigned long

tnf_longlong long long (if implemented in compilation
system)

tnf_ulonglong unsigned long long (if implemented in
compilation system)

tnf_float float

tnf_double double

tnf_string char *

tnf_opaque void *

To define new TNF types that are records consisting of the predefined TNF types or
references to other user defined types, use the interface specified in
TNF_DECLARE_RECORD(3TNF).

arg_name_n is the name that the user associates with the nth argument. Do not place
quotation marks around arg_name_n . Follow the syntax guidelines for identifiers in
ANSI C. The string version of arg_name_n is stored for every probe and can be
accessed as the attribute "slots".

arg_value_n is evaluated to yield a value to be included in the trace file. A read access
is done on any variables that are in mentioned in arg_value_n. In a multi-threaded
program, it is the user’s responsibility to place locks around the TNF_PROBE macro if
arg_value_n contains a variable that should be read protected.

EXAMPLE 1 tracing(3TNF).

See tracing(3TNF) for complete examples showing debug and production probes in
source code.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

MT Level MT-Safe

TNF_PROBE(3TNF)

arg_name_n

arg_value_n

EXAMPLES

ATTRIBUTES

Extended Library Functions 551

cc(1B), ld(1), prex(1), tnfdump(1), dlopen(3DL), libtnfctl(3TNF),
TNF_DECLARE_RECORD(3TNF), threads(3THR), tnf_process_disable(3TNF),
tracing(3TNF), attributes(5)

If attaching to a running program with prex(1) to control the probes, compile the
program with -ltnfprobe or start the program with the environment variable
LD_PRELOAD set to libtnfprobe.so.1. See ld(1). If libtnfprobe is explicitly
linked into the program, it must be before libthread on the link line.

TNF_PROBE(3TNF)

SEE ALSO

NOTES

552 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnf_process_disable, tnf_process_enable, tnf_thread_disable, tnf_thread_enable – probe
control internal interface

cc [flag ...] file ... -ltnfprobe [library ...]

#include <tnf/probe.h>

void tnf_process_disable(void);

void tnf_process_enable(void);

void tnf_thread_disable(void);

void tnf_thread_enable(void);

There are three levels of granularity for controlling tracing and probe functions (called
probing from here on) — probing for the entire process, a particular thread, and the
probe itself can be disabled/enabled. The first two (process and thread) are controlled
by this interface. The probe is controlled via the application prex(1).

tnf_process_disable() turns off probing for the process. The default process
state is to have probing enabled. tnf_process_enable() turns on probing for the
process.

tnf_thread_disable() turns off probing for the currently running thread. Threads
are "born" or created with this state enabled. tnf_thread_enable() turns on
probing for the currently running thread. If the program is a non-threaded program,
these two thread interfaces disable or enable probing for the process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

MT-Level MT-Safe

prex(1), tnfdump(1), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF),
attributes(5)

A probe is considered enabled only if:

� prex(1) has enabled the probe AND

� the process has probing enabled — which is the default or could be set via
tnf_process_enable() AND

� the thread that hits the probe has probing enabled — which is every thread’s
default or could be set via tnf_thread_enable().

There is a run time cost associated with determining that the probe is disabled. To
reduce the performance effect of probes, this cost should be minimized. The quickest
way that a probe can be determined to be disabled is by the enable control that

tnf_process_disable(3TNF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 553

prex(1) uses. Therefore, to disable all the probes in a process use the disable
command in prex(1) rather than tnf_process_disable().

tnf_process_disable() and tnf_process_enable() should only be used to
toggle probing based on some internal program condition. tnf_thread_disable()
should be used to turn off probing for threads that are uninteresting.

tnf_process_disable(3TNF)

554 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

tracing – overview of tnf tracing system

tnf tracing is a set of programs and API’s that can be used to present a high-level
view of the performance of an executable, a library, or part of the kernel. tracing is
used to analyze a program’s performance and identify the conditions that produced a
bug.

The core elements of tracing are:

TNF_PROBE_*() The TNF_PROBE_*() macros define "probes" to be
placed in code which, when enabled and executed,
cause information to be added to a trace file. See
TNF_PROBE(3TNF). If there are insufficient
TNF_PROBE_* macros to store all the data of interest
for a probe, data may be grouped into records. See
TNF_DECLARE_RECORD(3TNF).

prex Displays and controls probes in running software. See
prex(1).

kernel probes A set of probes built into the Solaris kernel which
capture information about system calls, multithreading,
page faults, swapping, memory management, and I/O.
You can use these probes to obtain detailed traces of
kernel activity under your application workloads. See
tnf_kernel_probes(4).

tnfxtract A program that extracts the trace data from the kernel’s
in-memory buffer into a file. See tnfxtract(1).

tnfdump A program that displays the information from a trace
file. See tnfdump(1).

libtnfctl A library of interfaces that controls probes in a process.
See libtnfctl(3TNF). prex(1) also utilizes this
library. Other tools and processes use the libtnfctl
interfaces to exercise fine control over their own
probes.

tnf_process_enable() A routine called by a process to turn on tracing and
probe functions for the current process. See
tnf_process_enable(3TNF).

tnf_process_disable() A routine called by a process to turn off tracing and
probe functions for the current process. See
tnf_process_disable(3TNF).

tnf_thread_enable() A routine called by a process to turn on tracing and
probe functions for the currently running thread. See
tnf_thread_enable(3TNF).

tracing(3TNF)

NAME

DESCRIPTION

Extended Library Functions 555

tnf_thread_disable() A routine called by a process to turn off tracing and
probe functions for the currently running thread. See
tnf_thread_disable(3TNF).

EXAMPLE 1 Tracing a Process

The following function in some daemon process accepts job requests of various types,
queueing them for later execution. There are two "debug probes" and one "production
probe." Note that probes which are intended for debugging will not be compiled into
the final version of the code; however, production probes are compiled into the final
product.

/*
* To compile in all probes (for development):
* cc -DTNF_DEBUG ...
*
* To compile in only production probes (for release):
* cc ...
*
* To compile in no probes at all:
* cc -DNPROBE ...
*/

#include <tnf/probe.h>
void work(long, char *);
enum work_request_type { READ, WRITE, ERASE, UPDATE };
static char *work_request_name[] = {"read", "write", "erase", "update"};
main()
{

long i;
for (i = READ; i <= UPDATE; i++)

work(i, work_request_name[i]);
}
void work(long request_type, char *request_name)
{

static long q_length;
TNF_PROBE_2_DEBUG(work_start, "work",

"XYZ%debug ’in function work’",
tnf_long, request_type_arg, request_type,
tnf_string, request_name_arg, request_name);

/* assume work request is queued for later processing */
q_length++;
TNF_PROBE_1(work_queue, "work queue",

"XYZ%work_load heavy",
tnf_long, queue_length, q_length);

TNF_PROBE_0_DEBUG(work_end, "work", "");
}

The production probe "work_queue," which remains compiled in the code, will, when
enabled, log the length of the work queue each time a request is received.

The debug probes "work_start" and "work_end, " which are compiled only during the
development phase, track entry to and exit from the work() function and measure
how much time is spent executing it. Additionally, the debug probe "work_start" logs
the value of the two incoming arguments request_type and request_name. The

tracing(3TNF)

EXAMPLES

556 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

EXAMPLE 1 Tracing a Process (Continued)

runtime overhead for disabled probes is low enough that one can liberally embed
them in the code with little impact on performance.

For debugging, the developer would compile with -DTNF_DEBUG, run the program
under control of prex(1), enable the probes of interest (in this case, all probes),
continue the program until exit, and dump the trace file:

% cc
-DTNF_DEBUG -o daemon daemon.c # compile in all probes
% prex daemon # run program under prex control
Target process stopped
Type "continue" to resume the target, "help" for help ...
prex> list probes $all # list all probes in program
<probe list output here>
prex> enable $all # enable all probes
prex> continue # let target process execute
<program output here>
prex: target process finished
% ls /tmp/trace-* # trace output is in trace-<pid>
/tmp/trace-4194
% tnfdump /tmp/trace-4194 # get ascii output of trace file
<trace records output here>

For the production version of the system, the developer simply compiles without
–DTNF_DEBUG.

EXAMPLE 2 Tracing the Kernel

Kernel tracing is similar to tracing a process; however, there are some differences. For
instance, to trace the kernel, you need superuser privileges. The following example
uses prex(1) and traces the probes in the kernel that capture system call information.

Allocate kernel
trace buffer and capture trace data:
root# prex -k
Type "help" for help ...
prex> buffer alloc 2m # allocate kernel trace buffer
Buffer of size 2097152 bytes allocated
prex> list probes $all # list all kernel probes
<probe list output here>
prex> list probes syscall # list syscall probes

(keys=syscall)
<syscall probes list output here>
prex> enable syscall # enable only syscall probes
prex> ktrace on # turn on kernel tracing
<Run your application in another window at this point>
prex> ktrace off # turn off kernel tracing
prex> quit # exit prex
Extract the kernel’s trace buffer into a file:
root# tnfxtract /tmp/ktrace # extract kernel trace buffer
Reset kernel tracing:
root# prex -k

tracing(3TNF)

Extended Library Functions 557

EXAMPLE 2 Tracing the Kernel (Continued)

prex> disable $all # disable all probes
prex> untrace $all # untrace all probes
prex> buffer dealloc # deallocate kernel trace buffer
prex> quit

CAUTION: Do not deallocate the trace buffer until you have extracted it into a trace
file. Otherwise, you will lose the trace data that you collected from your experiment!

Examine the kernel trace file:

root# tnfdump /tmp/ktrace # get ascii dump of trace file
<trace records output here>

prex can also attach to a running process, list probes, and perform a variety of other
tasks.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

MT Level MT-Safe

prex(1), tnfdump(1), tnfxtract(1), TNF_DECLARE_RECORD(3TNF),
TNF_PROBE(3TNF), libtnfctl(3TNF), tnf_process_disable(3TNF),
tnf_kernel_probes(4), attributes(5)

tracing(3TNF)

ATTRIBUTES

SEE ALSO

558 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

volmgt_acquire – reserve removable media device

cc [flag ...] file ... -lvolmgt [library ...]
#include <sys/types.h>

#include <volmgt.h>

int volmgt_acquire(char *dev, char *id, int ovr, char **err, pid_t
*pidp);

The volmgt_acquire() routine reserves the removable media device specified as
dev. volmgt_acquire() operates in two different modes, depending on whether or
not Volume Management is running. See vold(1M).

If Volume Management is running, volmgt_acquire() attempts to reserve the
removable media device specified as dev. Specify dev as either a symbolic device name
(for example, floppy0) or a physical device pathname (for example,
/vol/dsk/unnamed_floppy).

If Volume Management is not running, volmgt_acquire() requires callers to specify
a physical device pathname for dev. Specifying dev as a symbolic device name is not
acceptable. In this mode, volmgt_acquire() relies entirely on the major and minor
numbers of the device to determine whether or not the device is reserved.

If dev is free, volmgt_acquire() updates the internal device reservation database
with the caller’s process id (pid) and the specified id string.

If dev is reserved by another process, the reservation attempt fails and
volmgt_acquire():

� sets errno to EBUSY

� fills the caller’s id value in the array pointed to by err

� fills in the pid to which the pointer pidp points with the pid of the process which
holds the reservation, if the supplied pidp is non-zero

If the override ovr is non-zero, the call overrides the device reservation.

Upon successful completion, volmgt_acquire() returns a non-zero value.

Upon failure, volmgt_acquire() returns 0. If the return value is 0, and errno is set
to EBUSY, the address pointed to by err contains the string that was specified as id
(when the device was reserved by the process holding the reservation).

The volmgt_acquire() routine fails if one or more of the following are true:

EINVAL One of the specified arguments is invalid or missing.

EBUSY dev is already reserved by another process (and ovr was not set to a
non-zero value)

volmgt_acquire(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 559

EXAMPLE 1 Using volmgt_acquire()

In the following example, Volume Management is running and the first floppy drive is
reserved, accessed and released.

#include <volmgt.h>
char *errp;
if (!volmgt_acquire("floppy0", "FileMgr", 0, NULL,

&errp, NULL)) {
/* handle error case */
. . .

}
/* floppy acquired - now access it */
if (!volmgt_release("floppy0")) {

/* handle error case */
. . .

}

EXAMPLE 2 Using volmgt_acquire() To Override A Lock On Another Process

The following example shows how callers can override a lock on another process
using volmgt_acquire().

char *errp, buf[20];
int override = 0;
pid_t pid;
if (!volmgt_acquire("floppy0", "FileMgr", 0, &errp,

&pid)) {
if (errno == EBUSY) {

(void) printf("override %s (pid=%ld)?\n",
errp, pid); {

(void) fgets(buf, 20, stdin);
if (buf[0] == ’y’) {

override++;
}

} else {
/* handle other errors */
. . .

}
}
if (override) {

if (!volmgt_acquire("floppy0", "FileMgr", 1,
&errp, NULL)) {

/* really give up this time! */
. . .

}
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

volmgt_acquire(3VOLMGT)

EXAMPLES

ATTRIBUTES

560 man pages section 3: Extended Library Functions • Last Revised 11 Dec 1996

vold(1M), free(3C), malloc(3C), volmgt_release(3VOLMGT), attributes(5)

When returning a string through err, volmgt_acquire() allocates a memory area
using malloc(3C). Use free(3C) to release the memory area when no longer needed.

The ovr argument is intended to allow callers to override the current device
reservation. It is assumed that the calling application has determined that the current
reservation can safely be cleared. See EXAMPLES.

volmgt_acquire(3VOLMGT)

SEE ALSO

NOTES

Extended Library Functions 561

volmgt_check – have Volume Management check for media

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_check(char *pathname);

This routine asks Volume Management to check the specified pathname and determine
if new media has been inserted in that drive.

If a null pointer is passed in, then Volume Management will check each device it is
managing that can be checked.

If new media is found, volmgt_check() tells Volume Management to initiate any
"actions" specified in /etc/vold.conf (see vold.conf(4)).

This routine returns 0 if no media was found, and a non-zero value if any media was
found.

This routine can fail, returning 0, if a stat(2) or open(2) of the supplied pathname
fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while checking for media.

