
Solaris Trusted Extensions
Developer’s Guide

SunMicrosystems, Inc.
4150Network Circle
Santa Clara, CA95054
U.S.A.

Part No: 819–7312–02
October 2006

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. All rights reserved.

SunMicrosystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one ormore U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the SunMicrosystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distributionmay includematerials developed by third parties.

Parts of the product may be derived fromBerkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, SunMicrosystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, ToolTalk, Java, and Solaris are trademarks or registered trademarks of
SunMicrosystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by SunMicrosystems, Inc.

TheOPEN LOOK and SunTMGraphical User Interface was developed by SunMicrosystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license fromXerox to
the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOKGUIs and otherwise comply with Sun’s written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws andmay be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclearmaritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified onU.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS”ANDALLEXPRESSOR IMPLIEDCONDITIONS, REPRESENTATIONSANDWARRANTIES, INCLUDINGANY
IMPLIEDWARRANTYOFMERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSEORNON-INFRINGEMENT,AREDISCLAIMED, EXCEPTTO
THE EXTENTTHAT SUCHDISCLAIMERSAREHELDTOBE LEGALLY INVALID.

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. Tous droits réservés.

SunMicrosystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis et
dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l’Université de Californie. UNIX est unemarque déposée aux
Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, SunMicrosystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, ToolTalk, Java, et Solaris sont desmarques de fabrique ou desmarques
déposées de SunMicrosystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont desmarques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par SunMicrosystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par SunMicrosystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient
une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun quimettent en place l’interface
d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l’objet de cette publication et les informations qu’il contient sont régis par la legislation américaine enmatière de contrôle des exportations et
peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
desmissiles, des armes chimiques ou biologiques ou pour le nucléairemaritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais demanière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine enmatière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LADOCUMENTATIONEST FOURNIE "EN L’ETAT" ET TOUTESAUTRES CONDITIONS, DECLARATIONS ETGARANTIES EXPRESSESOUTACITES
SONT FORMELLEMENTEXCLUES, DANS LAMESUREAUTORISEE PAR LALOIAPPLICABLE, YCOMPRISNOTAMMENTTOUTEGARANTIE
IMPLICITE RELATIVEALAQUALITEMARCHANDE,AL’APTITUDEAUNEUTILISATIONPARTICULIEREOUAL’ABSENCEDECONTREFACON.

061027@15490

Contents

Preface ... 7

1 Solaris Trusted ExtensionsAPIs and Security Policy ... 11
Understanding Labels .. 11

Label Types ..12
Label Ranges ..12
Label Components ..12
Label Relationships ...13

Trusted ExtensionsAPIs ..15
LabelAPIs ..16
Trusted XWindow SystemAPIs ...18
Label BuilderAPIs ..18

Trusted Extensions Security Policy ...19
Multilevel Operations ..19
Zones and Labels ...22

2 Labels and Clearances ...25
PrivilegedOperations and Labels ...25
LabelAPIs ..27

Accessing the Process Sensitivity Label ..27
Allocating and FreeingMemory for Labels ...28
Obtaining and Setting the Label of a File ...28
Obtaining Label Ranges ...29
Accessing Labels in Zones ..29
Obtaining the Remote Host Type ...31
Translating Between Labels and Strings ...31
Comparing Labels ...33

Acquiring a Sensitivity Label ...34

3

3 Label Code Examples ..37
Obtaining a Process Label ..37
Obtaining a File Label ..38
Setting a File Sensitivity Label ...39
Determining the Relationship Between Two Labels ...40
Obtaining the Color Names of Labels ..41
Obtaining Printer Banner Information ...42

4 Printing and the LabelAPIs ..45
Printing Labeled Output ..45
Designing a Label-AwareApplication ..46
Understanding theMultilevel Printing Service ..46
get_peer_label() Label-Aware Function ...47

DeterminingWhether the Printing Service Is Running in a Labeled Environment48
Understanding the Remote Host Credential ...49
Obtaining the Credential and Remote Host Label ..49
Using the label_to_str() Function ...49
HandlingMemoryManagement ..50
Using the Returned Label String ...51

Validating the Label RequestAgainst the Printer’s Label Range ...51

5 Interprocess Communications ..55
Multilevel Port Information ..55
Communication Endpoints ..56

Berkeley Sockets and TLI ...57
RPCMechanism ...59
UsingMultilevel PortsWith UDP ..59

6 Trusted XWindow System ..63
Trusted XWindow System Environment ..63
Trusted XWindow System SecurityAttributes ...64
Trusted XWindow System Security Policy ..64

RootWindow ..65
ClientWindows ..65
Override-RedirectWindows ...66
Keyboard, Pointer, and Server Control ..66

Contents

Solaris Trusted Extensions Developer’s Guide • October 20064

SelectionManager ..66
DefaultWindowResources ...66
Moving Data BetweenWindows ...67

PrivilegedOperations and the Trusted XWindow System ..67
Trusted Extensions XWindow SystemAPIs ...67

Data Types for X11 ..68
AccessingAttributes ...69
Accessing and Setting aWindow Label ..69
Accessing and Setting aWindowUser ID ..70
Accessing and Setting aWindow Property Label ..70
Accessing and Setting aWindow Property User ID ...70
Accessing and Setting aWorkstationOwner ID ...70
Setting the XWindow Server Clearance andMinimumLabel ..71
WorkingWith the Trusted PathWindow ..71
Accessing and Setting the Screen Stripe Height ..72
SettingWindow Polyinstantiation Information ...72
WorkingWith the X11 Label-Clipping Interface ..72

Using Trusted XWindow System Interfaces ...73
ObtainingWindowAttributes ..73
Translating theWindow LabelWith the Font List ..74
Obtaining aWindow Label ..74
Setting aWindow Label ..75
Obtaining theWindowUser ID ..75
Obtaining the XWindow ServerWorkstationOwner ID ..75

7 Label BuilderAPIs ..77
APIs for Label Builder GUIs ..77
Creating an Interactive User Interface ...78

Label Builder Behavior ...82
Application-Specific Functionality for Label Builder ..83
PrivilegedOperations and Label Builder ...83
tsol_lbuild_create() Routine ..83
Extended Label Builder Operations ..84
ModLabelData Structure ..86

Online Help for Label Builder ...87

Contents

5

8 TrustedWeb Guard Prototype ...89
AdministrativeWebGuard Prototype ...89

Modifying the label_encodings File ..91
Configuring Trusted Networking ...94
Configuring theApacheWeb Servers ...96
Running the TrustedWebGuardDemonstration ..97

Accessing Lower-Level Untrusted Servers ..97

A Programmer’s Reference ..99
Trusted ExtensionsMan Pages ..99
Header File Locations ...99
Abbreviations Used in Interface Names andData Structure Names ...100
Developing, Testing, andDebugging anApplication ...101
Releasing anApplication ...102

Creating a CDEAction ...102
Creating a Software Package ..102

B Solaris Trusted ExtensionsAPI Reference ...103
Process SecurityAttribute FlagsAPIs ..103
LabelAPIs ..103
Label-ClippingAPIs ...105
RPCAPIs ...105
Label BuilderAPIs ..105
Trusted XWindow SystemAPIs ...105
Solaris Library Routines and SystemCalls That Use Trusted Extensions Parameters106
SystemCalls and Library Routines in Trusted Extensions ...107

Index .. 111

Contents

Solaris Trusted Extensions Developer’s Guide • October 20066

Preface

The Solaris Trusted Extensions Developer’s Guide describes how to use the application programming
interfaces (APIs) to write new trusted applications for systems that are configured with the SolarisTM
Trusted Extensions software. Readers must be familiar with UNIX® programming and understand
security policy concepts.

Note –This Solaris release supports systems that use the SPARC® and x86 families of processor
architectures: UltraSPARC®, SPARC64,AMD64, Pentium, and Xeon EM64T. The supported systems
appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This
document cites any implementation differences between the platform types.

In this document these x86 related termsmean the following:

� “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
� “x64” points out specific 64-bit information aboutAMD64 or EM64T systems.
� “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

Note that the example programs in this book focus on theAPIs being shown and do not perform
error checking. Your applications should perform the appropriate error checking.

How the Solaris Trusted ExtensionsBooksAreOrganized
The Solaris Trusted Extensions 1.0 documentation set supplements the documentation for the
Solaris Express release. Review both sets of documentation to get amore complete understanding of
Solaris Trusted Extensions. The Solaris Trusted Extensions documentation set consists of the
following books.

Book Title Topics Audience

Solaris Trusted Extensions Transition
Guide

Provides an overview of the differences between Trusted Solaris 8
software, Solaris Express software, and Solaris Trusted Extensions
1.0 software.

All

7

http://www.sun.com/bigadmin/hcl

Book Title Topics Audience

Solaris Trusted Extensions Reference
Manual

Provides Solaris Trusted Extensionsman pages. All

Solaris Trusted Extensions User’s Guide Describes the basic features of Solaris Trusted Extensions. This
book contains a glossary.

End users,
administrators,
developers

Solaris Trusted Extensions Release Notes Lists known problems and describes workarounds for Solaris
Trusted Extensions 1.0 software.

Administrators,
developers

Solaris Trusted Extensions Installation
and Configuration

Describes how to plan for, install, and configure Solaris Trusted
Extensions.

Administrators,
developers

Solaris Trusted Extensions
Administrator’s Procedures

Shows how to perform specific administration tasks. Administrators,
developers

Solaris Trusted Extensions Developer’s
Guide

Describes how to develop applications with Solaris Trusted
Extensions.

Developers,
administrators

Solaris Trusted Extensions Label
Administration

Provides information about how to specify label components in
the label encodings file.

Administrators

CompartmentedModeWorkstation
Labeling: Encodings Format

Describes the syntax used in the label encodings file. The syntax
enforces the various rules for well-formed labels for a system.

Administrators

HowThis Book IsOrganized
Chapter 1 provides an overview of the Solaris Trusted ExtensionsAPIs and describes how the
security policy is enforced within the system.

Chapter 2 describes the data types and theAPIs formanaging labels on processes and on device
objects. This chapter also describes clearances, how a process acquires a sensitivity label, and when
label operations require privileges. Guidelines for handling labels are also provided.

Chapter 3 provides sample code that uses theAPIs for labels.

Chapter 4 uses the Trusted Extensionsmultilevel printing service as an example of using the label
APIs.

Chapter 5 provides an overview of how the security policy is applied to process-to-process
communications within the same workstation and across the network.

Chapter 6 describes the data types and theAPIs that enable administrative applications to access and
modify security-related XWindow System information. This chapter has a section of code examples.

Chapter 7 describes the data types and theAPIs for creating a graphical user interface (GUI) for
building labels and clearances. This chapter has a section of code examples.

Chapter 8 provides an example of a safe web browsing prototype that isolates a web server and its
web content from an Internet attack.

Preface

Solaris Trusted Extensions Developer’s Guide • October 20068

AppendixAprovides information about Solaris Trusted Extensionsman pages, shared libraries,
header files, and abbreviations used in data type names and in interface names. This appendix also
provides information about preparing an application for release.

Appendix B provides programming interface listings, including parameter and return value
declarations.

Documentation, Support, andTraining
The Sunweb site provides information about the following additional resources:

� Documentation (http://www.sun.com/documentation/)
� Support (http://www.sun.com/support/)
� Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1TypographicConventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in theUser’s Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

9

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Shell Prompts in CommandExamples
The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

Solaris Trusted Extensions Developer’s Guide • October 200610

Solaris Trusted ExtensionsAPIs and Security
Policy

The SolarisTM Trusted Extensions software (Trusted Extensions) provides application programming
interfaces (APIs) that enable you to write applications that access and handle labels. This chapter
summarizes theAPI functionality and introduces you to the Trusted Extensions security policy.

For Trusted Extensions term definitions, see the glossary in the Solaris Trusted Extensions User’s
Guide.

For examples of how the Trusted ExtensionsAPIs are used in the Solaris Operating System (Solaris
OS), see the Solaris source code. Go to the Open Solaris web site (http://opensolaris.org/) and
click Source Browser in the left navigation bar. Use the Source Browser to search through the Solaris
source code.

This chapter covers the following topics:

� “Understanding Labels” on page 11
� “Trusted ExtensionsAPIs” on page 15
� “Trusted Extensions Security Policy” on page 19

Understanding Labels
The Solaris Trusted Extensions software provides a set of policies and services to extend the security
features of the Solaris OS. These extensions provide access control that is based on label relationships.

Labels control access to data andmaintain the classification of data. The labels are attributes that are
interpreted by the system security policy. The system security policy is the set of rules that is enforced
by system software to protect information that is being processed on the system. The term security
policy can refer to the policy itself or to the implementation of the policy. Formore information, see
“Trusted Extensions Security Policy” on page 19.

This section includes overview information about label types, ranges, components, and
relationships.

1C H A P T E R 1

11

http://opensolaris.org/

Label Types
The Trusted Extensions software defines two types of labels: sensitivity labels and clearance labels.A
sensitivity label indicates the security level of an entity and is usually referred to as a label. A clearance
label defines the upper boundary of a label range and is usually referred to as a clearance.

Sensitivity Labels
The Trusted Extensions software uses zones to contain classified information at various levels. Each
level is associated with its own zone that has a sensitivity label. The sensitivity label specifies the
sensitivity of the information in that zone and is applied to all of the subjects and objects in that zone.
A label might be something like CONFIDENTIAL, SECRET, or TOP SECRET. A subject is an active entity,
such as a process, that causes information to flow among objects or changes a system’s state.An
object is a passive entity that contains or receives data, such as a file or device.All processes that run
in a zone, all files that are contained in a zone, and so on, have the same sensitivity label as their zone.
All processes and objects have a sensitivity label that is used inmandatory access control (MAC)
decisions. By default, sensitivity labels are visible in the windowing system.

Clearance Labels
The security administrator assigns a clearance to each user.Aclearance is a label that defines the
upper boundary of a label range. For example, if you have a clearance of SECRET, you can access
information that is classified at this level or lower, but not information that is classified at a higher
level.Auser clearance is assigned by the security administrator. It is the highest label at which a user
can access files and initiate processes during a session. In other words, a user clearance is the upper
boundary of a user’s account label range.At login, a user selects his session clearance. The session
clearance determines which labels a user can access. The session clearance sets the least upper bound
at which the user can access files and initiate processes during that login session. The session
clearance is dominated by the user clearance.

Label Ranges
The security administrator defines label ranges and label sets to enforcemandatory access control
(MAC) policy.A label range is a set of labels that is bounded at the upper end by a clearance or a limit
and at the lower end by aminimum label.A label limit is the upper bound of a label range.A label set
contains one ormore discrete labels that might be disjoint from one another. Labels in a label set do
not dominate one another.

Label Components
Alabel contains a hierarchical classification and a set of zero ormore nonhierarchical compartments.
Aclassification is also referred to as a level or a security level.A classification represents a single level
within a hierarchy of labels, for example, TOP SECRET or UNCLASSIFIED. A compartment is associated
with a classification and represents a distinct, nonhierarchical area of information in a system, such

Understanding Labels

Solaris Trusted Extensions Developer’s Guide • October 200612

as private information for a human resources (HR) group or a sales group.Acompartment limits
access only to users who need to know the information in a particular area. For example, a user with
a SECRET classification only has access to the secret information that is specified by the associated list
of compartments, not to any other secret information. The classification and compartments together
represent the label of the zone and the resources within that zone.

The textual format of a classification is specified in the label_encodings file and appears similar to
this:

CLASSIFICATIONS:

name= CONFIDENTIAL; sname= C; value= 4; initial compartments= 4-5 190-239;

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

The textual format of a compartment is specified in the label_encodings file and appears similar to
this:

WORDS:

name= HR; minclass= C; compartments= 0;

Formore information about label definitions and label formats, see Solaris Trusted Extensions Label
Administration andCompartmentedModeWorkstation Labeling: Encodings Format. For
information about the labelAPIs, see Chapter 2.

Label Relationships
Comparing labels means that the label of a process is compared to the label of a target, whichmight
be a sensitivity label or a clearance label. Based on the result of the comparison, the process is either
granted access or denied access to the object.Access is granted only when the label of the process
dominates the label of the target. Label relationships and dominance are described later in this
section. For examples, see “Determining the Relationship Between Two Labels” on page 40.

A security level is a numerical classification.A label indicates the security level of an entity andmight
include zero ormore compartments.An entity is something that can be labeled, such as a process,
zone, file, or device.

Labels are of the following types and relate to each other in these ways:

� Equal –When one label is equal to another label, both of these statements are true:
� The label’s classification is numerically equal to the other label’s classification.
� The label has exactly the same compartments as the other label.

� Dominant –When one label dominates another label, both of these statements are true:
� The label’s classification is numerically greater than or equal to the other label’s classification.
� The label has exactly the same compartments as the other label.

� Strictly dominant –When one label strictly dominates another label, both of these statements
are true:

Understanding Labels

Chapter 1 • Solaris Trusted ExtensionsAPIs and Security Policy 13

� The label’s classification is numerically greater than or equal to the other label’s classification.
� The label has all the compartments that the other label has and at least one other

compartment.
� Disjoint –When one label is disjoint with another label, both of these statements are true:

� The labels are not equal.
� Neither label dominates the other label.

The label_encodings file is used to specify the classifications and compartments for labels. See the
label_encodings(4) man page.

When any type of label has a security level that is equal to or greater than the security level of a
second label, the first label is said to dominate the second label. This comparison of security levels is
based on classifications and compartments in the labels. The classification of the dominant label
must be equal to or greater than the classification of the second label.Additionally, the dominant
label must include all the compartments in the second label. Two equal labels are said to dominate
each other.

In the following sample excerpt of the label_encodings file, the REGISTERED (REG) label dominates
the CONFIDENTIAL (C) label. The comparison is based on the value of each label’s value keyword. The
value of the REG label’s value keyword is numerically greater than or equal to the value of the C label’s
value keyword. Both labels dominate the PUBLIC (P) label.

The value of the initial compartments keyword shows the list of compartments that are initially
associated with the classification. Each number in the initial compartments keyword is a
compartment bit, each of which represents a particular compartment.

CLASSIFICATIONS:

name= PUBLIC; sname= P; value= 1;

name= CONFIDENTIAL; sname= C; value= 4; initial compartments= 4-5 190-239;

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

The following label_encodings excerpt shows that the REG HR label (Human Resources) dominates
the REG label. The REG HR label has the REGISTERED classification and the HR component. The
compartments keyword for the HR compartment sets the 0 compartment bit, so the REG HR
classification has compartments 0, 4–5, and 190–239 set, which is more than the compartments set
by the REG classification.

CLASSIFICATIONS:

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

...

WORDS:

name= HR; minclass= C; compartments= 0;

Sometimes, strict dominance is required to access an object. In the previous examples, the REG label
strictly dominates the P label, and the REG HR label strictly dominates the REG label. When comparing
labels, a REG label dominates another REG label.

Understanding Labels

Solaris Trusted Extensions Developer’s Guide • October 200614

Labels that do not dominate each other are said to be disjoint.Adisjoint label might be used to
separate departments in a company. In the following example, the REG HR label (Human Resources)
is defined as being disjoint from the REG Sales label. These labels are disjoint because each
compartment sets a different compartment bit.

CLASSIFICATIONS:

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

...

WORDS:

name= HR; minclass= C; compartments= 0;

name= Sales; minclass= C; compartments= 1;

For information about labelAPIs, see “Sensitivity LabelAPIs” on page 17.

Trusted ExtensionsAPIs
This section introduces the three Trusted ExtensionsAPIs that are described in this book:

� LabelAPIs
� Trusted XWindow SystemAPIs
� Label BuilderAPIs

In addition to these Trusted ExtensionsAPIs, you can use the securityAPIs that are available with the
Solaris OS.An application that runs on Trusted Extensionsmight require themanipulation of other
security attributes. For example, the user and profile databases contain information about users,
roles, authorizations, and profiles. These databases can restrict who can run a program. Privileges are
coded into various Solaris programs and can also be coded into third-party applications.

Formore information about these Solaris OS securityAPIs, see “Developing Privileged
Applications,” in Solaris Security for Developers Guide.

The Solaris OS provides discretionary access control (DAC), in which the owner of the data
determines who is permitted access to the data. The Trusted Extensions software provides additional
access control, which is calledmandatory access control (MAC). InMAC, ordinary users cannot
specify or override the security policy. The security administrator sets the security policy.

Applications use Trusted ExtensionsAPIs to obtain labels for hosts, zones, users, and roles.Where
the security policy permits, theAPIs enable you to set labels on user processes or on role processes.
Setting a label on a zone or on a host is an administrative procedure, not a programmatic procedure.

You can write applications to customize window labels. The Trusted Extensions software provides
Motif based programming interfaces for adding a basic label-building user interface to an
application. The label-building interface enables a user to interactively build valid sensitivity labels
and valid clearances.

The labelAPIs operate on opaque labels. In an opaque label, the internal structure of the label is not
exposed. Using an opaque label enables existing programs that are created with theAPIs to function

Trusted ExtensionsAPIs

Chapter 1 • Solaris Trusted ExtensionsAPIs and Security Policy 15

even if the internal structure of the label changes. For example, you cannot use the labelAPIs to
locate particular bits in a label. The labelAPIs enable you to obtain labels and to set labels. You can
only set labels if you are permitted to do so by the security policy.

LabelAPIs
Labels, label ranges, and a label limit determine who can access information on a system that is
configured with Trusted Extensions.

The labelAPIs are used to access, convert, and perform comparisons for labels, label ranges and
limits, and the relationship between labels.A label can dominate another label, or a label can be
disjoint from another label.

The label_encodings file defines the sensitivity labels, clearance labels, label ranges, and label
relationships that pertain to your Trusted Extensions environment. This file also controls the
appearance of labels. The security administrator is responsible for creating andmaintaining the
label_encodings file. See the label_encodings(4) man page.

The label of a process is determined by the zone in which the process executes.

All objects are associated with a label or sometimes with a label range.An object can be accessed at a
particular label within the defined label range. The objects that are associated with a label range
include the following:

� All users and all roles
� All hosts with which communications are permitted
� Zone interfaces and network interfaces
� Allocatable devices, such as tape drives, diskette drives, CD-ROMdevices, and audio devices
� Other devices that are not allocatable, such as printers and workstations

Workstation access is controlled by the label range that is set for the frame buffer or video display
device. The security administrator sets this range by using the DeviceManager GUI. By default,
devices have a range from ADMIN_LOW to ADMIN_HIGH.

Formore information about labels, see “Label Types” on page 12.

HowLabelsAreUsed inAccess Control Decisions
MAC compares the label of the process that is running an application with the label or the label range
of any object that the process tries to access. MAC permits a process to read down to a lower label and
permits a process to write to an equal label.

Label[Process] >= Label[Object]

Aprocess bound to amultilevel port (MLP) can listen for requests at multiple labels and send replies
to the originator of the request. In Trusted Extensions, such replies are write-equal.

Trusted ExtensionsAPIs

Solaris Trusted Extensions Developer’s Guide • October 200616

Label[Process] = Label[Object]

Types of LabelAPIs

Sensitivity LabelAPIs

Sensitivity labelAPIs can be used to do the following:

� Obtain a process label
� Initialize labels
� Find the greatest lower bound or the least upper bound between two labels
� Compare labels for dominance and equality
� Check and set label types
� Convert labels to a readable format
� Obtain information from the label_encodings file
� Check that a sensitivity label is valid and within the system range

For a description of theseAPIs, see Chapter 2.

Clearance LabelAPIs

Users, devices, and network interfaces have label ranges. The upper bound of the range is effectively
the clearance. If the upper bound of the range and the lower bound of the range are equal, the range
is a single label.

Clearance labelAPIs can be used to do the following:

� Find the greatest lower bound or the least upper bound between two labels
� Compare labels for dominance and equality
� Convert clearances between the internal format and the hexadecimal format

For a description of theseAPIs, see Chapter 2.

