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Preface

This Device Driver Tutorial is a hands-on guide that shows you how to develop a
simple device driver for the Solaris™ Operating System (Solaris OS). Device Driver
Tutorial also explains how device drivers work in the Solaris OS. This book is a
companion to Writing Device Drivers. Writing Device Drivers is a thorough reference
document that discusses many types of devices and drivers. Device Driver Tutorial
examines complete drivers but does not provide a comprehensive treatment of all
driver types. Device Driver Tutorial often points to Writing Device Drivers and other
books for further information.

Note – This Solaris release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation
differences between the platform types.

In this document, the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
You should read this tutorial if you need to develop, install, and configure device
drivers for the Solaris OS. You also should read this book if you need to maintain
existing drivers or add new functionality to existing Solaris OS drivers. Information
about the kernel provided in this book also will help you troubleshoot any problems
you might encounter installing or configuring Solaris systems.
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User Background
To write device drivers for the Solaris OS, you should have the following background:

� Be a confident C programmer
� Have experience with data structures, especially with linked lists
� Understand bit operations
� Understand indirect function calls
� Understand caching
� Understand multithreading (see the Multithreaded Programming Guide)
� Be familiar with a UNIX® shell
� Understand the basics of UNIX system and I/O architecture

The most important information you need to have to write a device driver are the
characteristics of the device. Get a detailed specification for the device you want to
drive.

Experience with Solaris OS compilers, debuggers, and other tools will be very helpful
to you. You also need to understand where the file system fits with the kernel and the
application layer. These topics are discussed in this tutorial.

How This Book Is Organized
This book is organized into the following chapters:

Chapter 1 provides an overview of the Solaris Operating System and kernel. This
chapter also discusses the driver development environment and tools.

Chapter 2 shows a simple template driver. This chapter shows in detail the steps to
develop, build, install, load, and test this simple driver.

Chapter 3 describes how to develop a driver that reads data from and writes data to
kernel memory.

Chapter 4 discusses some common errors in driver development and how to avoid
them or handle them. This chapter also introduces driver analysis and debugging
tools.
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Related Books
For detailed reference information about the device driver interfaces, see the section 9
man pages. Section 9E, Intro(9E), describes DDI/DKI (Device Driver Interface,
Driver-Kernel Interface) driver entry points. Section 9F, Intro(9F), describes
DDI/DKI kernel functions. Section 9S, Intro(9S), describes DDI/DKI properties and
data structures.

For information on other driver-related tools and issues, see these books from Sun
Microsystems:

� Writing Device Drivers
� Multithreaded Programming Guide
� STREAMS Programming Guide
� Solaris Modular Debugger Guide
� Solaris Dynamic Tracing Guide
� Application Packaging Developer’s Guide
� Solaris 64-bit Developer’s Guide

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.
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Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $
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TABLE P–2 Shell Prompts (Continued)
Shell Prompt

Bourne shell and Korn shell superuser prompt #
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CHAPTER 1

Introduction to Device Drivers

This chapter gives an overview of the Solaris Operating System and kernel. To design
and code device drivers, you need a good understanding of the kernel and its I/O
systems.

Solaris Operating System Definition
The Solaris Operating System (Solaris OS) is implemented as an executable file that
runs at boot time. The Solaris OS is referred to as the kernel. The kernel contains all of
the routines that are necessary for the system to run. Because the kernel is essential for
the running of the machine, the kernel runs in a special, protected mode that is called
kernel mode. In contrast, user-level applications operate in a restricted mode called user
mode that has no access to kernel instructions or to the kernel address space. Device
drivers run in kernel mode and are prevented from directly accessing processes in
user mode.

Kernel Overview
The kernel manages the system resources, including file systems, processes, and
physical devices. The kernel provides applications with system services such as I/O
management, virtual memory, and scheduling. The kernel coordinates interactions of
all user processes and system resources. The kernel assigns priorities, services resource
requests, and services hardware interrupts and exceptions. The kernel schedules and
switches threads, pages memory, and swaps processes.
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Differences Between Kernel Modules and User
Programs
This section discusses several important differences between kernel modules and user
programs.

Execution Differences Between Kernel Modules and User
Programs
The following characteristics of kernel modules highlight important differences
between the execution of kernel modules and the execution of user programs:

� Kernel modules have separate address space. A module runs in kernel space. An
application runs in user space. System software is protected from user programs.
Kernel space and user space have their own memory address spaces. See “User
and Kernel Address Spaces on x86 and SPARC Machines” on page 16 for
important information about address spaces.

� Kernel modules have higher execution privilege. Code that runs in kernel space
has greater privilege than code that runs in user space. Driver modules potentially
have a much greater impact on the system than user programs. Test and debug
your driver modules carefully and thoroughly to avoid adverse impact on the
system. See “Device Driver Testing Tips” on page 100.

� Kernel modules do not execute sequentially. A user program typically executes
sequentially and performs a single task from beginning to end. A kernel module
does not execute sequentially. A kernel module registers itself in order to serve
future requests.

� Kernel modules can be interrupted. More than one process can request your
driver at the same time. An interrupt handler can request your driver at the same
time that your driver is serving a system call. In a symmetric multiprocessor (SMP)
system, your driver could be executing concurrently on more than one CPU.

� Kernel modules must be preemptable. You cannot assume that your driver code is
safe just because your driver code does not block. Design your driver assuming
your driver might be preempted.

� Kernel modules can share data. Different threads of an application program
usually do not share data. By contrast, the data structures and routines that
constitute a driver are shared by all threads that use the driver. Your driver must be
able to handle contention issues that result from multiple requests. Design your
driver data structures carefully to keep multiple threads of execution separate.
Driver code must access shared data without corrupting the data. See Chapter 3,
“Multithreading,” in Writing Device Drivers and Multithreaded Programming Guide.
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Structural Differences Between Kernel Modules and User
Programs
The following characteristics of kernel modules highlight important differences
between the structure of kernel modules and the structure of user programs:

� Kernel modules do not define a main program. Kernel modules, including device
drivers, have no main() routine. Instead, a kernel module is a collection of
subroutines and data. A device driver is a kernel module that forms a software
interface to an input/output (I/O) device. The subroutines in a device driver
provide entry points to the device. The kernel uses a device number attribute to
locate the open() routine and other routines of the correct device driver. See
“Device Drivers” on page 17 for more information on entry points. See “Device
Numbers” on page 23 for a description of device numbers.

� Kernel modules are linked only to the kernel. Kernel modules do not link in the
same libraries that user programs link in. The only functions a kernel module can
call are functions that are exported by the kernel. If your driver references symbols
that are not defined in the kernel, your driver will compile but will fail to load.
Solaris OS driver modules should use prescribed DDI/DKI (Device Driver
Interface, Driver-Kernel Interface) interfaces. When you use these standard
interfaces you can upgrade to a new Solaris release or migrate to a new platform
without recompiling your driver. For more information on the DDI, see“DDI/DKI
Interfaces” in Writing Device Drivers. Kernel modules can depend on other kernel
modules by using the -N option during link editing. See the ld(1) man page for
more information.

� Kernel modules use different header files. Kernel modules require a different set
of header files than user programs require. The required header files are listed in
the man page for each function. See man pages section 9: DDI and DKI Kernel
Functions for DDI/DKI functions, man pages section 9: DDI and DKI Driver Entry
Points for entry points, and man pages section 9: DDI and DKI Properties and Data
Structures for structures. Kernel modules can include header files that are shared by
user programs if the user and kernel interfaces within such shared header files are
defined conditionally using the _KERNEL macro.

� Kernel modules should avoid global variables. Avoiding global variables in
kernel modules is even more important than avoiding global variables in user
programs. As much as possible, declare symbols as static. When you must use
global symbols, give them a prefix that is unique within the kernel. Using this
prefix for private symbols within the module also is a good practice.

� Kernel modules can be customized for hardware. Kernel modules can dedicate
process registers to specific roles. Kernel code can be optimized for a specific
processor.

� Kernel modules can be dynamically loaded. The collection of subroutines and
data that constitute a device driver can be compiled into a single loadable module
of object code. This loadable module can then be statically or dynamically linked
into the kernel and unlinked from the kernel. You can add functionality to the
kernel while the system is up and running. You can test new versions of your
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driver without rebooting your system.

Data Transfer Differences Between Kernel Modules and
User Programs
Data transfer between a device and the system typically is slower than data transfer
within the CPU. Therefore, a driver typically suspends execution of the calling thread
until the data transfer is complete. While the thread that called the driver is
suspended, the CPU is free to execute other threads. When the data transfer is
complete, the device sends an interrupt. The driver handles the interrupt that the
driver receives from the device. The driver then tells the CPU to resume execution of
the calling thread. See Chapter 8, “Interrupt Handlers,” in Writing Device Drivers.

Drivers must work with user process (virtual) addresses, system (kernel) addresses,
and I/O bus addresses. Drivers sometimes copy data from one address space to
another address space and sometimes just manipulate address-mapping tables. See
“Bus Architectures” in Writing Device Drivers.

User and Kernel Address Spaces on x86 and
SPARC Machines
On Solaris systems on x86 machines, drivers can directly access user address space.

On SPARC machines, the system panics when a kernel module attempts to directly
access user address space. You must make sure your driver does not attempt to
directly access user address space on a SPARC machine.

Caution – A driver that works on an x86 machine might not work on a SPARC machine
because the driver might access an invalid address.

Do not access user data directly. Use the ddi_copyin(9F) and ddi_copyout(9F)
routines to transfer data to and from user address space. You must use these two
routines to transfer user data in your drivers for SPARC machines. If you also use
these two routines to transfer user data in your drivers for x86 machines, then you can
more easily port the driver to SPARC machines. “Modifying Data Stored in Kernel
Memory” on page 71 shows an example driver that uses ddi_copyin(9F) and
ddi_copyout(9F).

The mmap(2) system call maps pages of memory between a process’s address space
and a file or shared memory object. In response to an mmap(2) system call, the system
calls the devmap(9E) entry point to map device memory into user space. This
information is then available for direct access by user applications.
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Device Drivers
A device driver is a loadable kernel module that manages data transfers between a
device and the OS. Loadable modules are loaded at boot time or by request and are
unloaded by request. A device driver is a collection of C routines and data structures
that can be accessed by other kernel modules. These routines must use standard
interfaces called entry points. Through the use of entry points, the calling modules are
shielded from the internal details of the driver. See “Device Driver Entry Points” in
Writing Device Drivers for more information on entry points.

A device driver declares its general entry points in its dev_ops(9S) structure. A driver
declares entry points for routines that are related to character or block data in its
cb_ops(9S) structure. Some entry points and structures that are common to most
drivers are shown in the following diagram.

cb_ops Structure

xxopen(9E)
xxclose(9E)
...
xxprop_op(9E)For property information

dev_ops Structure

xxattach(9E)
xxdetach(9E)
xxgetinfo(9E)
xxprobe(9E)
...
xx_init(9E)
xx_fini(9E)
xx_info(9E)
...
xxks_snapshot(9E)
xxks_update(9E)
...
xxpower(9E)
...
xxdump(9E)

For autoconfiguration

For kernel statistics

For operating on 
loadable modules

For power management

For dumping memory during
 system failure

FIGURE 1–1 Typical Device Driver Entry Points

The Solaris OS provides many driver entry points. Different types of devices require
different entry points in the driver. The following diagram shows some of the
available entry points, grouped by driver type. No single device driver would use all
the entry points shown in the diagram.
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Generic LAN Device
Driver Entry Points

...
gldm_(9E)
gldm_get_stats(9E)
gldm_intr(9E)
gldm_ioctl(9E)
gldm_reset(9E)
gldm_send(9E)
gldm_set_mac_addr(9E)
gldm_set_multicast(9E)
gldm_set_promiscuous(9E)
gldm_start(9E)
gldm_stop(9E)
...

SCSI HBA Device
Driver Entry Points

...
tran_abort(9E)
tran_bus_reset(9E)
tran_destroy_pkt(9E)
tran_dma_free(9E)
tran_getcap(9E)
tran_init_pkt(9E)
tran_quiesce(9E)
tran_reset(9E)
tran_reset_notify(9E)
tran_setcap(9E)
tran_start(9E)
tran_sync_pkt(9E)
tran_tgt_free(9E)
tran_tgt_init(9E)
tran_tgt_probe(9E)
tran_unquiesce(9E)
...

Block Driver
Entry Points

...
aread(9E)
awrite(9E)
print(9E)
strategy(9E)
...

Memory Mapped  Device
Driver Entry Points

...
devmap9E)
devmap_access(9E)
devmap_contextmgt(9E)
devmap_dup(9E)
devmap_map(9E)
devmap_unmap(9E)
...

Character Device
Driver Entry Points

...
chpoll9E)
ioctl(9E)
read(9E)
write(9E)
segmap(9E)
...

STREAMS Device
Driver Entry Points

...
put9E)
srv(9E)
...

PC Card Device
Driver Entry Points

...
csx_event_handler(9E)
...

FIGURE 1–2 Entry Points for Different Types of Drivers

In the Solaris OS, drivers can manage physical devices, such as disk drives, or
software (pseudo) devices, such as bus nexus devices or ramdisk devices. In the case
of hardware devices, the device driver communicates with the hardware controller
that manages the device. The device driver shields the user application layer from the
details of a specific device so that application level or system calls can be generic or
device independent.

Drivers are accessed in the following situations:

� System initialization. The kernel calls device drivers during system initialization
to determine which devices are available and to initialize those devices.

� System calls from user processes. The kernel calls a device driver to perform I/O
operations on the device such as open(2), read(2), and ioctl(2).

� User-level requests. The kernel calls device drivers to service requests from
commands such as prtconf(1M).
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� Device interrupts. The kernel calls a device driver to handle interrupts generated
by a device.

� Bus reset. The kernel calls a device driver to re-initialize the driver, the device, or
both when the bus is reset. The bus is the path from the CPU to the device.

The following diagram illustrates how a device driver interacts with the rest of the
system.

boot Bus driver

HW controller

Device driver

User
application

System
command

init() bus reset

Device

interrupt

interrupt

Kernel level

User level

read(2) prtconf(1M)

FIGURE 1–3 Typical Device Driver Interactions

Driver Directory Organization
Device drivers and other kernel modules are organized into the following directories
in the Solaris OS. See the kernel(1M) and system(4) man pages for more
information about kernel organization and how to add directories to your kernel
module search path.

/kernel These modules are common across most
platforms. Modules that are required for
booting or for system initialization belong in
this directory.

/platform/‘uname -i‘/kernel These modules are specific to the platform
identified by the command uname -i.
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/platform/‘uname -m‘/kernel These modules are specific to the platform
identified by the command uname -m. These
modules are specific to a hardware class but
more generic than modules in the uname -i
kernel directory.

/usr/kernel These are user modules. Modules that are not
essential to booting belong in this directory.
This tutorial instructs you to put all your
drivers in the /usr/kernel directory.

One benefit of organizing drivers into different directories is that you can selectively
load different groups of drivers on startup when you boot interactively at the boot
prompt as shown in the following example. See the boot(1M) man page for more
information.

Type b [file-name] [boot-flags] <ENTER> to boot with options
or i <ENTER> to enter boot interpreter
or <ENTER> to boot with defaults

<<< timeout in 5 seconds >>>

Select (b)oot or (i)nterpreter: b -a
bootpath: /pci@0,0/pci8086,2545@3/pci8086,
Enter default directory for modules [/platform/i86pc/kernel /kernel

/usr/kernel]: /platform/i86pc/kernel /kernel

In this example, the /usr/kernel location is omitted from the list of directories to
search for modules to load. You might want to do this if you have a driver in
/usr/kernel that causes the kernel to panic during startup or on attach. Instead of
omitting all /usr/kernel modules, a better method for testing drivers is to put them
in their own directory. Use the moddir kernel variable to add this test directory to
your kernel modules search path. The moddir kernel variable is described in
kernel(1M) and system(4). Another method for working with drivers that may have
startup problems is described in “Installing the Driver in a Temporary Location”
on page 48.

Devices as Files
In UNIX, almost everything can be treated as a file. UNIX user applications access
devices as if the devices were files. Files that represent devices are called special files or
device nodes. Device special files are divided into two classes: block devices and
character devices. See “Character and Block Devices” on page 22 for more
information.
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Every I/O service request initially refers to a named file. Most I/O operations that
read or write data perform equally well on ordinary or special files. For example, the
same read(2) system call reads bytes from a file created with a text editor and reads
bytes from a terminal device.

Control signals also are handled as files. Use the ioctl(9E) function to manipulate
control signals.

Devices Directories
The Solaris OS includes both /dev and /devices directories for device drivers.
Almost all the drivers in the /dev directory are links to the /devices directory. The
/dev directory is UNIX standard. The /devices directory is specific to the Solaris
OS.

By convention, file names in the /dev directory are more readable. For example, the
/dev directory might contain files with names such as kdb and mouse that are links
to files such as /devices/pseudo/conskbd@0:kbd and
/devices/pseudo/consms@0:mouse. The prtconf(1M) command shows device
names that are very similar to the file names in the /devices directory. In the
following example, only selected output of the command is shown.

% prtconf -P
conskbd, instance #0

consms, instance #0

Entries in the /dev directory that are not links to the /devices directory are device
nodes or special files created by mknod(1M) or mknod(2). These are zero-length files
that just have a major number and minor number attached to them. Linking to the
physical name of the device in the /devices directory is preferred to using
mknod(1M).

Prior to the Solaris 10 OS, /devices was an on-disk filesystem composed of
subdirectories and files. In the Solaris 10 OS, /devices is a virtual filesystem that
creates these subdirectories and special files on demand.

For more information about the devices file system, see the devfs(7FS) man page.

Device Tree
The device files in the /devices directory are also called the device tree.
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The device tree shows relationships among devices. In the device tree, a directory
represents a nexus device. A nexus is a device that can be a parent of other devices. In
the following example, pci@1f,0 is a nexus device. Only selected output from the
command is shown.

# ls -l /devices
drwxr-xr-x 4 root sys 512 date time pci@1f,0/

crw------- 1 root sys 111,255 date time pci@1f,0:devctl

You can use prtconf(1M) or prtpicl(1M) to see a graphic representation of the
device tree. See “Overview of the Device Tree” in Writing Device Drivers for more
information about the device tree.

Character and Block Devices
A file in the device tree that is not a directory represents either a character device or a
block device.

A block device can contain addressable, reusable data. An example of a block device is
a file system. Any device can be a character device. Most block devices also have
character interfaces. Disks have both block and character interfaces. In your
/devices/pseudo directory, you might find devices such as the following:

brw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,blk
crw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,raw
brw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,blk
crw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,raw
brw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,blk

crw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,raw

Block devices have a b as the first character of their file mode. Character devices have
a c as the first character of their file mode. In this example, the block devices have blk
in their names and the character devices have raw in their names.

The md(7D) device is a metadevice that provides disk services. The block devices
access the disk using the system’s normal buffering mechanism. The character devices
provide for direct transmission between the disk and the user’s read or write buffer.

Device Names
This section shows a complex device name and explains the meaning of each part of
the name in /dev and also in /devices. The following example is the name of a disk
slice:

/dev/dsk/c0t0d0s7 -> ../../devices/pci@1c,600000/scsi@2/sd@0,0:h
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First, examine the name of the file in the /dev directory. These names are managed by
the devfsadmd(1M) daemon.

c0 Controller 0

t0 Target 0. On SCSI controllers, this value is the disk number.

d0 SCSI LUN. This value indicates a virtual partitioning of a target or single
physical device.

s7 Slice 7 on the target 0 disk.

