
International Language
Environments Guide

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0169–10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc. SunOS, Solaris, X11, SPARC, UNIX, PostScript, OpenWindows, AnswerBook,
SunExpress, SPARCprinter, JumpStart, Xlib
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 15

1. Solaris Internationalization Overview 19

New Internationalization and Localization Features in Solaris 8 19

Internationalization and Localization Defined 20

Basic Steps in Internationalization 20

What Is a Locale? 21

Full and Partial Locales 22

Cultural Conventions 22

Locale Categories 23

Using Locale Categories for Localization 24

Time Formats 24

Date Formats 25

Numbers 25

Currency 26

Language Word and Letter Differences 28

Keyboard Differences 30

Other Differences 30

Paper Sizes 30

Creating Worldwide Software: The Book 31

Contents 3

2. Internationalization Framework in the Solaris 8 Environment 33

Support for Codeset Independence 33

The CSI Approach 34

CSI-enabled Commands 34

Solaris 8 CSI-enabled Libraries 36

Locale Database 37

Process Code Format 37

Multibyte Support Environment (MSE) 37

Dynamically Linked Applications 38

libw and libintl 39

ctype Macros 40

Internationalization APIs in libc 41

genmsg Utility 47

3. Contents of Solaris 8 Products 49

Overview of the Solaris 8 Locales 49

Summary of the Solaris 8 Locale 50

Localization Content on Solaris 8 CD-ROMs 50

Localization Functions in Solaris Interfaces 51

Script Enabling for Solaris 8 52

Localization in the Base and Multilingual Solaris Product 53

European Localization 61

Multiple Key Compose Sequences for Locales 62

Keyboard Support in the Solaris 8 Product 62

Changing Between Keyboards on SPARC 63

Changing Between Keyboards on IA 63

Codesets for IA 64

Font Formats 66

Summary of Asian Locales 67

4 International Language Environments Guide ♦ February 2000

Simplified Chinese Localization 68

Traditional Chinese Localization 70

Japanese Localization 73

Japanese Locales 73

Japanese Character Set 73

Japanese Font 74

Japanese Input Systems 75

How to Input Japanese Strings by using cs00 75

Terminal Setting for Japanese Terminals 76

Japanese iconv Module 77

Japanese Specific Printer Support 78

User Defined Character Support 79

Not Included on the Base Solaris Product 79

Korean Localization 79

4. Overview of en_US.UTF-8 Locale Support 85

Unicode Overview 85

Unicode Locale: en_US.UTF-8 Support Overview 86

Desktop Input Methods 87

Script Selection and Input Modes 88

Unicode Hexadecimal and Octal Code Input Method Input Modes 102

Table Lookup Input Method Input Mode 103

Japanese Input Mode 105

Korean Input Mode 105

Simplified Chinese Input Mode 106

Traditional Chinese Input Mode 106

Input Mode Switch Key Sequence Summary 107

System Environment 108

Locale Environment Variable 108

Contents 5

How to Use the en_US.UTF-8 Locale Environment 108

TTY Environment Setup 108

Code Conversions 113

Printing 113

DtMail 115

Programming Environment 117

FontSet Used with X Applications 117

XmFontList Definition as CDE/Motif Applications 119

5. X/DPS 121

Localization Resource Category 122

Information on Language Interpreters 122

6. Desktop Environments 123

Overview of CDE 123

Setting Locales 124

Integrating Fonts 124

Internationalization and CDE 125

Matching Fonts to Character Sets 125

Storage of Localized Text 125

Xlib Dependencies 125

Message Guidelines 126

Internationalization and Distributed Networks 126

Mail Interchange 126

OpenWindows 127

7. Complex Text Layout 129

Overview of CTL Technology 129

Overview of CTL Architecture 130

Changes in Motif to Support CTL Technology 130

XmDirection 130

6 International Language Environments Guide ♦ February 2000

Layout Direction 131

For More Information 131

XmStringDirection 131

XmRendition 132

132

Additional Layout Behavior 133

XmText , XmTextField 134

Character Orientation Action Routines 135

Character Orientation Additional Behavior 135

XmText Action Routines 136

XmTextFieldGetLayoutModifier 144

Purpose 144

Synopsis 144

Description 144

Return Value 144

Related Information 145

XmTextGetLayoutModifier 145

Purpose 145

Synopsis 145

Description 145

Return Value 145

Related Information 145

XmTextFieldSetLayoutModifier 145

Purpose 145

Synopsis 146

Description 146

Related Information 146

XmTextSetLayoutModifier 146

Contents 7

Purpose 146

Synopsis 146

Description 146

Related Information 146

XmStringDirectionCreate 147

Synopsis 147

Description 147

Related Information 147

UIL 147

How to Develop CTL Applications 148

Layout Direction 148

Creating a Rendition 149

Editing a Rendition 150

Related Information 151

Creating a Render Table in a Resource File 151

Creating a Render Table in an Application 151

Horizontal Tabs 152

Mouse Selection 153

Keyboard Selection 154

Text Resources and Geometry 154

Porting Instructions 155

8. Printing 157

Localization Printing Support Under the Solaris 8 Operating Environment 157

European Printing Support 157

Asian Multibyte Printing Support 159

Solaris Font Downloader 160

Reference Documents 161

A. iconv Code Conversions 163

8 International Language Environments Guide ♦ February 2000

B. Partial L10N Package Names on OS CD 181

C. Languages CD Packages List 187

Index 213

Contents 9

10 International Language Environments Guide ♦ February 2000

Tables

Table 11

12 International Language Environments Guide ♦ February 2000

Figures

Figure 3–1 Functions and Structure of Locales in Solaris 51

Figure 4–1 Cyrillic Keyboard 98

Figure 4–2 Greek Euro Keyboard 99

Figure 4–3 Greek UNIX Keyboard 99

Figure 4–4 Arabic Keyboard 100

Figure 4–5 Hebrew Keyboard 101

Figure 4–6 Thai Keyboard 102

Figure 7–1 Layout Direction 149

Figure 7–2 Tabbing Behavior 153

Figures 13

14 International Language Environments Guide ♦ February 2000

Preface

The International Language Environments Guide describes internationalization features
that are new in the Solaris™ 8 operating environment. It contains important
information on how to use this release to build global software products that support
various languages and cultural conventions.

Specifically, this guide contains:

� Guidelines and tips for developers on how to use this release to write applications
for international markets.

� An overall view of internationalization topics that apply to various layers within
the Solaris operating environment.

� Pointers to more detailed documentation.

Where appropriate, this guide points you to other guides in the documentation set that
contain additional or more detailed information on internationalization features in
this release.

Who Should Use This Guide
This guide is intended for software developers and administrators who want to design
global products and applications for the Solaris 8 operating environment.

This guide assumes knowledge of the C programming language.

All operating system information pertains to the Solaris 8 SunOS™ 5.8 operating
environment.

Preface 15

How this Guide is Organized
The chapters in this guide are organized as follows:

� Chapter 1 tells what’s new and provides an overview of the localized products
available on the base (English) and the localized multi-lingual Solaris releases.

� Chapter 2 describes the internationalization framework in the Solaris 8 product.

� Chapter 3 describes the contents of the Solaris 8 localized product.

� Chapter 4 covers the en_US.UTF-8 locales and the internationalization features
incorporated into this release.

� Chapter 5 contains a detailed look at the procedures to write a localized version of
codesets, formats, collation, and messaging. X/DPS

� Chapter 6 explains the Solaris desktop environments: the Common Desktop
Environment (CDE) and OpenWindows™ .The section on CDE has an overview
of the application internationalization process, including locale management,
localized resources, and font management.

� Chapter 7 includes information about CTL extensions that enable Motif APIs to
support writing systems that require complex transformation between logical and
physical text representations, such as Arabic, Hebrew, and Thai.

� Chapter 8 explains printing support under the Solaris 8 operating environment,
with specific information for European and Asian printing.

� Appendix A contains lists of tables of available iconv Conversions between UTF-8
and UTF-EBCDIC

� Appendix B contains a table of the partial L10N package Names on the OS CD.

� Appendix C contains tables representing the language packages on the language
CD. There are tables for Simplified Chinese, French, German, Italian, Japanese,
Korean, Spanish, Swedish, Traditional Chinese, and Shared.

Related Books and Sites
For information about the Java Development Kit, see
http://java.sun.com/docs/books/tutorial/i18n/index.html

Tuthill, Bill, and David Smallberg. Creating Worldwide Software: Solaris International
Developer’s Guide, 2nd edition. Mountain View, California, Sun Microsystems Press,
1997. Available through books@sun.com and www.sun.com/books/ . The book
offers a general overview of the internationalization process under the Solaris
operating environment.

16 International Language Environments Guide ♦ February 2000

Common Desktop Environment: Internationalization Programmer’s Guide. Mountain
View, California, SunSoft Press, 1996. The CDE documentation set can be ordered
by title through SunExpress. The CDE Programmer’s Guide is also part of the CDE
Developer’s AnswerBook™ set that is shipped on the Solaris documentation CD.

OSF/Motif Programmer’s Guide, Release 1.2. Englewood Cliffs, New Jersey,
Prentice-Hall, 1993. The Open Software Foundation’s (OSF) Guide describes how to
use the OSF/Motif application programming interface to create Motif applications.
It presents an overview of Motif widget set architecture, explains the Motif toolkit,
and gives models and examples of Motif applications.

OSF/Motif Programmer’s Reference, Release 1.2. Englewood Cliffs, New Jersey,
Prentice-Hall, 1992. The Open Software Foundation’s (OSF) Reference is the collection of
reference pages to OSF/Motif commands, functions, toolkit, window manager, user
interface language commands, and functions.

PostScript Language Reference Manual, Second Edition. Adobe Systems Inc.,
Addison-Wesley, 1990. The standard reference work for PostScript covers the
fundamentals of PostScript as a device-independent printing language.

PostScript Language Reference Manual Supplement. Adobe Systems Inc., 1994.

Programming the Display PostScript System with X. Reading, Mass., Adobe Systems Inc.,
Addison-Wesley, 1993. For application developers working with X Windows and
Display PostScript to produce information for the screen display and the printer
output.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation online.
You can browse the docs.sun.com archive or search for a specific book title or subject.
The URL is http://docs.sun.com .

17

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you
have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

18 International Language Environments Guide ♦ February 2000

CHAPTER 1

Solaris Internationalization Overview

The Solaris 8 product includes full Unicode 3.0 support, as defined in ISO-10646, for
selected locales. The Solaris 8 release is a major release for Sun’s international markets.
It includes a number of new features. All partial locales including multibyte locales
such as Japanese locales are now available on the Base Solaris 8 product.

New Internationalization and
Localization Features in Solaris 8
� Simplified Chinese UTF-8 locale. This provides broader support for Unicode

with the addition of new UTF-8 locales. Unicode is often used in a mixed script
environment, where it is necessary to display text from multiple languages in a
single environment.

� Traditional Chinese UTF-8 locale

� Asian printing enhancements

� Support for 90 locales on the base Solaris CD. This is a new packaging approach to
universal language coverage.

� Enhanced Sdtudctool —support for migration of UDC (User Defined Character)
from Microsoft Windows. Localized for all Asian locales.

� Three additional locales have been added for Iceland (ISO8859–1), U.S.A.
(ISO8859–15), and Russia (ANSI1251). The new U.S.A. locale adds support for
the euro currency glyph. The new Russian locale is in addition to the existing
ISO8859–5 and KOI8–R locales. It provides native Microsoft data encoding
support. The new ISO8859–1 locale for Iceland marks the introduction of Icelandic
support to the Solaris environment.

19

� Customer-extensible codeset conversion. New codeset conversion can be added by
using the geniconvtbl utility. Existing codeset conversions can be modified.

� European locale repackaging

� Euro font

� Adding Japanese iconv modules — conversions for IBM mainframe codesets and
conversions between Unicode and Shift-JIS for Microsoft codeset.

� Euro currency. All foreign exchange, banking, and finance industries in the
European community are converting from using their local currencies to using the
Euro. Euro currency support has been enhanced in the Solaris 8 environment with
the addition of U.S. and Estonian ISO8859–15 locales.

� Multibyte Partial locale — framework of multibyte locale support is included
in the Base Solaris product.

� Enhanced Unicode iconv modules. The iconv module has been enhanced for
various Unicode encoding formats and international and de facto industry standard
codesets.

Internationalization and Localization
Defined
Internationalization is the process of making software portable between languages or
regions, while localization is the process of adapting software for specific languages or
regions. International software can be developed using interfaces that modify program
behavior at runtime in accordance with specific cultural requirements. Localization
involves establishing online information to support a language or region, called a locale.

Unlike software that must be completely rewritten before it can work with different
native languages and customs, internationalized software does not require rewriting.
It can be ported from one locale to another without change. The Solaris system is
internationalized, providing the infrastructure and interfaces you need to create
internationalized software.

Internationalization and localization are different procedures.

Internationalization is the process of making software that is independent of any locale.
It can then be adapted to specific locales.

Basic Steps in Internationalization
An internationalized application’s executable image is portable between languages
and regions. To internationalize software, you should:

20 International Language Environments Guide ♦ February 2000

� Use the interfaces described in this book to create software with an environment
that can be modified dynamically without the necessity of recompiling the
software.

� Divide software into executable and messages. The messages include all printable
and displayable messages that the user sees. Keep the message strings in a
message catalog.

Message strings are translated for a language and a region. A locale includes the
message strings and methods to specify sorting.

Locales are not the same as a language. A language can contain various regions. For
example, French is spoken in France and Canada, but each country has different ways
of displaying monetary and time information.

To use a localized version of a product, the user sets the environment variables.
The product then displays the user messages in their translated form. Date, time,
currency and other information is formatted and displayed according to locale-specific
conventions.

What Is a Locale?
A locale can be composed of both a base language, the country (territory) of use,
and possibly codeset (which is usually assumed). For example, German is de , an
abbreviation for Deutsch, while Swiss German is de_CH, CHbeing an abbreviation
for Confederation Helvetica. This allows for specific differences by country, such as
currency units notation.

More than one locale can be associated with a particular language, which allows for regional
differences. For example, an English-speaking user in the United States can select the en_US
locale (English for the United States), while an English-speaking user in Great Britain can
select en_GB (English for Great Britain).

The key concept for application programs is that of a program’s locale. The locale is
an explicit model and definition of a native-language environment. The notion of
a locale is explicitly defined and included in the library definitions of the ANSI C
Language standard.

The locale consists of a number of categories for which there is country-dependent
formatting or other specifications. A program’s locale defines its codesets, date and
time formatting conventions, monetary conventions, decimal formatting conventions,
and collation (sort) order.

Generally the locale name is specified by the LANGenvironment variable. Locale
categories are subordinate to LANG, but can be set separately, in which case they
override LANG. If LC_ALL is set, it overrides not only LANG, but all the separate locale
categories as well.

Solaris Internationalization Overview 21

Full and Partial Locales
A full Solaris locale has all of the listed functions and the localized system messages in
the relevant language. If no localized messages are installed, then all locales would be
classified as “partial locales”. Several locales in the Solaris environment are capable
of displaying localized messages, provided that the relevant language support is
installed. For example, there are several locales which can use German messages:

� de_DE.ISO8859–1

� de_DE.ISO8859–15

� de_DE.UTF-8

� de_AT.ISO8859–1

� de_AT.ISO8859–15

� de_CH.ISO8859–1

When the German messages translations are installed using the Language CD, all
of the above locales will become “full locales”, because they will have access to a
fully translated desktop. The language CD contains message translations for the
following languages:

� German

� French

� Spanish

� Swedish

� Italian

� Japanese

� Korean

� Simplified Chinese

� Traditional Chinese

All partial locales are also available in the base product, but message translations are
available only in the multilingual Solaris product.

Cultural Conventions
Different cultures use different conventions for writing the date, the time, numbers,
currency, delimiting words and phrases, and quoting material.

A locale defines the behavior of a program at runtime according to a language or
cultural region’s conventions. Throughout the system, a locale determines the behavior
of the following:

22 International Language Environments Guide ♦ February 2000

� Encoding and processing of text data

� Identifying the language and encoding of resource files and their text values

� Rendering and layout of text strings

� Interchanging text that is used for interclient text communication

� Encoding and decoding for interclient text communication

� Selecting the input method (that is, which codeset is generated) and the processing
of text data

� Font and icon files that are culturally specific

� Actions and file types

� User Interface Definition (UID) files

� Date and time formats

� Numeric formats

� Monetary formats

� Collation order

� Format for informative and diagnostic messages and interactive responses

The Solaris environment separates language and culture-dependent information from
the application and saves it outside the application.

By separating the language and culture-dependent information from the application,
the developer does not need to translate, rewrite, or recompile the application for
each market. The only requirement to enter a new market is to localize the external
information to the local language and customs.

Locale Categories
The locale categories are as follows:

� LC_CTYPE

Controls the behavior of character handling functions

� LC_TIME

Specifies date and time formats, including month names, days of the week, and
common full and abbreviated representations

� LC_MONETARY

Specifies monetary formats. Few SunOS system commands or library routines
actually use this category

� LC_NUMERIC

Specifies the decimal separator (or radix character) and the thousands separator

� LC_COLLATE

Specifies the sorting order for a locale and the string conversions required to
attain this ordering

� LC_MESSAGES

Solaris Internationalization Overview 23

Specifies the language in which the localized messages are written

� LO_LTYPE

Specifies the layout engine that provides information about language rendering.
Language rendering (or text rendering) consists of text shaping and directionality.

Using Locale Categories for Localization
The localization of a product should be done in consultation with native users in that
target language or region. Certain styles and information styles and formats might
seem perfectly obvious and universal to the developer, but to the user, these look either
awkward, wrong, or even offensive. The following pages describe the elements that
the Solaris operating environment allows you to control and specify so that you can
successfully internationalize your product.

Time Formats
Table 1–1 shows some of the ways to write 11:59 P.M.

TABLE 1–1 International Time Formats

Locale Format

Canadian 23:59

Finnish 23.59

German 23.59 Uhr

Norwegian Kl 23.59

Thai 11:59 PM

U.K. 11.59 PM

Time is represented by both a 12-hour clock and a 24-hour clock. The hour and minute
separator can be either a colon (:) or a period (.).

Time zone splits occur between and within countries. Although a time zone can be
described in terms of how many hours it is ahead of, or behind, Greenwich Mean Time
(GMT), this number is not always an integer. For example, Nekeybfoundland is in a
time zone that is half an hour different from the adjacent time zone.

Daylight Savings Time (DST) starts and ends on different dates that can vary from
country to country.

24 International Language Environments Guide ♦ February 2000

Date Formats
Table 1–2 shows some of the date formats used around the world. Notice that even
within a country, there can be variations.

TABLE 1–2 International Date Formats

Locale Convention Example

Canadian (English and French) yyyy-mm-dd 1998-08-13

Danish yyyy-mm-dd 1999–08–24

Finnish dd.mm.yyyy 13.08.1998

French dd/mm/yyyy 13/08/1999

German yyyy-mm-dd 1999–09–18

Italian dd.mm.yy 13.08.98

Norwegian dd.mm.yy 13.08.98

Spanish dd-mm-yy 13-08-98

Swedish yyyy-mm-dd 1998-08-13

GB-English dd/mm/yy 13/08/98

US-English mm-dd-yy 08-13-98

Thai dd/mm/yyyy 10/12/2009

Numbers

Decimal and Thousands Separators
Great Britain and the United States are two of the few places in the world that use a
period to indicate the decimal place. Many other countries use a comma instead. The
decimal separator is also called the radix character. Likewise, while the U.K. and U.S.
use a comma to separate groups of thousands, many other countries use a period
instead, and some countries separate thousands groups with a thin space. Table 1–3
shows some commonly used numeric formats.

Solaris Internationalization Overview 25

TABLE 1–3 International Numeric Conventions

Locale Large Number

Canadian (English and French) 4 294 967 295,000

Danish 4 294 967 295,000

Finnish 4 294 967 295,000

French 4 294 967 295,000

German 4 294 967.295,000

Italian 4.294.967.295,000

Norwegian 4.294.967.295,000

Spanish 4.294.967.295,000

Swedish 4 294 967 295,000

GB-English 4,294,967,295.00

US-English 4,294,967,295.00

Thai 4,294,967,295.00

Data files containing locale-specific formats are frequently misinterpreted when
transferred to a system in a different locale. For example, a file containing numbers in a
French format is not useful to a U.K.-specific program.

List Separators
There are no particular locale conventions that specify how to separate numbers in
a list. They are sometimes comma-delimited in Great Britain and the U.S., but often
spaces and semicolons are used.

Currency
Currency units and presentation order vary greatly around the world.Table 1–4 shows
monetary formats in some countries.

26 International Language Environments Guide ♦ February 2000

TABLE 1–4 International Monetary Conventions

Locale Currency Example

Canadian (English) Dollar ($) $1 234.56

Canadian (French) Dollar ($) 1 234.56$

Danish Kroner (kr) kr 1.234,56

Finnish Markka (mk) 1.234,56 mk

French Franc (F) 1 234,56 F

German Deutsche Mark
(DM)

DM 1.234,56

Italian Lira (L) L1.234,56

Japanese Yen 41,234 Yen

Norwegian Krone (kr) kr 1.234,56

Spanish Peseta (Pts) 1.234,56Pts

Swedish Krona (Kr) 1.234,56 kr

GB-English Pound 31,234.56 pounds

US-English Dollar ($) $1,234.56

Thai Baht 2539 Baht

Euro EUR 400,00

Local and international symbols for currency can differ. For example, the designation for the
French franc is “F” in France but this is often written as FRF’ internationally to distinguish it
from other francs, such as the Swiss franc or the Polynesian franc.

Euro locales are based on the ISO8859–15 character set. See “European Localization”
on page 61 for available locales.

Be aware also that a converted currency amount can take up more or less space than the
original amount. To illustrate: $1,000 can become L1.307.000.

Solaris Internationalization Overview 27

Language Word and Letter Differences

Word Delimiters
In English, words are separated by a space character. In languages such as Chinese,
Japanese and Thai, however, there is often no delimiter between words.

Sort Order
Sorting order for particular characters is not the same in all languages. For example,
the character “ö” sorts with the ordinary “o” in Germany, but sorts separately in
Sweden, where it is the last letter of the alphabet. In some languages, characters
have weight to determine the priority of the character sequences. For example, in
Thai, the Thai dictionary defines sorting through the sequences of characters that
have different weights.

Character Sets

Number of Characters

While the English alphabet contains only 26 characters, some languages contain many
more characters. Japanese, for example, can contain over 40,000 characters, Chinese
even more.

Western European Alphabets

The alphabets of most western European countries are similar to the standard
26-character alphabet used in English-speaking countries, but there are often some
additional basic characters, some marked (or accented) characters, and some ligatures.

Japanese Text

Japanese text is composed of three different scripts mixed together: Kanji ideographs
derived from Chinese, and two phonetic scripts (or syllabaries), Hiragana and
Katakana.

Although each character in Hiragana has an equivalent in Katakana, Hiragana is
the most common script, with cursive rather than block-like letter forms. Kanji
characters are used to write root words. Katakana is mostly used to represent “foreign”
words—words “imported” from languages other than Japanese.

Kanji has tens of thousands of characters, but the number commonly used has
been declining steadily over the years. Now only about 3500 are frequently used,
although the average Japanese writer has a vocabulary of about 2000 Kanji characters.
Nonetheless, computer systems must support more than 7000 because that is what the
Japan Industry Standard (JIS) requires. In addition, there are about 170 Hiragana and

28 International Language Environments Guide ♦ February 2000

Katakana characters. On average 55% of Japanese text is Hiragana, 35% Kanji, and 10%
Katakana. Arabic numerals and Roman letters are also present in Japanese text.

Although it is possible to completely avoid the use of Kanji, most Japanese readers find
text containing Kanji easier to understand.

Korean Text

Korean text can be written using a phonetic writing system called Hangul. Hangul
has more than 11,000 characters, which consist of 19 consonants, 21 vowels, and an
optional 27 consonants. About 3,000 Hangul characters from the entire Hangul
characters are usually used in Korean computer systems. Korean also uses ideographs
based on the set invented in China, called Hanja. Korean text requires over 6,000
Hanja characters. Hanja is used mostly to avoid confusion when Hangul would be
ambiguous. Hangul characters are formed by combining consonants and vowels. After
combining them, they can compose one syllable, which is a Hangul character. Hangul
characters are often arranged in a square, so that the group takes up the same space as
a Hanja character. Arabic numerals, Roman letters, and special symbol characters are
also present in Korean text.

Thai Text

A Thai character can be defined as a column position on a display screen with four
display cells. Each column position can have up to three characters. The composition of
a display cell is based on the Thai character’s classification. Some Thai characters can
be composed with another character’s classification. If they can be composed together,
both characters are in the same cell. Otherwise, they are in separate cells.

Chinese Text

Chinese usually consists entirely of characters from the ideographic script called Hanzi.
In the People’s Republic of China (PRC) there are about 7000 commonly used Hanzi
characters in GB2312 (zh locale) and more than 20,000 characters in the GBK (zh.GBK)
locale. In Taiwan, current standards require more than 13000 characters; 6000 others
have been recently standardized but are considered rare.

If a character is not a root character, it usually consists of two or more parts, two being
most common. In two-part characters, one part generally represents meaning, and
the other represents pronunciation. Occasionally both parts represent meaning. The
radical is the most important element, and characters are traditionally arranged by
radical, of which there are several hundred. A single sound can be represented by
many different characters, which are not interchangeable in usage. A single character
can have different sounds.

Some characters are more appropriate than others in a given context—the appropriate
one is distinguished phonetically by the use of tones. By contrast, spoken Japanese
and Korean lack tones.

Solaris Internationalization Overview 29

Several phonetic systems represent Chinese. In the People’s Republic of China the most
common is pinyin, which uses roman characters and is widely employed in the West
for place names such as Beijing. The Wade-Giles system is an older phonetic system,
formerly used for place names such as Peking. In Taiwan zhuyin (or bopomofo), a
phonetic alphabet with unique letter forms, is often used instead.

Commercial applications, particularly those that deal with people’s names, need
to consider the impact of codeset expansion. Many Chinese people have names
containing characters that do not exist in any standard codeset. You need to provide
space in unassigned codesets to deal with this issue.

Keyboard Differences
Not all characters on the U.S. keyboard appear on other keyboards. Similarly, other
keyboards often contain many characters not visible on the U.S. keyboard.

However, on SPARC machines, the Compose key can be used to produce any character in
the ISO Latin-1 codeset on any keyboard that supports it.

The Compose key can be used with English or European locales, but not with Korean,
Chinese, or Japanese locales, except the UTF-8 locales.

Other Differences
Paper Sizes
Within each country a small number of paper sizes are commonly used, normally with
one of those sizes being much more common than the others. Most countries follow
ISO Standard 216: “Writing paper and certain classes of printed matter—Trimmed
sizes—A and B series.”

Internationalized applications should not make assumptions about the page sizes
available to them. The Solaris system provides no support for tracking output page
size; this is the responsibility of the application program. Table 1–5 shows Common
International page sizes.

30 International Language Environments Guide ♦ February 2000

TABLE 1–5 Common International Page Sizes

Paper Type Dimensions Countries

ISO A4 21.0 cm by 29.7 cm Everywhere except U.S.

ISO A5 14.8 cm by 21.0 cm Everywhere except U.S.

JIS B4 25.9 cm by 36.65 cm Japan

JIS B5 18.36 cm by 25.9 cm Japan

U.S. Letter 8.5 inch by 11 inches U.S. and Canada

U.S. Legal 8.5 inch by 14 inches U.S. and Canada

Creating Worldwide Software: The Book
The book Creating Worldwide Software, 2nd edition, by Bill Tuthill and David Smallberg
(SunSoft Press, 1997), is a guide to localizing for the Solaris platform. The book is
recommended for developers who work with the Solaris system. See “Related Books
and Sites” on page 16 for a full citation.

Solaris Internationalization Overview 31

32 International Language Environments Guide ♦ February 2000

CHAPTER 2

Internationalization Framework in the
Solaris 8 Environment

This section discusses several internationalization features contained in the Solaris 8
environment.

� Support for Codeset independence

� Locale database

� Process code format (wide character expression)

� libw and libintl

� ctype macros

� genmsg utility

This section also contains information useful for developing internationalized
applications such as:

� Dynamically linked applications

� Solaris 8 internationalized APIs

Support for Codeset Independence
The Solaris 8 operating environment supports non-EUC encodings such as PC-Kanji in
Japan, Big-5 in Taiwan, and GBK in the People’s Republic of China.

Because a large part of the computer market demands non-EUC codeset support,
Solaris 8 provides a solid framework to enable both EUC and non-EUC codeset
support. This support is called Codeset Independence, or CSI.

33

The goal of CSI is to remove EUC dependencies on specific codesets or encoding
methods from Solaris OS libraries and commands. The CSI architecture allows the
Solaris operating environment to support any UNIX file system safe encoding. CSI
supports a number of new codesets, such as UTF-8, PC-Kanji, and Big-5.

The CSI Approach
Codeset Independence enables application and platform software developers to keep
their code independent of encoding, such as UTF-8, and also provides the ability to
adopt any new encoding without having to modify the source code. This architecture
approach differs from Java internationalization in that Java requires applications to be
Unicode-dependent and also requires code conversions throughout the application.

Many existing internationalized applications (for example, Motif) automatically inherit
CSI support from the underlying system. These applications work in the new locales
without modification. OPEN LOOK applications, however, that are XView/OLIT
based, don’t work in the new locales because XView is codeset-dependent.

CSI is inherently independent from any codesets. However, the following assumptions
on file code encodings (codesets) still apply to Solaris 8:

� File code is a superset of ASCII.

Unicode (16-bits fixed width) cannot be supported as file code.

� NULL (0x00) is not part of multibyte characters for support of null-terminated
multibyte character strings.

� Slash / (0x2f) is not part of multibyte characters for support of the UNIX path
names.

� Only stateless file code encodings are supported.

CSI-enabled Commands
Table 2–1 contains CSI-enabled commands in Solaris 8. These commands are marked
with CSI capabilities on their man page.

All commands are in the /usr/bin directory, unless otherwise noted.

TABLE 2–1 CSI-enabled Commands in Solaris 8

/usr/lib/diffh acctcom gencat script

34 International Language Environments Guide ♦ February 2000

TABLE 2–1 CSI-enabled Commands in Solaris 8 (continued)

/usr/sbin/accept apropos getopt sdiff

/usr/sbin/reject batch getoptcvt settime

/usr/ucb/lpr bdiff head sh

/usr/xpg4/bin/awk cancel join split

/usr/xpg4/bin/cp cat jsh strconf

/usr/xpg4/bin/date catman kill strings

/usr/xpg4/bin/du chgrp ksh sum

/usr/xpg4/bin/ed chmod lp tabs

/usr/xpg4/bin/edit chown man tar

/usr/xpg4/bin/egrep cmp mkdir tee

/usr/xpg4/bin/env col msgfmt touch

/usr/xpg4/bin/ex comm news tty

/usr/xpg4/bin/expr compress nroff uncompress

/usr/xpg4/bin/fgrep cpio pack unexpand

/usr/xpg4/bin/grep csh paste uniq

/usr/xpg4/bin/ln csplit pcat unpack

/usr/xpg4/bin/ls cut pg wc

/usr/xpg4/bin/more diff printf whatis

/usr/xpg4/bin/mv diff3 priocntl write

/usr/xpg4/bin/nice disable ps xargs

/usr/xpg4/bin/nohup echo pwd zcat

/usr/xpg4/bin/od expand rcp

/usr/xpg4/bin/pr file red

/usr/xpg4/bin/rm fine remsh

/usr/xpg4/bin/sed fold rksh

/usr/xpg4/bin/sort ftp rmdir

/usr/xpg4/bin/tail rsh

/usr/xpg4/bin/tr

Internationalization Framework in the Solaris 8 Environment 35

TABLE 2–1 CSI-enabled Commands in Solaris 8 (continued)

/usr/xpg4/bin/vedit

/usr/xpg4/bin/vi

/usr/xpg4/bin/view

Solaris 8 CSI-enabled Libraries
Nearly all functions in Solaris 8 libc (/usr/lib/libc.so) are CSI-enabled.
However, the following functions in libc are not CSI-enabled because they are
EUC-dependent functions:

� csetcol() csetlen() euccol()

� euclen() eucscol() getwidth()

The following macros are not CSI-enabled because they are EUC dependent:

� csetno() wcsetno()

In the Solaris 8 product, libgen (/usr/ccs/lib/libgen.a) are internationalized,
but not CSI enabled.

In the Solaris 8 product, libcurses (/usr/ccs/lib/libcurses.a) are
internationalized, but not CSI enabled.

Here are the five deliverables:

� The utility (32-bit application):

/usr/bin/geniconvtbl

� special iconv shared objects:

/usr/lib/iconv/geniconvtbl.so

/usr/lib/iconv/sparcv9/geniconvtbl.so

� Sample geniconvtbl(1) input source files and system-provided binary table
files :

/usr/lib/iconv/geniconvtbl/srcs/

ISO8859-1_to_ISO646.txt

ISO646_to_ISO8859-1.txt

ISO8859-1_to_UTF-8.txt

UTF-8_to_ISO8859-1.txt

ShiftJIS_to_eucJP.txt

eucJP_to_ShiftJIS.txt

36 International Language Environments Guide ♦ February 2000

/usr/lib/iconv/geniconvtbl/binarytables/

ISO8859-1%ISO646.bt

ISO646%ISO8859-1.bt

� Changed iconv_open(3) at libc.so.1s:

/usr/lib/libc.so.1

/usr/lib/sparcv9/libc.so.1 (sparcv9 example)

� Man pages:

/usr/share/man/sman1/geniconvtbl.1

/usr/share/man/sman4/geniconvtbl.4

The section for geniconvtbl (1) describes how to use the utility and where to place the
generated binary table files so that they can be used by the iconv functions and utilities.

See geniconvtbl (4)

Locale Database
The locale database format and structure is private and subject to change in a future
release. Therefore, when developing an internationalized application, do not directly
access the locale database. Instead, use the Solaris internationalization APIs.

When using Solaris 8, use the locale databases that are included with the Solaris 8 product.
Do not use locales from previous Solaris versions.

Process Code Format
The process code format in the Solaris 8 product is private and subject to change in a
future release. Therefore, when developing an international application, do not assume
the process code format is the same. Instead use the Solaris internationalization APIs.

Multibyte Support Environment (MSE)
A multibyte character is a character that cannot be stored in a single byte, such as
Chinese, Japanese, or Korean characters. These characters require two or three bytes of

Internationalization Framework in the Solaris 8 Environment 37

storage. A more precise definition can be found in ISO/IEC 9899:1990 subclause 3.13.
The programming model enables these multibyte characters to be read in as logical
units and stored internally as wide characters. These wide characters can be processed
by the program as logical entities in their own right. Finally, these wide characters
can be written out (undergoing appropriate translation) as logical units. This is
analogous to the way single-byte characters are read in, manipulated, and written out
again. The MSE provides a comparable set of interfaces to perform this processing.
The MSE allows programs to be written to handle multibyte characters using the same
programming model that is used for single-byte characters.