EXAMPLE 1 Checking If Any New Media Is Inserted

To check if any drive managed by Volume Management has any new media inserted
in it:

if (volmgt_check(NULL)) {
(void) printf("Volume Management found media\n");

}

This would also request Volume Management to take whatever action was specified in
/etc/vold.conf for any media found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), volcheck(1), vold(1M), open(2), stat(2), volmgt_inuse(3VOLMGT),
volmgt_running(3VOLMGT), vold.conf(4), attributes(5), volfs(7FS)

Volume Management must be running for this routine to work.

volmgt_check(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

562 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

Since volmgt_check() returns 0 for two different cases (both when no media is
found, and when an error occurs), it is up to the user to to check errno to differentiate
the two, and to ensure that Volume Management is running.

volmgt_check(3VOLMGT)

Extended Library Functions 563

volmgt_feature_enabled – check whether specific Volume Management features are
enabled

cc [flag ...] file ... -l volmgt [library ...]

#include <volmgt.h>

int volmgt_feature_enabled(char *feat_str);

The volmgt_feature_enabled() routine checks whether specific Volume
Management features are enabled. volmgt_feature_enabled() checks for the
Volume Management features passed in to it by the feat_str parameter.

Currently, the only supported feature string that volmgt_feature_enabled()
checks for is floppy-summit-interfaces. The floppy-summit-interfaces
feature string checks for the presence of the libvolmgt routines
volmgt_acquire() and volmgt_release().

The list of features that volmgt_feature_enabled() checks for is expected to
expand in the future.

0 is returned if the specified feature is not currently available. A non-zero value
indicates that the specified feature is currently available.

EXAMPLE 1 A sample of the volmgt_feature_enabled() function.

In the following example, volmgt_feature_enabled() checks whether the
floppy-summit-interfaces feature is enabled.

if (volmgt_feature_enabled("floppy-summit-interfaces")) {
(void) printf("Media Sharing Routines ARE present\n");

} else {
(void) printf("Media Sharing Routines are NOT present\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

volmgt_acquire(3VOLMGT), volmgt_release(3VOLMGT), attributes(5)

volmgt_feature_enabled(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

564 man pages section 3: Extended Library Functions • Last Revised 13 Dec 1996

volmgt_inuse – check whether or not Volume Management is managing a pathname

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_inuse(char *pathname);

volmgt_inuse() checks whether Volume Management is managing the specified
pathname.

A non-zero value is returned if Volume Management is managing the specified
pathname, otherwise 0 is returned.

This routine can fail, returning 0, if a stat(2) of the supplied pathname or an open(2)
of /dev/volctl fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while checking for the supplied
pathname for use.

EXAMPLE 1 Using volmgt_inuse()

To see if Volume Management is managing the first floppy disk:

if (volmgt_inuse("/dev/rdiskette0") != 0) {
(void) printf("volmgt is managing diskette 0\n");

} else {
(void) printf("volmgt is NOT managing diskette 0\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), stat(2), errno(3C), volmgt_check(3VOLMGT),
volmgt_running(3VOLMGT), attributes(5), volfs(7FS)

This routine requires Volume Management to be running.

Since volmgt_inuse() returns 0 for two different cases (both when a volume is not
in use, and when an error occurs), it is up to the user to to check errno to differentiate
the two, and to ensure that Volume Management is running.

volmgt_inuse(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 565

volmgt_ownspath – check Volume Management name space for path

cc [flag ...] file ...−lvolgmt [library ...]

#include <volmgt.h>

int volmgt_ownspath(char *path);

volmgt_ownspath() checks to see if a given path is contained in the Volume
Management name space. This is achieved by comparing the beginning of the
supplied path name with the output from volmgt_root(3VOLMGT)

path A string containing the path.

non-zero The path is owned by Volume Management.

0 volgmt() does not have path in its name space, or Volume
Management is not running.

EXAMPLE 1 Using volmgt_ownspath()

The following example first checks if volmgt() is running, then checks the Volume
Management name space for path, and then returns the id for the piece of media.

char *path;

...

if (volmgt_running()) {
if (volmgt_ownspath(path)) {

(void) printf("id of %s is %lld\n",
path, media_getid(path));

}
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Commitment Level Public

volmgt_root(3VOLMGT), volmgt_running(3VOLMGT)attributes(5)

volmgt_ownspath(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

566 man pages section 3: Extended Library Functions • Last Revised 21 Apr 1998

volmgt_release – release removable media device reservation

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_release(char *dev);

The volmgt_release() routine releases the removable media device reservation
specified as dev. See volmgt_acquire(3VOLMGT) for a description of dev.

If dev is reserved by the caller, volmgt_release() updates the internal device
reservation database to indicate that the device is no longer reserved. If the requested
device is reserved by another process, the release attempt fails and errno is set to 0.

Upon successful completion, volmgt_release returns a non-zero value. Upon
failure, 0 is returned.

On failure, volmgt_release() returns 0, and sets errno for one of the following
conditions:

EINVAL dev was invalid or missing.

EBUSY dev was not reserved by the caller.

EXAMPLE 1 Using volmgt_release()

In the following example, Volume Management is running, and the first floppy drive
is reserved, accessed and released.

#include <volmgt.h>
char *errp;
if (!volmgt_acquire("floppy0", "FileMgr", 0, &errp,

NULL)) {
/* handle error case */
. . .

}
/* floppy acquired - now access it */
if (!volmgt_release("floppy0")) {

/* handle error case */
. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Stable

vold(1M), volmgt_acquire(3VOLMGT), attributes(5)

volmgt_release(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 567

volmgt_root – return the Volume Management root directory

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

const char *volmgt_root(void);

The volmgt_root() function returns the current Volume Management root
directory, which by default is /vol but can be configured to be in a different location.

The volmgt_root() function returns pointer to a static string containing the root
directory for Volume Management.

This function may fail if an open() of /dev/volctl fails. If this occurs a pointer to
the default Volume Management root directory is returned.

EXAMPLE 1 Finding the Volume Management root directory.

To find out where the Volume Management root directory is:

if ((path = volmgt_root()) != NULL) {
(void) printf("Volume Management root dir=%s\n", path);

} else {
(void) printf("can’t find Volume Management root dir\n");

}

/vol default location for the Volume Management root directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), volmgt_check(3VOLMGT),
volmgt_inuse(3VOLMGT), volmgt_running (3VOLMGT), attributes(5),
volfs(7FS)

This function returns the default root directory location even when Volume
Management is not running.

volmgt_root(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

568 man pages section 3: Extended Library Functions • Last Revised 1 Feb 2001

volmgt_running – return whether or not Volume Management is running

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_running(void);

volmgt_running() tells whether or not Volume Management is running.

A non-zero value is returned if Volume Management is running, else 0 is returned.

volmgt_running() will fail, returning 0, if a stat(2) or open(2) of /dev/volctl
fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while checking to see if Volume
Management was running.

EXAMPLE 1 Using volmgt_running()

To see if Volume Management is running:

if (volmgt_running() != 0) {
(void) printf("Volume Management is running\n");

} else {
(void) printf("Volume Management is NOT running\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), stat(2), volmgt_check(3VOLMGT), volmgt_inuse
(3VOLMGT), attributes(5), volfs(7FS)

Volume Management must be running for many of the Volume Management library
routines to work.

volmgt_running(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 569

volmgt_symname, volmgt_symdev – convert between Volume Management symbolic
names, and the devices that correspond to them

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

char *volmgt_symname(char *pathname);

char *volmgt_symdev(char *symname);

These two routines compliment each other, translating between Volume
Management’s symbolic name for a device, called a symname, and the /dev pathname
for that same device.

volmgt_symname() converts a supplied /dev pathname to a symname, Volume
Management’s idea of that device’s symbolic name (see volfs(7FS) for a description
of Volume Management symbolic names).

volmgt_symdev() does the opposite conversion, converting between a symname,
Volume Management’s idea of a device’s symbolic name for a volume, to the /dev
pathname for that device.

volmgt_symname() returns the symbolic name for the device pathname supplied,
and volmgt_symdev() returns the device pathname for the supplied symbolic name.

These strings are allocated upon success, and therefore must be freed by the caller
when they are no longer needed (see free(3C)).

volmgt_symname() can fail, returning a null string pointer, if a stat(2) of the
supplied pathname fails, or if an open(2) of /dev/volctl fails, or if any of the
following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while trying to convert the
supplied pathname to a symname.

volmgt_symdev() can fail if an open(2) of /dev/volctl fails, or if any of the
following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while trying to convert the
supplied symname to a /dev pathname.

EXAMPLE 1 Testing Floppies

The following tests how many floppies Volume Management currently sees in floppy
drives (up to 10):

for (i=0; i < 10; i++) {
(void) sprintf(path, "floppy%d", i);
if (volmgt_symdev(path) != NULL) {

volmgt_symname(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

570 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

EXAMPLE 1 Testing Floppies (Continued)

(void) printf("volume %s is in drive %d\n",
path, i);

}
}

EXAMPLE 2 Finding The Symbolic Name

This code finds out what symbolic name (if any) Volume Management has for
/dev/rdsk/c0t6d0s2:

if ((nm = volmgt_symname("/dev/rdsk/c0t6d0s2")) == NULL) {
(void) printf("path not managed\n");

} else {
(void) printf("path managed as %s\n", nm);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), stat(2), free(3C), malloc(3C),
volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT),
volmgt_running(3VOLMGT), attributes(5), volfs(7FS)

These routines only work when Volume Management is running.

There should be a straightforward way to query Volume Management for a list of all
media types it’s managing, and how many of each type are being managed.

volmgt_symname(3VOLMGT)

ATTRIBUTES

SEE ALSO

NOTES

BUGS

Extended Library Functions 571

wsreg_add_child_component, wsreg_remove_child_component,
wsreg_get_child_components – add or remove a child component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_child_component(Wsreg_component *comp, const
Wsreg_component *childComp);

int wsreg_remove_child_component(Wsreg_component *comp, const
Wsreg_component *childComp);

Wsreg_component **wsreg_get_child_components(const
Wsreg_component *comp);

The wsreg_add_child_component() function adds the component specified by
childComp to the list of child components contained in the component specified by
comp.

The wsreg_remove_child_component() function removes the component
specified by childComp from the list of child components contained in the component
specified by comp.

The wsreg_get_child_components() function returns the list of child
components contained in the component specified by comp.

The wsreg_add_child_component() function returns a non-zero value if the
specified child component was successfully added; otherwise, 0 is returned.

The wsreg_remove_child_component() function returns a non-zero value if the
specified child component was successfully removed; otherwise, 0 is returned.

The wsreg_get_child_components() function returns a null-terminated array of
Wsreg_component pointers that represents the specified component’s list of child
components. If the specified component has no child components, NULL is returned.
The resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The parent-child relationship between components in the product install registry is
used to record a product’s structure. Product structure is the arrangement of features
and components that make up a product. The structure of installed products can be
displayed with the prodreg GUI.

The child component must be installed and registered before the parent component
can be. The registration of a parent component that has child components results in
each of the child components being updated to reflect their parent component.

Read access to the product install registry is required in order to use these functions
because these relationships are held with lightweight component references that can
only be fully resolved using the registry contents.

wsreg_add_child_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

572 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_can_access_registry(3WSREG),
wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), wsreg_set_parent(3WSREG), attributes(5)

wsreg_add_child_component(3WSREG)

ATTRIBUTES

SEE ALSO

Extended Library Functions 573

wsreg_add_compatible_version, wsreg_remove_compatible_version,
wsreg_get_compatible_versions – add or remove a backward-compatible version

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_compatible_version(Wsreg_component *comp, const
char *version);

int wsreg_remove_compatible_version(Wsreg_component *comp, const
char *version);

char **wsreg_get_compatible_versions(const Wsreg_component
*comp);

The wsreg_add_compatible_version() function adds the version string
specified by version to the list of backward-compatible versions contained in the
component specified by comp.

The wsreg_remove_compatible_version() function removes the version string
specified by version from the list of backward-compatible versions contained in the
component specified by comp.

The wsreg_get_compatible_versions() function returns the list of
backward-compatible versions contained in the component specified by comp.

The wsreg_add_compatible_version() function returns a non-zero value if the
specified backward-compatible version was successfully added; otherwise, 0 is
returned.

The wsreg_remove_compatible_version() function returns a non-zero value if
the specified backward-compatible version was successfully removed; otherwise, 0 is
returned.

The wsreg_get_compatible_versions() function returns a null-terminated
array of char pointers that represents the specified component’s list of
backward-compatible versions. If the specified component has no such versions, NULL
is returned. The resulting array and its contents must be released by the caller.

The list of backward compatible versions is used to allow components that are used by
multiple products to upgrade successfully without compromising any of its dependent
products. The installer that installs such an update can check the list of
backward-compatible versions and look at what versions are required by all of the
dependent components to ensure that the upgrade will not result in a broken product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_compatible_version(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

574 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

prodreg(1M), wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_version(3WSREG), attributes(5)

wsreg_add_compatible_version(3WSREG)

SEE ALSO

Extended Library Functions 575

wsreg_add_dependent_component, wsreg_remove_dependent_component,
wsreg_get_dependent_components – add or remove a dependent component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_dependent_component(Wsreg_component *comp, const
Wsreg_component *dependentComp);

int wsreg_remove_dependent_component(Wsreg_component *comp, const
Wsreg_component *dependentComp);

Wsreg_component **wsreg_get_dependent_components(const
Wsreg_component *comp);

The wsreg_add_dependent_component() function adds the component specified
by dependentComp to the list of dependent components contained in the component
specified by comp.

The wsreg_remove_dependent_component() function removes the component
specified by dependentComp from the list of dependent components contained in the
component specified by comp.

The wsreg_get_dependent_components() function returns the list of dependent
components contained in the component specified by comp.

The wsreg_add_dependent_component() function returns a non-zero value if the
specified dependent component was successfully added; otherwise, 0 is returned.

The wsreg_remove_dependent_component() function returns a non-zero value if
the specified dependent component was successfully removed; otherwise, 0 is
returned.

The wsreg_get_dependent_components() function returns a null-terminated
array of Wsreg_component pointers that represents the specified component’s list of
dependent components. If the specified component has no dependent components,
NULL is returned. The resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The relationship between two components in which one must be installed for the
other to be complete is a dependent/required relationship. The component that is
required by the other component is the required component. The component that
requires the other is the dependent component.

The required component must be installed and registered before the dependent
component can be. Uninstaller applications should check the registry before
uninstalling and unregistering components so a successful uninstallation of one
product will not result in another product being compromised.

wsreg_add_dependent_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

576 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

Read access to the product install registry is required to use these functions because
these relationships are held with lightweight component references that can only be
fully resolved using the registry contents.

