»
< Sun

microsystems

KCMS CMM Reference Manual

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
USA.

Part No: 806-1519
May 6 1999

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS 1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen gue ce soit, sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

9] @O
Adobe PostScript Please
Recycle

Contents

Preface vii
New Features xiii

KcsShareable Class 1

Protected Members 1

Public Members 2

1/0 Classes 3

KcslO Class 3
Enumerations 4
Protected Members 4
Public Members 4
Member Function Override Rules 6
Example 7

KcsMemoryBlock Class 8
Enumerations 8
Protected Members 9
Public Members 9
Example 10

KcsFile Class 11
Public Members 12

Contents iii

Examples 12
KcsSolarisFile Class 14
Public Members 15
KcsXWindow Class 15
Public Members 16
Constructing a KcsXWindow Profile Name 16
3. KcsChunkSet Class 19
Protected Members 20
Public Members 20
Example 23
4. KcsLoadable Class 25
Public Members 26
5. KcsProfile Class 29
Protected Members 29
Public Members 31
Member Function Override Rules 34
Examples 36
6. KcsProfileFormat Class 39
Protected Members 39
Public Members 40
Member Function Override Rules 42
External Loadable Interface 44
7. KcsTags Class 45
Public Members 45
8. KcsXform Class 51
Enumerations 51
Protected Members 52

Public Members 52

iv KCMS CMM Reference Manual ¢ May 6 1999

External Loadable Interface 56
Member Function Override Rules 57
KcsXformSeq Class 61

Protected Members 61

Public Members 62

Contents V

Vi KCMS CMM Reference Manual ¢ May 6 1999

Preface

The KCMS CMM Reference Manual provides detailed descriptions of the Kodak Color
Management System (KCMS™) foundation library. This library is a graphics porting
interface (GPI) implemented in C++ for creating KCMS color modules. A set of C++
classes are supplied that can be derived from and extended. You can add attributes
to the current list, incorporate new color processing technology, or support alternate
profile formats.

Use this book with the KCMS CMM Developer’s Guide which provides an an
in-depth view of the KCMS framework and how the API works with this GPI, how
to derive from each C++ class, how to create a dynamically loadable CMM, and how
to add profiles to the system.

Who Should Use This Book

Use this book if you are interested in:

Writing your own color management module (CMM)

Creating your own profile format

m Adding attributes to the ICC profile format

Overriding various class methods

Preface Vii

Before You Read This Book

You should be familiar with the Kodak Color Management System (KCMS) API
which is part of the SDK; see the KCMS Application Developer’s Guide.

You should also have an understanding of C++ and Solaris dynamic loading
technology. Solaris dynamic loading is discussed in the Linker and Libraries Guide
and in the following manual pages in man Pages(1): User Commands and man
Pages(3): Library Routines:

m Id(2)

m dlopen(3)

m dlclose(3)

m dlerror(3)

m dlsym(3)

m OWconfiglInit(3)

m OWconfigGetAttribute(3)
m OWconfigFreeAttribute(3)
m OWconfigClose(3)

A basic understanding of color science is also assumed; references are included in the
Bibliography of the KCMS Application Developer’s Guide.

See the on-line SUNWrdm packages for information on bugs and issues, engineering
news, and patches. For Solaris installation bugs and for late-breaking bugs, news,
and patch information, see the Solaris 2.6 Installation Instructions (SPARC Platform
Edition) and the Solaris 2.6 Installation Instructions (Intel Platform Edition) manuals.

For SPARC systems, consult the updates your hardware manufacturer may have
provided also.

How This Book Is Organized

Note - Each chapter in this book describes relevant classes in the KCMS architecture.
Although the DDK header files may include additional information (private and
methods and other internal interfaces) for each class, be aware that the chapters in
this book present all the methods you need to be concerned about to write your
CMM.

The chapters are organized as follows:

viii KCMS CMM Reference Manual ¢ May 6 1999

Chapter 1 describes the KcsShareable class.

Chapter 2 describes these 170 classes: KcslO , KesFile , KcsMemoryBlock
KcsSolarisFile, and KcsXWindow.

Chapter 3 describes in detail the KcsChunkSet class.

Chapter 4 describes in detail the KcsLoadable class.

Chapter 5 describes in detail the KcsProfile class.

Chapter 6 describes in detail the KcsProfileFormat class.

Chapter 7 describes in detail the KcsAttributeSet class.

Chapter 8 describes the member functions in the KcsXform class.
Chapter 9 describes the member functions in the KcsXformSeq class.

describes in the KcsStatus class.

Related Books

The following is a list of recommended books that can help you accomplish the tasks
described in this book:

m KCMS Application Developer’s Guide

m ICC Profile Format Specification (located on-line in
/opt/SUNWsdk/kcms/doc/icc.ps). For the most current version of the ICC
specification, see the web site at http://www.color.org

Ordering Sun Documents

The SunDocs™ program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at http://www.sun.com.sunexpress

Note - The term “x86” refers to the Intel 8086 family of microprocessor chips,
including Pentium and Pentium Pro processors and compatible microprocessor chips
made by AMD and Cyrix. In this document, the term “x86” refers to the overall
platform architecture, whereas “Intel Platform Edition” appears in the product name.

X

What Typographic Changes and
Symbols Mean

The following table describes the type changes and symbols used in this book:.

TABLE P-1 Typographic Conventions

Typeface or Meaning Example
Symbol
AaBbCc123 The names of commands, files, and Edit your .login file.
directories; on-screen computer . .
Use Is -a to list all files.
output
system% You have mail.
AaBbCc123 What you type, contrasted with system% su
on-screen computer output Password:
AaBbCc123 Command-line placeholder: To delete a file, type rm filename.
replace with a real name or value
AaBbCc123 Book titles, new words or terms, or Read Chapter 6 in User’s Guide.

words to be emphasized

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

KCMS CMM Reference Manual ¢ May 6 1999

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%
C shell superuser prompt machine_name#
Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Kcsld Naming Convention

Each class contains a Kcsld that uniquely identifies that class. Most Kcsld s are
defined in the kcsids.h header file. The naming conventions shown in the
following table are used for the Kcsld for each class in the KCMS framework. The
#defines are helpful in switch statements.

TABLE P-3 Kcsld Naming Conventions

Item Convention Examples

const Kcs<Base Class Id><Derived Class KcsSharlOld
1d>1d

#define Kcs <Base Class Id><Derived Class KcsSharlOldd
ld>ldd

Equivalent Terms In This Book

For historic reasons, this book uses several equivalent Kodak and International Color
Consortium (ICC) terms. The terms evolved at different times. Development of the

Xi

ICC specification introduced new ICC terms with meanings the same as (or similar
to) already existing Kodak terms.

You should be familiar with the terms listed in the table below, as you will encounter
them in the ICC specification and KCMS color management documentation, as well
as in the KCMS header files and example programs. The terms are defined as they
are introduced in this book..

TABLE P-4 Equivalent ICC and Kodak Terms

Kodak Term ICC Term

attribute tag

device color profile (DCP) input, display, or output profile
effects color profile (ECP) abstract profile

complete color profile (CCP) device link profile

profile format Id or magic number profile file signature

reference color space (RCS) profile connection space (PCS)

Note - The text in this book uses the term attribute instead of tag, (but code examples
and header files may use tag for the historic reasons previously mentioned.

xii KCMS CMM Reference Manual ¢ May 6 1999

New Features

The following information is about features provided in this release of the KCMS
product.

KCMS is Multithread Safe

In this release, KCMS supports multithreaded programs.

OWconfig File Modification

The procedure for updating the OWconfig file has changed. Using the interactive
program called OWconfig_sample , you can insert and remove configuration entries
in the OWconfig file.

New Features Xiii

Xiv KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 1

KcsShareable Class

This chapter describes the KCMS framework’s primary base class, the
KcsShareable class. This class is at the top of the KCMS class hierarchy. The
KcsShareable class allows any of its derivatives to be shared.

As you read this chapter, you will find it helpful to have access to the kcsshare.h
header file.

The constant and #define identifiers for this class are defined in the kcsids.h
header file as:

const Kcsld KcsRlocSharLoadld = {(0x53686172UL)}; /* 'Shar’ */
#define KcsRlocSharLoadldd (0x53686172UL) /* 'Shar’ */

The protected and public members are described.

Protected Members

The KcsShareable class provides the following protected members.

TABLE 1-1 KcsShareable Protected Members

Protected Member Description

virtual ~KcsShareable(); Destructor. A protected member.

Public Members

The KcsShareable class provides the following public members.

TABLE 1-2 KcsShareable Public Members

Public Member Description

virtual KcsShareable *attach(Use this method when you want to share an
long howMany = 1, object already allocated. It returns a pointer to the
KesAttachType aAttachFlag = KesAttMem, shared object. All shared objects must dettach()
KcesStatus *aStatus = NULL); instead of using delete. aAttachFlag and

aStatus are only used with the KcsLoadable
class override.

void dettach(long howMany = 1, Deletes an object. The actual deallocation only
KcsAttachType aDettachFlag = KcsAttMem, happens when no other object is sharing this
KcsStatus *aStatus = NULL); object. aDettachFlag and aStatus are only

used with the KcsLoadable class override.

static long getGlobalCount(); Returns the total number of objects sharing any
other objects in the system. Use for debugging.

long getUseCount() {return(useCount);}; Returns the current number of objects sharing this
object. Use for debugging.

KcsShareable(KcsStatus *status, long nUse = 1); Constructor.

2 KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 2

1/0 Classes

This chapter describes the following KCMS input/output (1/0) classes:
m KcslO

m KcsFile

m KcsMemoryBlock

m KcsSolarisFile

m KcsXWindow

The KcslO class provides a common interface for 1/0 operations such as read and
write. The KcslO class is a derivative of the KcsShareable class (see Chapter 17).
The KcsFile , KcsMemoryBlock , KesSolarisFile , and KcsXWindow are
derivatives of the KcslO class. These derivatives provide 1/0 for more specific types
of data storage.

As you read this chapter, you will find it helpful to have access to the following
header files:

m kcsio.h | kcsfile.h , kesmblk.h , kessolfi.h , and kcsxwin.h

m kcsshare.h and kcsids.h

KcslO Class

With a common interface, the KcslO class maintains device-, platform-, and
transport-independent 1/0 functionality for all derivatives.

The header file for the class is kcsio.h . The constant and #define identifiers for
this class are defined in the kcsids.h header file as:

const Kcsld KcsSharlOld = {(0x494F0000UL)}; /* 'lO" */

#define KcsSharlOldd (0x494F0000UL) /* '1O’ */

The enumerations and protected and public members are described, as well as the
member function override rules when deriving from this class.

