
KCMS Application Developer’s
Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816–1325–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 13

Preface 19

1 Introduction 21

In This Chapter 21

KCMS Architecture 21

Applications 22

“C” API 22

KCMS Framework 23

Profiles 23

Graphics and Imaging Libraries 23

Color Management Modules 24

KCMS File System 24

2 Profiles 27

In This Chapter 27

What Is a Profile? 27

What Is Your Interest in Profiles? 28

Profile Types 29

Device Color Profile 29

Color Space Profile 30

Effects Color Profile 30

Complete Color Profile 30

3

KCMS API Functional Overview 31

Typical Profile Operations Using the KCMS API 32

Getting and Setting Profile Attributes 32

Loading and Saving Profiles 32

Example: Using Profiles to Convert Color Data 33

Associating Profiles with Devices 36

Using Color Space Profiles 37

Advanced Profile Operations Using the KCMS API 38

Operation Hints 38

Content Hints 38

Freeing Profiles 39

Managing Profile Memory 39

Optimizing Profiles 39

Characterizing and Calibrating Profiles 40

3 Data Structures 41

In This Chapter 41

Macros 41

Constants 41

Data Types 42

KcsAttributeBase 42

KcsAttributeName 43

KcsAttributeType 43

KcsAttributeValue 44

KcsAttrSpace 46

KcsCalibrationData 47

KcsCallbackFunction 48

KcsCharacterizationData 49

KcsColorSample 50

KcsComponent 50

KcsCreationDesc 51

KcsCreationType 52

KcsErrDesc 52

KcsEvalSpeed 52

KcsFileId 53

KcsFunction 53

KcsIdent 54

4 KCMS Application Developer’s Guide • December 2001

KcsLoadHints 54

KcsMeasurementBase 60

KcsMeasurementSample 60

KcsOperationType 61

KcsOptimizationType 62

KcsPixelLayout 62

KcsPixelLayoutSpeeds 66

KcsProfileDesc 66

KcsWindowProfile 68

KcsProfileId 68

KcsProfileType 69

KcsSampleType 69

KcsStatusId 70

4 Functions 71

In This Chapter 71

KcsAvailable() 71

KcsConnectProfiles() 72

KcsCreateProfile() 75

KcsEvaluate() 77

KcsFreeProfile() 78

KcsGetAttribute() 79

KcsGetLastError() 82

KcsLoadProfile() 83

KcsModifyLoadHints() 87

KcsOptimizeProfile() 89

KcsSaveProfile() 91

KcsSetAttribute() 93

KcsSetCallback() 96

KcsUpdateProfile() 98

5 KCMS Profile Attributes 103

In This Chapter 103

Using the Attribute Name 103

Interpreting the Attribute Value 104

Required and Optional Attributes 104

Contents 5

Names of CMM-Specific Attributes 104

Required ICC Attributes 106

Input Profile 107

Display Profile 108

Output Profile 109

Additional Profile Formats 110

List of All Attributes 112

Attribute Types 114

Constants 114

Signatures 115

Color Space Signature 118

Other Enums 119

Arrays of Numbers 121

Attribute Type Definitions 129

Attribute Types 129

CMM-Specific Attribute Definitions 133

Attribute Definitions 133

6 Warning and Error Messages 135

In This Chapter 135

Warnings 135

Errors 136

Localizing Status Messages 140

Glossary 141

Index 151

6 KCMS Application Developer’s Guide • December 2001

Tables

TABLE 1–1 Optional Imaging and Graphics Libraries 23

TABLE 1–2 KCMS Directories 24

TABLE 2–1 KCMS and ICC Profile Format Equivalents 29

TABLE 2–2 KCMS API Functions 31

TABLE 3–1 KcsFunction Bit Constants 53

TABLE 3–2 Bit Positions and Masks for Load Hints 55

TABLE 3–3 Bit Mask Values for Load Hints 56

TABLE 3–4 KcsSampleType Constants 70

TABLE 4–1 KcsAvailable() Arguments 72

TABLE 4–2 KcsAvailable() Return Strings 72

TABLE 4–3 KcsConnectProfiles() Arguments 73

TABLE 4–4 KcsConnectProfiles() Return Strings 74

TABLE 4–5 KcsCreateProfile() Arguments 75

TABLE 4–6 KcsCreateProfile() Return Strings 76

TABLE 4–7 KcsEvaluate() Arguments 77

TABLE 4–8 KcsEvaluate() Return Strings 78

TABLE 4–9 KcsFreeProfile() Arguments 79

TABLE 4–10 KcsConnectProfiles() Return Strings 79

TABLE 4–11 KcsGetAttribute() Arguments 80

TABLE 4–12 KcsGetAttribute() Return Strings 80

TABLE 4–13 KcsGetLastError() Arguments 83

TABLE 4–14 KcsGetLastError() Return Strings 83

TABLE 4–15 KcsLoadProfile() Arguments 85

TABLE 4–16 KcsConnectProfiles() Return Strings 85

TABLE 4–17 KcsModifyLoadHints() Arguments 88

TABLE 4–18 KcsModifyLoadHints() Return Strings 88

7

TABLE 4–19 KcsOptimizeProfile() Arguments 90

TABLE 4–20 KcsOptimizeProfile() Return Strings 90

TABLE 4–21 KcsSaveProfile() Arguments 91

TABLE 4–22 KcsSaveProfile() Return Strings 92

TABLE 4–23 KcsSetAttribute() Arguments 93

TABLE 4–24 KcsConnectProfiles() Return Strings 94

TABLE 4–25 KcsSetCallback() Arguments 97

TABLE 4–26 KcsSetCallback() Return Strings 97

TABLE 4–27 KcsUpdateProfile() Arguments 99

TABLE 4–28 KcsUpdateProfile() Return Strings 100

TABLE 5–1 Attributes Required Depending on Interpretation 106

TABLE 6–1 Warning Codes 135

TABLE 6–2 Error Codes 136

8 KCMS Application Developer’s Guide • December 2001

Figures

FIGURE 1–1 KCMS Architecture 21

FIGURE 2–1 Converting Color Data From a Scanner to a Monitor 33

FIGURE 2–2 Building a CCP From Two DCPs 35

FIGURE 2–3 Profile Load Hint Operations 35

FIGURE 3–1 24–bit Color Component-Interleaved Data for RGB Pixel Image 66

9

10 KCMS Application Developer’s Guide • December 2001

Examples

EXAMPLE 2–1 Simple Color Data Conversion 34

EXAMPLE 2–2 Connecting a DCP and CSP 37

EXAMPLE 3–1 KcsAttributeValue 45

EXAMPLE 3–2 KcsCallbackFunction() 48

EXAMPLE 3–3 Load Hint Bit Mask Combinations 57

EXAMPLE 3–4 Component-Interleaved, 3-by-7 Layout 65

EXAMPLE 4–1 KcsConnectProfiles() 74

EXAMPLE 4–2 KcsCreateProfile() 76

EXAMPLE 4–3 KcsEvaluate() 78

EXAMPLE 4–4 KcsFreeProfile() 79

EXAMPLE 4–5 KcsGetAttribute() 80

EXAMPLE 4–6 KcsGetLastError() 83

EXAMPLE 4–7 KcsLoadProfile() 85

EXAMPLE 4–8 KcsModifyLoadHints() 88

EXAMPLE 4–9 KcsOptimizeProfile() 90

EXAMPLE 4–10 KcsSaveProfile() 92

EXAMPLE 4–11 KcsSetAttribute() 94

EXAMPLE 4–12 KcsSetCallback() 97

EXAMPLE 4–13 KcsUpdateProfile() 100

EXAMPLE 5–1 icSigNumTag and icSigListTag 105

11

12 KCMS Application Developer’s Guide • December 2001

Preface

The KCMS Application Developer’s Guide describes the Kodak Color Management
System (KCMS™) framework C-language application programming interface (API).
The KCMS framework enables the accurate reproduction, and improves the
appearance of, digital color images on desktop computers and associated peripherals.
With the framework’s “C” API, you can write applications that perform correct color
conversions and manipulations.

Who Should Use This Guide
The intended audience of this guide is the professional programmer who is fluent in
the C programming language and writing an application that:

� Uses color data
� Prints images
� Is an imaging tool
� Uses PhotoCD

13

Note – Although the KCMS API is a “C” language interface to the KCMS framework,
you can write your application in other languages such as C++ by following the
guidelines for making C-language calls.

Before You Read This Guide
Check the following documentation for any corrections or updates to the information
in this guide.

See the online SUNWrdm packages for information on bugs and issues, engineering
news, and patches. For Solaris installation bugs and for late-breaking bugs, news, and
patch information, see the Solaris 9 Installation Guide and the Solaris 9 Installation Guide
manuals.

For SPARC™ systems, consult any updates your hardware manufacturer provided.

Although you do not have to be a color scientist to write applications with the KCMS
API, a certain amount of color literacy is helpful. Table P–1 lists two white papers that
contain some basic information on color and KCMS. The files are located on-line in the
/usr/openwin/demo/kcms/docs/ directory.

TABLE P–1 KCMS White Papers

File Name Title

kcms-wp.ps An Introduction to the Kodak Color Management System

kcms-wp-solaris.ps Kodak Color Management System

The KCMS framework this guide describes uses the International Color Consortium
(ICC) format as the default format for color manipulation. For details on ICC, you
should read the International Color Consortium Profile Format Specification. The ICC
profile format specification is located by default in the icc.ps file in the
/opt/SUNWsdk/kcms/doc directory. This is the specification to which this version of
KCMS conforms. For the most current version of the ICC specification, see the web
site at http://www.color.org.

14 KCMS Application Developer’s Guide • December 2001

Related Books
The following manuals will help you further understand the Driver Developer Kit
(DDK) portion of the KCMS software product.

� KCMS CMM Developer’s Guide
� KCMS CMM Reference Manual
� KCMS Test Suite User’s Guide

The following manuals will help you further understand the Calibrator Tool portion of
the KCMS software product.

� Solaris Advanced User’s Guide

In Chapter 10, “Customizing Your Environment,” there is a section called
“Calibrating Your Monitor.” The section tells you how to adjust your viewing
environment and how to calibrate your monitor with Calibrator Tool.

� KCMS Calibrator Tool Loadable Interface Guide

This guide will help you further understand the API to the Calibrator Tool. You can
tailor the Calibrator Tool for your specific calibrator hardware and software with
this API.

How This Guide Is Organized
This guide consists of the following chapters and appendix:

� Chapter 1 explains the KCMS architecture and programming environment.

� Chapter 2 explains profiles, which are the focus of your programming efforts with
the KCMS framework.

� Chapter 3 describes the data structures of the KCMS framework.

� Chapter 4 details each KCMS “C” API function.

� Chapter 5 details each profile attribute (tag).

� Chapter 6 describes status codes (error and warning messages) returned by the
KCMS framework functions.

Preface 15

KCMS Naming Conventions
The KCMS “C” API naming conventions shown in Table P–2 are used throughout the
KCMS framework and this guide.

TABLE P–2 API Naming Conventions

Item Convention Examples

Attribute
names

ICC profile format attribute names
begin with “ic”—ic<AttributeName>

icHeader

Data
structures

Typedefs

Constants

ICC profile format data structures
begin with “ic”. All other data
structures, typedefs, and constants are
KCMS specific and begin with
“Kcs”—Kcs<TypeDefName>

icTextDescription

KcsCalibrationData

Functions Each significant word in a function
name is capitalized. Intervening
spaces are
removed—Kcs<FunctionName>()

KcsConnectProfiles()

Macros Macros are KCMS specific and are
capitalized—KCS_<MACRO_NAME>

KCS_DEFAULT_ATTRIB_COUNT

Status codes All status codes are capitalized and
have the format
KCS_<STATUS_CODE>

KCS_PROF_ID_BAD

Note – Historically KCMS was referred to by the abbreviation KCS (or Kcs). This
abbreviation has been carried forward as the prefix in KCMS data type names, for
example, KcsCalibrationData.

Equivalent Terms in This Guide
For historic reasons, this guide uses several equivalent Kodak and ICC terms. The
terms evolved at different times. Development of the ICC specification introduced new
ICC terms with meanings the same as (or similar to) already existing Kodak terms.

16 KCMS Application Developer’s Guide • December 2001

You should be familiar with the terms listed in Table P–3, as you will encounter them
in the ICC specification and KCMS color management documentation, as well as in
the KCMS header files and example programs. The terms are defined as they are
introduced in this guide.

TABLE P–3 Equivalent ICC and Kodak Terms

Kodak Term ICC Term

attribute tag

device color profile (DCP) input, display, or output profile

effects color profile (ECP) abstract profile

complete color profile (CCP) device link profile

reference color space (RCS) profile connection space (PCS)

Note – The text in this guide uses the term attribute instead of tag, (but code examples
and header files may use tag for the historic reasons previously mentioned).

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Preface 17

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–4 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–5 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

18 KCMS Application Developer’s Guide • December 2001

New Features

Multithread Safe
In this release, KCMS supports multithread programs; it is multithread safe (MT safe).
If your application uses multithread capabilities you do not need to put locks around
KCMS library calls.

19

20 KCMS Application Developer’s Guide • December 2001

CHAPTER 1

Introduction

In This Chapter
This chapter introduces you to the Kodak Color Management System (KCMS)
product. It describes each of the components of the KCMS architecture and tells you
about programming requirements and hints when writing your KCMS application.

KCMS Architecture
The KCMS architecture provides a way to encapsulate specific color management
functions in color profiles. Figure 1–1 illustrates the architecture of the KCMS
environment. Each segment filled with gray is supplied by Sun. These are the default
components. The other segments, filled with white, are components that you can add
to your development environment.

Each component is discussed further in the following sections.

Note – Sun supplies the XIL™ imaging library. KCMS is integrated into this library.

21

FIGURE 1–1 KCMS Architecture

Applications
At the top of the hierarchy are applications. Using the KCMS “C” API to the KCMS
framework, you can write an application that:

� Uses color data
� Prints
� Is an imaging tool
� Uses PhotoCD

Applications connect color profiles to provide a variety of new forms, thus minimizing
the task of predefining all possibilities. With the 14 available KCMS API functions,
your application can load, create, and update profiles, connect and optimize profiles,
and then process data through the result. (For a summary description of each KCMS
API function, see “KCMS API Functional Overview” on page 31.)

“C” API
The KCMS “C” API provides functions for your application to communicate with the
KCMS framework and color management modules (CMMs). The API is a portable
programming interface that allows applications to manipulate color profiles and to use
them to correct color data.

Note – The SDK API is sometimes referred to as the “C” API to distinguish it from the
DDK “C++” framework interface used to develop CMMs.

The “C” API consists of:

� A set of callable functions

� Header files

22 KCMS Application Developer’s Guide • December 2001

� A shared library and dynamically loaded code modules required for the Solaris
environment

KCMS Framework
The KCMS framework loads and saves profiles, gets and sets KCMS profile attributes,
and directs requests for color management to the right CMM at the right time. It is
particularly vital in calls that involve more than one CMM. The KCMS framework also
maintains attributes and executes certain default behaviors and functionality.

Color management is performed by the framework and the CMMs. You can
concentrate on dealing with profiles because the KCMS framework makes color
management details transparent to the caller.

Profiles
Profiles are files that tell the KCMS framework how to convert input color data to the
appropriate color-corrected output color data. They are the focus of your programming
efforts. For example, your application might load profiles, read profile attributes,
connect profiles, optimize profiles, and apply profiles to color data.

See Chapter 2 for detailed information.

Graphics and Imaging Libraries
Table 1–1 lists some of the imaging and graphics libraries available to use with the
KCMS framework.

TABLE 1–1 Optional Imaging and Graphics Libraries

Library Description

PEXlib PHIGS Extensions to the X Library

XIElib X Imaging Extension Library

XIL Solaris Foundation Imaging Library

Xlib X11 Window System Library

You can mix KCMS calls with any calls from these libraries. If the library you choose
supports color management, your application may not need to make direct calls to the

Introduction 23

KCMS framework. The library may already make those direct KCMS calls. The XIL
Imaging Library, for example, supports color management and includes integrated
KCMS functions.

Refer to the documentation for the imaging and graphics library of your choice to
determine if that library already supports color management.

Color Management Modules
A color management module (CMM) is the component that ultimately does the color
correction. Different CMMs use different techniques for evaluating color data, which
can result in differences in quality, profile size, and speed of color manipulation.

Because CMMs are loaded at run-time and CMM interfaces are extendable, an
application that uses the “C” API can take advantage of the improvements in existing
technologies and the latest color-correction technology, along with hardware
acceleration. To do so, you just change or adding new CMMs, profiles, or both. You
can do this without changing the code or rebuilding your application.

The default CMM is Kodak-supplied. You can write your own CMM (third-party
CMM) or override portions of the default CMM. To write your own CMM you must
purchase the Solaris Device Developer’s Kit (DDK) that includes the following KCMS
CMM manuals:

� KCMS CMM Developer’s Guide
� KCMS CMM Reference Manual
� KCMS Test Suite User’s Guide

KCMS File System
The software product’s directory structure indicates the types and locations of files.
Table 1–2 shows you the top-level directories.

TABLE 1–2 KCMS Directories

Directory Subdirectory Content

/usr/openwin bin Configuration and networking
binaries

demo/kcms KCMS demonstration programs

demo/kcms/images/tiff Sample TIFF images

24 KCMS Application Developer’s Guide • December 2001

TABLE 1–2 KCMS Directories (Continued)
Directory Subdirectory Content

demo/kcms/docs KCMS user white papers

lib libkcs.so; main KCMS library

share/etc/gpiutils CMM libraries

share/etc/devhandlers Dynamically loadable modules and
third-party CMMs

share/etc/devdata/profiles Device profiles provided with
KCMS

include/kcms Various library header files

man/man1 KCMS command/utility manual
pages

Introduction 25

26 KCMS Application Developer’s Guide • December 2001

CHAPTER 2

Profiles

In This Chapter
This chapter provides an overview of profiles. It discusses their contents, format, and
KCMS profile classifications. It proceeds to describe how you typically use KCMS API
functions in your application to manipulate profiles. The chapter provides an
illustrated example, threading together some of the most frequently used operations.
Finally, the chapter presents more advanced programming techniques your
application can perform using the API.

What Is a Profile?
A profile (also called a color profile) provides the KCMS framework with information
on how to convert input color data to the appropriate color-corrected output color
data.

Profiles contain the following types of information:

� Color spaces in which the input and output data appear (for example, RGB,
CMYK, or CIEXYZ).

� Specific color space parameters (for example, primary color chromaticities and
tables that correct the response of each color component or channel).

� Data determined by the specific conditions in which colors are expected to be
viewed (for example, the lighting conditions and type of media that will be used).

� Tables of data or equation parameters that a CMM uses to transform color data.

27

� CMM-specific information. Each profile is owned by a specific CMM. Although all
profiles have common, public information, there may be private data in an
individual profile format for use by that particular CMM.

What Is Your Interest in Profiles?
Profiles are the focus of your programming efforts. Typically, you write applications to
load profiles, read profile attributes, connect profiles, optimize profiles, and apply
profiles to color data. To perform these types of operations, you incorporate KCMS
API functions into your application. See “KCMS API Functional Overview”
on page 31 for a summary of all the API functions.

Typically, you use the API to combine or connect existing profiles to create profiles,
rather than to generate new ones. Creating new profiles is the left to the CMM
developer.

Profile Format
When you write applications that use the KCMS API, you do not need to understand
the details of the profile file format. However, you might be interested to know that
KCMS, by default, uses the International Color Consortium (ICC) profile format. The
ICC format is an emerging default de facto standard supported by a wide range of
computer and color device vendors. This is extremely advantageous for users, as this
standard allows a single profile to work over multiple platforms.

Note – The ICC format is endorsed by many regular members. The founding
members are Adobe Systems Inc., Agfa-Gevaert N.V., Apple Computer Inc., Eastman
Kodak Company, FOGRA (Honorary), Microsoft Corporation, Silicon Graphics, Inc.,
Sun Microsystems Inc., and Taligent Inc.

The KCMS framework uses the ICC format as the default profile format. For details on
the ICC profile format, see the ICC profile format specification. By default, it is located
on-line in the SUNWsdk/kcms/doc directory. For the latest version of the ICC
specification, see the web site at http://www.color.org.

CMM Specifics
Each color profile is owned by or associated with a specific CMM. Each CMM may
have a different way of performing its color-correction technology. For example, a
CMM may incorporate a unique way to calibrate its profiles.

28 KCMS Application Developer’s Guide • December 2001

In general, your application does not need to know which CMM owns a profile. In the
case where the profile owner is not present and the profile is a valid ICC profile, the
default CMM can provide the functionality necessary to use that profile.

The KCMS API functions your application calls are device-independent interfaces to
the KCMS framework. The manner in which these API functions are preformed may
differ depending on the underlying CMM and its particular color correction
technology, but your application interface does not change. It always calls the API
functions in the standard way. What you might want to be aware of, however, is that
occasionally your application may receive CMM-specific error codes.

For more information on CMMs, see the DDK document, KCMS CMM Developer’s
Guide.

Profile Types
The KCMS framework supports several types of color profiles. Before describing these
types, there are some terminology differences between the ICC specification and the
KCMS framework you should be aware of. Table 2–1 identifies these differences,
which are mostly historical.

TABLE 2–1 KCMS and ICC Profile Format Equivalents

KCMS Profile Format ICC Equivalent

device color profile (DCP) any input, display, or output profile

color space profile (CSP) color space conversion profile

effects color profile (ECP) abstract profile

complete color profile (CCP) device link profile

Device Color Profile
A device color profile (DCP) represents the behavior of a specific digital color device,
such as a flatbed or film scanner, a computer monitor, or a printer. Each DCP specifies
device color appearance under a specific set of conditions (for example, lighting type,
media type, and so on). Because device behavior tends to change over time, calibration
software may adjust a DCP whenever its device is calibrated. Calibration fine tunes a
specific device’s color response by bring it back to normal using lookup tables.
Typically calibration changes the profile data so that it can be color managed to
produce the same color response as other devices of the same make and model. In

Profiles 29

other cases, depending on the device’s method of calibration, the device itself is
changed to match the profile.

The ICC specification separates DCPs into three categories: input, output, and display.
This separation can be confusing when a device, such as a printer includes input
device data. The data can be considered an input profile, an output profile, or both.
This occurs in print simulation where the printer is an input device to a display or
other output device.

Conceptually, it may be easier to separate profiles into these three categories only in
terms of how data can and cannot be sent from and to the profile connection space (PCS).
The PCS is the common junction where profiles are connected together.

KCMS does not make this syntactical separation. Rather it considers all input, output,
and display profiles as device profiles and makes no assumptions about what profiles
can and cannot be connected together. The connection of the profiles is then evaluated
at connection time based on the data contained within the profile.

Color Space Profile
A color space profile (CSP) defines a color space. Colors are defined in terms directly
related to spectral response. A CSP does not depend on the behavior of a particular
color device. CSPs contain information about assumed viewing conditions in the data
expressed for that color space. Typically, the color space can be relative to CIEXYZ
values, defined by the Commission Internationale de l’Eclairage (CIE). The equivalent
ICC term for color space profile is color space conversion profile. (See Table 2–1.)

Effects Color Profile
An effects color profile (ECP) represents a condition that changes the appearance of
colors, such as a specific kind of lighting or a simulated anomalous color vision (color
blindness). In addition, an ECP can be applied for artistic purposes, such as making
colors appear lighter or darker. The equivalent ICC term for effects color profile is
abstract profile. (See Table 2–1.)

Complete Color Profile
The preceding three profile types do not contain enough information for the KCMS
framework to convert color data from one form to another. Useful color
transformations can only happen when your application uses the KCMS API to
connect two or more profiles together to form a complete color profile (CCP). A CCP is a
connected sequence of profiles with a DCP or a CSP at either end, and possibly one or

30 KCMS Application Developer’s Guide • December 2001

more ECPs or DCPs in between. The equivalent ICC term for complete color profile is
device link profile. (See Table 2–1.)

KCMS API Functional Overview
The KCMS API consists of 14 interfaces for manipulating profiles. Table 2–2
alphabetically lists and briefly describes each function.

TABLE 2–2 KCMS API Functions

Function Description

KcsAvailable() Determines if the KCMS framework has been installed on the
system (for cross-platform compatibility).

KcsConnectProfiles() Combines existing profiles to create a new profile or restricts
functionality of a single profile for better efficiency.

KcsCreateProfile() Creates an empty profile containing neither attributes nor
CMM-specific data.

KcsEvaluate() Applies a color profile to input color data to produce
color-corrected output data.

KcsFreeProfile() Releases all resources a loaded profile is using (for example,
memory).

KcsGetAttribute() Finds the value of a particular attribute of a given profile.

KcsGetLastError() Finds information about the most recent error.

KcsLoadProfile() Loads a profile and its resources into the system and returns
the profile Id.

KcsModifyLoadHints() Applies a new set of load hints to a profile already loaded.

KcsOptimizeProfile() Optimizes a profile by reducing its size, increasing its speed,
or increasing its accuracy.

KcsSaveProfile() Saves a loaded profile and any changes to its attributes or
profile data.

KcsSetAttribute() Creates, modifies, or deletes a specific attribute in a profile.

KcsSetCallback() Associates a callback function with any of the API functions
that support callbacks.

KcsUpdateProfile() Changes the profile data in the loaded profile according to the
supplied measurement data.

Profiles 31

Typical Profile Operations Using the
KCMS API
Your application can make function calls to the KCMS API to perform various tasks.
Typically, applications want to use profiles to convert color data from one device type
to another. This involves functions such as loading the profiles, getting and setting
attributes, and saving the results. This section describes some of the typical API
functions.

Getting and Setting Profile Attributes
The KCMS API provides a way to get profile information by examining the profile’s
attribute set. Each attribute has a value, which is data associated with the attribute. The
API provides the following attribute calls:

� KcsGetAttribute()—gets a specific attribute value associated with a profile.
See “KcsGetAttribute()” on page 79 for detailed information.

� KcsSetAttribute()—modifies an attribute. (This is not always possible because
some attributes are read-only.) See “KcsSetAttribute()” on page 93 for
detailed information.

For more information on profile attributes, see Chapter 5.

Loading and Saving Profiles
Profiles are typically stored as files on disks, although they can be imbedded in an
image located across a network or in read-only memory in a printer.

Profiles are loaded with the KcsLoadProfile() function (see “KcsLoadProfile()
” on page 83) and are saved with the KcsSaveProfile() function (see
“KcsSaveProfile() ” on page 91). KcsLoadProfile() takes the three
arguments listed below. KcsSaveProfile() takes the first two arguments listed.

� A profile identifier (Id)
� A profile description
� Hints about loading the profile

The profile Id is returned to the calling program from KcsLoadProfile() for use
with other API functions. In the case of KcsSaveProfile(), the profile identifier is
passed back into the KCMS framework library to indicate the profile to be saved.

32 KCMS Application Developer’s Guide • December 2001

The profile description is a union of many different types, each of which represents a
way to supply a location where the profile data should be stored. The type and the
associated fields in the union are required to complete a profile description. The type
field indicates which of the union’s fields to use.

