
System Interface Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-4750–05
June 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 9

1. Introduction to the API 13

Programming Interface 13

Interface Functions 14

Libraries 14

Static Libraries 14

Dynamic libraries 15

Interface Taxonomy 15

Standard Classification 16

Public Classification 16

Obsolete Classification 16

2. Processes 19

Overview 19

Functions 20

Spawning New Processes 23

Runtime Linking 25

Process Scheduling 26

Error Handling 27

3. Process Scheduler 29

3

Overview of the Scheduler 29

Time-Sharing Class 31

System Class 32

Real-time Class 32

Commands and Functions 32

Thepriocntl (1) Command 34

The priocntl (2) Function 35

The priocntlset (2) Function 36

Interaction With Other Functions 36

Kernel Processes 36

fork (2) and exec (2) 36

nice (2) 36

init (1M) 37

Performance 37

Process State Transition 37

Software Latencies 39

4. Asynchronous Notification 41

Signals 41

Signal Processing 42

Blocking 42

Handling 42

5. Input/Output Interfaces 47

Files and I/O 47

Basic File I/O 48

Advanced File I/O 49

File System Control 50

File and Record Locking 51

Supported File Systems 51

4 System Interface Guide ♦ June 2000

Choosing a Lock Type 51

Terminology 52

Opening a File for Locking 52

Setting a File Lock 52

Setting and Removing Record Locks 53

Getting Lock Information 54

Forking and Locks 55

Deadlock Handling 55

Selecting Advisory or Mandatory Locking 56

Cautions About Mandatory Locking 57

Terminal I/O 57

6. Memory Management 59

Overview of Virtual Memory 59

Address Spaces and Mapping 60

Coherence 60

Memory Management Interfaces 61

Creating and Using Mappings 61

Removing Mappings 62

Cache Control 62

Other Memory Control Functions 63

7. Interprocess Communication 65

Pipes 65

Named Pipes 67

Sockets 67

POSIX IPC 68

POSIX Messages 68

POSIX Semaphores 69

POSIX Shared Memory 69

Contents 5

System V IPC 70

Permissions 70

IPC Functions, Key Arguments, and Creation Flags 70

System V Messages 71

System V Semaphores 73

System V Shared Memory 77

8. Real-time Programming and Administration 81

Basic Rules of Real-time Applications 81

Degrading Response Time 82

Runaway Real-time Processes 84

I/O Behavior 84

Scheduling 85

Dispatch Latency 85

Function Calls That Control Scheduling 91

Utilities That Control Scheduling 92

Configuring Scheduling 94

Memory Locking 96

Overview 96

High Performance I/O 97

POSIX Asynchronous I/O 98

Solaris Asynchronous I/O 99

Synchronized I/O 101

Interprocess Communication 102

Overview 103

Signals 103

Pipes 103

Named Pipes 104

Message Queues 104

6 System Interface Guide ♦ June 2000

Semaphores 104

Shared Memory 104

Choice of IPC and Synchronization Mechanisms 106

Asynchronous Networking 106

Modes of Networking 106

Timers 107

Timestamp Functions 107

Interval Timer Functions 107

A. Full Code Examples 111

B. System Interface Guide, Solaris 8 6/00 Updates 141

Incorporated Bug Fixes 141

Index 143

Contents 7

8 System Interface Guide ♦ June 2000

Preface

Purpose
Read this guide for information about system interfaces provided by SunOS

TM

libraries. Rather than teaching you to write programs, this guide supplements
programming texts by concentrating on other elements that are part of getting
programs into operation.

Audience and Prerequisite Knowledge
This guide addresses programmers. Expert programmers, such as those developing
system software, might find that this guide lacks the depth of information they need.
Expert programmers should see the Solaris 8 Reference Manual Collection.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory and file structure is assumed. Read the OpenWindows User’s Guide to
review these basic tools and concepts.

The C Connection
The SunOS system supports many programming languages. Nevertheless, the
relationship between this operating system and C has been and remains very close.

9

Most of the code in the operating system is written in the C language. So, while this
guide is intended to be useful to you no matter what language you are using, most
of the examples assume you are programming in C.

Hardware and Software Dependency
Except for hardware-specific information such as addresses, most of the text in this
book applies to any computer running the Solaris 8 operating environment and
compatible versions.

If commands work differently in your system environment, your system might be
running a different software release. If some commands do not seem to exist, they
might be in packages that are not installed on your system—talk to your system
administrators to find out what commands you have available.

Command References
When a command is mentioned in a section of the text for the first time, a reference
to the manual section where the command is formally described is included in
parentheses: command(section). Numbered sections are in the Solaris 8 Reference
Manual Collection.

For example, “See priocntl(2)” tells you to look at the priocntl page in section 2 of
the Solaris 8 Reference Manual Collection.

Information in the Examples
While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system might produce slightly
different output. Some displays depend on a particular machine configuration that
might differ from yours.

10 System Interface Guide ♦ June 2000

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

Preface 11

TABLE P–1 Typographic Conventions (continued)

Typeface or
Symbol Meaning Example

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

12 System Interface Guide ♦ June 2000

CHAPTER 1

Introduction to the API

A goal of Sun Microsystems is to define the architectural interfaces of the Solaris
TM

operating environment. There are two reasons:

� The system interface is an effective "contract" with customers. It is completely
specified in Solaris 8 Reference Manual Collection.

� The interfaces in a particular version of the product are preserved in future
versions of the product, which maintains upward compatibility in subsequent
releases of the Solaris operating environment.

Programming Interface
Solaris offers many kinds of "interfaces", such as the programming interface,
elements of the user interface, protocols, and rules about naming and the locations of
objects in the file system. One of the most important interfaces to the system is the
programming interface — the one offered to developers. The programming interface
has two major parts: one seen by developers of applications, which is the API, and
one seen by developers of system components, such as device drivers and platform
support modules, which is the SPI (system programming interface).

Each programming interface to Solaris is also "visible" to the developer at two levels:
source level and binary. When you see the acronyms API and SPI, this indicates the
source level programming interface to the system. The terms Application Binary
Interface (ABI) and System Binary Interface (SBI) indicate the binary interfaces
corresponding to the respective source level programming interfaces. (Because the
phrase "the ABI" can be confused with other binary interfaces, the "Solaris ABI" is
refered to only by name.)

13

Interface Functions
The SunOS 5.0 through 5.8 functions discussed in this manual are the interfaces
between the services provided by the kernel and application programs. The functions
described in man pages section 2: System Calls, man pages section 3: Basic Library
Functions, man pages section 3: Curses Library Functions, man pages section 3:
Extended Library Functions, man pages section 3: Library Interfaces and Headers, man
pages section 3: Networking Library Functions, man pages section 3: Threads and
Realtime Library Functions, are an application’s interface to the SunOS 5.0 through
5.8 operating system. These functions are how an application uses facilities such as
the file system, interprocess communication primitives, and multitasking
mechanisms. This manual is one of a set that describe major elements of the API.
Other manuals in the set are STREAMS Programming Guide, Multithreaded
Programming Guide, Network Interface Guide, and so forth.

When you use the library routines described in sections 2 and 3 of the Solaris 8
Reference Manual Collection, the details of their implementation are transparent to the
program. For example, the function read underlies the fread implementation in the
standard C library.

A C program is automatically linked to the invoked functions when you compile the
program. The procedure might be different for programs written in other languages.
See the Linker and Libraries Guide for more information.

Libraries
Solaris provides both static and dynamic implementations of libraries. Static libraries
do not provide an interface; they provide only an implementation. The application
programming interface of Solaris is made available to developers through the shared
libraries (also called shared objects). In the runtime environment, a dynamic
executable and shared objects are processed by the runtime linker to produce a
runnable process. The official API to the system is the interface between an
application and the dynamic shared libraries.

Static Libraries
The traditional, static, implementation of libraries (.a files or archives), do not
separate the application programming interface from its implementation (the
contents of the library). When an application is linked to a static library, the object
code that implements that library is bound into the executable object that results
from the build. The source-level programming interface to the library can be
preserved, but the application must be relinked to produce an executable that runs

14 System Interface Guide ♦ June 2000

on a later version of an operating system. Future binary compatibility is assured only
when shared libraries are used.

The presence of static libraries is a historical artifact and there is no mechanism to
define their interfaces in a way that is separate from their implementation. For this
reason, use of static libraries should be avoided by new applications.

Dynamic libraries
Unlike the static libraries, shared libraries do separate the application programming
interface from the implementation. The interface is bound to an implementation of
the library only at runtime. This allows SMI to evolve the library’s implementation -
such as changing internal interfaces, while maintaining the API and preserving
binary compatibility with applications built against it.

Interface Taxonomy
The interface taxonomy classifies commitment level of an interface. The commitment
level identifies who can, or how to, use the interface. Definitions:

Open specification An interface specification that customers can use freely (build products
that use this implementation of the interface). Others are free to provide
alternative implementations without licensing or legal restrictions.

Closed
specification

An interface specification is not published.

Compatible
change

A change to an interface or its implementation that has no effect on
previously valid programs.

Incompatible
change

A change to an interface or its implementation that makes previously
valid programs invalid. This might include bug fixes or performance
degradation. This does not include programs that depend on
unspecified "artifacts of the implementation."

Introduction to the API 15

Standard Classification

Specification Open

Incompatible
Change

Major release (X.0)

Examples POSIX, ANSI-C, Solaris ABI, SCD, SVID, XPG, X11, DKI, Ethernet

Standard interfaces are those whose specification is controlled by a group outside of
Sun. This includes standards such as POSIX and ANSI C, as well as industry
specifications from groups such as X/Open, the MIT X-Consortium, and the OMG.

Public Classification

Specification Open

Incompatible Change Major release (X.0)

Examples Sun DDI, XView, ToolTalk, NFS protocol, Sbus, OBP

These are interfaces whose specification is completely under Sun Microsystem’s
control. The specification of these interfaces and will remain compatible with the
published specification.

Obsolete Classification

Specification None

Incompatible Change Minor release (.X.0)

Examples RFS

An interface no longer in general use. An existing interface can be downgraded from
some other status (such as Public or Standard) to Obsolete through a standard
program to communicate the change in commitment to customers.

A change in commitment requires one year’s notice to the customer base and the Sun
product development community of the intended obsoleting of the interface. A full
year must elapse before delivering a product that contains a change incompatible
with the present status of the interface.

16 System Interface Guide ♦ June 2000

Acceptable ways to notify customers includes letters to customers on support
contracts, release notes or product documentation, or announcements to customer
forums appropriate for the interface in question.

The notice of obsolescence is considered to be "public" information in that it is freely
available to the customers. This should not require specific actions to "publish" the
information, such as press releases or similar forms of publicity.

Introduction to the API 17

18 System Interface Guide ♦ June 2000

CHAPTER 2

Processes

This chapter describes processes and the library functions that operate on them.

Overview
Executing a command starts a process that is numbered and tracked by the operating
system. Processes are always generated by other processes. For example, log in to
your system running a shell, then use an editor such as vi (1). Take the option of
invoking the shell from vi (1). Execute ps (1) and you see a display resembling this
(which shows the results of ps -f):

UID PID PPID C STIME TTY TIME CMD

abc 24210 1 0 06:13:14 tty29 0:05 -sh

abc 24631 24210 0 06:59:07 tty29 0:13 vi c2

abc 28441 28358 80 09:17:22 tty29 0:01 ps -f

abc 28358 24631 2 09:15:14 tty29 0:01 sh -i

User abc has four processes active. The process ID (PID) and parent process ID
(PPID) columns show that the shell that started when user abc logged on is process
24210 ; its parent is the initialization process (process ID 1). Process 24210 is the
parent of process 24631 , and so on.

A program might need to run one or more other programs based on conditions it
encounters. Reasons that you might not want to create one large executable include:

� You might want to execute two, or more, of the modules concurrently.

19

� The load module might get too big to fit in the maximum process size for your
system.

� You might not have control over the object code of all the other modules you want
to include.

The fork (2) and exec (2) functions let you create a new process (a copy of the
creating process) and start a new executable in place of the running one.

Functions
The functions listed in Table 2–1 are used to control user processes:

TABLE 2–1 Process Functions

Function Name Purpose

fork (2)
Create a new process

exec (2)

execl (2)

execv (2)

execle (2)

execve (2)

execlp (2)

execvp (2)

Execute a program

20 System Interface Guide ♦ June 2000

TABLE 2–1 Process Functions (continued)

Function Name Purpose

exit (2)

_exit (2)

Terminate a process

wait (2)
Wait for a child process to stop or terminate

dladdr (3DL)
Translate address to symbolic information

dlclose (3DL)
Close a shared object

dlerror (3DL)
Get diagnostic information

dlopen (3DL)
Open a shared object

dlsym (3DL)
Get the address of a symbol in a shared object

setuid (2)

setgid (2)

Set user and group IDs

setpgrp (2)
Set process group ID

chdir (2)

fchdir (2)

Change working directory

Processes 21

TABLE 2–1 Process Functions (continued)

Function Name Purpose

chroot (2)
Change root directory

nice (2)
Change priority of a process

getcontext (2)

setcontext (2)

Get and set current user context

getgroups (2)

setgroups (2)

Get or set supplementary group access list IDs

getpid (2)

getpgrp (2)

getppid (2)

getpgid (2)

Get process, process group, and parent process IDs

getuid (2)

geteuid (2)

getgid (2)

getegid (2)

Get real user, effective user, real group, and effective group IDs

22 System Interface Guide ♦ June 2000

TABLE 2–1 Process Functions (continued)

Function Name Purpose

pause (2)
Suspend process until signal

priocntl (2)
Control process scheduler

setpgid (2)
Set process group ID

setsid (2)
Set session ID

waitid (2)
Wait for a child process to change state

Spawning New Processes

fork (2)
fork (2) creates a new process that is an exact copy of the calling process. The new

process is the child process; the old process is the parent process. The child gets a
new, unique process ID. fork (2) returns a 0 to the child process and the child’s
process ID to the parent. The returned value is how a forked program determines
whether it is the parent process or the child process.

The new process created by fork (2) or exec (2) function inherits all open file
descriptors from the parent including the three standard files: stdin , stdout , and
stderr . When the parent has buffered output that should appear before output
from the child, the buffers must be flushed before the fork (2).

The following code is an example of a call to fork (2) and the subsequent actions:

pid_t pid;

pid = fork();
switch (pid) {

case -1: /* fork failed */
perror ("fork");
exit (1);

Processes 23

case 0: /* in new child process */
printf ("In child, my pid is: %d\n", getpid(););
do_child_stuff();
exit (0);

default: /* in parent, pid contains PID of child */
printf ("In parent, my pid is %d, my child is %d\n", getpid(), pid);
break;

}

/* Parent process code */
...

If the parent and the child process both read input from a stream, whatever is read
by one process is lost to the other. So, once something has been delivered from the
input buffer to a process, the buffer pointer has moved on.

Note - An obsolete practice is to use fork (2) and exec (2) to start another
executable, then wait for the new process to die. In effect, a second process is created
to perform a subroutine call. It is much more efficient to use dlopen (3DL),
dlsym (3DL), and dlclose (3DL) as described in “Runtime Linking ” on page 25 to
make a subroutine temporarily resident in memory.

exec (2)
exec (2) is the name of a family of functions that includes execl (2), execv (2),

execle (2), execve (2), execlp (2), and execvp (2). All load a new process over
the calling process, but with different ways of pulling together and presenting the
arguments of the function. For example, execl (2) could be used like this

execl("/usr/bin/prog2", "prog2", progarg1, progarg2, (char (*)0));

The execl argument list is:

/usr/bin/prog2 The path name of the new program file

prog2 The name the new process gets in its argv[0]

progarg1 , progarg2 The arguments to prog2 as char (*) s

(char (*)0) A null char pointer to mark the end of the arguments

There is no return from a successful execution of any variation of exec (2); the new
process overlays the process that calls exec (2). The new process also takes over the
process ID and other attributes of the old process. If a call to exec (2) fails, control is
returned to the calling program with a return value of –1. You can check errno to
learn why it failed.

24 System Interface Guide ♦ June 2000

Runtime Linking
An application can extend its address space during execution by binding to
additional shared objects. There are several advantages in this delayed binding of
shared objects:

� Processing a shared object when it is required, rather than during the initialization
of an application, may greatly reduce start-up time. Also, the shared object may
not be required during a particular run of the application, for example, objects
containing help or debugging information.

� The application may choose between a number of different shared objects
depending on the exact services required; for example, networking protocols.

� Any shared objects added to the process address space during execution may be
freed after use.

The following is a typical scenario that an application may perform to access an
additional shared object:

� A shared object is located and added to the address space of a running application
using dlopen (3DL). Any dependencies of shared object are also located and
added at this time. For example:

#include <stdio.h>
#include <dlfcn.h>

main(int argc, char ** argv)
{

void * handle;
.....
if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL) {

(void) printf("dlopen: %s\n", dlerror());
exit (1);

}

� The added shared objects are relocated and any initialization sections in the new
shared objects are called.

� The application locates symbols in the added shared objects using dlsym (3DL).
The application can then reference the data or call the functions defined by these
new symbols. Continuing the preceding example:

if (((fptr = (int (*)())dlsym(handle, "foo")) == NULL) ||
((dptr = (int *)dlsym(handle, "bar")) == NULL)) {

(void) printf("dlsym: %s\n", dlerror());
exit (1);

}

� After the application has finished with the shared objects, the address space is
freed using dlclose (3DL). Any termination sections within the shared objects
being freed are called at this time. For example:

if (dlcose (handle) != 0) {
(void) printf("dlclose: %s\n", dlerror());
exit (1);

}

Processes 25

� Any error conditions that occur as a result of using these runtime linker interface
routines can be displayed using dlerror (3DL).

The services of the runtime linker are defined in the header file <dlfcn.h> and
are made available to an application by the shared library libdl.so.1 . For
example:

$ cc -o prog main.c -ldl

Here the file main.c can refer to any of the dlopen (3DL) family of routines, and
the application prog will be bound to these routines at runtime.

For a thorough discussion of application directed runtime linking, see the Linker
and Libraries Guide. See dladdr (3DL), dlclose (3DL), dlerror (3DL),
dlopen (3DL), and dlsym (3DL) for use details.

Process Scheduling
The UNIX system scheduler determines when processes run. It maintains process
priorities based on configuration parameters, process behavior, and user requests. It
uses these priorities to assign processes to the CPU.

Scheduler functions give users varying degrees of control over the order in which
certain processes run and the amount of time each process can use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy adjusts
process priorities dynamically in an attempt to give good response time to interactive
processes and good throughput to CPU-intensive processes.

The scheduler also provides an alternate real-time scheduling policy. Real-time
scheduling allows users to set fixed priorities—priorities that the system does not
change. The highest priority real-time user process always gets the CPU as soon as it
can be run, even if other system processes are also eligible to be run. A program can
therefore specify the exact order in which processes run. You can also write a program
so that its real-time processes have a guaranteed response time from the system.

For most versions of SunOS 5.0 through 5.8, the default scheduler configuration
works well and no real-time processes are needed: administrators need not change
configuration parameters and users need not change scheduler properties of their
processes. However, for some programs with strict timing constraints, real-time
processes are the only way to guarantee that the timing requirements are met.

For more information, see priocntl (1), priocntl (2), and dispadmin (1M) . For
a fuller discussion of this subject, see Chapter 3.

26 System Interface Guide ♦ June 2000

Error Handling
Functions that do not conclude successfully almost always return a value of –1 to
your program. (For a few functions in man Pages(2): System Calls, there are calls for
which no return value is defined, but these are the exceptions.) In addition to the –1
that is returned to the program, the unsuccessful function places an integer in an
externally declared variable, errno . In a C program, you can determine the value in
errno if your program contains the following statement:

#include <errno.h>

The value in errno is not cleared on successful calls, so check it only if the function
returns -1 . Since some functions return -1 but do not set errno refer to the man
page for the function to be sure that errno contains a valid value. See error
descriptions in Intro ().

Use the C language function perror (3C) to print an error message on stderr
based on the value of errno , or strerror (3C) to obtain the corresponding
printable string.

Processes 27

28 System Interface Guide ♦ June 2000

CHAPTER 3

Process Scheduler

This chapter describes the scheduling of processes. See the Multithreaded
Programming Guide for a description of multithreaded scheduling. This chapter is for
programmers who need more control over the order of process execution than
default scheduling provides.

Overview of the Scheduler
When a process is created, it is assigned a Light Weight Process (LWP). (If the process
is multithreaded, it might be assigned more LWPs.) An LWP is the object that is
actually scheduled by the UNIX system scheduler, which determines when processes
run. The scheduler maintains process priorities based on configuration parameters,
process behavior, and user requests. It uses these priorities to let processes run.

The default scheduling is a time-sharing policy. This policy adjusts process priorities
dynamically to balance the response time of interactive processes and the throughput
of processes that use a lot of CPU time.

The SunOS 5.8 scheduler also provides a real-time scheduling policy. Real-time
scheduling lets users set fixed priorities of specific processes. The highest-priority
real-time user process always gets the CPU as soon as the process is runnable, even
if system processes are runnable.

A program can be written so that its real-time processes have a guaranteed response
time from the system. See Chapter 8for detailed information.

The control of process scheduling provided by real-time scheduling is rarely needed
and can cause more problems than it solves. However, when the requirements for a
program include strict timing constraints, real-time processes might be the only way
to satisfy those constraints.

29

Note - Careless use of real-time processes can have a dramatic negative effect on the
performance of time-sharing processes.

Because changes in scheduler administration can affect scheduler behavior,
programmers might also need to know something about scheduler administration.
The manual pages affecting scheduler administration are:

� dispadmin (1M) tells how to change scheduler configuration in a running system.

� ts_dptbl (4) and rt_dptbl (4) describe the time-sharing and real-time
parameter tables that are used to configure the scheduler.

Figure 3–1 shows how the SunOS 5.8 process scheduler works:

Global
priority

Scheduling
order

Class-specific
priorities

Scheduler
classes

Run
queues

Highest First

Lowest Last

Kernel
threads of

realtime LWPs

Kernel
service
threads

Kernel
threads of

time-sharing LWPs

Real-time
priorities

System
priorities

Time-sharing
priorities

Figure 3–1 SunOS 5.8 Process Scheduler

When a process is created, it inherits its scheduling parameters, including scheduling
class and a priority within that class. A process changes class only by user request.
The system manages the priority of a process based on user requests and the policy
associated with the scheduler class of the process.

In the default configuration, the initialization process belongs to the time-sharing
class. So, all user login shells begin as time-sharing processes.

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs—the scheduler always runs the
runnable process with the highest global priority. Numerically higher priorities run
first. Once the scheduler assigns a process to the CPU, the process runs until it

30 System Interface Guide ♦ June 2000

sleeps, uses its time slice, or is preempted by a higher-priority process. Processes
with the same priority run round-robin.

All real-time processes have higher priorities than any kernel process, and all kernel
processes have higher priorities than any time-sharing process.

Note - As long as there is a runnable real-time process and assuming a single
processor system, no kernel process and no time-sharing process runs.