For the same device, compare the name of the file in the /devices directory. These
names show the physical structure and real device names. Note that some of the
components of the device name in the /devices directory are subdirectories.

pci@1c,600000 PCI bus at address 1c,600000. These addresses are meaningful
only to the parent device.

scsi@2 SCSI controller at address 2 on the PCI bus at address
1c,600000. This name corresponds to the c0 in
/dev/dsk/c0t0d0s7.

sd@0,0 SCSI disk at address 0,0 on the SCSI controller at address 2.
This name corresponds to the t0 in /dev/dsk/c0t0d0s7. The
sd name and driver can also apply to IDE CD-ROM devices.

sd@0,0:h Minor node h on the SCSI disk at address 0,0. This name
corresponds to the s7 in /dev/dsk/c0t0d0s7.

Device Numbers
A device number identifies a particular device and minor node in the device tree. The
dev_t parameter that is required in many DDI/DKI routines is this device number.

Each device has a major number and a minor number. A device number is a
major,minor pair. A long file listing shows the device number in the column where file
sizes are usually listed. In the following example, the device number is 86,255. The
device major number is 86, and the device minor number is 255.

% ls -l /devices/pci@0,0:devctl

crw------- 1 root sys 86,255 date time /devices/pci@0,0:devctl

In the Solaris OS, the major number is chosen for you when you install the driver so
that it will not conflict with any other major number. The kernel uses the major
number to associate the I/O request with the correct driver code. The kernel uses this
association to decide which driver to execute when the user reads or writes the device
file. All devices and their major numbers are listed in the file /etc/name_to_major.

% grep 86 /etc/name_to_major

pci 86
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The minor number is assigned in the driver. The minor number must map each driver
to a specific device instance. Minor numbers usually refer to sub-devices. For example,
a disk driver may communicate with a hardware controller device that has several
disk drives attached. Minor nodes do not necessarily have a physical representation.

The following example shows instances 0, 1, and 2 of the md device. The numbers 0, 1,
and 2 are the minor numbers.

brw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,blk
crw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,raw
brw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,blk
crw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,raw
brw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,blk

crw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,raw

In the name sd@0,0:h,, h represents a minor node. When the driver receives a
request for minor node h, the driver actually receives a corresponding minor number.
The driver for the sd node interprets that minor number to be a particular section of
disk, such as slice 7 mounted on /export.

Chapter 2 shows how to use the ddi_get_instance(9F) routine in your driver to
get an instance number for the device you are driving.
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CHAPTER 2

Template Driver Example

This chapter shows you how to develop a very simple, working driver. This chapter
explains how to write the driver and configuration file, compile the driver, load the
driver, and test the driver.

The driver that is shown in this chapter is a pseudo device driver that merely writes a
message to a system log every time an entry point is entered. This driver demonstrates
the minimum functionality that any character driver must implement. You can use this
driver as a template for building a complex driver.

This chapter discusses the following driver development steps:

� “Overview of the Template Driver Example” on page 25
� “Writing the Template Driver” on page 26
� “Writing the Device Configuration File” on page 47
� “Building and Installing the Driver” on page 48
� “Testing the Template Driver” on page 49
� “Complete Driver Source” on page 52

Overview of the Template Driver
Example
This example guides you through the following steps:

1. Create a directory where you can develop your driver and open a new text file
named dummy.c.

2. Write the entry points for loadable module configuration: _init(9E), _info(9E),
and _fini(9E).

3. Write the entry points for autoconfiguration: attach(9E), detach(9E),
getinfo(9E), and prop_op(9E).
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4. Write the entry points for user context: open(9E), close(9E), read(9E), and
write(9E).

5. Define the data structures: the character and block operations structure
cb_ops(9S), the device operations structure dev_ops(9S), and the module linkage
structures modldrv(9S) and modlinkage(9S).

6. Create the driver configuration file dummy.conf.

7. Build and install the driver.

8. Test the driver by loading the driver, reading from and writing to the device node,
and unloading the driver.

The entry points that are to be created in this example are shown in the following
diagram.

dummy_dev_ops Structure

dummy_getinfo
dummy_attach
dummy_detach

dummy_cb_ops Structure

dummy_open
dummy_close
dummy_read
dummy_write
dummy_prop_op

FIGURE 2–1 Entry Points for the dummy Example

Writing the Template Driver
This section describes the entry points and data structures that are included in this
driver and shows you how to define them. All of these data structures and almost all
of these entry points are required for any character device driver.

This section describes the following entry points and data structures:

� Loadable module configuration entry points
� Autoconfiguration entry points
� User context entry points
� Character and block operations structure
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� Device operations structure
� Module linkage structures

First, create a directory where you can develop your driver. This driver is named
dummy because this driver does not do any real work. Next, open a new text file
named dummy.c.

Writing the Loadable Module Configuration Entry
Points
Every kernel module of any type must define at least the following three loadable
module configuration entry points:

� The _init(9E) routine initializes a loadable module. The _init(9E) routine must
at least call the mod_install(9F) function and return the success or failure value
that is returned by mod_install(9F).

� The _info(9E) routine returns information about a loadable module. The
_info(9E) routine must at least call the mod_info(9F) function and return the
value that is returned by mod_info(9F).

� The _fini(9E) routine prepares a loadable module for unloading. The _fini(9E)
routine must at least call the mod_remove(9F) function and return the success or
failure value that is returned by mod_remove(9F). When mod_remove(9F) is
successful, the _fini(9E) routine must undo everything that the _init(9E)
routine did.

The mod_install(9F), mod_info(9F), and mod_remove(9F) functions are used in
exactly the same way in every driver, regardless of the functionality of the driver. You
do not need to investigate what the values of the arguments of these functions should
be. You can copy these function calls from this example and paste them into every
driver you write.

In this section, the following code is added to the dummy.c source file:

/* Loadable module configuration entry points */
int
_init(void)
{

cmn_err(CE_NOTE, "Inside _init");
return(mod_install(&ml));

}

int
_info(struct modinfo *modinfop)
{

cmn_err(CE_NOTE, "Inside _info");
return(mod_info(&ml, modinfop));

}
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int
_fini(void)
{

cmn_err(CE_NOTE, "Inside _fini");
return(mod_remove(&ml));

}

Declaring the Loadable Module Configuration Entry
Points
The _init(9E), _info(9E), and _fini(9E) routine names are not unique to any
particular kernel module. You customize the behavior of these routines when you
define them in your module, but the names of these routines are not unique. These
three routines are declared in the modctl.h header file. You need to include the
modctl.h header file in your dummy.c file. Do not declare these three routines in
dummy.c.

Defining the Module Initialization Entry Point
The _init(9E) routine returns type int and takes no arguments. The _init(9E)
routine must call the mod_install(9F) function and return the success or failure
value that is returned by mod_install(9F).

The mod_install(9F) function takes an argument that is a modlinkage(9S)
structure. See “Defining the Module Linkage Structures” on page 46 for information
about the modlinkage(9S) structure.

This driver is supposed to write a message each time an entry point is entered. Use the
cmn_err(9F) function to write a message to a system log. The cmn_err(9F) function
usually is used to report an error condition. The cmn_err(9F) function also is useful
for debugging in the same way that you might use print statements in a user program.

The cmn_err(9F) function requires you to include the cmn_err.h header file, the
ddi.h header file, and the sunddi.h header file. The cmn_err(9F) function takes
two arguments. The first argument is a constant that indicates the severity of the error
message. The message written by this driver is not an error message but is simply a
test message. Use CE_NOTE for the value of this severity constant. The second
argument the cmn_err(9F) function takes is a string message.

The following code is the _init(9E) routine that you should enter into your dummy.c
file. The ml structure is the modlinkage(9S) structure that is discussed in “Defining
the Module Linkage Structures” on page 46.

int
_init(void)
{

cmn_err(CE_NOTE, "Inside _init");
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return(mod_install(&ml));

}

Defining the Module Information Entry Point
The _info(9E) routine returns type int and takes an argument that is a pointer to an
opaque modinfo structure. The _info(9E) routine must return the value that is
returned by the mod_info(9F) function.

The mod_info(9F) function takes two arguments. The first argument to
mod_info(9F) is a modlinkage(9S) structure. See “Defining the Module Linkage
Structures” on page 46 for information about the modlinkage(9S) structure. The
second argument to mod_info(9F) is the same modinfo structure pointer that is the
argument to the _info(9E) routine. The mod_info(9F) function returns the module
information or returns zero if an error occurs.

Use the cmn_err(9F) function to write a message to the system log in the same way
that you used the cmn_err(9F) function in your _init(9E) entry point.

The following code is the _info(9E) routine that you should enter into your dummy.c
file. The ml structure is discussed in “Defining the Module Linkage Structures”
on page 46. The modinfop argument is a pointer to an opaque structure that the
system uses to pass module information.

int
_info(struct modinfo *modinfop)
{

cmn_err(CE_NOTE, "Inside _info");
return(mod_info(&ml, modinfop));

}

Defining the Module Unload Entry Point
The _fini(9E) routine returns type int and takes no arguments. The _fini(9E)
routine must call the mod_remove(9F) function and return the success or failure value
that is returned by mod_remove(9F).

When mod_remove(9F) is successful, the _fini(9E) routine must undo everything
that the _init(9E) routine did. The _fini(9E) routine must call mod_remove(9F)
because the _init(9E) routine called mod_install(9F). The _fini(9E) routine must
deallocate anything that was allocated, close anything that was opened, and destroy
anything that was created in the _init(9E) routine.

The _fini(9E) routine can be called at any time when a module is loaded. In normal
operation, the _fini(9E) routine often fails. This behavior is normal because the
kernel allows the module to determine whether the module can be unloaded. If
mod_remove(9F) is successful, the module determines that devices were detached,
and the module can be unloaded. If mod_remove(9F) fails, the module determines
that devices were not detached, and the module cannot be unloaded.

Chapter 2 • Template Driver Example 29



The following actions take place when mod_remove(9F) is called:

� The kernel checks whether this driver is busy. This driver is busy if one of the
following conditions is true:

� A device node that is managed by this driver is open.

� Another module that depends on this driver is open. A module depends on this
driver if the module was linked using the -N option with this driver named as
the argument to that -N option. See the ld(1) man page for more information.

� If the driver is busy, then mod_remove(9F) fails and _fini(9E) fails.

� If the driver is not busy, then the kernel calls the detach(9E) entry point of the
driver.

� If detach(9E) fails, then mod_remove(9F) fails and _fini(9E) fails.

� If detach(9E) succeeds, then mod_remove(9F) succeeds, and _fini(9E)
continues its cleanup work.

The mod_remove(9F) function takes an argument that is a modlinkage(9S) structure.
See “Defining the Module Linkage Structures” on page 46 for information about the
modlinkage(9S) structure.

Use the cmn_err(9F) function to write a message to the system log in the same way
that you used the cmn_err(9F) function in your _init(9E) entry point.

The following code is the _fini(9E) routine that you should enter into your dummy.c
file. The ml structure is discussed in “Defining the Module Linkage Structures”
on page 46.

int
_fini(void)
{

cmn_err(CE_NOTE, "Inside _fini");
return(mod_remove(&ml));

}

Including Loadable Module Configuration Header Files
The _init(9E), _info(9E), _fini(9E), and mod_install(9F) functions require you
to include the modctl.h header file. The cmn_err(9F) function requires you to
include the cmn_err.h header file, the ddi.h header file, and the sunddi.h header
file.

The following header files are required by the three loadable module configuration
routines that you have written in this section. Include this code near the top of your
dummy.c file.

#include <sys/modctl.h> /* used by _init, _info, _fini */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */

#include <sys/sunddi.h> /* used by all entry points for this driver */
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Writing the Autoconfiguration Entry Points
Every character driver must define at least the following autoconfiguration entry
points. The kernel calls these routines when the device driver is loaded.

� The attach(9E) routine must call ddi_create_minor_node(9F). The
ddi_create_minor_node(9F) function provides the information the system
needs to create the device files.

� The detach(9E) routine must call ddi_remove_minor_node(9F) to deallocate
everything that was allocated by ddi_create_minor_node(9F). The detach(9E)
routine must undo everything that the attach(9E) routine did.

� The getinfo(9E) routine returns requested device driver information through one
of its arguments.

� The prop_op(9E) routine returns requested device driver property information
through a pointer. You can call the ddi_prop_op(9F) function instead of writing
your own prop_op(9E) entry point. Use the prop_op(9E) entry point to customize
the behavior of the ddi_prop_op(9F) function.

In this section, the following code is added:

/* Device autoconfiguration entry points */
static int
dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

cmn_err(CE_NOTE, "Inside dummy_attach");
switch(cmd) {
case DDI_ATTACH:

dummy_dip = dip;
if (ddi_create_minor_node(dip, "0", S_IFCHR,

ddi_get_instance(dip), DDI_PSEUDO,0)
!= DDI_SUCCESS) {
cmn_err(CE_NOTE,

"%s%d: attach: could not add character node.",
"dummy", 0);

return(DDI_FAILURE);
} else

return DDI_SUCCESS;
default:

return DDI_FAILURE;
}

}

static int
dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

cmn_err(CE_NOTE, "Inside dummy_detach");
switch(cmd) {
case DDI_DETACH:

dummy_dip = 0;
ddi_remove_minor_node(dip, NULL);
return DDI_SUCCESS;

default:
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return DDI_FAILURE;
}

}

static int
dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp)
{

cmn_err(CE_NOTE, "Inside dummy_getinfo");
switch(cmd) {
case DDI_INFO_DEVT2DEVINFO:

*resultp = dummy_dip;
return DDI_SUCCESS;

case DDI_INFO_DEVT2INSTANCE:
*resultp = 0;
return DDI_SUCCESS;

default:
return DDI_FAILURE;

}
}

static int
dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)
{

cmn_err(CE_NOTE, "Inside dummy_prop_op");
return(ddi_prop_op(dev,dip,prop_op,flags,name,valuep,lengthp));

}

Declaring the Autoconfiguration Entry Points
The attach(9E), detach(9E), getinfo(9E), and prop_op(9E) entry point routines
need to be uniquely named for this driver. Choose a prefix to use with each entry
point routine.

Note – By convention, the prefix used for function and data names that are unique to
this driver is either the name of this driver or an abbreviation of the name of this
driver. Use the same prefix throughout the driver. This practice makes debugging
much easier.

In the example shown in this chapter, dummy_ is used for the prefix to each function
and data name that is unique to this example.

The following declarations are the autoconfiguration entry point declarations you
should have in your dummy.c file. Note that each of these functions is declared
static.

static int dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,
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void **resultp);
static int dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp);

Defining the Device Attach Entry Point
The attach(9E) routine returns type int. The attach(9E) routine must return either
DDI_SUCCESS or DDI_FAILURE. These two constants are defined in sunddi.h. All
of the autoconfiguration entry point routines except for prop_op(9E) return either
DDI_SUCCESS or DDI_FAILURE.

The attach(9E) routine takes two arguments. The first argument is a pointer to the
dev_info structure for this driver. All of the autoconfiguration entry point routines
take a dev_info argument. The second argument is a constant that specifies the
attach type. The value that is passed through this second argument is either
DDI_ATTACH or DDI_RESUME. Every attach(9E) routine must define behavior for at
least DDI_ATTACH.

The DDI_ATTACH code must initialize a device instance. In a realistic driver, you
define and manage multiple instances of the driver by using a state structure and the
ddi_soft_state(9F) functions. Each instance of the driver has its own copy of the
state structure that holds data specific to that instance. One of the pieces of data that is
specific to each instance is the device instance pointer. Each instance of the device
driver is represented by a separate device file in /devices. Each device instance file
is pointed to by a separate device instance pointer. See “Managing Device State”
on page 61 for information about state structures and ddi_soft_state(9F)
functions. See “Devices as Files” on page 20 for information about device files and
instances.

This dummy driver allows only one instance. Because this driver allows only one
instance, this driver does not use a state structure. This driver still must declare a
device instance pointer and initialize the pointer value in the attach(9E) routine.
Enter the following code near the beginning of dummy.c to declare a device instance
pointer for this driver:

dev_info_t *dummy_dip; /* keep track of one instance */

The following code is the dummy_attach() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the Autoconfiguration Entry Points”
on page 32.

static int
dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

cmn_err(CE_NOTE, "Inside dummy_attach");
switch(cmd) {
case DDI_ATTACH:

dummy_dip = dip;
if (ddi_create_minor_node(dip, "0", S_IFCHR,
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ddi_get_instance(dip), DDI_PSEUDO,0)
!= DDI_SUCCESS) {
cmn_err(CE_NOTE,

"%s%d: attach: could not add character node.",
"dummy", 0);

return(DDI_FAILURE);
} else

return DDI_SUCCESS;
default:

return DDI_FAILURE;
}

}

First, use cmn_err(9F) to write a message to the system log, as you did in your
_init(9E) entry point. Then provide DDI_ATTACH behavior. Within the DDI_ATTACH
code, first assign the device instance pointer from the dummy_attach() argument to
the dummy_dip variable that you declared above. You need to save this pointer value
in the global variable so that you can use this pointer to get information about this
instance from dummy_getinfo() and detach this instance in dummy_detach(). In
this dummy_attach() routine, the device instance pointer is used by the
ddi_get_instance(9F) function to return the instance number. The device instance
pointer and the instance number both are used by ddi_create_minor_node(9F) to
create a new device node.

A realistic driver probably would use the ddi_soft_state(9F) functions to create
and manage a device node. This dummy driver uses the
ddi_create_minor_node(9F) function to create a device node. The
ddi_create_minor_node(9F) function takes six arguments. The first argument to
the ddi_create_minor_node(9F) function is the device instance pointer that points
to the dev_info structure of this device. The second argument is the name of this
minor node. The third argument is S_IFCHR if this device is a character minor device
or is S_IFBLK if this device is a block minor device. This dummy driver is a character
driver.

The fourth argument to the ddi_create_minor_node(9F) function is the minor
number of this minor device. This number is also called the instance number. The
ddi_get_instance(9F) function returns this instance number. The fifth argument to
the ddi_create_minor_node(9F) function is the node type. The
ddi_create_minor_node(9F) man page lists the possible node types. The
DDI_PSEUDO node type is for pseudo devices. The sixth argument to the
ddi_create_minor_node(9F) function specifies whether this is a clone device. This
is not a clone device, so set this argument value to 0.

If the ddi_create_minor_node(9F) call is not successful, write a message to the
system log and return DDI_FAILURE. If the ddi_create_minor_node(9F) call is
successful, return DDI_SUCCESS. If this dummy_attach() routine receives any cmd
other than DDI_ATTACH, return DDI_FAILURE.
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Defining the Device Detach Entry Point
The detach(9E) routine takes two arguments. The first argument is a pointer to the
dev_info structure for this driver. The second argument is a constant that specifies
the detach type. The value that is passed through this second argument is either
DDI_DETACH or DDI_SUSPEND. Every detach(9E) routine must define behavior for
at least DDI_DETACH.

The DDI_DETACH code must undo everything that the DDI_ATTACH code did. In the
DDI_ATTACH code in your attach(9E) routine, you saved the address of a new
dev_info structure and you called the ddi_create_minor_node(9F) function to
create a new node. In the DDI_DETACH code in this detach(9E) routine, you need to
reset the variable that pointed to the dev_info structure for this node. You also need
to call the ddi_remove_minor_node(9F) function to remove this node. The
detach(9E) routine must deallocate anything that was allocated, close anything that
was opened, and destroy anything that was created in the attach(9E) routine.