A calling application can request that the KCMS framework load only specific parts of
a profile, (for example, just its attributes). The caller uses the
KcsModifyLoadHints() function to provide these load hints, which change the load
status of the profile. Hints are described by the KcsLoadHints data type discussed on
“KcsLoadHints ” on page 54. Load hints that request specific operations and
specific content be loaded for a profile are described in “Operation Hints” on page 38.

Example: Using Profiles to Convert Color Data
Figure 2–1 shows how color data is converted between a scanner device and a monitor
device.

FIGURE 2–1 Converting Color Data From a Scanner to a Monitor

In the figure, the devices do not perform their own color correction. Rather, the color
data is converted from the form provided by the scanner (Scanner DCP) to a form
appropriate for display on the monitor (Monitor DCP). To convert the color data, your
application would follow the steps below:

1. Load the scanner and monitor profiles.

See “Loading Scanner and Monitor Profiles” on page 34.

2. Connect the scanner profile to the monitor profile to get a complete profile.

See “Connecting Scanner to Monitor Profiles” on page 34.

3. Evaluate color data through the complete profile.

See “Evaluating Color Data Through the Complete Profile” on page 35.

Profiles 33

Example 2–1 shows the sequence of calls that perform this conversion. For more
information on the KcsConnectProfiles() function, see “Using Color Space
Profiles” on page 37 and the detailed function description on
“KcsConnectProfiles() ” on page 72.

EXAMPLE 2–1 Simple Color Data Conversion

/* Load the scanner’s DCP.*/
KcsLoadProfile(&inProfile, &scannerDescription, KcsLoadAllNow);

/* Load the monitor’s DCP. */
KcsLoadProfile(&outProfile, &monitorDescription, KcsLoadAllNow);

/* Connect two DCPs to form a CCP */
profileSequence[0] = inProfile;
profileSequence[1] = outProfile;
KcsConnectProfiles(&completeProfile, 2, profileSequence,

KcsLoadAllNow, &failedProfileIndex);

/* Apply the CCP to input color data. */
KcsEvaluate(completeProfile, KcsOperationForward, &inbufLayout,

&outbufLayout);

Loading Scanner and Monitor Profiles
As shown in Example 2–1, the first color-conversion step is to use the
KcsLoadProfile()function. KcsLoadProfile() loads the profile associated with
a specific device, effect, partial, or complete profile, and it allocates any system
resources the profile requires. For a detailed description of KcsLoadProfile() , see
“KcsConnectProfiles() ” on page 72.

Connecting Scanner to Monitor Profiles
As shown in Example 2–1 and Figure 2–2, the next color-conversion step is to connect
a pair of DCPs to form a CCP. KcsConnectProfiles() provides this functionality.

34 KCMS Application Developer’s Guide • December 2001

Continuing with the example illustrated in Figure 2–1, a CCP is built by connecting
the scanner’s DCP to the monitor’s DCP. The resulting CCP converts scanner data to
monitor data.

FIGURE 2–2 Building a CCP From Two DCPs

Evaluating Color Data Through the Complete Profile
The final color-conversion step is to use the KcsEvaluate() function.
KcsEvaluate() applies a color transformation based on the supplied CCP. One of
the following operations is associated with the evaluation. These operations are
illustrated in Figure 2–3.

� OpForward
� OpReverse
� OpSimulate
� OpGamutTest

FIGURE 2–3 Profile Load Hint Operations

OpForward

The forward operation is used to transform color from the scanner form to the monitor
form.

Profiles 35

OpReverse

The reverse operation is used to transform color from the monitor form to the scanner
form. This is useful if your application modifies some colors in monitor space, to keep
the greatest number of colors that can be converted back and stored in the scanner’s
color space.

A more familiar use of the reverse operation is to transform the color from printer to
monitor form to see what the data looks like from the printer.

OpSimulate

The simulate operation is used to simulate the effect of running color data through a
CCP, but retaining it in the form of the last device profile. For example, the simulate
operation can produce monitor data that simulates the result of printed data.

OpGamutTest

The gamut-test operation is used to determine if each color in the source data is within
the gamut of the destination device. Physical devices have a range of colors they can
produce. This range of colors is known as the gamut of the device.

Using A Callback Function When Evaluating
KcsEvaluate() can take a long time to execute, especially if the input image or
graphic contains millions of pixels. Therefore, your application can provide a callback
function using KcsSetCallback(), which KcsEvaluate() calls when necessary.
The callback function can, for example, provide feedback to request that processing be
cancelled. If the callback returns a non-KCS_SUCCESS status, the processing stops.

Associating Profiles with Devices
The KcsSaveProfile() function, when supplied a KcsProfileDesc structure,
associates that color profile with the supplied structure. Typically, a configuration or
calibration program calls the KcsSaveProfile()function. The profile associated
with the KcsDescription structure represents the last calibrated condition of the
device. For more information on KcsSaveProfile(), see “KcsSaveProfile() ”
on page 91.

Many events can change the condition of a device. For example, as room lighting
changes, so does the viewer’s perception of a monitor’s colors. Or, consider a color

36 KCMS Application Developer’s Guide • December 2001

printer. When different kinds of paper are used in the printer, the printer’s color
condition changes. As conditions change, a user may associate a different profile with
the device.

Using Color Space Profiles
Another possible use of KcsConnectProfiles() is to connect a DCP and a CSP,
creating a new CCP. Refer to Figure 2–1. If the scanner DCP in that figure is connected
to the CSP (instead of the Monitor DCP shown that converts for the CIEXYZ color
space), the resulting CCP will convert color data produced by the scanner into
CIEXYZ format.

Example 2–2 shows the sequence of calls that creates and applies the CCP. Note that
this example is very similar to Example 2–1. The difference is the second call to
KcsLoadProfile(). In Code Example 2-2, KcsLoadProfile() loads the CIEXYZ
profile description instead of the monitor description.

EXAMPLE 2–2 Connecting a DCP and CSP

/*Load scanner’s DCP. */
KcsLoadProfile(&inProfile, &scannerDescription, KcsLoadAllNow);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
KcsFreeProfile(profileid);
exit(1);

}

/*Load CSP for CIEXYZ color space. */
KcsLoadProfile(&outProfile,&CIEXYZdescription, KcsLoadAllNow);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
KcsFreeProfile(profileid);
exit(1);

}

/*Connect two profiles to form a CCP.*/
profileSequence[0] = inProfile;
profileSequence[1] = outProfile;
KcsConnectProfiles(&completeProfile,2, profileSequence,

KcsLoadAllNow, &failedProfileIndex);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
KcsFreeProfile(profileid);
exit(1);

}

/*Apply the CCP to input color data.*/
KcsEvaluate(completeProfile, KcsOperationForward,

&inbufLayout, &outbufLayout);

Profiles 37

Advanced Profile Operations Using the
KCMS API
This section discusses advanced profile topics.

Operation Hints
KcsEvaluate() takes an additional argument that describes the operation to be
performed on the profile. This argument is an operation hint. For example, your
application can tell KcsEvaluate() to convert data in the forward direction
(KcsOpForward), such as from the scanner to the printer. Data also can be converted
in the reverse direction, such as from the monitor to the scanner. The reverse operation
(KcsOpReverse), when it is available in a profile, inverts the function performed by
KcsOpForward. However, KcsEvaluate()rarely performs an exact inverse, because
information is lost when color data is transformed. In other words, if your application
performs a KcsOpForward and then a KcsOpReverse of a profile on the same buffer,
the result is almost equivalent to what it started with before KcsOpForward. Some
quality may be lost.

Only one of these operation hint bits can be set at a time for KcsEvaluate(), unlike
general load hints for which any combination can be set at the same time. As part of
the KcsLoadHints data type, the operation hints signify the required set of operations
available to use with the profile. By contrast, KcsEvaluate() uses only the single
operation that the application wants to perform.

See “Operation Hint Constants” on page 57 for more information on operation hints.

Content Hints
Your application can also specify hints about the content of the data being processed.
Consider, for example, a photographic image data or computer-generated graphic
image data. A CMM can use these hints to do a better job of converting the data such
as adjusting the gamut-mapping technique.

See “Content Hint Constants” on page 59 for more information on content hints.

38 KCMS Application Developer’s Guide • December 2001

Freeing Profiles
After creating a complete color profile (CCP), your application can use it more than
once. For example, it can use the CCP to convert images page-by-page during printing
and to process individual rasters or tiles in a large image. When your application no
longer needs the profile, it can call K()csFreeProfile() to free the profile’s
resources. The profiles in the profile sequence used to create a CCP can be freed
without affecting the CCP.

Managing Profile Memory
The KCMS API expects the application to allocate memory required for the data
returned by the KCMS framework. In general, the application allocates a C structure
and passes a pointer to that structure into the KCMS framework.

The one exception to this is the profile. The KCMS framework returns and accepts a
profile Id only. Your application must manage the memory allocated for the Id. To
inform the KCMS framework that it should release the memory associated with the
profile Id, your application must call the KcsFreeProfile()function.

Optimizing Profiles
Once a color profile has been loaded, a CMM may be able to optimize it. Using the
KcsOptimizeProfile()function, your application can optimize a profile (an
individual profile or a CCP) in two ways:

� First, your application can optimize a profile to make it more accurate (by
eliminating intermediate round-off errors, for instance), smaller (by merging
sequences of look-up tables, for instance), or faster (by precomputing some results).
The application specifies whether size, speed, accuracy, or some combination is
more important.

� Second, by using load hints to limit a profile’s operations, your application also
may affect its optimization. This is valuable, for instance, if you want to write color
data with a DCP that will be used later to read the data. The size of the DCP can be
significantly reduced (depending on the CMM in use) by restricting the profile to
the forward operation only.

Because optimization can take a long time, your application can provide a callback
similar to the one used with KcsEvaluate().

After your application optimizes a profile, it must call KcsSaveProfile() to save
the profile for future use. Then it can use this profile with KcsLoadProfile() to
avoid the slow performance of KcsOptimizeProfile().

Profiles 39

Saving an optimized profile has some potential implications. The optimization may
indirectly affect future operations on the profile. For example, if the profile is
optimized for size, portions of the profile needed only for highest accuracy may be
discarded, resulting in compromised accuracy.

Characterizing and Calibrating Profiles
Characterization establishes a norm for a particular device across a range of samples of
the device. This form of profile is typically supplied by a profile vendor. To obtain an
optimally accurate DCP for a particular device, calibration is required.

Calibration makes measurements of an individual device and applies them to the base
DCP. This causes the updated DCP to represent the actual color device the customer is
using.

The KCMS API provides two API functions, KcsCreateProfile() and
KcsUpdateProfile(), to create new blank profiles and then to update them with
characterization data or calibration data.

The first step your application should take in building a new profile is to create an
empty profile using KcsCreateProfile(). Then it can fill the empty profile with
KcsSetAttribute() to describe the device being characterized. For example, it can
supply monitor chromaticities and white-point values. Measurement data is required
for KcsUpdateProfile() to complete the creation of the new profile. Once updated,
your application should save the profile with KcsSaveProfile() to the desired
KcsProfileDesc location.

Updating profiles typically is a CMM-dependent operation. Using measurement data
at the KCMS framework interface level frees you from details of the profile format and
the process by which the CMM turns the measurement data into its methodology for
color manipulation.

The default CMM supports characterization and calibration of monitors and scanners.

40 KCMS Application Developer’s Guide • December 2001

CHAPTER 3

Data Structures

In This Chapter
This chapter details data structures in the KCMS “C” API that are common to many
functions. These data structures are categorized by macros, constants, and data type
definitions. Data structures are listed alphabetically and defined in the kcs.h,
kcstypes.h, and kcsstats.h header files.

Data structures relevant only to attributes are defined in Chapter 5.

Macros
The following macros are used in the API:

#define KCS_DEFAULT_ATTRIB_COUNT(data_type
((sizeof (KcsAttributeValue) -

sizeof (KcsAttributeBase)) / sizeof (data_type))

Constants
The following constants are used in the API:

41

#define KcsAttrStrLength 256
#define KcsExtendableArray 4
#define KcsExtendablePixelLayout 4
#define KcsExtendableMeasSet 4
#define KcsForceAlign 0x7FFFFFFF
#define KcsMaxSamples 4

#define KcsMaxPatches 8

Data Types

KcsAttributeBase
typedef struct KcsAttributeBase_s {

KcsAttributeType type;
unsigned long countSupplied;
unsigned long countAvailable;
unsigned long sizeOfType;
char strVal[KcsAttrStrLength];

} KcsAttributeBase;

The KcsAttributeBase structure defines a common subset of information in the
KcsAttributeValue structure. Nothing in KcsAttributeBase is extendable.

The type field determines the data type in which the attribute value is stored. It is the
icSigxxxType as defined in the icc.h and kcstypes.h header files.

The countSupplied field specifies the number of allocated elements in the array. For
example, if type is set to KcsDoubleValue and countSupplied is set to 2, the
attribute value is large enough to hold two doubles, which are stored in the first two
elements of the doubleVal array of KcsAttributeValue (see
“KcsAttributeValue ” on page 44).

When the type field is set to KcsString, KcsDateTimeStamp, or an ic type
defined in the header file icc.h, the countSupplied field must be set to 1 because
strings are treated as a single token.

Note – KcsDateTimeStamp, KcsDoubleValue, and KcsString are equated to ic
types in the header.

To determine how many values of a particular data type that can fit in a
KcsAttributeValue structure, use the KCS_DEFAULT_ATTRIB_COUNT macro. It

42 KCMS Application Developer’s Guide • December 2001

returns the number of values of the specified data type that will fit in the structure.
Your application must set the countSupplied field of the KcsAttributeBase
structure to the number of values to get or set before it calls KcsGetAttribute() or
KcsSetAttribute(). Upon return of KcsGetAttribute(), the countAvailable
field specifies the number of values in the profile.

The sizeOfType field is the value, array or structure indicated by type:

attrValuePtr->base.type = icSigHeaderType;

attrValuePtr->base.sizeOfType = sizeof(icHeader);

OR

attrValuePtr->base.type = icSigMeasurementType;

attrValuePtr->base.sizeOfType = sizeof(icMeasurement);

The KcsAttrStrLength field is defined in the kcstypes.h header file as the
maximum string length of 256.

KcsAttributeName
typedef long KcsAttributeName;

KcsAttributeName is used in several functions as the attribute argument.

KcsAttributeType
typedef enum KcsAttributeType_s {

/* InterColor types map to KcsTypes... */
KcsString = 2, /* Original; different than ictext! */
KcsDateTimeStamp = 9, /* Original. Different from ‘dtim’*/
KcsUByte = icSigUInt8ArrayType, /* ‘ui08’ */
KcsUShort = icSigUInt16ArrayType, /* ‘ui16’ */
KcsULong = icSigUInt32ArrayType, /* ‘ui32’ */
/* Signed types follow the InterColor convention... */
KcsByte = icSigSInt8ArrayType, /* ‘si08’ */
KcsShort = icSigSInt16ArrayType, /* ‘si16’ */
KcsLong = icSigSInt32ArrayType, /* ‘si32’ */
KcsDouble = icSigSFlt64ArrayType, /* ‘sf64’ */
/* A few KCMS-specific */
KcsPixelLayoutSupported = icSigPixelLayoutSType, /* ‘play’ */
KcsAlias = icSigAliasType, /* ‘lias’ */

/* To avoid conflict with the icTagTypeSignature enum in */
/* icc.h, the following list of enums is commented out.*/
/* They do represent valid KcsAttributeType enums. */

Data Structures 43

.

.

.
/* Old pre-ICC types. */
.
.
.
KcsAttrTypeMax = KcsForceAlign

} KcsAttributeType;

KcsAttributeType is the data type of one field in the KcsAttributeBase
structure. It is the name of the data type in which the attribute value is stored. It is an
enumerated type. See “KcsAttributeBase” on page 42 for more information.

KcsAttributeValue
typedef struct KcsAttributeValue_s {

KcsAttributeBase base;
union KcsAttributeValueValue_s {

struct tm dateTimeVal;
long longVal[KcsExtendableArray];
double doubleVal[KcsExtendableArray];
char byteVal[KcsExtendableArray];
unsigned char uByteVal[KcsExtendableArray];
short shortVal[KcsExtendableArray];
unsigned short uShortVal[KcsExtendableArray];
unsigned long uLongVal[KcsExtendableArray];
KcsPixelLayoutSpeeds layoutVal[KcsExtendablePixelLayout];
/* ICC 3.0 values */
icText icText;
icData icData;
icCurve icCurve;
icUcrBg icUcrBg;
icNamedColor2 icNamedColor2;
icScreening icScreening;
icSignature icSignature;
icMeasurement icMeasurement;
icDateTimeNumber icDateTime;
icViewingCondition icViewingCondition;
icTextDescription icTextDescription;
icProfileSequenceDesc icProfileSequenceDescription;
icXYZArray icXYZ;
icInt8Array icInt8Array;
icInt16Array icInt16Array;
icInt32Array icInt32Array;
icInt64Array icInt64Array;
icUInt8Array icUInt8Array;
icUInt16Array icUInt16Array;
icUInt32Array icUInt32Array;
icUInt64Array icUInt64Array;
icS15Fixed16Array icS15Fixed16Array;

44 KCMS Application Developer’s Guide • December 2001

icU16Fixed16Array icU16Fixed16Array
icHeader icHeader

} KcsAttributeValueValue;

} KcsAttributeValue;

Note – The KcsAttributeValueValue data type is included in this type definition.

The KcsAttributeValue structure is the data type of one argument in:

� KcsGetAttribute()
� KcsSetAttribute()

A variable of data type KcsAttributeValue holds the value of an attribute. An
attribute’s value fits in a normal KcsAttributeValue structure. However, your
application may have to extend the KcsAttributeValue structure if the number of
values an attribute contains is greater than the number in the default size of the
structure. The “C” API macro KCS_DEFAULT_ATTRIB_COUNT returns the values that
a variable of this type can hold. (For more information on
KCS_DEFAULT_ATTRIB_COUNT, see the description of KcsAttributeBase on
“KcsAttributeBase” on page 42.) For example, to have more values in an attribute
than the value returned from the macro, your application can extend the structure by
allocating more memory and then casting it as a pointer to a KcsAttributeValue
structure. Because it is specified as an array at the end of the structure, and C does not
check array bounds, your application can allocate a piece of memory larger than
KcsAttributeValue and treat the extra memory as an extension of the val arrays.
This allows your application to access the values using the array operator
(myAttributeValuePtr->val.doubleVal[i]).

For example, the following code shows you how to get the colorant from a profile.

EXAMPLE 3–1 KcsAttributeValue

/* Get the colorants */
/* Red */
KcsAttributeValue *attrValuePtr;

attrValuePtr = (KcsAttributeValue *)malloc(sizeof(KcsAttributeBase) +
sizeof(icXYZNumber));

attrValuePtr->base.type = icSigXYZArrayType;
attrValuePtr->base.countSupplied = 1;
status = KcsGetAttribute(profileid, icSigRedColorantTag, attrValuePtr);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“GetAttribute error: %s\n”, errDesc.desc);
KcsFreeProfile(profileid);
exit(1);

}

XYZval = (icXYZNumber *)attrValuePtr->val.icXYZ.data;
printf(“Red X=%f Y=%f Z=%f\n”, icfixed2double(XYZval->X, icSigS15Fixed16ArrayType),

Data Structures 45

EXAMPLE 3–1 KcsAttributeValue (Continued)

icfixed2double(XYZval->Y, icSigS15Fixed16ArrayType), icfixed2double(XYZval->Z,
icSigS15Fixed16ArrayType));

/* Green */
status = KcsGetAttribute(profileid, icSigGreenColorantTag, attrValuePtr);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“SetAttribute error: %s\n”, errDesc.desc);
KcsFreeProfile(profileid);
exit(1);

}

XYZval = (icXYZNumber *)attrValuePtr->val.icXYZ.data;
printf(“Green X=%f Y=%f Z=%f\n”, icfixed2double(XYZval->X, icSigS15Fixed16ArrayType),

icfixed2double(XYZval->Y, icSigS15Fixed16ArrayType), icfixed2double(XYZval->Z,
icSigS15Fixed16ArrayType));

/* Blue */
status = KcsGetAttribute(profileid, icSigBlueColorantTag, attrValuePtr);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“SetAttribute error: %s\n”, errDesc.desc);
KcsFreeProfile(profileid);
exit(1);

}

XYZval = (icXYZNumber *)attrValuePtr->val.icXYZ.data;
printf(“Blue X=%f Y=%f Z=%f\n”, icfixed2double(XYZval->X, icSigS15Fixed16ArrayType),

icfixed2double(XYZval->Y, icSigS15Fixed16ArrayType), icfixed2double(XYZval->Z,
icSigS15Fixed16ArrayType));

free(attrValuePtr);

If an attribute returns just one long value, use the following code fragment:

KcsAttributeValue myAttributeValue;
myAttributeValue.base.countSupplied = 1;

KcsGetAttribute(myProfile, myAttributeName, &myAttributeValue);

KcsAttrSpace
typedef enum {

KcsSpaceUnknown, /* Unknown* /
KcsRGB, /* RGB */
KcsPhotoCDYcc, /* Photo CD Ycc */
KcsUVLStar, /* uvL */
KcsCMY, /* CMY */
KcsCMYK, /* CMYK */
KcsRCS, /* RCS */
KcsGray, /* Gray scale*/

46 KCMS Application Developer’s Guide • December 2001

KcsCIEXYZ, /* CIEXYZ */
KcsCIELAB, /* CIELAB */
KcsCIELUV, /* CIELUV */
KcsLogExp, /* Log Exposure interchange space */
KcsAttrEnd,
KcsAttrSpaceMax = KcsForceAlign

}KcsAttrSpace;

KcsAttrSpace defines the inputSpace and outputSpace fields of the
KcsMeasurementBase structure. (See the format of this structure on
“KcsMeasurementBase ” on page 60.)

KcsCalibrationData
typedef struct KcsCalibrationData_s {

KcsMeasurementBase aBase;
union { /* Place holder */

long Pad;
} oBase;
union {

KcsMeasurementSample patch[KcsExtendableMeasSet];
} val;

} KcsCalibrationData;

KcsCalibrationData holds a set of data used by KcsUpdateProfile() to update
a profile that has been calibrated or, in the case of scanners, characterized. (For more
information on calibration and characterization, see “Characterizing and Calibrating
Profiles” on page 40. Also see the description of the KcsUpdateProfile() function
on “KcsUpdateProfile() ” on page 98.

The KcsCalibrationData structure contains aBase, oBase (currently not used)
and val.

The field aBase is a KcsMeasurementBase structure. It contains fields that apply to
all the calibration measurements.

The field val is a union that may contain a KcsMeasurementSample extendable
structure, or some other measurement structure that another CMM may require. The
KcsMeasurementSample structure is expected by the default KCMS CMM. (See the
detailed description of KcsMeasurementSample on “KcsMeasurementSample ”
on page 60.) When your application allocates memory for a KcsCalibrationData
structure, it must allocate sufficient memory to extend the KcsMeasurementSample
structure so that the structure can contain the number of measurements corresponding
to the field countSupplied in the KcsMeasurementBase structure. In addition, the
color space of these measurements must correspond to the enumerated values in the
inputSpace and outputSpace fields of the KcsMeasurementBase structure.
These spaces and the expected range of values for the measurements are defined in
Chapter 4.

Data Structures 47

KcsCallbackFunction
typedef KCS_CALLBK (KcsStatusId) (KCS_PTR KcsCallbackFunction)
(KcsProfileId profile,

unsigned long current,
unsigned long final,
KcsFunction callingFunc,

void KCS_PTR userDefinedData);

KcsCallbackFunction is the data type of one argument to KcsSetCallback(). It
is a pointer to a function returning KcsStatusId.

Note – The profile field is currently undefined.

A KcsCallbackFunction variable holds a pointer to a callback that your
application supplies. The C API does not supply it. The callback tells your application
how far certain lengthy operations (such as KcsEvaluate() and
KcsOptimizeProfile()) have progressed. If these operations are too slow, your
application can provide a way to terminate them. It can use K()csSetCallback()
for each function for which a callback is needed.

Example 3–2 demonstrates a callback to the potentially time-consuming
KcsOptimizeProfile() function. In the example, KcsSetCallback() sets
myCallbackFunc, a variable of type KcsCallbackFunction, as the callback that
KcsOptimizeProfile() calls. While executing, KcsOptimizeProfile()
periodically calls myCallbackFunc, passing it the following arguments:

� profile—a reference to the profile.

� current—an integer value that tells your application how many times (minus
one) KcsOptimizeProfile() has called myCallbackFunc(). The first time
myCallbackFunc is called, KcsOptimizeProfile() sets the value of current
to 0; the second time it sets current to 1, and so on.

� final—a positive integer that indicates the number of times (plus one)
myCallbackFunc will ultimately be called (assuming your application does not
cancel the operation before completion). Your application can set this argument if it
knows how many times it wants myCallbackFunc to be called. It should use
final to get a percent complete number or an indication of an endless loop. When
current = final, the optimization is terminated.

� callingFunc—the identity of the function currently executing.

� userDefinedData—a pointer that can be any user-definable item.

EXAMPLE 3–2 KcsCallbackFunction()

main()
{

KcsCallbackFunction myCallbackFunc;
...

48 KCMS Application Developer’s Guide • December 2001

EXAMPLE 3–2 KcsCallbackFunction() (Continued)

status=KcsSetCallback(KcsOptimizeFunc, myCallbackFunc,
userDefinedData);

status=KcsOptimizeProfile(profile, optimizationType, loadHint);
...

}

/* KcsOptimizeProfile will call myCallbackFunc periodically. This is a
* simple progress monitoring function; your own progress monitoring
* function will probably be far more sophisticated. */
KcsStatusId myCallbackFunc (KcsProfileId profile,

unsigned long current, unsigned long final,
KcsCallbackFunction CallingFunc, void* userDefinedData);

{
printf(“The call is %d percent complete.\n”, (current*100)/final);
return(KCS_SUCCESS);

}

If the application returns KCS_SUCCESS from the callback function, the API allows the
operation in progress to continue. If the callback function returns any other
KcsStatusId value, the operation terminates, returning the status value returned
from the callback function as its own status. The API provides a status value,
KCS_OPERATION_CANCELLED, that the callback function can use to indicate that the
operation was terminated by the user.

KcsCharacterizationData
typedef struct KcsCharacterizationData_s {

KcsMeasurementBase aBase;
union { /* Place holder */

long pad;
} oBase;
union {

KcsMeasurementSample patch[KcsExtendableArray];
} val;

} KcsCharacterizationData;

KcsUpdateProfile() uses data in KcsCharacterizationData to recharacterize
a profile. Note that monitor device profiles do not require a
KcsCharacterizationData structure to be recalibrated by the default KCMS
CMM, because the profiles use white-point and colorants. However, scanner device
profiles do require one. Another CMM may require that this structure be defined for
updating a monitor profile.

The field descriptions for this structure are the same as those for
KcsCalibrationData.

