
man pages section 3: Curses
Library Functions

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0629-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 39

addch(3XCURSES) 45

mvaddch(3XCURSES) 45

mvwaddch(3XCURSES) 45

waddch(3XCURSES) 45

addchstr(3XCURSES) 47

addchnstr(3XCURSES) 47

mvaddchstr(3XCURSES) 47

mvaddchnstr(3XCURSES) 47

mvwaddchnstr(3XCURSES) 47

mvwaddchstr(3XCURSES) 47

waddchstr(3XCURSES) 47

waddchnstr(3XCURSES) 47

addnstr(3XCURSES) 49

addstr(3XCURSES) 49

mvaddnstr(3XCURSES) 49

mvaddstr(3XCURSES) 49

mvwaddnstr(3XCURSES) 49

mvwaddstr(3XCURSES) 49

Contents 3

waddnstr(3XCURSES) 49

waddstr(3XCURSES) 49

addnwstr(3XCURSES) 51

addwstr(3XCURSES) 51

mvaddnwstr(3XCURSES) 51

mvaddwstr(3XCURSES) 51

mvwaddnwstr(3XCURSES) 51

mvwaddwstr(3XCURSES) 51

waddnwstr(3XCURSES) 51

waddwstr(3XCURSES) 51

add_wch(3XCURSES) 53

mvadd_wch(3XCURSES) 53

mvwadd_wch(3XCURSES) 53

wadd_wch(3XCURSES) 53

add_wchnstr(3XCURSES) 55

add_wchstr(3XCURSES) 55

mvadd_wchnstr(3XCURSES) 55

mvadd_wchstr(3XCURSES) 55

mvwadd_wchnstr(3XCURSES) 55

mvwadd_wchstr(3XCURSES) 55

wadd_wchnstr(3XCURSES) 55

wadd_wchstr(3XCURSES) 55

attr_get(3XCURSES) 57

attr_off(3XCURSES) 57

attr_on(3XCURSES) 57

attr_set(3XCURSES) 57

color_set(3XCURSES) 57

wattr_get(3XCURSES) 57

4 man pages section 3: Curses Library Functions ♦ February 2000

wattr_off(3XCURSES) 57

wattr_on(3XCURSES) 57

wattr_set(3XCURSES) 57

wcolor_set(3XCURSES) 57

attroff(3XCURSES) 59

attron(3XCURSES) 59

attrset(3XCURSES) 59

wattroff(3XCURSES) 59

wattron(3XCURSES) 59

wattrset(3XCURSES) 59

baudrate(3XCURSES) 61

beep(3XCURSES) 62

flash(3XCURSES) 62

bkgd(3XCURSES) 63

bkgdset(3XCURSES) 63

getbkgd(3XCURSES) 63

wbkgd(3XCURSES) 63

wbkgdset(3XCURSES) 63

bkgrnd(3XCURSES) 65

bkgrndset(3XCURSES) 65

getbkgrnd(3XCURSES) 65

wbkgrnd(3XCURSES) 65

wbkgrndset(3XCURSES) 65

wgetbkgrnd(3XCURSES) 65

border(3XCURSES) 67

box(3XCURSES) 67

wborder(3XCURSES) 67

border_set(3XCURSES) 69

Contents 5

box_set(3XCURSES) 69

wborder_set(3XCURSES) 69

can_change_color(3XCURSES) 71

color_content(3XCURSES) 71

COLOR_PAIR(3XCURSES) 71

has_colors(3XCURSES) 71

init_color(3XCURSES) 71

init_pair(3XCURSES) 71

pair_content(3XCURSES) 71

PAIR_NUMBER(3XCURSES) 71

start_color(3XCURSES) 71

COLOR_PAIRS(3XCURSES) 71

COLORS(3XCURSES) 71

cbreak(3XCURSES) 74

nocbreak(3XCURSES) 74

noraw(3XCURSES) 74

raw(3XCURSES) 74

chgat(3XCURSES) 75

mvchgat(3XCURSES) 75

mvwchgat(3XCURSES) 75

wchgat(3XCURSES) 75

clear(3XCURSES) 76

erase(3XCURSES) 76

wclear(3XCURSES) 76

werase(3XCURSES) 76

clearok(3XCURSES) 77

idlok(3XCURSES) 77

leaveok(3XCURSES) 77

6 man pages section 3: Curses Library Functions ♦ February 2000

scrollok(3XCURSES) 77

setscrreg(3XCURSES) 77

wsetscrreg(3XCURSES) 77

clrtobot(3XCURSES) 79

wclrtobot(3XCURSES) 79

clrtoeol(3XCURSES) 80

wclrtoeol(3XCURSES) 80

COLS(3XCURSES) 81

copywin(3XCURSES) 82

curs_addch(3CURSES) 84

addch(3CURSES) 84

waddch(3CURSES) 84

mvaddch(3CURSES) 84

mvwaddch(3CURSES) 84

echochar(3CURSES) 84

wechochar(3CURSES) 84

curs_addchstr(3CURSES) 87

addchstr(3CURSES) 87

addchnstr(3CURSES) 87

waddchstr(3CURSES) 87

waddchnstr(3CURSES) 87

mvaddchstr(3CURSES) 87

mvaddchnstr(3CURSES) 87

mvwaddchstr(3CURSES) 87

mvwaddchnstr(3CURSES) 87

curs_addstr(3CURSES) 88

addstr(3CURSES) 88

addnstr(3CURSES) 88

Contents 7

waddstr(3CURSES) 88

waddnstr(3CURSES) 88

mvaddstr(3CURSES) 88

mvaddnstr(3CURSES) 88

mvwaddstr(3CURSES) 88

mvwaddnstr(3CURSES) 88

curs_addwch(3CURSES) 89

addwch(3CURSES) 89

waddwch(3CURSES) 89

mvaddwch(3CURSES) 89

mvwaddwch(3CURSES) 89

echowchar(3CURSES) 89

wechowchar(3CURSES) 89

curs_addwchstr(3CURSES) 92

addwchstr(3CURSES) 92

addwchnstr(3CURSES) 92

waddwchstr(3CURSES) 92

waddwchnstr(3CURSES) 92

mvaddwchstr(3CURSES) 92

mvaddwchnstr(3CURSES) 92

mvwaddwchstr(3CURSES) 92

mvwaddwchnstr(3CURSES) 92

curs_addwstr(3CURSES) 94

addwstr(3CURSES) 94

addnwstr(3CURSES) 94

waddwstr(3CURSES) 94

waddnwstr(3CURSES) 94

mvaddwstr(3CURSES) 94

8 man pages section 3: Curses Library Functions ♦ February 2000

mvaddnwstr(3CURSES) 94

mvwaddwstr(3CURSES) 94

mvwaddnwstr(3CURSES) 94

curs_alecompat(3CURSES) 95

movenextch(3CURSES) 95

wmovenextch(3CURSES) 95

moveprevch(3CURSES) 95

wmoveprevch(3CURSES) 95

adjcurspos(3CURSES) 95

wadjcurspos(3CURSES) 95

curs_attr(3CURSES) 97

attroff(3CURSES) 97

wattroff(3CURSES) 97

attron(3CURSES) 97

wattron(3CURSES) 97

attrset(3CURSES) 97

wattrset(3CURSES) 97

standend(3CURSES) 97

wstandend(3CURSES) 97

standout(3CURSES) 97

wstandout(3CURSES) 97

curs_beep(3CURSES) 99

beep(3CURSES) 99

flash(3CURSES) 99

curs_bkgd(3CURSES) 100

bkgd(3CURSES) 100

bkgdset(3CURSES) 100

wbkgdset(3CURSES) 100

Contents 9

wbkgd(3CURSES) 100

curs_border(3CURSES) 101

border(3CURSES) 101

wborder(3CURSES) 101

box(3CURSES) 101

whline(3CURSES) 101

wvline(3CURSES) 101

curs_clear(3CURSES) 103

erase(3CURSES) 103

werase(3CURSES) 103

clear(3CURSES) 103

wclear(3CURSES) 103

clrtobot(3CURSES) 103

wclrtobot(3CURSES) 103

clrtoeol(3CURSES) 103

wclrtoeol(3CURSES) 103

curs_color(3CURSES) 104

start_color(3CURSES) 104

init_pair(3CURSES) 104

init_color(3CURSES) 104

has_colors(3CURSES) 104

can_change_color(3CURSES) 104

color_content(3CURSES) 104

pair_content(3CURSES) 104

curscr(3XCURSES) 107

curs_delch(3CURSES) 108

delch(3CURSES) 108

wdelch(3CURSES) 108

10 man pages section 3: Curses Library Functions ♦ February 2000

mvdelch(3CURSES) 108

mvwdelch(3CURSES) 108

curs_deleteln(3CURSES) 109

deleteln(3CURSES) 109

wdeleteln(3CURSES) 109

insdelln(3CURSES) 109

winsdelln(3CURSES) 109

insertln(3CURSES) 109

winsertln(3CURSES) 109

curses(3CURSES) 110

curses(3XCURSES) 126

curs_getch(3CURSES) 138

getch(3CURSES) 138

wgetch(3CURSES) 138

mvgetch(3CURSES) 138

mvwgetch(3CURSES) 138

ungetch(3CURSES) 138

curs_getstr(3CURSES) 143

getstr(3CURSES) 143

wgetstr(3CURSES) 143

mvgetstr(3CURSES) 143

mvwgetstr(3CURSES) 143

wgetnstr(3CURSES) 143

curs_getwch(3CURSES) 144

getwch(3CURSES) 144

wgetwch(3CURSES) 144

mvgetwch(3CURSES) 144

mvwgetwch(3CURSES) 144

Contents 11

ungetwch(3CURSES) 144

curs_getwstr(3CURSES) 149

getwstr(3CURSES) 149

getnwstr(3CURSES) 149

wgetwstr(3CURSES) 149

wgetnwstr(3CURSES) 149

mvgetwstr(3CURSES) 149

mvgetnwstr(3CURSES) 149

mvwgetwstr(3CURSES) 149

mvwgetnwstr(3CURSES) 149

curs_getyx(3CURSES) 150

getyx(3CURSES) 150

getparyx(3CURSES) 150

getbegyx(3CURSES) 150

getmaxyx(3CURSES) 150

curs_inch(3CURSES) 151

inch(3CURSES) 151

winch(3CURSES) 151

mvinch(3CURSES) 151

mvwinch(3CURSES) 151

curs_inchstr(3CURSES) 152

inchstr(3CURSES) 152

inchnstr(3CURSES) 152

winchstr(3CURSES) 152

winchnstr(3CURSES) 152

mvinchstr(3CURSES) 152

mvinchnstr(3CURSES) 152

mvwinchstr(3CURSES) 152

12 man pages section 3: Curses Library Functions ♦ February 2000

mvwinchnstr(3CURSES) 152

curs_initscr(3CURSES) 153

initscr(3CURSES) 153

newterm(3CURSES) 153

endwin(3CURSES) 153

isendwin(3CURSES) 153

set_term(3CURSES) 153

delscreen(3CURSES) 153

curs_inopts(3CURSES) 155

cbreak(3CURSES) 155

nocbreak(3CURSES) 155

echo(3CURSES) 155

noecho(3CURSES) 155

halfdelay(3CURSES) 155

intrflush(3CURSES) 155

keypad(3CURSES) 155

meta(3CURSES) 155

nodelay(3CURSES) 155

notimeout(3CURSES) 155

raw(3CURSES) 155

noraw(3CURSES) 155

noqiflush(3CURSES) 155

qiflush(3CURSES) 155

timeout(3CURSES) 155

wtimeout(3CURSES) 155

typeahead(3CURSES) 155

curs_insch(3CURSES) 158

insch(3CURSES) 158

Contents 13

winsch(3CURSES) 158

mvinsch(3CURSES) 158

mvwinsch(3CURSES) 158

curs_insstr(3CURSES) 159

insstr(3CURSES) 159

insnstr(3CURSES) 159

winsstr(3CURSES) 159

winsnstr(3CURSES) 159

mvinsstr(3CURSES) 159

mvinsnstr(3CURSES) 159

mvwinsstr(3CURSES) 159

mvwinsnstr(3CURSES) 159

curs_instr(3CURSES) 161

instr(3CURSES) 161

innstr(3CURSES) 161

winstr(3CURSES) 161

winnstr(3CURSES) 161

mvinstr(3CURSES) 161

mvinnstr(3CURSES) 161

mvwinstr(3CURSES) 161

mvwinnstr(3CURSES) 161

curs_inswch(3CURSES) 162

inswch(3CURSES) 162

winswch(3CURSES) 162

mvinswch(3CURSES) 162

mvwinswch(3CURSES) 162

curs_inswstr(3CURSES) 163

inswstr(3CURSES) 163

14 man pages section 3: Curses Library Functions ♦ February 2000

insnwstr(3CURSES) 163

winswstr(3CURSES) 163

winsnwstr(3CURSES) 163

mvinswstr(3CURSES) 163

mvinsnwstr(3CURSES) 163

mvwinswstr(3CURSES) 163

mvwinsnwstr(3CURSES) 163

curs_inwch(3CURSES) 165

inwch(3CURSES) 165

winwch(3CURSES) 165

mvinwch(3CURSES) 165

mvwinwch(3CURSES) 165

curs_inwchstr(3CURSES) 166

inwchstr(3CURSES) 166

inwchnstr(3CURSES) 166

winwchstr(3CURSES) 166

winwchnstr(3CURSES) 166

mvinwchstr(3CURSES) 166

mvinwchnstr(3CURSES) 166

mvwinwchstr(3CURSES) 166

mvwinwchnstr(3CURSES) 166

curs_inwstr(3CURSES) 167

inwstr(3CURSES) 167

innwstr(3CURSES) 167

winwstr(3CURSES) 167

winnwstr(3CURSES) 167

mvinwstr(3CURSES) 167

mvinnwstr(3CURSES) 167

Contents 15

mvwinwstr(3CURSES) 167

mvwinnwstr(3CURSES) 167

curs_kernel(3CURSES) 168

def_prog_mode(3CURSES) 168

def_shell_mode(3CURSES) 168

reset_prog_mode(3CURSES) 168

reset_shell_mode(3CURSES) 168

resetty(3CURSES) 168

savetty(3CURSES) 168

getsyx(3CURSES) 168

setsyx(3CURSES) 168

ripoffline(3CURSES) 168

curs_set(3CURSES) 168

napms(3CURSES) 168

curs_move(3CURSES) 170

move(3CURSES) 170

wmove(3CURSES) 170

curs_outopts(3CURSES) 171

clearok(3CURSES) 171

idlok(3CURSES) 171

idcok(3CURSES) 171

immedok(3CURSES) 171

leaveok(3CURSES) 171

setscrreg(3CURSES) 171

wsetscrreg(3CURSES) 171

scrollok(3CURSES) 171

nl(3CURSES) 171

nonl(3CURSES) 171

16 man pages section 3: Curses Library Functions ♦ February 2000

curs_overlay(3CURSES) 174

overlay(3CURSES) 174

overwrite(3CURSES) 174

copywin(3CURSES) 174

curs_pad(3CURSES) 175

newpad(3CURSES) 175

subpad(3CURSES) 175

prefresh(3CURSES) 175

pnoutrefresh(3CURSES) 175

pechochar(3CURSES) 175

pechowchar(3CURSES) 175

curs_printw(3CURSES) 177

printw(3CURSES) 177

wprintw(3CURSES) 177

mvprintw(3CURSES) 177

mvwprintw(3CURSES) 177

vwprintw(3CURSES) 177

curs_refresh(3CURSES) 178

refresh(3CURSES) 178

wrefresh(3CURSES) 178

wnoutrefresh(3CURSES) 178

doupdate(3CURSES) 178

redrawwin(3CURSES) 178

wredrawln(3CURSES) 178

curs_scanw(3CURSES) 180

scanw(3CURSES) 180

wscanw(3CURSES) 180

mvscanw(3CURSES) 180

Contents 17

mvwscanw(3CURSES) 180

vwscanw(3CURSES) 180

curs_scr_dump(3CURSES) 181

scr_dump(3CURSES) 181

scr_restore(3CURSES) 181

scr_init(3CURSES) 181

scr_set(3CURSES) 181

curs_scroll(3CURSES) 183

scroll(3CURSES) 183

scrl(3CURSES) 183

wscrl(3CURSES) 183

curs_set(3XCURSES) 184

curs_slk(3CURSES) 185

slk_init(3CURSES) 185

slk_set(3CURSES) 185

slk_refresh(3CURSES) 185

slk_noutrefresh(3CURSES) 185

slk_label(3CURSES) 185

slk_clear(3CURSES) 185

slk_restore(3CURSES) 185

slk_touch(3CURSES) 185

slk_attron(3CURSES) 185

slk_attrset(3CURSES) 185

slk_attroff(3CURSES) 185

curs_termattrs(3CURSES) 187

baudrate(3CURSES) 187

erasechar(3CURSES) 187

has_ic(3CURSES) 187

18 man pages section 3: Curses Library Functions ♦ February 2000

has_il(3CURSES) 187

killchar(3CURSES) 187

longname(3CURSES) 187

termattrs(3CURSES) 187

termname(3CURSES) 187

curs_termcap(3CURSES) 189

tgetent(3CURSES) 189

tgetflag(3CURSES) 189

tgetnum(3CURSES) 189

tgetstr(3CURSES) 189

tgoto(3CURSES) 189

tputs(3CURSES) 189

curs_terminfo(3CURSES) 191

setupterm(3CURSES) 191

setterm(3CURSES) 191

set_curterm(3CURSES) 191

del_curterm(3CURSES) 191

restartterm(3CURSES) 191

tparm(3CURSES) 191

tputs(3CURSES) 191

putp(3CURSES) 191

vidputs(3CURSES) 191

vidattr(3CURSES) 191

mvcur(3CURSES) 191

tigetflag(3CURSES) 191

tigetnum(3CURSES) 191

tigetstr(3CURSES) 191

curs_touch(3CURSES) 195

Contents 19

touchwin(3CURSES) 195

touchline(3CURSES) 195

untouchwin(3CURSES) 195

wtouchln(3CURSES) 195

is_linetouched(3CURSES) 195

is_wintouched(3CURSES) 195

curs_util(3CURSES) 197

unctrl(3CURSES) 197

keyname(3CURSES) 197

filter(3CURSES) 197

use_env(3CURSES) 197

putwin(3CURSES) 197

getwin(3CURSES) 197

delay_output(3CURSES) 197

flushinp(3CURSES) 197

curs_window(3CURSES) 199

newwin(3CURSES) 199

delwin(3CURSES) 199

mvwin(3CURSES) 199

subwin(3CURSES) 199

derwin(3CURSES) 199

mvderwin(3CURSES) 199

dupwin(3CURSES) 199

wsyncup(3CURSES) 199

syncok(3CURSES) 199

wcursyncup(3CURSES) 199

wsyncdown(3CURSES) 199

cur_term(3XCURSES) 202

20 man pages section 3: Curses Library Functions ♦ February 2000

def_prog_mode(3XCURSES) 203

def_shell_mode(3XCURSES) 203

reset_prog_mode(3XCURSES) 203

reset_shell_mode(3XCURSES) 203

delay_output(3XCURSES) 204

delch(3XCURSES) 205

mvdelch(3XCURSES) 205

mvwdelch(3XCURSES) 205

wdelch(3XCURSES) 205

del_curterm(3XCURSES) 206

restartterm(3XCURSES) 206

set_curterm(3XCURSES) 206

setterm(3XCURSES) 206

setupterm(3XCURSES) 206

deleteln(3XCURSES) 208

wdeleteln(3XCURSES) 208

delscreen(3XCURSES) 209

delwin(3XCURSES) 210

derwin(3XCURSES) 211

newwin(3XCURSES) 211

subwin(3XCURSES) 211

doupdate(3XCURSES) 213

refresh(3XCURSES) 213

wnoutrefresh(3XCURSES) 213

wrefresh(3XCURSES) 213

dupwin(3XCURSES) 214

echo(3XCURSES) 215

noecho(3XCURSES) 215

Contents 21

echochar(3XCURSES) 216

wechochar(3XCURSES) 216

echo_wchar(3XCURSES) 217

wecho_wchar(3XCURSES) 217

endwin(3XCURSES) 218

isendwin(3XCURSES) 218

erasechar(3XCURSES) 219

erasewchar(3XCURSES) 219

killchar(3XCURSES) 219

killwchar(3XCURSES) 219

filter(3XCURSES) 220

flushinp(3XCURSES) 221

form_cursor(3CURSES) 222

pos_form_cursor(3CURSES) 222

form_data(3CURSES) 223

data_ahead(3CURSES) 223

data_behind(3CURSES) 223

form_driver(3CURSES) 224

form_field(3CURSES) 227

set_form_fields(3CURSES) 227

form_fields(3CURSES) 227

field_count(3CURSES) 227

move_field(3CURSES) 227

form_field_attributes(3CURSES) 228

set_field_fore(3CURSES) 228

field_fore(3CURSES) 228

set_field_back(3CURSES) 228

field_back(3CURSES) 228

22 man pages section 3: Curses Library Functions ♦ February 2000

set_field_pad(3CURSES) 228

field_pad(3CURSES) 228

form_field_buffer(3CURSES) 230

set_field_buffer(3CURSES) 230

field_buffer(3CURSES) 230

set_field_status(3CURSES) 230

field_status(3CURSES) 230

set_max_field(3CURSES) 230

form_field_info(3CURSES) 231

field_info(3CURSES) 231

dynamic_field_info(3CURSES) 231

form_field_just(3CURSES) 232

set_field_just(3CURSES) 232

field_just(3CURSES) 232

form_field_new(3CURSES) 233

new_field(3CURSES) 233

dup_field(3CURSES) 233

link_field(3CURSES) 233

free_field(3CURSES) 233

form_field_opts(3CURSES) 234

set_field_opts(3CURSES) 234

field_opts_on(3CURSES) 234

field_opts_off(3CURSES) 234

field_opts(3CURSES) 234

form_fieldtype(3CURSES) 236

new_fieldtype(3CURSES) 236

free_fieldtype(3CURSES) 236

set_fieldtype_arg(3CURSES) 236

Contents 23

set_fieldtype_choice(3CURSES) 236

link_fieldtype(3CURSES) 236

form_field_userptr(3CURSES) 238

set_field_userptr(3CURSES) 238

field_userptr(3CURSES) 238

form_field_validation(3CURSES) 239

set_field_type(3CURSES) 239

field_type(3CURSES) 239

field_arg(3CURSES) 239

form_hook(3CURSES) 240

set_form_init(3CURSES) 240

form_init(3CURSES) 240

set_form_term(3CURSES) 240

form_term(3CURSES) 240

set_field_init(3CURSES) 240

field_init(3CURSES) 240

set_field_term(3CURSES) 240

field_term(3CURSES) 240

form_new(3CURSES) 242

new_form(3CURSES) 242

free_form(3CURSES) 242

form_new_page(3CURSES) 243

set_new_page(3CURSES) 243

new_page(3CURSES) 243

form_opts(3CURSES) 244

set_form_opts(3CURSES) 244

form_opts_on(3CURSES) 244

form_opts_off(3CURSES) 244

24 man pages section 3: Curses Library Functions ♦ February 2000

form_page(3CURSES) 245

set_form_page(3CURSES) 245

set_current_field(3CURSES) 245

current_field(3CURSES) 245

field_index(3CURSES) 245

form_post(3CURSES) 247

post_form(3CURSES) 247

unpost_form(3CURSES) 247

forms(3CURSES) 248

form_userptr(3CURSES) 252

set_form_userptr(3CURSES) 252

form_win(3CURSES) 253

set_form_win(3CURSES) 253

set_form_sub(3CURSES) 253

form_sub(3CURSES) 253

scale_form(3CURSES) 253

getbegyx(3XCURSES) 254

getmaxyx(3XCURSES) 254

getparyx(3XCURSES) 254

getyx(3XCURSES) 254

getcchar(3XCURSES) 255

getch(3XCURSES) 256

wgetch(3XCURSES) 256

mvgetch(3XCURSES) 256

mvwgetch(3XCURSES) 256

getnstr(3XCURSES) 261

getstr(3XCURSES) 261

mvgetnstr(3XCURSES) 261

Contents 25

mvgetstr(3XCURSES) 261

mvwgetnstr(3XCURSES) 261

mvwgetstr(3XCURSES) 261

wgetnstr(3XCURSES) 261

wgetstr(3XCURSES) 261

getn_wstr(3XCURSES) 263

get_wstr(3XCURSES) 263

mvgetn_wstr(3XCURSES) 263

mvget_wstr(3XCURSES) 263

mvwgetn_wstr(3XCURSES) 263

mvwget_wstr(3XCURSES) 263

wgetn_wstr(3XCURSES) 263

wget_wstr(3XCURSES) 263

get_wch(3XCURSES) 264

wget_wch(3XCURSES) 264

mvget_wch(3XCURSES) 264

mvwget_wch(3XCURSES) 264

getwin(3XCURSES) 266

putwin(3XCURSES) 266

halfdelay(3XCURSES) 267

has_ic(3XCURSES) 268

has_il(3XCURSES) 268

hline(3XCURSES) 269

mvhline(3XCURSES) 269

mvvline(3XCURSES) 269

mvwhline(3XCURSES) 269

mvwvline(3XCURSES) 269

vline(3XCURSES) 269

26 man pages section 3: Curses Library Functions ♦ February 2000

whline(3XCURSES) 269

wvline(3XCURSES) 269

hline_set(3XCURSES) 270

mvhline_set(3XCURSES) 270

mvvline_set(3XCURSES) 270

mvwhline_set(3XCURSES) 270

mvwvline_set(3XCURSES) 270

vline_set(3XCURSES) 270

whline_set(3XCURSES) 270

wvline_set(3XCURSES) 270

idcok(3XCURSES) 271

immedok(3XCURSES) 272

inch(3XCURSES) 273

mvinch(3XCURSES) 273

mvwinch(3XCURSES) 273

winch(3XCURSES) 273

inchnstr(3XCURSES) 274

inchstr(3XCURSES) 274

mvinchnstr(3XCURSES) 274

mvinchstr(3XCURSES) 274

mvwinchnstr(3XCURSES) 274

mvwinchstr(3XCURSES) 274

winchnstr(3XCURSES) 274

winchstr(3XCURSES) 274

initscr(3XCURSES) 276

newterm(3XCURSES) 276

innstr(3XCURSES) 277

instr(3XCURSES) 277

Contents 27

mvinnstr(3XCURSES) 277

mvinstr(3XCURSES) 277

mvwinnstr(3XCURSES) 277

mvwinstr(3XCURSES) 277

winnstr(3XCURSES) 277

winstr(3XCURSES) 277

innwstr(3XCURSES) 279

inwstr(3XCURSES) 279

mvinnwstr(3XCURSES) 279

mvinwstr(3XCURSES) 279

mvwinnwstr(3XCURSES) 279

mvwinwstr(3XCURSES) 279

winnwstr(3XCURSES) 279

winwstr(3XCURSES) 279

insch(3XCURSES) 281

winsch(3XCURSES) 281

mvinsch(3XCURSES) 281

mvwinsch(3XCURSES) 281

insdelln(3XCURSES) 282

winsdelln(3XCURSES) 282

insertln(3XCURSES) 283

winsertln(3XCURSES) 283

insnstr(3XCURSES) 284

insstr(3XCURSES) 284

mvinsnstr(3XCURSES) 284

mvinsstr(3XCURSES) 284

mvwinsnstr(3XCURSES) 284

mvwinsstr(3XCURSES) 284

28 man pages section 3: Curses Library Functions ♦ February 2000

winsnstr(3XCURSES) 284

winsstr(3XCURSES) 284

ins_nwstr(3XCURSES) 286

ins_wstr(3XCURSES) 286

mvins_nwstr(3XCURSES) 286

mvins_wstr(3XCURSES) 286

mvwins_nwstr(3XCURSES) 286

mvwins_nstr(3XCURSES) 286

wins_nwstr(3XCURSES) 286

wins_wstr(3XCURSES) 286

ins_wch(3XCURSES) 288

wins_wch(3XCURSES) 288

mvins_wch(3XCURSES) 288

mvwins_wch(3XCURSES) 288

intrflush(3XCURSES) 289

in_wch(3XCURSES) 290

mvin_wch(3XCURSES) 290

mvwin_wch(3XCURSES) 290

win_wch(3XCURSES) 290

in_wchnstr(3XCURSES) 291

in_wchstr(3XCURSES) 291

mvin_wchnstr(3XCURSES) 291

mvin_wchstr(3XCURSES) 291

mvwin_wchnstr(3XCURSES) 291

mvwin_wchstr(3XCURSES) 291

win_wchnstr(3XCURSES) 291

win_wchstr(3XCURSES) 291

is_linetouched(3XCURSES) 293

Contents 29

is_wintouched(3XCURSES) 293

touchline(3XCURSES) 293

touchwin(3XCURSES) 293

untouchwin(3XCURSES) 293

wtouchln(3XCURSES) 293

keyname(3XCURSES) 295

key_name(3XCURSES) 295

keypad(3XCURSES) 296

LINES(3XCURSES) 300

longname(3XCURSES) 301

menu_attributes(3CURSES) 302

set_menu_fore(3CURSES) 302

menu_fore(3CURSES) 302

set_menu_back(3CURSES) 302

menu_back(3CURSES) 302

set_menu_grey(3CURSES) 302

menu_grey(3CURSES) 302

set_menu_pad(3CURSES) 302

menu_pad(3CURSES) 302

menu_cursor(3CURSES) 304

pos_menu_cursor(3CURSES) 304

menu_driver(3CURSES) 305

menu_format(3CURSES) 307

set_menu_format(3CURSES) 307

menu_hook(3CURSES) 308

set_item_init(3CURSES) 308

item_init(3CURSES) 308

set_item_term(3CURSES) 308

30 man pages section 3: Curses Library Functions ♦ February 2000

item_term(3CURSES) 308

set_menu_init(3CURSES) 308

menu_init(3CURSES) 308

set_menu_term(3CURSES) 308

menu_term(3CURSES) 308

menu_item_current(3CURSES) 310

set_current_item(3CURSES) 310

current_item(3CURSES) 310

set_top_row(3CURSES) 310

top_row(3CURSES) 310

item_index(3CURSES) 310

menu_item_name(3CURSES) 312

item_name(3CURSES) 312

item_description(3CURSES) 312

menu_item_new(3CURSES) 313

new_item(3CURSES) 313

free_item(3CURSES) 313

menu_item_opts(3CURSES) 314

set_item_opts(3CURSES) 314

item_opts_on(3CURSES) 314

item_opts_off(3CURSES) 314

item_opts(3CURSES) 314

menu_items(3CURSES) 315

set_menu_items(3CURSES) 315

item_count(3CURSES) 315

menu_item_userptr(3CURSES) 316

set_item_userptr(3CURSES) 316

item_userptr(3CURSES) 316

Contents 31

menu_item_value(3CURSES) 317

set_item_value(3CURSES) 317

item_value(3CURSES) 317

menu_item_visible(3CURSES) 318

item_visible(3CURSES) 318

menu_mark(3CURSES) 319

set_menu_mark(3CURSES) 319

menu_new(3CURSES) 320

new_menu(3CURSES) 320

free_menu(3CURSES) 320

menu_opts(3CURSES) 321

set_menu_opts(3CURSES) 321

menu_opts_on(3CURSES) 321

menu_opts_off(3CURSES) 321

menu_pattern(3CURSES) 323

set_menu_pattern(3CURSES) 323

menu_post(3CURSES) 324

post_menu(3CURSES) 324

unpost_menu(3CURSES) 324

menus(3CURSES) 325

menu_userptr(3CURSES) 329

set_menu_userptr(3CURSES) 329

menu_win(3CURSES) 330

set_menu_win(3CURSES) 330

set_menu_sub(3CURSES) 330

menu_sub(3CURSES) 330

scale_menu(3CURSES) 330

meta(3XCURSES) 331

32 man pages section 3: Curses Library Functions ♦ February 2000

move(3XCURSES) 332

wmove(3XCURSES) 332

mvcur(3XCURSES) 333

mvderwin(3XCURSES) 334

mvprintw(3XCURSES) 335

mvwprintw(3XCURSES) 335

printw(3XCURSES) 335

wprintw(3XCURSES) 335

mvscanw(3XCURSES) 336

mvwscanw(3XCURSES) 336

scanw(3XCURSES) 336

wscanw(3XCURSES) 336

mvwin(3XCURSES) 337

napms(3XCURSES) 338

newpad(3XCURSES) 339

pnoutrefresh(3XCURSES) 339

prefresh(3XCURSES) 339

subpad(3XCURSES) 339

nl(3XCURSES) 341

nonl(3XCURSES) 341

nodelay(3XCURSES) 342

noqiflush(3XCURSES) 343

qiflush(3XCURSES) 343

notimeout(3XCURSES) 344

timeout(3XCURSES) 344

wtimeout(3XCURSES) 344

overlay(3XCURSES) 345

overwrite(3XCURSES) 345

Contents 33

panel_above(3CURSES) 348

panel_below(3CURSES) 348

panel_move(3CURSES) 349

move_panel(3CURSES) 349

panel_new(3CURSES) 350

new_panel(3CURSES) 350

del_panel(3CURSES) 350

panels(3CURSES) 351

panel_show(3CURSES) 353

show_panel(3CURSES) 353

hide_panel(3CURSES) 353

panel_hidden(3CURSES) 353

panel_top(3CURSES) 354

top_panel(3CURSES) 354

bottom_panel(3CURSES) 354

panel_update(3CURSES) 355

update_panels(3CURSES) 355

panel_userptr(3CURSES) 356

set_panel_userptr(3CURSES) 356

panel_window(3CURSES) 357

replace_panel(3CURSES) 357

pechochar(3XCURSES) 358

pecho_wchar(3XCURSES) 358

plot(3PLOT) 359

arc(3PLOT) 359

box(3PLOT) 359

circle(3PLOT) 359

closepl(3PLOT) 359

34 man pages section 3: Curses Library Functions ♦ February 2000

closevt(3PLOT) 359

cont(3PLOT) 359

erase(3PLOT) 359

label(3PLOT) 359

line(3PLOT) 359

linmod(3PLOT) 359

move(3PLOT) 359

openpl(3PLOT) 359

openvt(3PLOT) 359

point(3PLOT) 359

space(3PLOT) 359

putp(3XCURSES) 362

tputs(3XCURSES) 362

redrawwin(3XCURSES) 363

wredrawln(3XCURSES) 363

resetty(3XCURSES) 364

savetty(3XCURSES) 364

ripoffline(3XCURSES) 365

scr_dump(3XCURSES) 366

scr_init(3XCURSES) 366

scr_restore(3XCURSES) 366

scr_set(3XCURSES) 366

scrl(3XCURSES) 367

scroll(3XCURSES) 367

wscrl(3XCURSES) 367

setcchar(3XCURSES) 368

set_term(3XCURSES) 369

slk_attroff(3XCURSES) 370

Contents 35

slk_attr_off(3XCURSES) 370

slk_attron(3XCURSES) 370

slk_attr_on(3XCURSES) 370

slk_attrset(3XCURSES) 370

slk_attr_set(3XCURSES) 370

slk_clear(3XCURSES) 370

slk_color(3XCURSES) 370

slk_init(3XCURSES) 370

slk_label(3XCURSES) 370

slk_noutrefresh(3XCURSES) 370

slk_refresh(3XCURSES) 370

slk_restore(3XCURSES) 370

slk_set(3XCURSES) 370

slk_touch(3XCURSES) 370

slk_wset(3XCURSES) 370

standend(3XCURSES) 373

standout(3XCURSES) 373

wstandend(3XCURSES) 373

wstandout(3XCURSES) 373

stdscr(3XCURSES) 374

syncok(3XCURSES) 375

wcursyncup(3XCURSES) 375

wsyncdown(3XCURSES) 375

wsyncup(3XCURSES) 375

termattrs(3XCURSES) 376

term_attrs(3XCURSES) 376

termname(3XCURSES) 377

tgetent(3XCURSES) 378

36 man pages section 3: Curses Library Functions ♦ February 2000

tgetflag(3XCURSES) 378

tgetnum(3XCURSES) 378

tgetstr(3XCURSES) 378

tgoto(3XCURSES) 378

tigetflag(3XCURSES) 380

tigetnum(3XCURSES) 380

tigetstr(3XCURSES) 380

tparm(3XCURSES) 380

typeahead(3XCURSES) 381

unctrl(3XCURSES) 382

ungetch(3XCURSES) 383

unget_wch(3XCURSES) 383

use_env(3XCURSES) 384

vidattr(3XCURSES) 385

vid_attr(3XCURSES) 385

vidputs(3XCURSES) 385

vid_puts(3XCURSES) 385

vwprintw(3XCURSES) 387

vw_printw(3XCURSES) 388

vwscanw(3XCURSES) 389

vw_scanw(3XCURSES) 390

wunctrl(3XCURSES) 391

Index 391

Contents 37

38 man pages section 3: Curses Library Functions ♦ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 39

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

40 man pages section 3: Curses Library Functions ♦ February 2000

interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

41

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

42 man pages section 3: Curses Library Functions ♦ February 2000

SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

43

CHAPTER

Introduction to Library Functions

44

X/Open Curses Library Functions addch(3XCURSES)

NAME addch, mvaddch, mvwaddch, waddch – add a character (with rendition) to
a window

SYNOPSIS #include <curses.h>
int addch (const chtype ch);

int mvaddch (int y, int x, const chtype ch);

int mvwaddch(WINDOW *win, int y, int x, const chtype ch);

int waddch (WINDOW *win, const chtype ch);

DESCRIPTION The addch() function writes a character to the stdscr window at the current
cursor position. The mvaddch() and mvwaddch() functions write the
character to the position indicated by the x (column) and y (row) parameters.
The mvaddch() function writes the character to the stdscr window, while
mvwaddch() writes the character to the window specified by win . The
waddch() function is identical to addch() , but writes the character to the
window specified by win .

These functions advance the cursor after writing the character. Characters that do
not fit on the end of the current line are wrapped to the beginning of the next line
unless the current line is the last line of the window and scrolling is disabled. In
that situation, characters which extend beyond the end of the line are discarded.

When ch is a backspace, carriage return, newline, or tab, X/Open Curses moves
the cursor appropriately. Each tab character moves the cursor to the next tab
stop. By default, tab stops occur every eight columns. When ch is a control
character other than backspace, carriage return, newline, or tab, it is written
using ^ x notation, where x is a printable character. When X/Open Curses
writes ch to the last character position on a line, it automatically generates a
newline. When ch is written to the last character position of a scrolling region
and scrollok() is enabled, X/Open Curses scrolls the scrolling region up
one line (see clearok (3XCURSES)).

PARAMETERS wchstr Is a pointer to the cchar_t string to be copied to the
window.

n Is the maximum number of characters to be copied from
wchstr . If n is less than 0, the entire string is written or as
much of it as fits on the line.

y Is the y (row) coordinate of the starting position of wchstr
in the window.

x Is the x (column) coordinate of the starting position of wchstr
in the window.

Last modified 1 Jun 1996 SunOS 5.8 45

addch(3XCURSES) X/Open Curses Library Functions

win Is a pointer to the window to which the string is to be
copied.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO attroff (3XCURSES) , bkgdset (3XCURSES) , doupdate (3XCURSES) ,
inch (3XCURSES) , insch (3XCURSES) , nl (3XCURSES) , printw (3XCURSES) ,
scrollok (3XCURSES) , scrl (3XCURSES) , terminfo (4)

46 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions addchstr(3XCURSES)

NAME addchstr, addchnstr, mvaddchstr, mvaddchnstr, mvwaddchnstr, mvwaddchstr,
waddchstr, waddchnstr – copy a character string (with renditions) to a window

SYNOPSIS #include <curses.h>
int addchstr (const chtype *chstr);

int addchnstr (const chtype *chstr, int n);

int mvaddchnstr (int y, int x, const chtype *chstr, int n);

int mvaddchstr (int y, int x, const chtype *chstr);

int mvwaddchnstr (WINDOW *win, int y, int x, const chtype *chstr, int n);

int mvwaddchstr (WINDOW *win, int y, int x, const chtype *chstr);

int waddchstr (WINDOW *win, const chtype *chstr);

int waddchnstr (WINDOW *win, const chtype *chstr, int n);

DESCRIPTION The addchstr() function copies the chtype character string to the
stdscr window at the current cursor position. The mvaddchstr() and
mvwaddchstr() functions copy the character string to the starting position
indicated by the x (column) and y (row) parameters (the former to the stdscr
window; the latter to window win). The waddchstr() is identical to
addchstr() , but writes to the window specified by win .

The addchnstr() , waddchnstr() , mvaddchnstr() , and
mvwaddchnstr() functions write n characters to the window, or as many as
will fit on the line. If n is less than 0, the entire string is written, or as much of
it as fits on the line. The former two functions place the string at the current
cursor position; the latter two commands use the position specified by the
x and y parameters.

These functions differ from the addstr (3XCURSES) set of functions in two
important respects. First, these functions do not advance the cursor after
writing the string to the window. Second, the current window rendition is not
combined with the character; only the attributes that are already part of the
chtype character are used.

PARAMETERS chstr Is a pointer to the chtype string to be copied to the window.

n Is the maximum number of characters to be copied from chstr . If
n is less than 0, the entire string is written or as much of it as fits
on the line.

y Is the y (row) coordinate of the starting position of chstr in the window.

x Is the x (column) coordinate of the starting position of chstr in the
window.

Last modified 1 Jun 1996 SunOS 5.8 47

addchstr(3XCURSES) X/Open Curses Library Functions

win Is a pointer to the window to which the string is to be copied.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO addch (3XCURSES) , addnstr (3XCURSES) , attroff (3XCURSES)

48 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions addnstr(3XCURSES)

NAME addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr,
waddstr – add a multi-byte character string (without rendition) to a window

SYNOPSIS #include <curses.h>
int addnstr (const char *str, int n);

int addstr (const char *str);

int mvaddnstr (int y, int x, const char *str, int n);

int mvaddstr (int y, int x, const char *str);

int mvwaddnstr (WINDOW *win, int y, int x, const char *str, int n);

int mvwaddstr (WINDOW *win, int y, int x, const char *str);

int waddstr (WINDOW *win, const char *str);

int waddnstr (WINDOW *win, const char *str, int n);

DESCRIPTION The addstr() function writes a null-terminated string of multi-byte characters
to the stdscr window at the current cursor position. The waddstr() function
performs an identical action, but writes the character to the window specified by
win . The mvaddstr() and mvwaddstr() functions write the string to the
position indicated by the x (column) and y (row) parameters (the former to the
stdscr window; the latter to window win).

The addnstr() , waddnstr() , mvaddnstr() , and mvwaddnstr()
functions are similar but write at most n characters to the window. If n is less
than 0, the entire string is written.

All of these functions advance the cursor after writing the string.

These functions are functionally equivalent to calling the corresponding function
from the addch (3XCURSES) set of functions once for each character in the
string. Refer to the curses (3XCURSES) man page for a complete description of
special character handling and of the interaction between the window rendition
(or background character and rendition) and the character written.

Note that these functions differ from the addchstr() set of functions in that the
addchstr (3XCURSES) functions copy the string as is (without combining each
character with the window rendition or the background character and rendition.

PARAMETERS str Is a pointer to the character string that is to be written to the window.

n Is the maximum number of characters to be copied from str . If n is less
than 0, the entire string is written or as much of it as fits on the line.

y Is the y (row) coordinate of the starting position of str in the window.

x Is the x (column) coordinate of the starting position of str in the
window.

Last modified 1 Jun 1996 SunOS 5.8 49

addnstr(3XCURSES) X/Open Curses Library Functions

win Is a pointer to the window in which the string is to be written.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO addch (3XCURSES) , addchstr (3XCURSES) , curses (3XCURSES)

50 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions addnwstr(3XCURSES)

NAME addnwstr, addwstr, mvaddnwstr, mvaddwstr, mvwaddnwstr, mvwaddwstr,
waddnwstr, waddwstr – add a wide-character string to a window

SYNOPSIS #include <curses.h>
int addnwstr (const wchar_t *wstr, int n);

int addwstr (const wchar_t *wstr);

int mvaddnwstr (int y, int x, const wchar_t *wstr, int n);

int mvaddwstr (int y, int x, const wchar_t *wstr);

int mvwaddnwstr (WINDOW*win, int y, int x, const wchar_t *wstr, int n);

int mvwaddwstr (WINDOW*win, int y, int x, const wchar_t *wstr);

int waddnwstr (WINDOW*win, const wchar_t *wstr, int n);

int waddwstr (WINDOW*win, const wchar_t *wstr);

DESCRIPTION The addwstr() function writes a null-terminated wide-character string to the
stdscr window at the current cursor position. The waddwstr() function
performs an identical action, but writes the string to the window specified by
win . The mvaddwstr() and mvwaddwstr() functions write the string to the
position indicated by the x (column) and y (row) parameters (the former to the
stdscr window; the latter to window win).

The addnwstr() , waddnwstr() , mvaddnwstr() , and mvwaddnwstr()
functions write at most n characters to the window. If n is less than 0, the entire
string is written. The former two functions place the characters at the current
cursor position; the latter two commands use the position specified by the
x and y parameters.

All of these functions advance the cursor after writing the string.

These functions are functionally equivalent to building a cchar_t from the
wchar_t and the window rendition (or background character and rendition)
and calling the wadd_wch(3XCURSES) function once for each wchar_t in the
string. Refer to the curses (3XCURSES) man page for a complete description of
special character handling and of the interaction between the window rendition
(or background character and rendition) and the character written.

Note that these functions differ from the add_wchnstr (3XCURSES) set of
functions in that the latter copy the string as is (without combining each
character with the foreground and background attributes of the window).

PARAMETERS wstr Is a pointer to the wide-character string that is to be written to the
window.

Last modified 1 Jun 1996 SunOS 5.8 51

addnwstr(3XCURSES) X/Open Curses Library Functions

n Is the maximum number of characters to be copied from wstr . If
n is less than 0, the entire string is written or as much of it as fits
on the line.

y Is the y (row) coordinate of the starting position of wstr in the window.

x Is the x (column) coordinate of the starting position of wstr in the
window.

win Is a pointer to the window in which the string is to be written.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , add_wchnstr (3XCURSES) , curses (3XCURSES)

52 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions add_wch(3XCURSES)

NAME add_wch, mvadd_wch, mvwadd_wch, wadd_wch – add a complex character
(with rendition) to a window

SYNOPSIS #include <curses.h>
int add_wch (const cchar_t *wch);

int wadd_wch(WINDOW *win, const cchar_t *wch);

int mvadd_wch(int y, int x, const cchar_t *wch);

int mvwadd_wch(WINDOW *win, int y, int x, const cchar_t *wch);

DESCRIPTION The add_wch() function writes a complex character to the stdscr window at
the current cursor position. The mvadd_wch() and mvwadd_wch() functions
write the character to the position indicated by the x (column) and y (row)
parameters. The mvadd_wch() function writes the character to the stdscr
window, while mvwadd_wch() writes the character to the window specified
by win . The wadd_wch() function is identical to add_wch() , but writes the
character to the window specified by win . These functions advance the cursor
after writing the character.

If wch is a spacing complex character, X/Open Curses replaces any previous
character at the specified location with wch (and its rendition). If wch is a
non-spacing complex character, X/Open Curses preserves all existing characters
at the specified location and adds the non-spacing characters of wch to the
spacing complex character. It ignores the rendition associated with wch .

Characters that do not fit on the end of the current line are wrapped to the
beginning of the next line unless the current line is the last line of the window
and scrolling is disabled. In that situation, X/Open Curses discards characters
which extend beyond the end of the line.

When wch is a backspace, carriage return, newline, or tab, X/Open Curses
moves the cursor appropriately as described in the curses (3XCURSES) man
page. Each tab character moves the cursor to the next tab stop. By default, tab
stops occur every eight columns. When wch is a control character other than
a backspace, carriage return, newline, or tab, it is written using ^ x notation,
where x is a printable character. When X/Open Curses writes wch to the last
character position on a line, it automatically generates a newline. When wch
is written to the last character position of a scrolling region and scrollok()
is enabled, X/Open Curses scrolls the scrolling region up one line (see
clearok (3XCURSES)).

PARAMETERS wch Is the character/attribute pair (rendition) to be written to the window.

win Is a pointer to the window in which the character is to be written.

y Is the y (row) coordinate of the character’s position in the window.

Last modified 1 Jun 1996 SunOS 5.8 53

add_wch(3XCURSES) X/Open Curses Library Functions

x Is the x (column) coordinate of the character’s position in the window.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO attr_off (3XCURSES) , bkgrndset (3XCURSES) , curses (3XCURSES)
, doupdate (3XCURSES) , in_wch (3XCURSES) , ins_wch (3XCURSES)
, nl (3XCURSES) , printw (3XCURSES) , scrollok (3XCURSES) ,
scrl (3XCURSES) , setscrreg (3XCURSES) , terminfo (4)

54 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions add_wchnstr(3XCURSES)

NAME add_wchnstr, add_wchstr, mvadd_wchnstr, mvadd_wchstr, mvwadd_wchnstr,
mvwadd_wchstr, wadd_wchnstr, wadd_wchstr – copy a string of complex
characters (with renditions) to a window

SYNOPSIS #include <curses.h>
int add_wchnstr (const cchar_t *wchstr, int n);

int add_wchstr (const cchar_t *wchstr);

int mvadd_wchnstr (int y, int x, const cchar_t *wchstr, int n);

int mvadd_wchstr (int y, int x, const cchar_t *wchstr);

int mvwadd_wchnstr (WINDOW *win, int y, int x, const cchar_t *wchstr, int n);

int mvwaddchstr (WINDOW *win, int y, int x, const cchar_t *wchstr);

int wadd_wchstr (WINDOW *win, const cchar_t *wchstr);

int wadd_wchnstr (WINDOW *win, const cchar_t *wchstr, int n);

DESCRIPTION The add_wchstr() function copies the string of cchar_t characters to the
stdscr window at the current cursor position. The mvadd_wchstr() and
mvwadd_wchstr() functions copy the string to the starting position indicated
by the x (column) and y (row) parameters (the former to the stdscr window;
the latter to window win). The wadd_wchstr() is identical to add_wchstr()
, but writes to the window specified by win .

The add_wchnstr() , wadd_wchnstr() , mvadd_wchnstr() , and
mvwadd_wchnstr() functions write n characters to the window, or as many as
will fit on the line. If n is less than 0, the entire string is written, or as much of
it as fits on the line. The former two functions place the string at the current
cursor position; the latter two commands use the position specified by the
x and y parameters.

These functions differ from the addwstr (3XCURSES) set of functions in two
important respects. First, these functions do not advance the cursor after writing
the string to the window. Second, the current window rendition (that is, the
combination of attributes and color pair) is not combined with the character;
only those attributes that are already part of the cchar_t character are used.

PARAMETERS wchstr Is a pointer to the cchar_t string to be copied to the
window.

n Is the maximum number of characters to be copied from
wchstr . If n is less than 0, the entire string is written or as
much of it as fits on the line.

y Is the y (row) coordinate of the starting position of wchstr
in the window.

Last modified 1 Jun 1996 SunOS 5.8 55

add_wchnstr(3XCURSES) X/Open Curses Library Functions

x Is the x (column) coordinate of the starting position of wchstr
in the window.

win Is a pointer to the window to which the string is to be
copied.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO addnwstr (3XCURSES) , add_wch (3XCURSES) , attr_off (3XCURSES)

56 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions attr_get(3XCURSES)

NAME attr_get, attr_off, attr_on, attr_set, color_set, wattr_get, wattr_off, wattr_on,
wattr_set, wcolor_set – control window attributes

SYNOPSIS #include <curses.h>
int attr_get (attr_t *attrs, short *color, void *opts);

int attr_off (attr_t attrs, void *opts);

int attr_on (attr_t attrs, void *opts);

int attr_set (attr_t attrs, short color, void *opts);

int color_set (short *color, void *opts);

int wattr_get (WINDOW *win, attr_t attrs, short *color, void *opts);

int wattr_off (WINDOW *win, attr_t attrs, void *opts);

int wattr_on (WINDOW *win, attr_t attrs, void *opts);

int wattr_set (WINDOW *win, attr_t attrs, short color, void *opts);

int wcolor_set (WINDOW *win, short color, void *opts);

DESCRIPTION The attr_get() function retrieves the current rendition of stdscr . The
wattr_get() function retrieves the current rendition of window win . If attrs
or color is a null pointer, no information is retrieved.

The attr_off() and attr_on() functions unset and set, respectively,
the specified window attributes of stdscr . These functions only affect the
attributes specified; attributes that existed before the call are retained.

The wattr_off() and wattr_on() functions unset or set the specified
attributes for window win .

The attr_set() and wattr_set() functions change the rendition of stdscr
and win ; the old values are not retained.

The color_set() and wcolor_set() functions set the window color
of stdscr and win to color .

The attributes and color pairs that can be used are specified in the Attributes,
Color Pairs, and Renditions section of the curses (3XCURSES) man
page.

PARAMETERS attrs Is a pointer to the foreground window attributes to be set or unset.

color Is a pointer to a color pair number .

opts Is reserved for future use.

win Is a pointer to the window in which attribute changes are to be made.

Last modified 1 Jun 1996 SunOS 5.8 57

attr_get(3XCURSES) X/Open Curses Library Functions

RETURN VALUES These functions always return OK.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , addnwstr (3XCURSES) , attroff (3XCURSES) ,
bkgrndset (3XCURSES) , curses (3XCURSES) , init_color (3XCURSES) ,
start_color (3XCURSES)

58 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions attroff(3XCURSES)

NAME attroff, attron, attrset, wattroff, wattron, wattrset – change foreground window
attributes

SYNOPSIS #include <curses.h>
int attroff (int attrs);

int attron (int attrs);

int attrset (int attrs);

int wattroff (WINDOW *win, int attrs);

int wattron (WINDOW *win, int attrs);

int wattrset (WINDOW *win, int attrs);

DESCRIPTION The attroff() and attron() functions unset and set, respectively, the
specified window attributes of stdscr . These functions only affect the
attributes specified; attributes that existed before the call are retained. The
wattroff() and wattron() functions unset or set the specified attributes
for window win .

The attrset() and wattrset() functions change the specified window
renditions of stdscr and win to new values; the old values are not retained.

The attributes that can be used are specified in the Attributes, Color
Pairs, and Renditions section of the curses (3XCURSES) man page.

Here is an example that prints some text using the current window rendition,
adds underlining, changes the attributes, prints more text, then changes the
attributes back.

printw("This word is");
attron(A_UNDERLINE);
printw("underlined.");
attroff(A_NORMAL);
printw("This is back to normal text.\
");
refresh();

PARAMETERS attrs are the foreground window attributes to be set or unset.

win Is a pointer to the window in which attribute changes are to be made.

RETURN VALUES These functions always return OKor 1.

ERRORS None.

USAGE All of these functions may be macros.

Last modified 1 Jun 1996 SunOS 5.8 59

attroff(3XCURSES) X/Open Curses Library Functions

SEE ALSO addch (3XCURSES) , addnstr (3XCURSES) , attr_get (3XCURSES) ,
bkgdset (3XCURSES) , curses (3XCURSES) , init_color (3XCURSES) ,
start_color (3XCURSES)

60 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions baudrate(3XCURSES)

NAME baudrate – return terminal baud rate

SYNOPSIS #include <curses.h>
int baudrate (void);

DESCRIPTION The baudrate() function returns the terminal’s data communication line and
output speed in bits per second (for example, 9600).

RETURN VALUES The baudrate() function returns the output speed of the terminal.

ERRORS None.

Last modified 1 Jun 1996 SunOS 5.8 61

beep(3XCURSES) X/Open Curses Library Functions

NAME beep, flash – activate audio-visual alarm

SYNOPSIS #include <curses.h>
int beep (void);

int flash (void);

DESCRIPTION The beep() and flash() functions produce an audio and visual alarm on the
terminal, respectively. If the terminal has the capability, beep() sounds a bell or
beep and flash() flashes the screen. One alarm is substituted for another if
the terminal does not support the capability called (see terminfo (4) bel and
flash capabilities). For example, a call to beep() for a terminal without that
capability results in a flash.

RETURN VALUES These functions always return OK.

ERRORS None.