Enumerations

The KcslO class provides the following enumerations.

TABLE 2-1 KcslO Enumerations

Enumeration Description
enum KcslOPosition {KCS_OFS, KCS_BOO, Used for calls to setCursorPos()
KCS_CURY};

KCS_OFsSis relative to beginning of 170
object+baseoffset. KCS_BOQ s relative to beginning of
the 1/0 object. KCS_CURSs relative to present 1/0
cursor.

Protected Members

The KcslO class provides the following protected members.

TABLE 2-2 KcslO Protected Members

Protected Member Description
KcsStatus A protected member that returns a KcsStatus object
aSysError(const char *callersName, that contains the OS error in the causingError data
const char *sysName, KcsStatus stat, member. Use callersName for debugging; it is
const int sysErrCode); recommended that you change to a non-NULL value.

Public Members

The KcslO class provides the following public members.

4 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 2-3 KcslO Public Members

Member Function

Description

virtual

KcsStatus absRead(const long index,
const long bytesWanted,
void *buffer,
const char *callersName = NULL);

virtual

KcsStatus absWrite(const long index,
const long humBytes2Write,
const void *buffer,
const char *callersName = NULL);

virtual
KcsStatus copyData(KeslO *anotherlO);

static KcslO * createlO(KcsStatus *aStatus,
const KcsProfileDesc *aDesc);

virtual
KcsStatus getEOF(long *theEOF) = 0;

virtual
long getOffset();

virtual
KcslOType getType() = O;

virtual
int isEqual(KcslO *anotherlO) = 0;

KcslO(KcesStatus *status,
const unsigned long absBaseOffset = 0);

virtual ~KcslO();

virtual

KcsStatus relRead(const long bytesWanted,
void *buffer,
const char *callersName = NULL) = O;

virtual

KcsStatus relWrite(const long numBytes2Write,
const void *buffer,
const char *callersName = NULL) = O;

Absolute read an 1/0 object already opened or
allocated. Supply a count of number of bytes to
read and a buffer.

Absolute write to some number of bytes in
numBytes2Write from the buffer to the data
store at the current position of the cursor

Copies all data in 170 object to anotherlO object.

Static method that creates an 1/0 object, by calling
either a KeslO derivative constructor within the
KCMS library or a run-time loadable constructor.

Returns the end-of-file (EOF) position.

Returns the permanent offset into the 1/0 object..

Returns the type of 1/0 object.

Determines if this I/0 object and another 170
object are working on the same data stores.The
base offsets must also be the same for them to
return true.

Constructor that initializes the baseOffset data
member with the values passed in.

Destructor.

Reads bytesWanted from the 1/0 object from
the current position of the cursor. Positions the
cursor after the last byte read.

Relative write of the number of bytes in
numBytes2Write from the buffer to the data
store at the current position of the cursor.
Positions the cursor after the last byte written.

I/0O Classes 5

TABLE 2-3 KcslO Public Members (continued)

Member Function

Description

virtual
KcsStatus replaceData(const unsigned long offset,
const unsigned long oldSize,
const void *buffer,
const unsigned long newSize,
const char *callersName = NULL);

virtual

KcsStatus setCursorPos(long position,
const KcslOPosition mode= KCS_OFS,
const char *callersName = NULL) = O;

virtual
KcsStatus setEOF(long theEOF) = 0;

virtual
void setOffset(long theOffset);

Replaces bytes of different lengths in an 1/0
object. Specifies where to start writing and size of
old and new data. If the old data is longer than
the new data, the 1/0 object is compressed. If the
new data is longer than the old data, everything
after the old data is moved to the end of the 170
object. If an error occurs, the cursor is where it
was before the error occurred.

Sets the 1/0 object cursor to a caller-supplied
position

Positions the 170 object cursor to a specific spot
in the object. Mode is defined by the enum
KcsFilePosition

Sets the EOF to a caller-supplied position. If the
new EOF is greater than the old EOF, the storage
for the new space is undefined.

Sets the base offset to a specified position.

Member Function Override Rules

The following table tells you which KcslO member functions you must override and
can override. The member functions indicated with an “X” in the Must column are
required to derive successfully from this base class. Others can be used and not

overridden.

TABLE 2-4 KcslO Member Function Override Rules

Member Function

Override Rules

Must Can
getEOF() X
getType() X

6 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 2-4 KcslO Member Function Override Rules

(continued)

Member Function

Override Rules

Must Can

isEqual() X

KeslO() X

~KeslO() X
relRead() X

relWrite() X

setCursorPos() X

setEOF() X

setOffset() X
Example

The following code shows you how to use a KcslO derivative as a data member or

as an object to pass into a function.

CODE EXAMPLE 2-1 KcslO Example

/IRead 4 bytes from KcslO starting at byte 8.
long getTheSecondLong(KcsStatus *aStat, KcslO *alO)

long badNumber
long sSecondLong;

_1’

if (alo NULL)
return(badNumber);
if ((*faStat = alO->absRead(8, 4, &sSecondLong))

return(sSecondLong);

KCS_SUCCESS)

(continued)

I/0O Classes 7

8

(Continuation)

else
return(badNumber);

}

KcsMemoryBlock Class

The KcsMemoryBlock class is a memory-based 1/0 derivative of the KcslO class. It
provides a way to manipulate blocks of memory by creating a KcslO object. You can
use the protected and public member functions in this class in the implementation of
your CMM; you cannot override any member function in this class.

The header file for the class is kesmblk.h

Note - It is highly recommended that you do not use any of the variables and
functions for handle-based memory in the kesmblk.h header file. Handle-based
memory is not required on the Solaris system.

The constant and #define identifiers for this class are defined in the kcsids.h
header file as:

const Kcsld KcsIOMBIKId = {(0x4D426C6BUL)}; /* 'MBIK' */

#define KcsIOMBIkIdd (0x4D426C6BUL) /* 'MBIK' */

In addition to the KcslO virtual member functions that must be overridden for a
minimal KcslO implementation, the KcsMemoryBlock class has member functions
for manipulating blocks of memory. See Table 2-4 for a list of the member functions
minimally required to derive from the KcslO class.

The enumerations and protected and public members are described.

Enumerations

The KcsMemboryBlock class provides the following enumerations.

KCMS CMM Reference Manual ¢ May 6 1999

TABLE 2-5 KcsMemoryBlock Enumerations

Enumeration Description
enum KcsMemoryKind { enum used in setCursorPos() . The object is in
KCS_APPLICATION_HEAP, the application or system heap.

KCS_SYSTEM_HEAP };

Protected Members

The KcsMemboryBlock class provides the following protected members

TABLE 2-6 KcsMemoryBlock Protected Members

Protected Member Description

long allocMe; Determines whether memory block is allocated.

char* curPtr(); Retum§ the current address of the memory block
+ position.

long numElements; Number of elements if memory block is an array.

long pos; Current position in memory block.

long realEOF; Number of bytes actually written to memory file.

long size; Number of bytes allocated to contain memory file.

char *startPtr: Start of char-pointer-based memory block.

Public Members

The KcsmemoryBlock class provides the following public members.

I/O Classes 9

TABLE 2-7 KcsMemoryBlock Public Members

Public Member

Description

KcsStatus
get(char* buf, long nbytes);

long getNumElements() {return numElements;}

long getSize();

KcsMemoryBlock(KcsStatus *status, char *start,
long size, long numElements = 1,
const unsigned long absBaseOffset = 0);

KcsMemoryBlock(KcsStatus *status, long size,
long numElements = 1,
const unsigned long absBaseOffset = 0,
const KcsMemoryKind kind =
KCS_APPLICATION_HEAP);

virtual ~KcsMemoryBlock();

long position() {return pos;}

void position(long posit) {pos=posit;}

KcsStatus
put(char* buf, long nbytes);

Gets nbytes of data starting at the current
cursor position. Post-increments the cursor
position by nbytes .

Returns the number of elements in the
KcsMemoryBlock object as a long .

Returns the size of the KcsMemoryBlock
object.

Constructor. Specifies a character pointer in
start , block size in size , and number of
elements in numElements .

Constructor. Allocates and deallocates the
memory.

Destructor.
Returns the current cursor position.
Sets the current cursor position.

Puts nbytes of data into the
KcsMemoryBlock object at the current
cursor position. Post-increments the cursor
position by nbytes .

Example

This example shows you how to change the size of memory with the

KcsMemoryBlock class.

CODE EXAMPLE 2-2 Resizing Memory with KcsMemoryBlock

KcsStatus resizelt()

{

(continued)

10 KCMS CMM Reference Manual ¢ May 6 1999

(Continuation)

unsigned long sNewSize = 10;
KcsStatus sStatus;
KcsMemoryBlock *memBlock;
char * buffer = {'a’,;’b’,’c’,’'d’};

/I create a new KcsMemoryBlock object
memBlock = new KcsMemoryBlock(&sStatus,4);
if (sStatus != KCS_SUCCESS)

return (sStatus);
/I put the four bytes above into the new KcsMemoryBlock
sStatus = memBlock->put(buffer,4);
if (sStatus != KCS_SUCCESS)

return (sStatus);
/I resize the KcsMemoryBlock from 4 to 10
sStatus = memBlock->reSize(sNewSize);
/[Finished with the data
delete memBlock;
return (sStatus);

KcsFile Class

The KcsFile class is a file I/0 derivative of the KcslO class. It provides a way to
manipulate files by creating a KcslO object. You can use the protected and public
member functions in this class in the implementation of your CMM; you cannot
override any member function in this class.

The header file for the class is kcsfile.h

Note - It is highly recommended that you do not use any of the variables and
functions for handle-based memory in the kesmblk.h header file. Handle-based
memory is not required on the Solaris system.

The constant and #define identifiers of this class as defined in the kcsids.h
header file are:

const Kcsld KcslOFileld = {(0Ox46696C65UL)}; /* 'File’ */

#define KcslOFileldd (0x46696C65UL) /* 'File’ */

In addition to the KcslO virtual functions that must be overridden for a minimal
KcslO implementation, the KcsFile class has member functions for reading from

I/O Classes 11

and writing to a file. See Table 2-4 for detailed information on the virtual functions
that are minimally required to derive from the KcslO class.

This class does not have any protected members; the public members are described.

Public Members

The KcsFile class provides the following public members.

TABLE 2-8 KcsFile Public Members

Member Function Description

virtual long getFref(); Gets the file description being used.

KcsFile(KcsStatus *status); Constructor. Creates a file object without a file and
offset. You must use setFref() to establish a link to
a file before using any other methods.