Data Structures 49

KcsColorSample
c
typedef enum {

KcsBlack,
KcsWhite,
KcsNeutral,
KcsFluorescent,
KcsChromatic,
KcsSampleTypeEnd = KcsForceAlign

} KcsColorSample;

KcsColorSample defines the sampleType field in KcsMeasurementSample. (For
the format of the KcsMeasurementSample structure, see
“KcsMeasurementSample ” on page 60.

KcsComponent
typedef struct KcsComponent_s {

char *addr;
KcsSampleType compType;
unsigned long compDepth;
long bitOffset;
long rowOffset;
long colOffset;
unsigned long maxRow;
unsigned long maxCol;
double rangeStart;
double rangeEnd;

} KcsComponent;

KcsComponent describes the data structure used in KcsPixelLayout for a channel
or component of color. There is one KcsComponent for each channel. For example,
three of these structures are required to describe RGB data; four are required to
describe CMYK data.

The addr field defines the actual memory address of the first pixel of the channel or
component.

The compType field defines the data type of a channel. For example, given RGB data
in which each of the 3 channels of the input data is represented as an unsigned 8-bit
number, your application specifies KcsCompUFixed with a component depth of 8.

The compDepth field specifies the number of bits used to represent the component.
With respect to memory layout, neither the range of values represented nor the data
encoding is relevant. The memory layout determines how the data is accessed.
Interpreting the data is a higher-level operation.

50 KCMS Application Developer’s Guide • December 2001

The bitOffset field, if set to 0, signifies that the component is byte-aligned. If it is
not set to 0, non-byte-based components are described. This allows, for example, a
5-5-5 RGB pixel encoding (that is, 5 bits for each channel).

The rowOffset field is the offset between the beginning of a component for one pixel
and the beginning of the same component for the pixel in the same column of the next
row. It is expressed in units of bits or, if compDepth is a multiple of 8, in bytes.

Similarly, the colOffset field is the offset between the beginning of a component for
one pixel and the beginning of the same component for the pixel in the next column of
the same row. The pixels need not be contiguous in memory. The offset is expressed in
units of bits or, if compDepth is a multiple of 8, in bytes.

The maxRow and maxCol fields specify the number of rows and columns to process. If
your application wants to apply the profile to the entire bitmap, it must specify the
number of rows and columns (y-size and x-size) of the entire bitmap.

The rangeStart and rangeEnd fields specify values representing minimum and
maximum intensities.

See “KcsPixelLayout ” on page 62 and Figure 3–1 for more information on how
component data is stored in memory.

KcsCreationDesc
typedef struct KcsCreationDesc_s {

KcsCreationType type;
KcsProfileDesc KCS_PTR profileDesc;
union {

struct id_f {
KcsIdent cmmId;
KcsIdent cmmVersionId;
KcsIdent profileId;
KcsIdent profileVersionId;

} id;
long pad[4]; /* maximum size of union */

} desc;

} KcsCreationDesc;

This structure is used as an argument to the KcsCreateProfile() function. It
contains all of the necessary information to describe the CMM and the profile format
used when creating the empty profile and the location of that profile.

type indicates which member of the desc union your application must use to create
the profile. This union is intended to be extendible for future use.

profileDesc is a pointer to a KcsProfileDesc structure describing the source
from which the profile is created. If this entry is NULL, the profile is created internally
and a KcsProfileDesc must be supplied to save the profile to an external store.

Data Structures 51

The members of the id structure are all 4-byte signatures that specify the identification
(cmmId) and version (cmmVersionId) of the CMM to be used. The members also
specify the identification (profileId) and version (profileVersionId) of profile
format to be used.

If the id structure field members are not available or are set to 0, the default profile
format and default CMM are used.

KcsCreationType
typedef enum {

KcsIdentifierSpec = 0x49640000, /* Id */
KcsCreationTypeEnd = 0x7FFFFFFF,
KcsCreationTypeMax = KcsForceAlign

} KcsCreationType

This enumerated type is used to indicate which member of the KcsCreationDesc
union to use in creating a profile.

KcsErrDesc
typedef struct KcsErrDesc_s {

KcsStatusId statId;
long sysErrNo;
char desc[256];

} KcsErrDesc;

KcsErrDesc contains useful information about an error.

The statId field contains the KcsStatusId. If the error was an I/O error, the
sysErrNo field of KcsErrDesc contains the error number returned by the operating
system. The desc field contains the description for the particular statId, for
example, “Internal Color Processor Error.” or “No description for this status id
number.”

KcsEvalSpeed
typedef long KcsEvalSpeed;

KcsEvalSpeed is a metric in KcsPixelLayoutSpeeds that estimates how fast a
CMM performs evaluations for a particular pixel layout on a standard machine for the
given platform. The metric is measured in pixels per second, where a pixel is
comprised of all channels of data. For example, a pixel is 24 bits for an 8-bit RGB and
32 bits for an 8-bit CMYK.

52 KCMS Application Developer’s Guide • December 2001

KcsFileId
typedef int KcsFileId;

KcsFileId is a field of the KcsProfileDesc data structure (see
“KcsProfileDesc” on page 66). It identifies an open file to read with
KcsLoadProfile(), or to write with KcsSaveProfile().

To get a KcsFileId, your application can use the open(2)() system call.

If the load hints specify anything other than KcsLoadNow, or if your application
intends to save the profile, the file associated with KcsFileId must be left open.

KcsFunction
typedef unsigned long KcsFunction;

KcsFunction is the data type of one argument in the signature of a callback function
(“KcsCallbackFunction” on page 48) and a data type of one argument in
KcsSetCallback(). A variable of this data type indicates the function currently
executing.

The bits in this integer have particular meanings, as listed in Table 3-1.

TABLE 3–1 KcsFunction Bit Constants

Definition Function

#define KcsEvalFunc (1<<0) KcsEvaluate()

#define KcsFreeFunc (1<<1) KcsFreeProfile()

#define KcsGetAttrFunc (1<<2) KcsGetAttribute()

#define KcsLoadFunc (1<<3) KcsLoadProfile()

#define KcsConnectFunc (1<<4) KcsConnectProfiles()

#define KcsOptFunc (1<<5) KcsOptimizeProfile()

#define KcsModLoadHintsFunc (1<<6) KcsModifyLoadHints()

#define KcsSaveFunc (1<<7) KcsSaveProfile()

#define KcsSetAttrFunc (1<<8) KcsSetAttribute()

Data Structures 53

TABLE 3–1 KcsFunction Bit Constants (Continued)
Definition Function

#define KcsUpdateFunc (1<<9) KcsUpdateProfile()

#define KcsCreateFunc (1<<10) KcsCreateProfile()

#define KcsAllFunc (0xFFFFFFFF)
All Function Calls

KcsIdent
typedef long KcsIdent;

KcsIdent is a type used throughout the “C” API. A KcsIdent variable holds
identifiers and version numbers used by the KCMS framework and CMMs. It is
typically encoded as 4 bytes in the readable ASCII range. For example, a KCMS CMM
might be identified by 0x4B434D53 (a long) or KCMS (a char). This is identical to the
ICC typedef icSig defined in the icc.h header file.

KcsLoadHints
typedef unsigned long KcsLoadHints;

KcsLoadHints is a data type of one argument in the following functions:

� KcsConnectProfiles()
� KcsCreateProfile()
� KcsOptimizeProfile()
� KcsLoadProfile()
� KcsModifyLoadHints()

KcsLoadHints gives the KCMS framework a hint as to how a profile’s allocated
resources should be managed. It lets the caller supply information to the KCMS
framework about what, how, when, and where to load and unload the profile. It
consists of a set of bit definitions that allow the application to supply more than one
option. KcsLoadHints also lets the application mix the operation hints and content
hints for greater flexibility.

Table 3–2 shows the bits positions (31–0) of an unsigned long representing
KcsLoadHints and KcsOperationType. See Table 3–3 for more information on the
bit mask values.

54 KCMS Application Developer’s Guide • December 2001

TABLE 3–2 Bit Positions and Masks for Load Hints

Load Hint Bit Position Bit Mask

OpForward 0 KcsMaskOp

OpReverse 1

OpSimulate 2

OpGamutTest 3

4 Reserved

5

6

7

8

9

HeapSys (1) / HeapApp (0) 10 KcsMaskLoadWhere

KcsAttributes 11 KcsMaskAttr

UnloadNow 12 KcsMaskUnloadWhen

UnloadWhenFreed 13

UnloadWhenNeeded 14

UnloadAfterUse 15

ContColorimetric 16 KcsMaskCont

ContImage 17

ContGraphics 18

19 Reserved

20

21

22

23

LoadNow(1) / LoadNever (0) 24 KcsMaskLoadWhen

LoadWhenNeeded 25

LoadWhenIdle 26

Data Structures 55

TABLE 3–2 Bit Positions and Masks for Load Hints (Continued)
Load Hint Bit Position Bit Mask

27 Reserved

28

29

30

StartOverWithThis 31 KcsMaskLogical

Table 3–3 lists the values for the load hint bit masks.

TABLE 3–3 Bit Mask Values for Load Hints

Load Hint Bit Masks Values Description

KcsMaskOp #define KcsOpForward (0x00000001)
#define KcsOpReverse (0x00000002)
#define KcsOpSimulate (0x00000004)
#define KcsOpGamutTest (0x00000008)

#define KcsOpAll (0x000003FF)

See “Operation Hint Constants”
on page 57.

KcsMaskEffect #define KcsEffect (0x00000200)

KcsMaskLoadWhere #define KcsHeapApp (0)

#define KcsHeapSys (0x00000400)

Load it into application heap.

Load it into system heap.

KcsMaskAttr #define KcsAttributes (0x00000800)
Load attributes.

KcsMaskUnloadWhen #define KcsUnloadNow (0x00001000)
#define KcsUnloadWhenFreed (0x00002000)
#define KcsUnloadWhenNeeded (0x00004000)

#define KcsUnloadAfterUse (0x00008000)

Unload it now.

Unload it during a call to
KcsFreeProfile().

Unload it when the CMM needs
the memory for something else.

Unload it just after the CMM
needs to reference it.

KcsMaskCont #define KcsContUnknown (0x00000000)
#define KcsContGraphics (0x00010000)
#define KcsContImage (0x00020000)
#define KcsContColorimetric (0x00040000)

#define KcsContAll (0x00FF0000)

See “Content Hint Constants”
on page 59.

56 KCMS Application Developer’s Guide • December 2001

TABLE 3–3 Bit Mask Values for Load Hints (Continued)
Load Hint Bit Masks Values Description

KcsMaskLoadWhen #define KcsLoadNever (0x00000000)
#define KcsLoadNow (0x01000000)
#define KcsLoadWhenNeeded (0x02000000)

#define KcsLoadWhenIdle (0x04000000)

Never load it.

Load it now.

Load it just before CMM needs to
reference it.

Load it when the system has a
free moment.

KcsMaskLogical #define KcsStartOverWithThis (0x10000000)
#define KcsAddToCurrentHints (0x00000000)

Get rid of the previous Hints and
start with this one.

Logically add this Hint with the
others already set.

Example 3–3 shows some combinations of the masks.

EXAMPLE 3–3 Load Hint Bit Mask Combinations

#define KcsLoadAllNow
(KcsAll|KcsLoadNow|KcsUnloadWhenFreed|KcsStartOverWithThis)
#define KcsLoadAllWhenNeeded
(KcsAll|KcsLoadWhenNeeded|KcsUnloadWhenFreed|KcsStartOverWithThis)
#define KcsLoadAttributesNow
(KcsAttributes|KcsLoadNow|KcsUnloadWhenFreed|KcsStartOverWithThis)
#define KcsLoadMinimalMemory
(KcsAll|KcsLoadWhenNeeded|KcsUnloadAfterUse|KcsStartOverWithThis)
#define KcsPurgeMemoryNow

(KcsAll|KcsLoadWhenNeeded|KcsUnloadNow|KcsStartOverWithThis)

Typically you might use two of these bit mask combinations:
KcsLoadAttributesNow and KcsLoadAllNow. KcsLoadAttributesNow loads
the profile attributes only. KcsLoadAllNow loads the entire profile (header, attributes,
and operations that can be performed on CCPs to transform color data).

Operation Hint Constants
Four operation hint constants describe the operations in Table 3–2 that can be performed
on CCPs to transform color data (are also referred to as transforms). These are

� forward
� reverse
� simulate
� gamut-test

Data Structures 57

Operations Performed

Ordinarily, an application transforms data in the forward direction, for example, from
a scanner to a printer. Your application can specify KcsOpForward to achieve this.

Your application also may be able to convert the data in the reverse direction, for
example, from a monitor to a scanner. To do this, it specifies KcsOpReverse. The
reverse direction can be useful if, for instance, you are given colors in the monitor
device color space and you want to transform the data back to the original scanner
color space.

KcsOpSimulate lets your application simulate the effect of running data through a
complete profile, but leaves it in the color space of the last device profile in the
connected sequence of profiles. For instance, suppose you have a CCP consisting of
scanner ⇒ printer ⇒ monitor profiles. Your application can use the CCP with the
simulate operation on monitor data to produce monitor data that simulates the result
of printing the data. For this to work, it must have connected a destination device to a
source ⇒ destination combination. In this situation, the scanner is the source device,
the printer is the first destination device, and the monitor is the connected destination
device.

Note – A typical color monitor can display colors that a printer cannot print. Similarly,
many printers are capable of printing colors that cannot be displayed on a color
monitor. KcsOpSimulate lets users preview what a graphic or image will look like
(approximately) when printed.

KcsOpGamutTest lets your application determine if each source color is in the gamut
of the destination device. The resulting image contains 0 for a pixel with in-gamut
color and FF for a pixel with out-of-gamut color.

Constraints When Using Operation Hints

Because of constraints in the CMM or in the specific profile, not all of the above
operations may be supported. Also, some CMMs may offer additional custom
operations. Your application can use KcsGetAttribute() and supply the
KcsAttrSupportedOperations attribute to determine which operations are
supported by a given profile.

Specifying any single or combination of operation load hints to the
KcsLoadProfile() function has no effect. KCMS equates this to KcsOpAll. When
the application calls KcsConnectProfiles(), KCMS automatically loads all the
transforms to support the full range of operations.

Your application cannot specify KcsOpAll as an argument to KcsEvaluate().

58 KCMS Application Developer’s Guide • December 2001

Content Hint Constants
The content hint constants let your application specify hints about what kind of data is
being processed. A CMM can use these hints to better convert the data as your
application requests. For instance, these hints may be used to adjust the
gamut-mapping technique (the approach used to map the colors falling outside a
device’s capability to colors that the device can produce).

The “C” API defines the following constants:

� KcsContImage describes photographic data, photorealistic data, or some 3-D
rendering schemes. In this kind of data, fine gradations of luminance and relative
color differences are important.

� KcsContGraphics describes computer-generated color data, which is likely to
have large flat regions of highly saturated colors. In graphics data, an attempt is
made to maintain the brightness and distinctness of the colors.

� KcsContColorimetric describes colors in terms of CIE specifications intended
to be reproduced without modification. This is important when specific spot colors
have been selected.

� KcsContUnknown describes color data content that is not known by the
application. The CMM provides a general default for this case.

Note – ICC content hints are called rendering hints. Currently, the following rendering
hints defined are:

icPerceptual = KcsContImage
icRelativeColorimetric = KcsContColormetric
icSaturation = KcsContGraphics

icAbsoluteColorimetric = <no equivalent>

If your application has input color data that matches more than one of these content
hints (for example, a complicated page layout), it can specify KcsContUnknown to
produce adequate results. For best results, your application may have to divide color
data into different parts (for example, separate graphics and images parts). After
dividing, your application can process each part separately, applying the appropriate
content hint to each part.

If your application specifies KcsContAll as an argument to
KcsConnectProfiles(), the resultant profile has the full range of content hints
available to it. If it does not, the resultant profile is restricted to the content hints
supplied by the function.

CMMs can define additional custom content hints, for example:

� To indicate what kind of output is being produced, such as a photograph or a
computer-generated graphic.

Data Structures 59

� To indicate that speed is more important than color image quality; therefore,
compromised color is acceptable.

KcsMeasurementBase
typedef struct KcsMeasurementBase_s {

unsigned long countSupplied;
KcsAttrSpace inputSpace;
KcsAttrSpace outputSpace;
unsigned long numInComp;
unsigned long numOutComp;
unsigned long pad;

} KcsMeasurementBase;

KcsMeasurementBase defines a common subset of information in the
KcsCharacterizationData and KcsCalibrationData structures. Nothing in
KcsMeasurementBase is extendable.

The countSupplied field represents the number of allocated color patches, or
samples in the measurement set.

The inputSpace and outputSpace fields represent the input and output color
spaces, respectively, for the measurement set.

The numInComp and numOutComp fields represent the number of input components
(such as 3 for RGB) and the number of output components, respectively.

KcsMeasurementSample
typedef struct KcsMeasurementSample_s {

float weight;
float standardDeviation;
KcsColorSample sampleType;
float input[KcsMaxSamples];
float output[KcsMaxSamples];

} KcsMeasurementSample;

KcsMeasurementSample holds a single measurement. Both the
KcsCalibrationData and the KcsCharacterization data structures contain
extendable arrays of KcsMeasurementSample structures. Each measurement has an
input, an output, a measurement weight, standard deviation and sample type. The
input and output color spaces are specified by fields in the KcsMeasurementBase
structure, which is part of both the KcsCalibration and KcsCharacterization
structures.

The weight field should contain a value greater than 0.0 and less than or equal to 1.0.
This is to provide information about the importance of this color measurement. The

60 KCMS Application Developer’s Guide • December 2001

KcsUpdateProfile() function may or may not use this field when performing the
steps needed to update the profile. Hence, it is to be considered a hint. The default
setting should be the value 1.0.

The standardDeviation field is used to record this value when the sample is the
result of statistical averaging of multiple measurements.

The sampleType field is used to indicate that a sample is from a black, white, neutral,
chromatic, or fluorescent color. The default value is chromatic.

To calibrate or characterize device profiles, the default KCMS CMM needs color
measurements that contain both input and output values. The input and output
fields hold the input and output values of a color measurement. For RGB monitors,
the input values are a series of RGB values and the output values are measured
luminants of the RGB value.

KcsMaxSamples equals 4, which allows up to four components of color to be stored
in a measurement, for example, a CMYK color value. However, a three-component
color value such as RGB or XYZ also can be stored. In such a case leave input[3] or
output[3] undefined.

KcsOperationType
typedef unsigned long KcsOperationType;

KcsOperationType specifies the set of operations possible on a profile and the
contents of the data on which the profile acts. It is an argument in these functions:

� KcsConnectProfiles()
� KcsOptimizeProfile()
� KcsEvaluate()

When used in KcsConnectProfiles() and KcsOptimizeProfile(),
KcsOperationType limits the range of operations in a profile, thereby potentially
speeding performance and reducing profile size. The operation hints and content hints
are assigned positions in the load hints that let the application limit what resources are
used from the initial loading of the profile.

When used in KcsEvaluate(), KcsOperationType indicates which kind of
evaluation operation to perform. In this case, the operation type can specify only one
operation; for example, your application cannot evaluate in the forward and simulate
directions at the same time.

To help your application set the operation hints and content hints, the “C” API
provides the following constants:

#define KcsOpForward (0x00000001)
#define KcsOpReverse (0x00000002)

Data Structures 61

#define KcsOpSimulate (0x00000004)
#define KcsOpGamutTest (0x00000008)
#define KcsOpAll (0x000003FF)
#define KcsContUnknown (0x00000000)
#define KcsContGraphics (0x00010000)
#define KcsContImage (0x00020000)
#define KcsContColorimetric (0x00040000)

#define KcsContAll (0x00FF0000)

KcsOptimizationType
typedef unsigned long KcsOptimizationType;

KcsOptimizationType is the data type of 1 of the arguments to the
KcsOptimizeProfile() function.

KcsOptimizationType indicates the types of optimization that should be
performed on a profile. It can have any of the following values, alone or in
combination. Note that these are only hints.

#define KcsOptNone (0)
#define KcsOptAccuracy (1<<0)
#define KcsOptSpeed (1<<1)

#define KcsOptSize (1<<2)

� KcsOptAccuracy—profile produces more accurate output colors when it is input
to the KcsEvaluate() function.

� KcsOptSpeed—profile runs faster when it is input to the KcsEvaluate()
function.

� KcsOptSize—profile uses as little space as possible.

KcsPixelLayout
typedef struct KcsPixelLayout_s {

unsigned long numbOfComp;
KcsComponent component[KcsExtendablePixelLayout];

} KcsPixelLayout;

The KcsPixelLayout structure describes both the source data buffer (the layout of
the data to be converted) and the destination data buffer (the receptacle of the
converted data) used by KcsEvaluate().

KcsPixelLayout describes a wide variety of pixel layouts in memory including:

� Component-interleaved data — Color components of a pixel (for example, the red,
green, and blue channels of an RGB image) are stored in consecutive memory
addresses. (This is also called pixel-interleaved data.) See Figure 3–1 for a detailed

62 KCMS Application Developer’s Guide • December 2001

diagram of this pixel layout.

� Row-interleaved data – Image data is stored by row and, within each row, by
sub-rows for each component.

� Planar or band-interleaved data – Image data is stored by component, allowing the
components to be stored in independently contiguous memory areas.

KcsPixelLayout can also hold palette color, or a colormap by allowing the application
to describe the palette instead of the data itself, as well as allowing the application to
describe a single pixel.

If an application stores its image data in a form that is not representable using the
KcsPixelLayout structure, the application must convert the data into one of the
representable forms before calling the KcsEvaluate() function.

The numbOfComp field specifies the number of components (channels). For example,
your application specifies the value 3 for RGB data or 4 for CMYK data.

The component field is an array of base type KcsComponent. It holds the
information needed to describe a component (see “KcsComponent ” on page 50 for
more information). The KcsExtendableArray constant equals 4 by default. For ease
of use, 4 was chosen because it can accommodate most applications, such as CMYK
and RGB. It holds the upper limit. Having the open-ended array at the end of the
structure allows your application to allocate a larger structure and to extend it past 4,
if needed.

Use the following definitions to index the array:

RGB #define KcsRGB_R 0
#define KcsRGB_G 1

#define KcsRGB_B 2

CMY[K] #define KcsCMYK_C 0
#define KcsCMYK_M 1
#define KcsCMYK_Y 2

#define KcsCMYK_K 3

YCC #define KcsYCbC_Y 0

#define KcsYCbC_Cb 1

#define KcsYCbC_Cy 2

XYZ #define KcsCIEXYZ_X 0
#define KcsCIEXYZ_Y 1

#define KcsCIEXYZ_Z 2

Data Structures 63

xyY #define KcsCIExyY_x 1
#define KcsCIExyY_y 2

#define KcsCIExyY_Y 0

CIEuvL #define KcsCIEuvL_u 1
#define KcsCIEuvL_v 2

#define KcsCIEuvL_L 0

CIEL*u*v #define KcsCIELuv_L 0
#define KcsCIELuv_u 1

#define KcsCIELuv_v 2

CIEL*a*b* #define KcsCIELab_L 0
#define KcsCIELab_a 1

#define KcsCIELab_b 2

HSV #define KcsHSV_H 0
#define KcsHSV_S 1

#define KcsHSV_V 2

HLS #define KcsHSV_H 0
#define KcsHSV_L 1

#define KcsHSV_S 2

GRAY #define KcsGRAY_K 0

Note – A color space profile (CSP) must exist to support each color space listed above.
See “Color Space Profile” on page 30 for a description of a CSP.

Two structures of type KcsPixelLayout are needed to describe the source data and
destination data. Source and destination structures can point to the same data. If the
CMM in use does not support this, or if there is some other mismatch between the
CMM and the layout structures, KcsEvaluate() returns
KCS_LAYOUT_UNSUPPORTED. For example, a CMM may not be able to support the
way the source data and the destination data overlap in memory.

Your application can use a pixel layout structure to define any rectangular region of a
larger image. Example 3–4 and Figure 3–1 illustrate the component-interleaved, 3-by-7
pixel layout supported in the API.

Example 3–4 uses pseudo-code to show how the pixel layout structure fields are set
up.

64 KCMS Application Developer’s Guide • December 2001

EXAMPLE 3–4 Component-Interleaved, 3-by-7 Layout

{
numberOfComponents = 3 (Red, Green, and Blue)
{
component[KcsRGB_R].compType = KcsCompUFixed
component[KcsRGB_R].compDepth = 8 (bits per component)
component[KcsRGB_R].colOffset = 4 (bytes)
component[KcsRGB_R].rowOffset = 12 (bytes)
component[KcsRGB_R].maxRow = 7 (pixels)
component[KcsRGB_R].maxCol = 3 (pixels)
component[KcsRGB_R].bitOffset = 0 (components are byte-aligned)
component[KcsRGB_R].addr = (address of red channel)

component[KcsRGB_G].compType = KcsCompUFixed
component[KcsRGB_G].compDepth = 8 (bits per component)
component[KcsRGB_G].colOffset = 4 (bytes)
component[KcsRGB_G].rowOffset = 12 (bytes)
component[KcsRGB_G].maxRow = 7 (pixels)
component[KcsRGB_G].maxCol = 3 (pixels)
component[KcsRGB_G].bitOffset = 0 (components are byte-aligned)
component[KcsRGB_G].addr = (address of green channel)

component[KcsRGB_B].compType = KcsCompUFixed
component[KcsRGB_B].compDepth = 8 (bits per component)
component[KcsRGB_B].colOffset = 4 (bytes)
component[KcsRGB_B].rowOffset = 12 (bytes)
component[KcsRGB_B].maxRow = 7 (pixels)
component[KcsRGB_B].maxCol = 3 (pixels)
component[KcsRGB_B].bitOffset = 0 (components are byte-aligned
component[KcsRGB_B].addr = (address of blue channel)
}

Data Structures 65

EXAMPLE 3–4 Component-Interleaved, 3-by-7 Layout (Continued)

}

FIGURE 3–1 24–bit Color Component-Interleaved Data for RGB Pixel Image

KcsPixelLayoutSpeeds
typedef struct KcsPixelLayoutSpeeds_s {

KcsPixelLayout supportedLayout;
KcsEvalSpeed speed;

}KcsPixelLayoutSpeeds;

KcsPixelLayoutSpeeds, used in the KcsAttributeValue structure, defines the
relationship between a CMM’s support of a pixel layout and how efficiently it uses
that layout. Some CMMs are optimized for certain layouts. This allows the application
to maximize a CMM’s performance based on the information returned by
KcsPixelLayoutSpeeds.