The act of registering a component having required components results in the
converse dependent relationships being established automatically.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_required_component(3WSREG),
wsreg_can_access_registry(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)

wsreg_add_dependent_component(3WSREG)

ATTRIBUTES

SEE ALSO

Extended Library Functions 577

wsreg_add_display_name, wsreg_remove_display_name, wsreg_get_display_name,
wsreg_get_display_languages – add, remove, or return a localized display name

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_display_name(Wsreg_component *comp, const char
*language, const char *display_name);

int wsreg_remove_display_name(Wsreg_component *comp, const char
*language);

char *wsreg_get_display_name(const Wsreg_component *comp, const
char *language);

char **wsreg_get_display_languages(const Wsreg_component *comp);

For each of these functions, the comp argument specifies the component on which
these functions operate. The language argument is the ISO 639 language code
identifying a particular display name associated with the specified component.

The wsreg_add_display_name() function adds the display name specified by
display_name to the component specified by comp.

The wsreg_remove_display_name() function removes a display name from the
component specified by comp.

The wsreg_get_display_name() function returns a display name from the
component specified by comp.

The wsreg_get_display_languages() returns the ISO 639 language codes for
which display names are available from the component specified by comp.

The wsreg_add_display_name() function returns a non-zero value if the display
name was set correctly; otherwise 0 is returned.

The wsreg_remove_display_name() function returns a non-zero value if the
display name was removed; otherwise 0 is returned.

The wsreg_get_display_name() function returns the display name from the
specified component if the component has a display name for the specified language
code. Otherwise, NULL is returned. The caller must not free the resulting display
name.

The wsreg_get_display_languages() function returns a null-terminated array of
ISO 639 language codes for which display names have been set into the specified
component. If no display names have been set, NULL is returned. It is the caller’s
responsibility to release the resulting array, but not the contents of the array.

See attributes(5) for descriptions of the following attributes:

wsreg_add_display_name(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

578 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_add_display_name(3WSREG)

SEE ALSO

Extended Library Functions 579

wsreg_add_required_component, wsreg_remove_required_component,
wsreg_get_required_components – add or remove a required component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_required_component(Wsreg_component *comp, const
Wsreg_component *requiredComp);

int wsreg_remove_required_component(Wsreg_component *comp, const
Wsreg_component *requiredComp);

Wsreg_component **wsreg_get_required_components(const
Wsreg_component *comp);

The wsreg_add_required_component() function adds the component specified
by requiredComp to the list of required components contained in the component
specified by comp.

The wsreg_remove_required_component() function removes the component
specified by requiredComp from the list of required components contained in the
component specified by comp.

The wsreg_get_required_components() function returns the list of required
components contained in the component specified by comp.

The wsreg_add_required_component() function returns a non-zero value if the
specified required component was successfully added. Otherwise, 0 is returned.

The wsreg_remove_required_component() function returns a non-zero value if
the specified required component was successfully removed. Otherwise, 0 is returned.

The wsreg_get_required_components() function returns a null-terminated
array of Wsreg_component pointers that represents the specified component’s list of
required components. If the specified component has no required components, NULL
is returned. The resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The relationship between two components in which one must be installed for the
other to be complete is a dependent/required relationship. The component that is
required by the other component is the required component. The component that
requires the other is the dependent component.

The required component must be installed and registered before the dependent
component can be. Uninstaller applications should check the registry before
uninstalling and unregistering components so a successful uninstallation of one
product will not result in another product being compromised.

Read access to the product install registry is required in order to use these functions
because these relationships are held with lightweight component references that can
only be fully resolved using the registry contents.

wsreg_add_required_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

580 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_dependent_component(3WSREG),
wsreg_can_access_registry(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)

wsreg_add_required_component(3WSREG)

ATTRIBUTES

SEE ALSO

Extended Library Functions 581

wsreg_can_access_registry – determine access to product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <fcntl.h>

#include <wsreg.h>

int wsreg_can_access_registry(int access_flag);

The wsreg_can_access_registry() function is used to determine what access, if
any, an application has to the product install registry.

The access_flag argument can be one of the following:

O_RDONLY Inquire about read only access to the registry.

O_RDWR Inquire about modify (read and write) access to the registry.

The wsreg_can_access_registry() function returns non-zero if the specified
access level is permitted. A return value of 0 indicates the specified access level is not
permitted.

EXAMPLE 1 Initialize the registry and determine if access to the registry is permitted.

#include <fcntl.h>
#include <wsreg.h>

int main(int argc, char **argv)
{

int result;
if (wsreg_initialize(WSREG_INIT_NORMAL, NULL)) {

printf("conversion recommended, sufficient access denied\n");
}

if (wsreg_can_access_registry(O_RDONLY)) {
printf("registry read access granted\n");

} else {
printf("registry read access denied\n");

}

if (wsreg_can_access_registry(O_RDWR)) {
printf("registry read/write access granted\n");

} else {
printf("registry read/write access denied\n");

}

}

The wsreg_initialize(3WSREG) function must be called before calls to
wsreg_can_access_registry() can be made.

See attributes(5) for descriptions of the following attributes:

wsreg_can_access_registry(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

USAGE

ATTRIBUTES

582 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_can_access_registry(3WSREG)

SEE ALSO

Extended Library Functions 583

wsreg_clone_component – clone a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_clone_component(const Wsreg_component
*comp);

The wsreg_clone_component() function clones the component specified by comp.

The wsreg_clone_component() returns a pointer to a component that is
configured exactly the same as the component specified by comp.

The resulting component must be released through a call to
wsreg_free_component() by the caller. See
wsreg_create_component(3WSREG).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_get(3WSREG), attributes(5)

wsreg_clone_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

584 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_components_equal – determine equality of two components

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_components_equal(const Wsreg_component *comp1, const
Wsreg_component *comp2);

The wsreg_components_equal() function determines if the component specified
by the comp1 argument is equal to the component specified by the comp2 argument.
Equality is evaluated based only on the content of the two components, not the order
in which data was set into the components.

The wsreg_components_equal() function returns a non-zero value if the
component specified by the comp1 argument is equal to the component specified by
the comp2 argument. Otherwise, 0 is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_clone_component(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), attributes(5)

wsreg_components_equal(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 585

wsreg_create_component, wsreg_free_component, wsreg_free_component_array –
create or release a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_create_component(const char *uuid);

void wsreg_free_component(Wsreg_component *comp);

int wsreg_free_component_array(Wsreg_component **complist);

The wsreg_create_component() function allocates a new component and assigns
the uuid (universal unique identifier) specified by uuid to the resulting component.

The wsreg_free_component() function releases the memory associated with the
component specified by comp.

The wsreg_free_component_array() function frees the null-terminated array of
component pointers specified by complist. This function can be used to free the results
of a call to wsreg_get_all(). See wsreg_get(3WSREG).

The wsreg_create_component() function returns a pointer to the newly allocated
Wsreg_component structure.

The wsreg_free_component_array() function returns a non-zero value if the
specified Wsreg_component array was freed successfully. Otherwise, 0 is returned.

A minimal registerable Wsreg_component configuration must include a version,
unique name, display name, and an install location.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_display_name(3WSREG), wsreg_get(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_id(3WSREG), wsreg_set_location(3WSREG),
wsreg_set_unique_name(3WSREG), wsreg_set_version(3WSREG),
attributes(5)

wsreg_create_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

586 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_get, wsreg_get_all – query product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_get(const Wsreg_query *query);

Wsreg_component **wsreg_get_all(void);

The wsreg_get() function queries the product install registry for a component that
matches the query specified by query.

The wsreg_get_all() function returns all components currently registered in the
product install registry.

The wsreg_get() function returns a pointer to a Wsreg_component structure
representing the registered component. If no component matching the specified query
is currently registered, wsreg_get() returns NULL.

The wsreg_get_all() function returns a null-terminated array of
Wsreg_component pointers. Each element in the resulting array represents one
registered component.

The wsreg library must be initialized by a call to wsreg_initialize(3WSREG)
before any call to wsreg_get() or wsreg_get_all().

The Wsreg_component pointer returned from wsreg_get() should be released
through a call to wsreg_free_component(). See
wsreg_create_component(3WSREG).

The Wsreg_component pointer array returned from wsreg_get_all() should be
released through a call to wsreg_free_component_array(). See
wsreg_create_component(3WSREG).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), attributes(5)

wsreg_get(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 587

wsreg_initialize – initialize wsreg library

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_initialize(Wsreg_init_level level, const char
*alternate_root);

The wsreg_initialize() function initializes the wsreg library.

The level argument can be one of the following:

WSREG_INIT_NORMAL If an old registry file is present, attempt to
perform a conversion.

WSREG_INIT_NO_CONVERSION If an old conversion file is present, do not
perform the conversion, but indicate that
the conversion is recommended.

The alternate_root argument can be used to specify a root prefix. If NULL is specified, no
root prefix is used.

The wsreg_initialize() function can return one of the following:

WSREG_SUCCESS The initialization was successful and no
registry conversion is necessary.

WSREG_CONVERSION_RECOMMENDED An old registry file exists and should be
converted.

A conversion is attempted if the init_level argument is WSREG_INIT_NORMAL and a
registry file from a previous version of the product install registry exists. If the
wsreg_initialize() function returns WSREG_CONVERSION_RECOMMENDED, the
user either does not have permission to update the product install registry or does not
have read/write access to the previous registry file.

The wsreg_initialize() function must be called before any other wsreg library
functions.

The registry conversion can take some time to complete. The registry conversion can
also be performed using the graphical registry viewer /usr/bin/prodreg or by the
registry converter /usr/bin/regconvert.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_can_access_registry(3WSREG), attributes(5)

wsreg_initialize(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

588 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_query_create, wsreg_query_free – create a new query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_query *wsreg_query_create(void);

void wsreg_query_free(Wsreg_query *query);

The wsreg_query_create() function allocates a new query that can retrieve
components from the product install registry.

The wsreg_query_free() function releases the memory associated with the query
specified by query.

The wsreg_query_create() function returns a pointer to the newly allocated
query. The resulting query is completely empty and must be filled in to describe the
desired component.

The query identifies fields used to search for a specific component in the product
install registry. The query must be configured and then passed to the
wsreg_get(3WSREG) function to perform the registry query.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_set_id(3WSREG), wsreg_query_set_instance(3WSREG),
wsreg_query_set_location(3WSREG),
wsreg_query_set_unique_name(3WSREG),
wsreg_query_set_version(3WSREG), wsreg_unregister(3WSREG),
attributes(5)

wsreg_query_create(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 589

wsreg_query_set_id, wsreg_query_get_id – set or get the uuid of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_id(Wsreg_query *query, const char *uuid);

char *wsreg_query_get_id(const Wsreg_query *query);

The wsreg_query_set_id() function sets the uuid (universal unique identifier)
specified by uuid in the query specified by query. If a uuid has already been set in the
specified query, the resources associated with the previously set uuid are released.

The wsreg_query_get_id() function returns the uuid associated with the query
specified by query. The resulting string is not a copy and must not be released by the
caller.

The wsreg_query_set_id() function returns non-zero if the uuid was set correctly;
otherwise 0 is returned.

The wsreg_query_get_id() function returns the uuid associated with the specified
query.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the uuid, the component search is narrowed to all
components in the product install registry that have the specified uuid.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
towsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_id(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

590 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_query_set_instance, wsreg_query_get_instance – set or get the instance of a
query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_instance(Wsreg_query *query, int instance);

int wsreg_query_get_instance(Wsreg_query *comp);

The wsreg_query_set_instance() function sets the instance number specified by
instance in the query specified by query.

The wsreg_query_get_instance() function retrieves the instance from the query
specified by query.

The wsreg_query_set_instance() function returns a non-zero value if the
instance was set correctly; otherwise 0 is returned.

The wsreg_query_get_instance() function returns the instance number from the
specified query. It returns 0 if the instance number has not been set.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the instance, the component search is narrowed to all
components in the product install registry that have the specified instance.

Other fields can be specified in the same query to further narrow down the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_instance(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 591

wsreg_query_set_location, wsreg_query_get_location – set or get the location of a
query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_location(Wsreg_query *query, const char
*location);

char *wsreg_query_get_location(Wsreg_query *query);

The wsreg_query_set_location() function sets the location specified by location
in the query specified by query. If a location has already been set in the specified query,
the resources associated with the previously set location are released.

The wsreg_query_get_location() function gets the location string from the
query specified by query.

The wsreg_query_set_location() function returns a non-zero value if the
location was set correctly; otherwise 0 is returned.

The wsreg_query_get_location() function returns the location from the
specified query structure. The resulting location string is not a copy, so it must not be
released by the caller.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the install location, the component search is narrowed to
all components in the product install registry that are installed in the same location.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_location(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

592 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_query_set_unique_name, wsreg_query_get_unique_name – set or get the
unique name of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_unique_name(Wsreg_query *query, const char
*unique_name);

char *wsreg_query_get_unique_name(const Wsreg_query *query);

The wsreg_query_set_unique_name() function sets the unique name specified
by unique_name in the query specified by query. If a unique name has already been set
in the specified query, the resources associated with the previously set unique name
are released.

The wsreg_query_get_unique_name() function gets the unique name string from
the query specified by query. The resulting string is not a copy and must not be
released by the caller.

The wsreg_query_set_unique_name() function returns a non-zero value if the
unique_name was set correctly; otherwise 0 is returned.

The wsreg_query_get_unique_name() function returns a copy of the unique_name
from the specified query.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the unique name, the component search is narrowed to
all components in the product install registry that have the specified unique name.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_unique_name(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 593

wsreg_query_set_version, wsreg_query_get_version – set or get the version of a query

cc [flag ...] file ... -lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_version(Wsreg_query *query, const char
*version);

char *wsreg_query_get_version(const Wsreg_query *query);

The wsreg_query_set_version() function sets the version specified by version in
the query specified by query. If a version has already been set in the specified query,
the resources associated with the previously set version are released.

The wsreg_query_get_version() function gets the version string from the query
specified by query. The resulting string is not a copy and must not be released by the
caller.

The wsreg_query_set_version() function returns a non-zero value if the version
was set correctly; otherwise 0 is returned.

The wsreg_query_get_version() function returns the version from the specified
query. If no version has been set, NULLt is returned. The resulting version string is not
a copy and must not be released by the caller.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the version, the component search is narrowed to all
components in the product install registry that have the specified version.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_version(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

594 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_register – register a component in the product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_register(Wsreg_component *comp);

The wsreg_register() function updates a component in the product install
registry.

If comp is already in the product install registry, the call to wsreg_register()
results in the currently registered component being updated. Otherwise, comp is added
to the product install registry.

An instance is assigned to the component upon registration. Subsequent component
updates retain the same component instance.

If comp has required components, each required component is updated to reflect the
required component relationship.

If comp has child components, each child component that does not already have a
parent is updated to reflect specified component as its parent.

Upon successful completion, a non-zero value is returned. If the component could not
be updated in the product install registry, 0 is returned.