KcsFile(KcsStatus *status, Constructor. Creates a file object with an open file and

const KcsFileld anFref, offset.

virtual ~KcsFile();

const unsigned long absBaseOffset = 0);

Destructor.

virtual void setFref(long theFref); Sets the file to use and the offset.

12

Examples

The following examples show you how to use the KcsFile class.

Reading a File From a Specified Offset

This example shows you how to read a file from a specified offset with absRead()
See the kcsio.h header file for a description of absRead() .

CODE EXAMPLE 2-3 Reading a File From a Specified Offset

KcsStatus readlt()

KcsStatus sStatus;

KCMS CMM Reference Manual ¢ May 6 1999

(Continuation)

KcsFileld sFileRef;
long index = 32;
long number;

/I open the file, put the fileRef into sFileRef

sFileRef = open (“Profile”, O_RDWR);

if (sFileRef == -1)
return (KCS_IO_ERROR);

/I create a file object

file = new KcsFile(&sStatus, sFileRef, 0);

if (sStatus != KCS_SUCCESS)
return(sStatus);

/I using the file object, read from the file into a buffer.
sStatus = file->absRead(index, sizeof(long), &number);
delete file;

close(sFileRef);

return (sStatus);

Writing to a File From the Last Cursor Position

This example shows you how to write to a file with relWrite()
a full definition of relWrite()

CODE EXAMPLE 2-4 Writing to a File From the Last Cursor Position

. See Table 2-3 for

KcsStatus writelt()

KcsStatus sStatus;
KcsFileld sFileRef;
long nbytes;
char *buffer;

/I open the file, get a fileRef
sFileRef = open (“Profile”, O_RDWR);
if (sFileRef == -1)

return (KCS_IO_ERROR);

/I create a file object
file = new KcsFile(&sStatus, sFileRef);
if (sStatus != KCS_SUCCESS)

(continued)

I/O Classes 13

14

(Continuation)

return(sStatus);

/I Allocate memory for the buffer, fill it with data.

/I Set nbytes to the length of the buffer.

if ((buffer = (char*) malloc(nbytes)) == NULL)
return (KCS_IO_ERROR);

delete file;

close(sFileRef);

/I using the file object, write the buffer to the file.
sStatus = file->relWrite(nbytes, buffer);

/I Free the buffer's memory.
free (buffer);

delete file;

close(sFileRef);

return (sStatus);

}

KcsSolarisFile Class

The KcsSolarisFile class is a derivative of the KcslO class. It is a Solaris-specific
KcslO class that provides member functions that:

m Open a file with a partial name
m Search through a list of known directories
m Check for string endings for filename suffixes (inp , mon, out , and spc)

m Access files on a remote machine

Note - The KCMS daemon, kecms_server, must be running to access remote files.
Remote access is read only. See the kems_server(1) man page.

The KcsSolarisFile class creates a pointer to a KcsFile or KcsRemoteFile
object depending on the host location. The derived public methods (relWrite()
relRead() , getEOF() , and setEOF()) then call the KcslO pointer to do the
actual operation.

KCMS CMM Reference Manual ¢ May 6 1999

The header file for this class is kcssolfi.h

The const and #define for this class are defined in the kcsids.h header file as:
const Kcsld KcslOsolfld = {(0x736f6c66UL)}; /* 'solf’ */

#define KcslOsolfldd (0x736f6c66UL) /* ’solf */

This class does not have any protected members; the public members are described.

Public Members

The KcsSolarisFile class provides the following public members.
TABLE 2-9 KcsSolarisFile Public Members

Public Member Description

virtual KeslO* getlO(); Returns the 170 pointer.

KcsSolarisFile(KcsStatus *status, Constructs a new 170 object pointer to a file (full path and
const char *filename, suffix not needed) either a remote or local machine. The file
const char *hostname, is opened with the specified permissions. See the open(2)
const int oflag, man page for information on oflag and mode.

const mode_t mode);

virtual ~KcsSolarisFile(); Destructor.

KcsXWindow Class

The KcsXWindow class is a derivative of the KcslO class. It provides an interface for
the X11 Window System connection. It turns X11 information into filenames for
access at known directories either on a local or remote system. The KCMS daemon,
kems_server(1) must be running to access remote files. Remote access is read only.

The KcsXWindow class creates a pointer to a KcsFile or KcsRemoteFile object
depending on the host location which is derived from the X11 Window System
information. The derived public members (relWrite() , relRead() , getEOF() ,
and setEOF()) then call the KcslO pointer to do the actual operation.

The header file for the class is kcsxwin.h

I/O Classes 15

The const and #define for this class are defined in the kcsids.h header file as:

const Kcsld KeslOxwinld = {(Ox7877696EUL)}; /* 'xwin’ */
#define KcslOxwinldd (0x7877696EUL) /* 'xwin’ */

In addition to the KcslO methods overridden by this class, there are methods for
creating filenames remotely or locally with X Window System information. See Table
2-4 for detailed information on the virtual functions that are minimally required to
derive from the KcslO class.

This class does not have any protected members; the public members are described.

Public Members

The KcsXWindow class has the following public members.

TABLE 2-10 KcsXWindow Public Members

Public Member

Description

virtual
KcslO* getlO();

Returns the 1/0 pointer.

KcesXWindow(KcsStatus *status, Constructs a new 10O object pointer to a profile
const Display *dpy, const int screen, connected to the machine and display. The specific X
const Visual *visual, const long caller) Window System profile name is constructed. The

location is either a known local directory or a path
specified by the KCMS_XTERMINAL_PROFILES
environment variable.

virtual ~KcsXWindow() Destructor.

Constructing a KecsXWindow Profile Name

The X Window System profiles are created with the KCMS configuration program
kcms_configure ; see the kems_configure(1) on-line man page for more
information. The KCMS Calibrator Tool (kcms_calibrate) supplies monitor
calibration, as well as configuration of the X profiles. See the kems_calibrate(1) man
page for more information.

X Window System visual profiles follow this naming convention:

<Visual Class><Visual ID in Hex>:<Display #>.<Screen #>

16 KCMS CMM Reference Manual ¢ May 6 1999

For example, for the PseudoColor visual on display 0, screen 0, with Visual 1D 0x20,
has the following profile name: PseudoColor0x20:0.0.

The Visual ID is provided with the visual argument as well as an indicator to one
of the visual names ("StaticGray", "GrayScale", "StaticColor", "PseudoColor",
"TrueColor", or "DirectColor").

Similar entries exist for the other visuals. X11 Window System visual profiles are
overwritten when a system is recalibrated after setup. The base uncalibrated monitor
profiles are in the /usr/openwin/etc/profiles directory; therefore, you can
always reset the system, if for some reason one of the per-machine profiles is
corrupted.

I/O Classes 17

18 KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 3

KcsChunkSet Class

This chapter describes the KCMS framework KcsChunkSet class. You can manage
blocks (or chunks) of data arranged in tagged file format with Chunk classes. The
ICC profile format is directly analogous to the KcsChunkSet . The KcsChunkSet
class is derived from the KcsShareable class. See Chapter 1,” for a description of
the KcsShareable class.

As you read this chapter, you will find it helpful to have access to the following
header files:

m Kkcsshare.h
m kcsio.h and kesmblk.h

m kcschu.h and kcschunk.h

Note - It is highly recommended that you do not use any of the variables and
functions for handle-based memory in the these header files. Handle-based memory
is not required on the Solaris system.

The header file for the class is keschunk.h . The constant and #define identifiers
for this class are defined in the kcsids.h header file as:

const Kcsld KcsSharChkSld = {(0x43686B53UL)}; /* 'ChkS’ */
#define KcsSharChkSldd (0x43686B53UL) /* 'ChkS’ */

In addition to the KcsShareable methods overridden by this class, there are
methods for managing chunks of data. The protected and public members are
described.

19

Protected Members

The KcsChunkSet class has the following protected members.

TABLE 3-1 KcsChunkSet Protected Members

Protected Member

Description

virtual KcsStatus

readChunkBuffer(const KcsChunkld aChunkld,
void *aChunk,unsigned long *aSizeRead,
unsigned long aSizeWanted = 0);

virtual KcsStatus

writeChunkBuffer(const KcsChunkld aChunkld,
void *aChunk, const unsigned long aSize,
KcsCompressBoolean aCompress = KcsCompress,
KcsLocationEnum aLocationEnum
KcsLocationUnspecified,
long aOffset = KcsNoOffsetSpecified);

Reads a chunk of bytes indicated by a chunk Id.

KCS_CHUNK_ID_ERHRS returned if no chunk Ids
match in the profile. Assumes the aChunk buffer
is allocated. Get the buffer size with

getChunkSize() which is defined in Table 3-2.

Writes a chunk of bytes to a new chunk in the
profile, given a void * . Returns a new chunk Id.
If a particular location or offset is specified, other
chunks are moved to write this chunk at the
specified location.

Public Members

The KcsChunkSet class has the following public members.

20 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 3-2 KcsChunkSet Public Members

Public Member

Description

virtual KcsStatus

createChunkld(KcsChunkld *aNewChunkld,
unsigned long aChunkSize = 0,
KcsLocationEnum aLocationEnum =
aKcsLocationUnspecified,
long aChunkOffset = KcsNoOffsetSpecified,

KcsRegisterBoolean aRegister =
KcslgnoreldSpecified);

virtual KcsStatus
deleteChunk(const long aChunklid);

virtual unsigned long
getChunkSetLength(KcsStatus *aStatus);

virtual long
getChunkSetOffset(KcsStatus *aStatus);

virtual unsigned long
getChunkSize(KcsStatus *aStatus,
KcsChunkld aChunkid);

virtual KcslO *
getlo();

virtual KesChunkld
getTopChunkld(KcsStatus *aStatus,
unsigned long aSize = 0,
long aOffset = KcsNoOffsetSpecified);

virtual Boolean
isEqual(KcsChunkSet *aNotherCS);

KcsChunkSet(KcsStatus *aStatus);

Allocates aNewChunkld for a chunk introduced
to the data type. Puts a new entry into the chunk
map. The size of the chunk can be specified, or by
default equals 0. The chunk location can be
specified in aLocationEnum and

aChunkOffset or defaults can be used. Creates
specific chunk ids with aRegister

Deletes the chunk (and its chunk map entry)
identified by a chunkld . You are required to
check whether any other objects are using this
chunk.

Returns the length of the domain of the chunk set.

Returns the offset of the beginning of the domain
of the chunk set.

Returns the chunk size identified by aChunkld . If
the chunk is compressed, returns the
uncompressed chunk size.

Returns the chunk set’s I/0 object.