Administrators specify default time slices in the configuration tables and users can
assign per-process time slices to real-time processes.

You can display the global priority of a process with the -cl options of the ps (1)
command. You can display configuration information about class-specific priorities
with the priocntl (1) command and the dispadmin (1M) command.

The following sections describe the scheduling policies of the three default classes.

Time-Sharing Class
The goal of the time-sharing policy is to provide good response time to interactive
processes and good throughput to CPU-bound processes. The scheduler switches
CPU allocation often enough to provide good response time, but not so often that it
spends too much time on switching. Time slices are typically a few hundred
milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of
different lengths. The scheduler raises the priority of a process that sleeps after only
a little CPU use (a process sleeps, for example, when it starts an I/O operation such
as a terminal read or a disk read). Frequent sleeps are characteristic of interactive
tasks such as editing and running simple shell commands. The time-sharing policy
lowers the priority of a process that uses the CPU for long periods without sleeping.

The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other processes
get the CPU first, but when a low-priority process finally gets the CPU, it gets a
bigger chunk of time. If a higher-priority process becomes runnable during a time
slice, however, it preempts the running process.

Global process priorities and user-supplied priorities are in ascending order:
numerically higher priorities run first. The user priority runs from the negative of a
configuration-dependent maximum to the positive of that maximum. A process
inherits its user priority. Zero is the default initial user priority.

The "user priority limit" is the configuration-dependent maximum value of the user
priority. You can set a user priority to any value below the user priority limit. With
appropriate permission, you can raise the user priority limit. Zero is the default user
priority limit.

Process Scheduler 31

You can lower the user priority of a process to give the process reduced access to the
CPU or, with the appropriate permission, raise the user priority to get better service.
Because you cannot set the user priority above the user priority limit, you must raise
the user priority limit before you raise the user priority, if both have their default
values at zero.

An administrator configures the maximum user priority independent of global
time-sharing priorities. In the default configuration, for example, a user can set a
user priority only in the range from –20 to +20, but 60 time-sharing global priorities
are configured.

The scheduler manages time-sharing processes using configurable parameters in the
time-sharing parameter table ts_dptbl (4). This table contains information specific
to the time-sharing class.

System Class
The system class uses a fixed-priority policy to run kernel processes such as servers
and housekeeping processes like the paging daemon. The system class is reserved to
the kernel. Users can neither add nor remove a process from the system class.
Priorities for system class processes are set up in the kernel code. Once established,
the priorities of system processes do not change. (User processes running in kernel
mode are not in the system class.)

Real-time Class
The real-time class uses a fixed-priority scheduling policy so that critical processes
run in predetermined order. Real-time priorities never change except when a user
requests a change. Privileged users can use the priocntl (1) command or the
priocntl (2) function to assign real-time priorities.

The scheduler manages real-time processes using configurable parameters in the
real-time parameter table rt_dptbl (4). This table contains information specific to
the real-time class.

Commands and Functions
Figure 3–2 illustrates the default process priorities.

32 System Interface Guide ♦ June 2000

running

runnable
in memory

runnable
swapped

sleep

sleeping
in memory

swap out swap outswap in

wakeup

wakeup

assign CPU preempt

sleeping
swapped

Figure 3–2 Process Priorities (Programmer’s View)

A process priority has meaning only in the context of a scheduler class. You specify a
process priority by specifying a class and a class-specific priority value. The class and
class-specific value are mapped by the system into a global priority that the system
uses to schedule processes.

A system administrator’s view of priorities is different from that of a user or
programmer. When configuring scheduler classes, an administrator deals directly
with global priorities. The system maps priorities supplied by users into these global
priorities. See System Administration Guide, Volume I for more information about
priorities.

The ps (1)command with -cel options reports global priorities for all active
processes. The priocntl (1) command reports the class-specific priorities that users
and programmers use.

The priocntl (1) command and the priocntl (2) and priocntlset (2) functions
set or retrieve scheduler parameters for processes. Setting priorities is generally the
same for all three functions:

� Specify the target processes.

� Specify the scheduler parameters you want for those processes.

� Do the command or function to set the parameters for the processes.

These IDs are basic properties of UNIX processes. (See Intro () .) The class ID is the
scheduler class of the process. priocntl (2) works only for the time-sharing and the
real-time classes, not for the system class.

Process Scheduler 33

The priocntl (1) Command
The priocntl (1) utility performs four different control functions on the scheduling
of a process:

priocntl -l displays configuration information

priocntl -d displays the scheduling parameters of processes

priocntl -s sets the scheduling parameters of processes

priocntl -e executes a command with the specified scheduling parameters

The following are some examples of using priocntl (1).

The output of the -l option for the default configuration is:

$ priocntl -d -i all
CONFIGURED CLASSES
==================

SYS (System Class)

TS (Time Sharing)
Configured TS User Priority Range -20 through 20

RT (Real Time)
Maximum Configured RT Priority: 59

An example of displaying information on all processes:

$ priocntl -d -i all

An example of displaying information on all time-sharing processes:

$ priocntl -d -i class TS

An example of displaying information on all processes with user ID 103 or 6626:

$ priocntl -d -i uid 103 6626

An example of making the process with ID 24668 a real-time process with default
parameters:

$ priocntl -s -c RT -i pid 24668

34 System Interface Guide ♦ June 2000

An example of making 3608 RT with priority 55 and a one-fifth second time slice:

$ priocntl -s -c RT -p 55 -t 1 -r 5 -i pid 3608

An example of changing all processes into time-sharing processes:

$ priocntl -s -c TS -i all

For uid 1122, reduce TS user priority and user priority limit to -10:

$ priocntl -s -c TS -p -10 -m -10 -i uid 1122

An example of starting a real-time shell with default real-time priority:

$ priocntl -e -c RT /bin/sh

An example of running make with a time-sharing user priority of -10:

$ priocntl -e -c TS -p -10 make bigprog

priocntl (1) subsumes the function of nice (1). nice works only on time-sharing
processes and uses higher numbers to assign lower priorities. The example above is
equivalent to using nice (1) to set an "increment" of 10:

$ nice -10 make bigprog

The priocntl (2) Function
priocntl (2) gets or sets the scheduling parameters of a process or set of processes

much as the priocntl (1) utility does for a process. An invocation of priocntl (2)
can act on a LWP, on a single process, or on a group of processes. A group of
processes can be identified by parent process, process group, session, user, group,
class, or all active processes. The manual page contains the details of its use.

An example of using priocntl (2) to do the equivalent of % priocntl -l is in
Appendix A.

The PC_GETCLINFOcommand gets a scheduler class name and parameters given the
class ID. This command makes it easy to write programs that make no assumptions
about what classes are configured. An example of using priocntl (2) with
PC_GETCLINFOto get the class name of a process based on the process ID is in Code
Example A–2.

The PC_SETPARMScommand sets the scheduler class and parameters of a set of
processes. The idtype and id input arguments specify the processes to be changed.
Code Example A–3provides an example of using priocntl (2) with the
PC_SETPARMScommand to convert a time-share process into a real-time process.

Process Scheduler 35

The priocntlset (2) Function
The priocntlset (2) function changes scheduler parameters of a set of processes,
like priocntl (2). priocntlset (2) has the same command set as priocntl (2).
The cmd and arg input arguments are the same. But while priocntl (2) applies to
a set of processes specified by a single idtype /id pair, priocntlset (2) applies to
a set of processes that results from a logical combination of two idtype /id pairs.
Again, refer to the manual page for details.

An example of using priocntlset (2) to change the priority of a real-time
processes without changing time-sharing processes with the same user ID to
real-time processes is in Code Example A–4.

Interaction With Other Functions
Kernel Processes
The kernel’s daemon and housekeeping processes are assigned to the system
scheduler class. Users can neither add processes to nor remove processes from this
class, nor can they change the priorities of these processes. The command ps -cel
lists the scheduler class of all processes. Processes in the system class are identified
by a SYS entry in the CLS column.

fork (2) and exec (2)
Scheduler class, priority, and other scheduler parameters are inherited across the
fork (2) and exec (2) functions.

nice (2)
The nice (1) command and the nice (2) function work as in previous versions of
the UNIX system. They let you change the priority of a time-sharing process. Use
lower numeric values to assign higher time-sharing priorities with these functions.

To change the scheduler class of a process or to specify a real-time priority, you must
use one of the priocntl functions. Use higher numeric values to assign higher
priorities with the priocntl (2) functions.

36 System Interface Guide ♦ June 2000

init (1M)
The init (1M) process is a special case to the scheduler. To change the scheduling
properties of init (1M), init must be the only process specified by idtype and id
or by the procset structure.

Performance
Because the scheduler determines when and for how long processes run, it has an
overriding importance in the performance and perceived performance of a system.

By default, all user processes are time-sharing processes. A process changes class
only by a priocntl (2) call.

All real-time process priorities have a higher priority than any time-sharing process.
As long as any real-time process is runnable, no time-sharing process or system
process ever runs. So if a real-time application fails to relinquish control of the cpu
occasionally, it can completely lock out other users and essential kernel
housekeeping.

Besides controlling process class and priorities, a real-time application must also
control several other factors that influence its performance. The most important
factors in performance are CPU power, amount of primary memory, and I/O
throughput. These factors interact in complex ways. The sar (1) command has
options for reporting on all performance factors.

Process State Transition
Applications that have strict real-time constraints might need to prevent processes
from being swapped or paged out to secondary memory. Here’s a simplified
overview of UNIX process states and the transitions between states:

Process Scheduler 37

running

runnable
in memory

runnable
swapped

sleep

sleeping
in memory

swap out swap outswap in

wakeup

wakeup

assign CPU preempt

sleeping
swapped

Figure 3–3 Process State Transition Diagram

An active process is normally in one of the five states in the diagram. The arrows
show how it changes states.

� A process is running if it is assigned to a CPU. A process is preempted—that is,
removed from the running state—by the scheduler if a process with a higher
priority becomes runnable. A process is also preempted if it consumes its entire
time slice and a process of equal priority is runnable.

� A process is runnable in memory if it is in primary memory and ready to run, but
is not assigned to a CPU.

� A process is sleeping in memory if it is in primary memory but is waiting for a
specific event before it can continue execution. For example, a process is sleeping
if it is waiting for an I/O operation to complete, for a locked resource to be
unlocked, or for a timer to expire. When the event occurs, the process is sent a
wake up; if the reason for its sleep is gone, the process becomes runnable.

� A process is runnable and swapped if it is not waiting for a specific event but has
had its whole address space written to secondary memory to make room in
primary memory for other processes.

� A process is sleeping and swapped if it is both waiting for a specific event and has
had its whole address space written to secondary memory to make room in
primary memory for other processes.

If a machine does not have enough primary memory to hold all its active
processes, it must page or swap some address space to secondary memory.

� When the system is short of primary memory, it writes individual pages of some
processes to secondary memory but still leaves those processes runnable. When a
process runs, if it accesses those pages, it must sleep while the pages are read back
into primary memory.

� When the system gets into a more serious shortage of primary memory, it writes
all the pages of some processes to secondary memory and marks those processes

38 System Interface Guide ♦ June 2000

as swapped. Such processes get back into a state where they can be scheduled
only by being chosen by the system scheduler daemon process, then read back
into memory.

Both paging and swapping cause delay when a process is ready to run again. For
processes that have strict timing requirements, this delay can be unacceptable.

To avoid swapping delays, real-time processes are never swapped, though parts of
them can be paged. A program can prevent paging and swapping by locking its
text and data into primary memory. For more information, see memcntl (2). How
much memory can be locked is limited by how much memory is configured. Also,
locking too much can cause intolerable delays to processes that do not have their
text and data locked into memory.

Trade-offs between performance of real-time processes and performance of other
processes depend on local needs. On some systems, process locking might be
required to guarantee the necessary real-time response.

Software Latencies
See “Dispatch Latency” on page 85for information about latencies in real-time
applications.

Process Scheduler 39

40 System Interface Guide ♦ June 2000

CHAPTER 4

Asynchronous Notification

This chapter describes asynchronous notification mechanisms. These are signals,
which come in two flavors, and polling, which comes in three flavors. We describe
what they can do for an application and what they can do to an application.

Signals
Signals are software generated interrupts that are sent to a process when an event
happens. Signals can be synchronously generated by an error in an application, such
as SIGFPE and SIGSEGV, but most signals are asynchronous. Signals can be posted
to a process when the system detects a software event, such as a user entering an
interrupt or stop or a kill request from another process. Signals can be sent by the
kernel when a hardware event such as a bus error or an illegal instruction is
encountered. Signals can be sent by the kernel to note the completion of an input/
output request.

The system defines a set of signals that can be posted to a process. Signal delivery is
analogous to hardware interrupts in that a signal can be blocked from being
delivered in the future. Most signals cause termination of the receiving process if no
action is taken by the process in response to the signal. Some signals stop the
receiving process and other signals can be ignored. Each signal has a default action
that is one of the following:

� The signal is discarded after being received.

� The process is terminated after the signal is received.

� A core file is written, then the process is terminated.

� Stop the process after the signal is received.

Each signal defined by the system falls into one of five classes:

41

� Hardware conditions

� Software conditions

� Input/output notification

� Process control

� Resource control

The set of signals is defined in the header <signal.h> .

Signal Processing
When a signal is delivered to a process, it is added to a set of signals pending for the
process. If the signal is not blocked for the process, it is delivered. When a signal is
delivered, the current state of the process is saved, a new signal mask is calculated,
and the signal handler is invoked.

In BSD signal semantics, when a signal is delivered to a process, a new signal mask is
installed for the duration of the process’s signal handler (or until a mask modifying
interface is called). This mask blocks the signal that has just been delivered from
interrupting the process again while the handler for the signal is running.

System V signal semantics do not provide this protection, letting the same signal
interrupt the handler that processes the signal. This requires that a signal handler be
reentrant.

All signals have the same priority. If a signal handler blocks the signal that invoked
it, other signals can still be delivered to the process.

Signals are not stacked. There is no way for a signal handler to record how many
times a signal has actually been delivered.

Blocking
A global signal mask defines the set of signals that are blocked from being delivered
to a process. A process’s signal mask copies its initial state from the signal mask of
the parent process. The mask can be changed with calls to sigaction (2),
sigblock (3UCB), sigsetmask (3UCB), sigprocmask (2), sigsetops (3C),
sighold (3C), or sigrelse (3C) (see signal (3C)).

Handling
An application program can specify a function called a signal handler to be invoked
when a specific signal is received. When a signal handler is invoked on receipt of a

42 System Interface Guide ♦ June 2000

signal, it is said to catch the signal. A process can deal with a signal in one of the
following ways:

� The process can let the default action happen.

� The process can block the signal (some signals cannot be ignored).

� The process can catch the signal with a handler.

Signal handlers usually execute on the current stack of the process. This lets the
signal handler return to the point that execution was interrupted in the process. This
can be changed on a per-signal basis so that a signal handler executes on a special
stack. If a process must resume in a different context than the interrupted one, it
must restore the previous context itself.

Installing a Handler
The functions signal (3C), sigset (3C), signal (3UCB), and sigvec (3UCB) can
all be used to install a signal handler. All return the previous action for the signal.
There is one major difference between the four interfaces: signal (3C) results in
System V signal semantics (the same signal can interrupt its handler); sigset (3C),
signal (3UCB), and sigvec (3UCB) all result in BSD signal semantics (the signal is
blocked until its handler returns). In addition, both signal (3C) and
signal (3UCB) can flag that the signal is to be ignored or that the default action be
restored. Code Example 4–1 illustrates a simple handler and its installation.

CODE EXAMPLE 4–1 Signal handler installation

#include <stdio.h>
#include <signal.h>
#define TRUE 1

void sigcatcher()
{

printf ("PID %d caught signal.\n", getpid());
}

main()
{

pid_t ppid;

signal (SIGINT, sigcatcher);
if (fork() == 0) {

sleep(5);
ppid = getppid();
while(TRUE)

if (kill(ppid, SIGINT) == -1)
exit(1);

}
pause();

}

Asynchronous Notification 43

Trying to install a handler or set SIG_IGN for the signals SIGKILL or SIGSTOP
results in an error. Trying to set SIG_IGN for the signal SIGCONTalso results in an
error, since it is ignored by default.

After a signal handler is installed, it remains so until it is explicitly replaced by
another call to signal (3C), sigset (3C), signal (3UCB), or sigvec (3UCB).

Catching SIGCHLD

When a child process stops or terminates, SIGCHLDis sent to the parent process. The
default response to the signal is to ignore it. The signal can be caught and the exit
status from the child process can be obtained by immediately calling wait (2) and
wait3 (3C). This allows zombie process entries to be removed as quickly as possible.
Code Example 4–2demonstrates installing a handler that catches SIGCHLD.

CODE EXAMPLE 4–2 Catching SIGCHLD

#include <stdio.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/resource.h>

void proc_exit()
{

int wstat;
union wait wstat;
pid_t pid;

while (TRUE) {
pid = wait3 (&wstat, WNOHANG, (struct rusage *)NULL);
if (pid == 0)

return;
else if (pid == -1)

return;
else

printf ("Return code: %d\n", wstat.w_retcode);
}

}
main ()
{

signal (SIGCHLD, proc_exit);
switch (fork()) {

case -1:
perror ("main: fork");
exit (0);

case 0:
printf ("I’m alive (temporarily)\n");
exit (rand());

default:
pause();

}
}

44 System Interface Guide ♦ June 2000

SIGCHLDcatchers are usually set up as part of process initialization. They must be
set before a child process is forked. A typical SIGCHLDhandler retrieves the child
process’s exit status.

Asynchronous Notification 45

46 System Interface Guide ♦ June 2000

CHAPTER 5

Input/Output Interfaces

This chapter introduces file input/output operations as provided on systems that do
not provide virtual memory services. It discusses the improved input/output
method provided by the virtual memory facilities. It also describes the older,
heavyweight method of file and record locking.

Files and I/O
Files that are organized as a sequence of data are called regular files. These can
contain ASCII text, text in some other binary data encoding, executable code, or any
combination of text, data, and code. The file has two components:

� The control data, called the inode. These data include the file type, the access
permissions, the owner, the file size, and the location(s) of the data blocks.

� The file contents: a nonterminated sequence of bytes.

SunOS provides three basic forms of file input/output interfaces.

� The traditional, raw, style of file I/O is described in “Basic File I/O” on page 48.

� The second form is the standard file I/O. The standard I/O buffering provides an
easier interface and improved efficiency to an application run on a system without
virtual memory. In an application running in a virtual memory environment, such
as the Solaris 8 operating environment, standard file I/O is a very inefficient
anachronism.

� The third form of file I/O is provided by the memory mapping interface described
in “Memory Management Interfaces” on page 61. Mapping files is the most
efficient and powerful form of file I/O for most applications run in the Solaris 8
environment.

47

Basic File I/O
The functions listed in Table 5–1perform basic operations on files:

TABLE 5–1 Basic File I/O Functions

Function Name Purpose

open (2)
Open a file for reading or writing

close (2)
Close a file descriptor

read (2)
Read from a file

write (2)
Write to a file

creat (2)
Create a new file or rewrite an existing one

unlink (2)
Remove a directory entry

lseek (2)
Move read/write file pointer

The following code sample demonstrates the use of the basic file I/O interface.
read (2) and write (2) both transfer no more than the specified number of bytes,
starting at the current offset into the file. The number of bytes actually transferred is
returned. The end of a file is indicated, on a read (2), by a return value of zero.

CODE EXAMPLE 5–1

#include <fcntl.h>
#define MAXSIZE 256

main()
{

int fd;
ssize_t n;
char array[MAXSIZE];

48 System Interface Guide ♦ June 2000

fd = open ("/etc/motd", O_RDONLY);
if (fd == -1) {

perror ("open");
exit (1);

}
while ((n = read (fd, array, MAXSIZE)) > 0)

if (write (1, array, n) != n)
perror ("write");

if (n == -1)
perror ("read");

close (fd);
}

Always close (2) a file when you are done reading or writing it, but never
close (2) a file descriptor that you did not open (2).

Offset into an open file are changed by read (2)s, write (2)s, or by calls to
lseek (2). Some examples of using lseek (2) are:

off_t start, n;
struct record rec;

/* record current offset in start */
start = lseek (fd, 0L, SEEK_CUR);

/* go back to start */
n = lseek (fd, -start, SEEK_SET);
read (fd, &rec, sizeof (rec));

/* rewrite previous record */
n = lseek (fd, -sizeof (rec), SEEK_CUR);
write (fd, (char *&rec, sizeof (rec));

Advanced File I/O
Advanced file I/O functions create and remove directories and files, create links to
existing files, and obtain or modify file status information.

TABLE 5–2 Advanced File I/O Functions

Function Name Purpose

link (2) Link to a file

access (2) Determine accessibility of a file

mknod(2) Make a special or ordinary file

chmod(2) Change mode of file

chown (2), lchown (2), fchown (2) Change owner and group of a file

utime (2) Set file access and modification times

Input/Output Interfaces 49

TABLE 5–2 Advanced File I/O Functions (continued)

Function Name Purpose

stat (2), lstat (2), fstat (2) Get file status

fcntl (2) Perform file control functions

ioctl (2) Control device

fpathconf (2) Get configurable path name variables

opendir (3C), readdir (3C),
closedir (3C)

Perform directory operations

mkdir (2) Make a directory

readlink (2) Read the value of a symbolic link

rename (2) Change the name of a file

rmdir (2) Remove a directory

symlink (2) Make a symbolic link to a file

File System Control
File system control functions let you to control various aspects of the file system:

TABLE 5–3 File System Control Functions

Function Name Purpose

ustat (2)Get file system statistics Get file system statistics

sync (2) Update super block

mount (2) Mount a file system

statvfs (2), fstatvfs (2) Get file system information

sysfs (2) Get file system type information

50 System Interface Guide ♦ June 2000

File and Record Locking
You don’t need to use traditional file I/O to do locking of file elements. The lighter
weight synchronization mechanisms described in Multithreaded Programming Guide
can be used effectively with mapped files and are much more efficient than the old
style file locking described in this section.

You lock files, or portions of files, to prevent the errors that can occur when two or
more users of a file try to update information at the same time.

File locking and record locking are really the same thing, except that file locking
blocks access to the whole file, while record locking blocks access to only a specified
segment of the file. (In the SunOS 5.0 through 5.8 system, all files are a sequence of
bytes of data: a record is a concept of the programs that use the file.)

Supported File Systems
Both advisory and mandatory locking are supported on the following types of file
systems:

� ufs —the default disk-based file system

� fifofs —a pseudo file system of named pipe files that give processes common
access to data

� namefs —a pseudo file system used mostly by STREAMS for dynamic mounts of
file descriptors on top of file

� specfs —a pseudo file system that provides access to special character and block
devices

Only advisory file locking is supported on NFS.

File locking is not supported for the proc and fd file systems.

Choosing a Lock Type
Mandatory locking suspends a process until the requested file segments are free.
Advisory locking returns a result indicating whether the lock was obtained or not:
processes can ignore the result and do the I/O anyway. You cannot use both
mandatory and advisory file locking on the same file at the same time. The mode of
a file at the time it is opened determines whether locks on a file are treated as
mandatory or advisory.