EXAMPLE 1 Create and register a component.

The following example creates and registers a component.

#include <wsreg.h>

int main (int argc, char **argv)
{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
Wsreg_component *comp = NULL;

/* Initialize the registry */
wsreg_initialize(WSREG_INIT_NORMAL, NULL);

/* Create the component */
comp = wsreg_create_component(uuid);
wsreg_set_unique_name(comp, "wsreg_example_1");
wsreg_set_version(comp, "1.0");
wsreg_add_display_name(comp, "en", "Example 1 component");
wsreg_set_type(comp, WSREG_COMPONENT);
wsreg_set_location(comp, "/usr/local/example1_component");

/* Register the component */
wsreg_register(comp);
wsreg_free_component(comp);
return 0;

}

wsreg_register(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

Extended Library Functions 595

A product’s structure can be recorded in the product install registry by registering a
component for each element and container in the product definition. The product and
each of its features would be registered in the same way as a package that represents
installed files.

Components should be registered only after they are successfully installed. If an entire
product is being registered, the product should be registered after all components and
features are installed and registered.

In order to register correctly, the component must be given a uuid, unique name,
version, display name, and a location. The location assgined to product structure
components should generally be the location in which the user chose to install the
product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_create_component(3WSREG), wsreg_ unregister(3WSREG),
attributes(5)

wsreg_register(3WSREG)

USAGE

ATTRIBUTES

SEE ALSO

596 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_data, wsreg_get_data, wsreg_get_data_pairs – add or retrieve a key-value
pair

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_data(Wsreg_component *comp, const char *key, const
char *value);

char *wsreg_get_data(const Wsreg_component *comp, const char
*key);

char *wsreg_get_data_pairs(const Wsreg_component *comp);

The wsreg_set_data() function adds the key-value pair specified by key and value
to the component specified by comp. If value is NULL, the key and current value is
removed from the specified component.

The wsreg_get_data() function retrieves the value associated with the key
specified by key from the component specified by comp.

The wsreg_get_data_pairs() function returns the list of key-value pairs from the
component specified by comp.

The wsreg_set_data() function returns a non-zero value if the specified key-value
pair was successfully added. It returns 0 if the addition failed. If NULL is passed as the
value, the current key-value pair are removed from the specified component.

The wsreg_get_data() function returns the value associated with the specified key.
It returns NULL if there is no value associated with the specified key. The char pointer
that is returned is not a clone, so it must not be freed by the caller.

The wsreg_get_data_pairs() function returns a null-terminated array of char
pointers that represents the specified component’s list of data pairs. The even indexes
of the resulting array represent the key names. The odd indexes of the array represent
the values. If the specified component has no data pairs, NULL is returned. The
resulting array (not its contents) must be released by the caller.

Any string data can be associated with a component. Because this information can be
viewed in the prodreg registry viewer, it is a good place to store support contact
information.

After the data pairs are added or removed, the component must be updated with a
call to wsreg_register(3WSREG) for the modifications to be persistent.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_set_data(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

Extended Library Functions 597

prodreg(1M), wsreg_initialize(3WSREG), wsreg_register(3WSREG),
attributes(5)

wsreg_set_data(3WSREG)

SEE ALSO

598 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_id, wsreg_get_id – set or get the uuid of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_id(Wsreg_component *comp, const char *uuid);

char *wsreg_get_id(const Wsreg_component *comp);

The wsreg_set_id() function sets the uuid (universal unique identifier) specified
by uuid into the component specified by comp. If a uuid has already been set into the
specified component, the resources associated with the previously set uuid are
released.

The wsreg_get_id() function returns a copy of the uuid of the component specified
by comp. The resulting string must be released by the caller.

The wsreg_set_id() function returns non-zero if the uuid was set correctly;
otherwise 0 is returned.

The wsreg_get_id() function returns a copy of the specified component’s uuid.

Generally, the uuid will be set into a component by the
wsreg_create_component(3WSREG) function, so a call to the wsreg_set_id() is
not necessary.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
attributes(5)attributes(5)

wsreg_set_id(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 599

wsreg_set_instance, wsreg_get_instance – set or get the instance of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_instance(Wsreg_component *comp, int instance);

int wsreg_get_instance(Wsreg_component *comp);

The wsreg_set_instance() function sets the instance number specified by instance
of the component specified by comp. The instance number and uuid are used to
uniquely identify any component in the product install registry.

The wsreg_get_instance() function determines the instance number associated
with the component specified by comp.

The wsreg_set_instance() function returns a non-zero value if the instance was
set correctly; otherwise 0 is returned.

The wsreg_get_instance() function returns the instance number associated with
the specified component.

EXAMPLE 1 Get the instance value of a registered component.

The following example demonstrates how how to get the instance value of a registered
component.

#include <fcntl.h>
#include <wsreg.h>

int main (int argc, char **argv)
{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
Wsreg_component *comp = NULL;

/* Initialize the registry */
wsreg_initialize(WSREG_INIT_NORMAL, NULL);
if (!wsreg_can_access_registry(O_RDWR)) {

printf("No permission to modify the registry.\
");

return 1;
}

/* Create a component */
comp = wsreg_create_component(uuid);
wsreg_set_unique_name(comp, "wsreg_example_1");
wsreg_set_version(comp, "1.0");
wsreg_add_display_name(comp, "en", "Example 1 component");
wsreg_set_type(comp, WSREG_COMPONENT);
wsreg_set_location(comp, "/usr/local/example1_component");

/* Register */
wsreg_register(comp);

printf("Instance %d was assigned\

wsreg_set_instance(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

600 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

EXAMPLE 1 Get the instance value of a registered component. (Continued)

", wsreg_get_instance(comp));

wsreg_free_component(comp);
return 0;

}

Upon component registration with the wsreg_register(3WSREG) function, the
instance number is set automatically. The instance number of 0 (the default) indicates
to the wsreg_register() function that an instance number should be looked up
and assigned during registration. If a component with the same uuid and location is
already registered in the product install registry, that component’s instance number
will be used during registration.

After registration of a component, the wsreg_get_instance() function can be used
to determine what instance value was assigned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_register(3WSREG),
attributes(5)

wsreg_set_instance(3WSREG)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 601

wsreg_set_location, wsreg_get_location – set or get the location of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_location(Wsreg_component *comp, const char *location);

char *wsreg_get_location(const Wsreg_component *comp);

The wsreg_set_location() function sets the location specified by location into the
component specified by comp. Every component must have a location before being
registered. If a location has already been set into the specified component, the
resources associated with the previously set location are released.

The wsreg_get_location() function gets the location string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_location() function returns a non-zero value if the location was
set correctly; otherwise 0 is returned.

The wsreg_get_location() function returns a copy of the location from the
specified component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_location(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

602 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_parent, wsreg_get_parent – set or get the parent of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

void wsreg_set_parent(Wsreg_component *comp, const
Wsreg_component *parent);

Wsreg_component *wsreg_get_parent(const Wsreg_component *comp);

The wsreg_set_parent() function sets the parent specified by parent of the
component specified by comp.

The wsreg_get_parent() function gets the parent of the component specified by
comp.

The wsreg_get_parent() function returns a pointer to a Wsreg_component
structure that represents the parent of the specified component. If the specified
component does not have a parent, NULL is returned. If a non-null value is returned, it
the caller’s responsibility to release the memory associated with the resulting
Wsreg_component pointer with a call to wsreg_free_component(). See
wsreg_create_component(3WSREG).

The parent of a component is set as a result of registering the parent component. When
a component that has children is registered, all of the child components are updated to
reflect the newly registered component as their parent. This update only occurs if the
child component does not already have a parent component set.

The specified parent component is reduced to a lightweight component reference that
uniquely identifies the parent in the product install registry. This lightweight reference
includes the parent’s uuid and instance number.

The parent must be registered before a call to wsreg_set_parent() can be made,
since the parent’s instance number must be known at the time the
wsreg_set_parent() function is called.

A process needing to call wsreg_set_parent() or wsreg_get_parent() must
have read access to the product install registry.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_can_access_registry(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_instance(3WSREG), attributes(5)

wsreg_set_parent(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 603

wsreg_set_type, wsreg_get_type – set or get the type of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_type(Wsreg_component *comp, Wsreg_component_type
type);

Wsreg_component_type wsreg_get_type(const Wsreg_component *comp);

The wsreg_set_type() function sets the type specified by type in the component
specified by comp.

The wsreg_get_type() function retrieves the type from the component specified by
comp.

The wsreg_set_type() function returns a non-zero value if the type is set
successfully; otherwise 0 is returned.

The wsreg_get_type() function returns the type currently set in the component
specified by comp.

The component type is used to indicate whether a Wsreg_component structure
represents a product, feature, or component. The type argument can be one of the
following:

WSREG_PRODUCT Indicates the Wsreg_component represents a product.
A product is a collection of features and/or
components.

WSREG_FEATURE Indicates the Wsreg_component represents a feature.
A feature is a collection of components.

WSREG_COMPONENT Indicates the Wsreg_component represents a
component. A component is a collection of files that
may be installed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), wsreg_set_instance(3WSREG), attributes(5)

wsreg_set_type(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

604 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_uninstaller, wsreg_get_uninstaller – set or get the uninstaller of a
component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_uninstaller(Wsreg_component *comp, const char
*uninstaller);

char *wsreg_set_uninstaller(const Wsreg_component *comp);

The wsreg_set_uninstaller() function sets the uninstaller specified by
uninstaller in the component specified by comp. If an uninstaller has already been set in
the specified component, the resources associated with the previously set uninstaller
are released.

The wsreg_get_uninstaller() function gets the uninstaller string from the
component specified by comp. The resulting string must be released by the caller.

The wsreg_set_uninstaller() function returns a non-zero value if the uninstaller
was set correctly; otherwise 0 is returned.

The wsreg_get_uninstaller() function returns a copy of the uninstaller from the
specified component.

An uninstaller is usually only associated with a product, not with every component
that comprises a product. The uninstaller string is a command that can be passed to
the shell to launch the uninstaller.

If an uninstaller is set in a registered component, the prodreg(1M) registry viewer
will provide an uninstall button that will invoke the uninstaller.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_initialize(3WSREG), attributes(5)

wsreg_set_uninstaller(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 605

wsreg_set_unique_name, wsreg_get_unique_name – set or get the unique name of a
component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_unique_name(Wsreg_component *comp, const char
*unique_name);

char *wsreg_get_unique_name(const Wsreg_component *comp);

The wsreg_set_unique_name() function sets the unique name specified by
unique_name in the component specified by comp. Every component must have a
unique name before being registered. If a unique name has already been set in the
specified component, the resources associated with the previously set unique name are
released.

The wsreg_get_unique_name() function gets the unique name string from the
component specified by comp. The resulting string must be released by the caller.

The wsreg_set_unique_name() function returns a non-zero value if the unique
name was set correctly; otherwise it returns 0.

The wsreg_get_unique_name() function returns a copy of the unique name from
the specified component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_unique_name(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

606 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_vendor, wsreg_get_vendor – set or get the vendor of a componentt

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_vendor(Wsreg_component *comp, const char *vendor);

char *wsreg_get_vendor(const Wsreg_component *comp);

The wsreg_set_vendor() function sets the vendor specified by vendor in the
component specified by comp. The vendor argument is a string that identifies the
vendor of the component. If a vendor has already been set in the specified component,
the resources associated with the previously set vendor are released.

The wsreg_get_vendor() function gets the vendor string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_vendor() function returns a non-zero value if the vendor was set
correctly; otherwise it returns 0.

The wsreg_get_vendor() function returns a copy of the vendor from the specified
component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_vendor(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 607

wsreg_set_version, wsreg_get_version – set or get the version of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_version(Wsreg_component *comp, const char *version);

char *wsreg_get_version(const Wsreg_component *comp);

The wsreg_set_version() function sets the version specified by version in the
component specified by comp. The version argument is a string that represents the
version of the component. Every component must have a version before being
registered. If a version has already been set in the specified component, the resources
associated with the previously set version are released.

The wsreg_get_version() function gets the version string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_version() function returns a non-zero value if the version was set
correctly; otherwise it returns 0.

The wsreg_get_version() function returns a copy of the version from the
specified component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_version(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

608 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_unregister – remove a component from the product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_unregister(const Wsreg_component *comp);

The wsreg_unregister() function removes the component specified by comp from
the product install registry. The component will only be removed if the comp argument
has a matching uuid, instance, and version.

Usually, the component retrieved through a call to wsreg_get(3WSREG) before being
passed to the wsreg_unregister() function.

If the component has required components, the respective dependent components will
be updated to reflect the change.

A component that has dependent components cannot be unregistered until the
dependent components are uninstalled and unregistered.

Upon successful completion, a non-zero return value is returned. If the component
could not be unregistered, 0 is returned.

EXAMPLE 1 Unregister a component.

The following example demonstrates how to unregister a component.

#include <stdio.h>
#include <wsreg.h>

int main(int argc, char **argv)
{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
char *location = "/usr/local/example1_component";
Wsreg_query *query = NULL;
Wsreg_component *comp = NULL;

/* Initialize the registry */
wsreg_initialize(WSREG_INIT_NORMAL, NULL);

/* Query for the component */
query = wsreg_query_create();
wsreg_query_set_id(query, uuid);
wsreg_query_set_location(query, location);
comp = wsreg_get(query);

if (comp != NULL) {
/* The query succeeded. The component has been found. */
Wsreg_component **dependent_comps;
dependent_comps = wsreg_get_dependent_components(comp);
if (dependent_comps != NULL) {
/*
* The component has dependent components. The
* component cannot be unregistered.
*/

wsreg_unregister(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

Extended Library Functions 609

EXAMPLE 1 Unregister a component. (Continued)

wsreg_free_component_array(dependent_comps);
printf("The component cannot be uninstalled because "

"it has dependent components\n");
} else {

/*
* The component does not have dependent components.
* It can be unregistered.
*/
if (wsreg_unregister(comp) != 0) {

printf("wsreg_unregister succeeded\n");
} else {

printf("unregister failed\n");
}

}
/* Be sure to free the component */
wsreg_free_component(comp);

} else {
/* The component is not currently registered. */
printf("The component was not found in the registry\n");

}
wsreg_query_free(query);

}

Components should be unregistered before uninstallation. If the component cannot be
unregistered, uninstallation should not be performed.

A component cannot be unregistered if other registered components require it. A call
to wsreg_get_dependent_components() can be used to determine if this
situation exists. See wsreg_add_dependent_component(3WSREG).

A successful unregistration of a component will result in all components required by
the unregistered component being updated in the product install registry to remove
the dependency. Also, child components will be updated so the unregistered
component is no longer registered as their parent.