Returns the chunk Id of the top chunk which
stores information about other chunks. Read this
chunk first because it tells what is contained in the
other chunks. Or you can specify the size of the
chunk and the chunk’s offset; by default, aSize =
0 and aOffset = KcsNoOffsetSpecified If
no top chunk exists , call createChunkld()

Checks if this chunk set is the same as another
chunk set.

Constructor without an 1/0 object.

KcsChunkSet Class 21

TABLE 3-2

KcsChunkSet Public Members (continued)

Public Member

Description

KcsChunkSet(KcsStatus *aStatus,
KcslO *aloObj,
unsigned long aChunkSetLength = KcsUseEOF,
KcsSaveBoolean aSaveMapping =
KcsSaveChunkSet,
int Format = 0);

~KcsChunkSet();

KcsStatus

readChunk(const KcsChunkld aChunkld, void *aChunk,
unsigned long *aSizeRead,
unsigned long aSizeWanted = 0);

virtual KcsStatus
setChunkSetOffset(long aOffset);

virtual KcsStatus
setChunkSetPrivateOffset(const long aOffset)

virtual KcsStatus
setlO(KcslO *aloObj);

virtual unsigned long

updateChunkUseCount(KcsStatus *aStatus,
KcsChunkld aChunkid, long aDelta,
unsigned long aComparisonCount);

KcsStatus
writeChunk(KcsChunkld aChunkid,
void *aChunk,
const unsigned long aSize,
KcsCompressBoolean aCompress
KcsLocationEnum aLocationEnum
KcsLocationUnspecified,
long aOffset = KcsNoOffsetSpecified);

KcsCompress,

Constructor of a chunk set instance based on an
1/0 object.

aChunkSetLength can be set to the length of
the static store managed by the chunk set if not
equal to the length managed by the 170 object.
Otherwise, by default, aChunkSetLength s set
to the end of the static store managed by the 1/0
object.

When a particular file format does not allow
writing out the chunk map, aSaveMapping is
False ; otherwise, aSaveMapping is, by default,
True indicating that the chunk containing the
chunk map should be saved.

Destructor.

Reads a chunk set.

Sets aOffset to the beginning of the domain of
the chunk set.

Sets the chunk set’s private offset.

Sets the chunk set’s 1/0 object.

Calls the ChunkMap object to change the use count
of a particular chunk. Compares the use count
with an expected value, aComparisonCount

Writes a chunk set.

22

KCMS CMM Reference Manual ¢ May 6 1999

Example

The following code shows you some examples of how to use these KcsChunkSet
class member functions: getChunkSet() , getChunkSize() , readChunk() , and
writeChunk()

CODE EXAMPLE 3-1 Getting, Reading and Writing a Chunk

KcsChunkld myChunkld;
KcsStatus aStat;
KcsChunkSet* chunkSet;

char* mftData;
u_long mftSize;
u_long mftWanted;

/I Get the chunk data

chunkSet = getChunkSet();

if (chunkSet == NULL)

return (KCS_INTERNAL_CLASS_CORRUPTED);

/IGet the size

mftSize = chunkSet->getChunkSize(&aStat, myChunkid);
if (aStat != KCS_SUCCESS)

return(aStat);

//Make space for the data

mftData = NULL;

if ((mftData = malloc((u_int)mftSize)) == NULL) {
return (KCS_MEM_ALLOC_ERR);

}

/IRead it

aStat = chunkSet->readChunk(myChunkld, mftData, &mftwanted,
mftSize);

if (aStat != KCS_SUCCESS)

return (aStat);

/IZero it out and write it back

memset(mftData, 0, mftSize);

aStat = chunkSet->writeChunk(myChunkid, mftData, mftSize);
if (aStat != KCS_SUCCESS)

return (aStat);

KcsChunkSet Class

23

24 KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 4

KcsLoadable Class

This chapter describes the KcsLoadable class. This base class provides the basic
functionality required to create a dynamically loadable CMM. The classes derived
from this class (KcsProfile , KcsProfileFormat , and KcsXform) provide
functionality to create your own color profiles. The KcsLoadable class is derived
from the KcsShareable class. See Chapter 1,” for a description of the
KcsShareable class.

As you read this chapter, you will find it helpful to have access to the following
header files:

m kcsload.h (the KcsLoadable class header file)
m kcsshare.h and kcsswap.h

m kcschunk.h and kcsuidmp.h

Note - It is highly recommended that you do not use any of the variables and
functions for handle-based memory in these header files. Handle-based memory is
not required on the Solaris system.

The constant and #define identifiers for this class are defined in the kcsload.h
header file as:

const Kcsld KcsRlocLoadld = {(0x4C6f6164UL)}; /* 'Load’ */
#define KcsRlocLoadldd (0x4C6f6164UL) /* 'Load’ */

In addition to the KcsShareable methods overridden by this class, there are
methods for dynamically loading your CMM. The protected and public members are
described.

25

Public Members

The KcsLoadable class provides the following public members.

TABLE 4-1 KcsLoadable Public Members

Public Member

Description

typedef KcsStatus (*KCS_FUNC_INIT_PTR)
(long, long, long *, long *);

virtual KcsShareable *

attach(long aHowMany = 1,
KcsAttachType aAttachFlag = KcsAttMem,
KcsStatus *aStatus = NULL);

virtual long
changePermanentUseCount(KcsStatus *aStatus,
long aDelta);

static KcsStatus
deleteChunkSetsUIDMapEntries(KcsChunkSet *aCS);

virtual void

dettach(long aHowMany = 1,
KcsAttachType aDettachFlag = KcsAttMem,
KcsStatus *aStatus = NULL);

virtual KcsChunkld

getChunkld(KcsStatus *aStatus, KcsChunkSet *aCS);

virtual KesChunkld getChunkld();

virtual KcsChunkSet *getChunkSet();

static KcsLoadable *
getObjFromUIDMap(KcsStatus *aStatus,
KcsChunkSet *aCS, KesChunkld aChunkid);

Calls changePermanentUseCount()

If aAttachflag = KcsMemFile , also calls
KcsShareable::attach()

Returns pointer to the object.

Increments or decrements permanent use count of
a particular chunk set/chunk Id entry in the
unique identifier (UID) map table. Calls
KcsChunkSet::updateChunkUseCount() to
update the chunk map. Returns new use count.

Deletes all the entries in the UID map table
associated with a particular chunk set.

If a chunk Id is illegal, searches the UID map
table for the chunk Id. Changes permanent use
count. If permanent use count == 0, deletes chunk
from file. Calls KcsShareable::dettach()

Looks in the UID map table and returns the
chunk Id associated with this object and aCS. If
no entry is found in the UID map table, it returns
KCS_OBJMAP_ENTRY_NOT_FOUADI
KcslllegalChunkld

Very useful function; returns the chunk Id portion
of the UID associated with this object.

Very useful function; returns the chunk set
portion of the UID associated with this object.

Checks if object identified by this chunk set and
chunk Id is instantiated. If object is in UID map
table, it returns a pointer to the object; else it
returns NULL

26 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 4-1 KcsLoadable

Public Members

(continued)

Public Member

Description

virtual KcsStatus isLoadable();

virtual long isLoaded();

KcsLoadable(KcsStatus *);

KcsLoadable(KcsChunkSet *, KesChunkld,
KcsStatus *);

virtual
~KcsLoadable();

virtual KcsStatus

load(const KcsLoadHints aLoadHints =
KcsLoadAllINow,
KcsCallbackFunction aCallback = NULL);

KcsStatus
putObjintoUIDMap(KcsChunkSet *aCs,
KcsChunkld aChunkid);

virtual KcsStatus save()
{return(KCS_SUCCESS);};

KcsStatus save(KcsChunkSet *, KcsChunkid);

KcsStatus setChunkld(KcsChunklid);

KcsStatus setChunkSet(KcsChunkSet *);

Returns KcsSuccess if the loadable object can
load and regenerate itself.

Returns non-zero if the state of the loadable object
is loaded.

Constructor.

Constructor that instantiates a loadable based on
a UID that is a combination of KcsChunkSet and
KcsChunklid .

Destructor. Deallocates all resources associated
with specified instance.

Regenerates all necessary state from the static
store associated with the aLoadHints

Puts the object identified by this chunk set and
chunk Id in the UID map table. Returns a pointer
to the object.

Saves all object state information to its static store.

Saves all object state information to the supplied
static store.

Sets the chunk set portion of the object’s UID.
Changing the value of Chunkld changes the
position of this objects regeneration data within
the object’s static store.

Sets the chunk set portion of the object’s UID.
Changing the value of the chunk set changes the
object’s static store.

KcsLoadable Class 27

TABLE 4-1 KcsLoadable Public Members (continued)

Public Member Description
virtual KcsStatus Tries to get a chunk Id corresponding to itself and
setUID(KcsChunkSet *aNewChunkSet); a chunk set from the UID map table. If no entry, it

calls createChunkld() to get a new chunk Id,
does a permanent attach, and then calls
setChunkSet() and setChunkld()

virtual KcsStatus Minimizes the memory requirements of the object
unLoad(KcsLoadHints aloadHints = by releasing all unnecessary state reclaimed from
(KcsPurgeMemoryNow)); the static store.

28 KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 5

KcsProfile Class

This chapter describes the primary KcsProfile class. This base class provides basic

functionality for using and creating color profiles. It was used to create the KCMS
framework API .

As you read this chapter, you will find it helpful to have access to the following
header files:

m Kkcsprofi.h

m kcspfmt.h and kcsxform.h

m kcsattr.h , kesio.h | and icc.h

The header file for the class is kcsprofi.h . The constant and #define identifiers

for this class are defined in the kcsids.h header file as:

const Kcsld KcsLoadProfld = {(0x50726F66UL)}; /* 'Prof */
#define KcsLoadProfldd (0x50726F66UL) /* 'Prof’ */

The protected and public members are described, as well as the member function
override rules when deriving from this class.

Protected Members

The KcsProfile class provides the following protected members.

29

TABLE 5-1 KcsProfile Protected Members

Protected Member

Description

KcsProfileFormat *iFormat;

KcsOperationType *iOpAndCont;

virtual KcsStatus createEmptyProfile();

void initDataMembers(void);

static long isColorSenseCMM(Kcsld);

KcsProfile(KcsStatus *aStat, KeslO *alO);

KcsProfile(KcsStatus *aStat, Kesld aCmmild,
KcsVersion aCmmVersion,
Kcsld aProfld,
KcsVersion aProfVersion);

KcsStatus setTimeAttribute(
KcsAttributeName aAttrName);

virtual KcsStatus
updateMonitorXforms(
KcsCharacterizationData *aChar,
KcsCalibrationData *aCal,
void *CMMSpecificData,
KcsCallbackFunction aCallback);

Pointer to a KcsProfileFormat instance.