Of the two basic locking calls, fcntl (2) is more portable, more powerful, and less
easy to use than lockf (3C). fcntl (2) is specified in Posix 1003.1 standard.
lockf (3C) is provided to be compatible with older applications.

Input/Output Interfaces 51

Terminology
Some useful definitions for reading the rest of this section are shown below:

record An arbitrary sequence of bytes in a file. The UNIX operating
system supports no record structure. Programs that use the
files can impose any arbitrary record structure.

cooperating processes Two or more processes using some mechanism to regulate
access to a shared resource.

read lock Lets other processes also apply a read lock and/or perform
reads, and blocks other processes from writing or applying a
write lock.

write lock Blocks all other process from reading, writing, or applying
any lock.

advisory lock Returns an error without blocking to a process that does not
hold the lock. Advisory locking is not enforced on
creat (2), open (2), read (2), or write (2) operations.

mandatory lock Blocks execution of processes that do not hold the lock.
Access to locked records is enforced on creat (2), open (2),
read (2), and write (2) operations.

Opening a File for Locking
A lock can only be requested on a file with a valid open descriptor. For read locks,
the file must be opened with at least read access. For write locks, the file must also
be opened with write access. In this example, a file is opened for both read and write
access.

...
filename = argv[1];
fd = open (filename, O_RDWR);
if (fd < 0) {

perror(filename);
exit(2);

}
...

Setting a File Lock
To lock an entire file, set the offset to zero and set the size to zero.

There are several ways to set a lock on a file. Choice of method depends on how the
lock interacts with the rest of the program, performance, and portability. This
example uses the POSIX standard-compatible fcntl (2) function. It tries to lock a
file until one of the following happens:

� The file is successfully locked

52 System Interface Guide ♦ June 2000

� There is an error

� MAX_TRY is exceeded, and the program gives up trying to lock the file

#include <fcntl.h>

...
struct flock lck;

...
lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = (off_t)0;
lck.l_len = (off_t)0; /* until the end of the file */
if (fcntl(fd, F_SETLK, &lck) <0) {

if (errno == EAGAIN || errno == EACCES) {
(void) fprintf(stderr, "File busy try again later!\n");
return;

}
perror("fcntl");
exit (2);

}
...

Using fcntl (2), you can set the type and start of the lock request by setting a
few structure variables.

Note - Mapped files cannot be locked with flock (3UCB). See mmap(2). However,
the multithread-oriented synchronization mechanisms (in either POSIX or Solaris
styles) can be used with mapped files. See mutex (3THR), condition (3THR),
semaphore (3THR), and rwlock (3THR).

Setting and Removing Record Locks
Locking a record is done the same way as locking a file except that the starting point
and length of the lock segment is not set to zero.

Plan a failure response for when you cannot obtain all the required locks. Contention
for data is why you use record locking, so different programs might:

� Wait a certain amount of time, then try again

� Abort the procedure and warn the user

� Let the process sleep until signaled that the lock has been freed

� Do some combination of the above

This example shows locking a record using fcntl (2).

{
struct flock lck;

...

Input/Output Interfaces 53

lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* lock "this" with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "this" lock failed. */
return (-1);

...
}

The next example shows the lockf (3C) function.

#include <unistd.h>

{
...

/* lock "this" */
(void) lseek(fd, this, SEEK_SET);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "this" failed. Clear lock on "here". */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}

Locks are removed the same way they are set—only the lock type is different
(F_ULOCK). An unlock cannot be blocked by another process and affects only locks
placed by the calling process. The unlock affects only the segment of the file
specified in the preceding locking call.

Getting Lock Information
You can determine which process, if any, is holding a lock. Use this as a simple test
or to find locks on a file. A lock is set, as in the previous examples, and F_GETLK is
used in fcntl (2). The next example finds and prints indentifying data on all the
locked segments of a file.

CODE EXAMPLE 5–2

struct flock lck;

lck.l_whence = 0;
lck.l_start = 0L;
lck.l_len = 0L;
do {

lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {

(void) printf("%d %d %c %8ld %8ld\n", lck.l_sysid, lck.l_pid,

54 System Interface Guide ♦ June 2000

(lck.l_type == F_WRLCK) ? ’W’ : ’R’, lck.l_start, lck.l_len);
/* If this lock goes to the end of the address space, no

* need to look further, so break out. */
if (lck.l_len == 0) {
/* else, look for new lock after the one just found. */

lck.l_start += lck.l_len;
}

}
} while (lck.l_type != F_UNLCK);

fcntl (2) with the F_GETLKcommand can sleep while waiting for a server to
respond, and it can fail (returning ENOLCK) if there is a resource shortage on either
the client or server.

lockf (3C) with the F_TEST command can be used to test if a process is holding a
lock. This function does not return information about where the lock is and which
process owns it.

(void) lseek(fd, 0, 0L);
/* set the size of the test region to zero (0). to test until the

end of the file address space. */
if (lockf(fd, (off_t)0, SEEK_SET) < 0) {

switch (errno) {
case EACCES:
case EAGAIN:

(void) printf("file is locked by another process\n");
break;

case EBADF:
/* bad argument passed to lockf */
perror("lockf");
break;

default:
(void) printf("lockf: unexpected error <%d>\n", errno);
break;

}

Forking and Locks
When a process forks, the child receives a copy of the file descriptors that the parent
opened. Locks are not inherited by the child because they are owned by a specific
process. The parent and child share a common file pointer for each file. Both processes
can try to set locks on the same location in the same file. This problem happens with
both lockf (3C) and fcntl (2). If a program holding a record lock forks, the child
process should close the file and reopen it to set a new, separate file pointer.

Deadlock Handling
The UNIX locking facilities provide deadlock detection/avoidance. Deadlocks can
happen only when the system is about to put a record locking function to sleep. A
search is made to determine whether process A will wait for a lock that B holds
while B is waiting for a lock that A holds. If a potential deadlock is detected, the

Input/Output Interfaces 55

locking function fails and sets errno to indicate deadlock. Processes setting locks
using F_SETLK do not cause a deadlock because they do not wait when the lock
cannot be granted immediately.

Selecting Advisory or Mandatory Locking
For mandatory locks, the file must be a regular file with the set-group-ID bit on and
the group execute permission off. If either condition fails, all record locks are
advisory. Set a mandatory lock as follows.

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

...
if (stat(filename, &buf) < 0) {

perror("program");
exit (2);

}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);

/* set ’set group id bit’ in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0) {

perror("program");
exit(2);

}
...

Files to be record locked should never have any execute permission set. This is
because the operating system ignores record locks when executing a file.

The chmod(1) command can also be used to set a file to permit mandatory locking.
For example:

$ chmod +l file

This command sets the O20n0 permission bit in the file mode, which indicates
mandatory locking on the file. If n is even, the bit is interpreted as enabling
mandatory locking. If n is odd, the bit is interpreted as “set group ID on execution.”

The ls (1) command shows this setting when you ask for the long listing format
with the –l option:

56 System Interface Guide ♦ June 2000

$ ls -l file

displays following information:

-rw---l--- 1 user group size mod_time file

The letter "l" in the permissions indicates that the set-group-ID bit is on, so
mandatory locking is enabled, along with the normal semantics of set group ID.

Cautions About Mandatory Locking
� Mandatory locking works only for local files. It is not supported when accessing

files through NFS.

� Mandatory locking protects only the segments of a file that are locked. The
remainder of the file can be accessed according to normal file permissions.

� If multiple reads or writes are needed for an atomic transaction, the process
should explicitly lock all such segments before any I/O begins. Advisory locks are
sufficient for all programs that perform in this way.

� Arbitrary programs should not have unrestricted access permission to files on
which record locks are used.

� Advisory locking is more efficient because a record lock check does not have to be
performed for every I/O request.

Terminal I/O
Terminal I/O functions deal with a general terminal interface for controlling
asynchronous communications ports, as shown in the table below. Also see
termios (3C) and termio (7I).

TABLE 5–4 Terminal I/O Functions

Function Name Purpose

tcgetattr (3C), tcsetattr (3C) Get and set terminal attributes

tcsendbreak (3C), tcdrain (3C), tcflush (3C),
tcflow (3C)

Perform line control functions

cfgetospeed (3C), cfgetispeed (3C)
cfsetispeed (3C), cfsetospeed (3C)

Get and set baud rate

Input/Output Interfaces 57

TABLE 5–4 Terminal I/O Functions (continued)

Function Name Purpose

tcsetpgrp (3C) Get and set terminal foreground
process group ID

tcgetsid (3C) Get terminal session ID

58 System Interface Guide ♦ June 2000

CHAPTER 6

Memory Management

This chapter describes SunOS 5.0 through 5.8 virtual memory from the application
developer’s viewpoint. It identifies the capabilities that virtual memory makes
available to application developers that are not found in systems with fixed memory.
And it describes the interfaces provided in SunOS 5.0 through 5.8 to use and control
these capabilities.

Overview of Virtual Memory
In a system with fixed memory (non-virtual), the address space of a process occupies
and is limited to a portion of the system’s main memory.

In SunOS 5.0 through 5.8 virtual memory, the actual address space of a process
occupies a file in the swap partition of disk storage (the file is called the backing
store). Pages of main memory buffer the active (or recently active) portions of the
process address space to provide code for the CPU(s) to execute and data for the
program to process.

A page of address space is loaded when an address that is not currently in memory
is accessed by a CPU, causing a page fault. Since execution cannot continue until the
page fault is resolved, by reading the referenced address segment into memory, the
process sleeps until the page has been read.

The most obvious difference between the two memory systems for the application
developer is that virtual memory lets applications occupy much larger address
spaces. Less obvious advantages of virtual memory are much simpler and more
efficient file I/O and very efficient sharing of memory between processes.

59

Address Spaces and Mapping
Since backing store files (the process address space) exist only in swap storage, they
are not included in the UNIX named file space. (This makes backing store files
inaccessible to other processes.) However, a simple extension allows the logical
insertion of all, or part, of one or more, named files in the backing store and treats
the result as a single address space. This is called mapping.

With mapping, any part of any readable or writable file can be logically included in a
process’s address space. Like any other portion of the process’s address space, no
page of the file is actually loaded into memory until a page fault forces this action.
Pages of memory are written to the file only if their contents have been modified. So,
reading from and writing to files is completely automatic and very efficient.

More than one process can map a single named file. This provides very efficient
memory sharing between processes. All or part of other files can also be shared
between processes.

Not all named file system objects can be mapped. Devices that cannot be treated as
storage, such as terminal and network device files, are examples of objects that
cannot be mapped.

A process address space is defined by all of the files (or portions of files) mapped
into the address space. Each mapping is sized and aligned to the page boundaries of
the system on which the process is executing. No memory is associated with
processes themselves.

A process page maps to only one object at a time, although an object address can be
the subject of many process mappings. The notion of a "page" is not a property of the
mapped object. Mapping an object provides only the potential for a process to read
or write the object’s contents.

Mapping makes the object’s contents directly addressable by a process. Applications
can access the storage resources they use directly rather than indirectly through read
and write. Potential advantages include efficiency (elimination of unnecessary data
copying) and reduced complexity (single-step updates rather than the read, modify
buffer, write cycle). The ability to access an object and have it retain its identity over
the course of the access is unique to this access method, and facilitates the sharing of
common code and data.

Because the file system name space includes any directory trees that are connected
from other systems by NFS, any networked file can also be mapped into a process’s
address space.

Coherence
Whether to share memory or to share data contained in the file, when multiple
processes map a file simultaneously there can be problems with simultaneous access
to data elements. Such processes can cooperate through any of the synchronization

60 System Interface Guide ♦ June 2000

mechanisms provided in SunOS 5.0 through 5.8. Because they are very light weight,
the most efficient synchronization mechanisms in SunOS 5.0 through 5.8 are those
provides in the threads library. See mutex (3THR), condition (3THR),
rwlock (3THR), and semaphore (3THR) in the manual pages for details on their use.

Memory Management Interfaces
The virtual memory facilities are used and controlled through several sets of
functions. This section summarizes these calls and provides examples of their use.

Creating and Using Mappings
mmap(2) establishes a mapping of a named file system object (or part of one) into a

process address space. It is the basic memory management function and it is very
simple. First open (2) the file, then mmap(2) it with appropriate access and sharing
options and go about your business.

The mapping established by mmap(2) replaces any previous mappings for specified
address range.

The flags MAP_SHAREDand MAP_PRIVATEspecify the mapping type, and one of
them must be specified. MAP_SHAREDspecifies that writes modify the mapped
object. No further operations on the object are needed to make the change.
MAP_PRIVATEspecifies that an initial write to the mapped area creates a copy of the
page and all writes reference the copy. Only modified pages are copied.

A mapping type is retained across a fork (2).

The file descriptor used in a mmap(2) call need not be kept open after the mapping is
established. If it is closed, the mapping remains until the mapping is undone by
munmap(2) or be replacing it with a new mapping.

If a mapped file is shortened by a call to truncate, an access to the area of the file
that no longer exists causes a SIGBUS signal.

Mapping /dev/zero gives the calling program a block of zero-filled virtual memory
of the size specified in the call to mmap(2). The following code fragment
demonstrates a use of this to create a block of scratch storage in a program, at an
address that the system chooses.

int fd;
caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)
return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
(void) close(fd);

Memory Management 61

Some devices or files are useful only if accessed by mapping. An example of this is
frame buffer devices used to support bit-mapped displays, where display
management algorithms function best if they can operate randomly on the addresses
of the display directly.

Removing Mappings
munmap(2) removes all mappings of pages in the specified address range of the

calling process. munmap(2) has no affect on the objects that were mapped.

Cache Control
The SunOS 5.0 through 5.8 virtual memory system is a cache system, in which
processor memory buffers data from file system objects. There are interfaces to
control or interrogate the status of the cache.

mincore (2)
mincore (2) determines the residency of the memory pages in the address space

covered by mappings in the specified range. Because the status of a page can change
after mincore (2) checks it, but before mincore (2) returns the data, returned
information can be outdated. Only locked pages are guaranteed to remain in memory.

mlock (3C) and munlock (3C)
mlock (3C) causes the pages in the specified address range to be locked in physical

memory. References to locked pages (in this or other processes) do not result in page
faults that require an I/O operation. This operation ties up physical resources and
can disrupt normal system operation, so, use of mlock (3C) is limited to the
superuser. The system lets only a configuration dependent limit of pages be locked
in memory. The call to mlock (3C) fails if this limit is exceeded.

munlock (3C) releases the locks on physical pages. If multiple mlock (3C) calls are
made on an address range of a single mapping, a single munlock (3C) call is release
the locks. However, if different mappings to the same pages are mlock (3C)ed, the
pages are not unlocked until the locks on all the mappings are released.

Locks are also released when a mapping is removed, either through being replaced
with an mmap(2) operation or removed with munmap(2).

A lock is transferred between pages on the "copy-on-write" event associated with a
MAP_PRIVATEmapping, thus locks on an address range that includes MAP_PRIVATE
mappings are retained transparently along with the copy-on-write redirection (see
mmap(2) above for a discussion of this redirection).

62 System Interface Guide ♦ June 2000

mlockall (3C) and munlockall (3C)
mlockall (3C)and munlockall (3C) are similar to mlock (3C) and munlock (3C),

but they operate on entire address spaces. mlockall (3C) sets locks on all pages in
the address space and munlockall (3C) removes all locks on all pages in the
address space, whether established by mlock (3C) or mlockall (3C).

msync (3C)
msync (3C) causes all modified pages in the specified address range to be flushed to

the objects mapped by those addresses. It is similar to fsync (3C) for files.

Other Memory Control Functions

sysconf (3C)
sysconf (3C) returns the system dependent size of a memory page. For portability,

applications should not embed any constants specifying the size of a page. Note that
it is not unusual for page sizes to vary even among implementations of the same
instruction set.

mprotect (2)
mprotect (2) assigns the specified protection to all pages in the specified address

range. The protection cannot exceed the permissions allowed on the underlying
object.

brk (2) and sbrk (2)
brk (2) and sbrk (2) are called to add storage to the data segment of a process.

A process can manipulate this area by calling brk (2) and sbrk (2):

caddr_t
brk(caddr_t addr);

caddr_t
sbrk(intptr_t incr);

brk (2) identifies the lowest data segment location not used by the caller as addr
(rounded up to the next multiple of the system page size).

sbrk (2), the alternate function, adds incr bytes to the caller data space and returns a
pointer to the start of the new data area.

Memory Management 63

64 System Interface Guide ♦ June 2000

CHAPTER 7

Interprocess Communication

This chapter is for programmers who develop multiprocess applications.

The Solaris 8 and compatible operating environments has a large variety of
mechanisms for concurrent processes to exchange data and synchronize execution.
These mechanisms include:

� Pipes: anonymous data queues

� Named pipes: data queues with file names

� System V message queues, semaphores, and shared memory

� POSIX message queues, semaphores, and shared memory

� Signals: software generated interrupts

� Sockets

� Mapped memory and files (see “Memory Management Interfaces” on page 61)

All of these mechanisms except mapped memory are introduced in this chapter.

Pipes
A pipe between two processes is a pair of files that is created in a parent process. It
connects the resulting processes when the parent process forks. A pipe has no
existence in any file name space, so it is said to be anonymous. It is most common
for a pipe to connect only two processes, although any number of child processes can
be connected to each other and their parent by a single pipe.

A pipe is created in the process that becomes the parent by a call to pipe (2). The
call returns two file descriptor in the array passed to it. After forking, both processes

65

use p[0] to read from and p[1] to write to. The processes actually read from and
write to a circular buffer that is managed for them.

Since on a fork (2) the per-process open file table is duplicated, each process has
two readers and two writers. The extra readers and writers must be closed if the
pipe is to function properly. For example, no end-of-file indication would ever be
returned if the other end of a reader is also open for writing by the same process.
The following code shows pipe creation, a fork, and clearing the duplicate pipe ends.

#include <stdio.h>
#include <unistd.h>

...
int p[2];

...
if (pipe(p) == -1) exit(1);
switch(fork())
{

case 0: /* in child */
close(p[0]);
dup2(p[1], 1);
close P[1]);
exec(...);
exit(1);

default: /* in parent */
close(p[1]);
dup2(P[0], 0);
close(p[0]);
break;

}
...

Table 7–1 shows the results of reads from and writes to a pipe under certain
conditions.

TABLE 7–1 Read/write results in a pipe

Attempt Conditions Result

read Empty pipe, writer attached Read blocked

write Full pipe, reader attached Write blocked

read Empty pipe, no writer attached EOF returned

write No reader SIGPIPE

Blocking can be prevented by calling fcntl (2) on the descriptor to set FNDELAY.
This causes an error return (-1) from the I/O call with errno set to EWOULDBLOCK.

66 System Interface Guide ♦ June 2000

Named Pipes
Named pipes function much like pipes, but are created as named entities in a file
system. This allows the pipe to be opened by any processes with no requirement that
they be related by forking. A named pipe is created by a call to mknod(2). Then any
process with appropriate permission can read from or write to a named pipe.

In the open (2) call, the process opening the pipe blocks until another process also
opens the pipe.

To open a named pipe without blocking, the O_NDELAYmask (found in <sys/
fcntl.h>) can be or -ed with the selected file mode mask on the call to open (2). If
no other process is connected to the pipe when open (2) is called, -1 is returned with
errno set to EWOULDBLOCK.

Sockets
Sockets provide point-to-point, two-way communication between two processes.
Sockets are very versatile and are a basic component of interprocess and intersystem
communication. A socket is an endpoint of communication to which a name can be
bound. It has a type and one or more associated processes.

Sockets exist in communication domains. A socket domain is an abstraction that
provides an addressing structure and a set of protocols. Sockets connect only with
sockets in the same domain. Twenty three socket domains are identified (see <sys/
socket.h>), of which only the UNIX and Internet domains are normally used in
SunOS 5.8 and compatible operating environments.

Sockets can be used to communicate between processes on a single system, like other
forms of IPC. The UNIX domain (AF_UNIX) provides a socket address space on a
single system. UNIX domain sockets are named with UNIX paths. UNIX domain
sockets are further described in “UNIX Domain Sockets” in Network Interface Guide.
Sockets can also be used to communicate between processes on different systems.
The socket address space between connected systems is called the Internet domain
(AF_INET). Internet domain communication uses the TCP/IP internet protocol suite.
Internet domain sockets are described in “Socket Interfaces” in Network Interface
Guide.

Interprocess Communication 67

POSIX IPC
POSIX interprocess communication is a variation of System V interprocess
communication. It was introduced in Solaris 7. Like System V objects, POSIX IPC
objects have read and write (but not execute) permissions for the owner, the owner’s
group, and for others. There is no way for the owner of a POSIX IPC object to assign
a different owner.

Unlike the System V IPC interfaces, the POSIX IPC interfaces are all multithread safe.

POSIX Messages
The POSIX message queue interfaces are:

mq_open(3RT)
Connects to, and optionally creates, a named message queue

mq_close (3RT)
Ends the connection to an open message queue

mq_unlink (3RT)
Ends the connection to an open message queue and causes the queue
to be removed when the last process closes it

mq_send(3RT)
Places a message in the queue

mq_receive (3RT)
Receives (removes) the oldest, highest priority message from the queue

mq_notify (3RT)
Notifies a process or thread that a message is available in the queue

mq_setattr (3RT),

mq_getattr (3RT)

Set or get message queue attributes

68 System Interface Guide ♦ June 2000

POSIX Semaphores
POSIX semaphores are much lighter weight than are System V semaphores. A POSIX
semaphore structure defines a single semaphore, not an array of up to twenty five
semaphores.

The POSIX semaphore interfaces are

sem_open (3RT)
Connects to, and optionally creates, a named semaphore

sem_init (3RT)
Initializes a semaphore structure (internal to the calling program, so
not a named semaphore)

sem_close (3RT)
Ends the connection to an open semaphore

sem_unlink (3RT)
Ends the connection to an open semaphore and causes the
semaphore to be removed when the last process closes it

sem_destroy (3RT)
Initializes a semaphore structure (internal to the calling program, so
not a named semaphore).

sem_getvalue (3RT)
Copies the value of the semaphore into the specified integer

sem_wait (3RT),
sem_trywait (3RT)

Blocks while the semaphore is held by other processes or returns an
error if the semaphore is held by another process

sem_post (3RT)
Increments the count of the semaphore

POSIX Shared Memory
POSIX shared memory is actually a variation of mapped memory (see “Creating and
Using Mappings” on page 61). The major differences are to use shm_open (3RT) to
open the shared memory object (instead of calling open (2)) and use
shm_unlink (3RT) to close and delete the object (instead of calling close (2) which
does not remove the object). The options in shm_open (3RT) are substantially fewer
than the number of options provided in open (2).

Interprocess Communication 69

System V IPC
The Solaris 8 and compatible operating environments provides an InterProcess
Communication (IPC) package that supports three types of interprocess
communication that are more versatile than pipes and named pipes.