Label RangeAPIs

Alabel range is used to set limits on the following:

� The labels at which hosts can send and receive information
� The labels at which processes acting on behalf of users and roles can work on the system
� The labels at which users can allocate devices

This use of a label range restricts the labels at which files can be written to storagemedia on these
devices.

Label ranges are assigned administratively. Label ranges can apply to users, roles, hosts, zones,
network interfaces, printers, and other objects.

Trusted ExtensionsAPIs

Chapter 1 • Solaris Trusted ExtensionsAPIs and Security Policy 17

You can use the followingmethods to obtain information about label ranges:

� getuserrange() obtains the user’s label range.
� getdevicerange() obtains the label range of a device.
� tninfo -t template-name shows the label range of a template that is associated with a network

interface.

For a description of theseAPIs, see Chapter 2.

TrustedXWindowSystemAPIs
The Trusted XWindow System, Version 11, server starts at login. The server handles the workstation
windowing system by using a trusted interprocess communication (IPC) path.Windows, properties,
selections, and ToolTalkTM sessions are created at multiple sensitivity labels as separate and distinct
objects. The creation of distinct objects at multiple sensitivity labels is called polyinstantiation.
Applications that are created withMotif widgets, Xt Intrinsics, Xlib, and desktop interfaces run
within the constraints of the security policy. These constraints are enforced by extensions to the X11
protocols.

Chapter 6 describes the programming interfaces that can access the security attribute information
described in “Trusted Extensions Security Policy” on page 19. These programming interfaces can
also be used to translate the labels and clearances to text. The text can be constrained by a specified
width and font list for display in the Trusted XWindow System.

The Trusted XWindow System stores the following security attributes:

Audit ID
Group ID
Internet address
Process ID
Sensitivity label
Session ID

Trusted Path flag
Trusted Path window
User ID
XWindow Server owner ID
XWindow Server clearance
XWindow Serverminimum label

The Trusted Path flag identifies a window as a Trusted Path window. The Trusted Path window
protects the system from being accessed by untrusted programs. This window is always the topmost
window, such as the screen stripe or login window.

Appendix B lists the extensions that you can use to create an X11 trusted IPC path.

Label BuilderAPIs
The Trusted Extensions software provides a label builderAPI that enables you to create a graphical
user interface (GUI) for your application. The GUI takes user input and builds a valid label from that
input.

Trusted ExtensionsAPIs

Solaris Trusted Extensions Developer’s Guide • October 200618

Asystem that is configured with Trusted Extensions providesMotif based programming interfaces
for adding a basic label-building user interface to an application. The label-building interface enables
a user to interactively build valid sensitivity labels and valid clearances. For information about these
programming interfaces, see Chapter 7.

Trusted Extensions Security Policy
Sensitivity labels control access to data andmaintain the classification of data.All processes and
objects have a sensitivity label that is used inMAC decisions. The labels are attributes that are
interpreted by the system security policy. The system security policy is the set of rules that is enforced
by system software to protect information being processed on the system.

The following sections describe how the Trusted Extensions security policy affects multilevel
operations, zones, and labels.

MultilevelOperations
When you create an operation that runs at multiple security levels, youmust consider the following
issues:

� Write-down policy in the global zone
� Default security attributes
� Default network policy
� Multilevel ports
� MAC-exempt sockets

Operations that run at multiple security levels are controlled by the global zone because only
processes in the global zone can initiate processes at specified labels.

Write-DownPolicy in theGlobal Zone
The ability of a subject, such as a process, to write an object whose label it dominates is referred to as
writing down. The write-down policy in the global zone is specified administratively. Because global
zone processes run at the ADMIN_HIGH label, certain file systems that are associated with other labels
can bemounted read-write in the global zone. However, these special file systemmountsmust be
administratively specified in automountmaps, and theymust bemounted by the global zone
automounter. Thesemountsmust havemount points within the zone path of the zone that has the
same label as the exported file system. However, thesemount points must not be visible fromwithin
the labeled zone.

For example, if the PUBLIC zone has a zone path of /zone/public, a writable mount point of
/zone/public/home/mydir is permitted. However, a writable mount point of
/zone/public/root/home/mydir is not permitted because it can be accessed by the labeled zone and
not by the global zone. No cross-zone NFSmounts are permitted, whichmeans that the

Trusted Extensions Security Policy

Chapter 1 • Solaris Trusted ExtensionsAPIs and Security Policy 19

NFS-mounted files can only be accessed by processes that run in the zone that mounted the file
system. Global zone processes can write down to such files, subject to the standard discretionary
access control (DAC) policy.

Local file systems associated with zones are protected from access by global zone processes by DAC,
which uses file permissions and access control lists (ACLs). The parent directory of each zone’s root
(/) directory is only accessible by root processes or by processes that assert the file_dac_search
privilege.

In general, the ability to write down from the global zone is restricted. Typically, writing down is used
only when a file is reclassified by using the setflabel() interface or when privileged users drag and
drop files between FileManager applications in different zones.

Default SecurityAttributes
Default security attributes are assigned tomessages that arrive on Trusted Extensions hosts from
other host types. The attributes are assigned according to settings in the network database files. For
information about host types, their supported security attributes, and network database file defaults,
see Solaris Trusted Extensions Administrator’s Procedures.

Default NetworkPolicy
For network operations that send or receive data, the default policy is that the local process and the
remote peermust have the same label. This policy applies to all zones, including the global zone,
whose network label is ADMIN_LOW. However, the default network policy is more flexible than the
policy formounting file systems. Trusted Extensions provides administrative interfaces and
programmatic interfaces for overriding the default network policy. For example, a system
administrator can create anMLP in the global zone or in a labeled zone to enable listening at
different labels.

Multilevel Ports

Caution –Use extreme caution when using amultilevel port to violateMACpolicy.When youmust
use this mechanism, ensure that your server application enforcesMAC policy.

Multilevel ports (MLPs) are listed in the tnzonecfg administrative database. Processes within the
zone can bind toMLPs if these processes assert the net_bindmlp privilege. If the port number is less
than 1024, the net_privaddr privilegemust also be asserted. Such bindings allow a process to accept
connections at all labels that are associated with the IP addresses to which the process is bound. The
labels that are associated with a network interface are specified in the tnrhdb database and the
tnrhtp database. The labels can be specified by a range, by a set of explicit enumerated labels, or by a
combination of both.

When a privileged process that is bound to anMLP receives a TCP request, the reply is automatically
sent with the label of the requester. For UDPdatagrams, the reply is sent with the label that is
specified by the SO_RECVUCRED option.

Trusted Extensions Security Policy

Solaris Trusted Extensions Developer’s Guide • October 200620

The privileged process can implement amore restrictiveMAC policy by comparing the label of the
request to other parameters. For example, a web server could compare the label of the requesting
process with the label of the file specified in the URL. The remote label can be determined by using
the getpeerucred() function, which returns the credentials of the remote peer. If the peer is running
in a zone on the same host, the ucred_get() library routine returns a full set of credentials.
Regardless of whether the peer is local or remote, the label of the peer is accessible from the ucred
data structure by using the ucred_getlabel() function. This label can be compared with other
labels by using functions such as bldominates().

Azone can have single-level ports andmultilevel ports. See “Multilevel Port Information” on page
55.

MAC-Exempt Sockets
The Trusted Extensions software provides an explicit socket option, SO_MAC_EXEMPT, to specify that
the socket can be used to communicate with an endpoint at a lower label.

Caution –The SO_MAC_EXEMPT socket optionmust never be used unintentionally. Use extreme caution
when using this socket option to disableMAC policy.When youmust use this mechanism, ensure
that your client application enforcesMAC policy.

The Trusted Extensions software restricts the use of the SO_MAC_EXEMPT option in these ways:

� To explicitly set the socket option, a process must assert the net_mac_aware privilege.
� To further restrict the use of this socket option, the net_mac_aware privilege can be removed

from the limit set for ordinary users.

See the user_attr(4) man page for details.

Sometimes, explicitly setting the socket option is not practical, such as when the socket is managed
by a library. In such circumstances, the socket option can be set implicitly. The setpflags() system
call enables you to set the NET_MAC_EXEMPT process flag. Setting this process flag also requires the
net_mac_exempt privilege.All sockets that are opened while the process flag is enabled automatically
have the SO_MAC_EXEMPT socket option set. See the setpflags(2) and getpflags(2) man pages.

For applications that cannot be modified or recompiled, use the ppriv -M command to pass the
net_mac_exempt process flag to the application. In this case, all sockets that are opened by the
application have the SO_MAC_EXEMPT option set. However, child processes of the application do not
have this process flag or the related privilege.

Whenever you can, scrutinize andmodify the source code of an application when you need to use the
SO_MAC_EXEMPT socket option. If you cannotmake suchmodifications to the code or if a safer
method is not available to you, you may use the ppriv -M command.

The SO_MAC_EXEMPT socket option has been used sparingly by the Solaris OS. This option has been
used by the NFS client.AnNFS client might need to communicate with anNFS server that runs at a
different label on an untrusted operating system. TheNFS client enforcesMAC policy to ensure that
inappropriate requests are not granted.

Trusted Extensions Security Policy

Chapter 1 • Solaris Trusted ExtensionsAPIs and Security Policy 21

In the Solaris OS, both the NFS server and client code include and enforceMAC policy so that
communications between the Solaris client or server and an untrusted client or server hasMAC
policy enabled. To enable an untrusted host to communicate with a system that runs Trusted
Extensions, the untrusted host must have an entry in the tnrhdb database. Formore information, see
“Configuring Trusted Network Databases (Tasks)” in Solaris Trusted Extensions Administrator’s
Procedures.

Note – For examples of how the Trusted ExtensionsAPIs are used in the Solaris OS, see the Solaris
source code. Go to the Open Solaris web site (http://opensolaris.org/) and click Source Browser
in the left navigation bar. Use the Source Browser to search through the Solaris source code.

Zones and Labels
All objects on a system configured with Trusted Extensions are associated with a zone. Such zones are
called labeled zones. A labeled zone is a non-global zone and is accessible to ordinary users.Auser
who is cleared at more than one label is permitted access to a zone at each of those labels.

The global zone is a special zone that contains files and processes that control the security policy of
the system. Files in the global zone can only be accessed by roles and by privileged processes.

Labels in theGlobal Zone
The global zone is assigned a range of labels. The range is from ADMIN_LOW to ADMIN_HIGH.
ADMIN_HIGH and ADMIN_LOW are administrative labels.

Objects in the global zone that are shared with other zones are assigned the ADMIN_LOW label. For
example, files in the /usr, /sbin, and /lib directories are assigned the ADMIN_LOW label. These
directories and their contents are shared by all zones. These files and directories are typically installed
from packages and are generally notmodified, except during packaging or patching procedures. To
modify ADMIN_LOW files, a process must typically be run by superuser or by someone who has all
privileges.

Information that is private to the global zone is assigned the label ADMIN_HIGH. For example, all
processes in the global zone and all administrative files in the /etc directory are assigned the
ADMIN_HIGH label. Home directories that are associated with roles are assigned the ADMIN_HIGH label.
Multilevel information that is associated with users is also assigned the ADMIN_HIGH label. See
“Multilevel Operations” on page 19.Access to the global zone is restricted. Only system services and
administrative roles can execute processes in the global zone.

LabeledZones
Non-global zones are called labeled zones. Each labeled zone has a unique label.All objects within a
labeled zone have the same label. For example, all processes that run in a labeled zone have the same
label.All files that are writable in a labeled zone have the same label.Auser who is cleared formore
than one label has access to a labeled zone at each label.

Trusted Extensions Security Policy

Solaris Trusted Extensions Developer’s Guide • October 200622

http://opensolaris.org/

Trusted Extensions defines a set of labelAPIs for zones. TheseAPIs obtain the labels that are
associated with labeled zones and the path names within those zones:

� getpathbylabel()

� getzoneidbylabel()

� getzonelabelbyid()

� getzonelabelbyname()

� getzonerootbyid()

� getzonerootbylabel()

� getzonerootbyname()

Formore information about theseAPIs, see “Accessing Labels in Zones” on page 29.

The label of a file is based on the label of the zone or of the host that owns the file. Therefore, when
you relabel a file, the filemust bemoved to the appropriate labeled zone or to the appropriate labeled
host. This process of relabeling a file is also referred to as reclassifying a file. The setflabel() library
routine can relabel a file bymoving the file. To relabel a file, a process must assert the
file_upgrade_sl privilege or the file_downgrade_sl privilege. See the getlabel(2) and
setflabel(3TSOL)man pages.

Formore information about setting privileges, see “Developing PrivilegedApplications,” in Solaris
Security for Developers Guide.

Trusted Extensions Security Policy

Chapter 1 • Solaris Trusted ExtensionsAPIs and Security Policy 23

24

Labels and Clearances

This chapter describes the Solaris Trusted ExtensionsAPIs for performing basic label operations
such as initializing labels, and comparing labels and clearances. This chapter also describes theAPIs
for accessing the label of a process.

For examples of how the Trusted ExtensionsAPIs are used in the Solaris OS, see the Solaris source
code. Go to the Open Solaris web site (http://opensolaris.org/) and click Source Browser in the
left navigation bar. Use the Source Browser to search through the Solaris source code.

This chapter covers the following topics:

� “PrivilegedOperations and Labels” on page 25
� “LabelAPIs” on page 27
� “Acquiring a Sensitivity Label” on page 34

Chapter 3 provides code examples for the programming interfaces that are described in this chapter.

PrivilegedOperations and Labels
When an operation can bypass or override the security policy, the operation requires special
privileges in its effective set.

Privileges are added to the effective set programmatically or administratively in these ways:

� If the executable file is owned by root and has the set user ID permission bit set, it starts with all
privileges in its effective set. For example, the CDE FileManager starts with all privileges in its
effective set. Then, FileManager programmatically relinquishesmost of its privileges to retain
only the ones it needs to perform drag-and-drop operations across labels.

� The administrator can specify privileges inmanifest files for SMF services or in the RBAC
database exec_attr file for general commands. Formore information about this file, see the
exec_attr(4) man page.

The operation needs special privileges when translating binary labels and when upgrading or
downgrading sensitivity labels.

2C H A P T E R 2

25

http://opensolaris.org/

Users and roles can run operations with special privileges. These privileges can be specified by using
rights profiles. Applications can be written to run certain functions with certain privileges, as well.
When you write an application that must assume special privileges, make sure that you enable the
privilege only while running the function that needs it and that you remove the privilege when the
function completes. This practice is referred to as privilege bracketing. Formore information, see
Solaris Security for Developers Guide.

� Translating binary labels –You can translate a label between its internal representation and a
string. If the label being translated is not dominated by the label of the process, the calling process
requires the sys_trans_label privilege to perform the translation.

� Upgrading or downgrading sensitivity labels –You can downgrade or upgrade the sensitivity
label on a file. If the file is not owned by the calling process, the calling process requires the
file_owner privilege in its effective set. Formore information, see the setflabel(3TSOL)man
page.
Aprocess can set the sensitivity label on a file system object to a new sensitivity label that does not
dominate the object’s existing sensitivity label with the file_downgrade_sl privilege in its
effective set. The file_downgrade_sl privilege also allows a file to be relabeled to a disjoint label.
Aprocess can set the sensitivity label on a file system object to a new sensitivity label that
dominates the object’s existing sensitivity label with the file_upgrade_sl privilege in its
effective set.

Most applications do not use privileges to bypass access controls because the applications operate in
one of the following ways:

� The application is launched at one sensitivity label and accesses data in objects at that same
sensitivity label.

� The application is launched at one sensitivity label and accesses data in objects at other sensitivity
labels, but themandatory access operations are permitted by the system security policy. For
example, read-down is allowed byMAC.

If an application tries to access data at sensitivity labels other than the sensitivity label of its process
and access is denied, the process needs privileges to gain access. Privileges enable an application to
bypassMAC orDAC. For example, the file_dac_read, file_dac_write, and file_dac_search
privileges bypass DAC. The file_upgrade_sl and file_downgrade_sl privileges bypassMAC. No
matter how access is obtained, the application designmust not compromise the classification of the
data that is accessed.

When your application changes its own sensitivity label or the sensitivity label of another object, be
sure to close all file descriptors.An open file descriptormight leak sensitive data to other processes.

Privileged Operations and Labels

Solaris Trusted Extensions Developer’s Guide • October 200626

LabelAPIs
This section describes theAPIs that are available for basic label operations. To use theseAPIs, you
must include the following header file:

#include <tsol/label.h>

The labelAPIs compile with the -ltsol library option.

The Trusted ExtensionsAPIs include data types for the following:

� Sensitivity label –The m_label_t type definition represents a sensitivity label. The m_label_t
structure is opaque.
Interfaces accept a variable of type m_label_t as a parameter. Interfaces can return sensitivity
labels in a variable of type m_label_t. The m_label_t type definition is compatible with the
blevel_t structure.

� Sensitivity label range –The brange_t data structure represents a range of sensitivity labels. The
structure holds aminimum label and amaximum label. The structure fields are referred to as
variable.lower_bound and variable.upper_bound.

TheAPIs for the following operations are described in this section:

� Accessing the process sensitivity label
� Allocating and freeingmemory for labels
� Obtaining and setting the label of a file
� Obtaining label ranges
� Accessing labels in zones
� Obtaining the remote host type
� Translating between labels and strings
� Comparing labels

Accessing theProcess Sensitivity Label
The getplabel() and ucred_getlabel() routines are used to access the sensitivity label of a
process. The following routine descriptions include the prototype declaration for each routine:

int getplabel(m_label_t *label_p);

The getplabel() routine obtains the process label of the calling process.

See the getplabel(3TSOL)man page.

m_label_t *ucred_getlabel(const ucred_t *uc);

The ucred_getlabel() routine obtains the label in the credential of the remote process.

See the ucred_getlabel(3C)man page. For an example of this routine’s use, see
“get_peer_label() Label-Aware Function” on page 47.

LabelAPIs

Chapter 2 • Labels and Clearances 27

Allocating andFreeingMemory for Labels
The m_label_alloc(), m_label_dup(), and m_label_free() routines are used to allocate and free
memory for labels. The following routine descriptions include the prototype declaration for each
routine:

m_label_t *m_label_alloc(const m_label_type_t label_type);

The m_label_alloc() routine allocates a label in an m_label_t data structure on the heap. Labels
must be allocated before calling routines such as getlabel() and fgetlabel(). Some routines,
such as str_to_label(), automatically allocate an m_label_t structure.

When you create a label by using the m_label_alloc() routine, you can set the label type to be a
sensitivity label or a clearance label.

int m_label_dup(m_label_t **dst, const m_label_t *src);

The m_label_dup() routine duplicates a label.

void m_label_free(m_label_t *label);

The m_label_free() routine frees thememory that was allocated for a label.

When you allocate an m_label_t structure or when you call another routine that automatically
allocates an m_label_t structure, you are responsible for freeing the allocatedmemory. The
m_label_free() routine frees the allocatedmemory.

See the m_label(3TSOL)man page.

Obtaining andSetting the Label of a File
The setflabel() routine, the getlabel() system call, and the fgetlabel() system call are used to
obtain and set the label of a file. The following descriptions include the prototype declarations for the
routine and the system calls:

int setflabel(const char *path, const m_label_t *label_p);

The setflabel() routine changes the sensitivity label of a file.When the sensitivity label of a file
changes, the file is moved to a zone that corresponds to the new label. The file is moved to a new
path name that is relative to the root of the other zone.

See the setflabel(3TSOL)man page.

For example, if you use the setflabel() routine to change the label of the file
/zone/internal/documents/designdoc.odt from INTERNAL to RESTRICTED, the new path of the
file will be /zone/restricted/documents/designdoc.odt. Note that if the destination directory
does not exist, the file is notmoved.

When you change the sensitivity label of a file, the original file is deleted. The only exception
occurs when the source and destination file systems are loopback-mounted from the same
underlying file system. In this case, the file is renamed.

When a process creates an object, the object inherits the sensitivity label of its calling process. The
setflabel() routine programmatically sets the sensitivity label of a file system object.

LabelAPIs

Solaris Trusted Extensions Developer’s Guide • October 200628

The FileManager application and the setlabel command permit an authorized user tomove an
existing file to a different sensitivity label. See the setlabel(1) man page.

int getlabel(const char *path, m_label_t *label_p);

The getlabel() system call obtains the label of a file that is specified by path. The label is stored
in an m_label_t structure that you allocate.

See the getlabel(2) man page.

int fgetlabel(int fd, m_label_t *label_p);

The fgetlabel() system call obtains the label of an open file by specifying a file descriptor.

When you allocate an m_label_t structure, you are responsible for freeing the allocatedmemory by
using the m_label_free() routine. See the m_label(3TSOL)man page.

Obtaining Label Ranges
The getuserrange() and getdevicerange() routines are used to obtain the label range of a user
and a device, respectively. The following routine descriptions include the prototype declaration for
each routine:

m_range_t *getuserrange(const char *username);

The getuserrange() routine obtains the label range of the specified user. The lower bound in the
range is used as the initial workspace label when a user logs in to amultilevel desktop. The upper
bound, or clearance, is used as an upper limit to the available labels that a user can assign to
labeled workspaces.

The default value for a user’s label range is specified in the label_encodings file. The value can be
overridden by the user_attr file.

See the setflabel(3TSOL), label_encodings(4), and user_attr(4) man pages.

bl_range_t *getdevicerange(const char *device);

The getdevicerange() routine obtains the label range of a user-allocatable device. If no label
range is specified for the device, the default range has an upper bound of ADMIN_HIGH and a lower
bound of ADMIN_LOW.

You can use the list_devices command to show the label range for a device.

See the list_devices(1) and getdevicerange(3TSOL)man pages.

Accessing Labels in Zones
These functions obtain label information from objects in zones. The following routine descriptions
include the prototype declaration for each routine:

LabelAPIs

Chapter 2 • Labels and Clearances 29

char *getpathbylabel(const char *path, char *resolved_path, size_t bufsize, const

m_label_t *sl);

The getpathbylabel() routine expands all symbolic links and resolves references to /./, /../,
removes extra slash (/) characters, and stores the zone path name in the buffer named by
resolved_path. The bufsize variable specifies the size in bytes of this buffer. The resulting path does
not have any symbolic link components or any /./, /../. This function can only be called from
the global zone.

The zone path name is relative to the sensitivity label, sl. To specify a sensitivity label for a zone
name that does not exist, the process must assert either the priv_file_upgrade_sl or the
priv_file_downgrade_sl privilege, depending on whether the specified sensitivity label
dominates or does not dominate the process sensitivity label.

See the getpathbylabel(3TSOL)man page.

m_label_t *getzoneidbylabel(const m_label_t *label);

The getzoneidbylabel() routine returns the zone ID of the zone whose label is label. This
routine requires that the specified zone’s state is at least ZONE_IS_READY. The zone of the calling
process must dominate the specified zone’s label, or the calling process must be in the global zone.

See the getzoneidbylabel(3TSOL)man page.

m_label_t *getzonelabelbyid(zoneid_t zoneid);

The getzonelabelbyid() routine returns theMAC label of zoneid. This routine requires that the
specified zone’s state is at least ZONE_IS_READY. The zone of the calling process must dominate the
specified zone’s label, or the calling process must be in the global zone.

See the getzonelabelbyid(3TSOL)man page.

m_label_t *getzonelabelbyname(const char *zonename);

The getzonelabelbyname() routine returns theMAC label of the zone whose name is zonename.
This routine requires that the specified zone’s state is at least ZONE_IS_READY. The zone of the
calling process must dominate the specified zone’s label, or the calling process must be in the
global zone.

See the getzonelabelbyname(3TSOL)man page.

m_label_t *getzonerootbyid(zoneid_t zoneid);

The getzonerootbyid() routine returns the root path name of zoneid. This routine requires that
the specified zone’s state is at least ZONE_IS_READY. The zone of the calling process must dominate
the specified zone’s label, or the calling process must be in the global zone. The returned path
name is relative to the root path of the caller’s zone.