Dynamically Linked Applications
Solaris 8 users can choose how to link applications with the system libraries, such as
libc , by using dynamic linking or static linking. However, any application that
requires internationalization features in the system libraries must be dynamically
linked. If the application has been statically linked, the operation to set the locale to
other than C and POSIX using the setlocale function will fail. Statically linked
applications can be operated only in C and POSIX locales.

By default, the linker program tries to link the application dynamically. If the command
line options to the linker and the compiler include -Bstatic or -dn specifications,
your application might be statically linked. You can check whether an existing
application is dynamically linked using the /usr/bin/ldd command.

For example, if you type:

% /usr/bin/ldd /sbin/sh

the command displays the following message:

% ldd: /sbin/sh: file is not a dynamic executable or shared object

The message indicates the /sbin/sh command is not a dynamically linked program.
Also, if you type:

% /usr/bin/ldd /usr/bin/ls

the command displays the following message:

% libc.so.1 => /usr/lib/libc.so.1
% libdl.so.1 => /usr/lib/libdl.so.1

38 International Language Environments Guide ♦ February 2000

This message indicates the /usr/bin/ls command has been dynamically linked with
two libraries, libc.so.1 and libdl.so.1 .

To summarize, if the message from the ldd command to the application does not
contain a libc.so.1 entry, it indicates that the application has been statically linked
with libc . In that case, you need to change the command line options to the linker so
that dynamic linking is used instead, then re-link the application.

libw and libintl
These interfaces have moved to libc and are no longer in libw and libintl.

The shared objects ensure runtime compatibility for existing applications and, together
with the archives, provide compilation environment compatibility for building
applications. However, it is no longer necessary to build applications against libw
or libintl .

For more information on filters see the Linker and Libraries Guide.

Table 2–2 shows the stub entry points in libw and libintl .

Internationalization Framework in the Solaris 8 Environment 39

TABLE 2–2 Stub Entry Points in libw and libintl

fgetwc fgetws fputwc fputws getwc

getwchar getws isenglish isideogram isnumber

isphonogram isspecial iswalnum iswalpha iswcntrl

iswctype iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit putwc

putwchar putws strtows towlower towupper

ungetwc watoll wcscat wcschr wcscmp

wcscoll wcscpy wcscspn wcsftime wcslen

wcsncat wcsncmp wcsncpy wcspbrk wcsrchr

wcsspn wcstod wcstok wcstol wcstoul

wcswcs wcswidth wcsxfrm wctype wcwidth

wscasecmp wscat wschr wscmp wscol

wscoll wscpy wscspn wsdup wslen

wsncasecmp wsncat wsncmp wsncpy wspbrk

wsprintf wsrchr wsscanf wsspn wstod

libw:

wstok wstol wstoll wstostr wsxfrm

libintl: bindtextdomain dcgettext dgettext gettext textdomain

ctype Macros
Character classification and character transformation macros are defined in
/usr/include/ctype.h . The Solaris 8 environment provides a new set of ctype
macros. The new macros support character classification and transformation semantics
defined by XPG4. To access the new set of macros, one of the following conditions
must be met:

� _XPG4_CHAR_CLASSis defined.

� _XOPEN_SOURCEand _XOPEN_VERSION=4are defined.

� _XOPEN_SOURCEand _XOPEN_SOURCE_EXTENDED=1are defined.

40 International Language Environments Guide ♦ February 2000

This means that all XPG4and XPG4.2 applications automatically have the new macros.
Since _XOPEN_SOURCE, _XOPEN_VERSION, and _XOPEN_SOURCE_EXTENDEDbring
in extra XPG4related features in addition to new ctype macros, non-XPG4or XPG4.2
applications should use __XPG4_CHAR_CLASS__.

There are corresponding ctype functions. The Solaris 8 functions also support
XPG4semantics.

Refer to the ctype (3C) man page for details.

Internationalization APIs in libc
Solaris 8 offers two sets of APIs:

� Multibye (file codes)

� Wide characters (process code)

Applications process in wide-character codes.

When a program takes input from a file, convert your file’s multibyte data into wide
character process code with the mbtwoc and mbtowcs APIs. To convert the file output
data from wide character format into multibyte format, use the wcstombs and wctomb
APIs.

Table 2–3 shows a list of internationalization APIs included in Solaris 8.

TABLE 2–3 Internationalization APIs in libc

API Type Library Routine Description

Messaging functions

catclose() Close a message catalog.

catgets() Read a program message.

catopen() Open a message catalog.

dgettext() Get a message from a message catalog
with domain specified.

dcgettext() Get a message from a message catalog with
domain and category specified.

textdomain() Set and query the current domain.

bindtextdomain() Bind the path for a message domain.

Code conversion

Internationalization Framework in the Solaris 8 Environment 41

TABLE 2–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

iconv() Convert codes.

iconv_close() Deallocate the conversion descriptor.

iconv_open() Allocate the conversion descriptor.

Regular expression

regcomp() Compile the regular expression.

regexec() Execute regular expression matching.

regerror() Provide a mapping from error codes
to error message.

regfree() Free memory allocated by regcomp().

Wide character class

wctype() Define character class.

wctrans Define character mapping.

towctrans Wide-character mapping.

setlocale() Modify and query a program’s locale.

nl_langinfo() Get language and cultural information
of current locale.

localeconv() Get monetary and numeric formatting
information of current locale.

Character
classification

isalpha() Is character alphabetic?

isupper() Is character uppercase?

islower() Is character lowercase?

isdigit() Is character a digit?

isxdigit() Is character a hex digit?

isalnum() Is character alphabetic or digital?

isspace() Is character a space?

42 International Language Environments Guide ♦ February 2000

TABLE 2–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

ispunct() Is character a punctuation mark?

isprint() Is character printable?

iscntrl() Is character a control character?

isascii() Is character an ASCII character?

isgraph() Is character a visible character?

isphonogram() Is wide character a phonogram?

isideogram() Is wide character an ideogram?

isenglish() Is wide character in English alphabet from
a supplementary codeset?

isnumber() Is wide character a digit from a
supplementary codeset?

isspecial() Is special wide character from a
supplementary codeset?

iswalpha() Is wide character alphabetic?

iswupper() Is wide character uppercase?

iswlower() Is wide character lowercase?

iswdigit() Is wide character a digit?

iswxdigit() Is wide character a hex digit?

iswalnum() Is wide character an alphabetic
character or digit?

iswspace() Is wide character a white space?

iswpunct() Is wide character a punctuation mark?

iswprint() Is wide character a printable character?

iswgraph() Is wide character a visible character?

iswcntrl() Is wide character a control character?

iswascii() Is wide character an ASCII character?

toupper() Convert a lowercase character to uppercase.

tolower() Convert an uppercase character to lowercase.

Internationalization Framework in the Solaris 8 Environment 43

TABLE 2–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

towupper() Convert a lowercase wide character
to uppercase.

towlower() Convert an uppercase wide character
to lowercase.

Character collation

strcoll() Collate character strings.

strxfrm() Transform character strings for comparison.

wcscoll() Collate wide character strings.

wcsxfrm() Transform wide character strings for
comparison.

Monetary handling

strfmon() Convert monetary value to string
representation.

Date and time
handling

getdate() Convert user format date and time.

strftime() Convert date and time to string representation.
The %u conversion function conforms to the
X/Open CAE Specification, System Interfaces
and Headers, Issue 4, Version 2. This function
represents a weekday as a decimal number
[1,7], with 1 now representing Monday.

strptime() Date and time conversion.

Multibyte handling

btowc Single-byte to wide-character conversion.

mbrlen() Get number of bytes in character (restartable).

mbsinit() Determine conversion object status.

mbtowc() Convert a character to a wide-character
code (restartable).

mbstowcs() Convert a character string to a wide-character
string (restartable).

Wide characters

44 International Language Environments Guide ♦ February 2000

TABLE 2–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

wcsncat() Concatenate wide-character strings
to length n.

wsdup() Duplicate wide-character string.

wcscmp() Compare wide-character strings.

wcsncmp() Compare wide-character strings to length n.

wcscpy() Copy wide-character strings.

wcsncpy() Copy wide-character strings to length n.

wcschr() Find character in wide-character string.

wcsrchr() Find character in wide-character string
from right.

wcslen() Get length of wide-character string.

wscol() Return display width of wide-character string.

wcsspn() Return span of one wide-character
string in another.

wcscspn() Return span of one wide-character
string not in another.

wcspbrk() Return pointer to one wide-character
string in another.

wcstok() Move token through wide-character string.

wcswcs() Find string in wide-character string.

wcstombs() Convert wide-character string to
multibyte string.

wctomb() Convert wide-character to multibyte character.

wcwidth() Determine number of column positions
of a wide character.

wcswidth() Determine number of column positions
of a wide-character string.

wctob Wide-character to single-byte conversion.

wcrtomb Convert a wide-character code to a
character (restartable).

Internationalization Framework in the Solaris 8 Environment 45

TABLE 2–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

wcsrtombs Interpret wide-character string according
to format.

Wide formatting

wsprintf() Generate wide-character string according
to format.

wsscanf() Formatted input conversion.

fwprintf Print formatted wide-character output.

fwscanf Convert formatted wide-character input.

wprintf Print formatted wide-character output.

wscanf Convert formatted wide-character input.

swprintf Print formatted wide-character output.

swscanf Convert formatted wide-character input.

vfwprintf Wide-character formatted output of a
stdarg argument list.

vswprintf Wide-character formatted output of a
stdarg argument list.

Wide numbers

wcstol() Convert wide-character string to long integer.

wcstoul() Convert wide-character string to
unsigned long integer.

wcstod() Convert wide-character string to
double precision.

Wide strings

wscasecmp() Compare wide-character strings, ignore
case differences.

wsncasecmp() Process code-string operations.

wcsstr Find a wide-character substring.

wmemchr Find a wide-character in memory.

wmemcmp Compare wide-characters in memory.

wmemcpy Copy wide-characters in memory.

46 International Language Environments Guide ♦ February 2000

TABLE 2–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

wmemmove Copy wide-characters in memory with
overlapping areas.

wmemset Set wide-characters in memory.

Wide standard I/O

fgetwc() Get multibyte character from stream,
convert to wide character.

getwchar() Get multibyte character from stdin ,
convert to wide character.

fgetws() Get multibyte string from stream, convert
to wide character.

getws() Get multibyte string from stdin , convert
to wide character.

fputwc() Convert wide character to multibyte
character, puts to stream.

fwide Set stream orientation.

putwchar() Convert wide character to multibyte
character, puts to stdin .

fputws() Convert wide character to multibyte
string, puts to stream.

putws() Convert wide character to multibyte
string, puts to stdin .

ungetwc() Push a wide character back into input stream.

genmsg Utility
The new genmsg utility can be used with the catgets() family of functions to create
internationalized source message catalogs. The utility examines a source program
file for calls to functions in catgets and builds a source message catalog from the
information it finds. For example:
(continued)

Internationalization Framework in the Solaris 8 Environment 47

(Continuation)

% cat example.c

...
/* NOTE: %s is a file name */
printf(catgets(catd, 5, 1, "%s cannot be opened."));

/* NOTE: "Read" is a past participle, not a present

tense verb */
printf(catgets(catd, 5, 1, "Read"));
...
% genmsg -c NOTE example.c

The following file(s) have been created.
new msg file = "example.c.msg"

% cat example.c.msg
$quote "

$set 5
1 "%s cannot be opened"

/* NOTE: %s is a file name */
2 "Read"
/* NOTE: "Read" is a past participle, not a present

tense verb */

In the above example, genmsg is run on the source file example.c , which produces a
source message catalog named example.c.msg . The -c option with the argument
NOTEcauses genmsg to include comments in the catalog. If a comment in the source
program contains the string specified, the comment appears in the message catalog
after the next string extracted from a call to catgets() .

You can use genmsg to number the messages in a message set automatically.

For more information, see the genmsg(1) man page.

The material in this section is used with permission from Creating Worldwide Software: Solaris
International Developer’s Guide, 2nd edition by Bill Tuthill and David A. Smallberg, published
by Sun Microsystems Press/Prentice Hall. (c)1997 Sun Microsystems, Inc.

48 International Language Environments Guide ♦ February 2000

CHAPTER 3

Contents of Solaris 8 Products

Overview of the Solaris 8 Locales
Multiple environments exist within the Solaris operating system for support of
different national languages. Each of these national environments is called a locale,
which considers the language, its characters, fonts, and the customs used to input
and format data.

A locale defines the behavior of a program at run time according to the language and
cultural conventions of a user’s geographical area. Throughout the system, locales
affect the following:

� Encoding and processing of text data

� Identifying the language and encoding of resource files and their text values

� Rendering and layout of text strings

� Interchanging text that is used for interclient text communication

� Encoding and decoding for interclient text communication

� Selecting the input method (that is, which codeset is generated) and the processing
of text data

� Font and icon files that are culturally specific

� Actions and file types

� User Interface Definition (UID) files

� Date and time formats

� Numeric formats

� Monetary formats

� Collation order

49

� Format for informative and diagnostic messages and interactive responses

Summary of the Solaris 8 Locale
All Solaris 8 locale packages are classified into two categories. The first category is
for partial locales, which are the enablers of the locales. With partial locales installed
on the system, users can run applications on the target locales, while the OS/GUI
messages from Solaris are English. All partial locale packages are available on the
Solaris OS CDs.

The second category is for full locale packages. These packages include translations of
software messages, on-line help files, optional fonts, and language specific features.
Full locale packages provide the full set of language features to 9 languages.

� German

� French

� Spanish

� Swedish

� Italian

� Japanese

� Korean

� Simplified Chinese

� Traditional Chinese

Full locale packages are available on the languages CD. Partial locale packages (locale
enablers) have to be installed in order for the full locales to be functional.

Localization Content on Solaris 8 CD-ROMs
Partial locales are selected at the beginning of the install procedure on the OS CD-ROM.
Full locales are automatically installed from the Language CD-ROM according to the
locale selections made at the beginning of the install procedure.

The distribution of locales is shown in the table below.

50 International Language Environments Guide ♦ February 2000

TABLE 3–1 Solaris 8 Installation CD-ROMs

Disk Contents

Solaris OS CD-ROM Solaris 8 Operating System

all partial locales

Language CD-ROM message translations for 9 languages

locale specific utilities

As mentioned, the locales include partial locales. These are based on core locales for
the main language. For example, the fr_CA.ISO8859-1 (French Canadian) is based
on the fr_FR.ISO8859-1 (French) locale. These partial locales utilize the messages
that are delivered into its parent locale (French for fr_CA). If a locale hasn’t been fully
localized, then it might contain only English messages.

Localization Functions in Solaris Interfaces
The OS locale layer provides the basic locale database and functions that are plugged
into the OS system interface at the application’s run time. Applications will access
these OS locale modules through standard APIs as described in Chapter 2.

The X11 locale layer provides the interface to X input method and X output method
such that the X11 applications can allow local text input and display. Fonts are
provided to allow applications to display characters from various languages.

CDE/Motif is built on top of the X11 window system. Hence, it can utilize the X11
locale capability through X11 APIs. Solaris localizations have various locale-specific
configurations for CDE applications, in order to make the desktop functional within
the target locale.

Message translations and on-line help contents are provided throughout different
layers as described in the following diagram.

Figure 3–1 Tabbing Behavior

Contents of Solaris 8 Products 51

Script Enabling for Solaris 8
The Solaris 8 base product provides multiple levels of script enabling, such as
simple ASCII support, Latin/European support, Asian multibyte support, and
Arabic/Hebrew bidirectional support.

52 International Language Environments Guide ♦ February 2000

The interfaces defined within the X/Open specification are capable of supporting a
large set of languages and territories, including the following types of script:

Script Description

Latin Language Americas, Eastern/Western Europe, Turkey

Greek Greece

East Asia Japanese, Korean, and Chinese

Indic Thai

Bidirectional Arabic and Hebrew

Cyrillic Russian

Localization in the Base and Multilingual Solaris
Product
The base Solaris 8 product includes all partial locales, (including multibyte locales)
which provide the functionality needed to input, display, and print text in their target
languages while using English user interfaces.

The multilingual Solaris 8 product is a super set of the base Solaris product. It
additionally includes 9 language translations (user interface and documentation) and
some additional software such as BCP support, optional fonts, and optional utilities
on the Language CD.

The English Unicode locale (en_US.UTF-8) is installed as the default, while other
locales are installed when the locale is selected as install locale during the Solaris
install process. Since the UTF-8 locales require all the languages fonts, basic fonts
supporting all languages are also installed as the default.

The File System Safe Universal Transformation Format, or UTF-8 , is an encoding
defined by X/Open as a multi-byte representation of Unicode. UTF-8 encompasses
almost all of the characters for traditional single-byte and multi-byte locales for
European and Asian languages for Solaris locales.

Additional locale support is packaged according to the geographic region which
they support. During the Solaris install process, you are prompted to choose which
geographic regions require your support. The locale support available after installation
has finished depends on the choices made at this stage.

The following tables lists all the locales supported by the Solaris 8 environment. The
locale names have been updated from the Solaris 7 environment in keeping with
international naming standards.

All of these locales are also present in the base Solaris 8 release.

Contents of Solaris 8 Products 53

TABLE 3–2 Asia

Locale User Interface Territory Codeset Language Support

ja Japanese Japan eucJP Japanese (EUC)

JISX0201-1976

JISX0208-1990

JISX0212-1990

ja_JP.PCK Japanese Japan PCK Japanese (PC kanji)

JISX0201-1976

JISX0208-1990

ja_JP.UTF-8 Japanese Japan UTF-8 Japanese (UTF-8)
Unicode 3.0

ko Korean Korea 5601 Korean (EUC)

KSC 5601-1987

ko.UTF-8 Korean Korea UTF-8 Korean (UTF-8) KSC

Unicode 3.0

th English Thailand TIS620.2533 Thai TIS620.2533

zh Simplified
Chinese

PRC gb2312 Simplified Chinese
(EUC)

GB2312-1980

zh.GBK Simplified
Chinese

PRC GBK Simplified Chinese
(GBK) GBK

zh.UTF-8 Simplified
Chinese

PRC UTF-8 Simplified Chinese
(UTF-8)

Unicode 3.0

zh_TW Traditional
Chinese

Taiwan cns11643 Traditional Chinese
(EUC)

CNS 11643-1992

54 International Language Environments Guide ♦ February 2000

TABLE 3–2 Asia (continued)

Locale User Interface Territory Codeset Language Support

zh_TW.BIG5 Traditional
Chinese

Taiwan BIG5 Traditional Chinese
(BIG5)

BIG5

zh_TW.UTF-8 Traditional
Chinese

Taiwan UTF-8 Traditional Chinese
(UTF-8)

Unicde 3.0

TABLE 3–3 Australasia

Locale User
Interface

Territory Codeset Language Support

en_AU.ISO8859-1 English Australia ISO8859-1 English (Australia)

en_NZ.ISO8859-1 English New Zealand ISO8859-1 English (New Zealand)

TABLE 3–4 Central America

Locale User Interface Territory Codeset Language Support

es_CR.ISO8859-1 Spanish Costa Rica ISO8859-1 Spanish (Costa Rica)

es_GT.ISO8859-1 Spanish Guatemala ISO8859-1 Spanish
(Guatemala)

es_MX.ISO8859-1 Spanish Mexico ISO8859-1 Spanish (Mexico)

es_NI.ISO8859-1 Spanish Nicaragua ISO8859-1 Spanish (Nicaragua)

es_PA.ISO8859-1 Spanish Panama ISO8859-1 Spanish (Panama)

es_SV.ISO8859-1 Spanish El Salvador ISO8859-1 Spanish (El
Salvador)

Contents of Solaris 8 Products 55

TABLE 3–5 Central Europe

Locale User
Interface

Territory Codeset Language Support

cs_CZ.ISO8859-2 English Czech
Republic

ISO8859-2 Czech (Czech Republic)

de_AT.ISO8859-1 German Austria ISO8859-1 German (Austria)

de_AT.ISO8859-15 German Austria ISO8859-15 German (Austria,
ISO8859-15 - Euro)

de_CH.ISO8859-1 German Switzerland ISO8859-1 German (Switzerland)

de_DE.UTF-8 German Germany UTF-8 German (Germany,
Unicode 3.0)

de_DE.ISO8859-1 German Germany ISO8859-1 German (Germany)

de_DE.ISO8859-15 German Germany ISO8859-15 German (Germany,
ISO8859-15 - Euro)

fr_CH.ISO8859-1 French Switzerland ISO8859-1 German (Switzerland)

hu_HU.ISO8859-2 English Hungary ISO8859-2 Hungarian (Hungary)

pl_PL.ISO8859-2 English Poland ISO8859-2 Polish (Poland)

sk_SK.ISO8859-2 English Slovakia ISO8859-2 Slovak (Slovakia)

TABLE 3–6 Eastern Europe

Locale User Interface Territory Codeset Language Support

bg_BG.ISO8859-5 English Bulgaria ISO8859-5 Bulgarian (Bulgaria)

et_EE.ISO8859-15 English Estonia ISO8859-15 Estonian (Estonia)

hr_HR.ISO8859-2 English Croatia ISO8859-2 Croatian (Croatia)

lt_LT.ISO8859-13 English Lithuania ISO8859-13 Lithuanian
(Lithuania)

lv_LV.ISO8859-13 English Latvia ISO8859-13 Latvian (Latvia)

mk_MK.ISO8859-5 English Macedonia ISO8859-5 Macedonian
(Macedonia)

ro_RO.ISO8859-2 English Romania ISO8859-2 Romanian (Romania)

56 International Language Environments Guide ♦ February 2000

TABLE 3–6 Eastern Europe (continued)

Locale User Interface Territory Codeset Language Support

ru_RU.KOI8-R English Russia KOI8-R Russian (Russia,
KOI8-R)

ru_RU.ANSI1251 English Russia ansi-1251 Russian (Russia,
ANSI 1251)

ru_RU.ISO8859-5 English Russia ISO8859-5 Russia (Russia)

sh_BA.ISO8859-2@bosniaEnglish Bosnia ISO8859-2 Bosnian (Bosnia)

sl_SI.ISO8859-2 English Slovenia ISO8859-2 Slovenian (Slovenia)

sq_AL.ISO8859-2 English Albania ISO8859-2 Albanian (Albania)

sr_YU.ISO8859-5 English Serbia ISO8859-5 Serbian (Serbia)

tr_TR.ISO8859-9 English Turkey ISO8859-9 Turkish (Turkey)

TABLE 3–7 Middle East

Locale User Interface Territory Codeset Language Support

he_IL.ISO8859-6 English Israel ISO8859-6 Hebrew (Israel)

TABLE 3–8 North Africa

Locale User Interface Territory Codeset Language Support

ar_EY.ISO8859-1 English Egypt ISO8859-6 Arabic (Egypt)

Contents of Solaris 8 Products 57

TABLE 3–9 North America

Locale User
Interface

Territory Codeset Language Support

en_CA.ISO8859-1 English Canada ISO8859-1 English (Canada)

en_US.ISO8859-1 English USA ISO8859-1 English (U.S.A.)

en_US.ISO8859-15 English USA ISO8859-15 English (U.S.A., ISO8859-15
- Euro)

en_US.UTF-8 English USA UTF-8 English (U.S.A., Unicode
3.0)

fr_CA.ISO8859-1 French Canada ISO8859-1 French (Canada)

TABLE 3–10 North Europe

Locale User
Interface

Territory Codeset Language Support

da_DK.ISO8859–1 English Denmark ISO8859–1 Danish (Denmark)

da_DK.ISO8859–15 English Denmark ISO8859–15 Danish (Denmark, ISO8859–15
Euro)

fi_FI.ISO8859–1 English Finland ISO8859–1 Finnish (Finland)

fi_FI.ISO8859–15 English Finland ISO8859–15 Finnish (Finland ISO8859–15 Euro)

is_IS.ISO8859–1 English Iceland ISO8859–1 Icelandic (Iceland)

no_NO.ISO8859–1@bokmalEnglish Norway ISO8859–1 Norwegian (Norway — Bokmal)

no_NO.ISO8859–1@nyorskEnglish Norway ISO8859–1 Norwegian (Norway — Nynorsk)

sv_SE.ISO8859–1 Swedish Sweden ISO8859–1 Swedish (Sweden)

sv_SE.ISO8859–15 Swedish Sweden ISO8859–15 Swedish (Sweden, ISO8859–15
Euro)

sv_SE..UTF-8 Swedish Sweden UTF-8 Swedish (Sweden, Unicode 3.0)

58 International Language Environments Guide ♦ February 2000

TABLE 3–11 South America

Locale User Interface Territory Codeset Language Support

es_AR.ISO8859-1 Spanish Argentina ISO8859-1 Spanish (Argentina)

es_BO.ISO8859-1 Spanish Bolivia ISO8859-1 Spanish (Bolivia)

es_CL.ISO8859-1 Spanish Chilie ISO8859-1 Spanish (Chile)

es_CO.ISO8859-1 Spanish Colombia ISO8859-1 Spanish (Colombia)

es_EC.ISO8859-1 Spanish Ecuador ISO8859-1 Spanish (Ecuador)

es_PE.ISO8859-1 Spanish Peru ISO8859-1 Spanish (Peru)

es_PY.ISO8859-1 Spanish Paraguay ISO8859-1 Spanish (Paraguay)

es_UY.ISO8859-1 Spanish Uruguay ISO8859-1 Spanish (Uruguay)

es_VE.ISO8859-1 Spanish Venezuela ISO8859-1 Spanish (Venezuela)

pt_BR.ISO8859-1 English Brazil ISO8859-1 Portuguese (Brazil)

TABLE 3–12 South Europe

Locale User
Interface

Territory Codeset Language Support

el_GR.ISO8859-7 English Greece ISO8859-7 Greek (Greece)

es_ES.ISO8859-1 Spanish Spain ISO8859-1 Spanish (Spain)

es_ES.ISO8859-15 Spanish Spain ISO8859-15 Spanish (Spain,
ISO8859-15 - Euro)

es_ES.UTF-8 Spanish Spain UTF-8 Spanish (Spain, Unicode
3.0)

it_IT.ISO8859-1 Italian Italy ISO8859-1 Italian (Italy)

it_IT.ISO8859-15 Italian Italy ISO8859-15 Italian (Italy, ISO8859-15
- Euro)

it_IT.UTF-8 Italian Italy UTF-8 Italian (Italy, Unicode 3.0)

pt_PT.ISO8859-1 English Portugal ISO8859-1 Portuguese (Portugal)

pt_PT.ISO8859-15 English Portugal ISO8859-15 Portuguese Portugal,
ISO8859-15 - Euro)

Contents of Solaris 8 Products 59

TABLE 3–13 Western Europe

Locale User
Interface

Territory Codeset Language Support

en_GB.ISO8859-1 English Great
Britain

ISO8859-1 English (Great Britain)

en_GB.ISO8859-15 English Great
Britain

ISO8859-15 English (Great Britain,
ISO8859-15 - Euro)

en_IE.ISO8859-1 English Ireland ISO8859-1 English (Ireland)

en_IE.ISO8859-15 English Ireland ISO8859-15 English (Ireland,
ISO8859-15 - Euro)

fr_BE.ISO8859-1 French Belgium-WalloonISO8859-1 French
(Belgium-Walloon)

fr_BE.ISO8859-15 French Belgium-WallonISO8859-15 French
(Belgium-Walloon,
ISO8859-15 - Euro)

fr_FR.ISO8859-1 French France ISO8859-1 French (France)

fr_FR.ISO8859-15 French France ISO8859-15 French (France,
ISO8859-15 - Euro)

fr_FR.UTF-8 French France UTF-8 French (France, Unicode
3.0)

nl_BE.ISO8859-1 English Belgium-FlemishISO8859-1 Dutch (Belgium-Flemish)

nl_BE.ISO8859-15 English Belgium-FlemishISO8859-15 Dutch (Belgium-Flemish,
ISO8859-15 - Euro)

nl_NL.ISO8859-1 English Netherlands ISO8859-1 Dutch (Netherlands)

nl_NL.ISO8859-15 English Netherlands ISO8859-15 Dutch (Netherlands,
ISO8859-15 - Euro)

Locale naming conventions are as follows:

language[_territory][.codeset]

where language is from ISO639 and territory is from ISO3166.

All Solaris product locales preserve the Portable Character Set characters with
US-ASCII code values.

A single locale can have more than one locale name. For example, ja_JP.eucJP is the
same as ja . Also, fr_FR.ISO8859–1 is the same as fr .

60 International Language Environments Guide ♦ February 2000

5601 signifies the Korean EUC codeset containing KS C 5636 and KS C 5601–1987.

eucJP signifies the Japanese EUC codeset. It contains JIS X0201–1976, JIS X0208–1983,
and JIS X0212–1990.

gb2312 signifies Simplified Chinese EUC codeset, which contains GV 1988–80 and
GB 2312–80.

PCK is also known as Shift JIS (SJIS).

UTF-8 is the UTF-8 of ISO/IEC 10646–1 containing various approved amendments
and Unicode 3.0

GBK signifies GB extensions. This includes all GB 2312–80 characters and all Unified
Han characters of ISO/IEC 10646–1, as well as Japanese Hiragana and Katagana
characters. It also includes many characters of Chinese, Japanese, and Korean character
sets and of ISO/IEC 10646–1.

European Localization
Solaris 8 software supports the euro currency. Local currency symbols are still available
for backward compatibility.

TABLE 3–14 User Locales To Support the Euro Currency

Region Locale Name ISO Codeset

Austria de_AT.ISO8859–15 8859-15

Belgium
(French)

fr_BE.ISO8859–15 8859-15

Belgium (Dutch) nl_BE.ISO8859–15 8859-15

Denmark da_DK.ISO8859–15 8859-15

Finland fi_FI.ISO8859–15 8859-15

France fr_FR.ISO8859–15 8859-15

Germany de_DE.ISO8859–15 8859-15

Ireland en_IE.ISO8859–15 8859-15

Italy it_IT.ISO8859–15 8859-15

Netherlands nl_NL.ISO8859–15 8859-15

Portugal pt_PT.ISO8859–15 8859-15

Contents of Solaris 8 Products 61

TABLE 3–14 User Locales To Support the Euro Currency (continued)

Region Locale Name ISO Codeset

Spain es_ES.ISO8859–15 8859-15

Sweden sv_SE.ISO8859–15 8859-15

Great Britain en_GB.ISO8859–15 8859-15

Europe en_EU 8859-15

U.S.A. en_US 8859-15

Multiple Key Compose Sequences for Locales
The Solaris 8 operating environment supports “Compose Sequences” to create the
diacritical marks used in writing the scripts covered in the following codesets:

� ISO 8859-2 (Latin2) Czech, Polish, and Hungarian

� ISO 8859-13 (Latin7) Latvian and Lithuanian

� ISO 8859-9 (Latin5) Turkish

These are the diacritic characters that can be created with the following keys and
the Compose key.

� diaeresis = citation (“) (for example, Compose + A + “ = Ä)

� caron = v (for example, Compose + E + v = E caron)

� breve = u

� ogonek = a

� doubleacute = > greater

� degree symbol = O + 0 (o plus zero)

� currency symbol = 0 + x (zero plus x)

Keyboard Support in the Solaris 8 Product
The following locales have keyboard layouts for SPARC (X-server) and IA (Xserver
PLUS console):

� Czech

� Hungary

� Poland

� Latvia

� Lithuania

� Russia

62 International Language Environments Guide ♦ February 2000

� Greece

� Turkey

Changing Between Keyboards on SPARC
Support for changing layouts in the Solaris product is achieved only by using the
dip-switch settings under the keyboard. The keyboard layout is determined by the dip
switches. A list of keyboard layouts and corresponding defined dip-switch settings is
at /usr/openwin/share/etc/keytables/keytable.map .

The following is a layout table for a type 4 keyboard (1=switch up, 0=switch down).

TABLE 3–15 Layouts for Type 4 Keyboards

Dip Switch Keyboard Setting in Binary

51 Hungary5.kt 110011

52 Poland5.kt 110100

53 Czech5.k 110101

54 Russia5.kt 110110

55 Latvia5.k 110111

56 Turkey5.kt 111000

57 Greece5.kt 111001

58 Lithuania5.kt 111011

Changing the layout from U.S./GB to Czech is done by changing the dip-switch
settings to the setting defined in the file. The file defines the switches in hex. This
needs to be converted into binary and then re-booted.

Russian and Greek keyboard support can be toggled on and off using the SPARC
Compose key (Ctrl+Shift+F1 on IA).

Changing Between Keyboards on IA
On IA, a keyboard is selected during the kdmconfig part of install. To change this at
any time after installation, use kdmconfig :

1. Exit CDE/OW to the command line.

2. Type kdmconfig -u (kdmconfig unconfigure).

3. Type kdmconfig to run the program.

4. Follow instructions to get a keyboard layout.

Contents of Solaris 8 Products 63

There are no ‘utilities’ for either SPARC or IA (apart from standard UNIX tools such as
xmodmap, pcmapkeys) bundled into Solaris 8 for switching keyboards.

Codesets for IA
The default codeset on the Solaris system for IA is ISO-8859-1. The IBM DOS 437
codeset is provided as an option in text mode. That is, if you choose to download
IBM DOS 437 codeset by typing:

loadfont -c 437
pcmapkeys -f /usr/share/lib/keyboards/437/en_US

Nonstandard U.S. date, time, currency, numbers, units, and collation are not supported.
Non-English message and text presentation is not supported, nor is multibyte character
support. Therefore, non-Microsoft Windows users should use the IBM DOS 437 codeset
only in the default C locale.

� You must be in the text mode to download the IBM codeset, not the graphics
mode.

� If you are not using the standard U.S. PC keyboard, replace en_US with the
keyboard map related to your keyboard.

� To download the default codeset in text mode, type:

loadfont -c 8859
pcmapkeys -f /usr/share/lib/keyboards/8859/en_US

� See the loadfont and pcmapkeys man pages.

All of the locales support character input and output. There is also iconv support for
many of the major codesets. (For more on iconv , see iconv (1).