SEE ALSO terminfo (4)

62 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions bkgd(3XCURSES)

NAME bkgd, bkgdset, getbkgd, wbkgd, wbkgdset – set or get the background character
(and rendition) of window

SYNOPSIS #include <curses.h>
int bkgd (chtype ch);

void bkgdset (chtype ch);

chtype getbkgd (WINDOW *win);

int wbkgd (WINDOW *win, chtype ch);

void wbkgdset (WINDOW *win, chtype ch);

DESCRIPTION The bkgdset() and wbkgdset() functions turn off the previous background
attributes, logical OR the requested attributes into the window rendition,
and set the background property of the current or specified window based
on the information in ch . If ch refers to a multi-column character, the results
are undefined.

The bkgd() and wbkgd() functions turn off the previous background
attributes, logical OR the requested attributes into the window rendition, and set
the background property of the current or specified window and then apply this
setting to every character position in that window:

� The rendition of every character on the screen is changed to the new
window rendition.

� Wherever the former background character appears, it is changed to the
new background character.

The getbkgd() function extracts the specified window’s background character
and rendition.

PARAMETERS ch Is the background character to be set.

win Is a pointer to the window in which the background character is to be
set.

RETURN VALUES Upon successful completion, the bkgd() and wbkgd() functions return OK.
Otherwise, they return ERR.

The bkgdset() and wbkgdset() functions do not return a value.

Upon successful completion, the getbkgd() function returns the specified
window’s background character and rendition. Otherwise, it returns (chtype)
ERR.

ERRORS No errors are defined.

Last modified 15 Apr 1999 SunOS 5.8 63

bkgd(3XCURSES) X/Open Curses Library Functions

USAGE These functions are only guaranteed to operate reliably on character sets in
which each character fits into a single byte, whose attributes can be expressed
using only constants with the A_ prefix.

SEE ALSO addch (3XCURSES) , addchstr (3XCURSES) , attroff (3XCURSES)
, bkgrnd (3XCURSES) , clear (3XCURSES) , clrtoeol (3XCURSES)
, clrtobot (3XCURSES) , erase (3XCURSES) , inch (3XCURSES) ,
mvprintw (3XCURSES)

64 SunOS 5.8 Last modified 15 Apr 1999

X/Open Curses Library Functions bkgrnd(3XCURSES)

NAME bkgrnd, bkgrndset, getbkgrnd, wbkgrnd, wbkgrndset, wgetbkgrnd – set or get
the background character (and rendition) of window using a complex character

SYNOPSIS #include <curses.h>
int bkgrnd (const cchar_t *wch);

void bkgrndset (const cchar_t *wch);

int getbkgrnd (cchar_t *wch);

int wbkgrnd (WINDOW *win, const cchar_t *wch);

void wbkgrndset (WINDOW *win, const cchar_t *wch);

int wgetbkgrnd (WINDOW *win, cchar_t *wch);

DESCRIPTION The bkgrndset() and wbkgrndset() functions turn off the previous
background attributes, logical OR the requested attributes into the window
rendition, and set the background property of the current or specified window
based on the information in wch .

The bkgrnd() and wbkgrnd() functions turn off the previous background
attributes, logical OR the requested attributes into the window rendition, and set
the background property of the current or specified window and then apply this
setting to every character position in that window:

� The rendition of every character on the screen is changed to the new
window rendition.

� Wherever the former background character appears, it is changed to the
new background character.

If wch refers to a non-spacing complex character for bkgrnd() , bkgrndset()
, wbkgrnd() , and wbkgrndset() , then wch is added to the existing
spacing complex character that is the background character. If wch refers to a
multi-column character, the results are unspecified.

The getbkgrnd() and wgetbkgrnd() functions store, into the area pointed to
buy wch , the window’s background character and rendition.

PARAMETERS wch Is a pointer to the complex background character to be set.

win Is a pointer to the window in which the complex background character
is to be set.

RETURN VALUES The bkgrndset() and wbkgrndset() functions do not return a value.

Upon successful completion, the other functions return OK. Otherwise, they
return ERR.

Last modified 15 Apr 1999 SunOS 5.8 65

bkgrnd(3XCURSES) X/Open Curses Library Functions

ERRORS No errors are defined.

SEE ALSO add_wch (3XCURSES) , add_wchnstr (3XCURSES) , addch (3XCURSES)
, addchstr (3XCURSES) , attroff (3XCURSES) , bkgd (3XCURSES) ,
clear (3XCURSES) , clrtoeol (3XCURSES) , clrtobot (3XCURSES) ,
erase (3XCURSES) , inch (3XCURSES) , mvprintw (3XCURSES)

66 SunOS 5.8 Last modified 15 Apr 1999

X/Open Curses Library Functions border(3XCURSES)

NAME border, box, wborder – add a single-byte border to a window

SYNOPSIS #include <curses.h>
int border (chtype ls, chtype rs, chtype ts, chtype bs, chtype tl, chtype tr, chtype bl,
chtype br);

int wborder (WINDOW *win, chtype ls, chtype rs, chtype ts, chtype bs, chtype tl, chtype
tr, chtype bl, chtype br);

int box (WINDOW *win, chtype verch, chtype horch);

DESCRIPTION The border() and wborder() functions draw a border around the specified
window. All parameters must be single-byte characters whose rendition can be
expressed using only constants beginning with ACS_. A parameter with the
value of 0 is replaced by the default value.

Constant Values for Borders

Parameter Default Constant Default Character

verch ACS_VLINE |

horch ACS_HLINE -

ls ACS_VLINE |

rs ACS_VLINE |

ts ACS_HLINE -

bs ACS_HLINE -

bl ACS_BLCORNER +

br ACS_BRCORNER +

tl ACS_ULCORNER +

tr ACS_URCORNER +

The call

box(win,
verch, horch)

is a short form for

wborder(win,
verch, verch,
horch, horch, 0, 0, 0,
0)

Last modified 1 Jun 1996 SunOS 5.8 67

border(3XCURSES) X/Open Curses Library Functions

When the window is boxed, the bottom and top rows and right and left columns
overwrite existing text.

PARAMETERS ls Is the character and rendition used for the left side of the
border.

rs Is the character and rendition used for the right side of
the border.

ts Is the character and rendition used for the top of the border.

bs Is the character and rendition used for the bottom of the
border.

tl Is the character and rendition used for the top-left corner
of the border.

tr Is the character and rendition used for the top-right corner
of the border.

bl Is the character and rendition used for the bottom-left corner
of the border.

br Is the character and rendition used for the bottom-right
corner of the border.

win Is the pointer to the window in which the border or box is
to be drawn.

verch Is the character and rendition used for the left and right
columns of the box.

horch Is the character and rendition used for the top and bottom
rows of the box.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , addch (3XCURSES) , attr_get (3XCURSES) ,
attroff (3XCURSES) , border_set (3XCURSES)

68 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions border_set(3XCURSES)

NAME border_set, box_set, wborder_set – use complex characters (and renditions)
to draw borders

SYNOPSIS #include <curses.h>
int border_set (const cchar_t *ls, const cchar_t *rs, const cchar_t *ts, const cchar_t *bs,
const cchar_t *tl, const cchar_t *tr, const cchar_t *bl, const cchar_t *br);

int wborder_set (WINDOW *win, const cchar_t *ls, const cchar_t *rs, const cchar_t *ts,
const cchar_t *bs, const cchar_t *tl, const cchar_t *tr, const cchar_t *bl, const cchar_t *br);

int box_set (WINDOW *win, const cchar_t *verch, const cchar_t *horch);

DESCRIPTION The border_set() and wborder_set() functions draw a border around
the specified window. All parameters must be spacing complex characters
with renditions. A parameter which is a null pointer is replaced by the default
character.

Constant Values for Borders

Constant Values for Borders

Parameter Default Constant Default Character

verch WACS_VLINE |

horch WACS_HLINE -

ls WACS_VLINE |

rs WACS_VLINE |

ts WACS_HLINE -

bs WACS_HLINE -

bl WACS_BLCORNER +

br WACS_BRCORNER +

tl WACS_ULCORNER +

tr WACS_URCORNER +

The call

box_set(win,
verch, horch)

is a short form for

wborder(win,
verch, verch,
horch, horch, NULL,
NULL, NULL, NULL)

Last modified 1 Jun 1996 SunOS 5.8 69

border_set(3XCURSES) X/Open Curses Library Functions

When the window is boxed, the bottom and top rows and right and left columns
are unavailable for text.

PARAMETERS ls Is the character and rendition used for the left side of the
border.

rs Is the character and rendition used for the right side of
the border.

ts Is the character and rendition used for the top of the border.

bs Is the character and rendition used for the bottom of the
border.

tl Is the character and rendition used for the top-left corner
of the border.

tr Is the character and rendition used for the top-right corner
of the border.

bl Is the character and rendition used for the bottom-left corner
of the border.

br Is the character and rendition used for the bottom-right
corner of the border.

win Is the pointer to the window in which the border or box is
to be drawn.

verch Is the character and rendition used for the left and right
columns of the box.

horch Is the character and rendition used for the top and bottom
rows of the box.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , addch (3XCURSES) , attr_get (3XCURSES) ,
attroff (3XCURSES) , border (3XCURSES)

70 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions can_change_color(3XCURSES)

NAME can_change_color, color_content, COLOR_PAIR, has_colors, init_color, init_pair,
pair_content, PAIR_NUMBER, start_color, COLOR_PAIRS, COLORS –
manipulate color information

SYNOPSIS #include <curses.h>
bool can_change_color (void);

int color_content (short color, short *red, short *green, short *blue);

int COLOR_PAIR(int n);

bool has_colors (void);

int init_color (short color, short red, short green, short blue);

int init_pair (short pair, short f, short b);

int pair_content (short pair, short *f, short *b);

int PAIR_NUMBER(int value);

int start_color (void);
extern int COLOR_PAIRS;

extern int COLORS;

DESCRIPTION These functions manipulate color on terminals that support color.
Querying

Capabilities
The has_colors() function indicates whether the terminal is a color terminal.
The can_change_color() function indicates whether the terminal is a color
terminal on which colors can be redefined.

Initialization The start_color() function must be called to enable use of colors and before
any color manipulation function is called. The function initializes eight basic
colors (black, red, green, yellow, blue, magenta, cyan, and white) that can be
specified by the color macros (such as COLOR_BLACK) defined in <curses.h> .
The initial appearance of these colors is unspecified.

The function also initializes two global external variables:

� COLORSdefines the number of colors that the terminal supports. See Color
Identification below. If COLORSis 0, the terminal does not support
redefinition of colors and can_change_color() will return FALSE .

� COLOR_PAIRSdefines the maximum number of color-pairs that the terminal
supports. See User-defined Color Pairs below.

The start_color() function also restores the colors on the terminal to
terminal-specific initial values. The initial background color is assumed to be
black for all terminals.

Last modified 15 Apr 1999 SunOS 5.8 71

can_change_color(3XCURSES) X/Open Curses Library Functions

Color Identification The init_color() function redefines color number color , on terminals
that support the redefinition of colors, to have the red, green, and blue
intensity components specified by red , green , and blue , respectively. Calling
init_color() also changes all occurrences of the specified color on the screen
to the new definition.

The color_content() function identifies the intensity components of color
number color . It stores the red, green, and blue intensity components of this
color in the addresses pointed to by red , green , and blue , respectively.

For both functions, the color argument must be in the range from 0 to and
including COLORS-1. Valid intensity value range from 0 (no intensity
component) up to and including 1000 (maximum intensity in that component).

User-defined Color
Pairs

Calling init_pair() defines or redefines color-pair number pair to have
foreground color f and background color b . Calling init_pair() changes
any characters that were displayed in the color pair’s old definition to the new
definition and refreshes the screen.

After defining the color pair, the macro COLOR_PAIR(n) returns the value of
color pair n . This value is the color attribute as it would be extracted from a
chtype . Controversy, the macro COLOR_NUMBER(value) returns the color
pair number associated with the color attribute value .

The pair_content() retrieves the component colors of a color-pair number
pair . It stores the foreground and background color numbers in the variables
pointed to by f and b , respectively.

With init_pair() and pair_content() , the value of pair must be in a
range from 0 to and including COLOR_PAIRS-1. Valid values for f and b are the
range from 0 to and including COLORS-1.

PARAMETERS color Is the number of the color for which to provide information
(0 to COLORS-1).

red Is a pointer to the RGB value for the amount of red in color .

green Is a pointer to the RGB value for the amount of green in
color .

blue Is a pointer to the RGB value for the amount of blue in color .

n Is the number of a color pair.

pair Is the number of the color pair for which to provide
information (1 to COLOR_PAIRS-1).

f Is a pointer to the number of the foreground color (0 to
COLORS-1) in pair .

72 SunOS 5.8 Last modified 15 Apr 1999

X/Open Curses Library Functions can_change_color(3XCURSES)

b Is a pointer to the number of the background color (0 to
COLORS-1) in pair .

value Is a color attribute value.

RETURN VALUES The has_colors() function returns TRUEif the terminal can manipulate
colors. Otherwise, it returns FALSE .

The can_change_color() function returns TRUEif the terminal supports
colors and is able to change their definitions. Otherwise, it returns FALSE .

Upon successful completion, the other functions return OK. Otherwise, they
return ERR.

ERRORS No errors are defined.

USAGE To use these functions, start_color() must be called, usually right after
initscr (3XCURSES) .

The can_change_color() and has_colors() functions facilitate writing
terminal-independent applications. For example, a programmer can use them to
decide whether to use color or some other video attribute.

On color terminals, a typical value of COLORSis 8 and the macros such as
COLOR_BLACKreturn a value within the range from 0 to and including 7.
However, applications cannot rely on this to be true.

SEE ALSO attroff (3XCURSES) , delscreen (3XCURSES) , initscr (3XCURSES)

Last modified 15 Apr 1999 SunOS 5.8 73

cbreak(3XCURSES) X/Open Curses Library Functions

NAME cbreak, nocbreak, noraw, raw – set input mode controls

SYNOPSIS #include <curses.h>
int cbreak (void);

int nocbreak (void);

int noraw (void);

int raw (void);

DESCRIPTION The cbreak() function enables the character input mode. This overrides any
previous call to the raw() function and turns the stty flag ICANONoff.

The nocbreak() function sets the line canonical mode and turns the stty flag
ICANONon without touching the ISIG or IXON flags.

The noraw() function sets the line canonical mode and turns the the stty
flags ICANON, ISIG , and IXON all on.

The raw() function sets the character input mode and turns the stty flags
ICANON, ISIG , and IXON all off. This mode provides maximum control over
input.

It is important to remember that the terminal may or may not be in character
mode operation initially. Most interactive programs require cbreak() to
be enabled.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO getch (3XCURSES) , halfdelay (3XCURSES) , nodelay (3XCURSES) ,
timeout (3XCURSES) , termio (7I)

74 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions chgat(3XCURSES)

NAME chgat, mvchgat, mvwchgat, wchgat – change the rendition of characters in
a window

SYNOPSIS #include <curses.h>
int chgat (int n, attr_t attr, short color, const void *opts);

int mvchgat (int y, int x, int n, attr_t attr, short color, const void *opts);

int mvwchgat (WINDOW *win, int y, int x, int n, attr_t attr, short color, const void *opts);

int wchgat (WINDOW *win, int n, attr_t attr, short color, const void *opts);

DESCRIPTION These functions change the renditions of the next n characters in the current or
specified window (or of the remaining characters on the current or specified line,
if n is -1), beginning at the current or specified cursor position. The attributes
and colors are specified by attr and color as for setcchar (3XCURSES) .

These function neither update the cursor nor perform wrapping.

A value of n that is greater than the remaining characters on a line is not an error.

The opts argument is reserved for definition in a future release. Currently, the
application must provide a null pointer for opts .

PARAMETERS n Is the number of characters whose rendition is to be changed.

attr Is the set of attributes to be assigned to the characters.

color Is the new color pair to be assigned to the characters.

opts Is reserved for future use. Currently, this must be a null
pointer.

y Is the y (row) coordinate of the starting position in the
window.

x Is the x (column) coordinate of the starting position in the
window. changed in the window.

win Is a pointer to the window in which the rendition of
characters is to be changed.

RETURN VALUES Upon successful completion, these functions returned OK . Otherwise, they
return ERR .

ERRORS No errors are defined.

SEE ALSO bkgrnd (3XCURSES) , setcchar (3XCURSES)

Last modified 3 May 1999 SunOS 5.8 75

clear(3XCURSES) X/Open Curses Library Functions

NAME clear, erase, wclear, werase – clear a window

SYNOPSIS #include <curses.h>
int clear (void);

int erase (void);

int wclear (WINDOW *win);

int werase (WINDOW *win);

DESCRIPTION The clear() and erase() functions clear stdscr , destroying its previous
contents. The wclear() and werase() functions perform the same action, but
clear the window specified by win instead of stdscr .

The clear() and wclear() functions also call the clearok() function.
This function clears and redraws the entire screen on the next call to
refresh (3XCURSES) or wrefresh (3XCURSES) for the window.

The current background character (and attributes) is used to clear the screen.

PARAMETERS win Is a pointer to the window that is to be cleared.

ERRORS OK Successful completion.

ERR An error occurred.

SEE ALSO bkgdset (3XCURSES) , clearok (3XCURSES) , clrtobot (3XCURSES) ,
clrtoeol (3XCURSES) , doupdate (3XCURSES) , refresh (3XCURSES) ,
wrefresh (3XCURSES)

76 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions clearok(3XCURSES)

NAME clearok, idlok, leaveok, scrollok, setscrreg, wsetscrreg – terminal output control
functions

SYNOPSIS #include <curses.h>
int clearok (WINDOW *win, bool bf);

int idlok (WINDOW *win, bool bf);

int leaveok (WINDOW *win, bool bf);

int scrollok (WINDOW *win, bool bf);

int setscrreg (int top, int bot);

int wssetscrreg (WINDOW *win, int top, int bot);

DESCRIPTION These functions set options that deal with the output within Curses functions.

The clearok() function assigns the value of bf to an internal flag in the
specified window that governs clearing of the screen during a refresh. If, during
a refresh operation on the specified window, the flag in curscr is TRUEor the flag
in the specified window is TRUE, clearok() clears the screen, redraws it in
its entirety, and sets the flag to FALSE in curscr and in the specified window.
The initial state is unspecified

The idlok() function specifies whether the implementation may use the
hardware insert-line, delete-line, and scroll features of terminals so equipped. If
bf is TRUE, use of these features is enabled. If bf is FALSE , use of these features is
disabled and lines are instead redrawn as required. The initial state is FALSE .

The leaveok() function controls the cursor position after a refresh operation. If
bf is TRUE, refresh operations on the specified window may leave the terminal’s
cursor at an arbitrary position. If bf is FALSE , then at the end of any refresh
operation, the terminal’s cursor is positioned at the cursor position contained in
the specified window. The initial state is FALSE .

The scrollok() function controls the use of scrolling.If bf is TRUE, then
scrolling is enabled for the specified window. If bf is FALSE , scrolling is disabled
for the specified window. The initial state is FALSE .

The setscrreg() and wsetscrreg() functions define a software scrolling
region in the current or specified window. The top and bottom arguments are the
line numbers of the first and last line defining the scrolling region. (Line 0 is
the top line of the window.) If this option and scrollok() are enabled, an
attempt to move off the last line of the margin causes all lines in the scrolling
region to scroll one line in the direction of the first line. Only characters in the
window are scrolled. If a software scrolling region is set and scrollok() is not
enabled, an attempt to move off the last line of the margin does not reposition
any lines in the scrolling region.

Last modified 3 May 1999 SunOS 5.8 77

clearok(3XCURSES) X/Open Curses Library Functions

PARAMETERS win Is a pointer to a window.

bf Is a Boolean expression.

top Is the top line of the scrolling region (top of the window
is line 0).

bot Is the bottom line of the scrolling region (top of the window
is line 0).

RETURN VALUES Upon successful completion, the setscrreg() and wsetscrreg() functions
return OK. Otherwise, they return ERR.

The other functions always return OK.

ERRORS No errors are defined.

USAGE The only reason to enable the idlok() feature is to use scrolling to achieve
the visual effect of motion of a partial window, such as for a screen editor. In
other cases, the feature can be visually annoying.

The leaveok() option provides greater efficiency for applications that do not
use the cursor.

SEE ALSO bkgdset (3XCURSES) , clear (3XCURSES) , doupdate (3XCURSES) ,
scrl (3XCURSES)

78 SunOS 5.8 Last modified 3 May 1999

X/Open Curses Library Functions clrtobot(3XCURSES)

NAME clrtobot, wclrtobot – clear to the end of a window

SYNOPSIS #include <curses.h>
int clrtobot (void);

int wclrtobot (WINDOW *win);

DESCRIPTION The clrtobot() function clears all characters in the stdscr window from
the cursor to the end of the window. The wclrtobot() function performs the
same action in the window specified by win instead of in stdscr . The current
background character (and rendition) is used to clear the screen.

If the clearing action results in clearing only a portion of a multicolumn character,
background characters are displayed in place of the remaining portion.

PARAMETERS win Is a pointer to the window that is to be cleared.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO bkgdset (3XCURSES) , clear (3XCURSES) , clearok (3XCURSES) ,
crltoeol (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 79

clrtoeol(3XCURSES) X/Open Curses Library Functions

NAME clrtoeol, wclrtoeol – clear to the end of a line

SYNOPSIS #include <curses.h>
int clrtoeol (void);

int wclrtoeol (WINDOW *win);

DESCRIPTION The clrtoeol() function clears the current line from the cursor to the right
margin in the stdscr window. The wclrtoeol() function performs the same
action, but in the window specified by win instead of stdscr . The current
background character (and rendition) is used to clear the screen.

If the clearing action results in clearing only a portion of a multicolumn character,
background characters are displayed in place of the remaining portion.

PARAMETERS win Is a pointer to the window in which to clear to the end
of the line.

RETURN VALUES On success, these functions return OK. Otherwise, they return FALSE .

ERRORS None.

SEE ALSO bkgdset (3XCURSES) , clear (3XCURSES) , clearok (3XCURSES) ,
clrtobot (3XCURSES)

80 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions COLS(3XCURSES)

NAME COLS – number of columns on terminal screen

SYNOPSIS #include <curses.h>

extern int COLS;

DESCRIPTION The external variable COLSindicates the number of columns on the terminal
screen.

SEE ALSO initscr (3XCURSES)

Last modified 6 May 1999 SunOS 5.8 81

copywin(3XCURSES) X/Open Curses Library Functions

NAME copywin – overlay or overwrite any portion of window

SYNOPSIS #include <curses.h>
int copywin (const WINDOW *srcwin, WINDOW *dstwin, int sminrow, int smincol, int
dminrow, int dmincol, int dmaxrow, int dmaxcol, int overlay);

PARAMETERS srcwin Is a pointer to the source window to be copied.

dstwin Is a pointer to the destination window to be
overlayed or overwritten.

sminrow Is the row coordinate of the upper left corner of
the rectangular area on the source window to
be copied.

smincol Is the column coordinate of the upper left corner
of the rectangular area on the source window to
be copied.

dminrow Is the row coordinate of the upper left corner of
the rectangular area on the destination window to
be overlayed or overwritten.

dmincol Is the column coordinate of the upper left corner
of the rectangular area on destination window to
be overlayed or overwritten.

dmaxrow Is the row coordinate of the lower right corner of
the rectangular area on the destination window to
be overlayed or overwritten.

dmaxcol Is the column coordinate of the lower right corner
of the rectangular area on the destination window
to be overlayed or overwritten.

overlay Is a TRUEor FALSE value that determines
whether the destination window is overlayed
or overwritten.

DESCRIPTION The copywin() function provides a finer granularity of control over the
overlay (3XCURSES) and overwrite (3XCURSES) functions. As in the
prefresh() function (see newpad(3XCURSES)), a rectangle is specified in
the destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the
upper-left-corner coordinates of the source window, (smincol, sminrow). If overlay
is TRUE, then copying is non-destructive, as in overlay() . If overlay is FALSE,
then copying is destructive, as in overwrite() .

RETURN VALUES Upon successful completion, the copywin() function returns OK. Otherwise,
it returns ERR.

82 SunOS 5.8 Last modified 4 May 1999

X/Open Curses Library Functions copywin(3XCURSES)

ERRORS No errors are defined.

SEE ALSO curses (3XCURSES), newpad(3XCURSES), overlay (3XCURSES)

Last modified 4 May 1999 SunOS 5.8 83

curs_addch(3CURSES) Curses Library Functions

NAME curs_addch, addch, waddch, mvaddch, mvwaddch, echochar, wechochar – add
a character (with attributes) to a curses window and advance cursor

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int addch (chtype ch);

int waddch (WINDOW *win, chtype ch);

int mvaddch (int y, int x, chtype ch);

int mvwaddch(WINDOW *win, int y, int x, chtype ch);

int echochar (chtype ch);

int wechochar (WINDOW *win, chtype ch);

DESCRIPTION With the addch() , waddch() , mvaddch() , and mvwaddch() routines, the
character ch is put into the window at the current cursor position of the window
and the position of the window cursor is advanced. Its function is similar to
that of putchar() . At the right margin, an automatic newline is performed.
At the bottom of the scrolling region, if scrollok() is enabled, the scrolling
region is scrolled up one line.

If ch is a tab, newline, or backspace, the cursor is moved appropriately within
the window. A newline also does a clrtoeol() before moving. Tabs are
considered to be at every eighth column. If ch is another control character, it is
drawn in the ^ X notation. Calling winch() after adding a control character
does not return the control character, but instead returns the representation of
the control character. See curs_inch (3CURSES) .

Video attributes can be combined with a character by OR-ing them into the
parameter. This results in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another using inch()
and addch() .) (see standout() , predefined video attribute constants, on
the curs_attr (3CURSES) page).

The echochar() and wechochar() routines are functionally equivalent
to a call to addch() followed by a call to refresh() , or a call to waddch
followed by a call to wrefresh() . The knowledge that only a single character
is being output is taken into consideration and, for non-control characters, a
considerable performance gain might be seen by using these routines instead
of their equivalents.

Line Graphics The following variables may be used to add line drawing characters to the
screen with routines of the addch() family. When variables are defined for the
terminal, the A_ALTCHARSETbit is turned on (see curs_attr (3CURSES)).
Otherwise, the default character listed below is stored in the variable. The names
chosen are consistent with the VT100 nomenclature.

84 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_addch(3CURSES)

Name Default Glyph Description

ACS_ULCORNER + upper left-hand corner

ACS_LLCORNER + lower left-hand corner

ACS_URCORNER + upper right-hand corner

ACS_LRCORNER + lower right-hand corner

ACS_RTEE + right tee

ACS_LTEE + left tee

ACS_BTEE + bottom tee

ACS_TTEE + top tee

ACS_HLINE - horizontal line

ACS_VLINE | vertical line

ACS_PLUS + plus

ACS_S1 - scan line 1

ACS_S9 - scan line 9

ACS_DIAMOND + diamond

ACS_CKBOARD : checker board (stipple)

ACS_DEGREE ’ degree symbol

ACS_PLMINUS # plus/minus

ACS_BULLET o bullet

ACS_LARROW < arrow pointing left

ACS_RARROW > arrow pointing right

ACS_DARROW v arrow pointing down

ACS_UARROW ^ arrow pointing up

ACS_BOARD # board of squares

ACS_LANTERN # lantern symbol

ACS_BLOCK # solid square block

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 31 Dec 1996 SunOS 5.8 85

curs_addch(3CURSES) Curses Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_attr (3CURSES) , curs_clear (3CURSES) , curs_inch (3CURSES) ,
curs_outopts (3CURSES) , curs_refresh (3CURSES) , curses (3CURSES) ,
putc (3C) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that addch() , mvaddch() , mvwaddch() , and echochar() may
be macros.

86 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_addchstr(3CURSES)

NAME curs_addchstr, addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,
mvaddchnstr, mvwaddchstr, mvwaddchnstr – add string of characters and
attributes to a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int addchstr (chtype *chstr);

int addchnstr (chtype *chstr, int n);

int waddchstr (WINDOW *win, chtype *chstr);

int waddchnstr (WINDOW *win, chtype *chstr, int n);

int mvaddchstr (int y, int x, chtype *chstr);

int mvaddchnstr (int y, int x, chtype *chstr, int n);

int mvwaddchstr (WINDOW *win, int y, int x, chtype *chstr);

int mvwaddchnstr (WINDOW *win, int y, int x, chtype *chstr, int n);

DESCRIPTION All of these routines copy chstr directly into the window image structure starting
at the current cursor position. The four routines with n as the last argument copy
at most n elements, but no more than will fit on the line. If n =-1 then the whole
string is copied, to the maximum number that fit on the line.

The position of the window cursor is not advanced. These routines works
faster than waddnstr() (see curs_addstr (3CURSES)) because they merely
copy chstr into the window image structure. On the other hand, care must be
taken when using these functions because they do not perform any kind of
checking (such as for the newline character), they do not advance the current
cursor position, and they truncate the string, rather then wrapping it around
to the next line.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_addstr (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all routines except waddchnstr() and waddchstr() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 87

curs_addstr(3CURSES) Curses Library Functions

NAME curs_addstr, addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr,
mvwaddstr, mvwaddnstr – add a string of characters to a curses window and
advance cursor

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int addstr (char *str);

int addnstr (char *str, int n);

int waddstr (WINDOW *win, char *str);

int waddnstr (WINDOW *win, char *str, int n);

int mvaddstr (int y, int x, char *str);

int mvaddnstr (int y, int x, char *str, int n);

int mvwaddstr (WINDOW *win, int y, int x, char *str);

int mvwaddnstr (WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION All of these routines write all the characters of the null terminated character
string str on the given window. It is similar to calling waddch() once for each
character in the string. The four routines with n as the last argument write at
most n characters. If n is negative, then the entire string will be added.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_addch (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all routines except waddstr() and waddnstr() may not be macros.

88 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_addwch(3CURSES)

NAME curs_addwch, addwch, waddwch, mvaddwch, mvwaddwch, echowchar,
wechowchar – add a wchar_t character (with attributes) to a curses window
and advance cursor

SYNOPSIS cc [flag…] file… −lcurses [library…]

#include<curses.h>
int addwch (chtype wch);

int waddwch(WINDOW *win, chtype wch);

int mvaddwch(int y, int x, chtype wch);

int mvwaddwch(WINDOW *win, int y, int x, chtype wch);

int echowchar (chtype wch);

int wechowchar (WINDOW *win, chtype wch);

DESCRIPTION The addwch() ,waddwch() ,mvaddwch() , and mvwaddwch() routines
put the character wch , holding a wchar_t character, into the window at the
current cursor position of the window and advance the position of the window
cursor. Their function is similar to that of putwchar (3C) in the C multibyte
library. At the right margin, an automatic newline is performed. At the bottom
of the scrolling region, if scrollok is enabled, the scrolling region is scrolled
up one line.

If wch is a tab, newline, or backspace, the cursor is moved appropriately within
the window. A newline also does a clrtoeol (3CURSES) before moving. Tabs
are considered to be at every eighth column. If wch is another control character,
it is drawn in the ^ X notation. Calling winwch (3CURSES) after adding a
control character does not return the control character, but instead returns the
representation of the control character.

Video attributes can be combined with a wchar_t character by OR-ing them
into the parameter. This results in these attributes also being set. (The intent
here is that text, including attributes, can be copied from one place to another
using inwch() and addwch() .) See standout (3CURSES) , predefined video
attribute constants.

The echowchar() and wechowchar() routines are functionally equivalent
to a call to addwch() followed by a call to refresh (3CURSES) , or a call to
waddwch() followed by a call to wrefresh (3CURSES) . The knowledge that
only a single character is being output is taken into consideration and, for
non-control characters, a considerable performance gain might be seen by using
these routines instead of their equivalents.

Line Graphics The following variables may be used to add line drawing characters to the screen
with routines of the addwch() family. When variables are defined for the
terminal, the A_ALTCHARSETbit is turned on. (See curs_attr (3CURSES)).

Last modified 31 Dec 1996 SunOS 5.8 89

curs_addwch(3CURSES) Curses Library Functions

Otherwise, the default character listed below is stored in the variable. The names
chosen are consistent with the VT100 nomenclature.

Name Default Glyph Description

ACS_ULCORNER + upper left-hand corner

ACS_LLCORNER + lower left-hand corner

ACS_URCORNER + upper right-hand corner

ACS_LRCORNER + lower right-hand corner

ACS_RTEE + right tee

ACS_LTEE + left tee

ACS_BTEE + bottom tee

ACS_TTEE + top tee

ACS_HLINE - horizontal line

ACS_VLINE | vertical line

ACS_PLUS + plus

ACS_S1 - scan line 1

ACS_S9 - scan line 9

ACS_DIAMOND + diamond

ACS_CKBOARD : checker board (stipple)

ACS_DEGREE ’ degree symbol

ACS_PLMINUS # plus/minus

ACS_BULLET o bullet

ACS_LARROW < arrow pointing left

ACS_RARRROW > arrow pointing right

ACS_DARROW v arrow pointing down

ACS_UARROW ^ arrow pointing up

ACS_BOARD # board of squares

ACS_LANTERN # lantern symbol

ACS_BLOCK # solid square block

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion, unless otherwise noted in the preceding
routine descriptions.

90 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_addwch(3CURSES)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO putwchar (3C) , clrtoeol (3CURSES) , curses (3CURSES) ,
curs_attr (3CURSES) , curs_inwch (3CURSES) , curs_outopts (3CURSES)
, refresh (3CURSES) , standout (3CURSES) , winwch (3CURSES) ,
wrefresh (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Note that addwch() , mvaddwch() , mvwaddwch() , and echowchar()
may be macros.

None of these routines can use the color attribute in chtype .

Last modified 31 Dec 1996 SunOS 5.8 91

curs_addwchstr(3CURSES) Curses Library Functions

NAME curs_addwchstr, addwchstr, addwchnstr, waddwchstr, waddwchnstr,
mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr – add string of
wchar_t characters (and attributes) to a curses window

SYNOPSIS cc [flag…] file… −lcurses [library…]

#include<curses.h>
int addwchstr (chtype *wchstr);

int addwchnstr (chtype *wchstr, int n);

int waddwchstr (WINDOW *win, chtype *wchstr);

int waddwchnstr (WINDOW *win, chtype *wchstr, int n);

int mvaddwchstr (int y, int x, chtype *wchstr);

int mvaddwchnstr (int y, int x, chtype *wchstr, int n);

int mvwaddwchstr (WINDOW *win, int y, int x, chtype * wchstr);

int mvwaddwchnstr (WINDOW *win, int y, int x , chtype *wchstr, int n);

DESCRIPTION All of these routines copy wchstr , which points to a string of wchar_t characters,
directly into the window image structure starting at the current cursor position.
The four routines with n as the last argument copy at most n elements, but no
more than will fit on the line. If n =-1 then the whole string is copied, to the
maximum number that fit on the line.

The position of the window cursor is not advanced. These routines work
faster than waddnwstr (3CURSES) because they merely copy wchstr into the
window image structure. On the other hand, care must be taken when using
these functions because they don’t perform any kind of checking (such as for the
newline character), they do not advance the current cursor position, and they
truncate the string, rather than wrapping it around to the new line.

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion, unless otherwise noted in the preceding
routine descriptions.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , waddnwstr (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

92 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_addwchstr(3CURSES)

Note that all routines except waddwchnstr() may be macros.

None of these routines can use the color attribute in chtype .

Last modified 31 Dec 1996 SunOS 5.8 93

curs_addwstr(3CURSES) Curses Library Functions

NAME curs_addwstr, addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr,
mvaddnwstr, mvwaddwstr, mvwaddnwstr – add a string of wchar_t characters
to a curses window and advance cursor

SYNOPSIS cc [flag…] file… −lcurses [library…]

#include<curses.h>
int addwstr (wchar_t *wstr);

int addnwstr (wchar_t *wstr, int n);

INT WADDWSTR(WINDOW *WIN, wchar_t *wstr);

int waddnwstr (WINDOW *win, wchar_t *wstr, int n);

int mvaddwstr (int y, int x, wchar_t *wstr);

int mvaddnwstr (int y, int x, wchar_t *wstr, int n);

int mvwaddwstr (WINDOW *win, int y, int x , wchar_t *wstr);

int mvwaddnwstr (WINDOW *win, int y, int x, wchar_t *wstr, int n);

DESCRIPTION All of these routines write all the characters of the null-terminated wchar_t
character string wstr on the given window. The effect is similar to calling
waddwch(3CURSES) once for each wchar_t character in the string. The four
routines with n as the last argument write at most n wchar_t characters. If n is
negative, then the entire string will be added.

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , waddwch(3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <nctrl.h> and <widec.h> .

Note that all of these routines except waddwstr() and waddnwstr() may
be macros.

94 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_alecompat(3CURSES)

NAME curs_alecompat, movenextch, wmovenextch, moveprevch, wmoveprevch,
adjcurspos, wadjcurspos – these functions are added to ALE curses library
for moving the cursor by character.

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int movenextch (void);

int wmovenextch (WINDOW *win);

int moveprevch (void);

int wmoveprevch (WINDOW *win);

int adjcurspos (void);

int wadjcurspos (WINDOW *win);

DESCRIPTION movenextch() and wmovenextch() move the cursor to the next character
to the right. If the next character is a multicolumn character, the cursor is
positioned on the first (left-most) column of that character. The new cursor
position will be on the next character, even if the cursor was originally positioned
on the left-most column of a multicolumn character. Note that the simple cursor
increment (++x) does not guarantee movement to the next character, if the
cursor was originally positioned on a multicolumn character. getyx (3CURSES)
can be used to find the new position.

moveprevc() and wmoveprevch() routines are the opposite of
movenextch() and wmovenextch() , moving the cursor to the left-most
column of the previous character.

adjcurspos() and wadjcurspos() move the cursor to the first(left-most)
column of the multicolumn character that the cursor is presently on. If the cursor
is already on the first column, or if the cursor is on a single-column character,
these routines will have no effect.

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , getyx (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Last modified 31 Dec 1996 SunOS 5.8 95

curs_alecompat(3CURSES) Curses Library Functions

Note that movenextch() , moveprevch() , and adjcurspos() may be
macros.

96 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_attr(3CURSES)

NAME curs_attr, attroff, wattroff, attron, wattron, attrset, wattrset, standend, wstandend,
standout, wstandout – curses character and window attribute control routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int attroff (int attrs);

int wattroff (WINDOW *win, int attrs);

int attron (int attrs);

int wattron (WINDOW *win, int attrs);

int attrset (int attrs);

int wattrset (WINDOW *win, int attrs);

int standend (void);

int wstandend (WINDOW *win);

int standout (void);

int wstandout (WINDOW *win);

DESCRIPTION All of these routines manipulate the current attributes of the named window.
The current attributes of a window are applied to all characters that are written
into the window with waddch() , waddstr() , and wprintw() . Attributes
are a property of the character, and move with the character through any
scrolling and insert/delete line/character operations. To the extent possible on
the particular terminal, they are displayed as the graphic rendition of characters
put on the screen.

The routine attrset() sets the current attributes of the given window to
attrs . The routine attroff() turns off the named attributes without turning
any other attributes on or off. The routine attron() turns on the named
attributes without affecting any others. The routine standout() is the same as
attron(A_STANDOUT) . The routine standend() is the same as attrset
(), that is, it turns off all attributes.

Attributes The following video attributes, defined in <curses.h> , can be passed to
the routines attron() , attroff() , and attrset() , or OR-ed with the
characters passed to addch() .
A_STANDOUT Best highlighting mode of the terminal

A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

Last modified 31 Dec 1996 SunOS 5.8 97

curs_attr(3CURSES) Curses Library Functions

A_BOLD Extra bright or bold

A_ALTCHARSET Alternate character set

A_CHARTEXT Bit-mask to extract a character

COLOR_PAIR(n
)

Color-pair number n

The following macro is the reverse of COLOR_PAIR(n):
PAIR_NUMBER(attrs
)

Returns the pair number associated with the
COLOR_PAIR(n) attribute

RETURN VALUES These routines always return 1.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_addch (3CURSES) , curs_addstr (3CURSES) , curs_printw (3CURSES)
, curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that attroff() , wattroff() , attron() , wattron() , wattrset()
, standend() , and standout() may be macros.

98 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_beep(3CURSES)

NAME curs_beep, beep, flash – curses bell and screen flash routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int beep (void);

int flash (void);

DESCRIPTION The beep() and flash() routines are used to signal the terminal user. The
routine beep() sounds the audible alarm on the terminal, if possible; if that is
not possible, it flashes the screen (visible bell), if that is possible. The routine
flash() flashes the screen, and if that is not possible, sounds the audible
signal. If neither signal is possible, nothing happens. Nearly all terminals have
an audible signal (bell or beep), but only some can flash the screen.

RETURN VALUES These routines always return OK.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Last modified 31 Dec 1996 SunOS 5.8 99

curs_bkgd(3CURSES) Curses Library Functions

NAME curs_bkgd, bkgd, bkgdset, wbkgdset, wbkgd – curses window background
manipulation routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int bkgd (chtype ch);

void bkgdset (chtype ch);

void wbkgdset (WINDOW *win, chtype ch);

int wbkgd (WINDOW *win, chtype ch);

DESCRIPTION The bkgdsets() and wbkgdset() routines manipulate the background of
the named window. Background is a chtype consisting of any combination of
attributes and a character. The attribute part of the background is combined
(ORed) with all non-blank characters that are written into the window with
waddch() . Both the character and attribute parts of the background are
combined with the blank characters. The background becomes a property of the
character and moves with the character through any scrolling and insert/delete
line/character operations. To the extent possible on a particular terminal, the
attribute part of the background is displayed as the graphic rendition of the
character put on the screen.

The bkgd() and wbkgd() routines combine the new background with every
position in the window. Background is any combination of attributes and a
character. Only the attribute part is used to set the background of non-blank
characters, while both character and attributes are used for blank positions. To
the extent possible on a particular terminal, the attribute part of the background
is displayed as the graphic rendition of the character put on the screen.

RETURN VALUES bkgd() and wbkgd() return the integer OK, or a non-negative integer, if
immedok() is set. See curs_outopts (3CURSES) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_addch (3CURSES) , curs_outopts (3CURSES) , curses (3CURSES) ,
attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that bkgdset() and bkgd() may be macros.

100 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_border(3CURSES)

NAME curs_border, border, wborder, box, whline, wvline – create curses borders,
horizontal and vertical lines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int border (chtype ls, chtype rs, chtype ts, chtype bs, chtype tl, chtype tr, chtype bl,
chtype br);

int wborder (WINDOW *win, chtype ls, chtype rs, chtype ts, chtype bs, chtype tl, chtype
tr, chtype bl, chtype br);

int box (WINDOW *win, chtype verch, chtype horch);

int hline (chtype ch, int n);

int whline (WINDOW *win, chtype ch, int n);

int vline (chtype ch, int n);

int wvline (WINDOW *win, chtype ch, int n);

DESCRIPTION With the border() , wborder() , and box() routines, a border is drawn
around the edges of the window. The arguments and attributes are:

ls left side of the border

rs right side of the border

ts top side of the border

bs bottom side of the border

tl top left-hand corner

tr top right-hand corner

bl bottom left-hand corner

br bottom right-hand corner

If any of these arguments is zero, then the following default values (defined
in <curses.h>) are used respectively instead: ACS_VLINE , ACS_VLINE ,
ACS_HLINE , ACS_HLINE , ACS_ULCORNER, ACS_URCORNER, ACS_BLCORNER
, ACS_BRCORNER.

box(win , verch , horch) is a shorthand for the following call:

wborder(win , verch , verch , horch , horch , 0, 0, 0, 0)

hline() and whline() draw a horizontal (left to right) line using ch starting
at the current cursor position in the window. The current cursor position is not
changed. The line is at most n characters long, or as many as fit into the window.

Last modified 31 Dec 1996 SunOS 5.8 101

curs_border(3CURSES) Curses Library Functions

vline() and wvline() draw a vertical (top to bottom) line using ch starting at
the current cursor position in the window. The current cursor position is not
changed. The line is at most n characters long, or as many as fit into the window.

RETURN VALUES All routines return the integer OK, or a non-negative integer if immedok() is
set. See curs_outopts (3CURSES) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_outopts (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that border() and box() may be macros.

102 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_clear(3CURSES)

NAME curs_clear, erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol, wclrtoeol –
clear all or part of a curses window

SYNOPSIS cc [flag...] file ... −lcurses [library ...]
#include <curses.h>
int erase (void);

int werase (WINDOW *win);

int clear (void);

int wclear (WINDOW *win);

int clrtobot (void);

int wclrtobot (WINDOW *win);

int clrtoeol (void);

int wclrtoeol (WINDOW *win);

DESCRIPTION The erase() and werase() routines copy blanks to every position in the
window.

The clear() and wclear() routines are like erase() and werase() , but
they also call clearok() , so that the screen is cleared completely on the next
call to wrefresh() for that window and repainted from scratch.

The clrtobot() and wclrtobot() routines erase all lines below the cursor in
the window. Also, the current line to the right of the cursor, inclusive, is erased.

The clrtoeol() and wclrtoeol() routines erase the current line to the
right of the cursor, inclusive.

RETURN VALUES All routines return the integer OK, or a non-negative integer if immedok() is
set. See curs_outopts (3CURSES) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_outopts (3CURSES) , curs_refresh (3CURSES) , curses (3CURSES) ,
attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that erase() , werase() , clear() , wclear() , clrtobot() ,
and clrtoeol() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 103

curs_color(3CURSES) Curses Library Functions

NAME curs_color, start_color, init_pair, init_color, has_colors, can_change_color,
color_content, pair_content – curses color manipulation routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int start_color (void);

int init_pair (short pair, short fg, short bg);

int init_color (short color, short red, short green, short blue);

bool has_colors (void);

bool can_change_color (void);

int color_content (short color, short *redp, short *greenp, short *bluep);

int pair_content (short pair, short *fgp, short *bgp);

DESCRIPTION
Overview curses provides routines that manipulate color on color alphanumeric

terminals. To use these routines start_color() must be called, usually
right after initscr() . See curs_initscr (3CURSES) . Colors are always
used in pairs (referred to as color-pairs). A color-pair consists of a foreground
color (for characters) and a background color (for the field on which the
characters are displayed). A programmer initializes a color-pair with the
routine init_pair . After it has been initialized, COLOR_PAIR(n), a macro
defined in <curses.h> , can be used in the same ways other video attributes
can be used. If a terminal is capable of redefining colors, the programmer
can use the routine init_color() to change the definition of a color. The
routines has_colors() and can_change_color() return TRUEor FALSE ,
depending on whether the terminal has color capabilities and whether the
programmer can change the colors. The routine color_content() allows
a programmer to identify the amounts of red, green, and blue components in
an initialized color. The routine pair_content() allows a programmer to
find out how a given color-pair is currently defined.

Routine Descriptions The start_color() routine requires no arguments. It must be called if the
programmer wants to use colors, and before any other color manipulation
routine is called. It is good practice to call this routine right after initscr()
. start_color() initializes eight basic colors (black, red, green, yellow,
blue, magenta, cyan, and white), and two global variables, COLORSand
COLOR_PAIRS(respectively defining the maximum number of colors and
color-pairs the terminal can support). It also restores the colors on the terminal
to the values they had when the terminal was just turned on.

The init_pair() routine changes the definition of a color-pair. It takes three
arguments: the number of the color-pair to be changed, the foreground color

104 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_color(3CURSES)

number, and the background color number. The value of the first argument
must be between 1 and COLOR_PAIRS-1. The value of the second and third
arguments must be between 0 and COLORS. If the color-pair was previously
initialized, the screen is refreshed and all occurrences of that color-pair is
changed to the new definition.

The init_color() routine changes the definition of a color. It takes four
arguments: the number of the color to be changed followed by three RGB
values (for the amounts of red, green, and blue components). The value of the
first argument must be between 0 and COLORS. (See the section Colors for the
default color index.) Each of the last three arguments must be a value between 0
and 1000. When init_color() is used, all occurrences of that color on the
screen immediately change to the new definition.

The has_colors() routine requires no arguments. It returns TRUEif the
terminal can manipulate colors; otherwise, it returns FALSE . This routine
facilitates writing terminal-independent programs. For example, a programmer
can use it to decide whether to use color or some other video attribute.

The can_change_color() routine requires no arguments. It returns TRUEif
the terminal supports colors and can change their definitions; other, it returns
FALSE . This routine facilitates writing terminal-independent programs.

The color_content() routine gives users a way to find the intensity of the
red, green, and blue (RGB) components in a color. It requires four arguments:
the color number, and three addresses of short s for storing the information
about the amounts of red, green, and blue components in the given color. The
value of the first argument must be between 0 and COLORS. The values that are
stored at the addresses pointed to by the last three arguments are between 0 (no
component) and 1000 (maximum amount of component).

The pair_content() routine allows users to find out what colors a given
color-pair consists of. It requires three arguments: the color-pair number, and
two addresses of short s for storing the foreground and the background color
numbers. The value of the first argument must be between 1 and COLOR_PAIRS
-1. The values that are stored at the addresses pointed to by the second and third
arguments are between 0 and COLORS.

Colors In <curses.h> the following macros are defined. These are the default colors.
curses also assumes that COLOR_BLACKis the default background color for all
terminals.

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA

Last modified 31 Dec 1996 SunOS 5.8 105

curs_color(3CURSES) Curses Library Functions

COLOR_CYAN
COLOR_WHITE

RETURN VALUES All routines that return an integer return ERRupon failure and OKupon
successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_attr (3CURSES) , curs_initscr (3CURSES) , curses (3CURSES) ,
attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

106 SunOS 5.8 Last modified 31 Dec 1996

X/Open Curses Library Functions curscr(3XCURSES)

NAME curscr – current window

SYNOPSIS #include <curses.h>

extern WINDOW *curscr;

DESCRIPTION The external variable curscr points to an internal data structure. It can be
specified as an argument to certain functions such as clearok (3XCURSES).

SEE ALSO clearok (3XCURSES)

Last modified 6 May 1999 SunOS 5.8 107

curs_delch(3CURSES) Curses Library Functions

NAME curs_delch, delch, wdelch, mvdelch, mvwdelch – delete character under cursor
in a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int delch (void);

int wdelch (WINDOW *win);

int mvdelch (int y, int x);

int mvwdelch (WINDOW *win, int y, int x);

DESCRIPTION With these routines the character under the cursor in the window is deleted;
all characters to the right of the cursor on the same line are moved to the left
one position and the last character on the line is filled with a blank. The cursor
position does not change (after moving to y , x , if specified). This does not imply
use of the hardware delete character feature.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that delch() , mvdelch() , and mvwdelch() may be macros.

108 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_deleteln(3CURSES)

NAME curs_deleteln, deleteln, wdeleteln, insdelln, winsdelln, insertln, winsertln –
delete and insert lines in a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int deleteln (void);

int wdeleteln (WINDOW *win);

int insdelln (int n);

int winsdelln (WINDOW *win, int n);

int insertln (void);

int winsertln (WINDOW *win);

DESCRIPTION With the deleteln() and wdeleteln() routines, the line under the cursor in
the window is deleted; all lines below the current line are moved up one line.
The bottom line of the window is cleared. The cursor position does not change.
This does not imply use of a hardware delete line feature.

With the insdelln() and winsdelln() routines, for positive n , insert n lines
into the specified window above the current line. The n bottom lines are lost. For
negative n , delete n lines (starting with the one under the cursor), and move
the remaining lines up. The bottom n lines are cleared. The current cursor
position remains the same.

With the insertln() and insertln() routines, a blank line is inserted
above the current line and the bottom line is lost. This does not imply use of a
hardware insert line feature.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all but winsdelln() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 109

curses(3CURSES) Curses Library Functions

NAME curses – CRT screen handling and optimization package

SYNOPSIS cc [flag...] file...– lcurses [library...]

#include <curses.h>

DESCRIPTION The curses library routines give the user a terminal-independent method of
updating character screens with reasonable optimization.

The curses package allows: overall screen, window and pad manipulation;
output to windows and pads; reading terminal input; control over terminal
and curses input and output options; environment query routines; color
manipulation; use of soft label keys; terminfo access; and access to low-level
curses routines.

To initialize the routines, the routine initscr() or newterm() must be called
before any of the other routines that deal with windows and screens are used.
The routine endwin() must be called before exiting. To get character-at-a-time
input without echoing (most interactive, screen oriented programs want this),
the following sequence should be used:

initscr,cbreak,noecho;

Most programs would additionally use the sequence:

nonl,intrflush(stdscr,FALSE),keypad(stdscr,TRUE);

Before a curses program is run, the tab stops of the terminal should be set
and its initialization strings, if defined, must be output. This can be done by
executing the tput init command after the shell environment variable TERM
has been exported. (See terminfo (4) for further details.)

The curses library permits manipulation of data structures, called windows,
which can be thought of as two-dimensional arrays of characters representing all
or part of a CRT screen. A default window called stdscr , which is the size of
the terminal screen, is supplied. Others may be created with newwin (3CURSES).

Windows are referred to by variables declared as WINDOW *. These data
structures are manipulated with routines described on 3X pages (whose names
begin "curs_"). Among which the most basic routines are move(3CURSES) and
addch (3CURSES). More general versions of these routines are included with
names beginning with w, allowing the user to specify a window. The routines
not beginning with w affect stdscr .

After using routines to manipulate a window, refresh (3CURSES) is called,
telling curses to make the user’s CRT screen look like stdscr . The characters

110 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

in a window are actually of type chtype , (character and attribute data) so that
other information about the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows
which are not constrained to the size of the screen and whose contents need not
be completely displayed. See curs_pad (3CURSES) for more information.

In addition to drawing characters on the screen, video attributes and colors may
be included, causing the characters to show up in such modes as underlined, in
reverse video, or in color on terminals that support such display enhancements.
Line drawing characters may be specified to be output. On input, curses is
also able to translate arrow and function keys that transmit escape sequences
into single values. The video attributes, line drawing characters, and input
values use names, defined in <curses.h> , such as A_REVERSE, ACS_HLINE,
and KEY_LEFT.

If the environment variables LINES and COLUMNSare set, or if the program
is executing in a window environment, line and column information in the
environment will override information read by terminfo. This would effect a
program running in an AT&T 630 layer, for example, where the size of a screen
is changeable.

If the environment variable TERMINFOis defined, any program using curses
checks for a local terminal definition before checking in the standard place. For
example, if TERMis set to att4424 , then the compiled terminal definition
is found in

/usr/share/lib/terminfo/a/att4424 .

(The ‘a’ is copied from the first letter of att4424 to avoid creation of huge
directories.) However, if TERMINFOis set to $HOME/myterms , curses first
checks

$HOME/myterms/a/att4424 ,

and if that fails, it then checks

/usr/share/lib/terminfo/a/att4424 .

This is useful for developing experimental definitions or when write permission
in /usr/share/lib/terminfo is not available.

The integer variables LINES and COLSare defined in <curses.h> and will be
filled in by initscr with the size of the screen. The constants TRUEand FALSE
have the values 1 and 0, respectively.

Last modified 31 Dec 1996 SunOS 5.8 111

curses(3CURSES) Curses Library Functions

The curses routines also define the WINDOW *variable curscr which is used
for certain low-level operations like clearing and redrawing a screen containing
garbage. The curscr can be used in only a few routines.

International
Functions

The number of bytes and the number of columns to hold a character from the
supplementary character set is locale-specific (locale category LC_CTYPE) and
can be specified in the character class table.

For editing, operating at the character level is entirely appropriate. For screen
formatting, arbitrary movement of characters on screen is not desirable.

Overwriting characters (addch , for example) operates on a screen level.
Overwriting a character by a character that requires a different number of
columns may produce orphaned columns. These orphaned columns are filled
with background characters.

Inserting characters (insch , for example) operates on a character level (that is, at
the character boundaries). The specified character is inserted right before the
character, regardless of which column of a character the cursor points to. Before
insertion, the cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (delch , for example) operates
on a character level (that is, at the character boundaries). The character at the
cursor is deleted whichever column of the character the cursor points to. Before
deletion, the cursor position is adjusted to the first column of the character.

A multi-column character cannot be put on the last column of a line. When
such attempts are made, the last column is set to the background character. In
addition, when such an operation creates orphaned columns, the orphaned
columns are filled with background characters.

Overlapping and overwriting a window follows the operation of overwriting
characters around its edge. The orphaned columns, if any, are handled as in the
character operations.