The following code is the dummy_detach() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the Autoconfiguration Entry Points”
on page 32.

static int
dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

cmn_err(CE_NOTE, "Inside dummy_detach");
switch(cmd) {
case DDI_DETACH:

dummy_dip = 0;
ddi_remove_minor_node(dip, NULL);
return DDI_SUCCESS;

default:
return DDI_FAILURE;

}

}

First, use cmn_err(9F) to write a message to the system log, as you did in your
_init(9E) entry point. Then provide DDI_DETACH behavior. Within the DDI_DETACH
code, first reset the dummy_dip variable that you set in dummy_attach() above. You
cannot reset this device instance pointer unless you remove all instances of the device.
This dummy driver supports only one instance.

Next, call the ddi_remove_minor_node(9F) function to remove this device node.
The ddi_remove_minor_node(9F) function takes two arguments. The first argument
is the device instance pointer that points to the dev_info structure of this device. The
second argument is the name of the minor node you want to remove. If the value of
the minor node argument is NULL, then ddi_remove_minor_node(9F) removes all
instances of this device. Because the DDI_DETACH code of this driver always removes
all instances, this dummy driver supports only one instance.
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If the value of the cmd argument to this dummy_detach() routine is DDI_DETACH,
remove all instances of this device and return DDI_SUCCESS. If this
dummy_detach() routine receives any cmd other than DDI_DETACH, return
DDI_FAILURE.

Defining the Get Driver Information Entry Point
The getinfo(9E) routine takes a pointer to a device number and returns a pointer to
a device information structure or returns a device instance number. The return value
of the getinfo(9E) routine is DDI_SUCCESS or DDI_FAILURE. The pointer or
instance number requested from the getinfo(9E) routine is returned through a
pointer argument.

The getinfo(9E) routine takes four arguments. The first argument is a pointer to the
dev_info structure for this driver. This dev_info structure argument is obsolete
and is no longer used by the getinfo(9E) routine.

The second argument to the getinfo(9E) routine is a constant that specifies what
information the getinfo(9E) routine must return. The value of this second argument
is either DDI_INFO_DEVT2DEVINFO or DDI_INFO_DEVT2INSTANCE. The third
argument to the getinfo(9E) routine is a pointer to a device number. The fourth
argument is a pointer to the place where the getinfo(9E) routine must store the
requested information. The information stored at this location depends on the value
you passed in the second argument to the getinfo(9E) routine.

The following table describes the relationship between the second and fourth
arguments to the getinfo(9E) routine.

TABLE 2–1 Get Driver Information Entry Point Arguments

cmd arg resultp

DDI_INFO_DEVT2DEVINFO Device number Device information structure
pointer

DDI_INFO_DEVT2INSTANCE Device number Device instance number

The following code is the dummy_getinfo() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the Autoconfiguration Entry Points”
on page 32.

static int
dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp)
{

cmn_err(CE_NOTE, "Inside dummy_getinfo");
switch(cmd) {
case DDI_INFO_DEVT2DEVINFO:
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*resultp = dummy_dip;
return DDI_SUCCESS;

case DDI_INFO_DEVT2INSTANCE:
*resultp = 0;
return DDI_SUCCESS;

default:
return DDI_FAILURE;

}

}

First, use cmn_err(9F) to write a message to the system log, as you did in your
_init(9E) entry point. Then provide DDI_INFO_DEVT2DEVINFO behavior. A realistic
driver would use arg to get the instance number of this device node. A realistic driver
would then call the ddi_get_soft_state(9F) function and return the device
information structure pointer from that state structure. This dummy driver supports
only one instance and does not use a state structure. In the
DDI_INFO_DEVT2DEVINFO code of this dummy_getinfo() routine, simply return
the one device information structure pointer that the dummy_attach() routine saved.

Next, provide DDI_INFO_DEVT2INSTANCE behavior. Within the
DDI_INFO_DEVT2INSTANCE code, simply return 0. This dummy driver supports only
one instance. The instance number of that one instance is 0.

Defining the Report Driver Property Information Entry
Point
The prop_op(9E) entry point is required for every driver. If your driver does not need
to customize the behavior of the prop_op(9E) entry point, then your driver can use
the ddi_prop_op(9F) function for the prop_op(9E) entry point. Drivers that create
and manage their own properties need a custom prop_op(9E) routine. This dummy
driver uses a prop_op(9E) routine to call cmn_err(9F) before calling the
ddi_prop_op(9F) function.

The prop_op(9E) entry point and the ddi_prop_op(9F) function both require that
you include the types.h header file. The prop_op(9E) entry point and the
ddi_prop_op(9F) function both take the same seven arguments. These arguments are
not discussed here because this dummy driver does not create and manage its own
properties. See the prop_op(9E) man page to learn about the prop_op(9E)
arguments.

The following code is the dummy_prop_op() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the Autoconfiguration Entry Points”
on page 32.

static int
dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)
{
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cmn_err(CE_NOTE, "Inside dummy_prop_op");
return(ddi_prop_op(dev,dip,prop_op,flags,name,valuep,lengthp));

}

First, use cmn_err(9F) to write a message to the system log, as you did in your
_init(9E) entry point. Then call the ddi_prop_op(9F) function with exactly the
same arguments as the dummy_prop_op() function.

Including Autoconfiguration Header Files
All of the autoconfiguration entry point routines and all of the user context entry point
routines require that you include the ddi.h and sunddi.h header files. You already
included these two header files for the cmn_err(9F) function.

The ddi_create_minor_node(9F) function requires the stat.h header file. The
dummy_attach() routine calls the ddi_create_minor_node(9F) function. The
prop_op(9E) and the ddi_prop_op(9F) functions require the types.h header file.

The following code is the list of header files that you now should have included in
your dummy.c file for the four autoconfiguration routines you have written in this
section and the three loadable module configuration routines you wrote in the
previous section.

#include <sys/modctl.h> /* used by _init, _info, _fini */
#include <sys/types.h> /* used by prop_op, ddi_prop_op */
#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by ddi_get_instance, ddi_prop_op */
#include <sys/sunddi.h> /* used by all entry points for this driver */

/* also used by ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop_op */

Writing the User Context Entry Points
User context entry points correspond closely to system calls. When a system call opens
a device file, then the open(9E) routine in the driver for that device is called.

All character and block drivers must define the open(9E) user context entry point.
However, the open(9E) routine can be nulldev(9F). The close(9E), read(9E), and
write(9E) user context routines are optional.

� The open(9E) routine gains access to the device.
� The close(9E) routine relinquishes access to the device. The close(9E) routine

must undo everything that the open(9E) routine did.
� The read(9E) routine reads data from the device node.
� The write(9E) routine writes data to the device node.
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In this section, the following code is added:

/* Use context entry points */
static int
dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)
{

cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

}

static int
dummy_close(dev_t dev, int flag, int otyp, cred_t *cred)
{

cmn_err(CE_NOTE, "Inside dummy_close");
return DDI_SUCCESS;

}

static int
dummy_read(dev_t dev, struct uio *uiop, cred_t *credp)
{

cmn_err(CE_NOTE, "Inside dummy_read");
return DDI_SUCCESS;

}

static int
dummy_write(dev_t dev, struct uio *uiop, cred_t *credp)
{

cmn_err(CE_NOTE, "Inside dummy_write");
return DDI_SUCCESS;

}

Declaring the User Context Entry Points
The user context entry point routines need to be uniquely named for this driver. Use
the same prefix for each of the user context entry points that you used for each of the
autoconfiguration entry point routines. The following declarations are the entry point
declarations you should have in your dummy.c file:

static int dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp);
static int dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp);
static int dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred);
static int dummy_close(dev_t dev, int flag, int otyp, cred_t *cred);
static int dummy_read(dev_t dev, struct uio *uiop, cred_t *credp);

static int dummy_write(dev_t dev, struct uio *uiop, cred_t *credp);

Defining the Open Device Entry Point
The open(9E) routine returns type int. The open(9E) routine should return either
DDI_SUCCESS or the appropriate error number.
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The open(9E) routine takes four arguments. This dummy driver is so simple that this
dummy_open() routine does not use any of the open(9E) arguments. The examples in
Chapter 3 show the open(9E) routine in more detail.

The following code is the dummy_open() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the User Context Entry Points” on page 39.
Write a message to the system log and return success.

static int
dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)
{

cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

}

Defining the Close Device Entry Point
The close(9E) routine returns type int. The close(9E) routine should return either
DDI_SUCCESS or the appropriate error number.

The close(9E) routine takes four arguments. This dummy driver is so simple that this
dummy_close() routine does not use any of the close(9E) arguments. The examples
in Chapter 3 show the close(9E) routine in more detail.

The close(9E) routine must undo everything that the open(9E) routine did. The
close(9E) routine must deallocate anything that was allocated, close anything that
was opened, and destroy anything that was created in the open(9E) routine. In this
dummy driver, the open(9E) routine is so simple that nothing needs to be reclaimed or
undone in the close(9E) routine.

The following code is the dummy_close() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the User Context Entry Points” on page 39.
Write a message to the system log and return success.

static int
dummy_close(dev_t dev, int flag, int otyp, cred_t *cred)
{

cmn_err(CE_NOTE, "Inside dummy_close");
return DDI_SUCCESS;

}

Defining the Read Device Entry Point
The read(9E) routine returns type int. The read(9E) routine should return either
DDI_SUCCESS or the appropriate error number.

The read(9E) routine takes three arguments. This dummy driver is so simple that this
dummy_read() routine does not use any of the read(9E) arguments. The examples in
Chapter 3 show the read(9E) routine in more detail.
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The following code is the dummy_read() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the User Context Entry Points” on page 39.
Write a message to the system log and return success.

static int
dummy_read(dev_t dev, struct uio *uiop, cred_t *credp)
{

cmn_err(CE_NOTE, "Inside dummy_read");
return DDI_SUCCESS;

}

Defining the Write Device Entry Point
The write(9E) routine returns type int. The write(9E) routine should return either
DDI_SUCCESS or the appropriate error number.

The write(9E) routine takes three arguments. This dummy driver is so simple that this
dummy_write() routine does not use any of the write(9E) arguments. The examples
in Chapter 3 show the write(9E) routine in more detail.

The following code is the dummy_write() routine that you should enter into your
dummy.c file. You can copy the name portion of this function definition directly from
the declaration you entered in “Declaring the User Context Entry Points” on page 39.
Write a message to the system log and return success.

static int
dummy_write(dev_t dev, struct uio *uiop, cred_t *credp)
{

cmn_err(CE_NOTE, "Inside dummy_write");
return DDI_SUCCESS;

}

Including User Context Header Files
The four user context entry point routines require your module to include several
header files. You already have included the types.h header file, the ddi.h header
file, and the sunddi.h header file. You need to include the file.h, errno.h,
open.h, cred.h, and uio.h header files.

The following code is the list of header files that you now should have included in
your dummy.c file for all the entry points you have written in this section and the
previous two sections:

#include <sys/modctl.h> /* used by modlinkage, modldrv, _init, _info, */
/* and _fini */

#include <sys/types.h> /* used by open, close, read, write, prop_op, */
/* and ddi_prop_op */

#include <sys/file.h> /* used by open, close */
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#include <sys/errno.h> /* used by open, close, read, write */
#include <sys/open.h> /* used by open, close, read, write */
#include <sys/cred.h> /* used by open, close, read */
#include <sys/uio.h> /* used by read */
#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by ddi_get_instance and */
/* ddi_prop_op */

#include <sys/sunddi.h> /* used by all entry points for this driver */
/* also used by ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop_op */

Writing the Driver Data Structures
All of the data structures described in this section are required for every device driver.
All drivers must define a dev_ops(9S) device operations structure. Because the
dev_ops(9S) structure includes a pointer to the cb_ops(9S) character and block
operations structure, you must define the cb_ops(9S) structure first. The modldrv(9S)
linkage structure for loadable drivers includes a pointer to the dev_ops(9S) structure.
The modlinkage(9S) module linkage structure includes a pointer to the modldrv(9S)
structure.

Except for the loadable module configuration entry points, all of the required entry
points for a driver are initialized in the character and block operations structure or in
the device operations structure. Some optional entry points and other related data also
are initialized in these data structures. Initializing the entry points in these data
structures enables the driver to be dynamically loaded.

The loadable module configuration entry points are not initialized in driver data
structures. The _init(9E), _info(9E), and _fini(9E) entry points are required for all
kernel modules and are not specific to device driver modules.

In this section, the following code is added:

/* cb_ops structure */
static struct cb_ops dummy_cb_ops = {

dummy_open,
dummy_close,
nodev, /* no strategy - nodev returns ENXIO */
nodev, /* no print */
nodev, /* no dump */
dummy_read,
dummy_write,
nodev, /* no ioctl */
nodev, /* no devmap */
nodev, /* no mmap */
nodev, /* no segmap */
nochpoll, /* returns ENXIO for non-pollable devices */
dummy_prop_op,
NULL, /* streamtab struct; if not NULL, all above */
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/* fields are ignored */
D_NEW | D_MP, /* compatibility flags: see conf.h */
CB_REV, /* cb_ops revision number */
nodev, /* no aread */
nodev /* no awrite */

};

/* dev_ops structure */
static struct dev_ops dummy_dev_ops = {

DEVO_REV,
0, /* reference count */
dummy_getinfo,
nulldev, /* no identify - nulldev returns 0 */
nulldev, /* no probe */
dummy_attach,
dummy_detach,
nodev, /* no reset - nodev returns ENXIO */
&dummy_cb_ops,
(struct bus_ops *)NULL,
nodev /* no power */

};

/* modldrv structure */
static struct modldrv md = {

&mod_driverops, /* Type of module. This is a driver. */
"dummy driver", /* Name of the module. */
&dummy_dev_ops

};

/* modlinkage structure */
static struct modlinkage ml = {

MODREV_1,
&md,
NULL

};

/* dev_info structure */

dev_info_t *dummy_dip; /* keep track of one instance */

Defining the Character and Block Operations Structure
The cb_ops(9S) structure initializes standard character and block interfaces. See the
cb_ops(9S) man page to learn what each element is and what the value of each
element should be. This dummy driver does not use all of the elements in the
cb_ops(9S) structure. See the description that follows the code sample.

When you name this structure, use the same dummy_ prefix that you used for the
names of the autoconfiguration routines and the names of the user context routines.
Prepend the static type modifier to the declaration.

The following code is the cb_ops(9S) structure that you should enter into your
dummy.c file:

Chapter 2 • Template Driver Example 43



static struct cb_ops dummy_cb_ops = {
dummy_open,
dummy_close,
nodev, /* no strategy - nodev returns ENXIO */
nodev, /* no print */
nodev, /* no dump */
dummy_read,
dummy_write,
nodev, /* no ioctl */
nodev, /* no devmap */
nodev, /* no mmap */
nodev, /* no segmap */
nochpoll, /* returns ENXIO for non-pollable devices */
dummy_prop_op,
NULL, /* streamtab struct; if not NULL, all above */

/* fields are ignored */
D_NEW | D_MP, /* compatibility flags: see conf.h */
CB_REV, /* cb_ops revision number */
nodev, /* no aread */
nodev /* no awrite */

};

Enter the names of the open(9E) and close(9E) entry points for this driver as the
values of the first two elements of this structure. Enter the names of the read(9E) and
write(9E) entry points for this driver as the values of the sixth and seventh elements
of this structure. Enter the name of the prop_op(9E) entry point for this driver as the
value of the thirteenth element in this structure.

The strategy(9E), print(9E), and dump(9E) routines are for block drivers only. This
dummy driver does not define these three routines because this driver is a character
driver. This driver does not define an ioctl(9E) entry point because this driver does
not use I/O control commands. This driver does not define devmap(9E), mmap(9E), or
segmap(9E) entry points because this driver does not support memory mapping. This
driver does not does not define aread(9E) or awrite(9E) entry points because this
driver does not perform any asynchronous reads or writes. Initialize all of these
unused function elements to nodev(9F). The nodev(9F) function returns the ENXIO
error code.

Specify the nochpoll(9F) function for the chpoll(9E) element of the cb_ops(9S)
structure because this driver is not for a pollable device. Specify NULL for the
streamtab(9S) STREAMS entity declaration structure because this driver is not a
STREAMS driver.

The compatibility flags are defined in the conf.h header file. The D_NEW flag means
this driver is a new-style driver. The D_MP flag means this driver safely allows
multiple threads of execution. All drivers must be multithreaded-safe, and must
specify this D_MP flag. The D_64BIT flag means this driver supports 64-bit offsets and
block numbers. See the conf.h header file for more compatibility flags.

The CB_REV element of the cb_ops(9S) structure is the cb_ops(9S) revision number.
CB_REV is defined in the devops.h header file.
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Defining the Device Operations Structure
The dev_ops(9S) structure initializes interfaces that are used for operations such as
attaching and detaching the driver. See the dev_ops(9S) man page to learn what each
element is and what the value of each element should be. This dummy driver does not
use all of the elements in the dev_ops(9S) structure. See the description that follows
the code sample.

When you name this structure, use the same dummy_ prefix that you used for the
names of the autoconfiguration routines and the names of the user context routines.
Prepend the static type modifier to the declaration.

The following code is the dev_ops(9S) structure that you should enter into your
dummy.c file:

static struct dev_ops dummy_dev_ops = {
DEVO_REV,
0, /* reference count */
dummy_getinfo,
nulldev, /* no identify - nulldev returns 0 */
nulldev, /* no probe */
dummy_attach,
dummy_detach,
nodev, /* no reset - nodev returns ENXIO */
&dummy_cb_ops,
(struct bus_ops *)NULL,
nodev /* no power */

};

The DEVO_REV element of the dev_ops(9S) structure is the driver build version.
DEVO_REV is defined in the devops.h header file. The second element in this
structure is the driver reference count. Initialize this value to zero. The driver reference
count is the number of instances of this driver that are currently open. The driver
cannot be unloaded if any instances of the driver are still open.

The next six elements of the dev_ops(9S) structure are the names of the getinfo(9E),
identify(9E), probe(9E), attach(9E), detach(9E), and reset() functions for this
particular driver. The identify(9E) function is obsolete. Initialize this structure
element to nulldev(9F). The probe(9E) function determines whether the
corresponding device exists and is valid. This dummy driver does not define a
probe(9E) function. Initialize this structure element to nulldev. The nulldev(9F)
function returns success. The reset() function is obsolete. Initialize the reset()
function to nodev(9F).

The next element of the dev_ops(9S) structure is a pointer to the cb_ops(9S)
structure for this driver. You initialized the cb_ops(9S) structure for this driver in
“Defining the Character and Block Operations Structure” on page 43. Enter
&dummy_cb_ops for the value of the pointer to the cb_ops(9S) structure.

The next element of the dev_ops(9S) structure is a pointer to the bus operations
structure. Only nexus drivers have bus operations structures. This dummy driver is not
a nexus driver. Set this value to NULL because this driver is a leaf driver.
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The last element of the dev_ops(9S) structure is the name of the power(9E) routine
for this driver. The power(9E) routine operates on a hardware device. This driver does
not drive a hardware device. Set the value of this structure element to nodev.

Defining the Module Linkage Structures
Two other module loading structures are required for every driver. The
modlinkage(9S) module linkage structure is used by the _init(9E), _info(9E), and
_fini(9E) routines to install, remove, and retrieve information from a module. The
modldrv(9S) linkage structure for loadable drivers exports driver-specific information
to the kernel. See the man pages for each structure to learn what each element is and
what the value of each element should be.