TABLE 3–16 iconv Support

Code Symbol Target Code Symbol Language Support

ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2

ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2

ISO 8859-2 iso2 Mazovia maz Mazovia

ISO 8859-2 iso2 DHN dhn Dom Handlowy Nauki

MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2

MS 1250 win2 MS 852 dos2 MS-DOS Latin 2

64 International Language Environments Guide ♦ February 2000

TABLE 3–16 iconv Support (continued)

Code Symbol Target Code Symbol Language Support

MS 1250 win2 Mazovia maz Mazovia

MS 1250 win2 DHN dhn Dom Handlowy Naduki

MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2

MS 852 dos2 MS 1250 win2 Windows Latin 2

MS 852 dos2 Mazovia maz Mazovia

MS 852 dos2 DHN dhn Dom Handlowy Nauki

Mazovia maz ISO 8859-2 iso2 ISO Latin 2

Mazovia maz MS 1250 win2 Windows Latin 2

Mazovia maz MS 852 dos2 MS-DOS Latin 2

Mazovia maz DHN dhn Dom Handlowy Nauki

DHN dhn ISO 8859-2 iso2 ISO Latin 2

DHN dhn MS 1250 win2 Windows Latin 2

DHN dhn MS 852 dos2 MS-DOS Latin 2

DHN dhn Mazovia maz Mazovia

ISO 8859-5 iso5 KOI8-R koi8 KOI8-R

ISO 8859-5 iso5 PC Cyrillic alt Alternative PC Cyrillic

ISO 8859-5 iso5 MS 1251 win5 Windows Cyrillic

ISO 8859-5 iso5 Mac Cyrillic mac Macintosh Cyrillic

OKI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic

KOI8-R koi8 MS 1251 win5 Windows Cyrillic

KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic

PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic

PC Cyrillic alt KOI8-R koi8 KOI8-R

PC Cyrillic alt MS 1251 win5 Windows Cyrillic

PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic

Contents of Solaris 8 Products 65

TABLE 3–16 iconv Support (continued)

Code Symbol Target Code Symbol Language Support

MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

MS 1251 win5 KOI8-R koi8 KOI8-R

MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic

MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic

Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic

Mac Cyrillic mac KOI8-R koi8 KOI8-R

Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic

Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

Font Formats

Location of Fonts on the System
Fonts to support European locales are available in various formats, such as bitmaps,
Postscript™ Type-1, and TrueType. The actual availability varies per character set.

Fonts are located at:

/usr/openwin/lib/locale/iso_8859_x/X11/fonts/

Adding and Removing Font Packages
To manually add font packages to the system:

1. Always add the required font packages before the optional font packages.

2. Remove the optional font packages first, when you are removing font packages
from the system.

You must follow this procedure to add or remove fonts. The class action scripts in the
font packages depend on this to function properly. The optional font packages contain
scripts that concatenate information onto the required font packages that are already
resident on the system. If the required font packages are not there, problems can occur.

66 International Language Environments Guide ♦ February 2000

Summary of Asian Locales
The following table shows the Asian supported locales.

TABLE 3–17 Summary of Asian Locales

CD Set Locale Name Description
Supported
Character Set

Korean ko

ko.UTF-8

Korean (EUC)

Korean (UTF-8)

KSC 5601-1987

KSC 5601–1992

Simplified
Chinese

zh

zh GBK

zh.UTF-8

Simplified Chinese
(EUC)

Simplified Chinese
(GBK)

Simplified Chinese
(UTF-8)

GB 2312-1980

GBK

Unicode 3.0

Traditional
Chinese

zh_TW

zh_TW.BIG5

zh_TW.UTF-8

Traditional Chinese
(EUC)

Traditional Chinese
(BIG5)

Traditional Chinese
(UTF-8)

CNS 11643 –1992

BIG5

Unicode 3.0

Japanese ja

ja_JP.PCK

ja_JP.UTF-8

Japanese (EUC)

Japanese (PCK)1

Japanese (UTF-8)

JIS x 0201-1976

JIS x 0208-1990

JIS x 0212-1990

VDC 2

UDC 3

1. ja_JP.PCK (doesn’t support JIS x 0212–1990)
2. VDC: Vendor Defined Character. VDCs occupy unused (reserved) code points of JIS X 0208–1990 or JIS X 0212–1990
3. UDC: User Defined Character. UDCs occupy unused (reserved) code points of JIS X 0208–1990 or JIS X 0212–1990
(also unused for VDCs).

Contents of Solaris 8 Products 67

Simplified Chinese Localization
Simplified Chinese in the Solaris 8 environment provides three locales: zh , zh.UTF-8 ,
and zh.GBK . In the zh locale, the EUC scheme is used to encode GB2312–80. The
zh.GBK locale supports the GBK codeset, which is a superset of GB2312–80.

Simplified Chinese is used mostly in the People’s Republic of China (PRC) and
in Singapore.

The following input methods are supported for the zh locale:

� New QuanPin

� New ShuangPin

� Quanpy

� Location

� PinYin

� Stroke

� Golden

� Intelligent Pinyin

� Simplified Chinese Symbol

The following input methods are supported for both the zh.GBK and the zh.UTF-8
locales:

� New QuanPin

� New ShuangPin

� Quanpy

� GBK Code

� Japanese

� Hanja

� Zhuyin

� Unicode

The following table shows the TrueType fonts for the zh locale.

68 International Language Environments Guide ♦ February 2000

TABLE 3–18 Solaris 8 TrueType Fonts for the zh Locale

Full Family Name Subfamily Format Vendor Encoding

Fangsong R TrueType Hanyi GB2312.1980

Hei R TrueType Monotype GB2312.1980

Kai R TrueType Monotype GB2312.1980

Song R TrueType Monotype GB2312.1980

The following table shows the Bitmap Fonts for the zh Locale.

TABLE 3–19 Solaris 8 Bitmap Fonts for the zh Locale

Full Family Name Subfamily Format Encoding

Song B PCF (14,16) GB2312.1980

Song R PCF (12,14,16,20,24) GB2312.1980

The following table shows the TrueType fonts for the zh.GBK Locale.

TABLE 3–20 TrueType Fonts for the zh.GBK Locale

Full Family
Name

Subfamily Format Vendor Encoding

Fansong R TrueType Zhongyi GBK

Hei R TrueType Zhongyi GBK

Kai R TrueType Zhongyi GBK

Song R TrueType Zhongyi GBK

The following table shows the Bitmap Fonts for the zh.GBK Locale.

TABLE 3–21 Bitmap Fonts for the zh.GBK Locale

Full Family Name Subfamily Format Encoding

Song R PCF (12,14,16,20,24) GBK

The following table shows the supported codeset conversions for Simplified Chinese.

Contents of Solaris 8 Products 69

TABLE 3–22 Codeset Conversions for Simplified Chinese

Code Symbol Target Code Symbol

GB2312-80 zh_CN.euc ISO 2022-7 zh_CN.iso2022-7

ISO 2022-7 zh_CN.iso2022-7 GB2312-80 zh_CN.euc

GB2312-80 zh_CN.euc ISO 2022-CN zh_CN.iso2022-CN

HZ-GB-2312 HZ-GB-2312 GB2312–80 zh_CN.euc

HZ-GB-2312 HZ-GB-2312 GBK zh_CN.gbk

HZ-GB-2312 HZ-GB-2312 UTF-8 UTF-8

ISO-2022-CN zh_CN.iso2022-CN GB2312-80 zh_CN.euc

UTF-8 UTF-8 GB2312-80 zh_CN.euc

GB2312-80 zh_CN.euc UTF-8 UTF-8

zh.GBK zh_CN.gbk ISO2022-CN zh_CN.iso2022-CN

ISO2022-CN zh_CN.iso2022-CN zh.GBK zh_CN.gbk

zh.GBK zh_CN.gbk Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 zh.GBK zh_CN.gbk

GB2312-80 zh_CN.euc Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 GB2312-80 zh_CN.euc

UTF-8 UTF-8 zh.GBK zh_CN.gbk

zh.GBK zh_CN.gbk UTF-8 UTF-8

UTF-8 UTF-8 ISO2022-CN zh_CN.iso2022-CN

ISO2022-CN zh_CN.iso2022-CN UTF-8 UTF-8

Traditional Chinese Localization
Traditional Chinese in the Solaris 8 product provides three locales: zh_TW,
zh_TW.UTF-8 and zh_TW.BIG5 . In the zh_TW locale, the EUC scheme is used to
encode CNS 11643.1992 codeset. The zh_TW.BIG5 locale supports the Big-5 codeset.
The zh_TW.UTF-8 locale supports Unicode 3.0

70 International Language Environments Guide ♦ February 2000

Traditional Chinese is used mostly in Taiwan and Hong Kong, and supports the
following input methods:

� Chuyin

� I-Tien

� Telecode

� TsangChieh

� CheinI

� NeiMa

� ChuangHsing

� Array

� BoShiaMy

� DaYi

The following table shows Traditional Chinese Truetype Fonts for the zh_TW
Locales.

TABLE 3–23 Traditional Chinese Truetype Fonts for the zh_TWLocales

Full Family
Name

Subfamily Format Vendor Encoding

Hei R Truetype Hanyi CNS11643.1992

Kai R Truetype Hanyi CNS11643.1992

Ming R Truetype Hanyi CNS11643.1992

The following table shows the Traditional Chinese BitMap Fonts for the zh_TWLocales.

TABLE 3–24 Traditional Chinese BitMap Fonts for the zh_TWLocales

Full Family Name Subfamily Format Encoding

Ming R PCF (12,14,16,20,24) CNS11643.1992

The following table shows the Traditional Chinese TrueType Fonts for the zh_TW.BIG5
Locales.

Contents of Solaris 8 Products 71

TABLE 3–25 Traditional Chinese TrueType Fonts for the zh_TW.BIG5 Locales

Full Family
Name

Subfamily Format Vendor Encoding

Hei R TrueType Hanyi Big5

Kai R TrueType Hanyi Big5

Ming R TrueType Hanyi Big5

The following table shows the Traditional Chinese BitMap Fonts for the zh_TW.BIG5
Locales.

TABLE 3–26 Traditional Chinese BitMap Fonts for the zh_TW.BIG5 Locales

Full Family Name Subfamily Format Encoding

Ming R PCF (12,14,16,20,24) Big5

The following table shows the supported codeset conversions for Traditional Chinese.

TABLE 3–27 Codeset Conversions for Traditional Chinese

Code Symbol Target Code Symbol

CNS 11643 zh_TW-euc Big-5 zh_TW-Big5

CNS 11643 zh_TW-euc ISO 2022-7 zh_TW-iso2022-7

Big-5 zh_TW-Big5 CNS 11643 zh_TW-euc

Big-5 zh_TW-Big5 ISO 2022-7 zh_TW-iso2022-7

ISO 2022-7 zh_TW-iso2022-7 CNS 11643 zh_TW-euc

ISO 2022-7 zh_TW-iso2022-7 Big-5 zh_TW-Big5

CNS 11643 zh_TW-eu ISO 2022-CN-EXT zh_TW-iso2022-CN-EXT

ISO
2022-CN-EXT

zh_TW-iso2022-CN-EXT CNS 11643 zh_TW-euc

Big-5 zh_TW-Big5 ISO 2022-CN zh_TW-iso2022-CN

ISO 2022-CN zh_TW-iso2022-CN Big-5 zh_TW-Big5

UTF-8 UTF-8 CNS 11643 zh_TW-euc

CNS 11643 zh_TW-euc UTF-8 UTF-8

72 International Language Environments Guide ♦ February 2000

TABLE 3–27 Codeset Conversions for Traditional Chinese (continued)

Code Symbol Target Code Symbol

UTF-8 UTF-8 Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 UTF-8 UTF-8

UTF-8 UTF-8 ISO 2022-7 zh_TW-iso2022-7

ISO 2022-7 zh_TW-iso2022-7 UTF-8 UTF-8

ISO
2022-CN-EXT

zh_TW-iso2022-CN-EX Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 ISO 2022-CN-EXT zh_TW-iso2022-CN-EXT

Japanese Localization
This section describes Japanese locale-specific information.

Japanese Locales
Three Japanese locales, which support different character encoding, are available in
the Solaris 8 environment. The ja , (or ja_JP.eucJP) locale is based on the Japanese
EUC. The ja_JP.PCK locale is based on PC-Kanji code (known as Shift-JIS) and
the ja_JP.UTF-8 is based on UTF-8 .

See eucJP(5) for a map between Japanese EUC and the character set. See PCK(5) for the
map between PCK and the character set.

Japanese Character Set
Supported Japanese character sets are:

� JISX0201–1976

� JISX0208–1990

� JISX0212–1990

JISX0212–1990 is not supported in the ja_JP.PCK locale.

Vendor Defined Character (VDC) and User defined Character (UDC) are also
supported. VDCs occupy unused (reserved) code points of JISX0208–1990 or

Contents of Solaris 8 Products 73

JISX0212–1990. UDCs occupy the same code points as VDCs except the code points
are for VDCs.

Japanese Font
Three Japanese font formats are supported. They are: Bitmap, TrueType and Type1.
The Japanese Type1 font includes only JIS X0212 for printing. Type1 font is also used
by UDC.

Japanese Bitmap Fonts are shown below.

TABLE 3–28 Japanese Bitmap Fonts

Full Family Name Subfamily Format Vendor Encoding

gothic R, B PCF(12,14,16,20,24) JISX0208.1983,

JISX0201.1976

minchou R PCF(12,14,16,20,24) JISX0208.1983,

JISX0201.1976

hg gothic b R PCF(12,14,16,18,20,24) RICOH JISX0208.1983,
JISX0201.1976

hg mincho l R PCF(12,14,16,18,20,2) RICOH JISX0208.1983,
JISX0201.1976

heiseimin R PCF(12,14,16,18,20,24) RICOH JISX0212.1990

Japanese TrueType Fonts are show below.

TABLE 3–29 Japanese TrueType Fonts

Full Family Name Subfamily Format Vendor Encoding

hg gothic b R TrueType RICOH JISX0208.1983,
JISX0201.1976

hg mincho l R TrueType RICOH JISX0208.1983,
JISX0201.1976

heiseimin R TrueType RICOH JISX0212.1990

74 International Language Environments Guide ♦ February 2000

Japanese Input Systems
Four Japanese input systems, ATOK12, ATOK8, Wnn6, and cs00 are available in the
Solaris 8 environment for all Japanese locales. It is possible to switch input systems
from the workspace menu. The only Japanese input system available on the Base
Solaris is cs00.

How to Input Japanese Strings by using cs00
When turning Kana-Kanji conversion mode ON, keyboard input is grabbed by Htt (X
Input Method Server) and sent to the cs00 daemon through the XCI (xci(7)) interface.
The cs00 deamon converts the received strings to Japanese strings by using dictionary
and returns the result to the program which has a keyboard focus now. See cs00(1M)
for more details.

CUI based dictionary maintenance utilities are available. See udicm(1) and mdicm(1)
for details.

GUI based maintenance utilities, sdtudicm(1) or udicmtool(1), are not available in the base
Solaris product.

The basic Japanese input procedure is as follows:

1. Turning Japanese conversion mode on/off: Control + Space

2. Enter Kana character text: ex: Type “nihon”

3. Conversion to Kanji character text: Control + N

4. Commit the Kanji character text: Control + K

The following table shows cs00 operation list.

TABLE 3–30 cs00 Operation List

Function Operation

Conversion mode on/off Control + Space

Control + @

Kana/Kanji conversion next Control + N

post Control + P

lookup Control + W

Commit Control + K

Move focus forward Control + F

back Control + B

Contents of Solaris 8 Products 75

TABLE 3–30 cs00 Operation List (continued)

Function Operation

Focus scope increase Control + I

decrease Control + U

Delete (1 character) Control + H

Delete or backspace

Delete (all characters) Control +] and Control + U

Full/half Katanka => Hiragana Control +] and Control + O

Hiragana/half Katakana = > full Katakana Control +] and Control + Y

Full Katakana/Hiragana => half Katakana Control +] and Control + Z

Half Roma/Num = > full Roma/Num Control +] and Control + T

Full Roma/Num = > half Roma/Num Control +] and Control + R

Learning Mode on/off Control +] and Control + L

Input Mode Switch:
� Hiragana mode
� Full Katakana mode
� Full Roma/Num mode
� Half Katakana mode
� Half Roma/Num mode
� Kuten code input mode
� Bushu input mode

Control + O

Control + Y

Control + T

Control + Z

Control + R

Control + Q

Control + V

Terminal Setting for Japanese Terminals
Using Japanese locales on a character based terminal (TTY) requires that you use
terminal settings to make line editing work correctly.

� If your terminal is a CDE Terminal emulator (dtterm), use stty(1) with
argument −defeucw , in any Japanese locale (ja , ja_JP.PCK , or ja_JP.UTF-8).
An example in locale ja is:

% setenv LANG ja
% stty defeucw

� If your terminal is not a CDE Terminal emulator, but the codeset of your terminal
is the same as that of the current locale, use this setting, too.

76 International Language Environments Guide ♦ February 2000

� If your terminal’s codeset doesn’t match that of the current locale, use
setterm(1) to enable code conversion. For example, if you are in locale ja but
your terminal requires PCK (ShiftJIS code), specify:

% setenv LANG ja
% setterm -x PCK

See setterm(1) for details.

Japanese iconv Module
Several Japanese codeset conversions are supported with iconv(1) and iconv(3) .
See the iconv_ja(5) man page for details.

The following table shows iconv Conversion Support.

TABLE 3–31 iconv Conversion Support

Source Code Target Code

eucJP JIS7

eucJP SJIS

eucJP UTF-8

eucJP jis

eucJP ibmj

SJIS eucJP

SJIS ISO-2022-JP

SJIS UTF-8

SJIS jis

SJIS ibmj

PCK eucJP

PCK UTF-8

PCK ISO-2022-JP

PCK jis

PCK ibmj

ISO-2022-JP eucJP

Contents of Solaris 8 Products 77

TABLE 3–31 iconv Conversion Support (continued)

Source Code Target Code

ISO-2022-JP PCK

ISO-2022-JP SJIS

UTF-8 eucJP

UTF-8 SJIS

UTF-8 PCK

JIS7 eucJP

jis eucJP

jis PCK

jis SJIS

ibmj eucJP

ibmj PCK

UTF-8 ISO-2022-JP

ISO-2022-JP UTF-8

eucJP UTF-8-Java

UTF-8-Java eucJP

PCK UTF-8-Java

UTF-8-Java PCK

eucJP ISO-2022-JP.RFC1468

PCK ISO-2022-JP.RFC1468

UTF-8 ISO-2022-JP.RFC1468
eucJP ibmj-EBCDIK

ibmj-EBCDIK eucJP

PCK ibmj-EBCDIK

ibmj-EBCDIK PCK

Japanese Specific Printer Support
The Japanese Solaris 8 product supports the following Japanese-specific printers:

78 International Language Environments Guide ♦ February 2000

� Epson VP-5085 (based on ESC/P)

� NEC PC-PR201 (based on 201PL)

� Canon LASERSHOT (based on LIPS)

� Japanese PostScript Printer

User Defined Character Support
To handle UDC, sdtudctool is available. Sdtudctool handles both outline (Type1)
and bitmap (PCF) fonts. Some utilities are also available to migrate the UDC fonts that
were created by old utilities in prior releases, such as fontedit , type3creator ,
and fontmanager .

Not Included on the Base Solaris Product
The following components are included in the multilingual Solaris product (on
Languages CD), but not included in the base Solaris product.

� All translations such as message , help , manpage and document

� Japanese BCP support

� ATOK12, ATOK8, and Wnn6 Japanese input systems

� GUI utilities of the cs00 Japanese input system

� Mincho and Bold typeface fonts

� Japanese-specific dumb printer support

� Sdtudctool for UDC

� Legacy Japanese libraries (for example, libjapanese.a or libmle.a)

� Some Japanese specific utilities (e.g. kanji , or vled)

Korean Localization
In December 1995, the Korean government announced a standard Korean codeset, KS
C 5700, which is based on ISO 10646-1/Unicode 2.0.

The ISO-10646 character set uses 2 (UCS-2); Universal Character Set (two-byte form) or
4 (UCS-4) bytes to represent each character.

The ISO-10646 character set cannot be used directly on IBM-PC-based operating
systems. For example, the kernel and many other modules of the Solaris operating
environment interpret certain byte values as control instructions, such as a null
character (0x00) in any string. The ISO-10646 character set can be encoded with any
bit combinations in the first or subsequent bytes. The ISO-10646 characters cannot
be freely transmitted through the Solaris system with these limitations. In order to

Contents of Solaris 8 Products 79

establish a migration path, the ISO-10646 character set defines the UCS Transformation
Format (UTF), which recodes the ISO-10646 characters without using C0 controls
(0x00..0x1F), C1 controls (0x80..0x9F), space (0x20), and DEL (0x7F).

The ko.UTF-8 is a Solaris locale to support KSC-5700, the Korean standard codeset.
It supports all characters in the previous KSC 5601 and all 11,172 Korean characters.
Korean UTF-8 supports the Korean language-related ISO-10646 characters and fonts.
Because ISO-10646 covers all characters in the world, all of the various input methods
and fonts are supplied so that you can input and output any character in any language.
Before Universal UTF/UCS becomes available, Korean UTF-8 supports the ISO-10646
code subset that is related to Korean characters as well as all other characters in the
previous Korean standard codeset, and Extended ASCII.

In the ko locale, the EUC scheme is used to encode KSC 5601-1987. The ko.UTF-8
locale supports the KSC 5700-1995/Unicode 2.0 codeset, which is a super set of
KSC 5601-1987. These two locales look the same to the end user, but the internal
character encoding is different. The Korean Solaris product supports the following
Input Methods:

For the ko locale:

� Hangul 2–BeolSik (1 set of consonants and 1 set of vowels)

� Hangul-Hanja conversion

� Special character

� Hexadecimal code

For the ko.UTF-8 locale:

� Hangul 2–BeolSik (1 set of consonants and 1 set of vowels)

� Hangul-Hanja conversion

� Special character

� Hexadecimal code

TABLE 3–32 Solaris 8 Korean CID/Type 1 Fonts for the ko Locale

Full Family Name Subfamily Format Vendor Encoding

Gothic R CID/Type 1 Hanyang Adobe-Korean

Graphic R CID/Type 1 Hanyang Adobe-Korean

Haeso R CID/Type 1 Hanyang Adobe-Korean

Kodig R CID/Type 1 Hanyang Adobe-Korean

Myeongijo R CID/Type 1 Hanyang Adobe-Korean

Pilki R CID/Type 1 Hanyang Adobe-Korean

Roundgothic R CID/Type 1 Hanyang Adobe-Korean

80 International Language Environments Guide ♦ February 2000

TABLE 3–32 Solaris 8 Korean CID/Type 1 Fonts for the ko Locale (continued)

TABLE 3–33 Solaris 8 Korean Bitmap Fonts for the ko Locale

Full Family Name Subfamily Format Encoding

Gothic R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Graphic R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Haeso R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Kodig R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Myeongijo R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Pilki R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Roundgothic R/B PCF (12,14,16,18,20,24) KSC 5601-1987

TABLE 3–34 Solaris 8 Korean CID/Type 1 Fonts for the ko.UTF-8 Locale

Full Family
Name

Subfamily Format Vendor Encoding

Gothic R CID/Type 1 Hanyang Adobe-Korean

Graphic R CID/Type 1 Hanyang Adobe-Korean

Haeso R CID/Type 1 Hanyang Adobe-Korean

Kodig R CID/Type 1 Hanyang Adobe-Korean

Myeongijo R CID/Type 1 Hanyang Adobe-Korean

Pilki R CID/Type 1 Hanyang Adobe-Korean

TABLE 3–35 Solaris 8 Korean Bitmap Fonts for the ko.UTF-8 Locale

Full Family Name Subfamily Format Encoding

Gothic R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Graphic R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Haeso R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Contents of Solaris 8 Products 81

TABLE 3–35 Solaris 8 Korean Bitmap Fonts for the ko.UTF-8 Locale (continued)

Full Family Name Subfamily Format Encoding

Kodig R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Myeongijo R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Pilki R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

TABLE 3–36 Solaris 8 Korean TrueType Fonts for the ko/ko.UTF-8 Locales

Full Family
Name

Subfamily Format Vendor Encoding

Kodig/Gothic R True Type Hanyang Unicode

Myeongjo R True Type Hanyang Unicode

Haeso R True Type Hanyang Unicode

RoundGothic R True Type Hanyang Unicode

TABLE 3–37 Korean ICONV

Code Symbol Target Code Symbol

KSC 5601-1987 1506 UTF-8 UTF-8

ISO 646 646 KSC 5601-1987 5601

KSC 5601-1987 EUC-KR UTF-8 UTF-8

KSC 5601-1987 KSC5601 UTF-8 UTF-8

UTF-8 UTF-8 KSC 5601-1987 5601

UTF-8 UTF-8 KSC 5601-1987 EUC-KR

UTF-8 UTF-8 KSC 5601-1987 KSC 5601

UTF-8 ko-KR-UTF-8 IBM CP 933 cp 933

UTF-8 ko-KR-UTF-8 KSC 5601-1987 ko_KR-euc

UTF-8 ko-KR-UTF-8 ISO2022-KR ko_KR-iso2022-7

UTF-8 ko-KR-UTF-8 KSC 5601-1987 - Johap ko_KR-johap

UTF-8 ko-KR-UTF-8 KSC5601-1992 - Johap ko_KR-johap92

82 International Language Environments Guide ♦ February 2000

TABLE 3–37 Korean ICONV (continued)

Code Symbol Target Code Symbol

IBM CP933 cp933 UTF-8 ko_KR-UTF-8

KSC 5601-1987 ko_KR-euc UTF-8 ko_KR-UTF-8

KSC 5601-1987 ko_KR-euc ISO 2022-KR ko_KR-iso2022-7

KSC 5601-1987 ko_KR-euc KSC 5601-1987 - Johap ko_KR-johap

KSC 5601-1987 ko_KR-euc KSC 5601-1992 - Johap ko_KR-johap92

KSC 5601-1987 ko_KR-euc KSC 5601-1992-Annex:4 ko_KR-nbyte

ISO 2022-KR iso2022-7 UTF-8 ko_KR-UTF-8

ISO 2022-KR iso2022-7 KSC 5601-1987 ko_KR-euc

KSC 5601-1987 - Johap ko-KR-johap UTF-8 ko_KR-UTF-8

KSC 5601-1987 - Johap ko-KR-johap KSC 5601-1987 ko_KR-euc

KSC 5601-1992 - Johap ko-KR-johap92 UTF-8 ko_KR-UTF-8

KSC 5601-1992 - Johap ko-KR-johap92 KSC 5601-1987 ko_KR-euc

KSC 5601-1992 - Annex:4 ko-KR-nbyte KSC 5601-1987 ko_KR-euc

Contents of Solaris 8 Products 83

84 International Language Environments Guide ♦ February 2000

CHAPTER 4

Overview of en_US.UTF-8 Locale
Support

Unicode Overview
The Unicode Standard is the universal character encoding standard used for
representation of text for computer processing. It is fully compatible with the
International Standard ISO/IEC 10646-1:1999, and contains all the same characters
and encoding points as ISO/IEC 10646. The Unicode Standard provides additional
information about the characters and their use. Any implementation that conforms to
Unicode also conforms to ISO/IEC 10646.

Unicode provides a consistent way of encoding multilingual plain text and brings order
to a chaotic state of affairs that has made it difficult to exchange text files internationally.
Computer users who deal with multilingual text, business people, linguists,
researchers, scientists, and others, find that the Unicode Standard greatly simplifies
their work. Mathematicians and technicians, who regularly use mathematical symbols
and other technical characters, also find the Unicode Standard valuable.

The design of Unicode is based on the simplicity and consistency of ASCII, but goes
beyond ASCII’s limited ability to encode only the Latin alphabet. The Unicode
Standard provides the capacity to encode all of the characters used for the written
languages of the world. It uses a 16-bit encoding that provides code points for more
than 65,000 characters. To keep character coding simple and efficient, the Unicode
Standard assigns each character a unique 16-bit value, and does not use complex
modes or escape codes. While 65,000 characters are sufficient for encoding most of
the many thousands of characters used in major languages of the world, the Unicode
standard and ISO 10646 provide an extension mechanism called UTF-16 that allows
for encoding as many as a million more characters, without use of escape codes. This
is sufficient for all known character encoding requirements, including full coverage

85

of all historic scripts of the world.UTF-16 allows exactly 16 x 65536 additional
code points and still uses the two byte entities to represent characters. However
those 16 x 65536 characters require two two byte entities (for a total of four bytes)
per each character. For more details on the UTF-16, refer to section C.3 of “The
Unicode Standard, Version 2.0” from Unicode Consortium, or Annex C of ISO/IEC
10646–1:1999, Information Technology—Universal Multiple-Octet Coded Character Set
(UCS) – Part 1: Architecture and Basic Multilingual Plane.

Unicode Locale: en_US.UTF-8 Support
Overview
The en_US.UTF-8 locale is a significant Unicode locale in the Solaris 8 product. It
supports and provides multiscript processing capability by using UTF-8 as its codeset.
It can input and output text in multiple scripts. This was the first locale with this
capability in the Solaris operating environment.

UTF-8 is a file system safe Universal Character Set Transformation Format of Unicode /
ISO/IEC 10646-1 formulated by X/Open-Uniforum Joint Internationalization Working
Group (XoJIG) in 1992 and approved by ISO and IEC, as Amendment 2 to ISO/IEC
10646-1:1993 in 1996. This standard has been adopted by the Unicode Consortium, the
International Standards Organization, and the International Electrotechnical Commission as
a part of Unicode 2.0 and ISO/IEC 10646-1.

en_US.UTF-8 supports computation for every code point value, which is defined
in Unicode 3.0 and ISO/IEC 10646-1. In the Solaris 8 environment, language script
support is not limited to pan-European locales, but also includes Asian scripts such
as Korean, Traditional Chinese, Simplified Chinese, and Japanese. Due to limited
font resources, Solaris 8 software includes only character glyphs from the following
character sets:

� ISO 8859-1 (most Western European languages, such as English, French, Spanish,
and German)

� ISO 8859-2 (most Central European languages, such as Czech, Polish, and
Hungarian)

� ISO 8859-4 (Scandinavian and Baltic languages)

� ISO 8859-5 (Russian)

� ISO 8859-6 (Arabic, including many more presentation form character glyphs)

� ISO 8859–7 (Greek)

� ISO 8859–8 (Hebrew)

� ISO 8859-9 (Turkish)

� TIS 620.2533 (Thai, including many more presentation form character glyphs)

86 International Language Environments Guide ♦ February 2000

� ISO 8859–15 (most Western European languages with euro sign)

� GB 2312–1980 (Simplified Chinese)

� Big5 (Traditional Chinese)

� JIS X0201–1976, JIS X0208–1983 (Japanese)

� KS C 5601–1992 Annex 3 (Korean)

If a user displays characters for which the en_US.UTF-8 locale does not have
corresponding glyphs, the locale displays ’no-glyph’ glyph instead, as in the following
example:

Starting with the Solaris 8 environment, the locale is available for all clusters except
the Core cluster.

Exactly the same level of en_US.UTF-8 locale support is provided for both 64-bit and
32-bit Solaris systems.

Motif and CDE desktop applications and libraries support the en_US.UTF-8 locale.
However, OpenWindows, XView, and, OPENLOOK DeskSet applications and libraries
do not support the en_US.UTF-8 locale.

Desktop Input Methods
CDE provides the ability to enter localized input for an internationalized application
that is using Xm Toolkit. The XmText[Field] widgets are enabled to interface
with input methods from each locale. Input methods are internationalized because
some language environments write their text from right-to-left, top-to-bottom, and
so forth. Within the same application, you can use several fonts that apply different
input methods.

The pre-edit area displays the string that is being pre-edited. This can be done in
four modes:

� OffTheSpot

� OverTheSpot (default)

Overview of en_US.UTF-8 Locale Support 87

� Root

� None

In OffTheSpot mode, the location is just below the MainWindow area at the right of
the status area. In OverTheSpot mode, the pre-edit area is at the cursor point. In Root
mode, the pre-edit and status areas are separate from the client’s window.

In the Solaris 8 environment, there are native Asian input methods for Simplified/Traditional
Chinese, Japanese, and Korean in addition to the current multi-script input methods for
Unicode locales. This section includes descriptions of selected input methods, how to use
them, and how to switch between them.

Script Selection and Input Modes
The en_US.UTF-8 locale supports multiple scripts. The en_US.UTF-8 locale has a
total of twelve input modes:

� English/European

� Cyrillic

� Greek

� Arabic

� Hebrew

� Thai

� Unicode Hexadecimal and Octal code input methods

� Table lookup input method

� Japanese

� Korean

� Simplified Chinese

� Traditional Chinese

To switch into a certain input mode, you can either type in an input mode switch
compose key sequence for each input mode, or press the left-most mouse button at the
status area of your application to open an input mode selection window and select
from the listed input modes as follows:

88 International Language Environments Guide ♦ February 2000

English/European Input Mode
The English/European input mode includes not only the English alphabet but also
characters with diacritical marks (for example, á, è, î, õ, and ü) and special characters
(such as ¡, §, ¿) from European scripts.

This input mode is the default mode for any application. The input mode is displayed
at the bottom left corner of the GUI application.

To insert characters with diacritical marks or special characters from Latin-1, Latin-2,
Latin-4, Latin-5, and Latin-9, you must type a Compose Sequence, as shown in the
following examples:

Overview of en_US.UTF-8 Locale Support 89

� For Ä, press and release Compose, then A, and then "

� For ¿, press and release Compose, then ?, and then ?

When there is no <Compose> key available on your keyboard, you can substitute
for the <Compose> key by simultaneously pressing the <Control> key, the <Shift>
key and the <t> keys together.

For the input of the Euro currency symbol (Unicode value U+20AC) from the locale,
you can use any one of following input sequences:

� <AltGraph> and <e> together

� <AltGraph> and <4> together

� <AltGraph> and <5> together

These input sequences mean that you press both keys simultaneously. If there is no
<AltGraph> key available on your keyboard, you can substitute the <Alt> key for the
<AltGraph> key.

The following tables show the most commonly used Compose Sequences in Latin-1,
Latin-2, Latin-4, Latin-5, and Latin-9 script input for the Solaris operating environment.

To start these sequences, press the <Compose> key and release it.

The following table lists the Common Latin-1 Compose Sequences.