See the getzonerootbyid(3TSOL)man page.

m_label_t *getzonerootbylabel(const m_label_t *label);

The getzonerootbylabel() routine returns the root path name of the zone whose label is label.
This routine requires that the specified zone’s state is at least ZONE_IS_READY. The zone of the
calling process must dominate the specified zone’s label, or the calling process must be in the
global zone. The returned path name is relative to the root path of the caller’s zone.

LabelAPIs

Solaris Trusted Extensions Developer’s Guide • October 200630

See the getzonerootbylabel(3TSOL)man page.

m_label_t *getzonerootbyname(const char *zonename);

The getzonerootbyname() routine returns the root path name of zonename. This routine
requires that the specified zone’s state is at least ZONE_IS_READY. The zone of the calling process
must dominate the specified zone’s label, or the calling process must be in the global zone. The
returned path name is relative to the root path of the caller’s zone.

See the getzonerootbyname(3TSOL)man page.

Obtaining theRemoteHost Type
This routine determines the remote host type. The following routine description includes the
prototype declaration:

tsol_host_type_t tsol_getrhtype(char *hostname);

The tsol_getrhtype() routine queries the kernel-level network information to determine the
host type that is associated with the specified host name. hostname can be a regular host name, an
IP address, or a network wildcard address. The returned value is one of the enumerated types that
is defined in the tsol_host_type_t structure. Currently, these types are UNLABELED and
SUN_CIPSO.

See the tsol_getrhtype(3TSOL)man page.

TranslatingBetween Labels andStrings
The label_to_str() and str_to_label() routines are used to translate between labels and strings.
The following routine descriptions include the prototype declaration for each routine:

int label_to_str(const m_label_t *label, char **string, const m_label_str_t

conversion_type, uint_t flags);

The label_to_str() routine translates a label, m_label_t, to a string. You can use this routine to
translate a label into a string that hides the classification name. This format is suitable for storing
in public objects. The calling process must dominate the label to be translated, or the process must
have the sys_trans_label privilege.

See the label_to_str(3TSOL)man page.

The label_to_str() routine allocates memory for the translated string. The caller must free this
memory by calling the free() routine.

See the free(3C)man page.

int str_to_label(const char *string, m_label_t **label, const m_label_type_t

label_type, uint_t flags, int *error);

The str_to_label() routine translates a label string to a label, m_label_t. When you allocate an
m_label_t structure, youmust free the allocatedmemory by using the m_label_free() routine.

LabelAPIs

Chapter 2 • Labels and Clearances 31

When you create a label by using the str_to_label() routine, you can set the label type to be a
sensitivity label or a clearance label.

See the str_to_label(3TSOL) and m_label(3TSOL)man pages.

ReadableVersions of Labels
The label_to_str() routine provides readable versions of labels. The M_LABEL conversion type
returns a string that is classified at that label. The M_INTERNAL conversion type returns a string that is
unclassified. The classified string version is typically used for displays, as in windows. The classified
stringmight not be suitable for storage. Several conversion types are offered for printing purposes.
All printing types show a readable string that is classified at the label that the string shows.

The conversion_type parameter controls the type of label conversion. The following are valid
values for conversion_type, although not all types of conversion are valid for both level types:

� M_LABEL is a string of the label that is based on the type of label: sensitivity or clearance. This label
string is classified at the level of the label and is therefore not safe for storing in a public object.
For example, an M_LABEL string such as CONFIDENTIAL is not safe for storing in a public directory
because the words in the label are often classified.

� M_INTERNAL is a string of an unclassified representation of the label. This string is safe for storing
in a public object. For example, an M_INTERNAL string such as 0x0002-04-48 is safe for storing in
an LDAPdatabase.

� M_COLOR is a string that represents the color that the security administrator has associated with
the label. The association between the label and the color is stored in the LOCAL DEFINITIONS
section of the label_encodings file.

� PRINTER_TOP_BOTTOM is a string used as the top and the bottom label of banner and trailer pages.
� PRINTER_LABEL is a string used as the downgrade warning on the banner page.
� PRINTER_CAVEATS is a string used in the caveats section on the banner page.
� PRINTER_CHANNEL is a string used as the handling channels on the banner page.

Label Encodings File
The label_to_str() routine uses the label definitions in the label_encodings file. The encodings
file is a text file that is maintained by the security administrator. The file contains site-specific label
definitions and constraints. This file is kept in /etc/security/tsol/label_encodings. For
information about the label_encodings file, see Solaris Trusted Extensions Label Administration,
CompartmentedModeWorkstation Labeling: Encodings Format, and the label_encodings(4) man
page.

LabelAPIs

Solaris Trusted Extensions Developer’s Guide • October 200632

Comparing Labels
The blequal(), bldominates(), and blstrictdom() routines are used to compare labels. The
blinrange() routine is used to determine whether a label is within a specified label range. In these
routines, a level refers to a classification and a set of compartments in a sensitivity label or in a
clearance label.

int blequal(const blevel_t *level1, const blevel_t *level2);

The blequal() routine compares two labels to determine whether level1 equals level2.

int bldominates(const m_label_t *level1, const m_label_t *level2);

The bldominates() routine compares two labels to determine whether level1 dominates level2.

int blstrictdom(const m_label_t *level1, const m_label_t *level2);

The blstrictdom() routine compares two labels to determine whether level1 strictly dominates
level2.

int blinrange(const m_label_t *level, const brange_t *range);

The blinrange() routine determines whether the label, level, is within the specified range, range.

These routines return a nonzero value when the comparison is true and a value of 0when the
comparison is false. Formore information about these routines, see the blcompare(3TSOL)man
page. For examples of how these routines are used in themultilevel printing application, see
“Validating the Label RequestAgainst the Printer’s Label Range” on page 51.

Formore information about label relationships, see “Label Relationships” on page 13.

The blmaximum() and blminimum() routines are used to determine the upper and lower bounds of
the specified label range.

void blmaximum(m_label_t *maximum_label, const m_label_t *bounding_label);

The blmaximum() routine compares two labels to find the least upper bound of the range. The
least upper bound is the lower of two clearances, which is used to determine whether you have
access to a system of a particular clearance.

See the blminmax(3TSOL)man page.

void blminimum(m_label_t *minimum_label, const m_label_t *bounding_label);

The blminimum() routine compares two labels to find the label that represents the greatest lower
bound of the range that is bounded by the two levels. The greatest lower bound is the higher of two
labels, which is also used to determine whether you have access to a system of a particular
clearance.

See the blminmax(3TSOL)man page.

LabelAPIs

Chapter 2 • Labels and Clearances 33

Acquiring a Sensitivity Label
Sensitivity labels are acquired from labeled zones and from other processes.Auser can start a process
only at the current sensitivity label of the current zone.

When a process creates an object, the object inherits the sensitivity label of its calling process. You
can use the setlabel command or the setflabel() routine to set the sensitivity label of a file system
object. See the setlabel(1) and setflabel(3TSOL)man pages.

The following script, runwlabel, runs a program that you specify in the labeled zone that you specify.
Youmust run this script from the global zone.

EXAMPLE 2–1runwlabel Script

The runwlabel script must first acquire the sensitivity label of the labeled zone in which you want to
run the specified program. This script uses the getzonepath command to obtain the zone path from
the label that you specify on the command line. See the getzonepath(1) man page.

Next, the runwlabel script uses the zoneadm command to find the zone name associated with the
zone path, which was acquired by the getzonepath command. See the zoneadm(1M)man page.

Finally, the runwlabel script uses the zlogin command to run the program that you specify in the
zone associated with the label you specified. See the zlogin(1) man page.

To run the zonename command in the zone associated with the Confidential: Internal Use Only
label, run the runwlabel script from the global zone. For example:

machine1% runwlabel "Confidential : Internal Use Only" zonename

The following shows the source of the runwlabel script:

#!/sbin/sh

#

Usage:

runwlabel "my-label" my-program

#

[! -x /usr/sbin/zoneadm] && exit 0 # SUNWzoneu not installed

PATH=/usr/sbin:/usr/bin; export PATH

Get the zone path associated with the "my-label" zone

Remove the trailing "/root"

zonepath=‘getzonepath "$1" | sed -e ’s/\/root$//’‘

progname="$2"

Find the zone name that is associated with this zone path

for zone in ‘zoneadm list -pi | nawk -F: -v zonepath=${zonepath} ’{

if ("$4" == "${zonepath}") {

Acquiring a Sensitivity Label

Solaris Trusted Extensions Developer’s Guide • October 200634

EXAMPLE 2–1 runwlabel Script (Continued)

print $2

}

}’‘; do

Run the specified command in the matching zone

zlogin ${zone} ${progname}

done

exit

The following script, runinzone, runs a program in a zone that you specify even if the zone is not
booted. Youmust run this script from the global zone.

EXAMPLE 2–2runinzone Script

The script first boots the zone you specified, and then it uses the zlogin command to run the
waitforzone script in the specified zone.

The waitforzone script waits for the local zone automounter to come up, and then it runs the
program you specified as the user you specified.

To run the zonename in the zone associated with the Confidential: Internal Use Only label, run
the following runinzone from the global zone.

machine1% runinzone "Confidential : Internal Use Only" terry zonename

The following shows the source of the runinzone script:

#!/sbin/ksh

zonename=$1

user=$2

program=$3

Boot the specified zone

zoneadm -z ${zonename} boot

Run the command in the specified zone

zlogin ${zonename} /bin/demo/waitforzone ${user} ${program} ${DISPLAY}

The runinzone script calls the following script, waitforzone:

#!/bin/ksh

user=$1

program=$2

display=$3

Wait for the local zone automounter to come up

Acquiring a Sensitivity Label

Chapter 2 • Labels and Clearances 35

EXAMPLE 2–2 runinzone Script (Continued)

by checking for the auto_home trigger being loaded

while [! -d /home/${user}]; do

sleep 1

done

Now, run the command you specified as the specified user

su - ${user} -c "${program} -display ${display}"

Acquiring a Sensitivity Label

Solaris Trusted Extensions Developer’s Guide • October 200636

Label Code Examples

This chapter contains several code examples that show how to use the labelAPIs that are described in
Chapter 2.

This chapter covers the following topics:

� “Obtaining a Process Label” on page 37
� “Obtaining a File Label” on page 38
� “Setting a File Sensitivity Label” on page 39
� “Determining the Relationship Between Two Labels” on page 40
� “Obtaining the Color Names of Labels” on page 41
� “Obtaining Printer Banner Information” on page 42

Obtaining aProcess Label
This code example shows how to obtain and print the sensitivity label of the zone in which this
program is run.

#include <tsol/label.h>

main()

{

m_label_t* pl;

char *plabel = NULL;

int retval;

/* allocate an m_label_t for the process sensitivity label */

pl = m_label_alloc(MAC_LABEL);

/* get the process sensitivity label */

if ((retval = getplabel(pl)) != 0) {

perror("getplabel(pl) failed");

exit(1);

}

3C H A P T E R 3

37

/* Translate the process sensitivity label to text and print */

if ((retval = label_to_str(pl, &plabel, M_LABEL, LONG_NAMES)) != 0) {

perror("label_to_str(M_LABEL, LONG_NAMES) failed");

exit(1);

}

printf("Process label = %s\n", plabel);

/* free allocated memory */

m_label_free(pl);

free(plabel);

}

The printf() statement prints the sensitivity label. The sensitivity label is inherited from the zone in
which the program is run. The following shows the text output of this example program:

Process label = ADMIN_LOW

The text output depends on the specifications in the label_encodings file.

Obtaining a File Label
You can obtain a file’s sensitivity label and perform operations on that label.

This code example uses the getlabel() routine to obtain the file’s label. The fgetlabel() routine
can be used in the same way, but it operates on a file descriptor.

#include <tsol/label.h>

main()

{

m_label_t* docLabel;

const char* path = "/zone/restricted/documents/designdoc.odt";

int retval;

char* label_string;

/* allocate label and get the file label specified by path */

docLabel = m_label_alloc(MAC_LABEL);

retval = getlabel(path, docLabel);

/* translate the file’s label to a string and print the string */

retval = label_to_str(docLabel, &label_string, M_LABEL, LONG_NAMES);

printf("The file’s label = %s\n", label_string);

/* free allocated memory */

m_label_free(docLabel);

free(label_string);

}

Obtaining a File Label

Solaris Trusted Extensions Developer’s Guide • October 200638

When you run this program, the outputmight look similar to this:

The file’s label = CONFIDENTIAL : INTERNAL USE ONLY

Setting a File Sensitivity Label
When you change the sensitivity label of a file, the file is moved to a new zone that matches the file’s
new label.

In this code example, the process is running at the CONFIDENTIAL label. The user who is running the
process has a TOP SECRET clearance. The TOP SECRET label dominates the CONFIDENTIAL label. The
process upgrades the sensitivity label to TOP SECRET. The user needs the Upgrade File Label RBAC
authorization to successfully perform the upgrade.

The following program is called upgrade-afile.

#include <tsol/label.h>

main()

{

int retval, error;

m_label_t *fsenslabel;

char *string = “TOP SECRET”;

*string1 = “TOP SECRET”;

/* Create new sensitivity label value */

if ((retval = str_to_label(string, &fsenslabel, MAC_LABEL, L_DEFAULT, &err)) != 0) {

perror("str_to_label(MAC_LABEL, L_DEFAULT) failed");

exit(1);

}

/* Set file label to new value */

if ((retval = setflabel(“/export/home/zelda/afile”, &fsenslabel)) != 0) {

perror("setflabel(“/export/home/zelda/afile”) failed");

exit(1);

}

m_label_free(fsenslabel);

}

The result of running this program depends on the process’s label, relative to the label of the file that
was passed to the process.

Before and after you run this program, you use the getlabel command to verify the file’s label.As
the following shows, before the program runs, the label for afile is CONFIDENTIAL. After the
program runs, the label for afile is TOP SECRET.

Setting a File Sensitivity Label

Chapter 3 • Label Code Examples 39

% pwd

/export/home/zelda

% getlabel afile

afile: CONFIDENTIAL

% update-afile

% getlabel afile

afile: TOP SECRET

If you run the getlabel command from awindow labeled CONFIDENTIAL after you reclassified the
file, it is no longer visible. If you run the getlabel command in a window labeled TOP SECRET, you
can see the reclassified file.

Determining theRelationshipBetweenTwoLabels
If your application accesses data at different sensitivity labels, perform checks in your code to ensure
that the process label has the correct relationship to the data label before you permit an access
operation to occur. You check the sensitivity label of the object that is being accessed to determine
whether access is permitted by the system.

The following code example shows how to test two sensitivity labels for equality, dominance, and
strict dominance. The program checks whether a file’s label is dominated by or is equal to the
process’s label.

#include <stdio.h>

#include <stdlib.h>

#include <tsol/label.h>

main(int argc, char *argv[])

{

m_label_t *plabel;

m_label_t *flabel;

plabel = m_label_alloc(MAC_LABEL);

flabel = m_label_alloc(MAC_LABEL);

if (getplabel(plabel) == -1) {

perror("getplabel");

exit(1);

}

if (getlabel(argv[1], flabel) == -1) {

perror("getlabel");

exit(1);

}

if (blequal(plabel, flabel)) {

Determining the Relationship Between Two Labels

Solaris Trusted Extensions Developer’s Guide • October 200640

printf("Labels are equal\n");

}

if (bldominates(plabel, flabel)) {

printf("Process label dominates file label\n");

}

if (blstrictdom(plabel, flabel)) {

printf("Process label strictly dominates file label\n");

}

m_label_free(plabel);

m_label_free(flabel);

return (0);

}

The text output of this program depends on the process’s label, relative to the label of the file that was
passed to the process, as follows:

� Because “dominates” includes “equal,” when the labels are equal, the output is the following:

Labels are equal

Process label dominates file label

� If the process’s label strictly dominates the file’s label, the output is the following:

Process label strictly dominates file label

Obtaining theColorNamesof Labels
This code example uses the label_to_str() function to obtain the color name of a label. The
mappings between color names and labels are defined in the label_encodings file.

#include <stdlib.h>

#include <stdio.h>

#include <tsol/label.h>

int

main()

{

m_label_t *plabel;

char *label = NULL;

char *color = NULL;

plabel = m_label_alloc(MAC_LABEL);

if (getplabel(plabel) == -1) {

Obtaining the Color Names of Labels

Chapter 3 • Label Code Examples 41

perror("getplabel");

exit(1);

}

if (label_to_str(plabel, &color, M_COLOR, 0) != 0) {

perror("label_to_string(M_COLOR)");

exit(1);

}

if (label_to_str(plabel, &label, M_LABEL, DEF_NAMES) != 0) {

perror("label_to_str(M_LABEL)");

exit(1);

}

printf("The color for the \"%s\" label is \"%s\".\n, label, color);

m_label_free(plabel);

return (0);

}

If the label_encodings filemaps the color blue to the label CONFIDENTIAL, the program prints the
following:

The color for the "CONFIDENTIAL" label is "BLUE".

ObtainingPrinter Banner Information
The label_encodings file defines several conversions that are useful for printing security
information on printer output. Label conversions are printed at the top and at the bottom of pages.
Other conversions, such as handling channels, can appear on the banner pages.

In the following code example, the label_to_str() routine converts a label to strings, such as the
header and footer, a caveats section, and handling channels. This routine is used internally by the
Trusted Extensions print system, as shown in Chapter 4.

#include <stdlib.h>

#include <stdio.h>

#include <tsol/label.h>

int

main()

{

m_label_t *plabel;

char *header = NULL;

char *label = NULL;

Obtaining Printer Banner Information

Solaris Trusted Extensions Developer’s Guide • October 200642

char *caveats = NULL;

char *channels = NULL;

plabel = m_label_alloc(MAC_LABEL);

if (getplabel(plabel) == -1) {

perror("getplabel");

exit(1);

}

if (label_to_str(plabel, &header, PRINTER_TOP_BOTTOM, DEF_NAMES) != 0) {

perror("label_to_str: header");

exit(1);

}

if (label_to_str(plabel, &label, PRINTER_LABEL, DEF_NAMES) != 0) {

perror("label_to_str: label");

exit(1);

}

if (label_to_str(plabel, &caveats, PRINTER_CAVEATS, DEF_NAMES) != 0) {

perror("label_to_str: caveats");

exit(1);

}

if (label_to_str(plabel, &channels, PRINTER_CHANNELS, DEF_NAMES) != 0) {

perror("label_to_str: channels");

exit(1);

}

printf("\t\t\t\"%s\"\n\n", header);

printf("\t\tUnless manually reviewed and downgraded, this output\n");

printf("\t\tmust be protected at the following label:\n\n");

printf("\t\t\t\"%s\"\n", label);

printf("\n\n\n");

printf("\t\t\"%s\"\n", caveats);

printf("\t\t\"%s\"\n", channels);

printf("\n\n");

printf("\t\t\t\"%s\"\n", header);

m_label_free(plabel);

return (0);

}

For a process label of TS SA SB, the text output might be the following:

"TOP SECRET"

Unless manually reviewed and downgraded, this output

must be protected at the following label:

"TOP SECRET A B SA SB"

Obtaining Printer Banner Information

Chapter 3 • Label Code Examples 43

"(FULL SB NAME) (FULL SA NAME)"

"HANDLE VIA (CH B)/(CH A) CHANNELS JOINTLY"

"TOP SECRET"

Formore information, see the label_encodings(4) man page,CompartmentedModeWorkstation
Labeling: Encodings Format, and Solaris Trusted Extensions Label Administration.

Obtaining Printer Banner Information

Solaris Trusted Extensions Developer’s Guide • October 200644

Printing and the LabelAPIs

Printing is one type of service that needs to be label-aware. This chapter introduces the Solaris
Trusted Extensions labelAPIs by using as an example themultilevel printing service that was
developed for Trusted Extensions.

This chapter covers the following topics:

� “Printing Labeled Output” on page 45
� “Designing a Label-AwareApplication” on page 46
� “Understanding theMultilevel Printing Service” on page 46
� “get_peer_label() Label-Aware Function” on page 47
� “Validating the Label RequestAgainst the Printer’s Label Range” on page 51

Printing LabeledOutput
Typically, printers are shared resources. Multilevel printing allows users who are operating at
different security levels to share a printer, subject to the restrictions of the security policy. The
printing service is also label-aware so that labels can be clearly marked on printed documents.

You can assume the SystemAdministrator role in role-based access control (RBAC) to configure a
printer so that the output is labeled. The session label at which the print job is initiated is printed on
the banner and trailer pages. The label of the session is also added to the header and footer of every
printed page. The labels can be printed because of a printing adapter. The Trusted Extensions
printing adapter determines the host label or the zone label at which the print request was initiated.
The adapter passes along this label information with the print job to enable the printed output to be
labeled.

4C H A P T E R 4

45

Designing a Label-AwareApplication
Most applications do not need to be label-aware. Therefore, most Solaris software applications run
under Trusted Extensions withoutmodification. The Trusted Extensions label-based access
restriction is designed to operate in a way that is consistent with Solaris OS standards. Generally, any
process that you bind to amultilevel port needs to be label-aware because it receives data at multiple
labels and is trusted to enforce the security policy.

For example, an applicationmight not be able to access a resource because the application is running
at a label that is lower than the required resource. However, an attempt to access that resource does
not result in a special error condition. Instead, the application might issue a File not found error.
Or, an applicationmight attempt to access information that has a higher label than the application is
allowed to access. However, the security policy dictates that without sufficient privileges, an
application cannot be aware of the existence of a resource with a higher label. Therefore, if an
application attempts to access a resource with a label that is higher than the application’s label, the
resulting error condition is not label-specific. The errormessage is the same as the errormessage that
is returned to an application that tries to access a resource that does not exist. The lack of “special
error conditions” helps to enforce security principles.

In Trusted Extensions, the operating system, not the application, enforces the security policy. This
security policy is called the themandatory access control (MAC) policy. For example, an application
does not determine if a protected resource is accessible. Ultimately, the operating system enforces the
MAC policy. If an application does not have sufficient privileges to access a resource, the resource is
not available to the application. Thus, an application does not need to know anything about labels to
access labeled resources.

Similarly, most label-aware applicationsmust be designed so that they can operate in a consistent
manner with applications that are not label-aware. Label-aware applicationsmust behave in
essentially the same way in environments that involve only a single label, in environments that are
unlabeled, and in environments that involvemultiple labels.An example of a single-label
environment is when a user session with a given label mounts a device at the same label. In an
unlabeled environment, a label is not explicitly set, but a default label is specified in the tnrhdb
database. See the tnrhdb(4) man page.

Understanding theMultilevel Printing Service
Because the printing service accepts requests from processes that operate at different labels, printing
must be label-aware. Ordinarily, MAC allows access only to resources that are at the same labels at
which the user is operating. Even when print requests are issued only at the same label, printing
should be label-aware to enable the printed output to display labels on the printed page.

Designing a Label-AwareApplication

Solaris Trusted Extensions Developer’s Guide • October 200646

To handle labels, the printing servicemust perform these essential functions:

� Determine if the host on which the print process is running is labeled or unlabeled
� If the printing process is running in a labeled environment, obtain the credential of the network

connection fromwhich the print request originates (the credential contains the label for that
process)

� Extract the label from the network credential
� Obtain the printer’s label range, that is, the range of labels for which the printer can accept

requests
� Determine if the user’s label falls within the acceptable range of labels for the specified printer

get_peer_label() Label-Aware Function
The get_peer_label() function in the lp/lib/lp/tx.c file implements the logic of multilevel
printing in Trusted Extensions. The following sections describe this function and step you through
its implementation.

In Trusted Extensions software, much of the logic for handling labels in the printing service is in the
get_peer_label() function. This function obtains the credential of the remote process in a ucred_t
data structure and extracts the label from the credential.