Indicates which operations and content types are
supported by the profile. The profile can support the
logical ORof any combination of these flags.

Fill in the minimum amount of data such that when
saved and reloaded, no KcsXform instances, and only
the minimal tags are needed to load it.

Sets all member data to a known state. Allows each
constructor to initialize all data members to the empty
or initial state.

Do not use this method in new CMMs. It is
documented for historic reasons (for existing CMM
only).

Constructs a KcsProfile based on the static store
defined by alO.

Constructs a KcsProfile of the type aCmmld with
the version aCmmVersion using a profile format
determined by aProfVersion

Sets attribute specified by aAttrName to current time.

Updates the monitor transformations based on aChar
and aCal using the CMM'’s techniques. Returns either
KCS_CALIBRATION_UNSUPPORTED
KCS_CHARACTERIZATION_UNSUPPORTEDIess
overridden. Some derivatives require specific data in
CMMSpecificData . All CMMs do a generic update if
CMMSpecificData is set to NULL Some CMMs
callback into aCallback if set to non NULL

30 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 5-1 KcsProfile Protected Members (continued)

Protected Member Description

virtual KcsStatus Updates the printer transformations based on aChar
updatePrinterXforms(and aCal using the CMM'’s techniques. Returns either
KcsCharacterizationData *aChar, KCS CALIBRATION UNSUPPORTED
KesCalibrationData *aCal, KCS_CHARACTERIZATION_UNSUPPORTEBIess
void *CMMSpecificData, _ overridden. Some derivatives require specific data in
KesCallbackFunction aCallback); CMMSpecificData . All CMMs do a generic update if

CMMSpecificData is set to NULL Some CMMs
callback into aCallback if set to non NULL

Note that this function currently is not supported in
the KCMS default CMM.

virtual KcsStatus Updates the scanner transformations based on aChar

updateScannerXforms(and aCal using the CMM'’s technique. Returns either
KcsCharacterizationData *aChar, KCS CALIBRATION UNSUPPORTED
KesCalibrationData *aCal, KCS_CHARACTERIZATION_UNSUPPORTEBIess
void *CMMSpecificData, overridden. Most scanners need both aCal and aChar

KesCallbackFunction aCallback); set to generate valid transforms. Some derivatives

require specific data in CMMSpecificData . All
CMMs update if CMMSpecificData is set to NULL
Some CMMs callback into aCallback if set to non
NULL

Public Members

The KcsProfile class provides the following public members.

KcsProfile Class 31

TABLE 5-2 KcsProfile Public Members

Public Member

Description

virtual KcsStatus

connect(const long count, KcsProfile **sequence,
const KcsOperationType opAndHints,
KcsProfile **result,
long *failingProfileIndex);

static KcsProfile *
createProfile(KcsStatus *aStat, alO *alO);

static KcsProfile *

createProfile(KcsStatus *Stat,
Kesld aCmmld = KcsProfKCMSId,
KcsVersion aCmmVersion = KcsProfKCMSVersionid,
Kcsld aProfld = Kes2ld(icMagicNumber),
KcsVersion aProfVersion =
Kcs2ld(icVersionNumber);

virtual KcsStatus

evaluate(const KcsOperationType opAndHints,
KcsPixelLayout source, KcsPixelLayout dest,
KcsCallbackFunction progress);

virtual KcsStatus
getAttribute(KcsAttributeName aName,
KcsAttributeValue *aValue);

virtual KcsStatus
getAttribute(KcsAttributeName aName, void *data);

virtual KcsProfileFormat *
getFormat();

virtual KcsOperationType
getOpandCont() {return(iOpAndCont);};

virtual KesXform *
getXform(KcsStatus *status,
const KesxXformType XfType);

virtual KcsStatus isLoadable();

KcsProfile(KcsStatus *aStat);

Connects the list of KcsProfile ’s pointers
passed in by the caller via the sequence
parameter. Returns the new KcsProfile object
result based on that list.
failingProfilelndex indicates the
number of the profile in the input list that
failed. If element O in the array caused the
connection to fail, 1 is returned.

Constructs the correct runtime-loadable or
internal KcsProfile based on the static
store defined by alO.

Constructs the correct runtime-loadable or
internal KcsProfile of aCmmid type with
the aCmmVersion version using a
aProfVersion profile format.

Transforms the caller’s data. Use
opAndHints to indicate which transform
and content type your ‘CMM s providing.

Sets aValue to the attribute’s aName value.

Sets aData to the attribute’s aName value.

Gets the profile format.

Returns the supported operations and
content hints.

Returns the transform of the XfType type.

Returns KCS_SUCCES$ meets all
loadability requirements.

Constructor.

32 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 5-2 KcsProfile Public Members (continued)

Public Member

Description

virtual ~KcsProfile(void);

virtual KcsStatus
optimize(const KcsOptimizationType type,
KcsCallbackFunction progress);

virtual KcsStatus
propagateAttributes2Xforms();

KcsStatus save(KcslO *);

virtual KcsStatus
setAttribute(KcsAttributeName aName,
KcsAttributeType aType, const char *aValue);

virtual KcsStatus
setAttribute(KcsAttributeName aName,
const KcsAttributeValue *aValue);

virtual KcsStatus
setAttribute(KcsAttributeName aName, void *data);

virtual KcsStatus
setOpAndCont(KcsOperationType aOpAndCont);

virtual KcsStatus
setXform(KcsXformType axXformid,
KcsXform *aXform);

Destructor. Frees up accummulated memory
by calling all member object’s destructors
(with delete()).

Makes profile as fast and small as possible.
Specify optimization for speed or accuracy
with the type parameter.

Propagates all the expected attributes from
the profile attribute set to the attribute sets
of the transforms.

Saves to the static store indicated by alO.

Sets the value of aNameto aValue . aValue
is interpreted as the type aType .

Sets the value of aNameto aValue . aValue
is interpreted as the default type of aName

Sets the value of aNameto data interpreted
as the default type of aName

Sets the support operations and content
hints to aOpAndCont .

Sets the aXformld to aXform . If the
transform is null , removes attachment to
that particular KcsXform instance, if one
exists. Directly implemented by calling
KcsProfileFormat::setObject()

KcsProfile Class 33

TABLE 5-2 KcsProfile Public Members (continued)

Public Member Description

virtual KcsStatus updateXforms(Takes all data supplied and information
KcsCharacterizationData *aChar, contained within its KcsAttributeSet
KesCalibrationData *aCal, instance to determine which type of device
void *aCMMSpecificData = NULL, to update. Passes aChar , aCal ,
KcsCallbackFunction aCallback = NULL); aCMMSpecificData and aCallback to the

appropriate update() DeviceXforms() call
(where Device is

Scanner |Monitor |Printer). (SeeTable
5-1 for descriptions of these protected
members.)

long xformIsNOP(const KcsXformType); Indicates whether the KcsXformType acts
on the data passed to it. If no xform is
available, returns true .

Member Function Override Rules

The following table tells you which KcsProfile member functions you must
override and can override when deriving from this class. The member functions
indicated with an “X” in the Must column are required to derive successfully from
this base class. Others may be used but not overridden.

TABLE 5-3 KcsProfile Member Function Override Rules

Member Function Override Rules
Must Can
connect() X
createEmptyProfile() X
evaluate() X
getAttribute() X

34 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 5-3 KcsProfile Member Function Override Rules (continued)

Member Function Override Rules
Must Can

initDataMember() X
isColorSenseCMM() X
KcsProfile() X

~KcsProfile() X
load() X
optimize() X
propagateAttributes2Xforms() X
save() X
setAttribute() X
setOpAndCont() X
setTimeAttribute() X
setXform() X
unload() X
updateMonitorXforms() X
updatePrinterXforms() X
updateScannerXforms() X

KcsProfile Class 35

TABLE 5-3 KcsProfile Member Function Override Rules (continued)

Member Function Override Rules
Must Can
updateXxforms() X
XformIsNOP() X
|

Examples

The following code sample shows you how to interface with the KcsProfile class
and its derivatives using the KcsGetAttribute() KCMS framework APl wrapper
function.

CODE EXAMPLE 5-1 KcsProfile Class and KcsGetAttribute

0

KcsStatusld
KcsGetAttribute(KesProfileld profile, KcsAttributeName name,
KcsAttributeValue *value)

VirtualWorld vWorld(true, true);
KcsProfile * *profiles = 0;

if (gProfileArray == NULL)

/I no profiles have been loaded or user has not handled a load
/I error correctly

return(KCS_BAD_PROFILE_ID);

KcsStatusld stat;

profiles = (KcsProfile * *)KcsLockHandle(gProfileArray);
if (isValid(profile, profiles))

stat = profiles[profile]->getAttribute(name, value);

else

stat = KCS_BAD_PROFILE_ID;
KcsUnlockHandle(gProfileArray);

return(stat);

36 KCMS CMM Reference Manual ¢ May 6 1999

The following code sample shows you how to interface with the KcsProfile

class

and its derivatives using the KcsConnectProfiles() KCMS framework API

wrapper function.

CODE EXAMPLE 52 KcsProfile Class and and KcsConnectProfiles()

KcsStatusld

KcsConnectProfiles(KcsProfileld *resultProfileld,
unsigned long profileCount, KcsProfileld *profileSequence,
KcsOperationType operationLoadSet,
unsigned long *failedProfileIndex)

VirtualWorld vWorld(true, true);
KcsProfile * *profiles = 0;
KcsStatus result;

long i;

if (gProfileArray == NULL)
/I no profiles have been loaded or user hasn't handled a load
/I error correctly
return(KCS_BAD_PROFILE_ID);

result = getNewValidindex(resultProfileld);
if (result = KCS_SUCCESS)
return(result);
profiles = (KcsProfile * *)KcsLockHandle(gProfileArray);
KcsMemoryBlock * memblk = new KcsMemoryBlock(&result,
sizeof(KcsProfile *), profileCount);
if (memblk == NULL)
return(KCS_MEM_ALLOC_ERROR);
KcsProfile * *moreProfiles = (KcsProfile * *)memblk->lock();
KcsProfile * madeProfile = NULL;
long failingNum = O;
for (i = 0; i < profileCount; i++) (
if (lisValid(profileSequenceli], profiles)) {
*failedProfileindex = i;
*resultProfileld = BAD_PROFILE_ID;
memblk->unlock();
memblk->dettach();
KcsUnlockHandle(gProfileArray);
/I also have to do a dettach here !!
return(KCS_BAD_PROFILE_ID);
}
else
moreProfiles[i] =
(KcsProfile *)profiles[profileSequenceli]]->attach();

result = profiles[profileSequence[0]]->connect(profileCount,
moreProfiles, operationLoadSet, madeProfile, &failingNum);

*failedProfileIndex = failingNum;

if (result == KCS_SUCCESS)

profiles[*resultProfileld] = madeProfile;

for (i = 0; i < profileCount; i++) {
moreProfiles[i]->dettach();

}

(continued)

KcsProfile

Class

37

(Continuation)

memblk->unlock();
memblk->dettach();
KcsUnlockHandle(gProfileArray);

gNumProfilesAllocated++;
return(result);

}

38 KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 6

KcsProfileFormat Class

This chapter describes the KCMS framework KcsProfileFormat class. With the
KcsProfileFormat class interface you can map a profile from a static store into the
traditional objects that make up a profile. The KcsProfileFormat class is derived
from the KcsLoadable class. See Chapter 4,” for a description of the KcsLoadable
class.