The following code defines the modldrv(9S) and modlinkage(9S) structures for the
driver shown in this chapter:

static struct modldrv md = {
&mod_driverops, /* Type of module. This is a driver. */
"dummy driver", /* Name of the module. */
&dummy_dev_ops

};

static struct modlinkage ml = {
MODREV_1,
&md,
NULL

};

The first element in the modldrv(9S) structure is a pointer to a structure that tells the
kernel what kind of module this is. Set this value to the address of the
mod_driverops structure. The mod_driverops structure tells the kernel that the
dummy.c module is a loadable driver module. The mod_driverops structure is
declared in the modctl.h header file. You already included the modctl.h header file
in your dummy.c file, so do not declare the mod_driverops structure in dummy.c.
The mod_driverops structure is defined in the modctl.c source file.

The second element in the modldrv(9S) structure is a string that describes this
module. Usually this string contains the name of this module and the version number
of this module. The last element of the modldrv(9S) structure is a pointer to the
dev_ops(9S) structure for this driver. You initialized the dev_ops(9S) structure for
this driver in “Defining the Device Operations Structure” on page 45.

The first element in the modlinkage(9S) structure is the revision number of the
loadable modules system. Set this value to MODREV_1. The next element of the
modlinkage(9S) structure is the address of a null-terminated array of pointers to
linkage structures. Driver modules have only one linkage structure. Enter the address
of the md structure for the value of this element of the modlinkage(9S) structure.
Enter the value NULL to terminate this list of linkage structures.
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Including Data Structures Header Files
The cb_ops(9S) and dev_ops(9S) structures require you to include the conf.h and
devops.h header files. The modlinkage(9S) and modldrv(9S) structures require you
to include the modctl.h header file. You already included the modctl.h header file
for the loadable module configuration entry points.

The following code is the complete list of header files that you now should have
included in your dummy.c file:

#include <sys/devops.h> /* used by dev_ops */
#include <sys/conf.h> /* used by dev_ops and cb_ops */
#include <sys/modctl.h> /* used by modlinkage, modldrv, _init, _info, */

/* and _fini */
#include <sys/types.h> /* used by open, close, read, write, prop_op, */

/* and ddi_prop_op */
#include <sys/file.h> /* used by open, close */
#include <sys/errno.h> /* used by open, close, read, write */
#include <sys/open.h> /* used by open, close, read, write */
#include <sys/cred.h> /* used by open, close, read */
#include <sys/uio.h> /* used by read */
#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by cb_ops, ddi_get_instance, and */
/* ddi_prop_op */

#include <sys/sunddi.h> /* used by all entry points for this driver */
/* also used by cb_ops, ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop_op */

Writing the Device Configuration File
This driver requires a configuration file. A driver that is not self-identifying must have
a node_name.conf file. A self-identifying driver is a driver that can obtain all the
property information it needs from the DDI property interfaces such as
ddi_prop_get_int(9F) and ddi_prop_lookup(9F). For information about device
driver configuration files, see the driver.conf(4) man page.

The minimum information that a configuration file must contain is the name of the
device node and the name or type of the device’s parent. In this simple example, the
node name of the device is the same as the file name of the driver. Create a file named
dummy.conf in your working directory. Put the following single line of information
into dummy.conf:

name="dummy" parent="pseudo";
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Building and Installing the Driver
This section tells you which compile options to use for different architectures and
where to install the driver for different architectures.

Compiling and Linking the Driver
Use the -D_KERNEL option to indicate that this code defines a kernel module.

� If you are compiling for a 64–bit SPARC architecture, use the -xarch=v9 option:

% cc -D_KERNEL -xarch=v9 -c dummy.c

% ld -r -o dummy dummy.o

� If you are compiling for a 64–bit x86 architecture, use the -xarch=amd64 option
and the -xmodel=kernel option:

% cc -D_KERNEL -xarch=amd64 -xmodel=kernel -c dummy.c

% ld -r -o dummy dummy.o

� If you are compiling for a 32–bit architecture, use the following build commands:

% cc -D_KERNEL -c dummy.c

% ld -r -o dummy dummy.o

Installing the Driver in a Temporary Location
Make sure you are user root when you install the driver.

Install drivers in the /tmp directory until you are finished modifying and testing the
_info(), _init(), and attach() routines. Copy the driver binary to the /tmp
directory. Link to the driver from the kernel driver directory.

If a driver has an error in its _info(), _init(), or attach() function, your
machine could get into a state of infinite panic. The Solaris OS automatically reboots
itself after a panic. The Solaris OS loads any drivers it can during boot. If you have an
error in your attach() function that panics the system when you load the driver,
then the system will panic again when it tries to reboot after the panic. The system will
continue the cycle of panic, reboot, panic as it attempts to reload the faulty driver
every time it reboots after panic.

To avoid an infinite panic, keep the driver in the /tmp area until it is well tested. Link
to the driver in the /tmp area from the kernel driver area. The Solaris OS removes all
files from the /tmp area every time the system reboots. If your driver causes a panic,
the Solaris OS reboots successfully because the driver has been removed automatically
from the /tmp area. The link in the kernel driver area points to nothing. The faulty
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driver did not get loaded, so the system does not go back into a panic. You can modify
the driver, copy it again to the /tmp area, and continue testing and developing. When
the driver is well tested, copy it to the /usr/kernel/drv area so that it will remain
available after a reboot.

# cp dummy /tmp

� On a 64–bit SPARC architecture, link to the sparcv9 directory:

# ln -s /tmp/dummy /usr/kernel/drv/sparcv9/dummy

� On a 64–bit x86 architecture, link to the amd64 directory :

# ln -s /tmp/dummy /usr/kernel/drv/amd64/dummy

� On a 32–bit architecture, create the link as follows:

# ln -s /tmp/dummy /usr/kernel/drv/dummy

Copy the configuration file to the kernel driver area of the system.

# cp dummy.conf /usr/kernel/drv

Testing the Template Driver
This dummy driver merely writes a message to a system log each time an entry point
routine is entered. To test this driver, watch for these messages to confirm that each
entry point routine is successfully entered.

The cmn_err(9F) function writes low priority messages such as the messages defined
in this dummy driver to /dev/log. The syslogd(1M) daemon reads messages from
/dev/log and writes low priority messages to /var/adm/messages.

In a separate window, enter the following command and monitor the output as you
perform the tests described in the remainder of this section:

% tail -f /var/adm/messages

Loading the Driver
Make sure you are user root when you load the driver. Use the add_drv(1M)
command to load the driver:

# add_drv dummy

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 513080 kern.notice] NOTICE: Inside _info
date time machine dummy: [ID 874762 kern.notice] NOTICE: Inside _init
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date time machine dummy: [ID 678704 kern.notice] NOTICE: Inside dummy_attach

The _info(9E), _init(9E), and attach(9E) entry points are called in that order
when you add a driver.

The dummy driver has been added to the /devices directory:

% ls -l /devices/pseudo | grep dummy
drwxr-xr-x 2 root sys 512 date time dummy@0

crw------- 1 root sys 92, 0 date time dummy@0:0

The dummy driver also is the most recent module listed by modinfo(1M):

% modinfo
Id Loadaddr Size Info Rev Module Name

180 ed192b70 544 92 1 dummy (dummy driver)

The module name, dummy driver, is the value you entered for the second member of
the modldrv(9S) structure. The value 92 is the major number of this module.

% grep dummy /etc/name_to_major

dummy 92

The Loadaddr address of ed192b70 is the address of the first instruction in the
dummy driver. This address might be useful, for example, in debugging.

% mdb -k
> dummy‘_init $m

BASE LIMIT SIZE NAME
ed192b70 ed192ff0 480 dummy

> $q

The dummy driver also is the most recent module listed by prtconf(1M) in the
pseudo device section:

% prtconf -P
pseudo, instance #0

dummy, instance #0 (driver not attached)

A driver is automatically unloaded when it is not in use. If your driver is in the
/devices directory but modinfo(1M) does not list your driver, you can use either of
the following methods to load your driver:

� Use the modload(1M) command.

� Access the device. The driver is loaded automatically when it is accessed. The
following section describes how to access the dummy device.
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Reading and Writing the Device
Make sure you are user root when you perform the tests described in this section. If
you are not user root, you will receive “Permission denied” error messages when
you try to access the /devices/pseudo/dummy@0:0 special file. Notice the
permissions that are shown for /devices/pseudo/dummy@0:0 in “Loading the
Driver” on page 49.

Test reading from the device. Your dummy device probably is named
/devices/pseudo/dummy@0:0. The following command reads from your dummy
device even if it has a slightly different name:

# cat /devices/pseudo/dummy*

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 136952 kern.notice] NOTICE: Inside dummy_open
date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo
date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op
date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo
date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op
date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo
date time machine dummy: [ID 709590 kern.notice] NOTICE: Inside dummy_read
date time machine dummy: [ID 550206 kern.notice] NOTICE: Inside dummy_close

Test writing to the device:

# echo hello > ‘ls /devices/pseudo/dummy*‘

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 136952 kern.notice] NOTICE: Inside dummy_open
date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo
date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op
date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo
date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op
date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo
date time machine dummy: [ID 672780 kern.notice] NOTICE: Inside dummy_write
date time machine dummy: [ID 550206 kern.notice] NOTICE: Inside dummy_close

As you can see, this output from the write test is almost identical to the output you
saw from the read test. The only difference is in the seventh line of the output. Using
the cat(1) command causes the kernel to access the read(9E) entry point of the
driver. Using the echo(1) command causes the kernel to access the write(9E) entry
point of the driver. The text argument that you give to echo(1) is ignored because this
driver does not do anything with that data.

Unloading the Driver
Make sure you are user root when you unload the driver. Use the rem_drv(1M)
command to unload the driver and remove the device from the /devices directory:
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# rem_drv dummy

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 513080 kern.notice] NOTICE: Inside _info
date time machine dummy: [ID 617648 kern.notice] NOTICE: Inside dummy_detach

date time machine dummy: [ID 812373 kern.notice] NOTICE: Inside _fini

The dummy device is no longer in the /devices directory:

# ls /devices/pseudo/dummy*

/devices/pseudo/dummy*: No such file or directory

The next time you want to read from or write to the dummy device, you must load the
driver again using add_drv(1M).

You can use the modunload(1M) command to unload the driver but not remove the
device from /devices. Then the next time you read from or write to the dummy
device, the driver is automatically loaded.

Press Control-C to stop tailing the /var/adm/messages messages.

Complete Driver Source
The following code is the complete source for the dummy driver described in this
chapter:

/*
* Minimalist pseudo-device.
* Writes a message whenever a routine is entered.
*
* Build the driver:
* cc -D_KERNEL -c dummy.c
* ld -r -o dummy dummy.o
* Copy the driver and the configuration file to /usr/kernel/drv:
* cp dummy.conf /usr/kernel/drv
* cp dummy /tmp
* ln -s /tmp/dummy /usr/kernel/drv/dummy
* Add the driver:
* add_drv dummy
* Test (1) read from driver (2) write to driver:
* cat /devices/pseudo/dummy@*
* echo hello > ‘ls /devices/pseudo/dummy@*‘
* Verify the tests in another window:
* tail -f /var/adm/messages
* Remove the driver:
* rem_drv dummy
*/
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#include <sys/devops.h> /* used by dev_ops */
#include <sys/conf.h> /* used by dev_ops and cb_ops */
#include <sys/modctl.h> /* used by modlinkage, modldrv, _init, _info, */

/* and _fini */
#include <sys/types.h> /* used by open, close, read, write, prop_op, */

/* and ddi_prop_op */
#include <sys/file.h> /* used by open, close */
#include <sys/errno.h> /* used by open, close, read, write */
#include <sys/open.h> /* used by open, close, read, write */
#include <sys/cred.h> /* used by open, close, read */
#include <sys/uio.h> /* used by read */
#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */
#include <sys/cmn_err.h> /* used by all entry points for this driver */
#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by cb_ops, ddi_get_instance, and */
/* ddi_prop_op */

#include <sys/sunddi.h> /* used by all entry points for this driver */
/* also used by cb_ops, ddi_create_minor_node, */
/* ddi_get_instance, and ddi_prop_op */

static int dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp);
static int dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp);
static int dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred);
static int dummy_close(dev_t dev, int flag, int otyp, cred_t *cred);
static int dummy_read(dev_t dev, struct uio *uiop, cred_t *credp);
static int dummy_write(dev_t dev, struct uio *uiop, cred_t *credp);

/* cb_ops structure */
static struct cb_ops dummy_cb_ops = {

dummy_open,
dummy_close,
nodev, /* no strategy - nodev returns ENXIO */
nodev, /* no print */
nodev, /* no dump */
dummy_read,
dummy_write,
nodev, /* no ioctl */
nodev, /* no devmap */
nodev, /* no mmap */
nodev, /* no segmap */
nochpoll, /* returns ENXIO for non-pollable devices */
dummy_prop_op,
NULL, /* streamtab struct; if not NULL, all above */

/* fields are ignored */
D_NEW | D_MP, /* compatibility flags: see conf.h */
CB_REV, /* cb_ops revision number */
nodev, /* no aread */
nodev /* no awrite */

};
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/* dev_ops structure */
static struct dev_ops dummy_dev_ops = {

DEVO_REV,
0, /* reference count */
dummy_getinfo,
nulldev, /* no identify - nulldev returns 0 */
nulldev, /* no probe */
dummy_attach,
dummy_detach,
nodev, /* no reset - nodev returns ENXIO */
&dummy_cb_ops,
(struct bus_ops *)NULL,
nodev /* no power */

};

/* modldrv structure */
static struct modldrv md = {

&mod_driverops, /* Type of module. This is a driver. */
"dummy driver", /* Name of the module. */
&dummy_dev_ops

};

/* modlinkage structure */
static struct modlinkage ml = {

MODREV_1,
&md,
NULL

};

/* dev_info structure */
dev_info_t *dummy_dip; /* keep track of one instance */

/* Loadable module configuration entry points */
int
_init(void)
{

cmn_err(CE_NOTE, "Inside _init");
return(mod_install(&ml));

}

int
_info(struct modinfo *modinfop)
{

cmn_err(CE_NOTE, "Inside _info");
return(mod_info(&ml, modinfop));

}

int
_fini(void)
{

cmn_err(CE_NOTE, "Inside _fini");
return(mod_remove(&ml));

}
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/* Device configuration entry points */
static int
dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

cmn_err(CE_NOTE, "Inside dummy_attach");
switch(cmd) {
case DDI_ATTACH:

dummy_dip = dip;
if (ddi_create_minor_node(dip, "0", S_IFCHR,

ddi_get_instance(dip), DDI_PSEUDO,0)
!= DDI_SUCCESS) {
cmn_err(CE_NOTE,

"%s%d: attach: could not add character node.",
"dummy", 0);

return(DDI_FAILURE);
} else

return DDI_SUCCESS;
default:

return DDI_FAILURE;
}

}

static int
dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

cmn_err(CE_NOTE, "Inside dummy_detach");
switch(cmd) {
case DDI_DETACH:

dummy_dip = 0;
ddi_remove_minor_node(dip, NULL);
return DDI_SUCCESS;

default:
return DDI_FAILURE;

}
}

static int
dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp)
{

cmn_err(CE_NOTE, "Inside dummy_getinfo");
switch(cmd) {
case DDI_INFO_DEVT2DEVINFO:

*resultp = dummy_dip;
return DDI_SUCCESS;

case DDI_INFO_DEVT2INSTANCE:
*resultp = 0;
return DDI_SUCCESS;

default:
return DDI_FAILURE;

}
}

/* Main entry points */
static int
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dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp)

{
cmn_err(CE_NOTE, "Inside dummy_prop_op");
return(ddi_prop_op(dev,dip,prop_op,flags,name,valuep,lengthp));

}

static int
dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)
{

cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

}

static int
dummy_close(dev_t dev, int flag, int otyp, cred_t *cred)
{

cmn_err(CE_NOTE, "Inside dummy_close");
return DDI_SUCCESS;

}

static int
dummy_read(dev_t dev, struct uio *uiop, cred_t *credp)
{

cmn_err(CE_NOTE, "Inside dummy_read");
return DDI_SUCCESS;

}

static int
dummy_write(dev_t dev, struct uio *uiop, cred_t *credp)
{

cmn_err(CE_NOTE, "Inside dummy_write");
return DDI_SUCCESS;

}
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CHAPTER 3

Reading and Writing Data in Kernel
Memory

In this chapter, you will extend the very simple prototype driver you developed in the
previous chapter. The driver you will develop in this chapter displays data read from
kernel memory. The first version of this driver writes data to a system log every time
the driver is loaded. The second version of this driver displays data at user request. In
the third version of this driver, the user can write new data to the device.

Displaying Data Stored in Kernel
Memory
The pseudo device driver presented in this section writes a constant string to a system
log when the driver is loaded.

This first version of the Quote Of The Day driver (qotd_1) is even more simple than
the dummy driver from the previous chapter. The dummy driver includes all functions
that are required to drive hardware. This qotd_1 driver includes only the bare
minimum functions it needs to make a string available to a user command. For
example, this qotd_1 driver has no cb_ops(9S) structure. Therefore, this driver
defines no open(9E), close(9E), read(9E), or write(9E) function. If you examine the
dev_ops(9S) structure for this qotd_1 driver, you see that no getinfo(9E),
attach(9E), or detach(9E) function is defined. This driver contains no function
declarations because all the functions that are defined in this driver are declared in the
modctl.h header file. You must include the modctl.h header file in your qotd_1.c
file.

This qotd_1 driver defines a global variable to hold its text data. The _init(9E) entry
point for this driver uses the cmn_err(9F) function to write the string to a system log.
The dummy driver also uses the cmn_err(9F) function to display messages. The
qotd_1 driver is different from the dummy driver because the qotd_1 driver stores its
string in kernel memory.
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Writing Quote Of The Day Version 1
Enter the source code shown in the following example into a text file named
qotd_1.c.

EXAMPLE 3–1 Quote Of The Day Version 1 Source File

#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#define QOTD_MAXLEN 128

static const char qotd[QOTD_MAXLEN]
= "Be careful about reading health books. \

You may die of a misprint. - Mark Twain\n";

static struct dev_ops qotd_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
ddi_no_info, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
nulldev, /* devo_attach */
nulldev, /* devo_detach */
nodev, /* devo_reset */
(struct cb_ops *)NULL, /* devo_cb_ops */
(struct bus_ops *)NULL, /* devo_bus_ops */
nulldev /* devo_power */

};

static struct modldrv modldrv = {
&mod_driverops,
"Quote of the Day 1.0",
&qotd_dev_ops};

static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL

};

int
_init(void)
{

cmn_err(CE_CONT, "QOTD: %s\n", qotd);
return (mod_install(&modlinkage));

}

int
_info(struct modinfo *modinfop)
{
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EXAMPLE 3–1 Quote Of The Day Version 1 Source File (Continued)

return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{

return (mod_remove(&modlinkage));

}

Enter the configuration information shown in the following example into a text file
named qotd_1.conf.

EXAMPLE 3–2 Quote Of The Day Version 1 Configuration File

name="qotd_1" parent="pseudo" instance=0;

Building, Installing, and Using Quote Of The Day
Version 1
Compile and link the driver. Use the -D_KERNEL option to indicate that this code
defines a kernel module. The following example shows compiling and linking for a
32–bit architecture:

% cc -D_KERNEL -c qotd_1.c

% ld -r -o qotd_1 qotd_1.o

Note that the name of the driver, qotd_1, must match the name property in the
configuration file.