When unregistering a product, the product should first be unregistered, followed by
the unregistration of its first feature and then the unregistration and uninstallation of
the components that comprise that feature. Be sure to use this top-down approach to
avoid removing a component that belongs to a product or feature that is required by a
separate product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_unregister(3WSREG)

USAGE

ATTRIBUTES

610 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_add_dependent_component(3WSREG), wsreg_get(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)

wsreg_unregister(3WSREG)

SEE ALSO

Extended Library Functions 611

y0, y1, yn – Bessel functions of the second kind

cc [flag ...] file ... -lm [library ...]

double y0(double x);

double y1(double x);

double yn(int n, double x);

The y0(), y1() and yn() functions compute Bessel functions of x of the second kind
of orders 0, 1 and n respectively. The value of x must be positive.

Upon successful completion, y0(), y1() and yn() will return the relevant Bessel
value of x of the second kind.

If x is NaN, NaN is returned.

If the x argument to y0(), y1() or yn() is negative, -HUGE_VAL or NaN is returned,
and errno may be set to EDOM.

If x is 0.0, -HUGE_VAL is returned and errno may be set to ERANGE or EDOM.

If the correct result would cause overflow, -HUGE_VAL is returned and errno may be
set to ERANGE.

For exceptional cases, matherr(3M) tabulates the values to be returned as dictated by
Standards other than XPG4.

The y0(), y1() and yn() functions may fail if:

EDOM The value of x is negative.

ERANGE The value of x is too large in magnitude, or x is 0.0, or the correct
result would cause overflow.

An application wishing to check for error situations should set errno to 0 before
calling y0(), y1() or yn(). If errno is non-zero on return, or the return value is
NaN, an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), j0(3M), matherr(3M), attributes(5), standards(5)

y0(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

612 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

Index

Numbers and Symbols
_NOTE — annotate source code with info for

tools, 324

A
absolute value function — fabs, 197
access CPU performance counters in other

processes — cpc_pctx_bind_event, 75, 395
access project files from Perl — project, 415
aclcheck — check the validity of an ACL, 20
aclfrommode — convert an ACL to or from

permission bits, 23
aclfromtext — convert internal representation to

or from external representation, 24
aclsort — sort an ACL, 22
acltomode — convert an ACL to or from

permission bits, 23
acltotext — convert internal representation to or

from external representation, 24
acos — arc cosine function, 26
acosh — inverse hyperbolic functions, 27
add or delete node to or from tree —

ptree_add_node, 419, 572, 574, 576, 580, 597
add, remove, or return a localized display name

— wsreg_add_display_name, 578
advance — regular expression compile and

match routines, 445
allocate or deallocate a buffer for trace data

— tnfctl_buffer_alloc, 517
— tnfctl_buffer_dealloc, 517

allow or disallow a memory segment to be
imported by other nodes —
rsm_memseg_export_publish, 463

annotate source code with info for tools
— _NOTE, 324
— NOTE, 324

arc cosine function — acos, 26
arc sine function — asin, 28
arc tangent function — atan2, 29, 30
asin — arc sine function, 28
asinh — inverse hyperbolic functions, 27
associate callbacks with process events —

pctx_set_events, 387
atan — arc tangent function, 30
atan2 — arc tangent function, 29
atanh — inverse hyperbolic functions, 27
au_close — construct audit records, 31
audit control file information

— endac, 206
— getacdir, 206
— getacflg, 206
— getacinfo, 206
— getacmin, 206
— getacna, 206
— setac, 206

audit record tokens, manipulating
— au_close, 31
— au_open, 31
— au_preselect, 32
— au_write, 31

au_open — construct audit records, 31
au_preselect — preselect an audit record, 32

613

authentication information routines for PAM
— pam_get_item, 362
— pam_set_item, 362

authentication transaction routines for PAM
— pam_end, 379
— pam_start, 379

au_to — create audit record tokens, 35
au_to_arg — create audit record tokens, 35
au_to_attr — create audit record tokens, 35
au_to_data — create audit record tokens, 35
au_to_groups — create audit record tokens, 35
au_to_in_addr — create audit record

tokens, 35
au_to_ipc — create audit record tokens, 35
au_to_ipc_perm — create audit record

tokens, 35
au_to_iport — create audit record tokens, 35
au_to_me — create audit record tokens, 35
au_to_new_in_addr — create audit record

tokens, 35
au_to_new_process — create audit record

tokens, 35
au_to_new_socket — create audit record

tokens, 35
au_to_new_subject — create audit record

tokens, 35
au_to_opaque — create audit record tokens, 35
au_to_path — create audit record tokens, 35
au_to_process — create audit record

tokens, 35
au_to_return — create audit record tokens, 35
au_to_socket — create audit record tokens, 35
au_to_subject — create audit record tokens, 35
au_to_text — create audit record tokens, 35
au_user_mask — get user’s binary preselection

mask, 38
au_write — write audit records, 31

B
base 10 logarithm function — log10, 281
Basic Security Module functions

— au_close, 31
— au_open, 31
— au_preselect, 32
— au_user_mask, 38

Basic Security Module functions (continued)
— au_write, 31

Bessel functions of the first kind
— j0, 240
— j1, 240
— jn, 240

Bessel functions of the second kind
— y0, 612
— y1, 612
— yn, 612

bgets — read stream up to next delimiter, 39
buffer

split into fields — bufsplit, 41

C
cbrt — cube root function, 42
ceil — ceiling value function, 43
ceiling value function — ceil, 43
change or add a value to the PAM environment

— pam_putenv, 356
check the validity of an ACL — aclcheck, 20
check whether or not Volume Management is

managing a pathname — volmgt_inuse, 565
check whether specific Volume Management

features are enabled —
volmgt_feature_enabled, 564

chkauthattr — verify user authorization, 213
class-dependent data translation

— elf32_xlatetof, 152
— elf32_xlatetom, 152
— elf64_xlatetof, 152
— elf64_xlatetom, 152

clone a component —
wsreg_clone_component, 584

close a tnfctl handle — tnfctl_close, 519
commands

open, close to and from a command —
p2open, p2close, 340

compile — regular expression compile and
match routines, 445

compute natural logarithm — log1p, 282
computes exponential functions — expm1, 196
config_admin — configuration administration

interface, 45

614 man pages section 3: Extended Library Functions • December 2001 (Beta)

config_ap_id_cmp — configuration
administration interface, 45

config_change_state — configuration
administration interface, 45

config_list — configuration administration
interface, 45

config_list_ext — configuration administration
interface, 45

config_private_func — configuration
administration interface, 45

config_stat — configuration administration
interface, 45

config_strerror — configuration administration
interface, 45

config_test — configuration administration
interface, 45

config_unload_libs — configuration
administration interface, 45

configuration administration interface —
config_admin, 45

connect to a DMI service provider
— ConnectToServer, 52, 111

construct, read, and write extended accounting
records — ea_pack_object, 138

control kernel tracing and process filtering
— tnfctl_filter_list_add, 543
— tnfctl_filter_list_delete, 543
— tnfctl_filter_list_get, 543
— tnfctl_filter_state_set, 543
— tnfctl_trace_state_set, 543

control probes of another process where caller
provides /proc functionality
— tnfctl_check_libs, 521
— tnfctl_indirect_open, 521

convert an ACL to or from permission bits —
acltomode, 23, 24

convert a supplied name into an absolute
pathname that can be used to access
removable media — media_findname, 298

convert between Volume Management symbolic
names, and the devices that correspond to
them
— volmgt_symdev, 570
— volmgt_symname, 570

coordinate CPC library and application versions
— cpc_version, 84

copysign — return magnitude of first argument
and sign of second argument, 54

cos — cosine function, 55
cosh — hyperbolic cosine function, 56
cosine function — cos, 55
cpc — hardware performance counters, 57
cpc_access — test access CPU performance

counters, 60
cpc_bind_event — use CPU performance

counters on lwps, 61
cpc_count_sys_events — enable and disable

performance counters, 67
cpc_count_usr_events — enable and disable

performance counters, 67
cpc_event — data structure to describe CPU

performance counters, 69
cpc_event_accum — simple difference and

accumulate operations, 71
cpc_event_diff — simple difference and

accumulate operations, 71
cpc_eventtostr — translate strings to and from

events, 81
cpc_getcciname — determine CPU performance

counter configuration, 73
cpc_getcpuref — determine CPU performance

counter configuration, 73
cpc_getcpuver — determine CPU performance

counter configuration, 73
cpc_getnpic — determine CPU performance

counter configuration, 73
cpc_getusage — determine CPU performance

counter configuration, 73
cpc_pctx_bind_event — access CPU

performance counters in other processes, 75
cpc_pctx_invalidate — access CPU performance

counters in other processes, 75
cpc_pctx_rele — access CPU performance

counters in other processes, 75
cpc_pctx_take_sample — access CPU

performance counters in other processes, 75
cpc_rele — use CPU performance counters on

lwps, 61
cpc_strtoevent — translate strings to and from

events, 81
cpc_take_sample — use CPU performance

counters on lwps, 61

Index 615

cpc_version — coordinate CPC library and
application versions, 84

cpc_walk_names — determine CPU
performance counter configuration, 73

cplus_demangle — decode a C++ encoded
symbol name, 85

create audit record tokens — au_to, 35, 450,
467, 471, 586, 589

create and add node to tree and return node
handle — ptree_create_and_add_node, 421

create and add property to node and return
property handle —
ptree_create_and_add_prop, 422

create DmiOctetString in dynamic memory
— newDmiOctetString, 320

create DmiString in dynamic memory
— newDmiString, 321

create handle for internal process probe control
— tnfctl_internal_open, 524

create handle for kernel probe control —
tnfctl_kernel_open, 526

cube root function — cbrt, 42

D
data structure to describe CPU performance

counters — cpc_event, 69
decode a C++ encoded symbol name

— cplus_demangle, 85
— demangle, 85

demangle — decode a C++ encoded symbol
name, 85

destroy a layout object —
m_destroy_layout, 297

determine CPU performance counter
configuration — cpc_getcpuver, 73

determine access to product install registry —
wsreg_can_access_registry, 582

determine equality of two components —
wsreg_components_equal, 585

device ID interfaces for user applications —
devid_get, 86

devid_compare — device ID interfaces for user
applications, 86

devid_deviceid_to_nmlist — device ID
interfaces for user applications, 86

devid_free — device ID interfaces for user
applications, 86

devid_free_nmlist — device ID interfaces for
user applications, 86

devid_get — device ID interfaces for user
applications, 86

devid_get_minor_name — device ID interfaces
for user applications, 86

devid_sizeof — device ID interfaces for user
applications, 86

devid_str_decode — device ID interfaces for
user applications, 86

devid_str_encode — device ID interfaces for
user applications, 86

devid_str_free — device ID interfaces for user
applications, 86

devid_valid — device ID interfaces for user
applications, 86

directories
create, remove them in a path — mkdirp,

rmdirp, 304
DmiAddComponent — Management Interface

database administration functions, 114
DmiAddGroup — Management Interface

database administration functions, 114
DmiAddLanguage — Management Interface

database administration functions, 114
DmiAddRow — Management Interface

operation functions, 118
DmiDeleteComponent — Management

Interface database administration
functions, 114

DmiDeleteGroup — Management Interface
database administration functions, 114

DmiDeleteLanguage — Management Interface
database administration functions, 114

DmiDeleteRow — Management Interface
operation functions, 118

dmi_error — print error in string form, 123
DmiGetAttribute — Management Interface

operation functions, 118
DmiGetConfig — Management Interface

initialization functions, 124
DmiGetMultiple — Management Interface

operation functions, 118
DmiGetVersion — Management Interface

initialization functions, 124

616 man pages section 3: Extended Library Functions • December 2001 (Beta)

DmiListAttributes — Management Interface
listing functions, 127

DmiListClassNames — Management Interface
listing functions, 127

DmiListComponents — Management Interface
listing functions, 127

DmiListComponentsByClass — Management
Interface listing functions, 127

DmiListGroups — Management Interface listing
functions, 127

DmiListLanguages — Management Interface
listing functions, 127

DmiOriginateEvent — Service Provider
functions for components, 133

DmiRegister — Management Interface
initialization functions, 124

DmiRegisterCi — Service Provider functions for
components, 133

DmiSetAttribute — Management Interface
operation functions, 118

DmiSetConfig — Management Interface
initialization functions, 124

DmiSetMultiple — Management Interface
operation functions, 118

DmiUnregister — Management Interface
initialization functions, 124

DmiUnRegisterCi — Service Provider functions
for components, 133

E
ea_attach_to_group — open or close exacct

files, 142
ea_attach_to_object — open or close exacct

files, 142
ea_close — open or close exacct files, 136
ea_error — error interface to extended

accounting library, 135
ea_free_item — open or close exacct files, 142
ea_free_object — open or close exacct files, 142
ea_get_creator — construct, read, and write

extended accounting records, 138
ea_get_hostname — construct, read, and write

extended accounting records, 138
ea_get_object — construct, read, and write

extended accounting records, 138

ea_match_object_catalog — open or close exacct
files, 142

ea_next_object — construct, read, and write
extended accounting records, 138

ea_open — open or close exacct files, 136
ea_pack_object — construct, read, and write

extended accounting records, 138
ea_previous_object — construct, read, and write

extended accounting records, 138
ea_set_group — open or close exacct files, 142
ea_set_item — open or close exacct files, 142
ea_unpack_object — construct, read, and write

extended accounting records, 138
ea_write_object — construct, read, and write

extended accounting records, 138
elf — object file access library, 154
elf

get entries from name list — nlist, 323
elf32_checksum — return the checksum of an

elf image
— elf64_checksum, 144

elf32_fsize — return the size of an object file
type, 145

elf32_getehdr — retrieve class-dependent object
file header, 146

elf32_getphdr — retrieve class-dependent
program header table, 148

elf32_getshdr — retrieve class-dependent
section header, 150

elf32_newehdr — retrieve class-dependent
object file header, 146

elf32_newphdr — retrieve class-dependent
program header table, 148

elf32_xlatetof — class-dependent data
translation, 152

elf32_xlatetom — class-dependent data
translation, 152

elf64_checksum — return the checksum of an
elf image
— elf32_checksum, 144

elf64_fsize — return the size of an object file
type, 145

elf64_getehdr — retrieve class-dependent object
file header, 146

elf64_getphdr — retrieve class-dependent
program header table, 148

Index 617

elf64_getshdr — retrieve class-dependent
section header, 150

elf64_newehdr — retrieve class-dependent
object file header, 146

elf64_newphdr — retrieve class-dependent
program header table, 148

elf64_xlatetof — class-dependent data
translation, 152

elf64_xlatetom — class-dependent data
translation, 152

elf_begin — process ELF object files, 160
elf_cntl — control an elf file descriptor, 165
elf_end — process ELF object files, 160
elf_errmsg — error handling, 167
elf_errno — error handling, 167
elf_fill — set fill byte, 168
elf_flagdata — manipulate flags, 169
elf_flagehdr — manipulate flags, 169
elf_flagelf — manipulate flags, 169
elf_flagphdr — manipulate flags, 169
elf_flagshdr — manipulate flags, 169
elf_getarhdr — retrieve archive member