The following shows the get_peer_label() code.

int

get_peer_label(int fd, char **slabel)

{

if (is_system_labeled()) {

ucred_t *uc = NULL;

m_label_t *sl;

char *pslabel = NULL; /* peer’s slabel */

if ((fd < 0) || (slabel == NULL)) {

errno = EINVAL;

return (-1);

}

if (getpeerucred(fd, &uc) == -1)

return (-1);

sl = ucred_getlabel(uc);

if (label_to_str(sl, &pslabel, M_INTERNAL, DEF_NAMES) != 0)

syslog(LOG_WARNING, "label_to_str(): %m");

ucred_free(uc);

if (pslabel != NULL) {

get_peer_label() Label-Aware Function

Chapter 4 • Printing and the LabelAPIs 47

syslog(LOG_DEBUG, "get_peer_label(%d, %s): becomes %s",

fd, (*slabel ? *slabel : "NULL"), pslabel);

if (*slabel != NULL)

free(*slabel);

*slabel = strdup(pslabel);

}

}

return (0);

}

DeterminingWhether thePrinting Service Is Running
in a Labeled Environment
The printing service is designed to work in labeled and unlabeled environments. Therefore, the
printing applicationmust determine when the label of a remote host should be requested and
whether the label should be applied. The printing process first checks its own environment. Is the
process running in a label-aware environment?

Note that the application does not first determine whether the remote request is labeled. Instead, the
printing application determines if its own environment is labeled. If the application is not running
on a labeled host, theMAC policy prevents the printing application from receiving labeled requests.

The printing service uses the is_system_labeled() function to determine whether the process is
running in a labeled environment. For information about this function, see the
is_system_labeled(3C)man page.

This code excerpt shows how to determine whether the application is running in a labeled
environment:

if (is_system_labeled()) {

ucred_t *uc = NULL;

m_label_t *sl;

char *pslabel = NULL; /* peer’s slabel */

if ((fd < 0) || (slabel == NULL)) {

errno = EINVAL;

return (-1);

}

If the printing adapter process is running on a system configured with Trusted Extensions, the
is_system_labeled() function obtains the ucred_t credential abstraction from the remote process.
The ucred_t data structure for the remote process and the peer’s label are then set to NULL. The
functions that return values for the credential and the peer’s label fill the data structures. These data
structures are discussed in the following sections.

get_peer_label() Label-Aware Function

Solaris Trusted Extensions Developer’s Guide • October 200648

See “get_peer_label() Label-Aware Function” on page 47 to view the source of the entire
get_peer_label() routine.

Understanding theRemoteHost Credential
The Solaris OS networkAPI provides an abstraction of a process’s credentials. This credentials data
is available through a network connection. The credentials are represented by the ucred_t data
structure that was introduced in the Solaris 10 release. This structure can include the label of a
process.

The ucredAPI provides functions for obtaining the ucred_t data structure from a remote process.
ThisAPI also provides functions for extracting the label from the ucred_t data structure.

Obtaining theCredential andRemoteHost Label
Obtaining the label of a remote process is a two-step procedure. First, youmust obtain the credential.
Then, youmust obtain the label from this credential.

The credential is in the ucred_t data structure of the remote process. The label is in the m_label_t
data structure in the credential.After obtaining the credential of the remote process, you extract the
label information from that credential.

The getpeerucred() function obtains the ucred_t credential data structure from the remote
process. The ucred_getlabel() function extracts the label from the ucred_t data structure. In the
get_peer_label() function, the two-step procedure is coded as follows:

if (getpeerucred(fd, &uc) == -1)

return (-1);

sl = ucred_getlabel(uc);

See “get_peer_label() Label-Aware Function” on page 47 to view the source of the entire
get_peer_label() routine.

For information about the two functions, see the getpeerucred(3C) and ucred_getlabel(3C)man
pages.

In addition to obtaining a remote host’s label, you can obtain a remote host’s type. To obtain the
remote host type, use the tsol_getrhtype() routine. See “Obtaining the Remote Host Type”
on page 31.

Using the label_to_str() Function
After obtaining the credential and remote host label, an application can call label_to_str() to
convert the label data structure into a string. The string form of the label data structure can be used
by the application.

get_peer_label() Label-Aware Function

Chapter 4 • Printing and the LabelAPIs 49

Note that in the Trusted Extensions printing service, the label is returned as a string. The
get_peer_label() function returns the string that is obtained by calling label_to_str() on the
m_label_t data structure. This string value is returned in the slabel parameter of the
get_peer_label() function, char** slabel.

The following code excerpt shows how the label_to_str() function is used:

sl = ucred_getlabel(uc);

if (label_to_str(sl, &pslabel, M_INTERNAL, DEF_NAMES) != 0)

syslog(LOG_WARNING, "label_to_str(): %m");

ucred_free(uc);

if (pslabel != NULL) {

syslog(LOG_DEBUG, "get_peer_label(%d, %s): becomes %s",

fd, (*slabel ? *slabel : "NULL"), pslabel);

if (*slabel != NULL)

free(*slabel);

*slabel = strdup(pslabel);

}

See “get_peer_label() Label-Aware Function” on page 47 to view the source of the entire
get_peer_label() routine.

HandlingMemoryManagement
As shown in “get_peer_label() Label-Aware Function” on page 47, labels are often dynamically
allocated. The functions str_to_label(), label_to_str(), getdevicerange(), and other
functions allocatememory that must be freed by the caller. The followingman pages for these
functions describe thememory allocation requirements:

� getdevicerange(3TSOL)
� label_to_str(3TSOL)
� m_label(3TSOL)
� str_to_label(3TSOL)

get_peer_label() Label-Aware Function

Solaris Trusted Extensions Developer’s Guide • October 200650

Using theReturned Label String
The get_peer_label() function extracts the label from a remote host and returns that label as a
string. The printing application, as is typical of label-aware applications, uses the label for the
following purposes:

� Tomake sure that information associated with a label is clearly marked with the correct label. The
banner and trailer pages, as well as the header and footer, aremarked with the label of the
document being printed.

� To validate that the label of a resource permits a given operation to be performed by another
labeled resource. That is, the label of the requesting process permits this printer to accept a
request from that requesting process. This permission is based on the range of labels that this
printer is assigned.

Validating the Label RequestAgainst thePrinter’s Label
Range

In the printing application, the code for validating the label is contained in the
lp/cmd/lpsched/validate.c file.

Some types of applications need to compare two given labels. For example, an applicationmight
need to determine if one label strictly dominates another label. These applications useAPI functions
that compare one label to another label.

The printing application, however, is based on a range of labels.Aprinter is configured to accept
printing requests from a range of different labels. Therefore, the printing application usesAPI
functions that check a label against a range. The application checks that the label from the remote
host falls within the range of labels that the printer allows.

In the validate.c file, the printing application uses the blinrange() function to check the remote
host’s label against the label range of the printer. This check is made within the
tsol_check_printer_label_range() function, as shown here:

static int

tsol_check_printer_label_range(char *slabel, const char *printer)

{

int in_range = 0;

int err = 0;

blrange_t *range;

m_label_t *sl = NULL;

if (slabel == NULL)

return (0);

if ((err =

Validating the Label RequestAgainst the Printer’s Label Range

Chapter 4 • Printing and the LabelAPIs 51

(str_to_label(slabel, &sl, USER_CLEAR, L_NO_CORRECTION, &in_range)))

== -1) {

/* str_to_label error on printer max label */

return (0);

}

if ((range = getdevicerange(printer)) == NULL) {

m_label_free(sl);

return (0);

}

/* blinrange returns true (1) if in range, false (0) if not */

in_range = blinrange(sl, range);

m_label_free(sl);

m_label_free(range->lower_bound);

m_label_free(range->upper_bound);

free(range);

return (in_range);

}

The tsol_check_printer_label_range() function takes as parameters the label returned by the
get_peer_label() function and the name of the printer.

Before comparing the labels, tsol_check_printer_label_range() converts the string into a label
by using the str_to_label() function.

The label type is set to USER_CLEAR, which produces the clearance label of the associated object. The
clearance label ensures that the appropriate level of label is used in the range check that the
blinrange() function performs.

The sl label that is obtained from str_to_label() is checked to determine whether the remote
host’s label, slabel, is within the range of the requested device, that is, the printer. This label is tested
against the printer’s label. The printer’s range is obtained by calling the getdevicerange() function
for the selected printer. The range is returned as a blrange_t data structure.

The printer’s label range in the blrange_t data structure is passed into the blinrange() function,
along with the clearance label of the requester. See the blinrange(3TSOL)man page.

The following code excerpt shows the _validate() function in the validate.c file. This function is
used to find a printer to handle a printing request. This code compares the user ID and the label
associated with the request against the set of allowed users and the label range that is associated with
each printer.

/*

* If a single printer was named, check the request against it.

* Do the accept/reject check late so that we give the most

* useful information to the user.

*/

Validating the Label RequestAgainst the Printer’s Label Range

Solaris Trusted Extensions Developer’s Guide • October 200652

if (pps) {

(pc = &single)->pps = pps;

/* Does the printer allow access to the user? */

if (!CHKU(prs, pps)) {

ret = MDENYDEST;

goto Return;

}

/* Check printer label range */

if (is_system_labeled() && prs->secure->slabel != NULL) {

if (tsol_check_printer_label_range(prs->secure->slabel,

pps->printer->name) == 0) {

ret = MDENYDEST;

goto Return;

}

}

Validating the Label RequestAgainst the Printer’s Label Range

Chapter 4 • Printing and the LabelAPIs 53

54

Interprocess Communications

Asystem that is configured with Trusted Extensions enforcesmandatory access control (MAC) and
discretionary access control (DAC).Access control is enforced between communicating processes
on the same host and across the network. This chapter summarizes the interprocess communication
(IPC)mechanisms that are available in a system configured with Trusted Extensions. This chapter
also discusses how access controls apply.

For examples of how the Trusted ExtensionsAPIs are used in the Solaris OS, see the Solaris source
code. Go to the Open Solaris web site (http://opensolaris.org/) and click Source Browser in the
left navigation bar. Use the Source Browser to search through the Solaris source code.

This chapter covers the following topics:

� “Multilevel Port Information” on page 55
� “Communication Endpoints” on page 56

Multilevel Port Information
Asystem that is configured with Trusted Extensions supports single-level andmultilevel ports. These
ports are used to create connections between applications.Amultilevel port can receive data within
the range of sensitivity labels that is defined for that port.Asingle-level port can receive data at a
designated sensitivity label only.

� Single-level port –Acommunication channel is established between two unprivileged
applications. The sensitivity label of the communication endpoints must be equal.

� Multilevel port –Acommunication channel is established between an application with the
net_bindmlp privilege in its effective set and any number of unprivileged applications that run at
different sensitivity labels. The application with the net_bindmlp privilege in the effective set of
its process can receive all data from the applications, regardless of the receiving application’s
sensitivity label.

5C H A P T E R 5

55

http://opensolaris.org/

Amultilevel port is a server-sidemechanism to establish a connection between two Trusted
Extensions applications that are running at different labels. If you want a Trusted Extensions
client application to communicate with a service that runs on an untrusted operating system at a
different label, youmight be able to use the SO_MAC_EXEMPT socket option. Formore information,
see “MAC-Exempt Sockets” on page 21.

Caution – If a connection ismultilevel, ensure that the application does notmake a connection at one
sensitivity label, and then send or receive data at another sensitivity label. Such a configuration
would cause data to reach an unauthorized destination.

The Trusted Network library provides an interface to retrieve the label from a packet. The
programmatic manipulation of network packets is not needed. Specifically, you cannot change the
security attributes of amessage before it is sent.Also, you cannot change the security attributes on
the communication endpoint over which themessage is sent. You can read the label of a packet, just
as you read other security information of a packet. The ucred_getlabel() function is used to
retrieve label information.

If your application requires the use of amultilevel port, that port cannot be created
programmatically. Rather, youmust tell the system administrator to create amultilevel port for the
application.

Formore information aboutmultilevel ports, see the following:

� “Zones andMultilevel Ports” in Solaris Trusted Extensions Administrator’s Procedures
� “How to Create aMultilevel Port for a Zone” in Solaris Trusted Extensions Administrator’s

Procedures
� “How to Configure aMultilevel Print Server and Its Printers” in Solaris Trusted Extensions

Administrator’s Procedures

Communication Endpoints
The Trusted Extensions software supports IPC over communication endpoints by using the
following socket-basedmechanisms:

� Berkeley sockets
� Transport Layer Interface (TLI)
� Remote procedure calls (RPC)

This section summarizes the socket communicationmechanisms and the related security policy. See
the appropriate man page for specific information about the security policy and applicable privileges.

In addition to thesemechanisms, Trusted Extensions also supports multilevel ports. See “Multilevel
Port Information” on page 55.

Communication Endpoints

Solaris Trusted Extensions Developer’s Guide • October 200656

Berkeley Sockets andTLI
The Trusted Extensions software supports network communication by using Berkeley sockets and
the TLI over single-level ports andmultilevel ports. The AF_UNIX family of system calls establishes
interprocess connections in the same labeled zone bymeans of a special file that is specified by using
a fully resolved path name. The AF_INET family of system calls establishes interprocess connections
across the network by using IP addresses and port numbers.

AF_UNIX Family
In the AF_UNIX family of interfaces, only one server bind can be established to a single special file,
which is a UNIX® domain socket. The AF_UNIX family does not support multilevel ports.

Like UNIX domain sockets, doors and named pipes use special files for rendezvous purposes.

The default policy for all Trusted Extensions IPCmechanisms is that they are all constrained to work
within a single labeled zone. The following are exceptions to this policy:

� The global zone administrator canmake a named pipe (FIFO) available to a zone whose label
dominates the owning zone. The administrator does this by loopback-mounting the directory
that contains the FIFO.
Aprocess that runs in the higher-level zone is permitted to open the FIFO in read-onlymode.A
process is not permitted to use the FIFO to write down.

� Alabeled zone can access global zone door servers if the global zone rendezvous file is
loopback-mounted into the labeled zone.
The Trusted Extensions software depends on the door policy to support the labeld and nscd
doors-based services. The default zonecfg template specifies that the /var/tsol/doors directory
in the global zone is loopback-mounted into each labeled zone.

AF_INET Family
In the AF_INET family, the process can establish a single-label connection or amultilabel connection
to privileged or unprivileged port numbers. To connect to privileged port numbers, the
net_priv_addr privilege is required. If a multilevel port connection is sought, the net_bindmlp
privilege is also required.

The server process needs the net_bindmlp privilege in its effective set for amultilevel port
connection. If a single-level port connection is made instead, the server process needsmandatory
read-equal access to the socket, and the client process needsmandatory write-equal access. Both
processes needmandatory and discretionary access to the file. If access to the file is denied, any
process that is denied access needs the appropriate file privilege in its effective set to gain access.

The following code example shows how amultilevel server can obtain the labels of its connected
clients. The standard C library function getpeerucred() obtains a connected socket or a STREAM
peer’s credentials. In the context of Trusted Extensions, when the listening socket of amultilevel port
server accepts a connection request, the first argument is typically a client socket file descriptor. The
Trusted Extensions application uses the getpeerucred() function in exactly the same way a normal

Communication Endpoints

Chapter 5 • Interprocess Communications 57

application program does. The Trusted Extensions addition is ucred_getlabel(), which returns a
label. Formore information, see the ucred_get(3C)man page.

/*

* This example shows how a multilevel server can

* get the label of its connected clients.

*/

void

remote_client_label(int svr_fd)

{

ucred_t *uc = NULL;

m_label_t *sl;

struct sockaddr_in6 remote_addr;

bzero((void *)&remote_addr, sizeof (struct sockaddr_in6));

while (1) {

int clnt_fd;

clnt_fd = accept(svr_fd, (struct sockaddr *)&remote_addr,

&sizeof (struct sockaddr_in6));

/*

* Get client attributes from the socket

*/

if (getpeerucred(clnt_fd, &uc) == -1) {

return;

}

/*

* Extract individual fields from the ucred structure

*/

sl = ucred_getlabel(uc);

/*

* Security label usage here

*

*/

ucred_free(uc);

close(clnt_fd);

}

}

Communication Endpoints

Solaris Trusted Extensions Developer’s Guide • October 200658

RPCMechanism
The Trusted Extensions software providesmultilevel port support for remote procedure calls (RPCs).
Aclient application can send inquiries to a server’s PORTMAPPER service (port 111) whether or not a
particular service is available. If the requested service is registered with the PORTMAPPER on the server,
the server will dynamically allocate an anonymous port and return this port to the client.

On a Solaris Trusted Extensions system, an administrator can configure the PORTMAPPER port as a
multilevel port so that multiple single-level applications can use this service. If the PORTMAPPER port
is made amultilevel port, all anonymous ports allocated by the PORTMAPPER service are also
multilevel ports. There are no other programmable interfaces or administrative interfaces to control
anonymousmultilevel ports.

UsingMultilevel PortsWithUDP
The PORTMAPPER service described in the previous section is implemented by using UDP. Unlike
TCP, UDP sockets are not connection oriented, so some ambiguitymight arise about which
credentials to use when replying to a client on amultilevel port. Therefore, the client’s request socket
must be explicitly associated with the server’s reply packet. Tomake this association, use the
SO_RECVUCRED socket option.

When SO_RECVUCRED is set on a UDP socket, the kernel UDPmodule can pass a label in a ucred
structure as ancillary data to an application. The level and type values of the ucred are SOL_SOCKET
and SCM_UCRED, respectively.

An application can handle this ucred structure in one of these ways:

� Copy this ucred structure from the receiving buffer to the send buffer
� Reuse the receiving buffer as the send buffer and leave the ucred structure in the receiving buffer

The following code excerpt shows the reuse case.

/*

* Find the SCM_UCRED in src and place a pointer to that

* option alone in dest. Note that these two ’netbuf’

* structures might be the same one, so the code has to

* be careful about referring to src after changing dest.

*/

static void

extract_cred(const struct netbuf *src, struct netbuf *dest)

{

char *cp = src->buf;

unsigned int len = src->len;

const struct T_opthdr *opt;

unsigned int olen;

Communication Endpoints

Chapter 5 • Interprocess Communications 59

while (len >= sizeof (*opt)) {

/* LINTED: pointer alignment */

opt = (const struct T_opthdr *)cp;

olen = opt->len;

if (olen > len || olen < sizeof (*opt) ||

!IS_P2ALIGNED(olen, sizeof (t_uscalar_t)))

break;

if (opt->level == SOL_SOCKET &&

opt->name == SCM_UCRED) {

dest->buf = cp;

dest->len = olen;

return;

}

cp += olen;

len -= olen;

}

dest->len = 0;

}

The following code excerpt shows how to access the user credential from the receiving buffer:

void

examine_udp_label()

{

struct msghdr recv_msg;

struct cmsghdr *cmsgp;

char message[MAX_MSGLEN+1];

char inmsg[MAX_MSGLEN+1];

int on = 1;

setsockopt(sockfd, SOL_SOCKET, SO_RECVUCRED, (void *)&on,

sizeof (int));

[...]

while (1) {

if (recvmsg(sockfd, &recv_msg, 0) < 0) {

(void) fprintf(stderr, "recvmsg_errno: %d\n", errno);

exit(1);

}

/*

* Check ucred in ancillary data

*/

ucred = NULL;

for (cmsgp = CMSG_FIRSTHDR(&recv_msg); cmsgp;

cmsgp = CMSG_NXTHDR(&recv_msg, cmsgp)) {

Communication Endpoints

Solaris Trusted Extensions Developer’s Guide • October 200660

if (cmsgp->cmsg_level == SOL_SOCKET &&

cmsgp->cmsg_type == SCM_UCRED) {

ucred = (ucred_t *)CMSG_DATA(cmsgp);

break;

}

if (ucred == NULL) {

(void) sprintf(&message[0],

"No ucred info in ancillary data with UDP");

} else {

/*

* You might want to extract the label from the

* ucred by using ucred_getlabel(3C) here.

*/

}

}

[...]

if (message != NULL)

(void) strlcpy(&inmsg[0], message, MAX_MSGLEN);

/*

* Use the received message so that it will contain

* the correct label

*/

iov.iov_len = strlen(inmsg);

ret = sendmsg(sockfd, &recv_msg, 0);

}

}

Communication Endpoints

Chapter 5 • Interprocess Communications 61

62

Trusted X Window System

This chapter describes the Trusted Extensions XWindow SystemAPIs. This chapter also includes a
shortMotif application that is used to describe the Trusted XWindow System security policy and the
Solaris Trusted Extensions interfaces.

For examples of how the Trusted ExtensionsAPIs are used in the Solaris OS, see the Solaris source
code. Go to the OpenSolaris web site (http://opensolaris.org/) and click Source Browser in the
left navigation bar. Use the Source Browser to search through the Solaris source code.

This chapter covers the following topics:

� “Trusted XWindow System Environment” on page 63
� “Trusted XWindow System SecurityAttributes” on page 64
� “Trusted XWindow System Security Policy” on page 64
� “PrivilegedOperations and the Trusted XWindow System” on page 67
� “Trusted Extensions XWindow SystemAPIs” on page 67
� “Using Trusted XWindow System Interfaces” on page 73

TrustedXWindowSystemEnvironment
Asystem that is configured with Trusted Extensions uses the Solaris Trusted Extensions CDE, which
is an enhanced version of the CDE 1.7. The Solaris Trusted Extensions CDE uses the Trusted
Extensions XWindow System. The Trusted Extensions XWindow System includes protocol
extensions to support mandatory access control (MAC), discretionary access control (DAC), and the
use of privileges.

Data transfer sessions are polyinstantiated, meaning that they are instantiated at different sensitivity
labels and user IDs. Polyinstantiation ensures that data in an unprivileged client at one sensitivity
label or user ID is not transferred to another client at another sensitivity label or user ID. Such a
transfer might violate the Trusted XWindow SystemDAC policies and theMAC policies of
write-equal and read-down.

The Trusted Extensions XWindow SystemAPIs enable you to obtain and set security-related
attribute information. TheseAPIs also enable you to translate labels to strings by using a font list and

6C H A P T E R 6

63

http://opensolaris.org/

width to apply a style to the text string output. For example, the fontmight be 14-point, bold
Helvetica. These interfaces are usually called by administrative applications that are written with
Motif widgets, Xt Intrinsics, Xlib, and CDE interfaces.

� Obtaining security-related information –These interfaces operate at the Xlib level where X
protocol requests aremade. Use Xlib interfaces to obtain data for the input parameter values.

� Translating labels to strings –These interfaces operate at theMotif level. The input parameters
are the label, a font list that specifies the appearance of the text string output, and the desired
width.Acompound string of the specified style and width is returned.

For declarations of these routines, see “Trusted Extensions XWindow SystemAPIs” on page 67.

TrustedXWindowSystemSecurityAttributes
The Trusted XWindow System interfacesmanage security-related attribute information for various
XWindow System objects. You can choose to create a GUI application withMotif only. TheMotif
application should use XToolkit routines to retrieve the Xlib object IDs underlying theMotif widgets
to handle security attribute information for an Xlib object.

The XWindow System objects for which security attribute information can be retrieved by the
Trusted XWindow System interfaces are window, property, XWindow Server, and the connection
between the client and the XWindow Server. Xlib provides calls to retrieve the window, property,
display, and client connection IDs.

Awindow displays output to the user and accepts input from clients.

Aproperty is an arbitrary collection of data that is accessed by the property name. Property names
and property types can be referenced by an atom, which is a unique, 32-bit identifier and a character
name string.

The security attributes for windows, properties, and client connections consist of ownership IDs and
sensitivity label information. For information about the structures for capturing some of these
attributes, see “Data Types for X11” on page 68. For information about the interfaces that obtain
and set security attribute information, see “Trusted Extensions XWindow SystemAPIs” on page 67.

TrustedXWindowSystemSecurity Policy
Window, property, and pixmap objects have a user ID, a client ID, and a sensitivity label. Graphic
contexts, fonts, and cursors have a client ID only. The connection between the client and the X
Window Server has a user ID, an XWindow Server ID, and a sensitivity label.

The user ID is the ID of the client that created the object. The client ID is related to the connection
number to which the client that creates the object is connected.