� Messages allow processes to send formatted data streams to arbitrary processes.

� Semaphores allow processes to synchronize execution.

� Shared memory allows processes to share parts of their virtual address space.

See the ipcrm (1), ipcs (1), Intro (), msgctl (2), msgget (2), msgrcv (2),
msgsnd(2), semget (2), semctl (2), semop(2), shmget (2), shmctl (2), shmop(2),
and ftok (3C) manual pages for more information about System V IPC.

Permissions
Messages, semaphores, and shared memory have read and write permissions (but no
execute permission) for the owner, group, and others the same as ordinary files. Like
files, the creating process identifies the default owner. Unlike files, the creator can
assign ownership of the facility to another user; it can also revoke an ownership
assignment.

IPC Functions, Key Arguments, and Creation Flags
Processes requesting access to an IPC facility must be able to identify it. To do this,
functions that initialize or provide access to an IPC facility use a key_t key
argument. The key is an arbitrary value or one that can be derived from a common
seed at runtime. One way is with ftok (3C), which converts a file name to a key
value that is unique within the system.

Functions that initialize or get access to messages, semaphores, or shared memory
return an ID number of type int. IPC functions that perform read, write, and control
operations use this ID.

If the key argument is specified as IPC_PRIVATE , the call initializes a new instance
of an IPC facility that is private to the creating process.

When the IPC_CREATflag is supplied in the flags argument appropriate to the call,
the function tries to create the facility, if it does not exist already.

When called with both the IPC_CREATand IPC_EXCL flags, the function fails if the
facility already exists. This can be useful when more than one process might attempt
to initialize the facility. One such case might involve several server processes having

70 System Interface Guide ♦ June 2000

access to the same facility. If they all attempt to create the facility with IPC_EXCL in
effect, only the first attempt succeeds.

If neither of these flags is given and the facility already exists, the functions to get
access return the ID of the facility. If IPC_CREAT is omitted and the facility is not
already initialized, the calls fail.

These control flags are combined, using logical (bitwise) OR, with the octal
permission modes to form the flags argument. For example, the statement below
initializes a new message queue if the queue does not exist:

msqid = msgget(ftok("/tmp", ’A’), (IPC_CREAT | IPC_EXCL | 0400));

The first argument evaluates to a key (’A’) based on the string ("/tmp"). The
second argument evaluates to the combined permissions and control flags.

System V Messages
Before a process can send or receive a message, the queue must be initialized
through the msgget (2) function. The owner or creator of a queue can change its
ownership or permissions using msgctl (2). Also, any process with permission to do
so can use msgctl (2) for control operations.

IPC messaging lets processes send and receive messages, and queue messages for
processing in an arbitrary order. Unlike the file byte-stream data flow of pipes, each
IPC message has an explicit length.

Messages can be assigned a specific type. Because of this, a server process can direct
message traffic between clients on its queue by using the client process PID as the
message type. For single-message transactions, multiple server processes can work in
parallel on transactions sent to a shared message queue.

Operations to send and receive messages are performed by the msgsnd(2) and
msgrcv (2) functions, respectively. When a message is sent, its text is copied to the
message queue. The msgsnd(2) and msgrcv (2) functions can be performed as
either blocking or non-blocking operations. A blocked message operation remains
suspended until one of the following three conditions occurs:

� The call succeeds.

� The process receives a signal.

� The queue is removed.

Initializing a Message Queue
The msgget (2) function initializes a new message queue. It can also return the
message queue ID (msqid) of the queue corresponding to the key argument. The
value passed as the msgflg argument must be an octal integer with settings for the
queue’s permissions and control flags.

Interprocess Communication 71

The MSGMNIkernel configuration option determines the maximum number of unique
message queues that the kernel will support. msgget (2) fails when this limit is
exceeded. The following code illustrates msgget (2):

#include <sys/ipc.h>
#include <sys/msg.h>

...
key_t key; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */
...
key = ...
msgflg = ...
if ((msqid = msgget(key, msgflg)) == -1)
{

perror("msgget: msgget failed");
exit(1);

} else
(void) fprintf(stderr, "msgget succeeded");

...

Controlling Message Queues
The msgctl (2) function alters the permissions and other characteristics of a message
queue. The msqi d argument must be the ID of an existing message queue. The cmd
argument is one of the following:

IPC_STAT Place information about the status of the queue in the data structure
pointed to by buf . The process must have read permission for this call to
succeed.

IPC_SET Set the owner’s user and group ID, the permissions, and the size (in
number of bytes) of the message queue. A process must have the effective
user ID of the owner, creator, or superuser for this call to succeed.

IPC_RMID Remove the message queue specified by the msqid argument.

The following code illustrates msgctl (2) with all its various flags:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

...
if (msgctl(msqid, IPC_STAT, &buf) == -1) {

perror("msgctl: msgctl failed");
exit(1);

}
...
if (msgctl(msqid, IPC_SET, &buf) == -1) {

perror("msgctl: msgctl failed");
exit(1);

}
...

72 System Interface Guide ♦ June 2000

Sending and Receiving Messages
The msgsnd(2) and msgrcv (2) functions send and receive messages, respectively.
The msqid argument must be the ID of an existing message queue. The msgp
argument is a pointer to a structure that contains the type of the message and its
text. The msgsz argument specifies the length of the message in bytes. Various
control flags can be passed in the msgflg argument.

The following code illustrates msgsnd(2) and msgrcv (2):

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

...
int msgflg; /* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */
size_t msgsz; /* message size */

size_t maxmsgsize;
long msgtyp; /* desired message type */
int msqid /* message queue ID to be used */
...
msgp = malloc(sizeof(struct msgbuf) - sizeof (msgp->mtext)

+ maxmsgsz);
if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %ld byte messages.\n",
"could not allocate message buffer for", maxmsgsz);

exit(1);
...
msgsz = ...
msgflg = ...
if (msgsnd(msqid, msgp, msgsz, msgflg) == -1)

perror("msgop: msgsnd failed");
...
msgsz = ...
msgtyp = first_on_queue;
msgflg = ...
if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == -1)

perror("msgop: msgrcv failed");
...

System V Semaphores
Semaphores let processes query or alter status information. They are often used to
monitor and control the availability of system resources such as shared memory
segments. Semaphores can be operated on as individual units or as elements in a set.

Because System V IPC semaphores can be in a large array, they are extremely heavy
weight. Much lighter weight semaphores are available in the threads library (see
semaphore (3THR)) . Also, POSIX semaphores are the most current implementation
of System V semaphores (see “POSIX Semaphores” on page 69). Threads library
semaphores must be used with mapped memory (see “Memory Management
Interfaces” on page 61).

A semaphore set consists of a control structure and an array of individual
semaphores. A set of semaphores can contain up to 25 elements. The semaphore set

Interprocess Communication 73

must be initialized using semget (2). The semaphore creator can change its
ownership or permissions using semctl (2). Any process with permission can use
semctl (2) to do control operations.

Semaphore operations are performed by the semop(2) function. This function takes
a pointer to an array of semaphore operation structures. Each structure in the array
contains data about an operation to perform on a semaphore. Any process with read
permission can test whether a semaphore has a zero value. Operations to increment
or decrement a semaphore require write permission.

When an operation fails, none of the semaphores is altered. The process blocks
(unless the IPC_NOWAITflag is set), and remains blocked until:

� The semaphore operations can all finish, so the call succeeds

� The process receives a signal

� The semaphore set is removed

Only one process at a time can update a semaphore. Simultaneous requests by
different processes are performed in an arbitrary order. When an array of operations
is given by a semop(2) call, no updates are done until all operations on the array
can finish successfully.

If a process with exclusive use of a semaphore terminates abnormally and fails to
undo the operation or free the semaphore, the semaphore stays locked in memory in
the state the process left it. To prevent this, the SEM_UNDOcontrol flag makes
semop(2) allocate an undo structure for each semaphore operation, which contains
the operation that returns the semaphore to its previous state. If the process dies, the
system applies the operations in the undo structures. This prevents an aborted
process from leaving a semaphore set in an inconsistent state.

If processes share access to a resource controlled by a semaphore, operations on the
semaphore should not be made with SEM_UNDOin effect. If the process that currently
has control of the resource terminates abnormally, the resource is presumed to be
inconsistent. Another process must be able to recognize this to restore the resource to
a consistent state.

When performing a semaphore operation with SEM_UNDOin effect, you must also
have it in effect for the call that will perform the reversing operation. When the
process runs normally, the reversing operation updates the undo structure with a
complementary value. This ensures that, unless the process is aborted, the values
applied to the undo structure are cancel to zero. When the undo structure reaches
zero, it is removed.

Using SEM_UNDOinconsistently can lead to excessive resource consumption because
allocated undo structures might not be freed until the system is rebooted.

Initializing a Semaphore Set
semget (2) initializes or gains access to a semaphore. When the call succeeds, it

returns the semaphore ID (semid). The key argument is a value associated with the

74 System Interface Guide ♦ June 2000

semaphore ID. The nsems argument specifies the number of elements in a
semaphore array. The call fails when nsems is greater than the number of elements
in an existing array; when the correct count is not known, supplying 0 for this
argument ensures that it will succeed. The semflg argument specifies the initial
access permissions and creation control flags.

The SEMMNIsystem configuration option determines the maximum number of
semaphore arrays allowed. The SEMMNSoption determines the maximum possible
number of individual semaphores across all semaphore sets. Because of
fragmentation between semaphore sets, it might not be possible to allocate all
available semaphores.

The following code illustrates semget (2).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
...

key_t key; /* key to pass to semget() */
int semflg; /* semflg to pass to semget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */
...
key = ...
nsems = ...
semflg = ...
...
if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");
exit(1);

} else
exit(0);

...

Controlling Semaphores
semctl (2) changes permissions and other characteristics of a semaphore set. It must

be called with a valid semaphore ID. The semnumvalue selects a semaphore within
an array by its index. The cmd argument is one of the following control flags.

GETVAL Return the value of a single semaphore.

SETVAL Set the value of a single semaphore. In this case, arg is taken as
arg.val , an int.

GETPID Return the PID of the process that performed the last operation on the
semaphore or array.

GETNCNT Return the number of processes waiting for the value of a semaphore
to increase.

GETZCNT Return the number of processes waiting for the value of a particular
semaphore to reach zero.

Interprocess Communication 75

GETALL Return the values for all semaphores in a set. In this case, arg is taken
as arg.array , a pointer to an array of unsigned short s.

SETALL Set values for all semaphores in a set. In this case, arg is taken as
arg.array , a pointer to an array of unsigned shorts.

IPC_STAT Return the status information from the control structure for the
semaphore set and place it in the data structure pointed to by
arg.buf , a pointer to a buffer of type semid_d s.

IPC_SET Set the effective user and group identification and permissions. In this
case, arg is taken as arg.buf .

IPC_RMID Remove the specified semaphore set.

A process must have an effective user identification of owner, creator, or superuser to
perform an IPC_SET or IPC_RMID command. Read and write permission is
required as for the other control commands.

The following code illustrates semctl (2):

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
...

register int i;
...

i = semctl(semid, semnum, cmd, arg);
if (i == -1) {

perror("semctl: semctl failed");
exit(1);

...

Semaphore Operations
semop(2) performs operations on a semaphore set. The semid argument is the

semaphore ID returned by a previous semget (2) call. The sops argument is a
pointer to an array of structures, each containing the following information about a
semaphore operation:

� The semaphore number

� The operation to be performed

� Control flags, if any

The sembuf structure specifies a semaphore operation, as defined in <sys/sem.h> .
The nsops argument specifies the length of the array, the maximum size of which is
determined by the SEMOPM configuration option; this is the maximum number of
operations allowed by a single semop(2) call, and is set to 10 by default.

The operation to be performed is determined as follows:

� Positive integer increments the semaphore value by that amount.

76 System Interface Guide ♦ June 2000

� Negative integer decrements the semaphore value by that amount. An attempt to
set a semaphore to a value less than zero fails or blocks, depending on whether
IPC_NOWAIT is in effect.

� Value of zero means to wait for the semaphore value to reach zero.

The two control flags that can be used with semop(2) are shown below:

IPC_NOWAIT Can be set for any operations in the array. Makes the function return
without changing any semaphore value if any operation for which
IPC_NOWAIT is set cannot be performed. The function fails if it tries to
decrement a semaphore more than its current value, or tests a nonzero
semaphore to be equal to zero.

SEM_UNDO Allows individual operations in the array to be undone when the
process exits.

The following code illustrates the semop(2) function:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
...

int i; /* work area */
int nsops; /* number of operations to do */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to perform */
...
if ((i = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");
} else

(void) fprintf(stderr, "semop: returned %d\n", i);
...

System V Shared Memory
In the SunOS 5.8 operating system, the most efficient way to implement shared
memory applications is to rely on the mmap(2) function and on the system’s native
virtual memory facility. See Chapter 6.

SunOS 5.8 also supports System V shared memory, which is a less efficient way to let
multiple processes attach a segment of physical memory to their virtual address
spaces. When write access is allowed for more than one process, an outside protocol
or mechanism such as a semaphore can be used to prevent inconsistencies and
collisions.

A process creates a shared memory segment using shmget (2). This call is also used
to get the ID of an existing shared segment. The creating process sets the permissions
and the size in bytes for the segment.

The original owner of a shared memory segment can assign ownership to another
user with shmctl (2). It can also revoke this assignment. Other processes with

Interprocess Communication 77

proper permission can perform various control functions on the shared memory
segment using shmctl (2).

Once created, a shared segment can be attached to a process address space using
shmat (2). It can be detached using shmdt (2). The attaching process must have the
appropriate permissions for shmat (2). Once attached, the process can read or write
to the segment, as allowed by the permission requested in the attach operation. A
shared segment can be attached multiple times by the same process.

A shared memory segment is described by a control structure with a unique ID that
points to an area of physical memory. The identifier of the segment is called the
shmid . The structure definition for the shared memory segment control structure can
be found in <sys/shm.h> .

Accessing a Shared Memory Segment
shmget (2) is used to obtain access to a shared memory segment. When the call

succeeds, it returns the shared memory segment ID (shmid). The following code
illustrates shmget (2):

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
...

key_t key; /* key to be passed to shmget() */
int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget() */
size_t size; /* size to be passed to shmget() */
...
key = ...
size = ...
shmflg) = ...
if ((shmid = shmget (key, size, shmflg)) == -1) {

perror("shmget: shmget failed");
exit(1);

} else {
(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);
exit(0);

}
...

Controlling a Shared Memory Segment
shmctl (2) is used to alter the permissions and other characteristics of a shared

memory segment. The cmd argument is one of following control commands:

78 System Interface Guide ♦ June 2000

SHM_LOCK Lock the specified shared memory segment in memory. The process
must have the effective ID of superuser to perform this command.

SHM_UNLOCK Unlock the shared memory segment. The process must have the
effective ID of superuser to perform this command.

IPC_STAT Return the status information contained in the control structure and
place it in the buffer pointed to by buf. The process must have read
permission on the segment to perform this command.

IPC_SET Set the effective user and group identification and access permissions.
The process must have an effective ID of owner, creator or superuser to
perform this command.

IPC_RMID Remove the shared memory segment. The process must have an
effective ID of owner, creator or superuser to perform this command.

The following code illustrates shmctl (2):

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
...

int cmd; /* command code for shmctl() */
int shmid; /* segment ID */
struct shmid_ds shmid_ds; /* shared memory data structure to

hold results */
...
shmid = ...
cmd = ...
if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == -1) {

perror("shmctl: shmctl failed");
exit(1);

...

Attaching and Detaching a Shared Memory Segment
shmat() and shmdt() (see shmop(2)) are used to attach and detach shared
memory segments. shmat (2) returns a pointer to the head of the shared segment.
shmdt (2) detaches the shared memory segment located at the address indicated by
shmaddr. The following code illustrates calls to shmat (2) and shmdt (2):

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

static struct state { /* Internal record of attached segments. */
int shmid; /* shmid of attached segment */
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */
} ap[MAXnap]; /* State of current attached segments. */
int nap; /* Number of currently attached segments. */

...
char *addr; /* address work variable */
register int i; /* work area */

Interprocess Communication 79

register struct state *p; /* ptr to current state entry */
...

p = &ap[nap++];
p->shmid = ...
p->shmaddr = ...
p->shmflg = ...
p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
if(p->shmaddr == (char *)-1) {

perror("shmat failed");
nap--;

} else
(void) fprintf(stderr, "shmop: shmat returned %p\n",

p->shmaddr);
...
i = shmdt(addr);
if(i == -1) {

perror("shmdt failed");
} else {

(void) fprintf(stderr, "shmop: shmdt returned %d\n", i);
for (p = ap, i = nap; i--; p++) {

if (p->shmaddr == addr) *p = ap[--nap];
}

}
...

80 System Interface Guide ♦ June 2000

CHAPTER 8

Real-time Programming and
Administration

This chapter describes writing and porting real-time applications to run under
Solaris SunOS 5.0 through 5.8. This chapter is written for programmers experienced
in writing real-time applications and administrators familiar with real-time
processing and the Solaris system.

Basic Rules of Real-time Applications
Real-time response is guaranteed when certain conditions are met. This section
identifies these conditions and some of the more significant design errors that can
cause problems or disable a system.

Most of the potential problems described here can degrade the response time of the
system. One of the potential problems can freeze a workstation. Other, more subtle,
mistakes are priority inversion and system overload.

A Solaris real-time process:

� Runs in the RT scheduling class, as described in “Scheduling” on page 85.

� Locks down all the memory in its process address space, as described in “Memory
Locking” on page 96.

� Is from a statically-linked program or from a program in which all dynamic
binding is completed early, as described in “Shared Libraries ” on page 83.

Real-time operations are described in this chapter in terms of single-threaded
processes, but the description can also apply to multithreaded processes (for detailed
information about multithreaded processes, see the Multithreaded Programming
Guide). To guarantee real-time scheduling of a thread, it must be created as a bound

81

thread, and the thread’s LWP must be run in the RT scheduling class. The locking of
memory and early dynamic binding is effective for all threads in a process.

When a process is the highest priority real-time process, it:

� Acquires the processor within the guaranteed dispatch latency period of becoming
runnable (see“Dispatch Latency” on page 85)

� Continues to run for as long as it remains the highest priority runnable process

A real-time process can lose control of the processor or can be unable to gain control
of the processor because of other events on the system. These events include external
events (such as interrupts), resource starvation, waiting on external events
(synchronous I/O), and preemption by a higher priority process.

Real-time scheduling generally does not apply to system initialization and
termination services such as open (2) and close (2).

Degrading Response Time
The problems described in this section all increase the response time of the system to
varying extents. The degradation can be serious enough to cause an application to
miss a critical deadline.

Real-time processing can also significantly impact the operation of aspects of other
applications active on a system running a real-time application. Since real-time
processes have higher priority, time-sharing processes can be prevented from
running for significant amounts of time. This can cause interactive activities, such as
displays and keyboard response time, to be noticeably slowed.

System Response Time
System response under SunOS 5.0 through 5.8 provides no bounds to the timing of
I/O events. This means that synchronous I/O calls should never be included in any
program segment whose execution is time critical. Even program segments that
permit very large time bounds must not perform synchronous I/O. Mass storage I/O
is such a case, where causing a read or write operation hangs the system while the
operation takes place.

A common application mistake is to perform I/O to get error message text from
disk. This should be done from an independent nonreal-time process or thread.

Interrupt Servicing
Interrupt priorities are independent of process priorities. Prioritizing processes does
not carry through to prioritizing the services of hardware interrupts that result from
the actions of the processes. This means that interrupt processing for a device

82 System Interface Guide ♦ June 2000

controlled by a real-time process is not necessarily done before interrupt processing
for another device controlled by a timeshare process.

Shared Libraries
Time-sharing processes can save significant amounts of memory by using
dynamically linked, shared libraries. This type of linking is implemented through a
form of file mapping. Dynamically linked library routines cause implicit reads.

Real-time programs can use shared libraries, yet avoid dynamic binding, by setting
the environment variable LD_BIND_NOWto a non-NULL value when the program is
invoked. This forces all dynamic linking to be bound before the program begins
execution. See the Linker and Libraries Guide for more information.

Priority Inversion
A time-sharing process can block a real-time process by acquiring a resource that is
required by a real-time process. Priority inversion is a condition that occurs when a
higher priority process is blocked by a lower priority process. The term blocking
describes a situation in which a process must wait for one or more processes to
relinquish control of resources. If this blocking is prolonged, even for lower level
resources, deadlines might be missed.

By way of illustration, consider the case in Figure 8–1where a high priority process
wanting to use a shared resource gets blocked when a lower priority process holds
the resource, and the lower priority process is preempted by an intermediate priority
process. This condition can persist for a long time, arbitrarily long, in fact, since the
amount of time the high priority process must wait for the resource depends not
only on the duration of the critical section being executed by the lower priority
process, but on the duration until the intermediate process blocks. Any number of
intermediate processes can be involved.

 Shared Resource

 Intermediate

 Priority

 Higher Priority

 Lower Priority

Figure 8–1 Unbounded Priority Inversion

Real-time Programming and Administration 83

This issue and the methods of dealing with it are described in “Mutual Exclusion
Lock Attributes” in Multithreaded Programming Guide.

Sticky Locks
A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is implementation-defined and might change in future
releases. Pages locked this way cannot be unlocked.

Runaway Real-time Processes
Runaway real-time processes can cause the system to halt or can slow the system
response so much that the system appears to halt.

Note - If you have a runaway process on a SPARC system, press Stop-A . You might
have to do this more than one time. If this doesn’t work, or on non-SPARC systems,
turn the power off, wait a moment, then turn it back on.

When a high priority real-time process does not relinquish control of the CPU, there
is no simple way to regain control of the system until the infinite loop is forced to
terminate. Such a runaway process does not respond to control-C. Attempts to use a
shell set at a higher priority than that of a runaway process do not work.

I/O Behavior

Asynchronous I/O
There is no guarantee that asynchronous I/O operations will be done in the sequence
in which they are queued to the kernel. Nor is there any guarantee that asynchronous
operations will be returned to the caller in the sequence in which they were done.

If a single buffer is specified for a rapid sequence of calls to aioread (3AIO), there
is no guarantee about the state of the buffer between the time that the first call is
made and the time that the last result is signaled to the caller.

An individual aio_result_t structure can be used only for one asynchronous read
or write at a time.

84 System Interface Guide ♦ June 2000

Real-time Files
SunOS 5.0 through 5.8 provides no facilities to ensure that files will be allocated as
physically contiguous.

For regular files, the read (2) and write (2) operations are always buffered. An
application can use mmap(2) and msync (3C) to effect direct I/O transfers between
secondary storage and process memory.

Scheduling
Real-time scheduling constraints are necessary to manage data acquisition or process
control hardware. The real-time environment requires that a process be able to react
to external events in a bounded amount of time. Such constraints can exceed the
capabilities of a kernel designed to provide a "fair" distribution of the processing
resources to a set of time-sharing processes.