The cursor is allowed to be placed anywhere in a window. If the insertion or
deletion is made when the cursor points to the second or later column position
of a character that holds multiple columns, the cursor is adjusted to the first
column of the character before the insertion or deletion.

Routine and
Argument Names

Many curses routines have two or more versions. The routines prefixed with
w require a window argument. The routines prefixed with p require a pad
argument. Those without a prefix generally use stdscr .

The routines prefixed with mv require an x and y coordinate to move to
before performing the appropriate action. The mv routines imply a call to
move(3CURSES) before the call to the other routine. The coordinate y always
refers to the row (of the window), and x always refers to the column. The upper
left-hand corner is always (0,0), not (1,1).

112 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

The routines prefixed with mvwtake both a window argument and x and y
coordinates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad
are always pointers to type WINDOW

Option setting routines require a Boolean flag bf with the value TRUEor FALSE;
bf is always of type bool . The variables ch and attrs below are always of
type chtype . The types WINDOW, SCREEN, bool , and chtype are defined in
<curses.h> . The type TERMINALis defined in <term.h> . All other arguments
are integers.

Routine Name Index The following table lists each curses routine and the name of the manual
page on which it is described.
curses Routine Name Manual Page Name

addch curs_addch (3CURSES)

addchnstr curs_addchstr (3CURSES)

addchstr curs_addchstr (3CURSES)

addnstr curs_addstr (3CURSES)

addnwstr curs_addwstr (3CURSES)

addstr curs_addstr (3CURSES)

addwch curs_addwch (3CURSES)

addwchnstr curs_addwchstr (3CURSES)

addwchstr curs_addwchstr (3CURSES)

addwstr curs_addwstr (3CURSES)

adjcurspos curs_alecompat (3CURSES)

attroff curs_attr (3CURSES)

attron curs_attr (3CURSES)

attrset curs_attr (3CURSES)

baudrate curs_termattrs (3CURSES)

beep curs_beep (3CURSES)

bkgd curs_bkgd (3CURSES)

bkgdset curs_bkgd (3CURSES)

border curs_border (3CURSES)

Last modified 31 Dec 1996 SunOS 5.8 113

curses(3CURSES) Curses Library Functions

box curs_border (3CURSES)

can_change_color curs_color (3CURSES)

cbreak curs_inopts (3CURSES)

clear curs_clear (3CURSES)

clearok curs_outopts (3CURSES)

clrtobot curs_clear (3CURSES)

clrtoeol curs_clear (3CURSES)

color_content curs_color (3CURSES)

copywin curs_overlay (3CURSES)

curs_set curs_kernel (3CURSES)

def_prog_mode curs_kernel (3CURSES)

def_shell_mode curs_kernel (3CURSES)

del_curterm curs_terminfo (3CURSES)

delay_output curs_util (3CURSES)

delch curs_delch (3CURSES)

deleteln curs_deleteln (3CURSES)

delscreen curs_initscr (3CURSES)

delwin curs_window (3CURSES)

derwin curs_window (3CURSES)

doupdate curs_refresh (3CURSES)

dupwin curs_window (3CURSES)

echo curs_inopts (3CURSES)

echochar curs_addch (3CURSES)

echowchar curs_addwch (3CURSES)

endwin curs_initscr (3CURSES)

erase curs_clear (3CURSES)

erasechar curs_termattrs (3CURSES)

filter curs_util (3CURSES)

flash curs_beep (3CURSES)

114 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

flushinp curs_util (3CURSES)

getbegyx curs_getyx (3CURSES)

getch curs_getch (3CURSES)

getmaxyx curs_getyx (3CURSES)

getnwstr curs_getwstr (3CURSES)

getparyx curs_getyx (3CURSES)

getstr curs_getstr (3CURSES)

getsyx curs_kernel (3CURSES)

getwch curs_getwch (3CURSES)

getwin curs_util (3CURSES)

getwstr curs_getwstr (3CURSES)

getyx curs_getyx (3CURSES)

halfdelay curs_inopts (3CURSES)

has_colors curs_color (3CURSES)

has_ic curs_termattrs (3CURSES)

has_il curs_termattrs (3CURSES)

idcok curs_outopts (3CURSES)

idlok curs_outopts (3CURSES)

immedok curs_outopts (3CURSES)

inch curs_inch (3CURSES)

inchnstr curs_inchstr (3CURSES)

inchstr curs_inchstr (3CURSES)

init_color curs_color (3CURSES)

init_pair curs_color (3CURSES)

initscr curs_initscr (3CURSES)

innstr curs_instr (3CURSES)

innwstr curs_inwstr (3CURSES)

insch curs_insch (3CURSES)

insdelln curs_deleteln (3CURSES)

Last modified 31 Dec 1996 SunOS 5.8 115

curses(3CURSES) Curses Library Functions

insertln curs_deleteln (3CURSES)

insnstr curs_insstr (3CURSES)

insnwstr curs_inswstr (3CURSES)

insstr curs_insstr (3CURSES)

instr curs_instr (3CURSES)

inswch curs_inswch (3CURSES)

inswstr curs_inswstr (3CURSES)

intrflush curs_inopts (3CURSES)

inwch curs_inwch (3CURSES)

inwchnstr curs_inwchstr (3CURSES)

inwchstr curs_inwchstr (3CURSES)

inwstr curs_inwstr (3CURSES)

is_linetouched curs_touch (3CURSES)

is_wintouched curs_touch (3CURSES)

isendwin curs_initscr (3CURSES)

keyname curs_util (3CURSES)

keypad curs_inopts (3CURSES)

killchar curs_termattrs (3CURSES)

leaveok curs_outopts (3CURSES)

longname curs_termattrs (3CURSES)

meta curs_inopts (3CURSES)

move curs_move (3CURSES)

movenextch curs_alecompat (3CURSES)

moveprevch curs_alecompat (3CURSES)

mvaddch curs_addch (3CURSES)

mvaddchnstr curs_addchstr (3CURSES)

mvaddchstr curs_addchstr (3CURSES)

mvaddnstr curs_addstr (3CURSES)

mvaddnwstr curs_addwstr (3CURSES)

116 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

mvaddstr curs_addstr (3CURSES)

mvaddwch curs_addwch (3CURSES)

mvaddwchnstr curs_addwchstr (3CURSES)

mvaddwchstr curs_addwchstr (3CURSES)

mvaddwstr curs_addwstr (3CURSES)

mvcur curs_terminfo (3CURSES)

mvdelch curs_delch (3CURSES)

mvderwin curs_window (3CURSES)

mvgetch curs_getch (3CURSES)

mvgetnwstr curs_getwstr (3CURSES)

mvgetstr curs_getstr (3CURSES)

mvgetwch curs_getwch (3CURSES)

mvgetwstr curs_getwstr (3CURSES)

mvinch curs_inch (3CURSES)

mvinchnstr curs_inchstr (3CURSES)

mvinchstr curs_inchstr (3CURSES)

mvinnstr curs_instr (3CURSES)

mvinnwstr curs_inwstr (3CURSES)

mvinsch curs_insch (3CURSES)

mvinsnstr curs_insstr (3CURSES)

mvinsnwstr curs_inswstr (3CURSES)

mvinsstr curs_insstr (3CURSES)

mvinstr curs_instr (3CURSES)

mvinswch curs_inswch (3CURSES)

mvinswstr curs_inswstr (3CURSES)

mvinwch curs_inwch (3CURSES)

mvinwchnstr curs_inwchstr (3CURSES)

mvinwchstr curs_inwchstr (3CURSES)

mvinwstr curs_inwstr (3CURSES)

Last modified 31 Dec 1996 SunOS 5.8 117

curses(3CURSES) Curses Library Functions

mvprintw curs_printw (3CURSES)

mvscanw curs_scanw (3CURSES)

mvwaddch curs_addch (3CURSES)

mvwaddchnstr curs_addchstr (3CURSES)

mvwaddchstr curs_addchstr (3CURSES)

mvwaddnstr curs_addstr (3CURSES)

mvwaddnwstr curs_addwstr (3CURSES)

mvwaddstr curs_addstr (3CURSES)

mvwaddwch curs_addwch (3CURSES)

mvwaddwchnstr curs_addwchstr (3CURSES)

mvwaddwchstr curs_addwchstr (3CURSES)

mvwaddwstr curs_addwstr (3CURSES)

mvwdelch curs_delch (3CURSES)

mvwgetch curs_getch (3CURSES)

mvwgetnwstr curs_getwstr (3CURSES)

mvwgetstr curs_getstr (3CURSES)

mvwgetwch curs_getwch (3CURSES)

mvwgetwstr curs_getwstr (3CURSES)

mvwin curs_window (3CURSES)

mvwinch curs_inch (3CURSES)

mvwinchnstr curs_inchstr (3CURSES)

mvwinchstr curs_inchstr (3CURSES)

mvwinnstr curs_instr (3CURSES)

mvwinnwstr curs_inwstr (3CURSES)

mvwinsch curs_insch (3CURSES)

mvwinsnstr curs_insstr (3CURSES)

mvwinsstr curs_insstr (3CURSES)

mvwinstr curs_instr (3CURSES)

mvwinswch curs_inswch (3CURSES)

118 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

mvwinswstr curs_inswstr (3CURSES)

mvwinwch curs_inwch (3CURSES)

mvwinwchnstr curs_inwchstr (3CURSES)

mvwinwchstr curs_inwchstr (3CURSES)

mvwinwstr curs_inwstr (3CURSES)

mvwprintw curs_printw (3CURSES)

mvwscanw curs_scanw (3CURSES)

napms curs_kernel (3CURSES)

newpad curs_pad (3CURSES)

newterm curs_initscr (3CURSES)

newwin curs_window (3CURSES)

nl curs_outopts (3CURSES)

nocbreak curs_inopts (3CURSES)

nodelay curs_inopts (3CURSES)

noecho curs_inopts (3CURSES)

nonl curs_outopts (3CURSES)

noqiflush curs_inopts (3CURSES)

noraw curs_inopts (3CURSES)

notimeout curs_inopts (3CURSES)

overlay curs_overlay (3CURSES)

overwrite curs_overlay (3CURSES)

pair_content curs_color (3CURSES)

pechochar curs_pad (3CURSES)

pechowchar curs_pad (3CURSES)

pnoutrefresh curs_pad (3CURSES)

prefresh curs_pad (3CURSES)

printw curs_printw (3CURSES)

putp curs_terminfo (3CURSES)

putwin curs_util (3CURSES)

Last modified 31 Dec 1996 SunOS 5.8 119

curses(3CURSES) Curses Library Functions

qiflush curs_inopts (3CURSES)

raw curs_inopts (3CURSES)

redrawwin curs_refresh (3CURSES)

refresh curs_refresh (3CURSES)

reset_prog_mode curs_kernel (3CURSES)

reset_shell_mode curs_kernel (3CURSES)

resetty curs_kernel (3CURSES)

restartterm curs_terminfo (3CURSES)

ripoffline curs_kernel (3CURSES)

savetty curs_kernel (3CURSES)

scanw curs_scanw (3CURSES)

scr_dump curs_scr_dump (3CURSES)

scr_init curs_scr_dump (3CURSES)

scr_restore curs_scr_dump (3CURSES)

scr_set curs_scr_dump (3CURSES)

scroll curs_scroll (3CURSES)

scrollok curs_outopts (3CURSES)

set_curterm curs_terminfo (3CURSES)

set_term curs_initscr (3CURSES)

setscrreg curs_outopts (3CURSES)

setsyx curs_kernel (3CURSES)

setterm curs_terminfo (3CURSES)

setupterm curs_terminfo (3CURSES)

slk_attroff curs_slk (3CURSES)

slk_attron curs_slk (3CURSES)

slk_attrset curs_slk (3CURSES)

slk_clear curs_slk (3CURSES)

slk_init curs_slk (3CURSES)

slk_label curs_slk (3CURSES)

120 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

slk_noutrefresh curs_slk (3CURSES)

slk_refresh curs_slk (3CURSES)

slk_restore curs_slk (3CURSES)

slk_set curs_slk (3CURSES)

slk_touch curs_slk (3CURSES)

srcl curs_scroll (3CURSES)

standend curs_attr (3CURSES)

standout curs_attr (3CURSES)

start_color curs_color (3CURSES)

subpad curs_pad (3CURSES)

subwin curs_window (3CURSES)

syncok curs_window (3CURSES)

termattrs curs_termattrs (3CURSES)

termname curs_termattrs (3CURSES)

tgetent curs_termcap (3CURSES)

tgetflag curs_termcap (3CURSES)

tgetnum curs_termcap (3CURSES)

tgetstr curs_termcap (3CURSES)

tgoto curs_termcap (3CURSES)

tigetflag curs_terminfo (3CURSES)

tigetnum curs_terminfo (3CURSES)

tigetstr curs_terminfo (3CURSES)

timeout curs_inopts (3CURSES)

touchline curs_touch (3CURSES)

touchwin curs_touch (3CURSES)

tparm curs_terminfo (3CURSES)

tputs curs_terminfo (3CURSES)

typeahead curs_inopts (3CURSES)

unctrl curs_util (3CURSES)

Last modified 31 Dec 1996 SunOS 5.8 121

curses(3CURSES) Curses Library Functions

ungetch curs_getch (3CURSES)

ungetwch curs_getwch (3CURSES)

untouchwin curs_touch (3CURSES)

use_env curs_util (3CURSES)

vidattr curs_terminfo (3CURSES)

vidputs curs_terminfo (3CURSES)

vwprintw curs_printw (3CURSES)

vwscanw curs_scanw (3CURSES)

waddch curs_addch (3CURSES)

waddchnstr curs_addchstr (3CURSES)

waddchstr curs_addchstr (3CURSES)

waddnstr curs_addstr (3CURSES)

waddnwstr curs_addwstr (3CURSES)

waddstr curs_addstr (3CURSES)

waddwch curs_addwch (3CURSES)

waddwchnstr curs_addwchstr (3CURSES)

waddwchstr curs_addwchstr (3CURSES)

waddwstr curs_addwstr (3CURSES)

wadjcurspos curs_alecompat (3CURSES)

wattroff curs_attr (3CURSES)

wattron curs_attr (3CURSES)

wattrset curs_attr (3CURSES)

wbkgd curs_bkgd (3CURSES)

wbkgdset curs_bkgd (3CURSES)

wborder curs_border (3CURSES)

wclear curs_clear (3CURSES)

wclrtobot curs_clear (3CURSES)

wclrtoeol curs_clear (3CURSES)

wcursyncup curs_window (3CURSES)

122 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

wdelch curs_delch (3CURSES)

wdeleteln curs_deleteln (3CURSES)

wechochar curs_addch (3CURSES)

wechowchar curs_addwch (3CURSES)

werase curs_clear (3CURSES)

wgetch curs_getch (3CURSES)

wgetnstr curs_getstr (3CURSES)

wgetnwstr curs_getwstr (3CURSES)

wgetstr curs_getstr (3CURSES)

wgetwch curs_getwch (3CURSES)

wgetwstr curs_getwstr (3CURSES)

whline curs_border (3CURSES)

winch curs_inch (3CURSES)

winchnstr curs_inchstr (3CURSES)

winchstr curs_inchstr (3CURSES)

winnstr curs_instr (3CURSES)

winnwstr curs_inwstr (3CURSES)

winsch curs_insch (3CURSES)

winsdelln curs_deleteln (3CURSES)

winsertln curs_deleteln (3CURSES)

winsnstr curs_insstr (3CURSES)

winsnwstr curs_inswstr (3CURSES)

winsstr curs_insstr (3CURSES)

winstr curs_instr (3CURSES)

winswch curs_inswch (3CURSES)

winswstr curs_inswstr (3CURSES)

winwch curs_inwch (3CURSES)

winwchnstr curs_inwchstr (3CURSES)

winwchstr curs_inwchstr (3CURSES)

Last modified 31 Dec 1996 SunOS 5.8 123

curses(3CURSES) Curses Library Functions

winwstr curs_inwstr (3CURSES)

wmove curs_move (3CURSES)

wmovenextch curs_alecompat (3CURSES)

wmoveprevch curs_alecompat (3CURSES)

wnoutrefresh curs_refresh (3CURSES)

wprintw curs_printw (3CURSES)

wredrawln curs_refresh (3CURSES)

wrefresh curs_refresh (3CURSES)

wscanw curs_scanw (3CURSES)

wscrl curs_scroll (3CURSES)

wsetscrreg curs_outopts (3CURSES)

wstandend curs_attr (3CURSES)

wstandout curs_attr (3CURSES)

wsyncdown curs_window (3CURSES)

wsyncup curs_window (3CURSES)

wtimeout curs_inopts (3CURSES)

wtouchln curs_touch (3CURSES)

wvline curs_border (3CURSES)

RETURN VALUES Routines that return an integer return ERRupon failure and an integer value
other than ERRupon successful completion, unless otherwise noted in the
routine descriptions.

All macros return the value of the w version, except setscrreg() ,
wsetscrreg() , getyx() , getbegyx() , and getmaxyx() . The return values
of setscrreg() , wsetscrreg() , getyx() , getbegyx() , and getmaxyx()
are undefined (that is, these should not be used as the right-hand side of
assignment statements).

Routines that return pointers return NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

124 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curses(3CURSES)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO terminfo (4), attributes (5) and 3X pages whose names begin with “curs_”
for detailed routine descriptions.

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Last modified 31 Dec 1996 SunOS 5.8 125

curses(3XCURSES) X/Open Curses Library Functions

NAME curses – introduction and overview of X/Open Curses

DESCRIPTION The Curses screen management package conforms fully with Issue 4, Version 2 of
the X/Open Curses specification. It provides a set of internationalized functions
and macros for creating and modifying input and output to a terminal screen.
This includes functions for creating windows, highlighting text, writing to the
screen, reading from user input, and moving the cursor.

X/Open Curses is a terminal-independent package, providing a common
user interface to a variety of terminal types. Its portability is facilitated by
the Terminfo database which contains a compiled definition of each terminal
type. By referring to the database information X/Open Curses gains access to
low-level details about individual terminals.

X/Open Curses tailors its activities to the terminal type specified by the TERM
environment variable. The TERMenvironment variable may be set in the Korn
Shell (see ksh (1)) by typing:

export TERM= terminal_name
To set environment variables using other command line interfaces or shells, see
the environ (5) manual page.

Three additional environment variables are useful, and can be set in the Korn
Shell:

1. If you have an alternate Terminfo database containing terminal types that are
not available in the system default database /usr/share/lib/terminfo ,
you can specify the TERMINFOenvironment variable to point to this
alternate database:

export TERMINFO= path
This path specifies the location of the alternate compiled Terminfo database
whose structure consists of directory names 0 to 9 and a to z (which
represent the first letter of the compiled terminal definition file name).

The alternate database specified by TERMINFOis examined before the
system default database. If the terminal type specified by TERMcannot be
found in either database, the default terminal type dumb is assumed.

2. To specify a window width smaller than your screen width (for example,
in situations where your communications line is slow), set the COLUMNS
environment variable to the number of vertical columns you want between
the left and right margins:

export COLUMNS=number
The number of columns may be set to a number smaller than the screen
size; however, if set larger than the screen or window width, the results
are undefined.

126 SunOS 5.8 Last modified 19 May 1999

X/Open Curses Library Functions curses(3XCURSES)

The value set using this environment variable takes precedence over the
value normally used for the terminal.

3. To specify a window height smaller than your current screen height (for
example, in situations where your communications line is slow), override
the LINES environment variable by setting it to a smaller number of
horizontal lines:

export LINES= number
The number of lines may be set to a number smaller than the screen height;
however, if set larger than the screen or window height, the results are
undefined.

The value set using this environment variable takes precedence over the
value normally used for the terminal.

Data Types X/Open Curses defines the following data types:
attr_t An integral type that holds an OR-ed set of attributes. The

attributes acceptable are those which begin with the WA_
prefix .

bool Boolean data type.

cchar_t A type that refers to a string consisting of a spacing wide
character, up to 5 non-spacing wide characters, and zero or
more attributes of any type. See Attributes, Color Pairs,
and Renditions. A null cchar_t object terminates arrays
of cchar_t objects.

chtype An integral type whose values are formed by OR-ing an
"unsigned char" with a color pair. and with zero or more
attributes. The attributes acceptable are those which begin
with the A_ prefix and COLOR_PAIR(3XCURSES)

SCREEN An opaque data type associated with a terminal’s display
screen.

TERMINAL An opaque data type associated with a terminal. It contains
information about the terminal’s capabilities (as defined
by terminfo), the terminal modes, and current state of
input/output operations.

wchar_t An integral data type whose values represent wide
characters.

WINDOW An opaque data type associated with a window.

Last modified 19 May 1999 SunOS 5.8 127

curses(3XCURSES) X/Open Curses Library Functions

Screens, Windows,
and Terminals

The X/Open Curses manual pages refer at various points to screens, windows
(also subwindows, derived windows, and pads), and terminals. The following
list defines each of these terms.
Screen A screen is a terminal’s physical output device. The SCREEN

data type is associated with a terminal.

Window Window objects are two-dimensional arrays of characters
and their renditions. X/Open Curses provides stdscr, a
default window which is the size of of the terminal screen.
You can use the newwin (3XCURSES) function to create
others.

To refer to a window, use a variable declared as WINDOW *. X/Open Curses
includes both functions that modify stdscr, and more general versions that
let you specify a window.

There are three sub-types of windows:
Subwindow A window which has been created within

another window (the parent window) and whose
position has been specified with absolute screen
coordinates. The derwin (3XCURSES) and
subwin (3XCURSES) functions can be used to
create subwindows.

Derived Window A subwindow whose position is defined relative
to the parent window’s coordinates rather than in
absolute terms.

Pad A special type of window that can be larger
than the screen. For more information, see the
newpad(3XCURSES) man page.

Terminal A terminal is the input and output device which
character-based applications use to interact with
the user. The TERMINALdata type is associated
with such a device.

Attributes, Color
Pairs, and Renditions

A character’s rendition consists of its attributes (such as underlining or reverse
video) and its color pair (the foreground and background colors). When using
waddstr (3XCURSES), waddchstr (3XCURSES), wprintw (3XCURSES),
winsch (3XCURSES), and so on, the window’s rendition is combined with
that character’s renditions. The window rendition is the attributes and color
set using the attroff (3XCURSES) and attr_off (3XCURSES) sets of
functions. The window’s background character and rendition are set with the
bkgdset (3XCURSES) and bkgrndset (3XCURSES) sets of functions.

128 SunOS 5.8 Last modified 19 May 1999

X/Open Curses Library Functions curses(3XCURSES)

When spaces are written to the screen, the background character and window
rendition replace the space. For example, if the background rendition and
character is A_UNDERLINE|’*’ , text written to the window appears underlined
and the spaces appear as underlined asterisks.

Each character written retains the rendition that it has obtained. This
allows the character to be copied "as is" to or from a window with the
addchstr (3XCURSES) or inch (3XCURSES) functions.

A_ Constant Values for Attributes

You can specify Attributes, Color Pairs, and Renditions attributes using the
constants listed in the tables below. The following constants modify objects of
type chtype :

Constant Description

A_ALTCHARSET Alternate character set

A_ATTRIBUTES Bit-mask to extract attributes

A_BLINK Blinking

A_BOLD Bold

A_CHARTEXT Bit-mask to extract a character

A_COLOR Bit-mask to extract color-pair information

A_DIM Half-bright

A_INVIS Invisible

A_PROTECT Protected

A_REVERSE Reverse video

A_STANDOUT Highlights specific to terminal

A_UNDERLINE Underline

WA_ Constant Values for Attributes

The following constants modify objects of type attr_t :

Constant Description

WA_ALTCHARSET Alternate character set

WA_ATTRIBUTES Attribute mask

WA_BLINK Blinking

WA_BOLD Bold

WA_DIM Half-bright

Last modified 19 May 1999 SunOS 5.8 129

curses(3XCURSES) X/Open Curses Library Functions

Constant Description

WA_HORIZONTAL Horizontal highlight

WA_INVIS Invisible

WA_LEFT Left highlist

WA_LOW Low highlist

WA_PROTECT Protected

WA_REVERSE Reverse video

WA_RIGHT Right highlight

WA_STANDOUT Highlights specific to terminal

WA_TOP Top highlight

WA_UNDERLINE Underline

WA_VERTICAL Vertical highlight

Color Macros

Colors always appear in pairs; the foreground color of the character itself and
the background color of the field on which it is displayed. The following color
macros are defined:

Macro Description

COLOR_BLACK Black

COLOR_BLUE Blue

COLOR_GREEN Green

COLOR_CYAN Cyan

COLOR_RED Red

COLOR_MAGENTA Magenta

COLOR_YELLOW Yellow

COLOR_WHITE White

Together, a character’s attributes and its color pair form the character’s
rendition. A character’s rendition moves with the character during any scrolling
or insert/delete operations. If your terminal lacks support for the specified
rendition, X/Open Curses may substitute a different rendition.

130 SunOS 5.8 Last modified 19 May 1999

X/Open Curses Library Functions curses(3XCURSES)

The COLOR_PAIR(3XCURSES) function modifies a chtype object. The
PAIR_NUMBER(3XCURSES) function extracts the color pair from a chtype
object.

Functions for Modifying a Window’s Color

The following functions modify a window’s color:

Function Description

attr_set() , wattr_set() Change the window’s rendition.

color_set() , wcolor_set() Set the window’s color

Non-Spacing
Characters

When the wcwidth (3C) function returns a width of zero for a character, that
character is called a non-spacing character. Non-spacing characters can be
written to a window. Each non-spacing character is associated with a spacing
character (that is, one which does not have a width of zero) and modifies that
character. You cannot address a non-spacing character directly. Whenever you
perform an X/Open Curses operation on the associated character, you are
implicitly addressing the non-spacing character.

Non-spacing characters do not have a rendition. For functions that use wide
characters and a rendition, X/Open Curses ignores any rendition specified
for non-spacing characters. Multi-column characters have one rendition that
applies to all columns spanned.

Complex Characters The cchar_t date type represents a complex character. A complex character
may contain a spacing character, its associated non-spacing characters, and
its rendition. This implementation of complex characters supports up to 5
non-spacing characters for each spacing character.

When a cchar_t object representing a non-spacing complex character is written
to the screen, its rendition is not used, but rather it becomes associated with the
rendition of the existing character at that location. The setcchar (3XCURSES)
function initializes an object of type cchar_t . The getcchar (3XCURSES)
function extracts the contents of a cchar_t object.

Display Operations In adding internationalization support to X/Open Curses, every attempt was
made to minimize the number of changes to the historical CURSES package.
This enables programs written to use the historical implementation of CURSES
to use the internationalized version with little or no modification. The following
rules apply to the internationalized X/Open Curses package:

� The cursor can be placed anywhere in the window. Window and screen
origins are (0,0).

Last modified 19 May 1999 SunOS 5.8 131

curses(3XCURSES) X/Open Curses Library Functions

� A multi-column character cannot be displayed in the last column, because
the character would appear truncated. Instead, the background character is
displayed in the last column and the multi-column character appears at the
beginning of the next line. This is called wrapping.

If the original line is the last line in the scroll region and scrolling is enabled,
X/Open Curses moves the contents of each line in the region to the previous
line. The first line of the region is lost. The last line of the scrolling region
contains any wrapped characters. The remainder of that line is filled with
the background character. If scrolling is disabled, X/Open Curses truncates
any character that would extend past the last column of the screen.

� Overwrites operate on screen columns. If displaying a single-column
or multi-column character results in overwriting only a portion of a
multi-column character or characters, background characters are displayed
in place of the non-overwritten portions.

� Insertions and deletions operate on whole characters. The cursor is moved
to the first column of the character prior to performing the operation.

Overlapping
Windows

When windows overlap, it may be necessary to overwrite only part of a
multi-column character. As mentioned earlier, the non-overwritten portions
are replaced with the background character. This results in issues concerning
the overwrite (3XCURSES), overlay (3XCURSES), copywin (3XCURSES),
wnoutrefresh (3XCURSES), and wrefresh (3XCURSES) functions.

Special Characters Some functions assign special meanings to certain special characters:
Backspace Moves the cursor one column towards the

beginning of the line. If the cursor was already at
the beginning of the line, it remains there. All
subsequent characters are added or inserted at
this point.

Carriage Return Moves the cursor to the beginning of the current
line. If the cursor was already at the beginning
of the line, it remains there. All subsequent
characters are added or inserted at this point.

Newline When adding characters, X/Open Curses fills
the remainder of the line with the background
character (effectively truncating the newline)
and scrolls the window as described earlier. All
subsequent characters are inserted at the start
of the new line.

When inserting characters, X/Open Curses fills
the remainder of the line with the background
character (effectively truncating the line), moves

132 SunOS 5.8 Last modified 19 May 1999

X/Open Curses Library Functions curses(3XCURSES)

the cursor to the beginning of a new line, and
scrolls the window as described earlier. All
subsequent characters are placed at the start
of the new line.

Tab moves subsequent characters to next horizontal
tab strop. Default tab stops are set at 0, 8, 16,
and so on.

When adding or inserting characters, X/Open
Curses inserts or adds the background character
into each column until the next tab stop is
reached. If there are no remaining tab stops on
the current line, wrapping and scrolling occur
as described earlier.

Control Characters When X/Open Curses functions perform special
character processing, they convert control
characters to the ^ X notation, where X is a
single-column character (uppercase, if it is a
letter) and writes that notation to the window.
Functions that retrieve text from the window will
retrieve the converted notation not the original.

X/Open Curses displays non-printable bytes, that have their high bit set,
using the M-X meta notation where X is the non-printable byte with its high
bit turned off.

Input Processing There are four input modes possible with X/Open Curses that affect the behavior
of input functions like getch (3XCURSES) and getnstr (3XCURSES).
Line Canonical (Cooked) In line input mode, the terminal driver handles

the input of line units as well as SIGERASEand
SIGKILL character processing. See termio (7I)
for more information.

In this mode, the getch() and getnstr()
functions will not return until a complete line has
been read by the terminal driver, at which point
only the requested number of bytes/characters
are returned. The rest of the line unit remains
unread until subsequent call to the getch() or
getnstr() functions.

The functions nocbreak (3XCURSES) and
noraw (3XCURSES) are used to enter this
mode. These functions are described on the

Last modified 19 May 1999 SunOS 5.8 133

curses(3XCURSES) X/Open Curses Library Functions

cbreak (3XCURSES) man page which also details
which termios flags are enabled.

Of the modes available, this one gives
applications the least amount of control over
input. However, it is the only input mode
possible on a block mode terminal.

cbreak Mode Byte/character input provides a finer degree of
control. The terminal driver passes each byte
read to the application without interpreting
erase and kill characters. It is the application’s
responsibility to handle line editing. It is
unknown whether the signal characters
(SIGINTR , SIGQUIT , SIGSUSP) and flow control
characters (SIGSTART, SIGSTOP) are enabled. To
ensure that they are, call the noraw() function
first, then call the cbreak() function.

halfdelay Mode This is the same as the cbreak() mode with
a timeout. The terminal driver waits for a byte
to be received or for a timer to expire, in which
case the getch() function either returns a
byte or ERRrespectively. This mode overrides
timeouts set for an individual window with the
wtimeout() function.

raw Mode This mode provides byte/character input
with the most control for an application.
It is similar to cbreak() mode, but also
disables signal character processing (SIGINTR ,
SIGSUSP, SIGQUIT) and flow control processing
(SIGSTART, SIGSTOP) so that the application
can process them as it wants.

These modes affect all X/Open Curses input. The default input mode is inherited
from the parent process when the application starts up.

A timeout similar to halfdelay (3XCURSES) can be applied to individual
windows (see timeout (3XCURSES)). The nodelay (3XCURSES) function is
equivalent to setting wtimeout (3XCURSES) for a window with a zero timeout
(non-blocking) or infinite delay (blocking).

To handle function keys, keypad (3XCURSES) must be enabled. When it
is enabled, the getch() function returns a KEY_constant for a uniquely
encoded key defined for that terminal. When keypad() is disabled, the
getch() function returns the individual bytes composing the function key

134 SunOS 5.8 Last modified 19 May 1999

X/Open Curses Library Functions curses(3XCURSES)

(see getch (3XCURSES) and wget_wch (3XCURSES)). By default, keypad()
is disabled.

When processing function keys, once the first byte is recognized, a timer is set for
each subsequent byte in the sequence. If any byte in the function key sequence
is not received before the timer expires, the bytes already received are pushed
into a buffer and the original first byte is returned. Subsequent X/Open Curses
input would take bytes from the buffer until exhausted, after which new input
from the terminal will be requested. Enabling and disabling of the function key
interbyte timer is handled by the notimeout (3XCURSES) function. By default,
notimeout() is disabled (that is, the timer is used).

X/Open Curses always disables the terminal driver’s echo processing. The
echo (3XCURSES) and noecho (3XCURSES) functions control X/Open Curses
software echoing. When software echoing is enabled, X/Open Curses input
functions echo printable characters, control keys, and meta keys in the input
window at the last cursor position. Functions keys are never echoed. When
software echoing is disabled, it is the application’s responsibility to handle
echoing.

EXAMPLES EXAMPLE 1 Copying Single-Column Characters Over Single-Column Characters

In the upcoming examples, some characters have special meanings:

� { , [, and (represent the left halves of multi-column characters. } ,] ,
and) represent the corresponding right halves of the same multi-column
characters.

� Alphanumeric characters and periods (.) represent single-column
characters.

� The number sign (#) represents the background character.
copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
abcdefbcd..
ghijklhij..

There are no special problems with this situation.
EXAMPLE 2 Copying Multi-column Characters Over Single-Column Characters

copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
a[]def[]d..
gh()klh()..

There are no special problems with this situation.

Last modified 19 May 1999 SunOS 5.8 135

curses(3XCURSES) X/Open Curses Library Functions

EXAMPLE 3 Copying Single-Column Characters From Source Overlaps Multi-column
Characters In Target

copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
abcdef [].... #bcd..
ghijk tol ...(). .hij#.

Overwriting multi-column characters in t has resulted in the # background
characters being required to erase the remaining halves of the target’s
multi-column characters.
EXAMPLE 4 Copy Incomplete Multi-column Characters From Source To Target.

copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
[]cdef 123456 []cd56
ghi()l 789012 7hi()2

The] and (halves of the multi-column characters have been copied from the
source and expanded in the target outside of the specified target region.

Consider a pop-up dialog box that contains single-column characters and a base
window that contains multi-column characters and you do the following:

save=dupwin(dialog); /* create backing store */
overwrite(cursor, save); /* save region to be overlayed */
wrefresh(dialog); /* display dialog */
wrefresh(save); /* restore screen image */
delwin(save); /* release backing store */

You can use code similar to this to implement generic popup() and popdown()
routines in a variety of CURSES implementations (including BSD UNIX,
and UNIX System V). In the simple case where the base window contains
single-column characters only, it would correctly restore the image that appeared
on the screen before the dialog box was displayed.

However, with multi-column characters, the overwrite() function might save
a region with incomplete multi-column characters. The wrefresh(dialog)
statement results in the behavior described in example 3 above. The behavior
described in this example (that is, example 4) allows the wrefresh(save)
statement to restore the window correctly.
EXAMPLE 5 Copying An Incomplete Multi-column Character To Region Next To
Screen Margin (Not A Window Edge)

Two cases of copying an incomplete multi-column character to a region next
to a screen margin follow:

136 SunOS 5.8 Last modified 19 May 1999

X/Open Curses Library Functions curses(3XCURSES)

copywin(s, t, 0, 1, 0, 0, 1, 2, 0)

s t → t
[]cdef 123456 #cd456
ghijkl 789012 hij012

The background character (#) replaces the] character that would have been
copied from the source, because it is not possible to expand the multi-column
character to its complete form.

copywin(s, t, 0, 1, 0, 3, 1, 5, 0)

s t → t
abcdef 123456 123bcd
ghi()l 789012 789hi#

This second example is the same as the first, but with the right margin.

SEE ALSO ksh (1), COLOR_PAIR(3XCURSES), PAIR_NUMBER(3XCURSES),
addchstr (3XCURSES), attr_off (3XCURSES), attroff (3XCURSES),
bkgdset (3XCURSES), bkgrndset (3XCURSES), cbreak (3XCURSES),
copywin (3XCURSES), derwin (3XCURSES), echo (3XCURSES),
getcchar (3XCURSES), getch (3XCURSES), getnstr (3XCURSES),
halfdelay (3XCURSES), inch (3XCURSES), keypad (3XCURSES),
newpad(3XCURSES), newwin (3XCURSES), nocbreak (3XCURSES),
nodelay (3XCURSES), noecho (3XCURSES), noraw (3XCURSES),
notimeout (3XCURSES), overlay (3XCURSES), overwrite (3XCURSES),
setcchar (3XCURSES), subwin (3XCURSES), timeout (3XCURSES),
waddchstr (3XCURSES), waddstr (3XCURSES), wcwidth (3C),
wget_wch (3XCURSES), winsch (3XCURSES), wnoutrefresh (3XCURSES),
wprintw (3XCURSES), wrefresh (3XCURSES), wtimeout (3XCURSES),
termio (7I), environ (5)

Last modified 19 May 1999 SunOS 5.8 137

curs_getch(3CURSES) Curses Library Functions

NAME curs_getch, getch, wgetch, mvgetch, mvwgetch, ungetch – get (or push back)
characters from curses terminal keyboard

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int getch (void);

int wgetch (WINDOW *win);

int mvgetch (int y, int x);

int mvwgetch (WINDOW *win, int y, int x);

int ungetch (int ch);

DESCRIPTION With the getch() , wgetch() , mvgetch() , and mvwgetch() routines a
character is read from the terminal associated with the window. In no-delay
mode, if no input is waiting, the value ERRis returned. In delay mode, the
program waits until the system passes text through to the program. Depending
on the setting of cbreak() , this is after one character (cbreak mode), or after
the first newline (nocbreak mode). In half-delay mode, the program waits until a
character is typed or the specified timeout has been reached. Unless noecho()
has been set, the character will also be echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call
to wrefresh() , wrefresh() will be called before another character is read.

If keypad() is TRUE, and a function key is pressed, the token for that function
key is returned instead of the raw characters. Possible function keys are defined
in <curses.h> with integers beginning with 0401 , whose names begin
with KEY_ . If a character that could be the beginning of a function key (such
as escape) is received, curses sets a timer. If the remainder of the sequence
does not come in within the designated time, the character is passed through;
otherwise, the function key value is returned. For this reason, many terminals
experience a delay between the time a user presses the escape key and the escape
is returned to the program. Since tokens returned by these routines are outside
the ASCII range, they are not printable.

The ungetch() routine places ch back onto the input queue to be returned by
the next call to wgetch() .

Function Keys The following function keys, defined in <curses.h> , might be returned by
getch() if keypad() has been enabled. Note that not all of these may be
supported on a particular terminal if the terminal does not transmit a unique
code when the key is pressed or if the definition for the key is not present in
the terminfo database.

138 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_getch(3CURSES)

Name Key name

KEY_BREAK Break key

KEY_DOWN The four arrow keys ...

KEY_UP

KEY_LEFT

KEY_RIGHT

KEY_HOME Home key (upward+left arrow)

KEY_BACKSPACE Backspace

KEY_F0 Function keys; space for 64 keys
is reserved.

KEY_F(n) For 0 <= n <= 63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send

KEY_SRESET Soft (partial) reset

KEY_RESET Reset or hard reset

KEY_PRINT Print or copy

Last modified 31 Dec 1996 SunOS 5.8 139

curs_getch(3CURSES) Curses Library Functions

Name Key name

KEY_LL Home down or bottom (lower left).
Keypad is arranged like this: (Row
1) A1 up A3 (Row 2) left B2 right
(Row 3) C1 down C3

KEY_A1 Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab key

KEY_BEG Beg(inning) key

KEY_CANCEL Cancel key

KEY_CLOSE Close key

KEY_COMMAND Cmd (command) key

KEY_COPY Copy key

KEY_CREATE Create key

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key

KEY_MESSAGE Message key

KEY_MOVE Move key

KEY_NEXT Next object key

KEY_OPEN Open key

KEY_OPTIONS Options key

KEY_PREVIOUS Previous object key

KEY_REDO Redo key

KEY_REFERENCE Reference key

KEY_REFRESH Refresh key

KEY_REPLACE Replace key

140 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_getch(3CURSES)

Name Key name

KEY_RESTART Restart key

KEY_RESUME Resume key

KEY_SAVE Save key

KEY_SBEG Shifted beginning key

KEY_SCANCEL Shifted cancel key

KEY_SCOMMAND Shifted command key

KEY_SCOPY Shifted copy key

KEY_SCREATE Shifted create key

KEY_SDC Shifted delete char key

KEY_SDL Shifted delete line key

KEY_SELECT Select key

KEY_SEND Shifted end key

KEY_SEOL Shifted clear line key

KEY_SEXIT Shifted exit key

KEY_SFIND Shifted find key

KEY_SHELP Shifted help key

KEY_SHOME Shifted home key

KEY_SIC Shifted input key

KEY_SLEFT Shifted left arrow key

KEY_SMESSAGE Shifted message key

KEY_SMOVE Shifted move key

KEY_SNEXT Shifted next key

KEY_SOPTIONS Shifted options key

KEY_SPREVIOUS Shifted prev key

KEY_SPRINT Shifted print key

KEY_SREDO Shifted redo key

KEY_SREPLACE Shifted replace key

KEY_SRIGHT Shifted right arrow

KEY_SRSUME Shifted resume key

Last modified 31 Dec 1996 SunOS 5.8 141

curs_getch(3CURSES) Curses Library Functions

Name Key name

KEY_SSAVE Shifted save key

KEY_SSUSPEND Shifted suspend key

KEY_SUNDO Shifted undo key

KEY_SUSPEND Suspend key

KEY_UNDO Undo key

RETURN VALUES All routines return the integer ERRupon failure. The ungetch() routine returns
an integer value other than ERRupon successful completion. The other routines
return the next input character or function key code upon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_inopts (3CURSES) , curs_move (3CURSES) , curs_refresh (3CURSES)
, curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Use of the escape key for a single character function is discouraged.

When using getch() , wgetch() , mvgetch() , or mvwgetch() , nocbreak
mode (nocbreak()) and echo mode (echo()) should not be used at the same
time. Depending on the state of the tty driver when each character is typed, the
program may produce undesirable results.

Note that getch() , mvgetch() , and mvwgetch() may be macros.

142 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_getstr(3CURSES)

NAME curs_getstr, getstr, wgetstr, mvgetstr, mvwgetstr, wgetnstr – get character strings
from curses terminal keyboard

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int getstr (char *str);

int wgetstr (WINDOW *win, char *str);

int mvgetstr (int y, int x, char *str);

int mvwgetstr (WINDOW *win, int y, int x, char *str);

int wgetnstr (WINDOW *win, char *str, int n);

DESCRIPTION The effect of getstr() is as though a series of calls to getch() were made,
until a newline or carriage return is received. The resulting value is placed in
the area pointed to by the character pointer str . wgetnstr() reads at most n
characters, thus preventing a possible overflow of the input buffer. The user’s
erase and kill characters are interpreted, as well as any special keys (such as
function keys, HOME key, and CLEAR key.)

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_getch (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that getstr() , mvgetstr() , and mvwgetstr() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 143

curs_getwch(3CURSES) Curses Library Functions

NAME curs_getwch, getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch – get (or
push back) wchar_t characters from curses terminal keyboard

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int getwch (void);

int wgetwch (WINDOW *win);

int mvgetwch (int y, int x);

int mvwgetwch (WINDOW *win, int y, int x);

int ungetwch (int wch);

DESCRIPTION The getwch() , wgetwch() , mvgetwch() , and mvwgetwch() routines read
an EUC character from the terminal associated with the window, transform it
into a wchar_t character, and return a wchar_t character. In no-delay mode, if
no input is waiting, the value ERRis returned. In delay mode, the program waits
until the system passes text through to the program. Depending on the setting of
cbreak , this is after one character (cbreak mode), or after the first newline (
nocbreak mode). In half-delay mode, the program waits until a character is
typed or the specified timeout has been reached. Unless noecho has been set,
the character will also be echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh (3CURSES) , wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key
is returned instead of the raw characters. Possible function keys are defined
in <curses.h> with integers beginning with 0401 , whose names begin with
KEY_. If a character that could be the beginning of a function key (such as
escape) is received, curses (3CURSES) sets a timer. If the remainder of the
sequence does not come in within the designated time, the character is passed
through; otherwise, the function key value is returned. For this reason, many
terminals experience a delay between the time a user presses the escape key and
the escape is returned to the program.

The ungetwch() routine places wch back onto the input queue to be returned
by the next call to wgetwch() .

Function Keys The following function keys, defined in <curses.h> , might be returned by
getwch() if keypad has been enabled. Note that not all of these may be
supported on a particular terminal if the terminal does not transmit a unique
code when the key is pressed or if the definition for the key is not present in
the terminfo (4) database.

144 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_getwch(3CURSES)

Name Key name

KEY_BREAK Break key

KEY_DOWN The four arrow keys ...

KEY_UP

KEY_LEFT

KEY_RIGHT

KEY_HOME Home key (upward+left arrow)

KEY_BACKSPACE Backspace

KEY_F0 Function keys; space for 64 keys
is reserved.

KEY_F(n) For 0 <= n <= 63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send

KEY_SRESET Soft (partial) reset

KEY_RESET Reset or hard reset

KEY_PRINT Print or copy

Last modified 31 Dec 1996 SunOS 5.8 145

curs_getwch(3CURSES) Curses Library Functions

Name Key name

KEY_LL Home down or bottom (lower left).
Keypad is arranged like this: A1 up
A3 left B2 right C1 down C3

KEY_A1 Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab key

KEY_BEG Beg(inning) key

KEY_CANCEL Cancel key

KEY_CLOSE Close key

KEY_COMMAND Cmd (command) key

KEY_COPY Copy key

KEY_CREATE Create key

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key

KEY_MESSAGE Message key

KEY_MOVE Move key

KEY_NEXT Next object key

KEY_OPEN Open key

KEY_OPTIONS Options key

KEY_PREVIOUS Previous object key

KEY_REDO Redo key

KEY_REFERENCE Reference key

KEY_REFRESH Refresh key

KEY_REPLACE Replace key

146 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_getwch(3CURSES)

Name Key name

KEY_RESTART Restart key

KEY_RESUME Resume key

KEY_SAVE Save key

KEY_SBEG Shifted beginning key

KEY_SCANCEL Shifted cancel key

KEY_SCOMMAND Shifted command key

KEY_SCOPY Shifted copy key

KEY_SCREATE Shifted create key

KEY_SDC Shifted delete char key

KEY_SDL Shifted delete line key

KEY_SELECT Select key

KEY_SEND Shifted end key

KEY_SEOL Shifted clear line key

KEY_SEXIT Shifted exit key

KEY_SFIND Shifted find key

KEY_SHELP Shifted help key

KEY_SHOME Shifted home key

KEY_SIC Shifted input key

KEY_SLEFT Shifted left arrow key

KEY_SMESSAGE Shifted message key

KEY_SMOVE Shifted move key

KEY_SNEXT Shifted next key

KEY_SOPTIONS Shifted options key

KEY_SPREVIOUS Shifted prev key

KEY_SPRINT Shifted print key

KEY_SREDO Shifted redo key

KEY_SREPLACE Shifted replace key

KEY_SRIGHT Shifted right arrow

KEY_SRSUME Shifted resume key

Last modified 31 Dec 1996 SunOS 5.8 147

curs_getwch(3CURSES) Curses Library Functions

Name Key name

KEY_SSAVE Shifted save key

KEY_SSUSPEND Shifted suspend key

KEY_SUNDO Shifted undo key

KEY_SUSPEND Suspend key

KEY_UNDO Undo key

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , curs_inopts (3CURSES) , curs_move (3CURSES) ,
wrefresh (3CURSES) , terminfo (4) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Use of the escape key by a programmer for a single character function is
discouraged.

When using getwch() , wgetwch() , mvgetwch() , or mvwgetwch()
, nocbreak mode and echo mode should not be used at the same time.
Depending on the state of the tty driver when each character is typed, the
program may produce undesirable results.

Note that getwch() , mvgetwch() , and mvwgetwch() may be macros.

148 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_getwstr(3CURSES)

NAME curs_getwstr, getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr,
mvwgetwstr, mvwgetnwstr – get wchar_t character strings from curses terminal
keyboard

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int getwstr (wchar_t *wstr);

int getnwstr (wchar_t *wstr, int n);

int wgetwstr (WINDOW *win, wchar_t *wstr);

int wgetnwstr (WINDOW *win, wchar_t *wstr, int n);

int mvgetwstr (int y, int x, wchar_t *wstr);

int mvgetnwstr (int y, int x, wchar_t *wstr, int n);

int mvwgetwstr (WINDOW *win, int y, int x, wchar_t *wstr);

int mvwgetnwstr (WINDOW *win, int y, int x, wchar_t *wstr, int n);

DESCRIPTION The effect of getwstr() is as though a series of calls to getwch (3CURSES)
were made, until a newline and carriage return is received. The resulting value is
placed in the area pointed to by the wchar_t pointer wstr . getnwstr() reads
at most n wchar_t characters, thus preventing a possible overflow of the input
buffer. The user’s erase and kill characters are interpreted, as well as any special
keys (such as function keys, HOME key, CLEAR key, etc.).

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , getwch (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> , and <widec.h> .

Note that all routines except wgetnwstr() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 149

curs_getyx(3CURSES) Curses Library Functions

NAME curs_getyx, getyx, getparyx, getbegyx, getmaxyx – get curses cursor and
window coordinates

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
void getyx (WINDOW *win, int y, int x);

void getparyx (WINDOW *win, int y, int x);

void getbegyx (WINDOW *win, int y, int x);

void getmaxyx (WINDOW *win, int y, int x);

DESCRIPTION With the getyx() macro, the cursor position of the window is placed in the two
integer variables y and x .

With the getparyx() macro, if win is a subwindow, the beginning coordinates
of the subwindow relative to the parent window are placed into two integer
variables, y and x . Otherwise, -1 is placed into y and x .

Like getyx() , the getbegyx() and getmaxyx() macros store the current
beginning coordinates and size of the specified window.

RETURN VALUES The return values of these macros are undefined (that is, they should not be used
as the right-hand side of assignment statements).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all of these interfaces are macros and that “& ” is not necessary before
the variables y and x .

150 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_inch(3CURSES)

NAME curs_inch, inch, winch, mvinch, mvwinch – get a character and its attributes
from a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
chtype inch (void);

chtype winch (WINDOW *win);

chtype mvinch (int y, int x);

chtype mvwinch (WINDOW *win, int y, int x);

DESCRIPTION With these routines, the character, of type chtype , at the current position in
the named window is returned. If any attributes are set for that position, their
values are OR-ed into the value returned. Constants defined in <curses.h>
can be used with the logical AND (&) operator to extract the character or
attributes alone.

Attributes The following bit-masks may be AND-ed with characters returned by winch() .
A_CHARTEXT Bit-mask to extract character

A_ATTRIBUTES Bit-mask to extract attributes

A_COLOR Bit-mask to extract color-pair field information

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all of these routines may be macros.

Last modified 31 Dec 1996 SunOS 5.8 151

curs_inchstr(3CURSES) Curses Library Functions

NAME curs_inchstr, inchstr, inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr,
mvwinchstr, mvwinchnstr – get a string of characters (and attributes) from a
curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int inchstr (chtype *chstr);

int inchnstr (chtype *chstr, int n);

int winchstr (WINDOW *win, chtype *chstr);

int winchnstr (WINDOW *win, chtype *chstr, int n);

int mvinchstr (int y, int x, chtype *chstr);

int mvinchnstr (int y, int x, chtype *chstr, int n);

int mvwinchstr (WINDOW *win, int y, int x, chtype *chstr);

int mvwinchnstr (WINDOW *win, int y, int x, chtype *chstr, int n);

DESCRIPTION With these routines, a string of type chtype , starting at the current cursor
position in the named window and ending at the right margin of the window, is
returned. The four functions with n as the last argument, return the string at
most n characters long. Constants defined in <curses.h> can be used with the
& (logical AND) operator to extract the character or the attribute alone from any
position in the chstr (see curs_inch (3CURSES)).

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_inch (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all routines except winchnstr() may be macros.

152 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_initscr(3CURSES)

NAME curs_initscr, initscr, newterm, endwin, isendwin, set_term, delscreen – curses
screen initialization and manipulation routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
WINDOW *initscr (void);

int endwin (void);

int isendwin (void);

SCREEN *newterm (char *type, FILE *outfd, FILE *infd);

SCREEN *set_term (SCREEN *new);

void delscreen (SCREEN * sp);

DESCRIPTION initscr() is almost always the first routine that should be called (the
exceptions are slk_init() , filter() , ripoffline() , use_env() and,
for multiple-terminal applications, newterm() .) This determines the terminal
type and initializes all curses data structures. initscr() also causes the first
call to refresh() to clear the screen. If errors occur, initscr() writes an
appropriate error message to standard error and exits; otherwise, a pointer is
returned to stdscr() . If the program needs an indication of error conditions,
newterm() should be used instead of initscr() ; initscr() should only
be called once per application.

A program that outputs to more than one terminal should use the newterm()
routine for each terminal instead of initscr() . A program that needs an
indication of error conditions, so it can continue to run in a line-oriented mode
if the terminal cannot support a screen-oriented program, would also use this
routine. The routine newterm() should be called once for each terminal. It
returns a variable of type SCREEN *which should be saved as a reference to
that terminal. The arguments are the type of the terminal to be used in place
of $TERM, a file pointer for output to the terminal, and another file pointer for
input from the terminal (if type is NULL , $TERMwill be used). The program must
also call endwin() for each terminal being used before exiting from curses. If
newterm() is called more than once for the same terminal, the first terminal
referred to must be the last one for which endwin() is called.

A program should always call endwin() before exiting or escaping from
curses mode temporarily. This routine restores tty modes, moves the cursor to
the lower left-hand corner of the screen and resets the terminal into the proper
non-visual mode. Calling refresh() or doupdate() after a temporary escape
causes the program to resume visual mode.

The isendwin() routine returns TRUEif endwin() has been called without
any subsequent calls to wrefresh() , and FALSEotherwise.

Last modified 31 Dec 1996 SunOS 5.8 153

curs_initscr(3CURSES) Curses Library Functions

The set_term() routine is used to switch between different terminals. The
screen reference new becomes the new current terminal. The previous terminal is
returned by the routine. This is the only routine which manipulates SCREEN
pointers; all other routines affect only the current terminal.

The delscreen() routine frees storage associated with the SCREENdata
structure. The endwin() routine does not do this, so delscreen() should be
called after endwin() if a particular SCREENis no longer needed.

RETURN VALUES endwin() returns the integer ERRupon failure and OKupon successful
completion.

Routines that return pointers always return NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_kernel (3CURSES) , curs_refresh (3CURSES) , curs_slk (3CURSES) ,
curs_util (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that initscr() and newterm() may be macros.

154 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_inopts(3CURSES)

NAME curs_inopts, cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad,
meta, nodelay, notimeout, raw, noraw, noqiflush, qiflush, timeout, wtimeout,
typeahead – curses terminal input option control routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int cbreak (void);

int nocbreak (void);

int echo (void);

int noecho (void);

int halfdelay (int tenths);

int intrflush (WINDOW *win, bool bf);

int keypad (WINDOW *win, bool bf);

int meta (WINDOW *win, bool bf);

int nodelay (WINDOW *win, bool bf);

int notimeout (WINDOW *win, bool bf);

int raw (void);

int noraw (void);

void noqiflush (void);

void qiflush (void);

void timeout (int delay);

void wtimeout (WINDOW *win, int delay);

int typeahead (int fildes);

DESCRIPTION The cbreak() and nocbreak() routines put the terminal into and out of
cbreak() mode, respectively. In this mode, characters typed by the user are
immediately available to the program, and erase/kill character-processing
is not performed. When out of this mode, the tty driver buffers the typed
characters until a newline or carriage return is typed. Interrupt and flow control
characters are unaffected by this mode. Initially the terminal may or may not
be in cbreak() mode, as the mode is inherited; therefore, a program should
call cbreak() or nocbreak() explicitly. Most interactive programs using
curses set the cbreak() mode.

Note that cbreak() overrides raw() . (See curs_getch (3CURSES) for a
discussion of how these routines interact with echo() and noecho() .)

