
International Language
Environments Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–2521–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, SunOS is a trademark or registered trademark of Sun Microsystems,
Inc. in the United States and other countries. and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S.
and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Netscape
Navigator is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries. PostScript is a
trademark or registered trademark of Adobe Systems, Incorporated, which may be registered in certain jurisdictions.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, SunOS sont des marques déposées ou enregistrées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. Netscape Navigator est une marque de Netscape Communications Corporation aux Etats-Unis et
dans d’autres pays. PostScript est une marque de fabrique d’Adobe Systems, Incorporated, laquelle pourrait é‘tre déposée dans certaines juridictions.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040831@9495

Contents

Preface 13

1 Solaris Internationalization Overview 17

About the Solaris Internationalization Architecture 17

New Internationalization and Localization Features 18

Internationalization and Localization Overview 21

Basic Steps in Internationalization 22

Localization Functions in Solaris Interfaces 23

What Is a Locale? 24

C Locale – the Default Locale 25

Full and Partial Locales 25

Behavior Affected by Locales 26

Locale Categories 27

Using Locale Categories for Localization 27

Time Formats 28

Date Formats 28

Number Formats 29

International Monetary Formats 30

Language Word and Letter Differences 32

Word Delimiters 32

Sort Order 32

Character Sets 32

Keyboard Differences 35

Differences in Paper Sizes 35

3

2 General Internationalization Features 37

Support for Code Set Independence 37

CSI Approach 38

CSI-enabled Commands 38

CSI-enabled Libraries 39

Locale Database 39

Process Code Format 40

Multibyte Support Environment 40

Dynamically Linked Applications 41

Changed Interfaces 41

ctype Macros 42

Internationalization APIs in libc 43

genmsg Utility 50

User-Defined and User-Extensible Code Conversions 51

Internationalized Domain Name (IDN) Support 52

3 Localization in the Solaris Environment 55

Software Support for Localization 55

Summary of the Solaris Locale Packages 55

Supported Locales 56

Multiple Key Compose Sequences for Locales 63

Keyboard Support in the Solaris Environment 64

Changing Between Keyboards on SPARC Systems 65

Changing Between Keyboards on Intel Systems 68

Keyboard Layout Illustrations 69

New Solaris Keyboard Software Support 76

� How to Access Estonian Type 6 USB Keyboard Support 77

� How to Access French Canadian Type 6 USB Keyboard Support 77

� How to Access Polish Programmers Type 5 Keyboard Support 77

4 Supported Asian Locales 79

Japanese Localization 79

Japanese Locales 79

Japanese Character Sets 79

Japanese Fonts 80

Japanese Input Systems 81

� How to Use the ATOK Input Method 81

4 International Language Environments Guide • January 2005

Terminal Setting for Japanese Terminals 82
Japanese iconv Module 82
User-Defined Character Support 82
Differences Between Partial and Full Locales 82

Indic Localization 83
� How to Use the Indic Input Methods 83
Indic Keyboards 84
Understanding the Mappings 87
Mapping for the Continuous Phonetic Based Input Method 88
How the Continuous Phonetic Input Method Works 110

Thai Localization 111
Thai Input Methods 111
Thai Keyboard Layouts 111
Thai Input Method Auxiliary Window 113

5 Overview of UTF-8 Locale Support 115

Unicode Overview 115
Unicode Locale: en_US.UTF-8 Support 116

About Desktop Input Methods 118
Script Selection and Input Modes 119

Accessing an Input Mode 119
Input Mode Switch Key Sequences 120

English/European Input Mode 121
Arabic Input Mode 136
Cyrillic Input Mode 137
Greek Input Mode 138
Hebrew Input Mode 147
Japanese Input Mode 147
Korean Input Mode 148
Simplified Chinese Input Mode 149
Traditional Chinese Input Mode 149
Traditional Chinese (Hong Kong) Input Mode 149
Unicode Hexadecimal Input Mode 150
Table Lookup Input Mode 150
System Environment 151

Locale Environment Variable 151
TTY Environment Setup 151

Code Conversions 155

5

DtMail Support 156

Programming Environment 158

FontSet Used with X Applications 159

FontList Definition in CDE/Motif Applications 159

6 Complex Text Layout 161

Overview of CTL Technology 161

Overview of CTL Architecture 162

CTL Support for X Library Based Applications 162

XOC Resources 163

Changes in Motif to Support CTL Technology 163

XmNlayoutDirection Resource 164

XmStringDirection Resource 165

XmRendition Resource 165

XmText and XmTextField Resource 167

XmTextFieldGetLayoutModifier Resource 171

XmTextGetLayoutModifier Resource 171

XmTextFieldSetLayoutModifier Resource 172

XmTextSetLayoutModifier Resource 172

XmStringDirectionCreate Resource 172

UIL Arguments 173

Developing CTL Applications 173

Controlling Layout Direction 173

Creating a Render Table in a Resource File 177

Horizontal Tabs 178

Mouse Selection 179

Keyboard Selection 180

Text Resources and Geometry 180

Porting Instructions 181

7 Print Filter Enhancement With mp 183

Printing for UTF-8 183

mp Print Filter Enhancement Overview 184

Using mp With the Locale-Specific Font Configuration File mp.conf 184

Using mp With the Locale-Specific PostScript Prolog Files 185

Using mp as an Xprt (X Print Server) Client 185

Localization With the mp.confConfiguration File 186

6 International Language Environments Guide • January 2005

� How to Add a Printer-Resident Font 190

� How to Create a Shared Object File 191

Adding and Customizing prolog Files 192

PostScript File Customization 192

.xpr Files 195

A iconv Code Conversions 201

Index 229

7

8 International Language Environments Guide • January 2005

Tables

TABLE 1–1 Legal UTF-8 Byte Sequences 20
TABLE 1–2 International Time Formats 28
TABLE 1–3 International Date Formats 28
TABLE 1–4 International Numeric Conventions 29
TABLE 1–5 International Monetary Conventions 30
TABLE 1–6 User Locales That Support the Euro Currency 31
TABLE 1–7 German Locale and Corresponding LC_MONETARY Operand 31
TABLE 1–8 Common International Page Sizes 36
TABLE 2–1 Messaging Functions in libc 43
TABLE 2–2 Code Conversion in libc 44
TABLE 2–3 Regular Expressions in libc 44
TABLE 2–4 Wide Character Class in libc 44
TABLE 2–5 Modify and Query Locale in libc 44
TABLE 2–6 Query Locale Data in libc 45
TABLE 2–7 Character Classification and Transliteration in libc 45
TABLE 2–8 Character Collation in libc 46
TABLE 2–9 Monetary Formatting in libc 46
TABLE 2–10 Date and Time Formatting in libc 47
TABLE 2–11 Multibyte Handling in libc 47
TABLE 2–12 Wide Character and String Handling in libc 47
TABLE 2–13 Formatted Wide-character Input and Output in libc 49
TABLE 2–14 Wide Stringslibc 49
TABLE 2–15 Wide-Character Input and Output in libc 50
TABLE 2–16 iconv Code Conversions 53
TABLE 3–1 Asia Locales 56
TABLE 3–2 Australasia Locales 58
TABLE 3–3 Central America Locales 58

9

TABLE 3–4 Central Europe Locales 58

TABLE 3–5 Eastern Europe Locales 59

TABLE 3–6 Middle East Locale 60

TABLE 3–7 North Africa Locales 60

TABLE 3–8 North America Locales 60

TABLE 3–9 Northern Europe Locales 60

TABLE 3–10 South America Locales 61

TABLE 3–11 Southern Europe Locales 61

TABLE 3–12 Western Europe Locales 62

TABLE 3–13 Diacritical Characters Created With Compose Key 63

TABLE 3–14 Support for Regional Keyboards 64

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards 66

TABLE 4–1 Japanese Bitmap Fonts 80

TABLE 4–2 Japanese TrueType Fonts 81

TABLE 5–1 Input Mode Switch Key Sequences 121

TABLE 5–2 Common Latin-1 Compose Key Sequences 122

TABLE 5–3 Common Latin-2 Compose Key Sequences 126

TABLE 5–4 Common Latin-3 Compose Key Sequences 127

TABLE 5–5 Common Latin-4 Compose Key Sequences 128

TABLE 5–6 Common Latin-5 Compose Key Sequences 129

TABLE 5–7 Common Latin-9 Compose Key Sequences 130

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys 130

TABLE 5–9 Compose Key Sequences at Greek Input Mode 139

TABLE 5–10 Compose Key Sequences at Greek Input Mode with Three Keys 145

TABLE 5–11 Compose Key Sequences at Greek Input Mode with Four Keys 146

TABLE 5–12 STREAMS Modules Supported by en_US.UTF-8 152

TABLE 5–13 64–bit STREAMS Modules Supported by en_US.UTF-8 152

TABLE 6–1 New Resources in XmRendition 165

TABLE 6–2 New Resources in Xm CTL 167

TABLE 6–3 UIL 173

TABLE 7–1 Optional Keyword/Value Pairs 189

TABLE 7–2 STARTCOMMON/ENDCOMMON Keyword Values 199

TABLE A–1 Available Unicode Related iconv Code Conversion Modules 201

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page
Related iconv Code Conversion Modules 223

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC
Code Pages to UTF-8 225

10 International Language Environments Guide • January 2005

Figures

FIGURE 1–1 Functions and Structure of Locales in the Solaris Operating System 22
FIGURE 2–1 IDN to ACE Conversion 52
FIGURE 2–2 ACE to IDN Conversion 52
FIGURE 3–1 Arabic Keyboard 69
FIGURE 3–2 Belgian Keyboard 69
FIGURE 3–3 Cyrillic (Russian) Keyboard 69
FIGURE 3–4 Danish Keyboard 70
FIGURE 3–5 Finnish Keyboard 70
FIGURE 3–6 French Keyboard 70
FIGURE 3–7 German Keyboard 71
FIGURE 3–8 Italian Keyboard 71
FIGURE 3–9 Japanese Keyboard 71
FIGURE 3–10 Korean Keyboard 72
FIGURE 3–11 Netherlands (Dutch) Keyboard 72
FIGURE 3–12 Norwegian Keyboard 72
FIGURE 3–13 Portuguese Keyboard 73
FIGURE 3–14 Spanish Keyboard 73
FIGURE 3–15 Swedish Keyboard 73
FIGURE 3–16 Swiss (French) Keyboard 74
FIGURE 3–17 Swiss (German) Keyboard 74
FIGURE 3–18 Traditional Chinese Keyboard 74
FIGURE 3–19 Turkish F Keyboard 75
FIGURE 3–20 Turkish Q Keyboard 75
FIGURE 3–21 United Kingdom Keyboard 75
FIGURE 3–22 United States Keyboard 76
FIGURE 3–23 U.S.A./UNIX Keyboard 76
FIGURE 4–1 Map for Bengali Consonants 88

11

FIGURE 4–2 Map for Bengali Vowels 89

FIGURE 4–3 Map for Bengali Others 90

FIGURE 4–4 Map for Gujarati Consonants 91

FIGURE 4–5 Map for Gujarati Vowels 92

FIGURE 4–6 Map for Gujarati Others 93

FIGURE 4–7 Map for Gurmukhi Consonants 94

FIGURE 4–8 Map for Gurmukhi Vowels 95

FIGURE 4–9 Map for Gurmukhi Others 96

FIGURE 4–10 Map for Hindi Consonants 97

FIGURE 4–11 Map for Hindi Vowels 97

FIGURE 4–12 Map for Hindi Others 98

FIGURE 4–13 Map for Kannada Consonants 99

FIGURE 4–14 Map for Kannada Vowels 100

FIGURE 4–15 Map for Kannada Others 101

FIGURE 4–16 Map for Malayalam Consonants 102

FIGURE 4–17 Map for Malayalam Vowels 103

FIGURE 4–18 Map for Malayalam Others 104

FIGURE 4–19 Map for Tamil Consonants 105

FIGURE 4–20 Map for Tamil Vowels 106

FIGURE 4–21 Map for Telugu Consonants 108

FIGURE 4–22 Map for Telugu Vowels 108

FIGURE 4–23 Map for Telugu Others 109

FIGURE 5–1 Input Mode Selection Window 119

FIGURE 5–2 Arabic Keyboard 136

FIGURE 5–3 Cyrillic (Russian) Keyboard 137

FIGURE 5–4 Greek Euro Keyboard 138

FIGURE 5–5 Greek UNIX Keyboard 138

FIGURE 5–6 Hebrew Keyboard 147

FIGURE 5–7 Japanese Keyboard 147

FIGURE 5–8 Korean Keyboard 148

FIGURE 5–9 DtMail New Message Window 157

FIGURE 6–1 CTL Architecture 162

FIGURE 6–2 Layout Direction 174

FIGURE 6–3 Tabbing Behavior 179

12 International Language Environments Guide • January 2005

Preface

The International Language Environments Guide introduces the internationalization
features that are new to the Solaris™ Operating System (Solaris OS). The guide
contains information on how to use the current Solaris release to build global software
products that support a variety of languages and cultural conventions.

In addition, the guide provides pointers to other documentation that includes further
information on the internationalization features in this release.

Note – All of the information related to operating systems in the guide pertains to the
Solaris Operating System.

This preface includes the following sections.

� “About This Book” on page 14
� “How This Guide Is Organized” on page 14
� “Related Books and Sites” on page 14
� “Accessing Sun Documentation Online” on page 15
� “Typographic Conventions” on page 15
� “Shell Prompts in Command Examples” on page 16

Note – This Solaris release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List
athttp://www.sun.com/bigadmin/hcl. This document cites any implementation
differences between the platform types.

In this document the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

13

http://www.sun.com/bigadmin/hcl

About This Book
This guide written for software developers and system administrators who design and
support global applications in the current Solaris Operating System.

The guide assumes that you have a working knowledge of the C programming
language.

How This Guide Is Organized
The chapters in this guide are organized as follows:

� Chapter 1 describes the new internationalization and localization features that are
available in the current Solaris release.

� Chapter 2 provides introductory information on Code Set Independence (CSI), the
locale database, the libc APIs, and other internationalization features.

� Chapter 3 provides information on the locales, fonts, and keyboards that are
supported for use in the current Solaris Operating System.

� Chapter 4 describes the Japanese, Hindi, and Thai localization support that is
offered in the current Solaris release.

� Chapter 5 provides information on the available input methods and code
conversion functionality supported for use in the current Solaris Operating System.

� Chapter 6 describes the Complex Text Layout (CTL) extensions that enable Motif
APIs to support writing systems that require complex transformations between
logical and physical text representations. Writing systems that require complex
transformations include Arabic, Hebrew, and Thai.

� Chapter 7 explains printing support with particular emphasis on the mp print filter.
� Appendix A contains tables of the available iconv conversions.

Related Books and Sites
The following books offer further information on the topics discussed in this guide:

� Solaris internationalization:

Tuthill, Bill, and David Smallberg. Creating Worldwide Software: Solaris International
Developer’s Guide, 2nd edition. Mountain View, California, Sun Microsystems Press,
1997. This book is available through books@sun.com and

14 International Language Environments Guide • January 2005

http://mailto:books.sun.com

http://www.sun.com/books/. The book offers a general overview of the
internationalization process in the Solaris Operating System.

� Solaris Common Desktop Environment:

The Solaris Common Desktop Environment: Programmer’s Guide is part of the CDE
Developer’s Collection that is shipped on the Solaris documentation CD.

� Chinese and Korean Solaris locales:

Korean Solaris User’s Guide
Simplified Chinese Solaris User’s Guide
Traditional Chinese Solaris User’s Guide

� OSF/Motif application development:

The OSF/Motif Programmer’s Guide, Release 1.2, Englewood Cliffs, New Jersey,
Prentice-Hall, 1993. This book is the Open Software Foundations (OSF) guide on
how to use the OSF/Motif application programming interface to create Motif
applications.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

15

http://www.sun.com/books/
http://docs.sun.com

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

16 International Language Environments Guide • January 2005

CHAPTER 1

Solaris Internationalization Overview

This chapter introduces the new features and the key concepts of Solaris
internationalization and localization. The chapter covers the following topics.

� “New Internationalization and Localization Features” on page 18
� “Internationalization and Localization Overview” on page 21
� “What Is a Locale?” on page 24
� “Using Locale Categories for Localization” on page 27
� “Language Word and Letter Differences” on page 32
� “Keyboard Differences” on page 35
� “Differences in Paper Sizes” on page 35

About the Solaris Internationalization
Architecture
The current Solaris release includes a number of new features, including Unicode 4.0
support for the UTF-8 locales, enhanced keyboard support, and several improvements
to the mp print filter.

The Solaris internationalization architecture eases the development, the deployment,
and the management of applications and language services around the world. A single
multilingual product provides support for 39 different languages and 162 locales. In
addition, support is available for the complex text layout that is required for Thai and
Hindi scripts. Bidirectional text capability is also supported for languages such as
Arabic and Hebrew.

Input methods, character sets, codeset conversion, and other language-related features
are supported for a number of different Solaris locales. You can deploy applications in
multiple language environments by following standard APIs. You can also customize
language attributes, change converter tables, or add a new input method editor in the
Solaris environment.

17

The source code for the Solaris X globalization framework was released to the open
source community in the fall of 2000. That release enables you to follow a common
reference implementation to enhance the compatibility and the interoperability of
global applications. The codeset independent approach to globalization enables you to
operate in both native language and Unicode locales. The Solaris framework provides
the power to scale across platforms. A rich set of data converters ensures
interoperability between various encodings and different third-party platforms.

The Solaris platform also enables multinational corporations to scale their server
administration worldwide. Unlike competing platforms, the Solaris platform uses a
service-based approach to administration of language services. Server administrators
can enable language services remotely across a worldwide network, regardless of the
client system. This client-independent approach enables system upgrades without
changing client applications. For example, a user does not have to change a local client
application in order to read email in Arabic sent from an Internet cafe in Paris.

New Internationalization and
Localization Features
The following new features are available in the current Solaris release:

� Auto encoding finder

The auto encoding finder is a utility for global character handling. Through a
general-purpose interface, the auto encoding finder provides an easy way to detect
the encoding of a particular file or string. Encoding detection simplifies access to
various language character encodings. For more information, see the auto_ef(1)
or libauto_ef(3LIB) man pages.

� Locale administrator

The locale administrator allows you to query and configure the locales for a Solaris
Operating System through a command-line interface. Using the localeadm(1M)
tool, you can display information about locale packages that are installed on the
system or that reside on a particular device or directory. You can add and remove
locales on the current system on a per-region basis. For example, you can add all
locales in the Eastern European region to the current system.

Prior to the introduction of the locale administrator, once a system is installed you
had to add/remove individual packages to change the locales on the machine.
Working with individual packages is prone to error as it is easy to miss or overlook
packages.

The locale administrator is a supplement to the locale selection logic in the Solaris
installer. The installer is still seen as being the primary application for the correct
installation of Solaris locales.

18 International Language Environments Guide • January 2005

� mp enhancement

The mp print filter, first released with the Solaris 9 Operating System, replaces the
xutops print filter in the current Solaris release. The mp print filter is enhanced in
this release with the following major improvements.

� When a configured font is not found in the mp.conf file, the mp program will
continue to run until it encounters a glyph that uses the unrecognized font.

� The size of the mp output is considerably reduced when printing TrueType
glyphs.

� The dictionary mechanism employed by mp is fine-tuned for faster printing.

� The TrueType engine is enhanced to deal with all space characters of various
widths

Note – The xutops print filter is no longer supported in the Solaris Operating
System. The xutops print filter was previously used to print internationalized
text in the UTF-8 locales. The mp printer filter that replaces xutops is a superset
of the supported features of the xutops print filter. For more information, see
the mp(1) man page.

� New European keyboard support

Sun I/O keyboard support is available for the Polish programmers Type 5
keyboard and for the Sun Ray™ USB Type 6 Russian, Estonian, and French
Canadian keyboards.

Note – Currently, no hardware is available for the new European keyboard types.
To take advantage of the new keyboard software, refer to the procedures in “New
Solaris Keyboard Software Support” on page 76.

� Unicode 4.0 support

The following UTF-8 locales have been updated to support the new 4.0 version of
the Unicode Standard:

� ar_EG.UTF-8
� de_DE.UTF-8
� en_US.UTF-8
� es_ES.UTF-8
� fi_FI.UTF-8
� fr_BE.UTF-8
� fr_FR.UTF-8
� he_IL.UTF-8
� hi_IN.UTF-8
� it_IT.UTF-8

Chapter 1 • Solaris Internationalization Overview 19

� ja_JP.UTF-8
� ko_KR.UTF-8
� pl_PL.UTF-8
� pt_BR.UTF-8
� ru_RU.UTF-8
� sv_SE.UTF-8
� th_TH.UTF-8
� tr_TR.UTF-8
� zh_CN.UTF-8
� zh_HK.UTF-8
� zh_TW.UTF-8

The new version of the standard introduces an additional 1,226 new characters and
contains various normative and informative changes.

Unicode 3.2 defines more strict UTF-8 byte sequences as “UTF-8 Corrigendum”:

TABLE 1–1 Legal UTF-8 Byte Sequences

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+D800..U+DFFF ill-formed

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

These sequences exclude the surrogate code points between U+D800 and U+DFFF.
The sequences also inhibit any other illegal byte values. To comply with the new
definition, the Unicode locale methods and the UTF-8 iconv modules have been
enhanced to detect the newly defined UTF-8 invalid byte sequences.

� Thai keyboard layouts

The following keyboard layouts are supported for the Thai input method:

� Kedmanee (TIS820-2531) keyboard layout. The Kedmanee layout was designed
for the typewriter, not the computer keyboard. The limited number of keys on
the typewriter keyboard meant that some of the Thai special characters were
not available in the layout. TIS820-2531 has adopted the Kedmanee layout for

20 International Language Environments Guide • January 2005

use with a computer keyboard.

� TIS820-2538 keyboard layout. This enhanced Kedmanee layout is an updated
version of the TIS820-2531 layout that includes some of the Thai special
characters that were unavailable in the original Kedmanee layout. Currently,
TIS820-2538 is the only Thai keyboard layout standard that is issued by Thai
Industrial Standard Institute.

� Pattajoti keyboard layout. The Pattajoti layout was also designed for the
typewriter but with better finger-load distribution. Pattajoti was invented by a
Royal Irrigation Department officer and is still widely used in the department.

� Configurable keyboard layout, a user-defined keyboard layout for the Thai
input method.

� Input method support for the Indic languages

A code-table input method interface similar to the one used for the Chinese input
methods is available in this release. The Indic input methods, based on the IIIMF
SDK and SunIM Language Interface, provide the following new features:

� Phonetic, transliteration-based input methods and keyboard layouts. The
supported keyboard layouts are defined in the ISCII standard as INSCRIPT
keyboard overlays.

� Standard input method switching.

� Indic scripts including Hindi, Tamil, Kannada, Malayalam, Telugu, Gujarati,
Punjabi, and Bengali. You can change the input script by pressing the F5 key.

� Plug-in mechanism for new keyboard layouts enabling easier extension at a
future time. Plug-in configuration files will be loaded by the language engine
module.

Internationalization and Localization
Overview
Internationalization and localization are different procedures. Internationalization is the
process of making software portable between languages or regions, while localization is
the process of adapting software for specific languages or regions. Internationalized
software can be developed using interfaces that modify program behavior at runtime
in accordance with specific cultural requirements. Localization involves establishing
online information to support a language or region, called a locale.

Unlike software that must be completely rewritten before it can work with different
native languages and customs, internationalized software does not require rewriting.
The internationalized software can be ported from one locale to another without
change. The Solaris system is internationalized, providing the infrastructure and
interfaces you need to create internationalized software.

Chapter 1 • Solaris Internationalization Overview 21

Basic Steps in Internationalization
An internationalized application’s executable image is portable between languages
and regions. To internationalize software:

� Use the interfaces described in this book to create software with an environment
that can be modified by dynamically recompiling.

� Divide software into executable code and all the messages that the user might see.
Keep the message strings in a message catalog.

Message strings are translated for a language or region. A locale includes the message
strings and methods to specify sorting.

To use a localized version of a product, the user sets certain environment variables.
The product then displays messages that are translated into the language of the locale.
Date, time, currency, and other information is formatted and displayed according to
locale-specific conventions. Message translations and online help contents are
provided throughout different layers, as illustrated in the following diagram.

22 International Language Environments Guide • January 2005

X Protocol

XIM
Protocols

Application
Locales

CDE
Locales

CDE/Motif
Libraries

OS
Locales

SunOS
System
Libraries

Language
Engines

X Input
Method
Server

STREAMS
Modules

SunOS
Kernel

Applications

Hardware

X Server

X Locales

X11 Window
System
Libraries

X Protocol

Application

Platform

Note:

Each "Locale" contains translated
messages, help files, resource settings,
fonts, and language engines for the layer.

The CDE Locales and X Locales possibly
include Layout Engine.

The Application Locales include translated
messages and resource settings for locales,
from an application provider. These are
loaded by way of I18N system interfaces.

I18N STREAMS modules support
necessary code conversions for the
terminal environment.

FIGURE 1–1 Functions and Structure of Locales in the Solaris Operating System

Localization Functions in Solaris Interfaces
The OS (operating system) locale layer provides the basic locale database and
functions that are plugged into the OS system interface at the application’s runtime.
Applications access these OS locale modules through standard APIs.

The X11 locale layer provides the interface to the X input method and X output
method to X11 applications for local text input and display. Fonts enable applications
to display characters from various languages.

Chapter 1 • Solaris Internationalization Overview 23

CDE/Motif is built on top of the X11 window system. Hence, CDE/Motif can utilize
the X11 locale capability through X11 APIs. Solaris localizations have various
locale-specific configurations for CDE applications in order to make the desktop
functional within the target locale. Message translations and online help contents are
provided throughout different layers.

What Is a Locale?
A key concept for application programs is that of a program’s locale. The locale is an
explicit model and definition of a native-language environment. The notion of a locale
is explicitly defined and included in the library definitions of the ANSI C Language
standard.

A locale consists of a number of categories for which country-dependent formatting or
other specifications exist. A program’s locale defines its code sets, date and time
formatting conventions, monetary conventions, decimal formatting conventions, and
collation (sort) order.

A locale can be composed of a base language, country (territory) of use, and an
optional codeset. Codeset is usually assumed. For example, German is de, an
abbreviation for Deutsch, while Swiss German is de_CH, CH being an abbreviation for
Confederation Helvetica. This convention allows for specific differences by country,
such as currency unit notation.

More than one locale can be associated with a particular language, which allows for
regional differences. For example, an English-speaking user in the United States can
select the en_US locale (English for the United States), while an English-speaking user
in Great Britain can select en_GB (English for Great Britain).

Generally the locale name is specified by the LANG environment variable. Locale
categories are subordinate to LANG but can be set separately, in which case they
override LANG. If the LC_ALL operand is set, it overrides LANG and all the separate
locale categories.

The locale naming convention is:

language[_territory][.codeset] [@modifier]

where a two-letter language code is from ISO 639, a two-letter territory code is from ISO
3166, codeset is the name of the codeset that is being used in the locale, and modifier is
the name of the characteristics that differentiate the locale from the locale without the
modifier.

All Solaris product locales preserve the Portable Character Set characters with
US-ASCII code values.

24 International Language Environments Guide • January 2005

For more information on the portable character set, refer to “X/Open CAE
Specification: System Interface Definitions, Issue 5” (ISBN 1–85912–186–1).

A single locale can have more than one locale name. For example, POSIX is the same
locale as C.

C Locale – the Default Locale
The C locale, also known as the POSIX locale, is the POSIX system default locale for all
POSIX-compliant systems. The Solaris Operating System is a POSIX system. The
Single UNIX Specification, Version 3, defines the C locale. Register to read and
download the specification at: http://www.unix.org/version3/online.html.

You can specify that your internationalized programs run in the C locale, in one of two
ways:

� Unset all locale environment variables.

system% unsetenv LC_ALL LANG LC_CTYPE LC_COLLATE LC_NUMERIC \

LC_TIME LC_MONETARY LC_MESSAGES

Unsets all locale environment variables. Runs the application in the C locale.

� Explicitly set the locale to C or POSIX.

system% setenv LC_ALL C

system% setenv LANG C

Some applications check the LANG environment variables without actually calling
setlocale(3C) to reference the current locale. In this case, setenv explicitly sets
the C locale by specifying the LC_ALL and LANG locale environment variables.
For the precedence relationship among locale environment variables, see the
setlocale(3C) man page.

To check the current locale settings in a terminal environment, run the locale(1)
command.

system% locale

Full and Partial Locales
A full Solaris locale has all of the listed functions and the localized system messages in
the relevant language. Partial locales have no localized messages installed. All locales in
the Solaris environment are capable of displaying localized messages, provided that
localized messages for the relevant language are installed. For example, the following
locales can be either partial or full locales:

� de_DE.ISO8859–1
� de_DE.ISO8859–15

Chapter 1 • Solaris Internationalization Overview 25

� de_DE.UTF-8
� de_AT.ISO8859–1
� de_AT.ISO8859–15
� de_CH.ISO8859–1

When the German message translations are installed from the Languages CD, all of
the above locales become full locales because they have access to a fully translated
desktop. The Languages CD contains message translations for the following languages
and locales:

� German
� French
� Spanish
� Swedish
� Italian
� Japanese
� Korean
� Simplified Chinese locale
� Traditional Chinese locale

All partial locales are available on the Software CD. Message translations are available
on the Languages CD.

All English locales are also full locales and are available on the Software CD.

Behavior Affected by Locales
Different cultures often use different conventions to format numbers, to write the date
and time, to delimit words and phrases, or to quote written and spoken material. A
locale determines how the following operations, files, formats, and expressions are
handled for different regions:

� Encoding and processing of text data

� Language identification and encoding of resource files

� Rendering and layout of text strings

� Interchange of text between clients

� Input method selection to meet the codeset and text processing requirements of the
chosen script

� Font and icon files that are culturally specific

� Actions and file types

� User Interface Definition (UID) files

� Date and time formats

� Numeric formats

� Monetary formats

26 International Language Environments Guide • January 2005

� Collation order
� Regular expression handling specific to the locale
� Format for informative and diagnostic messages and interactive responses

The Solaris environment separates language and culture-dependent information from
the application and saves the information outside the application. This method
eliminates the need to translate, rewrite, or recompile the application for each market.
The only requirement to enter a new market is to localize the external information to
the local language and customs.

Locale Categories
The locale categories are as follows:

LC_CTYPE Controls the behavior of character handling functions.

LC_TIME Specifies date and time formats, including month names, days of
the week, and common full and abbreviated representations.

LC_MONETARY Specifies monetary formats, including the currency symbol for the
locale, thousands separator, sign position, the number of fractional
digits, and so forth.

LC_NUMERIC Specifies the decimal delimiter (or radix character), the thousands
separator, and the grouping.

LC_COLLATE Specifies a collation order and regular expression definition for the
locale.

LC_MESSAGES Specifies the language in which the localized messages are written,
and affirmative and negative responses of the locale (yes and no
strings and expressions).

LO_LTYPE Specifies the layout engine that provides information about
language rendering. Language rendering (or text rendering)
depends on the shape and direction attributes of a script.

Using Locale Categories for Localization
The localization of a product should be done in consultation with native users in that
target language or region. Certain information styles and formats might seem
perfectly obvious and universal to the developer. However, to the user these formats
could look awkward, wrong, or even offensive. The following sections describe the
elements in the Solaris Operating System that you can customize to meet the
localization requirements for your product.

Chapter 1 • Solaris Internationalization Overview 27

Time Formats
The following table shows some of the ways in which different locales write 11:59 P.M.

TABLE 1–2 International Time Formats

Locale Format

Canadian 23:59

Finnish 23.59

German 23.59 Uhr

Norwegian 23.59

Thai 23:59

British English 23:59

Time is represented by both a 12-hour clock and a 24-hour clock. The hour and minute
separator can be either a colon (:) or a period (.).

Time zone splits occur between and within countries. Although a time zone can be
described in terms of how many hours it is ahead of, or behind, Coordinated
Universal Time, UTC (or Greenwich Mean Time, GMT), this number is not always an
integer. For example, Newfoundland is in a time zone that is half an hour different
from the adjacent time zone.

Daylight Savings Time (DST) starts and ends on dates that can vary from country to
country. Many countries do not implement DST at all. Additionally, Daylight Savings
Time can vary within a time zone. In the U.S. for example, the implementation is a
state decision.

Date Formats
The following table shows some of the date formats used around the world. Variations
can exist even within a country.

TABLE 1–3 International Date Formats

Locale Convention Example

Canadian (English) dd/mm/yy 24/08/01

Danish yyyy-mm-dd 2001–08–24

Finnish dd.mm.yyyy 24.08.2001

28 International Language Environments Guide • January 2005

TABLE 1–3 International Date Formats (Continued)
Locale Convention Example

French dd/mm/yyyy 24/08/2001

German yyyy-mm-dd 2001–08–24

Italian dd/mm/yy 24/08/01

Norwegian dd-mm-yy 24–08–01

Spanish dd-mm-yy 24-08-01

Swedish yyyy-mm-dd 2001-08-24

Great Britain dd/mm/yy 24/08/01

United States mm-dd-yy 08-24-01

Thai dd/mm/yyyy 24/08/2001

Number Formats
Great Britain and the United States are two of the few places in the world that use a
period to indicate the decimal place. Many other countries use a comma instead. The
decimal separator is also called the radix character. Likewise, while Great Britain and
the United States use a comma to separate groups of thousands, many other countries
use a period instead, and some countries separate thousands groups with a thin space.

Data files containing locale-specific formats are frequently misinterpreted when
transferred to a system in a different locale. For example, a file containing numbers in
a French format is not useful to a British-specific program.

The following table shows some commonly used numeric formats.

TABLE 1–4 International Numeric Conventions

Locale Large Number

Canadian (English) 4,294,967.00

Danish 4.294 967.295,00

Finnish 4 294 967 295,00

French 4 294 967 295,00

German 4,294,967.00

Italian 4.294.967,00

Norwegian 4.294.967.295,00

Chapter 1 • Solaris Internationalization Overview 29

TABLE 1–4 International Numeric Conventions (Continued)
Locale Large Number

Spanish 4.294.967.295,00

Swedish 4 294 967 295,00

Great Britain 4,294,967,295.00

Uhited States 4,294,967,295.00

Thai 4,294,967,295.00

Note – No particular locale conventions exist that specify how to separate numbers in a
list.