This section describes the SunOS 5.0 through 5.8 real-time scheduler, its priority
queue, and how to use system calls and utilities that control scheduling.

Dispatch Latency
The most significant element in scheduling behavior for real-time applications is the
provision of a real-time scheduling class. The standard time-sharing scheduling class
is not suitable for real-time applications because this scheduling class treats every
process equally and has a limited notion of priority. Real-time applications require a
scheduling class in which process priorities are taken as absolute and are changed
only by explicit application operations.

The term dispatch latency describes the amount of time it takes for a system to
respond to a request for a process to begin operation. With a scheduler written
specifically to honor application priorities, real-time applications can be developed
with a bounded dispatch latency.

Figure 8–2 illustrates the amount of time it takes an application to respond to a
request from an external event.

Real-time Programming and Administration 85

application response time

dispatch
latency

priority
task

reschedules to run
highest priority
task

interrupt
latency

interrupt
processing

interrupt response

processor
instruction
or system
in critical
region;
locks out
interrupts

system saves
or restores
registers,
and vectors
to interrupt
routine

driver’s
interrupt routine
sends message
to wake up
sleeping
process

returns
from
interrupt

calculates response

external
event to event

response

Figure 8–2 Application Response Time.

The overall application response time is composed of the interrupt response time, the
dispatch latency, and the time it takes the application itself to determine its response.

The interrupt response time for an application includes both the interrupt latency of
the system and the device driver’s own interrupt processing time. The interrupt
latency is determined by the longest interval that the system must run with
interrupts disabled; this is minimized in SunOS 5.0 through 5.8 using synchronization
primitives that do not commonly require a raised processor interrupt level.

During interrupt processing, the driver’s interrupt routine wakes up the high priority
process and returns when finished. The system detects that a process with higher
priority than the interrupted process in now dispatchable and arranges to dispatch
that process. The time to switch context from a lower priority process to a higher
priority process is included in the dispatch latency time.

Figure 8–3 illustrates the internal dispatch latency/application response time of a
system, defined in terms of the amount of time it takes for a system to respond to an
internal event. The dispatch latency of an internal event represents the amount of
time required for one process to wake up another higher priority process, and for the
system to dispatch the higher priority process.

The application response time is the amount of time it takes for a driver to wake up
a higher priority process, have a low priority process release resources, reschedule
the higher priority task, calculate the response, and dispatch the task.

Note - Interrupts can arrive and be processed during the dispatch latency interval.
This processing increases the application response time, but is not attributed to the
dispatch latency measurement, and so is not bounded by the dispatch latency
guarantee.

86 System Interface Guide ♦ June 2000

application response time

dispatch priority
task

reschedule to run
highest-priority
task

wakeup

calculate response

internal
event to event

response

dispatch latency

low-priority processes release resources
or provide input to higher priority
process

Figure 8–3 Internal Dispatch Latency

With the new scheduling techniques provided with real-time SunOS 5.0 through 5.8,
the system dispatch latency time is within specified bounds. As you can see in the
table below, dispatch latency improves with a bounded number of processes.

TABLE 8–1 Real-time System Dispatch Latency with SunOS 5.0 through 5.8

Workstation Bounded Number of Processes Arbitrary Number of
Processes

SPARCstation 2 <0.5 milliseconds in a system
with fewer than 16 active
processes

1.0 milliseconds

SPARCstation 5 <0.3 millisecond 0.3 millisecond

Ultra 1-167 <0.15 millisecond <0.15 millisecond

Tests for dispatch latency and experience with such critical environments as
manufacturing and data acquisition have proven that SunOS 5.8 is an effective
platform for the development of real-time applications. (These examples are not of
current products.)

Scheduling Classes
The SunOS 5.0 through 5.8 kernel dispatches processes by priority. The scheduler (or
dispatcher) supports the concept of scheduling classes. Classes are defined as
Real-time (RT), System (sys), and Time-Sharing (TS). Each class has a unique
scheduling policy for dispatching processes within its class.

The kernel dispatches highest priority processes first. By default, real-time processes
have precedence over sys and TS processes, but administrators can configure
systems so that TS and RT processes have overlapping priorities.

Real-time Programming and Administration 87

Figure 8–4 illustrates the concept of classes as viewed by the SunOS 5.0 through 5.8
kernel.

 System
Interrupts

Realtime
(RT)

Kernel Daemons

Time-Sharing
(TS)

Hardware
Dispatching

 Software
Dispatching






















(sys)

Figure 8–4 Dispatch Priorities for Scheduling Classes

At highest priority are the hardware interrupts; these cannot be controlled by
software. The interrupt processing routines are dispatched directly and immediately
from interrupts, without regard to the priority of the current process.

Real-time processes have the highest default software priority. Processes in the RT
class have a priority and time quantum value. RT processes are scheduled strictly on
the basis of these parameters. As long as an RT process is ready to run, no SYSor TS
process can run. Fixed priority scheduling allows critical processes to run in a
predetermined order until completion. These priorities never change unless an
application changes them.

An RT class process inherits the parent’s time quantum, whether finite or infinite. A
process with a finite time quantum runs until the time quantum expires or the
process terminates, blocks (while waiting for an I/O event), or is preempted by a
higher priority runnable real-time process. A process with an infinite time quantum
ceases execution only when it terminates, blocks, or is preempted.

The SYSclass exists to schedule the execution of special system processes, such as
paging, STREAMS, and the swapper. It is not possible to change the class of a
process to the SYS class. The SYSclass of processes has fixed priorities established
by the kernel when the processes are started.

88 System Interface Guide ♦ June 2000

At lowest priority are the time-sharing (TS) processes. TS class processes are
scheduled dynamically, with a few hundred milliseconds for each time slice. The TS
scheduler switches context in round-robin fashion often enough to give every process
an equal opportunity to run, depending upon its time slice value, its process history
(when the process was last put to sleep), and considerations for CPU utilization.
Default time-sharing policy gives larger time slices to processes with lower priority.

A child process inherits the scheduling class and attributes of the parent process
through fork (2). A process’ scheduling class and attributes are unchanged by
exec (2).

Different algorithms dispatch each scheduling class. Class dependent routines are
called by the kernel to make decisions about CPU process scheduling. The kernel is
class-independent, and takes the highest priority process off its queue. Each class is
responsible for calculating a process’ priority value for its class. This value is placed
into the dispatch priority variable of that process.

As Figure 8–5 illustrates, each class algorithm has its own method of nominating the
highest priority process to place on the global run queue.

Realtime Priorities

Global Priorities

Time-share Priorities

59

56

01

00

-19

-20

•••

•••

•••

+20

+19

•••
+1

159
158
157
156

100

99
98

01
00

02

•••

-1

58

57

Figure 8–5 The Kernel Dispatch Queue

Each class has a set of priority levels that apply to processes in that class. A
class-specific mapping maps these priorities into a set of global priorities. It is not
required that a set of global scheduling priority maps start with zero, nor that they
be contiguous.

By default, the global priority values for time-sharing (TS) processes range from -20
to +20, mapped into the kernel from 0-40, with temporary assignments as high as 99.

Real-time Programming and Administration 89

The default priorities for real-time (RT) processes range from 0-59, and are mapped
into the kernel from 100 to 159. The kernel’s class-independent code runs the process
with the highest global priority on the queue.

Dispatch Queue
The dispatch queue is a linear-linked list of processes with the same global priority.
Each process is invoked with class specific information attached to it. A process is
dispatched from the kernel dispatch table based upon its global priority.

Dispatching Processes
When a process is dispatched, the process’ context is mapped into memory along
with its memory management information, its registers, and its stack. Then execution
begins. Memory management information is in the form of hardware registers
containing data needed to perform virtual memory translations for the currently
running process.

Preemption
When a higher priority process becomes dispatchable, the kernel interrupts its
computation and forces the context switch, preempting the currently running
process. A process can be preempted at any time if the kernel finds that a higher
priority process is now dispatchable.

For example, suppose that process A performs a read from a peripheral device.
Process A is put into the sleep state by the kernel. The kernel then finds that a lower
priority process B is runnable, so process B is dispatched and begins execution.
Eventually, the peripheral device interrupts, and the driver of the device is entered.
The device driver makes process A runnable and returns. Rather than returning to
the interrupted process B, the kernel now preempts B from processing and resumes
execution of the awakened process A.

Another interesting situation occurs when several processes contend for kernel
resources. When a lower priority process releases a resource for which a higher
priority real-time process is waiting, the kernel immediately preempts the lower
priority process and resumes execution of the higher priority process.

Kernel Priority Inversion
Priority inversion occurs when a higher priority process is blocked by one or more
lower priority processes for a long time. The use of synchronization primitives such
as mutual-exclusion locks in the SunOS 5.0 through 5.8 kernel can lead to priority
inversion.

90 System Interface Guide ♦ June 2000

A process is blocked when it must wait for one or more processes to relinquish
resources. If blocking continues, it can lead to missed deadlines, even for low levels
of utilization.

The problem of priority inversion has been addressed for mutual-exclusion locks for
the SunOS 5.0 through 5.8 kernel by implementing a basic priority inheritance policy.
The policy states that a lower priority process inherits the priority of a higher
priority process when the lower priority process blocks the execution of the higher
priority process. This places an upper bound on the amount of time a process can
remain blocked. The policy is a property of the kernel’s behavior, not a solution that
a programmer institutes through system calls or function execution. User-level
processes can still exhibit priority inversion, however.

User Priority Inversion
This issue and the means to deal with it are discussed in “Mutual Exclusion Lock
Attributes” in Multithreaded Programming Guide.

Function Calls That Control Scheduling

priocntl (2)
Control over scheduling of active classes is done with priocntl (2). Class attributes
are inherited through fork (2) and exec (2), along with scheduling parameters and
permissions required for priority control. This is true for both the RT and the TS
classes.

The priocntl (2) function is the interface for specifying a real-time process, a set of
processes, or a class to which the system call applies. priocntlset (2) also
provides the more general interface for specifying an entire set of processes to which
the system call applies.

The command arguments of priocntl (2) can be one of: PC_GETCID,
PC_GETCLINFO, PC_GETPARMS, or PC_SETPARMS. The real or effective ID of the
calling process must match that of the affected processes, or must have super-user
privilege.

Real-time Programming and Administration 91

PC_GETCID This command takes the name field of a structure that contains a
recognizable class name (RT for real-time and TS for time-sharing). The
class ID and an array of class attribute data are returned.

PC_GETCLINFO This command takes the ID field of a structure that contains a
recognizable class identifier. The class name and an array of class
attribute data are returned.

PC_GETPARMS This command returns the scheduling class identifier and/or the class
specific scheduling parameters of one of the specified processes. Even
though idtype & id might specify a big set, PC_GETPARMSreturns the
parameter of only one process. It is up to the class to select which one.

PC_SETPARMS This command sets the scheduling class and/or the class specific
scheduling parameters of the specified process or processes.

sched_get_priority_max (3RT)
Returns the maximum values for the specified policy.

sched_get_priority_min (3RT)
Returns the minimum values for the specified policy (see
sched_get_priority_max(3R)).

sched_rr_get_interval (3RT)
Updates the specified timespec structure to the current execution time limit (see
sched_get_priority_max (3RT)).

sched_setparam (3RT), sched_getparam (3RT)
Sets or gets the scheduling parameters of the specified process.

sched_yield (3RT)
Blocks the calling process until it returns to the head of the process list.

Utilities That Control Scheduling
The administrative utilities that control process scheduling are dispadmin () and
priocntl (1). Both these utilities support the priocntl (2) system call with

92 System Interface Guide ♦ June 2000

compatible options and loadable modules. These utilities provide system
administration functions that control real-time process scheduling during runtime.

priocntl (1)
The priocntl (1) command sets and retrieves scheduler parameters for processes.

dispadmin ()
The dispadmin () utility displays all current process scheduling classes by including
the -l command line option during runtime. Process scheduling can also be changed
for the class specified after the -c option, using RT as the argument for the real-time
class.

The options shown in Table 8–2are also available.

TABLE 8–2 Class Options for the dispadmin(1M) Utility

Option Meaning

-l Lists scheduler classes currently configured

-c Specifies the class whose parameters are to be displayed or
changed

-g Gets the dispatch parameters for the specified class

-r Used with –g, specifies time quantum resolution

-s Specifies a file where values can be located

A class specific file containing the dispatch parameters can also be loaded during
runtime. Use this file to establish a new set of priorities replacing the default values
established during boot time. This class specific file must assert the arguments in the
format used by the -g option. Parameters for the RT class are found in the
rt_dptbl (4), and are listed in the example at the end of this section.

To add an RT class file to the system, the following modules must be present:

� An rt_init() routine in the class module that loads the rt_dptbl (4)

� An rt_dptbl (4) module that provides the dispatch parameters and a routine to
return pointers to config_rt_dptbl

� The dispadmin () executable

Real-time Programming and Administration 93

1. Load the class specific module with the following command, where
module_name is the class specific module:

modload /kernel/sched/ module_name

2. Invoke the dispadmin () command:

dispadmin -c RT -s file_name

The file must describe a table with the same number of entries as the table that is
being overwritten.

Configuring Scheduling
Associated with both scheduling classes is a parameter table, rt_dptbl (4), and
ts_dptbl (4). These tables are configurable by using a loadable module at boot time,
or with dispadmin () during runtime.

Dispatcher Parameter Table
The in-core table for real-time establishes the properties for RT scheduling. The
rt_dptbl (4) structure consists of an array of parameters, struct rt_dpent_t ,
one for each of the n priority levels. The properties of a given priority level are
specified by the ith parameter structure in the array, rt_dptbl[i] .

A parameter structure consists of the following members (also described in the /
usr/include/sys/rt.h header file).

rt_globpri The global scheduling priority associated with this priority level. The
rt_globpri values cannot be changed with dispadmin ().

rt_quantum The length of the time quantum allocated to processes at this level in
ticks (see “Timestamp Functions” on page 107). The time quantum value
is only a default or starting value for processes at a particular level. The
time quantum of a realtime process can be changed by using the
priocntl (1) command or the priocntl (2) system call.

Reconfiguring config_rt_dptbl

A real-time administrator can change the behavior of the real-time portion of the
scheduler by reconfiguring the config_rt_dptbl at any time. One method is

94 System Interface Guide ♦ June 2000

described in rt_dptbl (4) in the section titled “REPLACING THE RT_DPTBL
LOADABLE MODULE.”

A second method for examining or modifying the real-time parameter table on a
running system is through using the dispadmin () command. Invoking
dispadmin () for the real-time class allows retrieval of the current rt_quantum
values in the current config_rt_dptbl configuration from the kernel’s in-core
table. When overwriting the current in-core table, the configuration file used for input
to dispadmin () must conform to the specific format described in rt_dptbl (4).

Following is an example of prioritized processes rtdpent_t with their associated
time quantum config_rt_dptbl[] value as they might appear in
config_rt_dptbl[] :

rtdpent_t rt_dptbl[] = { 129, 60,
/* prilevel Time quantum */ 130, 40,
100, 100, 131, 40,
101, 100, 132, 40,
102, 100, 133, 40,
103, 100, 134, 40,
104, 100, 135, 40,
105, 100, 136, 40,
106, 100, 137, 40,
107, 100, 138, 40
108, 100, 139, 40,
109, 100, 140, 20,
110, 80, 141, 20,
111, 80, 142, 20,
112, 80, 143, 20,
113, 80, 144, 20,
114, 80, 145, 20,
115, 80, 146, 20,
116, 80, 147, 20,
117, 80, 148, 20,
118, 80, 149, 20,
119, 80, 150, 10,
120, 60, 151, 10,
121, 60, 152, 10,
122, 60, 153, 10,
123, 60, 154, 10,
124, 60, 155, 10,
125, 60, 156, 10,
126, 60, 157, 10,
126, 60, 158, 10,
127, 60, 159, 10,
128, 60, }

Real-time Programming and Administration 95

Memory Locking
Locking memory is one of the most important issues for real-time applications. In a
real-time environment, a process must be able to guarantee continuous memory
residence to reduce latency and to prevent paging and swapping.

This section describes the memory locking mechanisms available to real-time
applications in SunOS 5.0 through 5.8.

Overview
Under SunOS 5.0 through 5.8, the memory residency of a process is determined by
its current state, the total available physical memory, the number of active processes,
and the processes’ demand for memory. This is appropriate in a time-share
environment, but it is often unacceptable for a real-time process. In a real-time
environment, a process must guarantee a memory residence for all or part of itself to
reduce its memory access and dispatch latency.

For real-time in SunOS 5.0 through 5.8, memory locking is provided by a set of
library routines that allow a process running with superuser privileges to lock
specified portions of its virtual address space into physical memory. Pages locked in
this manner are exempt from paging until they are unlocked or the process exits.

There is a system-wide limit on the number of pages that can be locked at any time.
This is a tunable parameter whose default value is calculated at boot time. It is based
on the number of page frames less another percentage (currently set at ten percent).

Locking a Page
A call to mlock (3C) requests that one segment of memory be locked into the
system’s physical memory. The pages that make up the specified segment are faulted
in and the lock count of each is incremented. Any page with a lock count greater
than 0 is exempt from paging activity.

A particular page can be locked multiple times by multiple processes through
different mappings. If two different processes lock the same page, the page remains
locked until both processes remove their locks. However, within a given mapping,
page locks do not nest. Multiple calls of locking functions on the same address by
the same process are removed by a single unlock request.

If the mapping through which a lock has been performed is removed, the memory
segment is implicitly unlocked. When a page is deleted through closing or truncating
the file, it is also unlocked implicitly.

96 System Interface Guide ♦ June 2000

Locks are not inherited by a child process after a fork (2) call is made. So, if a
process with memory locked forks a child, the child must perform a memory locking
operation in its own behalf to lock its own pages. Otherwise, the child process incurs
copy-on-write page faults, which are the usual penalties associated with forking a
process.

Unlocking a Page
To unlock a page of memory, a process requests that a segment of locked virtual
pages be released by a call to munlock (3C). The lock counts of the specified
physical pages are decremented. Once the lock count of a page has been
decremented to 0, the page is swapped normally.

Locking All Pages
A superuser process can request that all mappings within its address space be locked
by a call to mlockall (3C). If the flag MCL_CURRENTis set, all the existing memory
mappings are locked. If the flag MCL_FUTUREis set, every mapping that is added to
or that replaces an existing mapping is locked into memory.

Sticky Locks
A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is implementation defined and might change in future
releases. Pages locked in this manner cannot be unlocked. Reboot the system to
recover.

High Performance I/O
This section describes I/O with realtime processes. In SunOS 5.0 through 5.8, the
libraries supply two sets of functions and calls to perform fast, asynchronous, I/O
operations. The POSIX asynchronous I/O interfaces are the new standard. For
robustness, SunOS also provides file and in-memory synchronization operations and
modes to prevent information loss and data inconsistency.

Standard UNIX I/O is synchronous to the application programmer. An application
that calls read (2) or write (2) usually waits until the system call has finished.

Real-time applications need asynchronous, bounded I/O behavior. A process that
issues an asynchronous I/O call proceeds without waiting for the I/O operation to
complete. The caller is notified when the I/O operation has finished. In the mean
time the process does something useful.

Real-time Programming and Administration 97

Asynchronous I/O can be used with any SunOS file. Files are opened in the
synchronous way and no special flagging is required. An asynchronous I/O transfer
has three elements: call, request, and operation. The application calls an
asynchronous I/O function, the request for the I/O is placed on a queue, and the call
returns immediately. At some point, the system dequeues the request and initiates
the I/O operation.

Asynchronous and standard I/O requests can be intermingled on any file descriptor.
The system maintains no particular sequence of read and write requests. The system
arbitrarily resequences all pending read and write requests. If a specific sequence is
required for the application, the application must insure the completion of prior
operations before issuing the dependent requests.

POSIX Asynchronous I/O
POSIX asynchronous I/O is performed using aiocb structures. An aiocb control
block identifies each asynchronous I/O request and contains all of the controlling
information. A control block can be used for only one request at a time and can be
reused after its request has been completed.

A typical POSIX asynchronous I/O operation is initiated by a call to
aio_read (3RT) or aio_write (3RT). Either polling or signals can be used to
determine the completion of an operation. If signals are used for operation
completion, each operation can be uniquely tagged and the tag is returned in the
si_value component of the generated signal (see siginfo (3HEAD)).

aio_read (3RT)
aio_read (3RT) is called with an asynchronous I/O control block to initiate a read

operation.

aio_write (3RT)
aio_write (3RT) is called with an asynchronous I/O control block to initiate a

write operation.

aio_return (3RT) and aio_error (3RT)
aio_return (3RT) and aio_error (3RT) are called to obtain return and error

values. respectively, after an operation is known to have been completed.

98 System Interface Guide ♦ June 2000

aio_cancel (3RT)
aio_cancel (3RT) is called with an asynchronous I/O control block to cancel

pending operations. It can be used to cancel a specific request, if the control block
specifies one, or all of the requests pending for the specified file descriptor.

aio_fsync (3RT)
aio_fsync (3RT) queues an asynchronous fsync (3C) or fdatasync (3RT) request

for all of the pending I/O operations on the specified file.

aio_suspend (3RT)
aio_suspend (3RT) suspends the caller as though one, or more, of the preceding

asynchronous I/O requests had been made synchronously.

Solaris Asynchronous I/O

Notification (SIGIO)
When an asynchronous I/O call returns successfully, the I/O operation has only
been queued, waiting to be done. The actual operation also has a return value and a
potential error identifier, the values that would have been returned to the caller as
the result of a synchronous call. When the I/O is finished, the return value and error
value are stored at a location given by the user at the time of the request as a pointer
to an aio_result_t . The structure of the aio_result_t is defined in <sys/
asynch.h> :

typedef struct aio_result_t {
ssize_t aio_return; /* return value of read or write */
int aio_errno; /* errno generated by the IO */

} aio_result_t;

When aio_result_t has been updated, a SIGIO signal is delivered to the process
that made the I/O request.

Note that a process with two or more asynchronous I/O operations pending has no
certain way to determine which request, if any, is the cause of the SIGIO signal. A
process receiving a SIGIO should check all its conditions that could be generating the
SIGIO signal.

Real-time Programming and Administration 99

aioread (3AIO)
aioread (3AIO) is the asynchronous version of read (2). In addition to the normal

read arguments, aioread (3AIO) takes the arguments specifying a file position and
the address of an aio_result_t structure in which the system stores the result
information about the operation. The file position specifies a seek to be performed
within the file before the operation. Whether the aioread (3AIO) call succeeds or
fails, the file pointer is updated.

aiowrite (3AIO)
aiowrite (3AIO) is the asynchronous version of write (2). In addition to the

normal write arguments, aiowrite (3AIO) takes arguments specifying a file
position and the address of an aio_result_t structure in which the system is to
store the resulting information about the operation.