KcsProfileDesc
typedef struct KcsProfileDesc_s {

KcsProfileType type;
union {

struct file_f {
long offset; /* Offset into the file */
KcsFileId openFileId; /* File descriptor */

} file;
struct memPtr_f {

void *memPtr; /* Pointer to start of memory */
long offset; /* Offset to the profile */
long size; /* Size of the profile */

66 KCMS Application Developer’s Guide • December 2001

} memPtr;
#ifdef KCS_ON_SOLARIS

struct solarisFile_f {
char *fileName; /* Name of the file */
char *hostName; /* Host name */
int oflag; /* How to open it, see open(2) */
mode_t mode; /* This is a u_long, see open(2) */

} solarisFile;
struct xWindow_f {

Display *dpy; /* Display pointer */
int screen; /* Screen number */
Visual *visual; /* Pointer to windows visual */
long reserved; /* Reserved for KCMS internal use */

} xwin;
#endif KCS_ON_SOLARIS

long pad[4]; /* Maximum size of union */
} desc;

} KcsProfileDesc;

KcsProfileDesc is a data structure that describes a profile and the kind of
mechanism in which to load and save that profile. The mechanism is platform
independent. A profile can reside in the file system, on a remote network device, in a
piece of hardware or its device driver, in a contiguous piece of memory, and so on.
KcsProfileDesc is a union to minimize space and to allow for future flexibility.
Thus, the actual definition can be augmented to provide additional locations where a
profile may reside in the system.

The types of profiles supported by each type are summarized below. See
“KcsProfileType ” on page 69 for more information on these profiles.

KcsFileProfile

The calling application opens the file and passes the KCMS framework a KcsFileId,
openFileId, and an offset from the start of the file to the start of the profile data.
This profile type is most likely used for profiles embedded in other files, such as TIFF.

KcsMemoryProfile

The calling application has loaded the profile into program memory. The offset
value determines where the profile data starts relative to memPtr. The size value is
the profile’s size in bytes.

Data Structures 67

KcsSolarisProfile

The calling application supplies the name of a file, fileName, and its location,
hostName. The KcsSolarisProfile loadable module searches for the name
supplied in fileName. It searches the following directories in the order listed:

1. The current directory

2. Directories listed by the KCMS_PROFILES environment variable, which is a
colon-separated list of directories

3. /etc/openwin/devdata/profiles

4. /usr/openwin/etc/devdata/profiles

If hostName is non-NULL, the KcsSolarisProfile loadable module first checks if
the name supplied is the name of the current machine. If it is not the the current
machine’s name, the KcsSolarisProfile loadable module opens a connection to
the RPC daemon, kcms_server(1)() and tries to locate the profile on a remote
machine. The RPC daemon searches only in the last two directories for the profile (#3
and #4), and only reads remote profiles.

The application does not need to supply the full name of the file; the
KcsSolarisProfile loadable module automatically adds the following suffixes.

.mon Monitor

.spc Color space

.inp Input (scanner)

.out Output (printer)

KcsWindowProfile
The calling application supplies X11 Window System information and then the
KcsWindowProfile loadable module matches a corresponding profile with the
Display*, screen number, and Visual*.

Remote display capabilities are handled using the RPC daemon kcms_server(1)().
The location and name of the host is derived from the X11 display pointer. Remote
profiles have read-only permissions.

KcsProfileId
typedef long KcsProfileId;

68 KCMS Application Developer’s Guide • December 2001

KcsProfileId is a data type used in all API functions, except KcsSetCallback().
A KcsProfileId variable identifies a particular loaded profile in the KCMS
framework. It is an opaque data type. Your application should not manipulate this
variable directly, because the results of doing so are unpredictable. The
KcsLoadProfile() and KcsConnectProfile() functions return a
KcsProfileId.

KcsProfileType
typedef enum {

KcsFileProfile = 0x46696C65, /* File */
KcsMemoryProfile = 0x4D426C00, /* MBl */

#ifdef KCS_ON_SOLARIS
KcsWindowProfile = 0x7877696E, /* xwin */
KcsSolarisProfile = 0x736F6C66, /* solf */

#else
KcsWindowProfile = 0x57696E64, /* Wind */

#endif KCS_ON_SOLARIS
KcsProfileTypeEnd = 0x7FFFFFFF,
KcsProfileTypeMax = KcsForceAlign

} KcsProfileType;

Each KcsProfileType entry is a 4-byte hexadecimal value that is translated into a
4-byte ASCII string. This string is used as a key to determine which KCMS CMM
module to use when loading or saving the profile into KCMS.

KcsFileProfile and KcsMemoryProfile are always included with KCMS.
KcsSolarisProfile and KcsWindowProfile are dynamically loaded when
needed.

See “KcsProfileDesc” on page 66 for details on using each type.

The type of color measurements depends on the specific device type. The default
KCMS CMM supports scanner and monitor profile updates. For each of these devices,
the color measurements are different. See Chapter 4 for a complete specification of the
measurements passed to KcsUpdateProfile() for each device type.

KcsSampleType
typedef unsigned long KcsSampleType;

KcsSampleType is the data type of a field in the KcsComponent structure. It is an
enumerated constant with any of the values shown in Table 3–4. A variable of type
KcsSampleType holds the data type of samples of each color channel.

Data Structures 69

The “C” API uses the KcsSampleType value with the compDepth field of
KcsComponent. The compDepth field specifies the number of bits for each channel.
For example, an RGB color space has three channels. If each represents its color in 8
fixed-point bits, the value of KcsSampleType is KcsCompUFixed.

TABLE 3–4 KcsSampleType Constants

Enumerated Constant Data Type of Channel

#define KcsCompFixed 1 Signed fixed-point sample

#define KcsCompUFixed 2 Unsigned fixed-point sample

#define KcsCompFloat 3 Floating point

#define KcsCompName 4 A named color space component

KcsStatusId
Every function in the “C” API returns a status code that indicates success or the reason
for failure. A status code is an error or warning message. The KcsStatusId
enumerated type is a list of all available status codes. KcsStatusId is defined in
kcsstats.h.

See Chapter 6, for a complete list of all the enumerated constants and their meanings.

70 KCMS Application Developer’s Guide • December 2001

CHAPTER 4

Functions

In This Chapter
This chapter describes in detail each “C” API function you can use in applications. It
describes each function’s signature, use, arguments, and return values. For several
functions, the chapter provides code examples. The functions are defined in the kcs.h
header file and are presented in alphabetical order.

All constants, definitions, macros, and data types are defined in Chapter 3, Chapter 5,
and in the ICC profile format specification. By default, the ICC specification is located
on-line in the SUNWsdk/kcms/doc directory. For the latest version of the
specification, see the web site at http://www.color.org.

These API functions support error and warning messages returned by the operating
system. See Chapter 6, for all error and warning messages returned by these functions.

KcsAvailable()
KcsStatusId

KcsAvailable(long *response)

Purpose
The KcsAvailable() function determines if the KCMS framework has been
installed on the system. This function is provided primarily for cross-platform
compatibility.

71

Arguments
TABLE 4–1 KcsAvailable() Arguments

Argument Description

response A pointer to a long for temporary use in the
KcsAvailable() function.

Returns
TABLE 4–2 KcsAvailable() Return Strings

KCS_SUCCESS

KCS_SUCCESS is always returned in the Solaris environment.

KcsConnectProfiles()
KcsStatusId
KcsConnectProfiles(KcsProfileId *resultProfileId,

unsigned long profileCount,
KcsProfileId *profileSequence,
KcsOperationType operationLoadSet,

unsigned long *failedProfileIndex)

Purpose
Use KcsConnectProfiles() to combine several existing profiles into a new
complete profile, or to restrict the functionality of a single existing profile to make it
more efficient.

If KcsConnectProfiles() returns successfully, it generates a new profile from the
sequence of existing profiles. The reference (profile Id) to this new profile is stored in
the resultProfileId argument. With this reference, you can free the resources of
the existing profiles in profileSequence if they are no longer required. Use
KcsFreeProfile() to release the resources.

72 KCMS Application Developer’s Guide • December 2001

Note – If you have minimized a profile’s load operation or state with
operationLoadSet or with KcsOptimizeProfile()
(“KcsOptimizeProfile()” on page 89), only that load operation or state is saved
with KcsSaveProfile(). Therefore, operations not included in the profile are not
available the next time the profile is loaded.

If the last profile in a sequence to be connected includes a gamut transform, the
operation hint KcsOpGamutTest (see “Operation Hint Constants” on page 57) may
be requested for that profile. The result of KcsEvaluate() with this gamut hint is a
bit map image that contains 1 bit for each pixel in the original image. In the bit map, 0
means the color is in the gamut of the device requested by the final profile, and FF
means the color is out of gamut (that is, the color cannot be represented by the device).

Arguments
TABLE 4–3 KcsConnectProfiles() Arguments

Argument Description

resultProfileId The identifier of the profile returned if this function executes successfully.

profileCount The number of profiles to be connected.

profileSequence An array of the Ids of the profiles to be connected.

operationLoadSet One or more flags symbolizing the kind of information in the resultant
profile. It also describes what, how, when, and where to load and unload
the resulting resultProfileId. See “KcsLoadHints ” on page 54 for
more information.

failedProfileIndex KcsConnectProfiles() returns an integer in failedProfileIndex.
This value has meaning only when KcsConnectProfiles() returns a
value other than KCS_SUCCESS. If the function fails, this index helps you
identify which input profile caused the failure. If the index = 0, the first
profile in profileSequence failed; if index = 1, the second profile in
profileSequence failed, and so on. A common problem when making
the resultant profile is that the profiles specified in profileSequence
could not be connected. In this case, the index returns an integer
symbolizing the latter profile in a failed connection pair. For example, if
the first profile and second profile in the sequence were mismatched, the
index contains 1 (for the second profile).

Functions 73

Returns
TABLE 4–4 KcsConnectProfiles() Return Strings

KCS_SUCCESS

KCS_PROF_ID_BAD

KCS_MEM_ALLOC_ERROR

KCS_CONNECT_PRECISION_UNACCEPTABLE

KCS_MISMATCHED_COLORSPACES

KCS_CONNECT_OPT_FORCED_DATA_LOSS

Example
EXAMPLE 4–1 KcsConnectProfiles()

KcsProfileDesc scannerDesc, monitorDesc, completeDesc;
KcsProfileId scannerProfile, monitorProfile;
KcsProfileId profileSequence[2], completeProfile;
KcsStatusId status;
KcsErrDesc errDesc;
u_long failedProfileNum;
KcsOperationType=(KcsOpForward+KcsContImage);
/*file names input a program arguments */

scannerDesc.type = KcsSolarisProfile;
scannerDesc.desc.solarisFile.fileName = argv[1];
scannerDesc.desc.solarisFile.hostName = NULL;
scannerDesc.desc.solarisFile.oflag = O_RDONLY;
scannerDesc.desc.solarisFile.mode = 0;

monitorDesc.type = KcsSolarisProfile;
monitorDesc.desc.solarisFile.fileName = argv[2];
monitorDesc.desc.solarisFile.hostName = NULL;
monitorDesc.desc.solarisFile.oflag = O_RDONLY;
monitorDesc.desc.solarisFile.mode = 0;

status = KcsLoadProfile(&scannerProfile, &scannerDesc, KcsLoadAllNow);

if(status != KCS_SUCCESS) {
KcsGetLastError(&errDesc);
printf(“Scanner LoadProfile error: %s\n”, errDesc.desc);
exit(1);

}

status = KcsLoadProfile(&monitorProfile, &monitorDesc, KcsLoadAllNow);

if(status != KCS_SUCCESS) {
KcsGetLastError(&errDesc);

74 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–1 KcsConnectProfiles() (Continued)

printf(“Monitor LoadProfile error: %s\n”, errDesc.desc);
exit(1);

}

/* See if we can combine them */
profileSequence[0] = scannerProfile;
profileSequence[1] = monitorProfile;

status = KcsConnectProfiles(&completeProfile, 2, profileSequence, op,
&failedProfileNum);

if(status != KCS_SUCCESS) {
KcsGetLastError(&errDesc);
printf(“ConnectProfile error: %s\n”, errDesc.desc);
fprintf(stderr, “Failed in profile number %d\n”, failedProfileNum);
exit(1);

}

KcsCreateProfile()
KcsStatusId
KcsCreateProfile(KcsProfileId *resultProfileId,

KcsCreationDesc *desc)

Purpose
Use KcsCreateProfile() to create an empty profile. The profile will contain
neither attributes nor CMM-specific data.

Note – Currently, your application cannot call KcsGetAttribute() for a list of the
installed and available CMMs. The workaround is to load all available profiles and
call K()csGetAttribute() for each individual CMM type.

Arguments
TABLE 4–5 KcsCreateProfile() Arguments

Argument Description

resultProfileId The reference to the resultant profile, returned if the function executes successfully.

Functions 75

TABLE 4–5 KcsCreateProfile() Arguments (Continued)
Argument Description

desc This is a pointer to a KcsCreationDesc (see “KcsCreationDesc ” on page 51)
structure that describes the static store used to save the profile and an extendable
union of profile information used to create the profile. The id member of the union
describes which CMM and version to use, and the profile format and version to use.

If desc is NULL the default CMM and profile format are used.

Returns
TABLE 4–6 KcsCreateProfile() Return Strings

KCS_SUCCESS

KCS_MEM_ALLOC_ERROR

Example
EXAMPLE 4–2 KcsCreateProfile()

KcsProfileDesc desc;
KcsCreationDesc c_desc;
KcsProfileId profileid;
KcsStatusId status;
KcsErrDesc errDesc;
/* The filename is a command line argument */
/* Create a new profile with the default CMM */

desc.type = KcsSolarisProfile;
desc.desc.solarisFile.fileName = argv[1];
desc.desc.solarisFile.hostName = NULL;
desc.desc.solarisFile.oflag = O_RDWR|O_CREAT|O_TRUNC;
desc.desc.solarisFile.mode = 0666;
c_desc.profileDesc = &desc;
c_desc.desc.id.cmmId = 0;
c_desc.desc.id.cmmVersionId = 0;
c_desc.desc.id.profileId = 0;
c_desc.desc.id.profileVersionId = 0;
status = KcsCreateProfile(&profileid, &c_desc);
if(status != KCS_SUCCESS) {

KcsGetLastError(&errDesc);
printf(“CreateProfile error: %s\n”, errDesc.desc);

}

76 KCMS Application Developer’s Guide • December 2001

Note – Other required fields in the profile must be set with KcsSetAttribute().

KcsEvaluate()
KcsStatusId
KcsEvaluate(

KcsProfileId profile,
KcsOperationType operation,
KcsPixelLayout *srcData,

KcsPixelLayout *destData)

Purpose
Use KcsEvaluate() to apply a color profile to input color data to produce
color-corrected output data.

See “KcsPixelLayout ” on page 62 for more information about using pixel layouts
in this context.

Arguments
TABLE 4–7 KcsEvaluate() Arguments

Argument Description

profile The identifier of the profile to be applied to the input data. (If the operation specified when the
profile was created in KcsConnectProfiles() does not match the operation specified in
KcsEvaluate(), the status string KCS_EVAL_ONLY_ONE_OP_ALLOWED is returned. If, for
example, your application wants to evaluate forward (specifies KcsOpForward in
KcsEvaluate()) with a profile it creates with KcsConnectProfiles() to simulate (uses
KcsOpSimulate in KcsConnectProfiles()), this particular status string would be returned.

operation The kind of data to be operated on, and the kind of profile evaluation to be performed on, the data.
(See “Operation Hint Constants” on page 57 and “Content Hint Constants” on page 59 more
information.) Note that only 1 bit can be set for KcsEvaluate().

srcData The description of the source color data to be transformed by the profile.

destData The description of the area (the destination) to which the transformed data is written.

Functions 77

Returns
TABLE 4–8 KcsEvaluate() Return Strings

KCS_SUCCESS

KCS_OPERATION_CANCELLED

KCS_PROF_ID_BAD

KCS_MEM_ALLOC_ERROR

KCS_EVAL_ONLY_ONE_OP_ALLOWED

KCS_EVAL_TOO_MANY_CHANNELS

KCS_EVAL_BUFFER_OVERFLOW

KCS_LAYOUT_INVALID

KCS_LAYOUT_UNSUPPORTED

KCS_LAYOUT_MISMATCH

Example
EXAMPLE 4–3 KcsEvaluate()

int op;
KcsPixelLayout pixelLayoutIn, pixelLayoutOut;
KcsProfileId scannerProfile, monitorProfile;
KcsProfileId profileSequence[2], completeProfile;

/* Load and connect profiles. */
/* Load input and output pixel layout structures with appropriate data. */

status = KcsEvaluate(completeProfile, op, &pixelLayoutIn,

&pixelLayoutOut);

KcsFreeProfile()
KcsStatusId
KcsFreeProfile(

KcsProfileId profile)

Purpose
Use KcsFreeProfile() to release all resources a loaded profile is using. A loaded
profile uses memory and additional types of resources.

78 KCMS Application Developer’s Guide • December 2001

The KCMS framework does not automatically save profile changes when your
application terminates. To save profile changes, your application must call
KcsSaveProfile().

Note – If the application passes a KcsFileProfile type of KcsProfileDesc as an
argument, KcsFreeProfile() does not close the KcsFileId contained in the file
entry of the KcsProfileDesc union.

Arguments
TABLE 4–9 KcsFreeProfile() Arguments

Argument Description

profile The identifier of a loaded profile.

Returns
TABLE 4–10 KcsConnectProfiles() Return Strings

KCS_SUCCESS

KCS_PROF_ID_BAD

Example
EXAMPLE 4–4 KcsFreeProfile()

KcsProfileId profile;

/* Complete all processing. */

KcsFreeProfile(profile);

KcsGetAttribute()
KcsStatusId
KcsGetAttribute(KcsProfileId profile, KcsAttributeName name,

KcsAttributeValue *value)

Functions 79

Purpose
Use KcsGetAttribute() to find the value of a particular attribute of the given
profile. (See Chapter 5 for more information on attributes.)

Arguments
TABLE 4–11 KcsGetAttribute() Arguments

Argument Description

profile The identifier of the loaded profile.

name The attribute name. See “List of All Attributes” on page 112 for the names of all the attributes
KCMS allows your application to specify in a call to this function.

value A pointer to the structure to hold the value of the profile’s attribute. Your application needs to set
the countSupplied field in the value argument. If your application does not set it, the warning
KCS_ATTR_LARGE_CT_SUPPLIED or the error KCS_ATTR_CT_ZERO_OR_NEG may be returned.

Returns
TABLE 4–12 KcsGetAttribute() Return Strings

KCS_SUCCESS

KCS_PROF_ID_BAD

KCS_ATTR_NAME_OUT_OF_RANGE

KCS_ATTR_CT_ZERO_OR_NEG

KCS_ATTR_LARGE_CT_SUPPLIED (warning)

Example
EXAMPLE 4–5 KcsGetAttribute()

#include “./kcms_utils.h”

KcsProfileId profileid;
KcsAttributeValue *attrValue;
int size;
void print_header(icHeader *hdr);

size = sizeof(KcsAttributeBase) + sizeof(icHeader);
attrValue = (KcsAttributeValue *)malloc(size);

/* Get the header */

80 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–5 KcsGetAttribute() (Continued)

attrValue->base.type = icSigHeaderType;
attrValue->base.sizeOfType = sizeof(icHeader);
attrValue->base.countSupplied = 1;
KcsGetAttribute(profileid, icSigHeaderTag, attrValue);
...
print_header(&attrValue->val.icHeader);
...

void
print_header(icHeader *hdr)
{

char charstring[5];

printf(“Size in bytes = %d\n”, hdr->size);
printf(“CMM Id = 0x%x\n”, hdr->cmmId);
printf(“Major version number = 0x%x\n”, hdr->version>>24);
printf(“Minor version number = 0x%x\n”, (hdr->version&0x00FF0000)>>16);

switch(hdr->deviceClass) {
case icSigInputClass :

printf(“deviceClass = input\n”);
break;

case icSigDisplayClass :
printf(“deviceClass = display\n”);
break;

case icSigOutputClass :
printf(“deviceClass = output\n”);
break;

case icSigLinkClass :
printf(“deviceClass = link\n”);
break;

case icSigAbstractClass :
printf(“deviceClass = abstract\n”);
break;

case icSigColorSpaceClass :
printf(“deviceClass = colorspace\n”);
break;

default :
printf(“Unknown\n”);
break;

}

memset(charstring, 0 ,5);
memcpy(charstring, &hdr->colorSpace, 4);
printf(“colorspace = %s\n”, charstring);

memset(charstring, 0 ,5);
memcpy(charstring, &hdr->pcs, 4);
printf(“profile connection space = %s\n”, charstring);

printf(“date = %d/%d/%d, “, hdr->date.day,hdr->date.month,

Functions 81

EXAMPLE 4–5 KcsGetAttribute() (Continued)

hdr->date.year);
printf(“time = %d:%d:%d\n”, hdr->date.hours,hdr->date.minutes,

hdr->date.seconds);

memset(charstring, 0 ,5);
memcpy(charstring, &hdr->magic, 4);
printf(“magic number = %s\n”, charstring);

switch(hdr->platform) {
case icSigMacintosh :

printf(“platform = Macintosh\n”);
break;

case icSigMicrosoft :
printf(“platform = Microsoft\n”);
break;

case icSigSolaris :
printf(“platform = Solaris\n”);
break;

case icSigSGI :
printf(“platform = SGI\n”);
break;

case icSigTaligent :
printf(“platform = Taligent\n”);
break;

default :
printf(“Unknown\n”);
break;

}

if(hdr->flags && icEmbeddedProfileTrue)
printf(“Embedded profile.\n”);

else
printf(“Non-embedded profile\n”);

if(hdr->flags && icUseWithEmbeddedDataOnly)
printf(“If this profile is embedded, it is not allowed to strip

it out and use it independently.\n”);
else

printf(“OK to strip embedded profile out and use> > # end of Para

KcsGetLastError()
KcsStatusId

KcsGetLastError (KcsErrDesc *errDesc)

82 KCMS Application Developer’s Guide • December 2001

Purpose
Use KcsGetLastError() to find information about the most recent error.

Arguments
TABLE 4–13 KcsGetLastError() Arguments

Argument Description

errDesc A pointer to the structure holding information about the last error.

If an operating-system-defined error occurs, the sysErrNo field is set.

The desc field contains the description of the particular statId. This is either a string in Table
6–1 or Table 6–2, or the literal string “Internal Color Processor Error” or “No description for this
status id number”. See “Localizing Status Messages” on page 140, in Chapter 6, for information on
using KcsGetLastError() to localize KcsStatusId.

Returns
TABLE 4–14 KcsGetLastError() Return Strings

KCS_SUCCESS

Example
EXAMPLE 4–6 KcsGetLastError()

KcsErrDesc errDesc;

status = KcsLoadProfile(&profile, &profileDesc,
KcsLoadAttributesNow);

if (status != KCS_SUCCESS) {
status = KcsGetLastError(&errDesc);
fprintf(stderr,”%s KcsLoadProfile failed error = %s\n”,

errDesc.desc);
exit(1);

}

KcsLoadProfile()
KcsStatusId
KcsLoadProfile(KcsProfileId *profile,

KcsProfileDesc *desc, KcsLoadHints loadHints)

Functions 83

Purpose
Use KcsLoadProfile() to load a profile and all of its resources into the system.

The function uses desc to determine where to get the data to generate the profile’s
resources in the system. (See “KcsProfileDesc” on page 66 for an in-depth
description of KcsProfileDesc.) It uses profile to return a reference to the
loaded profile. This reference is needed by other API functions.

Your application can determine the length of the data read from the file by calling
KcsGetAttribute() and supplying the icHeader attribute. The value of size in
the icHeader structure is the size of the profile. (For the format of the icHeader
structure, see “icHeader ” on page 133.)

With the loadHints argument, KcsLoadProfile() allows the application to
suggest how the KCMS framework manages the memory and other resources
associated with a loaded profile. Although this is a flexible mechanism, these caveats
apply:

� The load hints are merely hints, which means the KCMS framework can ignore
them. However, because the functionality of various CMMs loaded by the KCMS
framework cannot always be determined, your application should supply the load
hints anyway. Furthermore, even if a CMM loaded by the KCMS framework does
not support a particular load hint in its current release, it may support it in future
releases.

� If the application supplies a hint that indicates that the profile is to be loaded at a
time other than now, it must keep the described mechanism open to allow for data
access at a future and somewhat arbitrary time. For example, if the application
specifies KcsLoadWhenNecessary and the desc argument describes a file, and
the application uses a KcsFileId, it cannot close the file until it first frees the
profile. This allows the KCMS framework to read any necessary data to load the
profile at any time.

Note – If you use the KcsFileId entry in the file part of the KcsProfileDesc
union, KcsFileId marks the current position within an open file. After a call to
KcsLoadProfile(), the current position is undefined. The application must reset
the pointer before doing any other I/O.

After your application is finished with the profile, it should call KcsFreeProfile()
to release the resources allocated by the profile.

84 KCMS Application Developer’s Guide • December 2001

Arguments
TABLE 4–15 KcsLoadProfile() Arguments

Argument Description

profile The identifier of the profile returned after the profile is loaded into memory. This value serves as
an argument to all other functions, such as KcsEvaluate().

desc The location of the profile’s static storage, needed to obtain the data required to generate the
profile’s resources. It is specified as a union of independent static storage mechanisms. The
KcsProfileDesc structure (see “KcsProfileDesc” on page 66) has a field that identifies which
storage mechanism to use.

loadHints The set of bits describing what, how, when, and where to load and unload profile. See
“KcsLoadHints ” on page 54 for information on the KcsLoadHints data type. Also see
“Operation Hint Constants” on page 57 for constraints on the operations your application can
specify to this function.

Returns
TABLE 4–16 KcsConnectProfiles() Return Strings

KCS_SUCCESS

KCS_MEM_ALLOC_ERROR

KCS_IO_READ_ERR

KCS_IO_SEEK_ERR

KCS_SOLARIS_FILE_NOT_OPENED

KCS_SOLARIS_FILE_RO

KCS_SOLARIS_FILE_LOCKED

KCS_SOLARIS_FILE_NAME_NULL

KCS_X11_DATA_NULL

KCS_X11_PROFILE_NOT_LOADED

KCS_X11_PROFILE_RO

Example
EXAMPLE 4–7 KcsLoadProfile()

KcsFileId scannerFd, monitorFd, completeFd;
KcsProfileDesc scannerDesc, monitorDesc, completeDesc;
KcsProfileId scannerProfile, monitorProfile;

Functions 85

EXAMPLE 4–7 KcsLoadProfile() (Continued)

KcsProfileId profileSequence[2], completeProfile;
KcsStatusId status;
KcsAttributeValue attrValue;
KcsAttributeName i;
KcsOperationType op = (KcsOpForward+KcsContImage);
u_long failedProfileNum;
extern void kcs_timer(int);

if (argc > 4) {
fprintf(stderr,”Usage : kcstest profile_1 profile_2 [save_profile]\n”);
exit(1);
}

#ifdef FILE_DESC
/* Open up the files from disk */
scannerDesc.type = KcsFileProfile;
scannerFd = open(argv[1], O_RDONLY);
if (scannerFd == -1) {
perror(“Failed to open scanner profile”);
exit(1);
}
scannerDesc.desc.file.openFileId = scannerFd;
scannerDesc.desc.file.offset = 0;

monitorDesc.type = KcsFileProfile;
monitorFd = open(argv[2], O_RDONLY);
if (monitorFd == -1) {
perror(“Failed to open monitor profile”);
exit(1);
}
monitorDesc.desc.file.openFileId = monitorFd;
monitorDesc.desc.file.offset = 0;

#endif

#ifdef FILE_NAME
scannerDesc.type = KcsSolarisProfile;
scannerDesc.desc.solarisFile.fileName = argv[1];
scannerDesc.desc.solarisFile.hostName = NULL;
scannerDesc.desc.solarisFile.oflag = O_RDONLY;
scannerDesc.desc.solarisFile.mode = 0;

monitorDesc.type = KcsSolarisProfile;
monitorDesc.desc.solarisFile.fileName = argv[2];
monitorDesc.desc.solarisFile.hostName = NULL;
monitorDesc.desc.solarisFile.oflag = O_RDONLY;
monitorDesc.desc.solarisFile.mode = 0;

#endif

/* Load the profiles */
printf(“Load scanner profile\n”);
kcs_timer(START);
status = KcsLoadProfile(&scannerProfile, &scannerDesc, KcsLoadAllNow);

86 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–7 KcsLoadProfile() (Continued)

kcs_timer(STOP);
if (status != KCS_SUCCESS) {
fprintf(stderr,”Scanner KcsLoadProfile failed error = 0x%x\n”, status);

#ifdef FILE_DESC
close(scannerFd);
close(monitorFd);

#endif
exit(1);
}

printf(“Load monitor profile\n”);
kcs_timer(START);
status = KcsLoadProfile(&monitorProfile, &monitorDesc, KcsLoadAllNow);
kcs_timer(STOP);
if (status != KCS_SUCCESS) {
fprintf(stderr,”MonitoKcsLoadProfile failed error = 0x%x\n”, status);

#ifdef FILE_DESC
close(scannerFd);
close(monitorFd);

#endif
exit(1);

}

KcsModifyLoadHints()
KcsStatusId
KcsModifyLoadHints(KcsProfileId profile,

KcsLoadHints newHints)

Purpose
KcsModifyLoadHints() applies a new set of load hints to a profile already loaded.
If, for example, your application no longer needs to simulate a profile and available
memory is limited, it can use this function to unload the simulation portion of the
profile immediately, making more memory available for it to run.