International Monetary Formats
Currency units and presentation order vary greatly around the world. Local and
international symbols for currency can differ. The following table shows monetary
formats in some countries.

TABLE 1–5 International Monetary Conventions

Locale Currency Example

Canadian (English) Dollar ($) $1,234.56

Canadian (French Dollar ($) 1 234,56$

Danish Kroner (kr) Kr 1.234,56

Finnish Euro () 1 234,56

French Euro () 1,234

Japanese Yen (¥) ¥ 1,234

Norwegian Krone (kr) kr 1.234,56

Swedish Krona (Kr) 1 234,56 Kr

Great Britain Pound (£) £1,234.56

United States Dollar ($) $1,234.56

Thai Baht 2539 Baht

Euro Euro () 5,000

The current release supports the Euro currency. Local currency symbols are still
available for backward compatibility.

30 International Language Environments Guide • January 2005

TABLE 1–6 User Locales That Support the Euro Currency

Region Locale Name ISO Code Set

Austria de_AT.ISO8859-15 8859-15

Belgium (French) fr_BE.ISO8859-15 8859-15

Belgium (Flemish) nl_BE.ISO8859-15 8859-15

Denmark da_DK.ISO8859-15 8859-15

Estonia et_EE.ISO8859–15 8859–15

Finland fi_FI.ISO8859-15 8859-15

France fr_FR.ISO8859-15 8859-15

Germany de_DE.ISO8859-15 8859-15

Great Britain en_GB.ISO8859-15 8859-15

Ireland en_IE.ISO8859-15 8859-15

Italy it_IT.ISO8859-15 8859-15

Netherlands nl_NL.ISO8859-15 8859-15

Portugal pt_PT.ISO8859-15 8859-15

Catalan Spain ca_ES.ISO8859-15 8859–15

Spain es_ES.ISO8859-15 8859-15

Sweden sv_SE.ISO8859-15 8859-15

U.S.A. en_US.ISO8859-15 8859-15

Euro locales are based on the ISO8859–15 code set.

Keep in mind that a converted currency amount can require a different amount of space
than the original amount, for example, $1,000 can become 1.307.000.

The current status of the locale settings for locales within the euro zone is illustrated
for the LC_MONETARY operand of the locale utility. The status for Germany, for
example, is shown in the following table.

TABLE 1–7 German Locale and Corresponding LC_MONETARY Operand

Locale LC_MONETARY

de_DE.ISO8859–1 DM

de_DE.ISO8859–15 Euro

de_DE.UTF-8 Euro

Chapter 1 • Solaris Internationalization Overview 31

TABLE 1–7 German Locale and Corresponding LC_MONETARY Operand (Continued)
Locale LC_MONETARY

de_DE.ISO8859–15@euro Euro

de_DE.UTF-8@euro Euro

Language Word and Letter Differences
This section describes important differences between languages.

Word Delimiters
In English, words are usually separated by a space character. Languages such as
Chinese, Japanese, and Thai, however, often have no delimiter between words.

Sort Order
Sorting order for particular characters is not the same in all languages. For example,
the character “ö” sorts with the ordinary “o” in Germany, but sorts separately in
Sweden, where it is the last letter of the alphabet. In some languages, characters have
weight to determine the priority of the character sequences. For example, the Thai
dictionary defines sorting through the sequences of characters that have different
weights.

Character Sets
Character sets can differ in the number of alphabetic characters and special characters.
While the English alphabet contains only 26 characters, some languages contain many
more characters. Japanese, for example, can contain over 20,000 characters and
Chinese can contain an even higher number of characters.

Western European Alphabets
The alphabets of most western European countries are similar to the standard
26-character alphabet used in English-speaking countries. These alphabets often also
include some additional basic characters, some marked or accented characters, and
some ligatures.

32 International Language Environments Guide • January 2005

Japanese Text
Japanese text is composed of three different scripts mixed together:

� Kanji ideographs derived from Chinese
� Hiragana and Katakana, two phonetic scripts (or syllabaries)

Although each character in Hiragana has an equivalent in Katakana, Hiragana is the
most common script, with cursive rather than block-like letter forms. Kanji characters
are used to write root words. Katakana is mostly used to represent “foreign” words,
that is, words imported from languages other than Japanese.

Kanji has tens of thousands of characters, but the number commonly used has
declined steadily over the years. Now only about 3500 are frequently used, although
the average Japanese writer has a vocabulary of about 2000 Kanji characters.
Nonetheless, computer systems must support more than 7000 characters in accordance
with the Japan Industry Standard (JIS) requirements. In addition, there are about 170
Hiragana and Katakana characters. On average, 55% of Japanese text is Hiragana, 35%
Kanji, and 10% Katakana. Arabic numerals and Roman letters are also present in
Japanese text.

Although completely avoiding the use of Kanji is possible, most Japanese readers find
a text that is composed without any Kanji hard to understand.

Korean Text
Korean text can be written using a phonetic writing system called Hangul. Hangul has
more than 11,000 characters, which consist of consonants and vowels known as jamos.
About 3000 characters from the entire Hangul vocabulary of characters are usually
used in Korean computer systems. Korean also uses ideographs based on the set
invented in China, called Hanja. Korean text requires over 6000 Hanja characters.
Hanja is used mostly to avoid confusion when Hangul would be ambiguous. Hangul
characters are formed by combining consonants and vowels. After these characters are
combined, they can compose one syllable, which is a Hangul character. Hangul
characters are often arranged in a square, so that the group takes up the same space as
a Hanja character. Arabic numerals, Roman letters, and special symbol characters are
also present in Korean text.

Thai Text
A Thai character can be defined as a column position on a display screen with four
display cells. Each column position can have up to three characters. The composition
of a display cell is based on the Thai character’s classification. Some Thai characters
can be composed with another character’s classification. If both characters can be
composed together, both characters are in the same cell. Otherwise, they are in
separate cells.

Chapter 1 • Solaris Internationalization Overview 33

Chinese Text
Chinese usually consists entirely of characters from the ideographic script called
Hanzi.

� In the People’s Republic of China (PRC) there are about 7000 commonly used
Hanzi characters in the GB2312 (zh locale), more than 20,000 characters in the GBK
charset (zh.GBK locale), and about 30,000 characters in the GB18030-2000 charset
(zh_CN.GB18030 locale), including all CJK extension A characters defined in
Unicode 3.0.

� In Taiwan, the most frequently used charsets are the CNS11643-1992 (zh_TW locale)
and the Big5 (zh_TW.BIG5 locale). They share about 13,000 Hanzi characters.

� In Hong Kong, 4702 characters have been added into the Big5 charset to become
the Big5-HKSCS charset (zh_HK.BIG5HK).

If a character is not a root character, it usually consists of two or more parts, two being
most common. In two-part characters, one part generally represents meaning, and the
other represents pronunciation. Occasionally both parts represent meaning. The
radical is the most important element, and characters are traditionally arranged by
radical, of which there are several hundred. A single sound can be represented by
many different characters, which are not interchangeable in usage. A single character
can have different sounds.

Some characters are more appropriate than others in a given context. The appropriate
character is distinguished phonetically by the use of tones. By contrast, spoken
Japanese and Korean lack tones.

Several phonetic systems represent Chinese. In the People’s Republic of China the
most common is pinyin, which uses Roman characters and is widely employed in the
West for place names such as Beijing. The Wade-Giles system is an older phonetic
system, formerly used for place names such as Peking. In Taiwan zhuyin (or bopomofo),
a phonetic alphabet with unique letter forms, is often used instead.

Hebrew Text
Hebrew text is used for writing scripts in the Hebrew and Yiddish languages. Hebrew
uses a bidirectional script. Hebrew letters are written and read from right to left, while
numbers are read from left to right. Any English text that is embedded in Hebrew text
is also read from left to right.

Hebrew uses a 27-character alphabet, and takes punctuation marks and numbers from
the standard Latin (or English) alphabet. Hebrew text also includes vowel and
pronunciation marks. These marks appear either as a dot (dagesh) inside the base
character, vowel marks below the character, or accents to the upper left of the
character. These marks are generally only used in liturgical text, and are rarely seen in
day-to-day use. Hebrew has no uppercase letters.

34 International Language Environments Guide • January 2005

Hindi Text
Hindi text is written in a script called Devanagari, which means the writing of the
gods. Hindi is a phonetic language, and is written as a series of syllables. Each syllable
is built up of alphabetic pieces (the Devanagari characters) of three types: consonant
letters, independent vowels, and dependent vowel signs. The syllable itself consists of
a consonant and vowel core, with an optional preceding consonant. Unlike English,
which starts from a baseline, Devanagari characters hang from a horizontal line (called
the head stroke) written at the top of the characters. These characters can combine or
change shape depending on their context. Like Hebrew, Hindi text makes no
distinction between uppercase and lowercase letters.

Keyboard Differences
Not all characters on the U.S. keyboard appear on other keyboards. Similarly, other
keyboards often contain many characters not visible on the U.S. keyboard.

Any keyboard can be used to input characters from any locale because input is
handled by the Solaris Operating System.

Note – On SPARC® machines, the Compose key can be used to produce any Latin
character with a diacritic in any of the supported ISO8859 character sets. The Compose
key can be used with Latin-based locales, but not with Korean, Chinese, or Japanese
locales, except the UTF-8 locales.

Differences in Paper Sizes
Within each country, a small number of paper sizes are commonly used. Normally, one
of those sizes is much more common than the others. Most countries follow ISO
Standard 216: “Writing paper and certain classes of printed matter-Trimmed sizes-A
and B series.”

Internationalized applications should not make assumptions about the page sizes
available to them. The Solaris system provides no support for tracking output page
size. This tracking is the responsibility of the application program. The following table
shows common international page sizes.

Chapter 1 • Solaris Internationalization Overview 35

TABLE 1–8 Common International Page Sizes

Paper Type Dimensions Countries

ISO A4 21.0 cm by 29.7 cm Everywhere except U.S.

ISO A5 14.8 cm by 21.0 cm Everywhere except U.S.

JIS B4 25.9 cm by 36.65 cm Japan

JIS B5 18.36 cm by 25.9 cm Japan

U.S. Letter 8.5 inches by 11 inches U.S. and Canada

U.S. Legal 8.5 inches by 14 inches U.S. and Canada

36 International Language Environments Guide • January 2005

CHAPTER 2

General Internationalization Features

This chapter discusses several internationalization features contained in the Solaris
Operating System. The chapter covers the following topics.

� “Support for Code Set Independence” on page 37
� “Locale Database” on page 39
� “Process Code Format” on page 40
� “Multibyte Support Environment” on page 40
� “Dynamically Linked Applications” on page 41
� “Changed Interfaces” on page 41
� “ctype Macros” on page 42
� “Internationalization APIs in libc” on page 43
� “genmsg Utility” on page 50
� “User-Defined and User-Extensible Code Conversions” on page 51
� “Internationalized Domain Name (IDN) Support” on page 52

Support for Code Set Independence
EUC is an abbreviation for Extended UNIX® Code. The Solaris Operating System
supports non-EUC encodings such as PC-Kanji (better known as Shift_JIS) in Japan,
Big5 in Taiwan, and GBK in the People’s Republic of China. Because a large part of the
computer market demands non-EUC codeset support, the current Solaris environment
provides a solid framework to enable both EUC and non-EUC code set support. This
support is called Code Set Independence, or CSI.

The goal of CSI is to remove dependencies on specific code sets or encoding methods
from Solaris Operating System libraries and commands. The CSI architecture enables
the Solaris Operating System to support any UNIX file system safe encoding. CSI
supports a number of new code sets, such as UTF-8, PC-Kanji, and Big5.

37

CSI Approach
Code set independence enables application and platform software developers to keep
their code independent of any encoding, such as UTF-8. CSI also provides the ability
to adopt any new encoding without having to modify the source code. This
architecture approach differs from Java™ internationalization because applications do
not have to be to be UTF-16–dependent.

Many existing internationalized applications (for example, Motif) automatically inherit
CSI support from the underlying system. These applications work in the new locales
without modification.

CSI is inherently independent from any code sets. However, the following
assumptions about file code encodings (code sets) still apply to the current Solaris
system:

� File code is a superset of ASCII.

� NULL byte value (0x00) does not appear as part of multibyte character bytes for
support of null-terminated multibyte character strings.

� ASCII Slash character byte value (0x2f) does not appear as part of multibyte
character bytes for support of the UNIX path names.

CSI-enabled Commands
This section lists the CSI-enabled commands in the current Solaris environment. The
man page for each command includes an attribute section that indicates whether the
command is CSI-enabled.

All commands are in the /usr/bin directory, unless otherwise noted.

/usr/lib/diffh
/usr/sbin/accept
/usr/sbin/reject
/usr/ucb/lpr
/usr/xpg4/bin/awk
/usr/xpg4/bin/cp
/usr/xpg4/bin/date
/usr/xpg4/bin/du
/usr/xpg4/bin/ed
/usr/xpg4/bin/edit
/usr/xpg4/bin/egrep
/usr/xpg4/bin/env
/usr/xpg4/bin/ex
/usr/xpg4/bin/expr
/usr/xpg4/bin/fgrep
/usr/xpg4/bin/lp
/usr/xpg4/bin/ls

/usr/xpg4/bin/more
/usr/xpg4/bin/mv
/usr/xpg4/bin/nice
/usr/xpg4/bin/nohup
/usr/xpg4/bin/od
/usr/xpg4/bin/pr
/usr/xpg4/bin/rm
/usr/xpg4/bin/sed
/usr/xpg4/bin/sort
/usr/xpg4/bin/tail
/usr/xpg4/bin/tr
/usr/xpg4/bin/vedit
/usr/xpg4/bin/vi
/usr/xpg4/bin/view
acctcom
apropos
batch

bdiff
cancel
cat
catman
chgrp
chmod
chown
cmp
col
comm
compress
cpio
csh
csplit
cut
diff
diff3

38 International Language Environments Guide • January 2005

disable
echo
expand
file
find
fold
ftp
gencat
geteopt
getoptcvt
head
join
jsh
kill
ksh
lp
man
mkdir
msgfmt

news
nroff
pack
paste
pcat
pg
printf
priocntl
ps
pwd
rcp
red
remsh
rksh
rsh
rsmdir
script
sdiff
settime

sh
split
strconf
strings
sum
tabs
tar
tee
touch
tty
uncompress
unexpand
uniq
unpack
wc
whatis
write
xargs
zcat

CSI-enabled Libraries
Nearly all functions in libc (/usr/lib/libc.so) are CSI-enabled. However, the
following functions in libc are not CSI-enabled and therefore are EUC-dependent
functions:

� csetcol()
� csetlen()
� csetno()
� euccol()
� euclen()
� eucscol()
� getwidth()
� wcsetno()

In the current Solaris environment, libgen /usr/ccs/lib/libgen.a and
libcurses /usr/ccs/lib/libcurses.a are internationalized but not
CSI-enabled.

Locale Database
The locale database format and structure is private and subject to change in a future
release. When you develop internationalized applications, you use the
internationalization APIs in libc. These APIs are described in “Internationalization
APIs in libc” on page 43, rather than linking to the locale database.

Chapter 2 • General Internationalization Features 39

Note – When you work in the Solaris environment, use the locale databases that are
included with the current Solaris release. Do not use locales from previous Solaris
versions.

Process Code Format
The process code format, which is also known as wide-character code format in the
Solaris Operating System, is private and subject to change in a future release.
Therefore, when you develop an international application, do not assume that the
process code format is the same. Instead, use the internationalization APIs in libc
described in “Internationalization APIs in libc” on page 43.

Note – The process code for all Unicode locales is in UTF 32 representation. For more
detail on UTF 32, refer to the Unicode Standard Annex #19: UTF 32 and Unicode
Standard Annex #27: Unicode 3.1 from the Unicode Consortium or
http://www.unicode.org/.

Multibyte Support Environment
A multibyte character is a character that cannot be stored in a single byte, such as
Chinese, Japanese, or Korean characters. These characters require 2, 3, or 4 bytes of
storage. A more precise definition can be found in ISO/IEC 9899:1990 subclause 3.13.

The Amendment 1 to ANSI C, which is also known as ISO/IEC 9899:1990, added new
internationalization features, collectively known as the Multibyte Support
Environment (MSE). Amendment 1 defines additional internationalization APIs for
multibyte code sets with state and also for better wide-character handling support.

The programming model enables these multibyte characters to be read in as logical
units and stored internally as wide characters. These wide characters can be processed
by the program as logical entities. Finally, these wide characters can be written out,
undergoing appropriate translation, as logical units.

This procedure is analogous to the way single-byte characters are read in,
manipulated, and written out again. The MSE enables programs to handle multibyte
characters using the same programming model that is used for single-byte characters.

40 International Language Environments Guide • January 2005

http://www.unicode.org/

Dynamically Linked Applications
You can link applications with the system libraries, such as libc, by using dynamic
linking or static linking. Any application that requires internationalization features in
the system libraries must be dynamically linked. If the application has been statically
linked, the operation to set the locale to anything other than C and POSIX using the
setlocale function will fail. Statically linked applications can operated only in C
and POSIX locales.

By default, the linker program tries to link the application dynamically. If the
command-line options to the linker and the compiler include -Bstatic or -dn
specifications, your application might be statically linked. You can check whether an
existing application is dynamically linked using the /usr/bin/ldd command.

For example, the response to the following command indicates that the /sbin/sh
command is not a dynamically linked program:

% /usr/bin/ldd /sbin/sh
ldd: /sbin/sh: file is not a dynamic executable or shared object

The response to the following command indicates that the /usr/bin/ls command
has been dynamically linked with two libraries, libc.so.1 and libdl.so.1.

% /usr/bin/ldd /usr/bin/ls
libc.so.1 => /usr/lib/libc.so.1

libdl.so.1 => /usr/lib/libdl.so.1

Changed Interfaces
libw and libintl have moved to libc and are no longer in libw and libintl.

The shared objects ensure runtime compatibility for existing applications and, together
with the archives, provide compilation environment compatibility for building
applications. However, you no longer must build applications against libw or
libintl.

The following list shows the stub entry points in libw:

fgetwc
fgetws
fputwc
fputws
getwc

getwchar
getws
isenglish
isideogram
isnumber

isphonogram
isspecial
iswalnum
iswalpha
iswcntrl

iswctype
iswdigit
iswgraph
iswlower
iswprint

Chapter 2 • General Internationalization Features 41

iswpunct
iswspace
iswupper
iswxdigit
putwc
putwchar
putws
strtows
towlower
towupper
ungetwc
watoll
wcscat
wcschr
wcsclen

wcscmp
wcscoll
wcscpy
wcscspn
wcsftime
wscncat
wcsncmp
wcsncpy
wcspbrk
wcsrchr
wcsspn
wcstod
wcstok
wcstol
wcstoul

wcswcs
wcswidth
wcsxfrm
wctype
wcwidth
wscasecmp
wscat
wschr
wscmp
wscol
wscoll
wscpy
wscspn
wsdup
wslen

wsncasecmp
wsncat
wsncmp
wsncpy
wspbrk
wsprintf
wsrchr
wsscanf
wsspn
wstod
wstok
wstol
wstoll
wstostr
wsxfrm

The following list shows the stub entry points in libintl:

bindtextdomain
dcgettext
dgettext
gettext
textdomain

ctype Macros
Character classification and character transformation macros are defined in
/usr/include/ctype.h. The current Solaris environment provides a set of ctype
macros that support character classification and transformation semantics defined by
XPG4. For all XPG4 and XPG4.2 applications to automatically access new macros, one
of the following conditions must be met:

� _XPG4_CHAR_CLASS is defined.
� _XOPEN_SOURCE and _XOPEN_VERSION=4 are defined.
� _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED=1 are defined.

Because _XOPEN_SOURCE, _XOPEN_VERSION, and _XOPEN_SOURCE_EXTENDED
bring in extra XPG4 related features in addition to new ctype macros, non-XPG4 or
XPG4.2 applications should use __XPG4_CHAR_CLASS__.

Corresponding ctype functions also exist. The current Solaris environment functions
also support XPG4 semantics.

42 International Language Environments Guide • January 2005

Internationalization APIs in libc
The current Solaris environment offers two sets of APIs:

� Multibyte (file codes)
� Wide characters (process code)

Wide-character codes are fixed-width units of logical entities. Therefore, you do not
have to keep track of maintaining proper character boundaries when you are using
multibyte characters.

When a program takes input from a file, you can convert your file’s multibyte data
into wide-character process code directly with input functions like fscanf and
fwscanf or by using conversion functions like mbtowc and mbsrtowcs after the
input. To convert output data from wide-character format to multibyte character
format, use output functions like fwprintf and fprintf or apply conversion
functions like wctomb and wcsrtombs before the output.

The tables in the remainder of this chapter describe the internationalization APIs
included in the current Solaris system.

The following table describes the messaging function APIs in libc.

TABLE 2–1 Messaging Functions in libc

Library Routine Description

bindtextdomain() Bind the path for a message domain

catclose() Close a message catalog

catgets() Read a program message

catopen() Open a message catalog

dcgettext()
Get a message from a message catalog with domain and
category specified

dgettext()
Get a message from a message catalog with domain
specified

gettext() Retrieve a text string from the message database

textdomain() Set and query the current domain

The following table describes the code conversion function APIs in libc.

Chapter 2 • General Internationalization Features 43

TABLE 2–2 Code Conversion in libc

Library Routine Description

iconv() Convert codes

iconv_close() Deallocate the conversion descriptor

iconv_open() Allocate the conversion descriptor

The following table describes the regular expression APIs in libc.

TABLE 2–3 Regular Expressions in libc

Library Routine Description

fnmatch() Match file name or path name

regcomp() Compile the regular expression

regerror() Provide a mapping from error codes to error
messages

regexec() Execute regular expression matching

regfree() Free memory allocated by regcomp()

The following table describes the wide character function APIs in libc.

TABLE 2–4 Wide Character Class in libc

Library Routine Description

wctrans() Define character mapping

wctype() Define character class

The following table lists the modify and query locale in libc.

TABLE 2–5 Modify and Query Locale in libc

Library Routine Description

setlocale() Modify and query a program’s locale

The following table lists the query locale data in libc.

44 International Language Environments Guide • January 2005

TABLE 2–6 Query Locale Data in libc

Library Routine Description

localeconv() Get monetary and numeric formatting information
of current locale

nl_langinfo() Get language and cultural information of current
locale

The following table describes the character classification function APIs in libc.

TABLE 2–7 Character Classification and Transliteration in libc

Library Routine Description

isalnum() Is character alphabetic or digital?

isalpha() Is character alphabetic?

isascii() Is character an ASCII character?

iscntrl() Is character a control character?

isdigit() Is character a digit?

isenglish()
Is wide character in English alphabet from a
supplementary code set?

isgraph() Is character a visible character?

isideogram() Is wide character an ideogram?

islower() Is character lowercase?

isnumber()
Is wide character a digit from a supplementary code
set?

isphonogram() Is wide character a phonogram?

isprint() Is character printable?

ispunct() Is character a punctuation mark?

isspace() Is character a space?

isspecial()
Is special wide character from a supplementary code
set?

isupper() Is character uppercase?

iswalnum() Is wide character an alphabetic character or digit?

iswalpha() Is wide character alphabetic?

iswascii() Is wide character an ASCII character?

Chapter 2 • General Internationalization Features 45

TABLE 2–7 Character Classification and Transliteration in libc (Continued)
Library Routine Description

iswcntrl() Is wide character a control character?

iswdigit() Is wide-character a digit?

iswgraph() Is wide character a visible character?

iswlower() Is wide character lowercase?

iswprint() Is wide character a printable character?

iswpunct() Is wide character a punctuation mark?

iswspace() Is wide character a white space?

iswupper() Is wide character uppercase?

iswxdigit() Is wide character a hex digit?

isxdigit() Is character a hex digit?

tolower() Convert an uppercase character to lowercase.

toupper() Convert a lowercase character to uppercase.

towctrans() Wide character mapping.

towlower() Convert an uppercase wide character to lowercase.

towupper() Convert a lowercase wide character to uppercase.

The following table describes the character collation function APIs in libc.

TABLE 2–8 Character Collation in libc

Library Routine Description

strcoll() Collate character strings

strxfrm() Transform character strings for comparison

wcscoll() Collate wide-character strings

wcsxfrm() Transform wide-character strings for comparison

The following table describes the monetary handling function APIs in libc.

TABLE 2–9 Monetary Formatting in libc

Library Routine Description

localeconv() Get monetary formatting information for the current
locale

46 International Language Environments Guide • January 2005

TABLE 2–9 Monetary Formatting in libc (Continued)
Library Routine Description

strfmon() Convert monetary value to string representation

The following table describes the date and time formatting in libc.

TABLE 2–10 Date and Time Formatting in libc

Library Routine Description

getdate() Convert user format date and time.

strftime() Convert date and time to string representation. The %u
conversion function conforms to the X/Open CAE
Specification, System Interfaces and Headers, Issue 4,
Version 2. This function represents a weekday as a
decimal number [1,7], with 1 now representing Monday.

strptime() Date and time conversion.

The following table describes the multibyte handling function APIs in libc.

TABLE 2–11 Multibyte Handling in libc

Library Routine Description

btowc() Single-byte to wide-character conversion

mblen() Get number of bytes in a character

mbrlen() Get number of bytes in character (restartable)

mbrtowc()
Convert a character to a wide-character code
(restartable)

mbsinit() Determine conversion object status

mbsrtowcs()
Convert a character string to a wide-character string
(restartable)

mbstowcs() Convert a character string to a wide-character string

mbtowc() Convert a character to a wide-character code

The following table describes the wide character and string handling in libc.

TABLE 2–12 Wide Character and String Handling in libc

Library Routine Description

wcrtomb() Convert a wide-character code to a character (restartable)

Chapter 2 • General Internationalization Features 47

TABLE 2–12 Wide Character and String Handling in libc (Continued)
Library Routine Description

wcscat() Concatenate wide-character strings

wcschr() Find character in wide-character string

wcscmp() Compare wide-character strings

wcscpy() Copy wide-character strings

wcscspn() Return span of one wide-character string not in another

wcslen() Get length of wide-character string

wcsncat() Concatenate wide-character strings to length n

wcsncmp() Compare wide-character strings to length n

wcsncpy() Copy wide-character strings to length n

wcspbrk() Return pointer to one wide-character string in another

wcsrchr() Find character in wide-character string from right

wcsrtombs()
Convert a wide-character string to a character string
(restartable)

wcsspn() Return span of one wide-character string in another

wcstod() Convert wide-character string to double precision

wcstok() Move token through wide-character string

wcstol() Convert wide-character string to long integer

wcstombs() Convert wide-character string to multibyte string

wcstoul() Convert wide-character string to unsigned long integer

wscwcs() Find string in wide-character string

wcswidth() Determine number of column positions of a
wide-character string

wctob() Wide character to single byte conversion

wctomb() Convert wide-character to multibyte character

wcwidth() Determine number of column positions of a wide
character

wscol() Return display width of wide-character string

wsdup() Duplicate wide-character string

The following table describes the formatted wide-character input and output in libc.

48 International Language Environments Guide • January 2005

TABLE 2–13 Formatted Wide-character Input and Output in libc

Library Routine Description

fwprintf() Print formatted wide-character output

fwscanf() Convert formatted wide-character input

swprintf() Print formatted wide-character output

swscanf() Convert formatted wide-character input

vfwprintf()
Wide-character formatted output of a stdarg
argument list

vswprintf()
Wide-character formatted output of a stdarg
argument list

wprintf() Print formatted wide-character output

wscanf() Convert formatted wide-character input

wsprintf() Generate wide-character string according to format

wsscanf() Formatted input conversion

This table describes the wide strings function APIs in libc.

TABLE 2–14 Wide Stringslibc

Library Routine Description

wcsstr() Find a wide-character substring

wmemchr() Find a wide character in memory

wmemcmp() Compare wide characters in memory

wmemcpy() Copy wide characters in memory

wmemmove()
Copy wide characters in memory with overlapping
areas

wmemset() Set wide characters in memory

wscasecmp()
Compare wide-character strings, ignore case
differences

wsncasecmp() Process code-string operations

The following table describes the wide-character input and output in libc.

Chapter 2 • General Internationalization Features 49

TABLE 2–15 Wide-Character Input and Output in libc

Library Routine Description

fgetwc()
Get multibyte character from stream, convert to wide
character

fgetws() Get multibyte string from stream, convert to wide character

fputwc()
Convert wide character to multibyte character, puts to
stream

fputws() Convert wide character to multibyte string, puts to stream

fwide() Set stream orientation

getwchar()
Get multibyte character from stdin, convert to wide
character

getws() Get multibyte string from stdin, convert to wide character

putwchar()
Convert wide character to multibyte character, puts to
stdin

putws() Convert wide character to multibyte string, puts to stdin

ungetwc() Push a wide character back into input stream

genmsg Utility
The new genmsg utility can be used with the catgets() family of functions to create
internationalized source message catalogs. The utility examines a source program file
for calls to functions in catgets and builds a source message catalog from the
information it finds. For example:

% cat example.c
...
/* NOTE: %s is a file name */
printf(catgets(catd, 5, 1, "%s cannot be opened."));
/* NOTE: "Read" is a past participle, not a present

tense verb */
printf(catgets(catd, 5, 1, "Read"));
...

% genmsg -c NOTE example.c
The following file(s) have been created.

new msg file = "example.c.msg"
% cat example.c.msg
$quote "
$set 5
1 "%s cannot be opened"

50 International Language Environments Guide • January 2005

/* NOTE: %s is a file name */
2 "Read"

/* NOTE: "Read" is a past participle, not a present

tense verb */

In the above example, genmsg is run on the source file example.c, which produces a
source message catalog named example.c.msg. The -c option with the argument
NOTE causes genmsg to include comments in the catalog. If a comment in the source
program contains the string specified, the comment appears in the message catalog
after the next string extracted from a call to catgets.

You can use genmsg to number the messages in a message set automatically.

For more information, see the genmsg(1) man page.

To generate a formatted message catalog file, use the gencat(1) utility.

For information on the message extraction utility for portable message files (.po files)
and also on how to generate message object files (.mo files) from the .po files.

User-Defined and User-Extensible Code
Conversions
You can create user-defined codeset converters using the geniconvtbl utility.

This utility enables user-defined and user-customizable codeset conversions with a
standard system utility and interface like iconv(1) and iconv(3C). This feature
enhances the ability of an application to deal with incompatible data types,
particularly data generated from proprietary or legacy applications. Modification to
existing Solaris codeset conversions is also supported.

Sample input source files for the utility are available in the
/usr/lib/iconv/geniconvtbl/srcs/ directory.

Once the user-defined code conversions are prepared and placed properly, users can
use the code conversions from the iconv(1) utility and the iconv(3C) functions of
both 32-bit and 64-bit Solaris Operating System.

Chapter 2 • General Internationalization Features 51

Internationalized Domain Name (IDN)
Support
Internationalized Domain Name (IDN) enables the use of non-English native language
names as host and domain names. To use non-English host and domain names,
convert these names into ASCII Compatible Encoding (ACE) encoded names before
sending the names to resolver routines as specified in RFC 3490. System
administrators are also required to use ACE names in system files and applications
where the system administration applications do not support the IDNs.

See RFC 3490 Internationalizing Domain Names in Applications (IDNA).

The APIs for the Internationalized Domain Name in libidnkit(3EXT) provide
convenient conversions between UTF-8 or the application locale’s codeset and ACE. If
idn_decodename2(3EXT) is used, you can also specify an arbitrary codeset name as
the codeset of the input argument.

Use ACE string as input to resolver
routines such as getaddrinfo(3SOCKET)

IDN host name

idn_encodename()

ACE string xn--wgv71a119e

FIGURE 2–1 IDN to ACE Conversion

52 International Language Environments Guide • January 2005

ACE string returned from resolver
routines such as getnameinfo(3SOCKET)

IDN host name

idn_decodename()

ACE string xn--wgv71a119e

FIGURE 2–2 ACE to IDN Conversion

The following table shows bilateral iconv code conversions that you can use.

TABLE 2–16 iconv Code Conversions

From Code To Code

ACE

ACE-ALLOW-UNASSIGNED

UTF-8

UTF-8

UTF-8

UTF-8

ACE

ACE-ALLOW-UNASSIGNED

The ACE and the ACE-ALLOW-UNASSIGNED iconv code conversion names have
the following meanings:

� ACE.

ACE is a fromcode or tocode name that can be used in iconv code conversions
to refer to the ASCII Compatible Encoding defined in RFC 3490. This conversion
uses STD3 ASCII rules. Unassigned characters are not allowed. ACE is typically
used for storing or giving host or domain names to machines.

� ACE-ALLOW-UNASSIGNED.

ACE-ALLOW-UNASSIGNED performs the same operations as ACE except that
ACE-ALLOW-UNASSIGNED allows unassigned characters.
ACE-ALLOW-UNASSIGNED is typically used for query purpose.

The following example shows a conversion from ACE to UTF-8 with input from the
hostnames.txt file. Output goes to standard output.

system% iconv -f ACE -t UTF-8 hostnames.txt

The dedicated IDN conversion utility idnconv(1) provides IDN conversions with
various options. The options control the conversion details.

Chapter 2 • General Internationalization Features 53

For information about IDN, the conversion routines, and iconv code conversions, see
libidnkit(3LIB), idn_decodename(3EXT), idn_decodename2(3EXT),
idn_encodename(3EXT), and iconv_en_US.UTF-8(5) man pages.

54 International Language Environments Guide • January 2005

CHAPTER 3

Localization in the Solaris
Environment

This chapter discusses the localization features in the current Solaris environment. The
chapter covers the following topics.

� “Software Support for Localization” on page 55
� “Supported Locales” on page 56
� “Multiple Key Compose Sequences for Locales” on page 63
� “Keyboard Support in the Solaris Environment” on page 64
� “New Solaris Keyboard Software Support” on page 76

Software Support for Localization
This section contains information about the Solaris locale packages, CD-ROM discs,
localization functions, and script enabling.

Summary of the Solaris Locale Packages
All current Solaris locale packages are classified into either full locales or partial
locales.

Partial locales are the enablers of the locales. With partial locales installed on the
system, users can input, display, print text, and run applications on the target locales,
while the OS/GUI messages in the Solaris Operating System are English. All partial
locale packages are available on the Solaris Software CDs. Japanese and Asian partial
locales are packaged according to the language. Partial locales are packaged according
to the geographic region.