The file position specifies a seek to be performed within the file before the operation.
If the aiowrite (3AIO) call succeeds, the file pointer is updated to the position that
would have resulted in a successful seek and write. The file pointer is also updated
when a write fails to allow for subsequent write requests.

aiocancel (3AIO)
aiocancel (3AIO) attempts to cancel the asynchronous request whose

aio_result_t structure is given as an argument. An aiocancel (3AIO) call
succeeds only if the request is still queued. If the operation is in progress,
aiocancel (3AIO) fails.

aiowait (3AIO)
A call to aiowait (3AIO) blocks the calling process until at least one outstanding
asynchronous I/O operation is completed. The timeout parameter points to a
maximum interval to wait for I/O completion. A timeout value of zero specifies that
no wait is wanted. aiowait (3AIO) returns a pointer to the aio_result_t
structure for the completed operation.

poll (2)
To synchronously determine the completion of an asynchronous I/O event rather
than depend on a SIGIO interrupt, use poll (2). You can also poll to determine the
origin of a SIGIO interrupt.

Use of poll (2) for very large numbers of files is slow. This problem is resolved by
poll (7D).

100 System Interface Guide ♦ June 2000

poll (7D)
/dev/poll provides a highly scalable way of polling a large number of file
descriptors. This is provided through a new set of APIs and a new driver, /dev/
poll . The /dev/poll API is an alternative to, not a replacement of poll (2).
poll (7D) provides details and examples of the /dev/poll API. When used
properly, the /dev/poll API scales much better than poll (2). It is especially suited
for applications that satisfy the following criteria:

� Applications repeatedly poll a large number of file descriptors.

� The polled file descriptors are relatively stable, that is they are not constantly
closed and reopened.

� The set of file descriptors which actually have polled events pending is small,
comparing to the total number of file descriptors being polled.

close (2)
Files are closed by calling close (2). close (2) cancels any outstanding
asynchronous I/O request that can be. close (2) waits for an operation that cannot
be cancelled (see “ aiocancel (3AIO)” on page 100). When close (2) returns, there
is no asynchronous I/O pending for the file descriptor. Only asynchronous I/O
requests queued to the specified file descriptor are cancelled when a file is closed.
Any I/O pending requests for other file descriptors are not cancelled.

Synchronized I/O
Applications might need to guarantee that information has been written to stable
storage, or that file updates are performed in a particular order. Synchronized I/O
provides for these needs.

Modes of Synchronization
Under SunOS 5.0 through 5.8, for a write operation, data is successfully transferred
to a file when the system ensures that all written data is readable after any
subsequent open of the file in the absence of a failure of the physical storage
medium (even one that follows a system or power failure). For a read operation data
is successfully transferred when an image of the data on the physical storage
medium is available to the requesting process. An I/O operation is complete when
either the associated data has been successfully transferred or the operation has been
diagnosed as unsuccessful.

An I/O operation has reached synchronized I/O data integrity completion when:

Real-time Programming and Administration 101

For reads, the operation has been completed or diagnosed unsuccessful. The read is
complete only when an image of the data has been successfully transferred to the
requesting process. If there were any pending write requests affecting the data to be
read at the time that the synchronized read operation was requested, these write
requests are successfully transferred prior to reading the data.

For writes, the operation has been completed or diagnosed if unsuccessful. The write
is complete only when the data specified in the write request is successfully
transferred, and all file system information required to retrieve the data is
successfully transferred.

File attributes that are not necessary for data retrieval (access time, modification time,
status change time) are not transferred prior to returning to the calling process.

Synchronized I/O file integrity completion is identical to synchronized I/O data
integrity completion with the addition that all file attributes relative to the I/O
operation (including access time, modification time, status change time) must be
successfully transferred prior to returning to the calling process.

Synchronizing a File
The fsync (3C) and fdatasync (3RT) functions explicitly synchronize a file to
secondary storage.

fsync (3C) guarantees the function is synchronized at the I/O file integrity
completion level, while fdatasync (3RT) guarantees the function is synchronized at
the I/O data integrity completion level.

Applications can synchronize each I/O operation before the operation completes.
Setting the O_DSYNCflag on the file description by open (2) or fcntl (2) ensures
that all I/O writes (write (2) and aiowrite (3AIO)) have reached I/O data
completion before the operation is indicated as completed. Setting the O_SYNCflag
on the file description ensures that all I/O writes have reached completion before the
operation is indicated as completed. Setting the O_RSYNCflag on the file description
ensures that all I/O reads read (2) and aio_read (3RT)) have reached the same
level of completion as request for writes by the setting, O_DSYNCor O_SYNC, on the
descriptor.

Interprocess Communication
This section describes the interprocess communication (IPC) functions of SunOS 5.0
through 5.8 as they relate to real-time processing. Signals, pipes, FIFOs (named
pipes), message queues, shared memory, file mapping, and semaphores are described
here. For more information about the libraries, functions, and routines useful for
interprocess communication, see Chapter 7.

102 System Interface Guide ♦ June 2000

Overview
Real-time processing often requires fast, high-bandwidth interprocess communication.
The choice of which mechanisms should be used can be dictated by functional
requirements, and the relative performance will depend upon application behavior.

The traditional method of interprocess communication in UNIX is the pipe.
Unfortunately, pipes can have framing problems. Messages can become intermingled
by multiple writers or torn apart by multiple readers.

IPC messages mimic the reading and writing of files. They are easier to use than
pipes when more than two processes must communicate by using a single medium.

The IPC shared semaphore facility provides process synchronization. Shared memory
is the fastest form of interprocess communication. The main advantage of shared
memory is that the copying of message data is eliminated. The usual mechanism for
synchronizing shared memory access is semaphores.

Signals
Signals can be used to send a small amount of information between processes. The
sender can use sigqueue (3RT) to send a signal together with a small amount of
information to a target process.

The target process must have the SA_SIGINFO bit set for the specified signal (see
sigaction (2)), for subsequent occurrences of a pending signal to be queued also.

The target process can receive signals either synchronously or asynchronously.
Blocking a signal (see sigprocmask (2)) and calling either sigwaitinfo (3RT) or
sigtimedwait (3RT), causes the signal to be received synchronously, with the value
sent by the caller of sigqueue (3RT) stored in the si_value member of the
siginfo_t argument. Leaving the signal unblocked causes the signal to be
delivered to the signal handler specified by sigaction (2), with the value
appearing in the si_value of the siginfo_t argument to the handler.

Only a fixed number of signals with associated values can be sent by a process and
remain undelivered. Storage for {SIGQUEUE_MAX} signals is allocated at the first call
to sigqueue (3RT). Thereafter, a call to sigqueue (3RT) either successfully
enqueues at the target process or fails within a bounded amount of time.

Pipes
Pipes provide one-way communication between processes. Processes must have a
common ancestor in order to communicate with pipes. Data passed through a pipe is
treated as a conventional UNIX byte stream. See “Pipes” on page 65for more
information about pipes.

Real-time Programming and Administration 103

Named Pipes
SunOS 5.0 through 5.8 provides named pipes or FIFOs. The FIFO is more flexible
than the pipe because it is a named entity in a directory. Once created, a FIFO can be
opened by any process that has legitimate access to it. Processes do not have to share
a parent and there is no need for a parent to initiate the pipe and pass it to the
descendants. See “Named Pipes” on page 67for more information.

Message Queues
Message queues provide another means of communicating between processes that
also allows any number of processes to send and receive from a single message
queue. Messages are passed as blocks of arbitrary size, not as byte streams. Message
queues are provided in both System V and POSIX versions. See “System V
Messages” on page 71 and “POSIX Messages” on page 68 for more information.

Semaphores
The semaphore is a mechanism to synchronize access to shared resources.
Semaphores are also provided in both System V and POSIX styles. The System V
semaphores are very flexible and very heavy weight. The POSIX semaphores are
quite light weight. See “System V Semaphores” on page 73 and “POSIX Semaphores”
on page 69for more information.

Note that using semaphores can cause priority inversions unless these are explicitly
avoided by the techniques mentioned earlier in this chapter.

Shared Memory
The fastest way for processes to communicate is directly, through a shared segment
of memory. A common memory area is added to the address space of sharing
processes. Applications use stores to send data and fetches to receive communicated
data. SunOS 5.0 through 5.8 provides three mechanisms for shared memory: memory
mapped files, described in “Memory Management Interfaces” on page 61, System V
IPC shared memory, and POSIX shared memory.

The major difficulty with shared memory is that results can be wrong when more
than two processes are trying to read and write in it at the same time. See “Shared
Memory Synchronization” on page 105for more information.

104 System Interface Guide ♦ June 2000

Memory Mapped Files
The mmap(2) interface connects a shared memory segment to the caller’s address
space. The caller specifies the shared segment by address and length. The caller must
also specify access protection flags and how the mapped pages are managed. mmap(2)
can also be used to map a file or a segment of a file to a process’s memory. This
technique is very convenient in some applications, but it is easy to forget that any
store to the mapped file segment results in implicit I/O. This can make an otherwise
bounded process have unpredictable response times. msync (3C) forces immediate or
eventual copies of the specified memory segment to its permanent storage
location(s). See “Memory Management Interfaces” on page 61for more information.

Fileless Memory Mapping
The zero special file, /dev/zero(4S) , can be used to create an unnamed, zero
initialized memory object. The length of the memory object is the least number of
pages that contain the mapping. The object can be shared only by descendants of a
common ancestor process.

System V IPC Shared Memory
A shmget (2) call can be used to create a shared memory segment or to obtain an
existing shared memory segment. shmget (2) returns an identifier that is analogous
to a file identifier. A call to shmat (2) makes the shared memory segment a virtual
segment of the process memory much like mmap(2). See “System V Shared Memory”
on page 77.

POSIX Shared Memory
POSIX shared memory is a variation of System V shared memory and provides
similar capabilities with some minor variations. See “POSIX Shared Memory” on
page 69for more information.

Shared Memory Synchronization
In sharing memory, a portion of memory is mapped into the address space of one or
more processes. No method of coordinating access is automatically provided, so
nothing prevents two processes from writing to the shared memory at the same time
in the same place. So, it is typically used with semaphores or another mechanism
used to synchronize processes. System V and POSIX semaphores both can be used
for this purpose. Mutual exclusion locks, reader/writer locks, semaphores, and
conditional variables provided in the multithread library can also be used for this
purpose.

Real-time Programming and Administration 105

Choice of IPC and Synchronization Mechanisms
Applications can have specific functional requirements that determine which IPC
mechanism to use. If one of several mechanisms can be used, the application writer
determines which mechanism performs best for the application. The SunOS 5.0
through 5.8 interprocess communication facilities are sensitive to application
behavior. Determine which mechanism provides the best response capabilities by
measuring the throughput capacity of each mechanism for the particular
combination of message sizes used in the application.

Asynchronous Networking
This section introduces asynchronous network communication, using sockets or
Transport-Level Interface (TLI) for real-time applications. Asynchronous networking
with sockets is done by setting an open socket, of type SOCK_STREAM, to
asynchronous and non blocking (see “Asynchronous Socket I/O in “Advanced
Topics” in Network Interface Guide). Asynchronous network processing of TLI events
is supported using a combination of STREAMS asynchronous features and the
non-blocking mode of the TLI library routines (see “Asynchronous Networking” in
Network Interface Guide).

For more information on the Transport-Level Interface, see “Socket Interfaces” in
Network Interface Guide.

Modes of Networking
Both sockets and Transport-Level Interface provide two modes of service:
connection-mode and connectionless-mode.

Connection-Mode Service
Connection-mode service is circuit-oriented and enables the transmission of data over
an established connection in a reliable, sequenced manner. It also provides an
identification procedure that avoids the overhead of address resolution and
transmission during the data transfer phase. This service is attractive for applications
that require relatively long-lived, datastream-oriented interactions.

Connectionless-Mode Service
Connectionless-mode service is message-oriented and supports data transfer in
self-contained units with no logical relationship required among multiple units. All

106 System Interface Guide ♦ June 2000

information required to deliver a unit of data, including the destination address, is
passed by the sender to the transport provider, together with the data, in a single
service request. Connectionless-mode service is attractive for applications that involve
short-term request/response interactions and do not require guaranteed, in-sequence
delivery of data. It is generally assumed that connectionless transports are unreliable.

Timers
This section describes the timing facilities available for real-time applications under
SunOS 5.0 through 5.8. Real-time applications that use these mechanisms require
detailed information from the manual pages of the routines listed in this section.

The timing functions of SunOS 5.0 through 5.8 fall into two separate areas of
functionality: timestamps and interval timers. The timestamp functions provide a
measure of elapsed time and allow the application to measure the duration of a state
or the time between events. Interval timers allow an application to wake up at
specified times and to schedule activities based on the passage of time. Although an
application can poll a timestamp function to schedule itself, such an application
would monopolize the processor to the detriment of other system functions.

Timestamp Functions
Two functions provide timestamps. The gettimeofday (3C) function provides the
current time in a timeval structure, representing the time in seconds and
microseconds since midnight, Greenwich Mean Time, on January 1, 1970. The
clock_gettime(3R) function, with a clockid of CLOCK_REALTIME, provides the
current time in a timespec structure, representing in seconds and nanoseconds the
same time interval returned by gettimeofday (3C).

SunOS 5.0 through 5.8 uses a hardware periodic timer. For some workstations, this is
the sole timing information, and the accuracy of timestamps is limited to the
resolution of that periodic timer. For other platforms, a timer register with a
resolution of one microsecond allows SunOS 5.0 through 5.8 to provide timestamps
accurate to one microsecond.

Interval Timer Functions
Real-time applications often schedule actions using interval timers. Interval timers
can be either of two types: a one-shot type or a periodic type.

A one-shot is an armed timer that is set to an expiration time relative to either
current time or an absolute time. The timer expires once and is disarmed. Such a

Real-time Programming and Administration 107

timer is useful for clearing buffers after the data has been transferred to storage, or to
time-out an operation.

A periodic timer is armed with an initial expiration time (either absolute or relative)
and a repetition interval. Each time the interval timer expires it is reloaded with the
repetition interval and rearmed. This timer is useful for data logging or for
servo-control. In calls to interval timer functions, time values smaller than the
resolution of the system hardware periodic timer are rounded up to the next
multiple of the hardware timer interval (typically 10 ms).

There are two sets of timer interfaces in SunOS 5.0 through 5.8. The setitimer (2)
and getitimer (2) interfaces operate fixed set timers, called the BSD timers, using
the timeval structure to specify time intervals. The POSIX timers,
timer_create (3RT), operate the POSIX clock, CLOCK_REALTIME. POSIX timer
operations are expressed in terms of the timespec structure.

The functions getitimer (2) and setitimer (2) retrieve and establish, respectively,
the value of the specified BSD interval timer. There are three BSD interval timers
available to a process, including a real-time timer designated ITIMER_REAL. If a
BSD timer is armed and allowed to expire, the system sends a signal appropriate to
the timer to the process that set the timer.

timer_create (3RT) can create up to TIMER_MAXPOSIX timers. The caller can
specify what signal and what associated value are sent to the process when the timer
expires. timer_settime (3RT) and timer_gettime (3RT) retrieve and establish
respectively the value of the specified POSIX interval timer. Expirations of POSIX
timers while the required signal is pending delivery are counted, and
timer_getoverrun (3RT) retrieves the count of such expirations.
timer_delete (3RT) deallocates a POSIX timer.

Code Example 8–1 illustrates how to use setitimer (2) to generate a periodic
interrupt, and how to control the arrival of timer interrupts.

CODE EXAMPLE 8–1 Controlling Timer Interrupts

#include <unistd.h>
#include <signal.h>
#include <sys/time.h>

#define TIMERCNT 8

void timerhandler();
int timercnt;
struct timeval alarmtimes[TIMERCNT];

main()
{

struct itimerval times;
sigset_t sigset;
int i, ret;
struct sigaction act;
siginfo_t si;

/* block SIGALRM */

108 System Interface Guide ♦ June 2000

sigemptyset (&sigset);
sigaddset (&sigset, SIGALRM);
sigprocmask (SIG_BLOCK, &sigset, NULL);

/* set up handler for SIGALRM */
act.sa_action = timerhandler;
sigemptyset (&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction (SIGALRM, &act, NULL);
/*

* set up interval timer, starting in three seconds,
* then every 1/3 second
*/

times.it_value.tv_sec = 3;
times.it_value.tv_usec = 0;
times.it_interval.tv_sec = 0;
times.it_interval.tv_usec = 333333;
ret = setitimer (ITIMER_REAL, ×, NULL);
printf ("main:setitimer ret = %d\n", ret);

/* now wait for the alarms */
sigemptyset (&sigset);
timerhandler (0, si, NULL);
while (timercnt < TIMERCNT) {

ret = sigsuspend (&sigset);
}
printtimes();

}

void timerhandler (sig, siginfo, context)
int sig;
siginfo_t *siginfo;
void *context;

{
printf ("timerhandler:start\n");
gettimeofday (&alarmtimes[timercnt], NULL);
timercnt++;
printf ("timerhandler:timercnt = %d\n", timercnt);

}

printtimes ()
{

int i;

for (i = 0; i < TIMERCNT; i++) {
printf("%ld.%0l6d\n", alarmtimes[i].tv_sec,

alarmtimes[i].tv_usec);
}

}

Real-time Programming and Administration 109

110 System Interface Guide ♦ June 2000

APPENDIX A

Full Code Examples

The following program is equivalent to the priocntl (1) -l utility invocation. It
gets and prints the range of valid priorities for the time-sharing and real-time
scheduler classes

CODE EXAMPLE A–1 Use of priocntl (2) to Display Valid Priorities

/*
* Get scheduler class IDs and priority ranges.
*/

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
main ()
{

pcinfo_t pcinfo;
tsinfo_t *tsinfop;
rtinfo_t * rtinfop;
short maxtsupri, maxrtpri;

/* time sharing */
(void) strcpy (pcinfo.pc_clname, "TS");
if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L) {

perror ("PC_GETCID failed for time-sharing class");
exit (1);

}
tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;
maxtsupri = tsinfop->ts_maxupri;
(void) printf("Time sharing: ID %ld, priority range -%d

through %d\n",
pcinfo.pc_cid, maxtsupri, maxtsupri);

/* real time */

111

(void) strcpy(pcinfo.pc_clname, "RT");
if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L) {

perror ("PC_GETCID failed for realtime class");
exit (2);

}
rtinfop = (struct rtinfo *) pcinfo.pc_clinfo;
maxrtpri = rtinfop->rt_maxpri;
(void) printf("Real time: ID %ld, priority range 0 through

%d\n",
pcinfo.pc_cid, maxrtpri);

return (0);
}

The following screen shows the output of this program, called getcid in this
example.

$ getcid
Time sharing: ID 1, priority range -20 through 20
Real time: ID 2, priority range 0 through 59

The following example uses PC_GETCLINFOto get the class name of a process based
on the process ID.

CODE EXAMPLE A–2 Use of priocntl (2) to Get a Class Name

/* Get scheduler class name given process ID. */
#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>

main (argc, argv)
int argc;
char *argv[];

{
pcinfo_t pcinfo;
id_t pid, classID;
id_t getclassID();

if ((pid = atoi(argv[1])) <= 0) {
perror ("bad pid");
exit (1);

}
if ((classID = getclassID(pid)) == -1) {

perror ("unknown class ID");
exit (2);

}
pcinfo.pc_cid = classID;
if (priocntl (0L, 0L, PC_GETCLINFO, &pcinfo) == -1L) {

perror ("PC_GETCLINFO failed");
exit (3);

112 System Interface Guide ♦ June 2000

}
(void) printf("process ID %d, class %s\n", pid,

pcinfo.pc_clname);
}

/*
* Return scheduler class ID of process with ID pid.
*/

getclassID (pid)
id_t pid;

{
pcparms_t pcparms;

pcparms.pc_cid = PC_CLNULL;
if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {

return (-1);
}
return (pcparms.pc_cid);

}

The following program takes a process ID as input, makes the process a real-time
process with the highest valid priority minus 1, and gives it the default time slice for
that priority. The program calls the schedinfo function to get the real-time class ID
and maximum priority.

CODE EXAMPLE A–3 Use of priocntl (2) to Convert a Specified Process to Real-time

/*
* Input arg is proc ID. Make process a realtime
* process with highest priority minus 1.
*/

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>

main (argc, argv)
int argc;
char *argv[];

{
pcparms_t pcparms;
rtparms_t *rtparmsp;
id_t pid, rtID;
id_t schedinfo();
short maxrtpri;
if ((pid = atoi(argv[1])) <= 0) {

perror ("bad pid");
exit (1);

}

/* Get highest valid RT priority. */
if ((rtID = schedinfo ("RT", &maxrtpri)) == -1) {

perror ("schedinfo failed for RT");

Full Code Examples 113

exit (2);
}

/* Change proc to RT, highest prio - 1, default time slice */
pcparms.pc_cid = rtID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rt_pri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_TQDEF;

if (priocntl(P_PID, pid, PC_SETPARMS, &pcparms) == -1) {
perror ("PC_SETPARMS failed");
exit (3);

}
}

/*
* Return class ID and maximum priority.
* Input argument name is class name.
* Maximum priority is returned in *maxpri.
*/

id_t
schedinfo (name, maxpri)

char *name;
short *maxpri;

{
pcinfo_t info;
tsinfo_t *tsinfop;
rtinfo_ *rtinfop;

(void) strcpy(info.pc_clname, name);
if (priocntl (0L, 0L, PC_GETCID, &info) == -1L) {

return (-1);
}
if (strcmp(name, "TS") == 0) {

tsinfop = (struct tsinfo *) info.pc_clinfo;
*maxpri = tsinfop->ts_maxupri;

} else if (strcmp(name, "RT") == 0) {
rtinfop = (struct rtinfo *) info.pc_clinfo;
*maxpri = rtinfop->rt_maxpri;

} else {
return (-1);

}
return (info.pc_cid);

}

Here is a situation where priocntlset (2) is useful: suppose a program had both
real-time and time-sharing processes that ran under a single user ID. If the program
wanted to change the priority of only its real-time processes without changing the
time-sharing processes to real-time processes, it could do so as shown in Code
Example A–4.