The DAC policy requires a client to own an object to perform any operations on that object.Aclient
owns an object when the client’s user ID equals the object’s ID. For a connection request, the user ID

Trusted X Window System SecurityAttributes

Solaris Trusted Extensions Developer’s Guide • October 200664

of the client must be in the access control list (ACL) of the owner of the XWindow Server
workstation. Or, the client must assert the Trusted Path attribute.

TheMAC policy is write-equal for windows and pixmaps, and read-equal for naming windows. The
MAC policy is read-down for properties. The sensitivity label is set to the sensitivity label of the
creating client. The following shows theMAC policy for these actions:

� Modify, create, or delete –The sensitivity label of the clientmust equal the object’s sensitivity
label.

� Name, read, or retrieve –The client’s sensitivity label must dominate the object’s sensitivity
label.

� Connection request –The sensitivity label of the client must be dominated by the session
clearance of the owner of the XWindow Server workstation, or the client must assert the Trusted
Path attribute.

Windows can have properties that contain information to be shared among clients.Window
properties are created at the sensitivity label at which the application is running, so access to the
property data is segregated by its sensitivity label. Clients can create properties, store data in a
property on a window, and retrieve the data from a property subject toMAC andDAC restrictions.
To specify properties that are not polyinstantiated, update the TrustedExtensionsPolicy file.

The TrustedExtensionsPolicy file is supported for the Xsun server and the Xorg server:

� SPARC: For Xsun, the file is in /usr/openwin/server/etc.
� x86: For Xorg, the file is in /usr/X11/lib/X11/xserver.

These sections describe the security policy for the following:

� Root window
� Client windows
� Override-redirect windows
� Keyboard, pointer, and server control
� SelectionManager
� Default window resources
� Moving data between windows

RootWindow
The root window is at the top of the window hierarchy. The root window is a public object that does
not belong to any client, but it has data that must be protected. The root window attributes are
protected at ADMIN_LOW.

ClientWindows
Aclient usually has at least one top-level client window that descends from the root window and
additional windows nested within the top-level window.All windows that descend from the client’s
top-level window have the same sensitivity label.

Trusted X Window System Security Policy

Chapter 6 • Trusted X Window System 65

Override-RedirectWindows
Override-redirect windows, such asmenus and certain dialog boxes, cannot take the input focus
away from another client. This prevents the input focus from accepting input into a file at the wrong
sensitivity label. Override-redirect windows are owned by the creating client and cannot be used by
other clients to access data at another sensitivity label.

Keyboard, Pointer, andServer Control
Aclient needsMAC andDAC to gain control of the keyboard, pointer, and server. To reset the focus,
a client must own the focus or have the win_devices privilege in its effective set.

To warp a pointer, the client needs pointer control andMAC andDAC to the destination window. X
andY coordinate information can be obtained for events that involve explicit user action.

SelectionManager
The SelectionManager application arbitrates user-level interwindow datamoves, such as cut and
paste or drag and drop, where information is transferred between untrusted windows.When a
transfer is attempted, the SelectionManager captures the transfer, verifies the controlling user’s
authorization, and requests confirmation and labeling information from the user.Any time the user
attempts a datamove, the SelectionManager automatically appears. You do not need to update your
application code to get the SelectionManager to appear.

The administrator can set automatic confirmation for some transfer types, in which case the
SelectionManager does not appear. If the transfer meets theMAC andDAC policies, the data
transfer completes. The FileManager andWindowManager also act as selection agents for their
private drop sites. See the /usr/openwin/server/etc/TrustedExtensionsPolicy file to specify
selection targets that are polyinstantiated. See the /usr/dt/config/sel_config file to determine
which selection targets are automatically confirmed.

DefaultWindowResources
Resources that are not created by clients are default resources that are protected at ADMIN_LOW. Only
clients that run at ADMIN_LOW or with the appropriate privileges canmodify default resources.

The following are window resources:

� Root window attributes –All clients have read and create access, but only privileged clients have
write ormodify access. See “PrivilegedOperations and the Trusted XWindow System” on page
67.

� Default cursor –Clients are free to reference the default cursor in protocol requests.
� Predefined atoms –The TrustedExtensionsPolicy file contains a read-only list of predefined

atoms.

Trusted X Window System Security Policy

Solaris Trusted Extensions Developer’s Guide • October 200666

MovingDataBetweenWindows
Aclient needs the win_selection privilege in its effective set tomove data between one window and
another windowwithout going through the SelectionManager. See “SelectionManager” on page 66.

PrivilegedOperations and the TrustedXWindowSystem
Library routines that access a window, property, or atom namewithout user involvement require
MAC andDAC. Library routines that access frame buffer graphic contexts, fonts, and cursors
require discretionary access andmight also require additional privileges for special tasks.

The client might need one ormore of the following privileges in its effective set if access to the object
is denied: win_dac_read, win_dac_write, win_mac_read, or win_mac_write. See the
TrustedExtensionsPolicy file to enable or disable these privileges.

This list shows the privileges needed to perform the following tasks:

� Configuring and destroying window resources –Aclient process needs the win_config
privilege in its effective set to configure or destroy windows or properties that are permanently
retained by the XWindow Server. The screen saver timeout is an example of such a resource.

� Using window input devices –Aclient process needs the win_devices privilege in its effective
set to obtain and set keyboard and pointer controls, or tomodify pointer buttonmappings and
keymappings.

� Using direct graphics access –Aclient process needs the win_dga privilege in its effective set to
use the direct graphics access (DGA) X protocol extension.

� Downgrading window labels –Aclient process needs the win_downgrade_sl privilege in its
effective set to change the sensitivity label of a window, pixmap, or property to a new label that
does not dominate the existing label.

� Upgrading window labels –Aclient process needs the win_upgrade_sl privilege in its effective
set to change the sensitivity label of a window, pixmap, or property to a new label that dominates
the existing label.

� Setting a font path on a window –Aclient process needs the win_fontpath privilege in its
effective set tomodify the font path.

Trusted Extensions XWindowSystemAPIs
To use the Trusted X11APIs, you need the following header file:

#include <X11/extensions/Xtsol.h>

The Trusted X11 examples compile with the -lXtsol and -ltsol library options.

To use the X11 label-clippingAPIs, you need the following header file:

Trusted Extensions X Window SystemAPIs

Chapter 6 • Trusted X Window System 67

#include <Dt/label_clipping.h>

The label-clipping examples compile with the -lDtTsol and -ltsol library options.

The following sections provide data types and declarations for the Trusted X11 interfaces and the X11
label-clipping interfaces:

� Data types for X11
� Accessing attributes
� Accessing and setting a window label
� Accessing and setting a window user ID
� Accessing and setting a window property label
� Accessing and setting a window property user ID
� Accessing and setting a workstation owner ID
� Setting the XWindow Server clearance andminimum label
� Working with the Trusted Path window
� Accessing and setting the screen stripe height
� Setting window polyinstantiation information
� Working with the X11 label-clipping interface

Data Types for X11
The following data types are defined in X11/extensions/Xtsol.h and are used for the Trusted
Extensions XWindow SystemAPIs:

� Object type for X11 –The ResourceType definition indicates the type of resource to be handled.
The value can be IsWindow, IsPixmap, or IsColormap.
ResourceType is a type definition to represent a clearance. Interfaces accept a structure of type
m_label_t as parameters and return clearances in a structure of the same type.

� Object attributes for X11 –The XTsolResAttributes structure contains these resource
attributes:

typedef struct _XTsolResAttributes {

CARD32 ouid; /* owner uid */

CARD32 uid; /* uid of the window */

m_label_t *sl; /* sensitivity label */

} XTsolResAttributes;

� Property attributes for X11 –The XTsolPropAttributes structure contains these property
attributes:

typedef struct _XTsolPropAttributes {

CARD32 uid; /* uid of the property */

m_label_t *sl; /* sensitivity label */

} XTsolPropAttributes;

� Client attributes for X11 –The XTsolClientAttributes structure contains these client
attributes:

Trusted Extensions X Window SystemAPIs

Solaris Trusted Extensions Developer’s Guide • October 200668

typedef struct _XTsolClientAttributes {

int trustflag; /* true if client masked as trusted */

uid_t uid; /* owner uid who started the client */

gid_t gid; /* group id */

pid_t pid; /* process id */

u_long sessionid; /* session id */

au_id_t auditid; /* audit id */

u_long iaddr; /* internet addr of host where client is running */

} XTsolClientAttributes;

AccessingAttributes
The following routines are used to access resource, property, and client attributes:

Status XTSOLgetResAttributes(Display *display, XID object, ResourceType type,

XTSOLResAttributes *winattrp);

This routine returns the resource attributes for a window ID inwinattrp. See the
XTSOLgetResAttributes(3XTSOL)man page.

Status XTSOLgetPropAttributes(Display *display, Window window, Atom property,

XTSOLPropAttributes *propattrp);

This routine returns the property attributes for a property hanging on a window ID in propattrp.
See the XTSOLgetPropAttributes(3XTSOL)man page.

Status XTSOLgetClientAttributes(Display *display, XID windowid,

XTsolClientAttributes *clientattrp);

This routine returns the client attributes in clientattrp. See the
XTSOLgetClientAttributes(3XTSOL)man page.

Accessing andSetting aWindowLabel
The XTSOLgetResLabel() and XTSOLsetResLabel() routines are used to obtain and set the
sensitivity label of a window.

Status XTSOLgetResLabel(Display *display, XID object, ResourceType type, m_label_t

*sl);

This routine obtains the sensitivity label of a window. See the XTSOLgetResLabel(3XTSOL)man
page.

Status XTSOLsetResLabel(Display *display, XID object, ResourceType type, m_label_t

*sl);

This routine sets the sensitivity label of a window. See the XTSOLsetResLabel(3XTSOL)man
page.

Trusted Extensions X Window SystemAPIs

Chapter 6 • Trusted X Window System 69

Accessing andSetting aWindowUser ID
The XTSOLgetResUID() and XTSOLsetResUID() routines are used to obtain and set the user ID of a
window.

Status XTSOLgetResUID(Display *display, XID object, ResourceType type, uid_t *uidp);

This routine obtains the user ID of a window. See the XTSOLgetResUID(3XTSOL)man page.

Status XTSOLsetResUID(Display *display, XID object, ResourceType type, uid_t *uidp);

This routine sets the user ID of a window. See the XTSOLsetResUID(3XTSOL)man page.

Accessing andSetting aWindowProperty Label
The XTSOLgetPropLabel() and XTSOLsetPropLabel() routines are used to obtain and set the
sensitivity label of a property hanging on a window ID.

Status XTSOLgetPropLabel(Display *display, Window window, Atom property, m_label_t

*sl);

This routine obtains the sensitivity label of a property hanging on a window ID. See the
XTSOLgetPropLabel(3XTSOL)man page.

Status XTSOLsetPropLabel(Display *display, Window window, Atom property, m_label_t

*sl);

This routine sets the sensitivity label of a property hanging on a window ID. See the
XTSOLsetPropLabel(3XTSOL)man page.

Accessing andSetting aWindowPropertyUser ID
The XTSOLgetPropUID() and XTSOLsetPropUID() routines are used to obtain and set the user ID of
a property hanging on a window ID.

Status XTSOLgetPropUID(Display *display, Window window, Atom property, uid_t *uidp);

This routine obtains the user ID of a property hanging on a window ID. See the
XTSOLgetPropUID(3XTSOL)man page.

Status XTSOLsetPropUID(Display *display, Window window, Atom property, uid_t *uidp);

This routine sets the user ID of a property hanging on a window ID. See the
XTSOLsetPropUID(3XTSOL)man page.

Accessing andSetting aWorkstationOwner ID
The XTSOLgetWorkstationOwner() and XTSOLsetWorkstationOwner() routines are used to obtain
and set the user ID of the owner of the workstation server.

Trusted Extensions X Window SystemAPIs

Solaris Trusted Extensions Developer’s Guide • October 200670

Note –The XTSOLsetWorkstationOwner() routine should only be used by theWindowManager.

Status XTSOLgetWorkstationOwner(Display *display, uid_t *uidp);

This routine obtains the user ID of the owner of the workstation server. See the
XTSOLgetWorkstationOwner(3XTSOL)man page

Status XTSOLsetWorkstationOwner(Display *display, uid_t *uidp);

This routine sets the user ID of the owner of the workstation server. See the
XTSOLsetWorkstationOwner(3XTSOL)man page.

Setting theXWindowServer Clearance andMinimum
Label
The XTSOLsetSessionHI() and XTSOLsetSessionLO() routines are used to set the session high
clearance and the session lowminimum label for the XWindow Server. Session high can be selected
from the Label Builder GUI andmust be within the user’s range. Session low is the same as the user’s
minimum label for themultilevel session.

Note –These interfaces should only be used by theWindowManager.

Status XTSOLsetSessionHI(Display *display, m_label_t *sl);

The session high clearance is set from the workstation owner’s clearance at login. The session
high clearancemust be dominated by the owner’s clearance and by the upper bound of the
machinemonitor’s label range. Once changed, connection requests from clients that run at a
sensitivity label higher than the window server clearance are rejected unless they have privileges.
See the XTSOLsetSessionHI(3XTSOL)man page.

Status XTSOLsetSessionLO(Display *display, m_label_t *sl);

The session lowminimum label is set from the workstation owner’s minimum label at login. The
session lowminimum label must be greater than the user’s administratively set minimum label
and the lower bound of themachinemonitor’s label range.When this setting is changed,
connection requests from clients that run at a sensitivity label lower than the window server
sensitivity label are rejected unless they have privileges. See the XTSOLsetSessionLO(3XTSOL)
man page.

WorkingWith the TrustedPathWindow
The XTSOLMakeTPWindow() and XTSOLIsWindowTrusted() routines are used tomake the specified
window the Trusted Path window and to test whether the specified window is the Trusted Path
window.

Status XTSOLMakeTPWindow(Display *display, Window *w);

This routinemakes the specified window the Trusted Path window. See the
XTSOLMakeTPWindow(3XTSOL)man page.

Trusted Extensions X Window SystemAPIs

Chapter 6 • Trusted X Window System 71

Bool XTSOLIsWindowTrusted(Display *display, Window *window);

This routine tests whether the specified window is the Trusted Path window. See the
XTSOLIsWindowTrusted(3XTSOL)man page.

Accessing andSetting the Screen StripeHeight
The XTSOLgetSSHeight() and XTSOLsetSSHeight() routines are used to obtain and set the screen
stripe height.

Note –These interfaces should only be used by theWindowManager.

Status XTSOLgetSSHeight(Display *display, int screen_num, int *newHeight);

This routine obtains the screen stripe height. See the XTSOLgetSSHeight(3XTSOL)man page.

Status XTSOLsetSSHeight(Display *display, int screen_num, int newHeight);

This routine sets the screen stripe height. Be careful that you do not end up without a screen stripe
or with a very large screen stripe. See the XTSOLsetSSHeight(3XTSOL)man page.

SettingWindowPolyinstantiation Information
Status XTSOLsetPolyInstInfo(Display *display, m_label_t sl, uid_t *uidp, int

enabled);

The XTSOLsetPolyInstInfo() routine enables a client to obtain property information from a
property at a different sensitivity label than the client. In the first call, you specify the desired
sensitivity label and the user ID, and set the enabled property to True. Then, you call
XTSOLgetPropAttributes(), XTSOLgetPropLabel(), or XTSOLgetPropUID(). To finish, you call
the XTSOLsetPolyInstInfo() routine again with the enabled property set to False. See the
XTSOLsetPolyInstInfo(3XTSOL)man page.

WorkingWith theX11 Label-Clipping Interface
int label_to_str(const m_label_t *label, char **string, const m_label_str_t

conversion_type, uint_t flags);

The label_to_str() routine translates a sensitivity label or clearance to a string. See the
label_to_str(3TSOL)man page.

Trusted Extensions X Window SystemAPIs

Solaris Trusted Extensions Developer’s Guide • October 200672

Using TrustedXWindowSystem Interfaces
The following sections provide example code excerpts that use Trusted Extensions interface calls.
These calls handle security attributes and translate a label to a string. The excerpts focus on handling
window security attributes, themost commonlymanaged attributes in application programs. Often,
a client retrieves security attributes by using the appropriate privileges for an object that was created
by another application. The client then checks the attributes to determine whether an operation on
the object is permitted by the system’s security policy. The security policy covers DAC policies and
theMACwrite-equal and read-down policies. If access is denied, the application generates an error
or uses privileges, as appropriate. See “PrivilegedOperations and the Trusted XWindow System”
on page 67 for a discussion about when privileges are needed.

Youmust create an object before you can retrieve its ID to pass to the Trusted ExtensionsAPIs.

ObtainingWindowAttributes
The XTSOLgetResAttributes() routine returns security-related attributes for a window. You supply
the following:

� Display ID
� Window ID
� Flag to indicate that the object for which you want security attributes is a window
� XtsolResAttributes structure to receive the returned attributes

Because the client is obtaining the security attributes for a window that the client created, no
privileges are required.

Note that the example programs in this book focus on theAPIs being shown and do not perform
error checking. Your applications should perform the appropriate error checking.

/* Retrieve underlying window and display IDs with Xlib calls */

window = XtWindow(topLevel);

display = XtDisplay(topLevel);

/* Retrieve window security attributes */

retval = XTSOLgetResAttributes(display, window, IsWindow, &winattrs);

/* Translate labels to strings */

retval = label_to_str(&winattrs.sl, &plabel, M_LABEL, LONG_NAMES);

/* Print security attribute information */

printf(“Workstation Owner ID = %d\nUser ID = %d\nLabel = %s\n”,

winattrs.ouid, winattrs.uid, string1);

The printf statement prints the following:

Using Trusted X Window System Interfaces

Chapter 6 • Trusted X Window System 73

Workstation Owner ID = 29378

User ID = 29378

Label = CONFIDENTIAL

Translating theWindowLabelWith the Font List
This example shows how to obtain the process sensitivity label and translate it to a string by using a
font list and the pixel width.A label widget is created with the string for its label. The process
sensitivity label equals the window sensitivity label. Therefore, no privileges are required.

When the final string is longer than the width, the string is clipped and the clipped indicator is used.
Note that the XWindow System label-translation interfaces clip to the specified number of pixels,
while the label-clipping interfaces clip to the number of characters.

Note – If your site uses a label_encodings file in a language other than English, the translationmight
not work on accent characters in the ISO standard above 128. The following example does not work
for theAsian character set.

retval = getplabel(&senslabel);

/* Create the font list and translate the label using it */

italic = XLoadQueryFont(XtDisplay(topLevel),

“-adobe-times-medium-i-*-*-14-*-*-*-*-*-iso8859-1”);

fontlist = XmFontListCreate(italic, “italic”);

xmstr = Xbsltos(XtDisplay(topLevel), &senslabel, width, fontlist,

LONG_WORDS);

/* Create a label widget using the font list and label text*/

i=0;

XtSetArg(args[i], XmNfontList, fontlist); i++;

XtSetArg(args[i], XmNlabelString, xmstr); i++;

label = XtCreateManagedWidget(“label”, xmLabelWidgetClass,

form, args, i);

Obtaining aWindowLabel
This example shows how to obtain the sensitivity label for a window. The process sensitivity label
equals the window sensitivity label. Therefore, no privileges are required.

/* Retrieve window label */

retval = XTSOLgetResLabel(display, window, IsWindow, &senslabel);

/* Translate labels to string and print */

retval = label_to_str(label, &string, M_LABEL, LONG_NAMES);

printf(“Label = %s\n”, string);

Using Trusted X Window System Interfaces

Solaris Trusted Extensions Developer’s Guide • October 200674

The printf statement, for example, prints the following:

Label = PUBLIC

Setting aWindowLabel
This example shows how to set the sensitivity label on a window. The new sensitivity label dominates
the sensitivity label of the window and the process. The client needs the sys_trans_label privilege
in its effective set to translate a label that the client does not dominate. The client also needs the
win_upgrade_sl privilege to change the window’s sensitivity label.

Formore information about using privileges, see Solaris Security for Developers Guide.

/* Translate text string to sensitivity label */

retval = label_to_str(string4, &label, M_LABEL, L_NO_CORRECTION, &error);

/* Set sensitivity label with new value */

retval = XTSOLsetResLabel(display, window, IsWindow, label);

Obtaining theWindowUser ID
This example shows how to obtain the window user ID. The process owns the window resource and
is running at the same sensitivity label. Therefore, no privileges are required.

/* Get the user ID of the window */

retval = XTSOLgetResUID(display, window, IsWindow, &uid);

Obtaining theXWindowServerWorkstationOwner ID
This example shows how to obtain the ID of the user who is logged in to the XWindow Server. The
process sensitivity label equals the window sensitivity label. Therefore, no privileges are required.

/* Get the user ID of the window */

retval = XTSOLgetWorkstationOwner(display, &uid);

Using Trusted X Window System Interfaces

Chapter 6 • Trusted X Window System 75

76

Label BuilderAPIs

Solaris Trusted Extensions provides a set ofMotif basedAPIs. You can use these interfaces to create
an interactive GUI to build valid sensitivity labels or clearances from user input. These interfaces are
called the Label Builder APIs. TheseAPIs aremost often called fromwithin administrative
applications.

The Label Builder GUIs are used in a system that is configured with Trusted Extensions. The Solaris
Trusted Extensions User’s Guide describes these interfaces from the end user’s point of view, as well as
the functionality that is provided by the Label Builder library routines.

For examples of how the Trusted ExtensionsAPIs are used in the Solaris OS, see the Solaris source
code. Go to the Open Solaris web site (http://opensolaris.org/) and click Source Browser in the
left navigation bar. Use the Source Browser to search through the Solaris source code.

This chapter covers the following topics:

� “APIs for Label Builder GUIs” on page 77
� “Creating an Interactive User Interface” on page 78
� “Online Help for Label Builder” on page 87

APIs for Label BuilderGUIs
To use theAPIs that are described in this section, you need to include the following header file:

#include <Dt/ModLabel.h>

The Label Builder examples compile with the -lDtTsol and -ltsol library options.

The followingAPIs are available for building label GUIs. The data types and parameter lists are
described in “Creating an Interactive User Interface” on page 78.

7C H A P T E R 7

77

http://opensolaris.org/

ModLabelData *tsol_lbuild_create(Widget widget, void (*event_handler)()

ok_callback, lbuild_attributes extended_operation, ..., NULL);

The tsol_lbuild_create() routine creates the GUI and returns a pointer variable of type
ModLabeldata, which contains information about the user interface. This information is a
combination of values passed in the tsol_lbuild_create() input parameter list, default values
for information not provided, and information about the widgets that the Label Builder uses to
create the user interface.

The LBUILD_WORK_SL and LBUILD_WORK_CLR operation values are not valid for
tsol_lbuild_create() because these values are set from input that is supplied by the user.

You can use the tsol_lbuild_get() and tsol_lbuild_set() routines to obtain and set
extended operations and values. However, these routines cannot be used for widget information,
which is accessed directly by referencing fields in the ModLabelData structure. See the
labelbuilder(3TSOL)man page.

void tsol_lbuild_destroy(ModLabelData *lbdata);

The tsol_lbuild_destroy() routine destroys the ModLabelData structure that is returned by the
tsol_lbuild_create() routine.

void *tsol_lbuild_get(ModLabelData *lbdata, lbuild_attributes extended_operation);

The tsol_lbuild_get() routine accesses the user interface information that is created by
tsol_lbuild_create() and stored in the ModLabelData structure.

void tsol_lbuild_set(ModLabelData *lbdata, lbuild_attributes extended_operation,

..., NULL);

The tsol_lbuild_set() routine changes the user interface information that is created by
tsol_lbuild_create() and stored in the ModLabelData structure. The LBUILD_WORK_SL and
LBUILD_WORK_CLR operation values are not valid for tsol_lbuild_set() because these values are
set from input that is supplied by the user.