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Installing the Driver in a
Temporary Location” on page 48.

# cp qotd_1 /tmp

# ln -s /tmp/qotd_1 /usr/kernel/drv/qotd_1

Copy the configuration file to the kernel driver area of the system.

# cp qotd_1.conf /usr/kernel/drv

This qotd_1 driver writes a message to a system log each time the driver is loaded.
The cmn_err(9F) function writes low priority messages such as the message defined
in this qotd_1 driver to /dev/log. The syslogd(1M) daemon reads messages from
/dev/log and writes low priority messages to /var/adm/messages.

To test this driver, watch for the message in /var/adm/messages. In a separate
window, enter the following command:
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% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add_drv(1M)
command to load the driver:

# add_drv qotd_1

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine pseudo: [ID 129642 kern.info] pseudo-device: devinfo0
date time machine genunix: [ID 936769 kern.info] devinfo0 is /pseudo/devinfo@0
date time machine qotd: [ID 197678 kern.notice] QOTD_1: Be careful about

reading health books. You may die of a misprint. - Mark Twain

This last line is the content of the variable output by the cmn_err(9F) function in the
_init(9E) entry point. The _init(9E) entry point is called when the driver is loaded.

Displaying Data on Demand
The sample code in this section creates a pseudo device that is controlled by the driver.
The driver stores data in the device and makes the data available when the user
accesses the device for reading.

This section first discusses the important code differences between these two versions
of the Quote Of The Day driver. This section then shows you how you can access the
device to cause the quotation to display.

Writing Quote Of The Day Version 2
The driver that controls the pseudo device is more complex than the driver shown in
the previous section. This section first explains some important features of this version
of the driver. This section then shows all the source for this driver.

The following list summarizes the differences between the two versions of the Quote
Of The Day driver:

� Version 2 of the driver defines a state structure that holds information about each
instance of the device.

� Version 2 defines a cb_ops(9S) structure and a more complete dev_ops(9S)
structure.

� Version 2 defines open(9E), close(9E), read(9E), getinfo(9E), attach(9E), and
detach(9E) entry points.
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� Version 1 uses the cmn_err(9F) function to write a constant string to a system log
in the _init(9E) entry point of the driver. The _init(9E) entry point is called
when the driver is loaded. Version 2 uses the uiomove(9F) function to copy the
quotation from kernel memory. The copied data is returned by the read(9E) entry
point. The read(9E) entry point is called when the driver is accessed for reading.

� Version 2 of the driver uses ASSERT(9F) statements to check the validity of data.

The following sections provide more detail about the additions and changes in
Version 2 of the Quote Of The Day driver.

Managing Device State
The _init(9E) and _fini(9E) entry points and all six new entry points defined in
this driver maintain a soft state for the device. Most device drivers maintain state
information with each instance of the device they control. An instance usually is a
sub-device. For example, a disk driver may communicate with a hardware controller
device that has several disk drives attached. See “Retrieving Driver Soft State
Information” in Writing Device Drivers for more information about soft states.

This sample driver allows only one instance. The instance number is assigned in the
configuration file. See Example 3–4. Most device drivers allow any number of
instances of a device to be created. The system manages the device instance numbers,
and the DDI soft state functions manage the instances.

The following flow gives an overview of how DDI soft state functions manage a state
pointer and the state of a device instance:

1. The ddi_soft_state_init(9F) function initializes the state pointer. The state
pointer is an opaque handle that enables allocation, deallocation, and tracking of a
state structure for each instance of a device. The state structure is a user-defined
type that maintains data specific to this instance of the device. In this example, the
state pointer and state structure are declared after the entry point declarations. See
qotd_state_head and qotd_state in Example 3–3.

2. The ddi_soft_state_zalloc(9F) function uses the state pointer and the device
instance to create the state structure for this instance.

3. The ddi_get_soft_state(9F) function uses the state pointer and the device
instance to retrieve the state structure for this instance of the device.

4. The ddi_soft_state_free(9F) function uses the state pointer and the device
instance to free the state structure for this instance.

5. The ddi_soft_state_fini(9F) function uses the state pointer to destroy the
state pointer and the state structures for all instances of this device.

The ddi_soft_state_zalloc(9F), ddi_get_soft_state(9F), and
ddi_soft_state_free(9F) functions coordinate access to the underlying data
structures in a way that is safe for multithreading. No additional locks should be
necessary.

Chapter 3 • Reading and Writing Data in Kernel Memory 61



Initializing and Unloading
The _init(9E) entry point first calls the ddi_soft_state_init(9F) function to
initialize the soft state. If the soft state initialization fails, that error code is returned. If
the soft state initialization succeeds, the _init(9E) entry point calls the
mod_install(9F) function to load a new module. If the module install fails, the
_init(9E) entry point calls the ddi_soft_state_fini(9F) function and returns the
error code from the failed module install.

Your code must undo everything that it does. You must call
ddi_soft_state_fini(9F) if the module install fails because the _init(9E) call
succeeded and created a state pointer.

The _fini(9E) entry point must undo everything the _init(9E) entry point did. The
_fini(9E) entry point first calls the mod_remove(9F) function to remove the module
that the _init(9E) entry point installed. If the module remove fails, that error code is
returned. If the module remove succeeds, the _fini(9E) entry point calls the
ddi_soft_state_fini(9F) function to destroy the state pointer and the state
structures for all instances of this device.

Attaching and Detaching
The attach(9E) entry point first calls the ddi_get_instance(9F) function to
retrieve the instance number of the device information node. The attach(9E) entry
point uses this instance number to call the ddi_soft_state_zalloc(9F),
ddi_get_soft_state(9F), and ddi_create_minor_node(9F) functions.

The attach(9E) entry point calls the ddi_soft_state_zalloc(9F) function to
create a state structure for this device instance. If creation of the soft state structure
fails, attach(9E) writes an error message to a system log and returns failure. This
device instance is not attached. If creation of the soft state structure succeeds,
attach(9E) calls the ddi_get_soft_state(9F) function to retrieve the state
structure for this device instance.

If retrieval of the state structure fails, attach(9E) writes an error message to a system
log, calls the ddi_soft_state_free(9F) function to destroy the state structure that
was created by ddi_soft_state_zalloc(9F), and returns failure. This device
instance is not attached. If retrieval of the state structure succeeds, attach(9E) calls
the ddi_create_minor_node(9F) function to create the device node.

At the top of this driver source file, a constant named QOTD_NAME is defined that
holds the string name of the device. This constant is one of the arguments that is
passed to ddi_create_minor_node(9F). If creation of the device node fails,
attach(9E) writes an error message to a system log, calls the
ddi_soft_state_free(9F) function to destroy the state structure that was created
by ddi_soft_state_zalloc(9F), calls the ddi_remove_minor_node(9F)
function, and returns failure. This device instance is not attached.
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If creation of the device node succeeds, this device instance is attached. The
attach(9E) entry point assigns the instance number that was retrieved with
ddi_get_instance(9F) to the instance member of the state structure for this
instance. Then attach(9E) assigns the dev_info structure pointer that was passed in
the attach(9E) call to the dev_info structure pointer member of the state structure
for this instance. The ddi_report_dev(9F) function writes a message in the system
log file when the device is added or when the system is booted. The message
announces this device as shown in the following example:

% dmesg
date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd_20

date time machine genunix: [ID 936769 kern.info] qotd_20 is /pseudo/qotd_2@0

The detach(9E) entry point first calls the ddi_get_instance(9F) function to
retrieve the instance number of the device information node. The detach(9E) entry
point uses this instance number to call the ddi_soft_state_free(9F) function to
destroy the state structure that was created by ddi_soft_state_zalloc(9F) in the
attach(9E) entry point. The detach(9E) entry point then calls the
ddi_remove_minor_node(9F) function to remove the device that was created by
ddi_create_minor_node(9F) in the attach(9E) entry point.

Opening the Device, Closing the Device, and Getting
Module Information
The open(9E) and close(9E) entry points are identical in this sample driver. In each
case, the entry point first calls the getminor(9F) function to retrieve the minor
number of the device. Then each entry point uses this instance number to call the
ddi_get_soft_state(9F) function to retrieve the state structure for this device
instance. If no state structure is retrieved, an error code is returned. If a state structure
is retrieved, the open(9E) and close(9E) entry points both verify the type of this
device. If this device is not a character device, the EINVAL (invalid) error code is
returned.

If the user wants device information for this device instance, the getinfo(9E) entry
point returns the device information from the state structure. If the user wants the
instance number of this device instance, the getinfo(9E) entry point uses the
getminor(9F) function to return the minor number.

Reading the Data
The read(9E) entry point first calls the getminor(9F) function to retrieve the minor
number of the device. The read(9E) entry point uses this instance number to call the
ddi_get_soft_state(9F) function to retrieve the state structure for this device
instance. If no state structure is retrieved, read(9E) returns an error code. If a state
structure is retrieved, read(9E) calls the uiomove(9F) function to copy the quotation
from the driver to the uio(9S) I/O request structure.
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Checking Data Validity
Version 2 of the driver uses ASSERT(9F) statements to check the validity of data. If the
asserted expression is true, the ASSERT(9F) statement does nothing. If the asserted
expression is false, the ASSERT(9F) statement writes an error message to the console
and causes the system to panic.

To use ASSERT(9F) statements, include the sys/debug.h header file in your source
and define the DEBUG preprocessor symbol. If you do not define the DEBUG
preprocessor symbol, then the ASSERT(9F) statements do nothing. Simply recompile
to activate or inactivate ASSERT(9F) statements.

Quote Of The Day Version 2 Source
Enter the source code shown in the following example into a text file named
qotd_2.c.

EXAMPLE 3–3 Quote Of The Day Version 2 Source File

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#define QOTD_NAME "qotd"
#define QOTD_MAXLEN 128

static const char qotd[QOTD_MAXLEN]
= "You can’t have everything. \

Where would you put it? - Steven Wright\n";

static void *qotd_state_head;

struct qotd_state {
int instance;
dev_info_t *devi;

};

static int qotd_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int qotd_attach(dev_info_t *, ddi_attach_cmd_t);
static int qotd_detach(dev_info_t *, ddi_detach_cmd_t);
static int qotd_open(dev_t *, int, int, cred_t *);
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

static int qotd_close(dev_t, int, int, cred_t *);
static int qotd_read(dev_t, struct uio *, cred_t *);

static struct cb_ops qotd_cb_ops = {
qotd_open, /* cb_open */
qotd_close, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
qotd_read, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
(struct streamtab *)NULL, /* cb_str */
D_MP | D_64BIT, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* cb_aread */
nodev /* cb_awrite */

};

static struct dev_ops qotd_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
qotd_getinfo, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
qotd_attach, /* devo_attach */
qotd_detach, /* devo_detach */
nodev, /* devo_reset */
&qotd_cb_ops, /* devo_cb_ops */
(struct bus_ops *)NULL, /* devo_bus_ops */
nulldev /* devo_power */

};

static struct modldrv modldrv = {
&mod_driverops;,
"Quote of the Day 2.0",
&qotd_dev_ops;};

static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv;,
NULL

};

int
_init(void)
{

int retval;
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

if ((retval = ddi_soft_state_init(&qotd_state_head;,
sizeof (struct qotd_state), 1)) != 0)

return retval;
if ((retval = mod_install(&modlinkage;)) != 0) {

ddi_soft_state_fini(&qotd_state_head;);
return (retval);

}

return (retval);
}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage;, modinfop));
}

int
_fini(void)
{

int retval;

if ((retval = mod_remove(&modlinkage;)) != 0)
return (retval);

ddi_soft_state_fini(&qotd_state_head;);

return (retval);
}

/*ARGSUSED*/
static int
qotd_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)
{

struct qotd_state *qsp;
int retval = DDI_FAILURE;

ASSERT(resultp != NULL);

switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:

if ((qsp = ddi_get_soft_state(qotd_state_head,
getminor((dev_t)arg))) != NULL) {

*resultp = qsp->devi;
retval = DDI_SUCCESS;

} else
*resultp = NULL;

break;
case DDI_INFO_DEVT2INSTANCE:

*resultp = (void *)getminor((dev_t)arg);
retval = DDI_SUCCESS;
break;

}
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

return (retval);
}

static int
qotd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int instance = ddi_get_instance(dip);
struct qotd_state *qsp;

switch (cmd) {
case DDI_ATTACH:

if (ddi_soft_state_zalloc(qotd_state_head, instance)
!= DDI_SUCCESS) {

cmn_err(CE_WARN, "Unable to allocate state for %d",
instance);

return (DDI_FAILURE);
}
if ((qsp = ddi_get_soft_state(qotd_state_head, instance))

== NULL) {
cmn_err(CE_WARN, "Unable to obtain state for %d",

instance);
ddi_soft_state_free(dip, instance);
return (DDI_FAILURE);

}
if (ddi_create_minor_node(dip, QOTD_NAME, S_IFCHR, instance,

DDI_PSEUDO, 0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "Cannot create minor node for %d",

instance);
ddi_soft_state_free(dip, instance);
ddi_remove_minor_node(dip, NULL);
return (DDI_FAILURE);

}
qsp->instance = instance;
qsp->devi = dip;

ddi_report_dev(dip);
return (DDI_SUCCESS);

case DDI_RESUME:
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

static int
qotd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

int instance = ddi_get_instance(dip);

switch (cmd) {
case DDI_DETACH:

ddi_soft_state_free(qotd_state_head, instance);
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

ddi_remove_minor_node(dip, NULL);
return (DDI_SUCCESS);

case DDI_SUSPEND:
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

/*ARGSUSED*/
static int
qotd_open(dev_t *devp, int flag, int otyp, cred_t *credp)
{

int instance = getminor(*devp);
struct qotd_state *qsp;

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)
return (EINVAL);

return (0);
}

/*ARGSUSED*/
static int
qotd_close(dev_t dev, int flag, int otyp, cred_t *credp)
{

struct qotd_state *qsp;
int instance = getminor(dev);

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)
return (EINVAL);

return (0);
}

/*ARGSUSED*/
static int
qotd_read(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct qotd_state *qsp;
int instance = getminor(dev);

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

return (ENXIO);

ASSERT(qsp->instance == instance);

return (uiomove((void *)qotd, min(uiop->uio_resid, strlen(qotd)),
UIO_READ, uiop));

}

Enter the configuration information shown in the following example into a text file
named qotd_2.conf.

EXAMPLE 3–4 Quote Of The Day Version 2 Configuration File

name="qotd_2" parent="pseudo" instance=0;

Building, Installing, and Using Quote Of The Day
Version 2
Version 2 of the driver uses ASSERT(9F) statements to check the validity of data. To
use ASSERT(9F) statements, include the sys/debug.h header file in your source and
define the DEBUG preprocessor symbol.

Compile and link the driver. If you use ASSERT(9F) statements to check the validity of
data, you must define the DEBUG preprocessor symbol:

% cc -D_KERNEL -DDEBUG -c qotd_2.c

% ld -r -o qotd_2 qotd_2.o

The following example shows compiling and linking for a 32-bit architecture if you are
not using ASSERT(9F) statements:

% cc -D_KERNEL -c qotd_2.c

% ld -r -o qotd_2 qotd_2.o

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Building and Installing
the Driver” on page 48.

# cp qotd_2 /tmp

# ln -s /tmp/qotd_2 /usr/kernel/drv/qotd_2

Copy the configuration file to the kernel driver area of the system.

# cp qotd_2.conf /usr/kernel/drv

In a separate window, enter the following command:

% tail -f /var/adm/messages
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Make sure you are user root when you load the driver. Use the add_drv(1M)
command to load the driver:

# add_drv qotd_2

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine pseudo: [ID 129642 kern.info] pseudo-device: devinfo0
date time machine genunix: [ID 936769 kern.info] devinfo0 is /pseudo/devinfo@0
date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd_20

date time machine genunix: [ID 936769 kern.info] qotd_20 is /pseudo/qotd_2@0

When this version of the Quote Of The Day driver loads, it does not display its
quotation. The qotd_1 driver wrote a message to a system log through its _init(9E)
entry point. This qotd_2 driver stores its data and makes the data available through
its read(9E) entry point.

You can use the modinfo(1M) command to display the module information for this
version of the Quote Of The Day driver. The module name is the value you entered for
the second member of the modldrv structure. The value 96 is the major number of
this module.

% modinfo | grep qotd
182 ed115948 754 96 1 qotd_2 (Quote of the Day 2.0)
% grep qotd /etc/name_to_major
qotd_1 94

qotd_2 96

This driver also is the most recent module listed by prtconf(1M) in the pseudo
device section:

% prtconf -P | grep qotd
qotd_1, instance #0 (driver not attached)

qotd_2, instance #0

When you access this qotd_2 device for reading, the command you use to access the
device retrieves the data from the device node. The command then displays the data
in the same way that the command displays any other input. To get the name of the
device special file, look in the /devices directory:

% ls -l /devices/pseudo/qotd*

crw------- 1 root sys 96, 0 date time /devices/pseudo/qotd_2@0:qotd

This output shows that qotd_2@0:qotd is a character device. This listing also shows
that only the root user has permission to read or write this device. Make sure you are
user root when you test this driver. To test the qotd_2 driver, you can use the
more(1) command to access the device file for reading:

# more /devices/pseudo/qotd_2@0:qotd
You can’t have everything. Where would you put it? - Steven Wright

You can’t have everything. Where would you put it? - Steven Wright
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Modifying Data Stored in Kernel
Memory
In this third version of the Quote Of The Day driver, the user can write to the data that
is stored in kernel memory. The pseudo device that is created in this section is a
pseudo-disk device or ramdisk device. A ramdisk device simulates a disk device by
allocating kernel memory that is subsequently used as data storage. See ramdisk(7D)
for more information about ramdisk devices.

As in Version 2 of the Quote Of The Day driver, this Version 3 driver stores its data
and makes the data available through its read(9E) entry point. This Version 3 driver
overwrites characters from the beginning of the data when the user writes to the
device.

This section first discusses the important code differences between this version and the
previous version of the Quote Of The Day driver. This section then shows you how
you can modify and display the quotation.

In addition to changes in the driver, Quote Of The Day Version 3 introduces a header
file and an auxiliary program. The header file is discussed in the following section.
The utility program is discussed in “Using Quote Of The Day Version 3” on page 91.

Writing Quote Of The Day Version 3
This third version of the Quote Of The Day driver is more complex than the second
version because this third version enables a user to change the text that is stored in the
device.

This section first explains some important features of this version of the driver. This
section then shows all the source for this driver, including the header file and the
configuration file.

The following list summarizes the new features in Version 3 of the Quote Of The Day
driver:

� Version 3 of the driver allocates and frees kernel memory.

� Version 3 uses condition variables and mutexes to manage thread synchronization.

� Version 3 copies data from user space to kernel space to enable the user to change
the quotation.

� Version 3 adds two new entry points: write(9E) and ioctl(9E).

� Version 3 adds a third new routine. The qotd_rw() routine is called by both the
read(9E) entry point and the write(9E) entry point.
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� As in Version 2, Version 3 of the driver uses the uiomove(9F) function to make the
quotation available to the user. Version 3 uses the ddi_copyin(9F) function to
copy the new quotation and the new device size from user space to kernel space.
Version 3 uses the ddi_copyout(9F) function to report the current device size
back to the user.

� Because the driver copies data between kernel space and user space, Version 3 of
the driver uses the ddi_model_convert_from(9F) function to determine
whether the data must be converted between 32–bit and 64–bit models. The 64–bit
kernel supports both 64–bit and 32–bit user data.