Last modified 31 Dec 1996 SunOS 5.8 155

curs_inopts(3CURSES) Curses Library Functions

The echo() and noecho() routines control whether characters typed by the
user are echoed by getch() as they are typed. Echoing by the tty driver is
always disabled, but initially getch() is in echo mode, so characters typed are
echoed. Authors of most interactive programs prefer to do their own echoing in
a controlled area of the screen, or not to echo at all, so they disable echoing by
calling noecho() . (See curs_getch (3CURSES) for a discussion of how these
routines interact with cbreak() and nocbreak() .)

The halfdelay() routine is used for half-delay mode, which is similar to
cbreak() mode in that characters typed by the user are immediately available
to the program. However, after blocking for tenths tenths of seconds, ERRis
returned if nothing has been typed. The value of tenths must be a number
between 1 and 255. Use nocbreak() to leave half-delay mode.

If the intrflush() option is enabled, (bf is TRUE), when an interrupt key is
pressed on the keyboard (interrupt, break, quit) all output in the tty driver queue
will be flushed, giving the effect of faster response to the interrupt, but causing
curses to have the wrong idea of what is on the screen. Disabling (bf is FALSE),
the option prevents the flush. The default for the option is inherited from the tty
driver settings. The window argument is ignored.

The keypad() option enables the keypad of the user’s terminal. If enabled (bf is
TRUE), the user can press a function key (such as an arrow key) and wgetch()
returns a single value representing the function key, as in KEY_LEFT. If disabled
(bf is FALSE), curses does not treat function keys specially and the program
has to interpret the escape sequences itself. If the keypad in the terminal can be
turned on (made to transmit) and off (made to work locally), turning on this
option causes the terminal keypad to be turned on when wgetch() is called.
The default value for keypad is false.

Initially, whether the terminal returns 7 or 8 significant bits on input depends
on the control mode of the tty driver (see termio (7I)). To force 8 bits to be
returned, invoke meta (win , TRUE). To force 7 bits to be returned, invoke meta
(win , FALSE). The window argument, win , is always ignored. If the terminfo
capabilities smm(meta_on) and rmm(meta_off) are defined for the terminal,
smmis sent to the terminal when meta (win , TRUE) is called and rmmis sent
when meta (win , FALSE) is called.

The nodelay() option causes getch() to be a non-blocking call. If no input
is ready, getch() returns ERR. If disabled (bf is FALSE), getch() waits
until a key is pressed.

While interpreting an input escape sequence, wgetch() sets a timer while
waiting for the next character. If notimeout(win , TRUE) is called, then
wgetch() does not set a timer. The purpose of the timeout is to differentiate
between sequences received from a function key and those typed by a user.

156 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_inopts(3CURSES)

With the raw() and noraw() routines, the terminal is placed into or out of raw
mode. Raw mode is similar to cbreak() mode, in that characters typed are
immediately passed through to the user program. The differences are that in raw
mode, the interrupt, quit, suspend, and flow control characters are all passed
through uninterpreted, instead of generating a signal. The behavior of the
BREAK key depends on other bits in the tty driver that are not set by curses .

When the noqiflush() routine is used, normal flush of input and output
queues associated with the INTR , QUIT and SUSPcharacters will not be done
(see termio (7I)). When qiflush() is called, the queues will be flushed
when these control characters are read.

The timeout() and wtimeout() routines set blocking or non-blocking read
for a given window. If delay is negative, blocking read is used (that is, waits
indefinitely for input). If delay is zero, then non-blocking read is used (that is,
read returns ERRif no input is waiting). If delay is positive, then read blocks for
delay milliseconds, and returns ERRif there is still no input. Hence, these routines
provide the same functionality as nodelay() , plus the additional capability of
being able to block for only delay milliseconds (where delay is positive).

curses does “line-breakout optimization” by looking for typeahead periodically
while updating the screen. If input is found, and it is coming from a tty, the
current update is postponed until refresh() or doupdate() is called again.
This allows faster response to commands typed in advance. Normally, the input
FILE pointer passed to newterm() , or stdin in the case that initscr() was
used, will be used to do this typeahead checking. The typeahead() routine
specifies that the file descriptor fildes is to be used to check for typeahead instead.
If fildes is -1, then no typeahead checking is done.

RETURN VALUES All routines that return an integer return ERRupon failure and an integer value
other than ERRupon successful completion, unless otherwise noted in the
preceding routine descriptions.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_getch (3CURSES) , curs_initscr (3CURSES) , curses (3CURSES) ,
attributes (5) , termio (7I)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that echo() , noecho() , halfdelay() , intrflush() , meta() ,
nodelay() , notimeout() , noqiflush() , qiflush() , timeout() ,
and wtimeout() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 157

curs_insch(3CURSES) Curses Library Functions

NAME curs_insch, insch, winsch, mvinsch, mvwinsch – insert a character before the
character under the cursor in a curses window

SYNOPSIS cc [flag ...] file... −lcurses [library ...]
#include <curses.h>
int insch (chtype ch);

int winsch (WINDOW *win, chtype ch);

int mvinsch (int y, int x, chtype ch);

int mvwinsch (WINDOW *win, int y, int x, chtype ch);

DESCRIPTION With these routines, the character ch is inserted before the character under the
cursor. All characters to the right of the cursor are moved one space to the right,
with the possibility of the rightmost character on the line being lost. The cursor
position does not change (after moving to y , x , if specified). (This does not
imply use of the hardware insert character feature.)

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that insch() , mvinsch() , and mvwinsch() may be macros.

158 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_insstr(3CURSES)

NAME curs_insstr, insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr,
mvwinsnstr – insert string before character under the cursor in a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int insstr (char *str);

int insnstr (char *str, int n);

int winsstr (WINDOW *win, char *str);

int winsnstr (WINDOW *win, char *str, int n);

int mvinsstr (int y, int x, char *str);

int mvinsnstr (int y, int x, char *str, int n);

int mvwinsstr (WINDOW *win, int y, int x, char *str);

int mvwinsnstr (WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION With these routines, a character string (as many characters as will fit on the line)
is inserted before the character under the cursor. All characters to the right of the
cursor are moved to the right, with the possibility of the rightmost characters on
the line being lost. The cursor position does not change (after moving to y , x , if
specified). (This does not imply use of the hardware insert character feature.)
The four routines with n as the last argument insert at most n characters. If n
<=0, then the entire string is inserted.

If a character in str is a tab, newline, carriage return or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol()
before moving. Tabs are considered to be at every eighth column. If a character
in str is another control character, it is drawn in the ^ X notation. Calling
winch() after adding a control character (and moving to it, if necessary) does
not return the control character, but instead returns the representation of the
control character.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_clear (3CURSES) , curs_inch (3CURSES) , curses (3CURSES) ,
attributes (5)

Last modified 31 Dec 1996 SunOS 5.8 159

curs_insstr(3CURSES) Curses Library Functions

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all but winsnstr() may be macros.

160 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_instr(3CURSES)

NAME curs_instr, instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr, mvwinnstr
– get a string of characters from a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int instr (char *str);

int innstr (char *str, int n);

int winstr (WINDOW *win, char *str);

int winnstr (WINDOW *win, char *str, int n);

int mvinstr (int y, int x, char *str);

int mvinnstr (int y, int x, char *str, int n);

int mvwinstr (WINDOW *win, int y, int x, char *str);

int mvwinnstr (WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION These routines return a string of characters in str , starting at the current cursor
position in the named window and ending at the right margin of the window.
Attributes are stripped from the characters. The four functions with n as the last
argument return the string at most n characters long.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all routines except winnstr() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 161

curs_inswch(3CURSES) Curses Library Functions

NAME curs_inswch, inswch, winswch, mvinswch, mvwinswch – insert a wchar_t
character before the character under the cursor in a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int inswch (chtype wch);

int winswch (WINDOW *win, chtype wch);

int mvinswch (int y, int x, chtype wch);

int mvwinswch (WINDOW *win, int y, int x, chtype wch);

DESCRIPTION These routines insert the character wch , holding a wchar_t character, before the
character under the cursor. All characters to the right of the cursor are moved
one space to the right, with the possibility of the rightmost character on the
line being lost. The cursor position does not change (after moving to y , x , if
specified). (This does not imply use of the hardware insert character feature.)

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Note that inswch() , mvinswch() , and mvwinswch() may be macros.

None of these routines can use the color attribute in chtype .

162 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_inswstr(3CURSES)

NAME curs_inswstr, inswstr, insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr,
mvwinswstr, mvwinsnwstr – insert wchar_t string before character under the
cursor in a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int inswstr (wchar_t *wstr);

int insnwstr (wchar_t *wstr, int n);

int winswstr (WINDOW *win, wchar_t *wstr);

int winsnwstr (WINDOW *win, wchar_t *wstr, int n);

int mvinswstr (int y, int x, wchar_t *wstr);

int mvinsnwstr (int y, int x, wchar_t *wstr, int n);

int mvwinswstr (WINDOW *win, int y, int x, wchar_t *wstr);

int mvwinsnwstr (WINDOW *win, int y, int x, wchar_t *wstr, int n);

DESCRIPTION These routines insert a wchar_t character string (as many wchar_t characters
as will fit on the line) before the character under the cursor. All characters to the
right of the cursor are moved to the right, with the possibility of the rightmost
characters on the line being lost. The cursor position does not change (after
moving to y , x , if specified). (This does not imply use of the hardware insert
character feature.) The four routines with n as the last argument insert at most n
wchar_t characters. If n <=0, then the entire string is inserted.

If a character in wstr is a tab, newline, carriage return, or backspace, the
cursor is moved appropriately within the window. A newline also does a
clrtoeol (3CURSES) before moving. Tabs are considered to be at every eighth
column. If a character in wstr is another control character, it is drawn in the ^
X notation. Calling winwch (3CURSES) after adding a control character (and
moving to it, if necessary) does not return the control character, but instead
returns the representation of the control character.

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO clrtoeol (3CURSES) , curses (3CURSES) , winwch (3CURSES) ,
attributes (5)

Last modified 31 Dec 1996 SunOS 5.8 163

curs_inswstr(3CURSES) Curses Library Functions

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Note that all but winsnwstr() may be macros.

164 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_inwch(3CURSES)

NAME curs_inwch, inwch, winwch, mvinwch, mvwinwch – get a wchar_t character and
its attributes from a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
chtype inwch (void);

chtype winwch (WINDOW *win);

chtype mvinwch (int y, int x);

chtype mvwinwch (WINDOW *win, int y, int x);

DESCRIPTION These routines return the wchar_t character, of type chtype , at the current
position in the named window. If any attributes are set for that position, their
values are OR-ed into the value returned. Constants defined in <curses.h>
can be used with the logical AND (&) operator to extract the character or
attributes alone.

Attributes The following bit-masks may be AND-ed with characters returned by winwch()
.

A_WCHARTEXT Bit-mask to extract character
A_WATTRIBUTES Bit-mask to extract attributes

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Note that all of these routines may be macros.

None of these routines can use the color attribute in chtype .

Last modified 31 Dec 1996 SunOS 5.8 165

curs_inwchstr(3CURSES) Curses Library Functions

NAME curs_inwchstr, inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr – get a string of wchar_t characters
(and attributes) from a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int inwchstr (chtype *wchstr);

int inwchnstr (chtype *wchstr, int n);

int winwchstr (WINDOW *win, chtype *wchstr);

int winwchnstr (WINDOW *win, chtype *wchstr, int n);

int mvinwchstr (int y, int x, chtype *wchstr);

int mvinwchnstr (int y, int x, chtype *wchstr, int n);

int mvwinwchstr (WINDOW *win, int y, int x, chtype *wchstr);

int mvwinwchnstr (WINDOW *win, int y, int x, chtype *wchstr, int n);

DESCRIPTION These routines return a string of type chtype , holding wchar_t characters,
starting at the current cursor position in the named window and ending at the
right margin of the window. The four functions with n as the last argument,
return the string at most n wchar_t characters long. Constants defined in
<curses.h> can be used with the logical AND (&) operator to extract the
wchar_t character or the attribute alone from any position in the wchstr (see
curs_inwch (3CURSES)).

RETURN VALUE All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , curs_inwch (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Note that all routines except winwchnstr() may be macros.

None of these routines can use the color attribute in chtype .

166 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_inwstr(3CURSES)

NAME curs_inwstr, inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr,
mvwinwstr, mvwinnwstr – get a string of wchar_t characters from a curses
window

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
int inwstr (wchar_t *wstr);

int innwstr (wchar_t *wstr, int n);

int winwstr (WINDOW *win, wchar_t *wstr);

int winnwstr (WINDOW *win, wchar_t *wstr, int n);

int mvinwstr (int y, int x, wchar_t *wstr);

int mvinnwstr (int y, int x, wchar_t *wstr, int n);

int mvwinwstr (WINDOW *win, int y, int x, wchar_t *wstr);

int mvwinnwstr (WINDOW *win, int y, int x, wchar_t *wstr, int n);

DESCRIPTION These routines return the string of wchar_t characters in wstr starting at the
current cursor position in the named window and ending at the right margin of
the window. Attributes are stripped from the characters. The four functions with
n as the last argument return the string at most n wchar_t characters long.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Note that all routines except winnwstr() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 167

curs_kernel(3CURSES) Curses Library Functions

NAME curs_kernel, def_prog_mode, def_shell_mode, reset_prog_mode,
reset_shell_mode, resetty, savetty, getsyx, setsyx, ripoffline, curs_set, napms
– low-level curses routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int def_prog_mode (void);

int def_shell_mode (void);

int reset_prog_mode (void);

int reset_shell_mode (void);

int resetty (void);

int savetty (void);

int getsyx (int y, int x);

int setsyx (int y, int x);

int ripoffline (int line, int (*init)(WINDOW *, int));

int curs_set (int visibility);

int napms(int ms);

DESCRIPTION The following routines give low-level access to various curses functionality.
Theses routines typically are used inside library routines.

The def_prog_mode() and def_shell_mode() routines save the current
terminal modes as the “program” (in curses) or “shell” (not in curses) state
for use by the reset_prog_mode() and reset_shell_mode() routines.
This is done automatically by initscr() .

The reset_prog_mode() and reset_shell_mode() routines restore the
terminal to “program” (in curses) or “shell” (out of curses) state. These are
done automatically by endwin() and, after an endwin() , by doupdate() ,
so they normally are not called.

The resetty() and savetty() routines save and restore the state of the
terminal modes. savetty() saves the current state in a buffer and resetty()
restores the state to what it was at the last call to savetty() .

With the getsyx() routine, the current coordinates of the virtual screen
cursor are returned in y and x. If leaveok() is currently TRUE, then -1 ,-1
is returned. If lines have been removed from the top of the screen, using
ripoffline() , y and x include these lines; therefore, y and x should be used
only as arguments for setsyx() .

168 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_kernel(3CURSES)

With the setsyx() routine, the virtual screen cursor is set to y , x . If y and
x are both -1 , then leaveok() is set. The two routines getsyx() and
setsyx() are designed to be used by a library routine, which manipulates
curses windows but does not want to change the current position of the
program’s cursor. The library routine would call getsyx() at the beginning, do
its manipulation of its own windows, do a wnoutrefresh() on its windows,
call setsyx() , and then call doupdate() .

The ripoffline() routine provides access to the same facility that
slk_init() (see curs_slk (3CURSES)) uses to reduce the size of the
screen. ripoffline() must be called before initscr() or newterm() is
called. If line is positive, a line is removed from the top of stdscr() ; if
line is negative, a line is removed from the bottom. When this is done inside
initscr() , the routine init() (supplied by the user) is called with two
arguments: a window pointer to the one-line window that has been allocated and
an integer with the number of columns in the window. Inside this initialization
routine, the integer variables LINES and COLS(defined in <curses.h>) are not
guaranteed to be accurate and wrefresh() or doupdate() must not be called.
It is allowable to call wnoutrefresh() during the initialization routine.

ripoffline() can be called up to five times before calling initscr() or
newterm() .

With the curs_set() routine, the cursor state is set to invisible, normal, or
very visible for visibility equal to 0 , 1 , or 2 respectively. If the terminal supports
the visibility requested, the previous cursor state is returned; otherwise, ERR
is returned.

The napms() routine is used to sleep for ms milliseconds.

RETURN VALUES Except for curs_set() , these routines always return OK. curs_set() returns
the previous cursor state, or ERRif the requested visibility is not supported.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_initscr (3CURSES) , curs_outopts (3CURSES) ,
curs_refresh (3CURSES) , curs_scr_dump (3CURSES) ,
curs_slk (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that getsyx() is a macro, so an ampersand (&) is not necessary before
the variables y and x .

Last modified 31 Dec 1996 SunOS 5.8 169

curs_move(3CURSES) Curses Library Functions

NAME curs_move, move, wmove – move curses window cursor

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

DESCRIPTION With these routines, the cursor associated with the window is moved to line y
and column x . This routine does not move the physical cursor of the terminal
until refresh() is called. The position specified is relative to the upper
left-hand corner of the window, which is (0,0).

RETURN VALUES These routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_refresh (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that move() may be a macro.

170 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_outopts(3CURSES)

NAME curs_outopts, clearok, idlok, idcok, immedok, leaveok, setscrreg, wsetscrreg,
scrollok, nl, nonl – curses terminal output option control routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int clearok (WINDOW *win, bool bf);

int idlok (WINDOW *win, bool bf);

void idcok (WINDOW *win, bool bf);

void immedok (WINDOW *win, bool bf);

int leaveok (WINDOW *win, bool bf);

int setscrreg (int top, int bot);

int wsetscrreg (WINDOW *win, int top, int bot);

int scrollok (WINDOW *win, bool bf);

int nl (void);

int nonl (void);

DESCRIPTION These routines set options that deal with output within curses . All options
are initially FALSE , unless otherwise stated. It is not necessary to turn these
options off before calling endwin() .

With the clearok() routine, if enabled (bf is TRUE), the next call to
wrefresh() with this window will clear the screen completely and redraw the
entire screen from scratch. This is useful when the contents of the screen are
uncertain, or in some cases for a more pleasing visual effect. If the win argument
to clearok() is the global variable curscr() , the next call to wrefresh()
with any window causes the screen to be cleared and repainted from scratch.

With the idlok() routine, if enabled (bf is TRUE), curses considers using
the hardware insert/delete line feature of terminals so equipped. If disabled
(bf is FALSE) , curses very seldom uses this feature. (The insert/delete
character feature is always considered.) This option should be enabled only if
the application needs insert/delete line, for example, for a screen editor. It is
disabled by default because insert/delete line tends to be visually annoying
when used in applications where it isn’t really needed. If insert/delete line
cannot be used, curses redraws the changed portions of all lines.

With the idcok() routine, if enabled (bf is TRUE), curses considers using the
hardware insert/delete character feature of terminals so equipped. This is
enabled by default.

With the immedok() routine, if enabled (bf is TRUE), any change in the window
image, such as the ones caused by waddch() , wclrtobot() , wscrl() , etc.,

Last modified 31 Dec 1996 SunOS 5.8 171

curs_outopts(3CURSES) Curses Library Functions

automatically cause a call to wrefresh() . However, it may degrade the
performance considerably, due to repeated calls to wrefresh() . It is disabled
by default. Normally, the hardware cursor is left at the location of the window
cursor being refreshed. The leaveok() option allows the cursor to be left
wherever the update happens to leave it. It is useful for applications where the
cursor is not used, since it reduces the need for cursor motions. If possible, the
cursor is made invisible when this option is enabled.

The setscrreg() and wsetscrreg() routines allow the application
programmer to set a software scrolling region in a window. top and bot are the
line numbers of the top and bottom margin of the scrolling region. (Line 0 is
the top line of the window.) If this option and scrollok() are enabled, an
attempt to move off the bottom margin line causes all lines in the scrolling region
to scroll up one line. Only the text of the window is scrolled. (Note that this
has nothing to do with the use of a physical scrolling region capability in the
terminal, like that in the VT100. If idlok() is enabled and the terminal has
either a scrolling region or insert/delete line capability, they will probably be
used by the output routines.)

The scrollok() option controls what happens when the cursor of a window
is moved off the edge of the window or scrolling region, either as a result of a
newline action on the bottom line, or typing the last character of the last line. If
disabled, (bf is FALSE), the cursor is left on the bottom line. If enabled, (bf is
TRUE), wrefresh() is called on the window, and the physical terminal and
window are scrolled up one line. (Note that in order to get the physical scrolling
effect on the terminal, it is also necessary to call idlok() .)

The nl() and nonl() routines control whether newline is translated into
carriage return and linefeed on output, and whether return is translated into
newline on input. Initially, the translations do occur. By disabling these
translations using nonl() , curses is able to make better use of the linefeed
capability, resulting in faster cursor motion.

RETURN VALUES setscrreg() and wsetscrreg() return OKupon success and ERRupon
failure. All other routines that return an integer always return OK.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_addch (3CURSES) , curs_clear (3CURSES) , curs_initscr (3CURSES)
, curs_refresh (3CURSES) , curs_scroll (3CURSES) , curses (3CURSES) ,
attributes (5)

172 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_outopts(3CURSES)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that clearok() , leaveok() , scrollok() , idcok() , nl() , nonl()
, and setscrreg() may be macros.

The immedok() routine is useful for windows that are used as terminal
emulators.

Last modified 31 Dec 1996 SunOS 5.8 173

curs_overlay(3CURSES) Curses Library Functions

NAME curs_overlay, overlay, overwrite, copywin – overlap and manipulate overlapped
curses windows

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int overlay (WINDOW *srcwin, WINDOW *dstwin);

int overwrite (WINDOW *srcwin, WINDOW *dstwin);

int copywin (WINDOW *srcwin, WINDOW *dstwin, int sminrow, int smincol, int dminrow,
int dmincol, int dmaxrow, int dmaxcol, int overlay);

DESCRIPTION The overlay() and overwrite() routines overlay srcwin on top of dstwin .
scrwin and dstwin are not required to be the same size; only text where the two
windows overlap is copied. The difference is that overlay() is non-destructive
(blanks are not copied) whereas overwrite() is destructive.

The copywin() routine provides a finer granularity of control over the
overlay() and overwrite() routines. Like in the prefresh() routine,
a rectangle is specified in the destination window, (dminrow , dmincol) and
(dmaxrow , dmaxcol), and the upper-left-corner coordinates of the source
window, (sminrow , smincol). If the argument overlay is true , then copying is
non-destructive, as in overlay() .

RETURN VALUES Routines that return an integer return ERRupon failure and an integer value
other than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_pad (3CURSES) , curs_refresh (3CURSES) , curses (3CURSES) ,
attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that overlay() and overwrite may be macros.

174 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_pad(3CURSES)

NAME curs_pad, newpad, subpad, prefresh, pnoutrefresh, pechochar, pechowchar –
create and display curses pads

SYNOPSIS cc [flag ...] file ... −lcurses [library ..]
#include <curses.h>
WINDOW *newpad(int nlines, int ncols);

WINDOW *subpad (WINDOW *orig, int nlines, int ncols, int begin_y, int begin_x);

int prefresh (WINDOW *pad, int pminrow, int pmincol, int sminrow, int smincol, int
smaxrow, int smaxcol);

int pnoutrefresh (WINDOW *pad, int pminrow, int pmincol, int sminrow, int smincol, int
smaxrow, int smaxcol);

int pechochar (WINDOW *pad, chtype ch);

int pechowchar (WINDOW *pad, chtype wch);

DESCRIPTION The newpad() routine creates and returns a pointer to a new pad data structure
with the given number of lines, nlines , and columns, ncols . A pad is like a
window, except that it is not restricted by the screen size, and is not necessarily
associated with a particular part of the screen. Pads can be used when a large
window is needed, and only a part of the window will be on the screen at one
time. Automatic refreshes of pads (for example, from scrolling or echoing of
input) do not occur. It is not legal to call wrefresh (3CURSES) with a pad
as an argument; the routines prefresh() or pnoutrefresh() should be
called instead. Note that these routines require additional parameters to specify
the part of the pad to be displayed and the location on the screen to be used
for the display.

The subpad() routine creates and returns a pointer to a subwindow within
a pad with the given number of lines, nlines , and columns, ncols . Unlike
subwin (3CURSES) , which uses screen coordinates, the window is at position
(begin_x , begin_y) on the pad. The window is made in the middle of the
window orig , so that changes made to one window affect both windows. During
the use of this routine, it will often be necessary to call touchwin (3CURSES) or
touchline (3CURSES) on orig before calling prefresh() .

The prefresh() and pnoutrefresh() routines are analogous to
wrefresh (3CURSES) and wnoutrefresh (3CURSES) except that they relate
to pads instead of windows. The additional parameters are needed to indicate
what part of the pad and screen are involved. pminrow and pmincol specify the
upper left-hand corner of the rectangle to be displayed in the pad. sminrow ,
smincol , smaxrow , and smaxcol specify the edges of the rectangle to be displayed
on the screen. The lower right-hand corner of the rectangle to be displayed in the
pad is calculated from the screen coordinates, since the rectangles must be the
same size. Both rectangles must be entirely contained within their respective

Last modified 31 Dec 1996 SunOS 5.8 175

curs_pad(3CURSES) Curses Library Functions

structures. Negative values of pminrow , pmincol , sminrow , or smincol are treated
as if they were zero.

The pechochar() routine is functionally equivalent to a call to
addch (3CURSES) followed by a call to refresh (3CURSES) , a call to
waddch (3CURSES) followed by a call to wrefresh (3CURSES) , or a call to
waddch (3CURSES) followed by a call to prefresh() . The knowledge that
only a single character is being output is taken into consideration and, for
non-control characters, a considerable performance gain might be seen by using
these routines instead of their equivalents. In the case of pechochar() , the last
location of the pad on the screen is reused for the arguments to prefresh() .

RETURN VALUES Routines that return an integer return ERRupon failure and an integer value
other than ERRupon successful completion.

Routines that return pointers return NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO addch (3CURSES) , curses (3CURSES) , refresh (3CURSES) ,
subwin (3CURSES) , touchline (3CURSES) , touchwin (3CURSES) ,
waddch (3CURSES) , wnoutrefresh (3CURSES) , wrefresh (3CURSES) ,
attributes (5)

NOTES The header file <curses.h> automatically includes the header files <stdio.h>
, <unctrl.h> and <widec.h> .

Note that pechochar() may be a macro.

176 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_printw(3CURSES)

NAME curs_printw, printw, wprintw, mvprintw, mvwprintw, vwprintw – print
formatted output in curses windows

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int printw (char *fmt, /* arg */ ...);

int wprintw (WINDOW *win, char *fmt, /* arg */ ...);

int mvprintw (int y, int x, char *fmt, /* arg */ ...);

int mvwprintw (WINDOW *win, int y, int x, char *fmt, /* arg */...);

#include <varargs.h>
int vwprintw (WINDOW *win, char *fmt, /* varglist */ ...);

DESCRIPTION The printw() , wprintw() , mvprintw() , and mvwprintw() routines are
analogous to printf() (see printf (3C)). In effect, the string that would
be output by printf() is output instead as though waddstr() were used
on the given window.

The vwprintw() routine is analogous to vprintf() (see vprintf (3C)) and
performs a wprintw() using a variable argument list. The third argument is a
va_list , a pointer to a list of arguments, as defined in <varargs.h> .

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , printf (3C) , vprintf (3C) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Last modified 31 Dec 1996 SunOS 5.8 177

curs_refresh(3CURSES) Curses Library Functions

NAME curs_refresh, refresh, wrefresh, wnoutrefresh, doupdate, redrawwin, wredrawln
– refresh curses windows and lines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int refresh (void);

int wrefresh (WINDOW *win);

int wnoutrefresh (WINDOW *win);

int doupdate (void);

int redrawwin (WINDOW *win);

int wredrawln (WINDOW *win, int beg_line, int num_lines);

DESCRIPTION The refresh() and wrefresh() routines (or wnoutrefresh() and
doupdate()) must be called to get any output on the terminal, as other
routines merely manipulate data structures. The routine wrefresh() copies
the named window to the physical terminal screen, taking into account what is
already there in order to do optimizations. The refresh() routine is the same,
using stdscr as the default window. Unless leaveok() has been enabled, the
physical cursor of the terminal is left at the location of the cursor for that window.

The wnoutrefresh() and doupdate() routines allow multiple updates
with more efficiency than wrefresh() alone. In addition to all the window
structures, curses keeps two data structures representing the terminal screen: a
physical screen, describing what is actually on the screen, and a virtual screen,
describing what the programmer wants to have on the screen.

The routine wrefresh() works by first calling wnoutrefresh() , which
copies the named window to the virtual screen, and then calling doupdate() ,
which compares the virtual screen to the physical screen and does the actual
update. If the programmer wishes to output several windows at once, a series
of calls to wrefresh() results in alternating calls to wnoutrefresh() and
doupdate() , causing several bursts of output to the screen. By first calling
wnoutrefresh() for each window, it is then possible to call doupdate() once,
resulting in only one burst of output, with fewer total characters transmitted and
less CPU time used. If the win argument to wrefresh() is the global variable
curscr , the screen is immediately cleared and repainted from scratch.

The redrawwin() routine indicates to curses that some screen lines are
corrupted and should be thrown away before anything is written over them.
These routines could be used for programs such as editors, which want a
command to redraw some part of the screen or the entire screen. The routine
redrawln() is preferred over redrawwin() where a noisy communication
line exists and redrawing the entire window could be subject to even more

178 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_refresh(3CURSES)

communication noise. Just redrawing several lines offers the possibility that
they would show up unblemished.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_outopts (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that refresh() and redrawwin() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 179

curs_scanw(3CURSES) Curses Library Functions

NAME curs_scanw, scanw, wscanw, mvscanw, mvwscanw, vwscanw – convert
formatted input from a curses widow

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int scanw (char *fmt, /* arg */ ...);

int wscanw(WINDOW *win, char *fmt, /* arg */ ...);

int mvscanw(int y, int x, char *fmt, /* arg */ ...);

int mvwscanw(WINDOW *win, int y, int x, char *fmt, /* arg */...);

int vwscanw (WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION The scanw() , wscanw() , and mvscanw() routines correspond to scanf()
(see scanf (3C)). The effect of these routines is as though wgetstr() were
called on the window, and the resulting line used as input for the scan. Fields
which do not map to a variable in the fmt field are lost.

The vwscanw() routine is similar to vwprintw() in that it performs a
wscanw() using a variable argument list. The third argument is a va_list , a
pointer to a list of arguments, as defined in <varargs.h> .

RETURN VALUES vwscanw() returns ERRon failure and an integer equal to the number of
fields scanned on success.

Applications may interrogate the return value from the scanw , wscanw() ,
mvscanw() , and mvwscanw() routines to determine the number of fields
which were mapped in the call.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_getstr (3CURSES) , curs_printw (3CURSES) , curses (3CURSES) ,
scanf (3C) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

180 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_scr_dump(3CURSES)

NAME curs_scr_dump, scr_dump, scr_restore, scr_init, scr_set – read (write) a curses
screen from (to) a file

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int scr_dump (char *filename);

int scr_restore (char *filename);

int scr_init (char *filename);

int scr_set (char *filename);

DESCRIPTION With the scr_dump() routine, the current contents of the virtual screen are
written to the file filename .

With the scr_restore() routine, the virtual screen is set to the contents of
filename , which must have been written using scr_dump() . The next call to
doupdate() restores the screen to the way it looked in the dump file.

With the scr_init() routine, the contents of filename are read in and used to
initialize the curses data structures about what the terminal currently has on
its screen. If the data is determined to be valid, curses bases its next update
of the screen on this information rather than clearing the screen and starting
from scratch. scr_init() is used after initscr() or a system (3C) call to
share the screen with another process which has done a scr_dump() after its
endwin() call. The data is declared invalid if the time-stamp of the tty is old or
the terminfo capabilities rmcup() and nrrmc() exist.

The scr_set() routine is a combination of scr_restore() and scr_init()
. It tells the program that the information in filename is what is currently on the
screen, and also what the program wants on the screen. This can be thought
of as a screen inheritance function.

To read (write) a window from (to) a file, use the getwin() and putwin()
routines (see curs_util (3CURSES)).

RETURN VALUES All routines return the integer ERRupon failure and OKupon success.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_initscr (3CURSES) , curs_refresh (3CURSES) ,
curs_util (3CURSES) , curses (3CURSES) , system (3C) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Last modified 31 Dec 1996 SunOS 5.8 181

curs_scr_dump(3CURSES) Curses Library Functions

Note that scr_init() , scr_set() , and scr_restore() may be macros.

182 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_scroll(3CURSES)

NAME curs_scroll, scroll, scrl, wscrl – scroll a curses window

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int scroll (WINDOW *win);

int scrl (int n);

int wscrl (WINDOW *win, int n);

DESCRIPTION With the scroll() routine, the window is scrolled up one line. This involves
moving the lines in the window data structure. As an optimization, if the
scrolling region of the window is the entire screen, the physical screen is scrolled
at the same time.

With the scrl() and wscrl() routines, for positive n scroll the window up
n lines (line i+n becomes i); otherwise scroll the window down n lines. This
involves moving the lines in the window character image structure. The current
cursor position is not changed.

For these functions to work, scrolling must be enabled via scrollok() .

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_outopts (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that scrl() and scroll() may be macros.

Last modified 31 Dec 1996 SunOS 5.8 183

curs_set(3XCURSES) X/Open Curses Library Functions

NAME curs_set – set visibility of cursor

SYNOPSIS #include <curses.h>
int curs_set (int visibility);

DESCRIPTION The curs_set() function sets the visibility of the cursor to invisible (0), normal
(1), or very visible (2). The exact appearance of normal and very visible cursors
is terminal dependent.

PARAMETERS visibility Is a value of 0 (invisible), 1 (normal), or 2 (very
visible).

RETURN VALUES If the terminal supports the mode specified by the visibility parameter, the
curs_set() function returns the previous cursor state. Otherwise, it returns
ERR.

ERRORS None.

184 SunOS 5.8 Last modified 1 Jun 1996

Curses Library Functions curs_slk(3CURSES)

NAME curs_slk, slk_init, slk_set, slk_refresh, slk_noutrefresh, slk_label, slk_clear,
slk_restore, slk_touch, slk_attron, slk_attrset, slk_attroff – curses soft label
routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int slk_init (int fmt);

int slk_set (int labnum, char *label, int fmt);

int slk_refresh (void);

int slk_noutrefresh (void);

char *slk_label (int labnum);

int slk_clear (void);

int slk_restore (void);

int slk_touch (void);

int slk_attron (chtype attrs);

int slk_attrset (chtype attrs);

int slk_attroff (chtype attrs);

DESCRIPTION curses manipulates the set of soft function-key labels that exist on many
terminals. For those terminals that do not have soft labels, curses takes over
the bottom line of stdscr , reducing the size of stdscr and the variable LINES
. curses standardizes on eight labels of up to eight characters each.

To use soft labels, the slk_init() routine must be called before initscr()
or newterm() is called. If initscr() eventually uses a line from stdscr
to emulate the soft labels, then fmt determines how the labels are arranged
on the screen. Setting fmt to 0 indicates a 3-2-3 arrangement of the labels; 1
indicates a 4-4 arrangement.

With the slk_set() routine, labnum is the label number, from 1 to 8 . label is
the string to be put on the label, up to eight characters in length. A null string
or a null pointer sets up a blank label. fmt is either 0 , 1 , or 2 , indicating
whether the label is to be left-justified, centered, or right-justified, respectively,
within the label.

The slk_refresh() and slk_noutrefresh() routines correspond to the
wrefresh() and wnoutrefresh() routines.

With the slk_label() routine, the current label for label number labnum is
returned with leading and trailing blanks stripped.

With the slk_clear() routine, the soft labels are cleared from the screen.

Last modified 31 Dec 1996 SunOS 5.8 185

curs_slk(3CURSES) Curses Library Functions

With the slk_restore() routine, the soft labels are restored to the screen
after a slk_clear() is performed.

With the slk_touch() routine, all the soft labels are forced to be output the
next time a slk_noutrefresh() is performed.

The slk_attron() , slk_attrset() , and slk_attroff() routines
correspond to attron() , attrset() , and attroff() . They have an effect
only if soft labels are simulated on the bottom line of the screen.

RETURN VALUES Routines that return an integer return ERRupon failure and an integer value
other than ERRupon successful completion.

slk_label() returns NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_attr (3CURSES) , curs_initscr (3CURSES) ,
curs_refresh (3CURSES) , curses (3CURSES) , attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Most applications would use slk_noutrefresh() because a wrefresh() is
likely to follow soon.

186 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_termattrs(3CURSES)

NAME curs_termattrs, baudrate, erasechar, has_ic, has_il, killchar, longname, termattrs,
termname – curses environment query routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int baudrate (void);

char erasechar (void);

int has_ic (void);

int has_il (void);

char killchar (void);

char *longname (void);

chtype termattrs (void);

char *termname (void);

DESCRIPTION The baudrate() routine returns the output speed of the terminal. The number
returned is in bits per second, for example 9600 , and is an integer.

With the erasechar() routine, the user’s current erase character is returned.

The has_ic() routine is true if the terminal has insert- and delete-character
capabilities.

The has_il() routine is true if the terminal has insert- and delete-line
capabilities, or can simulate them using scrolling regions. This might be used
to determine if it would be appropriate to turn on physical scrolling using
scrollok() .

With the killchar() routine, the user’s current line kill character is returned.

The longname() routine returns a pointer to a static area containing a
verbose description of the current terminal. The maximum length of a verbose
description is 128 characters. It is defined only after the call to initscr()
or newterm() . The area is overwritten by each call to newterm() and is
not restored by set_term() , so the value should be saved between calls to
newterm() if longname() is going to be used with multiple terminals.

If a given terminal doesn’t support a video attribute that an application program
is trying to use, curses may substitute a different video attribute for it. The
termattrs() function returns a logical OR of all video attributes supported
by the terminal. This information is useful when a curses program needs
complete control over the appearance of the screen.

The termname() routine returns the value of the environment variable TERM
(truncated to 14 characters).

Last modified 31 Dec 1996 SunOS 5.8 187

curs_termattrs(3CURSES) Curses Library Functions

RETURN VALUES longname() and termname() return NULLon error.

Routines that return an integer return ERRupon failure and an integer value
other than ERRupon successful completion.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_initscr (3CURSES) , curs_outopts (3CURSES) , curses (3CURSES) ,
attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that termattrs() may be a macro.

188 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_termcap(3CURSES)

NAME curs_termcap, tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs – curses interfaces
(emulated) to the termcap library

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
#include <term.h>
int tgetent (char *bp, char *name);

int tgetflag (char id [2]);

int tgetnum (char id [2]);

char *tgetstr (char id [2], char **area);

char *tgoto (char *cap, int col, int row);

int tputs (char *str, int affcnt, int (*putc)(void));

DESCRIPTION These routines are included as a conversion aid for programs that use the termcap
library. Their parameters are the same and the routines are emulated using the
terminfo database. These routines are supported at Level 2 and should not
be used in new applications.

The tgetent() routine looks up the termcap entry for name . The emulation
ignores the buffer pointer bp .

The tgetflag() routine gets the boolean entry for id .

The tgetnum() routine gets the numeric entry for id .

The tgetstr() routine returns the string entry for id . Use tputs() to
output the returned string.

The tgoto() routine instantiates the parameters into the given capability. The
output from this routine is to be passed to tputs() .

The tputs() routine is described on the curs_terminfo (3CURSES) manual
page.

RETURN VALUES Routines that return an integer return ERRupon failure and an integer value
other than ERRupon successful completion.

Routines that return pointers return NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_terminfo (3CURSES) , curses (3CURSES) , putc (3C) , attributes (5)

Last modified 31 Dec 1996 SunOS 5.8 189

curs_termcap(3CURSES) Curses Library Functions

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

190 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_terminfo(3CURSES)

NAME curs_terminfo, setupterm, setterm, set_curterm, del_curterm, restartterm,
tparm, tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr – curses
interfaces to terminfo database

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
#include <term.h>
int setupterm (char *term, int fildes, int *errret);

int setterm (char *term);

int set_curterm (TERMINAL *nterm);

int del_curterm (TERMINAL *oterm);

int restartterm (char *term, int fildes, int *errret);

char *tparm (char *str, long int p1, long int p2, long int p3, long int p4, long int p5, long int
p6, long int p7, long int p8, long int p9);

int tputs (char *str, int affcnt, int (*putc)(char));

int putp (char *str);

int vidputs (chtype attrs, int (*putc)(char));

int vidattr (chtype attrs);

int mvcur (int oldrow, int oldcol, int newrow, int newcol);

int tigetflag (char *capname);

int tigetnum (char *capname);

char *tigetstr (char *capname);

DESCRIPTION These low-level routines must be called by programs that have to deal directly
with the terminfo database to handle certain terminal capabilities, such as
programming function keys. For all other functionality, curses routines are
more suitable and their use is recommended.

Initially, setupterm() should be called. Note that setupterm() is
automatically called by initscr() and newterm() . This defines the
set of terminal-dependent variables (listed in terminfo (4)). The terminfo
variables lines and columns are initialized by setupterm() as follows: If
use_env(FALSE) has been called, values for lines and columns specified in
terminfo are used. Otherwise, if the environment variables LINES and COLUMNS
exist, their values are used. If these environment variables do not exist and the
program is running in a window, the current window size is used. Otherwise,
if the environment variables do not exist, the values for lines and columns
specified in the terminfo database are used.

Last modified 31 Dec 1996 SunOS 5.8 191

curs_terminfo(3CURSES) Curses Library Functions

The headers <curses.h> and <term.h> should be included (in this order) to
get the definitions for these strings, numbers, and flags. Parameterized strings
should be passed through tparm() to instantiate them. All terminfo strings
(including the output of tparm()) should be printed with tputs() or putp()
. Call the reset_shell_mode() routine to restore the tty modes before exiting
(see curs_kernel (3CURSES)). Programs which use cursor addressing should
output enter_ca_mode upon startup and should output exit_ca_mode
before exiting. Programs desiring shell escapes should call reset_shell_mode
and output exit_ca_mode before the shell is called and should output
enter_ca_mode and call reset_prog_mode after returning from the shell.

The setupterm() routine reads in the terminfo database, initializing the
terminfo structures, but does not set up the output virtualization structures used
by curses . The terminal type is the character string term; if term is null, the
environment variable TERMis used. All output is to file descriptor fildes which is
initialized for output. If errret is not null, then setupterm() returns OKor ERR
and stores a status value in the integer pointed to by errret . A status of 1 in errret
is normal, 0 means that the terminal could not be found, and -1 means that the
terminfo database could not be found. If errret is null, setupterm() prints an
error message upon finding an error and exits. Thus, the simplest call is:

setupterm((char *)0, 1, (int *)0);,

which uses all the defaults and sends the output to stdout .

The setterm() routine is being replaced by setupterm() . The call:

setupterm(term , 1, (int *)0)

provides the same functionality as setterm(term). The setterm() routine is
included here for compatibility and is supported at Level 2.

The set_curterm() routine sets the variable cur_term to nterm , and makes
all of the terminfo boolean, numeric, and string variables use the values from
nterm .

The del_curterm() routine frees the space pointed to by oterm and makes it
available for further use. If oterm is the same as cur_term , references to any of
the terminfo boolean, numeric, and string variables thereafter may refer to invalid
memory locations until another setupterm() has been called.

The restartterm() routine is similar to setupterm() and initscr() ,
except that it is called after restoring memory to a previous state. It assumes that
the windows and the input and output options are the same as when memory
was saved, but the terminal type and baud rate may be different.

192 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_terminfo(3CURSES)

The tparm() routine instantiates the string str with parameters pi . A pointer is
returned to the result of str with the parameters applied.

The tputs() routine applies padding information to the string str and outputs
it. The str must be a terminfo string variable or the return value from tparm()
, tgetstr() , or tgoto() . affcnt is the number of lines affected, or 1 if not
applicable. putc is a putchar() -like routine to which the characters are
passed, one at a time.

The putp() routine calls tputs(str , 1, putchar). Note that the output of
putpA() always goes to stdout , not to the fildes specified in setupterm() .

The vidputs() routine displays the string on the terminal in the video
attribute mode attrs , which is any combination of the attributes listed in
curses (3CURSES) . The characters are passed to the putchar() -like routine
putc() .

The vidattr() routine is like the vidputs() routine, except that it outputs
through putchar() .

The mvcur() routine provides low-level cursor motion.

The tigetflag() , tigetnum() and tigetstr() routines return the value
of the capability corresponding to the terminfo capname passed to them, such
as xenl .

With the tigetflag() routine, the value -1 is returned if capname is not
a boolean capability.

With the tigetnum() routine, the value -2 is returned if capname is not a
numeric capability.

With the tigetstr() routine, the value (char *)-1 is returned if capname is
not a string capability.

The capname for each capability is given in the table column entitled capname
code in the capabilities section of terminfo (4) .

char *boolnames, *boolcodes, *boolfnames
char *numnames, *numcodes, *numfnames
char *strnames, *strcodes, *strfnames

These null-terminated arrays contain the capnames , the termcap codes, and the
full C names, for each of the terminfo variables.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion, unless otherwise noted in the preceding
routine descriptions.

Routines that return pointers always return NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 31 Dec 1996 SunOS 5.8 193

curs_terminfo(3CURSES) Curses Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_initscr (3CURSES) , curs_kernel (3CURSES) ,
curs_termcap (3CURSES) , curses (3CURSES) , putc (3C) , terminfo (4) ,
attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

The setupterm() routine should be used in place of setterm() .

Note that vidattr() and vidputs() may be macros.

194 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_touch(3CURSES)

NAME curs_touch, touchwin, touchline, untouchwin, wtouchln, is_linetouched,
is_wintouched – curses refresh control routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
int touchwin (WINDOW *win);

int touchline (WINDOW *win, int start, int count);

int untouchwin (WINDOW *win);

int wtouchln (WINDOW *win, int y, int n, int changed);

int is_linetouched (WINDOW *win, int line);

int is_wintouched (WINDOW *win);

DESCRIPTION The touchwin() and touchline() routines throw away all optimization
information about which parts of the window have been touched, by pretending
that the entire window has been drawn on. This is sometimes necessary when
using overlapping windows, since a change to one window affects the other
window, but the records of which lines have been changed in the other window
do not reflect the change. The routine touchline() only pretends that count
lines have been changed, beginning with line start .

The untouchwin() routine marks all lines in the window as unchanged since
the last call to wrefresh() .

The wtouchln() routine makes n lines in the window, starting at line y , look
as if they have (changed =1) or have not (changed =0) been changed since the
last call to wrefresh() .

The is_linetouched() and is_wintouched() routines return TRUEif
the specified line/window was modified since the last call to wrefresh() ;
otherwise they return FALSE . In addition, is_linetouched() returns ERRif
line is not valid for the given window.

RETURN VALUES All routines return the integer ERRupon failure and an integer value other
than ERRupon successful completion, unless otherwise noted in the preceding
routine descriptions.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_refresh (3CURSES) , curses (3CURSES) , attributes (5)

Last modified 31 Dec 1996 SunOS 5.8 195

curs_touch(3CURSES) Curses Library Functions

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that all routines except wtouchln() may be macros.

196 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_util(3CURSES)

NAME curs_util, unctrl, keyname, filter, use_env, putwin, getwin, delay_output,
flushinp – curses miscellaneous utility routines

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
char *unctrl (chtype c);

char *keyname (int c);

int filter (void);

void use_env (char bool);

int putwin (WINDOW *win, FILE *filep);

WINDOW *getwin (FILE *filep);

int delay_output (int ms);

int flushinp (void);

DESCRIPTION The unctrl() macro expands to a character string which is a printable
representation of the character c . Control characters are displayed in the ^ X
notation. Printing characters are displayed as is.

With the keyname() routine, a character string corresponding to the key c
is returned.

The filter() routine, if used, is called before initscr() or newterm()
are called. It makes curses think that there is a one-line screen. curses does
not use any terminal capabilities that assume that they know on what line of
the screen the cursor is positioned.

The use_env() routine, if used, is called before initscr() or newterm()
are called. When called with FALSEas an argument, the values of lines and
columns specified in the terminfo database will be used, even if environment
variables LINES and COLUMNS(used by default) are set, or if curses is running
in a window (in which case default behavior would be to use the window size
if LINES and COLUMNSare not set).

With the putwin() routine, all data associated with window win is written into
the file to which filep points. This information can be later retrieved using the
getwin() function.

The getwin() routine reads window related data stored in the file by
putwin() . The routine then creates and initializes a new window using that
data. It returns a pointer to the new window.

The delay_output() routine inserts an ms millisecond pause in output. This
routine should not be used extensively because padding characters are used
rather than a CPU pause.

Last modified 31 Dec 1996 SunOS 5.8 197

curs_util(3CURSES) Curses Library Functions

The flushinp() routine throws away any typeahead that has been typed by
the user and has not yet been read by the program.

RETURN VALUES Except for flushinp() , routines that return an integer return ERRupon failure
and an integer value other than ERRupon successful completion.

flushinp() always returns OK.

Routines that return pointers return NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_initscr (3CURSES) , curs_scr_dump (3CURSES) , curses (3CURSES) ,
attributes (5)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

Note that unctrl() is a macro, which is defined in <unctrl.h> .

198 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_window(3CURSES)

NAME curs_window, newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,
wsyncup, syncok, wcursyncup, wsyncdown – create curses windows

SYNOPSIS cc [flag ...] file ... −lcurses [library ...]
#include <curses.h>
WINDOW *newwin (int nlines, int ncols, int begin_y, int begin_x);

int delwin (WINDOW *win);

int mvwin (WINDOW *win, int y, int x);

WINDOW *subwin (WINDOW *orig, int nlines, int ncols, int begin_y, int begin_x);

WINDOW *derwin (WINDOW *orig, int nlines, int ncols, int begin_y, int begin_x);

int mvderwin (WINDOW *win, int par_y, int par_x);

WINDOW *dupwin (WINDOW *win);

void wsyncup (WINDOW *win);

int syncok (WINDOW *win, bool bf);

void wcursyncup (WINDOW *win);

void wsyncdown (WINDOW *win);

DESCRIPTION The newwin() routine creates and returns a pointer to a new window with the
given number of lines, nlines , and columns, ncols . The upper left-hand corner of
the window is at line begin_y , column begin_x . If either nlines or ncols is zero,
they default to LINES – begin_y and COLS– begin_x . A new full-screen window
is created by calling newwin(0,0,0,0) .

The delwin() routine deletes the named window, freeing all memory
associated with it. Subwindows must be deleted before the main window
can be deleted.

The mvwin() routine moves the window so that the upper left-hand corner is at
position (x , y). If the move would cause the window to be off the screen, it is
an error and the window is not moved. Moving subwindows is allowed, but
should be avoided.

The subwin() routine creates and returns a pointer to a new window with the
given number of lines, nlines , and columns, ncols . The window is at position
(begin_y , begin_x) on the screen. (This position is relative to the screen, and not
to the window orig .) The window is made in the middle of the window orig , so
that changes made to one window will affect both windows. The subwindow
shares memory with the window orig . When using this routine, it is necessary
to call touchwin() or touchline() on orig before calling wrefresh()
on the subwindow.

Last modified 31 Dec 1996 SunOS 5.8 199

curs_window(3CURSES) Curses Library Functions

The derwin() routine is the same as subwin() , except that begin_y and
begin_x are relative to the origin of the window orig rather than the screen. There
is no difference between the subwindows and the derived windows.

The mvderwin() routine moves a derived window (or subwindow) inside its
parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the
same physical position on the screen.

The dupwin() routine creates an exact duplicate of the window win .

Each curses window maintains two data structures: the character image
structure and the status structure. The character image structure is shared among
all windows in the window hierarchy (that is, the window with all subwindows).
The status structure, which contains information about individual line changes
in the window, is private to each window. The routine wrefresh() uses the
status data structure when performing screen updating. Since status structures
are not shared, changes made to one window in the hierarchy may not be
properly reflected on the screen.

The routine wsyncup() causes the changes in the status structure of a window
to be reflected in the status structures of its ancestors. If syncok() is called with
second argument TRUEthen wsyncup() is called automatically whenever there
is a change in the window.

The routine wcursyncup() updates the current cursor position of all the
ancestors of the window to reflect the current cursor position of the window.

The routine wsyncdown() updates the status structure of the window to reflect
the changes in the status structures of its ancestors. Applications seldom call this
routine because it is called automatically by wrefresh() .

RETURN VALUES Routines that return an integer return the integer ERRupon failure and an
integer value other than ERRupon successful completion.

delwin() returns the integer ERRupon failure and OKupon successful
completion.

Routines that return pointers return NULLon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_refresh (3CURSES) , curs_touch (3CURSES) , curses (3CURSES) ,
attributes (5)

200 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions curs_window(3CURSES)

NOTES The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h> .

If many small changes are made to the window, the wsyncup() option could
degrade performance.

Note that syncok() may be a macro.

Last modified 31 Dec 1996 SunOS 5.8 201

cur_term(3XCURSES) X/Open Curses Library Functions

NAME cur_term – current terminal information

SYNOPSIS #include <curses.h>

extern TERMINAL *cur_term;

DESCRIPTION The external variable cur_term to identifies the record in the terminfo
associated with the terminal currently in use.

SEE ALSO set_curterm (3XCURSES), tigetflag (3XCURSES)

202 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions def_prog_mode(3XCURSES)

NAME def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode –
save/restore terminal modes

SYNOPSIS #include <curses.h>
int def_prog_mode (void);

int def_shell_mode (void);

int reset_prog_mode (void);

int reset_shell_mode (void);

DESCRIPTION The def_prog_mode() and def_shell_mode() functions save the current
terminal modes as "program" (within X/Open Curses) or "shell" (outside
X/Open Curses). The modes are saved automatically by initscr (3XCURSES) ,
newterm (3XCURSES) , and setupterm (3XCURSES) .

The reset_prog_mode() and reset_shell_mode() functions reset the
current terminal modes to "program" (within X/Open Curses) or "shell" (outside
X/Open Curses). The endwin (3XCURSES) function automatically calls the
reset_shell_mode() function and the doupdate (3XCURSES) function calls
the reset_prog_mode() function after calling endwin() .

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO endwin (3XCURSES) , initscr (3XCURSES) , newterm (3XCURSES) ,
setupterm (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 203

delay_output(3XCURSES) X/Open Curses Library Functions

NAME delay_output – delays output

SYNOPSIS #include <curses.h>
int delay_output (int ms);

DESCRIPTION The delay_output() function delays output for ms milliseconds by inserting
pad characters in the output stream.

PARAMETERS ms Is the number of milliseconds to delay the output.

RETURN VALUES On success, the delay_output() function returns OK. Otherwise, it returns
ERR.

ERRORS None.

SEE ALSO napms(3XCURSES)

204 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions delch(3XCURSES)

NAME delch, mvdelch, mvwdelch, wdelch – remove a character

SYNOPSIS #include <curses.h>
int delch (void);

int mvdelch (int y, int x);

int mvwdelch (WINDOW *win, int y, int x);

int wdelch (WINDOW *win);

DESCRIPTION The delch() and wdelch() functions delete the character at the current
cursor position from stdscr and win , respectively. All remaining characters
after cursor through to the end of the line are shifted one character towards the
start of the line. The last character on the line becomes a space; characters on
other lines are not affected.

The mvdelch() and mvwdelch() functions delete the character at the position
specified by the x and y parameters; the former deletes the character from
stdscr ; the latter from win .

PARAMETERS y Is the y (row) coordinate of the position of the character to be removed.

x Is the x (column) coordinate of the position of the character to be
removed.

win Is a pointer to the window containing the character to be removed.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO bkgdset (3XCURSES) , insch (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 205

del_curterm(3XCURSES) X/Open Curses Library Functions

NAME del_curterm, restartterm, set_curterm, setterm, setupterm – free space pointed
to by terminal

SYNOPSIS #include <term.h>
int del_curterm (TERMINAL *oterm);

int restartterm (char *term, int fildes, int *errret);

TERMINAL *set_curterm (TERMINAL *nterm);

int setterm (char *term);

int setupterm (char *term, int fildes, int *errret);

DESCRIPTION Within X/Open Curses, the setupterm() function is automatically called
by the initscr (3XC) and newterm (3XC) functions. This function can be also
be used outside of X/Open Curses when a program has to deal directly with
the terminfo database to handle certain terminal capabilities. The use of
appropriate X/Open Curses functions is recommended in all other situations.