Creating an InteractiveUser Interface
The following figure shows a GUI similar to the one created by the code that follows the figure. The
main program creates a parent form (form) with one button (display). The button callback shows the
Label Builder dialog box that is created by the call to the tsol_lbuild_create() routine. See the
tsol_lbuild_create(3TSOL)man page.

Creating an Interactive User Interface

Solaris Trusted Extensions Developer’s Guide • October 200678

FIGURE 7–1Label Building Interface

The Label Builder dialog box appears when you click the Show button in the parent form. The
callouts indicate where the parameters passed to the tsol_lbuild_create() routine appear in the
Label Builder dialog box. See the tsol_lbuild_create(3TSOL)man page.

The following code creates a GUI something like that shown by the figure.

#include <X11/Intrinsic.h>

#include <X11/StringDefs.h>

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/Form.h>

#include <Dt/ModLabel.h>

Creating an Interactive User Interface

Chapter 7 • Label BuilderAPIs 79

ModLabelData *data;

/* Callback passed to tsol_lbuild_create() */

void callback_function()

{

char *title, *userval;

char *string = (char *)0;

char *string1 = (char *)0;

int mode, view;

Boolean show;

m_label_t *sl_label, *work_sl_label;

Position x, y;

/* Your application-specific implementation goes here */

printf("OK button called\n");

/* Query settings */

mode = (int)tsol_lbuild_get(data, LBUILD_MODE);

title = (String)tsol_lbuild_get(data, LBUILD_TITLE);

sl_label = (m_label_t*) tsol_lbuild_get(data, LBUILD_VALUE_SL);

work_sl_label = (m_label_t*) tsol_lbuild_get(data, LBUILD_WORK_SL);

view = (int)tsol_lbuild_get(data, LBUILD_VIEW);

x = (Position) tsol_lbuild_get(data, LBUILD_X);

y = (Position) tsol_lbuild_get(data, LBUILD_Y);

userval = (char *)tsol_lbuild_get(data, LBUILD_USERFIELD);

show = (Boolean)tsol_lbuild_get(data, LBUILD_SHOW);

label_to_str(sl_label, &string, M_LABEL, LONG_NAMES);

label_to_str(work_sl_label, &string1, M_LABEL, LONG_NAMES);

printf("Mode = %d, Title = %s, SL = %s, WorkSL = %s, View = %d, ",

mode, title, string, string1, view);

printf("X = %d, Y = %d, Userval = %s, Show = %d\n",

x, y, userval, show);

}

/* Callback to display dialog box upon button press */

void Show(Widget display, caddr_t client_data, caddr_t call_data)

{

tsol_lbuild_set(data, LBUILD_SHOW, TRUE, NULL);

}

main(int argc, char **argv)

{

Widget form, topLevel, display;

Arg args[9];

int i = 0, error, retval;

Creating an Interactive User Interface

Solaris Trusted Extensions Developer’s Guide • October 200680

char *sl_string = "CNF";

m_label_t * sl_label;

topLevel = XtInitialize(argv[0], "XMcmds1", NULL, 0, &argc, argv);

form = XtCreateManagedWidget("form",

xmFormWidgetClass, topLevel, NULL, 0);

retval = str_to_label(sl_string, &sl_label, MAC_LABEL, L_NO_CORRECTION, NULL);

printf("Retval = %d\n", retval);

data = tsol_lbuild_create(form, callback_function,

LBUILD_MODE, LBUILD_MODE_SL,

LBUILD_TITLE, "Building Sensitivity Label",

LBUILD_VALUE_SL, sl_label,

LBUILD_VIEW, LBUILD_VIEW_EXTERNAL,

LBUILD_X, 200,

LBUILD_Y, 200,

LBUILD_USERFIELD, "/export/home/zelda",

LBUILD_SHOW, FALSE,

NULL);

i = 0;

XtSetArg(args[i], XmNtopAttachment, XmATTACH_FORM); i++;

XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM); i++;

XtSetArg(args[i], XmNrightAttachment, XmATTACH_FORM); i++;

XtSetArg(args[i], XmNbottomAttachment, XmATTACH_FORM); i++;

display = XtCreateManagedWidget("Show",

xmPushButtonWidgetClass, form, args, i);

XtAddCallback(display, XmNactivateCallback, Show,0);

XtRealizeWidget(topLevel);

XtMainLoop();

tsol_lbuild_destroy(data);

}

When run, the program produces the following output:

OK button called

Mode = 12, Title = Building Sensitivity label,

Label = CNF, WorkSL = SECRET,

View = 1, X = 200, Y = 200,

Userval = /export/home/zelda,

Show = 1

Creating an Interactive User Interface

Chapter 7 • Label BuilderAPIs 81

The following sections cover these topics:

� Label Builder behavior
� Application-specific functionality for Label Builder
� Privileged operations and Label Builder
� tsol_lbuild_create() routine
� Extended Label Builder operations
� ModLabelData structure

Label Builder Behavior
The Label Builder dialog box prompts the end user for information and generates a valid sensitivity
label from the input. Label Builder ensures that a valid label or clearance is built. The labels and
clearances are defined in the label_encodings file for the system.

Label Builder provides default behavior for the OK, Reset, Cancel, andUpdate buttons. The callback
passed to the tsol_lbuild_create() routine is mapped to the OK button to provide
application-specific behavior.

Keyboard Entry andUpdateButton
TheUpdate button takes the text the user types in the UpdateWith field and checks that the string is
a valid label or clearance as defined in the label_encodings file.

� If the input is not valid, Label Builder generates an error for the user.
� If the input is valid, Label Builder updates the text in the Label field and stores the value in the

appropriate working label field of the ModLabelData variable that is returned by the
tsol_lbuild_create() routine. See “ModLabelData Structure” on page 86.

When the user clicks OK, the user-built value is handled according to the OK button callback
implementation.

RadioButtonOptions
The Label Settings radio button options enable you to build a sensitivity label or clearance from
classifications and compartments. These options also enable you to build an information label from
classifications, compartments, andmarkings. Depending on themode, one of these buttonsmight be
grayed out. This approach is independent of the keyboard entry andUpdate buttonmethod
described in the previous section.

The information about the classifications, compartments, andmarkings is specified in the
label_encodings file for the system. The combinations and constraints that are specified in the
label_encodings file are enforced by graying out invalid combinations. The Label field is updated
and the value is stored in the appropriate working label field of the ModLabelData variable that is
returned by the tsol_lbuild_create() routine when the user chooses options. The user can build a
sensitivity label or a clearance by selecting radio buttons in the classification (CLASS) and
compartment (COMPS) lists.

Creating an Interactive User Interface

Solaris Trusted Extensions Developer’s Guide • October 200682

When the user clicks OK, the user-built value is handled according to the OK button callback
implementation.

Reset Button
The Reset button sets the text in the Label field to what its value was when the application started.

Cancel Button
The Cancel button exits the application without saving any changes.

Application-Specific Functionality for Label Builder
The Label Builder GUI generates a valid label or clearance. Youmust also add application-specific
callbacks, error handling, and other functionality that is associated with that label or clearance.

PrivilegedOperations and Label Builder
Label Builder shows the user only those classifications and related compartments that are dominated
by the workspace sensitivity label. If the executable has the sys_trans_label privilege in its effective
set, more classifications and compartmentsmight be shown.

Your application-specific implementation for the OK button callbackmight require privileges.

If the user does not have the authorization to upgrade or downgrade labels, the OK and Reset
buttons are grayed out. The same is true if the user-built label is out of the user’s range. The
grayed-out buttons prevent the user from completing the task. No privileges can override these
restrictions.

tsol_lbuild_create()Routine
The tsol_lbuild_create() routine accepts any widget, a callback function, and a null-terminated
series of name and value pairs. The name represents an operation. The routine returns a variable of
type ModLabelData.

The following describes the information accepted by the tsol_lbuild_create() routine:

� Widget – Label Builder can build the dialog box from any widget.
� Callback function –The callback function activates when the OK button is clicked. This callback

function provides application-specific behavior.
� Name and value pairs –The name (left) side of the pair specifies an extended operation (see

“Extended Label Builder Operations” on page 84) and the value (right) side specifies the value.
In some cases, the value is an enumerated constant. In other cases, you provide a value. The pairs
can be specified in any order, but every operation you specify requires a valid value.

Creating an Interactive User Interface

Chapter 7 • Label BuilderAPIs 83

The return value is a data structure that contains information about the dialog box that was just
created. The information comes from the tsol_lbuild_create() input parameters and user
activities during execution. Label Builder provides default values for some fields where no values
have been specified.
Use the tsol_lbuild_get() routine and the tsol_lbuild_set() routine to programmatically
access and change the information in these name and value pairs. The data structure is described
in “ModLabelData Structure” on page 86.
The following shows a sample call to the tsol_lbuild_create() routine:

data= tsol_lbuild_create(form, callback_function,

LBUILD_MODE, LBUILD_MODE_SL,

LBUILD_TITLE, "Building a Label",

LBUILD_VALUE_SL, sl_label,

LBUILD_VIEW, LBUILD_VIEW_EXTERNAL,

LBUILD_X, 200,

LBUILD_Y, 200,

LBUILD_USERFIELD “/export/home/zelda”,

LBUILD_SHOW, FALSE,

NULL);

Extended Label BuilderOperations
This section describes the extended operations and valid values that you can pass to the
tsol_lbuild_create(), tsol_lbuild_get(), and tsol_lbuild_set() routines. The values that are
passed to tsol_lbuild_create() are stored in its return value. The return value is of type
ModLabelData. The values returned in the parameters can be accessed by calls to
tsol_lbuild_get() and tsol_lbuild_set(). The ModLabelData structure is described in
“ModLabelData Structure” on page 86. See the tsol_lbuild_create(3TSOL),
tsol_lbuild_get(3TSOL), and tsol_lbuild_set(3TSOL)man pages.

All extended operations are valid to pass to tsol_lbuild_get(). However, the LBUILD_WORK_SL and
LBUILD_WORK_CLR operations are not valid to pass to tsol_lbuild_set() or
tsol_lbuild_create() because these values are set by Label Builder based on user input. These
exceptions are noted in the following operation descriptions:

� LBUILD_MODE –You can instruct tsol_lbuild_create() to create a user interface to build
sensitivity labels or clearances. The default value is LBUILD_MODE_SL.
� LBUILD_MODE_SL – Builds a sensitivity label.
� LBUILD_MODE_CLR – Builds a clearance.

� LBUILD_VALUE_SL –The starting sensitivity label that is shown in the Label field when themode
is LBUILD_MODE_SL. The default value is ADMIN_LOW.

� LBUILD_VALUE_CLR –The starting clearance that is shown in the Label field when themode is
LBUILD_MODE_CLR. The default value is ADMIN_LOW.

� LBUILD_USERFIELD –Acharacter string prompt that appears at the top of the Label Builder
dialog box. The default value is NULL.

Creating an Interactive User Interface

Solaris Trusted Extensions Developer’s Guide • October 200684

� LBUILD_SHOW – Shows or hides the Label Builder dialog box. The default value is FALSE.
� TRUE – Shows the Label Builder dialog box.
� FALSE –Hides the Label Builder dialog box.

� LBUILD_TITLE –Acharacter string title that appears at the top of the Label Builder dialog box.
The default value is NULL.

� LBUILD_WORK_SL –The sensitivity label that the user is building. This value is updated based on
the user’s input when the user selects the Update button or interactively chooses an option. The
default value is ADMIN_LOW and is not a valid extended operation for tsol_lbuild_set() or
tsol_lbuild_create().

� LBUILD_WORK_CLR –The clearance that the user is building. This value is updated based on the
user’s input when the user selects the Update button or interactively chooses an option. The
default value is ADMIN_LOW and is not a valid extended operation for tsol_lbuild_set() or
tsol_lbuild_create().

� LBUILD_X –The X offset in pixels from the upper left corner of the Label Builder dialog box in
relation to the upper left corner of the screen. By default, the Label Builder dialog box is
positioned in themiddle of the screen.

� LBUILD_Y –TheY offset in pixels from the upper left corner of the Label Builder dialog box in
relation to the upper left corner of the screen. By default, the Label Builder dialog box is
positioned in themiddle of the screen.

� LBUILD_UPPER_BOUND –The highest classification, and related compartments andmarkings, that
are available to the user as radio buttons. These buttons are used to interactively build a label or a
clearance.Avalue you supplymust be within the user’s range. If no value is supplied, this value is
the user’s workspace sensitivity label. Or, if the executable has the sys_trans_label privilege,
this value is the user’s clearance.

� LBUILD_LOWER_BOUND –The lowest classification, and related compartments andmarkings, that
are available to the user as radio buttons. These buttons are used to interactively build a label or a
clearance. This value is the user’s minimum label. If no value is specified, the value is based on the
default specified by the user’s attributes.

� LBUILD_CHECK_AR –Checks whether the user-built label is within the user’s range.Avalue of 1
means “check,” and a value of 0means “do not check.” If the label is out of range, an error
message is displayed to the user. The default value is 1.

� LBUILD_VIEW –Determines whether to use the internal or the external label representation. The
default value is LBUILD_VIEW_EXTERNAL.
� LBUILD_VIEW_INTERNAL –Uses the internal names for the highest and lowest labels in the

system, ADMIN_HIGH and ADMIN_LOW.
� LBUILD_VIEW_EXTERNAL – Promotes an ADMIN_LOW label to the next lowest label and demotes

an ADMIN_HIGH label to the next highest label.

Creating an Interactive User Interface

Chapter 7 • Label BuilderAPIs 85

ModLabelData Structure
The ModLabelData structure contains information about the state of the Label Builder interface that
is created by the call to the tsol_lbuild_create() routine. The following table describes the
ModLabelData fields.All fields, except for the widgets and the callbacks, are accessible by specifying
the associated extended operation and a valid value in a call to tsol_lbuild_set() or
tsol_lbuild_get(). For descriptions of the extended operations, see “Extended Label Builder
Operations” on page 84.

TABLE 7–1ModLabelData Structure

ExtendedOperation orDescription Data Type Field Comments

LBUILD_CHECK_AR int check_ar

LBUILD_MODE int mode

LBUILD_SHOW Bool show

LBUILD_TITLE char *lbuild_title

LBUILD_UPPER_BOUND,
LBUILD_LOWER_BOUND

brange_t range

LBUILD_USERFIELD char *userfield

LBUILD_VALUE_CLR bclear_t *clr

LBUILD_VALUE_SL m_label_t *sl

LBUILD_VIEW int view

LBUILD_WORK_CLR bclear_t *clr_work Not valid for tsol_lbuild_set() or
tsol_lbuild_create()

LBUILD_WORK_SL m_label_t *sl_work Not valid for tsol_lbuild_set() or
tsol_lbuild_create()

LBUILD_X Position x

LBUILD_Y Position y

Callback passed to
tsol_lbuild_create()

void (*event_handler)()

Cancel button Widget cancel

Help button Widget help

Label Builder dialog box Widget lbuild_dialog

OKbutton Widget ok

Reset button Widget reset

Creating an Interactive User Interface

Solaris Trusted Extensions Developer’s Guide • October 200686

TABLE 7–1 ModLabelData Structure (Continued)
ExtendedOperation orDescription Data Type Field Comments

Update button Widget update

OnlineHelp for Label Builder
TheHelp button and other widgets that are used in the user interface can be accessed directly from
your application code through the lbl_shell field in the ModLabelData structure. To add online
help to your application, follow the procedures and guidelines in theCommonDesktop Environment:
Help SystemAuthor’s and Programmer’s Guide.

Online Help for Label Builder

Chapter 7 • Label BuilderAPIs 87

88

Trusted Web Guard Prototype

This chapter describes the configuration of a safe web browsing prototype calledWebGuard.Web
Guard is configured to isolate a web server and its web content to prevent attacks from the Internet.

TheWebGuard prototype described in this chapter is not a complete solution. Rather, the prototype
is intended to demonstrate howmultilevel ports can be used to proxy URL requests across label
boundaries.Amore complete solution would include authentication, data filtering, auditing, and so
on.

The primary implementation of the prototype is administrative. The prototype usesmultilevel ports,
trusted networking, andApache web server configuration to set upWebGuard. In addition to the
administrative example, you can use some programmatic methods to set up the safe web browsing
prototype.

This chapter covers the following topics:

� “AdministrativeWebGuard Prototype” on page 89
� “Accessing Lower-Level Untrusted Servers” on page 97

AdministrativeWebGuardPrototype
This section provides an example of a safe web browsing prototype that isolates a web server and its
web content to prevent attacks from the Internet. ThisWebGuard prototype takes advantage of
administrative trusted networking features to configure a two-stage filter that restricts access to a
protected web server and web content. This prototype was implemented solely by administrative
means. No programming was required.

The following figure shows the configuration of theWebGuard prototype in amultilevel
environment. The label relationships are shown by how the labels are positioned in the figure.
Vertical relationships represent label dominance, while horizontal relationships represent disjoint
labels.

8C H A P T E R 8

89

Admin_High

Max_Label

CNF: Restricted

Admin_Low

CNF: Need to Know

CNF: Internal Use Only

MLP

Web Guard Service

Web Guard Content

Public

Web Request

Web Browser

Web Server

MLP

Web Server

Web Server

Web
Data

FIGURE 8–1WebGuardConfiguration

Web requests come in to the web server that is configured in the public zone and are passed to the
web server that is configured in the restricted zone.

The restricted zone uses amultilevel port (MLP) to listen for requests at port 8080 of the public
zone. This web server passes the requests to the webservice labeled zone.

The webservice zone also uses anMLP to listen for requests at port 80 of the restricted zone and
reads content from the webcontent labeled zone.

The webcontent zone is in the ready state and has its web content stored in the /export/home file
system, which is automatically mounted in all other labeled zones.When a zone is in the ready state,
no processes run in that zone. Thus, the zone is essentially a disk drive attached directly to the
webservice zone.

You configure theWebGuard prototype by performing these high-level tasks:

1. Modifying the label_encodings file to configure the labels in your safe web browsing
environment
The default label_encodings file is updated to configure two new labels: WEB GUARD SERVICE
and WEB GUARD CONTENT. See “Modifying the label_encodings File” on page 91.

2. Configuring trusted networking
The private IP addresses andMLPs are configured on the restricted and webservice labeled
zones. See “Configuring Trusted Networking” on page 94.

3. Configuring theApache web servers

Administrative Web Guard Prototype

Solaris Trusted Extensions Developer’s Guide • October 200690

The public, restricted, and webservice zones all have web servers configured. In this
example, the web server used isApache. See “Configuring theApacheWeb Servers” on page 96.

Modifying the label_encodings File
The default label_encodings file is updated to configure two new labels: WEB GUARD SERVICE and
WEB GUARD CONTENT. The SANDBOX label, which is part of the default file, is modified to serve as the
WEB GUARD CONTENT label. The WEB GUARD SERVICE label is added.

Youmust install the label_encodings file in the /etc/security/tsol directory. You can install this
file on top of an existing Trusted Extensions installation.

After you install the updated file in the /etc/security/tsol directory, activate the new
label_encodings file:

svcadm restart svc:/system/labeld

The following shows the label_encodings file used in thisWebGuard prototype.

* ident "@(#)label_encodings.simple 5.15 05/08/09 SMI"

*

* Copyright 2005 Sun Microsystems, Inc. All rights reserved.

* Use is subject to license terms.

*

* This example shows how to specify labels that meet an actual

* site’s legal information protection requirements for

* labeling email and printer output. These labels may also

* be used to enforce mandatory access control checks based on user

* clearance labels and sensitivity labels on files and directories.

VERSION= Sun Microsystems, Inc. Example Version - 6.0. 2/15/05

CLASSIFICATIONS:

name= PUBLIC; sname= PUB; value= 2; initial compartments= 4;

name= CONFIDENTIAL; sname= CNF; value= 4; initial compartments= 4;

name= WEB GUARD; sname= WEB; value= 5; initial compartments= 0;

name= MAX LABEL; sname= MAX; value= 10; initial compartments= 0 4 5;

INFORMATION LABELS:

WORDS:

name= :; prefix;

name= INTERNAL USE ONLY; sname= INTERNAL; compartments= 1 ~2; minclass= CNF;

name= NEED TO KNOW; sname= NEED TO KNOW; compartments= 1-2 ~3; minclass= CNF;

Administrative Web Guard Prototype

Chapter 8 • Trusted Web Guard Prototype 91

name= RESTRICTED; compartments= 1-3; minclass= CNF;

name= CONTENT; compartments= 0 ~1 ~2 ~3; minclass= WEB;

name= SERVICE; compartments= 5; minclass= WEB;

REQUIRED COMBINATIONS:

COMBINATION CONSTRAINTS:

SENSITIVITY LABELS:

WORDS:

name= :; prefix;

name= INTERNAL USE ONLY; sname= INTERNAL; compartments= 1 ~2; minclass= CNF;

prefix= :

name= NEED TO KNOW; sname= NEED TO KNOW; compartments= 1-2 ~3; minclass= CNF;

prefix= :

name= RESTRICTED; compartments= 1-3; minclass= CNF; prefix= :

name= CONTENT; compartments= 0 ~1 ~2 ~3; minclass= WEB;

name= SERVICE; compartments= 5; minclass= WEB;

REQUIRED COMBINATIONS:

COMBINATION CONSTRAINTS:

CLEARANCES:

WORDS:

name= INTERNAL USE ONLY; sname= INTERNAL; compartments= 1 ~2; minclass= CNF;

name= NEED TO KNOW; sname= NEED TO KNOW; compartments= 1-2 ~3; minclass= CNF;

name= RESTRICTED; sname= RESTRICTED; compartments= 1-3; minclass= CNF;

name= CONTENT; compartments= 0 ~1 ~2 ~3; minclass= WEB;

name= SERVICE; compartments= 5; minclass= WEB;

REQUIRED COMBINATIONS:

COMBINATION CONSTRAINTS:

CHANNELS:

WORDS:

Administrative Web Guard Prototype

Solaris Trusted Extensions Developer’s Guide • October 200692

PRINTER BANNERS:

WORDS:

ACCREDITATION RANGE:

classification= PUB; all compartment combinations valid;

classification= WEB; all compartment combinations valid;

classification= CNF; all compartment combinations valid except: CNF

minimum clearance= PUB;

minimum sensitivity label= PUB;

minimum protect as classification= PUB;

* Local site definitions and locally configurable options.

LOCAL DEFINITIONS:

default flags= 0x0;

forced flags= 0x0;

Default Label View is Internal;

Classification Name= Classification;

Compartments Name= Sensitivity;

Default User Sensitivity Label= PUB;

Default User Clearance= CNF NEED TO KNOW;

COLOR NAMES:

label= Admin_Low; color= #bdbdbd;

label= PUB; color= blue violet;

label= WEB SERVICE; color= yellow;

label= CNF; color= navy blue;

label= CNF : INTERNAL USE ONLY; color= blue;

label= CNF : NEED TO KNOW; color= #00bfff;

label= CNF : RESTRICTED; color= #87ceff;

label= Admin_High; color= #636363;

* End of local site definitions

Formore information about the label_encodings file, see Solaris Trusted Extensions Label
Administration.

Administrative Web Guard Prototype

Chapter 8 • Trusted Web Guard Prototype 93

Configuring TrustedNetworking
The restricted and webservice zones are assigned a private IP address in addition to the IP
address that they already share. Each private IP address has amultilevel port configured and is
associated with a restricted label set.

The following table shows the network configuration for each of the labeled zones.

ZoneName Zone Label Local IP Address Host Name Multilevel Port Security Label Set

restricted CONFIDENTIAL :

RESTRICTED

10.4.5.6 proxy 8080/tcp PUBLIC

webservice WEB GUARD

SERVICE

10.1.2.3 webservice 80/tcp CONFIDENTIAL :

RESTRICTED

webcontent WEB GUARD

CONTENT

None

First, youmust create the new zones. You can clone an existing zone, such as the public zone.After
these zones are created, use the zonecfg command to add a network (with the address specified in
the table) and your local interface name.