TABLE 4–1 Common Latin-1 Compose Sequences

Press and
Release

Press and
Release Result

[Spacebar] [Spacebar] No-break space

s 1 Superscripted 1

s 2 Superscripted 2

s 3 Superscripted 3

! ! Inverted exclamation mark

x o Currency symbol ¤

p ! Paragraph symbol ¶

/ u mu u

’ " acute accent

,

´

, cedilla Ç

" " diaeresis

9

¨

0 International Language Environments Guide ♦ February 2000

TABLE 4–1 Common Latin-1 Compose Sequences (continued)

Press and
Release

Press and
Release Result

- ^ macron̄

o o degree

x x multiplication sign x

+ - plus-minus ±

- - soft hyphen –

- : division sign ÷

- a ordinal (feminine) ª

- o ordinal (masculine) º

- , not sign ¬

. . middle dot ·

1 2 vulgar fraction 1

2

1 4 vulgar fraction 1

4

3 4 vulgar fraction 3

4

< < left double angle quotation mark «

> > right double angle quotation mark »

? ? inverted question mark ¿

A ‘ A grave À

A ’ A acute Á

A * A ring above Å

A " A diaeresis Ä

A ^ A circumflex Â

A ~ A tilde Ã

A E AE diphthong Æ

C , C cedilla Ç

C o copyright sign ©

Overview of en_US.UTF-8 Locale Support 91

TABLE 4–1 Common Latin-1 Compose Sequences (continued)

Press and
Release

Press and
Release Result

D - Capital eth ð

E ‘ E grave È

E ’ E acute É

E " E diaeresis Ë

E ^ E circumflex Ê

I ‘ I grave Ì

I ’ I acute Í

I " I diaeresis Ï

I ^ I circumflex Î

L - pound sign £

N ~ N tilde Ñ

O ‘ O grave Ò

O ’ O acute Ó

O / O slash Ø

O " O diaeresis Ö

O ^ O circumflex Ô

O ~ O tilde Õ

R O registered mark ®

T H Thorn þ

U ‘ U grave Ù

U ’ U acute Ú

U " U diaeresis Ü

U ^ U circumflex Û

Y ’ Y acute ý

92 International Language Environments Guide ♦ February 2000

TABLE 4–1 Common Latin-1 Compose Sequences (continued)

Press and
Release

Press and
Release Result

Y - yen sign ¥

a ‘ a grave à

a ’ a acute á

a * a ring above å

a " a diaeresis ä

a ~ a tilde ã

a ^ a circumflex â

a e ae diphthong æ

c , c cedilla ç

c / cent sign ¢

c o copyright sign ©

d - eth ð

e ‘ e grave è

e ’ e acute é

e " e diaeresis ë

e ^ e circumflex ê

i ‘ i grave ì

i ’ i acute í

i " i diaeresis ï

i ^ i circumflex î

n ~ n tilde ñ

o ‘ o grave ò

o ’ o acute ó

o / o slash ø

o " o diaeresis ö

o ^ o circumflex ô

Overview of en_US.UTF-8 Locale Support 93

TABLE 4–1 Common Latin-1 Compose Sequences (continued)

Press and
Release

Press and
Release Result

o ~ o tilde õ

s s German double s ß

t h thorn þ

u ‘ u grave ù

u ’ u acute ú

u " u diaeresis ü

u ^ u circumflex û

y ’ y acute y

y " y diaeresis ÿ

| | broken bar ¦

The following table lists the Common Latin-2 and Latin-4 Compose Sequences.

TABLE 4–2 Common Latin-2 Compose Sequences

Press and
Release

Press and
Release Result

a ’ ’ ogonek

u ’ ’ breve

v ’ ’ caron

" ’ ’ double acute

A a A ogonek

A u A breve

C ’ C acute

C v C caron

D v D caron

- D D stroke

E v E caron

94 International Language Environments Guide ♦ February 2000

TABLE 4–2 Common Latin-2 Compose Sequences (continued)

Press and
Release

Press and
Release Result

E a E ogonek

L ’ L acute

L - L stroke

L > L caron

N ’ N acute

N v N caron

O > O double acute

S ’ S acute

S v S caron

S , S cedilla

R ’ R acute

R v R caron

T v T caron

T , T cedilla

U * U ring above

U > U double acute

Z ’ Z acute

Z v Z caron

Z . Z dot above

k k kra

A _ A macron

E _ E macron

E . E dot above

G , G cedilla

I _ I macron

I ~ I tilde

Overview of en_US.UTF-8 Locale Support 95

TABLE 4–2 Common Latin-2 Compose Sequences (continued)

Press and
Release

Press and
Release Result

I a I ogonek

K , K cedilla

L , L cedilla

N , N cedilla

O _ O macron

R , R cedilla

T | T stroke

U ~ U tilde

U a U ogonek

U _ U macron

N N Eng

a _ a macron

e _ e macron

e . e dot above

g , g cedilla

i _ i macron

i ~ i tilde

i a i ogonek

k , k cedilla

l , l cedilla

n , n cedilla

o _ o macron

r , r cedilla

t | t stroke

u ~ u tilde

u a u ogonek

96 International Language Environments Guide ♦ February 2000

TABLE 4–2 Common Latin-2 Compose Sequences (continued)

Press and
Release

Press and
Release Result

u _ u macron

n n eng

The following table lists the Common Latin-5 Compose Sequences.

TABLE 4–3 Common Latin-5 Compose Sequences

Press and
Release

Press and
Release Result

G u G breve

I . I dot above

g u g breve

i . i dotless

Any Compose Sequences already described do not re-appear in this table.

The following table lists the Common Latin-9 Compose Sequences.

TABLE 4–4 Common Latin-9 Compose Sequences

Press and
Release

Press and
Release

Result

o e Diphthong oe

O E Diphthong OE

Y " Y diaeresis

Cyrillic Input Mode
To switch to Cyrillic input mode, either press <Compose> <c> <c> at your keyboard,
or press the left-most mouse button at the status area of your application and select
“[Cyrillic]” from the Input Mode Selection Window.

The input mode is displayed at the bottom left corner of your GUI application.

Overview of en_US.UTF-8 Locale Support 97

After you switch to Cyrillic input mode, you cannot enter English or European text.
To switch back to the English/European input mode, type <Control> + <Space>
from your keyboard, or select “[English/European]” input mode from the Input
Mode Selection Window by using your mouse. The Russian keyboard layout appears
in the following figure.

Esc

Control Alt

Caps

Lat/
Pyc

Alt
Graph

F2F1

1
!

‘
~

2
@

3
#

4
$

6
^

7
&

9
(

0

POIUYTREW

A S D F G H J K L :

:

;

;

?
/

>
.

.

<
\
| MNBVCXZ

,

,

|
\

“

“

´

Q

)

[
{

]
}

=-
_

8
*

5
%%

F3 F4 F5 F6 F7 F8 F9 F10 F1F11 F12

No

Figure 4–1 Tabbing Behavior

You can also switch into other input modes by typing the corresponding input mode
switch key sequence.

Greek Input Mode
To switch to Greek input mode, either press Compose <g> <g> at your keyboard, or
press the left-most mouse button at the status area of your application and select
“[Greek]”, from the Input Mode Selection Window.

The input mode is displayed at the left bottom corner of your GUI application.

98 International Language Environments Guide ♦ February 2000

After you switch to Greek input mode, you cannot enter English or European text.
To switch back to the English/European input mode, type <Control> + <Space>
from your keyboard, or select “[English/European]” input mode from the Input
Mode Selection Window by using your mouse. The Greek keyboard layouts appear
in the following two figures.

Esc

Control Alt

Caps Lock

LAT
Alt
Graph

F2F1

1
!

‘
~

2
@

3
#

4
$

6
^

7
&

9
(

0

POIUYTREW

A S
Σ

D
∆

F
Φ

G H
Γ

J
Ξ

K L
Λ

:

:;

;

?
/

>
.

.<
<

< MNBV
Ω

CXZ
Ψ ,

|
\

“
´´

¨

Θ
Q

ς Ρ Π

)

[
{

]
}

=
+

-
_

8
*

5
%

F3 F4 F5 F6 F7 F8 F9 F10 F1F11 F12

Figure 4–2 Tabbing Behavior

Esc

AltCaps Lock Alt
Graph

`\
| ~

OIYTE

A S
Σ

D
∆

F
Φ

HG
Γ

J
Ξ

K L
Λ

MNBV
Ω

XZ C
Ψ

:; ?
/

>
.

.<
,

:
;

“
´´

¨

U
Θ

Q W
ς

R
Ρ

P
Π [

{
]
}

1
!

2
@

3
#

4
$

6
^

7
&

9
(

0
)

=
+

-
_

8
*

5
%

F2F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

LAT

Shift

Return

Back
space

Tab

Ctrl

Shift

Figure 4–3 Tabbing Behavior

Arabic Input Mode
To switch to Arabic input mode, type <Compose> <a> <r> from your current
input mode. The input mode is displayed at the left bottom corner of your GUI
application. After you switch to the Arabic input mode, you have to switch back
to English/European input mode to enter English/European characters by typing
<Control> and <Space> together.

Overview of en_US.UTF-8 Locale Support 99

You can also switch into other input modes by either typing the corresponding input
mode switch key sequence from your keyboard, or selecting an input mode from the
Input Mode Selection Window by using y our mouse.

Shift

Return

Back
Space

Alt
Graph

F12

Shift

Control

Caps Lock

Figure 4–4 Tabbing Behavior

Hebrew Input Mode
To switch into Hebrew input mode, type <Compose> <h> <h> from your current input
mode. The input mode is displayed at the bottom left corner of your GUI application.
You can also switch into the Hebrew input mode by pressing the left-most mouse
button at the status area of your application and then selecting “[Hebrew]” from the
Input Mode Selection Window.

After you have switched into the Hebrew input mode, you have to switch back to the
English/European input mode to enter English/European characters. To switch your
input mode, you can either type the corresponding input mode switch key sequence of
your next input mode from your keyboard, or select an input mode from the Input
Mode Selection Window by using your mouse. The Hebrew keyboard layout is shown
in the following figure:

100 International Language Environments Guide ♦ February 2000

Com-
pose

Alt
Graph

AltControl

Caps

Esc F1 F2 F3 F4 F5 F6 F7 F8 F9 EscF10 F11 F12

~ @
2;

!
1

#
3

$
4

%
5

^
6

*
8

(
9

)
0

_
-

+
=

Q
/

W , E R T Y U I O P
[

}
]

A S D F G H J K L :
;

“
´ , \

?
/

>
.

<
,

MNBVCXZ|
\

&
7

{

|

.

Figure 4–5 Tabbing Behavior

Thai Input Mode
To switch into Thai input mode, type <Compose> <t> <t> from your current input
mode. The input mode displays at the left bottom corner of your GUI application.

After you have switched into the Thai input mode, you have to switch back to
English/European input mode to enter English/European characters. To switch
your input mode, either type the corresponding input mode switch key sequence of
your next input mode from your keyboard, or select an input mode from the Input
Mode Selection Window by using your mouse. The Thai keyboard layout is shown in
the following figure:

Overview of en_US.UTF-8 Locale Support 101

Figure 4–6 Tabbing Behavior

Unicode Hexadecimal and Octal Code Input
Method Input Modes
To switch into the Unicode hexadecimal code input method input mode, type
<Compose> <u> <h> from your current input mode. You can also select “[Unicode
Hex]” from the Input Mode Selection Window by using your mouse. The input mode
is displayed at the left bottom corner of your application.

If you prefer the octal number system, you can also switch into the Unicode octal code
input method input mode by typing <Compose> <u> <o> from your current input
mode or by selecting “[Unicode Octal]” from the Input Mode Selection Window

To use these input mode, you need to know about either the hexadecimal or the octal
code point values of the characters. Refer to The Unicode Standard, Version 3.0 for
the mapping between code point values and characters. To input a character, type
four hexadecimal digits if you are in the Unicode hexadecimal code input method
input mode, for instance, 00a1 for Inverted Exclamation Mark, 03b2 for Greek Small
Letter Beta, ac00 for a Korean Hangul Syllable KA, 30a2 for Japanese Katakana Letter
A, 4e58 for a Unified Han character, and so on. Users can use both uppercase and
lowercase letters of A, B, C, D, E, and, F for hexadecimal digits. If you prefer the
octal number system instead of hexadecimal numbers, you can input octal digits, 0
to 7. If you mistype a digit or two, you can delete the digits by using the <Delete>
key or the <Backspace> key.

102 International Language Environments Guide ♦ February 2000

Table Lookup Input Method Input Mode
To switch into table lookup input method input mode, type <Compose> <l> <l> from
your current input mode. The input mode is displayed at the bottom left corner of
your GUI application.

Overview of en_US.UTF-8 Locale Support 103

After you turn on the input mode, there is a lookup group window showing multiple
groups of characters. You can choose any one of the groups to enter characters from the
group. Once you select a group, there will be the second lookup window showing
multiple candidates of available Unicode characters belonging to the group of your
choice. You can choose any one of the candidates by moving your pointer and clicking

104 International Language Environments Guide ♦ February 2000

the left button on your mouse. You can also select any one of the candidates by
choosing a left-hand-side letter associated with each of the candidates.

You can also see the next set of candidates by typing <Control> and <n> keys together.
Similarly, to see the previous set of candidates, type the <Control> and <p> keys
together. The <n> stands for ’next’ and the <p> stands for ’previous’.

After you are finished using the current input mode, you can switch into another input
mode by typing a corresponding input mode switch key sequence.

Japanese Input Mode
To switch into the Japanese input mode, type either <Compose> <j> <a> from your
keyboard or select “[Japanese]” from the Input Mode Selection Window by using your
mouse. The input mode is displayed at the left bottom corner of your application. The
following figure shows a Japanese input method mode of ATOK12:

To use the native Japanese input system, you need to install one or more of Japanese
locales on your system. Once you install the Japanese locales, you will be able to use
any one of native Japanese input systems like ATOK12, ATOK8, Wnn6, or cs00.

For more details on how to use the Japanese Input System, refer to “ATOK12 User’s
Guide”, “ATOK8 User’s Guide”, “Wnn6 User’s Guide”, and, “cs00 User’s Guide.”

Korean Input Mode
To switch into the Korean input mode, type either <Compose> <k> <o>from your
keyboard, or select “[Korean]” from the Input Mode Selection Window by using your
mouse. The input mode is displayed at the left bottom corner of your application. The
following figure shows Phonetic Hangul input method which is one of many native
Korean input methods available.

Overview of en_US.UTF-8 Locale Support 105

To have the native Korean input system, you need to install one or more Korean locale
on your system. Once you install the Korean locale, you will be able to use the native
Korean input system. For more details on how to use the Korean Input System, refer to
“Korean Solaris User’s Guide”.

Simplified Chinese Input Mode
To switch input Simplified Chinese input mode, type either <Compose> <s> <c> from
your keyboard, or select “[S-Chinese]” from the Input Mode Selection Window by
using your mouse. The input mode is displayed at the left bottom corner of your
application. The following figure shows New Pin Yin input method which is one of
many native Simplified Chinese input methods available.

To use the native Simplified Chinese input system, you need to install one or more
Simplified Chinese locales on your system. Once you install the Simplified Chinese
locales, you will be able to use the native Simplified Chinese input system. For
more details on how to use Simplified Chinese Input System, refer to “Simplified
Chinese Solaris User’s Guide.”

Traditional Chinese Input Mode
To switch input Traditional Chinese input mode, type either <Compose> <t> <c> from
your keyboard or select “[T-Chinese]” from the Input Mode Selection Window by
using your mouse. The input mode is displayed at the left bottom corner of your
application. The following figure shows the TsangChieh input method which is one of
many native Traditional Chinese input methods available.

106 International Language Environments Guide ♦ February 2000

To have the native Traditional Chinese input system, you need to install one or more of
Traditional Chinese locales at your system. Once you install the Traditional Chinese
locales, you will be able to use the native Traditional Chinese input system. For more
details on how to use the Traditional Chinese Input System, refer to "Traditional
Chinese Solaris User’s Guide".

Input Mode Switch Key Sequence Summary
Users can switch from one input mode to another without any restrictions. The
following table shows the input mode switch key sequences for each input mode.

TABLE 4–5 Input Mode Switch Key Sequences

Input Mode Key Sequences

English/European <Control> + <Space>

Cyrillic <Compose> <c> <c>

Greek <Compose> <g> <g>

Arabic <Compose> <a> <r>

Hebrew <Compose> <h> <h>

Thai <Compose> <t> <t>

Unicode hexadecimal code
input method

<Compose> <u> <h>

Table lookup input method <Compose> <l> <l>

Unicode octal code input
method

<Compose> <u> <o>

Japanese <Compose> <j> <a>

Korean <Compose> <k> <o>

Simplified Chinese <Compose> <s> <c>

Traditional Chinese <Compose> <t> <c>

Overview of en_US.UTF-8 Locale Support 107

System Environment
Locale Environment Variable
To use the en_US.UTF-8 locale environment, choose the locale first. Be sure you have
the en_US.UTF-8 locale installed on your system.

How to Use the en_US.UTF-8 Locale Environment
1. In a TTY environment, choose the locale first, by setting the LANGenvironment

variable to en_US.UTF-8 , as in the following C-shell example:

system% setenv LANG en_US.UTF-8

Make sure that other categories are not set (or are set to en_US.UTF-8) , since the
LANGenvironment variable has a lower priority than other environment variables,
such as LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_NUMERIC,
LC_MONETARYand LC_TIME have at setting the locale. See the setlocale (3C)
man page for more details about the hierarchy of environment variables.

To check current locale settings in various categories, use the locale(1) utility.

system% locale

LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_ALL=

You can also start the en_US.UTF-8 environment from the CDE desktop. At the CDE
login screen’s Options -> Language menu, choose en_US.UTF-8 .

TTY Environment Setup
Depending on the terminal and terminal emulator, such as dtterm(1) that you are
using, you may need to push certain codeset-specific STREAMS modules onto your
Streams.

For more information on STREAMS modules and streams in general, see the STREAMS
Programming Guide.

The following table shows STREAMS modules supported by the en_US.UTF-8 locale
in the terminal environment:

108 International Language Environments Guide ♦ February 2000

TABLE 4–6 32–bit STREAMS Modules Supported by en_US.UTF-8

32–bit STREAMS Module Description

/usr/kernel/strmod/u8lat1 Code conversion STREAMS module between
UTF-8 and ISO 8859–1 (Western European)

/usr/kernel/strmod/u8lat2 Code conversion STREAMS module between
UTF-8 and ISO 8859–2 (Eastern European)

/usr/kernel/strmod/u8koi8 Code conversion STREAMS module
betweenUTF-8 and KOI8–R (Cyrillic)

The following table lists the 64–bit STREAMS Modules Supported by en_US.UTF-8 .

TABLE 4–7 64–bit STREAMS Modules Supported by en_US.UTF-8

64-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/u8lat1 Code conversion STREAMS module
betweenUTF-8 and ISO 8859-1
(Western European)

/usr/kernel/strmod/sparcv9/u8lat2 Code conversion STREAMS module between
UTF-8 and ISO 8859-2 (Eastern European)

/usr/kernel/strmod/sparcv9/u8koi8 Code conversion STREAMS module between
UTF-8 and KOI8-R (Cyrillic)

Loading a STREAMS Module at Kernel
To load a STREAMS module at kernel, first become root:

system% su

Password:
system#

To determine whether you are running a 64-bit Solaris or 32-bit Solaris system, use the
isainfo(1) utility as follows:

system# isainfo -v

64-bit sparcv9 applications
32-bit sparc applications

system#

Overview of en_US.UTF-8 Locale Support 109

If the command returns this information, you are running the 64-bit Solaris system. If
you are running the 32-bit Solaris system, the utility shows the following:

system# isainfo -v

32-bit sparc applications
system#

Use modinfo (1M) to be certain that your system has not already loaded the STREAMS
module:

system# modinfo | grep u8lat1 modulename
system#

If the STREAMS module, such as u8lat1 , is already installed, the output looks as
follows:

system# modinfo | grep u8lat1
89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)
system#

If the module is already installed, you don’t need to load it. However, if the module
has not yet been loaded, use modload (1M) as follows:

system# modload /usr/kernel/strmod/u8lat1 modulename

This loads the 32–bit u8lat1 STREAMS module at the kernel so you can push it onto a
Stream. If you are running the 64–bit Solaris product, use modload (1M) as follows:

system# modload /usr/kernel/strmod/sparcv9/u8lat1

The STREAMS module is loaded at the kernel and you can now push it onto a Stream.

To unload a module from the kernel, use modunload (1M), as shown below. In this
example, the u8lat1 module is being unloaded.

system# modinfo | grep u8lat1
89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)
system# modunload -i 89

dtterm and Terminals Capable of Input and Output of UTF-8
Characters
Unlike in previous releases of the Solaris operating environment, the dtterm(1) and
any other terminals that support input and output of the UTF-8 codeset do not need to
have any other additional STREAMS module in their Stream. ldterm(7M) module is
now codeset independent and supports Unicode/UTF-8 as well.

110 International Language Environments Guide ♦ February 2000

For the proper terminal environment setup for the Unicode locales, use the stty(1)
utility as follows:

system% stty defeucw

Since /usr/ucb/stty is not internationalized, use /bin/stty instead.

Terminal Support for Latin-1, Latin-2, or KOI8-R
For terminals that support only Latin-1 (ISO 8859-1), Latin-2 (ISO 8859-2), or KOI8-R,
you should have the following STREAMS configuration:

head <-> ttcompat <-> ldterm <-> u8lat1 <-> TTY

This configuration is only for terminals that support Latin-1. For Latin-2 terminals, replace
the STREAMS module u8lat1 with u8lat2 . For KOI8-R terminals, replace the module
with u8koi8 .

Make sure you already have the STREAMS module loaded into the kernel.

To set up the STREAMS configuration shown above, use strchg (1), as follows:

system% cat > tmp/mystreams
ttcompat

ldterm
u8lat1
ptem
^D
system% strchg -f /tmp/mystreams

Be sure that you are either root or the owner of the device when you use strchg (1). To
see the current configuration, use strchg (1), as follows:

system% strconf

ttcompat
ldterm
u8lat1
ptem

pts
system%

To reset the original configuration, set the STREAMS configuration as follows:

system% cat > /tmp/orgstreams
ttcompat

ldterm
ptem

(continued)

Overview of en_US.UTF-8 Locale Support 111

(Continuation)

^D
system% strchg -f /tmp/orgstreams

Setting Terminal Options
To set up the UTF-8 text edit behavior on TTY, you must first set some terminal options
using stty (1), as follows:

system% /bin/stty defeucw

Because /usr/ucb/stty is not yet internationalized, you should use /bin/stty instead.

You can also query the current settings using: stty (1) with the -a option, as shown
below:

system% /bin/stty -a

Saving the Settings in ~/.cshrc

Assuming the necessary STREAMS modules are already loaded with the kernel, you
can save the following lines in your .cshrc file (C shell example) for convenience:

setenv LANG en_US.UTF-8
if ($?USER != 0 && $?prompt != 0) then

cat >! /tmp/mystreams$$ << _EOF
ttcompat

u8euc
ldtterm
eucu8
ptem

_EOF
/bin/strchg -f /tmp/mystream$$
/bin/rm -f /tmp/mystream$$

/bin/stty cs8 -istrip defeucw
endif

With these lines in your.cshrc file, you do not have to type all of the commands each
time. Note that the second _EOFshould be in the first column of the file. You can also
create a file called mystreams and save it so that .cshrc refers to mystreams instead
of creating it whenever you start a C shell.

112 International Language Environments Guide ♦ February 2000

Code Conversions
The en_US.UTF-8 locale supports various code conversions among major codesets
of several countries through iconv (1) and iconv (3).

In the Solaris 8 environment, the utility geniconvtbl enables user-defined code
conversions. The user-defined code conversions created with the geniconvtbl utility
can be used with both iconv(1) and iconv(3) . For more detail on this utility, refer to
geniconvtbl (1) and geniconvtbl (4) man pages.

The available fromcode and tocode names that can be applied to iconv(1)
and iconv_open(3) are shown in the following table. For more details on
iconv code conversion, see the iconv (1) and iconv_open (3), iconv (3), and
iconv_close (3) man pages. For more information on available code conversions, see
iconv_en_US.UTF-8(5) .

Also see Appendix A.

UCS-2, UCS-4, UTF-16 are all fixed-width Unicode/ ISO/IEC 10646 representation forms
that recognizes Byte Order Mark (BOM) characters defined in the Unicode 3.0 and
ISO/IEC10646-1:1999 standards. Other forms, like UCS-2BE, UCS-4BE, and UTF-16BE, are
all fixed-width Unicode/ ISO/IEC 10646 representation forms that do not recognize the
BOM character and also assume Big Endian byte ordering. Representation forms like
UCS-2LE, UCS-4LE, UTF-16LE, on the other hand, assume Little Endian byte ordering.
They also do not recognize the BOM character.

For associated scripts/languages of ISO 8859-* and KOI8-*, see
http://czyborra.com/charsets/iso8859.html .

Printing
A new and enhanced mp(1) print filter is available in the Solaris 8 environment
that can print various input file formats including flat text files written inUTF-8 .
It uses TrueType and Type 1 scalable fonts and X11 bitmap fonts available on the
Solaris system.

The output from the utility is standard PostScript, and can be sent to any PostScript
printer.

Overview of en_US.UTF-8 Locale Support 113

Starting with the next release of the Solaris environment, xutops(1) will be obsolete.

To use the utility, type the following:

system% mp filename | lp

You can also use the utility as a filter, since the utility accepts stdin stream:

system% cat filename | mp | lp

You can set the utility as a printing filter for a line printer. For example, the following
command sequence tells the printer service LP that the printer lp1 accepts only mp
format files. This command line also installs the printer lp1 on port /dev/ttya . See
the lpadmin (1M) man page for more details.

system# lpadmin -p lp1 -v /dev/ttya -I MP
system# accept lp1

system# enable lp1

Using lpfilter (1M), you can add the utility for a filter as follows:

system# lpfilter -f filtername -F pathname

The command tells LP that a converter (in this case, xutops) is available through the
filter description file named pathname. The pathname can determined as follows:

Input types: simple

Output types: MP
Command: /usr/bin/mp

The filter converts the default type file input to PostScript output using /usr/bin/mp .

To print a UTF-8 text file, use the following command

system% lp -T MP UTF-8-file

For more detail on mp(1) , refer to the mp(1) man page.

114 International Language Environments Guide ♦ February 2000

DtMail
As a result of increased coverage in scripts, Solaris 8 DtMail running in the
en_US.UTF-8 locale supports various MIME character sets shown below.

� US-ASCII (7-bit US ASCII)

� UTF-8 (UCS Transmission Format 8 of Unicode)

� UTF-7 (UCS Transmission Format 7 of Unicode)

� ISO-8859-1 (Latin-1)

� ISO-8859-2 (Latin-2)

� ISO-8859-3 (Latin-3)

� ISO-8859-4 (Latin-4)

� ISO-8859-5 (Latin/Cyrillic)

� ISO-8859-6 (Latin/Arabic)

� ISO-8859-7 (Latin/Greek)

� ISO-8859-8 (Latin/Hebrew)

� ISO-8859-9 (Latin-5)

� ISO-8859-10 (Latin-6)

� ISO-8859-15 (Latin-9)

� KOI8-R (Cyrillic)

� ISO-2022-JP (Japanese)

� ISO-2022-KR and EUC-KR (Korean)

� ISO-2022-CN (Simplified Chinese)

� ISO-2022-TW (Traditional Chinese)

� ISO-8859–13 (Latin-7/Baltic)

� ISO-8859–14 (Latin-8/Celtic)

� KOI8–U (Cyrillic/Ukranian)

� Shift_JIS (Japanese in Shift JIS)

� BIG5 (Traditional Chinese in BIG5)

� GB2312 (Simplified Chinese in EUC)

� TIS-620 (Thai)

� UTF-16 (UCS Transmission Format 16 of Unicode)

� UTF-16BE (UTF-16 Big-Endian of Unicode)

� UTF-16LE (UTF-16 Little-Endian of Unicode)

This support allows users to view virtually any kind of email encoded in various
MIME character sets from any region of the world in a single instance of DtMail. The

Overview of en_US.UTF-8 Locale Support 115

decoding of received email is done by DtMail, which looks at the MIME character set
and content transfer encoding provided with the email.

However, in case of sending, you need to specify a MIME character set that is
understood by the recipient mail user agent (in other words, mail client), unless you
want to use the default MIME character set provided by the en_US.UTF-8 locale. To
switch the character set of out-going email, at the ’New Message’ window, type either
<CONTROL> + <y> or click the “Format” menu button and then click again on the
“Change Char Set” button by using your mouse. The next available character set name
displays at left bottom corner on top of the Send button.

If your email message header or message body contains characters that cannot be
represented by the MIME charset specified, the system automatically switches the
MIME character set to the UTF-8 that can represent any character.

If your message contains characters from the 7-bit US-ASCII character set only, your
email’s default MIME character set is US-ASCII . Any mail user agent can interpret
such email messages without any loss of characters or information.

If your message contains characters from a mixture of scripts, your email’s default
MIME character set is UTF-8 . Any 8-bit characters of UTF-8 are encoded with
Quoted-Printable encoding. For more detail on MIME, registered MIME charsets, and
Quoted-Printable encoding, refer to RFC 2045, 2046, 2047, 2048, 2049, 2279, 2152,
2237, 1922, 1557, 1555, and 1489.

116 International Language Environments Guide ♦ February 2000

Programming Environment
Appropriately, internationalized applications should automatically enable the
en_US.UTF-8 locale, but proper FontSet/XmFontList definitions in the application’s
resource file are required.

For information on internationalized applications, see Creating Worldwide Software:
Solaris International Developer’s Guide, 2nd edition.

FontSet Used with X Applications
The en_US.UTF-8 locale in the Solaris 8 environment supports fonts for the following
character sets.

Overview of en_US.UTF-8 Locale Support 117

� ISO 8859-1

� ISO 8859-2

� ISO 8859-4

� ISO 8859-5

� ISO 8859-7

� ISO 8859-9

� ISO 8859–15

� BIG5

� GB 2312–1980

� JIS X0201.1976

� JIS X0208.1983

� KS C 5601.1992 Annex 3

� ISO 8859–6 and Unicode based one

� ISO 8859–8

� TIS 620.2533 based one

Because the Solaris 8 environment supports the CDE desktop environment, each
character set has a guaranteed sets of fonts.

The following is a list of the Latin-1 fonts that are supported in the Solaris 8 product:
-dt-interface system-medium-r-normal-xxs sans
utf-10-100-72-72-p-59-iso8859-1
-dt-interface system-medium-r-normal-xs sans
utf-12-120-72-72-p-71-iso8859-1
-dt-interface system-medium-r-normal-s sans
utf-14-140-72-72-p-82-iso8859-1
-dt-interface system-medium-r-normal-m sans
utf-17-170-72-72-p-97-iso8859-1
-dt-interface system-medium-r-normal-l sans
utf-18-180-72-72-p-106-iso8859-1
-dt-interface system-medium-r-normal-xl sans
utf-20-200-72-72-p-114-iso8859-1
-dt-interface system-medium-r-normal-xxl sans
utf-24-240-72-72-p-137-iso8859-1

For information on CDE common font aliases, including -dt-interface
user-* and -dt-application-* aliases, see Common Desktop Environment:
Internationalization Programmer’s Guide.

In the en_US.UTF-8 locale, utf is also supported as a common font alias. A font set
for an application should have a collection of fonts that contains each of the character
sets, as in the following example:
(continued)

118 International Language Environments Guide ♦ February 2000

(Continuation)

fs = XCreateFontSet(display,

"-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-1,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-2,

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-4,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-5,

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-6,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-7,

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-8,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-9,

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-15,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-big5-1,

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-jisx0208.1983-0,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-jisx0201.1976-0,

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-ksc5601.1992-3,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-gb2312.1980-0,

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-tis620.2533-0,
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-unicode-fontspecific",

&missing_ptr, &missing_count, &def_string);

Or, put more simply:

fs = XCreateFontSet(display,
"-dt-interface system-medium-r-normal-*s*utf*",

&missing_ptr, &missing_count, &def_string);

XmFontList Definition as CDE/Motif Applications
As with FontSet definition, the XmFontList resource definition of an application should
also include each font of the character sets that the locale supports.

CODE EXAMPLE 4–1 XmNFontList Definition for the en_US.UTF-8 Locale

*fontList:\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-1;\

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-2;\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-4;\

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-5;\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-6;\

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-7;\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-8;\

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-9;\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-iso8859-15;\

(continued)

Overview of en_US.UTF-8 Locale Support 119

(Continuation)

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-big5-1;\

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-jisx0208.1983-0;\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-jisx0201.1976-0;\

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-ksc5601.1992-3;\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-gb2312.1980-0;\

-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-tis620.2533-0;\
-dt-interface system-medium-r-normal-s*utf*-*-*-*-*-*-*-unicode-fontspecific:

Or, put more simply:

*XmPushButton.fontList:\
-dt-interface system-medium-r-normal-*s*utf*:

For more details on the XmFontList and the XmNFontList, refer to the XmFontList(3X)
man page, OSF/Motif Programmer’s Guide, and the resource section of each Motif widget
in the OSF/Motif Programmer’s Reference Manual.

120 International Language Environments Guide ♦ February 2000

CHAPTER 5

X/DPS

The X Window System has been extended with the X Display PostScript system (often
described as X/DPS). It uses application-callable libraries on the client side and
corresponding extensions on the X server side.

Internationalization and localization issues using Adobe System’s PostScript are
documented in several books from Adobe Systems, Inc.:

� PostScript Language Reference Manual, Second Edition. Adobe Systems Inc.,
Addison Wesley, 1990.

� PostScript Language Reference Manual Supplement. Adobe Systems Inc., December
1994.

� Programming the Display PostScript System with X. Adobe Systems Inc., Addison
Wesley, 1993.

This set of books is essential for successfully developing PostScript applications.

The PostScript Language Reference Manual (Second Edition) is the standard reference
work for PostScript. It is the definitive documentation of every operator, Display
PostScript (DPS), Level 1, and Level 2. The book covers the fundamentals of PostScript
as a device-independent printing language. The special capabilities for handling fonts
and characters in PostScript are explained. The book’s Appendix E also explains
standard character sets and encoding vectors. It discusses the organization of fonts that
are built into interpreters or supplied from other sources.

Programming the Display PostScript System with X is for application developers who
are working with X Windows and Display PostScript. The book documents how to
write applications that use Display PostScript to produce information for the screen
display and the printer output. It describes coding techniques in detail.

121

Localization Resource Category
The localization resource category specifies which natural language (for example,
English or Japanese) is supported. This category is made up of dictionaries that
contain the keys Language , Country , CharSet , and others. These keys are in the
%Console% device parameter set.

“<</Language/EN /Country/U.S. /CharSet/ISO-646-ISV>>

“<</Language/JA /Country null /CharSet/JIS-...>> ”

In the example with Japanese, the null value shows that no dialect was selected
for Japanese.

Unique names should be used for each item in the localization resource category.

Information on Language Interpreters
Page Description Language (PDL) interpreters can be assigned to a PostScript product.
An application or printer driver uses the PDL resource category to see which PDL
interpreter has been assigned.

Control languages can also be assigned. An application or printer driver can use
ControlLanguage to see which control languages are available on a PostScript
product.

The PDL and ControlLanguage resource categories are available.

The PDLand ControlLanguage resource categories are made up of key/value pairs.
See the Adobe PostScript documentation for more information.

122 International Language Environments Guide ♦ February 2000

CHAPTER 6

Desktop Environments

The Common Desktop Environment (CDE) is the standard GUI desktop interface
for Solaris 8. Not only is it the user’s main interface to the system, but it is also the
interface in which many of the user’s locale settings are apparent. The German user
sees a German interface; the French user sees a French interface.