55

Full locale packages include translations of software messages, online help files,
optional fonts, and language-specific features. Full locale packages provide the full set
of language features for many languages. All locales based on the following languages
are full locales:

� German
� French
� Spanish
� Swedish
� Italian
� Japanese
� Korean
� Simplified Chinese
� Traditional Chinese

Full locale packages are packaged according to the language and are available on the
Language CD.

Note – Partial locale packages (locale enablers) must be installed in order for the full
locales to be functional.

During the Solaris installation process, you are prompted to choose which geographic
regions require your support. The locale support that is available after installation
completes depends on the choices made at this stage. Partial locales are installed from
the Solaris Software CD-ROMs with the Solaris Operating System and full locales are
installed from the Languages CD. If you do not need full locale support, you can skip
the installation from the Languages CD during the installation process. Note that the
English locale is installed as the default.

Supported Locales
The following tables list all the locales supported in the Solaris environment. The
locale names conform to international naming standards.

TABLE 3–1 Asia Locales

Locale User Interface Territory Code Set Language Support

hi_IN.UTF-8 English India UTF-8 Hindi (UTF-8) Unicode 4.0

56 International Language Environments Guide • January 2005

TABLE 3–1 Asia Locales (Continued)
Locale User Interface Territory Code Set Language Support

ja Japanese Japan eucJP1 Japanese (EUC)

JIS X 0201-1976

JIS X 0208-1990

JIS X 0212-1990

ja_JP.eucJP Japanese Japan eucJP Japanese (EUC)

JIS X 0201-1976

JIS X 0208-1990

JIS X 0212-1990

ja_JP.PCK Japanese Japan PCK2 Japanese (PC Kanji)

JIS X 0201-1976

JIS X 0208-1990

ja_JP.UTF-8 Japanese Japan UTF-8 Japanese (UTF-8) Unicode 4.0

ko_KR.EUC Korean Korea 1001 Korean (EUC) KS X 1001

ko_KR.UTF-8 Korean Korea UTF-8 Korean (UTF-8) Unicode 4.0

th_TH.UTF-8 English Thailand UTF-8 Thai (UTF-8) Unicode 4.0

th_TH.TIS620 English Thailand TIS620.2533 Thai TIS620.2533

zh_CN.EUC Simplified
Chinese

PRC gb23123 Simplified Chinese (EUC)
GB2312-1980

zh_CN.GBK Simplified
Chinese

PRC GBK 4 Simplified Chinese (GBK)

zh_CN.GB18030 Simplified
Chinese

PRC GB18030–2000
Simplified Chinese
(GB18030–2000) GB18030–2000

zh_CN.UTF-8 Simplified
Chinese

PRC UTF-8 Simplified Chinese (UTF-8)
Unicode 4.0

zh_HK.BIG5HK Traditional
Chinese

Hong Kong Big5+HKSCS Traditional Chinese
(BIG5+HKSCS)

1 eucJP signifies the Japanese EUC code set. Specification of ja_JP.eucJP locale conforms to UI_OSF Japanese Environment
Implementation Agreement Version 1.1 and ja locale conforms to the traditional specification from the past Solaris releases.

2 PCK is also known as Shift_JIS (SJIS).
3 gb2312 signifies Simplified Chinese EUC code set, which contains GB 1988–80 and GB 2312–80.
4 GBK signifies GB extensions. These extensions include all GB 2312–80 characters and all Unified Han characters of ISO/IEC 10646–1, as

well as Japanese Hiragana and Katakana characters. GBK also includes many characters of Chinese, Japanese, and Korean character sets
and of ISO/IEC 10646–1.

Chapter 3 • Localization in the Solaris Environment 57

TABLE 3–1 Asia Locales (Continued)
Locale User Interface Territory Code Set Language Support

zh_HK.UTF-8 Traditional
Chinese

Hong Kong UTF-8 Traditional Chinese (UTF-8)
Unicode 4.0

zh_TW.EUC Traditional
Chinese

Taiwan cns11643 Traditional Chinese (EUC)
CNS 11643-1992

zh_TW.BIG5 Traditional
Chinese

Taiwan BIG5 Traditional Chinese (BIG5)

zh_TW.UTF-8 Traditional
Chinese

Taiwan UTF-8 Traditional Chinese (UTF-8)
Unicode 4.0

TABLE 3–2 Australasia Locales

Locale User Interface Territory Code Set Language Support

en_AU.ISO8859-1 English Australia ISO8859-1 English (Australia)

en_NZ.ISO8859-1 English New Zealand ISO8859-1 English (New Zealand)

TABLE 3–3 Central America Locales

Locale User Interface Territory Code Set Language Support

es_CR.ISO8859-1 Spanish Costa Rica ISO8859-1 Spanish (Costa Rica)

es_GT.ISO8859-1 Spanish Guatemala ISO8859-1 Spanish (Guatemala)

es_NI.ISO8859-1 Spanish Nicaragua ISO8859-1 Spanish (Nicaragua)

es_PA.ISO8859-1 Spanish Panama ISO8859-1 Spanish (Panama)

es_SV.ISO8859-1 Spanish El Salvador ISO8859-1 Spanish (El Salvador)

TABLE 3–4 Central Europe Locales

Locale User Interface Territory Code Set Language Support

cs_CZ.ISO8859-2 English Czech
Republic

ISO8859-2 Czech (Czech Republic)

de_AT.ISO8859-1 German Austria ISO8859-1 German (Austria)

de_AT.ISO8859-15 German Austria ISO8859-15 German (Austria, ISO8859-15 -
Euro)

de_CH.ISO8859-1 German Switzerland ISO8859-1 German (Switzerland)

de_DE.UTF-8 German Germany UTF-8 German (Germany, Unicode
4.0)

58 International Language Environments Guide • January 2005

TABLE 3–4 Central Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

de_DE.ISO8859-1 German Germany ISO8859-1 German (Germany)

de_DE.ISO8859-15 German Germany ISO8859-15 German (Germany,
ISO8859-15 - Euro)

fr_CH.ISO8859-1 French Switzerland ISO8859-1 French (Switzerland)

hu_HU.ISO8859-2 English Hungary ISO8859-2 Hungarian (Hungary)

pl_PL.ISO8859-2 English Poland ISO8859-2 Polish (Poland)

pl_PL.UTF-8 English Poland UTF-8 Polish (Poland, Unicode 4.0)

sk_SK.ISO8859-2 English Slovakia ISO8859-2 Slovak (Slovakia)

TABLE 3–5 Eastern Europe Locales

Locale User Interface Territory Code Set Language Support

bg_BG.ISO8859-5 English Bulgaria ISO8859-5 Bulgarian
(Bulgaria)

et_EE.ISO8859-15 English Estonia ISO8859-15 Estonian (Estonia)

hr_HR.ISO8859-2 English Croatia ISO8859-2 Croatian (Croatia)

lt_LT.ISO8859-13 English Lithuania ISO8859-13 Lithuanian
(Lithuania)

lv_LV.ISO8859-13 English Latvia ISO8859-13 Latvian (Latvia)

mk_MK.ISO8859-5 English Macedonia ISO8859-5 Macedonian
(Macedonia)

ro_RO.ISO8859-2 English Romania ISO8859-2 Romanian
(Romania)

ru_RU.KOI8-R English Russia KOI8-R Russian (Russia,
KOI8-R)

ru_RU.ANSI1251 English Russia ansi-1251 Russian (Russia,
ANSI 1251)

ru_RU.ISO8859-5 English Russia ISO8859-5 Russian (Russia)

ru_RU.UTF-8 English Russia UTF-8 Russian (Russia,
Unicode 4.0)

sh_BA.ISO8859-2@bosnia English Bosnia ISO8859-2 Bosnian (Bosnia)

sl_SI.ISO8859-2 English Slovenia ISO8859-2 Slovenian
(Slovenia)

Chapter 3 • Localization in the Solaris Environment 59

TABLE 3–5 Eastern Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

sq_AL.ISO8859-2 English Albania ISO8859-2 Albanian
(Albania)

sr_YU.ISO8859-5 English Serbia ISO8859-5 Serbian (Serbia)

tr_TR.ISO8859-9 English Turkey ISO8859-9 Turkish (Turkey)

tr_TR.UTF-8 English Turkey UTF-8 Turkish (Turkey,
Unicode 4.0

TABLE 3–6 Middle East Locale

Locale User Interface Territory Code Set Language Support

He English Israel ISO8859-8 Hebrew (Israel)

TABLE 3–7 North Africa Locales

Locale User Interface Territory Code Set Language Support

ar_EG.UTF-8 English Egypt UTF-8 Arabic (Egypt)

Ar English Egypt ISO8859-6 Arabic (Egypt)

TABLE 3–8 North America Locales

Locale User Interface Territory Code Set Language Support

en_CA.ISO8859-1 English Canada ISO8859-1 English (Canada)

en_US.ISO8859-1 English USA ISO8859-1 English (U.S.A.)

en_US.ISO8859-15 English USA ISO8859-15 English (U.S.A., ISO8859-15 -
Euro)

en_US.UTF-8 English USA UTF-8 English (U.S.A., Unicode 4.0)

fr_CA.ISO8859-1 French Canada ISO8859-1 French (Canada)

es_MX.ISO8859–1 Spanish Mexico ISO8859–1 Spanish (Mexico)

TABLE 3–9 Northern Europe Locales

Locale User Interface Territory Code Set Language Support

da_DK.ISO8859–1 English Denmark ISO8859–1 Danish (Denmark)

da_DK.ISO8859–15 English Denmark ISO8859–15 Danish (Denmark,
ISO8859–15–Euro)

60 International Language Environments Guide • January 2005

TABLE 3–9 Northern Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

fi_FI.ISO8859–1 English Finland ISO8859–1 Finnish, Unicode 4.0

fi_FI.ISO8859–15 English Finland ISO8859–15 Finnish (Finland,
ISO8859–15–Euro)

fi_FI.UTF-8 English Finland UTF-8 Finnish (Finland)

is_IS.ISO8859–1 English Iceland ISO8859–1 Icelandic (Iceland)

no_NO.ISO8859–1@bokmal English Norway ISO8859–1 Norwegian (Norway-Bokmal)

no_NO.ISO8859–1@nyorsk English Norway ISO8859–1 Norwegian (Norway-Nynorsk)

sv_SE.ISO8859–1 Swedish Sweden ISO8859–1 Swedish (Sweden)

sv_SE.ISO8859–15 Swedish Sweden ISO8859–15 Swedish (Sweden,
ISO8859–15–Euro)

sv_SE.UTF-8 Swedish Sweden UTF-8 Swedish (Sweden, Unicode
4.0)

TABLE 3–10 South America Locales

Locale User Interface Territory Code Set Language Support

es_AR.ISO8859-1 Spanish Argentina ISO8859-1 Spanish (Argentina)

es_BO.ISO8859-1 Spanish Bolivia ISO8859-1 Spanish (Bolivia)

es_CL.ISO8859-1 Spanish Chile ISO8859-1 Spanish (Chile)

es_CO.ISO8859-1 Spanish Colombia ISO8859-1 Spanish (Colombia)

es_EC.ISO8859-1 Spanish Ecuador ISO8859-1 Spanish (Ecuador)

es_PE.ISO8859-1 Spanish Peru ISO8859-1 Spanish (Peru)

es_PY.ISO8859-1 Spanish Paraguay ISO8859-1 Spanish (Paraguay)

es_UY.ISO8859-1 Spanish Uruguay ISO8859-1 Spanish (Uruguay)

es_VE.ISO8859-1 Spanish Venezuela ISO8859-1 Spanish (Venezuela)

pt_BR.ISO8859-1 English Brazil ISO8859-1 Portuguese (Brazil)

pt_BR.UTF-8 English Brazil UTF-8 Portuguese (Brazil, Unicode
4.0)

TABLE 3–11 Southern Europe Locales

Locale User Interface Territory Code Set Language Support

ca_ES.ISO8859-1 English Spain ISO8859-1 Catalan (Spain)

Chapter 3 • Localization in the Solaris Environment 61

TABLE 3–11 Southern Europe Locales (Continued)
Locale User Interface Territory Code Set Language Support

ca_ES.ISO8859-15 English Spain ISO8859-15 Catalan (Spain, ISO8859-15 -
Euro)

el_GR.ISO8859-7 English Greece ISO8859-7 Greek (Greece)

es_ES.ISO8859-1 Spanish Spain ISO8859-1 Spanish (Spain)

es_ES.ISO8859-15 Spanish Spain ISO8859-15 Spanish (Spain, ISO8859-15 -
Euro)

es_ES.UTF-8 Spanish Spain UTF-8 Spanish (Spain, Unicode 4.0)

it_IT.ISO8859-1 Italian Italy ISO8859-1 Italian (Italy)

it_IT.ISO8859-15 Italian Italy ISO8859-15 Italian (Italy, ISO8859-15 -
Euro)

it_IT.UTF-8 Italian Italy UTF-8 Italian (Italy, Unicode 4.0)

pt_PT.ISO8859-1 English Portugal ISO8859-1 Portuguese (Portugal)

pt_PT.ISO8859-15 English Portugal ISO8859-15 Portuguese (Portugal,
ISO8859-15 - Euro)

TABLE 3–12 Western Europe Locales

Locale User Interface Territory Code Set Language Support

en_GB.ISO8859-1 English Great Britain ISO8859-1 English (Great Britain)

en_IE.ISO8859-1 English Ireland ISO8859-1 English (Ireland)

fr_BE.ISO8859-1 French Belgium-Walloon ISO8859-1 French (Belgium-Walloon,
Unicode 4.0)

fr_BE.UTF-8 French Belgium-Walloon UTF-8 French (Belgium-Walloon,
Unicode 4.0)

fr_FR.ISO8859-1 French France ISO8859-1 French (France)

fr_FR.UTF-8 French France UTF-8 French (France, Unicode
4.0)

nl_BE.ISO8859-1 English Belgium-Flemish ISO8859-1 Dutch (Belgium-Flemish)

nl_NL.ISO8859-1 English Netherlands ISO8859-1 Dutch (Netherlands)

62 International Language Environments Guide • January 2005

Multiple Key Compose Sequences for
Locales
Many of the Solaris locales, especially the European and Unicode locales, allow input
of various characters by using so-called “dead key sequences,” which are also known
as Compose key sequences.

The Compose key sequence is used to input characters with diacritical marks and
other characters that are not shown on the keyboard key caps.

The following table shows a few examples of Compose key sequences. For more
complete information about the Compose key sequences, see “English/European
Input Mode” on page 121.

TABLE 3–13 Diacritical Characters Created With Compose Key

Mark
Compose Key
Combination Example

Dieresis ” Compose A “ —> A with diaeresis

Caron v Compose Z v —> Z with caron

Breve u Compose G u —> G with breve

Ogonek a Compose A a —> A with Ogonek

Cedilla , Compose K , —> K with cedilla

Registered Sign R O Compose R O —> Registered sign

Inverted Exclamation Mark ! ! Compose ! ! —> Inverted Exclamation
Mark

Note – A compose key sequence cannot produce a character unless the character is a
part of the code set in the current locale. For example, because no Z with a caron is in
the ISO8859–1 codeset, you cannot input a Z with a caron in the en_US.ISO8859–1
locale.

Chapter 3 • Localization in the Solaris Environment 63

Keyboard Support in the Solaris
Environment
Keyboards with different layouts for specific regions are supported for SPARC and
Intel Architecture (IA) platforms. The Solaris Operating System supports the regional
keyboards listed in the following table.

TABLE 3–14 Support for Regional Keyboards

Region Country
Sun Keyboard (Type
4/5/5c) Sun Keyboard (Type 6) PC Keyboard

Asia Japan X X X

Korea X X X

Taiwan X X X

Europe Belgium X X X

Czech Republic X X

Denmark X X X

Finland X

France X X X

Germany X X X

Great Britain X X X

Greece X X

Hungary X X

Italy X X X

Latvia X X

Lithuania X X

The Netherlands X X X

Norway X X X

Poland X X

Portugal X X X

Russia X X X

Spain X X X

64 International Language Environments Guide • January 2005

TABLE 3–14 Support for Regional Keyboards (Continued)

Region Country
Sun Keyboard (Type
4/5/5c) Sun Keyboard (Type 6) PC Keyboard

Sweden X X X

Switzerland (French) X X X

Switzerland (German) X X X

Turkey X X X

America Canada (French) X X X

Latin America
(Spanish)

X

U.S.A. X X X

Middle East Arabic X X

For regions with keyboard layouts that conform to the international standard, such as
China, use the keyboard layout support provided for the U.S.A. to input the locale’s
characters. The underlying keyboard mappings are identical. Some countries, like
Japan, Turkey, and Switzerland, have multiple keyboards, because multiple languages
are being used, or because multiple keyboard layouts exist.

Sun Type 4, 5, and 5c keyboards use Sun I/O interfaces through a Mini DIN 8–pin
connection. Sun Type 6 keyboards have two versions of interfaces:

� Sun I/O through a Mini DIN 8–pin connection
� USB

Sun keyboard types are printed on the back of each Sun keyboard.

PC keyboards use various interfaces, such as PS/2 or USB, for example.

Changing Between Keyboards on SPARC Systems
You can change keyboard layouts on a Solaris system by using the DIP switch settings
under most Sun Type 4, 5 and 5c keyboards. A list of keyboard type, names and
corresponding layout IDs that can be used for the DIP switch settings is in the
/usr/openwin/share/etc/keytables/keytable.map file.

Chapter 3 • Localization in the Solaris Environment 65

Note – You cannot change the layout of Type 6 keyboards because the back of the
keyboard has no DIP switch. Some Type 5 and 5c keyboards, for example, U.S.A.,
U.S.A./UNIX, and Japanese keyboards have jumpers instead of DIP switches. Aside
from utilities such as xmodmap(1), neither the SPARC platform nor the IA platform
offers utilities or tools that you can use to switch keyboards.

The following is a table of the layout ID values for Type 4, 5, and 5c keyboards (1 =
switch up, 0 = switch down).

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards

DIP Switch Keyboard (Keytable File) Setting in Binary

0 U.S.A. (US4.kt) 000000

1 U.S.A. (US4.kt) 000001

2 Belgium (FranceBelg4.kt) 000010

3 Canada (Canada4.kt) 000011

4 Denmark (Denmark4.kt) 000100

5 Germany (Germany4.kt) 000101

6 Italy (Italy4.kt) 000110

7 The Netherlands (Netherland4.kt) 000111

8 Norway (Norway4.kt) 001000

9 Portugal (Portugal4.kt) 001001

10 (0x0a) Latin America/Spanish (SpainLatAm4.kt) 001010

11 (ox0b) Sweden (SwedenFin4.kt) 001011

12 (0x0c) Switzerland/French (Switzer_Fr4.kt) 001100

13 (0x0d) Switzerland/German (Switzer_Ge4.kt) 001101

14 (0x0e) Great Britain (UK4.kt) 001110

16 (0x10) Korea (Korea4.kt) 010000

17 (0x11) Taiwan (Taiwan4.kt) 010001

23 Russian 100001

33 (0x21) U.S.A. (US5.kt) 100111

34 (0x22) U.S.A./UNIX (US_UNIX5.kt) 100010

35 (0x23) France (France5.kt) 100011

66 International Language Environments Guide • January 2005

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards (Continued)
DIP Switch Keyboard (Keytable File) Setting in Binary

36 (0x24) Denmark (Denmark5.kt) 100100

37 (0x25) Germany (Germany5.kt) 100101

38 (0x26) Italy (Italy5.kt) 100110

39 (0x27) The Netherlands (Netherland5.kt) 100111

40 (0x28) Norway (Norway5.kt) 101000

41 (0x29) Portugal (Portugal5.kt) 101001

42 (0x2a) Spain (Spain5.kt) 101010

43 (0x2b) Sweden (Sweden5.kt) 101011

44 (0x2c) Switzerland/French (Switzer_Fr5.kt) 101101

45 (0x2d) Switzerland/German (Switzer_Ge5.kt) 101110

46 (0x2e) Great Britain (UK5.kt) 101111

47 (0x2f) Korea (Korea5.kt) 101111

48 (0x30) Taiwan (Taiwan5.kt) 110000

49 (0x31) Japan (Japan5.kt) 110001

50 (0x32), see also
63 (0x3f)

Canada/French (Canada_Fr5.kt) 110010

51 0(x33) Hungary (Hungary5.kt) 110011

52 (0x34 Poland (Poland5.kt) 110100

53 (0x35) Czech (Czech5.kt) 110101

54 (0x36) Russia (Russia5.kt) 110110

55 (0x37) Latvia (Latvia5.kt) 110111

56 (0x38) see also 62
(0x3e)

Turkey-Q5 (TurkeyQ5.kt) 111000

57 (0x39) Greece (Greece5.kt) 111001

58 (0x3a) Arabic (Arabic5.kt) 111011

59 (0x3b) Lithuania (Lithuania5.kt) 111010

60 (0x3c) Belgium (Belgian5.kt) 111100

62 (0x3e) Canada/French (Canada_Fr5_TBITS5.kt) 111111

French Canadian

Chapter 3 • Localization in the Solaris Environment 67

TABLE 3–15 Layouts for Type 4, 5, and 5c Keyboards (Continued)
DIP Switch Keyboard (Keytable File) Setting in Binary

Polish Programmer

Estonian

Keytable file names with 4 are for a Type 4 keyboard. Keytable file names with 5 are
for a Type 5 keyboard.

� How to Change the Keyboard Layout to the Czech Layout
1. Determine the correct DIP switch ID (or layout ID) either from the table or from

the /usr/openwin/share/etc/keytables/keytable.mp file. The layout ID
value in the keytable.mp file is a decimal value.

For Czech, the layout ID is 53 in decimal (0x35 in hexadecimal).

2. Convert the layout ID to binary, or use a proper Setting in Binary value from the
column in the above table. For base conversion, calculator utilities such as
dtcalc(1) may be used.

For example, the correct binary value for the Czech keyboard is 110101.

3. Shut down and power off the system.

4. Change the DIP switch settings at the back of the keyboard by using the binary
value in step 2.

The first DIP switch is on your left. Move the switch up for 1 and down for 0.

The Czech keyboard binary value 110101, corresponds to: Up Up Down Up Down
Up

5. Power on and boot the system for use.

Note – Unlike Type 4 keyboards, Type 5 and 5c keyboards have only five DIP
switches. For the Type 5 and 5c keyboards, disregard the first binary digit. For the
Czech Type 5c keyboard, for example, the correct DIP switch settings are Up Down
Up Down Up, using only the last five digits from 10101.

Changing Between Keyboards on Intel Systems
On Intel Architecture systems, a keyboard is selected during the kdmconfig(1M) part
of the installation. To change this setting after installation, exit your GUI desktop
environment to the command-line mode. As superuser, type kdmconfig to run the
program. Follow the instructions to get the desired keyboard layout.

68 International Language Environments Guide • January 2005

Keyboard Layout Illustrations
The following figure shows the Arabic keyboard.

FIGURE 3–1 Arabic Keyboard

The following figure shows the Belgian keyboard.

FIGURE 3–2 Belgian Keyboard

The following figure shows the Cyrillic keyboard.

FIGURE 3–3 Cyrillic (Russian) Keyboard

Chapter 3 • Localization in the Solaris Environment 69

The following figure shows the Danish keyboard.

FIGURE 3–4 Danish Keyboard

The following figure shows the Finnish keyboard.

FIGURE 3–5 Finnish Keyboard

The following figure shows the French keyboard.

FIGURE 3–6 French Keyboard

70 International Language Environments Guide • January 2005

The following figure shows the German keyboard.

FIGURE 3–7 German Keyboard

The following figure shows the Italian keyboard.

FIGURE 3–8 Italian Keyboard

The following figure shows the Japanese keyboard,

FIGURE 3–9 Japanese Keyboard

Chapter 3 • Localization in the Solaris Environment 71

The following shows the Korean keyboard,

FIGURE 3–10 Korean Keyboard

The following shows the Netherlands (Dutch) keyboard,

FIGURE 3–11 Netherlands (Dutch) Keyboard

The following figure shows the Norwegian keyboard.

FIGURE 3–12 Norwegian Keyboard

72 International Language Environments Guide • January 2005

The following figure shows the Portuguese keyboard.

FIGURE 3–13 Portuguese Keyboard

The following figure shows the Spanish keyboard.

FIGURE 3–14 Spanish Keyboard

The following figure shows the Swedish keyboard.

FIGURE 3–15 Swedish Keyboard

Chapter 3 • Localization in the Solaris Environment 73

The following figure shows Swiss (French) keyboard.

FIGURE 3–16 Swiss (French) Keyboard

The following figure shows the Swiss (German) keyboard.

FIGURE 3–17 Swiss (German) Keyboard

The following figure shows the Traditional Chinese keyboard.

FIGURE 3–18 Traditional Chinese Keyboard

74 International Language Environments Guide • January 2005

The following figure shows the Turkish F keyboard.

FIGURE 3–19 Turkish F Keyboard

The following figure shows the Turkish Q keyboard.

FIGURE 3–20 Turkish Q Keyboard

The following figure shows the United Kingdom keyboard.

FIGURE 3–21 United Kingdom Keyboard

Chapter 3 • Localization in the Solaris Environment 75

The following figure shows the United States keyboard.

FIGURE 3–22 United States Keyboard

The following figure shows the U.S.A./UNIX keyboard.

FIGURE 3–23 U.S.A./UNIX Keyboard

New Solaris Keyboard Software Support
Software support for the following additional keyboards is available in this release.

� Russian Type 6 USB keyboard
� Estonian Type 6 USB keyboard
� French Canadian Type 6 USB keyboard
� Polish programmer’s Type 5 keyboard

The software enables users in Russian, Canada, Estonia, and Poland to modify the
standard U.S. keyboard layouts to meet individual language needs. Currently, no
hardware is available for the additional keyboard types. To take advantage of this new
keyboard software, follow the steps in the procedures in this section.

76 International Language Environments Guide • January 2005

� How to Access Estonian Type 6 USB Keyboard
Support
1. Change the US6.kt entry to Estonia6.kt in the

/usr/openwin/share/etc/keytables/keytable.map file.

The modified entry should appear as follows:

6 0 Estonia6.kt

2. Add one of the following entries to the
/usr/openwin/share/lib/locale/iso_8859_15/Compose file.

The modified entry should appear as follows:

<scaron> : "/xa8" scaron
<scaron> : "/xa6" scaron
<scaron> : "/270" scaron
<scaron> : "/264" scaron

3. Reboot the system to implement the changes.

� How to Access French Canadian Type 6 USB
Keyboard Support
1. Change the US6.kt entry to Canada6.kt in the

/usr/openwin/share/etc/keytables/keytable.map file.

The modified entry should appear as follows:

6 0 Canada6.kt

2. Reboot the system to implement the changes.

� How to Access Polish Programmers Type 5
Keyboard Support
1. Change the Poland5.kt entry to Poland5_pr.kt in the

/usr/openwin/share/etc/keytables/keytable.map file.

The modified entry should appear as follows:

6 0 Poland5_pr.kt

2. Reboot the system to implement the changes.

Chapter 3 • Localization in the Solaris Environment 77

78 International Language Environments Guide • January 2005

CHAPTER 4

Supported Asian Locales

This chapter provides information on localization related information for the Japanese,
Indic, and Thai languages. The sections in this chapter are:

� “Japanese Localization” on page 79
� “Indic Localization” on page 83
� “Thai Localization” on page 111

Japanese Localization
This section describes Japanese locale-specific information.

Japanese Locales
Four Japanese locales, which support different character encodings, are available in
the current Solaris environment. The ja and ja_JP.eucJP locales are based on the
Japanese EUC. The ja_JP.eucJP locale conforms to the UI-OSF Japanese
Environment Implementation Agreement Version 1.1 and the ja locale conforms to
the traditional specification from earlier Solaris releases. The ja_JP.PCK locale is
based on PC-Kanji code (known as Shift_JIS) and the ja_JP.UTF-8 is based on
UTF-8.

See the eucJP(5) man page for a map showing Japanese EUC and the character set.
See the PCK(5) man page for the map showing PC-Kanji code and the character set.

Japanese Character Sets
The supported Japanese character sets include:

� JIS X 0201–1976

79

� JIS X 0208–1990
� JIS X 0212–1990
� JIS X 0213–2000 (only characters defined in Unicode 4.0)

JIS X 0212–1990 is not supported in the ja_JP.PCK locale. JIS X 0213–2000 is
supported in the ja_JP.UTF-8 locale only. Not all characters defined in the JIS X
0213–2000 are available. Only those characters defined in the Unicode 4.0 character set
are available.

Vendor-defined characters (VDC) and user-defined characters (UDC) are also
supported. VDCs occupy unused (reserved) code points of JIS X 0208–1990 or JIS X
0212–1990. UDCs occupy the same code points as VDCs, except those code points
allocated for VDCs.

Japanese Fonts
Three Japanese font formats are supported: bitmap, TrueType, and Type1. The
Japanese Type1 font includes only JIS X 0212 for printing. The Type1 font is also used
by UDC.

Japanese bitmap fonts are described in the following table.

TABLE 4–1 Japanese Bitmap Fonts

Full Family Name Subfamily Format Vendor Encoding

sun gothic R, B PCF(12,14,16,20,24) JIS X 0208–1983,

JIS X 0201–1976

sun minchou R PCF(12,14,16,20,24) JIS X 0208–1983,

JIS X 0201–1976

ricoh hg
gothic b

R PCF(10,12,14,16,18,20,24) RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh hg
mincho l

R PCF(10,12,14,16,18,20,24) RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh gothic R PCF(10,12,14,16,18,20,24) RICOH JIS X 0212–1990, JIS X
0213–2000

ricoh mincho R PCF(10,12,14,16,18,20,24) RICOH JIS X 0212–1990, JIS X
0213–2000

ricoh
heiseimin

R PCF(12,14,16,18,20,24) RICOH JIS X 0212–1990

Japanese TrueType fonts are described in the following table.

80 International Language Environments Guide • January 2005

TABLE 4–2 Japanese TrueType Fonts

Full Family Name Subfamily Format Vendor Encoding

ricoh hg gothic
b

Fixed TrueType RICOH JIS X 0208–1983, JIS X
0201–1976

ricoh hg mincho
l

Fixed TrueType RICOH JIS X 0208–.1983, JIS X
0201–1976

ricoh hg
gothicb sun

Fixed,
Proportional

TrueType RICOH JIS X 0201–176, JIS X
0208–1983, JIS X 0213–2000

ricoh hg
minchol sun

Fixed,
Proportional

TrueType RICOH JIS X 0201–1976, JIS X
0208–1983, JIS X 0213–2000

ricoh heiseimin Fixed TrueType RICOH JIS X 0212–1990

Japanese Input Systems
ATOK12 is the default Japanese input system in the current Solaris environment.
ATOK12 is available for all of the Japanese locales and all of the UTF-8 locales when
the Japanese locale is installed. The Wnn6 Japanese input system is also available for
all of the Japanese locales. You can switch the input system from the desktop menu.
The kkcv Japanese input system is available for Japanese Solaris 1.x BCP support.

The following procedure describes how to enter Japanese text with the ATOK12 input
method.

� How to Use the ATOK Input Method
1. Press Control-spacebar to turn on input conversion.

2. Type the Kana characters for the text you want to convert.

For example, you could type the Kana for the Kanji henkan.

3. Press the spacebar to display the Kanji conversion candidates that are available
for your Kana spelling.

4. Type the number of the conversion candidate that you want to select.

5. Press Return to commit the complete Kana spelling to Kanji.

Alternatively, you can press the Down Arrow key to commit only selected
characters.

6. Press Control-spacebar to turn off input conversion.

Chapter 4 • Supported Asian Locales 81

Terminal Setting for Japanese Terminals
To use Japanese locales on a character-based terminal (TTY) you must use terminal
settings to make line editing work correctly.

� If your terminal is a CDE Terminal emulator (dtterm), use stty(1) with the
argument -defeucw in any Japanese locale (ja, ja_JP.PCK, or ja_JP.UTF-8).
For example, in the ja locale you would type:

% setenv LANG ja
% stty defeucw

� If your terminal is not a CDE Terminal emulator but the code set of your terminal
is the same as that of the current locale, use stty(1) with the argument -defeucw.

� If your terminal’s code set doesn’t match that of the current locale, use setterm(1)
to enable code conversion. For example, if you are in the ja locale but your
terminal requires PCK (Shift_JIS code), you would type:

% setenv LANG ja

% setterm -x PCK

See the setterm(3CURSES) man page for details.

Japanese iconv Module
Several Japanese code set conversions are supported with iconv(1) and iconv(3). See
the iconv_ja(5) man page for details.

User-Defined Character Support
The user-defined character utility sdtudctool handles both outline (Type1) and
bitmap (PCF) fonts. Some utilities are also available to migrate the UDC fonts that
were created by old utilities in prior releases, such as fontedit, type3creator, and
fontmanager.

Differences Between Partial and Full Locales
The following components are only available in the Japanese full locale environment
with the Languages CD:

� Translated message, help, and man pages
� Wnn6 Japanese input system
� Japanese Solaris 1.x BCP support
� Mincho (min*) typeface bitmap fonts
� JIS X 0212 Type1 fonts for printing

82 International Language Environments Guide • January 2005

� Japanese-specific dumb printer and postprint support
� Legacy Japanese utilities such as Kanji(1)

Indic Localization
Phonetic lookup based input method (Shabdalipi) and continuous phonetic input
method are available for all Indic languages which are supported in the UTF-8 locale.
The input methods and virtual keyboards allow you to enter Indic text in all of the
CDE applications.

The following data flow illustrates the workings of the Indic input process.

Codetables

IM Server
(Htt)

Xclient

XIM Lib
Indic Language

Engine

Phonetic Lookup
based IM

Continuous
Phonetic IM

Indic Language
Mapfiles

Internal
interface

SunIM
interface

� How to Use the Indic Input Methods
1. Click the input status area to display the input method selection menu.

2. Select an input method from the menu.

Alternatively, you can press the F6 key to select from among the available input
methods.

You can also type the Compose-hi key sequence to select the input method that
you used previously.

Chapter 4 • Supported Asian Locales 83

3. Press the F5 key to select the Indic script you want to use.

a. For the keyboard-based (indic INSCRIPT keyboard) input method, use the
keyboard images shown in “Indic Keyboards” on page 84.

b. For the phonetic lookup-based input method, type the first English phonetic
equivalent character corresponding to the character in the target script.