� Version 3 defines one new constant to tell the driver whether the device is busy.
Another new constant tells the driver whether the quotation has been modified.
Version 3 defines four new constants to help the driver undo everything it has
done.

� Version 3 includes a separate utility program to test the driver’s I/O controls.

The following sections provide more detail about the additions and changes in Version
3 of the Quote Of The Day driver. The dev_ops(9S) structure and the
modlinkage(9S) structure are the same as they were in Version 2 of the driver. The
modldrv(9S) structure has not changed except for the version number of the driver.
The _init(9E), _info(9E), _fini(9E), getinfo(9E), open(9E), and close(9E)
functions are the same as in Version 2 of the driver.

Attaching, Allocating Memory, and Initializing a Mutex
and a Condition Variable
The qotd_attach() entry point first allocates and gets the device soft state. The
qotd_attach() routine then creates a minor node. All of this code is the same as in
Version 2 of the Quote Of The Day driver. If the call to
ddi_create_minor_node(9F) is successful, the qotd_attach() routine sets the
QOTD_DIDMINOR flag in the new flags member of the qotd_state state structure.

Version 3 of the Quote Of The Day driver defines four new constants that keep track of
four different events. A routine can test these flags to determine whether to deallocate,
close, or remove resources. All four of these flags are set in the qotd_attach() entry
point. All four of these conditions are checked in the qotd_detach() entry point,
and the appropriate action is taken for each condition.

Note that operations are undone in the qotd_detach() entry point in the opposite
order in which they were done in the qotd_attach() entry point. The
qotd_attach() routine creates a minor node, allocates memory for the quotation,
initializes a mutex, and initializes a condition variable. The qotd_detach() routine
destroys the condition variable, destroys the mutex, frees the memory, and removes
the minor node.
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After the minor node is created, the qotd_attach() routine allocates memory for
the quotation. For information on allocating and freeing memory in this driver, see
“Allocating and Freeing Kernel Memory” on page 74. If memory is allocated, the
qotd_attach() routine sets the QOTD_DIDALLOC flag in the flags member of the
state structure.

The qotd_attach() routine then calls the mutex_init(9F) function to initialize a
mutex. If this operation is successful, the qotd_attach() routine sets the
QOTD_DIDMUTEX flag. The qotd_attach() routine then calls the cv_init(9F)
function to initialize a condition variable. If this operation is successful, the
qotd_attach() routine sets the QOTD_DIDCV flag.

The qotd_attach() routine then calls the strlcpy(9F) function to copy the initial
quotation string to the new quotation member of the device state structure. Note that
the strlcpy(9F) function is used instead of the strncpy(9F) function. The
strncpy(9F) function can be wasteful because it always copies n characters, even if
the destination is smaller than n characters. Try using strncpy(9F) instead of
strlcpy(9F) and note the difference in the behavior of the driver.

Finally, the initial quotation length is copied to the new quotation length member of
the state structure. The remainder of the qotd_attach() routine is the same as in
Version 2.

Checking for Changes, Cleaning Up, and Detaching
The qotd_detach() routine is almost all new. The qotd_detach() routine must
first get the soft state because the qotd_detach() routine needs to check the flags
member of the state structure.

The first flag the qotd_detach() routine checks is the QOTD_CHANGED flag. The
QOTD_CHANGED flag indicates whether the device is in the initial state. The
QOTD_CHANGED flag is set in the qotd_rw() routine and in the qotd_ioctl() entry
point. The QOTD_CHANGED flag is set any time the user does anything to the device
other than simply inspect the device. If the QOTD_CHANGED flag is set, the size or
content of the storage buffer has been modified. See “Writing New Data” on page 78
for more information on the QOTD_CHANGED flag. When the QOTD_CHANGED flag is
set, the detach operation fails because the device might contain data that is valuable to
the user and the device should not be removed. If the QOTD_CHANGED flag is set, the
qotd_detach() routine returns an error that the device is busy.

Once the quotation has been modified, the device cannot be detached until the user
runs the qotdctl command with the -r option. The -r option reinitializes the
quotation and indicates that the user is no longer interested in the contents of the
device. See “Exercising the Driver’s I/O Controls” on page 92 for more information
about the qotdctl command.

The qotd_detach() routine then checks the four flags that were set in the
qotd_attach() routine. If the QOTD_DIDCV flag is set, the qotd_detach() routine
calls the cv_destroy(9F) function. If the QOTD_DIDMUTEX flag is set, the
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qotd_detach() routine calls the mutex_destroy(9F) function. If the
QOTD_DIDALLOC flag is set, the qotd_detach() routine calls the
ddi_umem_free(9F) function. Finally, if the QOTD_DIDMINOR flag is set, the
qotd_detach() routine calls the ddi_remove_minor_node(9F) function.

Allocating and Freeing Kernel Memory
One of the new members of the device state structure supports memory allocation and
deallocation. The qotd_cookie member receives a value from the
ddi_umem_alloc(9F) function. The qotd_cookie value is then used by the
ddi_umem_free(9F) function to free the memory.

Version 3 of the Quote Of The Day driver allocates kernel memory in three places:

� After the minor node is created
� In the QOTDIOCSSZ case of the qotd_ioctl() entry point
� In the QOTDIOCDISCARD case of the qotd_ioctl() entry point

The qotd_attach() routine allocates memory after the minor node is created.
Memory must be allocated to enable the user to modify the quotation. The
qotd_attach() routine calls the ddi_umem_alloc(9F) function with the
DDI_UMEM_NOSLEEP flag so that the ddi_umem_alloc(9F) function will return
immediately. If the requested amount of memory is not available,
ddi_umem_alloc(9F) returns NULL immediately and does not wait for memory to
become available. If no memory is allocated, qotd_attach() calls qotd_detach()
and returns an error. If memory is allocated, qotd_attach() sets the
QOTD_DIDALLOC flag so that this memory will be freed by qotd_detach() later.

The second place the driver allocates memory is in the QOTDIOCSSZ case of the
qotd_ioctl() entry point. The QOTDIOCSSZ case sets a new size for the device. A
new size is set when the user runs the qotdctl command with the -s option. See
“Exercising the Driver’s I/O Controls” on page 92 for more information about the
qotdctl command. This time, the ddi_umem_alloc(9F) function is called with the
DDI_UMEM_SLEEP flag so that ddi_umem_alloc(9F) will wait for the requested
amount of memory to be available. When the ddi_umem_alloc(9F) function returns,
the requested memory has been allocated.

Note that you cannot always use the DDI_UMEM_SLEEP flag. See the CONTEXT
sections of the ddi_umem_alloc(9F), kmem_alloc(9F), and kmem_zalloc(9F) man
pages. Also note the behavioral differences among these three functions. The
ddi_umem_alloc(9F) function is used in this qotd_3 driver because
ddi_umem_alloc(9F) allocates whole pages of memory. The kmem_zalloc(9F)
function might save memory because it might allocate smaller chunks of memory. This
qotd_3 driver demonstrates a ramdisk device. In a production ramdisk device, you
would use ddi_umem_alloc(9F) to allocate page-aligned memory.

After the current quotation is copied to the new space, the qotd_ioctl() routine
calls the ddi_umem_free(9F) function to free the memory that was previously
allocated.
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The third place the driver allocates memory is in the QOTDIOCDISCARD case of the
qotd_ioctl() entry point. The QOTDIOCDISCARD case is called from the qotdctl
command. The qotdctl command with the -r option sets the quotation back to its
initial value. If the number of bytes allocated for the current quotation is different from
the initial number of bytes, then new memory is allocated to reinitialize the quotation.
Again, the DDI_UMEM_SLEEP flag is used so that when the ddi_umem_alloc(9F)
function returns, the requested memory has been allocated. The qotd_ioctl()
routine then calls the ddi_umem_free(9F) function to free the memory that was
previously allocated.

Managing Thread Synchronization
The Quote Of The Day Version 3 driver uses condition variables and mutual exclusion
locks (mutexes) together to manage thread synchronization. See the Multithreaded
Programming Guide for more information about mutexes, condition variables, and
thread synchronization.

In this driver, the mutex and condition variable both are initialized in the
qotd_attach() entry point and destroyed in the qotd_detach() entry point. The
condition variable is tested in the qotd_rw() routine and in the qotd_ioctl()
entry point.

The condition variable waits on the QOTD_BUSY condition. This condition is needed
because the driver must do some operations that rely on exclusive access to internal
structures without holding a lock. Accessing the storage buffer or its metadata requires
mutual exclusion, but the driver cannot hold a lock if the operation might sleep.
Instead of holding a lock in this case, the driver waits on the QOTD_BUSY condition.

The driver acquires a mutex when the driver tests the condition variable and when the
driver accesses the storage buffer. The mutex protects the storage buffer. Failure to use
a mutual exclusion when accessing the storage buffer could allow one user process to
resize the buffer while another user process tries to read the buffer, for example. The
result of unprotected buffer access could be data corruption or a panic.

The condition variable is used when functions are called that may need to sleep. The
ddi_copyin(9F), ddi_copyout(9F), and uiomove(9F) functions can sleep. Memory
allocation can sleep if you use the SLEEP flag. Functions must not hold a mutex while
they are sleeping. Sleeping while holding a mutex can cause deadlock. When a
function might sleep, set the QOTD_BUSY flag and take the condition variable, which
drops the mutex. To avoid race conditions, the QOTD_BUSY flag can be set or cleared
only when holding the mutex. For more information on deadlock, see “Using Mutual
Exclusion Locks” in Multithreaded Programming Guide and “Avoiding Deadlock” in
Multithreaded Programming Guide.
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Locking Rules for Quote Of The Day Version 3

The locking rules for this qotd_3 driver are as follows:

1. You must have exclusive access to do any of the following operations. To have
exclusive access, you must own the mutex or you must set QOTD_BUSY. Threads
must wait on QOTD_BUSY.

� Test the contents of the storage buffer.
� Modify the contents of the storage buffer.
� Modify the size of the storage buffer.
� Modify variables that refer to the address of the storage buffer.

2. If your operation does not need to sleep, do the following actions:

a. Acquire the mutex.

b. Wait until QOTD_BUSY is cleared. When the thread that set QOTD_BUSY clears
QOTD_BUSY, that thread also should signal threads waiting on the condition
variable and then drop the mutex.

c. Perform your operation. You do not need to set QOTD_BUSY before you perform
your operation.

d. Drop the mutex.

The following code sample illustrates this rule:

mutex_enter(&qsp->lock);
while (qsp->flags & QOTD_BUSY) {

if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {
mutex_exit(&qsp->lock);
ddi_umem_free(new_cookie);
return (EINTR);

}
}
memcpy(new_qotd, qsp->qotd, min(qsp->qotd_len, new_len));
ddi_umem_free(qsp->qotd_cookie);
qsp->qotd = new_qotd;
qsp->qotd_cookie = new_cookie;
qsp->qotd_len = new_len;
qsp->flags |= QOTD_CHANGED;

mutex_exit(&qsp->lock);

3. If your operation must sleep, do the following actions:

a. Acquire the mutex.
b. Set QOTD_BUSY.
c. Drop the mutex.
d. Perform your operation.
e. Reacquire the mutex.
f. Signal any threads waiting on the condition variable.
g. Drop the mutex.
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These locking rules are very simple. These three rules ensure consistent access to the
buffer and its metadata. Realistic drivers probably have more complex locking
requirements. For example, drivers that use ring buffers or drivers that manage
multiple register sets or multiple devices have more complex locking requirements.

Lock and Condition Variable Members of the State Structure

The device state structure for Version 3 of the Quote Of The Day driver contains two
new members to help manage thread synchronization:

� The lock member is used to acquire and exit mutexes for the current instance of
the device. The lock member is an argument to each mutex(9F) function call. The
lock member also is an argument to the cv_wait_sig(9F) function call. In the
cv_wait_sig(9F) function call, the lock value ensures that the condition will not
be changed before the cv_wait_sig(9F) function returns.

� The cv member is a condition variable. The cv member is an argument to each
condvar(9F) (cv_) function call.

Creating and Destroying Locks and Condition Variables

Version 3 of the Quote Of The Day driver defines two constants to make sure the
mutex and condition variable are destroyed when the driver is finished with them.
The driver uses these constants to set and reset the new flags member of the device
state structure.

� The QOTD_DIDMUTEX flag is set in the qotd_attach() entry point immediately
after a successful call to mutex_init(9F). If the QOTD_DIDMUTEX flag is set when
the qotd_detach() entry point is called, the qotd_detach() entry point calls
the mutex_destroy(9F) function.

� The QOTD_DIDCV flag is set in the qotd_attach() entry point immediately after
a successful call to cv_init(9F). If the QOTD_DIDCV flag is set when the
qotd_detach() entry point is called, the qotd_detach() entry point calls the
cv_destroy(9F) function.

Waiting on Signals

In the qotd_rw() and qotd_ioctl() routines, the cv_wait_sig(9F) calls wait
until the condition variable is signaled to proceed or until a signal(3C) is received.
Either the cv_signal(9F) function or the cv_broadcast(9F) function signals the cv
condition variable to proceed.

A thread can wait on a condition variable until either the condition variable is signaled
or a signal(3C) is received by the process. The cv_wait(9F) function waits until the
condition variable is signaled but ignores signal(3C) signals. This driver uses the
cv_wait_sig(9F) function instead of the cv_wait(9F) function because this driver
responds if a signal is received by the process performing the operation. If a
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signal(3C) is taken by the process, this driver returns an interrupt error and does not
complete the operation. The cv_wait_sig(9F) function usually is preferred to the
cv_wait(9F) function because this implementation offers the user program more
precise response. The signal(3C) causes an effect closer to the point at which the
process was executing when the signal(3C) was received.

Writing New Data
The cb_ops(9S) structure for Version 3 of the Quote Of The Day driver declares two
new entry points that support modifying the quotation. The two new entry points are
write(9E) and ioctl(9E). The qotd_rw() routine is a third new routine in Version 3
of the driver. The qotd_rw() routine is called by both the read(9E) entry point and
the write(9E) entry point.

The device state structure for Version 3 of the Quote Of The Day driver contains two
new members that are used to modify the quotation. The qotd string holds the
quotation for the current instance of the device. The qotd_len member holds the
length in bytes of the current quotation.

Version 3 of the driver also defines two new constants that support modifying the
quotation. In place of QOTD_MAXLEN, Version 3 of the driver defines QOTD_MAX_LEN.
QOTD_MAX_LEN is used in the qotd_ioctl() entry point to test whether the user has
entered a string that is too long. Version 3 of the driver also defines QOTD_CHANGED.
The QOTD_CHANGED flag is set in the qotd_rw() routine and in the qotd_ioctl()
entry point when a new quotation is copied from the user.

When the qotd_3 device is opened for writing, the kernel calls the qotd_write()
entry point. The qotd_write() entry point then calls the qotd_rw() routine and
passes a UIO_WRITE flag. The new qotd_read() entry point is exactly the same as
the qotd_write() entry point, except that the qotd_read() entry point passes a
UIO_READ flag. The qotd_rw() routine supports both reading and writing the device
and thereby eliminates much duplicate code.

The qotd_rw() routine first gets the device soft state. Then the qotd_rw() routine
checks the length of the I/O request in the uio(9S) I/O request structure. If this length
is zero, the qotd_rw() routine returns zero. If this length is not zero, the qotd_rw()
routine enters a mutex.

While the device is busy, the qotd_rw() routine checks whether the condition
variable has been signaled or a signal(3C) is pending. If either of these conditions is
true, the qotd_rw() routine exits the mutex and returns an error.

When the device is not busy, the qotd_rw() routine checks whether the data offset in
the uio(9S) I/O request structure is valid. If the offset is not valid, the qotd_rw()
routine exits the mutex and returns an error. If the offset is valid, the local length
variable is set to the difference between the offset in the I/O request structure and the
length in the device state structure. If this difference is zero, the qotd_rw() routine
exits the mutex and returns. If the device was opened for writing, the qotd_rw()
routine returns a space error. Otherwise, the qotd_rw() routine returns zero.
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The qotd_rw() routine then sets the QOTD_BUSY flag in the flags member of the
device state structure and exits the mutex. The qotd_rw() routine then calls the
uiomove(9F) function to copy the quotation. If the rw argument is UIO_READ, then
the quotation is transferred from the state structure to the I/O request structure. If the
rw argument is UIO_WRITE, then the quotation is transferred from the I/O request
structure to the state structure.

The qotd_rw() routine then enters a mutex again. If the device was opened for
writing, the qotd_rw() routine sets the QOTD_CHANGED flag. The qotd_rw()
routine then sets the device to not busy, calls cv_broadcast(9F) to unblock any
threads that were blocked on this condition variable, and exits the mutex.

Finally, the qotd_rw() routine returns the quotation. The quotation is written to the
device node.

Reporting and Setting Device Size and Re-initializing the
Device
The behavior of the ioctl(9E) entry point depends on the command value passed in
to the entry point. These constants are defined in the new qotd.h header file. The
qotd_ioctl() routine reports the size of the space allocated for the quotation, sets a
new amount of space to allocate for the quotation, or resets the quotation back to its
initial value.

If the request is to report the size of the space allocated for the quotation, then the
qotd_ioctl() routine first sets a local size variable to the value of the quotation
length in the state structure. If the device was not opened for reading, the
qotd_ioctl() routine returns an error.

Because the qotd_ioctl() routine transfers data between kernel space and user
space, the qotd_ioctl() routine must check whether both spaces are using the same
data model. If the return value of the ddi_model_convert_from(9F) function is
DDI_MODEL_ILP32, then the driver must convert to 32–bit data before calling
ddi_copyout(9F) to transfer the current size of the quotation space. If the return
value of the ddi_model_convert_from(9F) function is DDI_MODEL_NONE, then no
data type conversion is necessary.

If the request is to set a new size for the space allocated for the quotation, then the
qotd_ioctl() routine first sets local variables for the new size, the new quotation,
and a new memory allocation cookie. If the device was not opened for writing, the
qotd_ioctl() routine returns an error.

The qotd_ioctl() routine then checks again for data model mismatch. If the return
value of the ddi_model_convert_from(9F) function is DDI_MODEL_ILP32, then
the driver declares a 32–bit size variable to receive the new size from
ddi_copyin(9F). When the new size is received, the size is converted to the data type
of the kernel space.
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If the new size is zero or is greater than QOTD_MAX_LEN, the qotd_ioctl() routine
returns an error. If the new size is valid, then the qotd_ioctl() routine allocates
new memory for the quotation and enters a mutex.

While the device is busy, the qotd_ioctl() routine checks whether the condition
variable has been signaled or a signal(3C) is pending. If either of these conditions is
true, the qotd_ioctl() routine exits the mutex, frees the new memory it allocated,
and returns an error.

When the device is not busy, the qotd_ioctl() routine uses memcpy(9F) to copy the
quotation from the driver’s state structure to the new space. The qotd_ioctl()
routine then frees the memory currently pointed to by the state structure, and updates
the state structure members to the new values. The qotd_ioctl() routine then sets
the QOTD_CHANGED flag, exits the mutex, and returns.

If the request is to discard the current quotation and reset to the initial quotation, then
the qotd_ioctl() routine first sets local variables for the new quotation and a new
memory allocation cookie. If the device was not opened for writing, the
qotd_ioctl() routine returns an error. If the space allocated for the current
quotation is different from the space allocated for the initial quotation, then the
qotd_ioctl() routine allocates new memory that is the size of the initial space and
enters a mutex.