The Common Desktop Environment: Internationalization Programmer’s Guide provides
information for internationalizing the desktop to enable applications to support various
languages and cultural conventions in a consistent user interface.

Overview of CDE
CDE is fully internationalized so that any application can run using any locale that
has been installed in the system. By keeping the language- and culture-dependent
information separate from the application source code, the application does not need to
be rewritten or recompiled to be marketed in different countries. Instead, the external
information needs to be localized only to match the target language and customs.

The application interface has been standardized to allow functionality in any locale,
including East Asia. Solaris 8 complies with the Portable Operating Systems Interface
for Computer Environments (POSIX and X/Open specifications, which are also
referred to as XPG4.2).

Each layer within the desktop must use the proper internationalization interface
standards, which are described in the following sources:

� X Window System, The Complete Reference to Xlib, Xprotocol, ICCM, XLFD-X
Version, Release 5, Digital Press, 1992.

123

� IEEE Std. 1003.1-1990. Information Technology-Portable Operating System
Interface (POSIX)-Part 1: System Application Program Interface (API). ISO/IEC
9945-1:1990.

� OSF Motif 1.2 Programmer’s Reference, Revision 1.2, Open Software Foundation,
Prentice Hall, 1992.

� X/Open CAE Specification Commands and Utilities, Issue 4, X/Open Company
Ltd., 1992.

� Common Desktop Environment: Programmer’s Guide, Addison Wesley, 1995. The
updated version is supplied online with the CDE AnswerBooks. See “Related
Books and Sites” on page 16 for more information.

Setting Locales
Most single-display clients operate in a single locale. This is set with the environment
variable, usually $LANGor a set of LC_ environment variables, including $LC_CTYPE.

The LC_CTYPEcategory of the locale is used by the environment to identify the
locale-specific features used at runtime. The fonts and input methods are determined
by the LC_CTYPEcategory.

Xt programs that are enabled for internationalization are expected to call the
XtSetLanguageProc() function (which calls setlocale() by default) to set
the locale.

Integrating Fonts
Your application might be used by someone sitting at an X terminal or by someone at a
remote workstation across a network. In these situations, the fonts available to the
user’s X display from the X window server might be different than your application’s
defaults, and some fonts might not be available.

The standard interface font names defined by CDE are guaranteed to be available on all
CDE-compliant systems. These names do not specify actual fonts. Instead, they are
aliases that each system vendor maps to its best available fonts. If you use only these
font names in your application, you can be sure of getting the closest matching font
on any CDE-compliant system.

See Common Desktop Environment: Programmer’s Overview “Standard Font Names” in
Common Desktop Environment: Programmer’s Overview and also the CDE man pages
DtStdInterfaceFontNames(5) and DtStdAppFontNames(5) for additional information.

124 International Language Environments Guide ♦ February 2000

Internationalization and CDE
Multiple environments can exist within a common open system to support various
languages. Each of these is called a locale. A locale specifies the language, fonts,
and customs to display data. CDE is fully internationalized so that any application
can run in any locale. Any application should be code-set-independent and include
support for any multibyte codeset.

All components are shipped as a single, worldwide executable. These support the
U.S.A., Europe (Western and Eastern), Japan, Korea, Taiwan, Thailand, China, and
the Middle East.

Matching Fonts to Character Sets
Various sets of fonts are used to render a locale’s characters. The specific font
character set depends on the locale. This information should be in a locale-specific
app-defaults file that contains font sets, fonts, and font lists.

XmFontSet specifies the locale-dependent fonts. The resource name is *fontSet .
Fonts should not be specifically named. The resource name for XFontStruct is
*font . Font lists contain lists of fonts and font sets. XFontList specifies the fonts.

Storage of Localized Text
Text strings in each language should be stored outside of the application and in
directories that are identified by locale names. These strings are stored in three types of
files: resource files, message catalogs, and private files.

Resource files and message catalogs are both files that deliver text strings. Resource
files are compiled when they are loaded and message catalogs are precompiled and
ready to be accessed. Any application should be codeset-independent and include
support for any multibyte codeset. Private files can be databases of information that
include some text strings. Ideally, text strings should be in resource files or message
catalogs. If text strings are supplied in a private file, then you should develop a tool to
extract and replace text strings.

Xlib Dependencies
X locale supports one or more of the locales defined by the host environment. Direct
Xlib™ conforms to the American National Standards Institute (ANSI) C library
and the locale announcement method is the setlocale() function. This function
configures the locale operation of both the host C library and Xlib. The operation of
Xlib is governed by the LC_CTYPEcategory; this is called the current locale. The
XSupportsLocale() function is used to determine whether the current locale is
supported by X.

Desktop Environments 125

Message Guidelines
Message guidelines should be developed and used to create a consistent format and
style for text. Use clear and simple English so that all users, including those whose
command of English is minimal, can understand every message. The book Common
Desktop Environment: Internationalization Programmer’s Guide ends with a number
of guidelines for producing clear, concise, translatable messages. Messages should
explain the problem and suggest how to perform the action successfully. Comments to
the translators should also be included that explain concepts, variables, and so forth.
The book includes several lists of suggestions for the format style of the message
catalogs and the style of the messages themselves.

Before sending out the message catalogs to be translated, it is useful to have the
message catalogs translated from English into international English, that is, into a
simplified English that can be easily translated into other languages. This speeds up
the translation process, reduces the translator queries, and saves costs.

Internationalization and Distributed
Networks
This section of the book explains the exchange of information between applications on
different hosts. To transfer data, you must consider several parameters:

� The sender’s and receiver’s codeset

� Whether the protocol is 7-bit or 8-bit

� The type of interchange encoding allowed by the protocol

If the remote host uses the same codeset as the local host, and, if the protocol allows
8-bit data, no conversion is needed. If the protocol allows only 7-bit data, the 8-bit code
points must be mapped onto 7-bit ASCII values. There are various strategies for
conversion.

If the remote host’s codeset is different from that of the local host, the following two
cases might apply. The conversion depends on the specific protocol. If the protocol
allows 8-bit data, the protocol must specify which side makes the conversion. If the
protocol allows only 7-bit data, a 7-bit interchange encoding is needed along with an
identifying character repertoire.

Mail Interchange
With the increased use of the Internet and the ease of communicating with people
around the world, an email message can be viewed on many platforms and dozens of
locales. Standards for email interchange, however, are restricted by desktop machines

126 International Language Environments Guide ♦ February 2000

for which the default email standard is Simple Mail Transfer Protocol (SMTP), which
supports only 7-bit transmission channels.

The sending agent converts the body of the message into a standard format and labels
it as body. The receiving agent looks at the body and, if it supports the character
encoding, converts the body into the local character set.

Because dtmail now uses the Language Conversion Library (LCL), dtmail has the
capacity to support multibyte characters in both the subject line, the mail body, and in
attachments. dtmail also has the ability to use characters of different encodings within
the same mail, for example, SJIS and EUC encodings for the Japanese (ja) locale.

OpenWindows
Solaris 8 does not have any changes in OpenWindows with regard to
internationalization. Applications that were developed for previous versions of Solaris
will run in Solaris 8 without any changes.

The XView toolkit is not codeset independent. Applications that use the XView
toolkit are not supported in non-EUC locales, such as ja_JP.PCK , en_US.UTF-8 , or
ko.UTF-8 .

For information on international XView, see the internationalization portions of the
XView Developer’s Notes.

Desktop Environments 127

128 International Language Environments Guide ♦ February 2000

CHAPTER 7

Complex Text Layout

Complex Text Layout (CTL) extensions enable Motif APIs to support writing systems
that require complex transformations between logical and physical text representations,
such as Arabic, Hebrew, and Thai. CTL Motif provides character shaping, such as
ligatures, diacritics, and segment ordering, and supports the transformation of static
and dynamic text widgets. It also supports right-to-left and left-to-right text orientation
and tabbing for dynamic text widgets. Because text rendering is handled through the
rendition layer, other widget libraries can be easily extended to support CTL.

Overview of CTL Technology
To leverage the new features, users must have the Portable Layout Services (PLS)
library and the appropriate language engine. CTL uses PLS as the interface to the
language engine, and uses the language engine to transform text before it is rendered.
Applications that support CTL must include additional resources, as described in the
CTL documentation.

Specifically, XmCTLsupports the following complex language shaping and reordering
features provided by underlying locale-dependent PLS module transformations:

� Positional variation

� Ligation (many-to-one) and character composition (one-to-many)

� Diacritics

� Bi-directionality

� Symmetrical swapping

� Numeral shaping

� String validation

129

Overview of CTL Architecture
The CTL architecture is organized as shown in the diagram below. Dt Apps at the top
of the stack employs Motif CTL functionality for rendering text. Motif in turn interfaces
with locale-specific language engines using PLS, and performs transformations to
support positional variation, numeral shaping, and so on.

Dt Apps

Motif

Portable Layout Services
(PLS)

Arabic
Language
Engine

Hebrew
Language
Engine

The CTL architecture is built to support new languages by adding a new locale-specific
engine. In other words, support for Thai and Vietnamese can be added without
altering Motif or Dt Apps .

Changes in Motif to Support CTL
Technology
XmDirection
The XmNlayoutDirection resource0 controls object layout. It interacts with the
orientation value of the LayoutObject in the manner described below.

1. See section 11.3 of the Motif Programmer’s Guide (Release 2.1) for an overview of XmNlayoutDirection , and especially for a description

of the interaction between XmStringDirection and XmNlayoutDirection .

130 International Language Environments Guide ♦ February 2000

Layout Direction
First, when XmNlayoutDirection is specified as XmDEFAULT_DIRECTION, then the
widget’s layout direction is set at creation time from the governing pseudo-XOC. In
the case of dynamic text (XmText and XmTextField), the governing pseudo-XOC is
the one that is associated with the XmRendition used for the widget. In the case of
static text (XmList , XmLabel , XmLabelG), the layout direction is set from the first
compound string component that specifies a direction. This specification happens in
one of two ways:

� Directly, if the component is of type XmSTRING_COMPONENT_LAYOUT_PUSHor
XmSTRING_COMPONENT_DIRECTION

� Indirectly, if the component is of type XmSTRING_COMPONENT_LOCALE_TEXT,
XmSTRING_COMPONENT_WIDECHAR_TEXT, or XmSTRING_COMPONENT_TEXT,
from the component’s associated XmRendition ’s and associated LayoutObject .

Second, if XmNlayoutDirection is not specified as XmDEFAULT_DIRECTION, and
the XmNlayoutModifier @ls orientation value is not specified explicitly in the
layout modifier string, then the XmNlayoutDirection value is passed through to the
XOC and its LayoutObject .

If both XmNlayoutDirection and the XmNlayoutModifier @ls orientation
value are explicitly specified, then the behavior is mixed; the XmNlayoutDirection
controls widget object layout, and the XmNlayoutModifier @ls orientation
value controls layout transformations.

For More Information
For more information, see CAE Specification: Portable Layout Services:
Context-dependent and Directional Text. The Open Group: Feb 1997; ISBN
1-85912-142-X; document number C616.

This document describes a set of portable functions for handling context-dependent
and bidirectional text transformations as a logical extension to the existing POSIX locale
model. It is intended for system and application programmers who want to provide
support for complex-text languages.

XmStringDirection
XmStringDirection is the data type used to specify the direction in which the
system displays characters of a string.

The XmNlayoutDirection resource sets a default rendering direction for any
compound string (XmString) that does not have a component specifying the direction
of that string. Therefore, to set the layout direction, all you need to do is to set the
appropriate value for the XmNlayoutDirection resource. You do not need to create

Complex Text Layout 131

compound strings with specific direction components. When the application renders
an XmString , it should look to see if the string was created with an explicit direction
(XmStringDirection). If there is no direction component, the application should
check the value of the XmNlayoutDirection resource for the current widget and use
that value as the default rendering direction for the XmString .

See also XmRendition and XmDirection .

XmRendition
CTL adds the following new pseudo resources to XmRendition :

TABLE 7–1 New Resources in XmRendition

Name Class/Type Access Default Value

XmNfontType XmCFontType/XmFontType CSG XmAS_IS

XmNlayoutAttrObject XmClayoutAttrObject/StringCG NULL

XmNlayoutModifier XmClayoutModifier/String CSG NULL

XmNfontType Specifies the type of the Rendition font
object. For CTL, the value of this resource
must be the XmFONT_IS_XOCvalue. If it is
not, then the XmNlayoutAttrObject and
XmNlayoutModifier resources are ignored.

When the value of this resource is
XmFont_IS_XOC, and if the XmNfont resource
is not specified, then at create time the value of
the XmNfontName resource is converted into
an XOC object in either the locale specified
by the XmNlayoutAttrObject resource or
the current locale. Furthermore, the value of
the XmNlayoutModifier resource is passed
through to any LayoutObject associated with
the XOC.

XmNlayoutAttrObject Specifies the layout AttrObject argument
to be used to create the Layout Object
associated with the XOC associated with this
XmRendition . Refer to the Layout Services
m_create_layout() specification for the

132 International Language Environments Guide ♦ February 2000

syntax and semantics of this string. (See the
description of XmNfontType above for an
explanation of the interaction between the Layout
Modifier Orientation output value and the
XmNlayoutDirection widget resource.)

XmNlayoutModifier Specifies the layout values to be passed through
to the Layout Object associated with the XOC
associated with this XmRendition . For the
syntax and semantics of this string, see CAE
Specification.

Setting this resource using
XmRendition{Retrieve,Update} causes the
string to be passed through to the LayoutObject
associated with the XOC associated with this
Rendition. This is the mechanism for configuring
layout services dynamically. Unpredictable
behavior can result if the Orientation ,
Context , TypeOfText , TextShaping , or
ShapeCharset are changed.

Additional Layout Behavior
The XmNlayoutModifier affects the layout behavior of the text associated with
the XmRendition . For example, if the layout default treatment of numerals is
NUMERALS_NOMINAL, the user can change to NUMERALS_NATIONALby setting
XmNlayoutModifier to:

� @ls numerals=nominal:national , or

� @ls numerals=:national

The layout values can be classified into the following groups:

� Encoding description: TypeOfText , TextShaping , ShapeCharset (and locale
codeset)

TypeOfText is essentially segment ordering and can be illustrated with opaque
blocks.Modifying these values dynamically, through the rendition object is not
usually meaningful, and almost certain to result in unpredictable behavior.

� Layout behavior: Orientation , Context , ImplicitAlg , Swapping , Numerals

Orientation and Context should not be modified dynamically; you can safely
modify ImplicitAlg , Swapping , and Numerals .

� Editing behavior: CheckMode

Complex Text Layout 133

XmText , XmTextField
Xm CTL extends XmText and XmTextField by adding a parallel set of movement
and deletion actions that operate visually, patterned after the Motif 2.0 CSText
widget. The standard Motif 2.1 Text and TextField do not distinguish between
logical and physical order: “next” and “forward” mean “to the right,” while
“previous” and “backward” mean “to the left.” CSText , however, makes the proper
distinction and defines a new set of actions with strictly physical names (for example,
left-character() , delete-right-word() , and so on). All of these action
routines are defined to be sensitive to the XmNlayoutDirection of the widget and to
call the appropriate “next-” or “previous-” action. The Xm CTL extensions are slightly
more complex than CSText ’s in that they are sensitive not to the global orientation of
the widget, but to the specific directionality of the physical characters surrounding the
cursor, as determined by the pseudo-XOC (including neutral stabilization).

There is also a new resource to control selection policy, to provide a rendition tag, and
to control alignment.

The set of new Xm CTL actions is roughly the cross product of {Move,Delete,Kill}
by {Left,Right} by {Character,Word} , and is listed below.

TABLE 7–2 New Resources in Xm CTL

Name Class/Type AccessDefault Value

XmNrenditionTagXmCRenditionTag/XmRString CSG XmFONTLIST_DEFAULT_TAG

XmNalignment XmCAlignment/XmRAlignment CSG XmALIGNMENT_BEGINNING

XmNeditPolicy XmCEditPolicy/XmREditPolicy CSG XmEDIT_LOGICAL

XmNrenditionTag Specifies the rendition tag of the XmRendition
(in the XmNrenderTable resource) to be used
for this widget.

XmNalignment Specifies the text alignment to be used in
the widget. Only XmALIGNMENT_ENDand
XmALIGNMENT_CENTERare supported.

XmNeditPolicy Specifies the editing policy to be used
for the widget, either XmEDIT_LOGICAL
or XmEDIT_VISUAL. In the case of
XmEDIT_VISUAL, selection, cursor movement,
and deletion are in a visual style. Setting this
resource also changes the translations for the
standard keyboard movement and deletion

134 International Language Environments Guide ♦ February 2000

events either to the new “visual” actions list
below or to the existing logical actions.

Character Orientation Action Routines
All of the actions in the following list query the orientation of the character in
the direction specified. If the direction is left-to-right, they call the corresponding
next- /forward- or previous- /backward- variants:

� delete-left-character()

� delete-left-word()

� delete-right-character()

� delete-right-word()

� kill-left-character()

� kill-left-word()

� kill-right-character()

� kill-right-word()

� left-character()

� left-word()

� prev-cell()

� right-character()

� right-word()

� forward-cell()

Character Orientation Additional Behavior
The actions determine the orientation of characters by using the Layout Services
transformation OutToInp and Property buffers (for the nesting level). The widget’s
behavior is therefore dependent on the locale-specific transformation. If the information
in the OutToInp or, especially, Property buffers is inaccurate, the widget might
behave unexpectedly. Moreover, as the locale-specific modules fall outside of the scope
of this specification, bi-directional editing behavior can differ from platform to platform
for the same text, application, resource values, and LayoutObject configuration.

The visual mode actions result in a display of cell-based behavior. The logical
mode actions result in logical character-based behavior. For example, the
delete-right-character() operation deletes the input buffer characters
that correspond to the display cell. That is, one input buffer character whole
LayoutObject transformation “property” byte “new cell indicator” is 1, and all of the
succeeding characters whose “new cell indicator”1 is 0.

2. For more information on the Property buffer, see the specification for m_transform_layout() in CAE Specification.

Complex Text Layout 135

Similarly, for backward-character() , the insertion point is moved backward
one character in the input buffer, and the cursor is redrawn at the visual location
corresponding to the associated output buffer character. This means that several
keystrokes are required to move across a composite display cell; the cursor does not
actually change display location as the insertion point moves across input buffer
characters whose “new cell indicator” is 0 (that is, diacritics or ligature fragments).

This means that deletion operates either from the logical/input buffer side, or from the
display cell level of the physical/output side. There is no mode for a strict, physical
character-by-character deletion, since there is no one-to-one correspondence between
the input and output buffers. A given physical character can represent only a fragment
of a logical character, for example.

XmText Action Routines
The XmText action routines are as follows:

left-character(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
arguments, it moves the insertion cursor
back logically by a character. If the
insertion cursor is at the beginning of the
line, it moves the insertion cursor to the
logical last character of the previous line,
if one exists; otherwise, the insertion
cursor position doesn’t change.

If the XmNeditPolicy is
XmEDIT_VISUAL, then the cursor moves
to the left of the cursor position. If the
insertion cursor is at the beginning of the
line, then it moves to the end character
of the previous line, if one exists.

If it is called with an extend argument,
it moves the insertion cursor, as in the
case of no argument, and extends the
current selection.

The left-character()
action produces calls to the
XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR.
If called with an extend argument,
this can produce calls to the
XmNgainPrimaryCallback
procedures. See the callback description

136 International Language Environments Guide ♦ February 2000

in the Motif Programmer’s Reference for
more information.

left-word(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
any arguments, and the insertion cursor
is at the logical starting of the word, it
moves the insertion cursor to the logical
starting of the logical preceding word, if
one exists; otherwise, the insertion cursor
position doesn’t change. If the insertion
cursor is in the word but not at the
logical start of the word, it moves the
insertion cursor to the logical start of
the word. If the insertion cursor is at
the logical start of the line, it moves the
insertion cursor to the logical start of the
logical last word in the previous line, if
one exists; otherwise, the insertion cursor
position doesn’t change.

If the XmNeditPolicy is
XmEDIT_VISUAL and is called without
arguments, it moves the insertion cursor
to the first non-white-space character
after the first white-space character to
the left or after the beginning of the line.
If the insertion cursor is already at the
beginning of the word, it moves the
insertion cursor to the beginning of the
previous word. If the insertion cursor is
already at the beginning of the line, it
moves to the starting of the last word in
the previous line.

If called with an argument of extend ,
it moves the insertion cursor, as in the
case of no argument, and extends the
current selection.

The left-word() action produces calls
to the XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR.
If it is called with an extend
argument, this can produce calls to
the XmNgainPrimaryCallback
procedures. See the callback description

Complex Text Layout 137

in the Motif Programmer’s Reference for
more information.

right-character(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
any arguments, it moves the insertion
cursor logically forward by a character.
If the insertion cursor is at the logical
end of the line, it moves the insertion
cursor to the logical starting of the next
line, if one exists.

If the XmNeditPolicy is
XmEDIT_VISUAL, then the cursor moves
to the right of the cursor position. If the
insertion cursor is at the end of the line,
it moves the insertion cursor to the
starting of the next line, if one exists.

If called with an argument of extend ,
it moves the insertion cursor, as in the
case of no argument and extends the
current selection.

The right-character()
action produces calls to the
XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR.
If called with extend argument,
this can produce calls to the
XmNgainPrimaryCallback
procedures. See the callback description
in the Motif Programmer’s Reference for
more information.

right-word(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
any arguments, it moves the insertion
cursor to the logical starting of the
logical succeeding word if one exists;
otherwise, it moves to the logical end
of the current word. If the insertion
cursor is at the logical end of the line
or in the logical last word of the line,
it moves the cursor to the logical first
word in the next line, if one exists;
otherwise, it moves to the logical end of
the current word.

138 International Language Environments Guide ♦ February 2000

If the XmNeditPolicy is
XmEDIT_VISUAL and is called without
arguments, it moves the insertion cursor
to the first nonwhite space character
after the first white space character to
the right or after the end of the line.

If called with an argument of extend ,
it moves the insertion cursor, as in the
case of no argument, and extends the
current selection.

The left-word() action produces calls
to the XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR.
If called with extend argument,
this can produce calls to the
XmNgainPrimaryCallback
procedures. See the callback description
in the Motif Programmer’s Reference for
more information.

delete-left-character() If the XmNeditPolicy is
XmEDIT_LOGICAL, it is equivalent
to delete-previous-char . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise it deletes the
character left of the insertion cursor. In
add mode, if there is a non-null selection,
the cursor is not disjointed from the
selection and XmNpendingDelete
is set to True, it deletes the selection;
otherwise, it deletes the character left
of the insertion cursor. This can impact
the selection.

The delete-left-character()
action produces calls to the
XmNmodifyVerifyCallback
procedures with reason value
XmCR_MODIFYING_TEXT_VALUEand
the XmNvalueChangedCallback
procedures with reason value
XmCR_VALUE_CHANGED.

Complex Text Layout 139

delete-right-character() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-next-character . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
character right of the insertion cursor. In
add mode, if there is a non-null selection
and the cursor is not disjointed from the
selection, the XmNpendingDelete is
set to True and the selection is deleted;
otherwise, the character right of the
insertion cursor is deleted. This can
impact the selection.

The delete-right-character()
action produces calls to the
XmNmodifyVerify- Callback
procedures with reason value
XmCR_MODIFYING_TEXT_VALUE, and
the XmNvalue- ChangedCallback
procedures with reason value
XmCR_VALUE_CHANGED.

delete-left-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent
to delete-prev-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters left of the insertion cursor to
the next space, punctuation character,
tab, or beginning-of-line character.
In add mode, if there is a non-null
selection, the cursor is not disjointed
from the selection; otherwise it deletes
the characters left of the insertion cursor
the right space, tab, or beginning-of-line
character. In add mode, if there is
a non-null selection, the cursor is
not disjointed from the selection, the
XmNpendingDelete is set to True, and
the selection is deleted; otherwise, it
deletes the character left of the insertion
cursor, the right space, tab, or beginning

140 International Language Environments Guide ♦ February 2000

of new-line character. This can impact
the selection.

delete-right-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent
to delete-right-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters right of the insertion cursor to
the next space, punctuation character,
tab, or end-of-line character. In add
mode, if there is a non-null selection,
the cursor is not disjointed from the
selection, XmNpendingDelete is set
to True, and deletes the selection;
otherwise, it deletes the characters right
of the insertion cursor to the next space,
tab, or end-of-line character. This can
impact the selection.

kill-left-character() If the XmNeditPolicy is
XmEDIT_LOGICAL, it is equivalent
to kill-prev-char . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it kills the character
left of the insertion cursor and stores the
character in the cut buffer. In add mode,
if there is a non-null selection, the cursor
is not disjointed from the selection,
XmNpendingDelete is set to True, and
deletes the selection; otherwise, it deletes
the character left of the insertion cursor.
This can impact the selection.

The kill-left-character()
action produces calls to the
XmNmodifyVerifyCallback
procedures with the reason value
XmCR_MODIFYING_TEXT_VALUE,
and produces the
XmNvalueChangedCallback
procedures with the reason value
XmCR_VALUE_CHANGED.

Complex Text Layout 141

kill-right-character() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-next-character . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
character right of the insertion cursor
and stores it in the cut buffer. In add
mode, if there is a non-null selection,
the cursor is not disjointed from the
selection, the XmNpendingDelete is
set to True and deletes the selection;
otherwise, it deletes the character right
of the insertion cursor. This can impact
the selection.

The kill-right-character()
action produces calls to the
XmNmodifyVerify-Callback
procedures with reason value
XmCR_MODIFYING_TEXT_VALUE,
and produces calls to the
XmNvalue-ChangedCallback
procedures with reason value
XmCR_VALUE_CHANGED.

kill-left-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent
to delete-prev-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters left of the insertion cursor to
the next space, punctuation character,
tab, or beginning-of-line character.
In add mode, if there is a non-null
selection, the cursor is not disjointed
from the selection; otherwise it deletes
the characters left of the insertion cursor
the right space, tab, or beginning-of-line
character and stores it in the cut buffer.
In add mode, if there is a non-null
selection, the cursor is not disjointed
from the selection, XmNpendingDelete
is set to True and deletes the selection;
otherwise it deletes the characters left of

142 International Language Environments Guide ♦ February 2000

the insertion cursor, the right space, tab,
or beginning of new-line character. This
can impact the selection.

kill-right-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent
to delete-right-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters right of the insertion cursor
to the next space, tab, or end-of-line
character. In add mode, if there is
a non-null selection, the cursor is
not disjointed from the selection,
XmNpendingDelete is set to True, and
deletes the selection; otherwise, it deletes
the characters right of the insertion
cursor to the next space, punctuation
character, tab, or end-of-line character
and stores in the cut buffer. This can
impact the selection.

A few cell-based routines are implemented to support character composition, ligatures,
and diacritics. In other words, two or more characters might be represented by a single
glyph occupying one presentation cell.

The XmText cell action routines are as follows:

prev-cell(extend) Moves the insertion cursor back one cell. If the
XmNeditPolicy is XmEDIT_LOGICAL, then
the insertion cursor is moved to the start of
the cell that precedes the current cell logically,
if one exists; otherwise, it moves to the start of
the current cell.

If the XmNeditPolicy is XmEDIT_VISUAL,
then the cursor moves to the start of cell
to the left of the cursor, if one exists.
The prev-cell() action produces calls
to the XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with
an extend argument, this can produce calls to the
XmNgainPrimaryCallback procedures. See the
callback description in the Motif Programmer’s
Reference for more information.

Complex Text Layout 143

forward-cell(extend) Moves the insertion cursor to the start of the
logical next cell, if one exists; otherwise it moves
it to the end of the cell. If the XmNeditPolicy
is XmEDIT_LOGICAL, then the cursor moves
forward one cell.

If the XmNeditPolicy is XmEDIT_VISUAL,
then the cursor moves to the start of the cell to
the right of the cursor position, if one exists;
otherwise it moves to the end of the current
cell. The forward-cell() action produces
calls to the XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with
an extend argument, this can produce calls to the
XmNgainPrimaryCallback procedures. See the
callback description in the Motif Programmer’s
Reference for more information.

XmTextFieldGetLayoutModifier

Purpose
A TextField function that returns the layout modifier string that reflects the state
of the layout object tied to its rendition.

Synopsis
#include <Xm/TextF.h>
String XmTextFieldGetLayoutModifier(Widget widget)

Description
XmTextFieldGetLayoutModifier accesses the value of the current
layout object settings of the rendition associated with the widget. When the
layout object modifier values are changed using a convenience function, the
XmTextFieldGetLayoutModifier function returns the complete state of the layout
object, not only the changed values.

Return Value
Returns the layout object modifier values in the form of a String value.

144 International Language Environments Guide ♦ February 2000

Related Information
XmTextField

XmTextGetLayoutModifier

Purpose
A Text function that returns the layout modifier string that reflects the state of the
layout object tied to its rendition.

Synopsis
#include <Xm/Text.h>
String XmTextGetLayoutModifier(Widget
widget)

Description
XmTextGetLayoutModifier accesses the value of the current layout object settings
of the rendition associated with the widget. When the layout object modifier values are
changed using a convenience function, the XmTextGetLayoutModifier function
returns the complete state of the layout object, not just the changed values.

Return Value
Returns the layout object modifier values in the form of a String value.

Related Information
XmText

XmTextFieldSetLayoutModifier

Purpose
A TextField function that sets the layout modifier values, which changes the
behavior of the layout object tied to its rendition.

Complex Text Layout 145

Synopsis
#include <Xm/TextF.h>
void XmTextFieldSetLayoutModifier(Widget widget,string layout_modifier)

Description
XmTextFieldSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this
convenience function, only the attributes specified in the input parameter are changed;
the rest of the attributes remain untouched.

Related Information
XmTextField

XmTextSetLayoutModifier

Purpose
A Text function that sets the layout modifier values, which changes the behavior
of the layout object tied to its rendition.

Synopsis
#include <Xm/Text.h>
void XmTextSetLayoutModifier(Widget
widget,string layout_modifier)

Description
XmTextSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this
convenience function, only the attributes specified in the input parameter are changed;
the rest of the attributes are left untouched.

Related Information
XmText

146 International Language Environments Guide ♦ February 2000

XmStringDirectionCreate

Synopsis
#include <Xm/Xm.h>
XmString XmStringDirectionCreate(direction)
XmStringDirection direction

Description
XmStringDirectionCreate creates a compound string with a single component,
a direction with the given value. On the other hand, the XmNlayoutDirection
resource sets a default rendering direction for any compound string (XmString)
that does not have a component specifying the direction for that string. Therefore,
to set the layout direction, all you need to do is set the appropriate value for the
XmNlayoutDirection resource. You need not create compound strings with specific
direction components. When the application renders an XmString , it should look
to see if the string was created with an explicit direction (XmStringDirection).
If there is no direction component, the application should check the value of the
XmNlayoutDirection resource for the current widget and use that value as the
default rendering direction for the XmString .

Related Information
See also XmRendition , XmDirection .

UIL
The following table shows the UIL arguments:

TABLE 7–3 UIL

UIL Argument Name Argument Type

XmNlayoutAttrObject String

XmNlayoutModifier String

XmNrenditionTag String

Complex Text Layout 147

TABLE 7–3 UIL (continued)

UIL Argument Name Argument Type

XmNalignment Integer

XmNeditPolicy Integer

How to Develop CTL Applications
Layout Direction
The direction of a compound string is stored so that the data structure will be
equally useful for describing text in left-to-right languages such as English, Spanish,
French, and German, as well as for text in right-to-left languages, such as Hebrew
and Arabic. In Motif applications, you can set the layout direction using the
XmNlayoutDirection resource from the VendorShell or MenuShell. Manager and
Primitive widgets (as well as Gadgets) also have an XmNlayoutDirection resource.
The default value is inherited from the closest ancestor with the same resource.

In the case of an XmText widget, you must specify the vertical direction as well.
Setting the layoutDirection to XmRIGHT_TO_LEFTwill result in the string
direction from right-to-left, but the cursor will move vertically down. If the vertical
direction is important and you require top to bottom is alignment, be sure to specify
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, which specifies that the components are
laid out from right-to-left first and then top-to-bottom, and will result in the desired
behavior.

Furthermore, the behavior of XmText and TextField widgets is influenced by the
XmNalignment and XmNlayoutModifier resources of the XmRendition . These
resources, in addition to XmNlayoutDirection , control the layout behavior of the
Text widget. This can be illustrated using the example below.

The input string used in the illustration is:

The XmNlayoutModifier string @ls orientation= setting values for this
illustration are shown below, in the left column.

148 International Language Environments Guide ♦ February 2000

Layout Direction: XmLEFT_TO_RIGHT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Layout Direction: XmRIGHT_TO_LEFT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Figure 7–1 Tabbing Behavior

As the illustration shows, XmNAlignment dictates whether the text is flush right or left
in conjunction with the layout direction. On the other hand, XmNlayoutModifier
breaks the text into segments and arranges them left-to-right or right-to-left,
depending on the orientation value. In other words, if the XmNlayoutDirection is
XmRIGHT_TO_LEFT, and the XmNAlignment value is XmALIGNMENT_BEGINNING,
the string is flush right.

Creating a Rendition
The following code creates an XmLabel whose XmNlabelString is of the type
XmCHARSET_TEXT, using the Rendition whose tag is “ArabicShaped.” The
Rendition is created with an XmNlayoutAttrObject of “ar” (corresponding to the
locale name for the Arabic locale) and a layout modifier string that specifies for the
output buffer a Numerals value of NUMERALS_CONTEXTUALand a ShapeCharset
value of “unicode-3.0.”

The locale-specific layout module transforms its input text (in this example encoded in
ISO 8859-6) in an output buffer of physical characters encoded using the 16-bit Unicode

Complex Text Layout 149

3.0 codeset. Because an explicit layout locale has been specified, this text is rendered
properly independent of the runtime locale setting.

int n;
Arg args[10];
Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, argcs
s, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

Editing a Rendition
The following code creates a TextField widget and a RenderTable with a single
Rendition . Both the XmNlayoutAttrObject and XmNlayoutModifier pseudo
resources have been left unspecified and therefore defaults to NULL. This means the
LayoutObject associated with the Rendition belongs to the default locale, if
one exists.

For this example to work properly, the locale must be set to one whose codeset is ISO
8859-6 and whose locale-specific layout module can support the IMPLICIT_BASIC
algorithm. It then modifies the Rendition ’s LayoutObject ’s ImplicitAlg value
through the Rendition ’s XmNlayoutModifier pseudo resource.

int n;
Arg args[10];
Widget w;

XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;
w = XmCreateTextField(parent, "text field", args, 0);
n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;

XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

150 International Language Environments Guide ♦ February 2000

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

....
n = 0;
XtSetArg(args[n], XmNlayoutModifier, "@ls implicitalg=basic");

n++;
XmRenditionUpdate(rendition, args, n);

Related Information
See also XmDirection , XmText .