Select from a list of choices displayed in the lookup window.

c. For the continuous phonetic input method, type in English phonetic
equivalents continuously.

The corresponding characters in the target script are displayed in the preedit
and will be committed when subsequent input makes the preedit text
unambiguous or by an explicit commit. Refer to figures given in “Mapping for
the Continuous Phonetic Based Input Method” on page 88 for illustrations of the
mapping from the English tokens to the UTF-8 codepoints of the target script
for the continuous phonetic input method.

4. Press Control-spacebar to switch back to English/European input mode.

Alternatively, click in the status area to select the English/European input mode
from the input mode selection window.

Indic Keyboards
The following figures show the keyboard layouts that are available for the Indic input
method.

The following figure shows the layout of the Bengali keyboard.

The following figure shows the layout of the Devanagari keyboard.

84 International Language Environments Guide • January 2005

The following figure shows the layout of the Gujarati keyboard.

The following figure shows the layout of the Gurmukhi keyboard.

Chapter 4 • Supported Asian Locales 85

The following figure shows the layout of the Kannada keyboard.

The following figure shows the layout of the Malayalam keyboard.

The following figure shows the layout of the Tamil keyboard.

86 International Language Environments Guide • January 2005

The following figure shows the layout of the Teluga keyboard.

Understanding the Mappings
The images in “Mapping for the Continuous Phonetic Based Input Method” on page 88
show the mappings between English tokens and their equivalent codepoints in each of
the target scripts supported. The CONSONANT category means the mapping is
between the English tokens and consonants of the script. The VOWEL category means
that mapping from English tokens and vowels of the script. The OTHER category
includes mapping of characters that do not exhibit the properties of consonants and
vowels (whose form does not change depending on the surrounding character).

The keywords CONSONANT, VOWEL and OTHER also mean that these characters
are part of Unicode standard. The section SPECIAL CONSONANT, SPECIAL VOWEL
or SPECIAL OTHER means that though in principle these characters display the
properties of consonants, vowels or others they are not officially part of the Unicode
standard and are font dependent. They are assigned codepoint values in Unicode
Private User Area. They are supported in Solaris UTF-8 locales and the mapping may
not work in a different platform.

These mapfiles are not the same as the ones in your system, but slightly edited ones
for removing unneeded keywords for the context of this discussion.

In the VOWELS and SPECIAL VOWELS section, an independent form and a
dependent form is displayed for the same English token depending on the context. See
“How the Continuous Phonetic Input Method Works” on page 110.

The malayalam script contains a special ‘CHILLU’ section, that is actually the
SPECIAL OTHER category.

Chapter 4 • Supported Asian Locales 87

Mapping for the Continuous Phonetic Based Input
Method
The following figures show the existing mappings from English to the phonetic
equivalent characters in the target Indic scripts. Use these illustrations as a reference
until you know all the mappings for the script that you use. Mappings given here are
intuitive, so you should be able to input most of the characters without looking up the
illustration.

Note – In these mappings, special characters such as ‘.’ and ‘|’ included as part of the
mapping are escaped with a ‘\’ character. If not escaped, the ‘|’ character acts as a
separator when more than one token represents the same UTF-8 character.

Figure 4–1, Figure 4–2, and Figure 4–3 show the English to Bengali mappings for
consonants, vowels, and others.

88 International Language Environments Guide • January 2005

FIGURE 4–1 Map for Bengali Consonants

Chapter 4 • Supported Asian Locales 89

FIGURE 4–2 Map for Bengali Vowels

90 International Language Environments Guide • January 2005

FIGURE 4–3 Map for Bengali Others

Figure 4–4, Figure 4–5, and Figure 4–6 show the English to Gujarati mappings for
consonants, vowels, and others.

Chapter 4 • Supported Asian Locales 91

FIGURE 4–4 Map for Gujarati Consonants

92 International Language Environments Guide • January 2005

FIGURE 4–5 Map for Gujarati Vowels

Chapter 4 • Supported Asian Locales 93

FIGURE 4–6 Map for Gujarati Others

Figure 4–7, Figure 4–8, and Figure 4–9 show the English to Gurmukhi mappings for
consonants, vowels, and others.

94 International Language Environments Guide • January 2005

FIGURE 4–7 Map for Gurmukhi Consonants

Chapter 4 • Supported Asian Locales 95

FIGURE 4–8 Map for Gurmukhi Vowels

FIGURE 4–9 Map for Gurmukhi Others

96 International Language Environments Guide • January 2005

Figure 4–10, Figure 4–11, and Figure 4–12 show the English to Hindi mappings for
consonants, vowels, and others.

FIGURE 4–10 Map for Hindi Consonants

Chapter 4 • Supported Asian Locales 97

FIGURE 4–11 Map for Hindi Vowels

98 International Language Environments Guide • January 2005

FIGURE 4–12 Map for Hindi Others

Figure 4–13, Figure 4–14, and Figure 4–15 show the English to Kannada mappings for
consonants, vowels, and others.

Chapter 4 • Supported Asian Locales 99

FIGURE 4–13 Map for Kannada Consonants

100 International Language Environments Guide • January 2005

FIGURE 4–14 Map for Kannada Vowels

Chapter 4 • Supported Asian Locales 101

FIGURE 4–15 Map for Kannada Others

Figure 4–16, Figure 4–17, and Figure 4–18 show the English to Malayalam mappings
for consonants, vowels, and others.

102 International Language Environments Guide • January 2005

FIGURE 4–16 Map for Malayalam Consonants

Chapter 4 • Supported Asian Locales 103

FIGURE 4–17 Map for Malayalam Vowels

104 International Language Environments Guide • January 2005

FIGURE 4–18 Map for Malayalam Others

Figure 4–19 and Figure 4–20 show the English to Tamil mappings for consonants and
vowels.

Chapter 4 • Supported Asian Locales 105

FIGURE 4–19 Map for Tamil Consonants

106 International Language Environments Guide • January 2005

FIGURE 4–20 Map for Tamil Vowels

Chapter 4 • Supported Asian Locales 107

Figure 4–21,Figure 4–22, and Figure 4–23 show the English to Telugu mappings for
consonants, vowels, and others.

FIGURE 4–21 Map for Telugu Consonants

108 International Language Environments Guide • January 2005

FIGURE 4–22 Map for Telugu Vowels

Chapter 4 • Supported Asian Locales 109

FIGURE 4–23 Map for Telugu Others

How the Continuous Phonetic Input Method
Works
For each Indic script, a ‘virama’ or equivalent sign combined with a consonant gives
the half form (or ready to combine form) of the consonant. Whenever a multiple key
combination corresponding to a consonant is typed, the consonant + virama form is
output, symbolizing that the characters are ready to combine.

Consonants, at initial input, will assume their half form and will be a full syllable or
their variation when followed by a vowel.

Two consecutive consonants remain as the ready to combine half forms. Half forms
can be converted by the layout engine as a single combined character or can remain as
those independent forms that are also syntactically valid for every language.

Any vowel that forms the beginning of a word or is followed by another vowel
appears in independent form. A vowel that immediately follows a consonant assumes
dependent forms.

Characters that do not change shapes in any context are called others. These characters
are neither consonants nor vowels.

Digits and other punctuation marks that do not form a part of a character are mapped
one to one.

110 International Language Environments Guide • January 2005

Using these principles, a parser is written that will parse the input into these different
categories and output the language-specific Unicode codepoints. The continuous
phonetic input method engine does not deal with layout or rendering, which will be
done by other modules in the system.

Thai Localization
The current Solaris environment supports three Thai input levels and four Thai
keyboard layouts.

Thai Input Methods
The following Thai input methods are supported in this release. These input methods
are specified in the Thai IT Standard for character sequence checking.

1. Passthrough level, no input check
2. Basic input check level
3. Strict input check level

The passthrough level, with no sequence check, is the default in this release as it was
in previous Solaris releases.

You can use the F2 function key to switch from one input level to the next.

Thai Keyboard Layouts
Four different keyboard layouts are supported for the Thai input method.

� Kedmanee (TIS820-2531) keyboard layout. The Kedmanee layout was designed for
the typewriter, not the computer keyboard. The limited number of keys on the
typewriter keyboard meant that some of the Thai special characters were not
available in the layout. TIS820-2531 has adopted the Kedmanee layout for use with
a computer keyboard.

Chapter 4 • Supported Asian Locales 111

� TIS820-2538 keyboard layout. This enhanced Kedmanee layout is an updated
version of the TIS820-2531 layout that includes some of the Thai special characters
that were unavailable in the original Kedmanee layout. Currently, TIS820-2538 is
the only Thai keyboard layout standard that is issued by Thai Industrial Standard
Institute.

� Pattajoti keyboard layout. The Pattajoti layout was also designed for the typewriter,
but with better finger-load distribution.

112 International Language Environments Guide • January 2005

� Configurable keyboard layout. User-defined keyboard layout for the Thai input
method.

Thai Input Method Auxiliary Window
The Thai input method auxiliary window supports the following functions and
utilities:

� Input level switching. You can click the input level button on the auxiliary palette
to choose the passthrough, basic, or strict as your input level.

� Thai virtual keyboards. You can click the keyboard button to display the Thai
virtual keyboard to use to enter Thai characters.

Chapter 4 • Supported Asian Locales 113

114 International Language Environments Guide • January 2005

CHAPTER 5

Overview of UTF-8 Locale Support

This chapter provides an overview of UTF-8 locale support. The chapter covers the
following topics:

� “Unicode Overview” on page 115
� “Unicode Locale: en_US.UTF-8 Support” on page 116
� “About Desktop Input Methods” on page 118
� “System Environment” on page 151
� “Code Conversions” on page 155
� “DtMail Support” on page 156
� “Programming Environment” on page 158

Unicode Overview
Unicode is the universal character encoding standard used for representation of text
for computer processing. Unicode is fully compatible with the international standards
ISO/IEC 10646-1:2000 and ISO/IEC 10646–2:2001, and contains all the same characters
and encoding points as ISO/IEC 10646. The Unicode Standard provides additional
information about the characters and their use. Any implementation that conforms to
Unicode also conforms to ISO/IEC 10646.

Unicode provides a consistent way of encoding multilingual plain text and facilitates
exchanging international text files. Computer users who deal with multilingual text,
business people, linguists, researchers, scientists, and others find that the Unicode
Standard greatly simplifies their work. Mathematicians and technicians who regularly
use mathematical symbols and other technical characters also find the Unicode
Standard valuable.

The maximum possible number of code points Unicode can support is 1,114,112
through seventeen 16-bit planes. Each plane can support 65,536 different code points.

115

Among the more than one million code points that Unicode can support, version 4.0
curently defines 96,382 characters at plane 0, 1, 2, and 14. Planes 15 and 16 are for
private use characters, also known as user-defined characters. Planes 15 and 16
together can support total 131,068 user-defined characters.

Unicode can be encoded using any of the following character encoding schemes:

� UTF-8
� UTF-16
� UTF-32

UTF-8 is a variable-length encoding form of Unicode that preserves ASCII character
code values transparently. This form is used as file code in Solaris Unicode locales.

UTF-16 is a 16-bit encoding form of Unicode. In UTF-16, characters up to 65,535 are
encoded as single 16-bit values. Characters mapped above 65,535 to 1,114,111 are
encoded as pairs of 16-bit values (surrogates).

UTF-32 is a fixed-length, 21-bit encoding form of Unicode usually represented in a
32-bit container or data type. This form is used as the process code (wide-character
code) in Solaris Unicode locales.

For more details on the Unicode Standard and ISO/IEC 10646 and their various
representative forms, refer to the following sources:

� The Unicode Standard, Version 4.0 from the Unicode Consortium

� ISO/IEC 10646-1:2000, Information Technology-Universal Multiple-Octet Character
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane

� ISO/IEC 10646-2: Information Technology-Universal Multiple-Octet Character Set
(UCS) - Part 2: Secondary Multilingual Plane for Scripts and Symbols,
Supplementary Plane for CJK Ideographs, Special Purpose Plane

� The Unicode Consortium web site at http://www.unicode.org/.

Unicode Locale: en_US.UTF-8 Support
The Unicode/UTF-8 locales support Unicode 4.0. The en_US.UTF-8 locale provides
multiscript processing support by using UTF-8 as its codeset. This locale handles
processing of input and output text in multiple scripts, and was the first locale with
this capability in the Solaris Operating System. The capabilities of other UTF-8 locales
are similar to those of en_us.UTF-8. The discussion of en_US.UTF-8 that follows
applies equally to these locales.

116 International Language Environments Guide • January 2005

http://www.unicode.org/

Note – UTF-8 is a file-system safe Universal Character Set Transformation Format of
Unicode/ISO/IEC 10646-1 formulated by X/Open-Uniforum Joint
Internationalization Working Group (XoJIG) in 1992 and approved by ISO and IEC, as
Amendment 2 to ISO/IEC 10646-1:1993 in 1996. This standard has been adopted by
the Unicode Consortium, the International Standards Organization, and the
International Electrotechnical Commission as a part of Unicode 4.0 and ISO/IEC
10646-1.

Unicode locales in the Solaris environment support the processing of every code point
value that is defined in Unicode 4.0 and ISO/IEC 10646-1 and 10646-2. Supported
scripts include pan-European and Asian scripts and also complex text layout scripts
for the Arabic, Hebrew, Indic, and Thai languages.

Note – Some Unicode locales, notably the Asian locales, include more Kanji or Hanzi
glyphs.

Due to limited font resources, the current Solaris Unicode locales include character
glyphs from the following character sets.

� ISO 8859-1 (most Western European languages, such as English, French, Spanish,
and German)

� ISO 8859-2 (most Central European languages, such as Czech, Polish, and
Hungarian)

� ISO 8859-4 (Scandinavian and Baltic languages)
� ISO 8859-5 (Russian)
� ISO 8859-6 (Arabic, including many more presentation-form character glyphs)
� ISO 8859–7 (Greek)
� ISO 8859–8 (Hebrew)
� ISO 8859-9 (Turkish)
� TIS 620.2533 (Thai, including many more presentation-form character glyphs)
� ISO 8859–15 (most Western European languages with euro sign)
� GB 2312–1980 (Simplified Chinese)
� JIS X 0201–1976, JIS X 0208–1990 (Japanese)
� KSC 5601–1992 Annex 3 (Korean)
� GB 18030 (Simplified Chinese)
� HKSCS (Traditional Chinese, Hong Kong)
� Big5 (Traditional Chinese, Taiwan)
� IS 13194.1991, also known as ISCII (Hindi, including many more presentation-form

character glyphs)

Chapter 5 • Overview of UTF-8 Locale Support 117

If you try to view characters for which the en_US.UTF-8 locale does not have
corresponding glyphs, the locale displays a no-glyph glyph instead, as shown in the
following illustration:

The locale is selectable at installation time and may be designated as the system
default locale.

The same level of en_US.UTF-8 locale support is provided for both 64-bit and 32-bit
Solaris systems.

Note – Motif and CDE desktop applications and libraries support the en_US.UTF-8
locale. However, XView™ and OLIT libraries do not support the en_US.UTF-8 locale.

About Desktop Input Methods
CDE provides the ability to enter localized input for an internationalized application
using Xm Toolkit. The XmText[Field] widgets are enabled to interface with input
methods from each locale. Input methods are internationalized because some
language environments write their text from right-to-left, top-to-bottom, and so forth.
Within the same application, you can use different input methods that apply several
fonts.

The preedit area displays the string that is being pre-edited. Writing text can be done
in four modes:

� OffTheSpot
� OverTheSpot (default)
� Root
� None

In OffTheSpot mode, the location is just below the main window area at the right of
the status area. In OverTheSpot mode, the pre-edit area is at the cursor point. In Root
mode, the preedit and status areas are separate from the client’s window.

118 International Language Environments Guide • January 2005

For more details, refer to the XmNpreeditType resource description in the
VendorShell(3X) man page.

Note – In the current Solaris environment, native Asian input methods exist for
Simplified/Traditional Chinese, Japanese, and Korean. These methods are in addition
to the current multiscript input methods for Unicode locales.

“Accessing an Input Mode” on page 119 includes descriptions of selected input
methods, how to use them, and how to switch between them.

Script Selection and Input Modes
Solaris Unicode locales support multiple scripts. Every Unicode locale has a total of
fourteen input modes.

� English/European
� Cyrillic
� Greek
� Arabic
� Hebrew
� Thai
� Japanese
� Korean
� Simplified Chinese
� Traditional Chinese
� Traditional Chinese (Hong Kong)
� Indic
� Unicode Hexadecimal and Octal code input methods
� Table lookup input method

Accessing an Input Mode
You can switch into a particular input mode by using a Compose key combination or
through the input mode selection window. To access the input mode selection
window, click in the status area at the bottom left corner of your application window.
The input mode selection window is shown in following figure.

Chapter 5 • Overview of UTF-8 Locale Support 119

FIGURE 5–1 Input Mode Selection Window

Input Mode Switch Key Sequences
You can change the current input mode to a new input mode by using the key
sequences listed in Table 5–1. The only restriction for using these key sequences is that
if you are in one of the Asian input modes, you need to switch back to
English/European input mode by pressing Control and spacebar together. Once you
are in the English/European input mode, you can switch freely to any other input
mode by using the key sequences.

120 International Language Environments Guide • January 2005

The following key sequences show how to switch to Cyrillic from the
English/European input mode:

1. Press the Compose key.
2. Press and release the C key.
3. Press the C key.

TABLE 5–1 Input Mode Switch Key Sequences

Key Sequences Input Mode

Control-spacebar English/European

Compose c c Cyrillic

Compose g g Greek

Compose a r Arabic

Compose h h Hebrew

Compose t t Thai

Compose h i Indic

Compose i n Indic

Compose j a Japanese

Compose k o Korean

Compose s c Simplified Chinese

Compose t c Traditional Chinese

Compose h k Traditional Chinese (Hong Kong)

Compose u o Unicode octal code input method

Compose u h Unicode hexadecimal code input
method

Compose l l Table lookup input method

English/European Input Mode
The English/European input mode includes the English alphabet plus characters with
diacritical marks (for example, á, è, î, õ, and ü) and characters (such as ¡, §, ¿) from
European scripts.

This input mode is the default mode for any application. The input mode is displayed
at the bottom left corner of the GUI application window.

Chapter 5 • Overview of UTF-8 Locale Support 121

To insert characters with diacritical marks or special characters from Latin-1, Latin-2,
Latin-4, Latin-5, and Latin-9, you must type a Compose key sequence, as described in
the following examples.

To display the Ä character:

1. Press and release the Compose key.
2. Press Shift and the A key simultaneously. Release Shift-A.
3. Press and release the ” key.

To display the ¿, character:

1. Press and release the Compose key.
2. Press and release the ? key.
3. Press and release the ? key.

When there is no Compose key available on your keyboard, you can emulate its
operation by simultaneously pressing the Control key and the Shift key.

For the input of the Euro currency symbol (Unicode value U+20AC) from the locale,
you can use any one of following input sequences:

� AltGraph and E together
� AltGraph and 4 together
� AltGraph and 5 together

With these input sequences, you press both keys simultaneously. If no AltGraph key is
available on your keyboard, you can use certain alternative euro sign input sequences
such as Compose e = or Compose c =.

The following tables show the most commonly used compose sequences for Latin-1,
Latin-2, Latin-3, Latin-4, Latin-5, and Latin-9 script input for the Solaris Operating
System.

The following table lists the common Latin-1 Compose key sequences.

TABLE 5–2 Common Latin-1 Compose Key Sequences

Press Compose, then Press
and Release Then Press and Release Result

spacebar spacebar no-break space

s 1 superscripted 1

s 2 superscripted 2

s 3 superscripted 3

! ! inverted exclamation mark

x o currency symbol ¤

122 International Language Environments Guide • January 2005

TABLE 5–2 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Then Press and Release Result

p ! paragraph symbol ¶

/ u mu u

’ " acute accent ´

, , (comma) cedilla Ç

" " diaeresis ¨

- ^ macron ¯

o o degree °

x x multiplication sign x

+ - plus-minus ±

- - soft hyphen –

- : division sign ÷

- a ordinal (feminine) ª

- o ordinal (masculine) º

- , (comma) not sign ¬

. . middle dot ·

1 2 vulgar fraction ½

1 4 vulgar fraction ¼

3 4 vulgar fraction ¾

< < left double angle quotation mark «

> > right double angle quotation mark »

? ? inverted question mark ¿

A ‘ (backquote) A grave À

A ’ (single quote) A acute Á

A * A ring above Å

A " A diaeresis Ä

A ^ A circumflex Â

A ~ A tilde Ã

A E AE diphthong Æ

Chapter 5 • Overview of UTF-8 Locale Support 123

TABLE 5–2 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Then Press and Release Result

C , (comma) C cedilla Ç

C o copyright sign ©

D - Capital eth ð

E ‘ (backquote) E grave È

E ’ E acute É

E " E diaeresis Ë

E ^ E circumflex Ê

I ‘ (backquote) I grave Ì

I ’ I acute Í

I " I diaeresis Ï

I ^ I circumflex Î

L - pound sign £

N ~ N tilde Ñ

O ‘ (backquote) O grave Ò

O ’ O acute Ó

O / O slash Ø

O " O diaeresis Ö

O ^ O circumflex Ô

O ~ O tilde Õ

R O registered mark ®

T H Thorn þ

U ‘ (backquote) U grave Ù

U ’ U acute Ú

U " U diaeresis Ü

U ^ U circumflex Û

Y ’ Y acute ý

Y - yen sign ¥

a ‘ (backquote) a grave à

124 International Language Environments Guide • January 2005

TABLE 5–2 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Then Press and Release Result

a ’ a acute á

a * a ring above å

a " a diaeresis ä

a ~ a tilde ã

a ^ a circumflex â

a e ae diphthong æ

c , (comma) c cedilla ç

c / cent sign ¢

c o copyright sign ©

d - eth ð

e ‘ (backquote) e grave è

e ’ e acute é

e " e diaeresis ë

e ^ e circumflex ê

i ‘ (backquote) i grave ì

i ’ i acute í

i " i diaeresis ï

i ^ i circumflex î

n ~ n tilde ñ

o ‘ (backquote) o grave ò

o ’ o acute ó

o / o slash ø

o " o diaeresis ö

o ^ o circumflex ô

o ~ o tilde õ

s s German double s ß also known as
sharp S

t h thorn þ

u ‘ (backquote) u grave ù

Chapter 5 • Overview of UTF-8 Locale Support 125

TABLE 5–2 Common Latin-1 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Then Press and Release Result

u ’ u acute ú

u " u diaeresis ü

u ^ u circumflex û

y ’ y acute y

y " y diaeresis ÿ

| | broken bar ¦

The following table lists the common Latin-2 Compose key sequences.

TABLE 5–3 Common Latin-2 Compose Key Sequences

Press Compose, then Press
and Release Press and Release Result

k k kra

A _ A macron

E _ E macron

E . E dot above

G , G cedilla

I _ I macron

I ~ I tilde

I a I ogonek

K , K cedilla

L , L cedilla

N , N cedilla

O _ O macron

R , R cedilla

T | T stroke

U ~ U tilde

U a U ogonek

U _ U macron

N N Eng

126 International Language Environments Guide • January 2005

TABLE 5–3 Common Latin-2 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Press and Release Result

a _ a macron

e _ e macron

e . e dot above

g , g cedilla

i _ i macron

i ~ i tilde

i a i ogonek

k , k cedilla

l , l cedilla

n , n cedilla

o _ o macron

r , r cedilla

t | t stroke

u ~ u tilde

u a u ogonek

u _ u macron

n n eng

The following table lists the common Latin-3 Compose key sequences.

TABLE 5–4 Common Latin-3 Compose Key Sequences

Press Compose, then Press
and Release Press and Release Result

C > C circumflex

C . C dot above

G > G circumflex

G . G dot above

H > H circumflex

J > j circumflex

Chapter 5 • Overview of UTF-8 Locale Support 127

TABLE 5–4 Common Latin-3 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Press and Release Result

S > S circumflex

U u U breve

c > c circumflex

c . c dot above

g > g circumflex

g . g dot above

h > h circumflex

j > j circumflex

s > s circumflex

u u u breve

The following table lists the common Latin-4 Compose key sequences.

TABLE 5–5 Common Latin-4 Compose Key Sequences

Press Compose, then Press
and Release Press and Release Result

k k kra

A _ A macron

E _ E macron

E . E dot above

G , G cedilla

I _ I macron

I ~ I tilde

I a I ogonek

K , K cedilla

L , L cedilla

N , N cedilla

O _ O macron

R , R cedilla

T | T stroke

128 International Language Environments Guide • January 2005

TABLE 5–5 Common Latin-4 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Press and Release Result

U ~ U tilde

U a U ogonek

U _ U macron

N N Eng

a _ a macron

e _ e macron

e . e dot above

g , g cedilla

i _ i macron

i ~ i tilde

i a i ogonek

k , k cedilla

l , l cedilla

n , n cedilla

o _ o macron

r , r cedilla

t | t stroke

u ~ u tilde

u a u ogonek

u _ u macron

n n eng

The following table lists the common Latin-5 Compose key sequences.

TABLE 5–6 Common Latin-5 Compose Key Sequences

Press Compose, then Press
and Release Press and Release Result

G u G breve

I . I dot above

Chapter 5 • Overview of UTF-8 Locale Support 129

TABLE 5–6 Common Latin-5 Compose Key Sequences (Continued)
Press Compose, then Press
and Release Press and Release Result

g u g breve

i . i dotless

The following table lists the Common Latin-9 Compose key sequences.

TABLE 5–7 Common Latin-9 Compose Key Sequences

Press Compose, then Press and
Release Press and Release Result

o e Ligature oe

O E Ligature OE

Y “ Y diaeresis

If you are using a keyboard that has accent dead keys, use the following compose key
sequences. The “dead_acute” and such key names come from the X11 registered
keysym names of X_dead_acute and so on as shown at
/usr/openwin/include/X11/keysymdef.h. The SunFA_Circum and such key
names come from Sun-defined X11 keysym names such as SunXK_FA_Circum shown
at /usr/openwin/include/X11/Sunkeysym.h.

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys

Press and Release Press and Release Result

dead_grave spacebar grave accent

dead_acute apostrophe acute accent

dead_acute spacebar apostrophe

dead_diaeresis double quote diaeresis

dead_diaeresis spacebar diaeresis

dead_circumflex spacebar circumflex accent

dead_circumflex slash vertical line

dead_circumflex 0 degree sign

dead_circumflex 1 superscript one

dead_circumflex 2 superscript two

dead_circumflex 3 superscript three

130 International Language Environments Guide • January 2005

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

dead_circumflex period middle dot

dead_circumflex exclamation point broken bar

dead_circumflex minus macron

dead_circumflex underscore macron

dead_cedilla comma cedilla

dead_cedilla minus not sign

dead_tilde spacebar tilde

dead_grave A A with grave

dead_acute A A with acute

dead_circumflex A A with circumflex

dead_tilde A A with tilde

dead_diaeresis A A with diaeresis

dead_grave a a with grave

dead_acute a a with acute

dead_circumflex a a with circumflex

dead_tilde a a with tilde

dead_diaeresis a a with diaeresis

dead_cedilla C C with cedilla

dead_cedilla c c with cedilla

dead_grave E E with grave

dead_acute E E with acute

dead_circumflex E E with circumflex

dead_diaeresis E E with diaeresis

dead_grave e e with grave

dead_acute e e with acute

dead_circumflex e e with circumflex

dead_diaeresis e e with diaeresis

dead_grave I I with grave

dead_acute I I with acute

Chapter 5 • Overview of UTF-8 Locale Support 131

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

dead_circumflex I I with circumflex

dead_diaeresis I I with diaeresis

dead_grave i i with grave

dead_acute i i with acute

dead_circumflex i i with circumflex

dead_diaeresis i i with diaeresis

dead_tilde N N with tilde

dead_tilde n n with tilde

dead_grave O O with grave

dead_acute O O with acute

dead_circumflex O O with circumflex

dead_tilde O O with tilde

dead_diaeresis O O with diaeresis

dead_grave o o with grave

dead_acute o o with acute

dead_circumflex o o with circumflex

dead_tilde o o with tilde

dead_diaeresis o o with diaeresis

dead_cedilla S S with cedilla

dead_cedilla s s with cedilla

dead_grave U U with grave

dead_acute U U with acute

dead_circumflex U U with circumflex

dead_diaeresis U U with diaeresis

dead_grave u u with grave

dead_acute u u with acute

dead_circumflex u u with circumflex

dead_diaeresis u u with diaeresis

dead_acute Y Y with acute

132 International Language Environments Guide • January 2005

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

dead_acute y y with acute

dead_diaeresis y y with diaeresis

SunFA_Grave spacebar grave accent

SunFA_Grave A A with grave

SunFA_Grave a a with grave

SunFA_Grave E E with grave

SunFA_Grave e e with grave

SunFA_Grave I I with grave

SunFA_Grave i i with grave

SunFA_Grave O O with grave

SunFA_Grave o o with grave

SunFA_Grave U U with grave

SunFA_Grave u u with grave

SunFA_Acute apostrophe acute accent

SunFA_Acute spacebar apostrophe

SunFA_Acute A A with acute

SunFA_Acute a a with acute

SunFA_Acute C C with acute

SunFA_Acute c c with acute

SunFA_Acute E E with acute

SunFA_Acute e e with acute

SunFA_Acute I I with acute

SunFA_Acute i i with acute

SunFA_Acute L L with acute

SunFA_Acute l l with acute

SunFA_Acute N N with acute

SunFA_Acute n n with acute

SunFA_Acute O O with acute

SunFA_Acute o o with acute

Chapter 5 • Overview of UTF-8 Locale Support 133

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

SunFA_Acute R R with acute

SunFA_Acute r r with acute

SunFA_Acute S S with acute

SunFA_Acute s s with acute

SunFA_Acute U U with acute

SunFA_Acute u u with acute

SunFA_Acute Y Y with acute

SunFA_Acute y y with acute

SunFA_Acute Z Z with acute

SunFA_Acute z z with acute

SunFA_Cedilla comma cedilla

SunFA_Cedilla minus not sign

SunFA_Cedilla C C with cedilla

SunFA_Cedilla c c with cedilla

SunFA_Cedilla G G with cedilla

SunFA_Cedilla g g with cedilla

SunFA_Cedilla K K with cedilla

SunFA_Cedilla k k with cedilla

SunFA_Cedilla L L with cedilla

SunFA_Cedilla l l with cedilla

SunFA_Cedilla N N with cedilla

SunFA_Cedilla n n with cedilla

SunFA_Cedilla R R with cedilla

SunFA_Cedilla r r with cedilla

SunFA_Cedilla S S with cedilla

SunFA_Cedilla s s with cedilla

SunFA_Cedilla T T with cedilla

SunFA_Cedilla t t with cedilla

SunFA_Circum spacebar circumflex accent

134 International Language Environments Guide • January 2005

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

SunFA_Circum 0 degree sign

SunFA_Circum 1 superscript one

SunFA_Circum 2 superscript two

SunFA_Circum 3 superscript three

SunFA_Circum exclamation point broken bar

SunFA_Circum minus macron

SunFA_Circum underscore macron

SunFA_Circum period middle dot

SunFA_Circum slash vertical line

SunFA_Circum A A with circumflex

SunFA_Circum a a with circumflex

SunFA_Circum C C with circumflex

SunFA_Circum c c with circumflex

SunFA_Circum E E with circumflex

SunFA_Circum e e with circumflex

SunFA_Circum G G with circumflex

SunFA_Circum g g with circumflex

SunFA_Circum H H with circumflex

SunFA_Circum h h with circumflex

SunFA_Circum I I with circumflex

SunFA_Circum i i with circumflex

SunFA_Circum J J with circumflex

SunFA_Circum j j with circumflex

SunFA_Circum O O with circumflex

SunFA_Circum o o with circumflex

SunFA_Circum S S with circumflex

SunFA_Circum s s with circumflex

SunFA_Circum U U with circumflex

SunFA_Circum u u with circumflex

Chapter 5 • Overview of UTF-8 Locale Support 135

TABLE 5–8 Compose Key Sequences Based on Accent Dead Keys (Continued)
Press and Release Press and Release Result

SunFA_Diaeresis double quote diaeresis

SunFA_Diaeresis spacebar diaeresis

SunFA_Diaeresis A A with diaeresis

SunFA_Diaeresis a a with diaeresis

SunFA_Diaeresis E E with diaeresis

SunFA_Diaeresis e e with diaeresis

SunFA_Diaeresis I I with diaeresis

SunFA_Diaeresis i i with diaeresis

SunFA_Diaeresis O O with diaeresis

SunFA_Diaeresis o o with diaeresis

SunFA_Diaeresis U U with diaeresis

SunFA_Diaeresis u u with diaeresis

SunFA_Diaeresis y y with diaeresis

SunFA_Diaeresis Y Y with diaeresis

SunFA_Tilde spacebar tilde

SunFA_Tilde A A with tilde

SunFA_Tilde a a with tilde

SunFA_Tilde N N with tilde

SunFA_Tilde n n with tilde

SunFA_Tilde O O with tilde

SunFA_Tilde o o with tilde

Arabic Input Mode
To switch to Arabic input mode, either press Compose a r, or select Arabic from the
input mode selection window. For information on accessing the input mode selection
window, see “Accessing an Input Mode” on page 119.

The following figure shows the Arabic keyboard layout.

136 International Language Environments Guide • January 2005

FIGURE 5–2 Arabic Keyboard

Cyrillic Input Mode
To switch to Cyrillic input mode, either press Compose c c, or select Cyrillic from the
input mode selection window. For information on accessing the input mode selection
window, see “Accessing an Input Mode” on page 119.

The Cyrillic (Russian) keyboard layout appears in the following figure.

FIGURE 5–3 Cyrillic (Russian) Keyboard

After you switch to Cyrillic input mode, you cannot enter English or European text. To
switch back to the English/European input mode, type Control—spacebar together or
select English/European input mode from the Input Mode Selection Window by
clicking in the status area. See “Accessing an Input Mode” on page 119.

You can also switch into other input modes by typing the corresponding input mode
switch key sequence.

Chapter 5 • Overview of UTF-8 Locale Support 137

Greek Input Mode
To switch to Greek input mode, either press Compose g g, or select Greek from the
input mode selection window. For information on accessing the input mode selection
window, see “Accessing an Input Mode” on page 119.