As you read this chapter, you will find it helpful to have access to the following
header files:

m kcspfmt.h
m kcsload.h and kcsxform.h
m Kcsattr.h

The header file for the class is kespfmt.h . The constant and #define identifiers for
this class are defined in the kcsids.h header file as:

const Kcsld KcsLoadPfmtld = {(0x50666D74UL)}; /* 'Pfmt’ */
#define KcsLoadPfmtldd (0x50666D74UL) /* 'Pfmt’ */

In addition to the KcsLoadable methods overridden by this class, there are
methods for mapping data in static store into profiles comprised of objects. The
protected and public members are described, as well as the member function
override rules when deriving from this class.

Protected Members

The KcsProfileFormat class has the following protected members.

39

TABLE 6-1

KcsProfileFormat Protected Members

Protected Member

Description

virtual KcsStatus
deleteXform(KcsXformType aXfType);

KcsProfileFormat(KcsStatus *aStat, KcslO *KcsIO,
int Format = 0);

KcsProfileFormat(KcsStatus *aStat,
Kesld aCmmld,KcsVersion aCmmVersion,
Kcsld aProfld, KcsVersion aProfVersion);

virtual KcsStatus

loadObjectMap(const KcsLoadHints aHints =
KcsLoadAllINow,
KcsCallbackFunction aCallback = NULL);

virtual KcsStatus saveObjectMap();

Deletes the transforms.

Constructor that takes a KcslO object to
construct the appropriate profile format.

Constructor. Takes a profile version and
creates a blank profile format.

Loads the profile format’s objects mapped to
chunk Ids.

Saves profile format’s objects mapped to
chunk Ids.

TABLE 6-2

Public Members

class has the following public members.

The KcsProfileFormat

KcsProfileFormat Public Members

Public Member

Description

static KcsProfileFormat *
createProfileFormat(KcsStatus *aStat, KcslO *alO);

static KcsProfileFormat *
createProfileFormat(KcsStatus *aStat,
Kesld aCmmld, KcsVersion aCmmVersion,
Kcsld aProfld, KcsVersion aProfVersion);

virtual void
dirtyAttrCache();

Creates a profile format object from a KcslO
object.

Creates a profile format object from CMM
and profile information.

Caches an attribute that has changed.

40

KCMS CMM Reference Manual ¢ May 6 1999

TABLE 6-2 KcsProfileFormat

Public Members

(continued)

Public Member

Description

virtual void
dirtyXformCache(KcsXformType aXformld);

KcsLoadHints generateLoadWhat(
const KesXformType aXfType) const;

virtual KcsAttributeSet *
generateXformAttributes(KcsStatus *aStat,
KcsXformType aXfType);

virtual KcsStatus getCmmld(Kcsld *);

virtual KcsStatus
getObject(KcsAttributeSet **aAttr,
KcsCallbackFunction aFunc = NULL);

virtual KcsStatus

getObject(KcsXform **aXform, KesXformType aXformld,

KcsCallbackFunction aFunc = NULL);

virtual long getSaveSize();

static Kesld
getTheCMMId(KcsStatus *aStat, KcslO *alO);

static KcsVersion
getTheCMMVersion(KcsStatus *aStat, KcslO *alO);

static Kesld
getTheProfileFormat(KcsStatus *aStat, KcslO *alO);

static KcsVersion
getTheProfileVersion(KcsStatus *aStat, KcslO *alO);

virtual long getSaveSize();

virtual KcsStatus
initEmptyFormat(Kcsldent aCMMId =
KcsKodakColorSenseCMM);

virtual KcsStatus isSupported(KcsLoadHint aHints);

KcsProfileFormat(KcsStatus *aStat);

Caches an Xform that has changed.
Returns the load hint associated with this
KcsXformType .

Generates attributes associated with a
KcsXform .

Returns a CMM Id.

Gets the KcsAttributeSet of the format.

Returns the KcsXform that represents the
aXformlD operation.

Returns the number of bytes to be saved.

Gets the CMM identifier for the KcslO
object.

Gets the CMM version for the KcslO object.
Gets the profile format using the KcslO
object.

Gets the profile version using the KcslO
object.

Returns the number of bytes needed to save
the profile.

Initializes profile’s static store to an initial
state.

Returns whether the object(s) associated with
aHints is supported by this profile instance.

Constructor.

KcsProfileFormat Class 41

TABLE 6-2 KcsProfileFormat Public Members (continued)
Public Member Description
virtual ~KcsProfileFormat(void); Destructor.

virtual KcsStatus
postAttrCompose(KcsTags *aOwningAttrSet,

const long aCount, KcsTags **aOrigSequence);

virtual KcsStatus

save();

virtual KcsStatus
saveNew(KcsChunkSet *);

virtual KcsStatus setCmmlid(Kcsld);

virtual KcsStatus
setObject(KcsAttribute *aAttr);

virtual KcsStatus
setObject(KcsXformType aXformld, KcsXform *aXform);

virtual KcsStatus
unloadWhenMatch(KcsLoadHints aMatchHints =

Builds ICC profile sequence description tag.

Saves all objects associated with this profile
format.

Saves using a different chunk set .

Sets the CMM Id.

Sets KcsAttribute to the set of attributes
to save in this profile’s format.

Sets the KcsXformType to the KcsXform
class aXform .

Unloads the profile objects associated with
aMatchHints , if they match the last hints

KcsUnloadAfterUse); supplied to unload() . Unloads the correct
data automatically. Helps recover memory
(call it with
KcsUnloadWhenNecessary()).
|

42

Member Function Override Rules

The following table tells you which KcsProfileFormat

member functions you

must override and can override when deriving from this class. The member
functions indicated with an “X” in the Must column are required to successfully
derive from this base class. Others can be used but not overridden.

KCMS CMM Reference Manual ¢ May 6 1999

TABLE 6-3

KcsProfileFormat

Member Function Override Rules

Member Function

Override Rules

Must Can

deleteXform() X
dirtyAttrCache() X
dirtyXformCache() X
generateLoadWhat() X
generateXformAttributes() X
getObject() X
getSaveSize() X
initEmptyFormat() X
isSupported() X
KcsProfileFormat() X

~KcsProfileFormat() X
load() X
loadObjectMap() X
postAttrCompose() X
save() X
saveNew() X

KcsProfileFormat

Class 43

44

TABLE 6-3 KcsProfileFormat Member Function Override Rules (continued)

Member Function Override Rules
Must Can
saveObjectMap() X
setCmmld() X
setObject() X
unload() X
unloadWhenMatch() X

External Loadable Interface

All KcsProfileFormat derivatives support runtime derivability. The base class
supports the static createX(UID)() method like many of the other classes in the
KCMS framework. It also supports createProfileFormat(KcsVersion)() for
creation of new profile formats.

static KcsProfileFormat *createProfileFormat(
KcsStatus *aStat, KcslO *alO);

/I Create a profile format given a chunkSet that has

/I already been created.

static KcsProfileFormat *createProfileFormat(
KcsStatus *aStat, Kcsld aCmmld, KcsVersion aCmmVersion,
Kcsld aProfld, KcsVersion aProfVersion);

/I Create a new profile format of a given version.

See the KCMS CMM Developer’s Guide for more information on creating a
KcsProfileFormat runtime derivative.

KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 7

KcsTags Class

This chapter describes the KcsTags class of the KCMS framework. This class
provides numerous data members used throughout the KCMS framework and for
use in your CMM.

Note - KcsAttributeSet is an alias to the KcsTags class. This is for historical
reasons only.

As you read this chapter, you will find it helpful to have access to the kcstags.h
header file.

Note - It is highly recommended that you do not use any of the variables and
functions for handle-based memory in the these header files. Handle-based memory
is not required on the Solaris system.

The #define identifiers for this class are defined in the kcstags.h header file as:
#define KcsAttributeSet KcsTags

In addition to the KcsLoadable methods overridden by this class, this class
includes data members used throughout the KCMS framework and for use in your
CMM. There are no protected members. Public members are described in detail.

Public Members

The KcsTags class provides the following public members.

45

TABLE 7-1 KcsTags Public Members

Public Member

Description

KcsAttributeSet *copy(KcsStatus *status);

static KcsTags *
createAttributeSet(KcsStatus *status);

static KcsTags *
createAttributeSet(KcsChunkSet *ChunkSet,
KcsStatus *status);

static KcsTags *
createAttributeSet(KcsStatus *aStat,
KcsChunkSet *aCsS,
KcsChunkld aChunkid);

KcsStatus

getAttribute(KcsAttributeName tag,
KcsAttributeValue *value,

KcsAliasUsage aAliasUse =
KcsindirectThroughAlias);

static KcsStatus
getAttributeInfo(KcsAttributeName aTag,
KcsAttributeType *aType,
unsigned long *count,
unsigned long *sizeOfType,
KcsTags *tags = NULL);

static unsigned long
getAttrSize(KcsAttributeType aTagType);

static unsigned long
getAttrSize(KcsAttributeValue *aVal);

static long
getICProfSeqDescInfo(
icProfileSequenceDesc *aDesc,
icDescStruct **aDescPtrs,
long nPtrs);

A non-shared copy of the object.

Creates a blank attribute set.

Creates an attribute set from a chunk set.

Creates an attributes set from a chunk set and chunk Id.

Given a valid attribute , loads the value .

Given a valid aTag, populates the supplied parameters
with the type and the count (the number of tokens that
make up the attribute) of the attribute associated with the
supplied aTag.

Returns the size in bytes of the attribute type.

Returns the attribute size.

Returns information about an ICC profile sequence
description.