Creating a Render Table in a Resource
File
Rendition s and render tables can be specified in resource files. For a properly
internationalized application, in fact, this is the preferred method. When the render
tables are specified in a file, the program binaries are made independent of the
particular needs of a given locale, and can be easily customized to local needs.

Render tables are specified in resource files with the following syntax:
resource_spec:[tag[, tag]*]

where tag is some string suitable for the XmNtag resource of a rendition.

This line creates an initial render table containing one or more renditions as specified.
The renditions are attached to the specified tags:

resource_spec[*|.] rendition[*|.] resource_name: value

The following examples illustrate the CTL resources related to XmRendition that can
be set using resource files. The fontType must be set to FONT_IS_XOCfor the layout
object to take effect. The layoutModifier specified using @ls is passed on to the
layout object by the rendition object.

For a complete list of resources that can be set on the layout object using
layoutModifier , see CAE Specification: Portable Layout Services: Context-dependent
and Directional Text, The Open Group: Feb 1997; ISBN 1-85912-142-X; document
number C616.

Creating a Render Table in an Application
Before creating a render table, an application program must first have created at least
one of the renditions that is part of the table. The XmRenderTableAddRenditions

Complex Text Layout 151

function, as its name implies, is also used to augment a render table with new
renditions. To create a new render table, call the XmRenderTableAddRenditions()
function with a NULLargument in place of an existing render table.

The following code creates a render table using a rendition created with XmNfontType
set to XmFONT_IS_XOC.

int n;
Arg args[10];
Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=nominal:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

Horizontal Tabs
To control the placement of text, a compound string can contain tab characters. To
interpret those characters on display, a widget refers to the rendition in effect for that
compound string, where it finds a list of tab stops. However, the dynamic widgets
(TextField and XmText) do not use the tab resource of the rendition. Instead, they
compute the tab width using the formula of 8*(width of character 0) .

The tab measurement is the distance from the left margin of the compound string
display, or from the right margin, if the layout direction is right-to-left. It is important
to note that, regardless of the direction of the text (Arabic right-to-left or English
left-to-right), the tab inserts space to the right or left as specified by the layout direction
(XmNlayoutDirection).

The text following a tab is always aligned at the tab stop, and the tab stop is calculated
from the start of the widget, which in turn is influenced by XmNlayoutDirection .

152 International Language Environments Guide ♦ February 2000

The behavior of the tabs and their interaction with directionality of the text and the
XmNlayoutDirection of the widget is illustrated in the following figure.

The input for this illustration is abc\tdef\tgh .

Layout Direction: XmLEFT_TO_RIGHT

Layout Direction: XmRIGHT_TO_LEFT
Figure 7–2 Tabbing Behavior

Mouse Selection
The user makes a primary selection with SELECT (the left mouse button). Pressing
SELECT deselects any existing selection and moves the insertion cursor and the anchor
to the position in the text where the button is pressed. Dragging SELECT selects all text
between the anchor and the pointer position, deselecting any text outside the range.

The text selected is influenced by the resource XmNeditPolicy , which can be
set to XmEDIT_LOGICALor XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the text selected is bi-directional, the selected text is not
contiguous visually and will be a collection of segments. This is because the text in the
logical buffer does not have a one-to-one correspondence with the display.

As a result, the contiguous buffer of logical characters of bi-directional text, when
rendered does not result in a continuous stream of characters. Conversely, when
the XmNeditPolicy is set to XmEDIT_VISUAL, the text selected can be contiguous

Complex Text Layout 153

visually but is segmented in the logical buffer. So the sequence of selection, deletion,
and insertion of bi-directional text at the same cursor point does not result in the
same string.

Keyboard Selection
The selection operation available with the mouse is also available with the keyboard.
The combination of Shift-arrow keys allows the selection of text.

The text selected is influenced by the resource XmNeditPolicy , which can be
set to XmEDIT_LOGICALor XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the text selected is bi-directional, the selected text will not
be contiguous visually and will be a collection of segments. This is because the text
in the logical buffer does not have one-to-one correspondence with the display. As a
result, the contiguous buffer of logical characters of bi-directional text, when rendered
does not result in a continuous stream of characters.

Conversely, when the XmNeditPolicy is set to XmEDIT_VISUAL, the text selected
can be contiguous visually but is segmented in the logical buffer. So the sequence of
selection, deletion, and insertion of bi-directional text at the same cursor point does
not result in the same string.

Text Resources and Geometry
Text has several resources that relate to geometry, including the following:

� The render table XmNrenderTable that the widget uses to select a font or font
set and other attributes in which to display the text

The Text and Textfield widgets can use only the font-related rendition
resources, such as XmNfontType , and can also specify the attributes of the
layout object, such as XmNlayoutAttrObject , usually a locale identifier, and
XmNlayoutModifier , which specifies the layout values to be passed through to
the Layout Object associated with the XOC associated with this XmRendition .

� A resource (XmNwordWrap) that specifies whether lines are broken at word
boundaries when the text would be wider than the widget

Breaking a line at a word boundary does not insert a new line into the text. In the
case of cursive languages like Arabic, if the word length is greater than the widget
length, the word is wrapped to the next line, but the first character in the next line
is shaped independently of the previous character in the logical buffer.

154 International Language Environments Guide ♦ February 2000

Porting Instructions
The new CTL-enabled Motif library can be found in /usr/dt/lib/libXm.so.4 .
If your application links tolibXm.so.3 (ldd app_name shows which library the
application is linking to), then it will not support Complex Text Layout (CTL). In order
to port the existing applications to enable CTL, you need to perform the following
steps.

Add -DSUN_CTLto your Makefile. This flag is important and includes the
necessary data structures to support CTL. This should be set during compilation.
Recompile the existing application. It will automatically link with the
CTL-enabled Motif library libXm.so.4 .
Add the following resources to your application resource file. Without these
resources, the layout engine of the locale will not launch.
Add the following resources to your application resource file. Without these
resources, the layout engine of the locale will not launch
Refer to the sample application attached to your documentation.

Use the font name that is available and appropriate to your locale in the fontName resource.

1. If you want the cell-based character movement (Thai) in XmTextField or
XmText widgets, set the translations of the corresponding widgets as follows.
Refer to the documentation for further detailed explanation.

XmText.translations: #override \n\

<Key>osfRight:forward-cell() \n\

<Key>osfLeft:backward-cell() \n\

<Key>osfDelete:delete-next-cell() \n\

<Key>osfBackSpace:delete-previous-cell() \n\

Complex Text Layout 155

156 International Language Environments Guide ♦ February 2000

CHAPTER 8

Printing

Localization Printing Support Under the
Solaris 8 Operating Environment
The Solaris environment provides support for PostScript printers. Custom print filters
are available to convert localized text to PostScript. See mp(1) anasi postprint (1) man
pages for further details. Fonts can also be downloaded onto a printer.

For more details, see the download (1) man pages. This support is configured for
PostScript printers.

The Solaris 8 environment has a unified printing filter that replaces all the locale-specific
filters described below. This section describes this filter and which scripts are supported in
each locale Sun supports.

This filter uses font glyphs from printer-resident fonts and TrueType fonts in the
Solaris operating environment; PCF bitmap fonts in the Solaris system depend on the
configuration information defined for each locale. For more information on PCF
(Portable Compiled Format), see man pages bdftosnf(1) and bdftopcf(1).

European Printing Support
For European locales based on character sets that are not ISO-8859, such as
Greek and Russian, prolog.ps files are supplied. The files are located in
/usr/openwin/lib/ locale/print .

157

When you print in one of these locales, the files are automatically downloaded to the
printer. These fonts are PostScript Type 1 and include Times, Helvetica, and Courier.

These are in normal, bold , italic, and bold —italic styles.

This allows printing on PostScript printers from both CDE and OpenWindows
desktops. From a command line, use /usr/openwin/bin/mp <filename> | lp in
each locale that is not based on ISO 8859–1 character sets.

For the Eastern European locales such as Russian, non-iso-8859-1 encoded,
prolog.ps files are supplied. The files are located in:

/usr/openwin/lib/ locale/locale/ directories/print/prolog.ps

for each relevant locale. At directories, insert one of the following:

/iso8859-2/

/iso8859-4/

/iso8859-5/

/iso8859-7/

/iso8859-9/

/iso8859-10/

The files are downloaded automatically when you print in one of the Eastern European
locales. A minimum set of fonts allow printing.

The fonts in the prolog.ps files are defined in the following table.

TABLE 8–1 prolog.ps Fonts

/LC_Courier

/LC_Courier-Italic

/LC_Courier-Bold

/LC_Courier-BoldOblique

CourierCyr AliasFont

CourierCyr Inclined AliasFont

CourierCyr Bold AliasFont

CourierCyr BoldInclined AliasFont

/LC_Times-Roman

/LC_Times-Italic

/LC_Times-Bold

/LC_Times-BoldOblique

TimesNewRomanCyr

TimesNewRomanCyr-Inclined Aliasfont

TimesNewRomanCyr-Bold AliasFont

TimesNewRomanCyr-BoldIncl AliasFont

/LC_Helvetica

/LC_Helvetica-Italic

/LC_Helvetica-Bold

/LC_Helvetica-BoldOblique

LucidaSansCyr AliasFont

LucidaSansCyr ItalicFont

LucidaSansCyr-Bold AliasFont

LucidaSansCyr-BoldItalic AliasFont

158 International Language Environments Guide ♦ February 2000

TABLE 8–1 prolog.ps Fonts (continued)

Table 8–1 is an example of the ISO8859–5 locale. The actual prolog.ps will vary
depending on the locale.

Asian Multibyte Printing Support
The xetops and xutops utilities convert Asian text into a bitmapped graphics printed
image. This enables you to print Asian characters on PostScript-based printers, even
without having Asian fonts resident on the printers.

A typical command line for printing such a file would be as follows:

system% pr <filename> | xetops |lp

or

system% pr <filename> | xutops |lp
(for the ko.UTF-8, zh.UTF-8 and zh_TW.UTF-8 locales)

Japanese Solaris 8 supports the following Japanese-specific printers:

� Japanese PostScript printer

� Epson VP-5085 (based on ESC/P)

� NEC PC-PR201 (based on 201PL)

� Canon LASERSHOT (based on LIPS)

Japanese texts can be printed with these printers through the LP print service. The
following table shows the relation between these printers and user components. See
JFP User’s Guide for further details.

TABLE 8–2 Japanese Printer Support

Printer terminfo(-T) interface(-i) content(-I) filter

Japanese PS PS jstandard postscript jpostprint

Epson VP-5085 epson-vp5085 jstandard None jprconv

NEC PC-PR201 nec-pr201 jstandard None jprconv

Canon
LASERSHOT

canon-ls-a408 jstandard None jprconv

Printing 159

TABLE 8–2 Japanese Printer Support (continued)

Use the following to set up a Japanese PostScript printer.

In the following example, the PostScript printer name is lw . The /dev/lp1 is the
device that is associated with the printer. For more information, see the lpadmin (1M)
man page.

lpadmin -p lw -v /dev/lp1 -T PS -I postscript
lpadmin -p lw -i /usr/lib/lp/model/jstandard

cd /etc/lp/fd
lpfilter -x -f postprint

lpfilter -f jpostprint -F jpostprint.fd
accept lw

enable lw
/etc/init.d/lp stop
/etc/init.d/lp start

To print, use the following operation:

% lp -d lw Japanese Text File

These features are supported only on Japanese Solaris. Input codesets to a printer depend
on the system locale.

Solaris Font Downloader
The Solaris Font Downloader is a vital part of internationalized printing.PostScript
printers sold in different countries do not always have a set of locale-specific fonts
installed on them. The usual solution for this problem was to have these locale-specific
fonts included with each print job, which tended to lead to enormously large,
slowly-processed, print jobs.

An alternative is to have all the frequently used fonts reside on the printer. They can be
placed either in printer RAM, or on a hard disk if a printer has one connected to it.
Most modern PostScript printers have the option of connecting a hard disk to them.
The process of taking font files from the workstation and placing them on a printer is
called “downloading.” Fonts downloaded to RAM are available until the printer is
power-cycled. Fonts downloaded to a hard disk are available until they are removed..

The Solaris Font Downloader is a GUI application for managing fonts on PostScript
printers. It supports a number of different popular printers running PostScript Level 2
or Level 3 software and connected to a network with TCP/IP protocol.

160 International Language Environments Guide ♦ February 2000

Specifically, it provides the following functionality:

� Download PostScript fonts to a printer

� Convert and download TrueType fonts to a printer

� Remove previously downloaded fonts from a printer

� Report general information, orproperties, about a printer, such as the amount of
RAM and hard disk capacity, and a list of available fonts, for example.

� Print character samples

� Reformat hard disk on a printer

The Solaris Font Downloader works with a variety of different fonts available for a
computer user. It can download the following PostScript fonts to a printer:

� Type 1

� Type 3

� Type 9 (CID Type 0)

� Type 10 (CID Type 1),

� Type 11 (CID Type 2),

� Type 42

It can also convert TrueType fonts to PostScript fonts such as Type 42 fonts or CID
(Type 11) fonts “on the fly”, while these fonts are being downloaded. A PostScript
software that supports such fonts uses these converted TrueType fonts as if they were
regular PostScript fonts.

There are a number of user-selectable choices for converting TrueType fonts to
PostScript fonts. These are fully documented along with the rest of the Solaris Font
Downloader features in the man page fdl(1).

Reference Documents
� PostScript Language Reference Manual, 3rd ed. Adobe Systems Incorporated,

ISBN 0-201-37922-8

� The Type 42 Font Format Specification. Adobe Systems Technical Note #5012,
July 1998.

� TrueType 1.0 Font Files. Technical Specification Revision 1.66, November 1995 -
Microsoft Corporation available from ftp.microsoft.com

Printing 161

162 International Language Environments Guide ♦ February 2000

APPENDIX A

iconv Code Conversions

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment

From Code (Symbol) To Code (Symbol)

646 (ISO 646) UTF-8

646 (ISO 646) UCS-2

646 (ISO 646) USC-2BE

646 (ISO 646) UCS-2LE

646 (ISO 646) USC-4

646 (ISO 646) USC-4BE

646 (ISO 646) USC-4LE

646 (ISO 646) UTF-16

646 (ISO 646) UTF-16BE

646 (ISO 646) UTF-16LE

646 (ISO 646) UTF-8

8859–11 UTF-8

8859-1 (ISO 8859-1) UCS-2

8859-1 (ISO 8859-1) UCS-2BE

8859-1 (ISO 8859-1) UCS-2LE

8859-1 (ISO 8859-1) UCS-4

8859-1 (ISO 8859-1) UCS4-BE

8859-1 (ISO 8859-1) UCS-4LE

163

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

8859-1 (ISO 8859-1) UTF-16

8859-1 (ISO 8859-1) UTF-16BE

8859-1 (ISO 8859-1) UTF-16LE

8859-1 (ISO 8859-1) UTF-8

8859-10 (ISO 8859-10) UCS-2

8859-10 (ISO 8859-10) UCS-2BE

8859-10 (ISO 8859-10) UCS-2LE

8859-10 (ISO 8859-10) UCS-4

8859-10 (ISO 8859-10) UCS4-BE

8859-10 (ISO 8859-10) UCS-4LE

8859-10 (ISO 8859-10) UTF-16

8859-10 (ISO 8859-10) UTF-16BE

8859-10 (ISO 8859-10) UTF-16LE

8859-10 (ISO 8859-10) UTF-8

8859-13 (ISO 8859-13) UCS-2

8859-13 (ISO 8859-13) UCS-2BE

8859-13 (ISO 8859-13) UCS-2LE

8859-13 (ISO 8859-13) UCS-4

8859-13 (ISO 8859-13) UCS4-BE

8859-13 (ISO 8859-13) UCS-4LE

8859-13 (ISO 8859-13) UTF-16

8859-13 (ISO 8859-13) UTF-16BE

8859-13 (ISO 8859-13) UTF-16LE

8859-13 (ISO 8859-13) UTF-8

8859-14 (ISO 8859-14) UCS-2

8859-14 (ISO 8859-14) UCS-2BE

8859-14 (ISO 8859-14) UCS-2LE

8859-14 (ISO 8859-14) UCS-4

8859-14 (ISO 8859-14) UCS4-BE

8859-14 (ISO 8859-14) UCS-4LE

164 International Language Environments Guide ♦ February 2000

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

8859-14 (ISO 8859-14) UTF-16

8859-14 (ISO 8859-14) UTF-16BE

8859-14 (ISO 8859-14) UTF-16LE

8859-14 (ISO 8859-14) UTF-8

8859-15 (ISO 8859-15) UCS-2

8859-15 (ISO 8859-15) UCS-2BE

8859-15 (ISO 8859-15) UCS-2LE

8859-15 (ISO 8859-15) UCS-4

8859-15 (ISO 8859-15) UCS4-BE

8859-15 (ISO 8859-15) UCS-4LE

8859-15 (ISO 8859-15) UTF-16

8859-15 (ISO 8859-15) UTF-16BE

8859-15 (ISO 8859-15) UTF-16LE

8859-15 (ISO 8859-15) UTF-8

8859-2 (ISO 8859-2) UCS-2

8859-2 (ISO 8859-2) UCS-2BE

8859-2 (ISO 8859-2) UCS-2LE

8859-2 (ISO 8859-2) UCS-4

8859-2 (ISO 8859-2) UCS4-BE

8859-2 (ISO 8859-2) UCS-4LE

8859-2 (ISO 8859-2) UTF-16

8859-2 (ISO 8859-2) UTF-16BE

8859-2 (ISO 8859-2) UTF-16LE

8859-2 (ISO 8859-2) UTF-8

8859-3 (ISO 8859-3) UCS-2

8859-3 (ISO 8859-3) UCS-2BE

8859-3 (ISO 8859-3) UCS-2LE

8859-3 (ISO 8859-3) UCS-4

8859-3 (ISO 8859-3) UCS4-BE

8859-3 (ISO 8859-3) UCS-4LE

Printing 165

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

8859-3 (ISO 8859-3) UTF-16

8859-3 (ISO 8859-3) UTF-16BE

8859-3 (ISO 8859-3) UTF-16LE

8859-3 (ISO 8859-3) UTF-8

8859-4 (ISO 8859-4) UCS-2

8859-4 (ISO 8859-4) UCS-2BE

8859-4 (ISO 8859-4) UCS-2LE

8859-4 (ISO 8859-4) UCS-4

8859-4 (ISO 8859-4) UCS4-BE

8859-4 (ISO 8859-4) UCS-4LE

8859-4 (ISO 8859-4) UTF-16

8859-4 (ISO 8859-4) UTF-16BE

8859-4 (ISO 8859-4) UTF-16LE

8859-4 (ISO 8859-4) UTF-8

8859-5 (ISO 8859-5) UCS-2

8859-5 (ISO 8859-5) UCS-2BE

8859-5 (ISO 8859-5) UCS-2LE

8859-5 (ISO 8859-5) UCS-4

8859-5 (ISO 8859-5) UCS4-BE

8859-5 (ISO 8859-5) UCS-4LE

8859-5 (ISO 8859-5) UTF-16

8859-5 (ISO 8859-5) UTF-16BE

8859-5 (ISO 8859-5) UTF-16LE

8859-5 (ISO 8859-5) UTF-8

8859-6 (ISO 8859-6) UCS-2

8859-6 (ISO 8859-6) UCS-2BE

8859-6 (ISO 8859-6) UCS-2LE

8859-6 (ISO 8859-6) UCS-4

8859-6 (ISO 8859-6) UCS4-BE

8859-6 (ISO 8859-6) UCS-4LE

166 International Language Environments Guide ♦ February 2000

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

8859-6 (ISO 8859-6) UTF-16

8859-6 (ISO 8859-6) UTF-16BE

8859-6 (ISO 8859-6) UTF-16LE

8859-6 (ISO 8859-6) UTF-8

8859-7 (ISO 8859-7) UCS-2

8859-7 (ISO 8859-7) UCS-2BE

8859-7 (ISO 8859-7) UCS-2LE

8859-7 (ISO 8859-7) UCS-4

8859-7 (ISO 8859-7) UCS4-BE

8859-7 (ISO 8859-7) UCS-4LE

8859-7 (ISO 8859-7) UTF-16

8859-7 (ISO 8859-7) UTF-16BE

8859-7 (ISO 8859-7) UTF-16LE

8859-7 (ISO 8859-7) UTF-8

8859-8 (ISO 8859-8) UCS-2

8859-8 (ISO 8859-8) UCS-2BE

8859-8 (ISO 8859-8) UCS-2LE

8859-8 (ISO 8859-8) UCS-4

8859-8 (ISO 8859-8) UCS4-BE

8859-8 (ISO 8859-8) UCS-4LE

8859-8 (ISO 8859-8) UTF-16

8859-8 (ISO 8859-8) UTF-16BE

8859-8 (ISO 8859-8) UTF-16LE

8859-8 (ISO 8859-8) UTF-8

8859-9 (ISO 8859-9) UCS-2

8859-9 (ISO 8859-9) UCS-2BE

8859-9 (ISO 8859-9) UCS-2LE

8859-9 (ISO 8859-9) UCS-4

8859-9 (ISO 8859-9) UCS4-BE

8859-9 (ISO 8859-9) UCS-4LE

Printing 167

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

8859-9 (ISO 8859-9) UTF-16

8859-9 (ISO 8859-9) UTF-16BE

8859-9 (ISO 8859-9) UTF-16LE

8859-9 (ISO 8859-9) UTF-8

eucJP UTF-8

gb2312 UTF-8

iso2022 UTF-8

ko_KR-cp933 UTF-8

ko_KR-euc UTF-8

ko_KR-iso2022–7 UTF-8

ko_KR-johap UTF-8

ko_KR-johap92 UTF-8

zh_TW-euc UTF-8

zh_TW-big5 UTF-8

zh_TW-cp937 UTF-8

zh_TW-iso2022–7 UTF-8

GBK UTF-8

ISO-2022–JP UTF-8

KOI8-R UCS-2

KOI8-R UCS-2BE

KOI8-R UCS-2LE

KOI8-R UCS-4

KOI8-R UCS4-BE

KOI8-R UCS-4LE

KOI8-R UTF-8

KOI8-R UTF-16

KOI8-R UTF-16BE

KOI8-R UTF-16LE

KOI8-R UTF-8

KOI8-U UCS-2

168 International Language Environments Guide ♦ February 2000

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

KOI8-U UCS-2BE

KOI8-U UCS-2LE

KOI8-U UCS-4

KOI8-U UCS-4BE

KOI8-U UCS-4LE

KOI8-U UTF-16

KOI8-U UTF-16BE

KOI8-U UTF-16LE

KOI8-U UTF–8

PCK UTF-8

UCS-2 646 (ISO 646)

UCS-2 8859-1 (ISO8859-1)

UCS-2 8859-10 (ISO 8859-10)

UCS-2 8859-13 (ISO 8859-13)

UCS-2 8859-14 (ISO 8859-14)

UCS-2 8859-15 (ISO8859-15)

UCS-2 8859-2 (ISO8859-2)

UCS-2 8859-3 (ISO8859-3)

UCS-2 8859-4 (ISO8859-4)

UCS-2 8859-5 (ISO8859-5)

UCS-2 8859-6 (ISO8859-6)

UCS-2 8859-7 (ISO8859-7)

UCS-2 8859-8 (ISO8859-8)

UCS-2 8859-9 (ISO8859-9)

UCS-2 KOI8-R

UCS-2 KOI8-U

UCS-2 UCS-4

UCS-2 UCS-4BE

UCS-2 UCS-4LE

UCS-2 UTF-7

Printing 169

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

UCS-2 UTF-8

UCS-2BE 646 (ISO 646)

UCS-2BE 8859-1 (ISO 8859-1)

UCS-2BE 8859-10 (ISO 8859-10)

UCS-2BE 8859-13 (ISO 8859-13)

UCS-2BE 8859-14 (ISO 8859-14)

UCS-2BE 8859-15 (ISO 8859-15)

UCS-2BE 8859-2 (ISO 8859-2)

UCS-2BE 8859-3 (ISO 8859-3)

UCS-2BE 8859-4 (ISO 8859-4)

UCS-2BE 8859-5 (ISO 8859-5)

UCS-2BE 8859-6 (ISO 8859-6)

UCS-2BE 8859-7 (ISO 8859-7)

UCS-2BE 8859-8 (ISO 8859-8)

UCS-2BE 8859-9 (ISO8859-9)

UCS-2BE KOI8-R

UCS-2BE KOI8-U

UCS-2BE UCS-4

UCS-2BE UCS-4BE

UCS-2BE UCS-4LE

UCS-2BE UTF-8

UCS-4 UTF-8

UCS-4LE 646 (ISO 646)

UCS-4LE 8859-1 (ISO 8859-1)

UCS-4LE 8859 -10 (ISO 8859-10)

UCS-4LE 8859-13 (ISO 8859-13)

UCS-4LE 8859-14 (ISO 8859-14)

UCS-4LE 8859-15 (ISO 8859-15)

UCS-4LE 8859-2 (ISO 8859-2)

UCS-4LE 8859-3 (ISO 8859-3)

170 International Language Environments Guide ♦ February 2000

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

UCS-4LE 8859-4 (ISO 8859-4)

UCS-4LE 8859-5 (ISO 8859-5)

UCS-4LE 8859-6 (ISO 8859-6)

UCS-4LE 8859-7 (ISO 8859-7)

UCS-4LE 8859-8 (SO 8859-8)

UCS-4LE 8859-9 (ISO8859-9)

UCS-4LE KOI8-R

UCS-4LE KOI8-U

UCS-4LE UCS-2

UCS-4LE UCS-2BE

UCS-4LE UCS-2LE

UCS-4LE UTF-16

UCS-4LE UTF-16BE

UCS-4LE UTF-16LE

UCS-4LE UTF-8

UTF-7 UTF-8

UTF-8 646

UTF-8 8859–1

UTF-8 8859–2

UTF-8 8859–3

UTF-8 8859–4

UTF-8 8859–5

UTF-8 8859–6

UTF-8 8859–7

UTF-8 8859–8

UTF-8 8859–9

UTF-8 8859–10

UTF-8 8859–11

UTF-8 8859–15

UTF-8 eucJP

Printing 171

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

UTF-8 gb2312

UTF-8 iso2022

UTF-8 ko_KR-euc

UTF-8 ko_KR-johap

UTF-8 ko_KR-johap92

UTF-8 ko_KR-iso2022–7

UTF-8 zh_TW-euc

UTF-8 zh_TW-big5

UTF-8 zh_TW-iso2022–7

UTF-8 zh_TW-cp937

UTF-8 GBK

UTF-8 ISO-2022–JP

UTF-8 KOI8–R

UTF-8 PCK

UTF-8 UCS-2

UTF-8 UCS-4

UTF-8 UTF-7

UTF-8 UTF-16

UTF-16 646 (ISO 646)

UTF-16 8859-1 (ISO8859-1)

UTF-16 8859-10 (ISO8859-10)

UTF-16 8859-13 (ISO8859-13)

UTF-16 8859-14 (ISO8859-14)

UTF-16 8859-15 (ISO8859-15)

UTF-16 8859-2 (ISO8859-2)

UTF-16 8859-3 (ISO8859-3)

UTF-16 8859-4 (ISO8859-4)

UTF-16 8859-5 (ISO8859-5)

UTF-16 8859-6 (ISO8859-6)

UTF-16 8859-7 (ISO8859-7)

172 International Language Environments Guide ♦ February 2000

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

UTF-16 8859-8 (ISO8859-8)

UTF-16 8859-9 (ISO8859-9)

UTF-16 KOI8-R

UTF-16 KOI8-U

UTF-16 UCS-4

UTF-16 UCS-4BE

UTF-16 UCS-4LE

UTF-16 UTF-8

UTF-16BE 646 (ISO 646)

UTF-16BE 8859-1 (ISO 8859-1)

UTF-16BE 8859-10(ISO 8859-10)

UTF-16BE 8859-13 (ISO 8859-13)

UTF-16BE 8859-14 (ISO 8859-14)

UTF-16BE 8859-15 (ISO 8859-15)

UTF-16BE 8859-2 (ISO 8859-2)

UTF-16BE 8859-3 (ISO 8859-3)

UTF-16BE 8859-4 (ISO 8859-4)

UTF-16BE 8859-5 (ISO 8859-5)

UTF-16BE 8859-6 (ISO 8859-6)

UTF-16BE 8859-7 (ISO 8859-7)

UTF-16BE 8859-8 (ISO 8859-8)

UTF-16BE 8859-9 (ISO 8859-9)

UTF-16BE KOI8-R

UTF-16BE KOI8-U

UTF-16BE UCS-4

UTF-16BE UCS-4BE

UTF-16BE UCS-4LE

UTF-16BE UTF-8

UTF-16LE 646 (ISO 646)

UTF-16LE 8859-1 (ISO 8859-1)

Printing 173

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

UTF-16LE 8859-10 (ISO 8859-10)

UTF-16LE 8859-13 (ISO 8859-13)

UTF-16LE 8859-14 (ISO 8859-14)

UTF-16LE 8859-15 (ISO 8859-15)

UTF-16LE 8859-2 (ISO 8859-2)

UTF-16LE 8859-3 (ISO 8859-3)

UTF-16LE 8859-4 (ISO 8859-4)

UTF-16LE 8859-5 (ISO 8859-5)

UTF-16LE 8859-6 (ISO 8859-6)

UTF-16LE 8859-7 (ISO 8859-7)

UTF-16LE 8859 -8 (ISO 8859-8)

UTF-16LE 8859-9 (ISO 8859-9)

UTF-16LE KOI8-R

UTF-16LE KOI8-U

UTF-16LE UCS-4

UTF-16LE UCS-4BE

UTF-16LE UCS-4LE

UTF-16LE UTF-8

UTF-7 UCS-2

UTF-7 UCS-4

UTF-7 UCS-8

UTF-8 646 (ISO 646)

UTF-8 8859-1 (ISO 8859-1)

UTF-8 8859-10 (ISO 8859-10)

UTF-8 8859-13 (ISO 8859-13)

UTF-8 8859-14 (ISO 8859-14)

UTF-8 8859-15 (ISO 8859-15)

UTF-8 8859-2 (ISO 8859-2)

UTF-8 8859-3 (ISO 8859-3)

UTF-8 8859-4 (ISO 8859-4)

174 International Language Environments Guide ♦ February 2000

TABLE A–1 Available Unicode Related iconv Code Conversion Modules in the Solaris 8
Environment (continued)

From Code (Symbol) To Code (Symbol)

UTF-8 8859-5 (ISO 8859-5)

UTF-8 8859-6 (ISO 8859-6)

UTF-8 8859-7 (ISO 8859-7)

UTF-8 8859-8 (ISO 8859-8)

UTF-8 8859-9 (ISO 8859-9)

UTF-8 KOI8-R

UTF-8 KOI8-U

UTF-8 UCS-2

UTF-8 UCS-2BE

UTF-8 UCS-2LE

UTF-8 UCS-4

UTF-8 UCS-4BE

UTF-8 UCS-4LE

UTF-8 UTF-16

UTF-8 UTF-16BE

UTF-8 UCS-16LE

UTF-8 UTF-7

UTF-EBCDIC is a new IBM codepage name. Starting with the Solaris 8 environment, we are
also supporting bidirectional UTF-8 <—> UTF-EBCDIC conversion.

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page
Relatediconv Code Conversions Modules in the Solaris 8 Environment

From Code (Symbol) To Code (Symbol)

UTF-8 IBM-037

UTF-8 IBM-273

UTF-8 IBM-277

UTF-8 IBM-278

Printing 175

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Relatediconv Code
Conversions Modules in the Solaris 8 Environment (continued)

From Code (Symbol) To Code (Symbol)

UTF-8 IBM-280

UTF-8 IBM-284

UTF-8 IBM-285

UTF-8 IBM-297

UTF-8 IBM-420

UTF-8 IBM-424

UTF-8 IBM-500

UTF-8 IBM-870

UTF-8 IBM-875

UTF-8 IBM-880

UTF-8 IBM-1025

UTF-8 IBM-1026

UTF-8 IBM-1112

UTF-8 IBM-1122

UTF-8 IBM-850

UTF-8 IBM-852

UTF-8 IBM-855

UTF-8 IBM-856

UTF-8 IBM-857

UTF-8 IBM-862

UTF-8 IBM-864

UTF-8 IBM-866

UTF-8 IBM-869

UTF-8 IBM-921

UTF-8 IBM-922

UTF-8 IBM-1046

176 International Language Environments Guide ♦ February 2000

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Relatediconv Code
Conversions Modules in the Solaris 8 Environment (continued)

From Code (Symbol) To Code (Symbol)

UTF-8 CP850

UTF-8 CP852

UTF-8 CP855

UTF-8 CP857

UTF-8 CP862

UTF-8 CP864

UTF-8 CP866

UTF-8 CP869

UTF-8 CP874

UTF-8 CP1250

UTF-8 CP1251

UTF-8 CP1252

UTF-8 CP1253

UTF-8 CP1254

UTF-8 CP1255

UTF-8 CP1256

UTF-8 CP1257

UTF-8 CP1258

TABLE A–3 Available iconv Code Conversions IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8

UTF-EBCDIC UTF-8

IBM-037 UTF-8

IBM-273 UTF-8

IBM-277 UTF-8

Printing 177

TABLE A–3 Available iconv Code Conversions IBM and Microsoft EBCDIC/PC Code Pages to
UTF-8 (continued)

IBM-278 UTF-8

IBM-280 UTF-8

IBM-284 UTF-8

IBM-285 UTF-8

IBM-297 UTF-8

IBM-420 UTF-8

IBM-424 UTF-8

IBM-500 UTF-8

IBM-870 UTF-8

IBM-875 UTF-8

IBM-880 UTF-8

IBM-1025 UTF-8

IBM-1026 UTF-8

IBM-1112 UTF-8

IBM-1122 UTF-8

IBM-850 UTF-8

IBM-852 UTF-8

IBM-855 UTF-8

IBM-856 UTF-8

IBM-857 UTF-8

IBM-862 UTF-8

IBM-864 UTF-8

IBM-866 UTF-8

IBM-869 UTF-8

IBM-921 UTF-8

IBM-922 UTF-8

IBM-1046 UTF-8

178 International Language Environments Guide ♦ February 2000

TABLE A–3 Available iconv Code Conversions IBM and Microsoft EBCDIC/PC Code Pages to
UTF-8 (continued)

CP850 UTF-8

CP852 UTF-8

CP855 UTF-8

CP857 UTF-8

CP862 UTF-8

CP864 UTF-8

CP866 UTF-8

CP869 UTF-8

CP874 UTF-8

CP1250 UTF-8

CP1251 UTF-8

CP1252 UTF-8

CP1253 UTF-8

CP1254 UTF-8

CP1255 UTF-8

CP1256 UTF-8

CP1257 UTF-8

CP1258 UTF-8

Printing 179

180 International Language Environments Guide ♦ February 2000

APPENDIX B

Partial L10N Package Names on OS CD

TABLE B–1 List of Partial Locales

Package Name Description

SUNWauaox Australasia 64-bit OS Support

SUNWauadt Australasia CDE Support

SUNWauaos Australasia OS Support

SUNWauaow Australasia OW Support

SUNWcamox Central America 64-bit OS Support

SUNWcamdt Central America CDE Support

SUNWcamos Central America OS Support

SUNWcamow Central America OW Support

SUNWceuox Central Europe 64-bit OS Support

SUNWceudt Central Europe CDE Support

SUNWceuos Central Europe OS Support

SUNWceuow Central Europe OW Support

SUNWalex Common files shared by Chinese, Japanese and
Korean locales. It is a required package to run
Asian Language Environment (64-bit)

SUNWeeuox Eastern Europe 64-bit OS Support

SUNWeeudt Eastern Europe CDE Support

181

TABLE B–1 List of Partial Locales (continued)

Package Name Description

SUNWeeuos Eastern Europe OS Support

SUNWeeuow Eastern Europe OW Support

SUNWfris French install software localization

SUNWdeis German install software localization

SUNWitis Italian install software localization

NSCPjacom Japanese (common) localization of Netscape
Communicator 4.7 supporting International security.