For example, the following command associates the 10.4.5.6 IP address and the bge0 interface with
the restricted zone:

zonecfg -z restricted

add net

set address=10.4.5.6

set physical=bge0

end

exit

After you specify the IP address and network interface for each labeled zone, you use the Solaris
Management Console to configure the remaining values in the table.When using this tool, make sure
that you select the tool box with Scope=Files and Policy=TSOL.

Follow these steps to finish the zone configuration:

1. Start the SolarisManagement Console as superuser.

smc &

2. From the Navigation panel, select This Computer, and then click the SystemConfiguration icon.
3. Click the Computers andNetwork icon.
4. Click the Computers icon, and then chooseAdd Computer from theActionmenu.
5. Add the host names and IP addresses for the proxy host and the webeservice host.
6. From the Navigation panel, select Trusted Network Zones.

Administrative Web Guard Prototype

Solaris Trusted Extensions Developer’s Guide • October 200694

Youmight need to expand the columns. If the zone names do not appear in the list, chooseAdd
Zone Configuration from theActionmenu.

7. Assign each zone its label and specify the appropriate port and protocol in theMLP
Configuration for Local IPAddresses field.

8. From the Navigation panel, click the Security Families icon and chooseAdd Template from the
Actionmenu.

Add templates for the proxy host name and the webservices host name based on the
information in the table.

a. Specify the corresponding host name for the template name.

b. Specify CIPSO in theHost Type field.

c. Specify the corresponding zone label in theMinimumLabel andMaximumLabel fields.

d. Specify the corresponding security label in the Security Label Set field.

e. Click the Hosts ExplicitlyAssigned tab.

f. In theAdd an Entry section, add the corresponding local IP address to each template.

9. Exit the SolarisManagement Console.

After you exit the SolarisManagement Console, start or restart the affected zones. In the global zone,
add routes for the new addresses, where shared-IP-addr is the shared IP address.

route add proxy shared-IP-addr
route add webservice shared-IP-addr

Administrative Web Guard Prototype

Chapter 8 • Trusted Web Guard Prototype 95

Configuring theApacheWebServers
An instance of theApache web server runs in the public zone, the restricted zone, and the
webservice zone. The /etc/apache/httpd.conf file is updated in each of the zones as follows:

� public zone – Specify the IP address or host name of the server for the ServerName keyword, and
update the proxy configuration as follows:

ServerName myserver

ProxyRequests Off

ProxyPass /demo http://proxy:8080/demo

ProxyPassReverse /demo http://proxy:8080/demo

� restricted zone – Specify the listen proxy port and the port. Then, specify the IP address or host
name of this zone for the ServerName keyword, and update the proxy configuration as follows:

Listen proxy:8080

Port 8080

ServerName proxy

ProxyRequests Off

ProxyPass /demo http://webservice

ProxyPassReverse /demo http://webservice

Youmight also want to set up some filtering of the web requests, such as dirty word filters, or
other filters to restrict the types of requests for web content.

� webservice zone – Specify the IP address or host name of this zone for the ServerName keyword,
and point to the location of the web content directory in the DocumentRoot keyword and the
<Directory> element as follows:

ServerName webservice

DocumentRoot "/zone/webcontent/export/home/www/htdocs"

<Directory "/zone/webcontent/export/home/www/htdocs">

After you have updated theApache web server configuration files for each labeled zone, store your
web content in the /export/home/www/htdocs directory of the webcontent zone.

Create the demo directory in the /export/home/www/htdocs directory, and then create an
index.html file in the demo directory to use for testing.

The /export/home directory is automatically mounted by using lofs into the webservice zone
when it is booted. The webcontent zone only needs to brought up to the ready state.

zoneadm -z webcontent ready

Administrative Web Guard Prototype

Solaris Trusted Extensions Developer’s Guide • October 200696

When a zone is in the ready state, no processes are running in that zone. The zone’s file system can be
mounted read-only by the webservice zone.Accessing the web content in this way ensures that the
content cannot be changed.

Running the TrustedWebGuardDemonstration
From your browser in the public zone or from a remote browser running at the PUBLIC label, type
the following URL:

http://server-name/demo

The browser should show the default index.html file from the webcontent zone.

Note that theWebGuard flow cannot by bypassed. The web server in the webservice zone cannot
receive packets from the public zone or from any remote host. The web content cannot be changed
because the webcontent zone is in the ready state.

Accessing Lower-Level Untrusted Servers
Sometimes a client needs to be able to access a server on an unlabeled system.An unlabeled system is
a system that does not run the Trusted Extensions software. In such a case, you cannot usemultilevel
ports because they are restricted to privileged servers that run in the global zone or in labeled zones.

For example, suppose your browser is running in the INTERNAL zone. You want to access a web server
that runs on a single-level network that has been assigned the PUBLIC sensitivity label bymeans of the
tnrhdb database. Such access is not permitted by default. However, you could write a privileged
proxy server to forward theHTTP request to the PUBLICweb server. The proxy should use a special
Trusted Extensions socket option called SO_MAC_EXEMPT. This socket option permits a request to be
sent to an untrusted lower-level service, and permits the reply from that service to be returned to the
requester.

Note –The use of the SO_MAC_EXEMPT option represents an unprotected downgrade channel and
should be used very carefully. The SO_MAC_EXEMPT option cannot be set unless the calling process has
the PRIV_NET_MAC_EXEMPT privilege in its effective set. Such a process must enforce its own data
filtering policy to prevent leaking higher-level data to the lower-level service. For example, the proxy
should sanitize URLs to restrict words from being used as values.

The following code excerpt demonstrates the use of SO_MAC_EXEMPT in amodified version of the wget
command’s connect_to_ip() routine in http://cvs.opensolaris.org/

source/xref/sfw/usr/src/cmd/wget/wget-1.10.1/src/connect.c#262. The call to
setsockopt() has been added to show how to set the SO_MAC_EXEMPT option.

int

connect_to_ip (const ip_address *ip, int port, const char *print)

{

Accessing Lower-Level Untrusted Servers

Chapter 8 • Trusted Web Guard Prototype 97

http://cvs.opensolaris.org/source/xref/sfw/usr/src/cmd/wget/wget-1.10.1/src/connect.c#262
http://cvs.opensolaris.org/source/xref/sfw/usr/src/cmd/wget/wget-1.10.1/src/connect.c#262

struct sockaddr_storage ss;

struct sockaddr *sa = (struct sockaddr *)&ss;

int sock;

/* If PRINT is non-NULL, print the "Connecting to..." line, with

PRINT being the host name we’re connecting to. */

if (print)

{

const char *txt_addr = pretty_print_address (ip);

if (print && 0 != strcmp (print, txt_addr))

logprintf (LOG_VERBOSE, _("Connecting to %s|%s|:%d... "),

escnonprint (print), txt_addr, port);

else

logprintf (LOG_VERBOSE, _("Connecting to %s:%d... "), txt_addr, port);

}

/* Store the sockaddr info to SA. */

sockaddr_set_data (sa, ip, port);

/* Create the socket of the family appropriate for the address. */

sock = socket (sa->sa_family, SOCK_STREAM, 0);

if (sock < 0)

goto err;

if (setsockopt (sock, IPPROTO_TCP, SO_MAC_EXEMPT, (char *)0, 0) == -1) {

perror("setsockopt SO_MAC_EXEMPT");

}

#if defined(ENABLE_IPV6) && defined(IPV6_V6ONLY)

if (opt.ipv6_only) {

int on = 1;

/* In case of error, we will go on anyway... */

int err = setsockopt (sock, IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof (on));

}

#endif

Accessing Lower-Level Untrusted Servers

Solaris Trusted Extensions Developer’s Guide • October 200698

Programmer’s Reference

This appendix explains where to find information about developing, testing, and releasing
label-aware applications to an environment that uses the Solaris Trusted Extensions software.

This appendix covers the following topics:

� “Trusted ExtensionsMan Pages” on page 99
� “Header File Locations” on page 99
� “Abbreviations Used in Interface Names andData Structure Names” on page 100
� “Developing, Testing, andDebugging anApplication” on page 101
� “Releasing anApplication” on page 102

Trusted ExtensionsManPages
The Intro(3TSOL)man page provides introductory information that is specific to systems
configured with Trusted Extensions.All of the Trusted Extensionsman pages are available on Sun’s
documentation web site (http://www.sun.com/documentation/) and in the Solaris Trusted
Extensions ReferenceManual.

Header File Locations
Most Trusted Extensions header files are located in the /usr/include/tsol directory and in the
/usr/include/sys/tsol directory. The locations of other header files are shown in the following
table.

Header File and Its Location Category of Interface

/usr/dt/include/Dt/label_clipping.h X11 label translation and label clipping with
font list

AA P P E N D I X A

99

http://www.sun.com/documentation/

Header File and Its Location Category of Interface

/usr/dt/include/Dt/ModLabel.h Label Builder

/usr/openwin/include/X11/extensions/Xtsol.h XWindow System

/usr/include/libtsnet.h Trusted network library

/usr/include/bsm/libbsm.h Audit library

AbbreviationsUsed in InterfaceNames andData Structure
Names

Many of the Trusted Extensions interface names and data structure names use the following short
abbreviations. Knowing the abbreviations of these names will help you recognize the purpose of an
interface or structure.

TABLE A–1NameAbbreviationsUsed by Trusted ExtensionsAPIs

Abbreviation Name

attr Attribute

b Binary

clear Clearance

ent Entry

f File

fs File system

h Hexadecimal

l Level, label, or symbolic link

lbuild Label Builder

prop Properties

r Re-entrant

res Resource

s String

sec Security

sl Sensitivity label

tp Trusted Path

Abbreviations Used in Interface Names and Data Structure Names

Solaris Trusted Extensions Developer’s Guide • October 2006100

TABLE A–1NameAbbreviationsUsed by Trusted ExtensionsAPIs (Continued)
Abbreviation Name

tsol Trusted Extensions

xtsol Trusted X11 Server

Developing, Testing, andDebugging anApplication
Youmust develop, test, and debug an application on an isolated development system to prevent
software bugs and incomplete code from compromising the security policy on themain system.

Follow these guidelines:

� Remove extra debugging code, especially code that provides undocumented features and code
that bypasses security checks.

� Make application datamanipulation easy to follow so that themanipulation can be inspected for
security problems by an administrator before installation.

� Test return codes for all programming interfaces.An unsuccessful call can have unpredictable
results.When an unexpected error condition occurs, the applicationmust always terminate.

� Test all functionality by running the application at all sensitivity labels and from all roles that you
expect will run the application.
� If the program is run by an ordinary user and not by a role, start the program from the

command line at the labels where the program is intended to run.
� If the program is run by a role, start the program from the command line in the global zone or

from the user role at the labels where the program is intended to run.
� Test all functionality under privilege debuggingmode so that you knowwhether the application

has all the privileges it needs. This type of testing also determines whether the application is
attempting to perform privileged tasks that it should not be performing.

� Know the security implications of using privileges. Ensure that the application does not
compromise system security by its use of privileges.

� Know and follow good privilege bracketing practices.
See Solaris Security for Developers Guide.

� If you use the SUNWspro debugger or the dbx command to test a privileged application, start the
debugger before you attach it to a running process. You cannot start the debugger with the
command name as an argument.

Developing, Testing, and Debugging anApplication

AppendixA • Programmer’s Reference 101

Releasing anApplication
You submit a fully tested and debugged application to the system administrator for application
integration. The application can be submitted as a CDE action or as a software package. If the
application uses privileges, the system administratormust evaluate the application source code and
the security information that you supply. This evaluation verifies that your use of privileges does not
compromise system security.

Caution –Notify the system administrator of new auditing events, audit classes, or XWindow System
properties that your application uses. The system administratormust place these items into the
correct files. Formore information, see Chapter 6.

Creating aCDEAction
ACDE action is started from the workspace by a user or a role. The action inherits the privileges
assigned to the profile of that user or role.ACDE action is a set of instructions that work like
applicationmacros orAPIs to automate desktop tasks such as running applications and opening data
files. On a system configured with Trusted Extensions, applications are started from the workspace as
CDE actions. Instructions on how to create a CDE action are provided in the Solaris Common
Desktop Environment: Advanced User’s and SystemAdministrator’s Guide.

Note –When you create a CDE action, create an f.action, not an f.exec. An f.exec executes the
program as superuser with all privileges.

The system administrator puts the CDE action into the appropriate profiles and assigns any
necessary privileges to the CDE action. Youmust list the privileges that the program uses, indicate
the labels at which the application is intended to run, and supply any required effective user or group
IDs. The system administrator assigns privileges as well as effective user and group IDs to the CDE
action in the profile.

Creating a SoftwarePackage
To create a software package, see theApplication Packaging Developer’s Guide. To debug package
installation issues, see Chapter 21, “Troubleshooting Software Problems (Overview),” in System
Administration Guide: Advanced Administration.

Releasing anApplication

Solaris Trusted Extensions Developer’s Guide • October 2006102

Solaris Trusted ExtensionsAPI Reference

This appendix provides application programming interface (API) listings and cross-references to
their use. Declarations are grouped by security topic.

This appendix covers the following topics:

� “Process SecurityAttribute FlagsAPIs” on page 103
� “LabelAPIs” on page 103
� “Label-ClippingAPIs” on page 105
� “RPCAPIs” on page 105
� “Label BuilderAPIs” on page 105
� “Trusted XWindow SystemAPIs” on page 105
� “Solaris Library Routines and SystemCalls That Use Trusted Extensions Parameters” on page 106
� “SystemCalls and Library Routines in Trusted Extensions” on page 107

Process SecurityAttribute FlagsAPIs
The following SolarisAPIs accept Trusted Extensions parameters:

� uint_t getpflags(uint_t flag);

� int setpflags(uint_t flag, uint_t value);

LabelAPIs
The labelAPIs are introduced in Chapter 2. Sample code is provided in Chapter 3.A fully described
example is provided in Chapter 4.

BA P P E N D I X B

103

The following lists the types of label-relatedAPIs and shows the prototype declarations of the
routines and system calls for each type:

� Accessing the label_encodings file
� m_label_t *m_label_alloc(const m_label_type_t label_type);

� int m_label_dup(m_label_t **dst, const m_label_t *src);

� void m_label_free(m_label_t *label);

� int label_to_str(const m_label_t *label, char **string, const m_label_str_t

conversion_type, uint_t flags);

� Comparing level relationships
� int blequal(const m_label_t *level1, const m_label_t *level2);

� int bldominates(const m_label_t *level1, const m_label_t *level2);

� int blstrictdom(const m_label_t *level1, const m_label_t *level2);

� int blinrange(const m_label_t *level, const brange_t *range);

� void blmaximum(m_label_t *maximum_label, const m_label_t *bounding_label);

� void blminimum(m_label_t *minimum_label, const m_label_t *bounding_label);

� Accessing label ranges
� m_range_t *getuserrange(const char *username);

� blrange_t *getdevicerange(const char *device);

� Accessing labels in zones
� char *getpathbylabel(const char *path, char *resolved_path, size_t bufsize,

const m_label_t *sl);

� m_label_t *getzonelabelbyid(zoneid_t zoneid);

� m_label_t *getzonelabelbyname(const char *zonename);

� zoneid_t *getzoneidbylabel(const m_label_t *label);

� char *getzonerootbyid(zoneid_t zoneid);

� char *getzonerootbylabel(const m_label_t *label);

� char *getzonerootbyname(const char *zonename);

� Obtaining the remote host type
� tsol_host_type_t tsol_getrhtype(char *hostname);

� Accessing andmodifying sensitivity labels
� int fgetlabel(int fd, m_label_t *label_p);

� int getlabel(const char *path, m_label_t *label_p);

� int setflabel(const char *path, const m_label_t *label_p);

� int getplabel(m_label_t *label_p);

� int label_to_str(const m_label_t *label, char **string, const m_label_str_t

conversion_type, uint_t flags);

LabelAPIs

Solaris Trusted Extensions Developer’s Guide • October 2006104

� int str_to_label(const char *string, m_label_t **label, const m_label_type_t

label_type, uint_t flags, int *error);

Label-ClippingAPIs
For information about this label-clippingAPI, see Chapter 6.

int label_to_str(const m_label_t *label, char **string,

const m_label_str_t conversion_type, uint_t flags);

RPCAPIs
Trusted Extensions does not provide interfaces for remote procedure calls (RPC). RPC interfaces
have beenmodified to work with Trusted Extensions. For conceptual information, see Chapter 5. For
an example that uses the getpeerucred() and ucred_getlabel() routines, see Chapter 4.

Label BuilderAPIs
For information about the Label Builder user interface, see Chapter 7.

� ModLabelData *tsol_lbuild_create(Widget widget, void (*event_handler)()

ok_callback, lbuild_attributes extended_operation, ..., NULL);

� void tsol_lbuild_destroy(ModLabelData *lbdata);

� void *tsol_lbuild_get(ModLabelData *lbdata, lbuild_attributes

extended_operation);

� void tsol_lbuild_set(ModLabelData *lbdata, lbuild_attributes extended_operation,

..., NULL);

TrustedXWindowSystemAPIs
For information about the Trusted XWindow SystemAPIs, see Chapter 6.

� Status XTSOLgetResAttributes(Display *display, XID object, ResourceType type,

XTSOLResAttributes *winattrp);

� Status XTSOLgetPropAttributes(Display *display, Window window, Atom property,

XTSOLPropAttributes *propattrp);

� Status XTSOLgetClientAttributes(Display *display, XID windowid,

XTsolClientAttributes *clientattrp);

� Status XTSOLgetResLabel(Display *display, XID object, ResourceType type,

m_label_t *sl);

Trusted X Window SystemAPIs

Appendix B • Solaris Trusted ExtensionsAPI Reference 105

� Status XTSOLsetResLabel(Display *display, XID object, ResourceType type,

m_label_t *sl);

� Status XTSOLgetResUID(Display *display, XID object, ResourceType type, uid_t

*uidp);

� Status XTSOLsetResUID(Display *display, XID object, ResourceType type, uid_t

*uidp);

� Status XTSOLgetPropLabel(Display *display, Window window, Atom property,

m_label_t *sl);

� Status XTSOLsetPropLabel(Display *display, Window window, Atom property,

m_label_t *sl);

� Status XTSOLgetPropUID(Display *display, Window window, Atom property, uid_t

*uidp);

� Status XTSOLsetPropUID(Display *display, Window window, Atom property, uid_t

*uidp);

� Status XTSOLgetWorkstationOwner(Display *display, uid_t *uidp);

� Status XTSOLsetWorkstationOwner(Display *display, uid_t *uidp);

� Status XTSOLsetSessionHI(Display *display, m_label_t *sl);

� Status XTSOLsetSessionLO(Display *display, m_label_t *sl);

� Status XTSOLMakeTPWindow(Display *display, Window *w);

� Bool XTSOLIsWindowTrusted(Display *display, Window *window);

� Status XTSOLgetSSHeight(Display *display, int screen_num, int *newheight);

� Status XTSOLsetSSHeight(Display *display, int screen_num, int newheight);

� Status XTSOLsetPolyInstInfo(Display *display, m_label_t sl, uid_t *uidp, int

enabled);

Solaris Library Routines andSystemCalls ThatUse Trusted
Extensions Parameters

The following Solaris interfaces either include Trusted Extensions parameters or are used in this
guide with Trusted Extensions interfaces:

� int auditon(int cmd, caddr_t data, int length);

� void free(void *ptr);

� int getpeerucred(int fd, ucred_t **ucred);

� uint_t getpflags(uint_t flag);

� int is_system_labeled(void);

� int setpflags(uint_t flag, uint_t value);

� int getsockopt(int s, int level, int optname, void *optval, int *optlen);

� int setsockopt(int s, int level, int optname, const void *optval, int optlen);

Solaris Library Routines and System Calls That Use Trusted Extensions Parameters

Solaris Trusted Extensions Developer’s Guide • October 2006106

� int socket(int domain, int type, int protocol);

� ucred_t *ucred_get(pid_t pid);

� m_label_t *ucred_getlabel(const ucred_t *uc);

SystemCalls and Library Routines in Trusted Extensions
The following table lists the Trusted Extensions system calls and routines. The table also provides
references to descriptions and declarations of the interface and to examples of the interface that
appear in this guide. Theman page section is included as part of the name of each system call and
routine.

TABLE B–1 SystemCalls and Library Routines ThatAreUsed in Trusted Extensions

SystemCall or Library Routine Cross-Reference toDescription Cross-Reference to Example

bldominates(3TSOL) “Label Relationships” on page 13

“Comparing Labels” on page 33

“Determining the Relationship
Between Two Labels” on page 40

blequal(3TSOL) “Comparing Labels” on page 33 “Determining the Relationship
Between Two Labels” on page 40

blinrange(3TSOL) “Label Relationships” on page 13 “Validating the Label RequestAgainst
the Printer’s Label Range” on page 51

blmaximum(3TSOL) “Comparing Labels” on page 33

blminimum(3TSOL) “Comparing Labels” on page 33

blstrictdom(3TSOL) “Comparing Labels” on page 33

fgetlabel(2) “Labeled Zones” on page 22

“Obtaining and Setting the Label of a File”
on page 28

free(3C) “Translating Between Labels and Strings” on page
31

getdevicerange(3TSOL) “Obtaining Label Ranges” on page 29 “Validating the Label RequestAgainst
the Printer’s Label Range” on page 51

getlabel(2) “Labeled Zones” on page 22

“Obtaining and Setting the Label of a File”
on page 28

“Obtaining a File Label” on page 38

getpathbylabel(3TSOL) “Accessing Labels in Zones” on page 29

getpeerucred(3C) “get_peer_label() Label-Aware Function”
on page 47

“Obtaining the Credential and
Remote Host Label” on page 49

System Calls and Library Routines in Trusted Extensions

Appendix B • Solaris Trusted ExtensionsAPI Reference 107

TABLE B–1 SystemCalls and Library Routines ThatAreUsed in Trusted Extensions (Continued)
SystemCall or Library Routine Cross-Reference toDescription Cross-Reference to Example

getpflags(2) “MAC-Exempt Sockets” on page 21

getplabel(3TSOL) “Accessing the Process Sensitivity Label” on page
27

“Translating theWindow LabelWith
the Font List” on page 74

getuserrange(3TSOL) “Obtaining Label Ranges” on page 29

getzoneidbylabel(3TSOL) “Accessing Labels in Zones” on page 29

getzonelabelbyid(3TSOL) “Accessing Labels in Zones” on page 29

getzonelabelbyname(3TSOL) “Accessing Labels in Zones” on page 29

getzonerootbyid(3TSOL) “Accessing Labels in Zones” on page 29

getzonerootbylabel(3TSOL) “Accessing Labels in Zones” on page 29

getzonerootbyname(3TSOL) “Accessing Labels in Zones” on page 29

is_system_labeled(3C) “get_peer_label() Label-Aware Function”
on page 47

“DeterminingWhether the Printing
Service Is Running in a Labeled
Environment” on page 48

labelbuilder(3TSOL) Chapter 7 “Creating an Interactive User
Interface” on page 78

label_to_str(3TSOL) “Translating Between Labels and Strings” on page
31

“Obtaining a Process Label” on page
37

m_label_alloc(3TSOL) “Allocating and FreeingMemory for Labels”
on page 28

“Obtaining a Process Label” on page
37

“Obtaining a File Label” on page 38

m_label_dup(3TSOL) “Allocating and FreeingMemory for Labels”
on page 28

m_label_free(3TSOL) “Allocating and FreeingMemory for Labels”
on page 28

“Validating the Label RequestAgainst
the Printer’s Label Range” on page 51

“Obtaining a Process Label” on page
37

setflabel(3TSOL) “Obtaining and Setting the Label of a File”
on page 28

“Obtaining and Setting the Label of a File”
on page 28

setpflags(2) “MAC-Exempt Sockets” on page 21

System Calls and Library Routines in Trusted Extensions

Solaris Trusted Extensions Developer’s Guide • October 2006108

TABLE B–1 SystemCalls and Library Routines ThatAreUsed in Trusted Extensions (Continued)
SystemCall or Library Routine Cross-Reference toDescription Cross-Reference to Example

str_to_label(3TSOL) “Translating Between Labels and Strings” on page
31

“Validating the Label RequestAgainst
the Printer’s Label Range” on page 51

“Obtaining a File Label” on page 38

tsol_getrhtype(3TSOL) “Obtaining the Remote Host Type” on page 31

ucred_get(3C) “Multilevel Ports” on page 20

ucred_getlabel(3C) “Multilevel Ports” on page 20

XTSOLgetClientAttributes(3XTSOL) “AccessingAttributes” on page 69

XTSOLgetPropAttributes(3XTSOL) “AccessingAttributes” on page 69

XTSOLgetPropLabel(3XTSOL) “Accessing and Setting aWindow Property Label”
on page 70