The setupterm() function loads terminal-dependent variables for the
terminfo layer of X/Open Curses. The setupterm() function initializes the
terminfo variables lines and columns such that if use_env(FALSE) has
been called, the terminfo values assigned in the database are used regardless
of the environmental variables LINES and COLUMNSor the program’s window
dimensions; when use_env(TRUE) has been called, which is the default,
the environment variables LINES and COLUMNSare used, if they exist. If the
environment variables do not exist and the program is running in a window, the
current window size is used.

The term parameter of setupterm() specifies the terminal; if null, terminal
type is taken from the TERMenvironment variable. All output is sent to fildes
which is initialized for output. If errret is not null, OKor ERRis returned and a
status value is stored in the integer pointed to by errret . The following status
values may be returned:

Value Description

1 Normal

0 Terminal could not be found

-1 terminfo database could not be found

If errret is null, an error message is printed, and the setupterm() function calls
the exit() function with a non-zero parameter.

The setterm() macro is an older version of setupterm() . It is included
for compatibility with previous versions of Curses. New programs should
use setupterm() .

206 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions del_curterm(3XCURSES)

The set_curterm() function sets the cur_term variable to nterm . The
values from nterm as well as other state information for the terminal are used
by X/Open Curses functions such as beep (3XCURSES) , flash (3XCURSES)
, mvcur (3XCURSES) , tigetflag (3XCURSES) , tigetstr (3XCURSES) ,
and tigetnum (3XCURSES) .

The del_curterm() function frees the space pointed to by oterm . If oterm and
the cur_term variable are the same, all Boolean, numeric, or string terminfo
variables will refer to invalid memory locations until you call setupterm()
and specify a new terminal type.

The restartterm() function assumes that a call to setupterm() has
already been made (probably from initscr() or newterm()). It allows
you to specify a new terminal type in term and updates the data returned by
baudrate (3XCURSES) based on fildes . Other information created by the
initscr() , newterm() , and setupterm() functions is preserved.

PARAMETERS oterm Is the terminal type for which to free space.

term Is the terminal type for which variables are set.

fildes Is a file descriptor initialized for output.

errret Is a pointer to an integer in which the status
value is stored.

nterm Is the new terminal to become the current
terminal.

RETURN VALUES On success, the set_curterm() function returns the previous value of
cur_term . Otherwise, it returns a null pointer.

On success, the other functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO baudrate (3XCURSES) , beep (3XCURSES) , initscr (3XCURSES) ,
mvcur (3XCURSES) , tigetflag (3XCURSES) , use_env (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 207

deleteln(3XCURSES) X/Open Curses Library Functions

NAME deleteln, wdeleteln – remove a line

SYNOPSIS #include <curses.h>
int deleteln (void);

int wdeleteln (WINDOW *win);

DESCRIPTION The deleteln() and wdeleteln() functions delete the line containing the
cursor from stdscr and win , respectively. All lines below the one deleted are
moved up one line. The last line of the window becomes blank. The position
of the cursor is unchanged.

PARAMETERS win Is a pointer to the window from which the line is removed.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO bkgdset (3XCURSES) , insdelln (3XCURSES) , insertln (3XCURSES)

208 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions delscreen(3XCURSES)

NAME delscreen – free space associated with the SCREEN data structure

SYNOPSIS #include <curses.h>
void delscreen (SCREEN *sp);

DESCRIPTION The delscreen() function frees space associated with the SCREENdata
structure. This function should be called after endwin (3XCURSES) if a SCREEN
data structure is no longer needed.

PARAMETERS sp Is a pointer to the screen structure for which to free space.

RETURN VALUES The delscreen() function does not return a value.

ERRORS None.

SEE ALSO endwin (3XCURSES), initscr (3XCURSES), newterm (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 209

delwin(3XCURSES) X/Open Curses Library Functions

NAME delwin – delete a window

SYNOPSIS #include <curses.h>
int delwin (WINDOW *win);

DESCRIPTION The delwin() function deletes the specified window, freeing up the memory
associated with it.

Deleting a parent window without deleting its subwindows and then trying to
manipulate the subwindows will have undefined results.

PARAMETERS win Is a pointer to the window that is to be deleted.

RETURN VALUES On success, this functions returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO derwin (3XCURSES), dupwin (3XCURSES)

210 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions derwin(3XCURSES)

NAME derwin, newwin, subwin – create a new window or subwindow

SYNOPSIS #include <curses.h>
WINDOW *derwin (WINDOW *orig, int nlines, int ncols, int begin_y, int begin_x);

WINDOW *newwin (int nlines, int ncols, int begin_y, int begin_x);

WINDOW *subwin (WINDOW *orig, int nlines, int ncols, int begin_y, int begin_x);

DESCRIPTION The derwin() function creates a subwindow within window orig , with the
specified number of lines and columns, and upper left corner positioned
at begin_x , begin_y relative to window orig . A pointer to the new window
structure is returned.

The newwin() function creates a new window with the specified number of
lines and columns and upper left corner positioned at begin_x , begin_y . A
pointer to the new window structure is returned. A full-screen window can be
created by calling newwin(0,0,0,0) .

If the number of lines specified is zero, newwin() uses a default value of LINES
minus begin_y ; if the number of columns specified is zero, newwin() uses the
default value of COLSminus begin_x .

The subwin() function creates a subwindow within window orig , with the
specified number of lines and columns, and upper left corner positioned at
begin_x , begin_y (relative to the physical screen, not to window orig). A pointer
to the new window structure is returned.

The original window and subwindow share character storage of the overlapping
area (each window maintains its own pointers, cursor location, and other items).
This means that characters and attributes are identical in overlapping areas
regardless of which window characters are written to.

When using subwindows, it is often necessary to call touchwin (3XCURSES)
before wrefresh (3XCURSES) to maintain proper screen contents.

PARAMETERS orig Is a pointer to the parent window for the newly created
subwindow.

nlines Is the number of lines in the subwindow.

ncols Is the number of columns in the subwindow.

begin_y Is the y (row) coordinate of the upper left corner of the
subwindow, relative to the parent window.

begin_x Is the x (column) coordinate of the upper left corner of the
subwindow, relative to the parent window.

Last modified 1 Jun 1996 SunOS 5.8 211

derwin(3XCURSES) X/Open Curses Library Functions

RETURN VALUES On success, these functions return a pointer to the newly-created window.
Otherwise, they return ERR.

ERRORS None.

SEE ALSO doupdate (3XCURSES) , is_linetouched (3XCURSES)

212 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions doupdate(3XCURSES)

NAME doupdate, refresh, wnoutrefresh, wrefresh – refresh windows and lines

SYNOPSIS #include <curses.h>
int doupdate (void);

int refresh (void);

int wnoutrefresh (WINDOW *win);

int wrefresh (WINDOW *win);

DESCRIPTION The refresh() and wrefresh() functions copy stdscr and win ,
respectively, to the terminal screen. These functions call the wnoutrefresh()
function to copy the specified window to curscr and the doupdate()
function to do the actual update. The physical cursor is mapped to the same
position as the logical cursor of the last window to update curscr unless
leaveok (3XCURSES) is enabled (in which case, the cursor is placed in a position
that X/Open Curses finds convenient).

When outputting several windows at once, it is often more efficient to
call the wnoutrefresh() and doupdate() functions directly. A call to
wnoutrefresh() for each window, followed by only one call to doupdate()
to update the screen, results in one burst of output, fewer characters sent, and
less CPU time used.

If the win parameter to wrefresh() is the global variable curscr , the screen is
immediately cleared and repainted from scratch.

For details on how the wnoutrefresh() function handles overlapping
windows with broad glyphs, see the Overlapping Windows section of the
curses (3XCURSES) reference manual page.

PARAMETERS win Is a pointer to the window in which to refresh.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO clearok (3XCURSES) , curses (3XCURSES) , prefresh (3XCURSES) ,
redrawwin (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 213

dupwin(3XCURSES) X/Open Curses Library Functions

NAME dupwin – duplicate a window

SYNOPSIS #include <curses.h>
WINDOW *dupwin (WINDOW *win);

DESCRIPTION The dupwin() function creates a duplicate of window win. A pointer to the
new window structure is returned.

PARAMETERS win Is a pointer to the window that is to be duplicated.

RETURN VALUES On success, this function returns a pointer to new window structure; otherwise,
it returns a null pointer.

ERRORS None.

SEE ALSO delwin (3XCURSES), derwin (3XCURSES)

214 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions echo(3XCURSES)

NAME echo, noecho – enable/disable terminal echo

SYNOPSIS #include <curses.h>
int echo (void);

int noecho (void);

DESCRIPTION The echo() function enables Echo mode for the current screen. The noecho()
function disables Echo mode for the current screen. Initially, curses software
echo mode is enabled and hardware echo mode of the tty driver is disabled.
The echo() and noecho() functions control software echo only. Hardware
echo must remain disabled for the duration of the application, else the behavior
is undefined.

RETURN VALUES Upon successful completion, these functions return OK. Otherwise, they return
ERR.

ERRORS No errors are defined.

SEE ALSO getch (3XCURSES) , getstr (3XCURSES) , initscr (3XCURSES) ,
scanw (3XCURSES)

Last modified 4 May 1999 SunOS 5.8 215

echochar(3XCURSES) X/Open Curses Library Functions

NAME echochar, wechochar – add a single-byte character and refresh window

SYNOPSIS #include <curses.h>
int echochar (const chtype ch);

int wechochar (WINDOW *win, const chtype ch);

DESCRIPTION The echochar() function produces the same effect as calling
addch (3XCURSES) and then refresh (3XCURSES) . The wechochar()
function produces the same effect as calling waddch (3XCURSES) and then
wrefresh (3XCURSES) .

PARAMETERS ch Is a pointer to the character to be written to the window.

win Is a pointer to the window in which the character is to be added.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO addch (3XCURSES) , doupdate (3XCURSES) , echo_wchar (3XCURSES)

216 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions echo_wchar(3XCURSES)

NAME echo_wchar, wecho_wchar – add a complex character and refresh window

SYNOPSIS #include <curses.h>
int echo_wchar (const cchar_t *wch);

int wecho_wchar (WINDOW *win, const cchar_t *wch);

DESCRIPTION The echo_wchar() function produces the same effect as calling
add_wch (3XCURSES) and then refresh (3XCURSES) . The wecho_wchar()
function produces the same effect as calling wadd_wch(3XCURSES) and then
wrefresh (3XCURSES) .

PARAMETERS wch Is a pointer to the complex character to be written to the window.

win Is a pointer to the window in which the character is to be added.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , doupdate (3XCURSES) , echochar (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 217

endwin(3XCURSES) X/Open Curses Library Functions

NAME endwin, isendwin – restore initial terminal environment

SYNOPSIS #include <curses.h>
int endwin (void);

bool isendwin (void);

DESCRIPTION The endwin() function restores the terminal after Curses activity by at least
restoring the saved shell terminsl mode, flushing any output to the terminal, and
moving the cursor to the first column of the last line of the screen. Refreshing
a window resumes program mode. The application must call endwin() for
each terminal being used before exiting. If newterm (3XCURSES) is called
more than once for the same terminal, the first screen created must be the last
one for which endwin() is called.

The isendiwin() function indicates whether or not a screen has been refreshed
since the last call to endwin() .

RETURN VALUES Upon successful completion, the endwin() function returns OK. Otherwise,
it returns ERR.

The isendwin() function returns TRUEif endwin() has been called without
any subsequent refresh. Otherwise, it returns FALSE .

ERRORS Non errors are defined.

SEE ALSO doupdate (3XCURSES) , newterm (3XCURSES)

218 SunOS 5.8 Last modified 4 May 1999

X/Open Curses Library Functions erasechar(3XCURSES)

NAME erasechar, erasewchar, killchar, killwchar – return current ERASE or KILL
characters

SYNOPSIS #include <curses.h>
char erasechar (void);

int erasewchar (wchar_t *ch);

char killchar (void);

int killwchar (wchar_t *ch);

DESCRIPTION The erasechar() function returns the current ERASE character from the tty
driver. This character is used to delete the previous character during keyboard
input. The returned value can be used when including deletion capability in
interactive programs.

The killchar() function is similar to erasechar() . It returns the current
KILL character.

The erasewchar() and killwchar() functions are similar to erasechar()
and killchar() respectively, but store the ERASE or KILL character in the
object pointed to by ch .

PARAMETERS ch Is a pointer to a location where a character may be stored.

RETURN VALUES For erasechar() and killchar() , the terminal’s current ERASE or KILL
character is returned.

On success, the erasewchar() and killwchar() functions return OK.
Otherwise, they return ERR.

SEE ALSO getch (3XCURSES) , getstr (3XCURSES) , get_wch (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 219

filter(3XCURSES) X/Open Curses Library Functions

NAME filter – disable use of certain terminal capabilities

SYNOPSIS #include <curses.h>
void filter (void);

DESCRIPTION The filter() function changes how X/Open Curses initializes terminal
capabilities that assume the terminal has more than one line. After a call to
filter() , the initscr (3XCURSES) or newterm (3XCURSES) functions also:

� Disable use of clear , cud , cud1 , cup , cuu1 , and vpa .

� Set home string to the value of cr .

� Set lines to 1.

RETURN VALUES The filter() function does not return a value.

ERRORS None.

SEE ALSO initscr (3XCURSES), newterm (3XCURSES)

220 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions flushinp(3XCURSES)

NAME flushinp – discard type-ahead characters

SYNOPSIS #include <curses.h>
int flushinp (void);

DESCRIPTION The flushinp() function discards (flushes) any characters in the input buffer
associated with the current screen.

RETURN VALUES The flushinp() function always returns OK.

ERRORS No errors are defined.

Last modified 4 May 1999 SunOS 5.8 221

form_cursor(3CURSES) Curses Library Functions

NAME form_cursor, pos_form_cursor – position forms window cursor

SYNOPSIS cc [flag ...] file... −lform −lcurses [library ..]
#include <form.h>
int pos_form_cursor (FORM *form);

DESCRIPTION pos_form_cursor() moves the form window cursor to the location required
by the form driver to resume form processing. This may be needed after the
application calls a curses library I/O routine.

RETURN VALUES pos_form_cursor() returns one of the following:
E_OK Thefunction returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_NOT_POSTED The form is not posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

222 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_data(3CURSES)

NAME form_data, data_ahead, data_behind – tell if forms field has off-screen data
ahead or behind

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int data_ahead (FORM *form);

int data_behind (FORM *form);

DESCRIPTION data_ahead() returns TRUE(1) if the current field has more off-screen data
ahead; otherwise it returns FALSE (0).

data_behind() returns TRUE(1) if the current field has more off-screen data
behind; otherwise it returns FALSE (0).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 223

form_driver(3CURSES) Curses Library Functions

NAME form_driver – command processor for the forms subsystem

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>

int form_driver (FORM *form, int c);

DESCRIPTION form_driver() is the workhorse of the forms subsystem; it checks to
determine whether the character c is a forms request or data. If it is a
request, the form driver executes the request and reports the result. If it is
data (a printable ASCII character), it enters the data into the current position
in the current field. If it is not recognized, the form driver assumes it is an
application-defined command and returns E_UNKNOWN_COMMAND. Application
defined commands should be defined relative to MAX_COMMAND, the maximum
value of a request listed below.

Form driver requests:
REQ_NEXT_PAGE Move to the next page.

REQ_PREV_PAGE Move to the previous page.

REQ_FIRST_PAGE Move to the first page.

REQ_LAST_PAGE Move to the last page.

REQ_NEXT_FIELD Move to the next field.

REQ_PREV_FIELD Move to the previous field.

REQ_FIRST_FIELD Move to the first field.

REQ_LAST_FIELD Move to the last field.

REQ_SNEXT_FIELD Move to the sorted next field.

REQ_SPREV_FIELD Move to the sorted prev field.

REQ_SFIRST_FIELD Move to the sorted first field.

REQ_SLAST_FIELD Move to the sorted last field.

REQ_LEFT_FIELD Move left to field.

REQ_RIGHT_FIELD Move right to field.

REQ_UP_FIELD Move up to field.

REQ_DOWN_FIELD Move down to field.

REQ_NEXT_CHAR Move to the next character in the field.

REQ_PREV_CHAR Move to the previous character in the field.

224 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_driver(3CURSES)

REQ_NEXT_LINE Move to the next line in the field.

REQ_PREV_LINE Move to the previous line in the field.

REQ_NEXT_WORD Move to the next word in the field.

REQ_PREV_WORD Move to the previous word in the field.

REQ_BEG_FIELD Move to the first char in the field.

REQ_END_FIELD Move after the last char in the field.

REQ_BEG_LINE Move to the beginning of the line.

REQ_END_LINE Move after the last char in the line.

REQ_LEFT_CHAR Move left in the field.

REQ_RIGHT_CHAR Move right in the field.

REQ_UP_CHAR Move up in the field.

REQ_DOWN_CHAR Move down in the field.

REQ_NEW_LINE Insert/overlay a new line.

REQ_INS_CHAR Insert the blank character at the cursor.

REQ_INS_LINE Insert a blank line at the cursor.

REQ_DEL_CHAR Delete the character at the cursor.

REQ_DEL_PREV Delete the character before the cursor.

REQ_DEL_LINE Delete the line at the cursor.

REQ_DEL_WORD Delete the word at the cursor.

REQ_CLR_EOL Clear to the end of the line.

REQ_CLR_EOF Clear to the end of the field.

REQ_CLR_FIELD Clear the entire field.

REQ_OVL_MODE Enter overlay mode.

REQ_INS_MODE Enter insert mode.

REQ_SCR_FLINE Scroll the field forward a line.

REQ_SCR_BLINE Scroll the field backward a line.

REQ_SCR_FPAGE Scroll the field forward a page.

REQ_SCR_BPAGE Scroll the field backward a page.

REQ_SCR_FHPAGE Scroll the field forward half a page.

Last modified 31 Dec 1996 SunOS 5.8 225

form_driver(3CURSES) Curses Library Functions

REQ_SCR_BHPAGE Scroll the field backward half a page.

REQ_SCR_FCHAR Horizontal scroll forward a character.

REQ_SCR_BCHAR Horizontal scroll backward a character

REQ_SCR_HFLINE Horizontal scroll forward a line.

REQ_SCR_HBLINE Horizontal scroll backward a line.

REQ_SCR_HFHALF Horizontal scroll forward half a line.

REQ_SCR_HBHALF Horizontal scroll backward half a line.

REQ_VALIDATION Validate field.

REQ_PREV_CHOICE Display the previous field choice.

REQ_NEXT_CHOICE Display the next field choice.

RETURN VALUES form_driver() returns one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_NOT_POSTED The form is not posted.

E_INVALID_FIELD The field contents are invalid.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_REQUEST_DENIED The form driver request failed.

E_UNKNOWN_COMMANDAn unknown request was passed to the form
driver.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES), forms (3CURSES), attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

226 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_field(3CURSES)

NAME form_field, set_form_fields, form_fields, field_count, move_field – connect
fields to forms

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_form_fields (FORM *form, FIELD **field);

FIELD **form_fields (FORM *form);

int field_count (FORM *form);

int move_field (FIELD *field, int frow, int fcol);

DESCRIPTION set_form_fields() changes the fields connected to form to fields . The
original fields are disconnected.

form_fields() returns a pointer to the field pointer array connected to form .

field_count() returns the number of fields connected to form .

move_field() moves the disconnected field to the location frow, fcol in the
forms subwindow.

RETURN VALUES form_fields() returns NULLon error.

field_count() returns -1 on error.

set_form_fields() and move_field() return one of the following:
E_OK The function returned successfully.

E_CONNECTED The field is already connected to a form.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect

E_POSTED The form is posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 227

form_field_attributes(3CURSES) Curses Library Functions

NAME form_field_attributes, set_field_fore, field_fore, set_field_back, field_back,
set_field_pad, field_pad – format the general display attributes of forms

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_field_fore (FIELD *field, chtype attr);

chtype field_fore (FIELD *field);

int set_field_back (FIELD *field, chtype attr);

chtype field_back (FIELD *field);

int set_field_pad (FIELD *field, int pad);

int field_pad (FIELD *field);

DESCRIPTION set_field_fore() sets the foreground attribute of field . The foreground
attribute is the low-level curses display attribute used to display the field
contents. field_fore() returns the foreground attribute of field .

set_field_back() sets the background attribute of field . The background
attribute is the low-level curses display attribute used to display the extent of
the field. field_back() returns the background attribute of field .

set_field_pad() sets the pad character of field to pad . The pad character
is the character used to fill within the field. field_pad() returns the pad
character of field .

RETURN VALUES field_fore() , field_back() , and field_pad() return default values if
field is NULL . If field is not NULLand is not a valid FIELD pointer, the return
value from these routines is undefined.

set_field_fore() , set_field_back() , and set_field_pad() return
one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

228 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_field_attributes(3CURSES)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 229

form_field_buffer(3CURSES) Curses Library Functions

NAME form_field_buffer, set_field_buffer, field_buffer, set_field_status, field_status,
set_max_field – set and get forms field attributes

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_field_buffer (FIELD *field, int buf, char *value);

char *field_buffer (FIELD *field, int buf);

int set_field_status (FIELD *field, int status);

int field_status (FIELD *field);

int set_max_field (FIELD *field, int max);

DESCRIPTION set_field_buffer() sets buffer buf of field to value . Buffer 0 stores the
displayed contents of the field. Buffers other than 0 are application specific and
not used by the forms library routines. field_buffer() returns the value of
field buffer buf .

Every field has an associated status flag that is set whenever the contents of field
buffer 0 changes. set_field_status() sets the status flag of field to status .
field_status() returns the status of field .

set_max_field() sets a maximum growth on a dynamic field, or if max=
0 turns off any maximum growth.

RETURN VALUES field_buffer() returns NULLon error.

field_status() returns TRUEor FALSE .

set_field_buffer() , set_field_status() , and set_max_field()
return one of the following:
E_OK Thefunction returned successfully.

E_SYSTEM_ERROR System error

E_BAD_ARGUMENT An argument is incorrect.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

230 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_field_info(3CURSES)

NAME form_field_info, field_info, dynamic_field_info – get forms field characteristics

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int field_info (FIELD *field, int *rows, int *cols, int *frow, int *fcol, int *nrow, int *nbuf);

int dynamic_field_info (FIELD *field, int *drows, int *dcols, int *max);

DESCRIPTION field_info() returns the size, position, and other named field characteristics,
as defined in the original call to new_field() , to the locations pointed to by
the arguments rows , cols , frow , fcol , nrow , and nbuf .

dynamic_field_info() returns the actual size of the field in the pointer
arguments drows , dcols and returns the maximum growth allowed for field in
max . If no maximum growth limit is specified for field , max will contain 0. A
field can be made dynamic by turning off the field option O_STATIC .

RETURN VALUES These routines return one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 231

form_field_just(3CURSES) Curses Library Functions

NAME form_field_just, set_field_just, field_just – format the general appearance of
forms

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_field_just (FIELD *field, int justification);

int field_just (FIELD *field);

DESCRIPTION set_field_just() sets the justification for field . Justification may be one of:
NO_JUSTIFICATION
JUSTIFY_RIGHT
JUSTIFY_LEFT
JUSTIFY_CENTER

.

The field justification will be ignored if field is a dynamic field.

field_just() returns the type of justification assigned to field .

RETURN VALUES field_just() returns one of the following:
NO_JUSTIFICATION
JUSTIFY_RIGHT
JUSTIFY_LEFT
JUSTIFY_CENTER.

set_field_just() returns one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

232 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_field_new(3CURSES)

NAME form_field_new, new_field, dup_field, link_field, free_field – create and destroy
forms fields

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
FIELD *new_field (int r, int c, int frow, int fcol, int nrow, int ncol);

FIELD *dup_field (FIELD *field, int frow, int fcol);

FIELD *link_field (FIELD *field, int frow, int fcol);

int free_field (FIELD *field);

DESCRIPTION new_field() creates a new field with r rows and c columns, starting at frow ,
fcol , in the subwindow of a form. nrow is the number of off-screen rows and nbuf
is the number of additional working buffers. This routine returns a pointer to
the new field.

dup_field() duplicates field at the specified location. All field attributes are
duplicated, including the current contents of the field buffers.

link_field() also duplicates field at the specified location. However, unlike
dup_field() , the new field shares the field buffers with the original field.
After creation, the attributes of the new field can be changed without affecting
the original field.

free_field() frees the storage allocated for field .

RETURN VALUES Routines that return pointers return NULLon error. free_field() returns
one of the following:
E_OK Thefunction returned successfully.

E_CONNECTED The field is already connected to a form.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 233

form_field_opts(3CURSES) Curses Library Functions

NAME form_field_opts, set_field_opts, field_opts_on, field_opts_off, field_opts – forms
field option routines

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_field_opts (FIELD *field, OPTIONS opts);

int set_field_opts (FIELD *field, OPTIONS opts);

int field_opts_on (FIELD *field, OPTIONS opts);

int field_opts_off (FIELD *field, OPTIONS opts);

OPTIONS field_opts (FIELD *field);

DESCRIPTION set_field_opts() turns on the named options of field and turns off all
remaining options. Options are boolean values that can be OR-ed together.

field_opts_on() turns on the named options; no other options are changed.

field_opts_off() turns off the named options; no other options are changed.

field_opts() returns the options set for field .
O_VISIBLE The field is displayed.

O_ACTIVE The field is visited during processing.

O_PUBLIC The field contents are displayed as data is
entered.

O_EDIT The field can be edited.

O_WRAP Words not fitting on a line are wrapped to the
next line.

O_BLANK The whole field is cleared if a character is entered
in the first position.

O_AUTOSKIP Skip to the next field when the current field
becomes full.

O_NULLOK A blank field is considered valid.

O_STATIC The field buffers are fixed in size.

O_PASSOK Validate field only if modified by user.

RETURN VALUES set_field_opts , field_opts_on and field_opts_off return one of
the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

234 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_field_opts(3CURSES)

E_CURRENT The field is the current field.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 235

form_fieldtype(3CURSES) Curses Library Functions

NAME form_fieldtype, new_fieldtype, free_fieldtype, set_fieldtype_arg,
set_fieldtype_choice, link_fieldtype – forms fieldtype routines

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
FIELDTYPE *new_fieldtype (int (* field_check)(FIELD *, char *), int (* char_check)(int,
char *));

int free_fieldtype (FIELDTYPE *fieldtype);

int set_fieldtype_arg (FIELDTYPE *fieldtype, char *(* mak_arg)(va_list *), char *(*
copy_arg)(char *), void (* free_arg)(char *));

int set_fieldtype_choice (FIELDTYPE *fieldtype, int (* next_choice)(FIELD *, char
), int (prev_choice)(FIELD *, char *));

FIELDTYPE *link_fieldtype (FIELDTYPE *type1, FIELDTYPE *type2);

DESCRIPTION new_fieldtype() creates a new field type. The application programmer must
write the function field_check , which validates the field value, and the function
char_check , which validates each character. free_fieldtype() frees the space
allocated for the field type.

By associating function pointers with a field type, set_fieldtype_arg()
connects to the field type additional arguments necessary for a
set_field_type() call. Function mak_arg allocates a structure for the field
specific parameters to set_field_type() and returns a pointer to the saved
data. Function copy_arg duplicates the structure created by make_arg . Function
free_arg frees any storage allocated by make_arg or copy_arg .

The form_driver() requests REQ_NEXT_CHOICEand REQ_PREV_CHOICElet
the user request the next or previous value of a field type comprising an ordered
set of values. set_fieldtype_choice() allows the application programmer
to implement these requests for the given field type. It associates with the
given field type those application-defined functions that return pointers to the
next or previous choice for the field.

link_fieldtype() returns a pointer to the field type built from the two given
types. The constituent types may be any application-defined or pre-defined
types.

RETURN VALUES Routines that return pointers always return NULLon error. Routines that return
an integer return one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_CONNECTED Type is connected to one or more fields.

236 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_fieldtype(3CURSES)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 237

form_field_userptr(3CURSES) Curses Library Functions

NAME form_field_userptr, set_field_userptr, field_userptr – associate application data
with forms

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_field_userptr (FIELD *field, char *ptr);

char *field_userptr (FIELD *field);

DESCRIPTION Every field has an associated user pointer that can be used to store pertinent data.
set_field_userptr() sets the user pointer of field . field_userptr()
returns the user pointer of field .

RETURN VALUES field_userptr() returns NULL on error. set_field_userptr()
returns one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

238 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_field_validation(3CURSES)

NAME form_field_validation, set_field_type, field_type, field_arg – forms field data
type validation

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_field_type (FIELD *field, FIELDTYPE *type, ...);

FIELDTYPE *field_type (FIELD *field);

char *field_arg (FIELD *field);

DESCRIPTION set_field_type() associates the specified field type with field . Certain
field types take additional arguments. TYPE_ALNUM, for instance, requires
one, the minimum width specification for the field. The other predefined field
types are: TYPE_ALPHA, TYPE_ENUM, TYPE_INTEGER, TYPE_NUMERIC,
and TYPE_REGEXP.

field_type() returns a pointer to the field type of field . NULL is returned
if no field type is assigned.

field_arg() returns a pointer to the field arguments associated with the field
type of field . NULL is returned if no field type is assigned.

RETURN VALUES field_type() and field_arg() return NULLon error.

set_field_type() returns one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 239

form_hook(3CURSES) Curses Library Functions

NAME form_hook, set_form_init, form_init, set_form_term, form_term, set_field_init,
field_init, set_field_term, field_term – assign application-specific routines for
invocation by forms

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_form_init (FORM *form, void (*func)(FORM*));

void (*form_init) (FORM *form);

int set_form_term (FORM *form, void (*func)(FORM*));

void (*form_term) (FORM *form);

int set_field_init (FORM *form, void (*func)(FORM*));

void (*field_init) (FORM *form);

int set_field_term (FORM *form, void (*func)(FORM*));

void (*field_term) (FORM *form);

DESCRIPTION These routines allow the programmer to assign application specific routines to
be executed automatically at initialization and termination points in the forms
application. The user need not specify any application-defined initialization or
termination routines at all, but they may be helpful for displaying messages
or page numbers and other chores.

set_form_init() assigns an application-defined initialization function to
be called when the form is posted and just after a page change. form_init()
returns a pointer to the initialization function, if any.

set_form_term() assigns an application-defined function to be called when
the form is unposted and just before a page change. form_term() returns a
pointer to the function, if any.

set_field_init() assigns an application-defined function to be called when
the form is posted and just after the current field changes. field_init()
returns a pointer to the function, if any.

set_field_term() assigns an application-defined function to be called when
the form is unposted and just before the current field changes. field_term()
returns a pointer to the function, if any.

RETURN VALUES Routines that return pointers always return NULLon error. Routines that return
an integer return one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

240 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_hook(3CURSES)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 241

form_new(3CURSES) Curses Library Functions

NAME form_new, new_form, free_form – create and destroy forms

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
FORM *new_form (FIELD **fields);

int free_form (FORM *form);

DESCRIPTION new_form() creates a new form connected to the designated fields and returns
a pointer to the form.

free_form() disconnects the form from its associated field pointer array and
deallocates the space for the form.

RETURN VALUES new_form() always returns NULLon error. free_form() returns one of
the following:
E_OK The function returned successfully.

E_BAD_ARGUMENT An argument is incorrect.

E_POSTED The form is posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

242 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_new_page(3CURSES)

NAME form_new_page, set_new_page, new_page – forms pagination

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_new_page (FIELD *field, int bool);

int new_page (FIELD *field);

DESCRIPTION set_new_page() marks field as the beginning of a new page on the form.

new_page() returns a boolean value indicating whether or not field begins a
new page of the form.

RETURN VALUES new_page returns TRUEor FALSE .

set_new_page() returns one of the following:
E_OK The function returned successfully.

E_CONNECTED The field is already connected to a form.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 243

form_opts(3CURSES) Curses Library Functions

NAME form_opts, set_form_opts, form_opts_on, form_opts_off – forms option routines

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_form_opts (FORM *form, OPTIONS opts);

int form_opts_on (FORM *form, OPTIONS opts);

int form_opts_off (FORM *form, OPTIONS opts);

OPTIONS
form_opts (FORM *form);

DESCRIPTION set_form_opts() turns on the named options for form and turns off
all remaining options. Options are boolean values which can be OR-ed
together.form_opts_on() turns on the named options; no other options are
changed.form_opts_off() turns off the named options; no other options
are changed.

form_opts() returns the options set for form .
O_NL_OVERLOAD Overload the REQ_NEW_LINEform driver

request.

O_BS_OVERLOAD Overload the REQ_DEL_PREVform driver
request.

RETURN VALUES set_form_opts() , form_opts_on() , and form_opts_off() return
one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

244 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_page(3CURSES)

NAME form_page, set_form_page, set_current_field, current_field, field_index – set
forms current page and field

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_form_page (FORM *form, int page);

int form_page (FORM *form);

int set_current_field (FORM *form, FIELD *field);

FIELD *current_field (FORM*form);

int field_index (FIELD *field);

DESCRIPTION set_form_page() sets the page number of form to page . form_page()
returns the current page number of form .

set_current_field() sets the current field of form to field .
current_field() returns a pointer to the current field of form .

field_index() returns the index in the field pointer array of field .

RETURN VALUES form_page() returns -1 on error.

current_field() returns NULLon error.

field_index() returns -1 on error.

set_form_page() and set_current_field() return one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_INVALID_FIELD The field contents are invalid.

E_REQUEST_DENIED The form driver request failed

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

Last modified 31 Dec 1996 SunOS 5.8 245

form_page(3CURSES) Curses Library Functions

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

246 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_post(3CURSES)

NAME form_post, post_form, unpost_form – write or erase forms from associated
subwindows

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int post_form (FORM *form);

int unpost_form (FORM *form);

DESCRIPTION post_form() writes form into its associated subwindow. The application
programmer must use curses library routines to display the form on the
physical screen or call update_panels() if the panels library is being used.

unpost_form() erases form from its associated subwindow.

RETURN VALUES These routines return one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_POSTED The form is posted.

E_NOT_POSTED The form is not posted.

E_NO_ROOM The form does not fit in the subwindow.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_NOT_CONNECTED The field is not connected to a form.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , panel_update (3CURSES) ,
panels (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 247

forms(3CURSES) Curses Library Functions

NAME forms – character based forms package

SYNOPSIS #include <form.h>

DESCRIPTION The form library is built using the curses library, and any program using
forms routines must call one of the curses initialization routines such as
initscr . A program using these routines must be compiled with −lform and
−lcurses on the cc command line.

The forms package gives the applications programmer a terminal-independent
method of creating and customizing forms for user-interaction. The forms
package includes: field routines, which are used to create and customize fields,
link fields and assign field types; fieldtype routines, which are used to create
new field types for validating fields; and form routines, which are used to create
and customize forms, assign pre/post processing functions, and display and
interact with forms.

Current Default
Values for Field

Attributes

The forms package establishes initial current default values for field attributes.
During field initialization, each field attribute is assigned the current default
value for that attribute. An application can change or retrieve a current default
attribute value by calling the appropriate set or retrieve routine with a NULL
field pointer. If an application changes a current default field attribute value,
subsequent fields created using new_field() will have the new default
attribute value. (The attributes of previously created fields are not changed if a
current default attribute value is changed.)

Routine Name Index The following table lists each forms routine and the name of the manual page
on which it is described.
forms Routine Name Manual Page Name

current_field form_page(3X)

data_ahead form_data(3X)

data_behind form_data(3X)

dup_field form_field_new(3X)

dynamic_field_info form_field_info(3X)

field_arg form_field_validation(3X)

field_back form_field_attributes(3X)

field_buffer form_field_buffer(3X)

field_count form_field(3X)

field_fore form_field_attributes(3X)

field_index form_page(3X)

248 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions forms(3CURSES)

field_info form_field_info(3X)

field_init form_hook(3X)

field_just form_field_just(3X)

field_opts form_field_opts(3X)

field_opts_off form_field_opts(3X)

field_opts_on form_field_opts(3X)

field_pad form_field_attributes(3X)

field_status form_field_buffer(3X)

field_term form_hook(3X)

field_type form_field_validation(3X)

field_userptr form_field_userptr(3X)

form_driver form_driver(3X)

form_fields form_field(3X)

form_init form_hook(3X)

form_opts form_opts(3X)

form_opts_off form_opts(3X)

form_opts_on form_opts(3X)

form_page form_page(3X)

form_sub form_win(3X)

form_term form_hook(3X)

form_userptr form_userptr(3X)

form_win form_win(3X)

free_field form_field_new(3X)

free_fieldtype form_fieldtype(3X)

free_form form_new(3X)

link_field form_field_new(3X)

link_fieldtype form_fieldtype(3X)

move_field form_field(3X)

new_field form_field_new(3X)

Last modified 31 Dec 1996 SunOS 5.8 249

forms(3CURSES) Curses Library Functions

new_fieldtype form_fieldtype(3X)

new_form form_new(3X)

new_page form_new_page(3X)

pos_form_cursor form_cursor(3X)

post_form form_post(3X)

scale_form form_win(3X)

set_current_field form_page(3X)

set_field_back form_field_attributes(3X)

set_field_buffer form_field_buffer(3X)

set_field_fore form_field_attributes(3X)

set_field_init form_hook(3X)

set_field_just form_field_just(3X)

set_field_opts form_field_opts(3X)

set_field_pad form_field_attributes(3X)

set_field_status form_field_buffer(3X)

set_field_term form_hook(3X)

set_field_type form_field_validation(3X)

set_field_userptr form_field_userptr(3X)

set_fieldtype_arg form_fieldtype(3X)

set_fieldtype_choice form_fieldtype(3X)

set_form_fields form_field(3X)

set_form_init form_hook(3X)

set_form_opts form_opts(3X)

set_form_page form_page(3X)

set_form_sub form_win(3X)

set_form_term form_hook(3X)

set_form_userptr form_userptr(3X)

set_form_win form_win(3X)

set_max_field form_field_buffer(3X)

250 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions forms(3CURSES)

set_new_page form_new_page(3X)

unpost_form form_post(3X)

RETURN VALUES Routines that return a pointer always return NULLon error. Routines that return
an integer return one of the following:
E_OK The function returned successfully.

E_CONNECTED The field is already connected to a
form.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_CURRENT The field is the current field.

E_POSTED The form is posted.

E_NOT_POSTED The form is not posted.

E_INVALID_FIELD The field contents are invalid.

E_NOT_CONNECTED The field is not connected to a form.

E_NO_ROOM The form does not fit in the
subwindow.

E_BAD_STATE The routine was called from an
initialization or termination function.

E_REQUEST_DENIED The form driver request failed.

E_UNKNOWN_COMMAND An unknown request was passed to
the form driver.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES), attributes (5) and 3X pages whose names begin "form_"
for detailed routine descriptions.

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 251

form_userptr(3CURSES) Curses Library Functions

NAME form_userptr, set_form_userptr – associate application data with forms

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_form_userptr (FORM *form, char *ptr);

char *form_userptr (FORM *form);

DESCRIPTION Every form has an associated user pointer that can be used to store pertinent
data. set_form_userptr() sets the user pointer of form . form_userptr()
returns the user pointer of form .

RETURN VALUES form_userptr() returns NULLon error. set_form_userptr() returns
one of the following:
E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

252 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions form_win(3CURSES)

NAME form_win, set_form_win, set_form_sub, form_sub, scale_form – forms window
and subwindow association routines

SYNOPSIS cc [flag ...] file ... −lform −lcurses [library ..]
#include <form.h>
int set_form_win (FORM *form, WINDOW *win);

WINDOW *form_win (FORM *form);

int set_form_sub (FORM *form, WINDOW *sub);

WINDOW *form_sub (FORM *form);

int scale_form (FORM *form, int *rows, int *cols);

DESCRIPTION set_form_win() sets the window of form to win . form_win() returns
a pointer to the window associated with form .set_form_sub() sets the
subwindow of form to sub . form_sub() returns a pointer to the subwindow
associated with form .scale_form() returns the smallest window size
necessary for the subwindow of form . rows and cols are pointers to the locations
used to return the number of rows and columns for the form.

RETURN VALUES Routines that return pointers always return NULLon error. Routines that return
an integer return one of the following:
E_OK The function returnedsuccessfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_NOT_CONNECTED The field is not connected to a form.

E_POSTED The form is posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , forms (3CURSES) , attributes (5)

NOTES The header <form.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 253

getbegyx(3XCURSES) X/Open Curses Library Functions

NAME getbegyx, getmaxyx, getparyx, getyx – get cursor or window coordinates

SYNOPSIS #include <curses.h>
void getbegyx (WINDOW *win, int y, int x);

void getmaxyx (WINDOW *win, int y, int x);

void getparyx (WINDOW *win, int y, int x);

void getyx (WINDOW *win, int y, int x);

DESCRIPTION The getyx() macro stores the current cursor position of the specified window
in x and y .

The getparyx() macro stores the x and y coordinates (relative to the parent
window) of the specified window’s origin (upper-left corner). If win does not
point to a subwindow, x and y are set to -1.

The getbegyx() macro stores the x and y coordinates of the specified window’s
origin (upper-left corner).

The getmaxyx() macro stores the numbers of rows in the specified window in
y and the number of columns in x .

PARAMETERS win Is a pointer to a window.

y stores the y coordinate for the cursor or origin. The getmaxyx()
macro uses it to store the number of rows in the window.

x stores the x coordinate for the cursor or origin. The getmaxyx()
macro uses it to store the number of columns in the window.

RETURN VALUES These macros do not return a value.

ERRORS None.

254 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions getcchar(3XCURSES)

NAME getcchar – get a wide character string (with rendition) from a cchar_t

SYNOPSIS #include <curses.h>
int getcchar (const cchar_t *wcval, wchar_t *wch, attr_t *attrs, short *color_pair, void *opt);

DESCRIPTION If wch is not a null pointer, the getcchar() function splits the cchar_t object
pointed to by wcval into a wide character string, attributes, and a color pair. It
stores the attributes in the location pointed to by attrs, the color pair in the
location pointed to by color_pair, and the wide character string in the location
pointed to by wch.

If wch is a null pointer, the getcchar() function simply returns the number of
wide characters in the cchar_t object pointed to by wcval. The objects pointed
to by attrs and color_pair are not changed.

PARAMETERS wcval Is a pointer to a cchar_t object.

wch Is a pointer to an object where a wide character string can
be stored.

attrs Is a pointer to an object where attributes can be stored.

color_pair Is a pointer to an object where a color pair can be stored.

opts Is reserved for future use. Currently, this must be a null
pointer.

RETURN VALUES When wch is a null pointer, the getcchar() function returns the number of
wide characters in the string pointed to by wcval including the null terminator.

When wch is not a null pointer, the getcchar() function returns OKon success
and ERRotherwise.

ERRORS None

SEE ALSO attroff (3XCURSES), can_change_color (3XCURSES),
setcchar (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 255

getch(3XCURSES) X/Open Curses Library Functions

NAME getch, wgetch, mvgetch, mvwgetch – get a single-byte character from the
terminal

SYNOPSIS #include <curses.h>
int getch (void);

int wgetch (WINDOW *win);

int mvgetch (int y, int x);

int mvwgetch (WINDOW *win, int y, int x);

PARAMETERS win Is a pointer to the window associated with the terminal from which
the character is to be read.

y Is the y (row) coordinate for the position of the character to be read.

x Is the x (column) coordinate for the position of the character to be read.

DESCRIPTION These functions read a single-byte character from the terminal associated with
the current or specified window. The results are unspecified if the input is not
a single-byte character. If keypad (3XCURSES) is enabled, these functions
respond to the pressing of a function key by returning the corresponding KEY_
value defined in <curses.h>

Processing of terminal input is subject to the general rules described on the
keypad (3XCURSES) manual page.

If echoing is enabled, then the character is echoed as though it were provided as
an input argument to addch (3XCURSES) , except for the following characters:
<backspace> The input is interpreted as follows: unless the cursor already

was in column 0, <backspace> moves the cursor one column
toward the start of the current line and any characters after
the <backspace> are added or inserted starting there. The
character at the resulting cursor position it then deleted as
though delch (3XCURSES) were called, except that if the
cursor was originally in the first column of the line, the user
is alerted as though beep (3XCURSES) were called.

Function keys The user is alerted as though beep() were called.
Information concerning the function keys is not returned to
the caller.

If the current or specified window is not a pad, and it has been moved modified
since the last refresh operation, then it will be refreshed before another character
is read.

Constant Values for
Function Keys

The following is a list of tokens for function keys that are returned by the
getch() set of functions if keypad handling is enabled (some terminals may
not support all tokens).

256 SunOS 5.8 Last modified 4 May 1999

X/Open Curses Library Functions getch(3XCURSES)

Constant Description

KEY_BREAK Break key

KEY_DOWN The down arrow key

KEY_UP The up arrow key

KEY_LEFT The left arrow key

KEY_RIGHT The right arrow key

KEY_HOME Home key

KEY_BACKSPACE Backspace

KEY_F0 Function keys. Space for 64 keys is reserved.

KEY_F(n) For 0 <= n <= 63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backwards

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send

KEY_SRESET Soft (partial) reset

KEY_RESET Reset or hard reset

KEY_PRINT Print or copy

KEY_LL Home down or bottom (lower left)

Last modified 4 May 1999 SunOS 5.8 257

getch(3XCURSES) X/Open Curses Library Functions

Constant Description

KEY_A1 Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab

KEY_BEG Beginning key

KEY_CANCEL Cancel key

KEY_CLOSE Close key

KEY_COMMAND Cmd (command) key

KEY_COPY Copy key

KEY_CREATE Create key

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key

KEY_MESSAGE Message key

KEY_MOVE Move key

KEY_NEXT Next object key

KEY_OPEN Open key

KEY_OPTIONS Options key

KEY_PREVIOUS Previous object key

KEY_REDO Redo key

KEY_REFERENCE Reference key

KEY_REFRESH Refresh key

KEY_REPLACE Replace key

KEY_RESTART Restart key

KEY_RESUME Resume key

258 SunOS 5.8 Last modified 4 May 1999

X/Open Curses Library Functions getch(3XCURSES)

Constant Description

KEY_SAVE Save key

KEY_SBEG Shifted beginning key

KEY_SCANCEL Shifted cancel key

KEY_SCOMMAND Shifted command key

KEY_SCOPY Shifted copy key

KEY_SCREATE Shifted create key

KEY_SDC Shifted delete char key

KEY_SDL Shifted delete line key

KEY_SELECT Select key

KEY_SEND Shifted end key

KEY_SEOL Shifted clear line key

KEY_SEXIT Shifted exit key

KEY_SFIND Shifted find key

KEY_SHELP Shifted help key

KEY_SHOME Shifted home key

KEY_SIC Shifted input key

KEY_SLEFT Shifted left arrow key

KEY_SMESSAGES Shifted messages key

KEY_SMOVE Shifted move key

KEY_SNEXT Shifted next key

KEY_SOPTIONS Shifted options key

KEY_SPREVIOUS Shifted previous key

KEY_SPRINT Shifted print key

KEY_SREDO Shifted redo key

KEY_SREPLACE Shifted replace key

KEY_SRIGHT Shifted right arrow key

KEY_SRSUME Shifted resume key

KEY_SSAVE Shifted save key

KEY_SSUSPEND Shifted suspend key

Last modified 4 May 1999 SunOS 5.8 259

getch(3XCURSES) X/Open Curses Library Functions

Constant Description

KEY_SUNDO Shifted undo key

KEY_SUSPEND Suspend key

KEY_UNDO Undo key

RETURN VALUES Upon successful completion, these functions return the single-byte character,
KEY_value, or ERR. When in the nodelay mode and no data is available, ERRis
returned.

ERRORS No errors are defined.

USAGE Applications should not define the escape key by itself as a single-character
function.

When using these functions, nocbreak mode (cbreak (3XCURSES)) and echo
mode (echo (3XCURSES)) should not be used at the same time. Depending
on the state of the terminal when each character is typed, the application may
produce undesirable results.

SEE ALSO cbreak (3XCURSES) , echo (3XCURSES) , halfdelay (3XCURSES) ,
keypad (3XCURSES) , nodelay (3XCURSES) , notimeout (3XCURSES) ,
raw (3XCURSES) , timeout (3XCURSES)

260 SunOS 5.8 Last modified 4 May 1999

X/Open Curses Library Functions getnstr(3XCURSES)

NAME getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, wgetstr –
get a multibyte character string from terminal

SYNOPSIS #include <curses.h>
int getnstr (char *str, int n);

int getstr (char *str);

int mvgetnstr (int y, int x, char *str, int n);

int mvgetstr (int y, int x, char *str);

int mvwgetnstr (WINDOW *win, int y, int x, char *str, int n);

int mvwgetstr (WINDOW *win, int y, int x, char *str);

int wgetnstr (WINDOW *win, char *str, int n);

int wgetstr (WINDOW *win, char *str);

DESCRIPTION The getstr() and wgetstr() functions get a character string from the
terminal associated with the window stdscr or window win , respectively. The
mvgetstr() and mvwgetstr() functions move the cursor to the position
specified in stdscr or win , respectively, then get a character string.

These functions call wgetch (3XCURSES) and place each received character in
str until a newline is received, which is also placed in str . The erase and kill
characters set by the user are processed.

The getnstr() , mvgetnstr() , mvwgetnstr() and wgetnstr() functions
read at most n characters. These functions are used to prevent overflowing
the input buffer.

The getnstr() , wgetnstr() , mvgetnstr() , and mvwgetnstr()
functions only return complete multibyte characters. If the area pointed to by str
is not large enough to hold at least one character, these functions fail.

PARAMETERS str Is a pointer to the area where the character string
is to be placed.

n Is the maximum number of characters to read
from input.

y Is the y (row) coordinate of starting position of
character string to be read.

x Is the x (column) coordinate of starting position
of character string to be read.

win Points to the window associated with the
terminal from which the character is to be read.

Last modified 1 Jun 1996 SunOS 5.8 261

getnstr(3XCURSES) X/Open Curses Library Functions

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO getch (3XCURSES)

262 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions getn_wstr(3XCURSES)

NAME getn_wstr, get_wstr, mvgetn_wstr, mvget_wstr, mvwgetn_wstr, mvwget_wstr,
wgetn_wstr, wget_wstr – get a wide character string from terminal

SYNOPSIS #include <curses.h>
int getn_wstr (wint_t *wstr, int , int get_wstr(wint_t *wstr);

int mvgetn_wstr (int y, int x, wint_t *wstr, int n);

int mvget_wstr (int y, int x, wint_t *wstr);

int mvwgetn_wstr (WINDOW *win, int y, int x, wint_t *wstr, int n);

int mvwget_wstr (WINDOW *win, int y, int x, wint_t *wstr);

int wgetn_wstr (WINDOW *win, wint_t *wstr, int n);

int wget_wstr (WINDOW *win, wint_t *wstr);

DESCRIPTION The get_wstr() and wget_wstr() functions get a wide character string from
the terminal associated with the window stdscr or window win , respectively.
The mvget_str() and mvwget_wstr() functions move the cursor to the
position specified in stdscr or win , respectively, then get a wide character
string.

These functions call wget_wch (3XCURSES) and place each received character in
wstr until a newline character, end-of-line character, or end-of-file character is
received, which is also placed in wstr . The erase and kill characters set by the
user are processed.

The getn_wstr() , mvgetn_wstr() , mvwgetn_wstr() and
wgetn_wstr() functions read at most n characters. These functions are used to
prevent overflowing the input buffer.

PARAMETERS wstr Is a pointer to the area where the character string is to be placed.

n Is the maximum number of characters to read from input.

y Is the y (row) coordinate of starting position of character string to
be read.

x Is the x (column) coordinate of starting position of character string to
be read.

win points to the window associated with the terminal from which the
character is to be read.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO get_wch (3XCURSES) , getnstr (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 263

get_wch(3XCURSES) X/Open Curses Library Functions

NAME get_wch, wget_wch, mvget_wch, mvwget_wch – get a wide character from
terminal

SYNOPSIS #include <curses.h>
int get_wch (wint_t *ch);

int wget_wch (WINDOW *win, wint_t *ch);

int mvget_wch (int y, int x, wint_t *ch);

int mvwget_wch (WINDOW *win, int y, int x, wint_t *ch);

DESCRIPTION The get_wch() and wget_wch() functions get a wide character from the
terminal associated with the window stdscr or window win , respectively. The
mvget_wch() and mvwget_wch() functions move the cursor to the position
specified in stdscr or win , respectively, then get a character.

If the window is not a pad and has been changed since the last call to
refresh (3XCURSES) , get_wch() calls refresh() to update the window
before the next character is read.

The setting of certain functions affects the behavior of the get_wch() set of
functions. For example, if cbreak (3XCURSES) is set, characters typed by the
user are immediately processed. If halfdelay (3XCURSES) is set, get_wch()
waits until a character is typed or returns ERRif no character is typed within
the specified timeout period. This timeout can also be specified for individual
windows with the delay parameter of timeout (3XCURSES) A negative value
waits for input; a value of 0 returns ERRif no input is ready; a positive value
blocks until input arrives or the time specified expires (in which case ERRis
returned). If nodelay (3XCURSES) is set, ERRis returned if no input is waiting;
if not set, get_wch() waits until input arrives. Each character will be echoed to
the window unless noecho (3XCURSES) has been set.

If keypad handling is enabled (keypad (3XCURSES) is TRUE), the token for
the function key (a KEY_value) is stored in the object pointed to by ch and
KEY_CODE_YESis returned. If a character is received that could be the beginning
of a function key (for example, ESC), an inter-byte timer is set. If the remainder
of the sequence is not received before the time expires, the character is passed
through; otherwise, the value of the function key is returned. If notimeout() is
set, the inter-byte timer is not used.

The ESC key is typically a prefix key used with function keys and should not be
used as a single character.

See the getch (3XCURSES) manual page for a list of tokens for function keys
that are returned by the get_wch() set of functions if keypad handling is
enabled (Some terminals may not support all tokens).

264 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions get_wch(3XCURSES)

PARAMETERS ch Is a pointer to a wide integer where the returned wide character or
KEY_ value can be stored.

win Is a pointer to the window associated with the terminal from which
the character is to be read.

y Is the y (row) coordinate for the position of the character to be read.

x Is the x (column) coordinate for the position of the character to be read.

RETURN VALUES When these functions successfully report the pressing of a function key, they
return KEY_CODE_YES. When they successfully report a wide character, they
return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO cbreak (3XCURSES) , echo (3XCURSES) , halfdelay (3XCURSES) ,
keypad (3XCURSES) , nodelay (3XCURSES) , notimeout (3XCURSES) ,
raw (3XCURSES) , timeout (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 265

getwin(3XCURSES) X/Open Curses Library Functions

NAME getwin, putwin – read a window from, and write a window to, a file

SYNOPSIS #include <curses.h>
WINDOW *getwin (FILE *filep);

int putwin (WINDOW *win, FILE *filep);

DESCRIPTION The getwin() function reads window-related data (written earlier by
putwin()) from the stdio stream pointed to by filep . It then creates and
initializes a new window using that data.

The putwin() function writes all the data associated with the window pointed
to by win to the stdio stream pointed to by filep . The getwin() function
can later retrieve this data.

PARAMETERS filep Is a pointer to a stdio stream.

win Is a pointer to a window.

RETURN VALUES On success, the getwin() function returns a pointer to the new window
created. Otherwise, it returns a null pointer.

On success, the putwin() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO scr_dump (3XCURSES)

266 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions halfdelay(3XCURSES)

NAME halfdelay – enable/disable half-delay mode

SYNOPSIS #include <curses.h>
int halfdelay (int tenths);

DESCRIPTION The halfdelay() function is similar to cbreak (3XCURSES) in that when
set, characters typed by the user are immediately processed by the program.
The difference is that ERRis returned if no input is received after tenths tenths
seconds.

The nocbreak (3XCURSES) function should be used to leave half-delay mode.

PARAMETERS tenths Is the number of tenths of seconds for which to block input
(1 to 255).

RETURN VALUES On success, the halfdelay() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO cbreak (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 267

has_ic(3XCURSES) X/Open Curses Library Functions

NAME has_ic, has_il – determine insert/delete character/line capability

SYNOPSIS #include <curses.h>
bool has_ic (void);

bool has_il (void);

DESCRIPTION The has_ic() function determines whether or not the terminal has
insert/delete character capability.