After you switch to Greek input mode, you cannot enter English or European text. To
switch back to the English/European input mode, either press Control and spacebar
together, or select English/European input mode from the input mode selection
window by clicking in the status area. The Greek Euro keyboard layout appears in the
following figure.

FIGURE 5–4 Greek Euro Keyboard

The following figure shows the Greek UNIX keyboard.

138 International Language Environments Guide • January 2005

FIGURE 5–5 Greek UNIX Keyboard

The following compose key sequences are supported in the Greek input mode. Some
compose key sequences start with accent dead keys. The abbreviation “ordfemenine”
stands for feminine ordinal indicator key.

TABLE 5–9 Compose Key Sequences at Greek Input Mode

Press and Release Press and Release Result

semicolon a lowercase Greek_alpha with
tonos

semicolon e lowercase Greek_epsilon with
tonos

semicolon h lowercase Greek_eta with
tonos

semicolon i lowercase Greek_iota with
tonos

semicolon o lowercase Greek_omicron
with tonos

semicolon y lowercase Greek_upsilon with
tonos

semicolon v lowercase Greek_omega with
tonos

semicolon A uppercase Greek_alpha with
tonos

semicolon E uppercase Greek_epsilon with
tonos

Chapter 5 • Overview of UTF-8 Locale Support 139

TABLE 5–9 Compose Key Sequences at Greek Input Mode (Continued)
Press and Release Press and Release Result

semicolon H uppercase Greek_eta with
tonos

semicolon I uppercase Greek_iota with
tonos

semicolon O uppercase Greek_omicron
with tonos

semicolon Y uppercase Greek_upsilon with
tonos

semicolon V uppercase Greek_omega with
tonos

dead_acute Greek_alpha lowercase Greek_alpha with
tonos

dead_acute Greek_epsilon lowercase Greek_epsilon with
tonos

dead_acute Greek_eta lowercase Greek_eta with
tonos

dead_acute Greek_iota lowercase Greek_iota with
tonos

dead_acute Greek_omicron lowercase Greek_omicron
with tonos

dead_acute Greek_upsilon lowercase Greek_upsilon with
tonos

dead_acute Greek_omega lowercase Greek_omega with
tonos

dead_acute Greek_ALPHA uppercase Greek_alpha with
tonos

dead_acute Greek_EPSILON uppercase Greek_epsilon with
tonos

dead_acute Greek_ETA uppercase Greek_eta with
tonos

dead_acute Greek_IOTA uppercase Greek_iota with
tonos

dead_acute Greek_OMICRON uppercase Greek_omicron
with tonos

dead_acute Greek_UPSILON uppercase Greek_upsilon with
tonos

140 International Language Environments Guide • January 2005

TABLE 5–9 Compose Key Sequences at Greek Input Mode (Continued)
Press and Release Press and Release Result

dead_acute Greek_OMEGA uppercase Greek_omega with
tonos

dead_acute a lowercase Greek_alpha with
tonos

dead_acute e lowercase Greek_epsilon with
tonos

dead_acute h lowercase Greek_eta with
tonos

dead_acute i lowercase Greek_iota with
tonos

dead_acute o lowercase Greek_omicron
with tonos

dead_acute y lowercase Greek_upsilon with
tonos

dead_acute v lowercase Greek_omega with
tonos

dead_acute A uppercase Greek_alpha with
tonos

dead_acute E uppercase Greek_epsilon with
tonos

dead_acute H uppercase Greek_eta with
tonos

dead_acute I uppercase Greek_iota with
tonos

dead_acute O uppercase Greek_omicron
with tonos

dead_acute Y uppercase Greek_upsilon with
tonos

dead_acute V uppercase Greek_omega with
tonos

colon i lowercase Greek_iota with
dialytika

colon y lowercase Greek_upsilon with
dialytika

colon I uppercase Greek_iota with
dialytika

Chapter 5 • Overview of UTF-8 Locale Support 141

TABLE 5–9 Compose Key Sequences at Greek Input Mode (Continued)
Press and Release Press and Release Result

colon Y uppercase Greek_upsilon with
dialytika

dead_diaeresis i lowercase Greek_iota with
dialytika

dead_diaeresis y lowercase Greek_upsilon with
dialytika

dead_diaeresis I uppercase Greek_iota with
dialytika

dead_diaeresis Y uppercase Greek_upsilon with
dialytika

dead_diaeresis Greek_iota lowercase Greek_iota with
dialytika

dead_diaeresis Greek_upsilon lowercase Greek_upsilon with
dialytika

dead_diaeresis Greek_IOTA uppercase Greek_iota with
dialytika

dead_diaeresis Greek_UPSILON uppercase Greek_upsilon with
dialytika

semicolon semicolon Greek tonos

colon colon diaeresis/dialytika

ordfeminine 0 plus-minus sign

ordfeminine 1 section sign

ordfeminine 2 superscript two

ordfeminine 3 superscript three

ordfeminine 5 broken bar

ordfeminine 6 copyright sign

ordfeminine 7 not sign

ordfeminine 8 soft hyphen

ordfeminine 9 degree sign

ordfeminine hyphen vulgar fraction one half

ordfeminine backslash pound sign

ordfeminine braceleft modifier letter reversed
comma

142 International Language Environments Guide • January 2005

TABLE 5–9 Compose Key Sequences at Greek Input Mode (Continued)
Press and Release Press and Release Result

ordfeminine braceright modifier letter apostrophe

ordfeminine bracketleft left-pointing double angle
quotation mark

ordfeminine bracketright right-pointing double angle
quotation mark

SunFA_Acute a lowercase Greek_alpha with
tonos

SunFA_Acute e lowercase Greek_epsilon with
tonos

SunFA_Acute h lowercase Greek_eta with
tonos

SunFA_Acute i lowercase Greek_iota with
tonos

SunFA_Acute o lowercase Greek_omicron
with tonos

SunFA_Acute y lowercase Greek_upsilon with
tonos

SunFA_Acute v Greek_omega with tonos

SunFA_Acute A uppercase Greek_alpha with
tonos

SunFA_Acute E uppercase Greek_epsilon with
tonos

SunFA_Acute H uppercase Greek_eta with
tonos

SunFA_Acute O uppercase Greek_omicron
with tonos

SunFA_Acute I uppercase Greek_iota with
tonos

SunFA_Acute Y uppercase Greek_upsilon with
tonos

SunFA_Acute V uppercase Greek_omega with
tonos

SunFA_Acute Greek_alpha lowercase Greek_alpha with
tonos

SunFA_Acute Greek_epsilon lowercase Greek_epsilon with
tonos

Chapter 5 • Overview of UTF-8 Locale Support 143

TABLE 5–9 Compose Key Sequences at Greek Input Mode (Continued)
Press and Release Press and Release Result

SunFA_Acute Greek_eta lowercase Greek_eta with
tonos

SunFA_Acute Greek_iota lowercase Greek_iota with
tonos

SunFA_Acute Greek_omega lowercase Greek_omega with
tonos

SunFA_Acute Greek_omicron lowercase Greek_omicron
with tonos

SunFA_Acute Greek_upsilon lowercase Greek_upsilon with
tonos

SunFA_Acute Greek_ALPHA uppercase Greek_alpha with
tonos

SunFA_Acute Greek_EPSILON uppercase Greek_epsilon with
tonos

SunFA_Acute Greek_ETA uppercase Greek_eta with
tonos

SunFA_Acute Greek_IOTA uppercase Greek_iota with
tonos

SunFA_Acute Greek_OMICRON uppercase Greek_omicron
with tonos

SunFA_Acute Greek_UPSILON uppercase Greek_upsilon with
tonos

SunFA_Acute Greek_OMEGA uppercase Greek_omega with
tonos

SunFA_Diaeresis i lowercase Greek_iota with
dialytika

SunFA_Diaeresis y lowercase Greek_upsilon with
dialytika

SunFA_Diaeresis I uppercase Greek_iota with
dialytika

SunFA_Diaeresis Y uppercase Greek_upsilon with
dialytika

SunFA_Diaeresis Greek_iota lowercase Greek_iota with
dialytika

SunFA_Diaeresis Greek_upsilon lowercase Greek_upsilon with
dialytika

144 International Language Environments Guide • January 2005

TABLE 5–9 Compose Key Sequences at Greek Input Mode (Continued)
Press and Release Press and Release Result

SunFA_Diaeresis Greek_IOTA uppercase Greek_iota with
dialytika

SunFA_Diaeresis Greek_UPSILON uppercase Greek_upsilon with
dialytika

TABLE 5–10 Compose Key Sequences at Greek Input Mode with Three Keys

Press and Release Press and Release Press and Release Result

semicolon colon y lowercase
Greek_upsilon with
dialytika and tonos

colon semicolon y lowercase
Greek_upsilon with
dialytika and tonos

semicolon colon i lowercase Greek_iota
with dialytika and
tonos

colon semicolon i lowercase Greek_iota
with dialytika and
tonos

dead_acute dead_diaeresis y lowercase
Greek_upsilon with
dialytika and tonos

dead_diaeresis dead_acute y lowercase
Greek_upsilon with
dialytika and tonos

dead_acute dead_diaeresis i lowercase Greek_iota
with dialytika and
tonos

dead_diaeresis dead_acute i lowercase Greek_iota
with dialytika and
tonos

dead_acute dead_diaeresis Greek_upsilon lowercase
Greek_upsilon with
dialytika and tonos

dead_diaeresis dead_acute Greek_upsilon lowercase
Greek_upsilon with
dialytika and tonos

Chapter 5 • Overview of UTF-8 Locale Support 145

TABLE 5–10 Compose Key Sequences at Greek Input Mode with Three Keys (Continued)
Press and Release Press and Release Press and Release Result

dead_acute dead_diaeresis Greek_iota lowercase Greek_iota
with dialytika and
tonos

dead_diaeresis dead_acute Greek_iota lowercase Greek_iota
with dialytika and
tonos

SunFA_Acute SunFA_Diaeresis i lowercase Greek_iota
with dialytika and
tonos

SunFA_Diaeresis SunFA_Acute i lowercase Greek_iota
with dialytika and
tonos

SunFA_Acute SunFA_Diaeresis y lowercase
Greek_upsilon with
dialytika and tonos

SunFA_Diaeresis SunFA_Acute y lowercase
Greek_upsilon with
dialytika and tonos

SunFA_Acute SunFA_Diaeresis Greek_iota lowercase Greek_iota
with dialytika and
tonos

SunFA_Diaeresis SunFA_Acute Greek_iota lowercase Greek_iota
with dialytika and
tonos

SunFA_Acute SunFA_Diaeresis Greek_upsilon lowercase
Greek_upsilon with
dialytika and tonos

SunFA_Diaeresis SunFA_Acute Greek_upsilon lowercase
Greek_upsilon with
dialytika and tonos

TABLE 5–11 Compose Key Sequences at Greek Input Mode with Four Keys

Press and Release Press and Release Press and Release Press and Release Result

semicolon

colon

colon

semicolon

semicolon

colon

colon

semicolon

Greek dialytika
tonos

Greek dialytika
tonos

146 International Language Environments Guide • January 2005

Hebrew Input Mode
To switch into Hebrew input mode, either press Compose h h, or select Hebrew from
the input mode selection window. For information on accessing the input mode
selection window, see “Accessing an Input Mode” on page 119.

The following figure shows the Hebrew keyboard layout.

FIGURE 5–6 Hebrew Keyboard

Japanese Input Mode
To switch to the Japanese input mode, either press Compose j a or select Japanese from
the input mode selection window. For information on accessing the input mode
selection window, see “Accessing an Input Mode” on page 119.

To use the native Japanese input system, you need to install one or more of the
Japanese locales and reboot the system. After you install the Japanese locale, you can
use ATOK12 in all UTF-8 locales. Wnn6 is not available in UTF-8 locales except
ja_JP.UTF-8.

Chapter 5 • Overview of UTF-8 Locale Support 147

FIGURE 5–7 Japanese Keyboard

Korean Input Mode
To switch to Korean input mode, either press Compose k o, or select Korean from the
input mode selection window. For information on accessing the input mode selection
window, see “Accessing an Input Mode” on page 119.

To use the native Korean input system, you need to install one or more Korean locales
on your system. For more details on how to use the Korean input System, refer to
Korean Solaris User’s Guide.

FIGURE 5–8 Korean Keyboard

148 International Language Environments Guide • January 2005

Simplified Chinese Input Mode
To switch to Simplified Chinese input mode, either press Compose s c, or select
S-Chinese from the input mode selection window.“Accessing an Input Mode”
on page 119.

To use the native Simplified Chinese input system, you need to install one or more
Simplified Chinese locales on your system. For more details on how to use the
Simplified Chinese input system, refer to Simplified Chinese Solaris User’s Guide.

Traditional Chinese Input Mode
To switch to Traditional Chinese input mode, either press Compose t c, or select
T-Chinese from the input mode selection window. For information on accessing the
input mode selection window, see .“Accessing an Input Mode” on page 119.

To have access to the native Traditional Chinese input system, you need to install one
or more Traditional Chinese locales on your system. For more details on how to use
the Traditional Chinese input system, refer to the Traditional Chinese Solaris User’s
Guide.

Traditional Chinese (Hong Kong) Input
Mode
To switch to Traditional Chinese input mode, either press Compose h k, or select
T-Chinese (Hong Kong) from the input mode selection window. For information on
accessing the input mode selection window, see “Accessing an Input Mode” on page
119.

To have access to the native Traditional Chinese (Hong Kong) input system, you need
to install one or more Traditional Chinese (Hong Kong) locales on your system.

Chapter 5 • Overview of UTF-8 Locale Support 149

Unicode Hexadecimal Input Mode
To switch to Unicode hexadecimal code input mode, press Compose u h, or select
Unicode Hex from the input mode selection window. To switch to the octal number
system, press Compose u o or select Unicode Octal. For information on accessing the
input mode selection window, see “Accessing an Input Mode” on page 119.

To use these input modes, you need to know either the hexadecimal or the octal code
point values of the characters. Refer to The Unicode Standard, Version 4.0 for the
mapping between code point values and characters.

If you are in the Unicode hexadecimal code input mode, to input a character you
would type four hexadecimal digits. Some sample hexadecimal values are:

� 00A1 for Inverted Exclamation Mark
� 03B2 for Greek Small Letter Beta
� AC00 for a Korean Hangul Syllable
� 30A1 for Japanese Katakana Letter A
� 4E58 for a Unified Han character

You can use both uppercase and lowercase letters of A, B, C, D, E, and F for
hexadecimal digits. If you prefer the octal number system instead of hexadecimal
numbers, you can input octal digits 0 to 7. If you mistype a digit or two, you can
delete the digits by using the Delete or Backspace key.

Table Lookup Input Mode
To switch to table lookup input mode, either press Compose l l, or select Lookup from
the input mode selection window. For information on accessing the input mode
selection window, see “Accessing an Input Mode” on page 119.

The second lookup window shows candidates for the group-only display, showing a
maximum of 80 candidates at a time. Press Control n for the next set of candidates or
Control p for previous set of candidates.

150 International Language Environments Guide • January 2005

System Environment
This section describes locale environment variables, TTY environment setup, 32–bit
and 64–bit STREAMS modules, and terminal support.

Locale Environment Variable
Be sure you have the en_US.UTF-8 locale installed on your system. To check current
locale settings in various categories, use the locale utility.

system% locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"

LC_ALL=

To use the en_US.UTF-8 locale desktop environment, choose the locale first. In a TTY
environment, choose the locale first by setting the LANG environment variable to
en_US.UTF-8, as in the following C-shell example:

system% setenv LANG en_US.UTF-8

Make sure that the LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_NUMERIC,
LC_MONETARY, and LC_TIME categories are not set, or are set to en_US.UTF-8. If any
of these categories is set, they override the lower-priority LANG environment variable.
See the setlocale(3C) man page for more details about the hierarchy of
environment variables.

You can also start the en_US.UTF-8 environment from the CDE desktop. At the CDE
login screen’s Options -> Language menu, choose en_US.UTF-8.

TTY Environment Setup
Depending on the terminal and terminal emulator that you are using, you might need
to push certain code set-specific STREAMS modules onto your streams.

For more information on STREAMS modules and streams in general, see the
STREAMS Programming Guide.

The following table lists the 64–bit STREAMS modules supported by the
en_US.UTF-8 locale in the terminal environment. For more details, see the Solaris
64–bit Developer’s Guide.

Chapter 5 • Overview of UTF-8 Locale Support 151

TABLE 5–12 STREAMS Modules Supported by en_US.UTF-8

32-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/u8lat1 Code conversion STREAMS module between
UTF-8 and ISO8859-1 (Western European)

/usr/kernel/strmod/sparcv9/u8lat2 Code conversion STREAMS module between
UTF-8 and ISO8859-2 (Eastern European)

/usr/kernel/strmod/sparcv9/u8koi8 Code conversion STREAMS module between
UTF-8 and KOI8-R (Cyrillic)

Note – Starting with the Solaris 10 release, the 32-bit kernel is no longer supported for
the SPARC sun4u platform. Table 5–12 applies only to the 32-bit kernel for the x86
platform. For more details, refer to the Release Notes.

The following table lists the 64–bit STREAMS modules supported by en_US.UTF-8.

TABLE 5–13 64–bit STREAMS Modules Supported by en_US.UTF-8

64-bit STREAMS Module Description

/usr/kernel/strmod/sparcv9/u8lat1 Code conversions STREAMS module between
UTF-8 and ISO8859-1 (Western European)

/usr/kernel/strmod/sparcv9/u8lat2 Code conversions STREAMS module between
UTF-8 and ISO8859-2 (Eastern European)

/usr/kernel/strmod/sparcv9/u8koi8 Code conversions STREAMS module between
UTF-8 and KOI8-R (Cyrillic)

� How to Load a STREAMS Kernel Module
1. As the root user, determine whether you are running a 64-bit Solaris or 32-bit

Solaris system.

system# isainfo -v

� A 64–bit Solaris system returns the following information:

64-bit sparcv9 applications

32-bit sparc applications

� A 32–bit Solaris system returns the following information:

32-bit sparc applications

� A 32–bit x86 system returns the following information:

32-bit i386 applications

152 International Language Environments Guide • January 2005

2. Determine whether your system has already loaded the STREAMS module.

system# modinfo | grep modulename

If the STREAMS module, such as u8lat1, is already installed, the output looks as
follows:

system# modinfo | grep u8lat1

89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)

3. If the module has not already been loaded, load it using themodload(1M)
command.

� On a 32–bit system, you would type:

system# modload /usr/kernel/strmod/u8lat1

� On a 64–bit system, you would type:

system# modload /usr/kernel/strmod/sparcv9/u8lat1

The appropriate u8lat1 STREAMS module is loaded in the kernel. You can
now push it onto a stream.

� How to Unload a STREAMS Kernel Module
1. As root, verify that the kernel module is loaded.

For example, to verify the u8lat1 is loaded, you would type:

system# modinfo | grep u8lat1

89 ff798000 4b13 18 1 u8lat1 (UTF-8 <--> ISO 8859-1 module)

2. Use the modunload(1M) command to unload the kernel.

For example, to unload the u8lat1 module, you would type:

system# modunload -i 89

� How to Setup a Latin-2 Terminal and STREAMS Module
1. Use the strchg(1M), as shown in the second command line

system% cat > tmp/mystreams
ttcompat
ldterm
u8lat1
ptem
^D

system% strchg -f /tmp/mystreams

Be sure that you are either root or the owner of the device when you use
strchg(1).

2. Run the strconf command to examine the current configuration.

Chapter 5 • Overview of UTF-8 Locale Support 153

system% strconf
ttcompat
ldterm
u8lat1
ptem
pts

system%

3. Run the strchg command to reset the original configuration.

system% cat > /tmp/orgstreams
ttcompat
ldterm
ptem
^D

system% strchg -f /tmp/orgstreams

dtterm, xterm and Terminals Capable of Input and
Output of UTF-8 Characters
Unlike the older releases of the Solaris Operating System, the dtterm and xterm
terminal emulators and any other terminals that support input and output of the
UTF-8 code set, do not need to have any additional STREAMS modules in their
streams. The ldterm module is now codeset independent and supports
Unicode/UTF-8 if you set up the terminal environment with the stty(1) utility.

To set up the proper terminal environment for the Unicode locales, use the stty(1)
utility.

system% /bin/stty defeucw

To query the current settings, use the -a option of the stty utility, as shown below:

system% /bin/stty -a

Note – Because /usr/ucb/stty is not internationalized, use /bin/stty instead.

Terminal Support for Latin-1, Latin-2, or KOI8-R
For terminals that support only Latin-1 (ISO8859-1), Latin-2 (ISO8859-2), or KOI8-R,
you should have the following STREAMS configuration:

head <-> ttcompat <-> ldterm <-> u8lat1 <-> TTY

This configuration is only for terminals that support Latin-1. For Latin-2 terminals,
replace the STREAMS module u8lat1 with u8lat2. For KOI8-R terminals, replace
the module with u8koi8.

Make sure you already have the STREAMS module loaded into the kernel.

154 International Language Environments Guide • January 2005

Saving the Settings in ~/.cshrc

Assuming the necessary STREAMS modules are already loaded with the kernel, you
can save the following lines in your .cshrc file (C shell example) for convenience:

setenv LANG en_US.UTF-8
if ($?USER != 0 && $?prompt != 0) then

cat >! /tmp/mystreams$$ << _EOF
ttcompat
ldtterm
u8lat1
ptem

_EOF
/bin/strchg -f /tmp/mystreams$$
/bin/rm -f /tmp/mystreams$$
/bin/stty cs8 -istrip defeucw

endif

With these lines in your.cshrc file, you do not have to type all of the commands each
time you use the STREAMS module. Note that the second _EOF should start from the
first column of the file.

Code Conversions
Unicode locale support adds various code conversions among major code sets of
many countries through iconv and sdtconvtool utilities.

In the current Solaris environment, the utility geniconvtbl enables user-defined
code conversions. The user-defined code conversions created with the geniconvtbl
utility can be used with both iconv(1) and iconv(3). For more detail on this utility,
refer to the geniconvtbl(1) and geniconvtbl(4) man pages.

The available fromcode and tocode names that can be applied to iconv,
iconv_open, and sdtconvtool are listed in the tables in Appendix A. For more
details on iconv code conversion, see the iconv(1), and sdtconvtool(1) man
pages. For more information on available code conversions, see the iconv(5) man
page. Also see Appendix A.

Chapter 5 • Overview of UTF-8 Locale Support 155

Note – UCS-2, UCS-4, UTF-16 and UTF-32 are all Unicode/ ISO/IEC 10646
representation forms that recognize Byte Order Mark (BOM) characters defined in the
Unicode 4.0 and ISO/IEC 10646-1:2000 standards if the character appears at the
beginning of the character stream. Other forms, like UCS-2BE, UCS-4BE, UTF-16BE,
and UTF-32BE, are fixed-width Unicode/ISO/IEC 10646 representation forms that do
not recognize the BOM character and also assume big endian byte ordering.
Representation forms like UCS-2LE, UCS-4LE, UTF-16LE, and UTF-32LE, on the other
hand, assume little endian byte ordering. These forms also do not recognize the BOM
character.

For associated scripts and languages of ISO8859–* and KO18–*, see
http://czyborra.com/charsets/iso8869.html.

DtMail Support
As a result of increased coverage in scripts, Solaris DtMail running in the
en_US.UTF-8 locale supports the following character sets, indicated by MIME
names:

� US-ASCII (7-bit US ASCII)
� UTF-8 (UCS Transmission Format 8 bit)
� UTF-7 (UCS Transmission Format 7 bit)
� ISO-8859-1 (Latin-1)
� ISO-8859-2 (Latin-2)
� ISO-8859-3 (Latin-3)
� ISO-8859-4 (Latin-4)
� ISO-8859-5 (Latin/Cyrillic)
� ISO-8859-6 (Latin/Arabic)
� ISO-8859-7 (Latin/Greek)
� ISO-8859-8 (Latin/Hebrew)
� ISO-8859-9 (Latin-5)
� ISO-8859-10 (Latin-6)
� ISO-8859-13 (Latin-7/Baltic)
� ISO-8859-14 (Latin-8/Celtic)
� ISO-8859-15 (Latin-9)
� ISO-8859-16 (Latin-10)
� KOI8-R (Cyrillic)
� ISO-2022-JP and EUC-JP (Japanese)
� ISO-2022-KR and EUC-KR (Korean)
� ISO-2022-CN (Simplified Chinese)
� ISO-8859–13 (Latin-7/Baltic)
� ISO-8859–14 (Latin-8/Celtic)

156 International Language Environments Guide • January 2005

� KOI8–U (Cyrillic/Ukrainian)
� Shift_JIS (Japanese in Shift JIS)
� GB2312 (Simplified Chinese in EUC)
� TIS-620 (Thai)
� UTF-16 (UCS Transmission Format 16 bit)
� UTF-16BE (UTF-16 Big-Endian)
� UTF-16LE (UTF-16 Little-Endian)
� Windows-1250
� Windows-1251
� Windows-1252
� Windows-1253
� Windows-1254
� Windows-1255
� Windows-1256
� Windows-1257
� Windows-1258
� Big5 (Traditional Chinese)
� UTF-32 (UCS Transmission Format 32 bit)
� UTF-32BE (UTF-32 Big-Endian)
� UTF-32LE (UTF-32 Little-Endian)

This support enables users to view virtually any kind of email encoded in various
character sets from any region of the world in a single instance of DtMail. DtMail
decodes received email by looking at the MIME charset and content transfer encoding
provided with the email. Windows-125x MIME charsets are supported.

For sending email, you need to specify a MIME charset that is understood by the
recipient mail user agent (mail client), or you can use the default MIME charset
provided by the en_US.UTF-8 locale. You can switch the character set of outgoing
email, in the New Message window, press Control Y, or click the Format menu button
and then click the Change Char Set button. The next available character set name
displays in the bottom left corner at the top of the Send button.

If your email message header or message body contains characters that cannot be
represented by the MIME charset specified, the system automatically switches the
charset to UTF-8 which can represent any character.

If your message contains characters from the 7-bit US-ASCII character set only, the
default MIME charset of your email is US-ASCII. Any mail user agent can interpret
such email messages without loss of characters or information.

If your message contains characters from a mixture of scripts, the default MIME
charset is UTF-8. Any 8-bit characters of UTF-8 are encoded with Quoted-Printable
encoding. For more details on MIME, registered MIME charsets, and Quoted-Printable
encoding, refer to RFCs 2045, 2046, 2047, 2048, 2049, 2279, 2152, 2237, 1922, 1557, 1555,
and 1489.

Chapter 5 • Overview of UTF-8 Locale Support 157

FIGURE 5–9 DtMail New Message Window

Programming Environment
Internationalized applications should automatically enable the en_US.UTF-8 locale.
However, proper FontSet/XmFontList definitions in the application’s resource file are
required.

For information on internationalized applications, see Creating Worldwide Software:
Solaris International Developer’s Guide, 2nd edition.

158 International Language Environments Guide • January 2005

FontSet Used with X Applications
For information about the FontSet used with X applications, please see “Unicode
Locale: en_US.UTF-8 Support” on page 116.

Each character set has an associated set of fonts in the Solaris desktop environment.

The following is a list of the Latin-1 fonts that are supported in the current Solaris
environment:

-dt-interface system-medium-r-normal-xxs sans utf-10-100-72-72-p-59-iso8859-1
-dt-interface system-medium-r-normal-xs sans utf-12-120-72-72-p-71-iso8859-1
-dt-interface system-medium-r-normal-s sans utf-14-140-72-72-p-82-iso8859-1
-dt-interface system-medium-r-normal-m sans utf-17-170-72-72-p-97-iso8859-1
-dt-interface system-medium-r-normal-l sans utf-18-180-72-72-p-106-iso8859-1
-dt-interface system-medium-r-normal-xl sans utf-20-200-72-72-p-114-iso8859-1

-dt-interface system-medium-r-normal-xxl sans utf-24-240-72-72-p-137-iso8859-1

For information on CDE common font aliases, including -dt-interface user-*
and-dt-application-* aliases, see Common Desktop Environment:
Internationalization Programmer’s Guide.

In the en_US.UTF-8 locale, utf is also included in the locale’s common font aliases
as an additional attribute in the style field of the X logical font description name.
Therefore, to have a proper set of fonts, the additional style has to be included in the
font set creation as in the following example:

fs = XCreateFontSet(display,
"-dt-interface system-medium-r-normal-s*utf*",

&missing_ptr, &missing_count, &def_string);

FontList Definition in CDE/Motif Applications
As with FontSet definition, the XmFontList resource definition of an application
should also include the additional style attribute supported by the locale.

*fontList:\
-dt-interface system-medium-r-normal-s*utf*:

Chapter 5 • Overview of UTF-8 Locale Support 159

160 International Language Environments Guide • January 2005

CHAPTER 6

Complex Text Layout

Complex Text Layout (CTL) extensions enable the Motif APIs to support writing
systems that require complex transformations between logical and physical text
representations. Arabic, Hebrew, and Thai languages require such transformations.
CTL Motif provides character shaping, such as ligatures, diacritics, and segment
ordering. Support for the transformations of static and dynamic text widgets is also
provided, along with bidirectional text capability and tabbing for dynamic text
widgets. Because text rendering is handled through the rendition layer, other widget
libraries can easily be extended to support CTL.

This chapter covers the following topics:

� “Overview of CTL Technology” on page 161
� “Overview of CTL Architecture” on page 162
� “CTL Support for X Library Based Applications” on page 162
� “XOC Resources” on page 163
� “Changes in Motif to Support CTL Technology” on page 163
� “Developing CTL Applications” on page 173

Overview of CTL Technology
To leverage the new features, users must have the Portable Layout Services (PLS)
library and the appropriate language engine. CTL uses PLS as the interface to the
language engine, and uses the language engine to transform text before the text is
rendered. Applications that support CTL must include additional resources, as
described in the CTL documentation.

Specifically, XomCTL supports the following complex language shaping and
reordering features provided by underlying locale-dependent PLS module
transformations:

� Positional variation

161

� Ligation (many-to-one) and character composition (one-to-many)
� Diacritics
� Bidirectionality
� Symmetrical swapping
� Numeral shaping
� String validation

Overview of CTL Architecture
The CTL architecture is organized as shown in Figure 6–1. Dt Apps at the top of the
stack employs Motif CTL functionality for rendering text. Motif in turn interfaces with
locale-specific language engines using PLS, and performs transformations to support
positional variation, numeral shaping, and so on.

The CTL architecture supports new languages with a locale-specific engine. In other
words, support for Thai and Vietnamese can be added without altering Motif or Dt
Apps.

PLS/Portable Layout Services

XomCTLMotif

DT Apps/XomCTL Apps

UMLE/Ar/HE/TH/. . .

FIGURE 6–1 CTL Architecture

CTL Support for X Library Based
Applications
XomCTL (Complex Text Layout support in X Library Output Module) enables all pure
X Windows applications, such as an X-based terminal emulator, to have CTL support.
XomCTL provides a full-featured Open Source XI18N implementation including X11
dumb font support.

162 International Language Environments Guide • January 2005

XOC Resources
The following XOC resources are provided in the current Solaris environment:

XNText Enables the user to set the text buffer on which
CTL operation needs to be performed

XNTextLayoutNumGlyphs Provides the number of glyphs for the text in the
text buffer

XNTextLayoutModifier Same as the XmNLayoutModifier of Motif

XNTextLayoutProperty Same as the PLS Property, input-to-output and
output-to-input

XNTextLayoutMapInpToOut Same as the PLS Property, input-to-output and
output-to-input

XNTextLayoutMapOutToInp Same as the PLS Property, input-to-output and
output-to-input

Descriptions of these resources may be obtained from the specification of X/Open or
PLS Portable Layout Services.

Changes in Motif to Support CTL
Technology
The following changes to Motif support the CTL technology:

XmNlayoutDirection Controls object layout

XmStringDirection Specifies the direction in which the system
displays characters of a string

XmRendition Adds new pseudo resources to
XmRendition

XmText and XmTextField Affects the layout behavior of the text
associated with the XmRendition

XmTextFieldGetLayoutModifier Returns the layout modifier string of a
rendition layout object

Chapter 6 • Complex Text Layout 163

XmTextGetLayoutModifier Returns the value of the current layout
object settings of the rendition associated
with the widget

XmTextFieldSetLayoutModifier Sets the layout modifier values for the
layout object tied to its rendition

XmTextSetLayoutModifier Modifies the layout object settings of a
rendition associated with the widget

XmStringDirectionCreate Creates a compound string

XmNlayoutDirection Resource
The XmNlayoutDirection resource controls object layout. This resource interacts
with the orientation value of the LayoutObject in the manner described below.

See section 11.3 of the Motif Programmer’s Guide (Release 2.1) for an overview of
XmNlayoutDirection, and especially for a description of the interaction between
XmStringDirection and XmNlayoutDirection.

Determining the Layout Direction
When the XmNlayoutDirection is specified as XmDEFAULT_DIRECTION, the layout
direction of the widget is set at creation time from the governing pseudo-XOC. In the
case of dynamic text (XmText and XmTextField), the governing pseudo-XOC is the
one that is associated with the XmRendition used for the widget. In the case of static
text (XmList, XmLabel, XmLabelG), the layout direction is set from the first
compound string component that specifies a direction. This specification happens in
one of two ways:

� The component is of type XmSTRING_COMPONENT_LAYOUT_PUSH or
XmSTRING_COMPONENT_DIRECTION.

� The component is of type XmSTRING_COMPONENT_LOCALE_TEXT,
XmSTRING_COMPONENT_WIDECHAR_TEXT, or XmSTRING_COMPONENT_TEXT,
from the associated XmRendition and LayoutObject.

When XmNlayoutDirection is not specified as XmDEFAULT_DIRECTION and the
XmNlayoutModifier @ls orientation value is not specified explicitly in the
layout modifier string, then the XmNlayoutDirection value is passed through to
the XOC and its LayoutObject.

If both XmNlayoutDirection and the XmNlayoutModifier @ls orientation
value are explicitly specified, then the behavior is mixed. The XmNlayoutDirection
controls widget object layout, and the XmNlayoutModifier @ls orientation
value controls layout transformations.

164 International Language Environments Guide • January 2005

See CAE Specification: Portable Layout Services: Context-dependent and Directional Text
(The Open Group: Feb 1997; ISBN 1-85912-142-X; document number C616) for a
description of portable functions for handling context-dependent and bidirectional
text transformations as a logical extension to the existing POSIX locale model. The
document is intended for system and application programmers who want to provide
support for complex-text languages.