Typically you would use this function to load the operation hints (transforms) for a
profile whose attributes only were previously loaded. (For details on operation hints,
see “Operation Hint Constants” on page 57.)

Functions 87

Note – Remember that the load hints are just that—hints to the KCMS framework.
Although the KCMS framework tries to accomplish what is specified, and typically
does, it cannot guarantee everything exactly as hinted. It is subject to what the CMM
supports.

Arguments
TABLE 4–17 KcsModifyLoadHints() Arguments

Argument Description

profile The identifier of the loaded profile.

newHints The set of bits describing what, how, when, and where to load and unload
profile. See “KcsLoadHints ” on page 54for more information.

Returns
TABLE 4–18 KcsModifyLoadHints() Return Strings

KCS_SUCCESS

KCS_PROF_ID_BAD

KCS_MEM_ALLOC_ERROR

Example
EXAMPLE 4–8 KcsModifyLoadHints()

KcsProfileId profileid;
KcsErrDesc errDesc;
KcsProfileDesc profileDesc;
KcsProfileId profile;
KcsStatusId status;
KcsLoadHints newhints;

/* profile name is a command line argument */

profileDesc.type = KcsSolarisProfile;
profileDesc.desc.solarisFile.fileName = argv[1];
profileDesc.desc.solarisFile.hostName = NULL;
profileDesc.desc.solarisFile.mode = 0;
profileDesc.desc.solarisFile.oflag = NULL;

status = KcsLoadProfile(&profile, &profileDesc, KcsLoadAttributesNow);
if (status != KCS_SUCCESS) {

88 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–8 KcsModifyLoadHints() (Continued)

status = KcsGetLastError(&errDesc);
fprintf(stderr,”%s KcsLoadProfile failed error = %s\n”,

argv[optind], errDesc.desc);
exit(1);

}

/* suppose it was determined that this is the profile we want to *
* use for evaluating data. We want to load it all in now. */

newhints = KcsLoadAllNow;
status = KcsModifyLoadHints(profile, newhints);
if (status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
fprintf(stderr,” ModifyHints failed error = %s\n”, errDesc.desc);
exit(1);

}

KcsOptimizeProfile()
KcsStatusId
KcsOptimizeProfile(KcsProfileId profile,

KcsOptimizationType optimizationType,

KcsLoadHints operationLoadSet)

Purpose
Use KcsOptimizeProfile() to optimize the profile by:

� Reducing the profile’s size
� Increasing the profile’s speed
� Increasing the profile’s accuracy

Optimization is CMM dependent. The CMM always interprets the load hints in terms
of the particular situation.

Functions 89

Note – If your application has minimized a profile’s load operation or state with
operationLoadSet or with KcsOptimizeProfile(), only that load operation or
state is saved with KcsSaveProfile(). Therefore, operations not included in the
profile are not available the next time the profile is loaded.

Arguments
TABLE 4–19 KcsOptimizeProfile() Arguments

Argument Description

profile The identifier of the profile.

optimizationType The kinds of optimization (size, speed, and accuracy) your application
wants to perform on the profile. (See “KcsOptimizationType”
on page 62for more information.) When a combination of values is
specified, it is up to the CMM to determine which value is more important.

operationLoadSet One or more flags symbolizing the kind of information wanted in profile.
It also describes what, how, when, and where to load and unload profile.
See “KcsLoadHints ” on page 54 for more information.

Returns
TABLE 4–20 KcsOptimizeProfile() Return Strings

KCS_SUCCESS

KCS_OPERATION_CANCELLED

KCS_MEM_ALLOC_ERROR

KCS_PROF_ID_BAD

Example
EXAMPLE 4–9 KcsOptimizeProfile()

KcsProfileId monitorProfile, scannerProfile, completeProfile;
KcsStatusId status;
KcsErrDesc errDesc;

/* The monitor profile and scanner profile have been loaded and connected *
* to become a complete profile, now optimize. */

status = KcsOptimizeProfile(completeProfile, KcsOptSpeed, KcsLoadAllNow);
if (status != KCS_SUCCESS) {

90 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–9 KcsOptimizeProfile() (Continued)

status = KcsGetLastError(&errDesc);
fprintf(stderr,”KcsOptimizeProfile failed error = %s\n”, errDesc.desc);
KcsFreeProfile(monitorProfile);
KcsFreeProfile(scannerProfile);
return(-1);

}

KcsSaveProfile()
KcsStatusId

KcsSaveProfile (KcsProfileId profile, KcsProfileDesc *desc)

Purpose
Use KcsSaveProfile() to save a loaded profile, and any changes to its attributes or
profile data, to the mechanism described by desc.

If supported by the mechanism, a profile’s state can be saved at an offset. For example,
if the mechanism indicates a file, the following two situations are applicable:

� Your application creates a file containing only one profile. In this case most
typically the offset is 0.

� Your application creates a file containing one profile plus some application data
(like a TIFF file). Your application must ensure that the profile fits into the file
format and does not overwrite data nor is itself overwritten. It can determine the
length of the data read from the file by calling KcsGetAttribute() and
supplying the icHeader attribute. The value of size in the icHeader structure
is the size of the profile. For the format of the icHeader structure, see “icHeader
” on page 133.

KcsSaveProfile() writes information, but does not free the profile. Even after
saving the profile, the application can continue to use it. In fact, the application must
call KcsFreeProfile() to free all resources associated with the profile.

Arguments
TABLE 4–21 KcsSaveProfile() Arguments

Argument Description

profile The identifier of the loaded profile.Typically, your application obtains this value when it calls
KcsLoadProfile() or KcsConnectProfiles().

Functions 91

TABLE 4–21 KcsSaveProfile() Arguments (Continued)
Argument Description

desc The location of the profile’s static storage mechanism, needed to obtain the data required to
generate the profile’s resources. It is specified as a union of independent static storage mechanisms.
This argument has a field that identifies which storage mechanism to use. If this field is NULL, the
profile is saved through the same mechanism from which it was loaded. (See “KcsProfileId ”
on page 68 for more information.)

Returns
TABLE 4–22 KcsSaveProfile() Return Strings

KCS_SUCCESS

KCS_IO_WRITE_ERR

KCS_IO_READ_ERR

KCS_IO_SEEK_ERR

KCS_SOLARIS_FILE_NOT_OPENED

KCS_SOLARIS_FILE_RO

KCS_SOLARIS_FILE_LOCKED

KCS_SOLARIS_FILE_NAME_NULL

KCS_X11_DATA_NULL

KCS_X11_PROFILE_NOT_LOADED

KCS_X11_PROFILE_RO

Example
EXAMPLE 4–10 KcsSaveProfile()

KcsProfileDesc desc;
KcsProfileId profileid;
KcsStatusId status;
KcsErrDesc errDesc;

/*see example kcms_update.c for a full example code */

desc.type = KcsSolarisProfile;
desc.desc.solarisFile.fileName = argv[1];
desc.desc.solarisFile.hostName = NULL;
desc.desc.solarisFile.mode = 0;
desc.desc.solarisFile.oflag = O_RDWR
status = KcsSaveProfile(profileid, &desc);

92 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–10 KcsSaveProfile() (Continued)

if(status != KCS_SUCCESS) {
status = KcsGetLastError(&errDesc);
fprintf(stderr,”KcsSaveProfile failed error = %s\n”, errDesc.desc);

}

KcsFreeProfile(profileid);

Note – If you are saving a new profile, use the following assignments instead of the
assignments in Example 4–10.

desc.desc.solarisFile.mode = 0666;

desc.desc.solarisFile.oflag = O_RDWR | O_CREAT | O_TRUNC;

KcsSetAttribute()
KcsStatusId
KcsSetAttribute(KcsProfileId profile,

KcsAttributeName name,

KcsAttributeValue *value)

Purpose
Use KcsSetAttribute() to create, to modify, or to delete a specific attribute in a
profile. See Chapter 5 for details on attributes.

Note – KcsSetAttribute() cannot be used to modify the value of the
icSigProfileSequenceDescriptionTag attribute. The attribute is read only.

Arguments
TABLE 4–23 KcsSetAttribute() Arguments

Argument Description

profile The identifier of the profile.

name The name of the attribute to be created, modified, or deleted. If this attribute is already used in the
profile, this function overwrites its value. If this attribute does not already exist, the function
creates it. See “List of All Attributes” on page 112 for the names of all the attributes KCMS allows
your application to specify in a call to this function.

Functions 93

TABLE 4–23 KcsSetAttribute() Arguments (Continued)
Argument Description

value A pointer to the value for the attribute. If the attribute already exists, value becomes the attribute’s
new value. If the attribute does not already exist, this function creates it and sets its original value
to value. To delete an existing attribute, set value to NULL.

Note – For this function to execute correctly, your application must check what needs
to be set in the KcsAttributeBase structure (part of the KcsAttributeValue
structure). A valid type and number of tokens found in the attribute must be set.

Returns
TABLE 4–24 KcsConnectProfiles() Return Strings

KCS_SUCCESS

KCS_MEM_ALLOC_ERROR

KCS_PROF_ID_BAD

KCS_ATTR_NAME_OUT_OF_RANGE

KCS_ATTR_TYPE_UNKNOWN

KCS_ATTR_NEG_CT_SUPPLIED

KCS_ATTR_LARGE_CT_SUPPLIED

Example
EXAMPLE 4–11 KcsSetAttribute()

#include “kcms_utils.h”
#define SAMPLE_WORDS “A profile created using kcms_create”

KcsProfileId profileid;
KcsStatusId status;
KcsAttributeValue attrValue;
KcsAttributeValue *attrValue2;
KcsAttributeValue *attrValuePtr;
KcsErrDesc errDesc;
int sizemeas, size, nvalues, i, j;
time_t clocktime;
struct tm *datetime;
size_t rc;
char *description;
char attr[256];
double test_double[3];

94 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–11 KcsSetAttribute() (Continued)

/* Fill out the measurement structures - The illuminant must be D50 */
test_double[0] = 0.9642;
test_double[1] = 1.0;
test_double[2] = 0.8249;

/* open or create a profile, then set some attributes */
if ((description = (char *)malloc(strlen(SAMPLE_WORDS) + 1)) == NULL) {

perror(“malloc failed : “);
KcsFreeProfile(profileid);
exit(1);

}
memset(description, 0, strlen(SAMPLE_WORDS) + 1);
strcpy(description, SAMPLE_WORDS);
/* the function used below can be found in kcms_utils.c in appendix */
if ((attrValue2 = string2icTextAttrValue(description)) == NULL) {

fprintf(stderr, “conversion to AttrValue failed \n”);
KcsFreeProfile(profileid);
exit(1);

}
if (KcsSetAttribute(profileid, icSigProfileDescriptionTag, attrValue2)

!= KCS_SUCCESS) {
KcsGetLastError(&errDesc);
printf(“Set Attribute error: %s\n”, errDesc.desc);
exit(1);

}
free(attrValue2);
free(description);
size = sizeof(KcsAttributeBase) + sizeof(icHeader);
attrValuePtr = (KcsAttributeValue *)malloc(size);

/* Build the header */
attrValuePtr->base.type = icSigHeaderType;
attrValuePtr->base.sizeOfType = sizeof(icHeader);
attrValuePtr->base.countSupplied = 1;
KcsGetAttribute(profileid, icSigHeaderTag, attrValuePtr);
attrValuePtr->val.icHeader.size = 0;

/* The following three values do not have to be set if you do a
* GetAttribute on the header, since the Create should set them for you.
* If you do not do a GetAttribute of the header, you must set these:
* attrValuePtr->val.icHeader.cmmId = 0x4b434d53;
* attrValuePtr->val.icHeader.version =icVersionNumber;
* attrValuePtr->val.icHeader.magic = icMagicNumber;
*/
attrValuePtr->val.icHeader.deviceClass = icSigDisplayClass;
attrValuePtr->val.icHeader.colorSpace = icSigRgbData;
attrValuePtr->val.icHeader.pcs = icSigXYZData;

/* Get the time from the system */
clocktime = time(NULL);
datetime = localtime(&clocktime);

Functions 95

EXAMPLE 4–11 KcsSetAttribute() (Continued)

attrValuePtr->val.icHeader.date.seconds =
(icUInt16Number)datetime->tm_sec;

attrValuePtr->val.icHeader.date.minutes =
(icUInt16Number)datetime->tm_min;

attrValuePtr->val.icHeader.date.hours =
(icUInt16Number)datetime->tm_hour;

attrValuePtr->val.icHeader.date.day =
(icUInt16Number)datetime->tm_mday;

attrValuePtr->val.icHeader.date.month =
(icUInt16Number)datetime->tm_mon + 1;

attrValuePtr->val.icHeader.date.year =
(icUInt16Number)datetime->tm_year;

attrValuePtr->val.icHeader.platform = icSigSolaris;
attrValuePtr->val.icHeader.flags =

icEmbeddedProfileFalse || icUseAnywhere;
strcpy(description,”SUNW “);
memcpy(&attrValuePtr->val.icHeader.manufacturer, description, 4);
attrValuePtr->val.icHeader.model = 0;
attrValuePtr->val.icHeader.attributes[0] = 0;
attrValuePtr->val.icHeader.attributes[1] = 0;
attrValuePtr->val.icHeader.renderingIntent = icPerceptual;
attrValuePtr->val.icHeader.illuminant.X =

double2icfixed(test_double[0], icSigS15Fixed16ArrayType);
attrValuePtr->val.icHeader.illuminant.Y =

double2icfixed(test_double[1], icSigS15Fixed16ArrayType);
attrValuePtr->val.icHeader.illuminant.Z =

double2icfixed(test_double[2], icSigS15Fixed16ArrayType);
rc = KcsSetAttribute(profileid, icSigHeaderTag, attrValuePtr);
if(rc != KCS_SUCCESS) {

rc =KcsGetLastError(&errDesc);
fprintf(stderr, “unable to set header: %s\n”, errDesc.desc);
KcsFreeProfile(profileid);

return(-1)

KcsSetCallback()
KcsStatusId
KcsSetCallback (KcsFunction function,

KcsCallbackFunction callback, void *userDefinedData)

Purpose
Use KcsSetCallback() to associate a callback function with any set of API
functions that supports callbacks. Those functions are listed in KcsFunction (see

96 KCMS Application Developer’s Guide • December 2001

Table 3–1). If KcsSetCallback() is not called for particular values of
KcsFunction, no callback is issued.

This function allocates resources. To release those resources, your application must set
all callback functions to NULL, for example,

KcsSetCallback(KcsAllFunc, NULL, NULL);

Arguments
TABLE 4–25 KcsSetCallback() Arguments

Argument Description

function A set of API functions. See Table 3–1 for the list of functions.

callback The application-supplied function to be called when the
variable function needs to report progress.

userDefinedData Any user-defined data.

Returns
TABLE 4–26 KcsSetCallback() Return Strings

KCS_SUCCESS

KCS_MEM_ALLOC_ERROR

Example
EXAMPLE 4–12 KcsSetCallback()

/* template function declaration */

int myProgressCallback(KcsProfileId profileid, unsigned long
current, unsigned long total, KcsFunction
operation, void *userDefinedData);

KcsProfileId completeProfile;
KcsPixelLayout pixelLayoutIn;

/* the profiles have been loaded and connected, now set up the
* callback to be active for both the optimize and evaluate
* functions */

status = KcsSetCallback(KcsOptFunc + KcsEvalFunc,
(KcsCallbackFunction)myProgressCallback, NULL);

if (status != KCS_SUCCESS) {

Functions 97

EXAMPLE 4–12 KcsSetCallback() (Continued)

fprintf(stderr, “Callback function call failed\n”);
}

printf(“Optimizing the complete profile \n”);
status = KcsOptimizeProfile(completeProfile, KcsOptSpeed, KcsLoadAllNow);
/* check status here*/
/* set up the pixel layout */
status = KcsEvaluate(completeProfile, op, &pixelLayoutIn, &pixelLayoutIn);
/* check status here*/

/* This is my callback function */

int myProgressCallback(KcsProfileId profileid, unsigned long current,
unsigned long total, KcsFunction operation, void *userDefinedData)

{
int pcent;

pcent = (int) (((float)current/ (float)total) *100.0);
fprintf(stderr,”Optimize+Evaluate is %3d percent complete\n”, pcent);
fflush(stderr);
return(KCS_SUCCESS);

/* Free callback resources*/
KcsSetCallback (KcsOptFunc+KcsEvalFunc, NULL, NULL);

}

KcsUpdateProfile()
KcsStatusId
KcsUpdateProfile(KcsProfileId profile,

KcsCharacterizationData *charact,

KcsCalibrationData *calib, void *CMMSpecificData)

Purpose
Use KcsUpdateProfile() to change the profile data in the loaded profile according
to the supplied measurement data.

The data supplied to this call depends on the type of device the profile represents. The
default CMM currently supports scanners and monitors. Printer profiles are not
currently supported. The “C” API also will be used for printers, when implemented
by the default or alternative CMMs. The data required for this call depends on
whether the profile is calibrated or characterized.

Characterization refers to defining the generic color response of all devices of the same
make and model (normally by making measurements on a number of sample devices

98 KCMS Application Developer’s Guide • December 2001

to find an average response). Characterization requires colorimetric measurements.
Example 4–13 shows how these measurements are used to update a profile.

Calibration refers to fine-tuning a specific device’s color response. It changes the
profile data so that it can be color managed to produce the same color response as
other devices of the same make and model.

The charact argument to this function refers to a set of color sample measurements
where sample is a color patch on a test target.

For a scanner, the test target is a target that is scanned. In this case, each color sample
in the measurement set consists of an input that is the CIEXYZ value of the color
patch, as measured. The sample output is the RGB value that the scanner produced
when scanning the color patch. In addition, each sample contains fields for the sample
weight, standard deviation, and sample type. The weight is a hint indicating the
importance of the sample color. The default should equal 1.0. The standard deviation
is used to indicate the statistics of a set of measurements of the sample color that have
been reduced to a single sample. The sample type is used to indicate that a color
sample represents either black, white, other, neutral, or chromatic color. For best
results, the sample type field should be correctly set for each color sample. For
example, the KcsFluorescent sample type can be used to tag special color samples with
this property. The sample type is a hint passed by the KCMS framework to the CMM.

Note that CIEXYZ values are to be scaled in the range 0.0 to 100.0 and that RGB
values are to be scaled in range 0.0 to 1.0. For additional details, see
“KcsCharacterizationData ” on page 49.

For a monitor, the charact argument is not used. Pointer *charact should be set to
NULL when KcsUpdateProfile() is called for a monitor profile. Characterization
data consists of the following profile attributes:

� icSigRedColorantTag
� icSigGreenColorantTag
� icSigBlueColorantTag
� icSigMediaWhitePointTag

These attributes must be set and valid prior to calling KcsUpdateProfile(). Your
application must use KcsSetAttribute() to set these attributes.

Arguments
TABLE 4–27 KcsUpdateProfile() Arguments

Argument Description

profile The identifier of the profile to be updated.

*charact A set of color sample measurements where sample is a color patch on a test target.

Functions 99

TABLE 4–27 KcsUpdateProfile() Arguments (Continued)
Argument Description

*calib The linearization tables needed to calibrate the profile. These tables are required to
calibrate all device types. They are also required when calling
KcsUpdateProfile() to characterize a scanner or monitor. Both the input and
output spaces are KcsRGB for a scanner and monitor. The RGB samples are scaled in
the range of 0.0 to 1.0.

*CMMSpecificData A pointer to any additional data needed by a specific CMM to update the profile.
Refer to the CMM documentation for any specific data required. For use with the
default CMM, your application should set this argument to NULL.

Returns
TABLE 4–28 KcsUpdateProfile() Return Strings

KCS_SUCCESS

KCS_MEM_ALLOC_ERROR

KCS_CC_UPDATE_NEEDS_MORE_DATA

KCS_CC_UPDATE_INVALID_DATA

Example
To call KcsUpdateProfile() successfully, the profile must contain a small number
of attributes that identify the type of device the profile represents. It is assumed that
the profile already contains these attributes.

An example is given of how to allocate and fill out the arguments required to call
KcsUpdateProfile().

EXAMPLE 4–13 KcsUpdateProfile()

#pragma ident “@(#) kcms_update.c”
/* kcs_update.c */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <math.h>
#include <kcms/kcs.h>
#include <kcms/kcstypes.h>
#include <kcms/kcsattrb.h>

float Luminance_float_out[3][256];

/* test code to check profile calibration * /

100 KCMS Application Developer’s Guide • December 2001

EXAMPLE 4–13 KcsUpdateProfile() (Continued)

main(int argc, char **argv)
{
KcsCalibrationData *calData;
KcsProfileDesc x_desc, desc;
KcsProfileId profileid;
KcsStatusId status;
KcsAttributeValue attrValue;
KcsErrDesc errDesc;
int levels = 256, channels = 3;
int sizemeas, nvalues, i, j;
FILE *simfile;
float input_val;
size_t rc;

/* Read in the measured calibration data from a file */
/* file lum_out should be located in demo directory with this program */

if ((simfile = fopen(“lum_out”, “r”)) == NULL) {
fprintf(stderr,”cannot open output luminance file\n”);
exit(1);
}

for (i=0; i<channels; i++)
for (j=0; j<levels; j++)

Luminance_float_out[i][j] = 0.0;
nvalues = levels * channels;
rc = fread(Luminance_float_out, sizeof(float), nvalues, simfile);
fclose(simfile);

/* Fill out the measurement structures */
sizemeas = (int) (sizeof(KcsMeasurementBase) + sizeof(long) + levels);

calData = (KcsCalibrationData *) malloc(sizemeas);

calData->base.countSupplied = levels;
calData->base.numInComp = 3;
calData->base.numOutComp = 3;
calData->base.inputSpace = KcsRGB;
calData->base.outputSpace = KcsRGB;
for (i=0; i< levels; i++) {

calData->val.patch[i].weight = 1.0;
calData->val.patch[i].standardDeviation = 0.0;
calData->val.patch[i].sampleType = KcsChromatic;

calData->val.patch[i].input[KcsRGB_R] = (float)i/255;
calData->val.patch[i].input[KcsRGB_G] = (float)i/255;
calData->val.patch[i].input[KcsRGB_B] = (float)i/255;
calData->val.patch[i].input[3] = 0.0;

calData->val.patch[i].output[KcsRGB_R] = Luminance_float_out[0][i];
calData->val.patch[i].output[KcsRGB_G] = Luminance_float_out[1][i];
calData->val.patch[i].output[KcsRGB_B] = Luminance_float_out[2][i];

Functions 101

EXAMPLE 4–13 KcsUpdateProfile() (Continued)

calData->val.patch[i].output[3] = 0.0;
}

calData->val.patch[0].sampleType = KcsBlack;
calData->val.patch[255].sampleType = KcsWhite;

if (!argv[1]) {
fprintf(stderr, “Usage kcms_update profile_in [profile_out]\n”);
exit(1);
}

/* Let the library open the file */
x_desc.type = KcsSolarisProfile;
x_desc.desc.solarisFile.fileName = argv[optind];
x_desc.desc.solarisFile.hostName = NULL;
x_desc.desc.solarisFile.oflag = O_RDWR;
x_desc.desc.solarisFile.mode = 0;

status = KcsLoadProfile(&profileid, &x_desc, KcsLoadAllNow);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“LoadProfile error: %s\n”, errDesc.desc);
}

status = KcsUpdateProfile(profileid, NULL, calData, NULL);
if(status != KCS_SUCCESS) {

status = KcsGetLastError(&errDesc);
printf(“UpdateProfile error: %s\n”, errDesc.desc);
KcsFreeProfile(profileid);
exit(1);
}

if (argv[2]) {
/* Save to an output file */
desc.type = KcsSolarisProfile;
desc.desc.solarisFile.fileName = argv[2];
desc.desc.solarisFile.hostName = NULL;

desc.desc.solarisFile.oflag = O_RDWR|O_CREAT|O_TRUNC;

102 KCMS Application Developer’s Guide • December 2001

CHAPTER 5

KCMS Profile Attributes

In This Chapter
This chapter discusses attributes (or tags). Every profile contains a group of attributes
that describe the characteristics of that profile. Attributes are specified by name, value,
and status (whether they are required or optional).

Note – In this guide, you will encounter the terms attribute and tag. These terms are
identical. The text in this guide uses the term attribute instead of tag, (but code
examples and header files may use tag because the ICC specification and the icc.h
header file use this term). Attribute is a KCMS-specific term that existed before the
ICC-term tag came into use.

The ICC specification and icc.h define most attributes. KCMS includes a few
additional KCMS CMM-specific attributes, which are registered with the ICC for
public use and are defined in the kcstypes.h header file.

Several KCMS API functions create and modify attributes. Some functions define what
is stored in an attribute. See Chapter 4, for detailed descriptions of all the API
functions.

Using the Attribute Name
The header file icc.h defines an attribute with the enumerated constant,
icTagSignature. icTagSignature is the list of all attribute names in the ICC
profile format specification. Note that some of these attributes cannot be used by your
application, and there are additional ones that can be used. See “List of All Attributes”

103

on page 112 for a complete list of all attribute by name that KCMS allows your
application to use as arguments in calls to the API functions KcsGetAttribute()
and KcsSetAttribute().