The has_il() function determines whether or not the terminal has
insert/delete line capability.

RETURN VALUES The has_ic() function returns TRUEif the terminal has insert/delete character
capability and FALSEotherwise.

The has_il() function returns TRUEif the terminal has insert/delete line
capability and FALSEotherwise.

ERRORS None.

268 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions hline(3XCURSES)

NAME hline, mvhline, mvvline, mvwhline, mvwvline, vline, whline, wvline – use
single-byte characters (and renditions) to draw lines

SYNOPSIS #include <curses.h>
int hline (chtype ch, int n);

int mvhline (int y, int x, chtype ch, int n);

int mvvline (int y, int x, chtype ch, int n);

int mvwhline (WINDOW *win, int y, int x, chtype ch, int n);

int mvwvline (WINDOW *win, int y, int x, chtype ch, int n);

int vline (chtype ch, int n);

int whline (WINDOW *win, chtype ch, int n);

int wvline (WINDOW *win, chtype ch, int n);

DESCRIPTION The hline() , vline() , whline() , wvline() functions draw a horizontal
or vertical line, in either the window stdscr or win starting at the current
cursor position. The line is drawn using the character ch and is a maximum of n
positions long, or as many as will fit into the window. If ch is 0 (zero), the default
horizontal or vertical character is used.

The mvhline() , mvvline() , mvwhline() , mvwvline() functions are
similar to the previous group of functions but the line begins at cursor position
specified by x and y .

The functions with names ending with hline() draw horizontal lines
proceeding towards the last column of the same line. The functions with names
ending with vline() draw vertical lines proceeding towards the last column of
the same line.

These functions do not change the position of the cursor.

PARAMETERS ch Is the character used to draw the line.

n Is the maximum number of characters in the line.

y Is the y (row) coordinate for the start of the line.

x Is the x (column) coordinate for the start of the line.

win Is a pointer to a window.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None

SEE ALSO border (3XCURSES) , border_set (3XCURSES) , hline_set (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 269

hline_set(3XCURSES) X/Open Curses Library Functions

NAME hline_set, mvhline_set, mvvline_set, mvwhline_set, mvwvline_set, vline_set,
whline_set, wvline_set – use complex characters (and renditions) to draw lines

SYNOPSIS #include <curses.h>
int hline_set (const cchar_t *ch, int n);

int mvhline_set (int y, int x, const cchar_t *wch, int n);

int mvvline_set (int y, int x, const cchar_t *wch, int n);

int mvwhline_set (WINDOW *win, int y, int x, const cchar_t *wch, int n);

int mvwvline_set (WINDOW *win, int y, int x, const cchar_t *wch, int n);

int vline_set (const cchar_t *wch, int n);

int whline_set (WINDOW *win, const cchar_t *wch, int n);

int wvline_set (WINDOW *win, const cchar_t *wch, int n);

DESCRIPTION The hline_set() , vline_set() , whline_set() , wvline_set()
functions draw a line, in either the window stdscr or win starting at the current
cursor position. The line is drawn using the character wch and is a maximum of
n positions long, or as many as will fit into the window. If wch is a null pointer,
the default horizontal or vertical character is used.

The mvhline_set() , mvvline_set() , mvwhline_set() ,
mvwvline_set() functions are similar to the previous group of functions but
the line begins at cursor position specified by x and y .

The functions with names ending with hline_set() draw horizontal lines
proceeding towards the last column of the same line. The functions with
names ending with vline_set() draw vertical lines proceeding towards the
last column of the same line.

These functions do not change the position of the cursor.

PARAMETERS wch Is the complex character used to draw the line.

n Is the maximum number of characters in the line.

y Is the y (row) coordinate for the start of the line.

x Is the x (column) coordinate for the start of the line.

win Is a pointer to a window.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO border (3XCURSES) , border_set (3XCURSES) , hline (3XCURSES)

270 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions idcok(3XCURSES)

NAME idcok – enable/disable hardware insert-character and delete-character features

SYNOPSIS #include <curses.h>
void idcok (WINDOW *win, bool bf);

DESCRIPTION The idcok() function enables or disables the use of hardware insert-character
and delete-character features in win. If bf is set to TRUE, the use of these features
in win is enabled (if the terminal is equipped). If bf is set to FALSE, their use in
win is disabled.

PARAMETERS win Is a pointer to a window.

bf Is a Boolean expression.

RETURN VALUES The idcok() function does not return a value.

ERRORS None.

SEE ALSO clearok (3XCURSES), doupdate (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 271

immedok(3XCURSES) X/Open Curses Library Functions

NAME immedok – call refresh on changes to window

SYNOPSIS #include <curses.h>
int immedok (WINDOW *win, bool bf);

DESCRIPTION If bf is TRUE, immedok() calls refresh (3XCURSES) if any change to
the window image is made (for example, through functions such as
addch (3XCURSES), clrtobot (3XCURSES), and scrl (3XCURSES)). Repeated
calls to refresh() may affect performance negatively. The immedok ()
function is disabled by default.

PARAMETERS win Is a pointer to the window that is to be refreshed.

bf Is a Boolean expression.

RETURN VALUES The immedok() function does not return a value.

ERRORS None.

SEE ALSO addch (3XCURSES), clearok (3XCURSES), clrtobot (3XCURSES),
doupdate (3XCURSES), scrl (3XCURSES)

272 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions inch(3XCURSES)

NAME inch, mvinch, mvwinch, winch – return a single-byte character (with rendition)

SYNOPSIS #include <curses.h>
chtype inch (void);

chtype mvinch (int y, int x);

chtype mvwinch (WINDOW *win, int y, int x);

chtype winch (WINDOW *win);

DESCRIPTION The inch() and winch() functions return the chtype character located at the
current cursor position of the stdscr window and window win , respectively.
The mvinch() and mvwinch() functions return the chtype character located
at the position indicated by the x (column) and y (row) parameters (the former in
the stdscr window; the latter in window win).

The complete character/attribute pair will be returned. The character or
attributes can be extracted by performing a bitwise AND on the returned value,
using the constants A_CHARTEXT, A_ATTRIBUTES, and A_COLOR.

PARAMETERS y Is the y (row) coordinate of the position of the character to be returned.

x Is the x (column) coordinate of the position of the character to be
returned.

win Is a pointer to the window that contains the character to be returned.

RETURN VALUES On success, these functions return the specified character and rendition.
Otherwise, they return ERR.

ERRORS None.

SEE ALSO addch (3XCURSES) , attroff (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 273

inchnstr(3XCURSES) X/Open Curses Library Functions

NAME inchnstr, inchstr, mvinchnstr, mvinchstr, mvwinchnstr, mvwinchstr, winchnstr,
winchstr – retrieve a single-byte character string (with rendition)

SYNOPSIS #include <curses.h>
int inchnstr (chtype *chstr, int n);

int inchstr (chtype *chstr);

int mvinchnstr (int y, int x, chtype *chstr, int n);

int mvinchstr (int y, int x, chtype *chstr);

int mvwinchnstr (WINDOW *win, int y, int x, chtype *chstr, int n);

int mvwinchstr (WINDOW *win, int y, int x, chtype *chstr);

int winchnstr (WINDOW *win, chtype *chstr, int n);

int winchstr (WINDOW *win, chtype *chstr);

DESCRIPTION The inchstr() and winchstr() functions retrieve the character string (with
rendition) starting at the current cursor position of the stdscr window and
window win , respectively, and ending at the right margin. The mvinchstr()
and mvwinchstr() functions retrieve the character string located at the
position indicated by the x (column) and y (row) parameters (the former in the
stdscr window; the latter in window win).

The inchnstr() , winchnstr() , mvinchnstr() , and mvwinchnstr()
functions retrieve at most n characters from the window stdscr and win ,
respectively. The former two functions retrieve the string, starting at the current
cursor position; the latter two commands retrieve the string, starting at the
position specified by the x and y parameters.

All these functions store the retrieved character string in the object pointed
to by chstr .

The complete character/attribute pair is retrieved. The character or attributes
can be extracted by performing a bitwise AND on the retrieved value, using
the constants A_CHARTEXT, A_ATTRIBUTES, and A_COLOR. The character
string can also be retrieved without attributes by using instr (3XCURSES)
set of functions.

PARAMETERS chstr Is a pointer to an object that can hold the retrieved character string.

n Is the number of characters not to exceed when retrieving chstr .

y Is the y (row) coordinate of the starting position of the string to
be retrieved.

x Is the x (column) coordinate of the starting position of the string to
be retrieved.

274 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions inchnstr(3XCURSES)

win Is a pointer to the window in which the string is to be retrieved.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO inch (3XCURSES) , innstr (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 275

initscr(3XCURSES) X/Open Curses Library Functions

NAME initscr, newterm – screen initialization functions

SYNOPSIS #include <curses.h>
WINDOW *initscr (void);

SCREEN *newterm (char *type, FILE *outfp, FILE *infp);

PARAMETERS type Is a string defining the terminal type to be used
in place of TERM.

outfp Is a pointer to a file to be used for output to the
terminal.

infp Is the pointer to a file to be used for input to the
terminal.

DESCRIPTION The initscr() function initializes X/Open Curses data structures, determines
the terminal type, and ensures the first call to refresh (3XCURSES) clears
the screen.

The newterm() function opens a new terminal with each call. It should be
used instead of initscr() when the program interacts with more than one
terminal. It returns a variable of type SCREEN, which should be used for later
reference to that terminal. Before program termination, endwin() should
be called for each terminal.

The only functions that you can call before calling initscr() or newterm()
are filter (3XCURSES) , ripoffline (3XCURSES) , slk_init (3XCURSES) ,
and use_env (3XCURSES) .

RETURN VALUES On success, the initscr() function returns a pointer to stdscr ; otherwise,
initscr() does not return.

On success, the newterm() function returns a pointer to the specified terminal;
otherwise, a null pointer is returned.

ERRORS None.

SEE ALSO del_curterm (3XCURSES) , delscreen (3XCURSES) , doupdate (3XCURSES) ,
endwin (3XCURSES) , filter (3XCURSES) , slk_attroff (3XCURSES) ,
use_env (3XCURSES)

276 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions innstr(3XCURSES)

NAME innstr, instr, mvinnstr, mvinstr, mvwinnstr, mvwinstr, winnstr, winstr – retrieve a
multibyte character string (without rendition)

SYNOPSIS #include <curses.h>
int innstr (char *str, int n);

int instr (char *str);

int mvinnstr (int y, int x, char *str, int n);

int mvinstr (int y, int x, char *str);

int mvwinnstr (WINDOW *win, int y, int x, char *str, int n);

int mvwinstr (WINDOW *win, int y, int x, char *str);

int winstr (WINDOW *win, char *str);

int winnstr (WINDOW *win, char *str, int n);

PARAMETERS str Is a pointer to an object that can hold the
retrieved multibyte character string.

n Is the number of characters not to exceed when
retrieving str .

y Is the y (row) coordinate of the starting position
of the string to be retrieved.

x Is the x (column) coordinate of the starting
position of the string to be retrieved.

win Is a pointer to the window in which the string is
to be retrieved.

DESCRIPTION The instr() and winstr() functions retrieve a multibyte character string
(without attributes) starting at the current cursor position of the stdscr
window and window win , respectively, and ending at the right margin. The
mvinstr() and mvwinstr() functions retrieve a multibyte character string
located at the position indicated by the x (column) and y (row) parameters (the
former in the stdscr window; the latter in window win).

The innstr() , winnstr() , mvinnstr() , and mvwinnstr() functions
retrieve at most n characters from the window stdscr and win , respectively.
The former two functions retrieve the string starting at the current cursor
position; the latter two commands return the string, starting at the position
specified by the x and y parameters.

All these functions store the retrieved string in the object pointed to by str . They
only store complete multibyte characters. If the area pointed to by str is not large
enough to hold at least one character, these functions fail.

Last modified 1 Jun 1996 SunOS 5.8 277

innstr(3XCURSES) X/Open Curses Library Functions

Only the character portion of the character/rendition pair is returned. To return
the complete character/rendition pair, use winchstr() .

ERRORS OK Successful completion.

ERR An error occurred.

USAGE All functions except winnstr() may be macros.

SEE ALSO inch (3XCURSES) , inchstr (3XCURSES)

278 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions innwstr(3XCURSES)

NAME innwstr, inwstr, mvinnwstr, mvinwstr, mvwinnwstr, mvwinwstr, winnwstr,
winwstr – retrieve a wide character string (without rendition)

SYNOPSIS #include <curses.h>
int innwstr (wchar_t *wstr, int n);

int inwstr (wchar_t *wstr);

int mvinnwstr (int y, int x, wchar_t *wstr, int n);

int mvinwstr (int y, int x, wchar_t *wstr);

int mvwinnwstr (WINDOW*win, int y, int x, wchar_t *wstr, int n);

int mvwinwstr (WINDOW*win, int y, int x, wchar_t *wstr);

int winwstr (WINDOW*win, wchar_t *wstr);

int winnwstr (WINDOW*win, wchar_t *wstr, int n);

PARAMETERS wstr Is a pointer to an object that can hold the
retrieved multibyte character string.

n Is the number of characters not to exceed when
retrieving wstr .

y Is the y (row) coordinate of the starting position
of the string to be retrieved.

x Is the x (column) coordinate of the starting
position of the string to be retrieved.

win Is a pointer to the window in which the string is
to be retrieved.

DESCRIPTION The inwstr() and winwstr() functions retrieve a wide character string
(without attributes) starting at the current cursor position of the stdscr
window and window win , respectively, and ending at the right margin. The
mvinwstr() and mvwinwstr() functions retrieve a wide character string
located at the position indicated by the x (column) and y (row) parameters (the
former in the stdscr window; the latter in window win).

The innwstr() , winnwstr() , mvinnwstr() , and mvwinnwstr()
functions retrieve at most n characters from the window stdscr and win ,
respectively. The former two functions retrieve the string starting at the current
cursor position; the latter two commands return the string, starting at the
position specified by the x and y parameters.

All these functions store the retrieved string in the object pointed to by wstr .
They only store complete wide characters. If the area pointed to by wstr is not
large enough to hold at least one character, these functions fail.

Last modified 1 Jun 1996 SunOS 5.8 279

innwstr(3XCURSES) X/Open Curses Library Functions

Only the character portion of the character/rendition pair is returned. To return
the complete character/rendition pair, use win_wchstr (3XCURSES) .

RETURN VALUES On success, the inwstr() , mvinwstr() , mvwinwstr() , and winwstr()
functions return OK. Otherwise, they return ERR.

On success, the innwstr() , mvinnwstr() , mvwinnwstr() , and
winnwstr() functions return the number of characters read into the string.
Otherwise, they return ERR.

ERRORS None.

SEE ALSO in_wch (3XCURSES) , in_wchnstr (3XCURSES)

280 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions insch(3XCURSES)

NAME insch, winsch, mvinsch, mvwinsch – insert a character

SYNOPSIS #include <curses.h>
int insch (chtype ch);

int mvinsch (int y, int x, chtype ch);

int mvwinsch (WINDOW *win, int y, int x, chtype ch);

int winsch (WINDOW *win, chtype ch);

PARAMETERS ch Is the character to be inserted.

y Is the y (row) coordinate of the position of the
character.

x Is the x (column) coordinate of the position of
the character.

win Is a pointer to the window in which the character
is to be inserted.

DESCRIPTION These functions insert the character and rendition from ch into the current or
specified window at the current or specified position.

These functions do not perform wrapping and do not advance the cursor
position. These functions perform special-character processing, with the
exception that if a newline is inserted into the last line of a window and scrolling
is not enabled, the behavior is unspecified.

RETURN VALUES Upon successful completion, these functions return OK. Otherwise, they return
ERR.

ERRORS No errors are defined.

USAGE These functions are only guaranteed to operate reliably on character sets in
which each character fits into a single byte, whose attributes can be expressed
using only constants with the A_ prefix.

SEE ALSO ins_wch (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 281

insdelln(3XCURSES) X/Open Curses Library Functions

NAME insdelln, winsdelln – insert/delete lines to/from the window

SYNOPSIS #include <curses.h>
int insdelln (int n);

int winsdelln (WINDOW *win, int n);

PARAMETERS n Is the number of lines to insert or delete (positive
n inserts; negative n deletes).

win Is a pointer to the window in which to insert
or delete a line.

DESCRIPTION The insdelln() and winsdelln() functions insert or delete blank lines in
stdscr or win , respectively. When n is positive, n lines are added before the
current line and the bottom n lines are lost; when n is negative, n lines are deleted
starting with the current line, the remaining lines are moved up, and the bottom
n lines are cleared. The position of the cursor does not change.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO deleteln (3XCURSES) , insertln (3XCURSES)

282 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions insertln(3XCURSES)

NAME insertln, winsertln – insert a line in a window

SYNOPSIS #include <curses.h>
int insertln (void);

int winsertln (WINDOW *win);

PARAMETERS win Is a pointer to the window in which to insert
the line.

DESCRIPTION The insertln() and winsertln() functions insert a blank line before the
current line in stdscr or win , respectively. The new line becomes the current
line. The current line and all lines after it in the window are moved down one
line. The bottom line in the window is discarded.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO bkgdset (3XCURSES) , deleteln (3XCURSES) , insdelln (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 283

insnstr(3XCURSES) X/Open Curses Library Functions

NAME insnstr, insstr, mvinsnstr, mvinsstr, mvwinsnstr, mvwinsstr, winsnstr, winsstr –
insert a multibyte character string

SYNOPSIS #include <curses.h>
int insnstr (const char *str, int n);

int insstr (const char *str);

int mvinsnstr (int y, int x, const char *str, int n);

int mvinsstr (int y, int x, const char *str);

int mvwinsnstr (WINDOW *win, int y, int x, const char *str, int n);

int mvwinsstr (WINDOW *win, int y, int x, const char *str);

int winsnstr (WINDOW *win, const char *str, int n);

int winsstr (WINDOW *win, const char *str);

PARAMETERS str Is a pointer to the string to be inserted.

n Is the number of characters not to exceed when
inserting str . If n is less than 1, the entire string
is inserted.

y Is the y (row) coordinate of the starting position
of the string.

x Is the x (column) coordinate of the starting
position of the string.

win Is a pointer to the window in which the string is
to be inserted.

DESCRIPTION The insstr() function inserts str at the current cursor position of the stdscr
window. The winsstr() function performs the identical action, but in window
win . The mvinsstr() and mvwinsstr() functions insert the character string
at the starting position indicated by the x (column) and y (row) parameters (the
former to the stdscr window; the latter to window win).

The insnstr() , winsnstr() , mvinsnstr() , and mvwinsnstr()
functions insert n characters to the window or as many as will fit on the line. If n
is less than 1, the entire string is inserted or as much of it as fits on the line. The
former two functions place the string at the current cursor position; the latter
two commands use the position specified by the x and y parameters.

All characters to the right of inserted characters are moved to the right.
Characters that don’t fit on the current line are discarded. The cursor is left at
the point of insertion.

284 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions insnstr(3XCURSES)

If a character in str is a newline, carriage return, backspace, or tab, the cursor
is moved appropriately. The cursor is moved to the next tab stop for each tab
character (by default, tabs are eight characters apart). If the character is a control
character other than those previously mentioned, the character is inserted
using ^ x notation, where x is a printable character. clrtoeol (3XCURSES) is
automatically done before a newline.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO addchstr (3XCURSES) , addstr (3XCURSES) , clrtoeol (3XCURSES) ,
ins_nwstr (3XCURSES) , insch (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 285

ins_nwstr(3XCURSES) X/Open Curses Library Functions

NAME ins_nwstr, ins_wstr, mvins_nwstr, mvins_wstr, mvwins_nwstr, mvwins_nstr,
wins_nwstr, wins_wstr – insert a wide character string

SYNOPSIS #include <curses.h>
int ins_nwstr (const wchar_t *wstr, int n);

int ins_wstr (const wchar_t *wstr);

int mvins_nwstr (int y, int x, const wchar_t *wstr, int n);

int mvins_wstr (int y, int x, const wchar_t *wstr);

int mvwins_nwstr (WINDOW *win, int y, int x, const wchar_t *wstr, int n);

int mvwins_wstr (WINDOW *win, int y, int x, const wchar_t *wstr);

int wins_nwstr (WINDOW *win, const wchar_t *wstr, int n);

int wins_wstr (WINDOW *win, const wchar_t *wstr);

PARAMETERS wstr Is a pointer to the string to be inserted.

n Is the number of characters not to exceed when
inserting wstr . If n is less than 1, the entire string
is inserted.

y Is the y (row) coordinate of the starting position
of the string.

x Is the x (column) coordinate of the starting
position of the string.

win Is a pointer to the window in which the string is
to be inserted.

DESCRIPTION The ins_wstr() function inserts wstr at the current cursor position of the
stdscr window. The wins_wstr() function performs the identical action, but
in window win . The mvins_wstr() and mvwins_wstr() functions insert
wstr string at the starting position indicated by the x (column) and y (row)
parameters (the former in the stdscr window; the latter in window win).

The ins_nwstr() , wins_nwstr() , mvins_nwstr() , and
mvwins_nwstr() functions insert n characters to the window or as many as
will fit on the line. If n is less than 1, the entire string is inserted or as much of
it as fits on the line. The former two functions place the string at the current
cursor position; the latter two commands use the position specified by the
x and y parameters.

All characters to the right of inserted characters are moved to the right.
Characters that don’t fit on the current line are discarded. The cursor is left at
the point of insertion.

286 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions ins_nwstr(3XCURSES)

If a character in wstr is a newline, carriage return, backspace, or tab, the cursor
is moved appropriately. The cursor is moved to the next tab stop for each tab
character (by default, tabs are eight characters apart). If the character is a control
character other than those previously mentioned, the character is inserted
using ^ x notation, where x is a printable character. clrtoeol (3XCURSES) is
automatically done before a newline.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wchnstr (3XCURSES) , addnwstr (3XCURSES) , clrtoeol (3XCURSES) ,
ins_wch (3XCURSES) , insnstr (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 287

ins_wch(3XCURSES) X/Open Curses Library Functions

NAME ins_wch, wins_wch, mvins_wch, mvwins_wch – insert a complex character

SYNOPSIS #include <curses.h>
int ins_wch (const cchar_t *wch);

int mvins_wch (int y, int x, const cchar_t *wch);

int mvwins_wch (WINDOW *win, int y, int x, const cchar_t *wch);

int wins_wch (WINDOW *win, const cchar_t *wch);

PARAMETERS wch Is the complex character to be inserted.

y Is the y (row) coordinate of the position of the
character.

x Is the x (column) coordinate of the position of
the character.

win Is a pointer to the window in which the character
is to be inserted.

DESCRIPTION The ins_wch() function inserts the complex character wch at the current cursor
position of the stdscr window. The wins_wch() function performs the
identical action but in window win . The mvins_wch() and mvwins_wch()
functions insert the character at the position indicated by the x (column) and y
(row) parameters (the former in the stdscr window; the latter in window win).
The cursor position does not change.

All characters to the right of the inserted character are moved right one character.
The last character on the line is deleted.

Insertions and deletions occur at the character level. The cursor is adjusted to the
first column of the character prior to the the operation.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , ins_nwstr (3XCURSES)

288 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions intrflush(3XCURSES)

NAME intrflush – enable or disable flush on interrupt

SYNOPSIS #include <curses.h>
int intrflush (WINDOW *win, bool bf);

PARAMETERS win Is ignored.

bf Is a Boolean expression.

DESCRIPTION The intrflush() function specifies whether pressing an interrupt key
(interrupt, suspend, or quit) will flush the input buffer associated with the
current screen. If the value of bf is TRUE, then flushing of the output buffer
associated with the current screen will occur when an interrupt key (interrupt,
suspend, or quit) is pressed.If the value of bf is FALSE, then no flushing of the
buffer will occur when an interrupt key is pressed. The default for the option is
inherited from the display driver settings. The win argument is ignored.

RETURN VALUES Upon successful completion, intrflush() returns OK. Otherwise, it returns
ERR.

ERRORS No errors are defined.

SEE ALSO flushinp (3XCURSES), qiflush (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 289

in_wch(3XCURSES) X/Open Curses Library Functions

NAME in_wch, mvin_wch, mvwin_wch, win_wch – retrieve a complex character (with
rendition)

SYNOPSIS #include <curses.h>
int in_wch (cchar_t *wcval);

int mvin_wch (int y, int x, cchar_t *wcval);

int mvwin_wch (WINDOW *win, inty, cchar_t *wcval);

int win_wch (WINDOW *win, cchar_t *wcval);

DESCRIPTION The in_wch() and win_wch() functions retrieve the complex character and
its rendition located at the current cursor position of the stdscr window and
window win , respectively. The mvin_wch() and mvwin_wch() functions
retrieve the complex character and its rendition located at the position indicated
by the x (column) and y (row) parameters (the former in the stdscr window;
the latter in window win).

All these functions store the retrieved character and its rendition in the object
pointed to by wcval .

PARAMETERS wcval Is a pointer to an object that can store a complex character
and its rendition.

y Is the y (row) coordinate of the position of the character
to be returned.

x Is the x (column) coordinate of the position of the character
to be returned.

win Is a pointer to the window that contains the character to be
returned.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , inch (3XCURSES)

290 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions in_wchnstr(3XCURSES)

NAME in_wchnstr, in_wchstr, mvin_wchnstr, mvin_wchstr, mvwin_wchnstr,
mvwin_wchstr, win_wchnstr, win_wchstr – retrieve complex character string
(with rendition)

SYNOPSIS #include <curses.h>
int in_wchnstr (cchar_t *wchstr, int n);

int in_wchstr (cchar_t *wchstr);

int mvin_wchnstr (int y, int x, cchar_t *wchstr, int n);

int mvin_wchstr (int y, int x, cchar_t *wchstr);

int mvwin_wchnstr (WINDOW *win, int y, int x, cchar_t *wchstr, int n);

int mvwin_wchstr (WINDOW *win, int y, int x, cchar_t *wchstr);

int win_wchnstr (WINDOW *win, cchar_t *wchstr, int n);

int win_wchstr (WINDOW *win, cchar_t *wchstr);

DESCRIPTION The in_wchstr() and win_wchstr() functions retrieve a complex character
string (with rendition) starting at the current cursor position of the stdscr
window and window win , respectively, and ending at the right margin. The
mvin_wchstr() and mvwin_wchstr() functions retrieve a complex character
string located at the position indicated by the x (column) and y (row) parameters
(the former in the stdscr window; the latter in window win).

The in_wchnstr() , win_wchnstr() , mvin_wchnstr() , and
mvwin_wchnstr() functions retrieve at most n characters from the window
stdscr and win , respectively. The former two functions retrieve the string,
starting at the current cursor position; the latter two commands retrieve the
string, starting at the position specified by the x and y parameters.

The retrieved character string (with renditions) is stored in the object pointed to
by wcval .

PARAMETERS wchstr Is a pointer to an object where the retrieved complex
character string can be stored.

n Is the number of characters not to exceed when retrieving
wchstr .

y Is the y (row) coordinate of the starting position of the string
to be retrieved.

x Is the x (column) coordinate of the starting position of the
string to be retrieved.

win Is a pointer to the window in which the string is to be
retrieved.

Last modified 1 Jun 1996 SunOS 5.8 291

in_wchnstr(3XCURSES) X/Open Curses Library Functions

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO in_wch (3XCURSES)

292 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions is_linetouched(3XCURSES)

NAME is_linetouched, is_wintouched, touchline, touchwin, untouchwin, wtouchln –
control window refresh

SYNOPSIS #include <curses.h>
bool is_linetouched (WINDOW *win, int line);

bool is_wintouchwin (WINDOW *win);

int touchline (WINDOW *win, int start, int count);

int touchwin (WINDOW *win);

int untouchwin (WINDOW *win);

int wtouchln (WINDOW *win, int y, int n, int changed);

PARAMETERS win Is a pointer to the window in which the refresh is
to be controlled or monitored.

line Is the line to be checked for change since refresh.

start Is the starting line number of the portion of the
window to make appear changed.

count Is the number of lines in the window to mark as
changed.

y Is the starting line number of the portion of the
window to make appear changed or not changed.

n Is the number of lines in the window to mark as
changed.

changed Is a flag indicating whether to make lines look
changed (0) or not changed (1).

DESCRIPTION The touchwin() function marks the entire window as dirty. This makes it
appear to X/Open Curses as if the whole window has been changed, thus causing
the entire window to be rewritten with the next call to refresh (3XCURSES) .
This is sometimes necessary when using overlapping windows; the change to
one window will not be reflected in the other and, hence will not be recorded.

The touchline() function marks as dirty a portion of the window starting
at line start and continuing for count lines instead of the entire window.
Consequently, that portion of the window is updated with the next call to
refresh() .

The untouchwin() function marks all lines in the window as unchanged since
the last refresh, ensuring that it is not updated.

Last modified 1 Jun 1996 SunOS 5.8 293

is_linetouched(3XCURSES) X/Open Curses Library Functions

The wtouchln() function marks n lines starting at line y as either changed
(changed =1) or unchanged (changed =0) since the last refresh.

To find out which lines or windows have been changed since the last refresh, use
the is_linetouched() and is_wintouched() commands, respectively.
These return TRUEif the specified line or window have been changed since the
last call to refresh() or FALSE if no changes have been made.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO doupdate (3XCURSES)

294 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions keyname(3XCURSES)

NAME keyname, key_name – return character string used as key name

SYNOPSIS #include <curses.h>
char *keyname (int c);

char *key_name (wchar__t wc);

PARAMETERS c Is an 8 bit-character or a key code.

wc Is a wide character key name.

DESCRIPTION The keyname() function returns a string pointer to the key name. Make a
duplicate copy of the returned string if you plan to modify it.

The key_name() function is similar except that it accepts a wide character
key name.

The following table shows the format of the key name based on the input.

Input Format of Key Name

Visible character The same character

Control character ^ X

Meta-character (keyname()
only)

M- X

Key value defined in
<curses.h> (keyname()
only)

KEY_ name

None of the above UNKNOWN KEY

In the preceding table, X can be either a visible character with the high bit
cleared or a control character.

RETURN VALUES On success, these functions return a pointer to the string used as the key’s name.
Otherwise, they return a null pointer.

ERRORS None.

SEE ALSO meta (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 295

keypad(3XCURSES) X/Open Curses Library Functions

NAME keypad – enable/disable keypad handling

SYNOPSIS #include <curses.h>
int keypad (WINDOW *win, bool bf);

PARAMETERS win Is a pointer to the window in which to enable/disable keypad
handling.

bf Is a Boolean expression.

DESCRIPTION The keypad() function controls keypad translation. If bf is TRUE, keypad
translation is enabled. If bf is FALSE, keypad translation is disabled. The initial
state is FALSE.

This function affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive
codes when a function key is pressed, then after keypad translation is first
enabled, the implementation transmits this command to the terminal before an
affected input function tries to read any characters from that terminal.

The Curses input model provides the following ways to obtain input from
the keyboard:

Keypad processing The application can enable or disable keypad translation by calling keypad() .
When translation is enabled, Curses attempts to translate a sequence of terminal
input that represents the pressing of a function into a single key code. When
translation is disabled, Curses passes terminal input to the application without
such translation, and any interpretation of the input as representing the pressing
of a keypad key must be done by the application.

The complete set of key codes for keypad keys that Curses can process is
specified by the constants defined in <curses.h> whose names begin with
“KEY_”. Each terminal type described in the terminfo database may support
some or all of these key codes. The terminfo database specifies the sequence of
input characters from the terminal type that correspond to each key code.

The Curses inplementation cannot translate keypad keys on terminals where
pressing the keys does not transmit a unique sequence.

When translation is enabled and a character that could be the beginning of a
function key (such as escape) is received, Curses notes the time and begins
accumulating characters. If Curses receives additional characters that represent
the processing of a keypad key within an unspecified interval from the time
the character was received, then Curses converts this input to a key code for
presentation to the application. If such characters are not received during this
interval, translation of this input does not occur and the individual characters
are presented to the application separately. (Because Curses waits for this
interval to accumulate a key code, many terminals experience a delay between

296 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions keypad(3XCURSES)

the time a user presses the escape key and the time the escape key is returned
to the application.)

In addition, No Timeout Mode provides that in any case where Curses has
received part of a function key sequence, it waits indefinitely for the complete key
sequence. The “unspecified interval” in the previous paragraph becomes infinite
in No Timeout Mode. No Timeout Mode allows the use of function keys over
slow communication lines. No Timeout Mode lets the user type the individual
characters of a function key sequence, but also delays application response
when the user types a character (not a function key) that begins a function key
sequence. For this reason, in No Timeout Mode many terminals will appear to
hang between the time a user presses the escape key and the time another key is
pressed. No Timeout Mode is switchable by calling notimeout (3XCURSES).

If any special characters (<backspace>, <carriage return>, <newline>, <tab>)
are defined or redefined to be characters that are members of a function key
sequence, then Curses will be unable to recognize and translate those function
keys.

Several of the modes discussed below are described in terms of availability of
input. If keypad translation is enabled, then input is not available once Curses
has begun receiving a keypad sequence until the sequence is completely received
or the interval has elapsed.

Input Mode The following four mutually-specific Curses modes let the application control
the effect of flow-control characters, the interrupt character, the erase character,
and the kill character:

Input Mode Effect

Cooked Mode This achieves normal line-at-a-time processing with all special
characters handled outside the application. This achieves the
same effect as canonical-mode input processing. The state of
the ISIG and IXON flags are not changed upon entering this
mode by calling nocbreak (3XCURSES), and are set upon
entering this mode by calling noraw (3XCURSES).

Erase and kill characters are supported from any supported
locale, no matter the width of the character.

cbreak Mode Characters typed by the user are immediately available to the
application and Curses does not perform special processing on
either the erase character or the kill character. An application
can set cbreak mode to do its own line editing but to let the
abort character be used to abort the task. This mode achieves
the same effect as non-canonical-mode, Case B input processing
(with MIN set to 1 and ICRNL cleared.) The state of the ISIG
and IXON flags are not changed upon entering this mode.

Last modified 1 Jun 1996 SunOS 5.8 297

keypad(3XCURSES) X/Open Curses Library Functions

Input Mode Effect

Half-Delay Mode The effect is the same as cbreak , except that input functions
wait until a character is available or an interval defined
by the application elapses, whichever comes first. This
mode achieves the same effect as non-canonical-mode, Case
C input processing (with TIME set to the value specified
by the application.) The state of the ISIG and IXON flags
are not changed upon entering this mode.

Raw Mode Raw mode gives the application maximum control over
terminal input. The application sees each character as it
is typed. This achieves the same effect as non-canonical
mode, Case D input processing. The ISIG and IXON
flags are cleared upon entering this mode.

The terminal interface settings are reported when the process calls
initscr (3XCURSES) or newterm (3XCURSES) to initialize Curses and restores
these settings when endwin (3XCURSES) is called. The initial input mode for
Curses operations is especially unless Enhanced Curses compliance, in which
the initial mode is cbreak mode, is supported.

The behavior of the BREAKkey depends on other bits in the display driver
that are not set by Curses.

Delay Mode Two mutually-exclusive delay modes specify how quickly certain Curses
functions return to the application when there is no terminal input waiting
when the function is called:
No Delay The function fails.

Delay The application waits until text is passed through to the
application. If cbreak or Raw Mode is set, this is after
one character. Otherwise, this is after the first <newline>
character, end-of-line character, or end-of-file character.

The effect of No Delay Mode on function key processing is unspecified.

Echo processing Echo mode determines whether Curses echoes typed characters to the screen.
The effect of Echo mode is analogous to the effect of the ECHOflag in the local
mode field of the termios structure associated with the terminal device
connected to the window. However, Curses always clears the ECHOflag when
invoked, to inhibit the operating system from performing echoing. The method
of echoing characters is not identical to the operating system’s method of echoing
characters, because Curses performs additional processing of terminal input.

If in Echo mode, Curses performs ’s’s own echoing. Any visible input
character is stored in the current or specified window by the input function

298 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions keypad(3XCURSES)

that the application called, at that window’s cursor position, as though
addch (3XCURSES) were called, with all consequent effects such as cursor
movement and wrapping.

If not in Echo mode, any echoing of input must be performed by the application.
Applications often perform their own echoing in a controlled area of the screen,
or do not echo at all, so they disable Echo mode.

It may not be possible to turn off echo processing for synchronous and
networked asynchronous terminals because echo processing is done directly by
the terminals. Applications running on such terminals should be aware that any
characters typed will appear on the screen at wherever the cursor is positioned.

RETURN VALUES Upon successful completion, the keypad() function returns OK. Otherwise,
it returns ERR.

ERRORS No errors are defined.

SEE ALSO addch (3XCURSES), endwin (3XCURSES), getch (3XCURSES),
initscr (3XCURSES), newterm (3XCURSES), nocbreak (3XCURSES),
noraw (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 299

LINES(3XCURSES) X/Open Curses Library Functions

NAME LINES – number of lines on terminal screen

SYNOPSIS #include <curses.h>

extern int LINES;

DESCRIPTION The external variable LINES indicates the number of lines on the terminal screen.

SEE ALSO initscr (3XCURSES)

300 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions longname(3XCURSES)

NAME longname – return full terminal type name

SYNOPSIS #include <curses.h>
const char *longname (void);

DESCRIPTION The longname() function returns a pointer to a static area containing
a verbose description (128 characters or fewer) of the terminal. The area
is defined after calls to initscr (3XCURSES), newterm (3XCURSES), or
setupterm (3XCURSES). The value should be saved if longname() is going to
be used with multiple terminals since it will be overwritten with a new value
after each call to newterm() or setupterm() .

RETURN VALUES On success, the longname() function returns a pointer to a verbose description
of the terminal. Otherwise, it returns a null pointer.

ERRORS None.

SEE ALSO initscr (3XCURSES), newterm (3XCURSES), setupterm (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 301

menu_attributes(3CURSES) Curses Library Functions

NAME menu_attributes, set_menu_fore, menu_fore, set_menu_back, menu_back,
set_menu_grey, menu_grey, set_menu_pad, menu_pad – control menus display
attributes

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_menu_fore (MENU *menu, chtype attr);

chtype menu_fore (MENU *menu);

int set_menu_back (MENU *menu, chtype attr);

chtype menu_back (MENU *menu);

int set_menu_grey (MENU*menu, chtype attr);

chtype menu_grey (MENU *menu);

int set_menu_pad (MENU *menu, int pad);

int menu_pad(MENU *menu);

DESCRIPTION set_menu_fore() sets the foreground attribute of menu – the display attribute
for the current item (if selectable) on single-valued menus and for selected
items on multi-valued menus. This display attribute is a curses library visual
attribute. menu_fore() returns the foreground attribute of menu .

set_menu_back() sets the background attribute of menu – the display
attribute for unselected, yet selectable, items. This display attribute is a curses
library visual attribute.

set_menu_grey() sets the grey attribute of menu – the display attribute for
nonselectable items in multi-valued menus. This display attribute is a curses
library visual attribute. menu_grey() returns the grey attribute of menu .

The pad character is the character that fills the space between the name and
description of an item. set_menu_pad() sets the pad character for menu to pad
. menu_pad() returns the pad character of menu .

RETURN VALUES These routines return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

302 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_attributes(3CURSES)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 303

menu_cursor(3CURSES) Curses Library Functions

NAME menu_cursor, pos_menu_cursor – correctly position a menus cursor

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int pos_menu_cursor (MENU *menu);

DESCRIPTION pos_menu_cursor() moves the cursor in the window of menu to the correct
position to resume menu processing. This is needed after the application calls a
curses library I/O routine.

RETURN VALUES This routine returns one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_NOT_POSTED The menu has not been posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , panel_update (3CURSES) ,
panels (3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

304 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_driver(3CURSES)

NAME menu_driver – command processor for the menus subsystem

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int menu_driver (MENU *menu, int c);

DESCRIPTION menu_driver() is the workhorse of the menus subsystem. It checks to
determine whether the character c is a menu request or data. If c is a request,
the menu driver executes the request and reports the result. If c is data (a
printable ASCII character), it enters the data into the pattern buffer and tries
to find a matching item. If no match is found, the menu driver deletes the
character from the pattern buffer and returns E_NO_MATCH. If the character is
not recognized, the menu driver assumes it is an application-defined command
and returns E_UNKNOWN_COMMAND.

Menu driver requests:
REQ_LEFT_ITEM Move left to an item.

REQ_RIGHT_ITEM Move right to an item

REQ_UP_ITEM Move up to an item.

REQ_DOWN_ITEM Move down to an item.

REQ_SCR_ULINE Scroll up a line.

REQ_SCR_DLINE Scroll down a line.

REQ_SCR_DPAGE Scroll up a page.

REQ_SCR_UPAGE Scroll down a page.

REQ_FIRST_ITEM Move to the first item.

REQ_LAST_ITEM Move to the last item.

REQ_NEXT_ITEM Move to the next item.

REQ_PREV_ITEM Move to the previous item.

REQ_TOGGLE_ITEM Select/de-select an item.

REQ_CLEAR_PATTERN Clear the menu pattern buffer.

REQ_BACK_PATTERN Delete the previous character from pattern buffer.

REQ_NEXT_MATCH Move the next matching item.

REQ_PREV_MATCH Move to the previous matching item.

RETURN VALUES menu_driver() returns one of the following:

Last modified 31 Dec 1996 SunOS 5.8 305

menu_driver(3CURSES) Curses Library Functions

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed
to the routine.

E_BAD_STATE The routine was called from an
initialization or termination function.

E_NOT_POSTED The menu has not been posted.

E_UNKNOWN_COMMAND An unknown request was passed to
the menu driver.

E_NO_MATCH The character failed to match.

E_NOT_SELECTABLE The item cannot be selected.

E_REQUEST_DENIED The menu driver could not process
the request.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES), menus(3CURSES), attributes (5)

NOTES Application defined commands should be defined relative to (greater than)
MAX_COMMAND, the maximum value of a request listed above.

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

306 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_format(3CURSES)

NAME menu_format, set_menu_format – set and get maximum numbers of rows
and columns in menus

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_menu_format (MENU *menu, int rows, int cols);

void menu_format (MENU *menu, int *rows, int *cols);

DESCRIPTION set_menu_format() sets the maximum number of rows and columns of items
that may be displayed at one time on a menu. If the menu contains more items
than can be displayed at once, the menu will be scrollable.

menu_format() returns the maximum number of rows and columns that may
be displayed at one time on menu . rows and cols are pointers to the variables
used to return these values.

RETURN VALUES set_menu_format() returns one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 307

menu_hook(3CURSES) Curses Library Functions

NAME menu_hook, set_item_init, item_init, set_item_term, item_term, set_menu_init,
menu_init, set_menu_term, menu_term – assign application-specific routines
for automatic invocation by menus

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_item_init (MENU *menu, void (*func)(MENU *));

void (*item_init) (MENU *menu);

int set_item_term (MENU *menu, void (*func)(MENU *));

void (*item_term) (MENU *menu);

int set_menu_init (MENU *menu, void (*func)(MENU *));void (*menu_init)(MENU
*menu);

int set_menu_term (MENU *menu, void (*func)(MENU *));void (*menu_term)(MENU
*menu);

DESCRIPTION set_item_init() assigns the application-defined function to be called when
the menu is posted and just after the current item changes. item_init()
returns a pointer to the item initialization routine, if any, called when the menu
is posted and just after the current item changes.

set_item_term() assigns an application-defined function to be called when
the menu is unposted and just before the current item changes. item_term()
returns a pointer to the termination function, if any, called when the menu is
unposted and just before the current item changes.

set_menu_init() assigns an application-defined function to be called
when the menu is posted and just after the top row changes on a posted menu.
menu_init() returns a pointer to the menu initialization routine, if any, called
when the menu is posted and just after the top row changes on a posted menu.

set_menu_term() assigns an application-defined function to be called when
the menu is unposted and just before the top row changes on a posted menu.
menu_term() returns a pointer to the menu termination routine, if any, called
when the menu is unposted and just before the top row changes on a posted
menu.

RETURN VALUES Routines that return pointers always return NULL on error. Routines that return
an integer return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

308 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_hook(3CURSES)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 309

menu_item_current(3CURSES) Curses Library Functions

NAME menu_item_current, set_current_item, current_item, set_top_row, top_row,
item_index – set and get current menus items

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_current_item (MENU *menu, ITEM *item);

ITEM *current_item (MENU *menu);

int set_top_row (MENU *menu, int row);

int top_row (MENU *menu);

int item_index (ITEM *item);

DESCRIPTION The current item of a menu is the item where the cursor is currently
positioned. set_current_item() sets the current item of menu to item .
current_item() returns a pointer to the the current item in menu .

set_top_row() sets the top row of menu to row . The left-most item on the
new top row becomes the current item. top_row() returns the number of the
menu row currently displayed at the top of menu .

item_index() returns the index to the item in the item pointer array. The value
of this index ranges from 0 through N -1 , where N is the total number of
items connected to the menu.

RETURN VALUES current_item() returns NULL on error.

top_row() and index_item() return -1 on error.

set_current_item() and set_top_row() return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_NOT_CONNECTED No items are connected to the menu.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

310 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_item_current(3CURSES)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 311

menu_item_name(3CURSES) Curses Library Functions

NAME menu_item_name, item_name, item_description – get menus item name and
description

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
char *item_name (ITEM *item);

char *item_description (ITEM *item);

DESCRIPTION item_name() returns a pointer to the name of item .

item_description() returns a pointer to the description of item .

RETURN VALUES These routines return NULL on error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , menu_new(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

312 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_item_new(3CURSES)

NAME menu_item_new, new_item, free_item – create and destroy menus items

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
ITEM *new_item (char *name, char *desc);

int free_item (ITEM *item);

DESCRIPTION new_item() creates a new item from name and description , and returns a
pointer to the new item.

free_item() frees the storage allocated for item . Once an item is freed, the
user can no longer connect it to a menu.

RETURN VALUES new_item() returns NULL on error.

free_item() returns one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_CONNECTED One or more items are already connected to
another menu.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 313

menu_item_opts(3CURSES) Curses Library Functions

NAME menu_item_opts, set_item_opts, item_opts_on, item_opts_off, item_opts –
menus item option routines

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_item_opts (ITEM *item, OPTIONS opts);

int item_opts_on (ITEM *item, OPTIONS opts);

int item_opts_off (ITEM *item, OPTIONS opts);

OPTIONS item_opts (ITEM *item);

DESCRIPTION set_item_opts() turns on the named options for item and turns off all other
options. Options are boolean values that can be OR-ed together.

item_opts_on() turns on the named options for item ; no other option
is changed.

item_opts_off() turns off the named options for item ; no other option
is changed.

item_opts() returns the current options of item .
O_SELECTABLE The item can be selected during menu processing.

RETURN VALUES Except for item_opts() , these routines return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

314 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_items(3CURSES)

NAME menu_items, set_menu_items, item_count – connect and disconnect items
to and from menus

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_menu_items (MENU *menu, ITEM **items);

ITEM **menu_items (MENU *menu);

int item_count (MENU *menu);

DESCRIPTION set_menu_items() changes the item pointer array connected to menu to the
item pointer array items .menu_items() returns a pointer to the item pointer
array connected to menu .item_count() returns the number of items in menu .

RETURN VALUES menu_items() returns NULL on error.

item_count() returns -1 on error.

set_menu_items() returns one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

E_CONNECTED One or more items are already connected to
another menu.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 315

menu_item_userptr(3CURSES) Curses Library Functions

NAME menu_item_userptr, set_item_userptr, item_userptr – associate application
data with menus items

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_item_userptr (ITEM *item, char *userptr);

char *item_userptr (ITEM *item);

DESCRIPTION Every item has an associated user pointer that can be used to store relevant
information. set_item_userptr() sets the user pointer of item .
item_userptr() returns the user pointer of item .

RETURN VALUES item_userptr() returns NULL on error. set_item_userptr() returns
one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

316 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_item_value(3CURSES)

NAME menu_item_value, set_item_value, item_value – set and get menus item values

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_item_value (ITEM *item, int bool);

int item_value (ITEM *item);

DESCRIPTION Unlike single-valued menus, multi-valued menus enable the end-user to select
one or more items from a menu. set_item_value() sets the selected value of
the item – TRUE(selected) or FALSE (not selected). set_item_value() may
be used only with multi-valued menus. To make a menu multi-valued, use
set_menu_opts or menu_opts_off() to turn off the option O_ONEVALUE.
(See menu_opts (3CURSES)).

item_value() returns the select value of item , either TRUE(selected) or
FALSE (unselected).

RETURN VALUES set_item_value() returns one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_REQUEST_DENIED The menu driver could not process the request.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , menu_opts (3CURSES) ,
attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 317

menu_item_visible(3CURSES) Curses Library Functions

NAME menu_item_visible, item_visible – tell if menus item is visible

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int item_visible (ITEM *item);

DESCRIPTION A menu item is visible if it currently appears in the subwindow of a posted menu.
item_visible() returns TRUEif item is visible, otherwise it returns FALSE .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , menu_new(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

318 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_mark(3CURSES)

NAME menu_mark, set_menu_mark – menus mark string routines

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_menu_mark (MENU *menu, char *mark);

char *menu_mark (MENU *menu);

DESCRIPTION menus displays mark strings to distinguish selected items in a menu (or the
current item in a single-valued menu). set_menu_mark() sets the mark string
of menu to mark . menu_mark() returns a pointer to the mark string of menu .

RETURN VALUES menu_mark() returns NULL on error. set_menu_mark() returns one of
the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 319

menu_new(3CURSES) Curses Library Functions

NAME menu_new, new_menu, free_menu – create and destroy menus

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
MENU *new_menu(ITEM **items);

int free_menu (MENU *menu);

DESCRIPTION new_menu() creates a new menu connected to the item pointer array items and
returns a pointer to the new menu.

free_menu() disconnects menu from its associated item pointer array and frees
the storage allocated for the menu.

RETURN VALUES new_menu() returns NULL on error.

free_menu() returns one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

320 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_opts(3CURSES)

NAME menu_opts, set_menu_opts, menu_opts_on, menu_opts_off – menus option
routines

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
OPTIONS menu_opts (MENU *menu);

int set_menu_opts (MENU *menu, OPTIONS opts);

int menu_opts_on (MENU *menu, OPTIONS opts);

int menu_opts_off (MENU *menu, OPTIONS opts);

DESCRIPTION
Menu Options set_menu_opts() turns on the named options for menu and turns off all other

options. Options are boolean values that can be OR-ed together.

menu_opts_on() turns on the named options for menu ; no other option
is changed.

menu_opts_off() turns off the named options for menu ; no other option
is changed.

menu_opts() returns the current options of menu .

The following values can be OR’d together to create opts .
O_ONEVALUE Only one item can be selected from the menu.

O_SHOWDESC Display the description of the items.

O_ROWMAJOR Display the menu in row major order.

O_IGNORECASE Ignore the case when pattern matching.

O_SHOWMATCH Place the cursor within the item name when pattern
matching.

O_NONCYCLIC Make certain menu driver requests non-cyclic.

RETURN VALUES Except for menu_opts() , these routines return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_POSTED The menu is already posted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 31 Dec 1996 SunOS 5.8 321

menu_opts(3CURSES) Curses Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

322 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_pattern(3CURSES)

NAME menu_pattern, set_menu_pattern – set and get menus pattern match buffer

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
char *menu_pattern (MENU *menu);

int set_menu_pattern (MENU *menu, char *pat);

DESCRIPTION Every menu has a pattern buffer to match entered data with menu items.
set_menu_pattern() sets the pattern buffer to pat and tries to find the first
item that matches the pattern. If it does, the matching item becomes the current
item. If not, the current item does not change. menu_pattern() returns the
string in the pattern buffer of menu .

RETURN VALUES menu_pattern() returns NULLon error. set_menu_pattern() returns
one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_NO_MATCH The character failed to match.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 323

menu_post(3CURSES) Curses Library Functions

NAME menu_post, post_menu, unpost_menu – write or erase menus from associated
subwindows

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int post_menu (MENU *menu);

int unpost_menu (MENU *menu);

DESCRIPTION post_menu() writes menu to the subwindow. The application programmer
must use curses library routines to display the menu on the physical screen or
call update_panels() if the panels library is being used.

unpost_menu() erases menu from its associated subwindow.

RETURN VALUES These routines return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_NO_ROOM The menu does not fit within its subwindow.

E_NOT_POSTED The menu has not been posted.

E_NOT_CONNECTED No items are connected to the menu.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , panels (3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

324 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menus(3CURSES)

NAME menus – character based menus package

SYNOPSIS #include <menu.h>

DESCRIPTION The menu library is built using the curses library, and any program using
menus routines must call one of the curses initialization routines, such as
initscr . A program using these routines must be compiled with −lmenu and
−lcurses on the cc command line.

The menus package gives the applications programmer a terminal-independent
method of creating and customizing menus for user interaction. The menus
package includes: item routines, which are used to create and customize menu
items; and menu routines, which are used to create and customize menus, assign
pre- and post-processing routines, and display and interact with menus.

Current Default
Values for Item

Attributes

The menus package establishes initial current default values for item attributes.
During item initialization, each item attribute is assigned the current default
value for that attribute. An application can change or retrieve a current default
attribute value by calling the appropriate set or retrieve routine with a NULL
item pointer. If an application changes a current default item attribute value,
subsequent items created using new_item() will have the new default attribute
value. The attributes of previously created items are not changed if a current
default attribute value is changed.

Routine Name Index The following table lists each menus routine and the name of the manual page
on which it is described.

Menus Routine Name Manual Page Name

current_item menu_item_current(3X)

free_item menu_item_new(3X)

free_menu menu_new(3X)

item_count menu_items(3X)

item_description menu_item_name(3X)

item_index menu_item_current(3X)

item_init menu_hook(3X)

item_name menu_item_name(3X)

item_opts menu_item_opts(3X)

item_opts_off menu_item_opts(3X)

item_opts_on menu_item_opts(3X)

item_term menu_hook(3X)

item_userptr menu_item_userptr(3X)

Last modified 31 Dec 1996 SunOS 5.8 325

menus(3CURSES) Curses Library Functions

Menus Routine Name Manual Page Name

item_value menu_item_value(3X)

item_visible menu_item_visible(3X)

menu_back menu_attributes(3X)

menu_driver menu_driver(3X)

menu_fore menu_attributes(3X)

menu_format menu_format(3X)

menu_grey menu_attributes(3X)

menu_init menu_hook(3X)

menu_items menu_items(3X)

menu_mark menu_mark(3X)

menu_opts menu_opts(3X)

menu_opts_off menu_opts(3X)

menu_opts_on menu_opts(3X)

menu_pad menu_attributes(3X)

menu_pattern menu_pattern(3X)

menu_sub menu_win(3X)

menu_term menu_hook(3X)

menu_userptr menu_userptr(3X)

menu_win menu_win(3X)

new_item menu_item_new(3X)

new_menu menu_new(3X)

pos_menu_cursor menu_cursor(3X)

post_menu menu_post(3X)

scale_menu menu_win(3X)

set_current_item menu_item_current(3X)

set_item_init menu_hook(3X)

set_item_opts menu_item_opts(3X)

set_item_term menu_hook(3X)

set_item_userptr menu_item_userptr(3X)

set_item_value menu_item_value(3X)

326 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menus(3CURSES)

Menus Routine Name Manual Page Name

set_menu_back menu_attributes(3X)

set_menu_fore menu_attributes(3X)

set_menu_format menu_format(3X)

set_menu_grey menu_attributes(3X)

set_menu_init menu_hook(3X)

set_menu_items menu_items(3X)

set_menu_mark menu_mark(3X)

set_menu_opts menu_opts(3X)

set_menu_pad menu_attributes(3X)

set_menu_pattern menu_pattern(3X)

set_menu_sub menu_win(3X)

set_menu_term menu_hook(3X)

set_menu_userptr menu_userptr(3X)

set_menu_win menu_win(3X)

set_top_row menu_item_current(3X)

top_row menu_item_current(3X)

unpost_menu menu_post(3X)

RETURN VALUES Routines that return pointers always return NULLon error. Routines that return
an integer return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed
to the routine.

E_POSTED The menu is already posted.

E_CONNECTED One or more items are already
connected to another menu.

E_BAD_STATE The routine was called from an
initialization or termination function.

E_NO_ROOM The menu does not fit within its
subwindow.

E_NOT_POSTED The menu has not been posted.