46 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 7-1 KcsTags Public Members

Public Member

Description

static long getICTextDescInfo(

icTextDescription *aDesc,

long *aASClILength = NULL,
icUInt8Number **aASCIIPtr = NULL,
icInt32Number *aUniCodeCode = NULL,
long *aUniCodelLength = NULL,
icInt8Number **aUniCodePtr = NULL,
icintl6Number *aScriptCodeCode =
NULL,

long *aScriptCodeLength = NULL,
icInt8Number **aScriptCodePtr =
NULL);

static long
KcsTags::getlICTextDescSize(
long aASClIILength,
long aUniCodeLength,
long aScriptCodeLength);

static long

getlCUcrBgCounts(icUcrBg *aUcrBg,
icUInt32Number *aUcrCount = NULL,
icUInt32Number *aBgCount = NULL);

unsigned long getLargestAttrValSize();

KcsStatus
getTag(long ordinal,
KcsAttributeName *aTag);

virtual Boolean
isReadOnly(KcsAttributeName name);

KcsStatus
KcsAttrCompose(const long count,
KcsTags **sequence);

typedef enum {
JAd
} KcsAttribute;

Given an ICC text description, returns the parameters
contained in it.

Returns the size of an ICC text description attribute.

Returns the number of Ucrdatasets in an ICC Ucr Bg curve.

Returns the size of the largest attribute.

Sets the parameter aNameto position ordinal in the
internal attribute array pointed to by the member handle
tagHandle

Returns True if an attribute is read only. Read-only
attributes are: icSigNumTag , icSigListTag ,
KcsAttrNumber , KcsAttrAttributesSet , and
KcsPixelLayoutSupported

Given a count and a sequence of KcsAttributeSet
objects, combines the attributes according to the rules in
the current KcsAttributeSet object and populates its
attributes accordingly. See the ICC profile format
specification for the profile sequence attribute.

ICC attributes.

KcsTags Class 47

TABLE 7-1 KcsTags Public Members (continued)

Public Member Description

KcsStatus Attribute composition rule. Classifies the attributes.
KcsClassify(const long count,

KcsTags **sequence,

KcsAttributeName tag);

KcsStatus Attribute composition rule. Returns status on whether
KesCommon(const long count, there are common attributes in two profiles.

KcsTags **sequence,

KcsAttributeName tag);

KcsStatus Attribute composition rule. Concatenates attributes.
KcsConcatenate(const long count,

KcsTags **sequence,

KcsAttributeName tag);

KcsStatus Attribute composition rule. Attribute composition never
KcsNever(const long count, propagates.

KcsTags **sequence,

KcsAttributeName tag);

KcsTags(KcsChunkSet *ChunkSet, Allows you to create an attribute’s object from a chunk. A

KcsChunkld chunkid, chunk constructor.
KcsStatus *status));

KcsTags(char *buffer, Allows a user to create an attribute’s object from data
unsigned long sizeOfBuf, found in the character buffer supplied as an input
KcsStatus *status); parameter. A character buffer constructor.

KcsTags(KcsStatus *status); Constructor that allows a user to create an empty

attributes object.

~KcsTags(); Destructor.

KcsStatus Composition rule.
KcsUseCSInRight(const long count,

KcsTags **sequence,

KcsAttributeName tag);

KcsStatus Composition rule.
KcsUseLeft(const long count,

KcsTags **sequence,

KcsAttributeName tag);

KcsStatus Composition rule.
KcsUseRight(const long count,

KcsTags **sequence,

KcsAttributeName tag);

48 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 7-1

KcsTags Public Members

(continued)

Public Member

Description

long
returnCurrentNumberOfAttributes(void);

KcsStatus save();

KcsStatus saveTags();

KcsStatus
setAttribute(KcsAttributeName aName,
void *data);

KcsStatus
setAttribute(KcsAttributeName tag,
KcsAttributeType aType, void *data);

KcsStatus
setAttribute(KcsAttributeName tag,
KcsAttributeType aType,
const char *value);

KcsStatus
setAttribute(KcsAttributeName tag,
const KcsAttributeValue *value,
KcsAliasUsage aAliasUse =
KcsindirectThroughAlias);

static long

KcsTags::setlCTextDesc(
icTextDescription *aDesc, long aSize,
icUInt32Number aASCliLength = 1,
icUInt8Number *aASCIIPtr = NULL,
icUInt32Number aUniCodeCode = 0,
icUInt32Number aUniCodeLength = 1,
icUInt8Number *aUniCodePtr = NULL,
icUInt16Number aScriptCodeCode = 0,
icUInt8Number aScriptCodeLength = 1,
icUInt8Number *aScriptCodePtr =
NULL);

Returns the current number of attributes stored in the
attribute array.

Saves the attributes.

Saves the attributes.

Stores an association of name-to-attribute in the attribute
array.

Stores an association of tag -to-attribute in the attribute
array.

Stores an association of tag -to-attribute in the attribute
array. The information is supplied in a character string.

Stores an association of tag -to-attribute in the attribute
array. If you use the KcsAttributeValue structure as a
parameter and pass in NULL as its value , the attribute will
be deleted if it is stored; otherwise an error is returned.

Puts the various arguments into an ICC text description
structure.

KcsTags Class 49

50 KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 8

KcsXform Class

This chapter describes the KCMS framework KcsXform class. This base class
provides an interface for component transformations of different transformation
types; for example, matrix and grid-table based.

As you read this chapter, you will find it helpful to have access to the following
header files:

m kcsxform.h
m kcschunk.h and kcsload.h
m Kcsattr.h and icc.h

The header file for the class is kesxform.h . The constant and #define identifiers
for this class are defined in the kcsxform.h header file as:

const Kcsld KcsLoadXfrmld = {(0x5866726dUL)}; /* "Xfrm’ */
#define KcsLoadXfrmldd (0x5866726dUL) /* 'Xfrm’ */

In addition to the KcsLoadable methods overridden by this class, this class
includes methods for component transformations of different transformation types.
The protected and public members are described, as well as the member function
override rules when deriving from this class.

Enumerations

The KcsXform class has the following enumerations.

51

TABLE 8-1 KcsXform Enumerations

Enumeration Description
enum KcsInOut {In, Out}; Enumeration used in getNumComponents()
getComponentDepth() , setNumComponents() , and
setComponentDepth()
|

Protected Members

The KcsXform class has the following protected members.

TABLE 8-2 KcsXform Enumerations

Enumeration Description

long myChunkid; Current chunk Id.

KcsOperationType myOpsAndHints; Current operations and hints.

KesTransformKind myKindOf; Current transform.

int callbackinterval; Rows per callback.
I

Public Members

The KcsXform class has the following public members.

52 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 8-3 KcsXform Public Members

Public Member

Description

int

areLayoutsCloseEnough(KcsPixelLayout *in1,
KcsPixelLayout *in2,
KcsPixelLayout *out);

int
areLayoutsEqual(KcsPixelLayout *I1,
KcsPixelLayout *12);

virtual KcsStatus compose(KcsXformSeq *xformSeq,
KcsXform **newXform,
KcsCallbackFunction progress);

virtual KcsStatus
connect(const KcsOperationType opsAndHints,
const long nhumXforms,
KcsXform **technologies,
KcsXform **newXform,
KcsCallbackFunction progress,
long *numberThatFailed);

virtual KcsStatus
connectSink(KcsPixelLayout *sinkLayout);

virtual KcsStatus
connectSource(KcsPixelLayout
*sourcelLayout);

virtual KcsXform
*convertXform(KcsStatus *aStat,
Kcsld aXformType);

static KcsXform *

createXform(KcsStatus *status,
KcsChunkSet *aChunkSet,
KcsChunkld chunkld,
KcsAttributeSet *aAttrSet=NULL);

KcsStatus eval();

Returns nonzero if the nth pixel ininl1 and in2 uses
the pixel in out without corrupting the (n+1)th pixel
of out , (for example, planar<->chunky fails while
chunky<->chunky does not); else returns zero.

Returns non zero if the pixel layout structs in 11 and
12 are identical (especially the pointers to the data
buffers); else returns zero.

Generates a new Xform from xformSeq supplied.
Connects numXforms transforms supplied in a
KcsXformSeq and returns a KcsXform in newXform
that has the same effect as the list of Xforms in the
order supplied. An error in connecting from techs[n]
to techs[n+1] is reflected in errors[n]. A NULL
KesXform is returned on error.

Connects numXforms transforms supplied in
technologies and returns a KcsXform that has the
same effect as the list of Xforms in the order supplied.
If an error is found, it is reported. An error in
connecting from techs[n] to techs[n+1] is reflected in
errors[n]. A NULL KcsXform is returned on error.

Associates sinkLayout as the default layout buffer
for output from this transform.

Associates sourceLayout as the default layout
buffer for input to this transform.

Converts the instance into a derivative of type
aXformType and returns a pointer to the new
transform. Does automatic xform conversion when
needed.

Creates a KcsXform from a chunk set.

Evaluates the data described in the local inBuffer

set by connectSource() through this transform into
the buffer described by the outBuffer set by
connectSink() . The operation is from myOptType .
This provides no progress.

KesXform Class 53

TABLE 8-3 KcsXform Public Members (continued)

Public Member

Description

KcsStatus
eval(const KcsOperationType opsAndHints,
long *in32, long *out32);

KcsStatus

eval(const KcsOperationType opsAndHints,
KcsPixelLayout *inBuffer,
KcsPixelLayout *outBuffer,
KcsCallbackFunction progress) = 0;

KcsStatus

eval(const KcsOperationType opsAndHints,
const float **inComp,
const float **outComp,
const long *inStride,
const long *outStride, const long num,
KcsCallbackFunction progress);

KcsStatus

eval(const KcsOperationType opsAndHints,
const unsigned char **inComp,
const unsigned char **outComp,
const long *inStride,
const long *outStride, const long num,
KcsCallbackFunction progress);

virtual KcsAttributeSet
*getAttrSet(KcsStatus *aStat = NULL);

virtual long
getComponentDepth(KcsInOut whichOne);

virtual KcsStatus

getLoadOrder(long aNumTypes,
KcsLoadSaveSet aAvailableTypes,
KcsLoadSaveSet *aOrderOfTypes);

virtual long
getNumComponents(KcsIinOut whichOne);

KcsOperationType getOpsAndHints();

virtual KcsStatus

getSaveOrder(long aNumTypes,
KcsLoadSaveSet aAvailableTypes,
KcsLoadSaveSet *aOrderOfTypes);

Evaluates the data described in one 32-bit integer.

Evaluates the data described in inBuffer through
the Xform described by this instance into the buffer
described by outBuffer

Evaluates the data described in the float-based buffer
supplied through this transform into the float-based
buffer supplied.