Interpreting the Attribute Value
An attribute value is defined in the val field of the KcsAttributeValue data
structure (see “KcsAttributeValue ” on page 44). Since there are many possible
data types for val, you need some way of interpreting the value as the correct data
type. The KcsAttributeType data type provides this interface (see
“KcsAttributeType ” on page 43).

Required and Optional Attributes
Attributes are either required or optional for all profiles. The color management
module (CMM) software that creates a profile must assign required attributes.

Names of CMM-Specific Attributes
The following CMM-specific attribute names are never stored in a profile. They are
used to access portions of an ICC profile that are not covered by ICC attributes (listed
in the ICC profile format specification).

These attributes are not defined in the ICC profile format specification. Instead, they
are defined in the kcstypes.h header file. KCMS registered these attributes with the
ICC so that they are available for public use.

icSigHeaderTag

#define icSigHeaderTag (0x69636864UL) /* ‘ichd’ */

This attribute is associated with the icHeader data structure and is an ICC header.
See “icHeader ” on page 133 for the format of icHeader. The header file contains
useful attribute information.

icSigNumTag

#define icSigNumTag (0x6E746167UL) /* ‘ntag’ */

104 KCMS Application Developer’s Guide • December 2001

This attribute name is associated with a data structure that returns a KcsULong value
indicating the number of ICC profile attributes in a file. This is a read-only attribute: it
cannot be set. The count includes the icSigHeaderTag, icSigNumTag and
icSigListTag entries.

icSigListTag

#define icSigListTag (0x6C746167UL) /* ‘ltag’ */

This attribute name is associated with the icTagList data structure, which is a list of
the ICC attributes in a profile. See “icTagList ” on page 134 for the format of
icTagList.

Example: Using icSigNumTag and icSigListTag

Example 5–1 shows you how to use icSigNumTag and icSigListTag.

EXAMPLE 5–1 icSigNumTag and icSigListTag

#include <kcms/kcs.h>
KcsAttributeValue attrValue, *attrPtr;
int i;
char *tmp;

/* Set the value of countSupplied */
attrValue.base.countSupplied = 1;
attrValue.base.type = KcsULong;

/* Get the number of attributes in the profile */
status = KcsGetAttribute(profile, icSigNumTag, &attrValue);
if (status != KCS_SUCCESS) {

KcsFreeProfile(profile);
exit(1);

}

/* Make space to get a list of all tags */
size = sizeof(KcsAttributeBase) + sizeof(long)*attrValue.val.uLongVal[0];
if ((attrPtr = (KcsAttributeValue *)malloc(size)) == NULL) {

perror(“malloc failed : “);
KcsFreeProfile(profile);
exit(1);

}

/* Get the list of tags */
attrPtr->base.type = KcsULong;
attrPtr->base.sizeOfType = sizeof(long);
attrPtr->base.countSupplied = attrValue.val.uLongVal[0];
status = KcsGetAttribute(profile, icSigListTag, attrPtr);
if (status != KCS_SUCCESS) {

KcsFreeProfile(profile);

KCMS Profile Attributes 105

EXAMPLE 5–1 icSigNumTag and icSigListTag (Continued)

free (attrPtr);
exit(1);

}

/* Print the list */
printf(“Number of tags = %d\n”, attrPtr->base.countSupplied);
for (i=0; i<attrPtr->base.countSupplied; i++) {

tmp = (char *)&attrPtr->val.uLongVal[i];
printf(“Tag # = %d, Tag Hex = 0x%x, Tag Ascii = %c%c%c%c\n”, i,

attrPtr->val.uLongVal[i]; *tmp, *(tmp+1), *(tmp+2), *(tmp+3));
}

KcsFreeProfile(profile);

free (attrPtr);

Required ICC Attributes
Some attributes in the profile structure are required by the ICC. These attributes
provide a common base level of functionality for all CMMs to translate color
information. If, for example, a requested CMM is not present, the default CMM
information is used, knowing these attributes are present.

The names of the required attributes discussed in this section are defined in the icc.h
header file. The associated data structures are defined in “Attribute Types ”
on page 114 and are in the icc.h header file. See the ICC profile format specification
for more detailed definitions of device profiles, attribute names, and attribute types
(data structures). ICC-specification section titles are referenced in each profile class
section discussed next. (The ICC profile format specification is located on-line in the
SUNWsdk/kcms/doc directory. For the latest version of the specification, see the web
site at http://icc.color.org.)

Table 5–1 shows attributes that are required depending on the profile type and
interpretation. The attributes in the first five table rows can be set using
KcsGetAttribute(), KcsSetAttribute(), or KcsUpdateProfile(). The
icSigGrayTRCTag attribute is required for input profiles only.

TABLE 5–1 Attributes Required Depending on Interpretation

Profile Attribute Name Interpretation

Input Profile icSigAToB0Tag None

Display Profile icSigAToB0Tag None

106 KCMS Application Developer’s Guide • December 2001

TABLE 5–1 Attributes Required Depending on Interpretation (Continued)
Profile Attribute Name Interpretation

Output Profile icSigBToA0Tag Perceptual rendering

Output Profile icSigBToA1Tag Colorimetric rendering

Output Profile icSigBToA2Tag Saturation rendering

Input Profile icSigGrayTRCTag Depends on intent

Display Profile icSigGrayTRCTag Additive

Output Profile icSigGrayTRCTag Subtractive

Note that these tags, once set with KcsSetAttribute(), cannot be accessed and
used unless the KcsSaveProfile() function has been called first. The save initiates
certain CMM operations to be performed on the LUTs for future use.

Note – This section uses the ICC equivalent names for KCMS profile format
classifications (that is, input profile, output profile, and so forth) because the section
presents some of the material as you will find it in the ICC profile format specification
and in icc.h. See Table 2–1 in Chapter 2, for the corresponding KCMS names.

Input Profile
The following attributes are required for input devices such as scanners. See “Input
Profile” in the ICC specification for more information.

Monochrome Input Profiles

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigCopyrightTag icText

icSigGrayTRCTag icCurve

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

KCMS Profile Attributes 107

RGB Input Profiles

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigBlueColorantTag icXYZArray

icSigBlueTRCTag icCurve

icSigCopyrightTag icText

icSigGreeColorantTag icXYZArray

icSigGreenTRCTag icCurve

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

icSigRedColorantTag icXYZArray

icSigRedTRCTag icCurve

N-Component Input Profiles

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigAtoB0Tag icLut8 or icLut16

icSigCopyrightTag icText

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

Display Profile
The following attributes are required for display devices such as monitors. See
“Display Profile” in the ICC specification for more information.

108 KCMS Application Developer’s Guide • December 2001

Monochrome Display Profiles

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigCopyrightTag icText

icSigGrayTRCTag icCurve

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

RGB Display Profiles

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigBlueColorantTag icCurve

icSigBlueTRCTag icCurve

icSigCopyrightTag icText

icSigGreenColorantTag icCurve

icSigGreenColorantTag icCurve

icSigGreenTRCTag icCurve

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

icSigRedColorantTag icCurve

icSigRedTRCTag icCurve

Output Profile
The following attributes are required for output devices such as printers. See “Output
Profile” in the ICC specification for more information.

KCMS Profile Attributes 109

Monochrome Output Profiles

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigCopyrightTag icText

icSigGrayTRCTag icCurve

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

RGB and CMYK Output Profiles

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigAtoB0Tag icLut8 or icLut16

icSigAtoB1Tag icLut8 or icLut16

icSigAtoB2Tag icLut8 or icLut16

icSigBtoA0Tag icLut8 or icLut16

icSigBtoA1Tag icLut8 or icLut16

icSigBtoA2Tag icLut8 or icLut16

icSigCopyrightTag icText

icSigCrdInfoTag icCrdInfo

icSigGamutTag icLut8 or icLut16

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

Additional Profile Formats
In addition to the three basic classifications of device profiles (that is, input, display,
and output), the ICC specification defines four other color processing profiles, namely

� Device link

� Color space conversion

110 KCMS Application Developer’s Guide • December 2001

� Abstract

These profiles provide a standard implementation for use by the CMM in general
color processing. They are for the convenience of CMMs, which may use these
types to store calculated transformations.

Device Link Profile
The device link profile is for a link or connection between devices. The following
attributes are for device link profiles.

See “DeviceLink Profile” in the ICC specification for more information.

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigAToB0Tag icLut8 or icLut16

icSigCopyrightTag icText

icSigProfileDescriptionTag icTextDescription

icSigProfileSequenceDescTag icProfileSequenceDesc

Color Space Conversion Profile
The color space conversion profile is for color space transformation between
non-device color spaces and the profile connection space (PCS). The following
attributes are for color space conversion profiles. See “ColorSpaceConversion Profile”
in the ICC specification for more information.

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigAToB0Tag icLut8 or icLut16

icSigBToA0Tag icLut8 or icLut16

icSigCopyrightTag icText

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

KCMS Profile Attributes 111

Abstract Profile
The abstract profile is for color transformations between PCS and PCS. The following
attributes are for abstract profiles. See “Abstract Profile” in the ICC specification for
more information.

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigAToB0Tag icLut8 or icLut16

icSigCopyrightTag icText

icSigMediaWhitePointTag icXYZArray

icSigProfileDescriptionTag icTextDescription

List of All Attributes
This is an alphabetical list of all attributes by name that KCMS allows your application
to specify in calls to KcsGetAttribute() and KcsSetAttribute(). The list
includes attributes from the ICC profile specification as well as the attributes KCMS
registered with the ICC for public use.

Attribute Name Attribute Type

icSigHeaderTag icHeader

icSigAToB0Tag icLut8 or icLut16

icSigAToB1Tag icLut8 or icLut16

icSigAToB2Tag icLut8 or icLut16

icSigBlueColorantTag icXYZArray

icSigBlueTRCTag icCurve

icSigBToA0Tag icLut8 or icLut16

icSigBToA1Tag icLut8 or icLut16

icSigBToA2Tag icLut8 or icLut16

icSigCalibrationDateTimeTag icSigDateTimeType

icSigCharTargetTag icText

icSigCopyrightTag icText

112 KCMS Application Developer’s Guide • December 2001

Attribute Name Attribute Type

icSigCrdInfoTag icCrdInfo

icSigDeviceMfgDescTag icTextDescription

icSigDeviceModelDescTag icTextDescription

icSigGamutTag icLut8 or icLut16

icSigGrayTRCTag icCurve

icSigGreenColorantTag icXYZArray

icSigGreenTRCTag icCurve

icSigLuminanceTag icXYZArray

icSigMeasurementTag icMeasurement

icSigMediaBlackPointTag icXYZArray

icSigMediaWhitePointTag icXYZArray

icSigNamedColorTag icNamedColor

icSigNamedColor2Tag icNamedColor2

icSigPreview0Tag icLut8 or icLut16

icSigPreview1Tag icLut8 or icLut16

icSigPreview2Tag icLut8 or icLut16

icSigProfileDescriptionTag icTextDescription

icSigProfileSequenceDescTag icProfileSequenceDesc

icSigPs2CRD0Tag icData

icSigPs2CRD1Tag icData

icSigPs2CRD2Tag icData

icSigPs2CRD3Tag icData

icSigPs2CSATag icData

icSigPs2RenderingIntentTag icData

icSigRedColorantTag icXYZArray

icSigRedTRCTag icSigCurve

icSigScreeningDescTag icTextDescription

icSigScreeningTag icScreening

icSigTechnologyTag icSignature

KCMS Profile Attributes 113

Attribute Name Attribute Type

icSigUcrBgTag icUcrBg

icSigViewingCondDescTag icTextDescription

icSigViewingConditionsTag icViewingConditions

Note – The icSigProfileSequence attribute is read only and therefore can’t be
modified by KcsSetAttribute(); it can be read with KcsGetAttribute(). The
attribute is valid for device link (complete color) profiles only.

Attribute Types
The following data structures are used only with attributes and are defined in the
icc.h header file. All other KCMS framework API data structures are defined in
Chapter 3 and in the kcstypes.h header file.

All icc.h header file entries below are prefixed with “ic” to help avoid name space
collisions. Signatures are prefixed with “icSig.” Many of the structures contain
variable-length arrays. This is represented by the convention

type data [icAny]

Constants
#define icMagicNumber 0x61637370L /* ’acsp’ */

#define icVersionNumber 0x02000000L /* 2.0, BCD */

Screen Encodings
#define icPrtrDefaultScreensFalse 0x00000000L /* Bit position 0 */
#define icPrtrDefaultScreensTrue 0x00000001L /* Bit position 0 */
#define icLinesPerInch 0x00000002L /* Bit position 1 */

#define icLinesPerCm 0x00000000L /* Bit position 1 */

114 KCMS Application Developer’s Guide • December 2001

Device Attributes
The defined values correspond to the low 4 bytes of the 8-byte attribute quantity. See
icc.h for their location.

#define icReflective 0x00000000L /* Bit position 0 */
#define icTransparency 0x00000001L /* Bit position 0 */
#define icGlossy 0x00000000L /* Bit position 1 */

#define icMatte 0x00000002L /* Bit position 1 */

Profile Header Flags
The low 16 bits are reserved for the ICC.

#define icEmbeddedProfileFalse 0x00000000L /* Bit position 0 */
#define icEmbeddedProfileTrue 0x00000001L /* Bit position 0 */
#define icUseAnywhere 0x00000000L /* Bit position 1 */

#define icUseWithEmbeddedDataOnly 0x00000002L /* Bit position 1 */

ASCII or Binary Data
#define icAsciiData 0x00000000L /* Used in dataType */

#define icBinaryData 0x00000001L

Variable-Length Array
The following is used to indicate that this is a variable-length array.

#define icAny 1

Signatures
Signatures are 4-byte identifiers used to translate platform definitions to ic* form and
to differentiate between attributes and other items in the profile format. Set
icSignature as appropriate for your operating system.

icSignature

This icSignature is for the Solaris operating environment. Note the number
definitions.

#if defined(sun) || defined(__sun) /* 32-bit Solaris, SunOS */

KCMS Profile Attributes 115

typedef long icSignature;

/*
* Number definitions
*/

/* Unsigned Integer Numbers */
typedef unsigned char icUInt8Number;
typedef unsigned short icUInt16Number;
typedef unsigned long icUInt32Number;
typedef unsigned long icUInt64Number[2];

/* Signed Integer Numbers */
typedef char icInt8Number;
typedef short icInt16Number;
typedef long icInt32Number;
typedef long icInt64Number[2];

/* Fixed Numbers */
typedef long icS15Fixed16Number;
typedef unsigned long icU16Fixed16Number;

#endif /* 32-bit Solaris, SunOS */

icTagSignature

The icTagSignature lists the public attributes and sizes in the ICC specification.
The attribute icSigProfileSequenceTag is read only and is valid for device link
(complete color) profiles only.

typedef enum {
icSigAToB0Tag = 0x41324230L, /* ’A2B0’ */
icSigAToB1Tag = 0x41324231L, /* ’A2B1’ */
icSigAToB2Tag = 0x41324232L, /* ’A2B2’ */
icSigBlueColorantTag = 0x6258595AL, /* ’bXYZ’ */
icSigBlueTRCTag = 0x62545243L, /* ’bTRC’ */
icSigBToA0Tag = 0x42324130L, /* ’B2A0’ */
icSigBToA1Tag = 0x42324131L, /* ’B2A1’ */
icSigBToA2Tag = 0x42324132L, /* ’B2A2’ */
icSigCalibrationDateTimeTag = 0x63616C74L, /* ’calt’ */
icSigCharTargetTag = 0x74617267L, /* ’targ’ */
icSigCopyrightTag = 0x63707274L, /* ’cprt’ */
icSigDeviceMfgDescTag = 0x646D6E64L, /* ’dmnd’ */
icSigDeviceModelDescTag = 0x646D6464L, /* ’dmdd’ */
icSigGamutTag = 0x676d7420L, /* ’gmt ’ */
icSigGrayTRCTag = 0x6b545243L, /* ’kTRC’ */
icSigGreenColorantTag = 0x6758595AL, /* ’gXYZ’ */
icSigGreenTRCTag = 0x67545243L, /* ’gTRC’ */
icSigLuminanceTag = 0x6C756d69L, /* ’lumi’ */
icSigMeasurementTag = 0x6D656173L, /* ’meas’ */
icSigMediaBlackPointTag = 0x626B7074L, /* ’bkpt’ */
icSigMediaWhitePointTag = 0x77747074L, /* ’wtpt’ */
icSigNamedColorTag = 0x6E636f6CL, /* ‘ncol’

116 KCMS Application Developer’s Guide • December 2001

* obsolete, use ‘ncl2’ */
icSigPreview0Tag = 0x70726530L, /* ’pre0’ */
icSigPreview1Tag = 0x70726531L, /* ’pre1’ */
icSigPreview2Tag = 0x70726532L, /* ’pre2’ */
icSigProfileDescriptionTag = 0x64657363L, /* ’desc’ */
icSigProfileSequenceDescTag = 0x70736571L, /* ’pseq’ */
icSigPs2CRD0Tag = 0x70736430L, /* ’psd0’ */
icSigPs2CRD1Tag = 0x70736431L, /* ’psd1’ */
icSigPs2CRD2Tag = 0x70736432L, /* ’psd2’ */
icSigPs2CRD3Tag = 0x70736433L, /* ’psd3’ */
icSigPs2CSATag = 0x70733273L, /* ’ps2s’ */
icSigPs2RenderingIntentTag = 0x70733269L, /* ’ps2i’ */
icSigRedColorantTag = 0x7258595AL, /* ’rXYZ’ */
icSigRedTRCTag = 0x72545243L, /* ’rTRC’ */
icSigScreeningDescTag = 0x73637264L, /* ’scrd’ */
icSigScreeningTag = 0x7363726EL, /* ’scrn’ */
icSigTechnologyTag = 0x74656368L, /* ’tech’ */
icSigUcrBgTag = 0x62666420L, /* ’bfd ’ */
icSigViewingCondDescTag = 0x76756564L, /* ’vued’ */
icSigViewingConditionsTag = 0x76696577L, /* ’view’ */
icSigNamedColor2Tag = 0x6E636C32L, /* ’ncl2’ */
icSigCrdInfoTag = 0x63726469L, /* ’crdi’ */
icMaxEnumTag = 0xFFFFFFFFL /* enum = 4 bytes max */

} icTagSignature;

icTagTypeSignature
typedef enum {

icSigCurveType = 0x63757276L, /* ’curv’ */
icSigDataType = 0x64617461L, /* ’data’ */
icSigDateTimeType = 0x6474696DL, /* ’dtim’ */
icSigLut16Type = 0x6d667432L, /* ’mft2’ */
icSigLut8Type = 0x6d667431L, /* ’mft1’ */
icSigMeasurementType = 0x6D656173L, /* ’meas’ */
icSigNamedColorType = 0x6E636f6CL, /* ‘ncol’ , obsolete, use ‘ncl2’ */
icSigProfileSequenceDescType = 0x70736571L, /* ’pseq’ */
icSigS15Fixed16ArrayType = 0x73663332L, /* ’sf32’ */
icSigScreeningType = 0x7363726EL, /* ’scrn’ */
icSigSignatureType = 0x73696720L, /* ’sig ’ */
icSigTextType = 0x74657874L, /* ’text’ */
icSigTextDescriptionType = 0x64657363L, /* ’desc’ */
icSigU16Fixed16ArrayType = 0x75663332L, /* ’uf32’ */
icSigUcrBgType = 0x62666420L, /* ’bfd ’ */
icSigUInt16ArrayType = 0x75693136L, /* ’ui16’ */
icSigUInt32ArrayType = 0x75693332L, /* ’ui32’ */
icSigUInt64ArrayType = 0x75693634L, /* ’ui64’ */
icSigUInt8ArrayType = 0x75693038L, /* ’ui08’ */
icSigViewingConditionsType = 0x76696577L, /* ’view’ */
icSigXYZType = 0x58595A20L, /* ’XYZ ’ */
icSigXYZArrayType = 0x58595A20L, /* ’XYZ ’ */
icSigNamedColor2Type = 0x6E636C32L, /* ’ncl2’ */
icMaxEnumType = 0xFFFFFFFFL /* enum = 4 bytes max */

KCMS Profile Attributes 117

} icTagTypeSignature;

icTechnologySignature
typedef enum {

icSigDigitalCamera = 0x6463616DL, /* ’dcam’ */
icSigFilmScanner = 0x6673636EL, /* ’fscn’ */
icSigReflectiveScanner = 0x7273636EL, /* ’rscn’ */
icSigInkJetPrinter = 0x696A6574L, /* ’ijet’ */
icSigThermalWaxPrinter = 0x74776178L, /* ’twax’ */
icSigElectrophotographicPrinter = 0x6570686FL, /* ’epho’ */
icSigElectrostaticPrinter = 0x65737461L, /* ’esta’ */
icSigDyeSublimationPrinter = 0x64737562L, /* ’dsub’ */
icSigPhotographicPaperPrinter = 0x7270686FL, /* ’rpho’ */
icSigFilmWriter = 0x6670726EL, /* ’fprn’ */
icSigVideoMonitor = 0x7669646DL, /* ’vidm’ */
icSigVideoCamera = 0x76696463L, /* ’vidc’ */
icSigProjectionTelevision = 0x706A7476L, /* ’pjtv’ */
icSigCRTDisplay = 0x43525420L, /* ’CRT ’ */
icSigPMDisplay = 0x504D4420L, /* ’PMD ’ */
icSigAMDisplay = 0x414D4420L, /* ’AMD ’ */
icSigPhotoCD = 0x4B504344L, /* ’KPCD’ */
icSigPhotoImageSetter = 0x696D6773L, /* ’imgs’ */
icSigGravure = 0x67726176L, /* ’grav’ */
icSigOffsetLithography = 0x6F666673L, /* ’offs’ */
icSigSilkscreen = 0x73696C6BL, /* ’silk’ */
icSigFlexography = 0x666C6578L, /* ’flex’ */
icMaxEnumTechnology = 0xFFFFFFFFL /* enum = 4 bytes max */

} icTechnologySignature;

Color Space Signature

icColorSpaceSignature
typedef enum {

icSigXYZData = 0x58595A20L, /* ’XYZ ’ */
icSigLabData = 0x4C616220L, /* ’Lab ’ */
icSigLuvData = 0x4C757620L, /* ’Luv ’ */
icSigYCbCrData = 0x59436272L, /* ’YCbr’ */
icSigYxyData = 0x59787920L, /* ’Yxy ’ */
icSigRgbData = 0x52474220L, /* ’RGB ’ */
icSigGrayData = 0x47524159L, /* ’GRAY’ */
icSigHsvData = 0x48535620L, /* ’HSV ’ */
icSigHlsData = 0x484C5320L, /* ’HLS ’ */
icSigCmykData = 0x434D594BL, /* ’CMYK’ */
icSigCmyData = 0x434D5920L, /* ’CMY ’ */
icMaxEnumData = 0xFFFFFFFFL /* enum = 4 bytes max */

118 KCMS Application Developer’s Guide • December 2001

} icColorSpaceSignature;

Note – Currently, only icSigXYZData and icSigLabData are valid profile
connection spaces (PCSs).

icProfileClassSignature
/* profileClass enumerations */
typedef enum {

icSigInputClass = 0x73636E72L, /* ’scnr’ */
icSigDisplayClass = 0x6D6E7472L, /* ’mntr’ */
icSigOutputClass = 0x70727472L, /* ’prtr’ */
icSigLinkClass = 0x6C696E6BL, /* ’link’ */
icSigAbstractClass = 0x61627374L, /* ’abst’ */
icSigColorSpaceClass = 0x73706163L, /* ’spac’ */
icSigNamedColorClass = 0x6E6D636CL, /* ’nmcl’ */
icMaxEnumClass = 0xFFFFFFFFL /* enum = 4 bytes max */

} icProfileClassSignature;

icPlatformSignature
/* Platform Signatures */
typedef enum {

icSigMacintosh = 0x4150504CL, /* ’APPL’ */
icSigMicrosoft = 0x4D534654L, /* ’MSFT’ */
icSigSolaris = 0x53554E57L, /* ’SUNW’ */
icSigSGI = 0x53474920L, /* ’SGI ’ */
icSigTaligent = 0x54474E54L, /* ’TGNT’ */
icMaxEnumPlatform = 0xFFFFFFFFL /* enum = 4 bytes max */

} icPlatformSignature;

Other Enums

icIlluminant

icIlluminant is used in the icMeasurement structure.

/* Pre-defined illuminants, used in measurement and viewing
* conditions type */
typedef enum {

icIlluminantUnknown = 0x00000000L,
icIlluminantD50 = 0x00000001L,
icIlluminantD65 = 0x00000002L,
icIlluminantD93 = 0x00000003L,

KCMS Profile Attributes 119

icIlluminantF2 = 0x00000004L,
icIlluminantD55 = 0x00000005L,
icIlluminantA = 0x00000006L,
icIlluminantEquiPowerE = 0x00000007L, /* Equi-Power (E) */
icIlluminantF8 = 0x00000008L,
icMaxEnumIluminant = 0xFFFFFFFFL /* enum = 4 bytes max */

} icIlluminant;

icMeasurementFlare

icMeasurementFlare is used in the icMeasurement structure.

/* Measurement Flare, used in the measurmentType tag */
typedef enum {

icFlare0 = 0x00000000L, /* 0% flare */
icFlare100 = 0x00000001L, /* 100% flare */
icMaxFlare = 0xFFFFFFFFL /* enum = 4 bytes max */

} icMeasurementFlare;

icMeasurementGeometry

icMeasurementGeometry is used in the icMeasurement structure.

/* Measurement Geometry, used in the measurmentType tag */
typedef enum {

icGeometryUnknown = 0x00000000L, /* Unknown geometry */
icGeometry045or450 = 0x00000001L, /* 0/45 or 45/0 */
icGeometry0dord0 = 0x00000002L, /* 0/d or d/0 */
icMaxGeometry = 0xFFFFFFFFL /* enum = 4 bytes max */

} icMeasurementGeometry;

icRenderingIntent

icRenderingIntent is used in the icHeader structure.

/* Rendering Intents, used in the profile header */
typedef enum {

icPerceptual = 0,
icRelativeColorimetric = 1,
icSaturation = 2,
icAbsoluteColorimetric = 3,
icMaxEnumIntent = 0xFFFFFFFFL /* enum = 4 bytes max */

} icRenderingIntent;

120 KCMS Application Developer’s Guide • December 2001

icSpotShape
/* Different Spot Shapes currently defined, used for screeningType */
typedef enum {

icSpotShapeUnknown = 0,
icSpotShapePrinterDefault = 1,
icSpotShapeRound = 2,
icSpotShapeDiamond = 3,
icSpotShapeEllipse = 4,
icSpotShapeLine = 5,
icSpotShapeSquare = 6,
icSpotShapeCross = 7,
icMaxEnumSpot = 0xFFFFFFFFL /* enum = 4 bytes max */

} icSpotShape;

icSpotShape is used in the icScreening structure.

icStandardObserver

icStandardObserver is used in the icMeasurement structure.