XmStringDirection Resource
XmStringDirection is the data type used to specify the direction in which the
system displays characters of a string.

The XmNlayoutDirection resource sets a default rendering direction for any
compound string (XmString) that does not have a component specifying the
direction of that string. Therefore, to set the layout direction, you need to set the
appropriate value for the XmNlayoutDirection resource. You do not need to create
compound strings with specific direction components. When the application renders
an XmString, the application should check whether the string was created with an
explicit direction (XmStringDirection). If the string does not provide a direction
component, the application should check the value of the XmNlayoutDirection
resource for the current widget and use that value as the default rendering direction
for the XmString.

XmRendition Resource
CTL adds the new pseudo resources listed in the following table to XmRendition.
Descriptions of the pseudo resources follow the table.

TABLE 6–1 New Resources in XmRendition

Name Class/Type Access Default Value

XmNfontType XmCFontType/XmFontType CSG XmAS_IS

XmNlayoutAttrObject XmClayoutAttrObject/String CG NULL

XmNlayoutModifier XmClayoutModifier/String CSG NULL

XmNfontType
Specifies the type of the Rendition font object. For CTL, the value of this resource
must be the XmFONT_IS_XOC value. If the value does not match, then the
XmNlayoutAttrObject and XmNlayoutModifier resources are ignored.

Chapter 6 • Complex Text Layout 165

When the value of this resource is XmFont_IS_XOC and the XmNfont resource is
not specified, then at create time the value of the XmNfontName resource is
converted into an XOC object in either the locale specified by the
XmNlayoutAttrObject resource or the current locale. Furthermore, the value of
the XmNlayoutModifier resource is passed through to any layout object
associated with the XOC.

XmNlayoutAttrObject
Specifies the layout AttrObject argument. This resource is used to create the
layout object associated with the XOC associated with this XmRendition. Refer to
the layout services m_create_layout() specification for the syntax and semantics
of this string. See the description of XmNfontType for an explanation of the
interaction between the Layout Modifier Orientation output value and the
XmNlayoutDirection widget resource.

XmNlayoutModifier
Specifies the layout values to be passed through to the layout object used with the
XOC for this XmRendition. For the syntax and semantics of this string, see CAE
Specification.

Setting this resource using XmRendition{Retrieve,Update} causes the string
to be passed through to the layout object associated with the XOC associated with
this rendition. This mechanism enables you to configure layout services
dynamically. Unpredictable behavior can result if the Orientation, Context,
TypeOfText, TextShaping, or ShapeCharset are changed.

Additional Layout Behavior
The XmNlayoutModifier affects the layout behavior of the text associated with the
XmRendition. For example, if the layout default treatment of numerals is
NUMERALS_NOMINAL, you change to NUMERALS_NATIONAL by setting
XmNlayoutModifier to @ls numerals=nominal:national, or @ls
numerals=:national.

The layout values can be classified into the following groups:

� Encoding description – TypeOfText, TextShaping, ShapeCharset (and locale
codeset)

TypeOfText is essentially segment ordering and can be illustrated with opaque
blocks. Modifying these values dynamically through the rendition object is not
usually meaningful, and is almost certain to result in unpredictable behavior.

� Layout behavior – Orientation, Context, ImplicitAlg, Swapping, and
Numerals. Orientation and Context should not be modified dynamically. You
can safely modify ImplicitAlg, Swapping, and Numerals.

� Editing behavior – CheckMode

166 International Language Environments Guide • January 2005

XmText and XmTextField Resource
Xm CTL extends XmText and XmTextField by adding a parallel set of movement
and deletion actions that operate visually, patterned after the Motif 2.0 CSText
widget. The standard Motif 2.1 Text and TextField do not distinguish between
logical and physical order: next and forward mean “to the right,” while previous and
backward mean “to the left.” CSText, however, makes the proper distinction and
defines a new set of actions with strictly physical names (for example,
left-character(), delete-right-word(), and so on). These action routines are
defined to be sensitive to the XmNlayoutDirection of the widget and to call the
appropriate next- or previous- action.

The Xm CTL extensions are slightly more complex than the CSText extensions. The
Xm CTL extensions are sensitive not to the global orientation of the widget, but to the
specific directionality of the physical characters surrounding the cursor, as determined
by the pseudo-XOC, including neutral stabilization.

The new resource name enables you to control selection policy, to provide a rendition
tag, and to control alignment.

The set of new Xm CTL actions is roughly the cross product of
{Move,Delete,Kill} by {Left,Right} by {Character,Word}. The action set is
listed in the following table.

TABLE 6–2 New Resources in Xm CTL

Name Class/Type Access Default Value

XmNrenditionTag XmCRenditionTag/XmRString CSG XmFONTLIST_DEFAULT_TAG

XmNalignment XmCAlignment/XmRAlignment CSG XmALIGNMENT_BEGINNING

XmNeditPolicy XmCEditPolicy/XmREditPolicy CSG XmEDIT_LOGICAL

XmNrenditionTag
Specifies the rendition tag of the XmRendition that is in the XmNrenderTable
resource, used for a widget.

XmNalignment
Specifies the text alignment used in the widget. Only XmALIGNMENT_END and
XmALIGNMENT_CENTER are supported.

XmNeditPolicy
Specifies the editing policy used for the widget, either XmEDIT_LOGICAL or
XmEDIT_VISUAL. In the case of XmEDIT_VISUAL, selection, cursor movement, and
deletion are in a visual style. Setting this resource also changes the translations for
the standard keyboard movement and deletion events either to the new “visual”
actions list or to the existing logical actions.

Chapter 6 • Complex Text Layout 167

Character Orientation Action Routines
The forward-cell() and backward-cell() actions query the orientation of the
character in the direction specified. If the direction is left-to-right, these actions call the
corresponding next-/forward- or previous-/backward- variants.

Character Orientation Additional Behavior
The actions determine the orientation of characters by using the Layout Services
transformation OutToInp and Property buffers for the nesting level. The widget’s
behavior is therefore dependent on the locale-specific transformation. If the
information in the OutToInp or, especially, Property buffers is inaccurate, the
widget might behave unexpectedly. Moreover, as the locale-specific modules fall
outside of the scope of this specification, bidirectional editing behavior can differ from
platform to platform for the same text, application, resource values, and
LayoutObject configuration.

The visual mode actions result in a display of cell-based behavior. The logical mode
actions result in logical character-based behavior. For example, the
delete-right-character() operation deletes the input buffer characters that
correspond to the display cell. That is, one input buffer character whole
LayoutObject transformation “property” byte “new cell indicator” is 1, and all
succeeding characters whose “new cell indicator” is 0.

For more information on the Property buffer, see the specification for
m_transform_layout() in CAE Specification.

Similarly, for backward-character(), the insertion point is moved backward one
character in the input buffer, and the cursor is redrawn at the visual location
corresponding to the associated output buffer character. Therefore, several keystrokes
are required to move across a composite display cell. The cursor does not actually
change display location as the insertion point moves across input buffer characters
such as diacritics or ligature fragments whose “new cell indicator” is 0.

This behavior means that deletion operates either from the logical/input buffer side,
or from the display cell level of the physical/output side. No mode exists for a strict,
physical character-by-character deletion because no one-to-one correspondence exists
between the input and output buffers. A given physical character can represent only a
fragment of a logical character, for example.

XmText Action Routines
The following list describes the XmText action routines.

left-character(extend)
If the XmNeditPolicy is XmEDIT_LOGICAL and it is called without arguments,
the insertion cursor moves back logically by a character. If the insertion cursor is at

168 International Language Environments Guide • January 2005

the beginning of the line, the insertion cursor moves to the logical last character of
the previous line, if one exists. Otherwise, the insertion cursor position doesn’t
change.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the left of the
cursor position. If the insertion cursor is at the beginning of the line, then it moves
to the end character of the previous line, if one exists.

If left-character() is called with an extend argument, the insertion cursor
moves as in the case of no argument, and extends the current selection.

The left-character() action produces calls to the
XmNmotionVerifyCallback procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this action
can produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

right-character(extend)
If the XmNeditPolicy is XmEDIT_LOGICAL and it is called without any
arguments, the insertion cursor moves logically forward by a character. If the
insertion cursor is at the logical end of the line, this action moves the insertion
cursor to the logical start of the next line, if one exists.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the right of
the cursor position. If the insertion cursor is at the end of the line, it moves the
insertion cursor to the starting of the next line, if one exists.

If called with an argument of extend, XmNeditPolicy moves the insertion cursor
as in the case of no argument, and extends the current selection.

The right-character() action produces calls to the
XmNmotionVerifyCallback procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with extend argument, this action can
produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

right-word(extend)
If the XmNeditPolicy is XmEDIT_LOGICAL and it is called without any
arguments, the insertion cursor moves to the logical starting character of the logical
succeeding word, if one exists. Otherwise, the cursor moves to the logical end of the
current word. If the insertion cursor is at the logical end of the line or in the logical
last word of the line, the cursor moves to the logical first word in the next line, if
one exists. Otherwise, the cursor moves to the logical end of the current word.

If the XmNeditPolicy is XmEDIT_VISUAL and it is called without arguments, the
insertion cursor moves to the first non whitespace character after the first white
space character to the right or after the end of the line.

If called with an argument of extend, the insertion cursor moves as in the case of
no argument and extends the current selection.

Chapter 6 • Complex Text Layout 169

The left-word() action produces calls to the XmNmotionVerifyCallback
procedures with the reason value XmCR_MOVING_INSERT_CURSOR. If called with
extend argument, this action can produce calls to the
XmNgainPrimaryCallback procedures. See the callback description in the Motif
Programmer’s Reference for more information.

delete-left-character()
If the XmNeditPolicy is XmEDIT_LOGICAL, it is equivalent to
delete-previous-char(). If the XmNeditPolicy is XmEDIT_VISUAL, then in
normal mode, if the selection is non-null, it deletes the selection. Otherwise this
action deletes the character to the left of the insertion cursor. In add mode, if the
selection is non-null, the cursor is not disjointed from the selection, and
XmNpendingDelete is set to True, this action deletes the selection. Otherwise, the
action deletes the character to the left of the insertion cursor, which can affect the
selection.

The delete-left-character() action produces calls to the
XmNmodifyVerifyCallback procedures with the reason value
XmCR_MODIFYING_TEXT_VALUE and the XmNvalueChangedCallback
procedures with the reason value XmCR_VALUE_CHANGED.

delete-right-character()
If the XmNeditPolicy is XmEDIT_VISUAL, it is equivalent to
delete-next-character(). If the XmNeditPolicy is XmEDIT_VISUAL, then
in normal mode, if the selection is a non-null, it deletes the selection. Otherwise, it
deletes the character to the right of the insertion cursor. In add mode, if there is a
non-null selection and the cursor is not disjointed from the selection, the
XmNpendingDelete is set to True and the selection is deleted. Otherwise, the
character to the right of the insertion cursor is deleted. This action can affect the
selection.

The delete-right-character() action produces calls to the
XmNmodifyVerify-Callback procedures with reason value
XmCR_MODIFYING_TEXT_VALUE, and the XmNvalue-ChangedCallback
procedures with reason value XmCR_VALUE_CHANGED.

A few cell-based routines are implemented to support character composition,
ligatures, and diacritics. In other words, two or more characters might be represented
by a single glyph occupying one presentation cell.

The XmText cell action routines are as described in the following list.

backward-cell(extend)
Moves the insertion cursor back one cell. If the XmNeditPolicy is
XmEDIT_LOGICAL, then the insertion cursor is moved to the start of the cell that
precedes the current cell logically, if one exists. Otherwise, the cursor moves to the
start of the current cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the start of
cell to the left of the cursor, if one exists. The prev-cell() action produces calls to
the XmNmotionVerifyCallback procedures with the reason value

170 International Language Environments Guide • January 2005

XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this action
can produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

forward-cell(extend)
Moves the insertion cursor to the start of the logical next cell, if one exists.
Otherwise this action moves the cursor to the end of the cell. If the
XmNeditPolicy is XmEDIT_LOGICAL, then the cursor moves forward one cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the start of
the cell to the right of the cursor position, if one exists; otherwise, it moves to the
end of the current cell. The forward-cell() action produces calls to the
XmNmotionVerifyCallback procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If called with an extend argument, this action
can produce calls to the XmNgainPrimaryCallback procedures. See the callback
description in the Motif Programmer’s Reference for more information.

XmTextFieldGetLayoutModifier Resource
XmTextFieldGetLayoutModifier() returns the layout modifier string that reflects
the state of the layout object tied to its rendition.

The syntax for XmTextFieldGetLayoutModifier() is:

#include <Xm/TextF.h>
string XmTextFieldGetLayoutModifier(Widget widget)

XmTextFieldGetLayoutModifier() accesses the value of the current layout object
settings of the rendition associated with the widget. When the layout object modifier
values are changed using a convenience function, the
XmTextFieldGetLayoutModifier function returns the complete state of the layout
object, not the changed values only.

XmTextFieldGetLayoutModifier() returns the layout object modifier values in
the form of a string value.

XmTextGetLayoutModifier Resource
XmTextGetLayoutModifier() returns the layout modifier string that reflects the
state of the layout object tied to its rendition.

The syntax for XmTextGetLayoutModifier() is:

#include <Xm/Text.h>
String XmTextGetLayoutModifier(Widget widget)

Chapter 6 • Complex Text Layout 171

XmTextGetLayoutModifier accesses the value of the current layout object settings
of the rendition associated with the widget. When the layout object modifier values
are changed using a convenience function, the XmTextGetLayoutModifier function
returns the complete state of the layout object, not just the changed values.

XmTextGetLayoutModifier returns the layout object modifier values in the form of
a string value.

XmTextFieldSetLayoutModifier Resource
XmTextFieldSetLayoutModifier() sets the layout modifier values, which
changes the behavior of the layout object tied to its rendition.

The syntax for XmTextFieldSetLayoutModifier() is:

#include <Xm/TextF.h> \
void XmTextFieldSetLayoutModifier(Widget \

widgetstring layout_modifier)

XmTextFieldSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this
convenience function, only the attributes specified in the input parameter are changed.
The rest of the attributes remain untouched.

XmTextSetLayoutModifier Resource
XmTextSetLayoutModifier() sets the layout modifier values, which changes the
behavior of the layout object tied to its rendition.

The syntax for XmTextSetLayoutModifier() is:

#include <Xm/Text.h>
void XmTextSetLayoutModifier(Widget widget,string layout_modifier)

XmTextSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this
convenience function, only the attributes specified in the input parameter are changed;
the rest of the attributes are left untouched.

XmStringDirectionCreate Resource
XmStringDirectionCreate creates a compound string.

The syntax for XmTextSetLayoutModifier() is:

#include <Xm/Xm.h>
XmString XmStringDirectionCreate(direction)
XmStringDirection direction

172 International Language Environments Guide • January 2005

XmStringDirectionCreate creates a compound string with a single component, a
direction with the given value. On the other hand, the XmNlayoutDirection
resource sets a default rendering direction for any compound string (XmString) that
does not have a component specifying the direction for that string. Therefore, to set
the layout direction, you set the appropriate value for the XmNlayoutDirection
resource. You need not create compound strings with specific direction components.

When the application renders an XmString, the application should check whether the
string was created with an explicit direction (XmStringDirection). If the
application was provided no direction component, the application should check the
value of the XmNlayoutDirection resource for the current widget and use that
value as the default rendering direction for the XmString.

UIL Arguments
The following table shows the UIL argument name and type.

TABLE 6–3 UIL

UIL Argument Name Argument Type

XmNlayoutAttrObject String

XmNlayoutModifier String

XmNrenditionTag String

XmNalignment Integer

XmNeditPolicy Integer

Developing CTL Applications
The following sections explain how to develop CTL applications.

Controlling Layout Direction
The direction of a compound string is stored so that the data structure is equally
useful for describing text in left-to-right languages such as English, Spanish, French,
and German, or for text in right-to-left languages, such as Hebrew and Arabic. In

Chapter 6 • Complex Text Layout 173

Motif applications, you can set the layout direction using the XmNlayoutDirection
resource from the VendorShell or MenuShell. The Manager and Primitive widget as
well as Gadgets, also have an XmNlayoutDirection resource. The default value is
inherited from the closest ancestor with the same resource.

In the case of an XmText widget, you must specify the vertical direction as well as the
horizontal direction. Setting the layoutDirection to XmRIGHT_TO_LEFT results in
the string direction from right to left, but the cursor moves vertically down. If the
vertical direction is important and you require top-to-bottom alignment, be sure to
specify XmRIGHT_TO_LEFT_TOP_TO_BOTTOM. This setting specifies that the
components are laid out from right to left first and then top to bottom, and results in
the desired behavior.

The behavior of the XmText and TextField widgets is also influenced by the
XmNalignment and XmNlayoutModifier resources of the XmRendition. These
resources, in addition to XmNlayoutDirection, control the layout behavior of the
Text widget. This behavior is illustrated in Figure 6–2.

The input string used in the figure is:

The XmNlayoutModifier string @ls orientation= setting values for the
following figure are shown in the left column.

174 International Language Environments Guide • January 2005

Layout Direction: XmLEFT_TO_RIGHT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Layout Direction: XmRIGHT_TO_LEFT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

FIGURE 6–2 Layout Direction

As the illustration shows, XmNalignment dictates whether the text is flush right or
left in conjunction with the layout direction. XmNlayoutModifier breaks the text
into segments and arranges them left-to-right or right-to-left, depending on the
orientation value. In other words, if the XmNlayoutDirection is
XmRIGHT_TO_LEFT, and the XmNAlignment value is XmALIGNMENT_BEGINNING,
the string is flush right.

EXAMPLE 6–1 Creating a Rendition

The following code creates an XmLabel whose XmNlabelString is of the type
XmCHARSET_TEXT, using the Rendition whose tag is “ArabicShaped.” The Rendition
is created with an XmNlayoutAttrObject of “ar” (corresponding to the locale name
for the Arabic locale) and a layout modifier string that specifies for the output buffer a
Numerals value of NUMERALS_CONTEXTUAL and a ShapeCharset value of
“iso8859–6”.

The locale-specific layout module transforms its input text into an output buffer of
physical characters encoded using the 16-bit Unicode codeset. Because an explicit
layout locale has been specified, this text is rendered properly independent of the
runtime locale setting. In this example, the input is encoded in ISO 8859–6.

int n;
Arg args[10];

Chapter 6 • Complex Text Layout 175

EXAMPLE 6–1 Creating a Rendition (Continued)

Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, argcs
s, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

EXAMPLE 6–2 Editing a Rendition

The following code creates a TextField widget and a RenderTable with a single
Rendition. Both the XmNlayoutAttrObject and XmNlayoutModifier pseudo
resources have been left unspecified and therefore default to NULL. This value means
that the layout object associated with the Rendition belongs to the default locale, if one
exists.

For this example to work properly, the locale must be set to one whose codeset is ISO
8859-6 and whose locale-specific layout module can support the IMPLICIT_BASIC
algorithm. The Rendition’s LayoutObject’s ImplicitAlg value is modified
through the Rendition’s XmNlayoutModifier pseudo resource.

int n;
Arg args[10];
Widget w;

XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;
w = XmCreateTextField(parent, "text field", args, 0);
n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

renditionTag = (XmStringTag) "ArabicShaped";

176 International Language Environments Guide • January 2005

EXAMPLE 6–2 Editing a Rendition (Continued)

rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

....
n = 0;
XtSetArg(args[n], XmNlayoutModifier, "@ls implicitalg=basic");

n++;

XmRenditionUpdate(rendition, args, n);

Creating a Render Table in a Resource File
Renditions and render tables should be specified in resource files for a properly
internationalized application. When the render tables are specified in a file, the
program binaries are made independent of the particular needs of a given locale, and
can be easily customized to local needs.

Render tables are specified in resource files with the following syntax:
resource_spec:[tag[,tag]*]

where tag is some string suitable for the XmNtag resource of a rendition.

This line creates an initial render table containing one or more renditions as specified.
The renditions are attached to the specified tags:

resource_spec[*|.] rendition[*|.]resource_name:value

The following example illustrates the CTL resources related to XmRendition that can
be set using resource files. The fontType must be set to FONT_IS_XOC for the layout
object to take effect. The layoutModifier specified using @ls is passed on to the
layout object by the rendition object.

For a complete list of resources that can be set on the layout object using
layoutModifier, see CAE Specification: Portable Layout Services: Context-dependent and
Directional Text, The Open Group: Feb 1997; ISBN 1-85912-142-X; document number
C616.

EXAMPLE 6–3 Creating a Render Table in an Application

Before creating a render table, an application program must first have created at least
one of the renditions that is part of the table. The XmRenderTableAddRenditions
() function, as its name implies, is also used to augment a render table with new
renditions. To create a new render table, call the XmRenderTableAddRenditions()
function with a NULL argument in place of an existing render table.

The following code creates a render table using a rendition created with
XmNfontType set to XmFONT_IS_XOC.

Chapter 6 • Complex Text Layout 177

EXAMPLE 6–3 Creating a Render Table in an Application (Continued)

int n;
Arg args[10];
Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=nominal:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

Horizontal Tabs
A compound string can contain tab characters that control the placement of text. To
interpret those characters on display, a widget refers the a list of tab stops to the
rendition in effect for that compound string. However, the dynamic widgets
TextField and XmText do not use the tab resource of the rendition. Instead, the
widgets compute the tab width using the formula of 8*(width of character 0).

The tab measurement is the distance from the left margin of the compound string
display. This distance is measured from the right margin, if the layout direction is
right-to-left. Regardless of the direction of the text (Arabic right-to-left or English
left-to-right), the tab inserts space to the right or left as specified by the layout
direction (XmNlayoutDirection).

The text following a tab is always aligned at the tab stop. The tab stop is calculated
from the start of the widget, which in turn is influenced by XmNlayoutDirection.
The behavior of the tabs and their interaction with directionality of the text and the
XmNlayoutDirection of the widget is illustrated in the following figure.

178 International Language Environments Guide • January 2005

The input for this illustration is abc\tdef\tgh.

Layout Direction: XmLEFT_TO_RIGHT

Layout Direction: XmRIGHT_TO_LEFT

FIGURE 6–3 Tabbing Behavior

Mouse Selection
The user makes a primary selection with mouse button 1. Pressing this button
deselects any existing selection and moves the insertion cursor and the anchor to the
position in the text where the button is pressed. Dragging while holding down mouse
button 1 selects all text between the anchor and the pointer position, deselecting any
text outside the range.

The text selected is influenced by the resource XmNeditPolicy, which can be set to
XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL and the text selected is bidirectional, the selected text is not
contiguous visually and is a collection of segments. The text in the logical buffer does
not have a one-to-one correspondence with the display.

Chapter 6 • Complex Text Layout 179

As a result, the contiguous buffer of logical characters of bidirectional text is not
rendered in a continuous stream of characters. Conversely, when the XmNeditPolicy
is set to XmEDIT_VISUAL, the selected text can be contiguous visually but is
segmented in the logical buffer. Therefore, the sequence of selection, deletion, and
insertion of bidirectional text at the same cursor point does not result in the same
string.

Keyboard Selection
The selection operation available with the mouse is also available with the keyboard.
The combination of the Shift and the arrow keys enables the selection of text.

The selected text is influenced by the resource XmNeditPolicy, which can be set to
XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL and the selected text is bidirectional, the selected text is not
contiguous visually. Because the text in the logical buffer does not have one-to-one
correspondence with the display, the contiguous buffer of logical characters of
bidirectional text is not rendered in a continuous stream of characters.

Conversely, when the XmNeditPolicy is set to XmEDIT_VISUAL, the text selected
can be contiguous visually but is segmented in the logical buffer. Therefore, the
sequence of selection, deletion, and insertion of bidirectional text at the same cursor
point does not result in the same string.

Text Resources and Geometry
The following text resources relate to geometry:

� The render table XmNrenderTable that the widget uses to select a font or font set
and other attributes in which to display the text.

The Text and Textfield widgets can use only the font-related rendition
resources, such as XmNfontType. These widgets can also specify the attributes of
the layout object, such as XmNlayoutAttrObject. These widgets usually include
a locale identifier, and XmNlayoutModifier, which specifies the layout values to
be passed through to the Layout Object associated with the XOC associated with
this XmRendition.

� A resource (XmNwordWrap) that specifies whether lines are broken at word
boundaries when the text would be wider than the widget.

Breaking a line at a word boundary does not insert a new line into the text. In the
case of cursive languages like Arabic, if the word length is greater than the widget
length, the word is wrapped to the next line. However, the first character in the

180 International Language Environments Guide • January 2005

next line is shaped independently of the previous character in the logical buffer.

Porting Instructions
The new Motif library enabled for Complex Text Layout (CTL), is located in
/usr/dt/lib/libXm.so.4. If your application links to libXm.so.3 the
application does not support CTL. ldd app_name shows the library to which the
application is linking. To port the existing applications to enable CTL, you need to
perform the following steps:

1. Add -DSUN_CTL to your Makefile.

This flag is important and includes the necessary data structures to support CTL.
This value should be set during compilation.

2. Recompile the existing application.

This recompilation automatically links with the CTL-enabled Motif library
libXm.so.4.

3. Add the XmText.translations resources to your application resource file.
Without these resources, the layout engine of the locale does not launch.

4. Refer to the sample application attached to your documentation.

Note – Use the font name that is available and appropriate to your locale in the
fontName resource.

For example, if you want cell-based character movement (Thai) in XmTextField or
XmText widgets, set the translations of the corresponding widgets as follows:

XmText.translations: #override \n\

<Key>osfRight:forward-cell() \n\

<Key>osfLeft:backward-cell() \n\

<Key>osfDelete:delete-next-cell() \n\

<Key>osfBackSpace:delete-previous-cell() \n\

Chapter 6 • Complex Text Layout 181

182 International Language Environments Guide • January 2005

CHAPTER 7

Print Filter Enhancement With mp

This chapter describes print enhancement to the mp utility. The chapter discusses the
following topics:

� “Printing for UTF-8” on page 183
� “mp Print Filter Enhancement Overview” on page 184
� “Localization With the mp.confConfiguration File” on page 186
� “Locale-Dependent prolog Files” on page 192
� “Adding and Customizing prolog Files” on page 192
� “PostScript File Customization” on page 192
� “.xpr Files” on page 195

Printing for UTF-8
An enhanced mp print filter that can print various input file formats including flat text
files written in UTF-8 is available in the current Solaris environment. This print filter
uses TrueType and Type 1 scalable fonts and X11 bitmap fonts available on the Solaris
system. The filter can also make use of printer resident fonts and can act as an X print
server client.

The output from the utility is standard PostScript™ and can be sent to any PostScript
printer. The mp utility can also output any page description language when configured
as an X Print server client, mp is supported by the print server.

To use the utility, type the following command:

system% mp filename | lp

You can also use the utility as a filter, since mp accepts stdin stream:

system% cat filename | mp | lp

183

You can set the utility as a printing filter for a line printer. For example, the following
command sequence tells the printer service LP that the printer lp1 accepts only mp
format files. This command also installs the printer lp1 on port /dev/ttya. See the
lpadmin(1M) man page for more details.

system# lpadmin -p lp1 -v /dev/ttya -I MP
system# accept lp1
system# enable lp1

Using lpfilter(1M), you can add the utility for a filter as follows:

system# lpfilter -f lp1 -F pathname

The command tells LP that a converter (in this case, mp) is available through the filter
description file named pathname. pathname contains the following information:

Input types: simple
Output types: MP
Command: /usr/bin/mp

The filter converts the default type file input to PostScript output using
/usr/bin/mp.

To print a UTF-8 text file, use the following command:

system% lp -T MP UTF-8-file

Refer to the mp(1) man page for more detail.

mp Print Filter Enhancement Overview
The mp print filter is enhanced in the current Solaris release. The latest mp can work
internally in three different modes to produce the output file in a locale to print
international text. The available modes are:

� Working with the locale-specific font configuration file mp.conf
� Working with the locale-specific PostScript prolog file prolog.ps
� Working as an Xprt (X Print Server) client

The following sections describe when to use a specific printing method and which
configuration and supporting files are used by mp for these printing methods.

Using mp With the Locale-Specific Font
Configuration File mp.conf
If the -D or -P option is not given in the command line, this printing method is the
default method, unless the prolog.ps file is present in either of
the/usr/openwin/lib/locale/$LANG/print or

184 International Language Environments Guide • January 2005

/usr/lib/lp/locale/$LANG/mp directories. The prolog.ps file forces mp to
print using PostScript embedded fonts in the file. Even if a prolog.ps exists in a
locale, using the -M option ignores the prolog.ps file and uses an mp.conf file
instead, if one exists.

This method uses the /usr/lib/lp/locale/$LANG/mp/mp.conf font
configuration file. You probably do not need to change this file unless you need to
print using alternate fonts. This file can be configured with TrueType, Type 1, or .pcf
fonts.

Using mp With the Locale-Specific PostScript
Prolog Files
The /usr/lib/lp/locale/C/ directory contains .ps print page layout files
common for this mode of printing. A description of how to customize these files is
provided in “Adding and Customizing prolog Files” on page 192

If the -D or -P option is not given in the command line, and
/usr/openwin/lib/locale/$LANG/print/prolog.ps exists, then the
prolog.ps file is prepended to the output. Depending upon the print style of the
.ps prolog page, the layout file is also prepended to the output.

This method of printing makes use of PostScript font files only. Customization of
prolog.ps files is described in “Adding and Customizing prolog Files” on page 192.

Using mp as an Xprt (X Print Server) Client
Using mp as an Xprt client enables mp to print the output of any printer connected to a
network supported by an Xprt print service. As an Xprt client, mp supports PostScript
and many versions of PCL.

The Xprt client attempts a connection to an Xprt server based on the following rules:

� When the -D printer_name@machine[:dispNum] or -P
printer_name@machine[:dispNum] options are used with the mp command, mp
attempts to connect to an Xprt print service on machine[:dispNum] with
printer_name.

If the above attempted connection to machine[:dispNum] fails or if the argument
given to -D or -P is just printer_name, then the mp command checks the
XPSERVERLIST for Xprt servers that support the printer_name argument. For
example:

system% setenv XPSERVERLIST "machine1[:dispNum1] machine2[:dispNum2] ..."

� If no server is found using above rules, mp checks for an XPDISPLAY environment
variable set to machine[:dispNum]. For example:

Chapter 7 • Print Filter Enhancement With mp 185

system% setenv XPDISPLAY "machine[:dispNum]"

� If the XPDISPLAY variable is not set or if the variable is invalid, mp tries to connect
to the default display :2100. If the default display value is also invalid, mp exits
with an error message.

The /usr/lib/lp/locale/C/mp directory contains .xpr print page sample
layout files for Xprt client. The sample files are for 300 dpi printers. If the target
printer has a different dpi value, the dpi value of the sample files is automatically
converted to the resolution of the target printer.

Localization With the mp.confConfiguration File
Configuration files provide the flexibility for adding or changing font entries, or font
group entries.

The system default configuration file is
/usr/lib/lp/locale/$LANG/mp/mp.conf where $LANG is a locale environment
variable in the locale in which printing occurs. You can specify a personal
configuration file with the -u config.file path option.

A ligature or variant glyph that has been encoded as a character for compatibility is
called a presentation form. The mp.conf file is used mainly for mapping the
intermediate code points in a locale to the presentation forms in the encoding of the
font that is used to print that code point.

Intermediate code points can either be wide characters, or output of the Portable
Layout Services (PLS) layer. Complex Text Layout printing requires the intermediate
code points to be PLS output. The default intermediate code generated by mp is PLS
output.

Font formats currently supported are Portable Compiled Format (PCF), TrueType, and
Type1 format. Both system-resident and printer-resident Type1 fonts are supported.
Keep in mind the following information about the format and contents of the
mp.conf configuration file:

� Lines must begin with a valid keyword (directive).
� Arguments to a keyword must appear on the same line as the keyword.
� Lines that begin with a # character are treated as comments until the end of the

line.
� Numeric arguments that begin with 0x are interpreted as a hexadecimal number.

The different sections in the mp.conf file include:

� Font aliasing
� Font group definition
� Mapping from the intermediate code ranges to the font group in a locale
� Associating each font with the shared object that maps the intermediate code

points to the presentation forms in the font encoding

186 International Language Environments Guide • January 2005

Font Aliasing
The font aliasing section of the mp.conf file is used to define alias names for each font
used for printing. Each line in this section is of the following form:

FontNameAlias font-alias-name font-type font-path

font-alias-name
The usual convention for aliasing a font name is to specify the encoding/script
name of the font followed by a letter that indicates whether the font is Roman,
Bold, Italic, or BoldItalic (R, B, I or BI).

For example,/usr/openwin/lib/X11/fonts/75dpi/courR18.pcf.Z,
because it is an iso88591 Roman font, can be assigned the alias name iso88591R.

font-type
Possible values are PCF for .pcf fonts, Type1 for Adobe Type1 fonts, and
TrueType for TrueType fonts. Only these three kinds of fonts can be configured in
this mp.config file.

font-path
The absolute path name for the font files. For Type1 printer-resident fonts, just
specify the font name, such as Helvetica.

For example,

FontNameAlias prnHelveticaR Type1 Helvetica

Font Group Definition
You can combine same-type fonts to form a font group. The format of the font group is
as follows:

keyword FontGroup.

fontgroupname The group name for the fonts.

GroupType The font type. Create font groups for the same type of fonts only
(PCF, Type1, TrueType).

Roman The Roman font name in the font group.

Bold The Bold font name in the font group.

Italic The Italic font name in the font group.

BoldItalic The BoldItalic font name in the font group.

For creating a group, only a Roman font entry is required. The Bold, Italic, and
BoldItalic fonts are optional. The different types of fonts are used to display the header
lines for mail or news articles, for example. If only the Roman font is defined, that font
is used in place of other fonts.

Chapter 7 • Print Filter Enhancement With mp 187

Mapping Section
The mapping section of the mp.conf files maps from the intermediate code ranges to
the font group in a locale. The format for each line in this section is as follows.

keyword MapCode2Font.

range_start A 4–byte hexadecimal value, starting with 0x, that indicates the start of
the code range to map to one or more font groups.

range_end Indicates the end of the code range to map. If the values is ’-’, only a
single intermediate code point is mapped to the target font.

group A Type1, PCF, or TrueType font group with which the presentation
forms are to be printed.