CODE EXAMPLE A–4 Use of priocntlset (2) to Change a Process Priority

/*
* Change real-time priorities of this uid
* to highest realtime priority minus 1.
*/

114 System Interface Guide ♦ June 2000

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>

main (argc, argv)
int argc;
char *argv[];

{
procset_t procset;
pcparms_t pcparms;
struct rtparms *rtparmsp;
id_t rtclassID;
id_t schedinfo();
short maxrtpri;

/* left set: select processes with same uid as this process */
procset.p_lidtype = P_UID;
procset.p_lid = getuid();

/* get info on realtime class */
if ((rtclassID = schedinfo ("RT", &maxrtpri)) == -1) {

perror ("schedinfo failed");
exit (1);

}

...
}

/*
* Return class ID and maximum priority.
* Input argument name is class name.
* Maximum priority is returned in *maxpri.
*/

id_t
schedinfo (name, maxpri)

char *name;
short *maxpri;

{
pcinfo_t info;
tsinfo_t *tsinfop;
rtinfo_ *rtinfop;

(void) strcpy(info.pc_clname, name);
if (priocntl (0L, 0L, PC_GETCID, &info) == -1L) {

return (-1);
}
if (strcmp(name, "TS") == 0) {

tsinfop = (struct tsinfo *) info.pc_clinfo;
*maxpri = tsinfop->ts_maxupri;

} else if (strcmp(name, "RT") == 0) {
rtinfop = (struct rtinfo *) info.pc_clinfo;
*maxpri = rtinfop->rt_maxpri;

} else {
return (-1);

Full Code Examples 115

}
return (info.pc_cid);

}

CODE EXAMPLE A–5 Sample Program to Illustrate msgget (2)

/*
* msgget.c: Illustrate the msgget() function.
* This is a simple exerciser of the msgget() function. It prompts
* for the arguments, makes the call, and reports the results.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%ol", &key);
(void) fprintf(stderr, "\nExpected flags for msgflg argument are:\n");
(void) fprintf(stderr, "\tIPC_EXCL =\t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT =\t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter msgflg value: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx, %#o)\n",
key, msgflg);
if ((msqid = msgget(key, msgflg)) == -1)
{

perror("msgget: msgget failed");
exit(1);

} else {
(void) fprintf(stderr,

"msgget: msgget succeeded: msqid = %d\n", msqid);
exit(0);

116 System Interface Guide ♦ June 2000

}
}

CODE EXAMPLE A–6 Sample Program to Illustrate msgctl (2)

/*
* msgctl.c: Illustrate the msgctl() function.
*
* This is a simple exerciser of the msgctl() function. It allows
* you to perform one control operation on one message queue. It
* gives up immediately if any control operation fails, so be

careful
* not to set permissions to preclude read permission; you won’t

be
* able to reset the permissions with this code if you do.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <time.h>

static void do_msgctl();
extern void exit();
extern void perror();
static char warning_message[] = "If you remove read permission
for \

yourself, this program will fail frequently!";

main()
{

struct msqid_ds buf; /* queue descriptor buffer for IPC_STAT
and IP_SET commands */

int cmd, /* command to be given to msgctl() */
msqid; /* queue ID to be given to msgctl() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the msqid and cmd arguments for the msgctl() call. */
(void) fprintf(stderr,

"Please enter arguments for msgctls() as requested.");
(void) fprintf(stderr, "\nEnter the msqid: ");
(void) scanf("%i", &msqid);
(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
(void) fprintf(stderr, "\nEnter the value for the command: ");
(void) scanf("%i", &cmd);

switch (cmd) {

Full Code Examples 117

case IPC_SET:
/* Modify settings in the message queue control structure.

*/
(void) fprintf(stderr, "Before IPC_SET, get current

values:");
/* fall through to IPC_STAT processing */

case IPC_STAT:
/* Get a copy of the current message queue control

* structure and show it to the user. */
do_msgctl(msqid, IPC_STAT, &buf);
(void) fprintf(stderr,
"msg_perm.uid = %d\n", buf.msg_perm.uid);
(void) fprintf(stderr,
"msg_perm.gid = %d\n", buf.msg_perm.gid);
(void) fprintf(stderr,
"msg_perm.cuid = %d\n", buf.msg_perm.cuid);
(void) fprintf(stderr,
"msg_perm.cgid = %d\n", buf.msg_perm.cgid);
(void) fprintf(stderr, "msg_perm.mode = %#o, ",
buf.msg_perm.mode);
(void) fprintf(stderr, "access permissions = %#o\n",
buf.msg_perm.mode & 0777);
(void) fprintf(stderr, "msg_cbytes = %d\n",

buf.msg_cbytes);
(void) fprintf(stderr, "msg_qbytes = %d\n",

buf.msg_qbytes);
(void) fprintf(stderr, "msg_qnum = %d\n", buf.msg_qnum);
(void) fprintf(stderr, "msg_lspid = %d\n",

buf.msg_lspid);
(void) fprintf(stderr, "msg_lrpid = %d\n",

buf.msg_lrpid);
(void) fprintf(stderr, "msg_stime = %s", buf.msg_stime ?
ctime(&buf.msg_stime) : "Not Set\n");
(void) fprintf(stderr, "msg_rtime = %s", buf.msg_rtime ?
ctime(&buf.msg_rtime) : "Not Set\n");
(void) fprintf(stderr, "msg_ctime = %s",

ctime(&buf.msg_ctime));
if (cmd == IPC_STAT)

break;
/* Now continue with IPC_SET. */
(void) fprintf(stderr, "Enter msg_perm.uid: ");
(void) scanf ("%hi", &buf.msg_perm.uid);
(void) fprintf(stderr, "Enter msg_perm.gid: ");
(void) scanf("%hi", &buf.msg_perm.gid);
(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr, "Enter msg_perm.mode: ");
(void) scanf("%hi", &buf.msg_perm.mode);
(void) fprintf(stderr, "Enter msg_qbytes: ");
(void) scanf("%hi", &buf.msg_qbytes);
do_msgctl(msqid, IPC_SET, &buf);
break;

case IPC_RMID:
default:

/* Remove the message queue or try an unknown command. */
do_msgctl(msqid, cmd, (struct msqid_ds *)NULL);
break;

}
exit(0);

}

118 System Interface Guide ♦ June 2000

/*
* Print indication of arguments being passed to msgctl(), call
* msgctl(), and report the results. If msgctl() fails, do not
* return; this example doesn’t deal with errors, it just reports
* them.
*/

static void
do_msgctl(msqid, cmd, buf)
struct msqid_ds *buf; /* pointer to queue descriptor buffer */
int cmd, /* command code */

msqid; /* queue ID */
{

register int rtrn; /* hold area for return value from msgctl() */

(void) fprintf(stderr, "\nmsgctl: Calling msgctl(%d, %d, %s)\n",
msqid, cmd, buf ? "&buf" : "(struct msqid_ds *)NULL");

rtrn = msgctl(msqid, cmd, buf);
if (rtrn == -1) {

perror("msgctl: msgctl failed");
exit(1);

} else {
(void) fprintf(stderr, "msgctl: msgctl returned %d\n",

rtrn);
}

}

CODE EXAMPLE A–7 Sample Program to Illustrate msgsnd(2) and msgrcv (2)

/*
* msgop.c: Illustrate the msgsnd() and msgrcv() functions.
*
* This is a simple exerciser of the message send and receive
* routines. It allows the user to attempt to send and receive
* as many messages as wanted to or from one message queue.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

static int ask();
extern void exit();
extern char *malloc();
extern void perror();

char first_on_queue[] = "- first message on queue",
full_buf[] = "Message buffer overflow. Extra message text\

discarded.";

main()
{

register int c; /* message text input */
int choice; /* user’s selected operation code */
register int i; /* loop control for mtext */
int msgflg; /* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */

Full Code Examples 119

int msgsz; /* message size */
long msgtyp; /* desired message type */
int msqid, /* message queue ID to be used */

maxmsgsz, /* size of allocated message buffer */
rtrn; /* return value from msgrcv or msgsnd */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
/* Get the message queue ID and set up the message buffer. */
(void) fprintf(stderr, "Enter msqid: ");
(void) scanf("%i", &msqid);
/*

* Note that <sys/msg.h> includes a definition of struct
msgbuf

* with the mtext field defined as:
* char mtext[1];
* therefore, this definition is only a template, not a structure
* definition that you can use directly, unless you want only to
* send and receive messages of 0 or 1 byte. To handle this,
* malloc an area big enough to contain the template - the size
* of the mtext template field + the size of the mtext field
* wanted. Then you can use the pointer returned by malloc as a
* struct msgbuf with an mtext field of the size you want. Note
* also that sizeof msgp-mtext is valid even though msgp isn’t
* pointing to anything yet. Sizeof doesn’t dereference msgp, but
* uses its type to figure out what you are asking about.
*/

(void) fprintf(stderr,
"Enter the message buffer size you want:");

(void) scanf("%i", &maxmsgsz);
if (maxmsgsz < 0) {

(void) fprintf(stderr, "msgop: %s\n",
"The message buffer size must be >= 0.");

exit(1);
}
msgp = (struct msgbuf *)malloc(sizeof(struct msgbuf)

- sizeof msgp-mtext + maxmsgsz);
if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",
"could not allocate message buffer for", maxmsgsz);

exit(1);
}
/* Loop through message operations until the user is ready to

quit. */
while (choice = ask()) {

switch (choice) {
case 1: /* msgsnd() requested: Get the arguments, make the

call, and report the results. */
(void) fprintf(stderr, "Valid msgsnd message %s\n",

"types are positive integers.");
(void) fprintf(stderr, "Enter msgp->mtype: ");
(void) scanf("%li", &msgp->mtype);
if (maxmsgsz) {

/* Since you’ve been using scanf, you need the loop
below to throw away the rest of the input on the
line after the entered mtype before you start

120 System Interface Guide ♦ June 2000

reading the mtext. */
while ((c = getchar()) != ’\n’ && c != EOF);
(void) fprintf(stderr, "Enter a %s:\n",

"one line message");
for (i = 0; ((c = getchar()) != ’\n’); i++) {

if (i >= maxmsgsz) {
(void) fprintf(stderr, "\n%s\n", full_buf);
while ((c = getchar()) != ’\n’);
break;

}
msgp->mtext[i] = c;

}
msgsz = i;

} else
msgsz = 0;

(void) fprintf(stderr,"\nMeaningful msgsnd flag is:\n");
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);
(void) fprintf(stderr, "Enter msgflg: ");
(void) scanf("%i", &msgflg);
(void) fprintf(stderr, "%s(%d, msgp, %d, %#o)\n",

"msgop: Calling msgsnd", msqid, msgsz, msgflg);
(void) fprintf(stderr, "msgp->mtype = %ld\n",

msgp->mtype);
(void) fprintf(stderr, "msgp->mtext = \"");
for (i = 0; i < msgsz; i++)

(void) fputc(msgp->mtext[i], stderr);
(void) fprintf(stderr, "\"\n");
rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if (rtrn == ->1)

perror("msgop: msgsnd failed");
else

(void) fprintf(stderr,
"msgop: msgsnd returned %d\n", rtrn);

break;
case 2: /* msgrcv() requested: Get the arguments, make the

call, and report the results. */
for (msgsz = -1; msgsz < 0 || msgsz > maxmsgsz;

(void) scanf("%i", &msgsz))
(void) fprintf(stderr, "%s (0 <= msgsz <= %d): ",

"Enter msgsz", maxmsgsz);
(void) fprintf(stderr, "msgtyp meanings:\n");
(void) fprintf(stderr, "\t 0 %s\n", first_on_queue);
(void) fprintf(stderr, "\t>0 %s of given type\n",

first_on_queue);
(void) fprintf(stderr, "\t<0 %s with type <= |msgtyp|\n",

first_on_queue);
(void) fprintf(stderr, "Enter msgtyp: ");
(void) scanf("%li", &msgtyp);
(void) fprintf(stderr,

"Meaningful msgrcv flags are:\n");
(void) fprintf(stderr, "\tMSG_NOERROR =\t%#8.8o\n",

MSG_NOERROR);
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);
(void) fprintf(stderr, "Enter msgflg: ");
(void) scanf("%i", &msgflg);
(void) fprintf(stderr, "%s(%d, msgp, %d, %ld, %#o);\n",

"msgop: Calling msgrcv", msqid, msgsz,
msgtyp, msgflg);

Full Code Examples 121

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);
if (rtrn == -1)

perror("msgop: msgrcv failed");
else {

(void) fprintf(stderr, "msgop: %s %d\n",
"msgrcv returned", rtrn);

(void) fprintf(stderr, "msgp->mtype = %ld\n",
msgp->mtype);

(void) fprintf(stderr, "msgp->mtext is: \"");
for (i = 0; i < rtrn; i++)

(void) fputc(msgp->mtext[i], stderr);
(void) fprintf(stderr, "\"\n");

}
break;

default:
(void) fprintf(stderr, "msgop: operation unknown\n");
break;

}
}
exit(0);

}

/*
* Ask the user what to do next. Return the user’s choice code.
* Don’t return until the user selects a valid choice.
*/

static
ask()
{

int response; /* User’s response. */

do {
(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\tExit =\t0 or Control-D\n");
(void) fprintf(stderr, "\tmsgsnd =\t1\n");
(void) fprintf(stderr, "\tmsgrcv =\t2\n");
(void) fprintf(stderr, "Enter your choice: ");

/* Preset response so "^D" will be interpreted as exit. */
response = 0;
(void) scanf("%i", &response);

} while (response < 0 || response > 2);

return(response);
}

CODE EXAMPLE A–8 Sample Program to Illustrate semget (2)

/*
* semget.c: Illustrate the semget() function.
*
* This is a simple exerciser of the semget() function. It prompts
* for the arguments, makes the call, and reports the results.

*/

122 System Interface Guide ♦ June 2000

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to pass to semget() */
int semflg; /* semflg to pass to semget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%li", &key);

(void) fprintf(stderr, "Enter nsems value: ");
(void) scanf("%i", &nsems);
(void) fprintf(stderr, "\nExpected flags for semflg are:\n");
(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\towner read = \t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner alter = \t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read = \t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup alter = \t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read = \t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother alter = \t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter semflg value: ");
(void) scanf("%i", &semflg);
(void) fprintf(stderr, "\nsemget: Calling semget(%#lx, %

%#o)\n",key, nsems, semflg);
if ((semid = semget(key, nsems, semflg)) == -1) {

perror("semget: semget failed");
exit(1);

} else {
(void) fprintf(stderr, "semget: semget succeeded: semid = %d\n",

semid);
exit(0);

}
}

CODE EXAMPLE A–9 Sample Program to Illustrate semctl (2)

/*
* semctl.c: Illustrate the semctl() function.
*
* This is a simple exerciser of the semctl() function. It lets you
* perform one control operation on one semaphore set. It gives up

Full Code Examples 123

* immediately if any control operation fails, so be careful not to
* set permissions to preclude read permission; you won’t be able to
* reset the permissions with this code if you do.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <time.h>

struct semid_ds semid_ds;

static void do_semctl();
static void do_stat();
extern char *malloc();
extern void exit();
extern void perror();

char warning_message[] = "If you remove read permission\
for yourself, this program will fail frequently!";

main()
{

union semun arg; /* union to pass to semctl() */
int cmd, /* command to give to semctl() */

i, /* work area */
semid, /* semid to pass to semctl() */
semnum; /* semnum to pass to semctl() */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "Enter semid value: ");
(void) scanf("%i", &semid);

(void) fprintf(stderr, "Valid semctl cmd values are:\n");
(void) fprintf(stderr, "\tGETALL = %d\n", GETALL);
(void) fprintf(stderr, "\tGETNCNT = %d\n", GETNCNT);
(void) fprintf(stderr, "\tGETPID = %d\n", GETPID);
(void) fprintf(stderr, "\tGETVAL = %d\n", GETVAL);
(void) fprintf(stderr, "\tGETZCNT = %d\n", GETZCNT);
(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
(void) fprintf(stderr, "\tSETALL = %d\n", SETALL);
(void) fprintf(stderr, "\tSETVAL = %d\n", SETVAL);
(void) fprintf(stderr, "\nEnter cmd: ");
(void) scanf("%i", &cmd);

/* Do some setup operations needed by multiple commands. */
switch (cmd) {

case GETVAL:
case SETVAL:
case GETNCNT:
case GETZCNT:

/* Get the semaphore number for these commands. */

124 System Interface Guide ♦ June 2000

(void) fprintf(stderr, "\nEnter semnum value: ");
(void) scanf("%i", &semnum);
break;

case GETALL:
case SETALL:

/* Allocate a buffer for the semaphore values. */
(void) fprintf(stderr,

"Get number of semaphores in the set.\n");
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
if (arg.array =

(ushort *)malloc((unsigned)
(semid_ds.sem_nsems * sizeof(ushort)))) {

/* Break out if you got what you needed. */
break;

}
(void) fprintf(stderr,

"semctl: unable to allocate space for %d values\n",
semid_ds.sem_nsems);

exit(2);
}

/* Get the rest of the arguments needed for the specified
command. */

switch (cmd) {
case SETVAL:

/* Set value of one semaphore. */
(void) fprintf(stderr, "\nEnter semaphore value: ");
(void) scanf("%i", &arg.val);
do_semctl(semid, semnum, SETVAL, arg);
/* Fall through to verify the result. */
(void) fprintf(stderr,

"Do semctl GETVAL command to verify results.\n");
case GETVAL:

/* Get value of one semaphore. */
arg.val = 0;
do_semctl(semid, semnum, GETVAL, arg);
break;

case GETPID:
/* Get PID of last process to successfully complete a

semctl(SETVAL), semctl(SETALL), or semop() on the
semaphore. */

arg.val = 0;
do_semctl(semid, 0, GETPID, arg);
break;

case GETNCNT:
/* Get number of processes waiting for semaphore value to

increase. */
arg.val = 0;
do_semctl(semid, semnum, GETNCNT, arg);
break;

case GETZCNT:
/* Get number of processes waiting for semaphore value to

become zero. */
arg.val = 0;
do_semctl(semid, semnum, GETZCNT, arg);
break;

case SETALL:
/* Set the values of all semaphores in the set. */
(void) fprintf(stderr,

Full Code Examples 125

"There are %d semaphores in the set.\n",
semid_ds.sem_nsems);

(void) fprintf(stderr, "Enter semaphore values:\n");
for (i = 0; i < semid_ds.sem_nsems; i++) {

(void) fprintf(stderr, "Semaphore %d: ", i);
(void) scanf("%hi", &arg.array[i]);

}
do_semctl(semid, 0, SETALL, arg);
/* Fall through to verify the results. */
(void) fprintf(stderr,

"Do semctl GETALL command to verify results.\n");
case GETALL:

/* Get and print the values of all semaphores in the
set.*/

do_semctl(semid, 0, GETALL, arg);
(void) fprintf(stderr,

"The values of the %d semaphores are:\n",
semid_ds.sem_nsems);

for (i = 0; i < semid_ds.sem_nsems; i++)
(void) fprintf(stderr, "%d ", arg.array[i]);

(void) fprintf(stderr, "\n");
break;

case IPC_SET:
/* Modify mode and/or ownership. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
(void) fprintf(stderr, "Status before IPC_SET:\n");
do_stat();
(void) fprintf(stderr, "Enter sem_perm.uid value: ");
(void) scanf("%hi", &semid_ds.sem_perm.uid);
(void) fprintf(stderr, "Enter sem_perm.gid value: ");
(void) scanf("%hi", &semid_ds.sem_perm.gid);
(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr, "Enter sem_perm.mode value: ");
(void) scanf("%hi", &semid_ds.sem_perm.mode);
do_semctl(semid, 0, IPC_SET, arg);
/* Fall through to verify changes. */
(void) fprintf(stderr, "Status after IPC_SET:\n");

case IPC_STAT:
/* Get and print current status. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
do_stat();
break;

case IPC_RMID:
/* Remove the semaphore set. */
arg.val = 0;
do_semctl(semid, 0, IPC_RMID, arg);
break;

default:
/* Pass unknown command to semctl. */
arg.val = 0;
do_semctl(semid, 0, cmd, arg);
break;

}
exit(0);

}

/*
* Print indication of arguments being passed to semctl(), call

126 System Interface Guide ♦ June 2000

* semctl(), and report the results. If semctl() fails, do not
* return; this example doesn’t deal with errors, it just reports
* them.
*/

static void
do_semctl(semid, semnum, cmd, arg)
union semun arg;
int cmd,

semid,
semnum;

{
register int i; /* work area */

void) fprintf(stderr, "\nsemctl: Calling semctl(%d, %d, %d,",
semid, semnum, cmd);

switch (cmd) {
case GETALL:

(void) fprintf(stderr, "arg.array = %#x)\n",
arg.array);

break;
case IPC_STAT:
case IPC_SET:

(void) fprintf(stderr, "arg.buf = %#x)\n", arg.buf);
break;

case SETALL:
(void) fprintf(stderr, "arg.array = [", arg.buf);
for (i = 0;i < semid_ds.sem_nsems;) {

(void) fprintf(stderr, "%d", arg.array[i++]);
if (i < semid_ds.sem_nsems)

(void) fprintf(stderr, ", ");
}
(void) fprintf(stderr, "])\n");
break;

case SETVAL:
default:

(void) fprintf(stderr, "arg.val = %d)\n", arg.val);
break;

}
i = semctl(semid, semnum, cmd, arg);
if (i == -1) {

perror("semctl: semctl failed");
exit(1);

}
(void) fprintf(stderr, "semctl: semctl returned %d\n", i);
return;

}

/*
* Display contents of commonly used pieces of the status

structure.
*/

static void
do_stat()
{

(void) fprintf(stderr, "sem_perm.uid = %d\n",
semid_ds.sem_perm.uid);

(void) fprintf(stderr, "sem_perm.gid = %d\n",
semid_ds.sem_perm.gid);

(void) fprintf(stderr, "sem_perm.cuid = %d\n",
semid_ds.sem_perm.cuid);

Full Code Examples 127

(void) fprintf(stderr, "sem_perm.cgid = %d\n",
semid_ds.sem_perm.cgid);

(void) fprintf(stderr, "sem_perm.mode = %#o, ",
semid_ds.sem_perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n",
semid_ds.sem_perm.mode & 0777);

(void) fprintf(stderr, "sem_nsems = %d\n",
semid_ds.sem_nsems);

(void) fprintf(stderr, "sem_otime = %s", semid_ds.sem_otime ?
ctime(&semid_ds.sem_otime) : "Not Set\n");

(void) fprintf(stderr, "sem_ctime = %s",
ctime(&semid_ds.sem_ctime));

}

CODE EXAMPLE A–10 Sample Program to Illustrate semop(2)

/*
* semop.c: Illustrate the semop() function.
*
* This is a simple exerciser of the semop() function. It lets you
* to set up arguments for semop() and make the call. It then reports
* the results repeatedly on one semaphore set. You must have read
* permission on the semaphore set or this exerciser will fail. (It
* needs read permission to get the number of semaphores in the set
* and to report the values before and after calls to semop().)
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static int ask();
extern void exit();
extern void free();
extern char *malloc();
extern void perror();

static struct semid_ds semid_ds; /* status of semaphore set */

static char error_mesg1[] = "semop: Can’t allocate space for %d\
semaphore values. Giving up.\n";

static char error_mesg2[] = "semop: Can’t allocate space for %d\
sembuf structures. Giving up.\n";

main()
{

register int i; /* work area */
int nsops; /* number of operations to do */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to perform */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");

128 System Interface Guide ♦ June 2000

(void) fprintf(stderr, "\totherwise, decimal.\n");
/* Loop until the invoker doesn’t want to do anymore. */
while (nsops = ask(&semid, &sops)) {

/* Initialize the array of operations to be performed.*/
for (i = 0; i < nsops; i++) {

(void) fprintf(stderr,
"\nEnter values for operation %d of %d.\n",

i + 1, nsops);
(void) fprintf(stderr,

"sem_num(valid values are 0 <= sem_num < %d): ",
semid_ds.sem_nsems);

(void) scanf("%hi", &sops[i].sem_num);
(void) fprintf(stderr, "sem_op: ");
(void) scanf("%hi", &sops[i].sem_op);
(void) fprintf(stderr,

"Expected flags in sem_flg are:\n");
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#6.6o\n",

IPC_NOWAIT);
(void) fprintf(stderr, "\tSEM_UNDO =\t%#6.6o\n",

SEM_UNDO);
(void) fprintf(stderr, "sem_flg: ");
(void) scanf("%hi", &sops[i].sem_flg);

}

/* Recap the call to be made. */
(void) fprintf(stderr,

"\nsemop: Calling semop(%d, &sops, %d) with:",
semid, nsops);

for (i = 0; i < nsops; i++)
{

(void) fprintf(stderr, "\nsops[%d].sem_num = %d, ", i,
sops[i].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[i].sem_op);
(void) fprintf(stderr, "sem_flg = %#o\n",

sops[i].sem_flg);
}

/* Make the semop() call and report the results. */
if ((i = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");
} else {

(void) fprintf(stderr, "semop: semop returned %d\n", i);
}

}
}

/*
* Ask if user wants to continue.
*
* On the first call:
* Get the semid to be processed and supply it to the caller.
* On each call:
* 1. Print current semaphore values.
* 2. Ask user how many operations are to be performed on the next
* call to semop. Allocate an array of sembuf structures
* sufficient for the job and set caller-supplied pointer to

that
* array. (The array is reused on subsequent calls if it is big
* enough. If it isn’t, it is freed and a larger array is
* allocated.)