/* Standard Observer, used in the measurementType tag */
typedef enum {

icStdObsUnknown = 0x00000000L, /* Unknown observer */
icStdObs1931TwoDegrees = 0x00000001L, /* 1931 two degrees */
icStdObs1964TenDegrees = 0x00000002L, /* 1961 ten degrees */
icMaxStdObs = 0xFFFFFFFFL /* enum = 4 bytes max */

} icStandardObserver;

Arrays of Numbers
These arrays are variable in length and type. They are implemented with the icAny
constant instead of pointers. The icAny constant is a single-byte array that allows you
to extend the data structure by allocating more data.

icInt8Number
typedef struct {

icInt8Number data[icAny];

} icInt8Array;

icUInt8Number
typedef struct {

icUInt8Number data[icAny];

KCMS Profile Attributes 121

} icUInt8Array;

icInt16Number
typedef struct {

icInt16Number data[icAny];

} icInt16Array;

icUInt16Number
typedef struct {

icUInt16Number data[icAny];

} icUInt16Array;

icInt32Number
typedef struct {

icInt32Number data[icAny];

} icInt32Array;

icUInt32Number
typedef struct {

icUInt32Number data[icAny];

} icUInt32Array;

icInt64Number
typedef struct {

icInt64Number data[icAny];

} icInt64Array;

icUInt64Number
typedef struct {

icUInt64Number data[icAny];

} icUInt64Array;

122 KCMS Application Developer’s Guide • December 2001

icS15Fixed16Number
typedef struct {

icS15Fixed16Number data[icAny];

} icS15Fixed16Array;

icU16Fixed16Number
typedef struct {

icU16Fixed16Number data[icAny];

} icU16Fixed16Array;

icCrdInfo
typedef struct {

icUInt32Number count; /* Char count includes NULL */
icInt8Number desc[icAny]; /* NULL terminated string */

} icCrdInfo;

icCurve
typedef struct {

icUInt32Number count; /* Number of entries */
icUInt16Number data[icAny]; /* The actual table data, real

* number is determined by count
* Interpretation depends on data
* use with a given tag */

} icCurve;

icData
typedef struct {

icUInt32Number dataFlag; /* 0 = ascii, 1 = binary */
icInt8Number data[icAny]; /* Data,size determined from tag */

} icData;

icDateTimeNumber
/* The base date time number */
typedef struct {

icUInt16Number year;
icUInt16Number month;
icUInt16Number day;
icUInt16Number hours;

KCMS Profile Attributes 123

icUInt16Number minutes;
icUInt16Number seconds;

} icDateTimeNumber;

icDescStruct
typedef struct {

icSignature deviceMfg; /* Device Manufacturer */
icSignature deviceModel; /* Decvice Model */
icUInt64Number attributes; /* Device attributes */
icTechnologySignature technology; /* Technology signature */
icInt8Number data[icAny]; /* Descriptions text follows */

/* Data that follows is of this form, this is an icInt8Number
* to avoid problems with a compiler generating bad code as
* these arrays are variable in length.
* icTextDescription deviceMfgDesc; * Manufacturer text
* icTextDescription modelDesc; * Model text */

} icDescStruct;

icLut8
/* lut8, input & output tables are always 256 bytes in length */
typedef struct {

icUInt8Number inputChan; /* Number of input channels */
icUInt8Number outputChan; /* Number of output channels */
icUInt8Number clutPoints; /* Number of clutTable grid points */
icInt8Number pad;
icS15Fixed16Number e00; /* e00 in the 3 * 3 */
icS15Fixed16Number e01; /* e01 in the 3 * 3 */
icS15Fixed16Number e02; /* e02 in the 3 * 3 */
icS15Fixed16Number e10; /* e10 in the 3 * 3 */
icS15Fixed16Number e11; /* e11 in the 3 * 3 */
icS15Fixed16Number e12; /* e12 in the 3 * 3 */
icS15Fixed16Number e20; /* e20 in the 3 * 3 */
icS15Fixed16Number e21; /* e21 in the 3 * 3 */
icS15Fixed16Number e22; /* e22 in the 3 * 3 */
icUInt8Number data[icAny]; /* Data follows see spec for size */

/*
* Data that follows is of this form
*
* icUInt8Number inputTable[inputChan][256]; * The input table
* icUInt8Number clutTable[icAny]; * The clut table
* icUInt8Number outputTable[outputChan][256]; * The output table
*/

} icLut8;

124 KCMS Application Developer’s Guide • December 2001

icLut16
/* lut16 */
typedef struct {

icUInt8Number inputChan; /* Number of input channels */
icUInt8Number outputChan; /* Number of output channels */
icUInt8Number clutPoints; /* Number of clutTable grid points */
icInt8Number pad; /* Padding for byte alignment */
icS15Fixed16Number e00; /* e00 in the 3 * 3 */
icS15Fixed16Number e01; /* e01 in the 3 * 3 */
icS15Fixed16Number e02; /* e02 in the 3 * 3 */
icS15Fixed16Number e10; /* e10 in the 3 * 3 */
icS15Fixed16Number e11; /* e11 in the 3 * 3 */
icS15Fixed16Number e12; /* e12 in the 3 * 3 */
icS15Fixed16Number e20; /* e20 in the 3 * 3 */
icS15Fixed16Number e21; /* e21 in the 3 * 3 */
icS15Fixed16Number e22; /* e22 in the 3 * 3 */
icUInt16Number inputEnt; /* Number of input table entries */
icUInt16Number outputEnt; /* Number of output table entries */
icUInt16Number data[icAny]; /* Data follows see spec for size */

/*
* Data that follows is of this form
*
* icUInt16Number inputTable[inputChan][icAny]; * The input table
* icUInt16Number clutTable[icAny]; * The clut table
* icUInt16Number outputTable[outputChan][icAny]; * The output table
*/

} icLut16;

icMeasurement
typedef struct {

icStandardObserver stdObserver; /* Standard observer */
icXYZNumber backing; /* XYZ for backing material */
icMeasurementGeometry geometry; /* Measurement geometry */
icMeasurementFlare flare; /* Measurement flare */
icIlluminant illuminant; /* Illuminant */

} icMeasurement;

Each field in icMeasurement is an enumerated type. For details on each field, see the
following:

� icStandardObserver - See “icStandardObserver ” on page 121.

� icXYZNumber– See “icCurve ” on page 123.

� icMeasurementGeometry – See “icMeasurementGeometry ” on page 120.

� icIlluminant – See “icIlluminant ” on page 119.

icNamedColor

KCMS Profile Attributes 125

Note – icNamedColor is obsolete. Use icNamedColor2.

icNamedColor2
/*
* icNamedColor2 takes the place of icNamedColor, approved at the
* SIGGRAPH 95, ICC meeting.
*/
typedef struct {

icUInt32Number vendorFlag; /* Bottom 16 bits for IC use */
icUInt32Number count; /* Count of named colors */
icUInt32Number nDeviceCoords; /* Number of device coordinates */
icInt8Number prefix[32]; /* Prefix for each color name */
icInt8Number suffix[32]; /* Suffix for each color name */
icInt8Number data[icAny]; /* Named color data follows */

/*
* Data that follows is of this form
*
* icInt8Number root1[32]; * Root name for first color
* icUInt16Number pcsCoords1[icAny]; * PCS coordinates of first color
* icUInt16Number deviceCoords1[icAny]; * Device coordinates of first color
* icInt8Number root2[32]; * Root name for second color
* icUInt16Number pcsCoords2[icAny]; * PCS coordinates of first color
* icUInt16Number deviceCoords2[icAny]; * Device coordinates of first color
* :
* :
* Repeat for name and PCS and device color coordinates up to (count-1)
*
* NOTES:
* PCS and device space can be determined from the header.
*
* PCS coordinates are icUInt16 numbers and are described in the ICC
* specification. Only 16 bit CIELAB and CIEXYZ are allowed. The number of
* coordinates is consistent with the headers PCS.
*
* Device coordinates are icUInt16 numbers where 0x0000 represents
* the minimum value and 0xFFFF represents the maximum value.
* If the nDeviceCoords value is 0, this field is not given.
*/

} icNamedColor2;

icProfileSequenceDesc
typedef struct {

icUInt32Number count; /* Number of descriptions */
icUInt8Number data[icAny]; /* Array of description struct */

} icProfileSequenceDesc;

126 KCMS Application Developer’s Guide • December 2001

icScreening
typedef struct {

icUInt32Number screeningFlag; /* Screening flag */
icUInt32Number channels; /* Number of channels */
icScreeningData data[icAny]; /* Array of screening data */

} icScreening;

icScreeningData
typedef struct {

icS15Fixed16Number frequency; /* Frequency */
icS15Fixed16Number angle; /* Screen angle */
icSpotShape spotShape; /* Spot Shape encodings */

} icScreeningData;

icText
typedef struct {

icInt8Number data[icAny]; /* Variable array of chars */

} icText;

icTextDescription
typedef struct {

icUInt32Number count; /* Description length */
icInt8Number data[icAny]; /* Descriptions follow */

/*
* Data that follows is of this form
*
* icInt8Number desc[count] * NULL terminated ascii string
* icUInt32Number ucLangCode; * UniCode language code
* icUInt32Number ucCount; * UniCode description length
* icInt16Number ucDesc[ucCount]; * The UniCode description
* icUInt16Number scCode; * ScriptCode code
* icUInt8Number scCount; * ScriptCode count
* icInt8Number scDesc[67]; * ScriptCode Description
*/

} icTextDescription;

icUcrBg
typedef struct {

icInt8Number data[icAny]; /* The Ucr BG data */
/*
* Data that follows is of this form. UcrBg is a icInt8Number

KCMS Profile Attributes 127

* to avoid problems with a compiler as
* these are variable-length arrays.
*
* icUcrBgCurve ucr; * Ucr curve
* icUcrBgCurve bg; * Bg curve
* icInt8Number string; * UcrBg description string
*/

} icUcrBg;

icUcrBgCurve
/* Structure describing either a UCR or BG curve */
typedef struct {

icUInt32Number count; /* Curve length */
icUInt16Number curve[icAny]; /* The array of curve values */

} icUcrBgCurve;

icViewingCondition
typedef struct {

icXYZNumber illuminant; /* In candelas per metre sq’d */
icXYZNumber surround; /* In candelas per metre sq’d */
icIlluminant stdIluminant; /* See icIlluminant defines */

} icViewingCondition;

icXYZArray
typedef struct {

icXYZNumber data[icAny]; /* Variable array of XYZ numbers */

} icXYZArray;

icXYZNumber
typedef struct {

icS15Fixed16Number X;
icS15Fixed16Number Y;
icS15Fixed16Number Z;

} icXYZNumber;

128 KCMS Application Developer’s Guide • December 2001

Attribute Type Definitions
The following attribute type definitions are in the icc.h header file.

Attribute Types

icCrdInfoType
typedef struct {

icTagBase base; /* “crdi” signature */
icCrdInfo info[5]; /* 5 sets of counts/strings */

} icCrdInfoType;

icCurveType
typedef struct {

icTagBase base; /* “curv” signature */
icCurve curve; /* curve data */

} icCurveType;

icDataType
typedef struct {

icTagBase base; /* “data” signature */
icData data; /* data structure */

} icDataType;

icDateTimeType
typedef struct {

icTagBase base; /* “dtim” signature */
icData data; /* date */

} icDateTimeType;

KCMS Profile Attributes 129

icLut8Type
typedef struct {

icTagBase base; /* “mft1” signature */
icLut8 lut; /* Lut8 data*/

} icLut8Type;

icLut16Type
typedef struct {

icTagBase base; /* “mft2” signature */
icLut16 lut; /* Lut16 data*/

} icLut16Type;

icMeasurementType
typedef struct {

icTagBase base; /* “meas” signature */
icMeasurement measurement; /* measurement data*/

} icMeasurementType;

icNamedColor2Type

icNamedColor2Type replaces icNamedColorType, which is obsolete.

typedef struct {
icTagBase base; /* “ncl2” signature */
icNamedColor2 ncolor; /* named color data*/

} icNamedColor2Type;

icProfileSequenceType
typedef struct {

icTagBase base; /* “pseq” signature */
icProfileSequence desc; /* seq description data*/

} icProfileSequenceType;

icS15Fixed16ArrayType
typedef struct {

icTagBase base; /* “sf32” signature */
icS15Fixed16Array data; /* array of values */

} icS15Fixed16ArrayType;

130 KCMS Application Developer’s Guide • December 2001

icScreeningType
typedef struct {

icTagBase base; /* “scrn” signature */
icScreening screen; /* screening structure */

} icScreeningType;

icSignatureType
typedef struct {

icTagBase base; /* “sig” signature */
icSignature signature; /* signature data */

} icSignatureType;

icTagBase
typedef struct {

icTagTypeSignature sig; /* Signature */
icInt8Number reserved[4]; /* Reserved, set to 0 */

} icTagBase;

icTextDescriptionType
typedef struct {

icTagBase base; /* “desc” signature */
icTextDescription desc; /* description data*/

} icTextDescriptionType;

icTextType
typedef struct {

icTagBase base; /* “text” signature */
icText data; /* variable array of chars */

} icTextType;

icU16Fixed16ArrayType
typedef struct {

icTagBase base; /* “uf32” signature */
icU16Fixed16Array data; /* variable array of values */

} icU16Fixed16ArrayType;

KCMS Profile Attributes 131

icUcrBgType
typedef struct {

icTagBase base; /* “bfd” signature */
icUcrBg data; /* ucrBg structure*/

} icUcrBgType;

icUInt8ArrayType
typedef struct {

icTagBase base; /* “ui08” signature */
icUInt8Array data; /* variable array of values */

} icUInt8ArrayType;

icUInt16ArrayType
typedef struct {

icTagBase base; /* “ui16” signature */
icUInt16Array data; /* variable array of values */

} icUInt16ArrayType;

icUInt32ArrayType
typedef struct {

icTagBase base; /* “ui32” signature */
icUInt32Array data; /* variable array of values */

} icUInt32ArrayType;

icUInt64ArrayType
typedef struct {

icTagBase base; /* “ui64” signature */
icUInt64Array data; /* variable array of values */

} icUInt64ArrayType;

icViewingConditionType
typedef struct {

icTagBase base; /* “view” signature */
icViewingCondition view; /* viewing conditions*/

} icViewingConditionType;

132 KCMS Application Developer’s Guide • December 2001

icXYZType
typedef struct {

icTagBase base; /* “XYZ” signature */
icXYZArray data; /* variable array of XYZ numbers */

} icXYZType;

CMM-Specific Attribute Definitions
The following attribute definitions in the icc.h header file are CMM-specific. These
definitions are registered with the ICC and are available for public use.

Attribute Definitions

icHeader
typedef struct {

icUInt32Number size; /* Profile size in bytes */
icSignature cmmId; /* CMM for this profile */
icUInt32Number version; /* Format version number */
icProfileClassSignature deviceClass; /* Type of profile */
icColorSpaceSignature colorSpace; /* Color space of data*/
icColorSpaceSignature pcs; /* PCS, XYZ or LAB only */
icDateTimeNumber date; /* Date profile was created */
icSignature magic; /* icMagicNumber */
icPlatformSignature platform; /* Primary Platform */
icUInt32Number flags; /* Various bit settings */
icSignature manufacturer; /* Device manufacturer */
icUInt32Number model; /* Device model number */
icUInt64Number attributes; /* Device attributes */
icUInt32Number renderingIntent; /* Rendering intent */
icXYZNumber illuminant; /* Profile illuminant */
icSignature creator; /* Profile creator */
icInt8Number reserved[48]; /* Reserved for future */

} icHeader;

icProfile
typedef struct {

icHeader header; /* header */
icUInt32Number count; /* number of tags in profile */

KCMS Profile Attributes 133

icInt8Number data[icAny]; /* tagTable and tagData */

/* Data the follows is of this form:
* icTag tagTable[icAny]; * tag table
* icInt8Number tagData[icAny]; * tag data
*/

} icProfile;

icTag
typedef struct {

icTagSignature sig; /* tag signature */
icUInt32Number offset; /* start of tag relative to start of

* header, See ICC spec, sect 8 */
icUInt32Number size; /* size in bytes */

} icTag;

icTagList
typedef struct {

icUInt32Number count; /* number of tags in profile */
icTag tags[icAny]; /* variable array of tags */

} icTagList;

134 KCMS Application Developer’s Guide • December 2001

CHAPTER 6

Warning and Error Messages

In This Chapter
This chapter describes the warning and error messages returned by the KCMS “C”
API.

Every API function returns warning and error messages in a status code (in
KcsStatusId) to indicate whether it executed successfully or, if it did not, why it
failed. If a function successfully executes, it returns the KCS_SUCCESS status code. If a
function is cancelled before its completion, it returns the
KCS_OPERATION_CANCELLED status code. Any other returned status code indicates a
problem. This chapter describes each warning and error message and provides
information on localizing the messages.

The status codes are defined in /usr/openwin/include/kcms/kcsstats.h.

Warnings
A returned status code in the range KCS_WARNINGS_START to KCS_WARNINGS_END
indicates a warning. Table 6–1 describes the warning constants that the C API
functions return.

TABLE 6–1 Warning Codes

Enumerated Warning Constant Description

KCS_WARNINGS_START The beginning of the defined warnings.

135

TABLE 6–1 Warning Codes (Continued)
Enumerated Warning Constant Description

KCS_ATTR_LARGE_CT_SUPPLIED Attribute count supplied field was
unexpectedly large.

KCS_CANNOT_DEOPTIMIZE Original data not available so optimization
cannot be changed.

KCS_CANNOT_OPTIMIZE This profile cannot be optimized.

KCS_OPERATION_CANCELLED This operation was cancelled by the
application’s user.

KCS_SPEC_CMM_NOT_FOUND Specified CMM was not found.

KCS_TRUNCATED The buffer you supplied was too small.
Therefore, the data in it was truncated.

KCS_WARNINGS_END Marks end of KcsStatusId warnings
currently defined.

Errors
A returned status code in the range KCS_ERRORS_START to KCS_ERRORS_END
indicates a call error. Table 6–2 describes the error messages returned by the C API.

TABLE 6–2 Error Codes

Enumerated Error Constant Description

General Failures:

KCS_ERRORS_START Beginning of errors.

KCS_NOT_AVAILABLE KCMS has not been installed or is not available.

Memory:

KCS_MEM_ALLOC_ERR Memory allocation error.

OS:

KCS_OS_ERR General OS error.

IO:

KCS_IO_READ_ERR Read error.

136 KCMS Application Developer’s Guide • December 2001

TABLE 6–2 Error Codes (Continued)
Enumerated Error Constant Description

KCS_IO_WRITE_ERR Write error.

KCS_IO_SEEK_ERR Seek error.

KCS_IO_UNKNOWN_TYPE_ERR An unknown KcsProfileDesc type entry was
found.

Solaris File:

KCS_SOLARIS_FILE_NOT_OPENED Cannot open profile.

KCS_SOLARIS_FILE_RO Cannot open profile for writing.

KCS_SOLARIS_FILE_LOCKED Profile is locked by another process.

KCS_SOLARIS_FILE_NAME_NULL Filename pointer is NULL.

X11 Profile:

KCS_X11_DATA_NULL Display or visual pointer is NULL.

KCS_X11_PROFILE_NOT_LOADED Cannot load profile; may be locked or does not
exist.

KCS_X11_PROFILE_RO Remote X11 profiles are read only.

Profile:

KCS_PROF_ID_BAD Invalid profile ID.

KCS_PROF_FORMAT_BAD Profile format error.

KCS_PROF_CT_EXCEEDS_PROF_LIST Number of profiles on list is smaller than
argument count.

KCS_PROF_INCOMPLETE Incomplete profile specified.

KCS_PROF_NO_DATA_SUPPORT_4_REQUEST

KCS_PROF_REQ_ATTRS_INCOMPLETE

Attributes:

KCS_ATTR_NAME_OUT_OF_RANGE Specified attribute is out of range.

KCS_ATTR_TYPE_UNKNOWN Attribute type supplied by user is not known.

KCS_ATTR_LOAD_FORMAT_INCORRECT The format of the attribute does not match
specifications upon loading.

KCS_ATTR_LOAD_FLOAT_ERR Error interpreting a float upon loading.

KCS_ATTR_LOAD_INT_ERR Error interpreting an integer upon loading.

Warning and Error Messages 137

TABLE 6–2 Error Codes (Continued)
Enumerated Error Constant Description

KCS_ATTR_DATE_TIME_FORMAT The format of the date time stamp does not match
specifications.

KCS_ATTR_CT_ZERO_OR_NEG The count supplied in KcsAttributeValue was
zero or negative.

KCS_ATTR_READ_ONLY Attempting to set an attribute that is read only.

Connection:

KCS_CONNECT_FAILED Pair of profiles could not be connected.

KCS_CONNECT_PRECISION_UNACCEPTABLE Profile connect will result in unacceptable
precision.

KCS_CONNECT_OPT_FORCED_DATA_LOSS The last optimization forced the KCMS
framework to remove some data necessary for
this operation.

KCS_CONNECT_PROFILES_CT_ERR The operation requires a different number of
profiles in the list than supplied.

KCS_CONNECT_QUANT_MISMATCH Mismatch between the quantization of a pair of
profiles.

KCS_CONNECT_UNIMP_OP Connect operation is unimplemented.

Validation:

KCS_MISMATCHED_WHITEPOINTS Profile white points did not match during
validation.

KCS_MISMATCHED_BLACKPOINTS Profile black points did not match during
validation.

KCS_MISMATCHED_COLORSPACES Profile color spaces did not match during
validation.

KCS_MISMATCHED_DIMENSIONS Profile dimensions did not match during
validation.

KCS_MISMATCHED_VERSIONS Profile versions did not match during validation.

Layout:

KCS_LAYOUT_INVALID Invalid pixel layout.

KCS_LAYOUT_UNSUPPORTED Unsupported pixel layout.

KCS_LAYOUT_MISMATCH Pixel layouts do not match profile input and
output specifications.

138 KCMS Application Developer’s Guide • December 2001

TABLE 6–2 Error Codes (Continued)
Enumerated Error Constant Description

Evaluation:

KCS_EVAL_TOO_MANY_CHANNELS More channels specified in the pixel layout
structure than the profile supports.

KCS_EVAL_BUFFER_OVERFLOW Caller’s buffer too small.

KCS_EVAL_ONLY_ONE_OP_ALLOWED KcsEvaluate only supports one operation at a
time, (KcsForward).

Characterization/Calibration:

KCS_CC_UPDATE_NEEDS_MORE_DATA Data supplied is inadequate.

KCS_CC_UPDATE_INVALID_DATA Data supplied is invalid.

KCS_CC_INCORRECT_COLOR_SPACE Characterization/calibration data contains
incorrect color space.

KCS_CC_NUM_COMPS_OUT_OF_RANGE Characterization/calibration data contains
incorrect number of I/O components.

KCS_CC_TOO_FEW_MEASUREMENTS Not enough measurements to support calibrating
or characterizing this device.

KCS_CC_TABLE_DATA_BAD Table data is out of range.

KCS_CC_INCORRECT_DEV_TYPE KcsAttributeDevType is incorrect.

KCS_CC_INCORRECT_ATTR_CLASS KcsAttributeClass is incorrect.

KCS_CC_CANNOT_CAL_DEV_TYPE Device type cannot be calibrated.

KCS_CC_CANNOT_CHAR_DEV_TYPE Device type cannot be characterized.

KCS_CC_INPUT_NOT_RAMP Currently data must be a ramp.

Color Management Module:

KCS_CMM_RTLOAD_FAILED Runtime loading of CMM failed.

KCS_CMM_MAJOR_VERSION_MISMATCH Incompatible CMM major version number.

KCS_CMM_MINOR_VERSION_MISMATCH Incompatible CMM minor version number.

KCS_CMM_UNKNOWN_TECHNOLOGY CMM requested could not be found.

KCS_CMM_UNKNOWN_RUNTIME_TYPE CMM associated with this profile could not be
found.

KCS_CMM_UNSUPPORTED_OP Operation not supported by this CMM.

Unimplemented Features:

Warning and Error Messages 139

TABLE 6–2 Error Codes (Continued)
Enumerated Error Constant Description

KCS_UNIMP_NESTED_CONNECTIONS Currently, KCMS cannot handle nested
connections.

KCS_UNIMP_TOO_MANY_PROFILES Profile array contains too many profiles.

KCS_UNIMP_ILLEGAL_TECHNOLOGY When connecting profiles, one CMM technology
is incompatible with another CMM technology.
(Very rare with standard ICC profile format.)

Internal:

KCS_INTERNAL_CLASS_CORRUPTED Internal error related to one of the KCMS classes.

KCS_INTERNAL_DATA_CORRUPTED Internal error related to one of the KCMS data.

IO:

KCS_HOSTNAME_ERROR Host name unknown (not local or remote).

Localizing Status Messages
The KCMS library warning and error codes are internationalized. Your application can
convert KcsStatusId into a text string with the KcsGetLastError() function
(defined on “KcsGetLastError() ” on page 82). It calls the appropriate setup
functions to convert a message to the appropriate language. A translation table also
must exist. The translatable KCMS .po files are kcs_strings.po and
kcssolmsg_strings.po, which are located in
/openwin/lib/locale/C/LC_MESSAGES.

See the setlocale(3C)man page for further information on accessing the translated
message file.

140 KCMS Application Developer’s Guide • December 2001

Glossary

absorbed light Light that enters a material and is trapped (neither reflected nor
transmitted).

achromatic Having no hue; white, gray, or black.

adaptation Process by which the visual mechanism adjusts to the conditions
under which the eyes are exposed to radiant energy. See chromatic
adaptation.

additive color primaries Red, green, and blue light that produces white light when mixed
together in the proper proportions.

ambient lighting Environmental lighting condition for a particular location.

attribute Characteristics defined in a color profile that provide information for a
CMM to translate color information between the profile connection
space and the native device space. Attributes are specified by name,
value, and status (required or optional). Attribute is a synonym for tag.

bitmap A digital representation of an image in which all dots or pixels making
up the image are rendered in a rectangular grid and correspond to
specifically assigned bits in memory.

brightness Attribute of a visual sensation according to which an area appears to
exhibit more or less light.

bit plane Level of intensity of each electron gun for each primary color in a CRT,
controlled by the depth or number of bits describing a pixel. In a
simple one-bit monochromatic display, the pixel is either black or
white (on or off). In a three-bit image, eight possible colors can be
displayed (23). This allows eight gray shades in a monochrome
display; in a simple three-bit color CRT, the eight colors are red, green,
blue, cyan, magenta, yellow, white, and black.

calibration Procedure for correcting any deviation from a standard.

141

characterization Process that defines what colors are produced by (or, when scanning,
ought to produce) a given set of numbers by measuring a sample
population of devices. Characterization is a description of a device’s
color gamut, operation, dynamic range, interaction of colors, color data
transfer characteristics, and so forth, which is used as an average
operating model for the device.

chroma Strength of a color, how far it departs from neutral gray.

chromatic Having a hue; not white, gray, or black.

chromatic adaptation Adjustment of the visual mechanism in response to the overall color of
a stimulus to which the eyes are exposed.