Last modified 31 Dec 1996 SunOS 5.8 327

menus(3CURSES) Curses Library Functions

E_UNKNOWN_COMMAND An unknown request was passed to
the menu driver.

E_NO_MATCH The character failed to match.

E_NOT_SELECTABLE The item cannot be selected.

E_NOT_CONNECTED No items are connected to the menu.

E_REQUEST_DENIED The menu driver could not process
the request.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES), attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

328 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions menu_userptr(3CURSES)

NAME menu_userptr, set_menu_userptr – associate application data with menus

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
char *menu_userptr (MENU *menu);

int set_menu_userptr (MENU *menu, char *userptr);

DESCRIPTION Every menu has an associated user pointer that can be used to store relevant
information. set_menu_userptr() sets the user pointer of menu .
menu_userptr() returns the user pointer of menu .

RETURN VALUES menu_userptr() returns NULLon error.

set_menu_userptr() returns one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 329

menu_win(3CURSES) Curses Library Functions

NAME menu_win, set_menu_win, set_menu_sub, menu_sub, scale_menu – menus
window and subwindow association routines

SYNOPSIS cc [flag ...] file ... −lmenu −lcurses [library ..]
#include <menu.h>
int set_menu_win (MENU *menu, WINDOW *win);

WINDOW *menu_win (MENU *menu);

int set_menu_sub (MENU *menu, WINDOW *sub);

WINDOW *menu_sub (MENU *menu);

int scale_window (MENU *menu, int *rows, int *cols);

DESCRIPTION set_menu_win() sets the window of menu to win . menu_win() returns
a pointer to the window of menu .set_menu_sub() sets the subwindow
of menu to sub . menu_sub() returns a pointer to the subwindow of menu
.scale_window() returns the minimum window size necessary for the
subwindow of menu . rows and cols are pointers to the locations used to return
the values.

RETURN VALUES Routines that return pointers always return NULLon error. Routines that return
an integer return one of the following:
E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

E_NOT_CONNECTED No items are connected to the menu.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , menus(3CURSES) , attributes (5)

NOTES The header <menu.h> automatically includes the headers <eti.h> and
<curses.h> .

330 SunOS 5.8 Last modified 31 Dec 1996

X/Open Curses Library Functions meta(3XCURSES)

NAME meta – enable/disable meta keys

SYNOPSIS #include <curses.h>
int meta (WINDOW *win, bool bf);

PARAMETERS win Is an ignored parameter.

bf Is a Boolean expression.

DESCRIPTION Whether a terminal returns 7 or 8 significant bits initially depends on the control
mode of the terminal driver. The meta() function forces the number of bits to
be returned by getch (3XCURSES) to be 7 (if bf is FALSE) or 8 (if bf is TRUE).

If the program handling the data can only pass 7-bit characters or strips the 8th
bit, 8 bits cannot be handled.

If the terminfo capabilities smm(meta_on) and rmm(meta_off) are defined for
the terminal, smmis sent to the terminal when meta(win, TRUE) is called, and
rmmis sent when meta(win, FALSE) is called.

This function is useful when extending the non-text command set in applications
where the META key is used.

RETURN VALUES On success, the meta() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO getch (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 331

move(3XCURSES) X/Open Curses Library Functions

NAME move, wmove – move cursor in window

SYNOPSIS #include <curses.h>
int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

PARAMETERS y Is the y (row) coordinate of the position of the
cursor in the window.

x Is the x (column) coordinate of the position of the
cursor in the window.

win Is a pointer to the window in which the cursor is
to be written.

DESCRIPTION The move() function moves the logical cursor (for stdscr) to the position
specified by y (row) and x (column), where the upper left corner of the window
is row 0, column 0. The wmove() function performs the same action, but moves
the cursor in the window specified by win . The physical cursor will not move
until after a call to refresh (3XCURSES) or doupdate (3XCURSES) .

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO doupdate (3XCURSES)

332 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions mvcur(3XCURSES)

NAME mvcur – move the cursor

SYNOPSIS #include <curses.h>
int mvcur (int oldrow, int oldcol, int newrow, int newcol);

PARAMETERS oldrow Is the row from which cursor is to be moved.

oldcol Is the column from which cursor is to be moved.

newrow Is the row to which cursor is to be moved.

newcol Is the column to which cursor is to be moved.

DESCRIPTION The mvcur() function is a low-level function used only outside of X/Open
Curses when the program has to deal directly with the terminfo database to
handle certain terminal capabilities. The use of appropriate X/Open Curses
functions is recommended in all other situations, so that X/Open Curses can
track the cursor.

The mvcur() function moves the cursor from the location specified by oldrow
and oldcol to the location specified by newrow and newcol. A program using this
function must keep track of the current cursor position.

RETURN VALUES On success, the mvcur() function returns OK. Otherwise, it returns ERR.

ERRORS None.

Last modified 1 Jun 1996 SunOS 5.8 333

mvderwin(3XCURSES) X/Open Curses Library Functions

NAME mvderwin – map area of parent window to subwindow

SYNOPSIS #include <curses.h>
int mvderwin (WINDOW *win, int par_y, int par_x);

PARAMETERS win Is a pointer to the window to be mapped.

par_y Is the y (row) coordinate of the placement of
the upper left corner of window relative to the
parent window.

par_x Is the x (column) coordinate of the placement of
the upper left corner of the window relative to
the parent window.

DESCRIPTION The mvderwin() function defines a mapped area of win’s parent window that
is the same size as win and has its upper left corner at position par_y, par_x of
the parent window.

Whenever win is refreshed, its contents are updated to match those of the
mapped area and any reference to characters in win is treated as a reference to
corresponding characters in the mapped area.

RETURN VALUES On success, the mvderwin() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO delwin (3XCURSES), derwin (3XCURSES)

334 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions mvprintw(3XCURSES)

NAME mvprintw, mvwprintw, printw, wprintw – print formatted output window

SYNOPSIS #include <curses.h>
int mvprintw (int y, int x, char *fmt, ...);

int mvwprintw (WINDOW *win, int y, int x, char *fmt, ...);

int printw (char *fmt, ...);

int wprintw (WINDOW *win, char *fmt, ...);

PARAMETERS y Is the y (row) coordinate position of the string’s
placement in the window.

x Is the x (column) coordinate position of the
string’s placement in the window.

fmt Is a printf() format string.

win Is a pointer to the window in which the string is
to be written.

DESCRIPTION The mvprintw() , mvwprintw() , printw() , and wprintw() functions are
analogous to printf (3C) . The effect of these functions is as though sprintf()
were used to format the string, and then waddstr (3XCURSES) were used to
add that multi-byte string to the current or specified window at the current
or specified cursor position.

RETURN VALUES Upon successful completion, these functions return OK. Otherwise, they return
ERR.

ERRORS No errors are defined.

SEE ALSO addnstr (3XCURSES) , printf (3C)

Last modified 4 May 1999 SunOS 5.8 335

mvscanw(3XCURSES) X/Open Curses Library Functions

NAME mvscanw, mvwscanw, scanw, wscanw – convert formatted input from a window

SYNOPSIS #include <curses.h>
int mvscanw(int y, int x, char *fmt, ...);

int mvwscanw(WINDOW *win, int y, int x, char *fmt, ...);

int scanw (char *fmt, ...);

int wscanw(WINDOW *win, char *fmt, ...);

PARAMETERS y Is the y (row) coordinate of the position of the
character to be read.

x Is the x (column) coordinate of the position of the
character to be read.

fmt Is a scanf() format string.

win Is a pointer to the window in which the character
is to be read.

DESCRIPTION These functions are similar to scanf (3C) . Their effect is as though
mvwgetstr (3XCURSES) were called to get a multi-byte character string from
the current or specified window at the current or specified cursor position, and
then sscanf() were used to interpret and convert that string.

RETURN VALUES Upon successful completion, these functions return OK. Otherwise, they return
ERR.

ERRORS No errors are defined.

SEE ALSO getnstr (3XCURSES) , printw (3XCURSES) , scanf (3C) , wcstombs (3C)

336 SunOS 5.8 Last modified 4 May 1999

X/Open Curses Library Functions mvwin(3XCURSES)

NAME mvwin – move window

SYNOPSIS #include <curses.h>
int mvwin (WINDOW *win, int y, int x);

PARAMETERS win Is a pointer to the window to move.

y Is the y (row) coordinate of the upper left corner
of the window.

x Is the x (column) coordinate of the upper left
corner of the window.

DESCRIPTION The mvwin() function moves the specified window (or subwindow), placing
its upper left corner at the positions specified by x and y. The entire window
must fit within the physical boundaries of the screen or an error results. In
the case of a subwindow, the window must remain within the boundaries of
the parent window.

RETURN VALUES On success, the mvwin() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO derwin (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 337

napms(3XCURSES) X/Open Curses Library Functions

NAME napms – sleep process for a specified length of time

SYNOPSIS #include <curses.h>
int napms(int ms);

PARAMETERS ms Is the number of milliseconds to sleep.

DESCRIPTION The napms() function sleeps for at least ms milliseconds.

RETURN VALUES The napms() function always returns OK.

ERRORS None.

SEE ALSO delay_output (3XCURSES)

338 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions newpad(3XCURSES)

NAME newpad, pnoutrefresh, prefresh, subpad – create or refresh a pad or subpad

SYNOPSIS #include <curses.h>
WINDOW *newpad(int nlines, int ncols);

int pnoutrefresh (WINDOW *pad, int pminrow, int pmincol, int sminrow, int smincol, int
smaxrow, int smaxcol);

int prefresh (WINDOW *pad, int pminrow, int pmincol, int sminrow, int smincol, int
smaxrow, int smaxcol);

WINDOW *subpad (WINDOW *orig, int nlines, int ncols);

PARAMETERS nlines Is the number of lines in the pad to be created.

ncols Is the number of columns in the pad to be
created.

pad Is a pointer to the pad to refresh.

pminrow Is the row coordinate of the upper left corner of
the pad rectangle to be copied

pmincol Is the column coordinate of the upper left corner
of the pad rectangle to be copied.

sminrow Is the row coordinate of the upper left corner of
the rectangle on the physical screen where pad
is to be positioned.

smincol Is the column coordinate of the upper left corner
of the rectangle on the physical screen where pad
is to be positioned.

smaxrow Is the row coordinate of the lower right corner of
the rectangle on the physical screen where the
pad is to be positioned.

smaxcol Is the column coordinate of the lower right corner
of the rectangle on the physical screen where the
pad is to be positioned.

orig Is a pointer to the parent pad within which a
sub-pad is created.

DESCRIPTION The newpad() function creates a new pad with the specified number of lines
and columns. A pointer to the new pad structure is returned. A pad differs from
a window in that it is not restricted to the size of the physical screen. It is useful
when only part of a large window will be displayed at any one time.

Last modified 1 Jun 1996 SunOS 5.8 339

newpad(3XCURSES) X/Open Curses Library Functions

Automatic refreshes by scrolling or echoing of input do not take place when
pads are used. Pads have their own refresh commands, prefresh() and
pnoutrefresh() .

The prefresh() function copies the specified portion of the logical pad to
the terminal screen. The parameters pmincol and pminrow specify the upper
left corner of the rectangular area of the pad to be displayed. The lower right
coordinate of the rectangular area of the pad that is to be displayed is calculated
from the screen parameters (sminrow , smincol , smaxrow , smaxcol).

This function calls the pnoutrefresh() function to copy the specified portion
of pad to the terminal screen and the doupdate (3XCURSES) function to do the
actual update. The logical cursor is copied to the same location in the physical
window unless leaveok (3XCURSES) is enabled (in which case, the cursor is
placed in a position that the program finds convenient).

When outputting several pads at once, it is often more efficient to call
the pnoutrefresh() and doupdate() functions directly. A call to
pnoutrefresh() for each pad first, followed by only one call to doupdate()
to update the screen, results in one burst of output, fewer characters sent, and
less CPU time used.

The subpad() function creates a sub-pad within the pad orig with the specified
number of lines and columns. A pointer to the new pad structure is returned.
The sub-pad is positioned in the middle of orig . Any changes made to one pad
affect the other. touchwin (3XCURSES) or touchline (3XCURSES) will likely
have to be called on pad orig to correctly update the window.

RETURN VALUES On success, the newpad() and subpad() functions returns a pointer to the
new pad data structure. Otherwise, they return a null pointer.

On success, the pnoutrefresh() and prefresh() functions return OK.
Otherwise, they return ERR.

SEE ALSO clearok (3XCURSES) , doupdate (3XCURSES) , is_linetouched (3XCURSES)
, pechochar (3XCURSES)

340 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions nl(3XCURSES)

NAME nl, nonl – enable/disable newline control

SYNOPSIS #include <curses.h>
int nl (void);

int nonl (void);

DESCRIPTION The nl() function enables the handling of newlines. The nl() function
converts newline into carriage return and line feed on output and converts
carriage return into newline on input. nonl() disables the handling of newlines.

The handling of newlines is initially enabled. Disabling the handling of newlines
results in faster cursor motion since X/Open Curses can use the line-feed
capability more efficiently.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

Last modified 1 Jun 1996 SunOS 5.8 341

nodelay(3XCURSES) X/Open Curses Library Functions

NAME nodelay – set blocking or non-blocking read

SYNOPSIS #include <curses.h>
int nodelay (WINDOW *win, bool bf);

PARAMETERS win Is a pointer to the window in which to enable
non-blocking.

bf Is a Boolean expression.

DESCRIPTION If enabled, (bf is TRUE), the nodelay() function causes getch (3XCURSES)
to return ERRif no input is ready. When disabled, getch() blocks until a
key is pressed.

RETURN VALUES On success, the nodelay() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO getch (3XCURSES), halfdelay (3XCURSES), notimeout (3XCURSES)

342 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions noqiflush(3XCURSES)

NAME noqiflush, qiflush – control flush of input and output on interrupt

SYNOPSIS #include <curses.h>
void noqiflush (void);

void qiflush (void);

DESCRIPTION The qiflush() function enables the flushing of input and output queues
when an interrupt, quit, or suspend character is sent to the terminal. The
noqiflush() function disables this flushing.

RETURN VALUES These functions do not return a value.

ERRORS None

SEE ALSO flushinp (3XCURSES) , intrflush (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 343

notimeout(3XCURSES) X/Open Curses Library Functions

NAME notimeout, timeout, wtimeout – set timed blocking or non-blocking read

SYNOPSIS #include <curses.h>
int notimeout (WINDOW *win, bool bf);

void timeout (int delay);

void wtimeout (WINDOW win, int delay);

PARAMETERS win Is a pointer to the window in which to set the
timed blocking.

bf Is a Boolean expression.

delay Is the number of milliseconds to block or wait
for input.

DESCRIPTION If bool is TRUE, the notimeout() function disables a timer used by
getch (3XCURSES) when handling multibyte function key sequences.

When bool is FALSEand keypad handling is enabled, a timer is set by getch()
to handle bytes received that could be the beginning of a function key (for
example, ESC). If the remainder of the sequence is not received before the time
expires, the first byte is returned; otherwise, the value of the function key is
returned. Subsequent calls to the getch() function will return the other bytes
received for the incomplete key sequence.

The timeout() and wtimeout() functions set the length of time getch()
waits for input for windows stdscr and win , respectively. These functions
are similar to nodelay (3XCURSES) except the time to block or wait for input
can be specified.

A negative delay causes the program to wait indefinitely for input; a delay of 0
returns ERRif no input is ready; and a positive delay blocks until input arrives or
the time specified expires, (in which case, ERRis returned).

RETURN VALUES On success, the notimeout() function returns OK. Otherwise, it returns ERR.

The timeout() and wtimeout() functions do not return a value.

ERRORS None.

SEE ALSO getch (3XCURSES) , halfdelay (3XCURSES) , nodelay (3XCURSES)

344 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions overlay(3XCURSES)

NAME overlay, overwrite – copy overlapped windows

SYNOPSIS #include <curses.h>
int overlay (const WINDOW *srcwin, WINDOW *dstwin);

int overwrite (const WINDOW *srcwin, WINDOW *dstwin);

PARAMETERS srcwin Is a pointer to the source window to be copied.

dstwin Is a pointer to the destination window to be overlayed or
overwritten.

DESCRIPTION The overwrite() and overlay() functions overlay srcwin on top of destwin
. The srcwin and dstwin arguments do not have to be the same size; only text
where the two windows overlap is copied.

The overwrite() function copies characters as though a sequence of
win_wch (3XCURSES) and wadd_wch(3XCURSES) were performed with the
destination window’s attributes and background attributes cleared.

The overlay() function does the same thing, except that, whenever a character
to be copied is the background character of the source window, overlay()
does not copy the character but merely moves the destination cursor the width
of the source background character.

If any portion of the overlaying window border is not the first column of a
multi-column character, then all the column positions will be replaced with the
background character and rendition before the overlay is done. If the default
background character is a multi-column character when this occurs, then
these functions fail.

RETURN VALUES Upon successful completion, these functions return OK. Otherwise, they return
ERR.

ERRORS No errors are defined.

EXAMPLES CODE EXAMPLE 1 Implement a pop-up dialog

The following example demonstrates the use of overwrite() to implement a
pop-up dialog box.

#include <curses.h>
/*

* Pop-up a window on top of curscr. If row and/or col
* are -1 then that dimension will be centered within
* curscr. Return 0 for success or -1 if malloc() failed.
* Pass back the working window and the saved window for the
* pop-up. The saved window should not be modified.
*/

int
popup(work, save, nrows, ncols, row, col)
WINDOW **work, **save;
int nrows, ncols, row, col;

Last modified 5 May 1999 SunOS 5.8 345

overlay(3XCURSES) X/Open Curses Library Functions

{
int mr, mc;
getmaxyx(curscr, mr, mc);
/* Windows are limited to the size of curscr. */
if (mr < nrows)

nrows = mr;
if (mc < ncols)

ncols = mc;
/* Center dimensions. */
if (row == -1)

row = (mr-nrows)/2;
if (col == -1)

col = (mc-ncols)/2;
/* The window must fit entirely in curscr. */
if (mr < row+nrows)

row = 0;
if (mc < col+ncols)

col = 0;
*work = newwin(nrows, ncols, row, col);
if (*work == NULL)

return (-1);
if ((*save = dupwin(*work)) == NULL) {

delwin(*work);
return (-1);

}
overwrite(curscr, *save);
return (0);

}
/*

* Restore the region covered by a pop-up window.
* Delete the working window and the saved window.
* This function is the complement to popup(). Return
* 0 for success or -1 for an error.
*/

int
popdown(work, save)
WINDOW *work, *save;
{

(void) wnoutrefresh(save);
(void) delwin(save);
(void) delwin(work);
return (0);

}
/*

* Compute the size of a dialog box that would fit around
* the string.
*/

void
dialsize(str, nrows, ncols)
char *str;
int *nrows, *ncols;
{

int rows, cols, col;
for (rows = 1, cols = col = 0; *str != ’\\0’; ++str) {

if (*str == ’\

346 SunOS 5.8 Last modified 5 May 1999

X/Open Curses Library Functions overlay(3XCURSES)

’) {
if (cols < col)

cols = col;
col = 0;
++rows;

} else {
++col;

}
}
if (cols < col)

cols = col;
*nrows = rows;
*ncols = cols;

}
/*

* Write a string into a dialog box.
*/

void
dialfill(w, s)
WINDOW *w;
char *s;
{

int row;
(void) wmove(w, 1, 1);
for (row = 1; *s != ’\\0’; ++s) {

(void) waddch(w, *((unsigned char*) s));
if (*s == ’\

’)
wmove(w, ++row, 1);

}
box(w, 0, 0);

}
void
dialog(str)
char *str;
{

WINDOW *work, *save;
int nrows, ncols, row, col;
/* Figure out size of window. */
dialsize(str, &nrows, &ncols);
/* Create a centered working window with extra */
/* room for a border. */
(void) popup(&work, &save, nrows+2, ncols+2, -1, -1);
/* Write text into the working window. */
dialfill(work, str);
/* Pause. Remember that wgetch() will do a wrefresh() */
/* for us. */
(void) wgetch(work);
/* Restore curscr and free windows. */
(void) popdown(work, save);
/* Redraw curscr to remove window from physical screen. */
(void) doupdate();

}

SEE ALSO copywin (3XCURSES) , wadd_wch(3XCURSES) , win_wch (3XCURSES)

Last modified 5 May 1999 SunOS 5.8 347

panel_above(3CURSES) Curses Library Functions

NAME panel_above, panel_below – panels deck traversal primitives

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
PANEL *panel_above (PANEL *panel);

PANEL *panel_below (PANEL *panel);

DESCRIPTION panel_above() returns a pointer to the panel just above panel , or NULL if
panel is the top panel. panel_below() returns a pointer to the panel just below
panel , or NULL if panel is the bottom panel.

If NULL is passed for panel , panel_above() returns a pointer to the bottom
panel in the deck, and panel_below() returns a pointer to the top panel
in the deck.

RETURN VALUES NULL is returned if an error occurs.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , panels (3CURSES) , attributes (5)

NOTES These routines allow traversal of the deck of currently visible panels.

The header <panel.h> automatically includes the header <curses.h> .

348 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions panel_move(3CURSES)

NAME panel_move, move_panel – move a panels window on the virtual screen

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
int move_panel (PANEL *panel, int starty, int startx);

DESCRIPTION move_panel() moves the curses window associated with panel so that its
upper left-hand corner is at starty , startx . See usage note, below.

RETURN VALUES OKis returned if the routine completes successfully, otherwise ERRis returned.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , panel_update (3CURSES) , panels (3CURSES) ,
attributes (5)

NOTES For panels windows, use move_panel() instead of the mvwin() curses
routine. Otherwise, update_panels() will not properly update the virtual
screen.

The header <panel.h> automatically includes the header <curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 349

panel_new(3CURSES) Curses Library Functions

NAME panel_new, new_panel, del_panel – create and destroy panels

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
PANEL *new_panel (WINDOW *win);

int del_panel (PANEL *panel);

DESCRIPTION new_panel() creates a new panel associated with win and returns the panel
pointer. The new panel is placed on top of the panel deck.

del_panel() destroys panel , but not its associated window.

RETURN VALUES new_panel() returns NULL if an error occurs.

del_win() returns OKif successful, ERRotherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , panel_update (3CURSES) , panels (3CURSES) ,
attributes (5)

NOTES The header <panel.h> automatically includes the header <curses.h> .

350 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions panels(3CURSES)

NAME panels – character based panels package

SYNOPSIS #include <panel.h>

DESCRIPTION The panel library is built using the curses library, and any program using
panels routines must call one of the curses initialization routines such as
initscr . A program using these routines must be compiled with −lpanel and
−lcurses on the cc command line.

The panels package gives the applications programmer a way to have depth
relationships between curses windows; a curses window is associated with
every panel. The panels routines allow curses windows to overlap without
making visible the overlapped portions of underlying windows. The initial
curses window, stdscr , lies beneath all panels. The set of currently visible
panels is the deck of panels.

The panels package allows the applications programmer to create panels, fetch
and set their associated windows, shuffle panels in the deck, and manipulate
panels in other ways.

Routine Name Index The following table lists each panels routine and the name of the manual
page on which it is described.

panels Routine Name Manual Page Name

bottom_panel panel_top (3CURSES)

del_panel panel_new (3CURSES)

hide_panel panel_show (3CURSES)

move_panel panel_move (3CURSES)

new_panel panel_new (3CURSES)

panel_above panel_above (3CURSES)

panel_below panel_above (3CURSES)

panel_hidden panel_show (3CURSES)

panel_userptr panel_userptr (3CURSES)

panel_window panel_window (3CURSES)

replace_panel panel_window (3CURSES)

set_panel_userptr panel_userptr (3CURSES)

show_panel panel_show (3CURSES)

top_panel panel_top (3CURSES)

update_panels panel_update (3CURSES)

Last modified 31 Dec 1996 SunOS 5.8 351

panels(3CURSES) Curses Library Functions

RETURN VALUES Each panels routine that returns a pointer to an object returns NULL if an error
occurs. Each panel routine that returns an integer, returns OKif it executes
successfully and ERRif it does not.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES), attributes (5) and 3X pages whose names begin “panel_”
for detailed routine descriptions.

NOTES The header <panel.h> automatically includes the header <curses.h> .

352 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions panel_show(3CURSES)

NAME panel_show, show_panel, hide_panel, panel_hidden – panels deck manipulation
routines

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
int show_panel (PANEL *panel);

int hide_panel (PANEL *panel);

int panel_hidden (PANEL *panel);

DESCRIPTION show_panel() makes panel , previously hidden, visible and places it on top of
the deck of panels.

hide_panel() removes panel from the panel deck and, thus, hides it from view.
The internal data structure of the panel is retained.

panel_hidden() returns TRUE (1) or FALSE (0) indicating whether or not
panel is in the deck of panels.

RETURN VALUES show_panel() and hide_panel() return the integer OKupon successful
completion or ERRupon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , panel_update (3CURSES) , panels (3CURSES) ,
attributes (5)

NOTES The header <panel.h> automatically includes the header <curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 353

panel_top(3CURSES) Curses Library Functions

NAME panel_top, top_panel, bottom_panel – panels deck manipulation routines

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
int top_panel (PANEL *panel);

int bottom_panel (PANEL *panel);

DESCRIPTION top_panel() pulls panel to the top of the desk of panels. It leaves the size,
location, and contents of its associated window unchanged.

bottom_panel() puts panel at the bottom of the deck of panels. It leaves the
size, location, and contents of its associated window unchanged.

RETURN VALUES All of these routines return the integer OKupon successful completion or ERR
upon error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , panel_update (3CURSES) , panels (3CURSES) ,
attributes (5)

NOTES The header <panel.h> automatically includes the header <curses.h> .

354 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions panel_update(3CURSES)

NAME panel_update, update_panels – panels virtual screen refresh routine

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
void update_panels (void);

DESCRIPTION update_panels() refreshes the virtual screen to reflect the depth relationships
between the panels in the deck. The user must use the curses library call
doupdate() (see curs_refresh (3CURSES)) to refresh the physical screen.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curs_refresh (3CURSES) , curses (3CURSES) , panels (3CURSES) ,
attributes (5)

NOTES The header <panel.h> automatically includes the header <curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 355

panel_userptr(3CURSES) Curses Library Functions

NAME panel_userptr, set_panel_userptr – associate application data with a panels panel

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
int set_panel_userptr (PANEL *panel, char *ptr);

char * panel_userptr (PANEL *panel);

DESCRIPTION Each panel has a user pointer available for maintaining relevant information.

set_panel_userptr() sets the user pointer of panel to ptr .

panel_userptr() returns the user pointer of panel .

RETURN VALUES set_panel_userptr returns OKif successful, ERRotherwise.

panel_userptr returns NULL if there is no user pointer assigned to panel .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , panels (3CURSES) , attributes (5)

NOTES The header <panel.h> automatically includes the header <curses.h> .

356 SunOS 5.8 Last modified 31 Dec 1996

Curses Library Functions panel_window(3CURSES)

NAME panel_window, replace_panel – get or set the current window of a panels panel

SYNOPSIS cc [flag ...] file ... −lpanel −lcurses [library ..]
#include <panel.h>
WINDOW *panel_window (PANEL *panel);

int replace_panel (PANEL *panel, WINDOW *win);

DESCRIPTION panel_window() returns a pointer to the window of panel .

replace_panel() replaces the current window of panel with win .

RETURN VALUES panel_window() returns NULLon failure.

replace_panel() returns OKon successful completion, ERRotherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO curses (3CURSES) , panels (3CURSES) , attributes (5)

NOTES The header <panel.h> automatically includes the header <curses.h> .

Last modified 31 Dec 1996 SunOS 5.8 357

pechochar(3XCURSES) X/Open Curses Library Functions

NAME pechochar, pecho_wchar – add character and refresh window

SYNOPSIS #include <curses.h>
int pechochar (WINDOW *pad, chtype ch);

int pecho_wchar (WINDOW *pad, const chtype *wch);

PARAMETERS pad Is a pointer to the pad in which the character
is to be added.

ch Is a pointer to the character to be written to
the pad.

wch Is a pointer to the complex character to be written
to the pad.

DESCRIPTION The pechochar() function is equivalent to calling waddch (3XCURSES)
followed by a call to prefresh (3XCURSES) . The pecho_wchar() function is
equivalent to calling wadd_wch(3XCURSES) followed by a call to prefresh() .
prefresh() reuses the last position of the pad on the screen for its parameters.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO add_wch (3XCURSES) , addch (3XCURSES) , newpad(3XCURSES)

358 SunOS 5.8 Last modified 1 Jun 1996

Graphics Interface Library Functions plot(3PLOT)

NAME plot, arc, box, circle, closepl, closevt, cont, erase, label, line, linmod, move,
openpl, openvt, point, space – graphics interface

SYNOPSIS cc [flag ...] file ... −lplot [library...]
#include <plot.h>
void arc (short x0, short y0, short x1, short y1, short x2, short y2);

void box (short x0, short y0, short x1, short y1);

void circle (short x, short y, short r);

void closepl ();

void closevt ();

void cont (short x, short y);

void erase ();

void label (char *s);

void line (short x0, short y0, short x1, short y1);

void linmod (char *s);

void move(short x, short y);

void openpl ();

void openvt ();

void point (short x, short y);

void space (short x0, short y0, short x1, short y1);

DESCRIPTION These functions generate graphics output for a set of output devices. The format
of the output is dependent upon which link editor option is used when the
program is compiled and linked (see Link Editor).

The term "current point" refers to the current setting for the x and y coordinates.

The arc() function specifies a circular arc. The coordinates (x0 , y0) specify
the center of the arc. The coordinates (x1 , y1) specify the starting point of
the arc. The coordinates (x2 , y2) specify the end point of the circular arc.

The box() function specifies a rectangle with coordinates (x0 , y0) , (x0 ,
y1) , (x1 , y0) , and (x1 , y1) . The current point is set to (x1 , y1) .

The circle() function specifies a circle with a center at the coordinates (x ,
y) and a radius of r .

The closevt() and closepl() functions flush the output.

Last modified 17 Dec 1997 SunOS 5.8 359

plot(3PLOT) Graphics Interface Library Functions

The cont() function specifies a line beginning at the current point and ending
at the coordinates (x , y) . The current point is set to (x , y) .

The erase() function starts another frame of output.

The label() function places the null terminated string s so that the first
character falls on the current point. The string is then terminated by a NEWLINE
character.

The line() function draws a line starting at the coordinates (x0 , y0) and
ending at the coordinates (x1 , y1) . The current point is set to (x1 , y1) .

The linmod() function specifies the style for drawing future lines. s may
contain one of the following: dotted , solid , longdashed , shortdashed ,
or dotdashed .

The move() function sets the current point to the coordinates (x , y) .

The openpl() or openvt() function must be called to open the device before
any other plot functions are called.

The point() function plots the point given by the coordinates (x , y) .
The current point is set to (x , y) .

The space() function specifies the size of the plotting area. The plot will be
reduced or enlarged as necessary to fit the area specified. The coordinates (x0 ,
y0) specify the lower left hand corner of the plotting area. The coordinates (x1
, y1) specify the upper right hand corner of the plotting area.

Link Editor Various flavors of these functions exist for different output devices. They are
obtained by using the following ld (1) options:
−lplot device-independent graphics stream on standard output in

the format described in plot (4B)

−l300 GSI 300 terminal

−l300s GSI 300S terminal

−l4014 Tektronix 4014 terminal

−l450 GSI 450 terminal

−lvt0

FILES /usr/lib/libplot.a archive library

/usr/lib/libplot.so.1 shared object

/usr/lib/sparcv9/libplot.so.1 64-bit shared object

/usr/lib/lib300.a archive library

/usr/lib/lib300.so.1 shared object

360 SunOS 5.8 Last modified 17 Dec 1997

Graphics Interface Library Functions plot(3PLOT)

/usr/lib/sparcv9/lib300.so.1 64-bit shared object

/usr/lib/lib300s.a archive library

/usr/lib/lib300s.so.1 shared object

/usr/lib/sparcv9/lib300s.so.1 64-bit shared object

/usr/lib/lib4014.a archive library

/usr/lib/lib4014.so.1 shared object

/usr/lib/sparcv9/lib4014.so.1 64-bit shared object

/usr/lib/lib450.a archive library

/usr/lib/lib450.so.1 shared object

/usr/lib/sparcv9/lib450.so.1 64-bit shared object

/usr/lib/libvt0.a archive library

/usr/lib/libvt0.so.1 shared object

/usr/lib/sparcv9/libvt0.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO graph (1) , ld (1) , libplot (3LIB) , plot (4B) , attributes (5)

Last modified 17 Dec 1997 SunOS 5.8 361

putp(3XCURSES) X/Open Curses Library Functions

NAME putp, tputs – apply padding information and output string

SYNOPSIS #include <curses.h>
int putp (const char *str);

int tputs (const char *str, int affcnt, int (*putfunc) (int));

PARAMETERS str Is a pointer to a terminfo variable or
return value from tgetstr (3XCURSES) ,
tgoto (3XCURSES) , tigetstr (3XCURSES) , or
tparm (3XCURSES) .

affcnt Is the number of lines affected, or 1 if not
relevant.

putfunc Is the output function.

DESCRIPTION The putp() and tputs() functions are low-level functions used to deal
directly with the terminfo database. The use of appropriate X/Open Curses
functions is recommended for most situations.

The tputs() function adds padding information and then outputs str . str
must be a terminfo string variable or the result value from tgetstr() ,
tgoto() , tigetstr() , or tparm() . The tputs() function replaces the
padding specification (if one exists) with enough characters to produce the
specified delay. Characters are output one at a time to putfunc , a user-specified
function similar to putchar (3C) .

The putp() function calls tputs() as follows:

tputs(str , 1, putchar)

RETURN VALUES On success, these functions return OK.

ERRORS None.

USAGE The output of putp() goes to stdout , not to the file descriptor, fildes , specified
in setupterm (3XCURSES) .

SEE ALSO putchar (3C) , setupterm (3XCURSES) , tgetent (3XCURSES) ,
tigetflag (3XCURSES) , terminfo (4)

362 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions redrawwin(3XCURSES)

NAME redrawwin, wredrawln – redraw screen or portion of screen

SYNOPSIS #include <curses.h>
int redrawwin (WINDOW *win);

int wredrawln (WINDOW *win, int beg_line, int num_lines);

PARAMETERS win Is a pointer to the window in which to redraw.

beg_line Is the first line to redraw.

num_lines Is the number of lines to redraw.

DESCRIPTION The redrawwin() and wredrawln() functions force portions of a window to
be redrawn to the terminal when the next refresh operation is performed.

The redrawwin() function forces the entire window win to be redrawn, while
the wredrawln() function forces only num_lines lines starting with beg_line to
be redrawn. Normally, refresh operations use optimization methods to reduce
the actual amount of the screen to redraw based on the current screen contents.
These functions tell the refresh operations not to attempt any optimization
when redrawing the indicated areas.

These functions are useful when the data that exists on the screen is believed to
be corrupt and for applications such as screen editors that redraw portions of
the screen.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO doupdate (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 363

resetty(3XCURSES) X/Open Curses Library Functions

NAME resetty, savetty – restore/save terminal modes

SYNOPSIS #include <curses.h>
int resetty (void);

int savetty (void);

DESCRIPTION The savetty() and resetty() functions save and restore the terminal state,
respectively. The savetty() function saves the current state in a buffer; the
resetty() function restores the state to that stored in the buffer at the time
of the last savetty() call.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

364 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions ripoffline(3XCURSES)

NAME ripoffline – reserve screen line for dedicated purpose

SYNOPSIS #include <curses.h>
int ripoffline (int line, int (*init)(WINDOW *win, int width);

PARAMETERS line determines whether the screen line being
reserved comes from the top of stdscr (line is
positive) or the bottom (line is negative).

init Is a pointer to a function that initializes the
one-line window.

win Is a pointer to one-line window created by this
function.

width Is the number of columns in the window pointed
to by the win parameter.

DESCRIPTION The ripoffline() function reserves a screen line as a one line window.

To use this function, it must be called before you call initscr (3XCURSES)
or newterm (3XCURSES). When initscr() or newterm() is called, so is
the function pointed to by init . The function pointed to by init takes two
arguments: a pointer to the one-line window and the number of columns in
that window. This function cannot use the LINES or COLSvariables and
cannot call wrefresh (3XCURSES) or doupdate (3XCURSES), but may call
wnoutrefresh (3XCURSES).

RETURN VALUES The rioffline() function always returns OK.

ERRORS None.

SEE ALSO doupdate (3XCURSES), initscr (3XCURSES), slk_attroff (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 365

scr_dump(3XCURSES) X/Open Curses Library Functions

NAME scr_dump, scr_init, scr_restore, scr_set – write screen contents to/from a file

SYNOPSIS #include <curses.h>
int scr_dump (const char *filename);

int scr_init (const char *filename);

int scr_restore (const char *filename);

int scr_set (const char *filename);

PARAMETERS filename Is a pointer to the file in which screen contents are written.

DESCRIPTION These function perform input/output functions on a screen basis.

The scr_dump() function writes the contents of the virtual screen, curscr ,
to filename .

The scr_restore() function reads the contents of filename from curscr
(which must have been written with scr_dump()). The next refresh operation
restores the screen to the way it looks in filename .

The scr_init() function reads the contents of filename and uses those contents
to initialize the X/Open Curses data structures to what is actually on screen. The
next refresh operation bases its updates on this data, unless the terminal has
been written to since filename was saved or the terminfo capabilities rmcup
and nrrmc are defined for the current terminal.

The scr_set() function combines scr_restore() and scr_init() . It
informs the program that the contents of the file filename are what is currently on
the screen and that the program wants those contents on the screen.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO delscreen (3XCURSES) , doupdate (3XCURSES) , endwin (3XCURSES) ,
getwin (3XCURSES)

366 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions scrl(3XCURSES)

NAME scrl, scroll, wscrl – scroll a window

SYNOPSIS #include <curses.h>
int scrl (int n);

int scroll (WINDOW *win);

int wscrl (WINDOW *win, int n);

PARAMETERS n number and direction of lines to scroll

win pointer to the window in which to scroll

DESCRIPTION The scroll() function scrolls the window win up one line. The current cursor
position is not changed.

The scrl() and wscrl() functions scroll the window stdscr or win up or
down n lines, where n is a positive (scroll up) or negative (scroll down) integer.

The scrollok (3XCURSES) function must be enabled for these functions to
work.

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO clearok (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 367

setcchar(3XCURSES) X/Open Curses Library Functions

NAME setcchar – set a cchar_t type character from a wide character and rendition

SYNOPSIS #include <curses.h>
int setcchar (cchar_t *wcval, const wchar_t *wch, const attr_t attrs, short color_pair,
const void *opts);

PARAMETERS wcval Is a pointer to a location where a cchar_t
character (and its rendition) can be stored.

wch Is a pointer to a wide character.

attrs Is the set of attributes to apply to wch in creating
wcval.

color_pair Is the color pair to apply to wch in creating wcval.

opts Is reserved for future use. Currently, this must be
a null pointer.

DESCRIPTION The setcchar() function takes the wide character pointed to by wch, combines
it with the attributes indicated by attrs and the color pair indicated by color_pair
and stores the result in the object pointed to by wcval.

RETURN VALUES On success, the setcchar() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO attroff (3XCURSES), can_change_color (3XCURSES),
getcchar (3XCURSES)

368 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions set_term(3XCURSES)

NAME set_term – switch between terminals

SYNOPSIS #include <curses.h>
SCREEN *set_term (SCREEN *new);

PARAMETERS new Is the new terminal to which the set_term()
function will switch.

DESCRIPTION The set_term() function switches to the terminal specified by new and returns
a screen reference to the previous terminal. Calls to subsequent X/Open Curses
functions affect the new terminal.

RETURN VALUES On success, the set_term() function returns a pointer to the previous screen.
Otherwise, it returns a null pointer.

ERRORS None.

Last modified 1 Jun 1996 SunOS 5.8 369

slk_attroff(3XCURSES) X/Open Curses Library Functions

NAME slk_attroff, slk_attr_off, slk_attron, slk_attr_on, slk_attrset, slk_attr_set, slk_clear,
slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set,
slk_touch, slk_wset – soft label functions

SYNOPSIS #include <curses.h>
int slk_attroff (const chtype attrs);

int slk_attr_off (const attr_t attrs, void *opts);

int slk_attron (const chtype attrs);

int slk_attr_on (const attr_t attrs, void *opts);

int slk_attrset (const chtype attrs);

int slk_attr_set (const attr_t attrs, short color_pair_number, void *opts);

int slk_clear (void);

int slk_color (short color_pair_number);

int slk_init (int fmt);

char *slk_label (int labnum);

int slk_noutrefresh (void);

int slk_refresh (void);

int slk_restore (void);

int slk_set (int labnum, const char *label, int justify);

int slk_touch (void);

int slk_wset (int labnum, const wchar_t *label, int justify);

PARAMETERS attrs are the window attributes to be added or
removed.

opts Is reserved for future use. Currently, this must be
a null pointer.

color_pair_number Is a color pair.

fmt Is the format of how the labels are arranged
on the screen.

labnum Is the number of the soft label.

label Is the name to be given to a soft label.

justify Is a number indicating how to justify the label
name.

370 SunOS 5.8 Last modified 5 May 1999

X/Open Curses Library Functions slk_attroff(3XCURSES)

DESCRIPTION The Curses interface manipulates the set of soft function-key labels that exist
on many terminals. For those terminals that do not have soft labels, Curses
takes over the bottom line of stdscr , reducing the size of stdscr and the value
of the LINES external variable. There can be up to eight labels of up to eight
display columns each.

To use soft labels, slk_init() must be called before calling
initscr (3XCURSES) , newterm (3XCURSES) , or ripoffline (3XCURSES) .
If initscr() eventually uses a line from stdscr to emulate the soft labels,
then fmt determines how the labels are arranged on the screen. Setting fmt to
0 indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4 arrangement.
Other values for fmt are unspecified.

The slk_init() function has the effect of calling ripoffline() to reserve
one screen line to accommodate the requested format.

The slk_set() and slk_wset() functions specify the text of soft label
number labnum , within the range from 1 to and including 8. The label argument
is the string to be put the lable. With slk_set() and slk_wset() , the width
of the label is limited to eight columns positions. A null string or a null pointer
specifies a blank label. The justify argument can have the following values to
indicate how to justify label within the space reserved for it:
0 Align the start of label with the start of the space

1 Center label within the space

2 Align the end of label with the end of the space

The slk_refresh() and slk_noutrefresh() functions correspond to the
wrefresh (3XCURSES) and wnoutrefresh (3XCURSES) functions.

The slk_label() function obtains soft label number labnum .

The slk_clear() function immediately clears the soft labels from the screen.

The slk_restore() function immediately restores the soft labels to the screen
after a call to slk_clear() .

The slk_touch() function forces all the soft labels to be output the next time
slk_refresh() or slk_noutrefresh() is called.

The slk_attron() , slk_attrset() , and slk_attroff() functions
correspond to the attron (3XCURSES) , attrset (3XCURSES) , and
attroff (3XCURSES) functions. They have an effect only if soft labels are
stimulated on the bottom line of the screen.

The slk_attr_on() , slk_attr_off() , slk_attr_set() and
slk_color() functions correspond to the attr_on (3XCURSES) ,
attr_off (3XCURSES) , attr_set (3XCURSES) , and color_set (3XCURSES)

Last modified 5 May 1999 SunOS 5.8 371

slk_attroff(3XCURSES) X/Open Curses Library Functions

functions. As a result, they support color and the attribute constants with the
WA_prefix.

The opts argument is reserved for definition in a future release. Currently,
the opts argument is a null pointer.

RETURN VALUES Upon successful completion, the slk_label() function returns the requested
label with leading and trailing blanks stripped. Otherwise, it returns a null
pointer.

Upon successful completion, the other functions return OK. Otherwise, they
return ERR.

ERRORS No errors are defined.

USAGE When using multi-byte character sets, applications should check the width of
the string by calling mbstowcs (3C) and then wcswidth (3C) before calling
slk_set() . When using wide characters, applications should check the width
of the string by calling wcswidth() before calling slk_set() .

Since the number of columns that a wide string will occupy is codeset-specific,
call wcwidth (3C) and wcswidth (3C) to check the number of column positions
in the string before calling slk_wset() .

Most applications would use slk_noutrefresh() because a wrefresh() is
likely to follow soon.

SEE ALSO attr_get (3XCURSES) , attroff (3XCURSES) , delscreen (3XCURSES) ,
mbstowcs (3C) , ripoffline (3XCURSES) , wcswidth (3C) , wcwidth (3C)

372 SunOS 5.8 Last modified 5 May 1999

X/Open Curses Library Functions standend(3XCURSES)

NAME standend, standout, wstandend, wstandout – set/clear window attributes

SYNOPSIS #include <curses.h>
int standend (void);

int standout (void);

int wstandend (WINDOW *win);

int wstandout (WINDOW *win);

PARAMETERS win Is a pointer to the window in which attribute
changes are to be made.

DESCRIPTION The standend() and wstandend() functions turn off all attributes associated
with stdscr and win respectively.

The standout() and wstandout() functions turn on the A_STANDOUT
attribute of stdscr and win respectively.

RETURN VALUES These functions always return 1.

ERRORS None.

SEE ALSO attr_get (3XCURSES) , attroff (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 373

stdscr(3XCURSES) X/Open Curses Library Functions

NAME stdscr – default window

SYNOPSIS #include <curses.h>

extern WINDOW *stdscr;

DESCRIPTION The external variable stdscr specifies the default window used by functions
that to not specify a window using an argument of type WINDOW *. Other
windows may be created using newwin() .

SEE ALSO newwin (3XCURSES)

374 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions syncok(3XCURSES)

NAME syncok, wcursyncup, wsyncdown, wsyncup – synchronize window with its
parents or children

SYNOPSIS #include <curses.h>
int syncok (WINDOW *win, bool bf);

void wcursyncup (WINDOW *win);

void wsyncdown (WINDOW *win);

void wsyncup (WINDOW *win);

PARAMETERS win Is a pointer to a window.

bf Is a Boolean expression.

DESCRIPTION The syncok() function uses the value of bf to determine whether or not the
window win ’s ancestors are implicitly touched whenever there is a change to
win . If bf is TRUE, this touching occurs. If bf is FALSE , it does not occur. The
initial value for bf is FALSE .

The wcursyncup() function moves the cursor in win ’s ancestors to match
its position in win .

The wsyncdown() function touches win if any of its ancestors have been
touched.

The wsyncup() function touches all ancestors of win .

RETURN VALUES On success, the syncok() function returns OK. Otherwise, it returns ERR.

The other functions do not return a value.

ERRORS None.

SEE ALSO derwin (3XCURSES) , doupdate (3XCURSES) , is_linetouched (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 375

termattrs(3XCURSES) X/Open Curses Library Functions

NAME termattrs, term_attrs – get supported terminal video attributes

SYNOPSIS #include <curses.h>
chtype termattrs (void);

attr_t term_attrs (void);

DESCRIPTION The termattrs() function extracts the video attributes of the current terminal
which is supported by the chtype data type.

The term_attrs() function extracts information for the video attributes of the
current terminal which is supported for a cchar_t .

RETURN VALUES The termattrs() function returns a logical OR of A_ values of all video
attributes supported by the terminal.

The term_attrs() function returns a logical OR of WA_values of all video
attributes supported by the terminal.

ERRORS No errors are defined.

SEE ALSO attr_get (3XCURSES) , attroff (3XCURSES)

376 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions termname(3XCURSES)

NAME termname – return the value of the environmental variable TERM

SYNOPSIS #include <curses.h>
char *termname (void);

DESCRIPTION The termname() function returns a pointer to the value of the environmental
variable TERM(truncated to 14 characters).

RETURN VALUES The termname() returns a pointer to the terminal’s name.

ERRORS None.

SEE ALSO del_curterm (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 377

tgetent(3XCURSES) X/Open Curses Library Functions

NAME tgetent, tgetflag, tgetnum, tgetstr, tgoto – emulate the termcap database

SYNOPSIS #include <term.h>
int tgetent (char *bp, const char *name);

int tgetflag (char id [2]);

int tgetnum (char id [2]);

char *tgetstr (char id [2], char **area);

char *tgoto (char *cap, int col, int row);

PARAMETERS bp Is a pointer to a buffer. This parameter is ignored.

name Is the termcap entry to look up.

cap Is the pointer to a termcap capability.

area Is a pointer to the area where tgetstr() stores the
decoded string.

col Is the column placement of the new cursor.

row Is the row placement of the new cursor.

DESCRIPTION The tgetent() function looks up the termcap entry for name . The emulation
ignores the buffer pointer bp .

The tgetflag() function gets the Boolean entry for id .

The tgetnum() function gets the numeric entry for id .

The tgetstr() function gets the string entry for id . If area is not a null pointer
and does not point to a null pointer, tgetstr() copies the string entry into the
buffer pointed to by *area and advances the variable pointed to by area to the first
byte after the copy of the string entry.

The tgoto() function instantiates the parameters col and row into the capability
cap and returns a pointer to the resulting string.

All of the information available in the terminfo database need not be available
through these functions.

RETURN VALUES Upon successful completion, those functions that return integers return OK.
Otherwise, they return ERR.

Those functions that return pointers return a null pointer when an error occurs.

ERRORS No errors are defined.

378 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions tgetent(3XCURSES)

USAGE These functions are included as a conversion aid for programs that use the
termcap library. Their arguments are the same and the functions are emulated
using the terminfo database.

These functions are only guaranteed to operate reliably on character sets in
which each character fits into a single byte, whose attributes can be expressed
using only constants with the A_ prefix.

Any terminal capabilities from the terminfo database that cannot be retrieved
using these functions can be retrieved using the functions described on the
tigetflag (3XCURSES) manual page.

Portable applications must use tputs (3XCURSES) to output the strings returned
by tgetstr() and tgoto() .

SEE ALSO putp (3XCURSES) , setupterm (3XCURSES) , tigetflag (3XCURSES)

Last modified 6 May 1999 SunOS 5.8 379

tigetflag(3XCURSES) X/Open Curses Library Functions

NAME tigetflag, tigetnum, tigetstr, tparm – return the value of a terminfo capability

SYNOPSIS #include <term.h>
int tigetflag (char *capname);

int tigetnum (char *capname);

char *tigetstr (char *capname);

char *tparm (char *cap, long p1, long p2, long p3, long p4, long p5, long p6, long p7,
long p8, long p9);

PARAMETERS capname Is the name of the terminfo capability for which
the value is required.

cap Is a pointer to a string capability.

p1
...p9

Are the parameters to be instantiated.

DESCRIPTION The tigetflag() , tigetnum() , and tigetstr() functions return values
for terminfo capabilities passed to them.

The following null-terminated arrays contain the capnames , the termcap codes
and full C names for each of the terminfo variables.

char *boolnames, *boolcodes, *boolfnames
char *numnames, *numcodes, *numfnames
char *strnames, *strcodes, *strfnames

The tparm() function instantiates a parameterized string using nine arguments.
The string is suitable for output processing by tputs() .

RETURN VALUES On success, the tigetflg() , tigetnum() , and tigetstr() functions
return the specified terminfo capability.

tigetflag() returns -1 if capname is not a Boolean capability.

tigetnum() returns -2 if capname is not a numeric capability.

tigetstr() returns (char *) -1 if capname is not a string capability.

On success, the tparm() function returns cap in a static buffer with the
parameterization resolved. Otherwise, it returns a null pointer.

ERRORS None.

SEE ALSO tgetent (3XCURSES) , terminfo (4)

380 SunOS 5.8 Last modified 1 Jun 1996

X/Open Curses Library Functions typeahead(3XCURSES)

NAME typeahead – check for type-ahead characters

SYNOPSIS #include <curses.h>
int typeahead (int fd);

PARAMETERS fd Is the file descriptor that is used to check for
type-ahead characters.

DESCRIPTION The typeahead() function specifies the file descriptor (fd) to use to check
for type-ahead characters (characters typed by the user but not yet processed
by X/Open Curses).

X/Open Curses checks for type-ahead characters periodically while updating
the screen. If characters are found, the current update is postponed until the next
refresh (3XCURSES) or doupdate (3XCURSES). This speeds up response to
commands that have been typed ahead. Normally, the input file pointer passed
to newterm (3XCURSES), or stdin in the case of initscr (3XCURSES), is
used for type-ahead checking.

If fd is -1, no type-ahead checking is done.

RETURN VALUES On success, the typeahead() function returns OK. Otherwise, it returns ERR.

ERRORS None.

SEE ALSO doupdate (3XCURSES), getch (3XCURSES), initscr (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 381

unctrl(3XCURSES) X/Open Curses Library Functions

NAME unctrl – generate printable representation of a character

SYNOPSIS #include <unctrl.h>
char *unctrl (chtype c);

PARAMETERS c Is a character.

DESCRIPTION The unctrl() function generates a character string that is a printable
representation of c. If c is a control character,it is converted to the ^X notation. If
c contains rendition information, the effect is undefined.

RETURN VALUES Upon successful completion, the unctrl() function returns the generated
string. Otherwise, it returns a null pointer.

ERRORS No errors are defined.

SEE ALSO addch (3XCURSES), addstr (3XCURSES), wunctrl (3XCURSES)

382 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions ungetch(3XCURSES)

NAME ungetch, unget_wch – push character back onto the input queue

SYNOPSIS #include <curses.h>
int ungetch (int ch);

int unget_wch (const wchar_t wch);

PARAMETERS ch Is the single byte character to be put back
in the input queue for the next call to
getch (3XCURSES) .

wch Is the wide character to be put back in the input
queue for the next call to get_wch (3XCURSES) .

DESCRIPTION The ungetch() function pushes ch back onto the input queue until the next
call to getch() .

The unget_wch() function is similar to ungetch() except that ch can be of
type wchar_t .

RETURN VALUES On success, these functions return OK. Otherwise, they return ERR.

ERRORS None.

SEE ALSO get_wch (3XCURSES) , getch (3XCURSES)

Last modified 1 Jun 1996 SunOS 5.8 383

use_env(3XCURSES) X/Open Curses Library Functions

NAME use_env – specify source of screen size information

SYNOPSIS #include <curses.h>
void use_env (bool boolval);

PARAMETERS boolval Is a Boolean expression.

DESCRIPTION The use_env() function specifies the technique by which the implementation
determines the size of the screen. If boolval is FALSE, the implementation uses
the values of lines and columns specified in the terminfo database. If boolval
is TRUE, the implementation uses the LINES and COLUMNSenvironmental
variables. The initial value is TRUE.

Any call to use_env() must precede calls to initscr (3XCURSES),
newterm (3XCURSES), or setupterm (3XCURSES).

RETURN VALUES The use_env() function does not return a value.

ERRORS No errors are defined.

SEE ALSO del_curterm (3XCURSES), initscr (3XCURSES)

384 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions vidattr(3XCURSES)

NAME vidattr, vid_attr, vidputs, vid_puts – output attributes to the terminal

SYNOPSIS #include <curses.h>
int vidattr (chtype attr);

int vid_attr (attr_t attr, short color_pair_number, void *opt);

int vidputs (chtype attr, int (*putfunc) (int));

int vid_puts (attr_t attr, short color_pair_number, void *opt, int (*putfunc) (int));

PARAMETERS attr Is the rendition of the foreground window.

color_pair_number Is a color pair.

opt Is reserved for future use. Currently, this must be
a null pointer.

putfunc Is a user-supplied output function.

DESCRIPTION These functions output commands to the terminal that change the terminal’s
attributes.

If the terminfo database indicates that the terminal in use can display
characters in the rendition specified by attr , then vidattr() outputs one or
more commands to request that the terminal display subsequent characters in
that rendition. The function outputs by calling putchar (3C) . The vidattr()
function neither relies on your updates the model which Curses maintains
of the prior rendition mode.

The vidputs() function computes the terminal output string that vidattr()
does, based on attr , but vidputs() outputs by calling the user-supplied
function putfunc . The vid_attr() and vid_puts() functions correspond to
vidattr() and vidputs() respectively, but take a set of arguments, one of
type attr_t for the attributes, one of type short for the color pair number, and
a void * , and thus support the attribute constants with the WA_prefix.

The opts argument is reserved for definition in a future release. Currently,
it is implemented as a null pointer.

The user-supplied function putfunc (which can be specified as an argument
to either vidputs() or vid_puts()) is either putchar() or some other
function with the same prototype. Both the vidputs() and vid_puts()
functions ignore the return value of putfunc .