header, 171
elf_getarsym — retrieve archive symbol

table, 173
elf_getbase — get the base offset for an object

file, 174
elf_getdata — get section data, 175
elf_getident — retrieve file identification

data, 180
elf_getscn — get section information, 182
elf_hash — compute hash value, 184
elf_kind — determine file type, 185
elf_memory — process ELF object files, 160
elf_ndxscn — get section information, 182
elf_newdata — get section data, 175
elf_newscn — get section information, 182
elf_next — process ELF object files, 160
elf_nextscn — get section information, 182
elf_rand — process ELF object files, 160
elf_rawdata — get section data, 175
elf_rawfile — retrieve uninterpreted file

contents, 186
elf_strptr — make a string pointer, 188
elf_update — update an ELF descriptor, 189
elf_version — coordinate ELF library and

application versions, 193

enable and disable performance counters —
cpc_count_usr_events, 67

encryption
determine whether a buffer of characters is

encrypted — isencrypt, 238
endac — get audit control file information, 206
endauclass — close audit_class database

file, 208
endauevent — close audit_event database

file, 211
endauthattr — get authorization database

entry, 213
endauuser — get audit_user database

entry, 216
endddent — get device_deallocate entry, 218
enddmapent — get device_maps entry, 220
endexecattr — get execution profile entry, 222
endprofattr — get profile description and

attributes, 227
endprojent — project database entry

functions, 229
enduserattr — get user_attr entry, 233
erf — error and complementary error

functions, 194
erfc — error and complementary error

functions, 194
error and complementary error functions

— erf, 194
— erfc, 194

error interface to extended accounting library —
ea_error, 135

Euclidean distance function — hypot, 236
Executable and Linking Format, See elf
exp — exponential function, 195
expm1 — computes exponential functions, 196
exponential function — exp, 195

F
fabs — absolute value function, 197
fgetprojent — project database entry

functions, 229
files

search for named file in named directories —
pathfind, 383

618 man pages section 3: Extended Library Functions • December 2001 (Beta)

find node with given property and value —
ptree_find_node, 427

floating-point remainder value function —
fmod, 199

floor — floor function, 198
floor function — floor, 198
fmod — floating-point remainder value

function, 199
free dynamic memory allocated for input

DmiString structure
— freeDmiString, 200

free memory for sysevent handle —
sysevent_free, 507

free_authattr — release memory, 213
freeDmiString— free dynamic memory

allocated for input DmiString structure, 200
free_execattr — get execution profile entry, 222
free_profattr — get profile description and

attributes, 227
free_proflist — get execution profile entry, 222,

227
free_userattr — get user_attr entry, 233
functions to manage lockfile(s) for user’s

mailbox
— maillock, 285
— mailunlock, 285
— touchlock, 285

G
gamma — log gamma function, 264
gamma_r — log gamma function, 264
get section data — elf_getdata, 175, 218, 220,

222, 227, 233, 393, 400, 435, 452, 454, 466, 509,
511

get and set media attributes
— media_getattr, 300
— media_setattr, 300

get attribute list pointer —
sysevent_get_attr_list, 508

get error message string — picl_strerror, 407
get handle of node specified by PICL tree path

— ptree_get_node_by_path, 430
get property information —

ptree_get_propinfo, 433

get property information and handle of named
property —
picl_get_propinfo_by_name, 399, 434

get segment ID range —
rsm_get_segmentid_range, 456

get the handle of the property by name —
picl_get_prop_by_name, 397

get the information about a property —
picl_get_propinfo, 398

get the root handle of the PICL tree —
picl_get_root, 402

get the root node handle —
ptree_get_root, 436

get the trace attributes from a tnfctl handle —
tnfctl_trace_attrs_get, 541

getacdir — get audit control file
information, 206

getacflg — get audit control file
information, 206

getacinfo — get audit control file
information, 206

getacmin — get audit control file
information, 206

getacna — get audit control file
information, 206

getauclassent — get audit_class database
entry, 208

getauclassent_r — get audit_class database
entry, 208

getauclassnam — get audit_class database
entry, 208

getauclassnam_r — get audit_class database
entry, 208

getauditflags() — generate process audit
state, 226

getauditflagsbin() — convert audit flag
specifications, 210

getauditflagschar() — convert audit flag
specifications, 210

getauevent — get audit_event database
entry, 211

getauevent_r — get audit_event database
entry, 211

getauevnam — get audit_event database
entry, 211

getauevnam_r — get audit_event database
entry, 211

Index 619

getauevnonam — get audit_event database
entry, 211

getauevnum — get audit_event database
entry, 211

getauevnum_r — get audit_event database
entry, 211

getauthattr — get authorization database
entry, 213

getauthnam — get authorization database
entry, 213

getauuserent — get audit_user database
entry, 216

getauuserent_r — get audit_user database
entry, 216

getauusernam — get audit_user database
entry, 216

getauusernam_r — get audit_user database
entry, 216

getddent — get device_deallocate entry, 218
getddnam — get device_deallocate entry, 218
getdefaultproj — project database entry

functions, 229
getdmapent — get device_maps entry, 220
getdmapnam — get device_maps entry, 220
getdmaptdev — get device_maps entry, 220
getdmaptype — get device_maps entry, 220
getexecattr — get execution profile entry, 222
getexecprof — get execution profile entry, 222
getexecuser — get execution profile entry, 222
getprofattr — get profile description and

attributes, 227
get_profiles — get execution profile entry, 222
getproflist — get profile description and

attributes, 227
getprofnam — get profile description and

attributes, 227
getprojbyid — project database entry

functions, 229
getprojbyname — project database entry

functions, 229
getprojent — project database entry

functions, 229
getuserattr — get user_attr entry, 233
getusernam — get user_attr entry, 233
getuseruid — get user_attr entry, 233
gmatch — shell global pattern matching, 235

H
hardware performance counters — cpc, 57
have Volume Management check for media —

volmgt_check, 562
hyperbolic cosine function — cosh, 56
hyperbolic sine function — sinh, 496
hyperbolic tangent function — tanh, 516
hypot — Euclidean distance function, 236

I
ilogb — returns an unbiased exponent, 237
initialize a layout object —

m_create_layout, 293
initialize kernel statistics facility

— kstat_close, 251
— kstat_open, 251

initialize ptree_propinfo_t structure —
ptree_init_propinfo, 437

initialize wsreg library — wsreg_initialize, 588
initiate a session with the PICL daemon —

picl_initialize, 403
inproj — project database entry functions, 229
interfaces for direct probe and process control

for another process
— tnfctl_continue, 527
— tnfctl_exec_open, 527
— tnfctl_pid_open, 527

interfaces to query and to change the state of a
probe
— tnfctl_probe_connect, 535
— tnfctl_probe_disable, 535
— tnfctl_probe_disconnect_all, 535
— tnfctl_probe_enable, 535
— tnfctl_probe_state_get, 535
— tnfctl_probe_trace, 535
— tnfctl_probe_untrace, 535

inverse hyperbolic functions
— acosh, 27
— asinh, 27
— atanh, 27

isencrypt — determine whether a buffer of
characters is encrypted, 238

isnan — test for NaN, 239
iterate over probes

— tnfctl_probe_apply, 532

620 man pages section 3: Extended Library Functions • December 2001 (Beta)

iterate over probes (continued)
— tnfctl_probe_apply_ids, 532

J
j0 — Bessel functions of the first kind, 240
j1 — Bessel functions of the first kind, 240
jn — Bessel functions of the first kind, 240

K
kernel virtual memory functions

copy data from kernel image or running
system — kvm_read, kvm_kread,
kvm_uread, 261

get u-area for process — kvm_getu, 254
get entries from kernel symbol table —

kvm_nlist, 258
kstat — kernel statistics facility, 243
kstat_chain_update — update the kstat

header chain, 249
kstat_close — initialize kernel statistics

facility, 251
kstat_data_lookup — find a kstat by

name, 250
kstat_lookup — find a kstat by name, 250
kstat_open — initialize kernel statistics

facility, 251
kstat_read — read or write kstat data, 252
kstat_write — read or write kstat data, 252
specify a kernel to examine — kvm_open,

kvm_close, 259
kstat — kernel statistics facility, 243
kstat_chain_update — update the kstat header

chain, 249
kstat_close — initialize kernel statistics

facility, 251
kstat_data_lookup — find a kstat by

name, 250
kstat_lookup — find a kstat by name, 250
kstat_open — initialize kernel statistics

facility, 251
kstat_read — read or write kstat data, 252
kstat_write — read or write kstat data, 252

kva_match — look up a key in a key-value
array, 253

kvm_close — specify kernel to examine, 259
kvm_getcmd — get invocation arguments for

process, 254
kvm_getproc — read system process

structures, 256
kvm_getu — get u-area for process, 254
kvm_kread — copy data from a kernel image or

running system, 261
kvm_kwrite — copy data to a kernel image or

running system, 261
kvm_nextproc — read system process

structures, 256
kvm_nlist — get entries from kernel symbol

table, 258
kvm_open — specify kernel to examine, 259
kvm_read — copy data from kernel image or

running system, 261
kvm_setproc — read system process

structures, 256
kvm_uread — copy data from a kernel image or

running system, 261
kvm_uwrite — copy data to a kernel image or

running system, 261
kvm_write — copy data to kernel image or

running system, 261

L
la_activity — runtime linker auditing

functions, 481
la_i86_pltenter — runtime linker auditing

functions, 481
la_objopen — runtime linker auditing

functions, 481
la_objsearch — runtime linker auditing

functions, 481
la_pltexit — runtime linker auditing

functions, 481
la_pltexit64 — runtime linker auditing

functions, 481
la_preinit — runtime linker auditing

functions, 481
la_sparcv8_pltenter — runtime linker auditing

functions, 481

Index 621

la_sparcv9_pltenter — runtime linker auditing
functions, 481

la_symbind32 — runtime linker auditing
functions, 481

la_symbind64 — runtime linker auditing
functions, 481

la_version — runtime linker auditing
functions, 481

layout transformation —
m_transform_layout, 309

layout transformation for wide character strings
— m_wtransform_layout, 314

ld_atexit — link-editor support functions, 263
ld_atexit64 — link-editor support

functions, 263
ld_file — link-editor support functions, 263
ld_file64 — link-editor support functions, 263
ld_section — link-editor support

functions, 263
ld_section64 — link-editor support

functions, 263
ld_start — link-editor support functions, 263
ld_start64 — link-editor support functions, 263
ld_support — link-editor support

functions, 263
lgamma — log gamma function, 264
lgamma_r — log gamma function, 264
libdevinfo — library of device information

functions, 266, 269
libpicl — PICL interface library, 270
libpicltree — PTree and Plug-in Registration

interface library, 273
library for TNF probe control in a process or the

kernel — libtnfctl, 276
library of device information functions —

libdevinfo, 266, 269
libtnfctl — library for TNF probe control in a

process or the kernel, 276
link-editor support functions —

ld_support, 263
load exponent of a radix-independent

floating-point number — scalb, 484, 485
log — natural logarithm function, 283
log gamma function

— gamma, 264
— gamma_r, 264
— lgamma, 264

log gamma function (continued)
— lgamma_r, 264

log a message in system log — picld_log, 390
log10 — base 10 logarithm function, 281
log1p — compute natural logarithm, 282
logb — radix-independent exponent, 284

M
maillock — functions to manage lockfile(s) for

user’s mailbox, 285
mailunlock — functions to manage lockfile(s)

for user’s mailbox, 285
manage a name-value pair list —

nvlist_alloc, 328
Management Interface database administration

functions
— DmiAddComponent, 114
— DmiAddGroup, 114
— DmiAddLanguage, 114
— DmiDeleteComponent, 114
— DmiDeleteGroup, 114
— DmiDeleteLanguage, 114

Management Interface initialization functions
— DmiGetConfig, 124
— DmiGetVersion, 124
— DmiRegister, 124
— DmiSetConfig, 124
— DmiUnregister, 124

Management Interface listing functions
— DmiListAttributes, 127
— DmiListClassNames, 127
— DmiListComponents, 127
— DmiListComponentsByClass, 127
— DmiListGroups, 127
— DmiListLanguages, 127