Association Section
The association section of the mp.conf file associates each font with the shared object
that maps the intermediate code points to the presentation forms in the font encoding.
The format for each line in this section is as follows:

keyword CnvCode2Font.

font alias name The alias name defined for the font.

mapping function Takes in the intermediate code and returns
presentation forms in font encoding, which is in
turn used to get the glyph index and draw the
glyph.

file path having mapping function The .so file name that contains the mapping
function. You can use the utility in dumpcs to
ascertain the intermediate code set for EUC locales.

Note – The current TrueType engine used by mp (1) can work only with format 4 and
PlatformID 3 cmap. You can only configure Microsoft .ttf files. Additionally, the
character map encoding has to be Unicode or Symbol for the TrueType font engine to
work correctly. Because most of the .ttf fonts in the Solaris environment obey these
restrictions, you can map all TrueType fonts in Solaris software within the mp.conf
file.

You can create a shared object that maps a font to correspond with a PCF type1 X
Logical Fonts Description (XLFD). You can then create a shared object that maps from
the intermediate code range to the encoding specified by XLFD. For example:

-monotype-arial-bold-r-normal-bitmap-10-100-75-75-p-54-iso8859-8

188 International Language Environments Guide • January 2005

The corresponding PCF font is:

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/75dpi/ariabd10.pcf.Z

This font is encoded in ISO 8859-8, so shared objects have to map between
intermediate code and corresponding ISO 8859-8 code points.

If a TrueType font with XLFD:

-monotype-arial-medium-r-normal--0-0-0-0-p-0-iso8859-8

has the corresponding font:

/usr/openwin/lib/locale/iso_8859_8/X11/fonts/TrueType/arial__h.ttf

you should map between the intermediate code and Unicode, because the cmap
encoding for the previous TrueType font is in Unicode. In the example of this TrueType
font, suppose a sample intermediate code in the en_US.UTF-8 locale that corresponds
to a Hebrew character (produced by the PLS layer) is 0xe50000e9. Because the font is
Unicode encoded, design the function within the corresponding .so module in such a
way that when you are passing 0xe50000e9, the output corresponds to presentation
form in Unicode. The example here is 0x000005d9.

The function prototype for the mapping function should be:

unsigned int function(unsigned int inter_code_pt)

The following are optional keyword/value pairs that you can use in mp.conf:

PresentationForm WC/PLSOutput

The default value is PLSOutput. If the user specifies WC, then the intermediate code
points that are generated are wide characters. For CTL printing, this default value
should be used.

If the locale is a non-CTL locale and the keyboard value is PLSOutput, that value is
ignored and the mp generates wide-character codes instead.

You can use the optional keyword/value pairs listed in the following table if the locale
supports CTL. These variables can assume any of the possible values given in the
middle column of the table.

TABLE 7–1 Optional Keyword/Value Pairs

Optional Keyword Optional Value Default

Orientation ORIENTATION_LTR/

ORIENTATION_RTL/

ORIENTATION_CONTEXTUAL

ORIENTATION_LTR

Chapter 7 • Print Filter Enhancement With mp 189

TABLE 7–1 Optional Keyword/Value Pairs (Continued)
Optional Keyword Optional Value Default

Numerals NUMERALS_NOMINAL/

NUMERALS_NATIONAL/

NUMERALS_CONTEXTUAL

NUMERALS_NOMINAL

TextShaping TEXT_SHAPED/

TEXT_NOMINAL/

TEXT_SHFORM1/

TEXT_SHFORM2/

TEXT_SHFORM3/

TEXT_SHFORM4

TEXT_SHAPED

� How to Add a Printer-Resident Font
The example in the following procedure illustrates how to add a new PCF, TrueType,
or Type1 printer-resident font to the configuration file.

Complete this procedure to replace the currently configured font. In the first two steps,
a PCF font used to display the characters in the range 0x00000021 - 0x0000007f is
replaced with a TrueType font.

1. Before you add a new font, look at various components in the configuration file
that correspond to the currently configured font.

FontNameAlias iso88591R PCF /usr/openwin/lib/X11/fonts/75dpi/courR18PCF.Z
FontNameAlias iso88591B PCF /usr/openwin/lib/X11/fonts/75dpi/courB18PCF.Z
.
.
.
FontGroup iso88591 PCF iso88591R iso88591B
.
.
.
MapCode2Font 0x00000020 0x0000007f iso88591
.
.
.
CnvCode2Font iso88591R _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so
CnvCode2Font iso88591B _xuiso88591 /usr/lib/lp/locale/$LANG/mp/xuiso88591.so

For example, you could map the
/usr/openwin/lib/locale/ja/X11/fonts/TT/HG-MinchoL.ttf fonts to
the en_US.UTF-8 locale. Because HG-MinchoL.ttf is a Unicode TrueType font
file, you use the .so module mapping function to directly return the incoming
ucs-2 code points.

190 International Language Environments Guide • January 2005

unsigned short _ttfjis0201(unsigned short ucs2) {
return(ucs2);

}

a. Save the mapping to the ttfjis0201.c file.

b. Create a shared object file.

cc -G -Kpic -o ttfjis0201.so ttfjis0201.c

2. To map a PCF file, such as
/usr/openwin/lib/locale/ja/X11/fonts/75dpi/gotmrk20.pcf.Z,
check the following encoding that corresponds to XLFD in the
/usr/openwin/lib/locale/ja/X11/fonts/75dpi/fonts.dir file.

-sun-gothic-medium-r-normal--22-200-75-75-c-100-jisx0201.1976-0

a. For jisx0201 encoding, prepare a shared object that maps from ucs-2 to
jisx0201. Obtain the mapping table for creating the .so module. For a
Unicode locale, find the character set mappings to Unicode in the
ftp.unicode.org/pub/MAPPINGS/ directory.

b. Use these mappings to write a xu2jis0201.c file:

unsigned short _xu2jis0201(unsigned short ucs2) {
if(ucs2 >= 0x20 && ucs2 <= 0x7d)

return (ucs2);
if(ucs2==0x203e)

return (0x7e);
if(ucs2 >= 0xff61 && ucs2 <= 0xff9f)

return (ucs2 - 0xff60 + 0xa0);
return(0);

}

c. When you create a mapping file, include all the usc—2 to jisx0201 cases.

cc -G -o xu2jis0201.so xu2jis0201.c

� How to Create a Shared Object File
The examples in the following procedure how you how to create shared object files.

1. To add a font, edit the lines of the following example that correspond to sections
of the mp.conf file.

This example shows how to add the TrueType font. The .so path points to the
xu2jis0201.so file.

FontNameAlias jis0201R TrueType /home/fn/HG-Minchol.ttf
FontGroup jis0201 TrueType jis0201R
MapCode2Font 0x0020 0x007f jis0201

CnvCode2Font jis0201R _ttfjis0201 <.so path>

Chapter 7 • Print Filter Enhancement With mp 191

Note – To add a PCF font, change the keyword from TrueType to PCF.

2. Invoke the mp command with the changed mp.conf file to print the range
0x0020-0x007f in the new font.

You can map other Japanese character ranges with the same .so file, For example,
you could map the range 0x0000FF61 0x0000FF9F.

Note – To maintain backward compatibility, you can use the
/usr/openwin/lib/locale/$LANG/print/prolog.ps file to create output in
the current locale. When you use the prolog.ps file, no configuration file is
required.

You can find a sample mp.conf file in the
/usr/lib/lp/locale/en_US.UTF-8/mp directory.

Adding and Customizing prolog Files
The prolog files can be divided into two main categories:

� PostScript prolog files (.ps)
� X print server client prolog files(.xpr).

PostScript File Customization
The PostScript files fall into the following categories:

� Common prolog file
� Print layout prolog files

Locale-Dependent prolog Files
The purpose of the prolog.ps file is to set up non-generic fonts. Applications use
these predefined PostScript font names for printing. The prolog file must define at
least the following font names for Desk Set Calendar manager and mp:

� LC_Times-Roman
� LC_Times-Bold

192 International Language Environments Guide • January 2005

� LC_Helvetica
� LC_Helvetica-Bold
� LC_Courier
� LC_Helvetica-BoldOblique
� LC_Times-Italic

The following example uses these fonts to print the particular local character set
specified:

100 100 moveto
/LC_Times-Roman findfont 24 scale font setfont
(Any text string in your locale) show

The Solaris localization kit provides a sample prolog.ps file for the Japanese
environment. Alternatively, this file is found in the
/usr/openwin/lib/locale/ja/print/ directory.

The following example shows how to add or change composite fonts in an existing
prolog.ps file.

%
(Foo-Fine) makecodeset12
(Base-Font) makeEUCfont

%

You could define a composite font called LC_Base-Font, for example.
LC_Base-Font might be a composite of a Foo-Fine font that contains a locale
character set and a Base-Font. You do not need in-depth knowledge of PostScript
programming to add or change a font.

The best way to create a prolog.ps file is to study the example version. In the
example prolog.ps, two routines need to be written: makecodeset12 and
makeEUCfont. The routine makecodeset12 sets the local font-encoding information.
This routine might differ from locale to locale. The routine makeEUCfont combines
the base font and the locale font to form a composite font. The creator of the prolog
file should have good knowledge of PostScript in order to write makecodeset12 and
makeEUCfont.

The prolog.ps file support is reserved for backward compatibility only. Do not
create a new prolog.ps file for generating printed output for a locale. Use mp.conf
instead.

The path for prolog.ps file is

/usr/openwin/lib/locale/$LANG/print/prolog.ps

Common PostScript prolog Files
The common prolog file is mp.common.ps.

Every other page layout prolog file needs to include this file.

Chapter 7 • Print Filter Enhancement With mp 193

The mp.common.ps file resides in the /usr/lib/lp/locale/C/mp/ directory. This
file contains a PostScript routine to re-encode a font from the standard encoding to the
ISO 8859–1 encoding. The .reencodeISO routine is called from the print layout
prolog files to change encoding of the fonts. Usually this prolog file does not need
any customization. If you create your own prolog file, set the environment variable
MP_PROLOGUE to point to the directory that contains the modified prolog files.

Print Layout prolog Files
The print layout prolog files, mp.*.ps files, contain routines for controlling the page
layout for printing. In addition to issuing a header and a footer for a print page with
user name, print date, and page number, these prolog files can provide other
information. For example, the prolog files can give effective print area dimensions
and landscape and portrait mode of printing to be used.

The Print Layout prolog files are:

� mp.pro.ps
� mp.pro.alt.ps
� mp.pro.fp.ps
� mp.pro.ps
� mp.pro.ts.ps
� mp.pro.altl.ps
� mp.pro.ff.ps
� mp.pro.l.ps
� mp.pro.ll.ps
� mp.pro.tm.ps

A set of standard functions needs to be defined in every prolog file. These functions
are called when a new print page starts, a print page ends, or a new column ends. The
implementations of these functions define the print attributes of the printout.

The following PostScript variables are defined at runtime by the mp binary. All the
print layout files can use these variables for printing dynamic information such as
user name, subject, print time. This information taken from the variables
normally appears in the header or footer of the print page.

User The name of the user who is running mp, obtained from
the system passwd file.

MailFor Variable used to hold the name of the type of article to
print. The possible values for this variable are:

� Listing for – When the input is a text file
� Mail for – When the input is a mail file
� Article from – When the input is an article from a

news group

Subject The subject taken from the mail and news headers. You
can use the -s option to force a subject to the mail and
news files as well as to normal text files.

194 International Language Environments Guide • January 2005

Timenow The time of print that appears in the header and footer.
This information is taken from the localtime()
function.

The following functions are implemented in print layout prolog files. All of these
functions can use subfunctions.

endpage Usage: page_number endpage

Called when the bottom of a printed page is reached.
This function restores the graphic context of the page
and issues a showpage. In some prolog files the
header and footer information is displayed in a
page-by-page mode rather than in a column-by-column
mode. You can implement this function to call
subfunctions that display the header and footer
gray-scale lozenges.

newpage Usage: page_number newpage

Routines or commands to be executed when a new
page begins. Setting landscape print mode, saving the
print graphic context, and translating the page
coordinates are some of the functions for these
routines.

endcol Usage: page_number col_number endcol

Used to display header and footer information, move
to the new print position, and so forth.

To add new print layout prolog files, you need to define the following variables
explicitly within the print layout prolog file:

NumCols Number of columns in a print page. Default is 2.

PrintWidth Width of print area in inches. Default is 6.

PrintHeight Height of print area in inches. Default is 9.

.xpr Files
These files are located by default at /usr/lib/lp/locale/C/mp/. An .xpr file
corresponds to each PostScript prolog layout file except the mp.common.ps file. You
can define an alternate prolog directory by defining the MP_PROLOGUE environment
variable.

Chapter 7 • Print Filter Enhancement With mp 195

These files work as keyword/values pairs. Lines that start with # are considered
comments. Spaces separate different tokens unless explicitly stated. Three main
sections for each .xpr file are bound by the following keyword pairs:

� STARTCOMMON/ENDCOMMON
� STARTPAGE/ENDPAGE
� STARTCOLUMN/ENDCOLUMN
� STARTFORCEDPAGE/ENDFORCEDPAGE
� STARTFORCEDCOLUMN/ENDFORCEDCOLUMN

Certain keyword/value pairs can be used in these three areas. Each area is described
in the following section.

STARTCOMMON/ENDCOMMON Keywords
All the keyword/value pairs that appear after the STARTCOMMON keyword and before
the ENDCOMMON keyword define general properties of the print page. Different valid
values for a keyword are separated by using a slash (/) character.

ORIENTATION 0/1
0 means the printing occurs in portrait and 1 means in landscape.

PAGELENGTH unsigned-integer
A value that indicates the number of lines per logical page.

LINELENGTH unsigned-integer
A value that indicates the number of single-column characters per line.

NUMCOLS unsigned-integer
The number of logical pages per physical page.

HDNGFONTSIZE unsigned-integer
The heading-font point size in decipoints.

BODYFONTSIZE unsigned-integer
The body-font point size in decipoints.

PROLOGDPI unsigned-integer
The dots-per-inch scale in which the current .xpr file is created.

YTEXTBOUNDARY unsigned-integer
This y-coordinate establishes the boundary for text printing in a page or logical
page (column). This boundary is used as an additional check to see whether text
printing is occurring within the expected area. This boundary is needed for
Complex Text Layout and EUC printing, as character height information obtained
from corresponding fonts can be wrong.

STARTTEXT unsigned-integerunsigned-integer
The decipoint x/y points where the actual text printing starts in the first logical
page in a physical page.

196 International Language Environments Guide • January 2005

PAGESTRING 0/1
The 1 indicates that a page string needs to be appended before the page number in
the heading.

0 indicates that only the page number is displayed.

EXTRAHDNGFONT font string 1, font string 2, ... font string n
The font strings are X Logical Font Descriptions. The token that separates the
keyword EXTRAHDNGFONT from the comma-separated font name list is a quote "
character, not a space or tab. These fonts are given preference over the built-in fonts
when the heading is printed. Usually, EXTRABODYFONT is used to assign
printer-resident fonts that are configured in the
/usr/openwin/server/etc/XpConfig/C/print/models/<model
name>/fonts directory.

The fonts.dir file contains the XLFD of the printer-resident fonts.

In the .xpr file, a font usually is specified as shown in the following example:

"-monotype-Gill Sans-Regular-r-normal- -*-%d-*-*-p-0-iso8859-2"

The %d, if present, is replaced by mp to the point size of the current heading fonts in
the .xpr file. The x resolution and y resolution are specified by *. The average
width field is set as 0 to indicate selection of a scalable font, if possible. You can also
provide more specific font names.

EXTRABODYFONT font string 1, font string 2, ... font string n
The same as EXTRAHDNGFONT, except that these fonts are used to print the page
body.

XDISPLACEMENT signed/unsigned int
Provides the x coordinate displacement to be applied to the page for shifting the
contents of the page in the x direction. This displacement can be a +ve or -ve value.

YDISPLACEMENT signed/unsigned int
The same as x displacement, except that the shifting happens in the y direction.

These two keywords are useful when you deal with some printers that have
nonstandard margin widths that require you to shift the printed contents in a page.

STARTPAGE/ENDPAGE Keywords
The keyword value pairs in this section are bound by STARTPAGE and ENDPAGE
keywords. This section contains drawing and heading information that is to be
applied for a physical page. A physical page can contain many logical pages, but all
the drawing routines that are contained between these keywords are applied only
once to a physical page.

The valid drawing entities are LINE and ARC. The XDrawLine() and XDrawArc()
functions are executed on values of these keywords.

Chapter 7 • Print Filter Enhancement With mp 197

The dimensions within this section are mapped in PROLOGDPI units. Angles are in
degrees.

LINE x1 y1 x2 y2 The x/y unsigned coordinates define a pair of points
for connecting a line.

ARC x y width height
angle1 angle2

x and y are both unsigned integers that represent the
arc origin. Width and height are unsigned integers that
represent the width and height of the arc.

USERSTRINGPOS x y Unsigned coordinates represent the position in which
the user information is printed on the heading.

TIMESTRINGPOS x y Unsigned coordinates represent the position in which
the time for printing is printed on the heading.

PAGESTRINGPOS x y Unsigned coordinates represent the position to print
the page string for each printed page.

SUBJECTSTRINGPOS x y Unsigned coordinates represent the position to print
the subject in the page.

STARTFORCEDPAGE/ENDFORCEDPAGE Section
When the -n option is given to mp, all the decorations given within a
STARTPAGE/ENDPAGE section do not print. However, everything included within a
STARTFORCEDPAGE/ENDFORCEDPAGE section prints even if the -n option is given.

STARTCOLUMN/ENDCOLUMN Section
All keywords are the same as described in “STARTPAGE/ENDPAGE Keywords”
on page 197 except that the entries in this section are applied NUMCOLS times to a
physical page. If NUMCOLS is 3, then the printable area of the physical page is divided
into three, and lines, arcs, or heading decorations appear three times per page.

STARTFORCEDCOLUMN/ENDFORCEDCOLUMN Section
When the -n option is given to mp, all the decorations given within a
STARTCOLUMN/ENDCOLUMN section do not print. However, everything included
within a STARTFORCEDCOLUMN/ENDFORCEDCOLUMN section prints even if the -n
option is given.

198 International Language Environments Guide • January 2005

Creating a New .xpr File
When you create a new .xpr prolog file, you specify only the values that differ from
the default.

The following table lists the mp program defaults for different keywords if these values
are not specified in the .xpr file for the STARTCOMMON/ENDCOMMON section:

TABLE 7–2 STARTCOMMON/ENDCOMMON Keyword Values

Keyword Value

ORIENTATION 0

PAGELENGTH 60

LINELENGTH 80

YTEXTBOUNDARY 3005

NUMCOLS 01

HDNGFONTSIZE 120

PROLOGDPI 300

STARTTEXT 135 280

PAGESTRING 0

No default values are needed for the other two sections bound by
STARTPAGE/ENDPAGE and STARTCOLUMN/ENDCOLUMN.

To create a page with no decoration, use four logical pages per physical page in
portrait format. Specify the following sections and values:

STARTCOMMON
NUMCOLS 04
LINELENGTH 20
ENDCOMMON

When you create a page with no decoration, you do not need to specify the following
two sections:

STARTPAGE/ENDPAGE
STARTCOLUMN/ENDCOLUMN

These parameters are not needed if you are not putting decorations on the printed
page. All the coordinates are in 300 dpi by default unless you are not specifying the
PROLOGDPI keyword. If the target printer resolution is different, the .xpr file is
scaled to fit into that resolution by the program.

Chapter 7 • Print Filter Enhancement With mp 199

Before you create an .xpr file, you must know the paper dimensions. For U.S. paper,
8.5x11 inches, for a printer of resolution 300 dpi, 2550X3300 are the total dimensions.
Most printers cannot print from the top left corner of the paper. Instead, some margin
space is assigned around the physical paper. Even if you try to print from 0,0 the
printing will not be in the top left corner of the page. Consider this limitation when
you create a new .xpr file.

200 International Language Environments Guide • January 2005

APPENDIX A

iconv Code Conversions

This appendix lists the Unicode-related code conversion modules available in the
current Solaris operating environment.

TABLE A–1 Available Unicode Related iconv Code Conversion Modules

From Code (Symbol) To Code (Symbol)

646 (ISO 646) UCS-2

646 (ISO 646) USC-2BE

646 (ISO 646) UCS-2LE

646 (ISO 646) USC-4

646 (ISO 646) USC-4BE

646 (ISO 646) USC-4LE

646 (ISO 646) UTF-8

646 (ISO 646) UTF-16

646 (ISO 646) UTF-16BE

646 (ISO 646) UTF-16LE

646 (ISO 646) UTF-32

646 (ISO 646) UTF-32BE

646 (ISO 646) UTF-32LE

ISO8859–11 UTF-8

8859-1 (ISO8859-1) UCS-2

8859-1 (ISO8859-1) UCS-2BE

8859-1 (ISO8859-1) UCS-2LE

201

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-1 (ISO8859-1) UCS-4

8859-1 (ISO8859-1) UCS–4BE

8859-1 (ISO8859-1) UCS-4LE

8859-1 (ISO8859-1) UTF-8

8859-1 (ISO8859-1) UTF-16

8859-1 (ISO8859-1) UTF-16BE

8859-1 (ISO8859-1) UTF-16LE

8859-1 (ISO8859-1) UTF-32

8859-1 (ISO8859-1) UTF-32BE

8859-1 (ISO8859-1) UTF-32LE

8859-2 (ISO8859-2) UCS-2

8859-2 (ISO8859-2) UCS-2BE

8859-2 (ISO8859-2) UCS-2LE

8859-2 (ISO8859-2) UCS-4

8859-2 (ISO8859-2) UCS–4BE

8859-2 (ISO8859-2) UCS-4LE

8859-2 (ISO8859-2) UTF-8

8859-2 (ISO8859-2) UTF-16

8859-2 (ISO8859-2) UTF-16BE

8859-2 (ISO8859-2) UTF-16LE

8859-2 (ISO8859-2) UTF-32

8859-2 (ISO8859-2) UTF-32BE

8859-2 (ISO8859-2) UTF-32LE

8859-3 (ISO8859-3) UCS-2

8859-3 (ISO8859-3) UCS-2BE

8859-3 (ISO8859-3) UCS-2LE

8859-3 (ISO8859-3) UCS-4

8859-3 (ISO8859-3) UCS–4BE

8859-3 (ISO8859-3) UCS-4LE

202 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-3 (ISO8859-3) UTF-8

8859-3 (ISO8859-3) UTF-16

8859-3 (ISO8859-3) UTF-16BE

8859-3 (ISO8859-3) UTF-16LE

8859-3 (ISO8859-3) UTF-32

8859-3 (ISO8859-3) UTF-32BE

8859-3 (ISO8859-3) UTF-32LE

8859-4 (ISO8859-4) UCS-2

8859-4 (ISO8859-4) UCS-2BE

8859-4 (ISO8859-4) UCS-2LE

8859-4 (ISO8859-4) UCS-4

8859-4 (ISO8859-4) UCS–4BE

8859-4 (ISO8859-4) UCS-4LE

8859-4 (ISO8859-4) UTF-8

8859-4 (ISO8859-4) UTF-16

8859-4 (ISO8859-4) UTF-16BE

8859-4 (ISO8859-4) UTF-16LE

8859-4 (ISO8859-4) UTF-32

8859-4 (ISO8859-4) UTF-32BE

8859-4 (ISO8859-4) UTF-32LE

8859-5 (ISO8859-5) UCS-2

8859-5 (ISO8859-5) UCS-2BE

8859-5 (ISO8859-5) UCS-2LE

8859-5 (ISO8859-5) UCS-4

8859-5 (ISO8859-5) UCS–4BE

8859-5 (ISO8859-5) UCS-4LE

8859-5 (ISO8859-5) UTF-8

8859-5 (ISO8859-5) UTF-16

8859-5 (ISO8859-5) UTF-16BE

Appendix A • iconv Code Conversions 203

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-5 (ISO8859-5) UTF-16LE

8859-5 (ISO8859-5) UTF-32

8859-5 (ISO8859-5) UTF-32BE

8859-5 (ISO8859-5) UTF-32LE

8859-6 (ISO8859-6) UCS-2

8859-6 (ISO8859-6) UCS-2BE

8859-6 (ISO8859-6) UCS-2LE

8859-6 (ISO8859-6) UCS-4

8859-6 (ISO8859-6) UCS–4BE

8859-6 (ISO8859-6) UCS-4LE

8859-6 (ISO8859-6) UTF-8

8859-6 (ISO8859-6) UTF-16

8859-6 (ISO8859-6) UTF-16BE

8859-6 (ISO8859-6) UTF-16LE

8859-6 (ISO8859-6) UTF-32

8859-6 (ISO8859-6) UTF-32BE

8859-6 (ISO8859-6) UTF-32LE

8859-7 (ISO8859-7) UCS-2

8859-7 (ISO8859-7) UCS-2BE

8859-7 (ISO8859-7) UCS-2LE

8859-7 (ISO8859-7) UCS-4

8859-7 (ISO8859-7) UCS–4BE

8859-7 (ISO8859-7) UCS-4LE

8859-7 (ISO8859-7) UTF-8

8859-7 (ISO8859-7) UTF-16

8859-7 (ISO8859-7) UTF-16BE

8859-7 (ISO8859-7) UTF-16LE

8859-7 (ISO8859-7) UTF-32

8859-7 (ISO8859-7) UTF-32BE

204 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-7 (ISO8859-7) UTF-32LE

8859-8 (ISO8859-8) UCS-2

8859-8 (ISO8859-8) UCS-2BE

8859-8 (ISO8859-8) UCS-2LE

8859-8 (ISO8859-8) UCS-4

8859-8 (ISO8859-8) UCS–4BE

8859-8 (ISO8859-8) UCS-4LE

8859-8 (ISO8859-8) UTF-8

8859-8 (ISO8859-8) UTF-16

8859-8 (ISO8859-8) UTF-16BE

8859-8 (ISO8859-8) UTF-16LE

8859-8 (ISO8859-8) UTF-32

8859-8 (ISO8859-8) UTF-32BE

8859-8 (ISO8859-8) UTF-32LE

8859-9 (ISO8859-9) UCS-2

8859-9 (ISO8859-9) UCS-2BE

8859-9 (ISO8859-9) UCS-2LE

8859-9 (ISO8859-9) UCS-4

8859-9 (ISO8859-9) UCS–4BE

8859-9 (ISO8859-9) UCS-4LE

8859-9 (ISO8859-9) UTF-8

8859-9 (ISO8859-9) UTF-16

8859-9 (ISO8859-9) UTF-16BE

8859-9 (ISO8859-9) UTF-16LE

8859-9 (ISO8859-9) UTF-32

8859-9 (ISO8859-9) UTF-32BE

8859-9 (ISO8859-9) UTF-32LE

8859-10 (ISO8859-10) UCS-2

8859-10 (ISO8859-10) UCS-2BE

Appendix A • iconv Code Conversions 205

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-10 (ISO8859-10) UCS-2LE

8859-10 (ISO8859-10) UCS-4

8859-10 (ISO8859-10) UCS–4BE

8859-10 (ISO8859-10) UCS-4LE

8859-10 (ISO8859-10) UTF-8

8859-10 (ISO8859-10) UTF-16

8859-10 (ISO8859-10) UTF-16BE

8859-10 (ISO8859-10) UTF-16LE

8859-10 (ISO8859-10) UTF-32

8859-10 (ISO8859-10) UTF-32BE

8859-10 (ISO8859-10) UTF-32LE

8859-13 (ISO8859-13) UCS-2

8859-13 (ISO8859-13) UCS-2BE

8859-13 (ISO8859-13) UCS-2LE

8859-13 (ISO8859-13) UCS-4

8859-13 (ISO8859-13) UCS–4BE

8859-13 (ISO8859-13) UCS-4LE

8859-13 (ISO8859-13) UTF-8

8859-13 (ISO8859-13) UTF-16

8859-13 (ISO8859-13) UTF-16BE

8859-13 (ISO8859-13) UTF-16LE

8859-13 (ISO8859-13) UTF-32

8859-13 (ISO8859-13) UTF-32BE

8859-13 (ISO8859-13) UTF-32LE

8859-14 (ISO8859-14) UCS-2

8859-14 (ISO8859-14) UCS-2BE

8859-14 (ISO8859-14) UCS-2LE

8859-14 (ISO8859-14) UCS-4

8859-14 (ISO8859-14) UCS–4BE

206 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-14 (ISO8859-14) UCS-4LE

8859-14 (ISO8859-14) UTF-8

8859-14 (ISO8859-14) UTF-16

8859-14 (ISO8859-14) UTF-16BE

8859-14 (ISO8859-14) UTF-16LE

8859-14 (ISO8859-14) UTF-32

8859-14 (ISO8859-14) UTF-32BE

8859-14 (ISO8859-14) UTF-32LE

8859-15 (ISO8859-15) UCS-2

8859-15 (ISO8859-15) UCS-2BE

8859-15 (ISO8859-15) UCS-2LE

8859-15 (ISO8859-15) UCS-4

8859-15 (ISO8859-15) UCS–4BE

8859-15 (ISO8859-15) UCS-4LE

8859-15 (ISO8859-15) UTF-8

8859-15 (ISO8859-15) UTF-16

8859-15 (ISO8859-15) UTF-16BE

8859-15 (ISO8859-15) UTF-16LE

8859-15 (ISO8859-15) UTF-32

8859-15 (ISO8859-15) UTF-32BE

8859-15 (ISO8859-15) UTF-32LE

8859-16 (ISO8859-16) UCS-2

8859-16 (ISO8859-16) UCS-2BE

8859-16 (ISO8859-16) UCS-2LE

8859-16 (ISO8859-16) UCS-4

8859-16 (ISO8859-16) UCS–4BE

8859-16 (ISO8859-16) UCS-4LE

8859-16 (ISO8859-16) UTF-8

8859-16 (ISO8859-16) UTF-16

Appendix A • iconv Code Conversions 207

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

8859-16 (ISO8859-16) UTF-16BE

8859-16 (ISO8859-16) UTF-16LE

8859-16 (ISO8859-16) UTF-32

8859-16 (ISO8859-16) UTF-32BE

8859-16 (ISO8859-16) UTF-32LE

ACE UTF-8

ACE-ALLOW-UNASSIGNED UTF-8

eucJP UTF-8

gb2312 UTF-8

iso2022 UTF-8

ko_KR-cp933 UTF-8

ko_KR-euc UTF-8

ko_KR-iso2022–7 UTF-8

ko_KR-johap UTF-8

ko_KR-johap92 UTF-8

zh_TW-euc UTF-8

zh_TW-cp937 UTF-8

zh_TW-iso2022–7 UTF-8

GBK UTF-8

FujitsuJEF-ascii-code UTF-8

FujitsuJEF-ascii-face UTF-8

FujitsuJEF-kana-code UTF-8

FujitsuJEF-kana-face UTF-8

HitachiKEIS83 UTF-8

HitachiKEIS90 UTF-8

ISO-2022–JP UTF-8

KOI8-R UCS-2

KOI8-R UCS-2BE

KOI8-R UCS-2LE

208 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

KOI8-R UCS-4

KOI8-R UCS–4BE

KOI8-R UCS-4LE

KOI8-R UTF-8

KOI8-R UTF-16

KOI8-R UTF-16BE

KOI8-R UTF-16LE

KOI8-R UTF-32

KOI8-R UTF-32BE

KOI8-R UTF-32LE

KOI8-U UCS-2

KOI8-U UCS-2BE

KOI8-U UCS-2LE

KOI8-U UCS-4

KOI8-U UCS-4BE

KOI8-U UCS-4LE

KOI8-U UTF–8

KOI8-U UTF-16

KOI8-U UTF-16BE

KOI8-U UTF-16LE

KOI8-U UTF-32

KOI8-U UTF-32BE

KOI8-U UTF-32LE

NECJIPS UTF-8

PCK UTF-8

PTCP154 UCS-2

PTCP154 UCS-2BE

PTCP154 UCS-2LE

PTCP154 UCS-4

Appendix A • iconv Code Conversions 209

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

PTCP154 UCS-4BE

PTCP154 UCS-4LE

PTCP154 UTF-16

PTCP154 UTF-16BE

PTCP154 UTF-16LE

PTCP154 UTF-32

PTCP154 UTF-32BE

PTCP154 UTF-32LE

PTCP154 UTF-8

UCS-2 646 (ISO 646)

UCS-2 8859-1 (ISO8859-1)

UCS-2 8859-2 (ISO8859-2)

UCS-2 8859-3 (ISO8859-3)

UCS-2 8859-4 (ISO8859-4)

UCS-2 8859-5 (ISO8859-5)

UCS-2 8859-6 (ISO8859-6)

UCS-2 8859-7 (ISO8859-7)

UCS-2 8859-8 (ISO8859-8)

UCS-2 8859-9 (ISO8859-9)

UCS-2 8859-10 (ISO8859-10)

UCS-2 8859-13 (ISO8859-13)

UCS-2 8859-14 (ISO8859-14)

UCS-2 8859-15 (ISO8859-15)

UCS-2 8859-16 (ISO8859-16)

UCS-2 KOI8-R

UCS-2 KOI8-U

UCS-2 PTCP154

UCS-2BE PTCP154

UCS-2LE PTCP154

210 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-4 PTCP154

UCS-4BE PTCP154

UCS-4LE PTCP154

UTF-16 PTCP154

UTF-16BE PTCP154

UTF-16LE PTCP154

UTF-32 PTCP154

UTF-32BE PTCP154

UTF-32LE PTCP154

UTF-8 PTCP154

UCS-2 UCS-4

UCS-2 UCS-4BE

UCS-2 UCS-4LE

UCS-2 UTF-7

UCS-2 UTF-8

UCS-2BE 646 (ISO 646)

UCS-2BE 8859-1 (ISO8859-1)

UCS-2BE 8859-2 (ISO8859-2)

UCS-2BE 8859-3 (ISO8859-3)

UCS-2BE 8859-4 (ISO8859-4)

UCS-2BE 8859-5 (ISO8859-5)

UCS-2BE 8859-6 (ISO8859-6)

UCS-2BE 8859-7 (ISO8859-7)

UCS-2BE 8859-8 (ISO8859-8)

UCS-2BE 8859-9 (ISO8859-9)

UCS-2BE 8859-10 (ISO8859-10)