While the device is busy, the qotd_ioctl() routine checks whether the condition
variable has been signaled or a signal(3C) is pending. If either of these conditions is
true, the qotd_ioctl() routine exits the mutex, frees the new memory it allocated,
and returns an error.

When the device is not busy, the qotd_ioctl() routine frees the memory currently
pointed to by the state structure, updates the memory state structure members to the
new values, and resets the length to its initial value. If the size of the current quotation
space was the same as the initial size and no new memory was allocated, then
qotd_ioctl() calls bzero(9F) to clear the current quotation. The qotd_ioctl()
routine then calls the strlcpy(9F) function to copy the initial quotation string to the
quotation member of the state structure. The qotd_ioctl() routine then unsets the
QOTD_CHANGED flag, exits the mutex, and returns.

Once the QOTD_CHANGED flag has been set, the only way to unset it is to run the
qotdctl command with the -r option. See “Exercising the Driver’s I/O Controls”
on page 92 for more information about the qotdctl command.

Quote Of The Day Version 3 Source
Enter the source code shown in the following example into a text file named
qotd_3.c.

EXAMPLE 3–5 Quote Of The Day Version 3 Source File

#include <sys/types.h>
#include <sys/file.h>
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <sys/ksynch.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#include "qotd.h"

#define QOTD_NAME "qotd_3"

static const char init_qotd[]
= "On the whole, I’d rather be in Philadelphia. - W. C. Fields\n";

static const size_t init_qotd_len = 128;

#define QOTD_MAX_LEN 65536 /* Maximum quote in bytes */
#define QOTD_CHANGED 0x1 /* User has made modifications */
#define QOTD_DIDMINOR 0x2 /* Created minors */
#define QOTD_DIDALLOC 0x4 /* Allocated storage space */
#define QOTD_DIDMUTEX 0x8 /* Created mutex */
#define QOTD_DIDCV 0x10 /* Created cv */
#define QOTD_BUSY 0x20 /* Device is busy */

static void *qotd_state_head;

struct qotd_state {
int instance;
dev_info_t *devi;
kmutex_t lock;
kcondvar_t cv;
char *qotd;
size_t qotd_len;
ddi_umem_cookie_t qotd_cookie;
int flags;

};

static int qotd_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int qotd_attach(dev_info_t *, ddi_attach_cmd_t);
static int qotd_detach(dev_info_t *, ddi_detach_cmd_t);
static int qotd_open(dev_t *, int, int, cred_t *);
static int qotd_close(dev_t, int, int, cred_t *);
static int qotd_read(dev_t, struct uio *, cred_t *);
static int qotd_write(dev_t, struct uio *, cred_t *);
static int qotd_rw(dev_t, struct uio *, enum uio_rw);
static int qotd_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

static struct cb_ops qotd_cb_ops = {
qotd_open, /* cb_open */
qotd_close, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
qotd_read, /* cb_read */
qotd_write, /* cb_write */
qotd_ioctl, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
(struct streamtab *)NULL, /* cb_str */
D_MP | D_64BIT, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* cb_aread */
nodev /* cb_awrite */

};

static struct dev_ops qotd_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
qotd_getinfo, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
qotd_attach, /* devo_attach */
qotd_detach, /* devo_detach */
nodev, /* devo_reset */
&qotd_cb_ops, /* devo_cb_ops */
(struct bus_ops *)NULL, /* devo_bus_ops */
nulldev /* devo_power */

};

static struct modldrv modldrv = {
&mod_driverops;,
"Quote of the day 3.0",
&qotd_dev_ops;};

static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv;,
NULL

};

int
_init(void)
{

int retval;

if ((retval = ddi_soft_state_init(&qotd_state_head;,
sizeof (struct qotd_state), 1)) != 0)
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

return retval;
if ((retval = mod_install(&modlinkage;)) != 0) {

ddi_soft_state_fini(&qotd_state_head;);
return (retval);

}

return (retval);
}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage;, modinfop));
}

int
_fini(void)
{

int retval;

if ((retval = mod_remove(&modlinkage;)) != 0)
return (retval);

ddi_soft_state_fini(&qotd_state_head;);

return (retval);
}

/*ARGSUSED*/
static int
qotd_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)
{

struct qotd_state *qsp;
int retval = DDI_FAILURE;

ASSERT(resultp != NULL);

switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:

if ((qsp = ddi_get_soft_state(qotd_state_head,
getminor((dev_t)arg))) != NULL) {

*resultp = qsp->devi;
retval = DDI_SUCCESS;

} else
*resultp = NULL;

break;
case DDI_INFO_DEVT2INSTANCE:

*resultp = (void *)getminor((dev_t)arg);
retval = DDI_SUCCESS;
break;

}

return (retval);
}
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

static int
qotd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int instance = ddi_get_instance(dip);
struct qotd_state *qsp;

switch (cmd) {
case DDI_ATTACH:

if (ddi_soft_state_zalloc(qotd_state_head, instance)
!= DDI_SUCCESS) {

cmn_err(CE_WARN, "Unable to allocate state for %d",
instance);

return (DDI_FAILURE);
}
if ((qsp = ddi_get_soft_state(qotd_state_head, instance))

== NULL) {
cmn_err(CE_WARN, "Unable to obtain state for %d",

instance);
ddi_soft_state_free(dip, instance);
return (DDI_FAILURE);

}
if (ddi_create_minor_node(dip, QOTD_NAME, S_IFCHR, instance,

DDI_PSEUDO, 0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "Unable to create minor node for %d",

instance);
(void)qotd_detach(dip, DDI_DETACH);
return (DDI_FAILURE);

}
qsp->flags |= QOTD_DIDMINOR;
qsp->qotd = ddi_umem_alloc(init_qotd_len, DDI_UMEM_NOSLEEP,

&qsp->qotd_cookie);
if (qsp->qotd == NULL) {

cmn_err(CE_WARN, "Unable to allocate storage for %d",
instance);

(void)qotd_detach(dip, DDI_DETACH);
return (DDI_FAILURE);

}
qsp->flags |= QOTD_DIDALLOC;
mutex_init(&qsp->lock, NULL, MUTEX_DRIVER, NULL);
qsp->flags |= QOTD_DIDMUTEX;
cv_init(&qsp->cv, NULL, CV_DRIVER, NULL);
qsp->flags |= QOTD_DIDCV;

(void)strlcpy(qsp->qotd, init_qotd, init_qotd_len);
qsp->qotd_len = init_qotd_len;
qsp->instance = instance;
qsp->devi = dip;

ddi_report_dev(dip);
return (DDI_SUCCESS);

case DDI_RESUME:
return (DDI_SUCCESS);
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

default:
return (DDI_FAILURE);

}
}

static int
qotd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

int instance = ddi_get_instance(dip);
struct qotd_state *qsp;

switch (cmd) {
case DDI_DETACH:

qsp = ddi_get_soft_state(qotd_state_head, instance);
if (qsp != NULL) {

ASSERT(!(qsp->flags & QOTD_BUSY));
if (qsp->flags & QOTD_CHANGED)

return (EBUSY);
if (qsp->flags & QOTD_DIDCV)

cv_destroy(&qsp->cv);
if (qsp->flags & QOTD_DIDMUTEX)

mutex_destroy(&qsp->lock);
if (qsp->flags & QOTD_DIDALLOC) {

ASSERT(qsp->qotd != NULL);
ddi_umem_free(qsp->qotd_cookie);

}
if (qsp->flags & QOTD_DIDMINOR)

ddi_remove_minor_node(dip, NULL);
}
ddi_soft_state_free(qotd_state_head, instance);
return (DDI_SUCCESS);

case DDI_SUSPEND:
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

/*ARGSUSED*/
static int
qotd_open(dev_t *devp, int flag, int otyp, cred_t *credp)
{

int instance = getminor(*devp);
struct qotd_state *qsp;

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)
return (EINVAL);
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

return (0);
}

/*ARGSUSED*/
static int
qotd_close(dev_t dev, int flag, int otyp, cred_t *credp)
{

struct qotd_state *qsp;
int instance = getminor(dev);

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)
return (EINVAL);

return (0);
}

/*ARGSUSED*/
static int
qotd_read(dev_t dev, struct uio *uiop, cred_t *credp)
{

return qotd_rw(dev, uiop, UIO_READ);
}

/*ARGSUSED*/
static int
qotd_write(dev_t dev, struct uio *uiop, cred_t *credp)
{

return qotd_rw(dev, uiop, UIO_WRITE);
}

static int
qotd_rw(dev_t dev, struct uio *uiop, enum uio_rw rw)
{

struct qotd_state *qsp;
int instance = getminor(dev);
size_t len = uiop->uio_resid;
int retval;

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

ASSERT(qsp->instance == instance);

if (len == 0)
return (0);

mutex_enter(&qsp->lock);
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

while (qsp->flags & QOTD_BUSY) {
if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {

mutex_exit(&qsp->lock);
return (EINTR);

}
}

if (uiop->uio_offset < 0 || uiop->uio_offset > qsp->qotd_len) {
mutex_exit(&qsp->lock);
return (EINVAL);

}

if (len > qsp->qotd_len - uiop->uio_offset)
len = qsp->qotd_len - uiop->uio_offset;

if (len == 0) {
mutex_exit(&qsp->lock);
return (rw == UIO_WRITE ? ENOSPC : 0);

}

qsp->flags |= QOTD_BUSY;
mutex_exit(&qsp->lock);

retval = uiomove((void *)(qsp->qotd + uiop->uio_offset), len, rw, uiop);

mutex_enter(&qsp->lock);
if (rw == UIO_WRITE)

qsp->flags |= QOTD_CHANGED;
qsp->flags &= ~QOTD_BUSY;
cv_broadcast(&qsp->cv);
mutex_exit(&qsp->lock);

return (retval);
}

/*ARGSUSED*/
static int
qotd_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,

int *rvalp)
{

struct qotd_state *qsp;
int instance = getminor(dev);

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)
return (ENXIO);

ASSERT(qsp->instance == instance);

switch (cmd) {
case QOTDIOCGSZ: {

/* We are not guaranteed that ddi_copyout(9F) will read
* atomically anything larger than a byte. Therefore we
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

* must duplicate the size before copying it out to the user.
*/
size_t sz = qsp->qotd_len;

if (!(mode & FREAD))
return (EACCES);

#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(mode & FMODELS)) {
case DDI_MODEL_ILP32: {

size32_t sz32 = (size32_t)sz;
if (ddi_copyout(&sz32;, (void *)arg, sizeof (size32_t),

mode) != 0)
return (EFAULT);

return (0);
}
case DDI_MODEL_NONE:

if (ddi_copyout(&sz;, (void *)arg, sizeof (size_t),
mode) != 0)

return (EFAULT);
return (0);

default:
cmn_err(CE_WARN, "Invalid data model %d in ioctl\n",

ddi_model_convert_from(mode & FMODELS));
return (ENOTSUP);

}
#else /* ! _MULTI_DATAMODEL */

if (ddi_copyout(&sz;, (void *)arg, sizeof (size_t), mode) != 0)
return (EFAULT);

return (0);
#endif /* _MULTI_DATAMODEL */

}
case QOTDIOCSSZ: {

size_t new_len;
char *new_qotd;
ddi_umem_cookie_t new_cookie;
uint_t model;

if (!(mode & FWRITE))
return (EACCES);

#ifdef _MULTI_DATAMODEL
model = ddi_model_convert_from(mode & FMODELS);

switch (model) {
case DDI_MODEL_ILP32: {

size32_t sz32;
if (ddi_copyin((void *)arg, &sz32;, sizeof (size32_t),

mode) != 0)
return (EFAULT);

new_len = (size_t)sz32;
break;

}
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

case DDI_MODEL_NONE:
if (ddi_copyin((void *)arg, &new_len;, sizeof (size_t),

mode) != 0)
return (EFAULT);

break;
default:

cmn_err(CE_WARN, "Invalid data model %d in ioctl\n",
model);

return (ENOTSUP);
}

#else /* ! _MULTI_DATAMODEL */
if (ddi_copyin((void *)arg, &new_len;, sizeof (size_t),

mode) != 0)
return (EFAULT);

#endif /* _MULTI_DATAMODEL */

if (new_len == 0 || new_len > QOTD_MAX_LEN)
return (EINVAL);

new_qotd = ddi_umem_alloc(new_len, DDI_UMEM_SLEEP, &new_cookie;);

mutex_enter(&qsp->lock);
while (qsp->flags & QOTD_BUSY) {

if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {
mutex_exit(&qsp->lock);
ddi_umem_free(new_cookie);
return (EINTR);

}
}
memcpy(new_qotd, qsp->qotd, min(qsp->qotd_len, new_len));
ddi_umem_free(qsp->qotd_cookie);
qsp->qotd = new_qotd;
qsp->qotd_cookie = new_cookie;
qsp->qotd_len = new_len;
qsp->flags |= QOTD_CHANGED;
mutex_exit(&qsp->lock);

return (0);
}
case QOTDIOCDISCARD: {

char *new_qotd = NULL;
ddi_umem_cookie_t new_cookie;

if (!(mode & FWRITE))
return (EACCES);

if (qsp->qotd_len != init_qotd_len) {
new_qotd = ddi_umem_alloc(init_qotd_len,

DDI_UMEM_SLEEP, &new_cookie;);
}

mutex_enter(&qsp->lock);
while (qsp->flags & QOTD_BUSY) {
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {
mutex_exit(&qsp->lock);
if (new_qotd != NULL)

ddi_umem_free(new_cookie);
return (EINTR);

}
}
if (new_qotd != NULL) {

ddi_umem_free(qsp->qotd_cookie);
qsp->qotd = new_qotd;
qsp->qotd_cookie = new_cookie;
qsp->qotd_len = init_qotd_len;

} else {
bzero(qsp->qotd, qsp->qotd_len);

}
(void)strlcpy(qsp->qotd, init_qotd, init_qotd_len);
qsp->flags &= ~QOTD_CHANGED;
mutex_exit(&qsp->lock);

return (0);
}
default:

return (ENOTTY);
}

}

Enter the definitions shown in the following example into a text file named qotd.h.

EXAMPLE 3–6 Quote Of The Day Version 3 Header File

#ifndef _SYS_QOTD_H
#define _SYS_QOTD_H

#define QOTDIOC (’q’ << 24 | ’t’ << 16 | ’d’ << 8)

#define QOTDIOCGSZ (QOTDIOC | 1) /* Get quote buffer size */
#define QOTDIOCSSZ (QOTDIOC | 2) /* Set new quote buffer size */
#define QOTDIOCDISCARD (QOTDIOC | 3) /* Discard quotes and reset */

#endif /* _SYS_QOTD_H */

Enter the configuration information shown in the following example into a text file
named qotd_3.conf.

EXAMPLE 3–7 Quote Of The Day Version 3 Configuration File

name="qotd_3" parent="pseudo" instance=0;
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Building and Installing Quote Of The Day
Version 3
Compile and link the driver. The following example shows compiling and linking for
a 32-bit architecture:

% cc -D_KERNEL -c qotd_3.c

% ld -r -o qotd_3 qotd_3.o

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Building and Installing
the Driver” on page 48.

# cp qotd_3 /tmp

# ln -s /tmp/qotd_3 /usr/kernel/drv/qotd_3

Copy the configuration file to the kernel driver area of the system.

# cp qotd_3.conf /usr/kernel/drv

In a separate window, enter the following command:

% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add_drv(1M)
command to load the driver:

# add_drv qotd_3

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd_30

date time machine genunix: [ID 936769 kern.info] qotd_30 is /pseudo/qotd_3@0

Using Quote Of The Day Version 3
This section describes how to read and write the qotd_3 device and how to test the
driver’s I/O controls. The I/O controls include retrieving the size of the storage buffer,
setting a new size for the storage buffer, and reinitializing the storage buffer size and
contents.

Reading the Device
When you access this qotd_3 device for reading, the command you use to access the
device retrieves the data from the device node. The command then displays the data
in the same way that the command displays any other input. To get the name of the
device special file, look in the /devices directory:
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% ls -l /devices/pseudo/qotd*

crw------- 1 root sys 122, 0 date time /devices/pseudo/qotd_3@0:qotd_3

To read the qotd_3 device, you can use the cat(1) command:

# cat /devices/pseudo/qotd_3@0:qotd_3

On the whole, I’d rather be in Philadelphia. - W. C. Fields

Writing the Device
To write to the qotd_3 device, you can redirect command-line input:

# echo "A life is not important except in the impact it has on others.
- Jackie Robinson" >> /devices/pseudo/qotd_3@0:qotd_3
# cat /devices/pseudo/qotd_3@0:qotd_3
A life is not important except in the impact it has on others. - Jackie

Robinson

Exercising the Driver’s I/O Controls
In addition to changes in the driver, Quote Of The Day Version 3 introduces a new
utility program. The qotdctl command enables you to test the driver’s I/O controls.

The source for this command is shown in Example 3–8. Compile the qotdctl utility
as follows:

% cc -o qotdctl qotdctl.c

The qotdctl command has the following options:

-g Get the size that is currently allocated. Call the ioctl(9E) entry point of
the driver with the QOTDIOCGSZ request. The QOTDIOCGSZ request
reports the current size of the space allocated for the quotation.

-s size Set the new size to be allocated. Call the ioctl(9E) entry point of the
driver with the QOTDIOCSSZ request. The QOTDIOCSSZ request sets a
new size for the quotation space.

-r Discard the contents and reset the device. Call the ioctl(9E) entry point
of the driver with the QOTDIOCDISCARD request.

Invoking qotdctl with the -r option is the only way to unset the
QOTD_CHANGED flag in the device. The device cannot be detached while
the QOTD_CHANGED flag is set. This protects the contents of the ramdisk
device from being unintentionally or automatically removed. For
example, a device might be automatically removed by the automatic
device unconfiguration thread.

When you are no longer interested in the contents of the device, run the
qotdctl command with the -r option. Then you can remove the device.
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-h Display help text.

-V Display the version number of the qotdctl command.

-d device Specify the device node to use. The default value is /dev/qotd0.

Use the qotdctl command to test the driver’s I/O controls:

# ./qotdctl -V
qotdctl 1.0
# ./qotdctl -h
Usage: ./qotdctl [-d device] {-g | -h | -r | -s size | -V}
# ./qotdctl -g

open: No such file or directory

By default, the qotdctl command accesses the /dev/qotd0 device. The qotd_3
device in this example is /devices/pseudo/qotd_3@0:qotd_3. Either define a
link from /dev/qotd0 to /devices/pseudo/qotd_3@0:qotd_3 or use the -d
option to specify the correct device:

# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -g
128
# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -s 512
# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -g
512
# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -r
# cat /devices/pseudo/qotd_3@0:qotd_3

On the whole, I’d rather be in Philadelphia. - W. C. Fields

If you try to remove the device now, you will receive an error message:

# rem_drv qotd_3
Device busy
Cannot unload module: qotd_3

Will be unloaded upon reboot.

The device is still marked busy because you have not told the driver that you are no
longer interested in this device. Run the qotdctl command with the -r option to
unset the QOTD_CHANGED flag in the driver and mark the device not busy:

# ./qotdctl -r

Enter the source code shown in the following example into a text file named
qotdctl.c.