Management Interface operation functions
— DmiAddRow, 118
— DmiDeleteRow, 118
— DmiGetAttribute, 118
— DmiGetMultiple, 118
— DmiSetAttribute, 118
— DmiSetMultiple, 118

map or unmap imported segment —
rsm_memseg_import_map, 472

622 man pages section 3: Extended Library Functions • December 2001 (Beta)

map a tnfctl error code to a string —
tnfctl_strerror, 540

match_execattr — get execution profile
entry, 222

math library exception-handling —
matherr, 287

mathematical functions
— gamma, 264
— gamma_r, 264
— lgamma, 264
— lgamma_r, 264

matherr — math library
exception-handling, 287

m_create_layout — initialize a layout
object, 293

MD5 digest functions — md5, 295
md5 — MD5 digest functions, 295
md5_calc — MD5 digest functions, 295
MD5Final — MD5 digest functions, 295
MD5Init — MD5 digest functions, 295
MD5Update — MD5 digest functions, 295
m_destroy_layout — destroy a layout

object, 297
media_findname — convert a supplied name

into an absolute pathname that can be used
to access removable media, 298

media_getattr — get and set media
attributes, 300

media_setattr — get and set media
attributes, 300

memory management
copy a file into memory — copylist, 53

m_getvalues_layout — query layout values of a
LayoutObject, 303

mkdirp — create directories in a path, 304
modify/delete user credentials for an

authentication service — pam_setcred, 358
mp — multiple precision integer

arithmetic, 306
mp_gcd — multiple precision integer

arithmetic, 306
mp_itom — multiple precision integer

arithmetic, 306
mp_madd — multiple precision integer

arithmetic, 306
mp_mcmp — multiple precision integer

arithmetic, 306

mp_mdiv — multiple precision integer
arithmetic, 306

mp_mfree — multiple precision integer
arithmetic, 306

mp_min — multiple precision integer
arithmetic, 306

mp_mout — multiple precision integer
arithmetic, 306

mp_msub — multiple precision integer
arithmetic, 306

mp_mtox — multiple precision integer
arithmetic, 306

mp_mult — multiple precision integer
arithmetic, 306

mp_pow — multiple precision integer
arithmetic, 306

mp_rpow — multiple precision integer
arithmetic, 306

mp_xtom — multiple precision integer
arithmetic, 306

m_setvalues_layout — set layout values of a
LayoutObject, 308

m_transform_layout — layout
transformation, 309

multiple precision integer arithmetic
— mp, 306
— mp_gcd, 306
— mp_itom, 306
— mp_madd, 306
— mp_mcmp, 306
— mp_mdiv, 306
— mp_mfree, 306
— mp_min, 306
— mp_mout, 306
— mp_msub, 306
— mp_mtox, 306
— mp_mult, 306
— mp_pow, 306
— mp_rpow, 306
— mp_xtom, 306

m_wtransform_layout — layout transformation
for wide character strings, 314

N
natural logarithm function — log, 283

Index 623

newDmiOctetString — create DmiOctetString in
dynamic memory, 320

newDmiString — create DmiString in dynamic
memory, 321

next representable double-precision
floating-point number — nextafter, 322

nextafter — next representable double-precision
floating-point number, 322

NOTE — annotate source code with info for
tools, 324
NOTE vs _NOTE, 325
NoteInfo Argument, 325

nvlist_alloc — manage a name-value pair
list, 328

nvlist_dup — manage a name-value pair
list, 328

nvlist_free — manage a name-value pair
list, 328

nvlist_pack — manage a name-value pair
list, 328

nvlist_size — manage a name-value pair
list, 328

nvlist_unpack — manage a name-value pair
list, 328

O
open or close exacct files — ea_open, 136, 142

P
p2close — close pipes to and from a

command, 340
p2open — open pipes to and from a

command, 340
PAM — Pluggable Authentication

Module, 342, 364
pam — Pluggable Authentication Module

Administrative Interface, 344
Interface Overview, 342
Stacking Multiple Schemes, 343
Stateful Interface, 343

PAM error messages
get string — pam_strerror, 382

PAM routines to maintain module specific state
— pam_get_data, 360
— pam_set_data, 360

PAM Service Module APIs
— PAM, 364

pam_acct_mgmt — perform PAM account
validation procedures, 345

pam_authenticate — perform authentication
within the PAM framework, 346

pam_chauthtok — perform password related
functions within the PAM framework, 348

pam_close_session — perform PAM session
creation and termination operations, 354

pam_end — authentication transaction routines
for PAM, 379

pam_get_data — PAM routines to maintain
module specific state, 360

pam_getenv — returns the value for a PAM
environment name, 350

pam_getenvlist — returns a list of all the PAM
environment variables, 351

pam_get_item — authentication information
routines for PAM, 362

pam_open_session — perform PAM session
creation and termination operations, 354

pam_putenv — change or add a value to the
PAM environment, 356

pam_setcred — modify/delete user credentials
for an authentication service, 358

pam_set_data — PAM routines to maintain
module specific state, 360

pam_set_item — authentication information
routines for PAM, 362

pam_sm — PAM Service Module APIs
Interaction with the User, 365
Interface Overview, 364
Stateful Interface, 364

pam_sm_acct_mgmt — service provider
implementation for pam_acct_mgmt, 368

pam_sm_authenticate — service provider
implementation for pam_authenticate, 370

pam_sm_chauthtok — service provider
implementation for pam_chauthtok, 372

pam_sm_close_session — Service provider
implementation for pam_open_session and
pam_close_session, 375

624 man pages section 3: Extended Library Functions • December 2001 (Beta)

pam_sm_open_session — Service provider
implementation for pam_open_session and
pam_close_session, 375

pam_sm_setcred — service provider
implementation for pam_setcred, 377

pam_start — authentication transaction routines
for PAM, 379

pathfind — search for named file in named
directories, 383

pctx_capture — process context library, 385
pctx_create — process context library, 385
pctx_release — process context library, 385
pctx_run — process context library, 385
pctx_set_events — associate callbacks with

process events, 387
perform authentication within the PAM

framework — pam_authenticate, 346
perform PAM account validation procedures —

pam_acct_mgmt, 345
perform PAM session creation and termination

operations
— pam_close_session, 354
— pam_open_session, 354

perform password related functions within the
PAM framework — pam_chauthtok, 348

Perl tied hash interface to the kstat facility —
Sun::Solaris::Kstat, 241

PICL interface library — libpicl, 270
picld_log — log a message in system log, 390
picld_plugin_register — register plug-in with

the daemon, 391
picl_get_first_prop — get a property handle of a

node, 393
picl_get_next_by_col — access a table

property, 395
picl_get_next_by_row — access a table

property, 395
picl_get_next_prop — get a property handle of

a node, 393
picl_get_prop_by_name — get the handle of the

property by name, 397
picl_get_propinfo — get the information about

a property, 398
picl_get_propinfo_by_name — get property

information and handle of named
property, 399

picl_get_propval — get the value of a
property, 400

picl_get_propval_by_name — get the value of a
property, 400

picl_get_root — get the root handle of the PICL
tree, 402

picl_initialize — initiate a session with the PICL
daemon, 403

picl_set_propval — set the value of a property
to the specified value, 404

picl_set_propval_by_name — set the value of a
property to the specified value, 404

picl_shutdown — shutdown the session with
the PICL daemon, 406

picl_strerror — get error message string, 407
picl_wait — wait for PICL tree to refresh, 408
picl_walk_tree_by_class — walk subtree by

class, 409
pipes

open, close to and from a command —
p2open, p2close, 340

Pluggable Authentication Module
— PAM, 342

post a PICL event — ptree_post_event, 438
pow — power function, 410
power function — pow, 410
print a DmiString

— printDmiString, 414
print data in DmiAttributeValues list

— printDmiAttributeValues, 412
print data in input data union

— printDmiDataUnion, 413
print error in string form

— dmi_error, 123
printDmiAttributeValues— print data in

DmiAttributeValues list, 412
printDmiDataUnion— print data in input data

union, 413
printDmiString— print a DmiString, 414
probe insertion interface

— TNF_DEBUG, 548
— TNF_PROBE_0, 548
— TNF_PROBE_0_DEBUG, 548
— TNF_PROBE_1, 548
— TNF_PROBE_1_DEBUG, 548
— TNF_PROBE_2, 548
— TNF_PROBE_2_DEBUG, 548

Index 625

probe insertion interface (continued)
— TNF_PROBE_3, 548
— TNF_PROBE_3_DEBUG, 548
— TNF_PROBE_4, 548
— TNF_PROBE_4_DEBUG, 548
— TNF_PROBE_5, 548
— TNF_PROBE_5_DEBUG, 548

process context library — pctx_capture, 385
project database entry functions —

getprojent, 229, 415
project_walk — visit active project IDs on

current system, 417
provide a transient program number

— reg_ci_callback, 444
PTree and Plug-in Registration interface library

— libpicltree, 273
ptree_add_node — add or delete node to or

from tree, 419
ptree_create_and_add_node — create and add

node to tree and return node handle, 421
ptree_create_and_add_prop — create and add

property to node and return property
handle, 422

ptree_delete_node — add or delete node to or
from tree, 419

ptree_find_node — find node with given
property and value, 427

ptree_get_node_by_path — get handle of node
specified by PICL tree path, 430

ptree_get_propinfo — get property
information, 433

ptree_get_propinfo_by_name — get property
information and handle of named
property, 434

ptree_get_propval — get the value of a
property, 435

ptree_get_propval_by_name — get the value of
a property, 435

ptree_get_root — get the root node
handle, 436

ptree_init_propinfo — initialize
ptree_propinfo_t structure, 437

ptree_post_event — post a PICL event, 438
ptree_register_handler — register a handler for

the event, 439
ptree_unregister_handler — unregister the

event handler for the event, 440

ptree_update_propval — update a property
value, 441

ptree_update_propval_by_name — update a
property value, 441

ptree_walk_tree_by_class — walk subtree by
class, 442

Q
query layout values of a LayoutObject —

m_getvalues_layout, 303

R
radix-independent exponent — logb, 284
rd_delete — runtime linker debugging

functions, 482
rd_errstr — runtime linker debugging

functions, 482
rd_event_addr — runtime linker debugging

functions, 482
rd_event_enable — runtime linker debugging

functions, 482
rd_event_getmsg — runtime linker debugging

functions, 482
rd_init — runtime linker debugging

functions, 482
rd_loadobj_iter — runtime linker debugging

functions, 482
rd_log — runtime linker debugging

functions, 482
rd_new — runtime linker debugging

functions, 482
rd_objpad_enable — runtime linker debugging

functions, 482
rd_plt_resolution — runtime linker debugging

functions, 482
rd_reset — runtime linker debugging

functions, 482
read and write a disk’s VTOC —

read_vtoc, 443, 469
read system process structures

— kvm_getproc, 256
— kvm_nextproc, 256
— kvm_setproc, 256

626 man pages section 3: Extended Library Functions • December 2001 (Beta)

read and write a disk’s VTOC — read_vtoc
write_vtoc, 443

read or write kstat data
— kstat_read, 252
— kstat_write, 252

read_vtoc — read and write a disk’s
VTOC, 443

regexpr — regular expression compile and
match routines, 445

register a component in the product install
registry — wsreg_register, 595

register a handler for the event —
ptree_register_handler, 439

register callbacks for probe creation and
destruction — tnfctl_register_funcs, 539

register plug-in with the daemon —
picld_plugin_register, 391

regular expression compile and match routines
— advance, 445
— compile, 445
— regexpr, 445
— step, 445

release removable media device reservation —
volmgt_release, 567

remainder — remainder function, 448
remainder function — remainder, 448
remote memory access error detection functions

— rsm_memseg_import_open_barrier, 474
remove a component from the product install

registry — wsreg_unregister, 609
reserve removable media device —

volmgt_acquire, 559
resource allocation and management functions

for export memory segments —
rsm_memseg_export_create, 460

retrieve archive symbol table —
elf_getarsym, 173

retrieve class-dependent object file header
— elf32_getehdr, 146
— elf32_newehdr, 146
— elf64_getehdr, 146
— elf64_newehdr, 146

retrieve class-dependent program header table
— elf32_getphdr, 148
— elf32_newphdr, 148
— elf64_getphdr, 148
— elf64_newphdr, 148

retrieve class-dependent section header
— elf32_getshdr, 150
— elf64_getshdr, 150

returns a list of all the PAM environment
variables — pam_getenvlist, 351

return magnitude of first argument and sign of
second argument — copysign, 54

return the size of an object file type
— elf32_fsize, 145
— elf64_fsize, 145

returns the value for a PAM environment name
— pam_getenv, 350

return the Volume Management root directory
— volmgt_root, 568

return whether or not Volume Management is
running — volmgt_running, 569

returns an unbiased exponent — ilogb, 237
rint — round-to-nearest integral value, 449
rmdirp — remove directories in a path, 304
round-to-nearest integral value — rint, 449
rsm_create_localmemory_handle — create or

free local memory handle, 450
rsm_free_interconnect_topology — get or free

interconnect topology, 454
rsm_free_localmemory_handle — create or free

local memory handle, 450
rsm_get_controller — get or release a controller

handle, 452
rsm_get_controller_attr — get or release a

controller handle, 452
rsm_get_interconnect_topology — get or free

interconnect topology, 454
rsm_get_segmentid_range — get segment ID

range, 456
rsm_intr_signal_post — signal or wait for an

event, 458
rsm_intr_signal_wait — signal or wait for an

event, 458
rsm_memseg_export_create — resource

allocation and management functions for
export memory segments, 460

rsm_memseg_export_destroy — resource
allocation and management functions for
export memory segments, 460

rsm_memseg_export_publish — allow or
disallow a memory segment to be imported
by other nodes, 463

Index 627

rsm_memseg_export_rebind — resource
allocation and management functions for
export memory segments, 460

rsm_memseg_export_republish — allow or
disallow a memory segment to be imported
by other nodes, 463

rsm_memseg_export_unpublish — allow or
disallow a memory segment to be imported
by other nodes, 463

rsm_memseg_get_pollfd — get or release a poll
descriptor, 466

rsm_memseg_import_close_barrier — remote
memory access error detection
functions, 474

rsm_memseg_import_connect — create or break
logical commection between import and
export segments, 467

rsm_memseg_import_destroy_barrier — create
or destroy barrier for imported
segment, 471

rsm_memseg_import_disconnect — create or
break logical commection between import
and export segments, 467

rsm_memseg_import_get — read from a
segment, 469

rsm_memseg_import_get16 — read from a
segment, 469

rsm_memseg_import_get32 — read from a
segment, 469

rsm_memseg_import_get64 — read from a
segment, 469

rsm_memseg_import_get8 — read from a
segment, 469

rsm_memseg_import_get_mode — set or get
mode for barrier scoping, 480

rsm_memseg_import_getv — write to a
segment using a list of I/O requests, 478

rsm_memseg_import_init_barrier — create or
destroy barrier for imported segment, 471

rsm_memseg_import_map — map or unmap
imported segment, 472

rsm_memseg_import_open_barrier — remote
memory access error detection
functions, 474

rsm_memseg_import_order_barrier — remote
memory access error detection
functions, 474

rsm_memseg_import_put — write to a
segment, 476

rsm_memseg_import_put16 — write to a
segment, 476

rsm_memseg_import_put32 — write to a
segment, 476

rsm_memseg_import_put64 — write to a
segment, 476

rsm_memseg_import_put8 — write to a
segment, 476

rsm_memseg_import_putv — write to a
segment using a list of I/O requests, 478

rsm_memseg_import_set_mode — set or get
mode for barrier scoping, 480

rsm_memseg_import_unmap — map or unmap
imported segment, 472

rsm_memseg_release_pollfd — get or release a
poll descriptor, 466

rsm_release_controller — get or release a
controller handle, 452

rtld_audit — runtime linker auditing
functions, 481

rtld_db — runtime linker debugging
functions, 482

runtime linker auditing functions —
rtld_audit, 481, 482

S
scalb — load exponent of a radix-independent

floating-point number, 484
scalbn — load exponent of a radix-independent

floating-point number, 485
send a file — sendfilev, 489
send files over sockets or copy files to files —

sendfile, 486
sendfile — send files over sockets or copy files

to files, 486
sendfilev — send a file, 489
Service Provider functions for components