UCS-2BE 8859-13 (ISO8859-13)

UCS-2BE 8859-14 (ISO8859-14)

UCS-2BE 8859-15 (ISO8859-15)

Appendix A • iconv Code Conversions 211

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-2BE 8859-16 (ISO8859-16)

UCS-2BE KOI8-R

UCS-2BE KOI8-U

UCS-2BE UCS-4

UCS-2BE UCS-4BE

UCS-2BE UCS-4LE

UCS-2BE UTF-8

UCS-2LE 646 (ISO 646)

UCS-2LE 8859-1 (ISO8859-1)

UCS-2LE 8859-2 (ISO8859-2)

UCS-2LE 8859-3 (ISO8859-3)

UCS-2LE 8859-4 (ISO8859-4)

UCS-2LE 8859-5 (ISO8859-5)

UCS-2LE 8859-6 (ISO8859-6)

UCS-2LE 8859-7 (ISO8859-7)

UCS-2LE 8859-8 (ISO8859-8)

UCS-2LE 8859-9 (ISO8859-9)

UCS-2LE 8859-10 (ISO8859-10)

UCS-2LE 8859-13 (ISO8859-13)

UCS-2LE 8859-14 (ISO8859-14)

UCS-2LE 8859-15 (ISO8859-15)

UCS-2LE 8859-16 (ISO8859-16)

UCS-2LE KOI8-R

UCS-2LE KOI8-U

UCS-2LE UCS-4

UCS-2LE UCS-4BE

UCS-2LE UCS-4LE

UCS-2LE UTF-8

UCS-2LE UTF-32

212 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-2LE UTF-32BE

UCS-2LE UTF-32LE

UCS-4 646

UCS-4 8859-1 (ISO8859-1)

UCS-4 8859-2 (ISO8859-2)

UCS-4 8859-3 (ISO8859-3)

UCS-4 8859-4 (ISO8859-4)

UCS-4 8859-5 (ISO8859-5)

UCS-4 8859-6 (ISO8859-6)

UCS-4 8859-7 (ISO8859-7)

UCS-4 8859-8 (SO 8859-8)

UCS-4 8859-9 (ISO8859-9)

UCS-4 8859-10 (ISO8859-10)

UCS-4 8859-13 (ISO8859-13)

UCS-4 8859-14 (ISO8859-14)

UCS-4 8859-15 (ISO8859-15)

UCS-4 8859-16 (ISO8859-16)

UCS-4 KOI8-R

UCS-4 KOI8-U

UCS-4 UCS-2

UCS-4 UCS-2BE

UCS-4 UCS-2LE

UCS-4 UTF-7

UCS-4 UTF-8

UCS-4 UCS-16

UCS-4 UCS-16BE

UCS-4 UCS-16LE

UCS-4 UTF-32

UCS-4 UCS-32BE

Appendix A • iconv Code Conversions 213

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-4 UCS-32LE

UCS-4BE 646

UCS-4BE 8859-1 (ISO8859-1)

UCS-4BE 8859-2 (ISO8859-2)

UCS-4BE 8859-3 (ISO8859-3)

UCS-4BE 8859-4 (ISO8859-4)

UCS-4BE 8859-5 (ISO8859-5)

UCS-4BE 8859-6 (ISO8859-6)

UCS-4BE 8859-7 (ISO8859-7)

UCS-4BE 8859-8 (SO 8859-8)

UCS-4BE 8859-9 (ISO8859-9)

UCS-4BE 8859-10 (ISO8859-10)

UCS-4BE 8859-13 (ISO8859-13)

UCS-4BE 8859-14 (ISO8859-14)

UCS-4BE 8859-15 (ISO8859-15)

UCS-4BE 8859-16 (ISO8859-16)

UCS-4BE KOI8-R

UCS-4BE KOI8-U

UCS-4BE UCS-2

UCS-4BE UCS-2BE

UCS-4BE UCS-2LE

UCS-4BE UCS-8

UCS-4BE UCS-16

UCS-4BE UCS-16BE

UCS-4BE UCS-16LE

UCS-4BE UCS-32

UCS-4BE UCS-32BE

UCS-4BE UCS-32LE

UCS-4LE 646 (ISO 646)

214 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UCS-4LE 8859-1 (ISO8859-1)

UCS-4LE 8859-2 (ISO8859-2)

UCS-4LE 8859-3 (ISO8859-3)

UCS-4LE 8859-4 (ISO8859-4)

UCS-4LE 8859-5 (ISO8859-5)

UCS-4LE 8859-6 (ISO8859-6)

UCS-4LE 8859-7 (ISO8859-7)

UCS-4LE 8859-8 (SO 8859-8)

UCS-4LE 8859-9 (ISO8859-9)

UCS-4LE 8859-10 (ISO8859-10)

UCS-4LE 8859-13 (ISO8859-13)

UCS-4LE 8859-14 (ISO8859-14)

UCS-4LE 8859-15 (ISO8859-15)

UCS-4LE 8859-16 (ISO8859-15)

UCS-4LE KOI8-R

UCS-4LE KOI8-U

UCS-4LE UCS-2

UCS-4LE UCS-2BE

UCS-4LE UCS-2LE

UCS-4LE UTF-16

UCS-4LE UTF-16BE

UCS-4LE UTF-16LE

UCS-4LE UTF-8

UTF-7 UCS-2

UTF-7 UCS-4

UTF-7 UCS-8

UTF-8 646 (ISO 646)

UTF-8 8859-1 (ISO8859-1)

UTF-8 8859-2 (ISO8859-2)

Appendix A • iconv Code Conversions 215

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 8859-3 (ISO8859-3)

UTF-8 8859-4 (ISO8859-4)

UTF-8 8859-5 (ISO8859-5)

UTF-8 8859-6 (ISO8859-6)

UTF-8 8859-7 (ISO8859-7)

UTF-8 8859-8 (ISO8859-8)

UTF-8 8859-9 (ISO8859-9)

UTF-8 8859-10 (ISO8859-10)

UTF-8 8859-11 (ISO8859-11)

UTF-8 8859-13 (ISO8859-13)

UTF-8 8859-14 (ISO8859-14)

UTF-8 8859-15 (ISO8859-15)

UTF-8 8859-16 (ISO8859-16)

UTF-8 ACE

UTF-8 ACE-ALLOW-UNASSIGNED

UTF-8 eucJP

UTF-8 gb2312

UTF-8 iso2022

UTF-8 ko_KR-euc

UTF-8 ko_KR-johap

UTF-8 ko_KR-johap92

UTF-8 ko_KR-iso2022–7

UTF-8 zh_TW-euc

UTF-8 zh_TW-iso2022–7

UTF-8 zh_TW-cp937

UTF-8 FujitsuJEF-ascii-code

UTF-8 FujitsuJEF-ascii-face

UTF-8 FujitsuJEF-kana-code

UTF-8 FujitsuJEF-kana-face

216 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 GBK

UTF-8 HitachiKEIS83

UTF-8 HitachiKEIS90

UTF-8 ISO-2022–JP

UTF-8 KOI8–R

UTF-8 KOI8-U

UTF-8 UTF-7

UTF-8 NECJIPS

UTF-8 PCK

UTF-8 UCS-2

UTF-8 UCS-2BE

UTF-8 UCS-2LE

UTF-8 UCS-4

UTF-8 UCS-4BE

UTF-8 UCS-4LE

UTF-8 UTF-7

UTF-8 UTF-8

UTF-8 UTF-16

UTF-8 UTF-16BE

UTF-8 UCS-16LE

UTF-16 646 (ISO 646)

UTF-16 8859-1 (ISO8859-1)

UTF-16 8859-2 (ISO8859-2)

UTF-16 8859-3 (ISO8859-3)

UTF-16 8859-4 (ISO8859-4)

UTF-16 8859-5 (ISO8859-5)

UTF-16 8859-6 (ISO8859-6)

UTF-16 8859-7 (ISO8859-7)

UTF-16 8859-8 (ISO8859-8)

Appendix A • iconv Code Conversions 217

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-16 8859-9 (ISO8859-9)

UTF-16 8859-10 (ISO8859-10)

UTF-16 8859-13 (ISO8859-13)

UTF-16 8859-14 (ISO8859-14)

UTF-16 8859-15 (ISO8859-15)

UTF-16 8859-15 (ISO8859-15)

UTF-16 8859-16 (ISO8859-16)

UTF-16 KOI8-R

UTF-16 KOI8-U

UTF-16 UCS-4

UTF-16 UCS-4BE

UTF-16 UCS-4LE

UTF-16 UTF-8

UTF-16BE 646 (ISO 646)

UTF-16BE 8859-1 (ISO8859-1)

UTF-16BE 8859-2 (ISO8859-2)

UTF-16BE 8859-3 (ISO8859-3)

UTF-16BE 8859-4 (ISO8859-4)

UTF-16BE 8859-5 (ISO8859-5)

UTF-16BE 8859-6 (ISO8859-6)

UTF-16BE 8859-7 (ISO8859-7)

UTF-16BE 8859-8 (ISO8859-8)

UTF-16BE 8859-9 (ISO8859-9)

UTF-16BE 8859-10(ISO8859-10)

UTF-16BE 8859-13 (ISO8859-13)

UTF-16BE 8859-14 (ISO8859-14)

UTF-16BE 8859-15 (ISO8859-15)

UTF-16BE 8859-16 (ISO8859-16)

UTF-16BE KOI8-R

218 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-16BE KOI8-U

UTF-16BE UCS-4

UTF-16BE UCS-4BE

UTF-16BE UCS-4LE

UTF-16BE UTF-8

UTF-16LE 646 (ISO 646)

UTF-16LE 8859-1 (ISO8859-1)

UTF-16LE 8859-2 (ISO8859-2)

UTF-16LE 8859-3 (ISO8859-3)

UTF-16LE 8859-4 (ISO8859-4)

UTF-16LE 8859-5 (ISO8859-5)

UTF-16LE 8859-6 (ISO8859-6)

UTF-16LE 8859-7 (ISO8859-7)

UTF-16LE 8859 -8 (ISO8859-8)

UTF-16LE 8859-9 (ISO8859-9)

UTF-16LE 8859-10 (ISO8859-10)

UTF-16LE 8859-13 (ISO8859-13)

UTF-16LE 8859-14 (ISO8859-14)

UTF-16LE 8859-15 (ISO8859-15)

UTF-16LE 8859-16 (ISO8859-16)

UTF-16LE KOI8-R

UTF-16LE KOI8-U

UTF-16LE UCS-4

UTF-16LE UCS-4BE

UTF-16LE UCS-4LE

UTF-16LE UTF-8

UTF-32 UTF-8

UTF-32 UCS-2

UTF-32 UCS-2BE

Appendix A • iconv Code Conversions 219

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-32 UCS-2LE

UTF-32 UCS-4

UTF-32 UCS-4BE

UTF-32 UCS-4LE

UTF-32 UTF-16

UTF-32 UTF-16LE

UTF-32 UTF–32BE

UTF-32 646 (ISO 646)

UTF-32 ISO8859–1

UTF-32 ISO8859–2

UTF-32 ISO8859–3

UTF-32 ISO8859–4

UTF-32 ISO8859–5

UTF-32 ISO8859–6

UTF-32 ISO8859–7

UTF-32 ISO8859–8

UTF-32 ISO8859–9

UTF-32 ISO8859–10

UTF-32 ISO8859–13

UTF-32 ISO8859–14

UTF-32 ISO8859–15

UTF-32 ISO8859–16

UTF-32 KOI8–R

UTF-32 KOI8–U

UTF-32BE UTF-8

UTF-32BE UCS-2

UTF-32BE UCS-2BE

UTF-32BE UCS-2LE

UTF-32BE UCS-4

220 International Language Environments Guide • January 2005

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-32BE UCS-4BE

UTF-32BE UCS-4LE

UTF-32BE UTF-16

UTF–32BE UTF-16BE

UTF-32 BE UTF-16LE

UTF-32BE 646 (ISO 646)

UTF-32BE ISO8859–1

UTF-32BE ISO8859–2

UTF-32BE ISO8859–3

UTF-32BE ISO8859–4

UTF-32BE ISO8859–5

UTF-32BE ISO8859–6

UTF-32BE ISO8859–7

UTF-32BE ISO8859–8

UTF-32BE ISO8859–9

UTF-32BE ISO8859–10

UTF-32BE ISO8859–13

UTF-32BE ISO8859–14

UTF-32BE ISO8859–15

UTF-32BE ISO8859–16

UTF-32BE KOI8–R

UTF-32BE KOI8–U

UTF-32LE UTF-8

UTF-32LE UCS-2

UTF-32LE UCS-2BE

UTF-32LE UCS-2LE

UTF-32LE UCS-4

UTF-32LE UCS-4BE

UTF-32LE UCS-4LE

Appendix A • iconv Code Conversions 221

TABLE A–1 Available Unicode Related iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF32–LE UTF-16

UTF32–LE UTF-16BE

UTF-32LE UTF-16LE

UTF-32LE 646 (ISO 646)

UTF-32LE ISO8859–1

UTF-32LE ISO8859–2

UTF-32LE ISO8859–3

UTF-32LE ISO8859–4

UTF-32LE ISO8859–5

UTF-32LE ISO8859–6

UTF-32LE ISO8859–7

UTF-32LE ISO8859–8

UTF-32LE ISO8859–9

UTF-32LE ISO8859–10

UTF-32LE ISO8859–13

UTF-32LE ISO8859–14

UTF-32LE ISO8859–15

UTF-32LE ISO8859–16

UTF-32LE KOI8–R

UTF-32LE KOI8–U

Note – UTF-EBCDIC is a new IBM codepage name. The current Solaris environment
also supports bidirectional conversion between UTF-8 and UTF-EBCDIC code pages.

The following table lists the Unicode and IBM/Microsoft EBCDIC and PC iconv code
conversion modules available in the current Solaris environment.

222 International Language Environments Guide • January 2005

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Related
iconv Code Conversion Modules

From Code (Symbol) To Code (Symbol)

UTF-8 IBM-037

UTF-8 IBM-273

UTF-8 IBM-277

UTF-8 IBM-278

UTF-8 IBM-280

UTF-8 IBM-284

UTF-8 IBM-285

UTF-8 IBM-297

UTF-8 IBM-420

UTF-8 IBM-424

UTF-8 IBM-500

UTF-8 IBM-850

UTF-8 IBM-852

UTF-8 IBM-855

UTF-8 IBM-856

UTF-8 IBM-857

UTF-8 IBM-862

UTF-8 IBM-864

UTF-8 IBM-866

UTF-8 IBM-869

UTF-8 IBM-870

UTF-8 IBM-871

UTF-8 IBM-875

UTF-8 IBM-880

UTF-8 IBM-1025

UTF-8 IBM-1026

UTF-8 IBM-1112

UTF-8 IBM-1122

Appendix A • iconv Code Conversions 223

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Related
iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 IBM-921

UTF-8 IBM-922

UTF-8 IBM-1046

UTF-8 IBM-1140

UTF-8 IBM-1141

UTF-8 IBM-1142

UTF-8 IBM-1143

UTF-8 IBM-1144

UTF-8 IBM-1145

UTF-8 IBM-1146

UTF-8 IBM-1147

UTF-8 IBM-1148

UTF-8 IBM-1149

UTF-8 CP850

UTF-8 CP852

UTF-8 CP855

UTF-8 CP857

UTF-8 CP862

UTF-8 CP864

UTF-8 CP866

UTF-8 CP869

UTF-8 CP874

UTF-8 CP1250

UTF-8 CP1251

UTF-8 CP1252

UTF-8 CP1253

UTF-8 CP1254

224 International Language Environments Guide • January 2005

TABLE A–2 Available Unicode and IBM/Microsoft EBCDIC and PC Code Page Related
iconv Code Conversion Modules (Continued)
From Code (Symbol) To Code (Symbol)

UTF-8 CP1255

UTF-8 CP1256

UTF-8 CP1257

UTF-8 CP1258

The following table lists the available iconv code conversions from IBM and
Microsoft EBCDIC/PC code pages to UTF-8.

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8

UTF-EBCDIC UTF-8

IBM-037 UTF-8

IBM-273 UTF-8

IBM-277 UTF-8

IBM-278 UTF-8

IBM-280 UTF-8

IBM-284 UTF-8

IBM-285 UTF-8

IBM-297 UTF-8

IBM-420 UTF-8

IBM-424 UTF-8

IBM-500 UTF-8

IBM-850 UTF-8

IBM-852 UTF-8

IBM-855 UTF-8

IBM-856 UTF-8

IBM-857 UTF-8

IBM-862 UTF-8

IBM-864 UTF-8

IBM-866 UTF-8

Appendix A • iconv Code Conversions 225

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8 (Continued)
UTF-EBCDIC UTF-8

IBM-869 UTF-8

IBM-870 UTF-8

IBM-871 UTF-8

IBM-875 UTF-8

IBM-880 UTF-8

IBM-921 UTF-8

IBM-922 UTF-8

IBM-1025 UTF-8

IBM-1026 UTF-8

IBM-1046 UTF-8

IBM-1112 UTF-8

IBM-1122 UTF-8

IBM-1140 UTF-8

IBM-1141 UTF-8

IBM-1142 UTF-8

IBM-1143 UTF-8

IBM-1144 UTF-8

IBM-1145 UTF-8

IBM-1146 UTF-8

IBM-1147 UTF-8

IBM-1148 UTF-8

IBM-1149 UTF-8

CP850 UTF-8

CP852 UTF-8

CP855 UTF-8

CP857 UTF-8

CP862 UTF-8

CP864 UTF-8

226 International Language Environments Guide • January 2005

TABLE A–3 Available iconv Code Conversions - IBM and Microsoft EBCDIC/PC Code
Pages to UTF-8 (Continued)
UTF-EBCDIC UTF-8

CP866 UTF-8

CP869 UTF-8

CP874 UTF-8

CP1250 UTF-8

CP1251 UTF-8

CP1252 UTF-8

CP1253 UTF-8

CP1254 UTF-8

CP1255 UTF-8

CP1256 UTF-8

CP1257 UTF-8

CP1258 UTF-8

Appendix A • iconv Code Conversions 227

228 International Language Environments Guide • January 2005

Index

Numbers and Symbols
16-bit Unicode 3.0 codeset, 175

A
alphabets, 32
APIs, internationalization, 43
applications

FontSet/XmFontList definitions, 158
linking to system libraries, 41
XPG4, 42

Arabic
character support, 117
input mode, 136

Arabic keyboard, 69

B
Baltic, character support, 117
Belgian keyboard, 69
Bengali keyboard, 84

C
C locale, 25
CDE

input methods, 118
locale support, 116

character, shaping, 161-181

character encoding
Unicode, 115
UTF-16, 116
UTF-32, 116
UTF-8, 116

characters
conversion, 43-50
multibyte, 40
support, 117

Chinese
bopomofo, 34
Hanzi, 34
Hong Kong, 34
input method, 21
People’s Republic of China, 34
pinyin, 34
Taiwan, 34
zhuyin, 34

code conversion modules, 201-222, 223-225
code set, character support, 117
codeset, 24

conversions, 155
codeset independence (CSI)

ASCII slash, 38
commands, 38-39
dynamically linked applications, 41
Extended UNIX Code (EUC), 37-39
file code encodings, 38
Java internationalization, 38
libraries, 39
locale database, 39-40
multibyte characters, 40
NULL byte, 38

229

codeset independence (CSI) (Continued)
process code format, 40
Shift-JIS code set, 37-39

commands, CSI, 38-39
Complex Text Layout (CTL), 14, 161-181

architecture, 162
creating a render table, 177-178
creating a rendition, 175
diacritics, 161-181
editing a rendition, 176
horizontal tabs, 178-179
keyboard selection, 180
layout direction, 173-177
ligatures, 161-181
Motif, 163-173
Motif libraries, 181
mouse selection, 179-180
text orientation, 161-181
text resources, 180-181
XOC resources, 163
XOM, 162

Compose key, 35
Compose key sequences

accent dead keys, 130
Greek, 139
Greek, four keys, 146
Greek, three keys, 145
Latin-1, 122
Latin-2, 126
Latin-3, 127
Latin-4, 128
Latin-5, 129
Latin-9, 130

continuous phonetic input method, Indic
script, 110

conversion
Unicode iconv modules, 201-222
user-defined codeset, 51

.cshrc, STREAMS module settings, 155
ctype macros, 42
Cyrillic, input mode, 137
Cyrillic keyboard, 69
Czech, character support, 117

D
Danish keyboard, 70

date formats, 28
Daylight Savings Time (DST), 28
Devanagari keyboard, 84
DtMail, MIME character sets, 156
dtterm, 154

E
en_US.UTF-8, FontSet definitions, 159
en_US.UTF-8, support, 116
English

character support, 117
input mode, 121

F
Finnish keyboard, 70
fonts

aliasing, 186
Japanese bitmap, 80
Japanese TrueType, 81
mapping, 186

FontSet definitions, 159
French keyboard, 70
full localization package, Japanese, 82

G
genmsg utility, 50-51
German, character support, 117
German keyboard, 71
GMT offset, 28
Greek

character support, 117
input mode, 138, 139

Greek Euro, keyboard, 138
Greek UNIX, keyboard, 138
Gujarati keyboard, 85
Gurmukhi keyboard, 85

H
Hangul, 33
Hanja, 33

230 International Language Environments Guide • January 2005

Hanzi, 34
Hebrew

character support, 117
input mode, 147
Yiddish, 34

Hindi
character support, 117
Devanagari, 35

Hiragana, 33
Hungarian, character support, 117

I
iconv

code conversion, 53
Japanese character code conversion, 82

iconv conversion module, EBCDIC/PC code
pages, 225-227

iconv conversion modules, Unicode, 201-222
Indic, input method, 83
input method

ATOK method, 81
Indic, 88
Indic method, 83
Japanese, 81
Thai, 113

input modes
Arabic, 136
Cyrillic, 137
en_US.UTF-8 locale, 118
English, 121
Greek, 138, 139
Hebrew, 147
Japanese, 147
Korean, 148
Simplified Chinese, 149
table lookup, 150
Traditional Chinese, 149
Unicode Hexadecimal, 150

internationalization
definition, 21-24
ISO Latin-1, 24

internationalization APIs, 43
Internationalized Domain Name (IDN), 52
ISO Latin-1, 24
ISO8859, character support, 117
Italian keyboard, 71

J
Japanese

character set, 79-80
character support, 117
font, 80-81
full localization package, 82
Hiragana, 33
iconv module, 82
input method, 81
input mode, 147
Kanji, 33
Katakana, 33
locales, 79
localization, 79-83

Japanese keyboard, 71

K
Kanji, 33
Kannada keyboard, 86
Katakana, 33
Kedmanee keyboard, 111

enhanced, 112
keyboard

Arabic, 69, 137
Belgian, 69
Bengali, 84
changing keyboard settng on SPARC, 68
changing layout, 65
changing layout to Czech, 68
CTL selection, 180
Cyrillic, 69
Cyrillic (Russian), 137
Danish, 70
Devanagari, 84
Finnish, 70
French, 70
German, 71
Greek Euro, 138
Greek UNIX, 138
Gujarati, 85
Gurmukhi, 85
Hebrew, 147
Italian, 71
Japanese, 71, 148
Kannada, 86
Kedmanee, 111

231

keyboard (Continued)
Kedmanee enhanced, 112
Korean, 72, 148
layouts, 68, 69, 84, 111
Malayalam, 86
Netherlands (Dutch), 72
Norwegian, 72
Pattajoti, 112
Portuguese, 73
regional, 64
Spanish, 73
Swedish, 73
Swiss (French), 74
Swiss (German), 74
Tamil, 86
Teluga, 87
Traditional Chinese, 74
Turkish F, 75
Turkish Q, 75
type 4, 5, and 5c, 66
type 6, 65
U.S.A./UNIX, 76
United Kingdom, 75
United States, 76

Korean
character support, 117
Hangul, 33
Hanja, 33
input mode, 148

Korean keyboard, 72

L
LANG environment variable, 151
Latin-1, Compose key sequences, 122
Latin-2, Compose key sequences, 126
Latin-3, Compose key sequences, 127
Latin-4, Compose key sequences, 128
Latin-5, Compose key sequences, 129
Latin-9, Compose key sequences, 130
layout behavior, 166
LC_ALL, 24
libc

APIs, 39-40
application linking, 37-54
character classification and

transliteration, 45

libc (Continued)
character collation, 46
code conversion functions, 44
date and time format, 47
messaging functions, 43
modify and query locale, 44
monetary format, 46
multibyte handling, 47
query locale, 44
regular expressions, 44
wide character and string handling, 47
wide character class, 44
wide-character input and output, 49, 50
wide strings, 49

libraries, (CSI), 39
linking, applications, 41
local environment variable, 151
locales

Asia, 56
Australasia, 58
C, 25
categories, 27
Central America, 58
character sets, 32
Compose key, 63
cultural conventions, 26
currency, 22
currency formats, 30
date formats, 28
definition, 24
Eastern Europe, 59
environment variables, 151
full, 25, 56
Japanese, 79
keyboard differences, 35
Middle East, 60
North Africa, 60
North America, 60
Northern Europe, 60
number formats, 29
page sizes, 35
partial, 25, 55
POSIX, 25
Solaris, 79-113
sort order, 32
South America, 61
Southern Europe, 61
time formats, 28

232 International Language Environments Guide • January 2005

locales (Continued)
Western Europe, 62
word delimiters, 32

localization, 79-113
configuration file, 186
definition, 21-24

M
Malayalam keyboard, 86
map

Bengali characters, 88
Gujarati characters, 91
Gurmukhi characters, 94
Hindi characters, 97
Kannada characters, 99
Malayalam characters, 102
Tamil characters, 105
Telugu characters, 108

mapping, English to phonetic equivalent for
Indic scripts, 88

mbtwoc, 43-50
message catalogs, 50-51
Motif

TextField, 174
UIL arguments, 173
XmNalignment, 167, 174, 175
XmNeditPolicy, 167
XmNlayoutDirection, 164
XmNlayoutDirection, 174
XmNlayoutModifier, 174, 175
XmNrenditionTag, 167
XmRendition, 165, 174
XmStringDirection, 165
XmStringDirectionCreate, 172
XmText, 174
XmTextFieldGetLayoutModifier, 171
XmTextFieldSetLayoutModifier, 172
XmTextGetLayoutModifier, 171
XmTextSetLayoutModifier, 172

mp
PostScript variables, 194
print filter, 183, 184
TrueType, 19
Xprt client, 185

mp.conf file, 186
multibyte, conversion, 43-50

multibyte characters, 40

N
Netherlands (Dutch) keyboard, 72
Norwegian keyboard, 72

P
page sizes, common sizes, 35
Pattajoti keyboard, 112
People’s Republic of China, 34
PinYin, 34
Polish, character support, 117
Portable Layout Services (PLS), 186
Portuguese keyboard, 73
POSIX locale, 25
PostScript

prolog files, 192
runtime variables, 194

print filter, 183
prolog files, 192

R
Russian, character support, 117

S
Scandinavian, character support, 117
script selection, 119
setlocale command, 151
Simplified Chinese

character support, 117
input mode, 149

Spanish, character support, 117
Spanish keyboard, 73
SPARC keyboard, 68
static linking, 41
strconf command, 153
STREAMS

code conversion, 151
loading modules, 152
TTY environment, 151

233

stty, utilities, 154
Sun Ray, USB Type 6 keyboards, 19
Swedish keyboard, 73
Swiss (French) keyboard, 74
Swiss (German) keyboard, 74
system libraries, linking applications to, 41

T
table lookup, input modes, 150
Tamil keyboard, 86
Teluga keyboard, 87
terminal

setting options, 154
support, 154

Thai, 33
character sequence checking, 111-113
character support, 117
input method, 111, 113
keyboard layout, 20

time formats, 28
time zones, 28
Traditional Chinese

character support, 117
input mode, 149

Traditional Chinese keyboard, 74
TTY environment, setup, 151
Turkish, character support, 117
Turkish F keyboard, 75
Turkish Q keyboard, 75
TypeOfText, 166

U
U.S.A/UNIX keyboard, 76
UIL, 173
Unicode

conversion module, 201-222
Hexadecimal input mode, 150
overview, 115

United Kingdom keyboard, 75
United States keyboard, 76
UTC, 28
UTF-8, support, 116
utilities

genmsg, 51

utilities (Continued)
genmsg, 50-51
iconv, 53
locale, 151
stty, 154

W
Western European

character support, 117
wide character, support, 43-50

X
X Logical Fonts Description (XLFD), 188
X Print Xerver (Xprt), mp, 185
XmText

backward-cell(extend), 170
delete-left-character(), 170
delete-right-character(extend)

, 170
forward-cell(extend), 171
left-character(extend), 168
right-character(extend), 169
right-word(extend), 169

XPG4 applications, 42
.xpr files, 192
xterm, 154

234 International Language Environments Guide • January 2005

	International Language Environments Guide
	Preface
	About This Book
	How This Guide Is Organized
	Related Books and Sites
	Accessing Sun Documentation Online
	Typographic Conventions
	Shell Prompts in Command Examples

	Solaris Internationalization Overview
	About the Solaris Internationalization Architecture
	New Internationalization and Localization Features
	Internationalization and Localization Overview
	Basic Steps in Internationalization
	Localization Functions in Solaris Interfaces

	What Is a Locale?
	C Locale – the Default Locale
	Full and Partial Locales
	Behavior Affected by Locales
	Locale Categories

	Using Locale Categories for Localization
	Time Formats
	Date Formats
	Number Formats
	International Monetary Formats

	Language Word and Letter Differences
	Word Delimiters
	Sort Order
	Character Sets
	Western European Alphabets
	Japanese Text
	Korean Text
	Thai Text
	Chinese Text
	Hebrew Text
	Hindi Text

	Keyboard Differences
	Differences in Paper Sizes

	General Internationalization Features
	Support for Code Set Independence
	CSI Approach
	CSI-enabled Commands
	CSI-enabled Libraries

	Locale Database
	Process Code Format
	Multibyte Support Environment
	Dynamically Linked Applications
	Changed Interfaces
	ctype Macros
	Internationalization APIs in libc
	genmsg Utility
	User-Defined and User-Extensible Code Conversions
	Internationalized Domain Name (IDN) Support

	Localization in the Solaris Environment
	Software Support for Localization
	Summary of the Solaris Locale Packages

	Supported Locales
	Multiple Key Compose Sequences for Locales
	Keyboard Support in the Solaris Environment
	Changing Between Keyboards on SPARC Systems
	Changing Between Keyboards on Intel Systems
	Keyboard Layout Illustrations

	New Solaris Keyboard Software Support
	How to Access Estonian Type 6 USB Keyboard Support
	How to Access French Canadian Type 6 USB Keyboard Support
	How to Access Polish Programmers Type 5 Keyboard Support

	Supported Asian Locales
	Japanese Localization
	Japanese Locales
	Japanese Character Sets
	Japanese Fonts
	Japanese Input Systems
	How to Use the ATOK Input Method
	Terminal Setting for Japanese Terminals
	Japanese iconv Module
	User-Defined Character Support
	Differences Between Partial and Full Locales

	Indic Localization
	How to Use the Indic Input Methods
	Indic Keyboards
	Understanding the Mappings
	Mapping for the Continuous Phonetic Based Input Method
	How the Continuous Phonetic Input Method Works

	Thai Localization
	Thai Input Methods
	Thai Keyboard Layouts
	Thai Input Method Auxiliary Window

	Overview of UTF-8 Locale Support
	Unicode Overview
	Unicode Locale: en_US.UTF-8 Support

	About Desktop Input Methods
	Script Selection and Input Modes

	Accessing an Input Mode
	Input Mode Switch Key Sequences

	English/European Input Mode
	Arabic Input Mode
	Cyrillic Input Mode
	Greek Input Mode
	Hebrew Input Mode
	Japanese Input Mode
	Korean Input Mode
	Simplified Chinese Input Mode
	Traditional Chinese Input Mode
	Traditional Chinese (Hong Kong) Input Mode
	Unicode Hexadecimal Input Mode
	Table Lookup Input Mode
	System Environment
	Locale Environment Variable
	TTY Environment Setup
	dtterm, xterm and Terminals Capable of Input and Output of UTF-8 Characters
	Terminal Support for Latin-1, Latin-2, or KOI8-R
	Saving the Settings in ~/.cshrc

	Code Conversions
	DtMail Support
	Programming Environment
	FontSet Used with X Applications
	FontList Definition in CDE/Motif Applications

	Complex Text Layout
	Overview of CTL Technology
	Overview of CTL Architecture
	CTL Support for X Library Based Applications
	XOC Resources
	Changes in Motif to Support CTL Technology
	XmNlayoutDirection Resource
	Determining the Layout Direction

	XmStringDirection Resource
	XmRendition Resource
	Additional Layout Behavior

	XmText and XmTextField Resource
	Character Orientation Action Routines
	Character Orientation Additional Behavior
	XmText Action Routines

	XmTextFieldGetLayoutModifier Resource
	XmTextGetLayoutModifier Resource
	XmTextFieldSetLayoutModifier Resource
	XmTextSetLayoutModifier Resource
	XmStringDirectionCreate Resource

	UIL Arguments
	Developing CTL Applications
	Controlling Layout Direction
	Creating a Render Table in a Resource File

	Horizontal Tabs
	Mouse Selection
	Keyboard Selection
	Text Resources and Geometry
	Porting Instructions

	Print Filter Enhancement With mp
	Printing for UTF-8
	mp Print Filter Enhancement Overview
	Using mp With the Locale-Specific Font Configuration File mp.conf
	Using mp With the Locale-Specific PostScript Prolog Files
	Using mp as an Xprt (X Print Server) Client
	Localization With the mp.confConfiguration File
	Font Aliasing
	Font Group Definition
	Mapping Section
	Association Section

	How to Add a Printer-Resident Font
	How to Create a Shared Object File

	Adding and Customizing prolog Files
	PostScript File Customization
	Locale-Dependent prolog Files
	Common PostScript prolog Files
	Print Layout prolog Files

	.xpr Files
	STARTCOMMON/ENDCOMMON Keywords
	STARTPAGE/ENDPAGE Keywords
	STARTFORCEDPAGE/ENDFORCEDPAGE Section
	STARTCOLUMN/ENDCOLUMN Section
	STARTFORCEDCOLUMN/ENDFORCEDCOLUMN Section
	Creating a New .xpr File

	iconv Code Conversions
	Index