RETURN VALUES Upon successful completion, these functions return OK. Otherwise, they return
ERR.

ERRORS No errors are defined.

Last modified 6 May 1999 SunOS 5.8 385

vidattr(3XCURSES) X/Open Curses Library Functions

USAGE After use of any of these functions, the model Curses maintains of the state of the
terminal might not match the actual state of the terminal. The application should
touch and refresh the window before resuming conventional use of Curses.

Of these functions requires that the application contain so much information
about a particular class of terminal that it defeats the purpose of using Curses.

On some terminals, a command to change rendition conceptually occupies
space in the screen buffer (with or without width). Thus, a command to set the
terminal to a new rendition would change the rendition of some characters
already displayed.

SEE ALSO doupdate (3XCURSES) , is_linetouched (3XCURSES) , putchar (3C) ,
tigetflag (3XCURSES)

386 SunOS 5.8 Last modified 6 May 1999

X/Open Curses Library Functions vwprintw(3XCURSES)

NAME vwprintw – print formatted output in window

SYNOPSIS #include <varargs.h>
#include <curses.h>
int vwprintw (WINDOW *win, char *fmt, va_list varglist);

PARAMETERS fmt Is a printf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the string is
to be written.

DESCRIPTION The vwprintw() function achieves the same effect as wprintw (3XCURSES)
using a variable argument list. The third argument is a va_list , as defined in
<varargs.h> .

RETURN VALUES Upon successful completion, vwprintw() returns OK. Otherwise, it returns ERR.

ERRORS No errors are defined.

USAGE The vwprintw() function is deprecated; the vw_printw (3XCURSES) function
is preferred. The use of the vwprintw() and vw_printw() in the same
file will not work, due to the requirements to include <varargs.h> and
<stdarg.h> , which both contain definitions of va_list .

SEE ALSO mvprintw (3XCURSES), printf (3C), vw_printw (3XCURSES)

Last modified 7 May 1999 SunOS 5.8 387

vw_printw(3XCURSES) X/Open Curses Library Functions

NAME vw_printw – print formatted output in window

SYNOPSIS #include <stdarg.h>
#include <curses.h>
int vw_printw (WINDOW *win, char *fmt, va_list varglist);

PARAMETERS fmt Is a printf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the string is
to be written.

DESCRIPTION The vw_printw() function achieves the same effect as wprintw (3XCURSES)
using a variable argument list. The third argument is a va_list , as defined in
<stdarg.h> .

RETURN VALUES Upon successful completion, vw_printw() returns OK. Otherwise, it returns
ERR.

ERRORS No errors are defined.

USAGE The vw_printw() function is preferred over vwprintw (3XCURSES). The
use of the vwprintw() and vw_printw() in the same file will not work,
due to the requirements to include <varargs.h> and <stdarg.h> , which
both contain definitions of va_list .

SEE ALSO mvprintw (3XCURSES), printf (3C)

388 SunOS 5.8 Last modified 7 May 1999

X/Open Curses Library Functions vwscanw(3XCURSES)

NAME vwscanw – convert formatted input from a window

SYNOPSIS #include <stdarg.h>
#include <curses.h>
int vw_scanw (WINDOW *win, char *fmt, va_list varglist);

PARAMETERS fmt Is a scanf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the character
is to be read.

DESCRIPTION The vwscanw() function achieves the same effect as wscanw(3XCURSES)
using a variable argument list. The third argument is a va_list , as defined in
<varargs.h> .

RETURN VALUES Upon successful completion, vwscanw() returns OK. Otherwise, it returns ERR.

ERRORS No errors are defined.

USAGE The vwscanw() function is deprecated; the vw_scanw (3XCURSES) function is
preferred. The use of the vwscanw() and vw_scanw() in the same file will
not work, due to the requirements to include <varargs.h> and <stdarg.h> ,
which both contain definitions of va_list .

SEE ALSO mvscanw(3XCURSES), scanf (3C), vw_scanw (3XCURSES)

Last modified 7 May 1999 SunOS 5.8 389

vw_scanw(3XCURSES) X/Open Curses Library Functions

NAME vw_scanw – convert formatted input from a window

SYNOPSIS #include <stdarg.h>
#include <curses.h>
int vw_scanw (WINDOW *win, char *fmt, va_list varglist);

PARAMETERS fmt Is a scanf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the character
is to be read.

DESCRIPTION The vw_scanw() function achieves the same effect as wscanw(3XCURSES)
using a variable argument list. The third argument is a va_list , as defined in
<stdarg.h> .

RETURN VALUES Upon successful completion, vw_scanw() returns OK. Otherwise, it returns ERR.

ERRORS No errors are defined.

USAGE The vw_scanw() function is preferred over vwscanw (3XCURSES). The use of
the vwscanw() and vw_scanw() in the same file will not work, due to the
requirements to include <varargs.h> and <stdarg.h> , which both contain
definitions of va_list .

SEE ALSO mvscanw(3XCURSES), scanf (3C)

390 SunOS 5.8 Last modified 7 May 1999

X/Open Curses Library Functions wunctrl(3XCURSES)

NAME wunctrl – generate printable representation of a wide character

SYNOPSIS #include <curses.h>
wchar_t *wunctrl (cchar_t *wc);

PARAMETERS wc Is a pointer to the wide character.

DESCRIPTION The wunctrl() function converts the a wide character string that is a printable
representation of the wide character wc.

This function also performs the following processing on the input argument:

� Control characters are converted to the ^X notation

� Any rendition information is removed.

RETURN VALUES Upon successful completion, the wunctrl() function returns the generated
string. Otherwise, it returns a null pointer.

ERRORS No errors are defined.

SEE ALSO keyname (3XCURSES), unctrl (3XCURSES)

Last modified 6 May 1999 SunOS 5.8 391

wunctrl(3XCURSES) X/Open Curses Library Functions

392 SunOS 5.8 Last modified 6 May 1999

Index

A
activate audio-visual alarm

– beep 62
– flash 62

add a wchar_t character (with attributes) to a
curses window and advance
cursor – curs_addwch 89,
92, 94

addnwstr 94
addwch 89
addwchnstr 92
addwchstr 92
addwstr 94
echowchar 89
mvaddnwstr 94
mvaddwch 89
mvaddwchnstr 92
mvaddwchstr 92
mvaddwstr 94
mvwaddnwstr 94
mvwaddwch 89
mvwaddwchnstr 92
mvwaddwchstr 92
mvwaddwstr 94
waddnwstr 94
waddwch 89
waddwchnstr 92
waddwchstr 92
waddwstr 94
wechowchar 89

add a character (with rendition) to a window
– addch 45

– mvaddch 45
– mvwaddch 45
– waddch 45

add a complex character (with rendition) to a
window

– add_wch 53
– mvadd_wch 53
– mvwadd_wch 53
– wadd_wch 53

add a complex character and refresh window
– echo_wchar 217
– wecho_wchar 217

add a multi-byte character string (without
rendition) to a window

– addnstr 49
– addstr 49
– mvaddnstr 49
– mvaddstr 49
– mvwaddstr 49
– mwwaddnstr 49
– waddnstr 49
– waddstr 49

add a single-byte border to a window
– border 67
– box 67
– wborder 67

add a single-byte character and refresh window
– echochar 216
– wechochar 216

add a wide-character string to a window
– addnwstr 51
– addwstr 51

Index-393

– mvaddnwstr 51
– mvaddwstr 51
– mvwaddnwstr 51
– mvwaddwstr 51
– waddnwstr 51
– waddwstr 51

add character and refresh window
– pecho_wchar 358
– pechochar 358

add_wch – add a complex character (with
rendition) to a window 53

add_wchnstr – copy a string of complex
characters (with renditions) to
a window 55

add_wchstr – copy a string of complex
characters (with renditions) to
a window 55

addch – add a character (with rendition) to a
window 45

addchnstr – copy a character string (with
renditions) to a window 47

addchstr – copy a character string (with
renditions) to a window 47

addnstr – add a multi-byte character string
(without rendition) to a
window 49

addnwstr – add a wide-character string to a
window 51, 94

addstr – add a multi-byte character string
(without rendition) to a
window 49

addwch – add a wchar_t character (with
attributes) to a curses window
and advance cursor 89

addwchnstr – add string of wchar_t characters
(and attributes) to a curses
window 92

addwchstr – add string of wchar_t characters
(and attributes) to a curses
window 92

addwstr – add a wide-character string to a
window 51, 94

adjcurspos – moving the cursor by character 95
ALE curses librarycurses library
apply padding information and output string

– putp 362
– tputs 362

arc – graphics interface 359
attr_get – control window attributes 57
attr_off – control window attributes 57
attr_on – control window attributes 57
attr_set – control window attributes 57
attroff – change foreground window

attributes 59, 97
attron – change foreground window

attributes 59, 97
attrset – change foreground window

attributes 59, 97

B
baudrate — return terminal baud rate 61
beep – activate audio-visual alarm 62
bkgd – set or get the background character (and

rendition) of window 63
bkgdset – set or get the background character

(and rendition) of window 63
bkgrnd – set or get the background character

(and rendition) of window
using a complex character 65

bkgrndset – set or get the background character
(and rendition) of window
using a complex character 65

border – add a single-byte border to a
window 67

border_set – use complex characters
(and renditions) to draw
borders 69

box – add a single-byte border to a window 67,
359

box_set – use complex characters (and
renditions) to draw
borders 69

C
call refresh on changes to window —

immedok 272
can_change_color – manipulate color

information 71
cbreak – set input mode controls 74
change foreground window attributes

– attroff 59
– attron 59

man pages section 3: Curses Library Functions ♦ February 2000

– attrset 59
– wattroff 59
– wattron 59
– wattrset 59

change the rendition of characters in a window
– chgat 75
– mvchgat 75
– mvwchgat 75
– wchgat 75

character based forms package
— forms 248

character based menus package
— menus 325

character based panels package
— panels 351

check for type-ahead characters —
typeahead 381

chgat – change the rendition of characters in a
window 75

circle – graphics interface 359
clear – clear a window 76
clear a window

– clear 76
– erase 76
– wclear 76
– werase 76

clear to the end of a line
– clrtoeol 80
– wclrtoeol 80

clear to the end of a window
– clrtobot 79
– wclrtobot 79

clearok – set terminal output controls 77
closepl – graphics interface 359
closevt – graphics interface 359
clrtobot – clear to the end of a window 79
clrtoeol – clear to the end of a line 80
color_content – manipulate color

information 71
COLOR_PAIR – manipulate color

information 71
COLOR_PAIRS – manipulate color

information 71
color_set – control window attributes 57
COLORS – manipulate color information 71
COLS — number of columns on terminal

screen 81

cont – graphics interface 359
control flush of input and output on interrupt

– noqiflush 343
– qiflush 343

control window attributes
– attr_get 57
– attr_off 57
– attr_on 57
– attr_set 57
– color_set 57
– wattr_get 57
– wattr_off 57
– wattr_on 57
– wattr_set 57
– wcolor_set 57

control window refresh
– is_linetouched 293
– is_wintouched 293
– touchline 293
– touchwin 293
– untouchwin 293
– wtouchln 293

convert formatted input from a window –
mvscanw 336

convert formatted input from a window —
vwscanw 389

copy overlapped windows – overlay 345
copy a character string (with renditions) to a

window
– addchnstr 47
– addchstr 47
– mvaddchnstr 47
– mvaddchstr 47
– mvwaddchnstr 47
– mvwaddchstr 47
– waddchnstr 47
– waddchstr 47

copy a string of complex characters (with
renditions) to a window

– add_wchnstr 55
– add_wchstr 55
– mvadd_wchnstr 55
– mvadd_wchstr 55
– mvwadd_wchnstr 55
– mvwadd_wchstr 55
– wadd_wchnstr 55
– wadd_wchstr 55

Index-395

copywin — overlay or overwrite any portion of
window 82

create a new window or subwindow
– derwin 211
– newwin 211
– subwin 211

create or refresh a pad or subpad
– newpad 339
– pnoutrefresh 339
– prefresh 339
– subpad 339

CRT handling and optimization package
— curses 110

cur_term — current terminal information 202
current terminal information — cur_term 202
current window — curscr 107
curs_addwch – add a wchar_t character (with

attributes) to a curses window
and advance cursor 89

curs_addwchstr – add string of wchar_t
characters (and attributes) to a
curses window 92

curs_addwstr – add a string of wchar_t
characters to a curses window
and advance cursor 94

curs_alecompat – moving the cursor by
character 95

curs_attr – curses character and window
attribute control routines 97

Attributes 97
curs_getwch – get (or push back) wchar_t

characters from curses
terminal keyboard 144

Function Keys 144
curs_getwstr – get wchar_t character strings

from curses terminal
keyboard 149

curs_inswch – insert a wchar_t character before
the character under the cursor
in a curses window 162

curs_inswstr – insert wchar_t string before
character under the cursor in a
curses window 163

curs_inwch – get a wchar_t character and
its attributes from a curses
window 165

curs_inwchstr – get a string of wchar_t
characters (and attributes)
from a curses window 166

curs_inwstr – get a string of wchar_t characters
from a curses window 167

curs_pad – create and display curses pads 175
curs_set — set visibility of cursor 184
curscr — current window 107
curses — CRT handling and optimization

package 110, 126, 175
Attributes, Color Pairs, and

Renditions 128
Complex Characters 131
Data Types 127
Display Operations 131
Input Processing 133
newpad 175
Non-Spacing Characters 131
Overlapping Windows 132
pechochar 175
pechowchar 175
pnoutrefresh 175
prefresh 175
Screens, Windows, and Terminals 128
Special Characters 132
subpad 175

curses bell and screen flash routines
– beep 99
– curs_beep 99
– flash 99

curses borders, horizontal and vertical lines,
create

– border 101
– box 101
– curs_border 101
– wborder 101
– whline 101
– wvline 101

curses character and window attribute control
routines

– attroff 97
– attron 97
– attrset 97
– curs_attr 97
– standend 97
– standout 97
– wattroff 97

man pages section 3: Curses Library Functions ♦ February 2000

– wattron 97
– wattrset 97
– wstandend 97
– wstandout 97

curses color manipulation routines
– can_change_colors 104
– color_content 104
– curs_color 104
– has_colors 104
– init_color 104
– init_pair 104
– pair_content 104
– start_color 104

curses cursor and window coordinates
– curs_getyx 150
– getbegyx 150
– getmaxyx 150
– getparyx 150
– getyx 150

curses environment query routines
– baudrate 187
– curs_termattrs 187
– erasechar 187
– has_ic 187
– has_il 187
– killchar 187
– longname 187
– termattrs 187
– termname 187

curses interfaces to termcap library
– curs_termcap 189
– tgetent 189
– tgetflag 189
– tgetnum 189
– tgetstr 189
– tgoto 189
– tputs 189

curses interfaces to terminfo database
– curs_terminfo 191
– del_curterm 191
– mvcur 191
– putp 191
– restartterm 191
– set_curterm 191
– setterm 191
– setupterm 191
– tigetflag 191

– tigetnum 191
– tigetstr 191
– tparm 191
– tputs 191
– vidattr 191
– vidputs 191

curses library 110form library, menu library,
or panel library

– adjcurspos 95
– curs_alecompat 95
– movenextch 95
– moveprevch 95
– wadjcurspos 95
– wmovenextch 95
– wmoveprevch 95

curses miscellaneous utility routines
– curs_util 197
– delay_output 197
– filter 197
– flushinp 197
– getwin 197
– keyname 197
– putwin 197
– unctrl 197
– use_env 197

curses refresh control routines
– curs_touch 195
– is_linetouched 195
– is_wintouched 195
– touchline 195
– touchwin 195
– untouchwin 195
– wtouchln 195

curses screen initialization and manipulation
routines

– curs_initscr 153
– delscreen 153
– endwin 153
– initscr 153
– isendwin 153
– newterm 153
– set_term 153

curses screen, read/write from/to file
– curs_scr_dump 181
– scr_dump 181
– scr_init 181
– scr_restore 181

Index-397

– scr_set 181
curses soft label routines

– curs_slk 185
– slk_attroff 185
– slk_attron 185
– slk_attrset 185
– slk_clear 185
– slk_init 185
– slk_label 185
– slk_noutrefresh 185
– slk_refresh 185
– slk_restore 185
– slk_set 185
– slk_touch 185

curses terminal input option control routines
– cbreak 155
– curs_inopts 155
– echo 155
– halfdelay 155
– intrflush 155
– keypad 155
– meta 155
– nocbreak 155
– nodelay 155
– noecho 155
– noqiflush 155
– noraw 155
– notimeout 155
– qiflush 155
– raw 155
– timeout 155
– typeahead 155
– wtimeout 155

curses terminal keyboard
– curs_getstr 143
– getstr 143
– mvgetstr 143
– mvwgetstr 143
– wgetnstr 143
– wgetstr 143

curses terminal keyboard, get characters
– curs_getch 138
– getch 138
– mvgetch 138
– mvwgetch 138
– ungetch 138
– wgetch 138

curses terminal output option control routines
– clearok 171
– curs_outopts 171
– idcok 171
– idlok 171
– immedok 171
– leaveok 171
– nl 171
– nonl 171
– scrollok 171
– setscereg 171
– wsetscrreg 171

curses window background manipulation
routines

– bkgd 100
– bkgdset 100
– curs_bkgd 100
– wbkgd 100
– wbkgdset 100

curses window cursor
– curs_move 170
– move 170
– wmove 170

curses window, add character and advance
cursor

– addch 84
– curs_addch 84
– echochar 84
– mvwaddch 84
– mvwaddch 84
– waddch 84
– wechochar 84

curses window, add string of characters
– addchnstr 87
– addchstr 87
– curs_addchstr 87
– mvaddchnstr 87
– mvaddchstr 87
– mvwaddchnstr 87
– mvwaddchstr 87
– waddchnstr 87
– waddchstr 87

curses window, add string of characters and
advance cursor

– addnstr 88
– addstr 88
– curs_addstr 88

man pages section 3: Curses Library Functions ♦ February 2000

– mvaddnstr 88
– mvaddstr 88
– mvwaddstr 88
– waddnstr 88
– waddstr 88

curses window, clear all or part
– clear 103
– clrtobot 103
– clrtoeol 103
– curs_clear 103
– erase 103
– wclear 103
– wclrtobot 103
– wclrtoeol 103
– werase 103

curses window, convert formatted input
– curs_scanw 180
– mvscanw 180
– mvwscanw 180
– scanw 180
– vwscanw 180
– wscanw 180

curses window, delete and insert lines
– curs_deleteln 109
– deleteln 109
– insdelln 109
– insertln 109
– wdeleteln 109
– winsdelln 109
– winsertln 109

curses window, delete character under cursor
– curs_delch 108
– delch 108
– mvdelch 108
– mvwdelch 108
– wdelch 108

curses window, get character and its attributes
– curs_inch 151
– inch 151
– mvinch 151
– mvwinch 151
– winch 151

curses window, get string of characters
– curs_inchstr 152
– curs_instr 161
– inchnstr 152
– inchstr 152

– innstr 161
– instr 161
– mvinchnstr 152
– mvinchstr 152
– mvinnstr 161
– mvinstr 161
– mvwinchnstr 152
– mvwinchstr 152
– mvwinnstr 161
– mvwinstr 161
– winchnstr 152
– winchstr 152
– winnstr 161
– winstr 161

curses window, insert character before character
under cursor

– curs_insch 158
– insch 158
– mvinsch 158
– mvwinsch 158
– winsch 158

curses window, insert string before character
under cursor

– curs_instr 159
– insnstr 159
– instr 159
– mvinsnstr 159
– mvinsstr 159
– mvwinsnstr 159
– mvwinsstr 159
– winsnstr 159
– winsstr 159

curses window, scroll
– curs_scroll 183
– scrl 183
– scroll 183
– wscrl 183

curses windows and lines, refresh
– curs_refresh 178
– doupdate 178
– redrawwin 178
– refresh 178
– wnoutrefresh 178
– wredrawln 178
– wrefresh 178

curses windows, create
– curs_window 199

Index-399

– delwin 199
– derwin 199
– dupwin 199
– mvderwin 199
– mvwin 199
– newwin 199
– subwin 199
– syncok 199
– wcursyncup 199
– wsyncdown 199
– wsyncup 199

curses windows, overlap and manipulate
– copywin 174
– curs_overlay 174
– overlay 174
– overwrite 174

curses windows, print formatted output
– curs_printw 177
– mvprintw 177
– mvwprintw 177
– printw 177
– vwprintw 177
– wprintw 177

curses, low-level routines
– curs_kernel 168
– curs_set 168
– def_prog_mode 168
– def_shell_mode 168
– getsyx 168
– napms 168
– reset_prog_mode 168
– reset_shell_mode 168
– resettty 168
– ripoffline 168
– savetty 168
– setsyx 168

D
def_prog_mode – save/restore terminal

modes 203
def_shell_mode – save/restore terminal

modes 203
default window — stdscr 374
del_curterm – free space pointed to by terminal

206
delay_output — delays output 204

delays output — delay_output 204
delch – remove a character 205
delete a window — delwin 210
deleteln – remove a line 208
delwin — delete a window 210
derwin – create a new window or

subwindow 211
determine insert/delete character/line

capability
– has_ic 268
– has_il 268

disable use of certain terminal capabilities —
filter 220

discard type-ahead characters — flushinp 221
doupdate – refresh windows and lines 213
duplicate a window — dupwin 214
dupwin — duplicate a window 214

E
echo – enable/disable terminal echo 215
echo_wchar – add a complex character and

refresh window 217
echochar – add a single-byte character and

refresh window 216
echowchar – add a wchar_t character (with

attributes) to a curses window
and advance cursor 89

emulate the termcap database
– tgetent 378
– tgetflag 378
– tgetnum 378
– tgetstr 378
– tgoto 378

enable/disable half-delay mode —
halfdelay 267

enable/disable hardware insert-character and
delete-character features —
idcok 271

enable/disable keypad handling —
keypad 296

enable/disable meta keys — meta 331
enable/disable newline control

– nl 341
– nonl 341

enable/disable terminal echo
– echo 215

man pages section 3: Curses Library Functions ♦ February 2000

– noecho 215
endwin – restore initial terminal

environment 218
erase – clear a window 76, 359
erasechar – return current ERASE or KILL

characters 219
erasewchar – return current ERASE or KILL

characters 219

F
filter — disable use of certain terminal

capabilities 220
flash – activate audio-visual alarm 62
enable or disable flush on interrupt —

intrflush 289
flushinp — discard type-ahead characters 221
form library 248curses library
forms — character based forms package 248
forms field attributes, set and get

– field_buffer 230
– field_status 230
– form_field_buffer 230
– set_field_buffer 230
– set_field_status 230
– set_max_field 230

forms field characteristics
– dynamic_field_info 231
– field_info 231
– form_field_info 231

forms field data type validation
– field_arg 239
– field_type 239
– form_field_validation 239
– set_field_type 239

forms field option routines
– field_opts 234
– field_opts_off 234
– field_opts_on 234
– form_field_opts 234
– set_field_opts 234

forms field, off-screen data ahead or behind
– data_ahead 223
– data_behind 223
– form_data 223

forms fields, create and destroy
– dup_field 233

– form_field_new 233
– free_field 233
– link_field 233
– new_field 233

forms fieldtype routines
– form_fieldtype 236
– free_fieldtype 236
– link_fieldtype 236
– new_fieldtype 236
– set_fieldtype_arg 236
– set_fieldtype_choice 236

forms option routines
– form_opts 244
– form_opts_off 244
– form_opts_on 244
– set_form_opts 244

forms pagination
– form_new_page 243
– new_page 243
– set_new_page 243

forms window and subwindow association
routines

– form_sub 253
– form_win 253
– scale_form 253
– set_form_sub 253
– set_form_win 253

forms window cursor, position
– form_cursor 222
– pos_form_cursor 222

forms, application-specific routines
– field_init 240
– field_term 240
– form_hook 240
– form_init 240
– form_term 240
– set_field_init 240
– set_field_term 240
– set_form_init 240
– set_form_term 240

forms, associate application data
– field_userptr 238
– form_field_userptr 238
– form_userptr 252
– set_field_userptr 238
– set_form_userptr 252

forms, command processor

Index-401

— form_driver 224
forms, connect fields

– field_count 227
– form_field 227
– form_fields 227
– move_field 227
– set_form_fields 227

forms, create and destroy
– form_new 242
– free_form 242
– new_form 242

forms, format general appearance
– field_just 232
– form_field_just 232
– set_field_just 232

forms, format general display attributes
– field_back 228
– field_fore 228
– field_pad 228
– form_field_attributes 228
– set_field_back 228
– set_field_fore 228
– set_field_pad 228

forms, set current page and field
– current_field 245
– field_index 245
– form_page 245
– set_current_field 245
– set_form_page 245

forms, write/erase from associated subwindows
– form_post 247
– post_form 247
– unpost_form 247

free space pointed to by terminal
– del_curterm 206
– restartterm 206
– set_curterm 206
– setterm 206
– setupterm 206

G
generate printable representation of a character

— unctrl 382
generate printable representation of a wide

character — wunctrl 391

get wchar_t character strings from curses
terminal keyboard –
curs_getwstr 149, 165–167,
376

getnwstr 149
getwstr 149
innwstr 167
inwch 165
inwchnstr 166
inwchstr 166
inwstr 167
mvgetnwstr 149
mvgetwstr 149
mvinnwstr 167
mvinwch 165
mvinwchnstr 166
mvinwchstr 166
mvinwstr 167
mvwgetnwstr 149
mvwgetwstr 149
mvwinnwstr 167
mvwinwch 165
mvwinwchnstr 166
mvwinwchstr 166
mvwinwstr 167
wgetnwstr 149
wgetwstr 149
winnwstr 167
winwch 165
winwchnstr 166
winwchstr 166
winwstr 167

get (or push back) wchar_t characters from
curses terminal keyboard

– curs_getwch 144
– getwch 144
– mvgetwch 144
– mvwgetwch 144
– ungetwch 144
– wgetwch 144

get a multibyte character string from terminal
– getnstr 261
– getstr 261
– mvgetnstr 261
– mvgetstr 261
– mvwgetnstr 261
– mvwgetstr 261

man pages section 3: Curses Library Functions ♦ February 2000

– wgetnstr 261
– wgetstr 261

get a single-byte character from terminal
– getch 256
– mvgetch 256
– mvwgetch 256
– wgetch 256

get a wide character from terminal
– get_wch 264
– mvget_wch 264
– mvwget_wch 264
– wget_wch 264

get a wide character string (with rendition) from
a cchar_t — getcchar 255

get a wide character string from terminal
– get_wstr 263
– getn_wstr 263
– mvget_wstr 263
– mvgetn_wstr 263
– mvwget_wstr 263
– mvwgetn_wstr 263
– wget_wstr 263
– wgetn_wstr 263

get cursor or window coordinates
– getbegyx 254
– getmaxyx 254
– getparyx 254
– getyx 254

get_wch – get a wide character from
terminal 264

get_wstr – get a wide character string from
terminal 263

getbegyx – get cursor or window
coordinates 254

getbkgd – set or get the background character
(and rendition) of window 63

getbkgrnd – set or get the background character
(and rendition) of window
using a complex character 65

getcchar — get a wide character string (with
rendition) from a cchar_t 255

getch – get a single-byte character from
terminal 256

getmaxyx – get cursor or window
coordinates 254

getn_wstr – get a wide character string from
terminal 263

getnstr – get a multibyte character string from
terminal 261

getnwstr – get wchar_t character strings from
curses terminal keyboard 149

getparyx – get cursor or window
coordinates 254

getstr – get a multibyte character string from
terminal 261

getwch – get (or push back) wchar_t characters
from curses terminal
keyboard 144

getwin – read a window from, and write a
window to, a file 266

getwstr – get wchar_t character strings from
curses terminal keyboard 149

getyx – get cursor or window coordinates 254
graphics interface

– arc 359
– box 359
– circle 359
– closepl 359
– closevt 359
– cont 359
– erase 359
– label 359
– line 359
– linmod 359
– move 359
– openpl 359
– openvt 359
– plot 359
– point 359
– space 359

H
halfdelay — enable/disable half-delay

mode 267
has_colors – manipulate color information 71
has_ic – determine insert/delete character/line

capability 268
has_il – determine insert/delete character/line

capability 268
hline – use single-byte characters (and

renditions) to draw lines 269
hline_set – use complex characters (and

renditions) to draw lines 270

Index-403

I
idcok — enable/disable hardware

insert-character and
delete-character features 271

idlok – set terminal output controls 77
immedok — call refresh on changes to

window 272
in_wch – retrieve a complex character (with

rendition) 290
in_wchnstr – retrieve complex character string

(with rendition) 291
in_wchstr – retrieve complex character string

(with rendition) 291
inch – return a single-byte character (with

rendition) 273
inchnstr – retrieve a single-byte character string

(with rendition) 274
inchstr – retrieve a single-byte character string

(with rendition) 274
init_color – manipulate color information 71
init_pair – manipulate color information 71
initscr – screen initialization functions 276
innstr – retrieve a multibyte character string

(without rendition) 277
innwstr – get a string of wchar_t characters from

a curses window 167, 279
ins_nwstr – insert a wide character string 286
ins_wch – insert a complex character 288
ins_wstr – insert a wide character string 286
insch – insert a character 281
insdelln – insert/delete lines to/from the

window 282
insert a wchar_t character before the

character under the cursor
in a curses window –
curs_inswch 162–163

insnwstr 163
inswch 162
inswstr 163
mvinsnwstr 163
mvinswch 162
mvinswstr 163
mvwinsnwstr 163
mvwinswch 162
mvwinswstr 163
winsnwstr 163
winswch 162

winswstr 163
insert a character

– insch 281
– mvinsch 281
– mvwinsch 281
– winsch 281

insert a complex character
– ins_wch 288
– mvins_wch 288
– mvwins_wch 288
– wins_wch 288

insert a line in a window
– insertln 283
– winsertln 283

insert a multibyte character string
– insnstr 284
– insstr 284
– mvinsnstr 284
– mvinsstr 284
– mvwinsnstr 284
– mvwinsstr 284
– winsnstr 284
– winsstr 284

insert a wide character string
– ins_nwstr 286
– ins_wstr 286
– mvins_nwstr 286
– mvins_wstr 286
– mvwins_nstr 286
– mvwins_nwstr 286
– wins_nwstr 286
– wins_wstr 286

insert/delete lines to/from the window
– insdelln 282
– winsdelln 282

insertln – insert a line in a window 283
insnstr – insert a multibyte character string 284
insnwstr – insert wchar_t string before character

under the cursor in a curses
window 163

insstr – insert a multibyte character string 284
instr – retrieve a multibyte character string

(without rendition) 277
inswch – insert a wchar_t character before the

character under the cursor in a
curses window 162

man pages section 3: Curses Library Functions ♦ February 2000

inswstr – insert wchar_t string before character
under the cursor in a curses
window 163

intrflush — enable or disable flush on
interrupt 289

introduction and overview of X/Open Curses
— curses 126

inwch – get a wchar_t character and its
attributes from a curses
window 165

inwchnstr – get a string of wchar_t characters
(and attributes) from a curses
window 166

inwchstr – get a string of wchar_t characters
(and attributes) from a curses
window 166

inwstr – get a string of wchar_t characters from
a curses window 167, 279

is_linetouched – control window refresh 293
is_wintouched – control window refresh 293
isendwin – restore initial terminal

environment 218

K
key_name – return character string used as key

name 295
keyname – return character string used as key

name 295
keypad — enable/disable keypad

handling 296
killchar – return current ERASE or KILL

characters 219
killwchar – return current ERASE or KILL

characters 219

L
label – graphics interface 359
leaveok – set terminal output controls 77
line – graphics interface 359
LINES — number of lines on terminal

screen 300
linmod – graphics interface 359
longname — return full terminal type

name 301

M
manipulate color information –

PAIR_NUMBER 71
map area of parent window to subwindow —

mvderwin 334
menu library 325curses library
menus — character based menus package 325
menus cursor

– menu_cursor 304
– pos_menu_cursor 304

menus display attributes
– menu_attributes 302
– menu_back 302
– menu_fore 302
– menu_grey 302
– menu_pad 302
– set_menu_back 302
– set_menu_fore 302
– set_menu_grey 302
– set_menu_pad 302

menus from associated subwindows,
write/erase

– menu_post 324
– post_menu 324
– unpost_menu 324

menus item name and description
– item_description 312
– item_name 312
– menu_item_name 312

menus item options routines
– item_opts 314
– item_opts_off 314
– item_opts_on 314
– menu_item_opts 314
– set_item_opts 314

menus item values, set and get
– item_value 317
– menu_item_value 317
– set_item_value 317

menus item, visibility
– item_visible 318
– menu_item_visible 318

menus items, associate application data
– item_userptr 316
– menu_item_userptr 316
– set_item_userptr 316

menus items, connect and disconnect

Index-405

– item_count 315
– menu_items 315
– set_menu_items 315

menus items, create and destroy
– free_item 313
– menu_item_new 313
– new_item 313

menus items, get and set
– current_item 310
– item_index 310
– menu_item_current 310
– set_current_item 310
– set_top_row 310
– top_row 310

menus mark string routines
– menu_mark 319
– set_menu_mark 319

menus options routines
– menu_opts 321
– menu_opts_off 321
– menu_opts_on 321
– set_menu_opts 321

menus pattern match buffer
– menu_pattern 323
– set_menu_pattern 323

menus subsystem, command processor
— menu_driver 305

menus window and subwindow association
routines

– menu_sub 330
– menu_win 330
– scale_menu 330
– set_menu_sub 330
– set_menu_win 330

menus, application-specific routines
– item_init 308
– item_term 308
– menu_hook 308
– menu_init 308
– menu_term 308
– set_item_init 308
– set_item_term 308
– set_menu_init 308
– set_menu_term 308

menus, associate application data
– menu_userptr 329
– set_menu_userptr 329

menus, create and destroy
– free_menu 320
– menu_new 320
– new_menu 320

menus, rows and columns
– menu_format 307
– set_menu_format 307

meta — enable/disable meta keys 331
move – move cursor in window 332, 359
move cursor in window

– move 332
– wmove 332

move the cursor — mvcur 333
move window — mvwin 337
movenextch – moving the cursor by

character 95
moveprevch – moving the cursor by

character 95
mvadd_wch – add a complex character (with

rendition) to a window 53
mvadd_wchnstr – copy a string of complex

characters (with renditions) to
a window 55

mvadd_wchstr – copy a string of complex
characters (with renditions) to
a window 55

mvaddch – add a character (with rendition) to a
window 45

mvaddchnstr – copy a character string (with
renditions) to a window 47

mvaddchstr – copy a character string (with
renditions) to a window 47

mvaddnstr – add a multi-byte character string
(without rendition) to a
window 49

mvaddnwstr – add a wide-character string to a
window 51, 94

mvaddstr – add a multi-byte character string
(without rendition) to a
window 49

mvaddwch – add a wchar_t character (with
attributes) to a curses window
and advance cursor 89

mvaddwchnstr – add string of wchar_t
characters (and attributes) to a
curses window 92

man pages section 3: Curses Library Functions ♦ February 2000

mvaddwchstr – add string of wchar_t characters
(and attributes) to a curses
window 92

mvaddwstr – add a wide-character string to a
window 51, 94

mvchgat – change the rendition of characters in
a window 75

mvcur — move the cursor 333
mvdelch – remove a character 205
mvderwin — map area of parent window to

subwindow 334
mvget_wch – get a wide character from

terminal 264
mvget_wstr – get a wide character string from

terminal 263
mvgetch – get a single-byte character from

terminal 256
mvgetn_wstr – get a wide character string from

terminal 263
mvgetnstr – get a multibyte character string

from terminal 261
mvgetnwstr – get wchar_t character strings

from curses terminal
keyboard 149

mvgetstr – get a multibyte character string from
terminal 261

mvgetwch – get (or push back) wchar_t
characters from curses
terminal keyboard 144

mvgetwstr – get wchar_t character strings from
curses terminal keyboard 149

mvhline – use single-byte characters (and
renditions) to draw lines 269

mvhline_set – use complex characters (and
renditions) to draw lines 270

mvin_wch – retrieve a complex character (with
rendition) 290

mvin_wchnstr – retrieve complex character
string (with rendition) 291

mvin_wchstr – retrieve complex character
string (with rendition) 291

mvinch – return a single-byte character (with
rendition) 273

mvinchnstr – retrieve a single-byte character
string (with rendition) 274

mvinchstr – retrieve a single-byte character
string (with rendition) 274

mvinnstr – retrieve a multibyte character string
(without rendition) 277

mvinnwstr – get a string of wchar_t characters
from a curses window 167,
279

mvins_nwstr – insert a wide character
string 286

mvins_wch – insert a complex character 288
mvins_wstr – insert a wide character

string 286
mvinsch – insert a character 281
mvinsnstr – insert a multibyte character

string 284
mvinsnwstr – insert wchar_t string before

character under the cursor in a
curses window 163

mvinsstr – insert a multibyte character
string 284

mvinstr – retrieve a multibyte character string
(without rendition) 277

mvinswch – insert a wchar_t character before
the character under the cursor
in a curses window 162

mvinswstr – insert wchar_t string before
character under the cursor in a
curses window 163

mvinwch – get a wchar_t character and its
attributes from a curses
window 165

mvinwchnstr – get a string of wchar_t characters
(and attributes) from a curses
window 166

mvinwchstr – get a string of wchar_t characters
(and attributes) from a curses
window 166

mvinwstr – get a string of wchar_t characters
from a curses window 167,
279

mvprintw – print formatted output
window 335

mvscanw – convert formatted input from a
window 336

mvvline – use single-byte characters (and
renditions) to draw lines 269

mvvline_set – use complex characters (and
renditions) to draw lines 270

Index-407

mvwadd_wch – add a complex character (with
rendition) to a window 53

mvwadd_wchnstr – copy a string of complex
characters (with renditions) to
a window 55

mvwadd_wchstr – copy a string of complex
characters (with renditions) to
a window 55

mvwaddch – add a character (with rendition) to
a window 45

mvwaddchnstr – copy a character string (with
renditions) to a window 47

mvwaddchstr – copy a character string (with
renditions) to a window 47

mvwaddnwstr – add a wide-character string to
a window 51, 94

mvwaddstr – add a multi-byte character
string (without rendition) to a
window 49

mvwaddwch – add a wchar_t character (with
attributes) to a curses window
and advance cursor 89

mvwaddwchnstr – add string of wchar_t
characters (and attributes) to a
curses window 92

mvwaddwchstr – add string of wchar_t
characters (and attributes) to a
curses window 92

mvwaddwstr – add a wide-character string to a
window 51, 94

mvwchgat – change the rendition of characters
in a window 75

mvwdelch – remove a character 205
mvwget_wch – get a wide character from

terminal 264
mvwget_wstr – get a wide character string from

terminal 263
mvwgetch – get a single-byte character from

terminal 256
mvwgetn_wstr – get a wide character string

from terminal 263
mvwgetnstr – get a multibyte character string

from terminal 261
mvwgetnwstr – get wchar_t character

strings from curses terminal
keyboard 149

mvwgetstr – get a multibyte character string
from terminal 261

mvwgetwch – get (or push back) wchar_t
characters from curses
terminal keyboard 144

mvwgetwstr – get wchar_t character strings
from curses terminal
keyboard 149

mvwhline – use single-byte characters (and
renditions) to draw lines 269

mvwhline_set – use complex characters (and
renditions) to draw lines 270

mvwin — move window 337
mvwin_wch – retrieve a complex character

(with rendition) 290
mvwin_wchnstr – retrieve complex character

string (with rendition) 291
mvwin_wchstr – retrieve complex character

string (with rendition) 291
mvwinch – return a single-byte character (with

rendition) 273
mvwinchnstr – retrieve a single-byte character

string (with rendition) 274
mvwinchstr – retrieve a single-byte character

string (with rendition) 274
mvwinnstr – retrieve a multibyte

character string (without
rendition) 277

mvwinnwstr – get a string of wchar_t characters
from a curses window 167,
279

mvwins_nstr – insert a wide character
string 286

mvwins_nwstr – insert a wide character
string 286

mvwins_wch – insert a complex character 288
mvwinsch – insert a character 281
mvwinsnstr – insert a multibyte character

string 284
mvwinsnwstr – insert wchar_t string before

character under the cursor in a
curses window 163

mvwinsstr – insert a multibyte character
string 284

mvwinstr – retrieve a multibyte character string
(without rendition) 277

man pages section 3: Curses Library Functions ♦ February 2000

mvwinswch – insert a wchar_t character before
the character under the cursor
in a curses window 162

mvwinswstr – insert wchar_t string before
character under the cursor in a
curses window 163

mvwinwch – get a wchar_t character and
its attributes from a curses
window 165

mvwinwchnstr – get a string of wchar_t
characters (and attributes)
from a curses window 166

mvwinwchstr – get a string of wchar_t
characters (and attributes)
from a curses window 166

mvwinwstr – get a string of wchar_t characters
from a curses window 167,
279

mvwprintw – print formatted output
window 335

mvwscanw – convert formatted input from a
window 336

mvwvline – use single-byte characters (and
renditions) to draw lines 269

mvwvline_set – use complex characters (and
renditions) to draw lines 270

mwwaddnstr – add a multi-byte character
string (without rendition) to a
window 49

N
napms — sleep process for a specified length

of time 338
newpad – create and display curses pads 175,

339
newterm – screen initialization functions 276
newwin – create a new window or

subwindow 211
nl – enable/disable newline control 341
nocbreak – set input mode controls 74
nodelay — set blocking or non-blocking

read 342
noecho – enable/disable terminal echo 215
nonl – enable/disable newline control 341
noqiflush – control flush of input and output on

interrupt 343

noraw – set input mode controls 74
notimeout – set timed blocking or non-blocking

read 344
number of columns on terminal screen —

COLS 81
number of lines on terminal screen —

LINES 300

O
openpl – graphics interface 359
openvt – graphics interface 359
output attributes to the terminal –

vid_puts 385
overlay – copy overlapped windows 345
overlay or overwrite any portion of window —

copywin 82
overwrite – copy overlapped windows 345

P
pair_content – manipulate color

information 71
PAIR_NUMBER – manipulate color

information 71
panel library 351curses library
panels — character based panels package 351
panels deck manipulation routines

– bottom_panel 354
– hide_panel 353
– panel_hidden 353
– panel_show 353
– panel_top 354
– show_panel 353
– top_panel 354

panels deck traversal primitives
– panel_above 348
– panel_below 348

panels panel, associate application data
– panel_userptr 356
– set_panel_userptr 356

panels panel, get or set current window
– panel_window 357
– replace_panel 357

panels virtual screen refresh routine
– panel_update 355
– update_panel 355

Index-409

panels window on virtual screen, move
– move_panel 349
– panel_move 349

panels, create and destroy
– del_panel 350
– new_panel 350
– panel_new 350

pecho_wchar – add character and refresh
window 358

pechochar – create and display curses
pads 175, 358

pechowchar – create and display curses
pads 175

plot – graphics interface 359
Link Editor 360

pnoutrefresh – create and display curses
pads 175, 339

point – graphics interface 359
prefresh – create and display curses pads 175,

339
print formatted output window –

mvwprintw 335
print formatted output in window —

vwprintw 387–388, 390
printw – print formatted output window 335
push character back onto the input queue

– unget_wch 383
– ungetch 383

putp – apply padding information and output
string 362

putwin – read a window from, and write a
window to, a file 266

Q
qiflush – control flush of input and output on

interrupt 343

R
raw – set input mode controls 74
read a window from, and write a window to,

a file
– getwin 266
– putwin 266

redraw screen or portion of screen
– redrawwin 363
– wredrawln 363

redrawwin – redraw screen or portion of
screen 363

refresh – refresh windows and lines 213
refresh windows and lines

– doupdate 213
– refresh 213
– wnoutrefresh 213
– wrefresh 213

remove a character
– delch 205
– mvdelch 205
– mvwdelch 205
– wdelch 205

remove a line
– deleteln 208
– wdeleteln 208

reserve screen line for dedicated purpose —
ripoffline 365

reset_prog_mode – save/restore terminal
modes 203

reset_shell_mode – save/restore terminal
modes 203

resetty – restore/save terminal modes 364
restartterm – free space pointed to by terminal

206
restore initial terminal environment

– endwin 218
– isendwin 218

restore/save terminal modes
– resetty 364
– savetty 364

retrieve a complex character (with rendition)
– in_wch 290
– mvin_wch 290
– mvwin_wch 290
– win_wch 290

retrieve a multibyte character string (without
rendition)

– innstr 277
– instr 277
– mvinnstr 277
– mvinstr 277
– mvwinnstr 277
– mvwinstr 277
– winnstr 277
– winstr 277

man pages section 3: Curses Library Functions ♦ February 2000

retrieve a single-byte character string (with
rendition)

– inchnstr 274
– inchstr 274
– mvinchnstr 274
– mvinchstr 274
– mvwinchnstr 274
– mvwinchstr 274
– winchnstr 274
– winchstr 274

retrieve a wide character string (without
rendition)

– innwstr 279
– inwstr 279
– mvinnwstr 279
– mvinwstr 279
– mvwinnwstr 279
– mvwinwstr 279
– winnwstr 279
– winwstr 279

retrieve complex character string (with
rendition)

– in_wchnstr 291
– in_wchstr 291
– mvin_wchnstr 291
– mvin_wchstr 291
– mvwin_wchnstr 291
– mvwin_wchstr 291
– win_wchnstr 291
– win_wchstr 291

return a single-byte character (with rendition)
– inch 273
– mvinch 273
– mvwinch 273
– winch 273

return character string used as key name
– key_name 295
– keyname 295

return current ERASE or KILL characters
– erasechar 219
– erasewchar 219
– killchar 219
– killwchar 219

return full terminal type name —
longname 301

return terminal baud rate — baudrate 61
return the value of a terminfo capability

– tigetflag 380
– tigetnum 380
– tigetstr 380
– tparm 380

return the value of the environmental variable
TERM — termname 377

ripoffline — reserve screen line for dedicated
purpose 365

S
save/restore terminal modes

– def_prog_mode 203
– def_shell_mode 203
– reset_prog_mode 203
– reset_shell_mode 203

savetty – restore/save terminal modes 364
scanw – convert formatted input from a

window 336
scr_dump – write screen contents to/from a

file 366
scr_init – write screen contents to/from a

file 366
scr_restore – write screen contents to/from a

file 366
scr_set – write screen contents to/from a

file 366
screen initialization functions

– initscr 276
– newterm 276

scrl – scroll a window 367
scroll – scroll a window 367
scroll a window

– scrl 367
– scroll 367
– wscrl 367

scrollok – set terminal output controls 77
set or get the background character (and

rendition) of window –
bkgdset 63

set a cchar_t type character from a wide
character and rendition —
setcchar 368

set blocking or non-blocking read —
nodelay 342

set input mode controls
– cbreak 74

Index-411

– nocbreak 74
– noraw 74
– raw 74

set or get the background character (and
rendition) of window using a
complex character

– bkgrnd 65
– bkgrndset 65
– getbkgrnd 65
– wbkgrnd 65
– wbkgrndset 65
– wgetbkgrnd 65

set terminal output controls
– clearok 77
– idlok 77
– leaveok 77
– scrollok 77
– setscrreg 77
– wsetscrreg 77

set timed blocking or non-blocking read
– notimeout 344
– timeout 344
– wtimeout 344

set visibility of cursor — curs_set 184
set/clear window attributes

– standend 373
– standout 373
– wstandend 373
– wstandout 373

set_curterm – free space pointed to by terminal
206

set_term — switch between terminals 369
setcchar — set a cchar_t type character

from a wide character and
rendition 368

setscrreg – set terminal output controls 77
setterm – free space pointed to by terminal 206
setupterm – free space pointed to by terminal

206
sleep process for a specified length of time —

napms 338
slk_attr_off – soft label functions 371
slk_attr_on – soft label functions 371
slk_attr_set – soft label functions 371
slk_attroff – soft label functions 371
slk_attron – soft label functions 371
slk_attrset – soft label functions 371

slk_clear – soft label functions 371
slk_color – soft label functions 371
slk_init – soft label functions 371
slk_label – soft label functions 371
slk_noutrefresh – soft label functions 371
slk_refresh – soft label functions 371
slk_restore – soft label functions 371
slk_set – soft label functions 371
slk_touch – soft label functions 371
slk_wset – soft label functions 371
soft label functions – slk_label 371
space – graphics interface 359
specify source of screen size information —

use_env 384
standend – curses character and window

attribute control routines 97,
373

standout – curses character and window
attribute control routines 97,
373

start_color – manipulate color information 71
stdscr — default window 374
subpad – create and display curses pads 175,

339
subwin – create a new window or

subwindow 211
switch between terminals — set_term 369
synchronize window with its parents or

children
– syncok 375
– wcursyncup 375
– wsyncdown 375
– wsyncup 375

syncok – synchronize window with its parents
or children 375

T
term_attrs – get supported terminal video

attributes 376
termattrs – get supported terminal video

attributes 376
termname — return the value of the

environmental variable
TERM 377

tgetent – emulate the termcap database 378
tgetflag – emulate the termcap database 378

man pages section 3: Curses Library Functions ♦ February 2000

tgetnum – emulate the termcap database 378
tgetstr – emulate the termcap database 378
tgoto – emulate the termcap database 378
tigetflag – return the value of a terminfo

capability 380
tigetnum – return the value of a terminfo

capability 380
tigetstr – return the value of a terminfo

capability 380
timeout – set timed blocking or non-blocking

read 344
touchline – control window refresh 293
touchwin – control window refresh 293
tparm – return the value of a terminfo

capability 380
tputs – apply padding information and output

string 362
typeahead — check for type-ahead

characters 381

U
unctrl — generate printable representation of a

character 382
unget_wch – push character back onto the input

queue 383
ungetch – push character back onto the input

queue 383
ungetwch – get (or push back) wchar_t

characters from curses
terminal keyboard 144

untouchwin – control window refresh 293
use complex characters (and renditions) to draw

borders
– border_set 69
– box_set 69
– wborder_set 69

use complex characters (and renditions) to draw
lines

– hline_set 270
– mvhline_set 270
– mvvline_set 270
– mvwhline_set 270
– mvwvline_set 270
– vline_set 270
– whline_set 270
– wvline_set 270

use single-byte characters (and renditions) to
draw lines

– hline 269
– mvhline 269
– mvvline 269
– mvwhline 269
– mvwvline 269
– vline 269
– whline 269
– wvline 269

use_env — specify source of screen size
information 384

V
vid_attr – output attributes to the terminal 385
vid_puts – output attributes to the

terminal 385
vidattr – output attributes to the terminal 385
vidputs – output attributes to the terminal 385
vline – use single-byte characters (and

renditions) to draw lines 269
vline_set – use complex characters (and

renditions) to draw lines 270
vwprintw — print formatted output in

window 387–388
vw_scanw — print formatted output in

window 390
vwscanw — convert formatted input from a

window 389

W
wadd_wch – add a complex character (with

rendition) to a window 53
wadd_wchnstr – copy a string of complex

characters (with renditions) to
a window 55

wadd_wchstr – copy a string of complex
characters (with renditions) to
a window 55

waddch – add a character (with rendition) to a
window 45

waddchnstr – copy a character string (with
renditions) to a window 47

waddchstr – copy a character string (with
renditions) to a window 47

Index-413

waddnstr – add a multi-byte character string
(without rendition) to a
window 49

waddnwstr – add a wide-character string to a
window 51, 94

waddstr – add a multi-byte character string
(without rendition) to a
window 49

waddwch – add a wchar_t character (with
attributes) to a curses window
and advance cursor 89

waddwchnstr – add string of wchar_t characters
(and attributes) to a curses
window 92

waddwchstr – add string of wchar_t characters
(and attributes) to a curses
window 92

waddwstr – add a wide-character string to a
window 51, 94

wadjcurspos – moving the cursor by
character 95

wattr_get – control window attributes 57
wattr_off – control window attributes 57
wattr_on – control window attributes 57
wattr_set – control window attributes 57
wattroff – change foreground window

attributes 59, 97
wattron – change foreground window

attributes 59, 97
wattrset – change foreground window

attributes 59, 97
wbkgd – set or get the background character

(and rendition) of window 63
wbkgdset – set or get the background

character (and rendition) of
window 63

wbkgrnd – set or get the background character
(and rendition) of window
using a complex character 65

wbkgrndset – set or get the background
character (and rendition) of
window using a complex
character 65

wborder – add a single-byte border to a
window 67

wborder_set – use complex characters
(and renditions) to draw
borders 69

wchgat – change the rendition of characters in a
window 75

wclear – clear a window 76
wclrtobot – clear to the end of a window 79
wclrtoeol – clear to the end of a line 80
wcolor_set – control window attributes 57
wcursyncup – synchronize window with its

parents or children 375
wdelch – remove a character 205
wdeleteln – remove a line 208
wecho_wchar – add a complex character and

refresh window 217
wechochar – add a single-byte character and

refresh window 216
wechowchar – add a wchar_t character (with

attributes) to a curses window
and advance cursor 89

werase – clear a window 76
wget_wch – get a wide character from

terminal 264
wget_wstr – get a wide character string from

terminal 263
wgetbkgrnd – set or get the background

character (and rendition) of
window using a complex
character 65

wgetch – get a single-byte character from
terminal 256

wgetn_wstr – get a wide character string from
terminal 263

wgetnstr – get a multibyte character string from
terminal 261

wgetnwstr – get wchar_t character strings from
curses terminal keyboard 149

wgetstr – get a multibyte character string from
terminal 261

wgetwch – get (or push back) wchar_t
characters from curses
terminal keyboard 144

wgetwstr – get wchar_t character strings from
curses terminal keyboard 149

whline – use single-byte characters (and
renditions) to draw lines 269

man pages section 3: Curses Library Functions ♦ February 2000

whline_set – use complex characters (and
renditions) to draw lines 270

win_wch – retrieve a complex character (with
rendition) 290

win_wchnstr – retrieve complex character string
(with rendition) 291

win_wchstr – retrieve complex character string
(with rendition) 291

winch – return a single-byte character (with
rendition) 273

winchnstr – retrieve a single-byte character
string (with rendition) 274

winchstr – retrieve a single-byte character string
(with rendition) 274

winnstr – retrieve a multibyte character string
(without rendition) 277

winnwstr – get a string of wchar_t characters
from a curses window 167,
279

wins_nwstr – insert a wide character string 286
wins_wch – insert a complex character 288
wins_wstr – insert a wide character string 286
winsch – insert a character 281
winsdelln – insert/delete lines to/from the

window 282
winsertln – insert a line in a window 283
winsnstr – insert a multibyte character

string 284
winsnwstr – insert wchar_t string before

character under the cursor in a
curses window 163

winsstr – insert a multibyte character
string 284

winstr – retrieve a multibyte character string
(without rendition) 277

winswch – insert a wchar_t character before the
character under the cursor in a
curses window 162

winswstr – insert wchar_t string before
character under the cursor in a
curses window 163

winwch – get a wchar_t character and its
attributes from a curses
window 165

winwchnstr – get a string of wchar_t characters
(and attributes) from a curses
window 166

winwchstr – get a string of wchar_t characters
(and attributes) from a curses
window 166

winwstr – get a string of wchar_t characters
from a curses window 167,
279

wmove – move cursor in window 332
wmovenextch – moving the cursor by

character 95
wmoveprevch – moving the cursor by

character 95
wnoutrefresh – refresh windows and lines 213
wprintw – print formatted output window 335
wredrawln – redraw screen or portion of

screen 363
wrefresh – refresh windows and lines 213
write screen contents to/from a file

– scr_dump 366
– scr_init 366
– scr_restore 366
– scr_set 366

wscanw – convert formatted input from a
window 336

wscrl – scroll a window 367
wsetscrreg – set terminal output controls 77
wstandend – curses character and window

attribute control routines 97,
373

wstandout – curses character and window
attribute control routines 97,
373

wsyncdown – synchronize window with its
parents or children 375

wsyncup – synchronize window with its
parents or children 375

wtimeout – set timed blocking or non-blocking
read 344

wtouchln – control window refresh 293
wunctrl — generate printable representation of

a wide character 391
wvline – use single-byte characters (and

renditions) to draw lines 269
wvline_set – use complex characters (and

renditions) to draw lines 270

Index-415