Evaluates the data described in the byte-based buffer
supplied through this transform into the byte-based
buffer supplied.

Returns the set of attributes associated with this
KcsXform instance. If NULL, creates an empty one.

Retrieves the component depth.

Given aAvailableTypes , returns the order to load
the types in an array aOrderOfTypes[aNumTypes]

Retrieves the number of components.

Retrieves the ops and hints.

Given aAvailableTypes , returns the order to save
the types in an array aOrderOfTypes[aNumTypes]

54 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 8-3 KcsXform Public Members (continued)

Public Member

Description

static Kcsld

getXformType(KcsChunkSet *aChunkSet,
KcsChunkld chunkld, KcsStatus *stat,
int *InComp, int *OutComp);

typedef long KcsLoadSaveSet;

typedef unsigned long KcsTransformKind,;

KcsXform(KcsStatus *status,
KcsAttributeSet *aAttrSet=NULL);

KcsXform(KcsStatus *status,
KcsOperationType opsAndHints,
KcsChunkSet *aChunkSet,
KcsChunkld chunkld,
KcsAttributeSet *aAttrSet=NULL);

virtual ~KcsXform();

virtual KesTransformKind kindOfTransform();

virtual KcsStatus
loadU(KcsMemoryBlock *aXform,
KcsCallbackFunction aCallback = NULL);

virtual int
numberOfCallbacks(KcsPixelLayout *aln,
KcsPixelLayout *aOut);

KcsStatus optimize();

virtual KcsStatus

optimize(const KcsOperationType opsAndHints,
const KcsOptimizationType optimization,
KcsCallbackFunction progress);

virtual KcsStatus
saveU(KcsMemoryBlock *aXform,
KcsCallbackFunction aCallback=NULL);

virtual KcsStatus
setAttrSet(KcsAttributeSet *aAttrSet);

Gets the Xform type.

Used in getLoadOrder() and getSaveOrder()
Used in kindOfTransform()

Constructor.

Constructor.

Destructor.
Retrieves the kind of transform.

Loads the Xform from the universal buffer supplied.

If the Xform evaluated data with the supplied pixel
layouts and a callback was supplied, tells how many

times the callback would be called. The default is once

for every four scan lines of aln .

Optimizes the Xform.

Optimizes the Xform.

Saves the Xform into the universal buffer supplied.

Sets the set of attributes associated with this
KcsXform instance.

KcsXform Class 55

TABLE 8-3 KcsXform Public Members (continued)

Public Member

Description

virtual KcsStatus
setCallbackinterval(int callbackint);

virtual KcsStatus
setComponentDepth(KcsIinOut whichOne,
long Depth = 8);

virtual KcsStatus setDefaultAttributes(void);

virtual KcsStatus
setNumComponents(KcsInOut whichOne,
long numComp = 3);

void setOpsAndHints(KcsOperationType);

KcsStatus

validateLayouts(
KcsPixelLayout *sourceLayout,
KcsPixelLayout *sinkLayout);

Sets the callback interval.

Sets the component depth.

Sets up the default set of attributes for Xforms.

Sets the number of components.

Sets the ops and hints.

Makes sure the source layout and sink layout are
compatible with each other and with transform. The
color space of the buffer is validated once that field is
added to the KcsPixelLayout structure.

External Loadable Interface

Use these KcsXform external entry points to load your derivatives at runtime. See the
DDK manual KCMS CMM Developer’s Guide for more information on creating a
KcsXform derivative as a runtime loadable CMM.

TABLE 8-4 KcsXform External Loadable Interface

Extern “C”

Description

extern long KcsDLOpenXfrmCount;

KcsStatus KceslnitXfrm(long libMajor,
long libMinor, long *myMajor,
long *myMinor);

Holds a counter for the number of times this dynamically
loadable module has been loaded.

Returns KCS_SUCCESS

56 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 8-4 KcsXform External Loadable Interface (continued)

Extern “C” Description
KesXfrm Returns a KesXform object by invoking the KcsXform
* KcsCreateXfrm(KcsStatus *aStat, constructor.

KcsChunkSet *aChunkSet,
KcsChunkld aChunkld
, KcsAttributeSet *aAttrSet);

KcsStatus KesCleanupXfrm(); Returns KCS_SUCCESS

Member Function Override Rules

The following table tells you which KcsXform member functions you must override
and can override when deriving from this class. The member functions indicated
with an “X” in the Must column are required to derive successfully from this base
class. Others can be used and not overridden.

TABLE 8-5 Kcs Xform Member Function Override Rules

Member Function Override Rules
Must Can

compose() X
connect() X
connectSink() X
connectSource() X
connectxform() X
convertxXform() X

KcsXform Class 57

TABLE 8-5 Kcs Xform Member Function Override Rules (continued)

Member Function Override Rules
Must Can

eval() X

getAttrSet() X
getLoadOrder() X
getSaveOrder() X
Kesxform() X

~KcsXform() X
loadU() X
numberOfCallbacks() X
optimize() X
saveU() X
setAttrSet() X
setCallbackinterval() X
setComponentDepth() X
setDefaultAttributes() X
setNumComponents() X
validateLayouts() X

58 KCMS CMM Reference Manual ¢ May 6 1999

KesXform Class 59

60 KCMS CMM Reference Manual ¢ May 6 1999

CHAPTER 9

KcsXformSeq Class

This chapter describes the KCMS framework KcsXformSeq class. This class
provides an interface to manipulate a list or concatenation of KcsXforms in a
sequence as one KcsXform instance.

As you read this chapter, you will find it helpful to have access to the following
header files:

kesxfseq.h and kcsxform.h

Note - It is highly recommended that you do not use any of the variables and
functions for handle-based memory in the these header files. Handle-based memory
is not required on the Solaris system.

The header file for the class is kcsxfseq.h . The constant and #define identifiers
for this class are defined in the kcsxfseq.h header file as:

const Kesld KesXfrmSeqgld = {0x53657120}; /* 'Seq ' */
#define KcsXfrmSeqldd (0x53657120) /* 'Seq '’ */

In addition to the KcsLoadable and KcsXform methods overridden by this class,
there are methods to manipulate a list or concatenation of KcsXforms . The protected
and public members are described.

Protected Members

The KcsXformSeq class has the following protected members.

61

TABLE 9-1 KcsXformSeq Protected Members

Protected Member Description

virtual KcsStatus Prepares the pixel layouts for evaluation.

evalPrep(unsigned long *seqCount,
KcsPixelLayout *inBuffer,
KcsPixelLayout *outBuffer,
KcsPixelLayout *genln,
KcsPixelLayout *genOut,
KcsPixelLayout *remin,
KcsPixelLayout *remOut);

Public Members

The KcsXformSeq class has the following public members.

TABLE 9-2 KcsXformSeq Public Members

Public Member

Description

virtual KcsStatus addAsParent(KcsXformSeq *parent);

virtual KcsStatus delAsParent(KcsXformSeq *parent);

virtual KcsStatus deOptimize();

virtual KcsStatus

evalSegment(const KcsOperationType opsAndHints,
KcsPixelLayout *inBuffer,
KcsPixelLayout *outBUffer,
KcsCallbackFunction progress);

virtual KcsStatus
getLeftmostXform(long *n,
KcsXformSeq **pnextXform,
KcsXform **nextXform);

Adds a parent to my list of parents.

Deletes a parent from my list of parents.
Decrements the parent use count and
unshares the parent.

Deoptimizes this sequence. If the original
data is not available, returns
KCS_CANNOT_DEOPTIMIZE

Evaluates the inBuffer data through the
sequence of Xforms described by this
instance into outBuffer

Gets the leftmost basic Xform in the
sequence. Returns the parent of the
xform(pnextXform) and the number of the
Xform within that sequence. Recurses to the
true leftmost.

62 KCMS CMM Reference Manual ¢ May 6 1999

TABLE 9-2 KcsXformSeq Public Members (continued)

Public Member

Description

virtual KcsStatus
getNextXform(KcsXformSeq **pnextXform,
KcsXform **nextXform);

virtual long getOrigNumber() const
{return(numOriginalXforms);};;

virtual KcsStatus
getRightmostXform(long *n,
KcsXformSeq **pnextXform,
KcsXform **nextXform);

virtual KcsStatus
getXform(long n, KcsXform **anXform);

virtual KcsStatus
insertXform(long n, KcsXform *anXform);

virtual KcsOptimizationType isOptimized();

KcsXformSeq(KcsStatus *status,
KcsAttributeSet *aAttrSet = NULL);

KcsXformSeq(KcsStatus *status,
const KcsOperationType opsAndHints,
KcsChunkSet *aChunkSet,
KcsChunkld chunkld,
KcsAttributeSet *aAttrSet = NULL);

KcsXformSeq(const KcsOperationType opsAndHints,
const long numXforms, KcsXform **technologies,
KcsCallbackFunction progress,
long *numberThatFailed, KcsStatus *stat,
KcsAttributeSet *aAttrSet = NULL);

virtual ~KcsXformSeq();

virtual KcsOptimizationType isOptimized();

Gets the next basic Xform in the sequence.
Returns the parent of the
xform(pnextXform). Unrolls a sequence
into a list of its most basic Xforms. Returns
KCS_END_OF_XFORM#hen it reaches the
last Xform in the sequence.

Returns the number of KcsXforms in the
sequence.

Gets the rightmost basic Xform in the
sequence. Returns the parent of the
xform(pnextXform) and the number of the
Xform within that sequence. Recurses to the
true rightmost.

Gets the nth Xform in the list. Applies only
to this sequence. It does not recurse through
sequences of sequences.

Adds the Xform in the nth position in the
list. It is not recursive.

Indicates if the sequence is optimized.

Constructors from a sequence of 0 Xforms.

Constructors from a chunk set object.

Constructors based on the list of Xforms
supplied.

Destructor.

Queries whether this sequence has been
optimized.

KcsXformSeq Class 63

TABLE 9-2 KcsXformSeq Public Members (continued)

Public Member

Description

virtual KcsStatus

optimizeLineage(const KcsOperationType opsAndHints,
const KcsOptimizationType optimization,
KcsCallbackFunction prog);

virtual KcsStatus
removeXform(long n);

virtual KcsStatus
replaceXform(long n, KesXform *anXform);

Optimizes this Xform and all of its lineages.
Does not optimize parents since a parent use
count is kept.

Deletes the nth Xform in the list. It is not
recursive.

Replaces the Xform in the nth position in the
list with an Xform. It is not recursive.

64 KCMS CMM Reference Manual ¢ May 6 1999