SUNWjc0r Japanese Kana-Kanji Conversion Server cs00 Root Files

SUNWjc0u Japanese Kana-Kanji Conversion Server cs00 User Files

SUNWjedt Japanese (EUC) Localization for CDE DESKTOP
LOGIN ENVIRONMENT

SUNWjeuc Japanese (EUC) Feature Package specific files for usr ; it
is a required package to support EUC environment.

SUNWjeucx Japanese (EUC) Feature Package specific 64-bit files for
usr ; it is a required package to run JFP environment.

SUNWjexpl Japanese (EUC) Localizations for X Window
System platform software.

SUNWjexpx Japanese (EUC) Localizations for X Window
System platform software (64-bit)

SUNWjfpr Stream modules for Japanese Feature Package (JFP);
it is a required package to run JFP environment.

SUNWjfpu Japanese Feature Package (JFP) specific files for usr ;
it is a required package to run JFP environment.

SUNWjfpux Japanese Feature Package (JFP) specific 64-bit files for
usr ; it is a required package to run JFP environment.

SUNWjman Japanese Feature Package Man Pages to see English
man pages for SUNWjfpr and SUNWjfpu

SUNWjpck Japanese (PCK - PC Kanji Code) Feature
Package specific files; it’s a required package
to support PCK environment.

SUNWjpckx Japanese (PCK) Feature Package specific 64-bit files for
usr ; it is a required package to run JFP environment.

182 International Language Environments Guide ♦ February 2000

TABLE B–1 List of Partial Locales (continued)

Package Name Description

SUNWjpdt Japanese (PCK) Localization for CDE DESKTOP
LOGIN ENVIRONMENT

SUNWjpxpl Japanese (PCK) Localizations for X Window
System platform software

SUNWjpxpx Japanese (PCK) Localizations for X Window
System platform software (64-bit)

SUNWju8 Japanese (UTF-8) Feature Package specific files;
it’s a required package to support Japanese
UTF-8 environment.

SUNWju8x Japanese (UTF-8) Feature Package specific 64-bit files
for usr ; it is a required package to run JFP environment.

SUNWjudt Japanese (UTF-8) Localization for CDE DESKTOP
LOGIN ENVIRONMENT

SUNWjuxpl Japanese (UTF-8) Localizations for X Window
System platform software

SUNWjxcft Japanese JISX212 TrueType and bitmap fonts

SUNWkleux Korean (EUC) Language Environment specific
files. It is a required package to run Korean
Language Environment (64-bit).

SUNWkulex Korean (UTF-8) Language Environment specific
files. It is a required package to run Korean
Language Environment (64-bit)

SUNWkdt Korean Localizations for CDE Desktop
Login Environment.

SUNSCPcpcom Simplified Chinese partial version of Netscape
Communicator 4.7 supporting International security

SUNWsamox Southern America 64-bit OS Support

SUNWsamdt Southern America CDE Support

SUNWsamos Southern America OS Support

SUNWsamow Southern America OW Support

SUNWseuox Southern Europe 64-bit OS Support

SUNWseudt Southern Europe CDE Support

SUNWseuos Southern Europe OS Support

Printing 183

TABLE B–1 List of Partial Locales (continued)

Package Name Description

SUNWseuow Southern Europe OW Support

SUNWfrspl Spell Checking Engine - French Dictionary

SUNWdespl Spell Checking Engine - German Dictionary

SUNWitspl Spell Checking Engine - Italian Dictionary

SUNWesspl Spell Checking Engine - Spanish Dictionary

SUNWsvspl Spell Checking Engine - Swedish Dictionary

SUNWjfpr Stream modules for Japanese Feature Package (JFP),
it is a required package to run JFP environment

SUNWsvis Swedish install software localization

SUNWkleu This package contains Korean Language Environment
specific files. It is a required package to run
Korean Language Environment.

SUNWkuleu This package contains Korean UTF-8 Language
Environment specific files. It is a required package
to run Korean Language Environment.

SUNWcleu This package contains Korean UTF-8 Language
Environment specific files. It is a required package
to run Korean Language Environment.

SUNWgleu This package contains Simplified Chinese (GBK)
Language Environment specific files. It is a
required package to run Simplified Chinese
(GBK) Language Environment.

SUNWculeu This package contains Simplified Chinese (UTF-8)
Language Environment specific files. It is a
required package to run Simplified Chinese
(UTF-8) Language Environment.

SUNWtleu This package contains Thai Language Environment
specific files. It is a required package to run
Thai Language Environment.

SUNWhuleu This package contains Traditional Chinese (UTF-8)
Language Environment specific files. It is a
required package to run Traditional Chinese
UTF-8 Language Environment.

SUNW5leu This package contains Traditional Chinese Language
Environment specific files. It is a required package to
run Traditional Chinese BIG5 Language Environment

184 International Language Environments Guide ♦ February 2000

TABLE B–1 List of Partial Locales (continued)

Package Name Description

SUNWhleu This package contains Traditional Chinese Language
Environment specific files. It is a required package to
run Traditional Chinese Language Environment

SUNWale This package contains common files shared by Chinese,
Japanese and Korean locales. It is a required package
to run Asian Language Environment

SUNWaled This package contains man pages shared by Chinese,
Japanese and Korean locales.

SUNW5leux Traditional Chinese (BIG5) Language Environment
user files (64-bit)

SUNW5xplx Traditional Chinese (BIG5) X Windows Platform
Software Package (64-bit)

SUNWhleux Traditional Chinese (EUC) Language Environment
specific files. It is a required package to run Traditional
Chinese Language Environment (64-bit)

SUNWhulex Traditional Chinese (UTF-8) Language Environment
user files (64-bit)

SUNW5xplt Traditional Chinese BIG5 X Windows Platform
Software Package

SUNW5dt raditional Chinese Localizations for CDE
Desktop Login Environment

SUNWhdt Traditional Chinese Localizations for CDE
Desktop Login Environment

SUNWhicd Traditional Chinese Solaris Install CD L10N source files

SUNW5ttf Traditional Chinese True Type Fonts Package

SUNWhttf Traditional Chinese True Type Fonts Package

SUNWhuplt Traditional Chinese UTF-8 X Windows Platform
Software Package

SUNWhxplt Traditional Chinese X Windows Platform
Software Package

SUNWhxfnt Traditional Chinese X Windows Platform
required Fonts Package

SUNSCPhpcom Traditional Chinese partial version of Netscape
Communicator 4.7 supporting International security

Printing 185

TABLE B–1 List of Partial Locales (continued)

Package Name Description

SUNWweuox Western Europe 64-bit OS Support

SUNWweudt Western Europe CDE Support

SUNWweuos Western Europe OS Support

SUNWweuow Western Europe OW Support

SUNWi1cs X11 ISO8859-1 Codeset Support

SUNWi13cs X11 ISO8859-13 Codeset Support

SUNWi15cs X11 ISO8859-15 Codeset Support

SUNWi2cs X11 ISO8859-2 Codeset Support

SUNWi5cs X11 ISO8859–5 Codeset Support

SUNWi7cs X11 ISO8859–7 Codeset Support

SUNWi9cs X11 ISO8859–9 Codeset Support

SUNWi2of X11 fonts for ISO-8859-2 character set (optional fonts)

SUNWi4of X11 fonts for ISO-8859-4 character set (optional fonts)

SUNWi5of X11 fonts for ISO-8859-5 character set (optional fonts)

SUNWi7of X11 fonts for ISO-8859-7 character set (optional fonts)

SUNWi9of X11 fonts for ISO-8859-9 character set (optional fonts)

SUNWkoi8f X11 fonts for KOI8–R character set

186 International Language Environments Guide ♦ February 2000

APPENDIX C

Languages CD Packages List

TABLE C–1 Simplified Chinese

NSCPccom
Simplified Chinese localization of Netscape Communicator
4.7 supporting International security.

NSCPcucom zh.UTF-8 localization of Netscape Communicator 4.7
supporting International security.

NSCPgcom zh.GBK localization of Netscape Communicator 4.7 supporting
International security.

SUNWcadis Simplified Chinese (EUC) Localizations for admintool and GUI install.

SUNWcadma Simplified Chinese (EUC) Localizations for Software used to perform
system administration tasks. Admintool requires both this and
SUNWhadis packages for Simplified Chinese (EUC) localization.

SUNWcbcp This package contains Simplified Chinese (EUC) Language
Environment binary compatibility files.

SUNWcdab Simplified Chinese (EUC) Localizations for CDE Desktop
Application Builder

SUNWcdbas Simplified Chinese (EUC) Localizations for CDE Base functionality

SUNWcddst Simplified Chinese (EUC) Localizations for CDE Desktop Applications

SUNWcddte Simplified Chinese (EUC) Localizations for CDE Desktop
Login Environment

SUNWcdezt Simplified Chinese (EUC) Localizations for Desktop Power
Pack Applications

187

TABLE C–1 Simplified Chinese (continued)

SUNWcdft Simplified Chinese (EUC) Localizations for CDE Fonts

SUNWcdhe Simplified Chinese (EUC) Localizations for CDE Help
Runtime environment

SUNWcdhev Simplified Chinese (EUC) CDE Help Volumes

SUNWcdhez Simplified Chinese (EUC) (Common) Desktop Power Pack Help Volumes

SUNWcdicn Simplified Chinese (EUC) Localizations for CDE Icons

SUNWcdim Simplified Chinese (EUC) Localizations for CDE Imagetool

SUNWcdwm Simplified Chinese (EUC) Localizations for CDE Desktop
Window Manager

SUNWcepmw Simplified Chinese (EUC) Localization for Power
Management OW Utilities

SUNWcervl Simplified Chinese (EUC) SunVideo Runtime Support Software

SUNWcexir Simplified Chinese (EUC) XIL Runtime Environment

SUNWcj2p Simplified Chinese localization of Java Plug-in 1.2.2

SUNWcj2rt Java virtual machine and core class libraries (Simplified
Chinese supplement)

SUNWcjvdv Simplified Chinese Localizations for JavaVM developers package

SUNWcjvrt Simplified Chinese Localizations for JavaVM run time environment

SUNWckcsr Simplified Chinese (EUC) KCMS Runtime Environment

SUNWcleue This package contains Simplified Chinese (EUC) Language
Environment specific files. It is a required package to run Simplified
Chinese (EUC) Language Environment

SUNWcoaud Simplified Chinese (EUC) OPENLOOK Audio Applications Package

SUNWcodcv Simplified Chinese (EUC) OPENLOOK Document and Help
Viewer Applications Package

SUNWcodem Simplified Chinese (EUC) OPENLOOK Demo Programs Package

SUNWcodst Simplified Chinese (EUC) OPENLOOK Deskset Tools Package

SUNWcodte Simplified Chinese (EUC) Core OPENLOOK Desktop Package

SUNWcoimt Simplified Chinese (EUC) OPENLOOK Imagetool Package

SUNWcoman Simplified Chinese (EUC) OPENLOOK Toolkit/Desktop
Users Man Pages Package

188 International Language Environments Guide ♦ February 2000

TABLE C–1 Simplified Chinese (continued)

SUNWcorte Simplified Chinese (EUC) OPENLOOK Toolkits Runtime
Environment Package

SUNWcrdm Simplified Chinese (EUC) OILBN ReadMe Directory

SUNWcreg Simplified Chinese (EUC) Localizations for Solaris User Registration

SUNWcsadl Simplified Chinese (EUC) Localizationsfor Solstice Admintool
launcher and associated libraries.

SUNWctltk Simplified Chinese (EUC) ToolTalk Runtime Package Package

SUNWcttfe Simplified Chinese (EUC) True Type Fonts

SUNWcuada Simplified Chinese (UTF-8) Localizations for Software used to perform
system administration tasks. Admintool requires both this and
SUNWgadis packages for Simplified Chinese (UTF-8) localization.

SUNWcuadi Simplified Chinese (UTF-8) Localizations for admintool and GUI install

SUNWcubas Simplified Chinese (UTF-8) Localizations for CDE Base functionality

SUNWcudab Simplified Chinese (UTF-8) Localizations for CDE Desktop
Application Builder

SUNWcudc Simplified Chinese (EUC) Localizations for User Defined Character
tool for Solaris CDE environment

SUNWcudez Simplified Chinese (UTF-8) Localizations for Desktop
Power Pack Applications

SUNWcudft Simplified Chinese (UTF-8) Localizations for CDE Fonts

SUNWcudhe Simplified Chinese (UTF-8) Localizations for CDE Help
Runtime environment

SUNWcudhv Simplified Chinese (UTF-8) CDE Help Volumes

SUNWcudhz Simplified Chinese (UTF-8) Localizations for Desktop
Power Pack Help Volumes

SUNWcudic Simplified Chinese (UTF-8) Localizations for CDE Icons

SUNWcudim Simplified Chinese (UTF-8) L10N for CDE DESKTOP Imagetool

SUNWcudst Simplified Chinese (UTF-8) Localizations for CDE Desktop Applications

SUNWcudte Simplified Chinese (UTF-8) Localizations for CDE Desktop
Login Environment

SUNWcudwm Simplified Chinese (UTF-8) Localizations for CDE Desktop
Window Manager

Printing 189

TABLE C–1 Simplified Chinese (continued)

SUNWculee This package contains Simplified Chinese (UTF-8) Language
Environment specific files. It is a required package to run Simplified
Chinese (UTF-8) Language Environment

SUNWcuman Simplified Chinese (UTF-8) X Windows Online User Man Pages Package

SUNWcuodt Simplified Chinese (UTF-8) Core OPENLOOK Desktop Package

SUNWcupmw Simplified Chinese (UTF-8) Localization for Power
Management OW Utilities

SUNWcurdm Simplified Chinese (UTF-8) OILBN ReadMe Directory

SUNWcureg Simplified Chinese (UTF-8) Localizations for Solaris User Registration

SUNWcusad Simplified Chinese (UTF-8) Localizations for Solstice Admintool
launcher and associated libraries.

SUNWcuudc Simplified Chinese (UTF-8) Localizations for User Defined
Character tool for Solaris CDE environment

SUNWcuxe Simplified Chinese (UTF-8) X Windows Platform Software Package

SUNWcwbcp Simplified Chinese (EUC) OpenWindows Binary Compatibility Package

SUNWcwsr Simplified Chinese (EUC) prodreg 2.0 localizable text resources

SUNWcxe Simplified Chinese (EUC) X Windows Platform Software Package

SUNWcxfnt Simplified Chinese (EUC) X Windows Platform Required Fonts

SUNWcxman Simplified Chinese (EUC) X Windows Online User Man Pages Package

SUNWcxoft Simplified Chinese (EUC) X Windows Optional Fonts Package

SUNWgadis Simplified Chinese (GBK) Localizations for admintool and GUI install

SUNWgadma Simplified Chinese (GBK) Localizations for Software used to perform
system administration tasks. Admintool requires both this and
SUNWgadis packages for Simplified Chinese (GBK) localization.

SUNWgdab Simplified Chinese (GBK) Localizations for CDE Desktop
Application Builder

SUNWgdbas Simplified Chinese (GBK) Localizations for CDE Base functionality

SUNWgddst Simplified Chinese (GBK) Localizations for CDE Desktop Applications

SUNWgddte Simplified Chinese (GBK) Localizations for CDE Desktop
Login Environment

SUNWgdezt Simplified Chinese (GBK) Localizations for Desktop Power
Pack Applications

190 International Language Environments Guide ♦ February 2000

TABLE C–1 Simplified Chinese (continued)

SUNWgdft Simplified Chinese (GBK) Localizations for CDE Fonts

SUNWgdhe Simplified Chinese (GBK) Localizations for CDE Help
Runtime environment

SUNWgdhev Simplified Chinese (GBK) CDE Help Volumes

SUNWgdhez Simplified Chinese (GBK) Localizations for Desktop Power
Pack Help Volumes

SUNWgdicn Simplified Chinese (GBK) Localizations for CDE Icons

SUNWgdim Simplified Chinese (GBK) L10N for CDE DESKTOP Imagetool

SUNWgdwm Simplified Chinese (GBK) Localizations for CDE Desktop
Window Manager

SUNWgleue This package contains Simplified Chinese (GBK) Language
Environment specific files. It is a required package to run Simplified
Chinese (GBK) Language Environment

SUNWgodte Simplified Chinese (GBK) Core OPENLOOK Desktop Package

SUNWgpmw Simplified Chinese (GBK) Localization for Power
Management OW Utilities

SUNWgrdm Simplified Chinese (GBK) OILBN ReadMe Directory

SUNWgreg Simplified Chinese (GBK) Localizations for Solaris User Registration

SUNWgsadl Simplified Chinese (GBK) Localizations for Solstice Admintool
launcher and associated libraries.

SUNWgttfe Simplified Chinese (GBK) True Type Fonts

SUNWgudc Simplified Chinese (GBK) Localizations for User Defined Character
tool for Solaris CDE environment

SUNWgxe Simplified Chinese (GBK) X Windows Platform Software Package

SUNWgxman Simplified Chinese (GBK) X Windows Online User Man Pages Package

Printing 191

TABLE C–2 French

NSCPfrcdo
French localization of Netscape Communicator 4.7
supporting U.S. security.

NSCPfrcom French localization of Netscape Communicator 4.7 supporting
International security.

SUNWf8bas Base L10N fr CDE functionality to run a CDE application

SUNWf8dst CDE Desktop Applications

SUNWf8dte CDE Desktop Environment

SUNWf8he CDE Help L10N fr Runtime Environment

SUNWf8im CDE Desktop apps

SUNWf8wm French UTF-8 CDE Desktop Window Manages Messages

SUNWfbcp French OS Binary Compatibility Package

SUNWfoaud French French OPEN LOOK (R) Audio applications

SUNWfobk French OpenWindows online handbooks

SUNWfodcv French OPEN LOOK (R) document and help viewer applications

SUNWfodem French OPEN LOOK (R) demo programs

SUNWfodst French OPEN LOOK (R) deskset tools

SUNWfodte French OPEN LOOK (R) desktop environment

SUNWfoimt French OPEN LOOK (R) imagetool

SUNWforte French OPEN LOOK (R) toolkits runtime environment

SUNWfrbas Base L10N fr CDE functionality to run a CDE application

SUNWfrdst CDE Desktop Applications

SUNWfrdte CDE Desktop Environment

SUNWfrhe CDE Help L10N fr Runtime Environment

SUNWfrhed CDE L10N fr Help Developer Environment

SUNWfrhev CDE Help Volumes

SUNWfrim CDE Desktop apps

SUNWfrj2p French localization of Java Plug-in 1.2.2

SUNWfros localizable message files for the OS-Networking consolidation

192 International Language Environments Guide ♦ February 2000

TABLE C–2 French (continued)

SUNWfrpmw French (EUC) Localizations for Power Management OW Utilities

SUNWfrreg Solaris User Registration prompts at desktop login for user registration

SUNWfrwm French CDE Desktop Window Manages Messages

SUNWftltk French ToolTalk binaries and shared libraries

SUNWfwacx French OPEN LOOK (R) AccessX

SUNWfwbcp French OpenWindows Binary Compatibility Package

SUNWfxplt French X Windows platform software

TABLE C–3 German

NSCPdecom
German localization of Netscape Communicator 4.7 supporting
International security.

SUNWd8bas Base L10N German UTF-8 CDE functionality to run a CDE application

SUNWd8dst CDE Desktop Applications

SUNWd8dte CDE Desktop Login Environment

SUNWd8he CDE Help L10N German UTF-8 Runtime Environment

SUNWd8im CDE Desktop apps

SUNWd8wm German UTF-8 CDE Desktop Window Manages Messages

SUNWdbcp German OS Binary Compatibility Package

SUNWdebas Base L10N German CDE functionality to run a CDE application

SUNWdedst CDE Desktop Applications

SUNWdedte CDE Desktop Login Environment

SUNWdehe CDE Help L10N German Runtime Environment

SUNWdehed CDE L10N German Help Developer Environment

Printing 193

TABLE C–3 German (continued)

SUNWdehev CDE Help Volumes

SUNWdeim CDE Desktop apps

SUNWdej2p German localization of Java Plug-in 1.2.2

SUNWdeos localizable message files for the OS-Networking consolidation

SUNWdepmw German (EUC) Localizations for Power Management OW Utilities

SUNWdereg Solaris User Registration prompts at desktop login for user registration

SUNWdewm German CDE Desktop Window Manages Messages

SUNWdoaud German OPEN LOOK (R) Audio applications

SUNWdobk German OpenWindows online handbooks

SUNWdodcv German OPEN LOOK (R) document and help viewer applications

SUNWdodem German OPEN LOOK (R) demo programs

SUNWdodst German OPEN LOOK (R) deskset tools

SUNWdodte German OPEN LOOK (R) desktop environment

SUNWdoimt German OPEN LOOK (R) imagetool

SUNWdorte German OPEN LOOK (R) toolkits runtime environment

SUNWdtltk German ToolTalk binaries and shared libraries

SUNWdwacx German OPEN LOOK (R) AccessX

SUNWdwbcp German OpenWindows Binary Compatibility Package

SUNWdxplt German X Windows platform software

TABLE C–4 Italian

NSCPitcom
Italian localization of Netscape Communicator 4.7 supporting
International security.

SUNWi8bas Base L10N it CDE functionality to run a CDE application

SUNWi8dst CDE it Desktop Applications messages

SUNWi8dte CDE Italian UTF-8 Desktop Login Environment

194 International Language Environments Guide ♦ February 2000

TABLE C–4 Italian (continued)

SUNWi8he CDE Help L10N it Runtime Environment

SUNWi8im CDE Italian UTF-8 Desktop Image editor

SUNWi8wm Italian UTF-8 CDE Desktop Window Manages Messages

SUNWibcp Italian OS Binary Compatibility Package

SUNWioaud Italian OPEN LOOK (R) Audio applications

SUNWiobk Italian OpenWindows online handbooks

SUNWiodcv Italian OPEN LOOK (R) document and help viewer applications

SUNWiodem Italian OPEN LOOK (R) demo programs

SUNWiodst Italian OPEN LOOK (R) deskset tools

SUNWiodte Italian OPEN LOOK (R) desktop environment

SUNWioimt Italian OPEN LOOK (R) imagetool

SUNWiorte Italian OPEN LOOK (R) toolkits runtime environment

SUNWitbas Base L10N it CDE functionality to run a CDE application

SUNWitdst CDE it Desktop Applications messages

SUNWitdte CDE Italian Desktop Login Environment

SUNWithe CDE Help L10N it Runtime Environment

SUNWithed CDE L10N it Help Developer Environment

SUNWithev CDE Help Volumes

SUNWitim CDE Italian Desktop Image editor

SUNWitj2p Italian localization of Java Plug-in 1.2.2

SUNWitltk Italian ToolTalk binaries and shared libraries

SUNWitos localizable message files for the OS-Networking consolidation

SUNWitpmw Italian (EUC) Localizations for Power Management OW Utilities

SUNWitreg Solaris User Registration prompts at desktop login for user registration

SUNWitwm Italian CDE Desktop Window Manages Messages

SUNWiwacx Italian OPEN LOOK (R) AccessX

Printing 195

TABLE C–4 Italian (continued)

SUNWiwbcp Italian OpenWindows Binary Compatibility Package

SUNWixplt Italian X Windows platform software

TABLE C–5 Japanese

JSat8xw Japanese Input System ATOK8 for Japanese Solaris.

JSatsvr Japanese Input System ATOKserver root files for Japanese Solaris

JSatsvu Japanese Input System ATOKserver usr files for Japanese Solaris

JSatsvw Japanese Input System ATOKserver X11 support files for Japanese Solaris

NSCPjecom Japanese (EUC) localization of Netscape Communicator 4.7
supporting International security.

NSCPjpcom Japanese (PCK) localization of Netscape Communicator 4.7
supporting International security.

NSCPjucom Japanese (UTF-8) localization of Netscape Communicator 4.7
supporting International security.

SUNWjadis Japanese (EUC) Localizations for admintool and GUI install.

SUNWjadma Japanese (EUC) Localizations for Software used to perform system
administration tasks. Admintool requires both this and SUNWjadis
packages for Japanese (EUC) localization.

SUNWjaj2p Japanese localization of Java Plug-in 1.2.2

SUNWjbcp Japanese (EUC) utilities including libc and locale data to provide a
binary-compatible execution environment for SunOS 4.x applications.

SUNWjc0d Japanese Kana-Kanji Conversion Server cs00 user dictionary
maintenance tool for CDE Motif

SUNWjc0w Japanese Kana-Kanji Conversion Server cs00 user dictionary
maintenance tool for OPEN LOOK. This package is also required
to use X Input Method Server on Window System.

SUNWjcs3f Japanese JIS X0212 Type1 fonts for printing

SUNWjdab Japanese (Common) Localization for CDE Desktop Application Builder

SUNWjdbas Japanese (Common) Localization for CDE application
basic runtime environment

196 International Language Environments Guide ♦ February 2000

TABLE C–5 Japanese (continued)

SUNWjddst Japanese (EUC) Localization for CDE Desktop Applications

SUNWjddte Japanese (EUC) Localization for Solaris Desktop Login Environment

SUNWjdhcm Japanese Localizations for DHCP Manager

SUNWjdhe Japanese (EUC) Localization for CDE Help Runtime environment

SUNWjdhed Japanese (EUC) Localization for CDE Help Developer Environment

SUNWjdhev Japanese (Common) Localization for CDE Help Volumes

SUNWjdhez Japanese (Common) Localizations for Desktop Power Pack Help Volumes

SUNWjdim Japanese (EUC) Localization for Solaris CDE Image Viewer

SUNWjdrme Japanese (EUC) Localization for Common Desktop Environment
(CDE) release documentation

SUNWjdwm Japanese (EUC) Localization for CDE Desktop Window Manager

SUNWjeab Japanese (EUC) Localization for CDE Desktop Application Builder

SUNWjebas Japanese (EUC) Localization for CDE application basic
runtime environment

SUNWject Japanese (EUC) Localizations for UTF-8 Code Conversion Tool

SUNWjedev Japanese (EUC) Development Environment Package specific files

SUNWjeezt Japanese (EUC) Localizations for Desktop Power Pack Applications

SUNWjehev Japanese (EUC) Localization for CDE Help Volumes

SUNWjehez Japanese (EUC) Localizations for Desktop Power Pack Help Volumes

SUNWjej2m Japanese (EUC) man pages

SUNWjejmn Japanese (EUC) JavaVM manual pages for Java programmers and users

SUNWjeman Japanese Feature Package Man Pages to see Japanese (EUC)
manpages for SUNWjfpr and SUNWjfpu and Japanese manpages
for SUNWman and SUNWaled.

SUNWjepmm Japanese (EUC) Power Management OW Utilities Man Pages

SUNWjepmw Japanese (EUC) Localizations for Power Management OW Utilities

SUNWjervl Japanese (EUC) Localizations for XIL loadable pipelines for
SunVideo capture and compression

SUNWjeuce Japanese (EUC) Feature Package specific files for usr, it is a
extended package to support EUC environment.

Printing 197

TABLE C–5 Japanese (continued)

SUNWjeudc Japanese (EUC) Localizations for User Defined Character
tool for Solaris CDE environment

SUNWjewnu Japanese Input System - Wnn6 Messages, (EUC)

SUNWjexfa Japanese (EUC) Localizations for Font Administration
application for Solaris platforms

SUNWjexir Japanese (EUC) localizations for XIL Runtime Environment

SUNWjfdl Japanese Localization for Solaris Desktop Font Downloader
for Adobe Postscript printers

SUNWjfpre Stream modules for Japanese Feature Package (JFP), it is a
extended package to run JFP environment.

SUNWjfpue Japanese Feature Package (JFP) specific files for usr, it is a
extended package to run JFP environment.

SUNWjfxmn English manpages of Japanese features for X Window System.

SUNWjj2dv Japanese Java virtual macTools and utilities including
javac, jdb, javadoc, rmiregistry

SUNWjj2rt Japanese Java virtual machine and core class libraries

SUNWjjvdv Japanese Localizations for JavaVM developers package

SUNWjjvrt Japanese Localizations for JavaVM run time environment

SUNWjkcsr Japanese (EUC) Localizations for Kodak Color Management
System Runtime

SUNWjlibj Japanese specific library (/usr/lib/libjapanese.a), header
and transition kit.

SUNWjmane Japanese Feature Package Man Pages (Extension) to see English
manpages for SUNWjfpre and SUNWjfpue.

SUNWjmfrn Japanese (EUC) Localizations for Motif 1.2.3 RunTime Kit.

SUNWjoaud Japanese (EUC) Localizations for Audiotool & other
auxiliary audio support

SUNWjodcv Japanese (EUC) Localizations for OPEN LOOK document
and help viewer applications

SUNWjodem Japanese (EUC) Localizations for OPEN LOOK demo programs

SUNWjodst Japanese (EUC) Localizations for OPEN LOOK deskset tools

SUNWjodte Japanese (EUC) Localizations for OPEN LOOK Desktop
Environment (olwm, props, wsinfo, etc.)

198 International Language Environments Guide ♦ February 2000

TABLE C–5 Japanese (continued)

SUNWjoimt Japanese (EUC) Localizations for OPEN LOOK imagetool

SUNWjorte Japanese (EUC) Localizations for OPEN LOOK toolkits
runtime environment

SUNWjoumn Japanese (EUC) OPEN LOOK toolkit/desktop users man pages

SUNWjpab Japanese (PCK) Localization for CDE Desktop Application Builder

SUNWjpacx Japanese (PCK) Localizations for AccessX client program

SUNWjpadi Japanese (PCK) Localizations for admintool and GUI install.

SUNWjpadm Japanese (PCK) Localizations for Software used to perform system
administration tasks. Admintool requires both this and SUNWjpadi
packages for Japanese (PCK) localization.

SUNWjpbas Japanese (PCK) Localization for CDE application basic
runtime environment

SUNWjpcke Japanese (PCK - PC Kanji Code) Feature Package specific files. It’s
a extened package to support PCK environment.

SUNWjpct Japanese (PCK) Localizations for UTF-8 Code Conversion Tool

SUNWjpdas Japanese localization for tools to synchronize desktop
applications with the Palm Pilot PDA

SUNWjpdst Japanese (PCK) Localization for CDE Desktop Applications

SUNWjpdte Japanese (PCK) Localization for CDE Desktop Login Environment

SUNWjpezt Japanese (PCK) Localizations for Desktop Power Pack Applications

SUNWjphe Japanese (PCK) Localization for CDE Help Runtime environment

SUNWjphed Japanese (PCK) Localization for CDE Help Developer Environment

SUNWjphev Japanese (PCK) Localization for CDE Help Volumes

SUNWjphez Japanese (PCK) Localizations for Desktop Power Pack Help Volumes

SUNWjpim Japanese (PCK) Localization for Solaris CDE Image Viewer

SUNWjpj2m Japanese (PCK) man pages

SUNWjpjmn Japanese (PCK) JavaVM manual pages for Java programmers and users

SUNWjpkcs Japanese (PCK) Localizations for Kodak Color Management
System Runtime

Printing 199

TABLE C–5 Japanese (continued)

SUNWjpman Japanese Feature Package Man Pages to see Japanese (PCK)
manpages for SUNWjfpr and SUNWjfpu and Japanese manpages
for SUNWman and SUNWaled.

SUNWjpmfr Japanese (PCK) Localizations for Motif 1.2.3 RunTime Kit.

SUNWjppmm Japanese (PCK) Power Management OW Utilities Man Pages

SUNWjppmw Japanese (PCK) Localizations for Power Management OW Utilities

SUNWjprdm Japanese (PCK) OILBN ReadMe Directory

SUNWjprme Japanese (PCK) Localization for Common Desktop Environment
(CDE) release documentation

SUNWjprvl Japanese (PCK) Localizations for XIL loadable pipelines for
SunVideo capture and compression

SUNWjpsal Japanese (PCK) Localizations for Solstice Admintool launcher
and associated libraries.

SUNWjptlm Japanese (PCK) ToolTalk manual pages for ToolTalk programmers,
OpenWindows users, and Common Desktop Environment (CDE) users

SUNWjptlt Japanese (PCK) Localizations for ToolTalk binaries and shared
libraries needed for Common Desktop Environment (CDE),
OpenWindows, and all ToolTalk clients

SUNWjpudc Japanese (PCK) Localizations for User Defined Character
tool for Solaris CDE environment

SUNWjpwm Japanese (PCK) Localization for CDE Desktop Window Manager

SUNWjpwnu Japanese Input System - Wnn6 Messages, (PCK)

SUNWjpxfa Japanese (PCK) Localizations for Font Administration
application for Solaris platforms

SUNWjpxir Japanese (PCK) Localizations for XIL Runtime Environment

SUNWjpxpm Japanese (PCK) X Window System online programmers man pages

SUNWjpxum Japanese (PCK) X Window System online user man pages

SUNWjrdm Japanese (EUC) OILBN ReadMe Directory

SUNWjreg Japanese Localizations for Solaris User Registration

SUNWjsadl Japanese (EUC) Localizations for Solstice Admintool launcher
and associated libraries.

SUNWjtlmn Japanese (EUC) ToolTalk manual pages for ToolTalk programmers,
OpenWindows users, and Common Desktop Environment (CDE) users

200 International Language Environments Guide ♦ February 2000

TABLE C–5 Japanese (continued)

SUNWjtltk Japanese (EUC) Localizations for ToolTalk binaries and shared
libraries needed for Common Desktop Environment (CDE),
OpenWindows, and all ToolTalk clients

SUNWju8e Japanese (UTF-8) Feature Package specific files. It’s a extened
package to support Japanese UTF-8 environment.