— DmiOriginateEvent, 133
— DmiRegisterCi, 133
— DmiUnRegisterCi, 133

service provider implementation for
pam_acct_mgmt —
pam_sm_acct_mgmt, 368

628 man pages section 3: Extended Library Functions • December 2001 (Beta)

service provider implementation for
pam_authenticate —
pam_sm_authenticate, 370

service provider implementation for
pam_chauthtok — pam_sm_chauthtok, 372

Service provider implementation for
pam_open_session and pam_close_session
— pam_sm_close_session, 375
— pam_sm_open_session, 375

service provider implementation for
pam_setcred — pam_sm_setcred, 377

set the value of a property to the specified value
— picl_set_propval, 404, 480, 590, 591, 592,
593, 594, 599, 600, 602, 603, 604, 605, 606, 607,
608

set layout values of a LayoutObject —
m_setvalues_layout, 308

setac — get audit control file information, 206
setauclass — rewind audit_class database

file, 208
setauuser — rewind audit_event database

file, 211
setauthattr — get authorization database

entry, 213
setauuser — get audit_user database entry, 216
setddent — get device_deallocate entry, 218
setddfile — get device_deallocate entry, 218
setdmapent — get device_maps entry, 220
setdmapfile — get device_maps entry, 220
setexecattr — get execution profile entry, 222
setprofattr — get profile description and

attributes, 227
setprojent — project database entry

functions, 229
setuserattr — get user_attr entry, 233
shell global pattern matching — gmatch, 235
shutdown the session with the PICL daemon —

picl_shutdown, 406
signal or wait for an event —

rsm_intr_signal_post, 458
significand — significand function, 494
significand function — significand, 494
simple difference and accumulate operations —

cpc_event_diff, 71
sin — sine function, 495
sine function — sin, 495
sinh — hyperbolic sine function, 496

sort an ACL — aclsort, 22
sqrt — square root function, 497
square root function — sqrt, 497
SSAAgentIsAlive — Sun Solstice Enterprise

Agent registration and communication
helper functions, 498

SSAGetTrapPort — Sun Solstice Enterprise
Agent registration and communication
helper functions, 498

SSAOidCmp — Sun Solstice Enterprise Agent
OID helper functions, 501

SSAOidCpy — Sun Solstice Enterprise Agent
OID helper functions, 501

SSAOidDup — Sun Solstice Enterprise Agent
OID helper functions, 501

SSAOidFree — Sun Solstice Enterprise Agent
OID helper functions, 501

SSAOidInit — Sun Solstice Enterprise Agent
OID helper functions, 501

SSAOidNew — Sun Solstice Enterprise Agent
OID helper functions, 501

SSAOidString — Sun Solstice Enterprise Agent
OID helper functions, 501

SSAOidStrToOid — Sun Solstice Enterprise
Agent OID helper functions, 501

SSAOidZero — Sun Solstice Enterprise Agent
OID helper functions, 501

SSARegSubagent — Sun Solstice Enterprise
Agent registration and communication
helper functions, 498

SSARegSubtable — Sun Solstice Enterprise
Agent registration and communication
helper functions, 498

SSARegSubtree — Sun Solstice Enterprise
Agent registration and communication
helper functions, 498

SSASendTrap — Sun Solstice Enterprise Agent
registration and communication helper
functions, 498

SSAStringCpy — Sun Solstice Enterprise Agent
string helper functions, 503

SSAStringInit — Sun Solstice Enterprise Agent
string helper functions, 503

SSAStringToChar — Sun Solstice Enterprise
Agent string helper functions, 503

SSAStringZero — Sun Solstice Enterprise Agent
string helper functions, 503

Index 629

SSASubagentOpen — Sun Solstice Enterprise
Agent registration and communication
helper functions, 498

step — regular expression compile and match
routines, 445

strfind — string manipulations, 506
strcadd — copy strings, compressing or

expanding C language escape codes, 504
strccpy — copy strings, compressing or

expanding C language escape codes, 504
streadd — copy strings, compressing or

expanding C language escape codes, 504
STREAMS

determine whether a buffer of characters is
encrypted — isencrypt, 238

read stream up to next delimiter —
bgets, 39

split buffer into fields — bufsplit, 41
strecpy — copy strings, compressing or

expanding C language escape codes, 504
strfind — string manipulations, 506
string manipulations — strfind, 506

strrspn, 506
strtrns, 506

string manipulations
— strfind, 506
— strrspn, 506
— strtrns, 506

string operation
get PAM error message string —

pam_strerror, 382
strings

copy, compressing or expanding C language
escape codes, 504

strfind — string manipulations, 506
Sun Solstice Enterprise Agent OID helper

functions
— SSAOidCmp, 501
— SSAOidCpy, 501
— SSAOidDup, 501
— SSAOidFree, 501
— SSAOidInit, 501
— SSAOidNew, 501
— SSAOidString, 501
— SSAOidStrToOid, 501
— SSAOidZero, 501

Sun Solstice Enterprise Agent registration and
communication helper functions
— SSAAgentIsAlive, 498
— SSAGetTrapPort, 498
— SSARegSubagent, 498
— SSARegSubtable, 498
— SSARegSubtree, 498
— SSASendTrap, 498
— SSASubagentOpen, 498

Sun Solstice Enterprise Agent string helper
functions
— SSAStringCpy, 503
— SSAStringInit, 503
— SSAStringToChar, 503
— SSAStringZero, 503

Sun::Solaris::Kstat — Perl tied hash interface to
the kstat facility, 241

sysevent_free — free memory for sysevent
handle, 507

sysevent_get_attr_list — get attribute list
pointer, 508

sysevent_get_class_name — get class name,
subclass name, ID or buffer size of
event, 509

sysevent_get_event_id — get class name,
subclass name, ID or buffer size of
event, 509

sysevent_get_pid — get vendor name,
publisher name or processor ID of
event, 511

sysevent_get_pub_name — get vendor name,
publisher name or processor ID of
event, 511

sysevent_get_size — get class name, subclass
name, ID or buffer size of event, 509

sysevent_get_subclass_name — get class name,
subclass name, ID or buffer size of
event, 509

sysevent_get_vendor_name — get vendor
name, publisher name or processor ID of
event, 511

T
tan — tangent function, 515
tangent function — tan, 515

630 man pages section 3: Extended Library Functions • December 2001 (Beta)

tanh — hyperbolic tangent function, 516
test access CPU performance counters —

cpc_access, 60
test for NaN — isnan, 239
tnfctl_buffer_alloc — allocate or deallocate a

buffer for trace data, 517
tnfctl_buffer_dealloc — allocate or deallocate a

buffer for trace data, 517
tnfctl_check_libs — control probes of another

process where caller provides /proc
functionality, 521

tnfctl_close — close a tnfctl handle, 519
tnfctl_continue — interfaces for direct probe

and process control for another process, 527
tnfctl_exec_open — interfaces for direct probe

and process control for another process, 527
tnfctl_filter_list_add — control kernel tracing

and process filtering, 543
tnfctl_filter_list_delete — control kernel tracing

and process filtering, 543
tnfctl_filter_list_get — control kernel tracing

and process filtering, 543
tnfctl_filter_state_set — control kernel tracing

and process filtering, 543
tnfctl_indirect_open — control probes of

another process where caller provides /proc
functionality, 521

tnfctl_internal_open — create handle for
internal process probe control, 524

tnfctl_kernel_open — create handle for kernel
probe control, 526

tnfctl_pid_open — interfaces for direct probe
and process control for another process, 527

tnfctl_probe_apply — iterate over probes, 532
tnfctl_probe_apply_ids — iterate over

probes, 532
tnfctl_probe_connect — interfaces to query and

to change the state of a probe, 535
tnfctl_probe_disable — interfaces to query and

to change the state of a probe, 535
tnfctl_probe_disconnect_all — interfaces to

query and to change the state of a
probe, 535

tnfctl_probe_enable — interfaces to query and
to change the state of a probe, 535

tnfctl_probe_state_get — interfaces to query
and to change the state of a probe, 535

tnfctl_probe_trace — interfaces to query and to
change the state of a probe, 535

tnfctl_probe_untrace — interfaces to query and
to change the state of a probe, 535

tnfctl_register_funcs — register callbacks for
probe creation and destruction, 539

tnfctl_strerror — map a tnfctl error code to a
string, 540

tnfctl_trace_attrs_get — get the trace attributes
from a tnfctl handle, 541

tnfctl_trace_state_set — control kernel tracing
and process filtering, 543

TNF_DEBUG — probe insertion interface, 548
TNF_PROBE — probe insertion interface

arg_name_n, 551
arg_type_n, 550
arg_value_n, 551
detail, 549
keys, 549
name, 549

TNF_PROBE_0 — probe insertion
interface, 548

TNF_PROBE_0_DEBUG — probe insertion
interface, 548

TNF_PROBE_1 — probe insertion
interface, 548

TNF_PROBE_1_DEBUG — probe insertion
interface, 548

TNF_PROBE_2 — probe insertion
interface, 548

TNF_PROBE_2_DEBUG — probe insertion
interface, 548

TNF_PROBE_3 — probe insertion
interface, 548

TNF_PROBE_3_DEBUG — probe insertion
interface, 548

TNF_PROBE_4 — probe insertion
interface, 548

TNF_PROBE_4_DEBUG — probe insertion
interface, 548

TNF_PROBE_5 — probe insertion
interface, 548

TNF_PROBE_5_DEBUG — probe insertion
interface, 548

tnf_process_disable() — disables probing for the
process, 553

Index 631

tnf_process_enable() — enables probing for the
process, 553

tnf_thread_disable() — disables probing for the
calling thread, 553

tnf_thread_enable() — enables probing for the
calling thread, 553

touchlock — functions to manage lockfile(s) for
user’s mailbox, 285

translate strings to and from events —
cpc_strtoevent, 81

U
unregister the event handler for the event —

ptree_unregister_handler, 440
update a property value —

ptree_update_propval, 441
use CPU performance counters on lwps —

cpc_bind_event, 61

V
visit active project IDs on current system —

project_walk, 417
volmgt_acquire — reserve removable media

device, 559
volmgt_check — have Volume Management

check for media, 562
volmgt_feature_enabled — check whether

specific Volume Management features are
enabled, 564

volmgt_inuse — check whether or not Volume
Management is managing a pathname, 565

volmgt_release — release removable media
device reservation, 567

volmgt_root — return the Volume Management
root directory, 568

volmgt_running — return whether or not
Volume Management is running, 569

volmgt_symdev — convert between Volume
Management symbolic names, and the
devices that correspond to them, 570

volmgt_symname — convert between Volume
Management symbolic names, and the
devices that correspond to them, 570

VTOC, disk’s
read a disk’s VTOC — read_vtoc, 443
write a disk’s VTOC — write_vtoc, 443

W
wait for PICL tree to refresh — picl_wait, 408
walk subtree by class —

picl_walk_tree_by_class, 409, 442
write to a segment —

rsm_memseg_import_put, 476, 478
write_vtoc — read and write a disk’s

VTOC, 443
wsreg_add_child_component — add or remove

a child component, 572
wsreg_add_compatible_version — add or

remove a backward compatible version, 574
wsreg_add_dependent_component — add or

remove a dependent component, 576
wsreg_add_display_name — add, remove, or

return a localized display name, 578
wsreg_add_required_component — add or

remove a required component, 580
wsreg_can_access_registry — determine access

to product install registry, 582
wsreg_clone_component — clone a

component, 584
wsreg_components_equal — determine equality

of two components, 585
wsreg_create_component — create or release a

component, 586
wsreg_free_component — create or release a

component, 586
wsreg_free_component_array — create or

release a component, 586
wsreg_get_child_components — add or remove

a child component, 572
wsreg_get_compatible_versions — add or

remove a backward compatible version, 574
wsreg_get_data — add or retrieve a key-value

pair, 597
wsreg_get_data_pairs — add or retrieve a

key-value pair, 597
wsreg_get_dependent_components — add or

remove a dependent component, 576

632 man pages section 3: Extended Library Functions • December 2001 (Beta)

wsreg_get_display_languages — add, remove,
or return a localized display name, 578

wsreg_get_display_name — add, remove, or
return a localized display name, 578

wsreg_get_id — set or get the uuid of a
component, 599

wsreg_get_instance — set or get the instance of
a component, 600

wsreg_get_location — set or get the location of
a component, 602

wsreg_get_parent — set or get the parent of a
component, 603

wsreg_get_required_components — add or
remove a required component, 580

wsreg_get_type — set or get the type of a
component, 604

wsreg_get_uninstaller — set or get the
uninstaller of a component, 605

wsreg_get_unique_name — set or get the
unique name of a component, 606

wsreg_get_vendor — set or get the vendor of a
componentt, 607

wsreg_get_version — set or get the version of a
component, 608

wsreg_initialize — initialize wsreg library, 588
wsreg_query_create — create a new query, 589
wsreg_query_free — create a new query, 589
wsreg_query_get_id — set or get the uuid of a

query, 590
wsreg_query_get_instance — set or get the

instance of a query, 591
wsreg_query_get_location — set or get the

location of a query, 592
wsreg_query_get_unique_name — set or get the

unique name of a query, 593
wsreg_query_get_version — set or get the

version of a query, 594
wsreg_query_set_id — set or get the uuid of a

query, 590
wsreg_query_set_instance — set or get the

instance of a query, 591
wsreg_query_set_location — set or get the

location of a query, 592
wsreg_query_set_unique_name — set or get the

unique name of a query, 593
wsreg_query_set_version — set or get the

version of a query, 594

wsreg_register — register a component in the
product install registry, 595

wsreg_remove_child_component — add or
remove a child component, 572

wsreg_remove_compatible_version — add or
remove a backward compatible version, 574

wsreg_remove_dependent_component — add
or remove a dependent component, 576

wsreg_remove_display_name — add, remove,
or return a localized display name, 578

wsreg_remove_required_component — add or
remove a required component, 580

wsreg_set_data — add or retrieve a key-value
pair, 597

wsreg_set_id — set or get the uuid of a
component, 599

wsreg_set_instance — set or get the instance of
a component, 600

wsreg_set_location — set or get the location of a
component, 602

wsreg_set_parent — set or get the parent of a
component, 603

wsreg_set_type — set or get the type of a
component, 604

wsreg_set_uninstaller — set or get the
uninstaller of a component, 605

wsreg_set_unique_name — set or get the
unique name of a component, 606

wsreg_set_vendor — set or get the vendor of a
componentt, 607

wsreg_set_version — set or get the version of a
component, 608

wsreg_unregister — remove a component from
the product install registry, 609

Y
y0 — Bessel functions of the second kind, 612
y1 — Bessel functions of the second kind, 612
yn — Bessel functions of the second kind, 612

Index 633

634 man pages section 3: Extended Library Functions • December 2001 (Beta)