CIE Commission Internationale de l’Eclairage (International Commission
on Illumination), an international organization that establishes and
maintains standards of light and color. Its system of describing color is
based on standardization of illuminants and observers, not physical
samples.

CIEXYZ Term used when referring to the CIE standard for tristimulus values X,
Y, and Z. The system represents all visible colors with positive
tristimulus values. Two colors match when their tristimulus values are
the same and they are viewed under identical conditions.

CLUT Color look-up table. An area in computer memory where a set of
values is used to index another set of values. Since the table of pixel
color information is stored, the information does not have to be
recomputed each time it is called up.

CMY/CMYK Abbreviation for cyan (C), magenta (M), yellow (Y), and black (K)
process colors used in printing and other imaging technologies. Cyan,
magenta, and yellow are subtractive primaries as well as secondary
colors in the additive color system. Black is sometimes added to
enhance color and to produce a true black.

CMY/CMYK color space Color-order model of subtractive primaries cyan (C), magenta (M),
yellow (Y), and sometimes black (K), used by printing technologies.

color Visual sensation that occurs through a combination of physical,
physiological, and psychological events involving light, objects, and
the visual system.

colorant A dye, pigment, or ink used in the process of coloring material.

colorimetry A branch of color science concerned with the measurement and
specification of color stimuli.

color laser printer A printer that uses a laser to xerographically generate the image to be
reproduced. Each page is run through the color-application process
four times, each time with a different CYMK toner.

142 KCMS Application Developer’s Guide • December 2001

color order system A system used for arranging and describing color, based on physical
samples, specific devices, or colorimetric quantities.

color profile See device color profile (DCP).

calibrator A physical device that calibrates the monitor attached to a computer.

color management
module (CMM)

That component of a color manager that actually processes color data
being input and output to the system in addition to the information
about the devices stored in the device color profiles (DCPs).

color space See color order system.

color temperature A measure that defines the color of a light source relative to the
spectral distribution of the light radiated by a theoretically perfect
radiator, or black body, heated until it emits visible light. See correlated
color temperature.

color wheel Circle with primary colors (red, green and blue) and secondary colors
(cyan, magenta, and yellow) located equidistant from each other. A
color wheel may also show intermediate hues.

complementary colors Particular wavelengths of light that, when added together, create white
light. The subtractive primaries (cyan, magenta, and yellow) are
complementary to the additive primaries (red, green, and blue). For
example, blue (an additive primary) and its complementary yellow (a
subtractive primary), a secondary color on the additive color wheel,
can be added together to produce white light. In the visual arts,
complementary colors are diametrically opposite one another on any
color wheel.

cones Visual color-receptor cells of the retina. There are three different types
of cone-shaped cells, each thought to have a different photosensitive
pigment. Under normal and bright lights, cones produce the sensation
necessary for color vision. See rods.

contrast Tonal gradation between the highlights, middle tones and shadows of
images.

correlated color
temperature

Temperature of a black body (Planckian) radiator whose perceived
color most closely matches a given stimulus seen at the same
brightness and under specified viewing conditions.

D50 A CIE designation for a white-light spectrum and its associated
colorimetric coordinates. It represents a yellower daylight than D65.
This is the “daylight” that is specified by the graphics industry for
viewing color prints and transparencies. D indicates “daylight” and
5000, the correlated color temperature in degrees Kelvin.

D65 A CIE designation for a white-light spectrum and its associated
colorimetric coordinates. It represents a standard daylight for general
use. This “daylight” is commonly used in colorimetry, and it is

Glossary 143

becoming a “standard” for monitor white point. D indicates “daylight”
and 6500 the correlated color temperature in degrees Kelvin.

device color profile
(DCP)

Device-specific color information for devices.

display Representation of a data item in visible form, for example, output to a
CRT. Visual representation of the output of an electronic device. See
monitor.

dithering The technique of making adjacent pixels different colors to give the
illusion of an intermediate color. Dithering can produce the effect of
shades of gray on a black-and-white display, or simulate a greater
number of colors on a color display than the display is capable of
producing.

dither cell Grouping of pixels into a super pixel for the purpose of creating
halftones on the computer. Also called halftone cell.

dpi (dots per inch) Measure of resolution level of raster imaging output devices such as
laser printers, monitors and photo or laser typesetters (imagesetters).

dynamic range Extent of minimum and maximum operational characteristics. For
example, the difference between lowest and highest intensity (for a
monitor), or the lowest and highest density (for prints and
transparencies).

electromagnetic
radiation

Combination of electrical and magnetic vibrations called waves that
constitute the electromagnetic spectrum. The human eye sees only a
small range of electromagnetic waveforms, or wavelengths, from
approximately 400 nm (violet) to 700 nm (red) in the area designated
visible light.

gamma For a CRT device, the slope of the line relating the logarithm of the
light output to the logarithm of the applied voltage.

gamut The limits on a set of colors. Ordinarily the gamut is imposed by the
limitations of a physical capture, display, or output device. In a
computer screen, colors that cannot be displayed are called
out-of-gamut colors.

gamut adjustment Ability to account for device capabilities and limitations by regulating
colors through compression or expansion techniques. In gamut
compression, colors that are beyond the capabilities of a device are
mapped into colors that the device can actually produce.

halftone A color or black-and-white continuous tone image reproduced by
changing the image into dots through the use of halftone screens.
Because printing presses are not able to print true continuous tone
images, a halftone allows tone gradation, in which the dots are
perceived as a whole, depending on the halftone screen used, quality

144 KCMS Application Developer’s Guide • December 2001

of the original image, and so forth. In computers, electronic algorithms
can create digital halftone representations.

hue Attribute of a visual sensation according to which an area appears to
be similar to one, or to proportions of two, of the visible colors, red,
yellow, green, cyan, blue, and magenta. Hue is part of the HSV (hue,
saturation, and value) and HLS (hue, lightness, and saturation) color
models.

ICC International Color Consortium.

illuminant A light defined by its spectral power distribution. An illuminant may
or may not be physically realizable as a source. Several standard
illuminants have been defined by the CIE for use in colorimetric
computations. See source.

ink-jet printer A printer that uses finely directed sprays of ink to produce the
character image. Color printout is achieved in one pass and colors are
based on the CMYK or CYM color model. Technologies for this
category of color output printers include drop-on-demand, which can be
subdivided into bubble jet (or thermal ink-jet) and piezoelectric; continuous
ink-jet; and phase-change ink jet. Phase-change ink jet technique requires
solid ink while the others take liquid ink.

light source See illuminant and source.

memory colors Colors seen regularly that people tend to remember best and agree on
the appearance of, such as green grass and blue sky.

metameric colors A pair of colors that match visually under some lighting conditions,
but not under others.

metamerism Visual phenomenon where the colors of two spectrally different objects
appear to match under a specific set of conditions. The term observer
metamerism is used when two objects appear to some observers (or
instruments) to have the same color, but to other observers the same
objects do not match.

moiré In printing, undesirable patterns caused by misalignment of halftone
dots. In imaging devices: visual patterns formed by interference
between two sets of regular divisions, such as the combination of a TV
raster with a striped object in the scene; can be caused by any beating
between frequencies.

monitor Device for computer generated display; video display terminal.

monitor calibration Process that measures the performance of a display and compensates
for its variations.

monitor RGB See RGB color space.

monitor white point Color specification of a monitor’s white, when all three phosphors are
lit to maximum level.

Glossary 145

Munsell chroma The quality that describes the extent to which a color differs from a
gray of the same value.

Munsell hue The quality of color described by the words red, yellow, blue, and so
forth. The principal hues of the Munsell system are red, yellow, green,
blue and purple.

Munsell system A color-order system established by A.H. Munsell in 1905. Based on
visual perception, this system provides a description of a color, using a
collection of samples as well as a color notation system. See Munsell
chroma, Munsell hue, and Munsell value.

Munsell value The quality of a color described by the words light, dark, and so forth,
relating the color to a gray of similar lightness.

nanometer Preferred nomenclature for describing measurement of wavelengths of
light. One nanometer equals 1x10-6 millimeter. The abbreviation is nm.

observer metamerism See metamerism.

palette The set of colors (ranging from four to more than 16 million) that a
particular computer graphics program is using. Many display adapters
have a limited palette. The set of colors may be in a table.

peripherals The devices that hook up to the desktop computer (color monitor,
printer, scanner, and so forth).

phosphor The phosphorescent coating on the interior of the front surface of a
cathode ray tube (CRT) that emits light of one of the three additive
primary colors (red, green, or blue) when a carefully controlled beam
of electrons strikes the material. Depending on the type of color tube,
the pattern of the phosphors can be dot, brick-like, or stripe.

Photo CD A photographic compact disc (CD) made using a Kodak imaging
system. The system scans in photographic images (negatives, slides,
and prints), processes the data to optimize its quality for digital
imaging, compresses the data, and then writes it on a compact disk.

pigment Finely ground, natural or synthetic, inorganic or organic, insoluble
particles (powder) that, when dispersed in a liquid vehicle, give color
to paints, printing inks, and other materials by reflecting and
absorbing light.

pixel Picture element. Smallest addressable point of a bitmapped screen that
can be independently assigned color and intensity.

pixel depth Number of bits describing a pixel. Also called bit depth. See bitplane.

PMS (Pantone Matching
System)

A printing industry standard for specifying spot color.

pre-press Term used to describe the process or components of the process of
preparing information for printing or alternative media output after

146 KCMS Application Developer’s Guide • December 2001

the writing and design concept stages. In desktop publishing, it is the
process of all of the elements on any page to produce the master copy.

primary colors Three basic colors used to make other colors by mixture, either
additive mixture of lights or subtractive mixture of colorants. The
additive primaries are red, green, and blue; the subtractive primaries
are cyan, magenta, and yellow. See additive color primaries, subtractive
primaries, and secondary color.

printer Computer-driven device that deposits images on paper or film. See
ink-jet printer, thermal wax printer and color laser printer.

process colors Cyan, magenta, yellow, and black used in color printing. See
CMY/CMYK.

profile connection space The common junction where profiles for different devices are
connected together.

reflected light Light that bounces back from the object that it strikes.

registration In printing: accuracy with which printing images are positioned or
combined so that they align exactly. In multi-color printing each color
must be precisely aligned one over the other for accurate reproduction.
In color monitors: alignment of the electron guns to produce correct
color.

resolution The degree of sharpness of an image displayed on a computer screen,
or quality of printed output from a laser printer or photo or laser
typesetter; expressed in dots per inch (dpi). Resolution can also refer to
the number of bits per pixel. In printing, resolution refers to the space
between dots in a halftone screen; expressed as lines per inch (lpi).

RGB Abbreviation for red, green and blue primaries of the additive color
system. Used in reference to color computer graphics and video
technology.

RGB color space A color-order model that may be based on either the light-emitting
phosphors (red, green, and blue) of an actual device or on a set of
hypothetical RGB primaries.

rods Photoreceptor cells in the retina that respond to low levels of light.
They are not thought to contribute to color vision. See cones.

saturation The amount of hue in a color sample compared to the amount of
achromatic light it reflects or transmits.

scanner An electronic device that digitizes and converts photographs, slides,
paper images, or other two-dimensional images into bitmapped
images.

scanner calibration A feature that measures the performance of a scanner and compensates
for its variations.

Glossary 147

secondary color Color made by mixing two primary colors. In the additive color
system, the secondary colors are cyan, magenta, and yellow; in the
subtractive color system, the secondary colors are red, green, and blue.

service bureau A company that provides pre-press and other computer output in a
variety of forms, such as film separations, slides and other
transparencies, and color proofs. A service bureau may specialize or
can be a full-service operation that offers a wide range of services,
including printing.

simulation Used to represent an image on a display. It is a feature that changes the
display colors to match the input or output colors in a way that
corresponds to a defined device, medium, viewing environment, and
so forth.

source A physically realizable light, whose spectral power distribution can be
experimentally determined. Several standard sources have been
defined by the CIE for use in colorimetry. Also a computer term for
origin of data.

spectral response Using the example of the human eye, the spectral response curves map
the wavelength of light against the fraction of light absorbed by each
type of eye cone (red, green, and blue sensitive cones). It is the
sensitivity of the eye or a device to different wavelengths of light.

spot color Color printed in pure color (ink straight out of the container), as
opposed to four-color process, where colors are composed of
percentages of cyan, magenta, yellow, and black. Spot color
separations for printing involve one plate for each color on the page,
unlike process color, which requires four separate plates.

standard illuminant See illuminant.

standard observer The CIE specification for a hypothetical observer whose spectral
responsivities represent those of the average human population with
normal color vision.

standard source See source.

subtractive primaries Cyan, magenta, and yellow. The three colors that, when superimposed
in register, produce black. Also known as process colors because cyan,
magenta, and yellow are used in printing. See CMY/CMYK.

surround effect A perceptual phenomenon where the appearance of a color is
influenced by the color or colors surrounding it.

system monitor The monitor that is physically attached to a computer system to be
used when displaying images.

tag A synonym for attribute. See attribute.

target A physical paper target with a reference image used for determining
the color response of a scanner.

148 KCMS Application Developer’s Guide • December 2001

thermal dye transfer
printer

A type of thermal-transfer printer that produces a high resolution
continuous tone image. This technology mixes percentages of cyan,
magenta, and yellow, and adjusts the density of each printed dot,
thereby eliminating the need for halftoning and dithering to produce
different colors. Specially coated paper reacts with the dye causing the
dye to diffuse into the paper. Also referred to as dye-diffusion printer,
dye-sublimation printer, and sublimal-dye printer.

thermal wax printer A printer that uses colored wax or plastic, dye, dyed ribbons, or some
other material that can be heat-flowed onto paper or transparency film.
Other names for this category: thermal-transfer printer and
thermal-wax transfer printer.

transmitted light Light that passes through an object.

transparency Image formed on a clear or translucent base by means of a
photographic, printing, chemical, or other process, generally viewed
by transmitting light through the image.

tristimulus values Intensities or amounts of each of a set of three primary colors required
to match a given color stimulus. See CIEXYZ.

value See Munsell value.

visible spectrum The portion of electromagnetic radiation, from approximately 400 nm
to 700 nm, that is seen as visible light. The colors of the spectrum from
400 to 700 nm are violet, blue, green, yellow, orange, and red.

wavelength Distance between successive corresponding points in electromagnetic
and other forms of waves. See nanometer.

white point See monitor white point.

XYZ See CIEXYZ.

Glossary 149

150 KCMS Application Developer’s Guide • December 2001

Index

A
abstract profile, 112
accuracy, optimizing for, 89
architecture, 21
attribute, 93, 103

data structures, 103, 115, 118, 134
arrays of numbers, 121
ASCII data, 115
binary data, 115
device attributes, 115
enums, other, 119
number definitions, 116
profile header flags, 115
screening encodings, 114
signatures, 115
signatures, color space, 118

error messages, 137
required and optional, 104
value, 104

attribute definitions, registered, 133
attribute names, 104, 112

B
band-interleaved data, 63

C
calibration, 99

calibration, definition of, See also profile
CCP (complete color profile), definition of, 31
characterization, 99

error messages, 139
characterization, definition of, See also profile
chromaticity, 27
CIE (Commission Internationale de

l’Eclairage), 30
CMM (color management module), 24
CMM (Color Management Module)

error messages, 139
CMM (color management module)

profile, association with, 28
CMYK input profile (ICC), 108
CMYK output profile (ICC), 110
color blindness, 30
color, out-of-gamut, 73
color profiles, See profiles
color space conversion profile, 111
color space profile, 64
color spaces, 27
color-corrected, 23
colorimetric data, 59
colormap, 63
component array defines, 63
component-interleaved data, 63
computer-generated color data, 59
constants

in APIs, 41
operation hint, 57

content hints, See hints
CSP (color space profile), definition of, 30

151

D
DCP (device color profile), definition of, 30
device attributes, 115
device link profile, 111
display profiles, 108

E
ECP (effects color profile), definition of, 30
error format, 70
error messages, 136, 140

attributes, 137
characterization, 139
CMM, 139
connection, 138
evaluation, 139
general failure, 136
internal, 140
IO, 136
memory, 136
pixel layout, 138
profile, 137
unimplemented features, 139
validation, 138
X11 profile, 137

F
forward operation hints, See hints

H
hints

content, 38, 59
load, 39, 84, 87

bit mask code example, 57
bit mask values table, 56

operation
forward, 58
reverse, 58

operation, forward, 35, 38
operation, gamut-test, 36
operation, reverse, 36, 38
operation, simulate, 36

hints, load, 33

I
icAny, 115
icAsciiData, 115
icBinaryData, 115
ICC content hints, 59
ICC specification

device link profiles, 111
input profile, 107

CMYK, 108
monochrome, 107
RGB, 108

output profile, 109
CMYK, 110
monochrome, 110
RGB, 110

ICC tag, See tag
icColorSpaceSignature, 118
icCrdInfo, 123
icCurve, 123
icCurveType, 129
icData, 123
icDataType, 129
icDateTimeNumber, 123
icDateTimeType, 129
icDescStruct, 124
icEmbeddedProfileFalse, 115
icEmbeddedProfileTrue, 115
icGlossy, 115
icHeader, 133
icIlluminant, 119
icInt16Array, 122
icInt16Number, 116
icInt32Array, 122
icInt32Number, 116
icInt64Number, 116, 122
icInt8Number, 116, 121
icLinesPerCm, 114
icLinesPerInch, 114
icLut16Type, 130
icLut8Type, 130
icMagicNumber, 114
icMatte, 115
icMeasurement, 125

152 KCMS Application Developer’s Guide • December 2001

icMeasurementFlare, 120
icMeasurementGeometry, 120
icMeasurementType, 130
icNamedColor, 125
icNamedColor2, 126
icNamedColorType, 130
icPlatformSignature, 119
icProfile, 133
icProfileClassSignature, 119
icProfileSequenceDesc, 126
icProfileSequenceType, 130
icPrtrDefaultScreensFalse, 114
icPrtrDefaultScreensTrue, 114
icReflective, 115
icRenderingIntent, 120
icS15Fixed16ArrayType, 130
icS15Fixed16Number, 123
icScreening, 127
icScreeningData, 127
icScreeningType, 131
icSigHeaderTag, 104
icSigLabData, 119
icSigListTag, 105
icSignature, 115
icSignatureType, 131
icSigNumTag, 104
icSigProfileSequence, 114
icSigXYZData, 119
icSpotShape, 121
icStandardObserver, 121
icTag, 134
icTagBase, 131
icTagList, 134
icTagSignature, 116
icTagTypeSignature, 117
icTechnologySignature, 118
icText, 127
icTextDescription, 127
icTextDescriptionType, 131
icTextType, 131
icTransparency, 115
icU16Fixed16ArrayType, 131
icU16Fixed16Number, 123
icUcrBgCurve, 127, 128
icUcrBgType, 132
icUInt16ArrayType, 132
icUInt16Number, 116, 122

icUInt32ArrayType, 132
icUInt32Number, 116, 122
icUInt64ArrayType, 132
icUInt64Number, 116, 122
icUInt8ArrayType, 132
icUInt8Number, 116, 121
icUseAnywhere, 115
icUseWithEmbeddedDataOnly, 115
icVersionNumber, 114
icViewingCondition, 128
icViewingConditionType, 132
icXYZArray, 128
icXYZType, 133
interleaved data, 63
interpreting attribute values, 104

K
KCMS product overview, 21

applications, 22
architecture, 21
C API, 22
CMM, 24
KCMS file system, 24
KCMS framework, 23
libraries, graphics and imaging, 23
profile, 23

KcsAddToCurrentHints, 57
KcsAllFunc, 54
KcsAttributeBase, declaration of, 42
KcsAttributeName

in KcsGetAttribute(), 80
in KcsSetAttribute(), 93

KcsAttributes, 56
KcsAttributeType, declaration of, 44
KcsAttributeValue

in KcsGetAttribute(), 80
in KcsSetAttribute(), 93

KcsAttributeValue, declaration of, 45
KcsAvailable(), 71
KcsCalibrationData

in KcsUpdateProfile(), 98
KcsCallbackFunction

in KcsSetCallback(), 96
KcsCallbackFunction, declaration of, 48

Index 153

KcsCharacterizationData
in KcsUpdateProfile(), 98

KcsComponent, declaration of, 50
KcsConnectFunc, 53
KcsConnectProfiles()

declaration, 72
use of, 35, 37, 61, 72

KcsContAll, 56, 59, 62
KcsContColorimetric, 56, 59, 62
KcsContGraphics, 56, 59, 62
KcsContImage, 56, 59, 62
KcsContUnknown, 56, 59, 62
KcsCreateFunc, 54
KcsCreateProfile()

use of, 75
KcsCreateProfile(), use of, 40, 51
KcsCreationDesc, declaration of, 51
KcsCreationType, declaration of, 52
KcsEffect, 56
KcsErrDesc, declaration of, 52
KcsEvaluate()

declaration, 77
use of, 35, 38, 39, 48, 61, 64, 77

KcsEvaluateFunc, 53
KcsEvaluationSpeed, declaration of, 52
KcsExtendableArray, declaration of, 41
KcsExtendableMeasSet, declaration of, 41
KcsExtendablePixelLayout, declaration of, 41
KcsFileId, declaration of, 53
KcsFileProfile, 67
KcsFreeFunc, 53
KcsFreeProfile()

declaration, 78
use of, 39, 78

KcsFunction
in KcsSetCallback(), 96

KcsFunction, declaration of, 53
KcsGetAttribFunc, 53
KcsGetAttribute()

declaration, 80
get CMM list note, 75
use of, 32, 43, 58, 80

KcsGetLastError(), declaration, 82
KcsHeapApp, 56
KcsHeapSys, 56
KcsIdentifier, 54
KcsLoadFunc, 53

KcsLoadHints
in KcsLoadProfile(), 84
in KcsModifyLoadHints(), 87
in KcsOptimizeProfile(), 89
use of, 33

KcsLoadHints, bit mask code example, 57
KcsLoadHints, bit mask values table, 56
KcsLoadNever, 57
KcsLoadNow, 57
KcsLoadNow, use of, 53
KcsLoadProfile()

declaration, 84
memory management, 84
use of, 32, 39, 84

KcsLoadWhenIdle, 57
KcsLoadWhenNeeded, 57
KcsMaskAttr, 56
KcsMaskCont, 56
KcsMaskEffect, 56
KcsMaskLoadWhen, 57
KcsMaskLoadWhere, 56
KcsMaskLogical, 57
KcsMaskOp, 56
KcsMaskUnloadWhen, 56
KcsMeasurementBase, 60
KcsMeasurementSample, 60
KcsMemoryProfile, 67
KcsModifyLoadHints()

declaration, 87
use of, 33, 87

KcsModifyLoadHintsFunc, 53
KcsOpAll, 56, 62
KcsOperationType, 54, 61

in KcsConnectProfiles(), 72
in KcsEvaluate(), 77

KcsOpForward, 56, 58, 62
KcsOpGamutTest, 56, 58, 62, 73
KcsOpReverse, 56, 58, 62
KcsOpSimulate

API constant, 62
bit mask value, 56
use of, 58

KcsOpSimulate, preview printer output
note, 58

KcsOptAccuracy, 62
KcsOptimizationType

defined, 62

154 KCMS Application Developer’s Guide • December 2001

KcsOptimizationType (continued)
in KcsOptimizeProfile(), 89

KcsOptimizeFunc, 53
KcsOptimizeProfile()

declaration, 89
use of, 39, 48, 61, 62, 89

KcsOptNone, 62
KcsOptSize, 62
KcsOptSpeed, 62
KcsPixelLayout, 62

component array defines, 63
in KcsEvaluate(), 77

KcsPixelLayoutSpeeds, 66
KcsProfileDesc, 67

in KcsLoadProfile(), 84
in KcsSaveProfile(), 91
use of, 40

KcsProfileId, 69
in KcsConnectProfiles(), 72
in KcsEvaluate(), 77
in KcsFreeProfile(), 78
in KcsGetAttribute(), 80
in KcsLoadProfile(), 84
in KcsModifyLoadHints(), 87
in KcsOptimizeProfile(), 89
in KcsSaveProfile(), 91
in KcsSetAttribute(), 93
in KcsUpdateProfile(), 98

KcsProfileType, 69
KcsSampleType, 69
KcsSampleType constants, 70
KcsSaveFunc, 53
KcsSaveProfile()

declaration, 91
use of, 32, 36, 39, 40, 91

KcsSetAttribFunc, 53
KcsSetAttribute()

declaration, 93
use of, 32, 40, 43, 93

KcsSetCallback()
declaration, 96
use of, 36, 48, 97

KcsSolarisFile, 68
KcsStartOverWithThis, 57
KcsStatusId, 70
KcsUnloadAfterUse, 56
KcsUnloadNow, 56

KcsUnloadWhenFreed, 56
KcsUnloadWhenNeeded, 56
KcsUpdateFunc, 54
KcsUpdateProfile(), 98, 102

declaration, 98
use of, 40, 61

L
libraries

graphics and imaging, 23
lighting conditions, 30, 37
linearization tables, 100
load hints, See hints
Localizing Status Messages, 140

M
macro, KCS_DEFAULT_ATTRIB_COUNT, 43
macros, 41
monitors

effect of lighting on, 37
monochrome input profile (ICC), 107
monochrome output profile (ICC), 110

N
names, attribute, 104
naming conventions used, 16

O
OpForward, 35
OpGamutTest, 36
OpReverse, 36
OpSimulate, 36
out-of-gamut color, 73
output profiles, 109

P
palette color data, 63

Index 155

photographic input data, 59
pixel layout

error messages, 138
planar data, 63
profile, 27, 40

abstract, 112
association with CMMs, 28
calibration, definition of, 40
CCP, 35, 37
CCP code example, 37
CCP, definition of, 31
characterization, definition of, 40
color space conversion, 111
connecting, 34
CSP, 37
CSP, definition of, 30
DCP, 37
DCP, definition of, 30
description, 33
device link, 111
devices, associating with, 36
ECP, definition of, 30
error messages, 137
evaluating, 35
freeing, 39
header flags, 115
identifier, 32
in KCMS product overview, 23
input

CMYK (ICC), 108
monochrome (ICC), 107
RGB (ICC), 108

loading, 32
memory management, 39
monitor, converting to, 33
optimizing, 39, 89

accuracy, 39, 62
callback function, 39
size, 39, 62
speed, 39, 62

output
CMYK (ICC), 110
monochrome (ICC), 110
RGB (ICC), 110

saving, 32
scanner, converting from, 33

profile, output (continued)
simple color data conversion code
example, 34
simulated execution, 58
using to convert color data, 33, 37

profile connection spaces, valid, 119

R
read only attribute, 114
registered attribute definitions, 133
rendering hints, 59
reverse operation hints, See hints
RGB input profile (ICC), 108
RGB output profile (ICC), 110
row-interleaved data, 63

S
screening encodings, 114
signatures (ICC), 115
size, optimizing for, 89
speed, optimizing for, 89

T
tag

definition, 103
definition of all, 112
name, 104
required, 106
types, 114, 128

term equivalencies, 103

V
visual impairment, 30

W
warning messages, 135

156 KCMS Application Developer’s Guide • December 2001