SUNWjuab Japanese (UTF-8) Localization for CDE Desktop Application Builder

SUNWjuacx Japanese (UTF-8) Localizations for AccessX client program

SUNWjuadi Japanese (UTF-8) Localizations for admintool and GUI install.

SUNWjuadm Japanese (UTF-8) Localizations for Software used to perform system
administration tasks. Admintool requires both this and SUNWjuadi
packages for Japanese (UTF-8) localization.

SUNWjubas Japanese (UTF-8) Localization for CDE application basic
runtime environment

SUNWjuct Japanese (UTF-8) Localizations for UTF-8 Code Conversion Tool

SUNWjudst Japanese (UTF-8) Localization for CDE Desktop Applications

SUNWjudte Japanese (UTF-8) Localization for CDE Desktop Login Environment

SUNWjuezt Japanese (UTF-8) Localizations for Desktop Power Pack Applications

SUNWjuhe Japanese (UTF-8) Localization for CDE Help Runtime environment

SUNWjuhed Japanese (UTF-8) Localization for CDE Help Developer Environment

SUNWjuhev Japanese (UTF-8) Localization for CDE Help Volumes

SUNWjuhez Japanese (UTF-8) Localizations for Desktop Power Pack Help Volumes

SUNWjuim Japanese (UTF-8) Localization for Solaris CDE Image Viewer

SUNWjuj2m Japanese (UTF-8) man pages

SUNWjujmn Japanese (UTF-8) JavaVM Manual pages for Java programmers and users

SUNWjukcs Japanese (UTF-8) Localizations for Kodak Color Management
System Runtime

SUNWjulcf Japanese (UTF-8) Localizations for xutops command

SUNWjuman Japanese Feature Package Man Pages to see Japanese (UTF-8)
manpages for SUNWjfpr and SUNWjfpu and Japanese manpages
for SUNWman and SUNWaled.

SUNWjumfr Japanese (UTF-8) Localizations for Motif 1.2.3 RunTime Kit.

Printing 201

TABLE C–5 Japanese (continued)

SUNWjupmm Japanese (UTF-8) Power Management OW Utilities Man Pages

SUNWjupmw Japanese (UTF-8) Localizations for Power Management OW Utilities

SUNWjurdm Japanese (UTF-8) OILBN ReadMe Directory

SUNWjurme Japanese (UTF-8) Localization for Common Desktop Environment
(CDE) release documentation

SUNWjurvl Japanese (UTF-8) Localizations for XIL loadable pipelines for
SunVideo capture and compression

SUNWjusal Japanese (UTF-8) Localizations for Solstice Admintool
launcher and associated libraries.

SUNWjutlm Japanese (UTF-8) ToolTalk manual pages for ToolTalk programmers,
OpenWindows users, and Common Desktop Environment (CDE) users

SUNWjutlt Japanese (UTF-8) Localizations for ToolTalk binaries and shared
libraries needed for Common Desktop Environment (CDE),
OpenWindows, and all ToolTalk clients

SUNWjuudc Japanese (UTF-8) Localizations for User Defined Character
tool for Solaris CDE environment

SUNWjuwm Japanese (UTF-8) Localization for CDE Desktop Window Manager

SUNWjuwnu Japanese Input System - Wnn6 Messages, (UTF-8)

SUNWjuxfa Japanese (UTF-8) Localizations for Font Administration
application for Solaris platforms

SUNWjuxir Japanese (UTF-8) Localizations for XIL Runtime Environment

SUNWjuxpm Japanese (UTF-8) X Window System online programmers man pages

SUNWjuxum Japanese (UTF-8) X Window System online user man pages

SUNWjwacx Japanese (EUC) Localizations for AccessX client program

SUNWjwbcp Japanese (EUC) Localizations for Support files, programs, and
libraries for Openwindows Binary Compatibility.

SUNWjwbk Japanese (EUC) Localizations for OpenWindows online handbooks

SUNWjwncr Japanese Input System - Wnn6 Client, (Root)

SUNWjwncu Japanese Input System - Wnn6 Client, (Usr)

SUNWjwncx Japanese Input System - Wnn6 Client X Window System

SUNWjwndt Japanese Input System - Wnn6 Client for CDE

202 International Language Environments Guide ♦ February 2000

TABLE C–5 Japanese (continued)

SUNWjwnsr Japanese Input System - Wnn6 Server, (Root)

SUNWjwnsu Japanese Input System - Wnn6 Server, (Usr)

SUNWjwsr Japanese Solaris Product Registry

SUNWjxfa Japanese (Common) Localizations for Font Administration
application for Solaris platforms

SUNWjxfnt Japanese X Window System Fonts (required fonts) - gothic
bold fonts and TrueType map files

SUNWjxoft Sun Minchou bitmap fonts

SUNWjxplt Japanese Localizations for X Window System platform
software (Extensions)

SUNWjxpmn Japanese (EUC) X Window System online programmers man pages

SUNWjxumn Japanese (EUC) X Window System online user man pages

TABLE C–6 Korean

NSCPkocom
Korean localization of Netscape Communicator 4.7 supporting
International security.

NSCPkucom ko.UTF-8 localization of Netscape Communicator 4.7
supporting International security.

SUNWkadis Korean (EUC) Localizations for admintool and GUI install.

SUNWkadma Korean (EUC) Localizations for Software used to perform system
administration tasks. Admintool requires both this and SUNWkadis
packages for Korean (EUC) localization.

SUNWkbcp This package contains Korean Language Environment
binary compatibility files.

SUNWkcoft Korean/Korean UTF-8 common optional font package

SUNWkdab Korean Localizations for CDE Desktop Application Builder

SUNWkdbas Korean Localizations for CDE Base functionality

SUNWkdcst The localized tools package for Korean.

SUNWkddst Korean Localizations for CDE Desktop Applications

SUNWkddte Korean Localizations for CDE Desktop Login Environment

Printing 203

TABLE C–6 Korean (continued)

SUNWkdezt Korean (EUC) Localizations for Desktop Power Pack Applications

SUNWkdft Fonts for the common desktop environment, Korean L10N CDE

SUNWkdhe Korean Localizations for CDE Help Runtime environment

SUNWkdhev Korean CDE Help Volumes

SUNWkdhez Korean (Common) Localizations for Desktop Power Pack Help Volumes

SUNWkdicn Korean Localizations for CDE Icons

SUNWkdim Korean Localizations for CDE Imagetool

SUNWkdwm Korean Localizations for CDE Desktop Window Manager

SUNWkepmw Korean (EUC) Localization for Power Management OW Utilities

SUNWkervl Korean (EUC) SunVideo Runtime Support Software

SUNWkexir Korean (EUC) XIL Runtime Environment

SUNWkj2rt Java virtual machine and core class libraries (Korean supplement)

SUNWkjvdv Korean Localizations for JavaVM developers package

SUNWkjvrt Korean Localizations for JavaVM run time environment

SUNWkkcsr Korean (EUC) KCMS Runtime Environment

SUNWkler This package contains the stream modules for Korean
Language Environment. It is a required package to run
Korean Language Environment

SUNWklerx Stream modules for Korean Language Environment. It is a required
package to run Korean Language Environment (64-bit)

SUNWkleue This package contains Korean Language Environment specific files. It
is a required package to run Korean Language Environment

SUNWkoaud Korean OPENLOOK Audio Applications Package

SUNWkodcv Korean OPENLOOK Document and Help Viewer Applications Package

SUNWkodem Korean OPENLOOK Demo Programs Package

SUNWkodst Korean OPENLOOK Deskset Tools Package

SUNWkodte Korean Core OPENLOOK Desktop Package

SUNWkoimt Korean OPENLOOK Imagetool Package

SUNWkoj2p Korean localization of Java Plug-in 1.2.2

204 International Language Environments Guide ♦ February 2000

TABLE C–6 Korean (continued)

SUNWkoman Korean OPENLOOK Toolkit/Desktop Users Man Pages Package

SUNWkorte Korean OPENLOOK Toolkits Runtime Environment Package

SUNWkrdm Korean (EUC) OILBN ReadMe Directory

SUNWkreg Korean Localizations for Solaris User Registration

SUNWksadl Korean (EUC) Localizationsfor Solstice Admintool launcher
and associated libraries.

SUNWktltk Korean ToolTalk Runtime Package Package

SUNWkttfe Korean True Type Font Extension

SUNWkuadi Korean (UTF-8) Localizations for admintool and GUI install.

SUNWkuadm Korean (UTF-8) Localizations for Software used to perform system
administration tasks. Admintool requires both this and SUNWkadis
packages for Korean (EUC) localization.

SUNWkudab Korean/UTF-8 Localizations for CDE Desktop Application Builder

SUNWkudbs Korean/UTF-8 Localizations for CDE Base functionality

SUNWkudc Korean (EUC) Localizations for User Defined Character tool
for Solaris CDE environment

SUNWkudda Korean/UTF-8 Localizations for CDE Desktop Applications

SUNWkuddt Korean/UTF-8 Localizations for CDE Desktop Login Environment

SUNWkudft Fonts for the common desktop environment, Korean/UTF-8 L10N CDE

SUNWkudhr Korean/UTF-8 Localizations for CDE Help Runtime environment

SUNWkudhv Korean/UTF-8 CDE Help Volumes

SUNWkudhz Korean (Common) Localizations for Desktop Power Pack Help Volumes

SUNWkudic Korean/UTF-8 Localizations for CDE Icons

SUNWkudim Korean/UTF-8 Localizations for CDE Imagetool

SUNWkudwm Korean/UTF-8 Localizations for CDE Desktop Window Manager

SUNWkudzt Korean (UTF-8) Localizations for Desktop Power Pack Applications

SUNWkulee This package contains Korean UTF-8 Language Environment specific
files. It is a required package to run Korean Language Environment

SUNWkuodf Korean UTF-8 Core OPENLOOK Desktop Package

SUNWkupmw Korean UTF-8 Localization for Power Management OW Utilities

Printing 205

TABLE C–6 Korean (continued)

SUNWkurdm Korean (UTF-8) OILBN ReadMe Directory

SUNWkusal Korean (UTF-8) Localizationsfor Solstice Admintool launcher
and associated libraries.

SUNWkuudc Korean (UTF-8) Localizations for User Defined Character
tool for Solaris CDE environment

SUNWkuxe Korean UTF-8 X Windows Platform Software Package

SUNWkuxft Korean UTF-8 X Windows Platform Required Fonts

SUNWkwbcp Korean OpenWindows Binary Compatibility Package

SUNWkwsr Korean prodreg 2.0 localizable text resources

SUNWkxe Korean X Windows Platform Software Package

SUNWkxfte Korean X Windows Platform Required Fonts

SUNWkxman Korean X Windows Online User Man Pages Package

TABLE C–7 Spanish

NSCPescom
Spanish localization of Netscape Communicator 4.7 supporting
International security.

SUNWe8bas Base L10N fr CDE functionality to run a CDE application

SUNWe8dst CDE Desktop Applications

SUNWe8dte CDE Desktop Login Environment

SUNWe8he CDE Help L10N es Runtime Environment

SUNWe8im CDE Desktop apps

SUNWe8wm Spanish UTF-8 CDE Desktop Window Manages Messages

SUNWeoaud Spanish OPEN LOOK (R) Audio applications

SUNWeobk Spanish OpenWindows online handbooks

SUNWeodcv Spanish OPEN LOOK (R) document and help viewer applications

SUNWeodem Spanish OPEN LOOK (R) demo programs

SUNWeodst Spanish OPEN LOOK (R) deskset tools

206 International Language Environments Guide ♦ February 2000

TABLE C–7 Spanish (continued)

SUNWeodte Spanish OPEN LOOK (R) desktop environment

SUNWeoimt Spanish OPEN LOOK (R) imagetool

SUNWeorte Spanish OPEN LOOK (R) toolkits runtime environment

SUNWesbas Base L10N fr CDE functionality to run a CDE application

SUNWesdst CDE Desktop Applications

SUNWesdte CDE Desktop Login Environment

SUNWeshe CDE Help L10N es Runtime Environment

SUNWeshed CDE L10N es Help Developer Environment

SUNWeshev CDE Help Volumes

SUNWesim CDE Desktop apps

SUNWesj2p Spanish localization of Java Plug-in 1.2.2

SUNWesos localizable message files for the OS-Networking consolidation

SUNWespmw Spanish (EUC) Localizations for Power Management OW Utilities

SUNWesreg Solaris User Registration prompts at desktop login for user registration

SUNWeswm Spanish CDE Desktop Window Manages Messages

SUNWetltk Spanish ToolTalk binaries and shared libraries

SUNWewacx Spanish OPEN LOOK (R) AccessX

SUNWexplt Spanish X Windows platform software

TABLE C–8 Swedish

NSCPsvcom
Swedish localization of Netscape Communicator 4.7 supporting
International security.

SUNWs8bas Base Swedish UTF-8 CDE functionality messages

SUNWs8dst Swedish UTF-8 CDE Desktop Applications messages

SUNWs8dte Swedish UTF-8 CDE Desktop Login Environment messages

SUNWs8he Swedish UTF-8 CDE Help Runtime Environment

Printing 207

TABLE C–8 Swedish (continued)

SUNWs8im Swedish UTF-8 CDE Image editor messages

SUNWs8wm Swedish UTF-8 CDE Desktop Window Manages Messages

SUNWsoaud Swedish OPEN LOOK (R) Audio applications

SUNWsobk Swedish OpenWindows online handbooks

SUNWsodcv Swedish OPEN LOOK (R) document and help viewer applications

SUNWsodem Swedish OPEN LOOK (R) demo programs

SUNWsodst Swedish OPEN LOOK (R) deskset tools

SUNWsodte Swedish OPEN LOOK (R) desktop environment

SUNWsoimt Swedish OPEN LOOK (R) imagetool

SUNWsorte Swedish OPEN LOOK (R) toolkits runtime environment

SUNWstltk Swedish ToolTalk binaries and shared libraries

SUNWsvbas Base Swedish CDE functionality messages

SUNWsvdst Swedish CDE Desktop Applications messages

SUNWsvdte Swedish CDE Desktop Login Environment messages

SUNWsvhe Swedish CDE Help Runtime Environment

SUNWsvhed Swedish CDE Help Developer Environment messages

SUNWsvhev CDE Help Volumes

SUNWsvim Swedish CDE Image editor messages

SUNWsvj2p Swedish localization of Java Plug-in 1.2.2

SUNWsvos localizable message files for the OS-Networking consolidation

SUNWsvpmw Swedish (EUC) Localizations for Power Management OW Utilities

SUNWsvreg Solaris User Registration prompts at desktop login for user registration

SUNWsvwm Swedish CDE Desktop Window Manages Messages

SUNWswacx Swedish OPEN LOOK (R) AccessX

SUNWsxplt Swedish X Windows platform software

SUNWvbcp Swedish OS Binary Compatibility Package

SUNWvwbcp Swedish OpenWindows Binary Compatibility Package

208 International Language Environments Guide ♦ February 2000

TABLE C–9 Traditional Chinese

NSCP5com
zh_TW.BIG5 localization of Netscape Communicator 4.7
supporting International security.

NSCPhcom Traditional Chinese localization of Netscape Communicator
4.7 supporting International security.

NSCPhucom zh_TW.UTF-8 localization of Netscape Communicator 4.7
supporting International security.

SUNW5adi Traditional Chinese Localizations for admintool and GUI install.

SUNW5adma Traditional Chinese Localizations for Software used to perform
system administration tasks. Admintool requires both this and
SUNW5adi packages for Localization.

SUNW5dab Traditional Chinese Localizations for CDE Desktop Application Builder

SUNW5dbas Traditional Chinese Localizations for CDE Base functionality

SUNW5ddst Traditional Chinese Localizations for CDE Desktop Applications

SUNW5ddte Traditional Chinese Localizations for CDE Desktop Login Environment

SUNW5dezt Traditional Chinese (BIG5) Localizations for Desktop Power
Pack Applications

SUNW5dft Traditional Chinese Localizations for CDE Fonts

SUNW5dhe Traditional Chinese Localizations for CDE Help Runtime environment

SUNW5dhev Traditional Chinese CDE Help Volumes

SUNW5dhez Traditional Chinese (Common BIG5) Localizations for Desktop
Power Pack Help Volumes

SUNW5dicn Traditional Chinese Localizations for CDE Icons

SUNW5dim Traditional Chinese Localizations for CDE Imagetool

SUNW5dwm Traditional Chinese Localizations for CDE Desktop Window Manager

SUNW5leue This package contains Traditional Chinese Language Environment
specific files. It is a required package to run Traditional
Chinese BIG5 Language Environment.

SUNW5odte Traditional Chinese BIG5 Core OPENLOOK Desktop Package

SUNW5pmw Traditional Chinese BIG5 Localization for Power
Management OW Utilities

SUNW5rdm Taiwanese (BIG5) OILBN ReadMe Directory

Printing 209

TABLE C–9 Traditional Chinese (continued)

SUNW5sadl Traditional Chinese Localizations for Solstice Admintool
launcher and associated libraries.

SUNW5ttfe Traditional Chinese True Type Fonts Package Extension

SUNW5udc Traditional Chinese (BIG5) Localizations for User Defined
Character tool for Solaris CDE environment

SUNW5xfnt Traditional Chinese BIG5 X Windows Platform required Fonts Package

SUNWhadis Traditional Chinese (EUC) Localizations for admintool and GUI install.

SUNWhadma Traditional Chinese (EUC) Localizations for Software used to perform
system administration tasks. Admintool requires both this and
SUNWhadis packages for Traditional Chinese (EUC) localization.

SUNWhbcp This package contains Traditional Chinese Language Environment
binary compatibility files.

SUNWhdab Traditional Chinese Localizations for CDE Desktop Application Builder

SUNWhdbas Traditional Chinese Localizations for CDE Base functionality

SUNWhddst Traditional Chinese Localizations for CDE Desktop Applications

SUNWhddte Traditional Chinese Localizations for CDE Desktop Login Environment

SUNWhdezt Traditional Chinese (EUC) Localizations for Desktop Power
Pack Applications

SUNWhdft Traditional Chinese Localizations for CDE Fonts

SUNWhdhe Traditional Chinese Localizations for CDE Help Runtime environment

SUNWhdhev Traditional Chinese CDE Help Volumes

SUNWhdhez Traditional Chinese (Common) Localizations for Desktop
Power Pack Help Volumes

SUNWhdicn Traditional Chinese Localizations for CDE Icons

SUNWhdim Traditional Chinese Localizations for CDE Imagetool

SUNWhdwm Traditional Chinese Localizations for CDE Desktop Window Manager

SUNWhepmw Traditional Chinese (EUC) Localization for Power
Management OW Utilities

SUNWhervl Traditional Chinese (EUC) SunVideo Runtime Support Software

SUNWhexir Traditional Chinese (EUC) XIL Runtime Environment

SUNWhj2p Traditional Chinese localization of Java Plug-in 1.2.2

210 International Language Environments Guide ♦ February 2000

TABLE C–9 Traditional Chinese (continued)

SUNWhj2rt Java virtual machine and core class libraries (Traditional
Chinese supplement)

SUNWhjvdv Traditional Chinese Localizations for JavaVM developers package

SUNWhjvrt Traditional Chinese Localizations for JavaVM run time environment

SUNWhkcsr Traditional Chinese (EUC) KCMS Runtime Environment

SUNWhler This package contains the stream modules for Traditional
Chinese Language Environment. It is a required package to run
Traditional Chinese Language Environment.

SUNWhlerx Stream modules for Traditional Chinese Language Environment.
It is a required package to run Traditional Chinese Language
Environment (64-bit).

SUNWhleue This package contains Traditional Chinese Language Environment
specific files. It is a required package to run Traditional
Chinese Language Environment.

SUNWhoaud Traditional Chinese OPENLOOK Audio Applications Package

SUNWhodcv Traditional Chinese OPENLOOK Document and Help
Viewer Applications Package

SUNWhodem Traditional Chinese OPENLOOK Demo Programs Package

SUNWhodst Traditional Chinese OPENLOOK Deskset Tools Package

SUNWhodte Traditional Chinese Core OPENLOOK Desktop Package

SUNWhoimt Traditional Chinese OPENLOOK Imagetool Package

SUNWhoman Traditional Chinese OPENLOOK Toolkit/Desktop Users
Man Pages Package

SUNWhorte Traditional Chinese OPENLOOK Toolkits Runtime Environment Package

SUNWhrdm Taiwanese (EUC) OILBN ReadMe Directory

SUNWhreg Traditional Chinese Localizations for Solaris User Registration

SUNWhsadl Traditional Chinese (EUC) Localizationsfor Solstice Admintool
launcher and associated libraries.

SUNWhtltk Traditional Chinese ToolTalk Runtime Package Package

SUNWhttfe Traditional Chinese True Type optional Fonts Package Extension

SUNWhuada Traditional Chinese (UTF-8) Localizations for Software used to
perform system administration tasks. Admintool requires both
this and SUNW5adi packages for Localization.

Printing 211

TABLE C–9 Traditional Chinese (continued)

SUNWhuadi Traditional Chinese (UTF-8) Localizations for admintool and GUI install.

SUNWhubas Traditional Chinese (UTF-8) Localizations for CDE Base functionality

SUNWhuccd This package contains Traditional Chinese Console Display
Environment specific files. It is a required package to run Traditional
Chinese Console Display Environment

SUNWhudab Traditional Chinese (UTF-8) Localizations for CDE Desktop
Application Builder

SUNWhudc Traditional Chinese (EUC) Localizations for User Defined
Character tool for Solaris CDE environment

SUNWhudez Traditional Chinese (UTF-8) Localizations for Desktop
Power Pack Applications

SUNWhudft Traditional Chinese (UTF-8) Localizations for CDE Fonts

SUNWhudhe Traditional Chinese (UTF-8) Localizations for CDE Help
Runtime environment

SUNWhudhv Traditional Chinese (UTF-8) CDE Help Volumes

SUNWhudhz Traditional Chinese (Common UTF-8) Localizations for
Desktop Power Pack Help Volumes

SUNWhudic Traditional Chinese (UTF-8) Localizations for CDE Icons

SUNWhudim Traditional Chinese (UTF-8) Localizations for CDE Imagetool

SUNWhudst Traditional Chinese (UTF-8) Localizations for CDE Desktop Applications

SUNWhudte Traditional Chinese (UTF-8) Localizations for CDE Desktop
Login Environment

SUNWhudwm Traditional Chinese (UTF-8) Localizations for CDE Desktop
Window Manager

SUNWhulee This package contains Traditional Chinese (UTF-8) Language
Environment specific files. It is a required package to run Traditional
Chinese UTF-8 Language Environment.

SUNWhuodt Traditional Chinese UTF-8 Core OPENLOOK Desktop Package

SUNWhupmw Traditional Chinese UTF-8 Localization for Power
Management OW Utilities

SUNWhurdm Taiwanese (UTF-8) OILBN ReadMe Directory

SUNWhusad Traditional Chinese (UTF-8) Localizations for Solstice Admintool
launcher and associated libraries.

212 International Language Environments Guide ♦ February 2000

TABLE C–9 Traditional Chinese (continued)

SUNWhuudc Traditional Chinese (UTF-8) Localizations for User Defined
Character tool for Solaris CDE environment

SUNWhwbcp Traditional Chinese OpenWindows Binary Compatibility Package

SUNWhwsr Traditional Chinese prodreg 2.0 localizable text resources

SUNWhxe Traditional Chinese X Windows Platform Software Package

SUNWhxman Traditional Chinese X Windows Online User Man Pages Package

TABLE C–10 Shared

SUNWabcp Asian common files for SunOS 4.x Binary Compatibility

SUNWerdm OILBN ReadMe Directory

SUNWudct User Defined Character tool for Solaris CDE environment

Printing 213

214 International Language Environments Guide ♦ February 2000

Index

16-bit Unicode 3.0 codeset 150
32–bit STREAMS 108
64–bit STREAMS 109

A
alphabets 28
APIs 41, 47

using to develop applications 37
applications

FontSet/XmFontList definitions 117
internationalizing 117
linking to system libraries 38–39
XPG4 41

Asian
printing support 159

AttrObject 132

B
base language 21
Bi-directionality 129
Big-5

codeset 33
bin/stty 112
/bin/stty directory 112
books@sun.com 16
bopomofo in Chinese 30
breve 62

C
caron 62

catgets() 47
CDE 123

en_US.UTF-8 locale support of 86
input methods 87

Central European languages, character
support 86

character classification macros 40–41
character shaping 129
character support 86
character transformation macros 40–41
characters

number 28
Chinese text

bopomofo 30
linguistic introduction 29
pinyin 30
zhuyin 30

code conversion STREAMS modules 109
code conversions 113
codeset

Big-5 33
character support 86
Extended UNIX Code (EUC) 33
Shift-JIS 33

Codeset Independence 34
commands

CSI-capable 34
Common Desktop Environment

Internationalization
Programmer’s Guide 123

complex language shaping 129
Complex Text Layout (CTL)

Index-215

CTL 129
Compose Key 30
Compose Sequence 97–98
Compose Sequences

Latin-1 90, 94
Latin-2 94
Latin-4 97
Latin-5 97, 111

Compose Sequences, for locales 62
Context 133
conversion

multibyte and wide character process
code 41

conversions 113
country of use 21
creating

message catalogs 47
Creating Worldwide Software 16, 31
.cshrc 112
CSI, Codeset Independence
CSI-capable commands 34
CSI-enabled libraries 36
CSText 134
CTL architecture 130
ctype

macros 40
currency 21

presentation order of 26
sizes of 27
units of 26

currency symbol 62
Cyrillic input mode 97
Czech

character support 86
keyboards 62

D
date formats 25
Daylight Savings Time (DST) 24
decimal places 25
degree symbol 62
delimiters

numeric 26
thousands 25
word 28

desktop environments 123

desktop layers 123
deutsche mark 26
developer’s cluster 86
diacritical marks 62

in English input mode 89
diacritics 129
diaeresis 62
dollar 26
doubleacute 62
DST (Daylight Savings Time) 24
Dt Apps 130
dtmail 127
dtterm 110
dynamic linking 38–39
dynamic text widgets 129

E
Editing behavior 133
en_US.UTF-8

code conversions 113
fontset definitions 117, 119
overview 53

English
character support 86
input mode 89

Euro currency 20
European printing support 157
Extended UNIX Code (EUC) 33

F
file code 34
fonts

across different platforms 124
adding or removing 66
formats 66
location 66

FontSet definitions 117, 119
FontSet/XmFontList definitions 117
formats

currency 26
dates 25
numeric 25
time 24

franc 26
Full Solaris locale 22

International Language Environments Guide ♦ February 2000

G
genmsg utility 47–48
German

character support 86
GMT offset 24
Greek

character support 86
input mode 98

Greenwich Mean Time offset 24

H
Hangul in Korean 29
Hanja in Korean 29
Hanzi in Chinese 29
Hiragana in Japanese 28
Horizontal Tabs 152
Hungarian

character support 86
keyboards 62

I
IA

keyboards 63
IBM DOS 437 64
iconv

command 113
Japanese character code conversion 77

input modes
Cyrillic 97
English 89
Greek 98

internationalization
ISO Latin-1 21
Java 34

Internationalization 20
internationalization APIs 41, 47
internationalizing applications 117
ISO 8859-n character support 86
ISO Latin-1 21
ISO-10646 86

J
Japanese text

Hiragana 28
Kanji 28

Katakana 28
linguistic introduction 28

Java internationalization 34

K
Kanji in Japanese 28
Katakana in Japanese 28
key Compose Sequences 62
Keyboard Selection 154
keyboards 30, 62

Changing keyboards on IA 63
Changing on SPARC 63
Czech 62
Hungarian 62
Latvian 62
Lithuanian 62
Polish 62
Turkish 62

Korean text
Hangul 29
Hanja 29
linguistic introduction 29

krona 26
krone 26
kroner 26
KSC-5700 80

L
LANG 108
LANG environment variable 108, 124
language 21
Language Conversion Library 127
language engine 129
language-dependent rendering. 24
Latin-1 Compose Sequences 94
Latin-2 Compose Sequences 94
Latin-4 Compose Sequences 97
Latin-5 Compose Sequences 97, 111
Latin-n terminals 111
Latvian keyboards 62
Layout behavior 133
Layout Direction 148
Layout Modifier Orientation 133
Layout Services 132
layoutDirection 148
LayoutObject 131–132

Index-217

LC_ALL 21
LC_COLLATE 23
LC_CTYPE 23
LC_MESSAGES 23–24
LC_MONETARY 23
LC_NUMERIC 23
LC_TIME 23
LCL 127
left-character() 136
libc 38–39, 41
libraries, linking applications to 38–39
Ligation 129
ligatures 129
linking applications 38–39
lira 26
list separators 26
Lithuanian keyboards 62
LO_LTYPE 24
loading

STREAMS modules 109–110
locale 21
locale utility 108
locale(1) 108
locales 20–22

categories of 23
Compose Sequences 62
database 33, 37
environment variables 108, 124
what is... 21

localization 20
localization resource category 122
@ls numerals=:national 133
@ls numerals=nominal:national 133

M
m_create_layout() 132
macros

ctype 40–41
mail interchange 126
markka 26
mbtowcs 41
mbtwoc 41
message catalogs, creating 47
modinfo command 110
modload command 110
Mouse Selection 153

mp(1) 157
multi-byte Unicode representation 53
multibyte file code 41
mystreams file 112

N
NULL (0x00) 34
number of characters 28
Numbers 25
numeral shaping 130
Numeral shaping 129
Numerals 149
NUMERALS_CONTEXTUAL 149
NUMERALS_NATIONAL 133
NUMERALS_NOMINAL 133
numeric conventions 25

O
ogonek 62
OpenWindows

changes 127
order for sorting 28
Orientation 133
OSF/Motif Programmer’s Guide 17
OSF/Motif Programmer’s Reference 17
OutToInp 135

P
Page Description Language (PDL)

interpreters 122
page sizes 30
paper sizes 30
PDL interpreters 122
People’s Republic of China 30
peseta 26
pinyin in Chinese 30
PLS 129
Polish

character support 86
keyboards 62

Portable Layout Services (PLS)
PLS 129

Porting Instructions 155
positional variation 130
POSIX 123

International Language Environments Guide ♦ February 2000

postprint(1) 157
PostScript 121

support under Solaris 157
PostScript Language Reference Manual 17,

121
PostScript Language Reference Manual

Supplement 17, 121
pound 26
printing support

Asian 159
European 157

Programming the Display PostScript System
with X 17, 121

Property 135
pseudo-XOC 131

R
radix 25
radix characters 25
region 21
Render Table 151
Rendition 149
Russian

character support 86

S
saving

STREAMS modules settings 112
sbin/sh 38
/sbin/sh command 38
Scandinavian and Baltic language character

support 86
script selection 88
segment ordering 129
separators

list 26
thousands 25
word 28

setenv command 108
setlocale man page 108
setting

terminal options 112
setup

TTY environment 108
ShapeCharset 133, 149
Shift-JIS codeset 33

shortcuts. Compose Sequences
Simple Mail Transfer Protocol 127
single-display clients 124
Slash (0x2f) 34
Smallberg, David 16, 31
SMTP 127
Solaris

Asian 67
base product 86
Chinese 69
contents 49
Japanese 75
Japanese printing support 159
Korean 79

sort order 28
Spanish

character support 86
SPARC keyboards 63
standards

interface 123
internationalization 123

stateless file code encodings 34
static and dynamic text 129
static linking 38
strchg command 111
strconf command 111
STREAMS modules

loading 109–110
saving settings 112

String validation 129
String XmTextFieldGetLayoutModifier 144
stty command 112
stub entry points, in libw and libintl 39
su command 109
Symmetrical swapping 129
system libraries

linking applications to 38–39

T
tabbing 129
terminal options, setting 112
terminal support for Latin-1, Latin-2, or

KOI8-R 111
terminals

Latin-n 111
Latin-n terminals 111

Index-219

text orientation 129
text rendering 129
Text Resources and Geometry 154
TextField 145, 148
TextShaping 133
Thai text 29
thousands separators 25
Time Formats 24
time zones 24
TTY environment setup 108
Turkish

character support 86
keyboards 62

Tuthill, Bill 16, 31
TypeOfText 133

U
u8lat1 STREAMS module 111
u8lat2 STREAMS module 111
UIL 147
Unicode 3.0 53

support 86
Universal Character Set Transformation Format

for 8 bits encoding UTF-8
encoding

usr/ucb/stty 112
/usr/ucb/stty directory 112
UTF-8 encoding 86
utilities

genmsg 47–48
locale 108

W
wcstombs 41
wctomb 41
Western European alphabets 28
Western European languages, character

support 86
wide character

expression 33
process code 41

words
delimiters 28
order of 64

X
X Display PostScript 121
X Window System 121
X/DPS 121
X/Open-Uniforum Joint Internationalization

Working Group 86
xetops 159
XFontStruc 125
Xlib dependencies 125
XmALIGNMENT_CENTER 134
XmALIGNMENT_END 134
XmCR_MOVING_INSERT_CURSOR 136–137
XmDEFAULT_DIRECTION 131
XmDirection 132, 147
XmEDIT_LOGICAL 134, 137–138, 153
XmEDIT_VISUAL 134, 137, 153
XmFont_IS_XO 132
XmFONT_IS_XOC 132, 152
XmFontSet 125
XmLabel 131, 149
XmLabelG 131
XmList 131
XmNalignment 134, 148
XmNAlignment 149
XmNeditPolicy 134, 137, 153
XmNfont 132
XmNfontName 132
XmNfontType 132–133
XmNgainPrimaryCallback 136–137
XmNlabelString 149
XmNlayoutAttrObject 132
XmNlayoutDirection 130–131, 133, 147–148
XmNlayoutModifier 131–133, 148–149
XmNmotionVerifyCallback 136–137
XmNrenderTable 134, 154
XmNrenditionTag 134
XmRenderTableAddRenditions 151
XmRendition 131–134, 147–148
XmRendition{Retrieve,Update} 133
XmString 131, 147
XmSTRING_COMPONENT_DIRECTION 131
XmSTRING_COMPONENT_LAYOUT_PUSH 131
XmSTRING_COMPONENT_LOCALE_TEXT 131
XmSTRING_COMPONENT_TEXT 131
XmSTRING_COMPONENT_WIDECHAR_TEXT 131
XmStringDirection 131, 147
XmStringDirectionCreate 147

International Language Environments Guide ♦ February 2000

XmText 131, 134, 148
XmTextField 131, 134, 145
XmTextFieldGetLayoutModifier 144
XmTextFieldSetLayoutModifier 146
XmTextGetLayoutModifier 145
XmTextSetLayoutModifier 146
XoJIG 86
XPG4 applications 41
xutops 159

XView toolkit 127

Y
yen 27

Z
zhuyin in Chinese 30

Index-221