XTSOLgetPropUID(3XTSOL) “Accessing and Setting aWindow Property Label”
on page 70

XTSOLgetResAttributes(3XTSOL) “ObtainingWindowAttributes” on page 73

XTSOLgetResLabel(3XTSOL) “Obtaining aWindow Label” on page 74

XTSOLgetResUID(3XTSOL) “Obtaining theWindowUser ID” on page 75

“Accessing and Setting aWindowUser ID”
on page 70

XTSOLgetSSHeight(3XTSOL) “Accessing and Setting the Screen Stripe Height”
on page 72

XTSOLgetWorkstationOwner(3XTSOL) “Accessing and Setting aWorkstationOwner ID”
on page 70

XTSOLIsWindowTrusted(3XTSOL) “WorkingWith the Trusted PathWindow”
on page 71

XTSOLMakeTPWindow(3XTSOL) “WorkingWith the Trusted PathWindow”
on page 71

XTSOLsetPolyInstInfo(3XTSOL) Chapter 6

XTSOLsetPropLabel(3XTSOL) “Accessing and Setting aWindow Property Label”
on page 70

XTSOLsetPropUID(3XTSOL) “Accessing and Setting aWindow Property Label”
on page 70

XTSOLsetResLabel(3XTSOL) “Setting aWindow Label” on page 75

System Calls and Library Routines in Trusted Extensions

Appendix B • Solaris Trusted ExtensionsAPI Reference 109

TABLE B–1 SystemCalls and Library Routines ThatAreUsed in Trusted Extensions (Continued)
SystemCall or Library Routine Cross-Reference toDescription Cross-Reference to Example

XTSOLsetResUID(3XTSOL) “Accessing and Setting aWindowUser ID”
on page 70

XTSOLsetSessionHI(3XTSOL) “Setting the XWindow Server Clearance and
MinimumLabel” on page 71

XTSOLsetSessionLO(3XTSOL) “Setting the XWindow Server Clearance and
MinimumLabel” on page 71

XTSOLsetSSHeight(3XTSOL) “Accessing and Setting the Screen Stripe Height”
on page 72

XTSOLsetWorkstationOwner(3XTSOL) “Accessing and Setting aWorkstationOwner ID”
on page 70

System Calls and Library Routines in Trusted Extensions

Solaris Trusted Extensions Developer’s Guide • October 2006110

Index

A
abbreviations used in interface names, 100
access

checks for
network, 56-61
sockets, 57
Trusted XWindow System, 65

file labels, 25-26
guidelines for labels, 26
multilevel port connections, 55-56

ADMIN_HIGH label, 22
ADMIN_LOW label, 22
APIs

clearance label, 17
declarations, 103-110
examples of Trusted Extensions in Solaris, 11
introduction to, 12
Label Builder, 77, 105
label clipping, 105
label range, 17-18
labels, 27-33, 37, 103-105
process security attribute flags, 103
RPC, 105
securityAPIs from Solaris OS, 15
sensitivity label, 17
for Solaris that use Trusted Extensions

parameters, 106-107
Trusted XWindow System, 18, 63-75, 105-106
for zone labels and zone paths, 23

applications
integrating, 102
releasing, 102
testing and debugging, 101

atoms, predefined in XWindow System, 66

auditid field, 68
authorizations, Label Builder, 83

B
bldominates() routine

code example, 40
declaration, 33

blequal() routine
code example, 40
declaration, 33

blinrange() routine
declaration, 33

blmaximum() routine, declaration, 33
blminimum() routine, declaration, 33
blstrictdom() routine

code example, 40
declaration, 33

brange_t type, 27
builders,API declarations for GUI, 105

C
CDE actions

assigning inheritable privileges, 102
creating, 102

classifications
clearance component, 12
disjoint, 14
dominant, 13
equal, 13
label component, 12

111

classifications (Continued)
strictly dominant, 13

clearance labels, 12
clearances

disjoint labels, 14
dominant labels, 13
equal labels, 13
session, 12
strictly dominant labels, 13
user, 12

code examples
file systems

obtaining label, 38
Label Builder, 79
label_encodings file

creating printer banner, 42-44
obtaining character-coded color names, 41

label relationships, 40
labels

obtaining on file system, 38
obtaining on window, 74-75
obtaining process label, 37
setting on window, 75

printer banner, 42-44
set file sensitivity label, 39
Trusted XWindow System, 73-75

obtaining window attributes, 73-74
obtaining window label, 74-75
obtaining window user ID, 75
obtaining workstation owner, 75
setting window label, 75
translating with font list, 74

communication endpoints
access checks, 56-61
connections described, 57-58

compartments
clearance component, 12
disjoint, 14
dominant, 13
equal, 13
label component, 12
strictly dominant, 13

compile
Label Builder libraries, 77-78
label libraries, 27-33
Trusted XWindow System libraries, 67

connection requests
security attributes, 64
security policy, 65

D
DAC (discretionary access control), 55, 63
data types

labelAPIs, 27
Label BuilderAPIs

ModLabelData structure, 86-87
tsol_lbuild_create() routine, 83-84

Trusted XWindow SystemAPIs, 67
debugging, applications, 101
definitions of terms, 11
devices, input device privileges, 67
DGA(direct graphics access), privileges, 67
disjoint labels, 14
dominant labels, 13, 14
downgrading labels

guidelines, 26
privileges needed, 26
Trusted XWindow System, 67

E
equal labels, 13
examples of Trusted ExtensionsAPIs in Solaris, 11
extended operations, 84-85

F
fgetlabel() system call, declaration, 28-29
file_dac_search privilege, overriding access to parent

directory of zone’s root directory, 19-20
file_downgrade_sl privilege, 26
file_owner privilege, 26
files, label privileges, 26
fonts

font list translation, 74
font path privileges, 67

Index

Solaris Trusted Extensions Developer’s Guide • October 2006112

G
get_peer_label() function, 47-51
getdevicerange() routine, declaration, 29
getlabel command, 39

code example, 40
getlabel() system call

code example, 38
declaration, 28-29

getpathbylabel() routine, declaration, 29-31
getplabel() routine

code example, 37, 40, 41
declaration, 27

getuserrange() routine, declaration, 29
getzoneidbylabel() routine, declaration, 29-31
getzonelabelbyid() routine, declaration, 29-31
getzonelabelbyname() routine, declaration, 29-31
getzonerootbyid() routine, declaration, 29-31
getzonerootbylabel() routine, declaration, 29-31
getzonerootbyname() routine, declaration, 29-31
gid field, 68
global zone

controllingmultilevel operations, 19-22
labels in, 22
mounts in, 19-20

GUIs
Label Builder, 77
Xlib objects, 64

H
header files

labelAPIs, 27-33
Label BuilderAPIs, 77-78
locations, list of, 99
Trusted XWindow SystemAPIs, 67

I
iaddr field, 68
integrating an application, 102
interface names, abbreviations used in, 100
IPC (interprocess communication), 55
is_system_labeled() function, 48-49

L
labelAPIs, 27-33

introduction to, 12
Label Builder, 77, 105
label clipping, 105
labels

code examples, 37
list of, 103-105
RPC, 105
Trusted XWindow System, 63-75, 105-106
windows, 18
for zone labels and zone paths, 23

Label Builder
APIs, 77-78
authorizations, 83
Cancel button, 83
declarations, 77-78
description of, 18-19
functionality, 82-83
header files, 77-78
label radio buttons, 82
libraries, 77-78
ModLabelData structure, 86-87
online help, 87
privileged tasks, 83
Reset button, 83
tsol_lbuild_create() routine, 83-84
Update button, 82

label clipping
API declaration, 72, 105
translating with font list, 74

label data types
label ranges, 27
sensitivity labels, 27

label_encodings file
API declarations, 104
color names, 41
Label Builder, 82-83
non-English, 74

label ranges, 12
file systems

data structure, 27
overview, 16

label_to_str() routine
code example, 41, 42-44, 74
declaration, 72

Index

113

labeled zones, 22-23
labels

acquiring, 34-36
ADMIN_HIGH, 22
ADMIN_LOW, 22
API declarations, 104

label clipping, 105
label_encodings file, 104
labels, 104
levels, 104
network databases, 104
ranges, 104
zones, 104

components of, 12
definition of, 13
disjoint, 15
dominant, 14
downgrading guidelines, 26
in global zone, 22
objects, 28, 34-36
privileged tasks, 25-26
privileges

downgrading labels, 26
upgrading labels, 26

ranges, 17-18, 27
relationships, 13, 40
strictly dominant, 14
types

clearance, 12
sensitivity, 12

upgrading guidelines, 26
user processes, 34-36

LBUILD_CHECK_AR operation, 85
LBUILD_LOWER_BOUND operation, 85
LBUILD_MODE_CLR value, 84
LBUILD_MODE operation, 84
LBUILD_MODE_SL value, 84
LBUILD_SHOW operation, 85
LBUILD_TITLE operation, 85
LBUILD_UPPER_BOUND operation, 85
LBUILD_USERFIELD operation, 84
LBUILD_VALUE_CLR operation, 84
LBUILD_VALUE_SL operation, 84
LBUILD_VIEW_EXTERNAL value, 85
LBUILD_VIEW_INTERNAL value, 85
LBUILD_VIEW operation, 85

LBUILD_WORK_CLR operation, 85
LBUILD_WORK_SL operation, 85
LBUILD_X operation, 85
LBUILD_Y operation, 85
libraries, Trusted XWindow SystemAPIs, 67
libraries, compile

labelAPIs, 27-33
Label BuilderAPIs, 77-78

library routines
API declarations, 107-110
bldominates(), 33
blequal(), 33
blinrange(), 33
blmaximum(), 33
blminimum(), 33
blstrictdom(), 33
getdevicerange(), 29
getpathbylabel(), 29-31
getplabel(), 27
getuserrange(), 29
getzoneidbylabel(), 29-31
getzonelabelbyid(), 29-31
getzonelabelbyname(), 29-31
getzonerootbyid(), 29-31
getzonerootbylabel(), 29-31
getzonerootbyname(), 29-31
label_to_str(), 31, 32, 72
m_label_alloc(), 28
m_label_dup(), 28
m_label_free(), 28
setflabel(), 28-29
str_to_label(), 31
tsol_getrhtype(), 31
tsol_lbuild_create(), 77-78
tsol_lbuild_destroy(), 77-78
tsol_lbuild_get(), 77-78
tsol_lbuild_set(), 77-78
ucred_getlabel(), 27
XTSOLgetClientAttributes(), 69
XTSOLgetPropAttributes(), 69
XTSOLgetPropLabel(), 70
XTSOLgetPropUID(), 70
XTSOLgetResAttributes(), 69
XTSOLgetResLabel(), 69
XTSOLgetResUID(), 70
XTSOLgetSSHeight(), 72

Index

Solaris Trusted Extensions Developer’s Guide • October 2006114

library routines (Continued)
XTSOLgetWorkstationOwner(), 70-71
XTSOLIsWindowTrusted(), 71-72
XTSOLmakeTPWindow(), 71-72
XTSOLsetPolyInstInfo(), 72
XTSOLsetPropLabel(), 70
XTSOLsetPropUID(), 70
XTSOLsetResLabel(), 69
XTSOLsetResUID(), 70
XTSOLsetSessionHI(), 71
XTSOLsetSessionLO(), 71
XTSOLsetSSHeight(), 72
XTSOLsetWorkstationOwner(), 70-71

M
m_label_alloc() routine

code example, 40
declaration, 28

m_label_dup() routine, declaration, 28
m_label_free() routine, declaration, 28
m_label_t type, 27
MAC (mandatory access control), 55, 63

making socket exempt from, 21-22
ModLabelData structure, 86-87
Motif application

Label Builder widgets, 86-87
online help, 87

multilevel operations, security policy for, 19-22
multilevel ports

description of, 20-21, 55-56
using with UDP, 59-61

N
net_bindmlp privilege, 55
net_mac_aware privilege, 21-22
network security policy, default, 20
networks, security attributes, 21
non-global zones, 22-23

O
online help, Label Builder, 87
operations, extended, See LBUILD_CHECK_AR operation
ouid field, 68

P
PAF_SELAGNT flag, 67
pid field, 68
polyinstantiation, description of, 63
PORTMAPPER service, 59
ports

multilevel, 55
single-level, 55

printer banner page, label translation, 42-44
printing

banner page, 45
get_peer_label() function, 47-51
labelAPI and, 45
labeled output, 45
multilevel, 45

privileged tasks
Label Builder, 83
labels, 25-26
multilevel port connections, 55-56
Trusted XWindow System, 67

privileges
file_dac_read, 26
file_dac_search, 19-20, 26
file_dac_write, 26
file_downgrade_sl, 23, 26
file_owner, 26
file_upgrade_sl, 23, 26
net_bindmlp, 20, 55, 57
net_mac_aware, 21-22
net_mac_exempt, 21
sys_trans_label, 26, 75, 83, 85
win_config, 67
win_dac_read, 67
win_dac_write, 67
win_devices, 66, 67
win_dga, 67
win_downgrade_sl, 67
win_fontpath, 67
win_selection, 67

Index

115

privileges (Continued)
win_upgrade_sl, 67, 75

process clearances, labels defined, 13
processes

binding tomultilevel ports, 20-21
in labeled zones, 22-23
multilevel initiated in global zone, 19-22
writing down from global zone, 19-20

properties
description of, 64, 65
privileges, 67

R
relationships between labels, 13
releasing an application, 102
remote host

credential, 47-51
label, 49
type, 31

ResourceType structure, 68
RPC (remote procedure call), 59

S
SCM_UCRED, 59
security attribute flags,API declarations, 103
security attributes

accessing labels, 25-26
labels from remote hosts, 21
Trusted XWindow System

contrast with Solaris, 18
description of, 64

security policy
CDE actions, 102
communication endpoints, 56-61
definition of, 11
global zone, 22
label guidelines, 25-26
labels, 25-26
multilevel operations, 19-22
multilevel ports, 55-56
network, 20
sockets, 57

security policy (Continued)
translating labels, 26
Trusted XWindow System, 64-67
write-down in global zone, 19-20

SelectionManager
bypassing with flag, 67
security policy, 66

sensitivity labels, 12
sessionid field, 68
setflabel() routine

code example, 39
declaration, 28-29

setpflags() system call, 21-22
single-level ports, description of, 55
sl field, 68
SO_MAC_EXEMPT option, 21-22
SO_RECVUCRED option, 20-21
sockets

access checks, 56-61
exempt fromMAC, 21-22

software packages, creating, 102
SOL_SOCKET, 59
Solaris

examples of Trusted ExtensionsAPIs, 11
interfaces,API declarations, 106-107

str_to_label() routine, code example, 39
strictly dominant labels, 13
sys_trans_label privilege, 26, 83
system calls

API declarations, 107-110
fgetlabel() routine, 28-29
getlabel() routine, 28-29

T
terms, definitions of, 11
testing and debugging applications, 101
text, color names, 41
translation

labels with font list, 74
privileges needed, 26

Trusted ExtensionsAPIs, Solaris examples, 11
Trusted Path window, definition of, 18
Trusted XWindow System

API declarations, 67-72, 105-106

Index

Solaris Trusted Extensions Developer’s Guide • October 2006116

Trusted XWindow System (Continued)
client attributes structure, 68
defaults, 66
description of, 18
input devices, 66
label-clippingAPI declaration, 105
object attribute structure, 68
object type definition, 68
objects, 64
override-redirect, 66
predefined atoms, 66
privileged tasks, 67
properties, 65
property attribute structure, 68
protocol extensions, 63-75
root window, 65
security attributes

contrast with Solaris, 18
description of, 64

security policy, 64-67
SelectionManager, 66
server control, 66
Trusted Path window, 18
using interfaces, 73-75

tsol_getrhtype() routine, declaration, 31
tsol_lbuild_create() routine

code example, 79
declaration, 77-78
description of, 83-84

tsol_lbuild_destroy() routine, declaration, 77-78
tsol_lbuild_get() routine

code example, 79
declaration, 77-78

tsol_lbuild_set() routine
code example, 79
declaration, 77-78

U
ucred_getlabel() routine, declaration, 27
ucred_t data structure, 47-51
uid field, 68
upgrading labels

guidelines, 26
privileges needed, 26

upgrading labels (Continued)
Trusted XWindow System, 67

user IDs
obtaining on window, 75
obtaining on workstation, 75

W
WebGuard prototype, 89
win_config privilege, 67
win_dac_read privilege, 67
win_dac_write privilege, 67
win_devices privilege, 67
win_dga privilege, 67
win_downgrade_sl privilege, 67
win_fontpath privilege, 67
win_mac_read privilege, 67
win_mac_write privilege, 67
win_upgrade_sl privilege, 67
windows

client, security policy, 65
defaults, 66
description of, 64
override-redirect, security policy, 66
privileges, 67
root, security policy, 65
security policy, 65

X
XWindow System, SeeTrusted XWindow System
Xlib

API declarations, 67-72
objects, 64

XTsolClientAttributes structure, 68
XTSOLgetClientAttributes() routine, declaration, 69
XTSOLgetPropAttributes() routine, declaration, 69
XTSOLgetPropLabel() routine, declaration, 70
XTSOLgetPropUID() routine, declaration, 70
XTSOLgetResAttributes() routine

code example, 73-74
declaration, 69

XTSOLgetResLabel() routine
code example, 74-75

Index

117

XTSOLgetResLabel() routine (Continued)
declaration, 69

XTSOLgetResUID() routine
code example, 75
declaration, 70

XTSOLgetSSHeight() routine, declaration, 72
XTSOLgetWorkstationOwner() routine

code example, 75
declaration, 70-71

XTSOLIsWindowTrusted() routine, declaration, 71-72
XTSOLmakeTPWindow() routine, declaration, 71-72
XTsolPropAttributes structure, 68
XTsolResAttributes structure, 68
XTSOLsetPolyInstInfo() routine, declaration, 72
XTSOLsetPropLabel() routine, declaration, 70
XTSOLsetPropUID() routine, declaration, 70
XTSOLsetResLabel() routine

code example, 75
declaration, 69

XTSOLsetResUID() routine, declaration, 70
XTSOLsetSessionHI() routine, declaration, 71
XTSOLsetSessionLO() routine, declaration, 71
XTSOLsetSSHeight() routine, declaration, 72
XTSOLsetWorkstationOwner() routine,

declaration, 70-71

Z
zones

APIs for zone labels and zone paths, 23
labeled, 22-23
mounts and the global zone, 19-20
multilevel ports, 20-21
in Trusted Extensions, 22-23

Index

Solaris Trusted Extensions Developer’s Guide • October 2006118

	Solaris Trusted Extensions Developer's Guide
	Preface
	How the Solaris Trusted Extensions Books Are Organized
	How This Book Is Organized
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Solaris Trusted Extensions APIs and Security Policy
	Understanding Labels
	Label Types
	Sensitivity Labels
	Clearance Labels

	Label Ranges
	Label Components
	Label Relationships

	Trusted Extensions APIs
	Label APIs
	How Labels Are Used in Access Control Decisions
	Types of Label APIs
	Sensitivity Label APIs
	Clearance Label APIs
	Label Range APIs

	Trusted X Window System APIs
	Label Builder APIs

	Trusted Extensions Security Policy
	Multilevel Operations
	Write-Down Policy in the Global Zone
	Default Security Attributes
	Default Network Policy
	Multilevel Ports
	MAC-Exempt Sockets

	Zones and Labels
	Labels in the Global Zone
	Labeled Zones

	Labels and Clearances
	Privileged Operations and Labels
	Label APIs
	Accessing the Process Sensitivity Label
	Allocating and Freeing Memory for Labels
	Obtaining and Setting the Label of a File
	Obtaining Label Ranges
	Accessing Labels in Zones
	Obtaining the Remote Host Type
	Translating Between Labels and Strings
	Readable Versions of Labels
	Label Encodings File

	Comparing Labels

	Acquiring a Sensitivity Label

	Label Code Examples
	Obtaining a Process Label
	Obtaining a File Label
	Setting a File Sensitivity Label
	Determining the Relationship Between Two Labels
	Obtaining the Color Names of Labels
	Obtaining Printer Banner Information

	Printing and the Label APIs
	Printing Labeled Output
	Designing a Label-Aware Application
	Understanding the Multilevel Printing Service
	get_peer_label() Label-Aware Function
	Determining Whether the Printing Service Is Running in a Labeled Environment
	Understanding the Remote Host Credential
	Obtaining the Credential and Remote Host Label
	Using the label_to_str() Function
	Handling Memory Management
	Using the Returned Label String

	Validating the Label Request Against the Printer's Label Range

	Interprocess Communications
	Multilevel Port Information
	Communication Endpoints
	Berkeley Sockets and TLI
	AF_UNIX Family
	AF_INET Family

	RPC Mechanism
	Using Multilevel Ports With UDP

	Trusted X Window System
	Trusted X Window System Environment
	Trusted X Window System Security Attributes
	Trusted X Window System Security Policy
	Root Window
	Client Windows
	Override-Redirect Windows
	Keyboard, Pointer, and Server Control
	Selection Manager
	Default Window Resources
	Moving Data Between Windows

	Privileged Operations and the Trusted X Window System
	Trusted Extensions X Window System APIs
	Data Types for X11
	Accessing Attributes
	Accessing and Setting a Window Label
	Accessing and Setting a Window User ID
	Accessing and Setting a Window Property Label
	Accessing and Setting a Window Property User ID
	Accessing and Setting a Workstation Owner ID
	Setting the X Window Server Clearance and Minimum Label
	Working With the Trusted Path Window
	Accessing and Setting the Screen Stripe Height
	Setting Window Polyinstantiation Information
	Working With the X11 Label-Clipping Interface

	Using Trusted X Window System Interfaces
	Obtaining Window Attributes
	Translating the Window Label With the Font List
	Obtaining a Window Label
	Setting a Window Label
	Obtaining the Window User ID
	Obtaining the X Window Server Workstation Owner ID

	Label Builder APIs
	APIs for Label Builder GUIs
	Creating an Interactive User Interface
	Label Builder Behavior
	Keyboard Entry and Update Button
	Radio Button Options
	Reset Button
	Cancel Button

	Application-Specific Functionality for Label Builder
	Privileged Operations and Label Builder
	tsol_lbuild_create() Routine
	Extended Label Builder Operations
	ModLabelData Structure

	Online Help for Label Builder

	Trusted Web Guard Prototype
	Administrative Web Guard Prototype
	Modifying the label_encodings File
	Configuring Trusted Networking
	Configuring the Apache Web Servers
	Running the Trusted Web Guard Demonstration

	Accessing Lower-Level Untrusted Servers

	Programmer's Reference
	Trusted Extensions Man Pages
	Header File Locations
	Abbreviations Used in Interface Names and Data Structure Names
	Developing, Testing, and Debugging an Application
	Releasing an Application
	Creating a CDE Action
	Creating a Software Package

	Solaris Trusted Extensions API Reference
	Process Security Attribute Flags APIs
	Label APIs
	Label-Clipping APIs
	RPC APIs
	Label Builder APIs
	Trusted X Window System APIs
	Solaris Library Routines and System Calls That Use Trusted Extensions Parameters
	System Calls and Library Routines in Trusted Extensions

	Index