Full Code Examples 129

*/
static
ask(semidp, sopsp)
int *semidp; /* pointer to semid (used only the first time) */
struct sembuf **sopsp;
{

static union semun arg; /* argument to semctl */
int i; /* work area */
static int nsops = 0; /* size of currently allocated sembuf array */
static int semid = -1; /* semid supplied by user */
static struct sembuf *sops; /* pointer to allocated array */

if (semid < 0) {
/* First call; get semid from user and the current state of

the semaphore set. */
(void) fprintf(stderr,

"Enter semid of the semaphore set you want to use: ");
(void) scanf("%i", &semid);
*semidp = semid;
arg.buf = &semid_ds;
if (semctl(semid, 0, IPC_STAT, arg) == -1) {

perror("semop: semctl(IPC_STAT) failed");
/* Note that if semctl fails, semid_ds remains filled

with zeros, so later test for number of semaphores will
be zero. */

(void) fprintf(stderr,
"Before and after values are not printed.\n");

} else {
if ((arg.array = (ushort *)malloc(

(unsigned)(sizeof(ushort) * semid_ds.sem_nsems)))
== NULL) {

(void) fprintf(stderr, error_mesg1,
semid_ds.sem_nsems);

exit(1);
}

}
}
/* Print current semaphore values. */
if (semid_ds.sem_nsems) {

(void) fprintf(stderr,
"There are %d semaphores in the set.\n",
semid_ds.sem_nsems);

if (semctl(semid, 0, GETALL, arg) == -1) {
perror("semop: semctl(GETALL) failed");

} else {
(void) fprintf(stderr, "Current semaphore values are:");
for (i = 0; i < semid_ds.sem_nsems;

(void) fprintf(stderr, " %d", arg.array[i++]));
(void) fprintf(stderr, "\n");

}
}
/* Find out how many operations are going to be done in the

next
call and allocate enough space to do it. */

(void) fprintf(stderr,
"How many semaphore operations do you want %s\n",
"on the next call to semop()?");

(void) fprintf(stderr, "Enter 0 or control-D to quit: ");
i = 0;
if (scanf("%i", &i) == EOF || i == 0)

130 System Interface Guide ♦ June 2000

exit(0);
if (i > nsops) {

if (nsops)
free((char *)sops);

nsops = i;
if ((sops = (struct sembuf *)malloc((unsigned)(nsops *

sizeof(struct sembuf)))) == NULL) {
(void) fprintf(stderr, error_mesg2, nsops);
exit(2);

}
}
*sopsp = sops;
return (i);

}

CODE EXAMPLE A–11 Sample Program to Illustrate shmget (2)

/*
* shmget.c: Illustrate the shmget() function.
*
* This is a simple exerciser of the shmget() function. It

prompts
* for the arguments, makes the call, and reports the results.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to be passed to shmget() */
int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget() */
int size; /* size to be passed to shmget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the key. */
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%li", &key);

/* Get the size of the segment. */
(void) fprintf(stderr, "Enter size: ");
(void) scanf("%i", &size);

Full Code Examples 131

/* Get the shmflg value. */
(void) fprintf(stderr,

"Expected flags for the shmflg argument are:\n");
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n",

IPC_CREAT);
(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter shmflg: ");
(void) scanf("%i", &shmflg);

/* Make the call and report the results. */
(void) fprintf(stderr,

"shmget: Calling shmget(%#lx, %d, %#o)\n",
key, size, shmflg);

if ((shmid = shmget (key, size, shmflg)) == -1) {
perror("shmget: shmget failed");
exit(1);

} else {
(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);
exit(0);

}
}

CODE EXAMPLE A–12 Sample Program to Illustrate shmctl (2)

/*
* shmctl.c: Illustrate the shmctl() function.
*
* This is a simple exerciser of the shmctl() function. It lets you
* to perform one control operation on one shared memory segment.
* (Some operations are done for the user whether requested or

not.
* It gives up immediately if any control operation fails. Be

careful
* not to set permissions to preclude read permission; you won’t

be
*able to reset the permissions with this code if you do.)

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>

static void do_shmctl();
extern void exit();
extern void perror();

main()

132 System Interface Guide ♦ June 2000

{
int cmd; /* command code for shmctl() */
int shmid; /* segment ID */
struct shmid_ds shmid_ds; /* shared memory data structure to

hold results */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get shmid and cmd. */
(void) fprintf(stderr,

"Enter the shmid for the desired segment: ");
(void) scanf("%i", &shmid);
(void) fprintf(stderr, "Valid shmctl cmd values are:\n");
(void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT =\t%d\n", IPC_STAT);
(void) fprintf(stderr, "\tSHM_LOCK =\t%d\n", SHM_LOCK);
(void) fprintf(stderr, "\tSHM_UNLOCK =\t%d\n", SHM_UNLOCK);
(void) fprintf(stderr, "Enter the desired cmd value: ");
(void) scanf("%i", &cmd);

switch (cmd) {
case IPC_STAT:

/* Get shared memory segment status. */
break;

case IPC_SET:
/* Set owner UID and GID and permissions. */
/* Get and print current values. */
do_shmctl(shmid, IPC_STAT, &shmid_ds);
/* Set UID, GID, and permissions to be loaded. */
(void) fprintf(stderr, "\nEnter shm_perm.uid: ");
(void) scanf("%hi", &shmid_ds.shm_perm.uid);
(void) fprintf(stderr, "Enter shm_perm.gid: ");
(void) scanf("%hi", &shmid_ds.shm_perm.gid);
(void) fprintf(stderr,

"Note: Keep read permission for yourself.\n");
(void) fprintf(stderr, "Enter shm_perm.mode: ");
(void) scanf("%hi", &shmid_ds.shm_perm.mode);
break;

case IPC_RMID:
/* Remove the segment when the last attach point is

detached. */
break;

case SHM_LOCK:
/* Lock the shared memory segment. */
break;

case SHM_UNLOCK:
/* Unlock the shared memory segment. */
break;

default:
/* Unknown command will be passed to shmctl. */
break;

}
do_shmctl(shmid, cmd, &shmid_ds);
exit(0);

Full Code Examples 133

}

/*
* Display the arguments being passed to shmctl(), call shmctl(),
* and report the results. If shmctl() fails, do not return; this
* example doesn’t deal with errors, it just reports them.
*/

static void
do_shmctl(shmid, cmd, buf)
int shmid, /* attach point */

cmd; /* command code */
struct shmid_ds *buf; /* pointer to shared memory data structure */
{

register int rtrn; /* hold area */

(void) fprintf(stderr, "shmctl: Calling shmctl(%d, %d, buf)\n",
shmid, cmd);

if (cmd == IPC_SET) {
(void) fprintf(stderr, "\tbuf->shm_perm.uid == %d\n",

buf->shm_perm.uid);
(void) fprintf(stderr, "\tbuf->shm_perm.gid == %d\n",

buf->shm_perm.gid);
(void) fprintf(stderr, "\tbuf->shm_perm.mode == %#o\n",

buf->shm_perm.mode);
}
if ((rtrn = shmctl(shmid, cmd, buf)) == -1) {

perror("shmctl: shmctl failed");
exit(1);

} else {
(void) fprintf(stderr,

"shmctl: shmctl returned %d\n", rtrn);
}
if (cmd != IPC_STAT && cmd != IPC_SET)

return;

/* Print the current status. */
(void) fprintf(stderr, "\nCurrent status:\n");
(void) fprintf(stderr, "\tshm_perm.uid = %d\n",

buf->shm_perm.uid);
(void) fprintf(stderr, "\tshm_perm.gid = %d\n",

buf->shm_perm.gid);
(void) fprintf(stderr, "\tshm_perm.cuid = %d\n",

buf->shm_perm.cuid);
(void) fprintf(stderr, "\tshm_perm.cgid = %d\n",

buf->shm_perm.cgid);
(void) fprintf(stderr, "\tshm_perm.mode = %#o\n",

buf->shm_perm.mode);
(void) fprintf(stderr, "\tshm_perm.key = %#x\n",

buf->shm_perm.key);
(void) fprintf(stderr, "\tshm_segsz = %d\n", buf->shm_segsz);
(void) fprintf(stderr, "\tshm_lpid = %d\n", buf->shm_lpid);
(void) fprintf(stderr, "\tshm_cpid = %d\n", buf->shm_cpid);
(void) fprintf(stderr, "\tshm_nattch = %d\n", buf->shm_nattch);
(void) fprintf(stderr, "\tshm_atime = %s",

buf->shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");
(void) fprintf(stderr, "\tshm_dtime = %s",

buf->shm_dtime ? ctime(&buf->shm_dtime) : "Not Set\n");
(void) fprintf(stderr, "\tshm_ctime = %s",

ctime(&buf->shm_ctime));
}

134 System Interface Guide ♦ June 2000

CODE EXAMPLE A–13 Sample Program to Illustrate shmat (2) and shmdt (2)

/*
* shmop.c: Illustrate the shmat() and shmdt() functions.
*
* This is a simple exerciser for the shmat() and shmdt() system
* calls. It allows you to attach and detach segments and to
* write strings into and read strings from attached segments.
*/

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent attaches. */

static ask();
static void catcher();
extern void exit();
static good_addr();
extern void perror();
extern char *shmat();

static struct state { /* Internal record of currently attached segments. */
int shmid; /* shmid of attached segment */
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

static int nap; /* Number of currently attached segments. */
static jmp_buf segvbuf; /* Process state save area for SIGSEGV catching. */

main()
{

register int action; /* action to be performed */
char *addr; /* address work area */
register int i; /* work area */
register struct state *p; /* ptr to current state entry */
void (*savefunc)(); /* SIGSEGV state hold area */
(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");
(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
while (action = ask()) {

if (nap) {
(void) fprintf(stderr,

"\nCurrently attached segment(s):\n");
(void) fprintf(stderr, " shmid address\n");
(void) fprintf(stderr, "------ ----------\n");
p = &ap[nap];
while (p-- != ap) {

(void) fprintf(stderr, "%6d", p->shmid);
(void) fprintf(stderr, "%#11x", p->shmaddr);

Full Code Examples 135

(void) fprintf(stderr, " Read%s\n",
(p->shmflg & SHM_RDONLY) ?
"-Only" : "/Write");

}
} else

(void) fprintf(stderr,
"\nNo segments are currently attached.\n");

switch (action) {
case 1: /* Shmat requested. */

/* Verify that there is space for another attach. */
if (nap == MAXnap) {

(void) fprintf(stderr, "%s %d %s\n",
"This simple example will only allow",
MAXnap, "attached segments.");

break;
}
p = &ap[nap++];
/* Get the arguments, make the call, report the

results, and update the current state array. */
(void) fprintf(stderr,

"Enter shmid of segment to attach: ");
(void) scanf("%i", &p->shmid);

(void) fprintf(stderr, "Enter shmaddr: ");
(void) scanf("%i", &p->shmaddr);
(void) fprintf(stderr,

"Meaningful shmflg values are:\n");
(void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.8o\n",

SHM_RDONLY);
(void) fprintf(stderr, "\tSHM_RND = \t%#8.8o\n",

SHM_RND);
(void) fprintf(stderr, "Enter shmflg value: ");
(void) scanf("%i", &p->shmflg);

(void) fprintf(stderr,
"shmop: Calling shmat(%d, %#x, %#o)\n",
p->shmid, p->shmaddr, p->shmflg);

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
if(p->shmaddr == (char *)-1) {

perror("shmop: shmat failed");
nap--;

} else {
(void) fprintf(stderr,

"shmop: shmat returned %#8.8x\n",
p->shmaddr);

}
break;

case 2: /* Shmdt requested. */
/* Get the address, make the call, report the results,

and make the internal state match. */
(void) fprintf(stderr,

"Enter detach shmaddr: ");
(void) scanf("%i", &addr);

i = shmdt(addr);
if(i == -1) {

perror("shmop: shmdt failed");
} else {

(void) fprintf(stderr,

136 System Interface Guide ♦ June 2000

"shmop: shmdt returned %d\n", i);
for (p = ap, i = nap; i--; p++) {

if (p->shmaddr == addr)
*p = ap[--nap];

}
}
break;

case 3: /* Read from segment requested. */
if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");

(void) scanf("%i", &addr);

if (good_addr(addr))
(void) fprintf(stderr, "String @ %#x is ‘%s’\n",

addr, addr);
break;

case 4: /* Write to segment requested. */
if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");

(void) scanf("%i", &addr);

/* Set up SIGSEGV catch routine to trap attempts to
write into a read->only attached segment. */

savefunc = signal(SIGSEGV, catcher);

if (setjmp(segvbuf)) {
(void) fprintf(stderr, "shmop: %s: %s\n",

"SIGSEGV signal caught",
"Write aborted.");

} else {
if (good_addr(addr)) {

(void) fflush(stdin);
(void) fprintf(stderr, "%s %s %#x:\n",

"Enter one line to be copied",
"to shared segment attached @",
addr);

(void) gets(addr);
}

}
(void) fflush(stdin);

/* Restore SIGSEGV to previous condition. */
(void) signal(SIGSEGV, savefunc);
break;

}
}
exit(0);
/*NOTREACHED*/

}
/*
** Ask for next action.
*/
static

Full Code Examples 137

ask()
{

int response; /* user response */
do {

(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\t^D = exit\n");
(void) fprintf(stderr, "\t 0 = exit\n");
(void) fprintf(stderr, "\t 1 = shmat\n");
(void) fprintf(stderr, "\t 2 = shmdt\n");
(void) fprintf(stderr, "\t 3 = read from segment\n");
(void) fprintf(stderr, "\t 4 = write to segment\n");
(void) fprintf(stderr,

"Enter the number corresponding to your choice: ");

/* Preset response so "^D" will be interpreted as exit. */
response = 0;
(void) scanf("%i", &response);

} while (response < 0 || response > 4);
return (response);

}
/*
** Catch signal caused by attempt to write into shared memory
segment
** attached with SHM_RDONLY flag set.
*/
/*ARGSUSED*/
static void
catcher(sig)
{

longjmp(segvbuf, 1);
/*NOTREACHED*/

}
/*
** Verify that given address is the address of an attached
segment.
** Return 1 if address is valid; 0 if not.
*/
static
good_addr(address)
char *address;
{

register struct state *p; /* ptr to state of attached
segment */

for (p = ap; p != &ap[nap]; p++)
if (p->shmaddr == address)

return(1);
return(0);

}

The next example demonstrates how to insert an entry into a doubly linked list that
is stored in a file of list element records. For the example, assume that the record after
which the new record is to be inserted already has a read lock on it. The lock on this
record must be changed or promoted to a write lock so that the record can be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no other
process is holding a read lock in the same section of the file. When processes with
pending write locks are sleeping on the same section of the file, the lock promotion

138 System Interface Guide ♦ June 2000

succeeds and the other (sleeping) locks wait. Changing a write lock to a read lock
carries no restrictions. In either case, the lock is merely reset with the new lock type.
Because the lockf (3C) function does not have read locks, lock promotion does not
apply to that call.

The locks on these three records were all set to wait (sleep) if another process was
blocking them from being set. This was done with the F_SETLKWcommand. If the
F_SETLK command were used instead, the fcntl (2) functions would fail if
blocked. The program would then have to be changed to handle the blocked
condition in each of the error-return sections.

CODE EXAMPLE A–14 Example of Record Locking With Lock Promotion

struct record {
... /* data portion of record */
off_t prev; /* index to previous record in the list */
off_t next; /* index to next record in the list */

};

/* Lock promotion using fcntl(2): When this routine is entered it is
* assumed that there are read locks on "here" and "next." If write
* locks on "here" and "next" are obtained;
* Set a write lock on "this."
* Return index to "this" record.
* If any write lock is not obtained;
* Restore read locks on "here" and "next."
* Remove all other locks.
* Return a -1.
*/

off_t
set3lock (this, here, next)
off_t this, here, next;
{

struct flock lck;
lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* promote lock on "here" to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) {

return (-1);
}
/* lock "this" with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "this" lock failed; demote "here" lock to read lock. */
lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);

/* promote lock on "next" to write lock */
lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "next" lock failed; demote lock on "here" to read lock, */
lck.l_type = F_RDLCK;

Full Code Examples 139

lck.l_start = here;
(void) fcntl(fd, F_SETLK, &lck);
/* and remove lock on "this". */
lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fcntl(fd, F_SETLK, &lck);
return (-1); /* cannot set lock, try again or quit */

}

return (this);
}

CODE EXAMPLE A–15 Record Write Locks With lockf (3C)

/* lockf(3C)
* When this routine is entered, it is assumed that there are no
* locks on "here" and "next". If locks are obtained: set a lock
* on "this"; return index to "this" record. If any lock is not
* obtained: remove all other locks; return a -1.
*/

#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;
{

/* lock "here" */
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

return (-1);
}
/* lock "this" */
(void) lseek(fd, this, SEEK_SET);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "this" failed. Clear lock on "here". */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}
/* lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "next" failed. Clear lock on "here". */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
/* and remove lock on "this". */
(void) lseek(fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1); /* cannot set lock, try again or quit */

}
return (this);

}

140 System Interface Guide ♦ June 2000

APPENDIX B

System Interface Guide, Solaris 8 6/00
Updates

Incorporated Bug Fixes
A variety of typographical errors in text and source code examples was corrected.

141

142 System Interface Guide ♦ June 2000

Index

A
address space of processes 59
advisory locking 52
asynchronous I/O

behavior 84
guaranteeing buffer state 84
using structure 84
waiting for completion 97

atomic updates to semaphores 74

B
blocking mode

defined 91
finite time quantum 88
priority inversion 90
time-sharing process 83

brk(2) 63

C
chmod(1) 56
class

definition 87
priority queue 89
scheduling algorithm 89
scheduling priorities 87

connection-mode
definition 106

connectionless-mode

definition 107
context switch

preempting a process 90
creation flags, IPC 70

D
/dev/zero, mapping 61
dispatch

priorities 88
dispatch latency 85

under realtime 85
dispatch table

configuring 94
kernel 90

F
fcntl(2) 52
file and record locking 51
file system

contiguous 85
using pipes 104

files
lock 51

fork(2) 23
functions

advanced I/O 49
basic I/O 48

143

IPC 65
list file system control 50
terminal I/O 57
user processes 24

F_GETLK 54

I
I/O, , see asynchronous I/O, or synchronous

I/O
init(1M), scheduler properties 37
Interprocess Communication (IPC)

administering 106
creating pipes 103
memory mapped files 105
using fileless memory mapping 105
using memory mapping 105
using messages 104
using named pipes 104
using pipes 103
using semaphores 104
using shared memory 104
using the open() call 104

IPC (interprocess communication) 65
creation flags 70
functions 70
messages 71
permissions 70
semaphores 73
shared memory 77

IPC_RMID 72
IPC_SET 72
IPC_STAT 72

K
kernel

class independent 89
context switch 90
dispatch table 90
preempting current process 90
queue 84

L
lockf(3C) 55
locking

advisory 52, 57
finding locks 54

F_GETLK 54
mandatory 52, 57
memory in realtime 96
opening a file for 52
read 52
record 53
removing 53
setting 53
supported file systems 51
testing locks 54
with fcntl(2) 52
write 52

ls(1) 56

M
mandatory locking 52
mapped files 61, 62
mapping

introduction 60
memory

locking 96
locking a page 96
locking all pages 97
number of locked pages 96
sticky locks 97
unlocking a page 97

memory management 63
address spaces 60

functions 61
mlock(3C) 62
mlockall(3C) 63
mmap(2) 61, 62
mprotect(2) 63
msync(3C) 63
munmap(2) 62
pagesize 63

messages 71
mlock(3C) 62
mlockall(3C) 63
mmap(2) 61, 62
mprotect(2) 63
msgget() 71
msqid 71
msync(3C) 63
munmap(2) 62

144 System Interface Guide ♦ June 2000

N
named pipe

defined 104
FIFO 102
using 104

network
asynchronous connection 106
connection-mode service 106
connectionless-mode service 106
services under realtime 106
using STREAMS asynchronously 106

nice(1) 36
nice(2) 36

P
performance, scheduler effect on 37
permissions

IPC 70
pipe

defined 104
priocntl(1) 34
priority inversion

defined 83
synchronization 90

priority queue
linear linked list 90

process
defined for realtime 81
dispatching 90
highest priority 82
preemption 90
residence in memory 96
runaway 84
scheduling for realtime 88
setting priorities 93

process address space 59
process priority

global 31
setting and retrieving 34

process, spawning 24
processes, cooperating, locking 52

R
read lock 52
real-time, scheduler class 32
removing record locks 53

response time
blocking processes 83
bounds to I/O 82
degrading 82
inheriting priority 83
servicing interrupts 82
sharing libraries 83
sticky locks 84

reversing operations for semaphores 74

S
sbrk(2) 63
scheduler 26, 29, 39

classes 88
configuring 94
effect on performance 37
priority 87
real-time 85
real-time policy 32
scheduling classes 87
system policy 32
time-sharing policy 31
using system calls 91
using utilities 92

scheduler, class 32
semaphores 73

arbitrary simultaneous updates 74
atomic updates 74
reversing operations and SEM_UNDO 74
undo structure 74

semget() 74
semop() 74
setting record locks 53
shared memory 77
shmget() 77
synchronization

shared memory 105
synchronous I/O

blocking 97
critical timing 82

T
time-sharing

scheduler class 31
scheduler parameter table 32

145

timers
f applications 107
for interval timing 107
timestamping 107
using one-shot 107
using periodic type 107

U
undo structure for semaphores 74
updates, atomic for semaphores 74
user priority 31

V
virtual memory 63

W
write lock 52

Z
zero(7) 61

146 System Interface Guide ♦ June 2000