EXAMPLE 3–8 Quote Of The Day I/O Control Command Source File

#include <sys>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>
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EXAMPLE 3–8 Quote Of The Day I/O Control Command Source File (Continued)

#include "qotd.h"

static const char *DEFAULT_DEVICE = "/dev/qotd0";
static const char *VERSION = "1.0";

static void show_usage(const char *);
static void get_size(const char *);
static void set_size(const char *, size_t);
static void reset_dev(const char *);

int
main(int argc, char *argv[])
{

int op = -1;
int opt;
int invalid_usage = 0;
size_t sz_arg;
const char *device = DEFAULT_DEVICE;

while ((opt = getopt(argc, argv,
"d:(device)g(get-size)h(help)r(reset)s:(set-size)V(version)"))
!= -1) {

switch (opt) {
case ’d’:

device = optarg;
break;

case ’g’:
if (op >= 0)

invalid_usage++;
op = QOTDIOCGSZ;
break;

case ’h’:
show_usage(argv[0]);
exit(0);
/*NOTREACHED*/

case ’r’:
if (op >= 0)

invalid_usage++;
op = QOTDIOCDISCARD;
break;

case ’s’:
if (op >= 0)

invalid_usage++;
op = QOTDIOCSSZ;
sz_arg = (size_t)atol(optarg);
break;

case ’V’:
(void) printf("qotdctl %s\n", VERSION);
exit(0);
/*NOTREACHED*/

default:
invalid_usage++;
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EXAMPLE 3–8 Quote Of The Day I/O Control Command Source File (Continued)

break;
}

}

if (invalid_usage > 0 || op < 0) {
show_usage(argv[0]);
exit(1);

}

switch (op) {
case QOTDIOCGSZ:

get_size(device);
break;

case QOTDIOCSSZ:
set_size(device, sz_arg);
break;

case QOTDIOCDISCARD:
reset_dev(device);
break;

default:
(void) fprintf(stderr,

"internal error - invalid operation %d\n", op);
exit(2);

}

return (0);
}

static void
show_usage(const char *execname)
{

(void) fprintf(stderr,
"Usage: %s [-d device] {-g | -h | -r | -s size | -V}\n", execname);

}

static void
get_size(const char *dev)
{

size_t sz;
int fd;

if ((fd = open(dev, O_RDONLY)) < 0) {
perror("open");
exit(3);

}

if (ioctl(fd, QOTDIOCGSZ, &sz;) < 0) {
perror("QOTDIOCGSZ");
exit(4);

}

(void) close(fd);
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EXAMPLE 3–8 Quote Of The Day I/O Control Command Source File (Continued)

(void) printf("%zu\n", sz);
}

static void
set_size(const char *dev, size_t sz)
{

int fd;

if ((fd = open(dev, O_RDWR)) < 0) {
perror("open");
exit(3);

}

if (ioctl(fd, QOTDIOCSSZ, &sz;) < 0) {
perror("QOTDIOCSSZ");
exit(4);

}

(void) close(fd);
}

static void
reset_dev(const char *dev)
{

int fd;

if ((fd = open(dev, O_RDWR)) < 0) {
perror("open");
exit(3);

}

if (ioctl(fd, QOTDIOCDISCARD) < 0) {
perror("QOTDIOCDISCARD");
exit(4);

}

(void) close(fd);

}
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CHAPTER 4

Tips for Writing Device Drivers

This chapter provides some general guidelines for writing device drivers. The
guidelines are organized into the following categories:

� “Steps in the Development Process” on page 97
� “Device Driver Coding Tips” on page 98
� “Device Driver Testing Tips” on page 100
� “Device Driver Debugging and Tuning Tips” on page 101

Steps in the Development Process
The general steps in writing a device driver are as follows:

1. Write, compile, and link the new code.

2. Create the necessary hardware configuration files.

You need to create a hardware configuration file unique to the device called
xx.conf where xx is the prefix for the device. This file is used to update the
driver.conf(4) file. See “Writing the Device Configuration File” on page 47,
which describes creation of a configuration file for the dummy example.

3. Copy the driver to the appropriate module directory.

4. Install the device driver using add_drv(1M).

5. Load the driver.

6. Test the driver.

Drivers should be rigorously tested in the following areas:

� Configuration
� Functionality
� Error handling
� Loading and unloading
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� Stress, performance, and interoperability
� DDI/DKI compliance
� Installation and packaging

Additional testing is specific to the type of driver.

7. Remove the driver using the rem_drv(1M).

All drivers will need to be removed eventually so you need to make sure that your
driver can be successfully removed.

For detailed descriptions of the development process, see “Driver Development
Summary” in Writing Device Drivers.

Device Driver Coding Tips
Use these guidelines when you are creating the software for your new driver:

� Use a prefix based on the name of your driver to give global variables and
functions unique names.

� If you are basing your design on an existing driver, modify the configuration file
before adding the driver.

The -n option in the add_drv(1M) command enables you to update the system
configuration files for a driver without loading or attaching the driver.

� Use the cmn_err() function rather than printf() to log driver activity.

The cmn_err(9F) function is the recommended method for displaying information
on the console. This function is more versatile than printf(3C) for displaying
special formats used by drivers such as device register bits.

� Clean up allocations and other initialization activities when the driver exits.

When the driver exits, whether intentionally or prematurely, you need to perform
such tasks as closing opened files, freeing allocated memory, releasing mutex locks,
and destroying any mutexes that have been created. In addition, the system must
be able to close all minor devices and detach driver instances even after the
hardware fails. An orderly approach is to reverse _init() actions in the _fini()
routine, reverse open() operations in the close() routine, and reverse
attach() operations in the detach() routine.

� Use assert(9F) to catch unexpected error returns.

ASSERT() is a macro that halts the kernel execution if a condition that was
expected to be true turns out to be false. To activate ASSERT(), you need to
include the sys/debug.h header file and specify the DEBUG preprocessor symbol
during compilation.

� Use mutex_owned() to validate and document locking requirements.
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The mutex_owned(9F) function helps determine whether the current thread owns
a specified mutex. To determine whether a mutex is held by a thread, use
mutex_owned() within ASSERT().

� Use conditional compilation to toggle “costly” debugging features.

The Solaris OS provides various debugging functions, such as assert() and
mutex-owned(), that can be turned on by specifying the DEBUG preprocessor
symbol when the driver is compiled. With conditional compilation, unnecessary
code can be removed from the production driver. This approach can also be
accomplished by using a global variable.

� Use a separate instance of the driver for each device to be controlled.
� Use DDI functions as much as possible in your device drivers.

These interfaces shield the driver from platform-specific dependencies such as
mismatches between processor and device endianness and any other data order
dependencies. With these interfaces, a single-source driver can run on the SPARC
platform, x86 pfatform, and related processor architectures.

� Anticipate corrupted data.

Always check that the integrity of data before that data is used. The driver must
avoid releasing bad data to the rest of the system.

� A device should only write to DMA buffers that are controlled solely by the driver.

This technique prevents a DMA fault from corrupting an arbitrary part of the
system’s main memory.

� Use the ddi_umem_alloc(9F) function when you need to make DMA transfers.

This function guarantees that only whole, aligned pages are transferred.
� Set a fixed number of attempts before taking alternate action to deal with a stuck

interrupt.

The device driver must not be an unlimited drain on system resources if the device
locks up. The driver should time out if a device claims to be continuously busy.
The driver should also detect a pathological (stuck) interrupt request and take
appropriate action.

� Use care when setting the sequence for mutex acquisitions and releases so as to
avoid unwanted thread interactions if a device fails.

See “Thread Interaction” in Writing Device Drivers for more information.
� Check for malformed ioctl() requests from user applications.

User requests can be potentially and intentionally destructive. The design of the
driver should take into consideration the construction of each type of potential
ioctl() request.

� Try to avoid situations where a driver continues to function without detecting a
device failure.

A driver should switch to an alternative device rather than try to work around a
device failure.

� All device drivers in the Solaris OS must support hotplugging.
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All devices need to be able to be installed or removed without requiring a reboot of
the system.

� All device drivers should support power management.

Power management provides the ability to control and manage the electrical power
usage of a computer system or device. Power management enables systems to
conserve energy by using less power when idle and by shutting down completely
when not in use.

� Apply the volatile keyword to any variable that references a device register.

Without the volatile keyword, the compile-time optimizer can delete important
accesses to a register.

� Perform periodic health checks to detect and report faulty devices.

A periodic health check should include the following activities:

� Check any register or memory location on the device whose value might have
been altered since the last poll.

� Timestamp outgoing requests such as transmit blocks or commands that are
issued by the driver.

� Initiate a test action on the device that should be completed before the next
scheduled check.

Device Driver Testing Tips
Testing a new device driver can cause irreparable harm to the kernel. The following
tips can help avoid major problems:

� Use a serial connection to control your test machine from a separate host system.

This technique is explained in “Testing With a Serial Connection” in Writing Device
Drivers.

� Use an alternate kernel.

Booting from a copy of the kernel and the associated binaries rather than from the
default kernel avoids inadvertently rendering the system inoperable.

� Use an additional kernel module to experiment with different kernel variable
settings.

This approach isolates experiments with the kernel variable settings. See “Setting
Up Test Modules” in Writing Device Drivers.

� Make contingency plans for potential data loss on a test system.

If your test system is set up as a client of a server, then you can boot from the
network if problems occur. You could also create a special partition to hold a copy
of a bootable root file system. See “Avoiding Data Loss on a Test System” in
Writing Device Drivers.
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� Capture system crash dumps if your test system panics.

� Use fsck(1M) to repair the damaged root file system temporarily if your system
crashes during the attach(9E) process so that any crash dumps can be salvaged.
See “Recovering the Device Directory” in Writing Device Drivers.

� Install drivers in the /tmp directory until you are finished modifying and testing
the _info(), _init(), and attach() routines.

Keep a driver in the /tmp directory until the driver has been well tested. If a panic
occurs, the driver will be removed from /tmp directory and the system will reboot
successfully.

Device Driver Debugging and Tuning
Tips
The Solaris OS provides various tools for debugging and tuning your device driver:

� Use the kmdb(1) kernel debugger for runtime debugging.

The kmdb debugger provides typical runtime debugger facilities, such as
breakpoints, watch points, and single-stepping. For more information, see Solaris
Modular Debugger Guide.

� Use the mdb(1) modular debugger for postmortem debugging.

Postmortem debugging is performed on a system crash dump rather than on a live
system. With postmortem debugging, the same crash dump can be analyzed by
different people or processes simultaneously. In addition, mdb allows you to create
special macros called dmods to perform rigorous analysis on the dump. For more
information, see Solaris Modular Debugger Guide.

� Use the kstat(3KSTAT) facility to export module-specific kernel statistics for your
device driver.

� Use the DTrace facility to add instrumentation to your driver dynamically so that
you can perform tasks such as analyzing the system and measuring performance.
For information on DTrace, see Solaris Dynamic Tracing Guide.
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add_drv command, 49-50, 97

use in modifying existing drivers, 98
alternate kernels, use in testing, 100
ASSERT() kernel function, 61, 64, 69-70, 98
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blk device, 22
block device, 22
boot command, 20
bzero() kernel function, 80
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cat command, 51
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close() entry point, 38-42, 63
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kernel, 19-20
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modinfo, 50, 70
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modunload, 52
more, 70
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condition variables, 75-78
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ddi_create_minor_node() kernel
function, 31-38, 62-63, 72-73

ddi_get_instance() kernel function, 24, 34,
62-63

ddi_get_soft_state() kernel function, 61,
62-63, 63

ddi_model_convert_from() kernel
function, 72, 79

ddi_prop_get_int() kernel function, 47
ddi_prop_lookup() kernel function, 47
ddi_prop_op() kernel function, 31-38
ddi_remove_minor_node() kernel

function, 31-38, 62, 73
ddi_report_dev() kernel function, 63
ddi_soft_state_fini() kernel

function, 61, 62
ddi_soft_state_free() kernel

function, 61, 62
ddi_soft_state_init() kernel

function, 61, 62
ddi_soft_state() kernel function, 33-34
ddi_soft_state_zalloc() kernel

function, 61, 62-63
ddi_umem_alloc() kernel function, 74-75
ddi_umem_free() kernel function, 73, 74-75
debugging device drivers, tips, 101
detach() entry point, 30, 31-38, 63
/dev directory, 21, 22-23
dev_info device structure, 34, 35-36, 36-37
dev_ops driver structure, 17-19, 42-47
devfs devices file system, 21
devfsadmd devices file system administration

command, 22-23
device drivers, 17-19

coding tips, 98-100
compiling, 48
condition variables, 75-78
conditional compilation, 99
debugging tips, 101
development guidelines, 97
development steps, 97-98
directories, 19-20, 48

adding, 20
entry points, 17, 26

See also entry points
how used, 18
I/O controls, 79-80, 92-96
installing, 48-49

device drivers (Continued)
linking, 48
loading, 20, 49-50
mutexes, 75-78
naming conventions, 98
recommended housekeeping, 98
removing, 51-52
structures

See driver structures
test areas, 97
testing tips, 100-101
thread synchronization, 75-78
tuning, 101
unloading, 52

device instance pointer (dip), 34, 35-36, 36-37
device number, 23-24
device structures

dev_info, 34, 35-36, 36-37
device tree, 21-22
devices

blk, 22
block, 20-24
character, 20-24, 26-47
configuration files, 47
device tree, 21-22
directories, 21, 22-23
exclusive access, 76
file system

devfs, 21
devfsadmd, 22-23

instances, 24, 34, 35-36, 36-37
md metadevice, 22
names, 22-23
nexus, 18, 22
numbers, 21, 23-24, 34
properties, 37-38, 47
pseudo, 18, 25
ramdisk, 18, 71
raw, 22
reading, 51, 70, 91-92
special files, 20-24
state, 61
writing, 51, 71-96, 92

/devices directory, 21, 23
/devices/pseudo directory, 22, 50, 70
devmap() entry point, 16
dmesg command, 63
driver.conf file, 47

104 Device Driver Tutorial • January 2005



driver structures
cb_ops, 17-19, 42-47, 78-79
character and block operations

structure, 43-44
dev_ops, 17-19, 42-47
device operations structure, 45-46
modinfo, 29
modldrv, 42-47
modlinkage, 28-29, 42-47
module linkage structures, 46

drivers, See device drivers
DTrace analyzer, 101

E
echo command, 51
entry points

attach(), 31-38, 48-49, 62-63
autoconfiguration, 31-38
close(), 38-42, 63
detach(), 30, 31-38, 63
devmap(), 16
_fini(), 27-30, 62
getinfo(), 31-38, 63
_info(), 27-30, 48-49
_init(), 27-30, 48-49, 62
ioctl(), 21, 78-79, 79-80, 92-96
loadable module configuration, 27-30
open(), 38-42, 63
prop_op(), 31-38
read(), 38-42, 63
user context, 38-42
write(), 38-42, 78-79

/etc/name_to_major file, 50, 70

F
files

driver.conf, 47
/etc/name_to_major, 50, 70
system, 19-20
/var/adm/messages, 49-52, 59

_fini() entry point, 27-30, 62
fsck command, 101
functions

kstat(), 101

functions (Continued)
printf(), 98
signal(), 77-78, 78, 80

G
getinfo() entry point, 31-38, 63
getminor() kernel function, 63

H
hotplugging, 99

I
I/O controls, 79-80, 92-96
_info() entry point, 27-30, 48-49
_init() entry point, 27-30, 48-49, 62
instance number, 24, 34, 35-36, 36-37
interrupts, avoiding problems, 99
ioctl() entry point, 21, 78-79, 79-80, 92-96
ioctl() requests, avoiding problems, 99

K
kernel, 13

address space, 14, 16
privilege

See also kernel mode
kernel command, 19-20
kernel functions

ASSERT(), 61, 64, 69-70, 98
bzero(), 80
cmn_err(), 28-29, 49-52, 57, 98
condvar(), 77
cv_broadcast(), 77-78, 79
cv_destroy(), 73, 77
cv_init(), 73, 77
cv_signal(), 77-78
cv_wait(), 77-78
cv_wait_sig(), 77
ddi_copyin(), 16, 72, 75, 79
ddi_copyout(), 16, 72, 79
ddi_create_minor_node(), 31-38, 62-63,

72-73
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kernel functions (Continued)
ddi_get_instance(), 24, 34, 62-63
ddi_get_soft_state(), 61, 62-63, 63
ddi_model_convert_from(), 72, 79
ddi_prop_get_int(), 47
ddi_prop_lookup(), 47
ddi_prop_op(), 31-38
ddi_remove_minor_node(), 31-38, 62, 73
ddi_report_dev(), 63
ddi_soft_state(), 33-34
ddi_soft_state_fini(), 61, 62
ddi_soft_state_free(), 61, 62
ddi_soft_state_init(), 61, 62
ddi_soft_state_zalloc(), 61, 62-63
ddi_umem_alloc(), 74-75
ddi_umem_free(), 73, 74-75
getminor(), 63
kmem_alloc(), 74
kmem_zalloc(), 74
memcpy(), 80
mod_info(), 27-30
mod_install(), 27-30, 62
mod_remove(), 27-30, 62
mutex(), 77
mutex_destroy(), 73, 77
mutex_init(), 73, 77
mutex_owned(), 98
nochpoll(), 44
nodev(), 44, 45
nulldev(), 38-42, 45
strlcpy(), 73, 80
strncpy(), 73
uiomove(), 63, 72, 75, 79

kernel mode, 13
kernel modules, use in testing, 100
kernel statistics, 101
kernel structures

uio, 63, 78
kmdb kernel debugger, 101
kmem_alloc() kernel function, 74
kmem_zalloc() kernel function, 74
kstat() function, 101

L
ld command, 15, 30, 48
linking, 15, 30, 48

M
major number, 21, 23
mdb modular debugger, 101
memcpy() kernel function, 80
metadevice, 22
minor number, 21, 23, 34
mknod command, 21
mknod() system call, 21
mmap() system call, 16
mod_info() kernel function, 27-30
mod_install() kernel function, 27-30, 62
mod_remove() kernel function, 27-30, 62
moddir kernel variable, 20
modinfo command, 50, 70
modinfo driver structure, 29
modldrv driver structure, 42-47
modlinkage driver structure, 28-29, 42-47
modload command, 50
modunload command, 52
more command, 70
mutex_destroy() kernel function, 73, 77
mutex_init() kernel function, 73, 77
mutex() kernel function, 77
mutex_owned() kernel function, 98
mutexes, 75-78

avoiding problems, 99

N
naming conventions, 98
nexus device, 22
nochpoll() kernel function, 44
nodev() kernel function, 44, 45
nulldev() kernel function, 38-42, 45

O
open() entry point, 38-42, 63

P
power management, 100
printf() function, 98
prop_op() entry point, 31-38
protected mode, 13
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prtconf command, 21, 22, 50, 70
prtpicl command, 22

Q
QOTD_BUSY condition, 75, 76

R
raw device, 22
read() entry point, 38-42, 63
read() system call, 21
rem_drv command, 51-52, 98
restricted mode, 13

S
serial connections, use in testing, 100
signal() function, 77-78, 78, 80
soft state, 61
SPARC

address space, 16
compiling, 48

special files, 20-24
state structures, 60, 61
strlcpy() kernel function, 73, 80
strncpy() kernel function, 73
syslogd command, 49-52, 59
system calls

mknod(), 21
mmap(), 16
read(), 21

system configuration information file, 19-20
system crash dumps, use in testing, 101

T
testing device drivers

test areas, 97
tips, 100-101

thread synchronization, 75-78
tuning device drivers, tips, 101

U
uio kernel structure, 63, 78
uiomove() kernel function, 63, 72, 75, 79
user mode, 13
/usr/kernel directory, 20
/usr/kernel/drv directory, 48

V
/var/adm/messages file, 49-52, 59
volatile keyword, 100

W
write() entry point, 38-42, 78-79

X
x86

address space, 16
compiling, 48
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